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Introduction

An important driver in the design of modern civil aircrafts is the minimization of
fuel consumption through the reduction of aerodynamic drag in the cruise flight.
However, a critical factor with respect to safe flying conditions is the aircraft behavior
at the border of the flight envelope. As the flow conditions approach the maximum lift
of the airplane, measured by the lift coefficient CA,max, incipient flow separation sets
in. Beyond CA,max, flow separation leads to a sudden breakdown in lift, called stall,
which can have fatal consequences. In the regime of maximum lift, i.e. before stall,
the flow is very sensitive to turbulent disturbances. Therefore, to define the safety
margins of an airplane, among many other aspects the impact of onflow disturbances
on the airplane must be quantified. Nowadays, numerical flow simulations are an
integral part of the design process of new aircrafts. To obtain reliable simulation
results, the numerical model must be able to represent the relevant physical features
of flow separation and the effect of turbulent disturbances. However, the numerical
prediction of turbulence in flows at high Reynolds numbers is still a major challenge.

This work contributes to the development of a highly accurate simulation method
for the problem of an airplane flying at the border of the flight envelope in disturbed
ambient air. The aim of the work is twofold: On the one hand, to develop an
improved modeling concept for aerodynamic flows close to and beyond stall in order
to enable reliable numerical predictions. On the other hand, to define and investigate
a strategy for the representation of a realistic disturbance in a numerical simulation.

Concerning the first point, in general the highest lift force is needed during the take-
off and landing of an airplane. In these phases the reduced air speed is compensated
by higher angles of attack and additional high-lift systems, i.e. the slats and flaps are
deployed to increase the lift and delay the stall. The numerical prediction of high-lift
flows is challenging as the complex flow topology comprises regions of attached flow
as well as massive turbulent separation.

There exist many approaches with varying complexity to compute the influence
of turbulence. In a Direct Numerical Simulation (DNS), sometimes referred to
as numerical experiment, all scales in the turbulent spectrum are resolved. Even
though with increasing computing power DNS has become feasible for flows at higher
Reynolds numbers, DNS still is rather a tool for turbulence research, as described by
Moin and Mahesh [51]. While the detailed results from DNS provide valuable refer-
ence data, for most practical applications another way of computing the influence of
turbulence is indispensable.

In the Reynolds-Averaged Navier-Stokes (RANS) approaches the impact of the tur-
bulence on the mean flow is approximated in a purely statistical manner, see e.g.
Wilcox [89]. The RANS models have reached a level of maturity, which makes them
a valuable tool in the design process of aircrafts, see e.g. Abbas-Bayoumi and Becker
[2]. But while many RANS models are able to predict attached flows with sufficient
accuracy, the results deteriorate considerably for separated flows, see e.g. Rumsey and
Ying [66]. During the ongoing work in the RANS model improvement, the focus has
recently shifted from Eddy-Viscosity Models (EVM) towards differential Reynolds
Stress Models (RSM), which are suited to capture anisotropies of the turbulence and
streamline curvatures more accurately. Besides the established EVMs by Spalart and
Allmaras [76] and Menter [45], a novel RSM by Cécora et al. [7] is utilized in this
work, which is based on the JHh model by Jakirlić and Hanjalić [28] and the JHh-v1
model by Probst et al. [63].
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Another approach in turbulence modeling is the Large-Eddy Simulation (LES). As in
LES only the largest turbulent scales are resolved, while the influence of the smallest
scales is approximated through a model, its complexity lies between DNS and RANS.
Lesieur and Métais [40] give an overview of the developments in LES. In the present
thesis the models by Smagorinsky [73] and the Wall-Adapting Local Eddy-viscosity
(WALE) model by Nicoud and Ducros [54] are utilized. One of the strengths of LES
is its ability to predict turbulent separated flows more accurately than RANS. On
the other hand, the high resolution requirements for the prediction of wall-bounded
flows are a major drawback.

To close the gap between RANS and LES, several modeling approaches have been
proposed, for example the Scale-Adaptive Simulation (SAS) by Menter et al. [47]
and the Partially Averaged Navier-Stokes (PANS) model by Girimaji [22]. Besides,
the Detached-Eddy Simulation (DES) by Spalart et al. [77] is a hybrid RANS/LES
model, that combines the advantages of both methods: the RANS approach provides
reliable results in regions of attached flow, while LES is employed locally to model
separated flow regions. Further DES-type models are the Delayed Detached-Eddy
Simulation (DDES) by Spalart et al. [78] as well as the Improved Delayed Detached-
Eddy Simulation (IDDES) by Travin et al. [85].

Spalart [75] gives an overview of the progress in the field of the hybrid RANS/LES
approaches. For example, several modifications of the coupling mechanism of RANS
and LES have been proposed: Deck [13] employs user-defined regions in the Zonal
DES (ZDES) and Shur et al. [72] use overlapping grids, to define concurrent RANS
and IDDES zones. But instead of user-defined regions, which require prior knowledge
of the flow, an approach is desirable that is able to automatically detect the regions
where the model should be modified. This requirement was further promoted through
observations by Probst et al. [63], who observe shortcomings of SA-based DDES
and IDDES in predicting the trailing edge separation of a single element airfoil,
see Sect. 3.1. As a consequence Knopp et al. [35] developed the Algebraic Delayed
Detached-Eddy Simulation (ADDES), which is considered in the present thesis. In
the ADDES algebraic sensors are used to detect the state of the flow and adjust the
model automatically if necessary, as described in Sect. 3.3.2.

In all numerical simulations the grid resolution determines the spatial discretization
error, but in scale-resolving simulations the grid-cell size also determines the length
scale in the turbulence model. To accurately represent the physical problem in time
and space, it is not only necessary to minimize the discretization error, but even
more so to sufficiently resolve the larger scales in the turbulent spectrum. Various
approaches to assess the grid resolution in an LES have been proposed. For example,
Celik et al. [8] and Klein [31] use systematic grid and model variations to distinguish
the numerical error from the modeling error. However, for complex test cases it is
not affordable to perform exhaustive grid variations. Therefore, the grid-resolution
sensor that is proposed in the present thesis is able to assess the grid resolution from
a single simulation, see Sect. 3.2.2. Moreover, the resolution sensor can be used as
input for a local grid refinement, to increase the resolution if necessary.

One problem, inherent in the DES-type approaches, is the model behavior at the
RANS-to-LES transition, the so called grey-area problem. Several strategies for the
mitigation of this problem have been proposed. For example, Kok and van der Ven
[37] use a high-pass filter to reduce the eddy viscosity in shear layers, while Mockett
et al. [49] couple RANS with the σ sub-grid model by Nicoud et al. [55], which is
sensitized to the orientation and the anisotropy of the resolved field. In the present
thesis, the proposal by Chauvet et al. [9] to use a modified length scale in the LES
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region is pursued. To this end, the formulation is adapted to the unstructured grid
approach of the TAU code. Another possibility to stimulate the LES model is to
induce synthetic turbulent structures, see e.g. the review article by Tabor and Baba-
Ahmadi [83]. Among many other approaches, the Synthetic Turbulence Generator
(STG) by Adamian and Travin [3], and the Synthetic-Eddy Method (SEM) by Jarrin
et al. [29] were published.

The second focus of the present thesis is the influence of turbulent onflow distur-
bances on the stall behavior of airfoils. In many publications only simplified model
disturbances are considered. Svärd et al. [82] use higher-order methods to study the
interaction of an analytical vortex with a NACA-0021 airfoil, while Kim et al. [30]
consider an analytical vortex pair interacting with an rigid sphere. Abate [1] pre-
scribes a cosine-shaped gust via an inflow boundary condition. Realistic turbulence
is considered by Helmke et al. [26] who obtain highly resolved LES data of an at-
mospheric boundary layer to assess the general effects of air turbulence on wings. A
systematic classification of atmospheric gusts by their shapes and strengths is given
by Knigge [33]. Another source of turbulence is the wake of obstacles like preceding
aircrafts or buildings near an airport. For example, Leclercq and Doolan [38] inves-
tigate the interaction of a vortex wake with a bluff body. In the present thesis a
realistic disturbance is generated by a rapidly deflected airfoil which interacts with
a two-element airfoil in high-lift configuration. An experimental study of this test
case is performed by Hahn et al. [24] and Klein [31], while RANS simulations are
conducted by Wawrzinek et al. [87] to investigate the influence of the position of the
vortex-generator airfoil.

The own developments that were obtained in the present work, are implemented and
applied in the DLR-TAU code, see e.g. Schwamborn et al. [70]. The flow solver TAU
is an unstructured finite-volume solver for the compressible Navier-Stokes equations.

This cumulative thesis is organized in four chapters and the appendix. In the first two
chapters the theoretical background of the work is given. In Chap. 1 the compressible
Navier-Stokes equations and the treatment of turbulence in numerical simulations are
described. The flow solver TAU is introduced in Chap. 2. Emphasis is put on the last
two chapters where the achievements of the work are presented. Chap. 3 describes
implementation details of the new developments in the grid-adaptive Algebraic De-
layed Detached-Eddy Simulation model. In Chap. 4 these extended methods are first
validated for basic test cases with relevant flow phenomena, before they are used to
simulate the target application, i.e. the two-element airfoil with onflow disturbances.
The appendix comprises the publications with major own contributions, which were
authored during this work.

Overview over Publications

During the development of the improved simulation strategy presented here, interme-
diate results were published at several work stages. Other publications were gener-
ated in collaboration with co-workers in complementary fields of research. The pub-
lications with a major own contribution are attached in the appendix of the present
thesis, and they are summarized in the next paragraph. The own contribution to the
remaining publications is pointed out in the subsequent paragraph.
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Publications with major own contribution

[A] S. Reuß, C. Wolf, T. Knopp, A. Raichle, D. Schwamborn: Chimera technique
for transporting disturbances. International Journal for Numerical Methods in
Fluids, 70(12) pp. 1558-1572, 2010

[B] S. Reuß, T. Knopp, D. Schwamborn: Hybrid RANS/LES simulations of a three-
element airfoil. Fu et al. (Eds.): Progress in Hybrid RANS-LES Modelling,
NNFM 117, pp. 357-367, Springer, 2012

[C] S. Reuß, T. Knopp, D. Schwamborn: Investigation of the Resolution Require-
ments for a Hybrid RANS/LES Simulation of a Multi-Element Airfoil. Kroll
et al. (Eds.): Computational Flight Testing, NNFM 123, pp. 43-57, Springer,
2013

[D] S. Reuß, T. Knopp, A. Probst, M. Orlt: Assessment of Local LES-Resolution
Sensors for Hybrid RANS/LES Simulations. Girimaji et al. (Eds.): Progress
in Hybrid RANS-LES Modelling, NNFM 130, pp. 93-103, Springer, 2015

[E] S. Reuß, A. Probst, T. Knopp: Numerical investigation of the DLR F15 two-
element airfoil using a Reynolds stress model. In Joint Symposium “Simulation
of Wing and Nacelle Stall“, Jun. 21-22, 2012, Braunschweig, Germany, 2012

[F] S. Reuß, A. Probst, T. Knopp, K. Wawrzinek: Hybrid RANS/LES Study of the
Development of an Airfoil-Generated Vortex. Radespiel et al. (Eds.): Advances
in Simulation of Wing and Nacelle Stall, NNFM 131, pp. 41-54, Springer, 2015

The present thesis is the continuation of the work by Wolf [92]. He performed several
of the simulations that are presented in Ref. [A], which were already presented inWolf
et al. [93]. Ref. [A] assesses the possibility of transporting vortices, both analytical
and airfoil-generated, using the Chimera method. The impact of the grid resolution
and the numerical method on the preservation of the vortex is evaluated. Analytical
disturbances interact with a NACA-0021 airfoil and an Onera-A airfoil, and a RANS
simulation of a realistic airfoil-generated vortex with a high-lift airfoil is performed,
the target application of the present thesis.

One aim of the present thesis is to provide an improved hybrid RANS/LES modeling
strategy for the reliable prediction of airfoils close to maximum lift. Moreover, a
scale-resolving simulation allows to investigate the influence of the various scales of
the turbulent onflow disturbance on the airfoil. To start with, in Ref. [B] and Ref. [C]
the possibilities and limitations of the original DES-type models are assessed with
the help of SA-based DDES and IDDES simulations of the DLR F15 three-element
airfoil. Ref. [B] focuses on the comparison of the different modeling approaches,
while Ref. [C] addresses the resolution requirements. In particular, the feasibility of
a globally scale-resolving approach for complex test cases is scrutinized. None of the
applied approaches in Ref. [B] and Ref. [C] were found to capture the trailing-edge
separation correctly, which clearly motivated an improved simulation strategy for
high-lift flows.

A key element to the reliability of a scale-resolving simulation is the grid resolution:
As the grid-cell size is not only coupled to the discretization error, but also influ-
ences the model itself, a sufficient resolution is crucial to resolve the relevant physics
of the turbulent scales. Therefore, in Ref. [D] a novel grid-resolution sensor is pro-
posed. On the one hand this sensor provides a means to assess the computational
grid, but moreover, this sensor can be used as input for a local grid refinement of
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underresolved regions. The sensor is evaluated for the test case of a backward-facing
step, and additionally the results of a local grid refinement are presented in Ref. [D].
Furthermore, to mitigate the grey area at the RANS-to-LES interface an improved
filter width ∆ω is applied in these applications.

For the target application of an airfoil-generated vortex interacting with a high-lift
airfoil, the computational costs to simulate the whole experimental wind-tunnel setup
are prohibitively high. Therefore, in Ref. [E] a suitable numerical representation
of the experimental setup is investigated. Two-dimensional and three-dimensional
RANS simulations are compared, and it is concluded that considering only the center-
plane section of the wind tunnel yields satisfactory agreement with experimental
data.

In Ref. [F] a simulation strategy for the transport of an airfoil-generated disturbance
is developed. Relevant characteristics of the generic vortex are identify with the help
of the experimental data by Hahn et al. [24]. In the simulations the SST-RANS model
as well as the SST-based ADDES are utilized to model the transport of the generic
vortex. The comparison with experimental data shows, that the RANS approach is
able to predict the mean values of the transported vortex with acceptable accuracy.
Therefore, in the target application the vortex transport is treated in RANS mode.

The final results of the target application have not been published. To complete the
present thesis, they are presented in Sect. 4.7.

Publications with minor own contribution

[G] A. Probst, S. Reuß: Scale-Resolving Simulations of Wall-Bounded Flows with
an Unstructured Compressible Flow Solver. Girimaji et al. (Eds.): Progress in
Hybrid RANS-LES Modelling, NNFM 130, pp. 481-491, Springer, 2015

[H] A. Probst, J. Löwe, S. Reuß, T. Knopp, R. Kessler: Scale-Resolving Simulations
with a Low-Dissipation Low-Dispersion Second-Order Scheme for Unstructured
Finite-Volume Flow Solvers. AIAA 2015-0816, 2015.

[J] D. G. François, R. Radespiel, S. Reuß, A. Probst: Computations of Separated
Flows with Hybrid RANS/LES Approaches. In Radespiel et al. (Eds.): Ad-
vances in Simulation of Wing and Nacelle Stall, NNFM 131, Springer, 2015

[K] R. Radespiel, D. G. François, D. Hoppmann, S. Klein, P. Scholz, K. Wawrzinek,
T. Lutz, T. Auerswald, J. Bange, C. Knigge, S. Raasch, P. Kelleners, R. Hein-
rich, S. Reuß, A. Probst, T. Knopp: Simulation of Wing Stall. AIAA 2013-3175,
2013.

For the spatial discretization of the flow equations, the unstructured TAU code
applies a standard second-order central scheme, which is stabilized by a matrix-
valued artificial dissipation. To improve the results of scale-resolving simulations,
this scheme has been optimized in terms of dissipation, see Ref. [G]. In first sim-
ulations, the values of various parameters in the artificial-dissipation operator are
optimized for wall-resolved LES simulations of a turbulent channel flow. As a part
of the present thesis, SA-based IDDES simulations are contributed to the paper, in
order to assess the optimized settings for wall-modeled LES. In all presented simu-
lations the results are improved through the optimized settings.

The standard second-order scheme is further improved by Löwe et al. [42]: in the
flux evaluation supplementary information about the gradients is included, and the
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additional degree of freedom is used to optimize the dispersion properties of the
scheme. The low-dispersion scheme is tested in Ref. [H] for a turbulent channel flow.
Again, in the first simulations the low-dispersion scheme is tested for wall-resolved
LES, while the contribution of the wall-modeled LES results, which are obtained with
SST-based IDDES, is a part of the present thesis. In these and also in more complex
scale-resolving simulations the low-dispersion scheme yields even better results than
the low-dissipation scheme.

In the work of François and Radespiel [17] the STG method by Adamian and Travin
[3] is improved and implemented in TAU to introduce synthetic turbulent structures
at the RANS-to-LES interface. As a part of the present thesis the contribution to
Ref. [J] consists in the extension of the ADDES framework. A data structure is
provided, which allows the flexible detection of the reference points for the synthetic
turbulence generator. Moreover, this structure enables the addition of synthetic
turbulent structures at several locations in the flow.

The present work is embedded in the research group FOR-1066, funded by the
Deutsche Forschungsgemeinschaft (DFG - German Research Foundation), which is
dedicated to the investigation of wing and nacelle stall. Ref. [K] illustrates the
collaboration in this research group, and contributions of the various partners are
presented.
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Chapter 1

Turbulence: physical background
and modeling

In the present thesis the flow of air about a given geometry is considered. The
flow conditions include a sufficiently small Knudsen number1 to assume a continuous
fluid and a free-stream Mach number in the range of Ma = 0 − 0.3. Even if the
effects of compressibility are small in this Ma range, locally much higher values can
occur in regions of strong flow acceleration, for example, close to the nose of an
airfoil. Therefore, the compressible Navier-Stokes equations are considered, which
describe the dynamics of a continuous Newtonian fluid. The equations are given
in Sect. 1.1. The physical background of the turbulent energy transfer is briefly
described in Sect. 1.2. In Sect. 1.3 the concepts of turbulence modeling that are
relevant for the present thesis are introduced.

1.1 Compressible Navier-Stokes equations

Following from the conservation equations for mass, momentum, and energy, the
Navier-Stokes equations describe the fields of density ρ, momentum ρu = ρ (u, v, w)T ,
and total energy ρE in the spatio-temporal domain Ω × (t0, tend) with Ω ⊂ R3.
According to Schlichting and Gersten [68], in the absence of external forces the
equations in Cartesian tensor notation2 are given by

∂ρ

∂t
+
∂ (ρui)
∂xi

= 0 , (1.1)

∂ (ρui)
∂t

+
∂ (ρuiuj)
∂xj

=− ∂p

∂xi
+
∂τij
∂xj

, (1.2)

∂ (ρE)
∂t

+
∂ (ρuiE)
∂xi

=− ∂ (uip)
∂xi

+
∂ (uiτij)
∂xj

+
∂qi
∂xi

. (1.3)

Following Stokes’ assumption the viscous stress tensor τ for Newtonian fluids can be
computed from the strain rate tensor S. They are component-wise defined as

τij = 2µ
(
Sij − δij

1
3
∂uk
∂xk

)
and Sij =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.4)

The dynamic molecular viscosity µ and the temperature T are related through
Sutherland’s law, which reads

µ = µref

(
T

Tref

)3/2
Tref + TS
T + TS

. (1.5)

1The Knudsen numberKn is given by the ratio of the molecular mean free path to a characteristic
physical length.

2The Einstein summation convention is used, meaning summation over indices that appear twice
in a single term ∂ui

∂xi
= ∂u1

∂x1
+ ∂u2
∂x2

+ ∂u3
∂x3

= ∇ ·u. In the following x = (x, y, z)T denotes the vector
components, when necessary.
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For air the reference temperature Tref, the reference viscosity µref, and the Sutherland
temperature TS are given by

Tref = 273.15 K , µref = 1.716× 10−5 kg/(ms) , and TS = 110.4 K . (1.6)

For calorically perfect gas the pressure p, the temperature T , and the specific internal
energy e are provided by the equations of state

p = ρRT and e =
1

1− γ
RT , (1.7)

where R = 287.058 J/(kgK) is the specific gas constant and γ = 1.4 is the ratio of
specific heats of air. The total energy E is the sum of the internal energy e and the
kinetic energy kkin with

E = e+ k and kkin =
1
2
uiui . (1.8)

By Fourier’s law the heat flux vector q is proportional to the temperature gradient

qi = κ
∂T

∂xi
. (1.9)

The thermal conductivity κ can be computed from the Prandtl number, which is
Pr = 0.72 for air. It is defined as the ratio of the viscous diffusion to the thermal
diffusion

Pr =
µ
ρ
κ
ρCp

=
γ

γ − 1
R
µ

κ
. (1.10)

For φ ∈ {ρ, ρu, ρE} the terms in Eqs. (1.1)-(1.3) can be characterized as the transient
term ∂φ

∂t and the convective term ∂(uiφ)
∂xi

on the left hand side; the right hand side
contains the pressure terms with p, the viscous terms with τ , and the heat flux q.

To solve the problem (1.1)-(1.3), initial values at t = t0 and boundary values3 at the
borders of the computational domain ∂Ω are given by

φ (t0,x) = φ0 , ∀x ∈ Ω ,

φ (t,x) |∂Ω = Bφ , ∀t ∈ (t0, tend) , with the boundary operator B.
(1.11)

The state of a viscous compressible fluid flow can generally and uniquely be described
by the characteristic dimensionless Reynolds number Re and the Mach number Ma.
The Reynolds number is determined by the ratio

convective term
viscous term

=
u∂u∂x
u∂

2u
∂x2

≈
U U
L

ν U
L2

=
UL

ν
= Re , (1.12)

with the kinematic viscosity ν, the characteristic velocity U , and the characteristic
length scale L. In the present thesis, U is usually the free-stream velocity u∞, and L
can be the wing chord or the channel height, for example. The Mach number, defined
as the ratio of the characteristic flow velocity to the speed of sound a, is given by

Ma =
U

a
with a =

√
γRT . (1.13)

3The boundary conditions are constant in time for all simulations in the present thesis.
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1.2 Description of turbulence

At very low Reynolds numbers the flow is usually laminar, which means that layers
of fluid with different velocities slide over each other in a parallel flow, and diffu-
sive transport is the only mechanism that causes mixing between the layers. With
increasing Reynolds number the influence of the non-linear convective term grows
and beyond a critical Reynolds number the flow becomes turbulent. The turbulent
motion of the fluid leads to additional mixing of the flow. The change from a laminar
to a turbulent flow state is called the laminar-turbulent transition, but this process,
which is a field of research on its own, is not a subject of the present thesis4.

In turbulent flows vortical structures exist, called eddies, which interact with each
other. The length scales and time scales associated with the structures cover a broad
range. In flows that are in turbulent equilibrium, the interaction of the different
turbulent length scales lt can be described by the energy spectrum, see e.g. Pope
[60].

⇒ ⇒

κ

E(κ)

LP LD

Fig. 1.1: The turbulent energy spectrum.

In Fig. 1.1 the energy spectrum function
E(κ) is plotted over the wave number
κ = 2π

lt
, where the turbulent kinetic energy

contained in the wave numbers κ ∈ (κa, κb)
is given by

k (κa, κb) =

κb∫
κa

E(κ) dκ . (1.14)

The spectrum illustrates that the larger tur-
bulent structures, as they break up into
smaller structures, transfer their turbulent
kinetic energy in a cascading process. The energy spectrum can be divided into
three regions: the production region lt ≈ LP , the transfer region LP > lt > LD,
and the dissipation region lt ≤ LD. In the production region the size of the largest
vortices is determined by the dimension and geometry of the flow problem, for ex-
ample, by the diameter of a channel or the chord length of an airfoil. The largest
vortices receive energy from the mean flow through the production mechanism, and
they are typically anisotropic by generation. At large Reynolds numbers the effect
of dissipation on the vortices in the production region can be neglected.

In the transfer region the vortices receive energy only from larger vortices by invis-
cid interaction. The geometry-generated anisotropy of the vortices reduces, and on
average they exhibit an universal behavior, statistically independent of the largest
scales, which is described by Tennekes and Lumley [84].

In the dissipation range the turbulent kinetic energy of the smallest vortices is con-
verted into thermal energy. Kolmogoroff’s universal equilibrium theory postulates
that the rate of energy dissipation is equal to the rate of energy supply of the larger
vortices in the transfer region and to the rate at which the largest eddies receive
energy from the mean flow. The dissipative scales are independent of the dimension
or geometry of the flow, and their universal isotropic shape depends only on the
dissipation rate ε and the kinematic viscosity ν of the fluid, see e.g. Pope [60]. Based
on these quantities, the Kolmogoroff micro scales of length η, velocity uν , and time

4In some of the applications laminar regions are prescribed, which means that the production
term of the turbulence model is switched off.
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τν are defined as

η =
(
ν3

ε

) 1
4

, uν = (εν)
1
4 , and τν =

(ν
ε

) 1
2
. (1.15)

Only at sufficiently high Reynolds numbers, the largest scales, which bear the mean
part of the turbulent kinetic energy, and the dissipative scales are clearly separated.

1.3 Numerical simulation of turbulent flows

A numerical solution of the discretized Navier-Stokes equations can be obtained
with an appropriate algorithm in a Direct Numerical Simulation (DNS). For exam-
ple, Schlatter et al. [67] and Lee and Moser [39] simulate turbulent channel flow using
spectral methods, which are very efficient for geometrically simple domains and so-
lutions without strong discontinuities. However, the applicability of DNS is limited
because the disparity between the smallest and the largest scales of turbulence in-
creases with the Reynolds number. To resolve the smallest scales, the spacing of the
grid cells must be of the same order of magnitude as the Kolmogoroff length scale.
Considering this requirement, Choi and Moin [10] estimate the required number of
points for a DNS of a flat-plate boundary layer with the Reynolds number Re based
on the stream-wise length at

NDNS ≈ Re37/14 . (1.16)

The Reynolds numbers of aerodynamic flows about civil aircrafts are typically pro-
hibitively high for a DNS. As an example, the Reynolds numbers for different flight
conditions of an Airbus A320 and an A380 are given in Tab. 1.1.

Wing span MAC† Re take-off‡ Re cruise††

A320 34.9m 4.2m 7.5× 106 27.9× 106

A380 79.75m 12.3m 22.0× 106 81.8× 106

† mean aerodynamic chord
‡ take-off: altitude 300m; airspeed 70m/s
†† cruise flight: altitude 11, 000m; airspeed 260m/s

Tab. 1.1: Reynolds numbers for different flight conditions of an Airbus A320 and an A380.

The two- and three-element airfoils with deployed high-lift devices that are considered
in the present thesis correspond to a cut through the wing of an airplane during
take-off. However, the Reynolds numbers reflect the conditions in the wind tunnel
rather than the realistic free-flight configuration. Besides the Reynolds number, the
high ratio of the wing span to the chord length is another aspect: the grid-point
requirement in Eq. (1.16), estimated for a developing boundary layer, is needed over
the full span of the wing.

In order to treat flows at high Reynolds numbers in a numerical simulation, the
necessity to resolve all turbulent length scales in a DNS has to be relieved. The
idea is to achieve this by empirically modeling at least parts of the influence of the
turbulent motion on the mean flow field.
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1.3.1 Statistical turbulence modeling – RANS

The Reynolds-Averaged Navier-Stokes (RANS) equations describe the mean flow
field, while the influence of the turbulence on the mean flow is given by an appropriate
RANS turbulence model. The resolution in a RANS simulation is therefore no longer
determined by the turbulent length scales, but it must be sufficient to represent the
gradients of the mean flow.

The idea of Reynolds-averaging is to decompose the variables φ into a mean part φ
and a fluctuating part φ′, with

φ (x, t) = lim
t1→∞

∫ t0+t1

t0

φ (x, t′) dt′ . (1.17)

Formally, the RANS equations are obtained by substituting φ = φ + φ′ and taking
the average of both sides of the equation, utilizing the following properties of the
averaging operator

φ = φ , φ′ = 0 , and
∂

∂x
φ =

∂

∂x
φ . (1.18)

The non-linear convective term in the momentum equations leads to a new term,
which contains the second-order correlations of the velocity fluctuations, given by

(ui + u′i)
(
uj + u′j

)
= uiuj + uiu′j + uju′i + u′iu

′
j = uiuj + u′iu

′
j . (1.19)

With this, the Reynolds-averaged momentum equation reads

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+

∂

∂xj
(τ ij)−

∂

∂xj
τRANS,ij , (1.20)

where the components of the Reynolds stress tensor τRANS,ij = ρu′iu
′
j describe the

mean influence of the velocity fluctuations on the mean flow. Since the Reynolds
stress tensor τRANS is symmetric, six independent unknown terms are introduced.
To close the system of equations, a large variety of turbulence models is available,
which describe the unknown terms.

Eddy viscosity modeling

The class of eddy viscosity models is based on the Boussinesq hypothesis. In analogy
to Eq. (1.4), the Reynolds stresses are related to the mean strain rate tensor S with
the eddy viscosity µt as proportionality factor, by

ρu′iu
′
j = 2µtSij −

2
3
ρkδij with k =

1
2
u′iu
′
i , (1.21)

where k is the turbulent kinetic energy, i.e. the kinetic energy of the turbulent fluc-
tuations. With this approach the eddy viscosity essentially increases the “effective”
viscosity of the fluid. Using the turbulent velocity scale

√
k, the turbulent length

scale lt, or the turbulent time scale tt ∝ 1/ω ∝ k/ε, where ε is the dissipation rate
of the turbulent kinetic energy and ω = ε

k is the specific dissipation rate, the eddy
viscosity can be expressed as

µt ∝ ρ
√
k lt or µt ∝ ρ l2t t

−1
t . (1.22)
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The class of eddy viscosity turbulence models offers a large number of approaches,
which use either one or two additional transport equations to determine µt.

The Shear-Stress Transport two-equation k-ω model (SST) by Menter [45],
with a slightly modified newer version by Menter et al. [48], is constructed by blend-
ing the k-ω model in the inner part of the boundary layer and the k-ε model in the
outer part of the flow to combine the advantages of both: the k-ε model is insen-
sitive to the prescribed free-stream values, while the k-ω model is considered more
accurate in boundary layers with an adverse pressure gradient. To arrive at a com-
mon formulation, the ε-equation is transformed into an ω-equation, where through
the transformation an additional cross-diffusion term is introduced. The transport
equations for k and ω are given by

∂

∂t
(ρk) +

∂

∂xj
(ρujk) = ρτij

∂ui
∂xj
− β∗ρkω +

∂

∂xj

(
(µ+ µtσk)

∂k

∂xj

)
, (1.23)

∂

∂t
(ρω) +

∂

∂xj
(ρujω) =

γρ

µt
τij

∂ui
∂xj
− βρω2 +

∂

∂xj

(
(µ+ µtσω)

∂ω

∂xj

)
+ 2σω2 (1− F1)

ρ

ω

∂k

∂xj

∂ω

∂xj
.

(1.24)

The SST model coefficients are obtained by blending the coefficients φ1 of the k-ω
model close to the wall and the coefficients φ2 of the k-ε model away from the wall
through φ = F1φ1 + (1 − F1)φ2. The empirical blending function F1 takes values
close to one in the near-wall region and logarithmic region of the boundary layer. In
the wake region the values approach zero. This behavior of F1 also deactivates the
cross-diffusion term in the ω-equation near the wall. The eddy viscosity is defined as

µt = min
(
ρk

ω
,
a1ρk

‖ω‖F2

)
. (1.25)

The second term in Eq. (1.25), containing the magnitude of the vorticity vector
ω = ∇× u, represents the SST correction, which prevents the tendency of the two-
equation models to overestimate the shear stress in boundary layers with an adverse
pressure gradient. Following Bradshaw’s assumption the shear stress is proportional
to the turbulent kinetic energy in the boundary layer. The SST correction ensures the
compliance of this assumption by limiting the stress-intensity ratio to u′iu′j/k ≤ a1

with the Bradshaw constant a1 = 0.31. The blending function F2, which takes a value
of 1 inside the boundary layer and goes to zero away from the wall, is introduced to
deactivate the SST correction in free shear layers.

In the Spalart-Allmaras one-equation model (SA) by Spalart and Allmaras [76]
the turbulent kinetic energy in the Reynolds stress tensor, Eq. (1.21), is neglected.
Instead, a transport equation for the modified kinematic eddy viscosity ν̃t is formu-
lated as

∂ρν̃t
∂t

+
∂

∂xj
(ρν̃tuj) = cb1ρ S̃ ν̃t +

∂

∂xj

(
ρν + ρν̃t

σ

∂ν̃t
∂xj

)
+ ρ

cb2
σ

(∇ν̃t)2 − cw1fwρ

(
ν̃t
dw

)2

.

(1.26)

The terms on the right-hand side represent production, gradient diffusion and wall
destruction of ν̃t, respectively. The function fw in the destruction term is designed
to obtain a fast decaying behavior in the outer region of the boundary layer. The
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turbulent length scale is given by the wall distance dw. With the von Kármán
constant κ = 0.41, the modified vorticity magnitude S̃ in the production term is
defined as

S̃ = fv3‖ω‖+
ν̃t

κ2d2
w

fv2 . (1.27)

The eddy viscosity µt is obtained from ν̃t through

µt = fv1ρν̃t , (1.28)

where the damping function fv1 is designed to ensure that νt ≈ κuτdw in the log
layer, with the friction velocity uτ defined as

uτ =
√
τw
ρ

and τw = ν
∂u

∂y

∣∣∣∣
dw=0

. (1.29)

Differential Reynolds stress modeling

In the class of differential Reynolds Stress Models (RSM), six transport equations for
the Reynolds stresses are provided together with an additional length-scale equation
to close the system. There are approaches that use the dissipation of the turbu-
lent kinetic energy ε, the specific dissipation rate ω, or combinations of ε and ω to
determine the turbulent length scale.

According to Wilcox [89], the transport equations for the Reynolds stresses are given
by

∂

∂t
(ρu′iu

′
j) +

∂

∂xk
(ukρ · u′iu′j) = ρPij + ρφij + ρεij + ρDij . (1.30)

The terms on the right-hand side of the equation contain the production tensor P , the
pressure-strain correlation tensor φ, the dissipation-rate tensor ε, and the diffusion
tensor D. All components of the tensor P are known, whereas most other terms in
Eq. (1.30) have to be modeled appropriately.

In Sect. 4.5 a variant of the JHh RSM model by Jakirlić and Hanjalić [28] is used
that utilizes a transport equation for the homogeneous part of the dissipation rate
εh: the JHh-v2 RSM by Cécora et al. [7]. The derivation of all modeled terms is
described in detail by Probst [61].

1.3.2 Large-eddy simulation – LES

In a Large-Eddy Simulation (LES) the large turbulent scales are resolved, and only
the influence of the smallest scales is modeled. The number of points to resolve
a turbulent boundary layer down to the wall with an LES reduces considerably in
comparison to the estimation for DNS in Eq. (1.16). Choi and Moin [10] estimate
the required number of points for a wall-resolved LES at

NLES ≈ Re13/7 . (1.31)

Similar to the RANS approach, in LES the variables are decomposed into φ = φ+φ′,
where φ denotes a filtering operation, and φ′ denotes the scales that are filtered out.
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Unlike the time averaging in Eq. (1.17), the filtering in LES is an operation in space.
The filtered turbulent field φ can be defined by the convolution integral

φ(x, t) =
∫
Ω

G(x− x′)φ(x, t) dx′ , (1.32)

where the filtering kernel G has a compact support with∫
Ω

G(x− x′)dx′ = 1 . (1.33)

With this definition the properties of the averaging operation in Eq. (1.18) do not
hold in general for the filtering operation, instead

φ 6= φ and φ′ 6= 0 . (1.34)

Therefore, compared to Eq. (1.19), in the filtered momentum equation additional
terms arise from the non-linear term

(ui + u′i)
(
uj + u′j

)
= uiuj + uiu′j + uju′i + u′iu

′
j . (1.35)

To simplify the derivation of the filtered equations, it is assumed that the differentia-
tion and the filtering operator commute. In general this is not the case, for example
in boundary layers with insufficient grid-resolution, but the error is neglected. The
first term on the right hand side is a part of the Leonard stress tensor L, the second
and third term build the cross stress tensor C, and the fourth term represents the
sub-grid stress tensor R, given by

Lij = uiuj − uiuj , Cij = uiu′j + uju′i , and Rij = u′iu
′
j . (1.36)

In contrast to the RANS Reynolds stress tensor τRANS, which contains information
about the whole spectrum of turbulent fluctuations, R represents only the small scale
structures. According to Piomelli and Chasnov [58], it is common practice to include
L and C in the model for the sub-grid scale Reynolds stress tensor

τLES,ij = ρ (Lij + Cij +Rij) , (1.37)

since neither the Leonard stresses nor the cross stresses are invariant with respect
to a Galilean transformation. With this approach, the filtered momentum equation
takes the same form as the RANS momentum equation (1.20)

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+

∂

∂xj
(τ ij)−

∂

∂xj
τLES,ij . (1.38)

In the finite-volume discretization the discrete value of φ in the grid-cell volume V
is given by the cell average

φ(x, t) =
1
|V |

∫
V

φ(x′, t) dx′ with |V | =
∫
V

dx′ . (1.39)

This formulation corresponds to Eq. (1.32) with an appropriate filter G that vanishes
outside V . Therefore, in practical applications the explicit filtering is replaced by
implicit filtering through the finite-volume discretization. With this approach the
LES length scale is given by

lLES = CLES∆LES , (1.40)

with a general model constant CLES, where the LES filter width ∆LES is proportional
to the grid-cell size. There are several definitions for ∆LES, which are discussed in
Sect. 3.3.3.
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Sub-grid scale modeling

The influence of the unresolved sub-grid fluctuations φ′, represented by τ LES, is taken
into account by the LES sub-grid model. In Sect. 2.3 the Smagorinsky model and
the Wall-Adapting Local Eddy-viscosity (WALE) model are applied. Both use the
Boussinesq approximation, Eq. (1.21), to relate the unknown sub-grid Reynolds stress
τ LES to the mean shear stress via the sub-grid eddy viscosity µt. As the reciprocal
magnitude of the strain-rate tensor can be regarded as the time scale of the resolved
structures, the eddy viscosity of the sub-grid scales relates µt ∝ l2t ‖S‖, with lt given
by Eq. (1.40).

Near solid walls the turbulent structures are damped, so that u′i = 0 and consequently
µt = 0 close to the wall. In the Smagorinsky model this behavior is ensured by
van-Driest-type damping functions, such as the one by Piomelli et al. [59], which
reads

fvD =
√

1− e(−y+/25)3 with y+ =
uτdw
ν

. (1.41)

Here, y+ is the non-dimensional wall distance, which is normalized using the friction
velocity uτ , according to Eq. (1.29). The eddy viscosity in the Smagorinsky model
is given by

µt = ρ (fvD · Csmag∆)2 · ‖S‖ . (1.42)

The WALE model by Ducros et al. [15] uses a more complex expression for the
turbulent time scale, which automatically fulfills the asymptotic near-wall require-
ments for µt such that no additional damping is necessary. The eddy viscosity in the
WALE model is given by

µt = ρ (CWALE∆)2 ·
(SdijS

d
ij)

3/2

(SijSij)5/2 + (SdijS
d
ij)5/4

,

with Sdij =
1
2
(
g2
ij + g2

ji

)
− 1

3
δijg

2
kk and gij =

∂ui
∂xj

.

(1.43)

1.3.3 Hybrid RANS/LES modeling

The idea behind hybrid RANS/LES models is to devise a simulation method that
combines the relatively low computational costs of RANS approaches for the pre-
diction of attached turbulent boundary layer flows with the high-fidelity predictive
capabilities of LES for massively separated flows. There is a large variety of methods
to bring together a RANS model and an LES model in one simulation. Fröhlich and
von Terzi [20] identify two main classes: the segregated approaches and the unified
approaches.

In the segregated approaches the computational domain is strictly divided into RANS
zones ΩRANS and LES zones ΩLES. Usually one or more small LES zones are embedded
into one large RANS zone in order to resolve the regions of interest. In ΩRANS the
averaged Eq. (1.20) are solved for the averaged variables φRANS, while in ΩLES the
filtered Eq. (1.38) are solved for the filtered variables φLES. At interfaces where the
flow enters an LES region synthetic turbulent fluctuations are added to the averaged
variables, whereas at interfaces where the flow enters a RANS region averaged values
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of the filtered variables are prescribed. For example, sponge terms can be used to
damp out the resolved turbulent structures. The inflow variables are denoted as

φLES,inflow = φRANS + φ′synth and φRANS,inflow = 〈φLES〉 . (1.44)

The unified approaches are based on the formal equality of the averaged Eq. (1.20)
and the filtered Eq. (1.38). The hybrid turbulence model equations are formulated
in a manner that allows them to convert from a RANS model to an LES model. The
computed variables are continuous and their interpretation as filtered or averaged
values depends on the behavior of the model. A subgroup of the unified models are
the non-zonal methods, in which the allocation of RANS and LES regions is not fixed
by the user, but rather by the model itself. The present thesis is focused on a family
of models from this group: the Detached-Eddy Simulation (DES) and variants of it.

To obtain the desired model behavior, the non-zonal models can be manipulated to
adopt the RANS or the LES mode in user-specified zones, disregarding the automatic
assignment of RANS and LES regions. Besides this simple enforcement of user-
prescribed zones, Deck [13] summarizes numerous developments under the term Zonal
DES (ZDES). However, as with the embedded approaches, the definition of the LES
zones requires prior knowledge of the separated regions. This is not trivial in some
cases, for example, for separation over a smooth surface, which is driven by an adverse
pressure gradient. A remedy for this difficulty can be the algebraic hybrid RANS/
LES model, which is described in Sect. 3.3.

Original Detached-Eddy Simulation – DES

The original Detached-Eddy Simulation (DES) by Spalart et al. [77] was proposed as a
hybrid RANS/LES model for local scale-resolving simulations of massively separated
flows. In the RANS mode the turbulent length scale lRANS is determined by the RANS
model, whereas in the LES mode the length scale is given by Eq. (1.40), where the
constant is calibrated individually for each turbulence model.5 The idea is to turn
an existing RANS model into a hybrid RANS/LES model by replacing lRANS with

lDES = min(lRANS, lLES) . (1.45)

To obtain the SA-based DES model, the occurrences of the wall distance dw in the
wall destruction term in Eq. (1.26) and in the modified vorticity magnitude S̃ in
Eq. (1.27) are replaced with lDES, with the DES constant CDES = 0.65.

In the SST-based DES formulation, lDES is introduced only in the dissipative term
of the k-equation (1.23) to keep the modifications as simple as possible, according to
Strelets [81]. Reformulated in terms of the RANS length scale, which is then replaced
with lDES, the dissipative term reads

ρβ∗kω = ρ
k

3
2

lRANS

with lRANS =

√
k

β∗ω
. (1.46)

For the SST-based DES model the two values CDES,1 = 0.78 and CDES,2 = 0.61 are
blended using the model function F1.

Near viscous walls, where lRANS < lLES, the DES model works in the RANS mode,
whereas in regions of massively separated flow the detached eddies are resolved by
an LES like sub-grid model. This situation is illustrated in Fig. 1.2.

5The calibration is usually based on the decay rate and the spectrum of decaying isotropic
turbulence.
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RANS LES

Fig. 1.2: RANS and LES regions in a DES simulation of the flow about a cylinder.

By construction, the location where the original DES switches from RANS to LES
depends solely on the grid-cell size, while the actual flow behavior is not considered
in the model. If the grid spacing near the wall is small, it can happen that the DES
model already operates in the LES mode in the outer region of the boundary layer.
As reported by Menter and Kuntz [46], this can lead to premature flow separation,
which is therefore termed Grid-Induced Separation (GIS).

Delayed Detached-Eddy Simulation – DDES

As a remedy for the grid-induced separation, the Delayed Detached-Eddy Simulation
(DDES) was developed by Spalart et al. [78]. The idea is to control the activation
of the LES mode by introducing the delay function fd, which is sensitized to the
boundary layer based on the local eddy viscosity level, given by

fd = 1− tanh
(

(8rd)
3
)

with rd =
ν + νt

κ2d2
w max

(√
∂ui
∂xj

∂ui
∂xj

; 10−10
) . (1.47)

The function rd is equal to one in the logarithmic region of zero-pressure-gradient
boundary layers6 and goes to zero at the boundary-layer edge. With the factor of 8
in Eq. (1.47), the delay function is calibrated to be zero inside turbulent boundary
layers and to smoothly approach one at the boundary-layer edge. By incorporating
the function fd into the hybrid length scale in the DDES as

lDDES = lRANS − fd max (0, lRANS − lLES) , (1.48)

the attached boundary layer is shielded from the LES mode. The function fd is
therefore also referred to as the shielding function. To prevent the accidental acti-
vation of the low-Reynolds terms of the SA model in LES regions, the function Ψ is
introduced in the definition of the LES length scale by Spalart et al. [78], which is
given by

lLES = CDESΨ∆ with Ψ = min

(
100,

1− cb1
cw1κ2f∗w

(1− ft2) fv2

fv1 max (10−10, 1− ft2)

)
. (1.49)

This is not necessary for the SST-based hybrid RANS/LES approaches, as the model
contains no low-Reynolds modifications.

6According to the mixing length hypothesis, the kinematic eddy viscosity in the logarithmic part
of the boundary layer (dw/δ < 0.15 with boundary-layer thickness δ) is given by νt = κ2d2

w
∂u
∂y
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Improved Delayed Detached-Eddy Simulation – IDDES

While the DES model was originally devised for massively separated flows, its field of
application was quickly extended to flows with incipient separation. Moreover, test
cases with growing complexity were considered. For example the behavior of hybrid
RANS/LES approaches for multi-element airfoils is one major topic of the present
thesis.

Fig. 1.3: Modeling regions around the DLR F15 three-element airfoil (red: attached flow,
green: massively separated flow, blue: boundary layers with turbulent inflow).

Fig. 1.3, depicts the area around a three-element airfoil, which encloses several regions
with different modeling requirements: in the green regions, the curbs of the slat and
the main wing as well as downstream of the airfoil, the flow is massively separated
and DES is a suited approach. In the red regions on the pressure sides of the main
wing and flap, as well as at the slat, the flow is essentially fully attached; therefore,
the RANS mode is appropriate. In the blue regions the boundary layers at the
suction sides of the flap and the main wing are influenced by the flow upstream: as
the shear layers in the wake of the slat and the main wing are treated in LES mode,
resolved turbulent structures are convected into the attached boundary layers at the
wing and the flap, respectively. In the present thesis wall-modelled LES is considered
for the flow situation in the blue regions in Fig. 1.3.

Travin et al. [85] and Shur et al. [71] developed the Improved Delayed Detached-Eddy
Simulation (IDDES) as a hybrid RANS/LES model that provides a wall-modeled
LES mode. In comparison to the resolution requirements for a wall-resolved LES in
Eq. (1.31), the number of grid points for a wall-modeled LES of a turbulent boundary
layer is considerably reduced. Choi and Moin [10] estimate the required number of
points at

NWM-LES ≈ Re . (1.50)

The IDDES addresses a problem that was observed by Nikitin et al. [56], who enforce
a wall-modeled LES behavior of the original DES model through their grid design.
For the flow in a channel, the grid spacing is chosen so small that the model switches
to LES in the logarithmic region of the boundary layer. The velocity in the inner
region of the boundary layer is modeled by RANS, while in the outer region it is
resolved by LES. At the interface a mismatch between the RANS and the LES
solution is observed, which is termed the Log-Layer Mismatch (LLM). It occurs
because the development of the resolved structures sets in only at a certain distance
from the RANS/LES interface, while the production of modeled turbulence is stopped
immediately at the interface.

In the wall-modeled LES mode of the IDDES, the activation of RANS and LES is
controlled by the function fB, which ensures the RANS mode in the inner region of
the boundary layer close to the wall. It is given by

fB = min
(

2e−9α2
; 1
)
, (1.51)
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with α = 0.25− dw
hmax

. When the wall distance dw becomes larger than the maximum
grid-cell size hmax, the function fB goes to zero. Given a sufficient grid resolution,
this is usually the case within the logarithmic region of the boundary layer.

To prevent the log-layer mismatch the function fe is introduced, which takes values
of zero almost everywhere, except, close to the RANS/LES interface

fe = max ((fe1 − 1) ; 0) Ψfe2 . (1.52)

Through fe the level of the modeled eddy viscosity is elevated to compensate the lack
of resolved turbulent structures in the LES region near the interface. Furthermore, in
the IDDES a modified LES filter width is designed for the wall-modeled LES mode.
It is given in Eq. (3.19) in Sect. 3.3.3.

If the resolution of the boundary layer is not sufficient for a wall-modeled LES, the
IDDES falls back to the DDES model behavior and shields the whole boundary layer
with a delay function. Similar to fd in Eq. (1.47), the delay function is defined as

fdt = 1− tanh
(

(8rdt)
3
)
, with rdt =

νt

κ2d2
w max

(√
∂ui
∂xj

∂ui
∂xj

; 10−10
) . (1.53)

If rdt was used in the formulation of the DDES switching function Eq. (1.47), fd
would become 1 in a small region close to the wall, which would activate the LES
mode. However, in the IDDES this gap is closed through the function fB , which
activates the RANS mode near the wall. The functions fB for the wall-modeled LES
mode and fdt for the DDES mode are combined in the function f̃d, which is given
by

f̃d = max ((1− fdt) , fB) . (1.54)

With f̃d, the final hybrid length scale in the IDDES is defined as

lIDDES = f̃d (1 + fe) lRANS +
(

1− f̃d
)
lLES . (1.55)





21

Chapter 2

Numerical method: DLR-TAU

All simulations in the present thesis apply the DLR-TAU code, which mainly consists
of an unstructured finite-volume flow solver, in the following referred to as TAU.
For the spatial discretization the dual-grid approach is used, which is illustrated in
Sect. 2.1. TAU’s discretization methods for the Navier-Stokes equations are described
in Sect. 2.2. Important optimizations of the spatial discretization for scale-resolving
simulations are introduced in Sect. 2.3. The convergence of the iteration scheme and
the statistical convergence of an unsteady simulation are discussed in Sect. 2.4. In
order to realize moving grid topologies, the DLR-TAU code provides two approaches:
the Chimera method, which operates on overset grids, and a grid-deformation tool.
Both methods are described in Sect. 2.5.

2.1 Discretization of the computational domain

The computational domain Ω is discretized by a primary grid X , consisting of hexa-
hedral, pyramidal, tetrahedral, and prismatic elements, with structured layers near
solid walls and unstructured elements in the farfield. The grid points1 are denoted
as xI ∈ X .

Fig. 2.1: Hybrid primary grid (black) and dual grid (red) around a NACA-0021 airfoil.

The dual grid X̃ is generated in a preprocessing step, where control volumes VI ∈ X̃ ,
called dual cells2, are constructed around the points xI . In Fig. 2.1 the dual-grid
approach for the two-dimensional NACA-0021 airfoil is illustrated. The primary

1In the description of the spatial discretization capital letter are used as indices, in order to
distinguish them from the indices that address the components of the vectors and tensors.

2The dual cells are constructed from facets that connect the barycenter of the edges, surfaces
and volumes of the primary grid elements. The facets in the elements surrounding xI build the
surface of the dual cell.
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grid, consisting of quadrilateral and triangular primary elements, is drawn in black;
the dual-grid cells are drawn in red. There is a direct correspondence between the
primary grid points and the dual-grid control volumes. The union of all control
volumes covers the closure of the domain

Ω =
⋃
VI∈ eX

VI . (2.1)

The grid is stored in an unstructured data format, such that for each point only the
neighbor points are directly accessible. The dual-grid approach has the advantage,
that on the one hand the mixed element types in the primary grid offer a high
flexibility during the grid generation, while on the other hand, the primary edges
corresponding to dual-cell faces provide an efficient face-based data structure.

xI

N 1(xI)HH
N 2(xI)

PP

Fig. 2.2: Grid above a viscous wall.

Fig. 2.2 illustrates some terms, which are
used in the following. The two-dimensional
primary grid consists of quadrilateral ele-
ments, and the shaded region represents a
viscous wall. The set of all grid points
can be decomposed into the disjoint sets of
wall points Xwall (green) and inner points
Xinner = X\Xwall.

A unique nearest wall point is associated
with every point xI ∈ Xinner, which is the
wall point with the minimal distance, de-
noted as

fnwp(xI) = min
xJ∈Xwall

(‖xI − xJ‖) . (2.2)

The direct neighbors of the point xI (red)
are the points that are connected by a primary-grid edge (blue). The set of direct
neighbors is denoted as N (xI) and is depicted by the inner shaded region. The
second neighbors are the next neighbors of the direct neighbor points (light blue) in
the outer shaded region, and the set of points is denoted as

N 2(xI) =
⋃

xJ∈N (xI)

N (xJ) . (2.3)

Accordingly the set of third and fourth neighbors is defined.

In a local operation the evaluation of an expression is limited to the direct neighbor-
hood. Additional communication effort is necessary to exchange information between
points that are not connected by an edge, which means that a non-local operation is
computationally more expensive.

2.2 Discretization of the governing equations

The finite-volume discretization is based on the conservative form of the Navier-
Stokes equations. In TAU the method of lines is followed, which decouples the
discretization of space and time.
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Temporal discretization

For the temporal discretization a dual-time-stepping scheme is used to solve the
semi-discrete time dependent system of equations

∂w

∂t
= −R(w) , (2.4)

with the vector of the conservative variables w = (ρ, ρu, ρE)T and the terms in
the residual R(w) appropriately discretized in space. The implicit second-order
Backward-Differencing Formula (BDF(2)) is given by

3
2∆t

wn+1 − 2
∆t
wn +

1
2∆t

wn−1 = −R(wn+1) . (2.5)

The steady-state solution w∗ in pseudo time t∗ of the dual-time-stepping scheme
∂w∗

∂t∗
+

3
2∆t

w∗ − 2
∆t
wn +

1
2∆t

wn−1 = −R(w∗) , (2.6)

also satisfies Eq. (2.5). To solve the equations in the pseudo time, the Lower-Upper
Symmetric Gauss-Seidel (LU-SGS) iterative solver by Dwight [16] is used. An itera-
tion on the LU-SGS solver is referred to as an inner iteration.

The convergence-acceleration methods for steady-state solutions can also be used
with the dual-time-stepping scheme. Available acceleration techniques in TAU are
locally varying time steps, residual smoothing, multi-grid methods using the full ap-
proximation scheme described by Brandt [5], and low-Mach number preconditioning.
In the preconditioning the flux term is multiplied with the matrix P in order to re-
duce the disparity of the eigenvalues of the system, which allows the choice of larger
time steps. According to Radespiel et al. [65], the preconditioning matrix for the
primitive variables is given by

P =


m2g 0 0 0 −m2 γp

T δ
−αu1g

ρa2 1 0 0 αu1
ρa2

γp
T δ

−αu2g
ρa2 0 1 0 αu2

ρa2
γp
T δ

−αu3g
ρa2 0 0 1 αu3

ρa2
γp
T δ

1
ρCp

(m2g − 1) 0 0 0 1− (γ − 1)m2δ

 , (2.7)

with the free parameters α, β, and δ and the derived variables g = 1 + (γ − 1)δ and
m2 = β

a2 , where a is the speed of sound. The free parameter β is chosen proportional
to the local flow velocity; therefore, it approaches zero in stagnation regions. To
prevent singularities of P , a lower bound for β is defined by using a cut-off factor kβ .

Spatial discretization

With the finite-volume discretization, the solution is piecewise constant within a
control volume VI and represents the volume average as given in Eq. (1.39). The
inviscid terms in the momentum Eq. (1.2), consisting of the convective and the
pressure term, are the only relevant terms for the energy-preserving property of the
discretization scheme. Only those are considered in the following. The gradient can
be approximated by the Green-Gauss formula3

∇ (ρu⊗ u+ pI) =
1
|V |

∮
δV

(ρu⊗ u+ pI)n dS , (2.8)

3The equations are given in vector notation to avoid double indexing. The outer product a⊗ b
is component-wise defined as (a⊗ b)ij = aibj
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with the unit matrix I and the face-normal vector n. Within the control volume VI
the discrete form of Eq. (2.8) is given by

(∇ (ρu⊗ u+ pI))
I

=
1
|VI |

∑
xJ∈N (xI)

(ρu⊗ u+ pI)
IJ
nIJ , (2.9)

where nIJ is the area-weighted face-normal vector between the control volumes VI
and VJ as shown in Fig. 2.3. The flux tensor (ρu⊗ u+ pI)

IJ
has to be reconstructed

from the left and right states at the face.

xI xJ

VI VJnIJ

Fig. 2.3: Dual-cell face between the points xI and xJ .

For the approximation of the fluxes at the cell faces, the skew-symmetric form by
Kok [36] is used, which is constructed from the divergence form D and the advection
form A, given by

D = ∇ (ρu⊗ u) +∇p and A = ρu (∇⊗ u) +∇p , (2.10)

which results in

K =
1
2

(D +A) =
1
2
∇ (ρu⊗ u) +

1
2
ρu∇⊗ u+∇p . (2.11)

With this formulation the kinetic energy and the pressure are conserved both lo-
cally and globally in the computational domain. Therefore, the discretization of
the convective term does not contribute to the physical dissipation, and spurious
kinetic energy is neither produced nor dissipated. This is a significant improvement
compared to the standard divergence form, especially in scale-resolving simulations.

Additionally, Kok [36] defines specific averaging rules for the reconstruction of the
face values in the gradient operator, denoted by the symbol . Only with this for-
mulation the energy preserving property of the scheme can be ensured. With the
skew-symmetric formulation the flux tensor at the face is approximated as

(ρu⊗ u+ pI)
IJ

=
1
2

(uL + uR)⊗ 1
2

(ρL · uL + ρR · uR) +
1
2

(pL + pR)I , (2.12)

where the values of uL and uR are reconstructed from the “left” control volume VI
and the “right” control volume VJ , respectively. In a second-order central scheme,
they are given by the respective cell values, i.e. uL = uI and uR = uJ . The same
holds for the pressure and the density. The skew-symmetric formulation of the mass
and energy equations is described by Löwe et al. [42] and in Probst et al. [H].

To stabilize the non-dissipative central discretization of the convective fluxes, a
fourth-order matrix-valued artificial dissipation is added to damp high-frequency
oscillations. The dissipative flux at the face between VI and VJ is given by

D(4)
IJ = k(4) · ‖PA‖IJ · ψIJ ·

(
∇2uI −∇2uJ

)
. (2.13)
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The value k(4) is the global scaling factor of the artificial dissipation. The cell-
stretching coefficient ψIJ takes into account the aspect ratio of the grid cells, because
the computational stability is enhanced if the artificial dissipation is increased on
anisotropic grids. The matrix A is the artificial dissipation operator, and P is
the preconditioning matrix from Eq. (2.7). Radespiel et al. [65] show, that it is
necessary to include P in Eq. (2.13), to ensure, that the solution of the compressible
Navier-Stokes equations converges to the solution of the incompressible equations for
Ma→ 0.

Turkel [86] states that it is possible to use two different preconditioning matrices
in the time discretization and in the artificial dissipation. Therefore, in the current
simulations two different cut-off values kβ,1 and kβ,2 are used, where kβ,1 is optimized
to accelerate the convergence, while kβ,2 is tuned for optimal accuracy.

2.3 Optimization of the numerical scheme for scale-
resolving simulations

Being originally developed as a RANS solver for industrially relevant applications,
the primary focus of TAU has been on stability in complex flow problems. For the
purpose of scale-resolving simulations, it is necessary to re-assess the accuracy of the
numerical scheme.

Low-dissipation properties

In an unstructured finite-volume solver, the application of discretization schemes with
higher than second order is difficult. Therefore, in Probst and Reuß [G] the influence
of the artificial dissipation on scale-resolving simulation is investigated in combination
with the skew-symmetric second-order discretization, according to Eq.(2.11). A term-
by-term calibration of the artificial dissipation in Eq. (2.13) is presented to optimize
the settings for scale-resolving simulations.

The test case of a fully-developed turbulent channel flow is used, which is presented
in Sect. 4.2. To minimize the interference with the turbulence model, the calibra-
tion simulations are performed as wall-resolved LES using the Smagorinsky and the
WALE sub-grid models, described in Sect. 1.3.2. It is confirmed that a certain
amount of artificial dissipation is necessary to stabilize the simulation. In simula-
tions with k(4) = 0, odd-even decoupling of the solution in the span-wise direction is
observed. If the value is chosen too high, the dissipation damps the resolved struc-
tures and corrupts the results. A value of k(4) = 1

1024 is found to be optimal with
the implementation of Eq. (2.13) in TAU.

The cell-stretching coefficient ψIJ is supposed to increase the artificial dissipation
in highly stretched cells, which are typically used very close to the wall in RANS
simulations. For isotropic cells the influence of ψIJ vanishes. However, if in scale-
resolving simulations the grid cells are anisotropic in the LES regions, the amount of
artificial dissipation might be overly increased. All presented simulations ran stable
with ψIJ = 1, which is the most accurate choice for scale-resolving simulations.

The optimal cut-off value for the preconditioning of the artificial dissipation is found
to be kβ,2 = 0.3. The set of optimized values for all factors in Eq. (2.13) with respect
to low dissipation is termed the LD settings in the following.
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Fig. 2.4: Wall-resolved LES of a turbulent channel flow at Reτ = 395, reproduced from
Probst et al. [H]: ( ) Reference numerics (WALE); ( ) LD scheme
(WALE); ( ) LD2 scheme (WALE); ( ) LD2 scheme (Smagorinsky)
(�) DNS data.

In Fig. 2.4 the velocity profile and the Reynolds shear stresses in the plane-channel
flow at Reτ = 395, which are obtained in wall-resolved LES simulations, are shown.
The LD settings lead to a much better agreement with DNS results by Moser et al.
[52] than the standard TAU settings. The effect of the LD settings on the wall-
modeled LES capabilities of TAU is assessed in Probst and Reuß [G], and some
results are presented in Sect. 4.2.

Low-dispersion properties

Besides numerical dissipation the discretization scheme is also afflicted with a dis-
persion error. While the dissipation error is an error in the amplitude, the dispersion
error leads to an error in the wave length. Löwe et al. [42] present a new formulation
for the central discretization of the convection term that aims at minimizing the
dispersion error. To achieve this, the discretization stencil is increased by includ-
ing the gradients in the neighboring cells. In Eq. (2.12) the states uL and uR are
reconstructed as

uL = uI + αu∇uIdIJ ,
uR = uJ − αu∇uJdIJ ,

with dIJ = xJ − xI , (2.14)

where ∇uI and ∇uJ are given by the Green-Gauss gradients in the control volumes
VI and VJ , respectively. With αu = 0 the standard second-order central scheme is
obtained, whereas αu = 1/3 gives a fourth-order scheme on smooth isotropic grids.
The idea of the low-dispersion formulation is to use the additional degree of freedom
to optimize the dispersion property, rather than increasing the order of the scheme.
A numerical investigation by Löwe et al. [42] shows that a value of αu = 0.36 leads
to a scheme that is optimized with respect to the dispersion. They also answer the
question for which variables Eq. (2.14) should be applied.

Together with the LD settings, which were presented above, this combined low-
dissipation low-dispersion scheme is termed the LD2 scheme. Löwe et al. [42] compare
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the LD2 scheme with the standard second-order scheme for the convection of an
isentropic vortex on a highly deformed grid and for the Taylor-Green Vortex. In
both cases the LD2 scheme is superior to the standard scheme in preserving the
vortex dynamics. In Fig. 2.4 also results for the LD2 scheme are shown. For the
higher-order statistics, represented by the Reynolds stresses, the LD2 scheme leads
to improved results for both, the Smagorinsky and the WALE model, in comparison
to the low-dissipation settings alone.

Probst et al. [H] apply the LD2 scheme to further test cases, and in most cases the
results are improved significantly. They also propose a hybrid blending of the stan-
dard settings for RANS and the LD2 scheme for LES, in order to prevent instabilities
in the RANS regions that occur using the LD2 scheme in hybrid RANS/LES simu-
lations of the DLR F15 three-element airfoil. Since an optimal blending scheme has
still been under investigation, the LD2 scheme is not used during the preparation of
the target application in Chap. 4. Instead, most of the presented simulations apply
the low-dissipation settings.

2.4 Convergence criteria and averaging

In the dual-time-stepping scheme, Eq. (2.6), for each physical time step a pseudo
steady state with R(w) = 0 has to be obtained within the inner iterations. In
practice the iterations are stopped if ‖R(w)‖ < ε, where the smallest reachable ε
is determined by the machine accuracy; however, in realistic complex geometries
machine accuracy is hardly ever reached. In Reuß et al. [C] (see Appx.) the number
of inner iterations was fixed, and it had to be chosen very high, to ensure a reduction
of the residual by at least three orders of magnitude in all physical time steps. Since
in most of the steps a smaller number would have been sufficient, it is desirable
to provide suitable convergence criteria for unsteady flows that terminate the inner
iterations automatically.

In TAU the Cauchy criterion is available to measure the convergence of a variable
φ. With φ(n) denoting the value in the n-th inner iteration and the user-defined
tolerance threshold εconv, convergence is reached if in N consecutive inner iterations
the relative changes in φ fulfill

|φ(n) − φ(n−k)|
|φ(n)|

≤ εconv , ∀k = 1, . . . , (N − 1) . (2.15)

Several variables can be chosen for the convergence evaluation, and it is possible to
activate more than one, so that each variable must fulfill the Cauchy criterion before
the iterations are stopped.

In RANS simulations the lift coefficient Cl and the drag coefficients Cd are typically
chosen to evaluate the convergence. In the hybrid RANS/LES simulations in the
present thesis, the attached flow close to the wall is mainly treated in the RANS
mode and is rather stable in these regions, whereas the LES regions farther away
from the wall have smaller influence on the surface forces, which are represented by
Cl and Cd. For these cases the Cauchy criteria were extended to variables that reflect
the modeled or the resolved turbulence, so that they are better suited to assess the
convergence in LES regions. The values φ are obtained either as the volume-weighted
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average or as the maximum over all grid points

φavg =
1∑

xI∈X
|VI |

∑
xI∈X

|VI |φI or φmax = max
xI∈X

φI . (2.16)

In the applications in Chap. 4 the mean resolved turbulent kinetic energy k′avg, the
mean magnitude of the vorticity ‖ω‖avg, and the maximum eddy viscosity µt,max are
used simultaneously.

While the Cauchy criterion reflects the convergence of the pseudo-steady inner itera-
tions, in scale-resolving simulations the statistical convergence in the physical time is
of importance, too. The physical time is specified in convective time units tctu = l

u∞
,

where u∞ is the free-stream velocity and l is a characteristic dimension of the geom-
etry. For an airfoil tctu denotes the overflow time, for example. Starting from the
initial flow field, it takes several convective time units until the resolved structures
are fully developed. This phase of the simulation is called the initial transient phase.
Only after the transient phase is passed, meaningful averages can be obtained for
the statistical evaluation of the simulation and for the comparison with experimental
references, which often consist of temporally averaged data only.

In macroscopically stationary processes, the mean value in the n-th physical time
step is computed as:

〈φ〉tn = 〈φ〉tn−1 + w ·
(
φ(tn)− 〈u〉tn−1

)
, with w =

1
n
. (2.17)

For relevant mean values, the number of samples has to be sufficient. It was found
that at least five convective time units are necessary for the first and second order
moments to converge within a given tolerance. In Reuß et al. [B] (see Appx.) up to
40 tctu were computed until statistical convergence was reached. In order to obtain
mean values for macroscopically non-stationary processes in experiments, ensemble
averages or, for periodic flows, phase averages are usually used. Because of the large
computational effort of even one single simulation, these approaches are unfeasible
for hybrid RANS/LES simulations.

To obtain an approximation of the mean values that is able to represent the macro-
scopic dynamics of the system, a weighted moving-average formulation is used. To
this end, the weighting factor w in Eq. (2.17) is replaced by w = 2

s+1 , with a constant
user-defined value s, which lets the influence of the old mean values decay exponen-
tially. This procedure is used in Reuß et al. [E] (see Appx.) to obtain mean values
for an airfoil-generated vortex, which is convected through a wind tunnel. In order
to improve the second-order statistical moments, the homogeneity of the flow in the
span-wise direction is exploited: the mean values in Eq. (2.17) are additionally aver-
aged in the span-wise direction before the variances are computed. As a consequence,
the effective number of samples is increased.

2.5 Chimera method and deformation tool

In practical aeronautical applications the whole geometry or parts of it can be in mo-
tion relative to a fixed reference system. To realize this situation in a flow simulation,
TAU provides two different approaches: with the Chimera technique, implemented
in TAU by Madrane et al. [44], the geometry is discretized using overlapping grids,
which can be in translatory or rotational motion relative to each other. With the
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deformation technique, implemented in TAU by Heinrich et al. [25], radial basis func-
tions are used to modify the grid. In the present thesis both approaches were tested
to identify their strengths and weaknesses in the considered applications. To illus-
trate the differences between the two approaches, Fig. 2.5 shows how both methods
are utilized to realize the rotation of a NACA-0021 airfoil in a wind tunnel.

(a) Chimera at α = 0◦ (b) Chimera at at α = 10◦.

(c) Deformation at α = 0◦ (d) Deformation at at α = 10◦.

Fig. 2.5: Comparison of the Chimera approach and grid deformation for the rotation of a
NACA-0021 airfoil.

With the Chimera approach, utilized in Reuß et al. [A] (see Appx.), the computa-
tional domain Ω is decomposed into overlapping sub-domains Ωi. The equations are
solved independently on each grid block, such that wi is the solution of

∂

∂t
wi +R(wi) = 0 in Ωi . (2.18)

The solutions wi and wj in two overlapping blocks Ωi and Ωj are coupled through
boundary conditions at the borders of the overlap region Ωi∩Ωj , which are denoted as
Ω1←2,ip and Ω2←1,ip. For each point x1 in the interpolation region Ω1←2,ip, belonging
to the grid X1, an appropriate donor element in the primary grid X2 is determined
with an Alternating-Digital-Tree (ADT) search algorithm. From the corner points of
the respective element, the value in x1 is obtained from a linear, bilinear or trilinear
interpolation, depending on the element type. In Figs. 2.5(a) and (b) two grid blocks
are shown in black and blue, respectively.

If the blocks are in motion relative to each other, the points where the coupling
conditions are applied have to be recomputed after each time step. On the other
hand the grid metric is preserved during the motion and the control volumes and
point distances remain unchanged. Disadvantages of the Chimera approach are the
increased computational costs for the interpolation algorithm and the additional
interpolation error. In order to keep the error as small as possible, the grid cells in
both blocks in the overlap region should be of similar size.

In Reuß et al. [A] (see Appx.) the Chimera approach is successfully applied to sim-
ulate the interaction of an airfoil-generated vortex with a high-lift airfoil. However,
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Wawrzinek et al. [87] observed in similar simulations that the interpolation error had
a similarly large effect as the disturbance under investigation. Therefore, in all fur-
ther simulations that were performed during the present thesis the deformation tool
was used to realize the grid motion.

With the deformation tool, which is applied in Reuß et al. [F] (see Appx.), the grid
points in the original grid are moved, such that the deformed grid reflects the new
position of the geometry. To this end, the deflection of a set of N scattered data
points with the coordinate triples (xi, yi, zi) is computed. Then the deflection is
interpolated to the grid points with the coordinates (x, y, z) using the radial basis
function

∆x(x, y, z) = α1+α2x+α3y+α4z+
N∑
i=1

βi
√

(x− xi)2 + (x− xi)2 + (x− xi)2 , (2.19)

and the interpolation coefficients α1, α2, α3, α4, and βi. The procedure for the
wall-normal and span-wise deflections ∆y and ∆z is similar.

One disadvantage of the deformation approach is the increased computational effort,
because after each deformation step a new dual grid must be generated to update
the metric information, such as dual-cell volumes and wall distances. However, since
the motion of the grid points is taken into account as an additional grid-induced
contribution to the flow velocity, see Heinrich et al. [25], no additional effort is
necessary during the solver step.
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Chapter 3

A grid-adaptive algebraic hybrid
RANS/LES model

In this chapter the central achievements of the present thesis are presented, and im-
plementation details are described. In Sect. 3.1 the status of the hybrid RANS/LES
approaches in TAU at the beginning of the work is recapitulated and the motivation
for further improvements of the methodology is pointed out. In Sect. 3.2 the issue
of grid resolution in scale-resolving simulations is addressed, with particular focus
on the local refinement of the grid. In Sect. 3.3 a detailed description of the new
developments in the algebraic hybrid RANS/LES model is given.

3.1 Motivation

One major obstacle for the applicability of the scale-resolving approaches is the long
computing time, which is determined by the available hardware. The estimations
that are presented in Reuß et al. [C] (see Appx.) reach values up to the order of years
for the wall-modeled LES of a full aircraft configuration, for example. It is therefore
very important to make a sensible use of the available resources by adjusting the grid
point distribution to the flow problem. Spalart [74] formulates guidelines for the grid
design for a DES by identifying regions with different resolution requirements. While
this helps with the initial grid design, a sufficient grid resolution is not guaranteed.
The grid resolution must be sufficient to minimize the numerical discretization error.
Beyond that, the grid-cell size also determines the turbulent length scale of the LES
model, as described in Sect. 1.3.2. Therefore, the grid must be suited to resolve the
relevant turbulent scales. To eliminate the discretization error, a grid convergence
study can be performed by refining the grid. This is done, for example, in Reuß
et al. [A] (see Appx.) for RANS simulations of the transport of a generic vortex.
But the high computational costs of the scale-resolving simulations require means to
assess the grid resolution using a single-computation approach. The present thesis
aims at providing a procedure that does not only assess the grid, but also performs
a local grid refinement if necessary. To this end, a resolution indicator is proposed,
which can be used as input for the DLR-TAU grid-adaptation tool.

Furthermore, uncertainties arise from the hybrid RANS/LES models themselves.
Probst et al. [63] report severe deficiencies of DDES and IDDES, both based on the SA
model: for the test case of the HGR01 airfoil with incipient trailing-edge separation
the authors observe massive grid-induced separation for both hybrid RANS/LES
models. They conclude that the shielding functions fd from Eq. (1.47) and fdt from
Eq. (1.53), respectively, fail to detect the boundary-layer edge correctly in regions
of large adverse pressure gradients. By increasing the constant factor from 8 to 16
in Eq. (1.47), the modified DDES shielding function fd works reliably again, so that
grid-induced separation is prevented. But with this approach, termed DDES16, the
separation is fully treated in RANS mode, such that essentially a RANS result is
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obtained. The results are shown in Fig. 3.1, with permission of the original authors.
The experimental data are taken from Wokoeck et al. [91].

x/c

y/c

(a) PIV

x/c

y/c

(b) SA-RANS

x/c

y/c

(c) SA-DDES

x/c

y/c

(d) SA-DDES16

〈u′v′〉/u2
∞ :

Fig. 3.1: Streamlines and Reynolds shear stress at the trailing edge of the HGR01 airfoil at
Re = 0.65× 106, α = 12◦.

The findings led to the development of the Algebraic Delayed DES (ADDES), which
was for the first time applied by Knopp and Probst [34]. Including and extending
the original idea of the ADDES, the following requirements provide the foundation
of the present thesis:

(R1) Grid-induced separation should be prevented.

(R2) Separated regions should be treated in the LES mode.

(R3) The grey-area at the transition from RANS to LES should be reduced.

(R4) The transition from LES to RANS needs special treatment.

The turbulence model should detect the different states of the flow automatically and
adapt the model behavior. As stated above, the detection must go beyond the func-
tionality that is provided by the shielding functions in DDES and IDDES. Therefore,
in the ADDES the boundary-layer velocity profiles are evaluated to provide algebraic
sensors. By using the sensors to modify the shielding functions, the desired model
behavior is ensured. In Fig. 3.2 the regions that are addressed by the requirements
for the ADDES are exemplarily marked for the flow over a wall-mounted hump.

Concerning requirement (R1) two different flow situations can be distinguished: at-
tached boundary layers without turbulent content in the inflow and attached bound-
ary layers with turbulent content in the inflow. In attached boundary layers without
turbulent inflow, the RANS mode should be active in the whole boundary layer,
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(R1)

(R1)
(R2)

�
�

(R3)

(R4)

Fig. 3.2: Mean streamlines for the flow over a wall mounted hump. The regions that lead
to the requirements for the ADDES are marked.

which is the purpose of the shielding functions. To support the shielding functions,
in the original implementation of the ADDES a sensor is implemented that detects
the boundary-layer edge and enforces the RANS mode up to the edge of the bound-
ary layer. For attached boundary layers with turbulent content in the inflow, the
wall-modeled LES mode was introduced in the IDDES. To include this mode in the
ADDES, it is essential to couple the algebraic sensors with the IDDES. To distinguish
the two situations, a sensor for wall-modeled LES has been added to the original AD-
DES formulation, see Sect 3.3.2. Another sensor of the original ADDES is designed
to detect separated flow regions, in order to meet requirement (R2).

µt/µ :

Fig. 3.3: Eddy-viscosity distribution for a SA-based DDES of the backward-facing step flow.

In requirement (R3) the grey-area problem is addressed, which is inherent in the
hybrid RANS/LES approaches. In Fig. 3.3 it is illustrated with the help of the
flow over a backward-facing step: the boundary layer on the step is treated in the
RANS mode, and the flow is characterized by a high level of eddy viscosity µt. At
the step the model switches from RANS to LES, but the modeled µt is convected
from the RANS region into the LES region. There it decreases and is gradually
replaced by resolved turbulent structures. The transition region is termed the grey
area, because the model behavior lies “between” RANS and LES. Without further
means, the development of resolved structures starts with a delay, which may have
an unfavorable effect on the solution as shown in Sect. 4.3.

The problem is approached from two directions. In the first approach the switching
of the model is adjusted: to allow for a rapid generation of resolved LES content,
an improved length scale is developed. In the second approach synthetic turbulent
fluctuations are introduced in the flow in order to foster the generation of resolved
LES content. The synthetic turbulence is a field of research on its own, which is, in
the framework of the ADDES, investigated by François and Radespiel [17].

Requirement (R4) arises from situations, where the grid provides only localized LES
resolution. In the example in Fig. 3.2, the grid resolution downstream of the re-
attachment point might not be sufficient for a wall-modeled LES. In this case the
model should automatically switch to the RANS mode in the reattached flow. But
the resolved turbulent structures from the recirculation region are continuously con-
vected into the attached boundary layer. Therefore, in the ADDES special sponge
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sources have been tested, which transfer the turbulent kinetic energy from the re-
solved structures into modeled turbulent kinetic energy in the RANS region, see
Sect 3.3.5.

Another important requirement is also addressed in the current implementation of
the ADDES: the algorithm has to run efficiently and fully parallelized on multiple
CPU cores to allow for large application cases. For example the target application
in Sect. 4.7 took 50 days of computing time on 290 cores.

3.2 Grid adaptation

To minimize the discretization error, clustering of the grid points is necessary in re-
gions of steep gradients and vortical structures. However, in complex flow situations
the distribution of the gradients is not known in advance; therefore, the grid adapta-
tion tool of the DLR-TAU code by Alrutz and Orlt [4] can be used to refine the grid
locally. The refined regions are controlled by a solution-based indicator function,
which is evaluated at each grid point.

regular subdivision

semi-regular subdivision

non-regular pyramidal subdivision

further subdivision of pyramidal parts

Fig. 3.4: Bridging elements in the refinement of the hexahedral elements.

Based on the distribution of the indicator values, the edges of the grid elements
are marked for bisection. Based on this marker, the grid elements are decomposed
into smaller elements, where the applicable refinement case depends on the number
of bisected edges. In the example in Fig. 3.4, regular and non-regular hexahedral
subdivisions are depicted. For the regular and semi-regular subdivisions the grid
structure is maintained as the hexahedron is decomposed into smaller hexahedra.
In the non-regular subdivision, additional unstructured pyramidal and tetrahedral
elements are inserted into the grid. Corresponding subdivision cases exist for the
prismatic, pyramidal, and tetrahedral elements.

3.2.1 Span-wise grid adaption

In the present thesis almost all geometries under study are quasi two-dimensional,
which means that they are invariant under translations in the span-wise direction.
For these special geometries a three-dimensional grid can be generated by stacking
two-dimensional grids in the third, i.e. span-wise, direction. The number of points in
the span-wise direction Nz is determined by the resolution requirement in the focus
LES region, while the total number of points in the grid grows linearly with Nz. To
reduce the computational costs, the adaptation tool has been customized in order
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to restrict the span-wise refinement to user-defined regions, that should fully enclose
the expected LES region including a safety margin.

x

y

x

z Nz :

(a) Surface refinement (top view) (b) Cut through grid

Fig. 3.5: Span-wise grid adaptation for the DLR F15 two-element airfoil to locally increase
the number of grid points in the LES region.

In Fig. 3.5 the application of the span-wise adaptation for the DLR F15 two-element
airfoil is shown. On the main wing the attached boundary layer is treated in RANS
mode and one cell in the span-wise direction, Nz = 1, is sufficient to resolve the
two-dimensional solution. Close to the trailing edge of the main-wing element the
resolution is increased to Nz = 128 equidistant cells and transition elements are
introduced. In Fig. 3.5 (b) the transition elements in the refinement region are
outlined in a span-wise cut. The number of cells in the span-wise direction is indicated
by the gray shades. In Fig. 3.5 (a) the transition elements on the surface of the main
wing are shown. Within seven refinement steps the number of cells in the span-wise
direction is increased from one to 128, and the quadrilateral elements on the surface
are split into bridging triangles. To moderate the growth rate of the cell sizes, one
layer of unrefined elements is inserted between two consecutive refinement steps. In
the locally span-wise adapted grid 35% of points are saved compared to a grid that
globally provides the high span-wise resolution without loss of numerical accuracy.

The span-wise adaptation has successfully been applied in Reuß et al. [F] (see Appx.)
to refine the transport region of the lateral vortex, see also Sect. 4.6. It was also
used during precursor simulations of the flow over a backward-facing step in Reuß
et al. [D] (see Appx.). However, in this case it was discarded because of difficulties
at the LES-to-RANS interface, which are discussed in Sect. 3.3.5.

3.2.2 Grid-resolution sensors

The original TAU adaptation indicators are suited to adapt the grid to the mean
flow features in steady RANS simulations. However, for scale-resolving simulations
the grid must be adapted to represent the unsteady resolved scales, instead. The
new points have to be introduced in regions where the LES model is active and small
turbulent structures exist, which are not sufficiently resolved. The detection of the
regions that are to be refined should be obtained in a single-simulation approach, in
order to minimize the computational effort.
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Some preliminary approaches for the assessment of the grid resolution are presented
in Reuß et al. [C] (see Appx.): the RANS length scale of a precursor RANS simulation
is used to obtain an a-priori estimation of the expected turbulent length scales. The
boundary-layer resolution is assessed by the ratio of the resolved Reynolds shear
stress to the modeled Reynolds shear stress. The ratio of the velocity fluctuations in
stream-wise and wall-normal direction is also used as an indicator of the boundary-
layer resolution.

Pope [60] states that the resolved turbulent kinetic energy kres should amount to at
least 80% of the total turbulent kinetic energy ktot. In the context of LES the total
turbulent kinetic energy ktot is the sum of the resolved part kres and the sub-grid
part ksgs, stemming from the LES sub-grid model. Thus, a grid-resolution sensor can
be defined as the ratio

S =
kres
ktot

=
kres

kres + ksgs
. (3.1)

With the mean velocity 〈u〉 according to Eq. (2.17), the resolved turbulent kinetic
energy can be directly computed as

kres =
1
2
〈u− 〈u〉〉2 . (3.2)

However, for the calculation of ksgs an appropriate model is required. In a test
version in Reuß et al. [C] (see Appx.) the modeled k is taken from a precursor RANS
computation. In the present thesis several approaches to obtain ksgs from the scale-
resolving simulation are tested and compared. If the turbulence model provides
a transport equation for k, like the k-ω SST model, one possibility is to use the
averaged value 〈k〉. Alternatively, Lilly [41] gives the following relation between the
eddy viscosity νt and ksgs

ksgs = 〈νt〉2/(c∆)2 , with c = 0.094 . (3.3)

Knopp et al. [35] propose to use the explicitly filtered velocity u to obtain the sub-grid
velocity usgs = u− u. Then ksgs can be estimated as

ksgs =
1
2
〈usgs〉2 . (3.4)

To obtain the explicitly filtered velocity u, the solution is smoothed within the direct
neighborhood N 1(xI) of the point xI using a top-hat filter. In order to increase the
support of the filter, the smoothing is also performed for the set of second neighbors
N 2(xI), third neighbors N 3(xI), and fourth neighbors N 4(xI) (cf. Sect. 2.1). It is
given by

uk(xI) =
1

|N k(xI)|
∑

xJ∈Nk(xI)

u(xI) , (3.5)

where |N k(xI)| denotes the number of points in the neighborhood. This method
has the disadvantage that the additional computational effort grows with |N k(xI)|;
therefore, in the second variant the velocity field is smoothed recursively

uk(xI) =
1

|N 1(xI)|
∑

xJ∈N 1(xI)

uk−1(xI) , (3.6)

with u0(xI) = u(xI). This formulation results in a bell-shaped filter function, where
the influence of u(xJ) decreases with growing distance from xI .
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Another idea is to use the approximate deconvolution approach by Chow et al.
[11] and Stolz et al. [80], to obtain another reconstruction method for the sub-grid
velocity. An approximation of the inverse filter function G−1 is constructed us-
ing the consecutively filtered velocities uk. With the unfiltered velocity given by
uDNS = G−1 ∗ uLES, where uLES is given by the hybrid RANS/LES solution, and the
decomposition uDNS = uLES + usgs, the sub-grid scale velocity can be computed as

usgs = (1− G−1) ∗ u . (3.7)

In Reuß et al. [D] (see Appx.) the described options to compute usgs are assessed
for the test case of isotropic turbulence. Moreover, the flow over a backward-facing
step is considered, as this case contains the relevant flow phenomena of a shear layer
near a viscous wall, while the limited complexity allows for a global grid refinement.
Additionally, the sensor S1 based on the modeled sub-grid velocity u4(xI) with re-
cursive filtering is selected as input for a local grid adaptation in the backward-facing
step case. Some results are shown in Sect. 4.3.

3.3 Algebraic Delayed DES

Besides the grid resolution, another source of uncertainty arises from the behavior of
the hybrid RANS/LES model. The algebraic sensors in the ADDES are designed to
minimize these uncertainties.

xw

xn

xu

n

Fig. 3.6: Wall-normal line detection.

To calculate the sensor values, the boundary-
layer velocity profiles are evaluated along ap-
proximate wall-normal lines. The principle is
depicted in Fig. 3.6. Starting point of the line
search is the wall point xw, and the search ends
either when no more valid points are found, or
when the line reaches a prescribed length. The
line that starts at the wall point xw is denoted
by L(xw).

During the search the surface-normal vector n
of the boundary face is passed along the line.
Let xu be the last point added to L(xw), i.e. the
uppermost point in the wall line. The next point
is chosen from the set of the second neighbors xI ∈ N 2(xu). The angle θ is enclosed
between n and the connection vector xI − xw. The next point xn is determined by
the minimal angle θ

xn = max
xI∈N 2(xu)

(
n · (xI − xw)
‖n‖ ‖ (xI − xw) ‖

)
. (3.8)

One important property of the line search is that the points in one line are not
required to be direct neighbors in the grid. This provides maximal flexibility of the
search algorithm in the case of curvilinear grids. In the example in Fig. 3.6, the gap
between xu and xn enables the wall-normal progression of the line.
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3.3.1 Parallel evaluation of wall-normal line data

For an efficient evaluation of the boundary-layer profiles, the wall-normal lines are
stored in a special parallelized data structure. In parallel computations, the search
algorithm is able to detect the lines even if they are split by partition boundaries.

To this end, the line search for the wall point xw is also stopped if a point xp at a
partition boundary is reached. The coordinates xw and the surface-normal vector n
of the corresponding wall point are communicated to the partition-boundary point x′p
in the adjacent partition. Then the line search is restarted at the partition-boundary
point x′p in the adjacent partition. The algorithm can follow the lines, even if they
pass through several partitions. In Fig. 3.7 the lines in a partitioned grid are shown,
where the partitions are indicated by different colors. The black lines start at wall
points; the red lines, starting at partition boundaries, continue the black lines.

Fig. 3.7: Wall lines crossing the boundaries of the partitioned computational domain around
a two-element airfoil.

The parallel evaluation of the boundary-layer profile data is a non-local operation,
which means that additional communication routines must be provided. Two com-
munication directions have been implemented in the ADDES. In the first direction,
called the field-point-to-wall-point communication, the points in a line xI ∈ L(xw)
send data to the starting wall point of the line xw. In the second direction, called
the wall-point-to-field-point communication, the boundary points xw ∈ Xwall send
data to the field points xI with fnwp(xI) = xw, i.e. to all points that have xw as
their nearest wall point.

3.3.2 Algebraic boundary-layer sensors

The algebraic sensors control the switching between the RANS mode and the LES
mode to fulfill the requirements in Sect. 3.1. Through the evaluation of the sensors,
the following flow states are discerned for each point xI ∈ X :

(S1): The point xI is located within the boundary layer.

(S2): The point xI is located within a separated region.

(S3): The point xI is treated in wall-modeled LES mode.

The sensor values are obtained by evaluating the boundary-layer velocity profiles.
In the first step the tangential velocity1 u‖ = ‖u‖‖ is computed for all points in

1The tangential velocity vector is computed as u‖ = u− (u ·n)u, with the unit surface normal
vector n in the corresponding wall point.
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the line xI ∈ L(xw) to obtain the sensor value for each boundary point xw. The
points in the line L(xw) send the necessary data through the field-point-to-wall-
point communication. Afterwards, the wall-point-to-field-point communication is
employed to distribute the sensor values to all field points where they are used to
adjust the shielding function of the hybrid model.
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Fig. 3.8: Wall-normal lines and velocity profiles for the flow over a wall-mounted hump,
with d∗w = dw/h and u∗‖ = u‖/u∞.

In the example in Fig. 3.8, the wall-normal lines for the wall-mounted hump and the
tangential velocity profiles that correspond to the thick red lines are shown. For a
detailed test-case description see Sect. 4.3.

For the sensor (S1) the boundary-layer thickness2 δ of the nearest wall point
xw = fnwp(xI) is needed in each point xI . If the wall distance is smaller than
the boundary-layer thickness, dw(xI) < δ(xw), the point is located inside in the
boundary layer. The following choices are available to compute δ:

δ99: The boundary-layer thickness δ of a wall point xw is given by

δ = min{dw(xI) : xI ∈ L(xw) ∧ ‖u‖(xI)‖ ≥ 0.99uδ(xw)} . (3.9)

Since in flows with pressure gradients uδ does not necessarily correspond to
the global free-stream velocity, it must be approximated locally. With the
compressible Bernoulli equation, the velocities u1 = ‖u(x1)‖ and u2 = ‖u(x2)‖
as well as the speeds of sound a1 and a2 in the two points x1 and x2 are related
by

γ − 1
2

u2
1 + a2

1 =
γ − 1

2
u2

2 + a2
2 . (3.10)

Let point x1 be located at the wall, x1 = xw with uw = 0, and point x2 at the
edge of the boundary layer, x2 = xδ. Then an equation for the boundary-layer
edge velocity uδ can be obtained. Keeping point x1 and moving point x2 to
the farfield, x2 = x∞ with the free-stream velocity, an expression for the speed
of sound at the wall is obtained. This expression can be substituted in the

2The boundary-layer thickness δ = δ99 is defined as the minimal wall-distance where u‖ reaches
99% of the velocity at the boundary-layer edge uδ. In flows without any pressure gradient, uδ
corresponds to the global free-stream velocity u∞.
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equation for uδ. Using the relations a =
√
γRT , Ma = u

a , and
Tδ
T∞

=
(
pδ
p∞

) γ−1
γ

,
the edge velocity uδ can be estimated as

uδ = u∞

√√√√√1 +
1−

(
pδ
p∞

) γ−1
γ

γ−1
2 Ma2

∞
. (3.11)

Ξmax: In flows with a favorable pressure gradient, u‖ continues to grow outside the
boundary-layer. For those cases an alternative detection of the boundary-layer
thickness is available, according to Stock and Haase [79]. Following their ap-
proach, for each point xI ∈ L(xw) the value of Ξ is evaluated based on the
slope of the velocity profile as

Ξ = y
∂u‖
∂y

, (3.12)

where y corresponds to the wall distance dw. Then the set of the local maxima
Ξmax is determined along the line, and the wall distance of the first local maxi-
mum is denoted as dmax = min{dw(xI) : xI ∈ L(xw) ∧ Ξ(xI) ∈ Ξmax}. With
a constant factor CΞ = 1.548, recalibrated by Knopp and Probst [34], the
boundary-layer thickness is given by

δ = CΞdmax . (3.13)

If according to sensor (S1) for a point dw(xI) < δ(xw) holds, the shielding function
of the hybrid RANS/LES model is modified to activate the RANS mode. In Fig. 3.9
this region is shaded in red for the wall-mounted hump. If only the sensor (S1) was
used, the whole recirculation region in the wake of the hump would be treated in the
RANS mode.

x/c

Fig. 3.9: Boundary layer in the wall-mounted hump flow as detected by the algebraic sensor
(S1).

Therefore, the second sensor (S2) is designed to detect separated flow regions. Ac-
cording to White [88], the shape factor H12 grows with growing values of the pressure
gradient, where high values of H12 indicate a strong adverse pressure gradient. In
turbulent boundary layers, flow separation occurs if H12 exceeds an empirical critical
value of about 2.76, see Castillo et al. [6]. The shape factor is defined as H12 = δ1/δ2,
where δ1 is the displacement thickness and δ2 is the momentum thickness

δ1 =

∞∫
0

(
1− ρ(y′) u‖(y′)

ρ0u0

)
dy′ , δ2 =

∞∫
0

ρ(y′) u‖(y′)
ρ0u0

(
1− u‖(y′)

u0

)
dy′ . (3.14)

The values are integrated along the line L(xw), and the upper integration boundary
is replaced by the boundary-layer thickness that is obtained using the sensor (S1). In
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the ADDES the critical value that corresponds to the separation location has been
calibrated for each turbulence model, resulting in H12,crit = 2.4 for the SA model,
see Knopp and Probst [34], H12,crit = 3.3 for the SST model, see Geurts and Probst
[21], and H12,crit = 3.2 for the JHh-v2 RSM model, see Probst et al. [63]. In Fig. 3.10
the development of H12 from a SA-RANS simulation of the wall-mounted hump is
shown. The red line indicates H12,crit = 2.4.

0 0.5 1 1.5 2

2

4

x/c

H12

Fig. 3.10: Shape factor distribution along the wall-mounted hump.

If according to sensor (S2) a point is located in a region of separated flow, the
shielding functions are modified again to activate the LES mode in this region. In
Fig. 3.11 this region is shaded in red for the wall-mounted hump. If only the sensors
(S1) and (S2) were used, the flow downstream of the reattachment point would be
treated in the RANS mode.

x/c

Fig. 3.11: Separated region in the wall-mounted hump flow as detected by the algebraic
sensor (S2).

Therefore, the sensor (S3) is designed to detect the wall-modeled LES mode. It
follows the IDDES approach, where the function f̃d in Eq. (1.54) is based on the
values of fdt in Eq. (1.53) and fB in Eq. (1.51). A value of (1−fdt) = 1 activates the
RANS model in the DDES mode of the IDDES, while fB = 1 ensures a small RANS
region in the inner region of the boundary layer if it is treated in wall-modeled LES
mode. The sensor compares the values of fdt and fB along the wall-lines. The wall
distance where (1− fdt) drops below one is denoted as δdt, while δB correspondingly
denotes the distance where fB drops below one. If δdt < Cwm · δB, the boundary
layer is considered to be in wall-modeled LES mode, and the shielding function is
modified accordingly, i.e. fdt is set to zero. A calibration of the empirical weighting
factor Cwm using the wall-mounted hump flow, yields Cwm = 1.8.

x/c

Fig. 3.12: Wall-modeled LES region in the wall-mounted hump flow as detected by the
algebraic sensor (S3).
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3.3.3 Improved LES filter width in the ADDES

In the definition of the LES length scale in Eq. (1.40), the LES filter width ∆LES

is determined by the grid-cell size. To find a suited measure for ∆LES, the cells
types that can be typically found in grids for hybrid RANS/LES simulations are
categorized following the nomenclature by Mockett et al. [49].

x

y
z

(a) box-shaped cell (b) book-shaped cell (c) pencil-shaped cell

Fig. 3.13: Categorization of grid-cell types depending on the aspect ratio of the edges.

Depending on the aspect ratio of the edge lengths ∆x (stream-wise), ∆y (wall-
normal), and ∆z (span-wise), three different cell types are depicted in Fig. 3.13: (a)
box-shaped cells with ∆x ≈ ∆y ≈ ∆z, (b) book-shaped cells with ∆y < ∆x < ∆z,
and (c) pencil-shaped cells with ∆x ≈ ∆y � ∆z. LES regions are typically dis-
cretized with isotropic box-shaped cells; therefore, in LES models the filter width
∆LES can for example be defined through the cell volume, see e.g. Fröhlich [19]

∆vol = 3
√

∆x ·∆y ·∆z = 3
√
|VI | , (3.15)

where the second expression is used in the dual-grid approach. The book-shaped
cells are typically found in boundary-layer regions if the grid resolution is suited for
a RANS model. To obtain a conservative formulation for hybrid RANS/LES grids
with mixed box-shaped and book-shaped cells, Spalart et al. [77] propose to use the
maximum edge length for the LES filter in the original DES

∆max = max (∆x,∆y,∆z) = max
xJ∈N (xI)

|xI − xJ | . (3.16)

For isotropic box-shaped cells the values coincide, i.e. ∆vol = ∆max.

As described in Sect. 3.2.1, a three-dimensional grid can be generated by stacking
two-dimensional grids in the span-wise direction with equidistant span-wise cells.
Near discontinuities in the surface slope this procedure typically leads to pencil-
shaped cells as depicted in Fig. 3.14 for the backward-facing step. For these cells the
filter width ∆max yields a very conservative estimation. As a consequence the hybrid
model switches from RANS to LES very slowly, leading to a large grey area where
the development of resolved turbulent structures is considerably delayed.

To prevent this modeling uncertainty, Chauvet et al. [9] propose an LES filter width
that is adapted to the local flow. The main rotation axis of the vortices is given by
the vorticity vector ω = ∇ × u, and only the cell dimensions perpendicular to the
rotation axis are taken into account. With the normalized vorticity vector, denoted
by N = (Nx, Ny, Nz)t, the filter width in regular structured cells is defined as

∆ω,orig =
√
N2
x∆y∆z +N2

y∆x∆z+N2
z∆x∆y . (3.17)

Deck [13] generalizes this formulation for unstructured tetrahedral cells. Another
approach that combines the idea of ∆max and ∆ω is proposed by Mockett et al. [49].
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Fig. 3.14: Cut through the backward-facing step grid: pencil-shaped cells at the sharp edge.

Since both, the formulation in Eq. (3.17) and its generalization by Deck [13], are
difficult to adopt for the unstructured dual cell approach of TAU, a purely face-
based approximation of the vorticity-based filter width was developed in the present
thesis, given by

∆ω =

√√√√1
2

∑
xJ∈N (xI)

N I · nIJ , (3.18)

where nIJ is the area-weighted face-normal vector. This form can be efficiently
evaluated in each physical time step of a TAU simulation. For its combination with
the IDDES, consider the definition of the filter width in IDDES according to Travin
et al. [85]

∆IDDES = min (max (Cwdw, Cw∆max, hwn) ,∆max) , (3.19)

with the wall-normal cell size hwn. A lower limit of this filter width is given by
Cwdw, with Cw = 0.15. Between this lower limit and ∆max the shape of the curve
depends on the growth rate of the cells in the wall-normal direction: if it is larger
than 1.15, hwn grows faster than the weighted wall distance Cwdw. This adjustment
is primarily effective within the boundary layer and is calibrated for the wall-modeled
LES mode.

In the combination of Eq. (3.19) and the vorticity-based LES filter, the wall-modeled
LES mode should be unaltered; therefore, only the second occurrence of ∆max is
substituted, and the modified IDDES filter width reads

∆IDDES = min (max (Cwdw, Cw∆max, hwn) ,∆ω) . (3.20)

In Probst and Reuß [G] this formulation is applied to simulate a turbulent channel
flow, and it is shown that the wall-modeled LES capability of the IDDES can be
retained. Some results are summarized in Sect. 4.2, together with new results that
consider higher Reynolds numbers. Results of precursor studies of the flow over a
backward-facing step are shown in Sect. 4.3, where the IDDES filter widths based
on ∆ω and ∆max, Eqs. (3.19) and (3.20), are compared. Since ∆ω is found to reduce
the grey area significantly, it is used in Reuß et al. [D] (see Appx.) as well.

3.3.4 Synthetic turbulence at the RANS-to-LES interface

The sensor (S2) enables a precise activation of the LES mode inside the boundary
layer at the location of flow separation, as shown in Fig. 3.11 for the flow over a
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wall-mounted hump. At the interface where the model switches from RANS to LES
it is subjected to the grey-area problem. Besides the improved LES filter width ∆ω,
further means are desirable to accelerate the RANS-LES transition in rather stable
weakly separated flows.

To force the generation of resolved turbulence in the LES region, artificial distur-
bances can be fed into the flow as described in Eq. (1.44) for the embedded LES
approaches. A simple method is the stochastic forcing by Kok and van der Ven [37]
where the eddy viscosity is multiplied by a normally distributed random variable φ,
with zero mean and unit variance

µt,stoch = φµt . (3.21)

The value of φ is recomputed for each grid point in each physical time step. In
the case of a non-separated turbulent channel flow, such “white-noise” fluctuations
are damped rapidly as shown by Pamiès et al. [57]; however, in less stable flow
situations stochastic forcing can be useful. For example, it is successfully applied
in Reuß et al. [F] (see Appx.) to destabilize the free shear layer in the wake of a
NACA-0021 airfoil. Some of the results are summarized in Sect. 4.6.

In order to introduce more realistic artificial structures, it is necessary to maintain
the spatial and temporal coherence characteristics of realistic turbulence. In the
synthetic turbulence generator by Adamian and Travin [3], the matrix A that is
obtained by a Cholesky decomposition of the Reynolds stress tensor, τRANS = ATA,
and the auxiliary velocity field v′i are used to define synthetic velocity fluctuations
as

u′ = Av′ with 〈v′〉 = 0 and 〈v′ ⊗ v′〉 = I , (3.22)

with the unity matrix I. By this construction the second moment tensor of the syn-
thetic fluctuations equals the Reynolds stress tensor, ρ〈u′iu′j〉 = τRANS,ij . The auxil-
iary velocity fluctuations are generated by superposing N weighted Fourier modes,
with the wave number k and the normalized amplitude q. The global time scale τ
is obtained from the length scale of the turbulence model and a characteristic veloc-
ity. Several random values are used to generate the stochastic Fourier modes. The
random wave vector d is uniformly distributed over the unit sphere, and the random
vector σ is defined perpendicular to d, such that the angle that is enclosed between
d and σ is uniformly distributed. The phase φ ∈ [0, 2π) is an uniformly distributed
random number and the frequency s is a random number with Gaussian distribution.
With this, the synthetic velocity fluctuations are given by

v′(x, t) =
√

6
N∑
n=0

√
qn
(
σn cos

(
kndn · x+ φn + sn

t

τ

))
. (3.23)

François and Radespiel [17] implemented this approach in TAU. They extended it to
a divergence-free formulation with ∂v′i

∂xi
= 0, and they accelerated the development

of realistic turbulence substantially, by introducing the artificial fluctuations within
a volume, rather than in a plane. The algebraic sensors of the ADDES allow the
automatic detection of the forcing regions and the regions of the reference points.
Part of the present thesis was to provide a flexible infrastructure, so that the synthetic
turbulence can be introduced in several locations.

In François et al. [J] further applications of the method are presented. In Sect. 4.2
and Sect. 4.5 the synthetic turbulence is utilized in the present thesis. As an SST-
based approach is used, the Reynolds stress tensor is not directly available, so that
the approximate Reynolds stress tensor is computed from the Boussinesq assumption.
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3.3.5 Sponge layer at the LES-to-RANS interface

In DDES and IDDES simulations of the DLR F15 three-element airfoil in Reuß
et al. [B] (see Appx.) and Reuß et al. [C] (see Appx.), resolved structures from the
turbulent shear layer in the slat wake penetrate into the shielded boundary layer
on the main wing, see Sect. 4.1. These structures deteriorate the flow prediction
downstream, and as a consequence the separation on the flap is suppressed. Even
if the RANS mode is enforced on the main wing, the resolved structures are partly
maintained. A similar observation was made in precursor simulations for the flow over
the backward-facing step, which are presented in Sect. 4.3: resolved structures from
the recirculation region are transported into the attached boundary layer downstream
of the reattachment point. Only the wall-modeled LES mode of IDDES is found
to correctly predict the flow in this region, whereas the DDES result shows larger
deviations from the experimental data. Therefore, in Reuß et al. [D] (see Appx.) the
IDDES approach is used. However, if the required resolution for a wall-modeled LES
can not be provided, the RANS mode is the only option.

In this case additional effort is necessary to prevent the negative influence of the
resolved turbulent structures on the RANS solution. For this purpose, source terms
have been tested in combination with the ADDES. They are added to the transport
equations in the RANS region, in order to damp the resolved fluctuations and transfer
the extracted kinetic energy into modeled turbulent kinetic energy. In the momentum
equation (1.20), the source term is given by the difference between the target velocity
utarget and the current velocity u

∆u
τ

, with ∆u = utarget − u and τ = 1000
µ

ρ‖u‖2
, (3.24)

where is τ the turbulent time scale. In the k-equation Eq. (1.23) of the SST turbu-
lence model, the source term is given by the difference between the target turbulent
kinetic energy ktarget and the current modeled turbulent kinetic energy k

∆k
τ

, with ∆k = ktarget − k . (3.25)

The local value of the mean velocity is used as the target value for the control
mechanism, utarget = 〈u〉, and the target turbulent kinetic energy is obtained as the
sum of the mean modeled turbulent kinetic energy and the mean velocity fluctuations
ktarget = 〈k〉+ 〈u′2〉. The mean values are computed as running averages, according
to Eq. (2.17).

In the target application of the present thesis the sponge terms play no role, but the
implementation is assessed for a turbulent channel flow in Sect. 4.2.
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Chapter 4

Application of the grid-adaptive
algebraic hybrid RANS/LES
model

The developments in the present thesis aim to provide a hybrid RANS/LES simula-
tion strategy for the numerical investigation of the stall behavior of high-lift airfoils
under the influence of turbulent inflow. In the scenario under investigation the tur-
bulent inflow is represented by a reproducible lateral vortex, which is generated by
a pitching airfoil. The setup is depicted in Fig. 4.1. Experimental data for the val-
idation of the simulation method are provided by Hahn et al. [24] and Klein et al.
[32].

x/c

Fig. 4.1: Setup of the test case with the DLR F15 two-element airfoil and the vortex-
generator airfoil NACA-0021.

In a systematic approach, the problem is split into subtasks, which are described in
detail in the next sections:

1) In Sect. 4.1 the initial state of the hybrid RANS/LES methods in TAU at the
beginning of the work is documented using the example of the flow about a three-
element high-lift airfoil.

2) In Sect. 4.2-4.4 the grid-adaptive algebraic hybrid RANS/LES simulation strategy
is applied to basic model test cases.

3) In Sect. 4.5 the findings from step 2) are reassessed for the two-element high-lift
airfoil from the target application.

4) In Sect. 4.6 a suitable simulation strategy for the generation and transport of the
lateral vortex from the target application is presented.

5) The interaction of the vortex with the two-element high-lift airfoil is investigated
in Sect. 4.7.

In step 2) the new method is tested for generic test cases, which represent different
regions of the flow about the high-lift airfoil. This approach isolates the problems
to specifically investigate the effects of the model variations. Moreover, the com-
putational effort for the basic test cases is considerably smaller. Fig. 4.2 illustrates
the relations between the basic cases and the target application. In the picture a
three-element airfoil is shown, whereas in the target application a two-element airfoil
is considered. However, in both cases the attached boundary layer at the main wing
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Fig. 4.2: Relevance of basic test cases for the flow about a high-lift airfoil.

is subjected to turbulent onflow: in Fig. 4.2 the turbulence is generated in the wake
of the slat, while in the target application the turbulence is generated by the airfoil
further upstream.

I) The flow downstream of the trailing edges of the slat and the main wing is
represented by the plane shear layer, which is a very challenging test case, see
e.g. Mockett et al. [49]. A similar situation is found downstream of the NACA-
0021 vortex-generator airfoil in the target application. In Reuß et al. [F] (see
Appx.) a stochastic forcing was required to destabilize the wake flow, in order
to excite the generation of resolved LES structures.

II) The turbulent slat wake impinges upon the attached boundary layer on the main
wing element. To investigate the behavior of the hybrid RANS/LES models in
this situation, the turbulent channel flow is a representative model case, which
is addressed in Sect. 4.2.

III) To investigate the separation prediction on the flap, the flow about a single-
element airfoil is a suitable generic test case. As a matter of fact, the single-
element airfoil HGR01 is one of the examples, which motivated the develop-
ments in the present thesis, see Sect. 3.1. François and Radespiel [17] present
hybrid RANS/LES results with synthetic turbulence for this case.

IV) The attached boundary layer on the lower side of the wing separates at the
surface discontinuity at the cove edge and reattaches farther downstream in
the cove. The flow over a backward-facing step represents this situation of a
geometry-driven separation with reattachment, see Sect. 4.3. The wall-mounted
hump, which is considered in Sect. 4.4, provides a similar flow topology, but in
this case the flow separates over a smooth surface.

In the description of the test cases the following nomenclature of the directions is
used: the x-coordinate denotes the stream-wise direction, y corresponds to the wall-
normal direction and the z-coordinate represents the span-wise direction.
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4.1 Precursor simulations of a three-element airfoil

In the initial phase of the present thesis, the basic hybrid RANS/LES models Delayed
DES and Improved Delayed DES, as described in Sect. 1.3.3, were assessed for high-
lift applications. In Reuß et al. [B] (see Appx.) and Reuß et al. [C] (see Appx.)
SA-based DDES and IDDES simulations for the DLR F15 three-element airfoil are
compared. Here, the essential results and conclusions are briefly summarized.

The DLR F15 airfoil represents a cut section at 51.1% span through the FNG wing
(“Flügel neuer Generation”), designed by Dargel et al. [12]. Wild et al. [90] performed
variations of the high-lift slat and flap to reduce the noise emission and provide
experimental reference data for several angles of attack. As for high angles of attack
the wind-tunnel side walls have a considerable effect on the flow in the center of the
tunnel, the simulations consider a moderate incidence of α = 6◦.

Computational setup

The computational grid in the xy-plane is generated using the Centaur grid generator.
An O-type grid topology is used to discretize the blunt trailing edges. The boundary
layers are resolved with 45 layers of quadrilateral elements, while farther away from
the wall flexible unstructured triangular elements are used.

(a) Slat-cove region (b) Flap region

Fig. 4.3: Grid for the precursor hybrid RANS/LES simulations of the DLR F15 three-
element airfoil.

Fig. 4.3 shows the grid in the slat-cove region and the flap region. The computational
domain in the span-wise direction extends over 9% of the retracted chord length c
and is resolved with 64 grid layers. In total, the grid contains 12.8× 106 points. One
convective time unit is resolved with 600 physical time steps. The Reynolds number
of the flow is Re = 1.9× 106, and the Mach number is Ma = 0.15.

In the experiments the position where the flow transitions from a laminar to a turbu-
lent state is not fixed. In order to obtain comparable numerical results, the transition
locations that are prescribed in the simulations are calibrated using experimental
data. This procedure is described in Reuß et al. [B] (see Appx.).
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Results

In the initial DDES and IDDES simulations of the DLR F15 three-element airfoil,
deficiencies of the model behavior in the confluent slat wake and the boundary layer
on the main wing element were observed.

‖ω‖ (c/u∞)

(a) SA-DDES

RANS box

(b) SA-DDES with RANS box (c) SA-IDDES

Fig. 4.4: Vorticity snapshots in the confluent slat wake and the boundary layer from the
initial hybrid RANS/LES simulations of the DLR F15 three-element airfoil.

Fig. 4 from Reuß et al. [B] (see Appx.) shows the resolved turbulent structures in
the wake of the slat. A close-up of the slat region is reproduced in Fig. 4.4. With
standard DDES in (a) the structures penetrate into the near-wall region on the main
wing. Because the grid resolution is only suited for the RANS mode in this region,
the resolved structures are not properly resolved. Those underresolved structures
interfere with the modeled turbulence in the boundary layer. Two further approaches
were tested to prevent this problem. On the one hand, the resolved structures are
damped by enforcing the RANS mode in a modified, zonal DDES approach in (b).
On the other hand, in (c) a refined grid is used to provide sufficient resolution to
maintain the resolved structures in the wall-modeled LES mode of IDDES.

In all three simulations the influence of the slat wake on the boundary layer on
the main wing is so strong, that the downstream behavior of the flow is massively
disturbed. Therefore, with the tested approaches the separation on the flap is un-
derpredicted or even completely suppressed.

According to later investigations, the following additional uncertainties can be iden-
tified in retrospect:

1. The numerical settings are not optimized for scale-resolving simulations.

2. No means are taken to enhance the development of resolved turbulent structures
downstream of the trailing edges and thereby mitigate the grey-area problem.

3. The grid design is not optimal:
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(a) The O-type grid topology at the trailing edges leads to larger grid cells in
the wake.

(b) The separated region above the flap is not fully covered by the structured
part of the grid.

All these observations motivated the work in the present thesis to provide a reliable
hybrid RANS/LES prediction method for high-lift airfoils. The numerical optimiza-
tions that are addressed by the first point are presented in Probst and Reuß [G],
and they are also described in Sect. 2.3. The alternative LES filter definitions from
Sect. 3.3.3 were developed to improve the second point. The third point is considered
in the current best-practice guide lines for the grid generation in hybrid RANS/LES
simulations, which are incorporated in the grid design for the two-element airfoil in
Sect. 4.5.

4.2 Turbulent channel flow

Because of its geometrical simplicity, the plane channel is well suited for the basic
validation of simulation methods for wall-bounded flows. Moreover, DNS results
are available as reference data for several Reynolds numbers. The fully-developed
solution is self similar in the stream-wise and the span-wise direction. To reduce
the computational effort, these symmetries can be exploited by prescribing periodic
boundary conditions. Furthermore, the solution can be averaged in the directions of
symmetry in a post-processing step. If periodic boundary conditions are used in the
stream-wise direction, an additional uniform source term is necessary to drive the
flow in the absence of a pressure gradient. This source term is given by

fx =
ubulk − ubulk,DNS

τ
with τ = 1000

µ

ρ|ubulk|2
. (4.1)

In this test case all length scales are given in terms of the half channel height δ. Two
Reynolds numbers are used to describe the flow and the accuracy of the numerical
prediction: Reδ, based on the bulk velocity ubulk, and Reτ , based on the friction
velocity uτ , according to Eq. (1.29), which read

Reδ =
ubulkδ

ν
with ubulk =

1
δ

∫ δ

0

〈ux〉dy , and Reτ =
uτδ

ν
=

δ

δν
. (4.2)

The viscous length scale δν is defined as

δν = ν

√
ρ

τw
=

ν

uτ
. (4.3)

To show the self-similarity of the velocity profiles, the non-dimensional velocity
u+ = u/uτ is plotted against the non-dimensional wall distance y+ = dw/δν .

Computational setup

The computational domain has a height of 2δ and a width of 3.2δ. The length is
6.4δ for the simulations with stream-wise periodic boundary conditions, while it is
extended to 51.2δ for the simulations with standard inflow and outflow boundary
conditions.
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Three Reynolds numbers are considered for this case. DNS data are available for
Reτ = 395 from Moser et al. [52] and for Reτ = 4200 from Lozano-Durán and
Jiménez [43]. For the third Reynolds number, Reτ = 1100, no DNS data are available.
A grid resolution study is performed for the Reynolds number Reτ = 395, using the
grids G1, G2 and G3. For the higher Reynolds numbers the wall-normal distribution
of the grid points in the grid G2 is adapted: for Reτ = 1100 and Reτ = 4200 the
grids G′2 and G′′2 are used, respectively. The grid G′′′2 is used for the simulations
with inflow and outflow boundary conditions at Reτ = 395. To keep the resolution
constant, the number of grid points in the stream-wise direction is adjusted. Details
about the grids are given in Tab. 4.1.

Grid Re Lx ∆+
x ∆+

y ∆+
z Nx Ny Nz Ntot

G1 395 6.4 31 1 13 81 97 97 762,000

G2 395 6.4 41 0.8 19.5 62 65 65 262,000

G3 395 6.4 120 0.8 37 21 65 43 46,000

G′2 1100 6.4 109 0.8 54 65 81 65 342,000

G′′2 4200 6.4 416 0.8 206 65 101 65 427,000

G′′′2 395 51.2 41 0.8 19.5 489 65 65 2,066,000

Tab. 4.1: Dimensions of the grids for the turbulent channel flow.

The simulations with stream-wise periodic boundary conditions are initialized with
a solution, which contains artificially generated turbulent structures.

Results

In Probst and Reuß [G] and Probst et al. [H] the optimized numerical settings for
low dissipation (LD) and the low-dissipation low-dispersion scheme (LD2), which
are both described in Sect. 2.3, are utilized in wall-modeled LES simulations of the
turbulent channel flow. It is shown that with both, LD and LD2, the results are
considerably improved, compared to the standard scheme in TAU. The results of a
grid study by Probst and Reuß [G] for the SA-based IDDES are shown in Fig. 4.5. The
LD scheme is used, and the IDDES filter width is based on the LES filter ∆max. The
log-layer mismatch at the interface between RANS and LES, which can be observed
for the solution on grid G3, indicates that this grid is too coarse for a wall-modeled
LES.

Besides the investigation of the numerical scheme, another aim is the validation of the
vorticity-based LES filter ∆ω in combination with IDDES, according to Eq. (3.20).
In Probst and Reuß [G] consistent results are obtained with ∆max and ∆ω for SA-
based IDDES simulations on the three grids at Reτ = 395 using the LD scheme. A
recent investigation of the influence of the vorticity-based LES filter ∆ω is presented
in Fig. 4.6. In the SST-based IDDES simulations the Reynolds numbers Reτ = 1100
and Reτ = 4200 are considered. The velocity profile u+ and the ratio of the modeled
eddy viscosity to the laminar viscosity are compared for ∆max and ∆ω. For both,
the LD scheme and the LD2 scheme, the results are consistent, respectively. Only
in the outer region of the boundary layer where the LES mode is active the different
filter-width definitions have an influence on the eddy viscosity.
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Fig. 4.5: SA-based IDDES grid study of the turbulent channel flow at Reτ = 395, repro-
duced from Probst and Reuß [G]: ( ) G1; ( ) G2; ( ) G3; (�)
DNS.
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(d) Normalized eddy viscosity at Reτ = 4200

Fig. 4.6: Influence of the LES filter width and the numerical scheme on SST-based IDDES
simulations of the channel flow at Reτ = 1100 and Reτ = 4200: ( ) ∆max

and LD; ( ) ∆max and LD2; ( ) ∆ω and LD; ( ) ∆ω and LD2;
(�) Reichards law; (�) DNS.
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Basic assessment of the sponge terms

In order to test the sponge terms introduced in Sect. 3.3.5, simulations of the turbu-
lent channel flow at Reτ = 395 are conducted using non-periodic inflow and outflow
boundary conditions and predefined model regions. The simulations are initialized
with a steady RANS solution and employ the LD scheme as well as the vorticity-based
filter width ∆ω. Close to the inflow boundary, synthetic turbulence is introduced in
the flow, c.f. Sect. 3.3.4.

The computational domain is subdivided into three sections: an inflow region, x/δ ∈
(0, 5), where the RANS mode is prescribed, a wall-modeled LES region, x/δ ∈ (5, 32),
and another RANS region, x/δ ∈ (32, 51.2). The synthetic turbulent structures
are introduced at the RANS-to-LES interface, marked by the light green area in
Fig. 4.7(a) at x/δ ∈ (5, 5.5). The reference values for the turbulence generator are
taken from the region x/δ ∈ (4, 4.5), indicated by the dark green area. The resolved
structures are visualized by an isosurface of the Q-criterion1, colored with the span-
wise velocity. The grayscale visualizes the level of the modeled turbulent kinetic
energy k from the underlying SST-RANS model. While the synthetic turbulent
structures are generated in the forcing region, the level of k decreases automatically.

k/u2
∞ : v/u∞ :

x/c

(a) RANS-to-LES interface: generation of synthetic turbulent structures

x/c

(b) LES-to-RANS interface: no sponge term

x/c

(c) LES-to-RANS interface: sponge term in momentum equation

Fig. 4.7: Generation and damping of resolved turbulent structures in an SST-based ADDES
of the turbulent channel flow using synthetic turbulence and sponge terms.

1The Q-criterion is given by Q = 1
2

`
‖Ω‖2 − ‖S‖2

´
, with the vorticity tensor Ω and the strain

rate tensor S, according to Hunt et al. [27].
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Figs. 4.7(b) and (c) depict the LES-to-RANS interfaces from two different simula-
tions. In (b) no sponge terms are applied and the resolved turbulent structures are
preserved over a length of several boundary layer thicknesses in the RANS region.
This ambiguous behavior of the turbulence model is as undesirable as the grey area
at the RANS-to-LES interface. Therefore, in (c) a sponge term is incorporated in the
momentum equation, c.f. Eq. (3.24). The sponge region, x/δ ∈ (31, 34), is indicated
by the green area. With the help of the sponge term the resolved structures dissolve
immediately. However, the level of modeled k recovers only slowly in the RANS
region. The sponge term in the k-equation, according to Eq. (3.25), is intended as a
solution, but in the present test applications it was found that the current implemen-
tation is not suited: since local mean values are used as target values for the source
terms, the sponge is active in the reference region itself. While this is not critical for
the mean velocities used in the momentum sponge terms, the velocity correlations
are massively distorted. To obtain better reference values for the k-sponge term,
they should be taken from farther upstream in the future.

30 33 36 39

0.005

0.006

x/c

Cf

Fig. 4.8: Influence of the sponge terms on the distribution of the skin friction Cf along the
channel flow computed with SST-ADDES and with synthetic turbulence: ( )
no sponge; ( ) sponge term in momentum equation.

In Fig. 4.8 the influence of the sponge term on the skin friction Cf at the LES-
to-RANS interface is investigated. The green area indicates where the sponge is
active. Without the sponge terms, a strong disturbance in the Cf distribution can
be observed downstream of the interface, whereas with the activated sponge term
the curve shape is considerably smoother.

4.3 Backward-facing step flow

The flow over a backward-facing step is a generic test case for a geometry driven
separation at a discontinuity in the surface slope. Fig. 4.9 illustrates the streamlines:
upstream of the step the turbulent boundary layer is attached. The flow separates
from the surface as it passes the step, and a recirculation region forms in the wake.
Farther downstream the flow reattaches at the lower wall. The Reynolds number
based on the step height h is Re = 37, 500 and the Mach number is Ma = 0.13.
Experimental reference data for these flow conditions are available from Driver and
Seegmiller [14].

Fig. 4.9: Streamlines for the flow over a backward-facing step.
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Computational setup

The computational domain and the family of grids that are utilized in the inves-
tigations of the backward-facing step are described in Reuß et al. [D] (see Appx.).
The characteristic length scale in this test case is the step height h. At the inlet,
a Dirichlet boundary condition is utilized to prescribe a turbulent boundary-layer
profile, which is obtained from experimental data.

The algorithm for the flexible detection of wall-normal lines, described in Sect. 3.3, is
generally able to work with intersecting lines. This is the case for the lines that start
on the vertical and horizontal walls near the lower corner. However, the assignment
of the nearest wall point to the field points, according to Eq. (2.2), is discontinuous
over the angle bisector of the corner. This might cause discontinuities in the field
distribution of the computed algebraic boundary-layer quantities δ99 and H12 and,
as a result, disturbances of the flow in the LES region. For this reason, the algebraic
sensors are only used to detect the boundary layer on the upper wall, whereas down-
stream of the step the standard delay functions of the DDES or IDDES are used,
respectively.

Results

In Reuß et al. [D] (see Appx.) the IDDES approach in combination with the filter
scale ∆ω is applied. Results from precursor investigations, which motivated this
choice, are shown in the following.

Fig. 4.10 illustrates the influence of the filter-scale formulation on IDDES simulations
of the backward-facing step. The vorticity-based formulation using ∆ω, according
to Eq. (3.20), is compared to the original formulation using ∆max, according to
Eq. (3.19). The resolved Reynolds shear stress 〈u′v′〉 visualizes the generation of
resolved turbulent structures.

〈u′v′〉/u2
∞:

y/h

x/h
(a) ∆ω

y/h

x/h
(b) ∆max

Fig. 4.10: Influence of the LES filter width on the generation of resolved turbulence down-
stream of the backward-facing step, visualized by the Reynolds shear stress.
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With the vorticity-based LES filter ∆ω, resolved turbulent structures develop close
to the step, see Fig. 4.10(a). With ∆max in (b), the generation of resolved turbulent
structures is considerably delayed. Therefore, the shear layer is subjected to less
turbulent mixing, which has a stabilizing effect on the flow and leads to a delayed re-
attachment. This is confirmed by the distribution of the skin friction Cf in Fig. 4.11.
The length of the recirculation region, which is characterized by negative values of
Cf , is overpredicted using ∆max, while the results of the DDES and the IDDES based
on ∆ω are both in better agreement with the experimental data in the recirculation
region.

0 10 20

0

0.002

x/h

Cf

Fig. 4.11: Skin friction distribution for the backward-facing step: ( ) SST-DDES with
∆max; ( ) SST-DDES with ∆ω; ( ) SST-IDDES with ∆ω.

However, Fig. 4.11 illustrates another sensitivity of the hybrid RANS/LES model-
ing approach: the results depend on the treatment of the reattached flow. Resolved
structures from the recirculation region are convected downstream of the reattach-
ment point. With the DDES approach the reattached boundary layer is modeled
with RANS, as the fd function detects the boundary-layer edge without considering
the resolved turbulence. The resolved structures interfere with the RANS model
and deteriorate the solution. Opposed to that, in the IDDES approach the resolved
structures activate the wall-modeled LES mode in the reattached boundary layer.
Therefore, the IDDES result shows the best agreement with the experimental data
in Fig. 4.11.

In Reuß et al. [D] (see Appx.) the grid-resolution sensors S from Sect. 3.2.2 are
evaluated for a family of grids for the flow over the backward-facing step. The sensor
values are used as input for the DLR-TAU grid-adaptation tool to perform a local grid
refinement. In Fig. 4.12, results computed on these locally refined grids are compared
to reference results from globally refined grids. The locally refined regions in the grids
G2A and G3A are outlined in black. In the refined region the grid G2A provides
the same resolution as the globally refined grid G1. Likewise, the grids G3A and G2
provide the same resolution in the outlined region. The color contour illustrates the
distribution of the sensor values, which are recomputed on the locally refined grids.
For the pair of grids G1 and G2A similar values are obtained, indicating that the
sensor correctly detects a similar LES resolution capability. The same holds for the
grids G3A and G2. As sensor values S < 0.8 indicate underresolved LES regions
(c.f. Sect. 3.2.2), it can be concluded that only the finest grids G1 and G2A provide
sufficient resolution for a reliable LES. The comparison shows, that the resolution
sensor successfully detects the underresolved region in the grid G2, and that the local
refinement resulting in grid G2A enhances the reliability of the solution.
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G1 - SST IDDES G2A - SST IDDES 

G2 - SST IDDES G3A - SST IDDES 

G3 - SST IDDES 

S=kres/ktot: 0.6 0.7 0.8 0.9

Fig. 4.12: Comparison of the grid sensor values on a family of grids. The values are blanked
if the resolved turbulence intensity is smaller than T0 = 0.1. The globally refined
grids are shown on the left, the locally adapted grids are shown on the right.

4.4 Wall-mounted hump flow

The test case of the flow over a wall-mounted hump was designed with the focus
on turbulence model validation, see Greenblatt et al. [23]. The first challenge for
turbulence models is the accurate prediction of the location of the pressure-induced
separation from the smooth surface. The second challenge is the correct prediction of
the reattachment point. Experimental data are available from Naughton et al. [53].
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0.004

0.008

x/l
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Fig. 4.13: Comparison of skin friction distribution on the wall-mounted hump: ( )
SA-RANS; ( ) SST-RANS; (�) measurements.

Fig. 4.13 shows TAU results of the skin friction distribution Cf for SA-RANS and
SST-RANS. Both RANS models overestimate the length of the recirculation region,
characterized by negative values of Cf , and predict the reattachment point too far
downstream.
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Computational setup

The geometry is described in terms of the hump length l. A section of the grid2
in the region of the hump is shown in Fig. 4.14. In the stream-wise direction the
computational domain extends from x/l = −2.14 to x/l = 4 and is resolved with
511 points. The height of the domain is 0.912l, resolved with 127 points, and the
first point above the wall is located at y+ = 1. In the span-wise direction the
computational domain extends over 0.4l and is discretized with 81 points, which
yields mostly isotropic cells in the separation region.

x/l

Fig. 4.14: Computational grid for the wall-mounted Hump.

The upper wall is considered as inviscid, i.e. only the velocity component perpendi-
cular to the wall is suppressed. Above the hump, the upper wall is drawn downwards
in order to take into account the blockage effects in the experiments. At the inlet, a
Dirichlet boundary condition is applied to prescribe a turbulent inflow profile. The
Reynolds number based on the hump length l is Re = 936, 000 and the Mach number
is Ma = 0.1.

Results

In Sect. 3.3.2 the algebraic sensors of the ADDES were introduced by reference
to the flow over the wall-mounted hump. Fig. 4.15 depicts the ADDES shielding
function f̃d,ADDES, which results from the automatic modifications by the algebraic
sensors. The blue region is computed in RANS mode, while in the red region the
wall-modeled LES mode is active. The dashed line indicates the shape of the original
IDDES shielding function f̃d for reference.

x/l

Fig. 4.15: Shielding function f̃d,ADDES, modified through the ADDES sensors, for the wall-
mounted hump.

Fig. 4.16 compares the skin friction coefficient Cf from the ADDES approach with
a reference SST-RANS result. In the ADDES, the LES filter width ∆ω is applied.
While in the ADDES the predicted length of the recirculation region is in better

2The grid and the settings for this test case are taken from the EU project Go4Hybrid, c.f.
Mockett et al. [50].
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agreement with the experiment than in the RANS approach, the result is still not
satisfactory.

0.8 1 1.2 1.4 1.6-0.002
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Fig. 4.16: Skin friction distribution on the wall-mounted hump: ( ) SST-RANS;
( ) SST-IDDES with ∆ω; (�) reference from experiments.

Fig. 4.17 presents the ratio of ∆ω to ∆max in the recirculation region downstream
of the wall-mounted hump. This comparison illustrates a limitation of the vorticity-
based LES filter ∆ω: while for high-aspect-ratio cells the values of ∆ω are consider-
ably smaller than the more conservative ∆max, this is not the case for nearly isotropic
cells. On the contrary, for isotropic cells ∆ω may yield even slightly larger values than
∆max. In the present grid the recirculation region is resolved with nearly isotropic
cells, and in Fig. 4.17 the ratio is close to one in this region. Therefore, it can be
stated that ∆ω mainly suppresses the unfavorable effect of anisotropic grid cells in
LES regions, e.g. close to the surface discontinuity of the backward-facing step in
Sect. 4.3. However, in LES regions with isotropic cells, only little positive effects
can be expected from the vorticity-based filter ∆ω. Precursor simulations, which are
not shown here, indicate that it is necessary to add synthetic turbulence in order to
obtain further improvements in this case.

∆ω/∆max:

x/l

Fig. 4.17: Ratio of ∆ω to ∆max in the recirculation region of the wall-mounted hump.

4.5 Two-element airfoil with undisturbed onflow

This test case is considered as the first preparation step towards the target ap-
plication, where a lateral vortex interacts with a high-lift airfoil. The DLR F15
two-element airfoil corresponds to the geometry of the three-element configuration
in Sect. 4.1, but with a retracted slat and a modified flap position. Variations of the
flap position were investigated by Scholz et al. [69]. In the experiments the model
airfoil is equipped with droop noses at the junction with the wind tunnel, which re-
duce the influence of the side-wall boundary layers on the flow over the airfoil. With
these devices, the flow in the centerline section of the wind tunnel remains essentially
undisturbed, see Hahn et al. [24].
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Computational setup

Details about the grids that are used in the preparatory RANS simulations can be
found in Reuß et al. [E] (see Appx.). In the RANS simulations two incidence angles
of the high-lift airfoil are considered: at α = 0◦ the flow is separated on the flap,
while it is attached at α = 6◦.

In the hybrid RANS/LES simulations, which are presented here for the first time, the
incidence angle of α = 0◦ is considered. The vortex-generator airfoil from the target
application is included in the computational setup. The purpose is to use the results
from the precursor investigation as initial solution for the target application. The
span-wise grid adaptation, described in Sect. 3.2.1, is applied to provide a high local
resolution for the hybrid RANS/LES approach in the region around the flap. With
this approach, the number of points in the grid is reduced to 26.6× 106 compared to
47.4× 106 points in a globally refined grid.

Fig. 4.18: Structured region of the grid near the flap of the DLR F15 two-element airfoil.

Fig. 4.18 presents the structured region of the grid for the two-element airfoil. In con-
trast to the grid for the three-element airfoil, see Fig. 4.3, a H-type grid topology is
used at the trailing edges, and the structured layers cover the whole recirculation re-
gion above the flap. The flow is determined by a Reynolds number of Re = 1.9× 106

based on the retracted chord length c and a Mach number of Ma = 0.15.

Results

In Reuß et al. [E] (see Appx.) a suitable simulation strategy is presented, which
gives results that are comparable to the experiments. RANS simulations are used
to investigate if the whole wind-tunnel setup must be considered, including the side
walls and the drooped noses of the airfoil model. To this end, two approaches are
compared: in the first approach the whole setup is included in the three-dimensional
grid, while in the second approach the grid is restricted to the center-line section
of the wind tunnel. The solutions in the center-line section agree well for the two
approaches, which confirms that the computational domain can be restricted to the
center-line section of the wind tunnel.

Moreover, Reuß et al. [E] (see Appx.) compare RANS simulations using the SST
model with simulations using the JHh-v2 Reynolds stress model. It is found that
the RSM does not yield a stable solution; instead the flow exhibits periodic vortex
shedding from the cove region, which was not observed in the experiments. To
eliminate this uncertainty from the investigations, all hybrid RANS/LES applications
in the present thesis are based on the SST model.
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In the following, results from three SST-based hybrid RANS/LES simulations are
presented. In the reference simulation, HRLMref , the standard numerical settings
of TAU, the LES filter ∆max, and the original IDDES delay function fdt, according
to Eq. (1.53), are used. In the optimized simulation, HRLMopt, the low-dissipation
(LD) scheme and the LES filter ∆ω are applied. Moreover, the delay function is
modified by the algebraic sensors, which detect the edge of the boundary layer with
the δ99-criterion according to Eq. (3.11). In the HRLMopt+ST the same settings as
in HRLMopt are used, but in addition synthetic turbulence is fed into the flow, see
Sect. 3.3.4.

v/u∞ :

(a) Reference model/numerics

(b) Optimized model/numerics

(c) Optimized model/numerics and synthetic turbulence

Fig. 4.19: Resolved turbulent structures above the flap of the two-element airfoil visualized
by an isosurface of the Q-criterion, colored by the span-wise velocity.
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In Fig. 4.19 the Q-criterion visualizes the turbulent structures in the region above
the flap. The dashed lines denote the interfaces between RANS and LES, detected
by the switching function. The forcing region in the HRLMopt+ST simulation is
located at an user-defined position of x/c = 0.83 near the main-wing trailing edge,
and the separation sensor is modified to switch to wall-modeled LES at this location.
The synthetic turbulent structures are excited over a length of one boundary layer
thickness, while the reference values for the synthetic turbulence generator are taken
from farther upstream. In Fig. 4.19(c) the reference region and the forcing region
are indicated by the dark green and light green areas, respectively.

In comparison to the reference simulation HRLMref in Fig. 4.19(a), much finer
structures are resolved in both simulations that use the optimized settings, i.e. the
HRLMopt in (b) and the HRLMopt+ST in (c). In (a) and (b) the wake downstream
of the main-element trailing edge is quite stable, and the generation of the resolved
turbulent structures is delayed. This shows that the effect of ∆ω is not sufficient to
trigger the breakup of the shear layer. In contrast, the resolved turbulent structures
introduced by the synthetic forcing lead to an early breakup of the shear layer in (c).

In Fig. 4.20 the normalized mean-velocity vectors of the HRLMopt are compared with
PIV data from Klein et al. [32]. The color contour indicates the magnitude of the
mean velocity. The general flow topology and the velocity distribution are predicted
in good agreement with the experiment.

|〈u〉|/u∞ :
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z/c

(a) HRLMopt

x/c

z/c

(b) PIV

Fig. 4.20: Mean-velocity vectors in the flow about the two-element high-lift airfoil at undis-
turbed inflow.

Fig. 4.21 shows details of the flow about the flap using the stream-wise velocity
component u. In the depicted region the wake of the main wing, the flow through
the gap, and the boundary layer on the flap conflate leading to a complex mutual
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interaction. An apparent difference between the experiment and the simulations
is the flow separation on the flap. In the PIV data in (a), the separation is clearly
illustrated by the streamlines. While the two-dimensional reference RANS simulation
in (b) reproduces the separation in general, the size of the recirculation region is
overpredicted. Opposed to that, in all hybrid RANS/LES simulations the flow on
the flap is fully attached, which is exemplarily shown for the HRLMopt+ST in (c).

(a)

(b)

(c) (d)
(e)

(f)

x/c

z/c

〈u〉/u∞ :

(a) PIV

x/c

z/c

(b) RANS

x/c

z/c

(c) HRLMopt+ST

Fig. 4.21: Mean stream-wise velocity component for the flow about the flap of the two-
element high-lift airfoil at undisturbed inflow.

To study the confluent shear layers in detail, Fig. 4.22 depicts the velocity profiles
along the lines indicated in Fig. 4.21(a). For the boundary layer near the trailing edge
of the main wing, shown in 4.22(a), all simulations predict the attached flow in good
agreement, but no experimental reference data are available. Profile (b) compares
the flow through the gap between the main wing and the flap, again without reference
PIV data. The position ∆z/c = 0 is located on the main wing and ∆z/c = −0.012 is
located on the flap. With the RANS approach the velocity magnitude in the center
of the gap is smaller, and this difference is maintained in the following profiles (c) and
(d). While the PIV data near the wall are afflicted with larger uncertainties, at least
the trend towards a lower gap-flow velocity is considered correct, as it additionally
increases the separation tendency of the flow.

In the profiles (c) and (d) the main-wing wake appears as sharp kink separating the
boundary layer on the upper side of the main wing from the gap flow. In profile (c)
the kink is much more pronounced in all simulations than in the PIV data. In profile
(d) the severity of the kink is reduced by turbulent mixing: while the turbulence
model provides high values of eddy viscosity in the RANS approach, in the hybrid
RANS/LES simulations the resolved structures are mainly responsible for the mixing,
as the sub-grid model produces little modeled turbulence in LES mode. Therefore, in
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the HRLMref and HRLMopt the delayed breakup of the wake leads to less turbulent
mixing, whereas the resolved turbulent structures which are excited by the synthetic
forcing in the HRLMopt+ST , smoothen the kink slightly.

Despite the delayed breakup of the main-wing wake, in HRLMopt the effect of the
resolved turbulence has increased to a level comparable to the HRLMopt+ST and
the shape of profile (e) is similar for both simulations. The main differences be-
tween the simulations must be contributed to the different separation behavior which
leads to different paths of the main-wing wake. In profile (f) the wake is essentially
smoothened out in the PIV data, while it is preserved in all simulations, including
the RANS simulation, where the flow is separated.
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Fig. 4.22: Velocity profiles in several positions near the flap of the two-element airfoil
(indicated in Fig. 4.21(a)): ( ) HRLMref ; ( ) HRLMopt; ( )
HRLMopt+ST ; ( ) two-dimensional RANS; ( ) PIV data.

Fig. 4.23 illustrates one uncertainty in the simulations: the influence of the transition
modeling. In the experiment transition was tripped at x/cflap = 0.31, which is
adopted to prescribe transition in the simulations3. Fig. 4.23(a) depicts the skin
friction Cf on the flap, where negative values indicate flow separation. In (b) the
eddy viscosity illustrates the influence of the transition prescription on the flow,
where the green line indicates the transition location. In the hybrid RANS/LES
approaches, represented by the HRLMopt+ST , the level of the eddy viscosity is low,
and a laminar boundary-layer profile is obtained in the region specified as laminar.
In contrast, a high level of eddy viscosity is transported from the turbulent flow
in the main-wing cove into the outer boundary layer in the laminar region in the
RANS simulation. As a consequence the boundary-layer profile exhibits a premature

3This leads to the kink in the Cf curve.
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tendency towards a turbulent shape, which manifests in increased values of Cf in
the laminar region. Downstream of the transition location, the production term of
the turbulence model reacts stronger to the laminar flow in the hybrid RANS/LES
approaches, and the eddy viscosity grows more rapidly than in the RANS simulation,
leading to higher values of Cf .
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Fig. 4.23: Distribution of the skin-friction Cf along the upper side of the flap in (a) (see
Fig. 4.22 for the legend); distribution of the eddy viscosity along the flap in (b).

The general question arises, how laminar regions should be treated in scale-resolving
simulations, especially in the case where the laminar region is subjected to massive
outer turbulence. This source of uncertainty in the simulation could not be resolved
in the scope of the present thesis. The limited computational resources did not
allow to study the influence of the transition prescription on hybrid RANS/LES
simulations. The same problem arises in Reuß et al. [B] (see Appx.) for the flow over
the three-element airfoil.

To find an explanation for the pronounced of Cf -maxima at the rear end of the flap
around x/cflap ≈ 0.55 in the HRLMopt and HRLMopt+ST simulations, the vorticity
is shown in Fig. 4.24 to illustrate the wake of the main wing. At x/cflap ≈ 0.55 the
main-wing wake merges with the boundary layer on the flap and which locally in-
creases the turbulent momentum transport. It seems, that mainly the small resolved
structures in the HRLMopt and HRLMopt+ST contribute to the increased level of Cf .

x/cflap

y/cflap

‖ω‖ (c/u∞)

Fig. 4.24: Vorticity above the flap of the high-lift airfoil in the HRLMopt simulation.

Fig. 4.25 depicts the pressure coefficient Cp on both elements. In all simulations
the major part of the flow about the main element is computed in RANS mode.
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Therefore, on the main wing in (a) Cp essentially reflects the RANS solution, and
the difference between the three hybrid RANS/LES solutions, the two-dimensional
reference RANS, and the experiment is negligible.

According to Fig. 4.25(b), there is a wider spread of the pressure distributions on the
flap. Near the suction peak, the HRLMref agrees with the RANS, while the HRLMopt

and the HRLMopt+ST agree better with the experimental data. This shows the
influence of the grey area in HRLMref , which is reduced through the improved length
scale ∆ω in the other scale-resolving simulations. However, in the rear section of the
flap, starting at x/c ≈ 0.6, the results of the three hybrid RANS/LES simulations
nearly coincide. The grid cells in this region are almost isotropic, and it was already
observed for the flow over the wall-mounted hump, that the effect of ∆ω vanishes for
isotropic cells. Furthermore, the smaller turbulent structures that are resolved with
the low-dissipation scheme in Fig. 4.19, show little effect on Cp.
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Fig. 4.25: Pressure distribution Cp on the two-element airfoil at undisturbed onflow condi-
tions: ( ) HRLMref ; ( ) HRLMopt; ( ) HRLMopt+ST ; ( )
two-dimensional RANS; (�) reference from experiment.

For an approximate assessment of the grid resolution, Fig. 4.26 depicts the distri-
bution of the LES grid-resolution sensor S, based on Eq. (3.7). The sensor can
only provide meaningful results if a certain amount of turbulence is resolved. There-
fore, the evaluation is restricted to regions where the resolved turbulence intensity
Tu = 1/uref ·

√
2/3(〈u′2〉+ 〈v′2〉+ 〈w′2〉) exceeds a given threshold of T0 = 0.1, the

same value as in Reuß et al. [D] (see Appx.).

x/c

S :

z/c

Fig. 4.26: Distribution of the grid-resolution sensor S in the HRLMopt simulation of the
two-element high-lift airfoil.
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In the entire region above the flap, the values of the sensor are larger than S = 0.8,
which confirms sufficient grid resolution for LES. The sensor values drop abruptly in
the region x/c = 1.4−1.5, at the interface between the structured grid layers and the
unstructured grid region where the growth rate of the grid cells suddenly increases.
Only in a small region of the shear layer in the wing cove, the sensor indicates
underresolved flow with values smaller than S = 0.8. However, this is considered
to be a consequence of the grey area, which should be addressed by introducing
synthetic turbulence upstream of the edge, rather than refining the grid.

4.6 Transport of a lateral vortex

In the target application of the present thesis, an airfoil-generated vortex interacts
with a DLR F15 two-element high-lift airfoil. To prepare this simulation, Reuß
et al. [F] (see Appx.) present a suitable numerical representation of the vortex trans-
port. The results are briefly summarized here. Since in the target application the
high-lift airfoil is positioned at a distance of 3.33 chord lengths downstream of the
vortex generator, the outcome of this investigation has a major influence on the com-
putational effort required for the target application. Experimental reference data are
provided by Klein et al. [32].

Computational setup

In the computational setup the isolated NACA-0021 vortex-generator airfoil is posi-
tioned in the wind tunnel. The deflection of the airfoil is achieved with the help of
the grid-deformation approach, described in Sect. 2.5 where Figs. 2.5(c) and (d) dis-
play the grid before and after the deflection. Two different simulation approaches are
compared: on the one hand, the vortex transport is modeled in the LES mode, while
on the other hand, a RANS model is used in the transport region. Details about the
grid and the simulation strategy are presented in Reuß et al. [F] (see Appx.).

Results

Fig. 4.27 presents the resolved turbulent structures in the wake of the deflected
vortex-generator airfoil. The bend in the wake illustrates the position of the lateral
gust, generated during the airfoil deflection and convected with the mean flow. This
represents the vortex, which is considered in the target application. The structures
are visualized by an isosurface of the Q-criterion, and the color contour displays the
span-wise velocity.

Two hybrid RANS/LES simulations are compared, which both apply the vorticity-
based LES filter ∆ω and the low-dissipation settings. In (a) the quasi two-dimensional
rollers in the wake are very stable, and no resolved turbulent structures develop.
Therefore, in (b) the generation of turbulent structures is triggered by local stochastic
forcing of the flow near the trailing edge.

To investigate the effect of the passing vortex, the induced angle of attack αind
and the disturbance velocity uind are considered in Reuß et al. [F] (see Appx.). The
results of the RANS simulation and the hybrid RANS/LES approaches are compared
with experimental data in order to investigate the influence of the resolved turbulent
scales on the overall representation of the vortex. To evaluate the mean quantities
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(a) hybrid RANS/LES without forcing

(b) hybrid RANS/LES with forcing

Fig. 4.27: Resolved turbulent structures in the wake of the deflected NACA-0021 airfoil.

in such a time-dependent flow problem, the moving-average formulation is used, see
Sect. 2.4. In all simulations in Reuß et al. [F] (see Appx.), similar mean characteristics
of the induced disturbance are obtained, which confirms that the main influence of
the vortex is represented satisfactorily by the RANS mode. Therefore, the RANS
mode is prescribed in the vortex transport region of the target application, while the
scale-resolving mode is restricted to the region of the two-element airfoil.

4.7 Two-element airfoil with vortex interaction

In order to simulate the interaction of an airfoil-generated vortex with the DLR F15
two-element airfoil, the following strategy is applied: through the rapid deflection
of a NACA-0021 airfoil a two-dimensional lateral vortex is generated in the wake,
which is convected downstream towards the two-element airfoil at a distance of 3.33
chord lengths. The focus of the investigation lies on the influence of the disturbance
on the high-lift airfoil. This case represents the target application for the simulation
methods developed in the present thesis. Reference validation data originate from
experimental measuring campaigns by Hahn et al. [24] and Klein et al. [32].

Computational setup

The simulation of the target application utilizes the same grid as the hybrid simu-
lations in Sect. 4.5. The result of the HRLMopt simulation serves as initial solution
for the target application. In Reuß et al. [E] (see Appx.) it was confirmed that the
computational domain can be restricted to the center-line section of the wind tun-
nel, while Reuß et al. [F] (see Appx.) showed that the RANS method is sufficient to
predict the mean characteristics of the transported vortex. The resulting simulation
setup is depicted in Fig. 4.28.
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µt/µl:

hyb. RANS/LESRANS

�
�
�

refined region

Fig. 4.28: Setup of target application. The RANS region is outlined by the dashed line.

The dashed line outlines the region where RANS mode is prescribed for the vortex
transport. The region with a high span-wise resolution, obtained through a local grid
refinement, is indicated by the transition elements, see Sect. 3.2.1. Fig. 4.28 depicts
the ratio of the modeled eddy viscosity to the laminar viscosity, to illustrate where
the RANS model is active.

Results

The simulation process is described in terms of the non-dimensional time t∗, which
is normalized with the reference time tref = c/u∞, i.e. the vortex is convected over
the distance of ∆x/c = 1 within the time ∆t∗ = 1 in undisturbed flow. The rota-
tion of the NACA0021 airfoil is started at t∗ = 0, and full deflection is reached at
t∗ = 2.5. Fig. 4.29 illustrates the position of the vortex during its transport along
the high-lift airfoil, where the image sections visualize different time instances t∗.
The position of the vortex can be identified with the help of the velocity difference
vectors. They are computed from the mean velocity field 〈u〉 at the respective time
step and the reference velocity field uα=10◦ , obtained with a static, fully deflected
vortex-generator airfoil. In the region above the flap, the turbulent flow yields large
difference velocities. The color contour depicts the mean-flow velocity.

|〈u〉|/uref :

t∗ = 4.25

t∗ = 4.625

t∗ = 5.25

x/c

z/c

Fig. 4.29: Path of the vortex during its transport along the high-lift airfoil visualized
through velocity difference vectors. : vortex core extracted from PIV mea-
surements; extrapolated path.

Upstream of the high-lift airfoil the flow is decelerated through the blockage effect,
while the circulation around the high-lift airfoil accelerates the flow above the main
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wing. In Fig. 4.29 the distortion vortex reaches the first position, x/c ≈ −0.5,
upstream of the leading edge at t∗ = 4.25. In the second image section, the circulation
around the high-lift airfoil stretches the vortex, such that the position of the vortex,
x/c ≈ 0.3, is less sharply defined at t∗ = 4.625. In the accelerated flow the vortex is
convected over the distance of ∆x/c = 1.75 in the time ∆t∗ = 1, such that it reaches
the third position, x/c ≈ 1.25, above the trailing edge of the flap at t∗ = 5.25.

The yellow symbols denote the positions of the vortex core as extracted from the PIV
measurements by Klein et al. [32]. The blue line indicates the extrapolated path of
the vortex core in the region that is not covered by the PIV measurements. In the first
position the vortex core in the simulation is located slightly below the blue path, while
in the other positions the vortex position is predicted a little farther away from the
high-lift airfoil. This can be explained by the findings of Sect. 4.5, where it was shown
that no separation at the flap is predicted in the undisturbed case, corresponding to
t∗ = 0. This leads to a different circulation around the airfoil and consequently to
different vortex paths in the simulation and the experiment. However, in principle
the simulation method is able to reproduce the vortex transport with satisfactory
accuracy, as shown below.

To assess the effect of the vortical disturbance on the aerodynamic performance of
the high-lift airfoil, its influence on the pressure distribution is studied in Fig. 4.30.
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Fig. 4.30: Time resolved pressure coefficient Cp. Comparison of experimental data (black)
and simulation results (colored). Note the different scalings of the y-axes.

In the experiments, time-resolving signals of the surface pressure were measured at
several positions along the main element and the high-lift flap. The colored circles
close to the leading and trailing edges of the two elements in Fig. 4.29 indicate four
selected measuring positions, in which the numerical results and the experimental
data are compared. In Fig. 4.30 the time series of the pressure differences ∆Cp = Cp−
Cp,0 are compared, where Cp,0 is the pressure coefficient at t∗ = 0. The experimental
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data represent the ensemble average of more than 80 pitch cycles, while the pressure
data from the simulation are obtained with the moving-average formulation, see
Sect. 2.4. Note the different scalings of the y-axes.

Fig. 4.30 shows that the maximum impact of the passing vortex on the main-element
leading edge is predicted at t∗ = 4.5, a little later than the measured t∗ = 4.1.
Similarly, near the main-element trailing edge a maximum is predicted at t∗ = 5.3,
while it is measured at t∗ = 4.5. This may partly be explained by three-dimensional
wind-tunnel effects. While Reuß et al. [E] (see Appx.) confirm that the flow about
the high-lift airfoil can be considered as two-dimensional, the side walls may influence
the transport velocity of the vortex. However, the shape and strength of the induced
surface pressure distortion is in reasonable agreement with the experimental data
in both measuring stations at the main wing. At the sensor stations on the flap,
the surface pressure is influenced by turbulent structures, which are convected from
the main-element cove, and the window averaging is not sufficient to eliminate the
pressure fluctuations. Therefore, the predicted pressure signal shows a large deviation
from the experimental data. It is however not affordable to perform many simulations
with slightly different initial flow states, in order to obtain ensemble-averaged data.

In Fig. 4.31 the power spectrum densities of the four time signals are evaluated, to
investigate the different scales of the distortion, which occur at the high-lift airfoil.
No experimental data are available for comparison. At the two measuring stations at
the main wing the influence of the resolved turbulent scales is small and the energy
decays quickly. However, at the flap the small structures in the turbulent flow lead
to increased energy in the higher frequencies in the red and orange curves.
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Fig. 4.31: Power spectrum density of the pressure coefficient in the positions of the pressure
sensors: ( ) main-element leading edge; ( ) main-element trailing
edge; ( ) high-lift flap leading edge; ( ) high-lift flap trailing edge;

The impact of the vortex on the magnitude of the surface-pressure fluctuations is
presented in Fig. 4.32. For this purpose, the difference ∆〈C ′2p 〉

1/2 = 〈C ′2p 〉
1/2
t∗ −

〈C ′2p 〉
1/2
0 is computed from the variance of the pressure coefficient Cp, where 〈C ′2p 〉

1/2
0

denotes the value at t∗ = 0. No reference data are available from the experiment.
The mean values are computed with the moving-average formulation, c.f. Sect. 2.4.
Therefore, the time dependence of the mean values is preserved, and the influence of
the passing vortex decays after a while.

The red curve in Fig. 4.32 represents the flow near the maximum impact of the
vortex on main-wing leading edge at the time t∗ = 4.25. In (a) it can be clearly seen,
that the vortex increases the pressure fluctuations at the leading edge of the main
wing. The blue curve represents the flow near the maximum impact of the vortex
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Fig. 4.32: Impact of the passing vortex on the pressure fluctuations at the two-element
airfoil: ( ) t∗ = 4.25 ; ( ) t∗ = 5.25.

on the flap leading edge at the time t∗ = 5.25. At this time instance the pressure
fluctuations at the main wing have decayed, and in (b) a maximum of the pressure
fluctuations can be observed at the flap.

In summary, the computation of the target application of the present thesis confirms
that the presented simulation strategy is able to reproduce the experimental data
with satisfactory results. The vortex is preserved during the transport towards the
high-lift airfoil, and the essential effects are well predicted. The computed impact of
the vortical disturbance on the surface pressure broadly agrees with that seen in the
measurements.
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Conclusion

The present thesis aims to provide a reliable simulation strategy for high-lift applica-
tions under disturbed inflow conditions. As a consequence of the known weaknesses
of RANS turbulence models in flows with massive separation, a hybrid RANS/LES
method was chosen as base-line approach: the Algebraic Delayed DES (ADDES),
first introduced by Knopp et al. [35]. In the original version of the ADDES, algebraic
sensors evaluate the boundary-layer velocity profiles to assess the state of the flow
and adjust the model behavior. In the present thesis the ADDES was extended, im-
proved, and validated for several fundamental flow cases and application challenges.

To start with, the wall-modeling capabilities of the IDDES were included in the
ADDES. For its automatic activation, another algebraic sensor was developed, which
is able to detect wall-modeled LES mode. The algebraic sensors of the ADDES were
successfully utilized in simulations of the flow over a wall-mounted hump and the
flow over a two-element airfoil.

Moreover, the present thesis addresses the grey-area problem, which occurs at RANS-
to-LES model interfaces. In order to reduce the amount of modeled turbulent kinetic
energy, an improved vorticity-based LES filter width by Chauvet et al. [9] was adopted
and reformulated for the unstructured dual-grid approach. Additionally, a combina-
tion of the vorticity-based filter with the IDDES was proposed. The improved filter
was compared to the standard filter for wall-modeled LES simulations of a turbulent
channel flow, and consistent results were obtained. Furthermore, for the flow over a
backward-facing step the generation of resolved turbulent structures was accelerated
and the grey area was strongly reduced. For the flow over a two-element high-lift air-
foil, considerably smaller turbulent structures were resolved with the vorticity-based
filter width.

An optimized numerical scheme with low-dissipation properties, see Probst and Reuß
[D], and low-dispersion properties, see Löwe et al. [42], was utilized to improve the
results of the hybrid RANS/LES simulations. This scheme was considered in combi-
nation with wall-modeled LES of turbulent channel flows at the Reynolds numbers
of Reτ = 1100 and Reτ = 4200, and consistent results were obtained.

To enable a smooth transition from LES to RANS regions, sponge sources, which are
able to transfer resolved turbulent structures into modeled turbulence, were assessed
for a turbulent channel flow. Near the inflow boundary, synthetic resolved structures
were introduced using the STG method by Adamian and Travin [3], which was im-
plemented and improved in the framework of the ADDES by François and Radespiel
[17]. The synthetic turbulence together with the sponge terms were shown to allow
a rapid transition between RANS and LES in both directions. However, the imple-
mentation should be extended to consider reference values from farther upstream for
the sponge terms. Besides, synthetic turbulence was applied to the test case of a
two-element airfoil, where it lead to the desired rapid breakup the wake flow.

An important issue in scale-resolving approaches is the grid resolution. In order to
obtain reliable results, it is necessary to ensure a sufficient resolution of the turbulent
structures in the LES regions. Therefore, a grid-resolution sensor was developed,
which evaluates the capability of the grid to resolve the relevant turbulent length
scales. This sensor can be used as input for an automatic grid refinement of the
insufficiently resolved regions. For the test case of the backward facing step the sensor
was successfully evaluated and the results were used for a local grid refinement. For
the test case of the two-element airfoil, the sensors was evaluated and confirmed that
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the grid was sufficiently fine in the LES region.

In the target application of the present thesis, the interaction of a generic airfoil-
generated vortex with a two-element high-lift airfoil was investigated. To simulate
the generation of the onflow disturbances, the grid deformation method of the DLR-
TAU code was chosen. Furthermore, a simulation strategy to transport the vortex
over the large distance between the vortex-generator airfoil and the high-lift airfoil
was presented: it was demonstrated, that the RANS mode is able to accurately
represent the relevant scales and mean-flow characteristics of the vortex. Finally, in
the target application all numerical and modeling improvements of the simulation
method were combined. The numerical results were in reasonable agreement with the
experimental data and the mean influence of the disturbance on the high-lift airfoil
was successfully reproduced. However, in the simulations the flow at the flap was
attached, while the experiments indicate separation on the flap. This problem should
be scrutinized in future applications, e.g. synthetic turbulence could be introduced in
the boundary layer on the flap. During the development of the improved simulation
strategy, intermediate results were published at several work stages. The publications
are attached in the appendix of this thesis.

In the presented applications, only little use was made of the automatization capabil-
ities of the ADDES. For example, the location of the inflow region for the synthetic
turbulent structures was fixed in advance. However, one of the strengths of the al-
gebraic sensors in the ADDES is the possibility to detect different flow states: the
flexible data structure of the wall-normal lines allows the parallel real-time evalua-
tion of boundary-layer velocity profiles even for complex flow cases, which comprise
three-dimensional flow phenomena. This means on the one hand, that the boundary
layer sensors are able to adjust the model behavior to automatically select the suited
simulation approach, i.e. RANS, wall-modeled LES, or LES, respectively. On the
other hand, the grid resolution can be adapted, as well: during the entire simula-
tion, the grid is assessed through the grid-resolution sensor, and if an underresolved
flow region is identified, the grid will be automatically refined in this region. This
automatization should be exploited and carefully assessed in future applications.
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Abstract

The Chimera technique for moving grids is used to take into account non-
homogeneous unsteady inflow conditions in the simulation of aerodynamic flows.
The method is applied to simulate the transport of a large-scale vortex by a mean
velocity field over a large distance, where it finally interacts with an airfoil. The
Chimera approach allows one to resolve the vortex on a fine grid, whereas the
unstructured background grid covering most of the computational domain can be
much coarser. This method shows the same low numerical dissipation as a simu-
lation on a globally fine grid. Several precursor tests are performed with a finite
modified analytical Lamb-Oseen type vortex, to study the influence of spatial
and temporal resolution and the employed numerical scheme. Then the inter-
action of an analytical vortex with a NACA0012 airfoil and with an ONERA-A
airfoil near stall is studied. Finally a realistic vortex is generated by a ramping
airfoil and is transported on a moving Chimera block and then interacts with
a two-element airfoil, which allows one to simulate a typical setup for a gust
generator in aerodynamic facilities.

1 Introduction

The weather is one reason for airplane accidents. Of particular interest are non-
homogeneous unsteady onflow conditions, consisting of large-scale vortices due to
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atmospheric conditions. The focus is on the influence of the disturbance in the
onflow on the flow field around the body and on the corresponding aerodynamic
coefficients of lift, drag and moment. The prediction of the impact of a discrete
symmetrical vertical and lateral gust is part of the current certification process of an
airplane. According to the certification specification EASA CS 25.341 the shape of
the gust must be taken as

U =
Uds
2

[
1− cos

(πs
H

)]
for 0 ≤ 2s ≤ H , (1)

where s is the distance penetrated into the gust, Uds is the design gust velocity and
H is the gust gradient.

The size of atmospheric vortices is typically more than one order of magnitude larger
than the size of the aerodynamic body. Many studies of vortex body interactions
have been performed, but often the vortices are of the same size as the body that is
subjected to them. In [1] the interaction of a tail rotor blade of a helicopter with a
vortex generated by the main rotor is investigated experimentally and numerically.
The interaction of a vortex wake with a bluff body is investigated in [2]. Additionally
to the effect on the aerodynamic forces the noise caused by the collision is studied.

In aerodynamic simulations the farfield boundary is typically at a distance of one
hundred chord lengths from the aerodynamic body, e.g., an airfoil, a wing or an
airplane. Large-scale vortices in the inflow conditions need to be brought into the
flow field at a sufficiently large distance from the body in order to avoid a disturbance
of the flow around the body due to elliptic propagation of information. The vortex
needs to be resolved on a sufficiently fine mesh all the way to the airfoil when it
is convected with the onflow velocity. This method has been used in [3] where a
boundary condition is described that allows one to introduce a sinusoidal disturbance,
as described in equation (1), to a flow field. It is applied to predict the impact on a
NACA0012 airfoil. Otherwise, if the grid is not fine enough, the shape and strength
of the vortex can be altered in an undesired way due to numerical dissipation. In
[4] higher-order methods are used to preserve the vortex during the interaction with
a NACA0012 airfoil. However, industrial CFD solvers are usually based on second
order methods on unstructured meshes. A global mesh refinement is often unfeasible
due to the very large additional numerical costs. A second approach is a time-
accurate local grid refinement and derefinement [5]. This has the potential drawback
that poorly shaped nonisotropic elements are introduced which can lead to an increase
in numerical dissipation and hence to a detoriation of the vortex.

As a remedy, this paper presents a Chimera-based approach, that was first used in
[6, 7] and later in [8, 9, 10].

The idea of the present work is to transport the vortex on a fine grid which is moving
at the same speed as the vortex, whereas the mesh around the body is fine only in
the vicinity of the body and becomes much coarser with increasing distance from
the body. The Chimera mesh for the vortex is built of hexahedral elements which
ensures a low numerical dissipation. In case that the vortex interacts with a body, the
Chimera grid is stopped at a certain distance from the body where the grid around
the body is fine enough. Then the vortex is convected from the Chimera mesh onto
the aerodynamic body mesh and the vortex interacts with the flow around the body.

In the present paper we use analytical and generic vortices in the inflow conditions.
In future work, we plan to consider atmospherically realistic turbulence in the onflow.

International Journal for Numerical Methods in Fluids, 70(12) pp. 1558-1572, 2012
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The paper is organized as follows: In section 2 the DLR TAU-code is described,
the details of the implementation of the Chimera technique are given in section 3.
In the subsequent section 4 first the required numerical scheme, grid resolution and
time step size to maintain a finite analytical vortex at rest and during the transport
with a moving Chimera block are determined. Then the interaction of an analytical
vortex with an NACA0012 and an ONERA-A profile is studied. Finally a vortex
is generated by a rapidly deflected NACA0012 profile and the interaction with a
two-element airfoil is investigated. A conclusion is given in section 5.

2 The DLR TAU-code

The DLR TAU-code [11] is an unstructured finite volume solver for the compressible
Navier-Stokes equations (NSE). We consider the computational domain Ω ⊂ Rd,
d = 2, 3, discretized with a grid. The control volumes Vi, the so called dual mesh cells,
are associated with every grid node and are constructed during the preprocessing.
This allows the use of mixed cell types in the primary grid, and thus of structured
as well as unstructured meshes and hybrid meshes, that comprise structured and
unstructured regions. The dual mesh can be interpreted as Ω = ∪iVi, where the
overline denotes the closure of a domain. We seek the density ρ(x, t), the velocity
vector u(x, t) and the temperature T (x, t) with (x, t) ∈ Ω× (0,∞). The cell averages
Wi of the conservative variables are stored in the centers of the dual cells:

Wi =
1

vol(Vi)

∫
Vi

wi dV and wi =

 ρ
ρu
ρE

 ,

where E = cv T+ 1
2u2 is the total energy with cv the specific heat at constant volume.

The convective and viscous fluxes Fci and Fvi are given by

Fci =

 ρu
ρu⊗ u + pI
ρEu + pu

 and Fvi =

 0
2µT

u2µT + κ∇T

 , (2)

where I ∈ R3 is the identity matrix, µ is the molecular viscosity, κ the thermal
conductivity and T is the strain rate tensor

T = S− 1
3
∇u I with S =

1
2

(∇u + (∇u)T ).

Using the notation for the residual R(Wi)

R(Wi) =
1

vol(Vi)

∫
∂Vi

Fci · n dS − 1
vol(Vi)

∫
∂Vi

Fvi · n dS , (3)

where n is the normal vector of the boundary ∂Vi of the control volume Vi, the NSE
is given by

∂

∂t
Wi +R(Wi) = 0 in Vi ∀Vi ⊂ Ω, (4)

with boundary conditions on Γ = ∂Ω. Here we confine ourselves to farfield boundaries
Γfarfield and optionally a viscous wall Γw.

International Journal for Numerical Methods in Fluids, 70(12) pp. 1558-1572, 2012
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To account for turbulence, several turbulence models ranging from one-equation to
Reynolds-stress-models are implemented. In the presented examples the k-ω lin-
earized explicit algebraic stress (LEA) model [12] and the Menter-SST model [13]
are employed. Regarding the numerical scheme, the spatial derivatives are approxi-
mated with a second order central difference scheme with artificial dissipation. The
artificial dissipation stabilizes the scheme and can be either of scalar [14] or matrix
type [15]. The influence of the two different schemes is examined in the first example
in section 4.1. For the propagation in time a backward differentiation formula of
second order is given by:

3
2∆t

Wn+1
i − 4

2∆t
Wn

i +
1

2∆t
Wn−1

i +R(Wn+1
i ) = 0 . (5)

Here Wn+1
i denotes the solution at the current physical time step tn+1, the two

previous steps are denoted by Wn
i and Wn−1

i . This nonlinear steady-state problem
is solved at each time step using the following dual-time stepping scheme in pseudo
time t∗:

∂

∂t∗
Wn+1

i +RDTS(Wn+1
i ) = 0 ,

with

RDTS(Wν
i ) = R(Wν

i ) +
3

2∆t
Wν

i −
4

2∆t
Wn

i +
1

2∆t
Wn−1

i .

One implemented iterative solver is the explicit low-storage k-stage Runge-Kutta
scheme [14]:

W(0)
i = Wν

i

W(1)
i = W(0)

i − α1 ∆t∗ R(W(0)
i )

...

W(k)
i = W(0)

i − αk ∆t∗ R(W(k−1)
i )

Wν+1
i = W(k)

i

, (6)

where α1, . . . , αk are the Runge-Kutta coefficients. Several cycles of this scheme are
executed to converge the solution Wν

i to a steady state in pseudo time. The time
step ∆t∗ is determined by the CFL-number. The simulation can be accelerated using
residual smoothing, multi-grid technique and pre-conditioning [16].

3 Chimera technique in the DLR TAU-code

Details of the implementation of the Chimera technique in the DLR TAU-code can
be found in [17]. A simulation with Chimera can be interpreted as a domain de-
composition problem with overlap. For the sake of simplicity of the presentation,
we introduce one background grid Ωbg that covers the whole computational domain
Ω and include only one Chimera block Ωcg, where Ωcg ⊂ Ωbg. Denote Ωhole with
boundary Γhole the so called hole-definition grid on a null-homotopic domain (loosely
speaking a domain without holes) with Ωhole ⊂ Ωcg, that is associated with Ωcg. De-
note Wbg the solution in Ωbg \Ωhole and Wcg the solution in Ωcg. Moreover denote
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Ωbg←cg,ip ⊂ Ωbg an interpolation region from Ωcg onto Ωbg, which is located adjacent
to Γhole. Similarly, denote Ωcg←bg,ip ⊂ Ωcg an interpolation region from Ωbg onto
Ωcg, located adjacent to Γcg = ∂Ωcg. The situation is shown in figure 1.

Ωbg

Ωcg

Γcg

Ωhole

Γhole

(a) (b) (c)

Fig. 1: (a) Background grid Ωbg with Chimera grid Ωcg and hole definition grid Ωhole out-
lined by thick lines; (b) Ωbg: points in Ωhole are blanked out, points in Ωbg←cg,ip are
marked; (c) Ωcg: points in Ωcg←bg,ip are marked

Then we seek the solution Wbg
i such that

∂Wbg
i

∂t
− R(Wbg

i ) = 0 in Vi ∀Vi ⊂ Ωbg \ Ωhole (7)

with the original boundary conditions on Γbg \ Ωhole and Wbg = Wcg in Ωbg←cg,ip

by interpolation.

Moreover we seek the solution on the Chimera grid Wcg
i such that

∂Wcg
i

∂t
− R(Wcg

i ) = 0 ∀Vi ⊂ Ωcg (8)

with Wcg = Wbg in Ωcg←bg,ip by interpolation.

The interpolation domains Ωbg←cg,ip and Ωcg←bg,ip consist each of two layers of grid
points, as each interpolation domain is built up of the set of grid points for which
the spatial discretization operator would assess a node not belonging to Ωbg \ Ωhole

resp. to Ωcg. The values of all conservative variables are interpolated using a trilinear
interpolation (in a 3D computation). Since the overlap region does not decrease with
mesh refinement trilinear interpolation is sufficient for maintaining the second order
accuracy of the scheme in space according to [18]. This approach is in accordance
to Wu [19], who showed that the interpolation of the numerical fluxes instead of the
conservative variables may lead to a nonunique steady-state solution of problem (7)
and (8).

For all dual cells an array IBLANK[Vi] is stored, with

IBLANK[Vi] =

{
0 if Vi ∈ Ωbg and Vi ⊂ Ωhole

1 else
. (9)

The Runge-Kutta scheme in equation (6) is modified:

W(j)
i = W(0)

i − IBLANK[Vi] αj ∆t∗ R(W(j−1)
i ) for j = 1, · · · , k , (10)
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ensuring that in the blanked points no update of the solution is computed. Instead
an update of the conservative variables in the interpolation regions is performed by
interpolation in each step.

Ωcg can be in motion relative to Ωbg. The TAU-code allows one to prescribe trans-
latory, rotational and composed trajectories, that are described as time dependent
Fourier or polynomial series. In this case Ωhole remains attached to Ωcg. This re-
quires an update of the interpolation regions Ωbg←cg,ip and Ωcg←bg,ip in each physical
time step. A fast way to find the respective donor cells for the interpolation is the
alternating digital tree [20], that reduces the complexity of the search to log2N op-
erations. The search result is a cartesian box which comprises the possible donor
cells. For each cell an enveloping element with planar faces is constructed and it
is checked if the receiving point xr is located in the interior. If so, the following
nonlinear system of equations is solved using a Newton-method:∑

i

fi(ξ, η, µ)xi = xr , (11)

where xi are the corners of the element, ξ, η and µ are the local coordinates in the
reference finite element and the fi are the weights of the linear, bilinear or trilinear
ansatz functions for the respective element type with following property:

fi(xj) =

{
1 if i = j

0 if i 6= j

The fi take values 0 ≤ fi(xr) ≤ 1 if the point xr lies inside the element and they
are the interpolation weights of the trilinear interpolation. For a valid donor cell
an additional requirement is that none of the corners is blanked. For this reason
the overlap region must be sufficiently large. If more than two grids overlap, the
search starts at the first block and proceeds until an appropriate donor cell is found.
So if the background grid is the first block in the common grid, the solution is
interpolated from there, even if its resolution is very coarse and thus afflicted with a
higher discretization error. This must be payed attention for when the user chooses
the sequence of the Chimera blocks. For a second order time discretization, like in
equation (5), the solutions of the two previous time steps are required. Due to a
moving block it can happen that a point in Ωbg \Ωhole that was blanked in one of the
two previous time steps becomes active. In this case the values of the old time steps
are reconstructed by interpolation of the respective values on Ωcg. Since a different
movement can be assigned to each Chimera block, vectorial values like coordinates
and velocities must be suitably transformed.

The functionality of the TAU-code can be controlled via Python scripts. These
enable to couple different types of motion and thus to automate the process of the
grid movement from the viewpoint of the technical CFD-code usage. The type of
motion and the duration of the single steps still must be defined by the user in
advance.

The TAU-code can be used in parallel mode. For this purpose the grid is split
into smaller sub-grids and each is treated by one processor. The values at the sub
grid boundaries are communicated to the other domains. One important feature of
this domain decomposition is a balanced distribution of work. With the Chimera
approach it is not a priori known how much points are active on each domain due to
the blanking of points. This may lead to a certain imbalance. Details of the efficiency
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of the Chimera method in the DLR TAU-code can be found in [21]. If multi-grid is
used to accelerate the convergence, the holes must also be defined on the coarse grids:
All coarse grid cells that contain at least one blanked cell are marked as blanked.
The solution is interpolated from the finer grid level to the coarser grid level to get
values for the receiving points.

4 Numerical test cases

Several analytical vortex models like the potential vortex, the Rankine vortex, the
Lamb-Oseen vortex and others can be found in literature, which are all of infinite
size. Therefore a new finite vortex model is introduced, that consists of four spatial
zones, separated by the radii 0 < rc < rm < ro, and used within the numerical
examples. Zone 1 and 2 are of Rankine-type, whereas the idea of damping vφ by a
function β in zone 3 is taken from the Lamb-Oseen vortex. At ro the velocity vφ is
sufficiently small to be cut off, thus ensuring the finite size. The tangential velocity
is defined as:

vφ(r) =


Γ0·r

2·π·r2
c

if r < rc
Γ0

2·π·r if rc ≤ r < rm
Γ0

2·π·r · β if rm ≤ r < ro

0 if ro < r

, with β = e
(r−rm)2

δ . (12)

In the following examples a molecular viscosity of µ = 1.72 × 10−5kg/(ms) and a
density of ρ = 1.294kg/m3 are used. To take into account the effects of turbulence,
in (2) the molecular viscosity is replaced by the effective viscosity µeff = µ + µt.
The so called turbulent viscosity µt is computed using the LEA-turbulence model in
4.1-4.4 and the Menter-SST turbulence model in example 4.5.

4.1 Preservation of a finite vortex in time

The aim of this section is to specify the settings for the numerical scheme and the
time and grid resolution required for a single vortex on a fine mesh which will become
the Chimera grid in the later test cases. It will become clear in section 4.2 that we are
interested in the situation, that the vortex is at rest relatively to the (Chimera) grid,
hence v∞ = 0m

s . The vortex, as defined in (12), is described by rc = 2m, rm = 4m,
ro = 10m and Γ0 = 60 and δ = 10m2. The computational domain is chosen as
100m × 100m. Three different structured grids are used: a coarse grid consisting of
101×101 points, a fine grid with 201×201 points and a very fine grid with 301×301
points. The points are clustered in the center of the grid, where the origin of the
vortex is located. For example in the fine grid 100× 100 points reside in the area of
(−10m, 10m)× (−10m, 10m), which is covered by the outer radius ro. The physical
time step sizes of ∆t = 10−1s, ∆t = 10−2s, ∆t = 10−3s and ∆t = 10−4s are tested.
The viscous fluxes are discretized with a second order central scheme with artificial
dissipation, on the one hand with a scalar formulation [14] and on the other hand
with a matrix formulation [15]. The calculations are performed with and without
pre-conditioning[16].

Figure 2 illustrates the development of the tangential velocity on the coarse and fine
grid with scalar and matrix dissipation schemes. Here the time step size is chosen as
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Fig. 2: Development of tangential velocity vφ, using ∆t = 10−2s and pre-conditioning: (a)
101× 101 points and scalar dissipation; (b) 101× 101 points and matrix dissipation;
(c) 201×201 points and scalar dissipation; (d) 201×201 points and matrix dissipation

∆t = 10−2s and pre-conditioning is used. The numerical dissipation on the coarse
grid is too high to preserve the vortex in time. Independent of the chosen artificial
dissipation, the velocity decays discernibly during the simulation time. On the fine
grid the vortex is preserved much better, with matrix dissipation only the unphysical
peak at rc is damped. Further simulations on the very fine grid did not improve the
results significantly, hence the resolution of the fine grid is taken as sufficient.

Regarding the study of the time step size, the simulation became unstable and
crashed after 5s of simulation time with the largest time step of ∆t = 10−1s. The
differences between the other three time steps were marginally, such that a time step
of ∆t = 10−2s is used. As the results show, matrix dissipation helps reducing the
dissipation and the vortex is better preserved. The results without pre-conditioning
show much higher dissipation, such that pre-conditioning is considered crucial and
is used in the following examples.
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4.2 Transport of a finite vortex

Now that the optimal settings on the Chimera grid are found, the influence of
the Chimera technique and the exchange of boundary data with the much coarser
background grid is studied. For this purpose a background grid on a rectangu-
lar computational domain of (−50m, 150m) × (−50m, 50m) is defined. Two dif-
ferent resolutions are compared for the background grid. The fine grid contains
601 × 201 equidistant points, the coarse grid contains 101 × 51 points. In both cal-
culations the Chimera block containing the vortex covers a computational domain
of 25m × 25m. It has 201 × 201 points, with 130 × 130 points clustered in the area
of (−10m, 10m) × (−10m, 10m). The hole definition grid is of size 23m × 23m for
the fine background grid and 18m× 18m for the coarse background grid. These dif-
ferent hole definitions guarantee a sufficiently large overlap region. While with the
fine background grid the size of the elements in the overlap region resembles that in
the vortex grid, this is not the case for the coarse background grid. The vortex is
again defined by rc = 2m, rm = 4m, ro = 10m and Γ0 = 60 and δ = 10m2 and is
located at the center of the vortex Chimera block. The outer velocity is prescribed
as v∞,x = 100m

s and the same velocity is used for the movement of the vortex grid.

In figure 3 the initial setup and the position of the Chimera block after 2s of simulation
time are shown. In figure 4 the results of both tested settings can be seen. There
is no noticeable difference between them, showing that the coarse background grid
does not have noticeable dissipative effects on the vortex on the Chimera grid.
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Fig. 3: Position of the vortex transport block, outlined by thick line, and hole definition grid,
outlined by thick dashed line: (a) at simulation start and (b) after 2s of simulation
time

4.3 Interaction of a finite vortex with a NACA0012 airfoil

The interaction of a finite vortex with an airfoil is studied. The hybrid background
grid is built around the contour of the NACA0012 airfoil and covers a circular com-
putational domain with a radius of 100m. It consists of approximately 55000 points,
with about 400 points on the surface and 27 structured layers. The chord length of
the airfoil is c = 1m and the angle of attack is α = 0◦. The Reynolds number is
Re = 3.8× 106, the Mach number is Ma = 0.15 and thus the free stream velocity is
v∞,x = 50m

s . The same velocity is chosen for the movement of the structured vortex
transport Chimera block. This block covers a computational domain of 30m × 30m
and is discretized with 151× 151 equidistant points. The equidistant spacing is cho-
sen because during the simulation the Chimera block will be halted and the vortex
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Fig. 4: Time evolution of the local tangential velocity of a finite vortex transported on a
fine Chimera mesh: (a) with a fine and (b) with a coarse background grid, see also
figure 3
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Fig. 5: (a) Curve of lift, drag and moment coefficient during the interaction of a finite
analytical vortex with a NACA0012 airfoil; (b) comparison of Chimera simulation
at maximum lift and corresponding undisturbed simulation at the same target lift
at α = 3.7◦

will travel through the Chimera grid onto the background grid and thus must be
adequately resolved everywhere.

The Chimera block is initially located at x = −50m upstream of the airfoil, with
respect to its center. This distance is sufficiently large to prevent an influence of the
vortex on the flow around the airfoil. The vortex is defined by rc = 1.5m, rm = 3m,
ro = 7m and Γ0 = 60 and δ = 5m2 and is located at the center of the vortex Chimera
block.

To initialize the simulation at t0 = 0s a converged solution on the background grid
without the Chimera block is computed. Now the Chimera block with the initial
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Fig. 6: Interaction of an analytical vortex with the NACA0012 airfoil at α = 0◦. Contours
of velocity at different time steps: from top to bottom t0 = 0s, t1 = 0.66s, t2 = 1s
and t3 = 1.3s
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values of the vortex is introduced into the background grid. Then the vortex grid is
set into motion and the vortex is transported towards the airfoil. After t1 = 0.66s the
right interpolation boundary of the Chimera block has traveled to a distance of 2m
upstream of the airfoil. On the one hand the Chimera block must not intersect the
airfoil, since inside the airfoil contour no adequate interpolation points are defined.
On the other hand the background grid is very fine in the vicinity of the airfoil,
such that the preservation of the vortex on the background grid can be assumed.
Therefore at t1 the movement of the Chimera block is stopped. The vortex passes
the boundary of the Chimera block and is then transported on the background grid.
At t2 = 1s the center of the vortex has reached the center of the background grid.
It has divided into two parts, of which one travels above the upper side of the airfoil
and the other one below the lower side. At t3 = 1.3s the vortex has passed the airfoil.
At this time step the simulation is stopped, because the background grid is not fine
enough to preserve the vortex any longer.

The influence of the interaction with the vortex on the integral coefficients is shown
in figure 5 (left). This interaction acts like a change in the effective angle of attack.
First the effective α is increased, which results in positive values of Cl and Cm,
then α effectively decreases, leading to negative values. The maximal value of Cl =
0.41 is reached at tm = 0.98s with a corresponding moment coefficient of Cm =
0.096. A reference simulation without vortex interaction with target lift Cl = 0.41 is
performed. It yields an angle of attack of α = 3.7◦ and a moment coefficient Cm =
0.101 that is in good agreement. The comparison of the pressure distributions of the
Chimera simulation and the reference undisturbed simulation is shown 5 (right). In
figure 6 the contour lines of the velocity at different instances in time are shown.

4.4 Interaction of a finite vortex with an ONERA-A airfoil
near stall

The interaction of a finite vortex with the ONERA-A airfoil near stall is investigated
at Re = 2 × 106 and Ma = 0.15. The chord length of the airfoil is c = 1m and the
angle of attack is α = 13.3◦. At this angle of attack the airfoil is already close to
stall at undisturbed onflow conditions. The subsequent interaction with a vortex is
therefore expected to result in stall. An outer velocity of v∞,x = 51.5m

s is prescribed
and the time step is chosen as ∆t = 2.5 × 10−4s. The finite vortex is defined by
the same properties as in the last example and the vortex Chimera block is also
equidistant. The hybrid background grid is built around the airfoil and consists of
about 39000 points, with 530 points on the surface and 33 points in the structured
layers.

It was checked that placing the vortex into the flow field at a distance of 12m from
the airfoil did not change the flow at the airfoil. However this shortened distance
reduces the computational effort, since the overall simulation time reduces to 0.42s.

The simulation is again initialized at t0 = 0s with a converged solution on the back-
ground grid without disturbance and the Chimera vortex block is initially located at
x = −12m upstream of the airfoil. At t1 = 0.16s the movement of the Chimera block
is stopped and the vortex passes the Chimera boundary and is further transported
on the background grid. At t2 = 0.3s the vortex has been mostly convected onto
the background grid and its core has reached the airfoil where a strong interaction
occurs. Finally it has traveled past the airfoil at t3 = 0.42s.
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Fig. 7: (a) Pressure distribution and streamlines during the interaction of the vortex with
the ONERA-A airfoil at t2 = 0.3s; (b) the curves of the integral coefficients

Figure 7 (left) shows the pressure distribution at the airfoil during the interaction
with the vortex at t2 = 0.3s. Flow separation occurs at the trailing edge of the airfoil.
The separation region is much larger than for the undisturbed onflow conditions. On
the right side the time dependent behavior of the integral coefficients is shown. Again
the interaction of the vortex with the airfoil acts like a change of the effective angle
of attack. In figure 8 the contour levels of the velocity during the course of the
simulation are shown. It can be seen, that the vortex is well preserved during the
transport. The interaction with ONERA-A airfoil leads to a decrease of the strength
of the vortex. Here it becomes apparent that also the airfoil has an effect on the
vortex.

4.5 Interaction of a vortex generated by a ramping airfoil with
a two-element airfoil

Now as a last example a realistic vortex is generated, transported and then interacts
with a two-element airfoil at Re = 2× 106, Ma = 0.145 and thus v∞,x = 50m

s . The
geometry of the airfoil is very close to an industrial geometry by airbus and therefore
is confined. The setup is typical for a gust generator in aerodynamic research facili-
ties. It is embedded in a wind tunnel, whose dimensions are 6m× 1.3m. The tunnel
is discretized with a coarse mesh of 12000 points. It is used as background grid BG
in which three Chimera blocks are contained. The initial setup is shown in figure 9.

The first block CG1 is a hybrid grid with a diameter of 0.5m around a NACA0012
airfoil with a chord length of c = 0.3m at α0 = 0◦. The number of grid points is
33000, with 280 surface points and 34 points in the structured layers. The second grid
CG2, an equidistant structured grid with 151×151 points, covers an area of 1m×1m.
The third block CG3 is a hybrid grid with a diameter of 0.6m around a two-element
airfoil, the FNG (“Flügel neuer Generation”, new generation airfoil). The retracted
chord length is c = 0.6m, in this case the flap is deployed. The grid consists of about
100000 points, with 1000 surface points and 53 points in the structured layers.
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Fig. 8: Interaction of an analytical vortex with the ONERA-A airfoil at α = 13.3◦. Contours
of velocity at t0 = 0s (a), t1 = 0.16s (b), t2 = 0.3s (c) and t3 = 0.42s (d)
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Fig. 9: Initial setup of the test case

This example demonstrates the advantage of the Chimera method: the second grid
CG2 is used to preserve the vortex while it travels towards the second airfoil. Without
this grid it would be necessary to globally refined the wind tunnel grid BG. The cell
size in the vortex transport grid CG2 is four times smaller than in the background
grid BG, therefore, the number of points in the background grid would increase by
a factor of 16 if the same resolution was used. The number of additional points, and
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of computational resources respectively, would be even higher in a three dimensional
calculation. This gain of performance dominates the additional cost in CPU-time
that is introduced due to the Chimera interpolation by far.

A precursor unsteady RANS simulation including all Chimera blocks without move-
ment of any block is performed until the integral lift coefficient is converged to a
constant value of Cl = 2.03. This solution is used to initialize the simulation at
t0 = 0s. Then the generation of the vortex is started, by rotating the NACA0012 air-
foil Chimera block CG1 by α = 10◦ within 1.5×10−2s. During this pitching motion a
realistic vortex is formed at the trailing edge. This vortex separates and is convected
downstream. At t1 = 1.5 × 10−2s the rotation of the NACA0012 profile is stopped
and its deflection angle stays at constant α = 10◦ for the rest of the simulation time.
Now the vortex, that is convected with the free stream velocity, travels onto the
second Chimera block CG2 for the vortex transport. Once it is completely contained
in CG2, at t2 = 1.95 × 10−2s, this block is set in motion with the same prescribed
velocity as the free stream velocity. The vortex transport Chimera block CG2 is
moved downstream until it reaches the FNG airfoil and its Chimera block CG3 at
t3 = 3.3 × 10−2s. Then the vortex transport block CG2 is stopped and the vortex
passes onto the FNG Chimera block CG3. It travels further past the airfoil and the
interaction of the vortex with the FNG airfoil takes place. At t4 = 4.44× 10−2s the
lift reaches its maximal value of Cl = 2.137. Finally at t5 = 3.3 × 10−2s the vortex
has passed the airfoil. The time-dependent behavior of the lift coefficient at the FNG
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Fig. 10: (a) Curve of the lift coefficient during the simulation; (b) comparison of the pressure
distribution at t = 0.045s and at α = 1.0

airfoil is shown in figure 10 (left). Due to the increased blockage of the wind tunnel,
the lift coefficient decreases during the rotation of the NACA0012 profile. As soon as
the vortex reaches the FNG airfoil, the effect on Cl is again the same as an increase
of the effective angle of attack.

In a reference simulation of the FNG-airfoil with undisturbed onflow conditions with-
out the NACA0012 and vortex transport Chimera blocks, the same lift of Cl = 2.137
is reached at an angle of attack of α = 1.0◦. The comparison of the pressure distribu-
tion at the maximal lift at t4 with the undisturbed simulation at α = 1.0◦ is shown
in figure 10 (right). A plot of the vorticity at the described physical time steps is
shown in figure 11.
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Fig. 11: Contour of vorticity during the generation, transport and interaction of a vortex
with the FNG airfoil, from top to bottom: the initial flow field at t0 = 0s; after
the rotation of the NACA0012 profile at t1 = 1.5× 10−2s; the vortex is completely
convected onto the vortex transport grid at t2 = 1.95×10−2s; the vortex transport
grid reaches the FNG two-element airfoil at t3 = 3.3 × 10−2s; the maximal lift
is reached at t4 = 4.44 × 10−2s and the vortex has passed the FNG airfoil at
t5 = 3.3× 10−2s.
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5 Conclusion

In this paper we presented a Chimera based method for the simulation of the gen-
eration and transport of a vortex and its interaction with an airfoil. An analytical
vortex of finite extent has been defined. The prerequisite numerical scheme as well
as the spatial and temporal resolution for maintaining a vortex during the course
of a simulation have been examined. It has been demonstrated, that the Chimera
technique can be applied to transport a vortex on a fine grid block while using a
coarse background grid without significantly altering it due to numerical dissipation.
Then the Chimera approach has been used to simulate the interaction between an
analytical vortex and an airfoil. Moreover, stall due to the interaction of a vor-
tex with an airfoil at an angle of attack near stall has been predicted. Finally the
Chimera technique was successfully used to generate a vortex by a ramping airfoil,
to transport this vortex towards a two-element airfoil and to predict the interaction.
Thus it is possible to reproduce the operating principle of a gust generator as it is
often used in wind tunnels in aerodynamic research facilities.

At the present stage the user needs to specify the design of the vortex transport grid
(i.e. the spacing and the initial position of the mesh), the movement of the mesh
with the inflow velocity and a position sufficiently upstream of the airfoil where the
mesh is finally stopped. From a perspective of industrial usage an automatization of
these steps is desirable. For this a method to detect the vortex core and the proper
resolution is needed, which is seen as a long term research goal.

Now, that the applicability of the Chimera technique to transport disturbances in the
onflow conditions with a fine transport grid on a coarse background grid has been
demonstrated, further applications will include more realistic disturbances. These
will include atmospheric disturbances, as in [22], where a comparison study between
synthetically generated turbulent wind fields and Large-Eddy Simulations (LES) is
presented. Furthermore it is planned to apply a turbulence resolving model like LES
or a hybrid RANS/LES approach to investigate the influence of different scales of
the flow structures in the disturbance.
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Abstract

In this paper the Spalart-Allmaras based Delayed Detached Eddy Simulation
(DDES [1]) and Improved Delayed Detached Eddy Simulation (IDDES [2]) are
used to simulate the flow about an industrially relevant airfoil-configuration with
deployed high-lift devices. Here, the potential advantage of the computationally
very challenging hybrid approaches over pure RANS simulations in the case of
incipient separation is investigated.

1 Test case description

The investigated DLR F15 three-element airfoil was developed in the DLR project
LEISA as a two-dimensional cut through a generic aircraft wing [3]. It is one of
the so-called application challenge test cases in the EU project ATAAC 4. with a
different point of focus this test case also considered, in other projects like the national
German research project ComFliTe (Computational Flight Testing), the Garteur

4http://cfd.mace.manchester.ac.uk/ATAAC/WebHome
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Action Group 49 5 and the German Research Council (DFG) project FOR10666.

Here, experimental data at a moderate angle of attack of 7◦ are used, as the separation
at the wind tunnel sidewalls is considered minor for low angles, and the flow can be
regarded as almost two-dimensional. Measurements were performed in the low-speed
wind-tunnel NWB at DLR Braunschweig at a Reynolds-number of Re=2 ∗ 106 based
on the retracted chord length and a Mach-number of Ma=0.15. The wind tunnel
model has a chord length of c=0.6m (cslat = 20%c) and a span width of 2.8m. The
experimental data used for validation consist of the mean pressure distribution in
three spanwise sections and infrared measurements for the detection of the transition
location. However, there are no experimental data available for mean velocity or
Reynolds stresses, yet.

The geometry consists of a main wing element with deployed slat and flap. The
inclination angles are 28.814◦ for the slat and 38.296◦ for the flap. The trailing edges
of all elements except the lower slat edge are blunt. The main physical phenomena
at the Reynolds-number considered are flow-generated airframe noise generated at
the slat trailing edge and the separation on the flap at around 45% flap chord. The
test case comprises several challenges to the numerical simulation: (1) to predict the
noise that is generated in the slat cove, those turbulent structures must be accurately
predicted that form in the shear layer between the recirculation region in the cove and
the flow through the gap between slat and main wing 7. (2) Behind the blunt trailing
edge of the slat another shear layer is generated, which must be carefully captured to
prevent unphysical interaction with the boundary layer on the main wing element.
(3) Behind the trailing edge of the main wing element another shear layer develops.
This shear layer together with the one stemming from the slat trailing edge influences
the behavior of the flow over the flap. (4) Driven by an adverse pressure gradient, the
flow separates at the flap, which turned out to be the major hurdle in the application
of the hybrid RANS/LES approaches.

2 Numerical approach

The DLR TAU code [4] employed for this investigation is a finite volume solver for
unstructured meshes providing several turbulence models, which have been heavily
validated for many configurations, e.g. [5, 6, 7, 8]. In all simulations presented the
one-equation Spalart-Allmaras RANS model was used as the basis. The SA based
DDES-approach has been successfully applied to other testcases [9]. The equations
are discretized with a central scheme with matrix dissipation. The time accurate
computations are performed with dual time stepping and a three-stage low-storage
Runge-Kutta scheme within each dual time step, employing three-level multi-grid to
accelerate the convergence. Further speedup is gained through the use of parallel
computations. Due to the large grid size in this test case a good parallel speedup
could be obtained up to 2048 cores in the presented computations. This large number
of cores was available for some time, when access to the supercomputer JUROPA
of the “Hochleistungsrechenzentrum (HLRS) Jülich” was granted in a collaboration.
These massively parallel computations reduced the computational time to a feasible

5http://www.garteur.org/Action%20Group%20posters/AD_AG_49%20Poster%20110320.pdf
6http://www.tu-braunschweig.de/ism/forschung/ag-sbsm/projekte/for1066
7Currently ongoing PIV measurements will give further insight into these structures as well as

about the point, where the shear layer impinges on the slat.
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amount.

In [10] the coherence of the perturbation pressure over the spanwise extent is anal-
ysed. There, the authors write that the spanwise extent of the computational domain
should be at least 80% of the slat chord length cslat in order to allow the solution in
the slat cove and on the main wing element nose to become completely decorrelated
if periodic boundary conditions are used. Here, with cslat 20% of c, resulting in a
recommended span wise extent of 16% c. On the other hand using twice the height
of the separation region on the flap (2.5% c in the RANS simulations) is considered
sufficient for the resolution of the separation.

The three-dimensional grid employed here was obtained by stacking a number of
identical two-dimensional grids with constant step size in the spanwise direction (y-
direction). This grid has been constructed with the hybrid grid generator CENTAUR
and consists of about 200000 points in the xz-plane with 2000 points on the surfaces
of all three elements and 45 cells normal to the wall in the structured layers. The
first node above solid walls is located at a distance of about one in plus units. The
cell size in the focus region, i.e. the slat cove and in the separation region above
the flap, is about 0.14% c. Using 64 layers of this grid in spanwise direction over a
width of 9% c leads to a total number of 12.8 ∗ 106 points. With a retracted chord
length of 0.6m and a free-stream velocity of 50m/s one Convective Time Unit is
tCTU=0.012s; resolving one CTU by 600 steps the time step in the simulation was
chosen as 2 ∗ 10−5s.

To account for three-dimensional influences of the flow in the wind tunnel the inci-
dence angle had to be adjusted in the present simulations. In a thorough precursor
RANS study, the inflow conditions, in particular the angle of attack and the transi-
tion locations were adjusted to represent the experimental situation and to account
for the wind tunnel wall effects. This study revealed the transition locations as a
very sensitive parameter to the separation on the flap. Prescribing transition at the
experimentally detected positions leads to an unphysical massive separation region
on the flap, therefore transition locations were obtained through numerical predic-
tion using the eN-method from the transition prediction module in the TAU code
[11]. In figure 1, the pressure distributions from several SA-RANS simulations are
compared. The green line shows the result from a fully turbulent RANS computa-
tion, i.e. no laminar regions are prescribed. The distribution is in good agreement
with the experimental data, but the plateau in the pressure distribution is not quite
captured. The streamlines show a clear separation region. The pressure distribu-
tions from two simulations with transition prescribed for all elements at angles of
attack of α=5.0◦ and α=6.0◦ are given by the orange and red lines, respectively. It
becomes obvious that a variation of the incidence angle can change the suction peaks
on the slat and main wing element, but has no significant influence on the flap. In
both cases no pressure plateau in the rear part of the flap can be observed. The
distribution of the streamwise skin friction shows that the separation point on the
flap is the same for both incidence angles. The streamlines indicate that prescribing
transition on the flap leads to almost attached flow. The blue line shows the pressure
distribution with transition prescribed on the slat and main wing only and a fully
turbulent flap. Here the best agreement with the experimental data is achieved. The
skin friction distribution shows that the separation is more upstream than in the
fully turbulent simulation. Therefore, the hybrid calculations are performed with
transition prescribed only on the slat and main wing at an angle of attack of α=6.0◦.
It is, however, not clear whether this optimization of the settings transfers directly

Fu et al. (Eds.): Progress in Hybrid RANS-LES Modelling, NNFM 117,
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Fully turbulent

Transition prescribed on all elements
at α=6.0◦

Transition prescribed on slat and
main wing

Fig. 1: Pressure distribution, skin friction and streamlines for different transition settings
obtained in precursor RANS simulations. Discussion of results

to the hybrid models, but it is too expensive to perform these studies using a hybrid
RANS/LES model.

Several hybrid approaches were tested. The pressure distributions from all ap-
proaches are compared with RANS results with transition on all elements and with
transition only on the slat and the main wing and with experimental data in figure 1
(left). On the right the streamwise component of the skin friction is shown. In table
1 the loads on the single elements in the presented simulations are compared. In the
experimental data only a few pressure probes are located on each element, so these
values are afflicted with a large error, as direct force measurements are not available.

In a first simulation a Spalart-Allmaras based DDES [1] was used [12]. The calcula-
tion was carried out for about 22tCTU. Figure 3 (left) shows the streamlines of the
mean velocity field near the flap: with this approach the flow stayed attached. This
can also be seen from the pressure distribution and the skin friction (fig. 2). Here,
the suction peaks on all elements are too small and the pressure distribution deviates
significantly from the experimental data and the RANS simulations. In the following
we try to find an explanation for these observations.

Fu et al. (Eds.): Progress in Hybrid RANS-LES Modelling, NNFM 117,
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Fig. 2: Comparison of the pressure distribution from precursor RANS simulations with SA-
DDES, zonal SA-DDES and SA-IDDES, all at a corrected angle of attack of 6◦

EXP RANS trans. all
RANS

trans.
s+w
DDES

Zonal
DDES

IDDES

Slat 0,202 0,251 0,210 0,207 0,225 0,221
Wing 1,872 2,076 1,925 1,986 1,932 2,013
Flap 0,316 0,374 0,325 0,354 0,402 0,351∑

2,391 2,701 2,459 2,547 2,559 2,585

Tab. 1: Comparison of the loads on the single elements from precursor RANS simulations
with SA-DDES, zonal SA-DDES and SA-IDDES, all at a corrected angle of attack
of 6◦

An instantaneous snapshot of the contours of vorticity is shown in figure 4 (top).
With respect to the flow in the slat cove the vortical structures are quite coarse. Be-
hind the slat trailing edge the free shear layer breaks up and the unsteady structures
penetrate into the boundary layer on the main wing. This disturbance of the formal
RANS layer is persistent all the way over the main wing element even very close to
the wall, where a steady-state RANS solution would be expected.

Associated with these unsteady events, additional turbulent kinetic energy is trans-
ported into the boundary layer and at the same time it seems that the turbulence
production of the RANS model is increased there, leading to an overly increased and

Fig. 3: Streamlines on the flap: SA-DDES (left), zonal SA-DDES (middle) and SA-IDDES

Fu et al. (Eds.): Progress in Hybrid RANS-LES Modelling, NNFM 117,
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Fig. 4: Instantaneous contours of vorticity: SA-DDES (top), zonal SA-DDES (middle) and
SA-IDDES (bottom)

probably unphysical turbulent shear stress in the xz-plane. The total shear stress,
given by

(τxz)
turb
total = µt

(
du

dz
+
dw

dx

)
︸ ︷︷ ︸

(τxz)turbmodelled

− ρ〈u′w′〉︸ ︷︷ ︸
(τxz)turbresolved

, (1)

is responsible for the wall normal transport of momentum in the boundary layer.
A formal evaluation of τxz,tot was performed and the contours of the different ap-
proaches are compared in figure 5 (In the RANS computation the resolved part of
the shear stress vanishes). In the SA-DDES the total turbulent shear stress on the
rear part of the main wing and the flap is massively overpredicted compared to the
RANS simulation. Since in the SA-DDES the modeled turbulent shear stress is, as
expected, much lower than in the RANS computation (not shown here), the main
contribution comes from the resolved turbulent shear stress. This increased total
shear stress leads to a higher transport of momentum towards the wall over the flap,
which prevents the separation on the flap.

Based on the first DDES results a redesign of the grid was performed before the
following simulations were started. The total number of points in the xz-plane was
not changed significantly, but more points were clustered in the slat cove region and

Fu et al. (Eds.): Progress in Hybrid RANS-LES Modelling, NNFM 117,
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Fig. 5: Contour of turbulent shear stress in xy-plane: RANS (top), SA-DDES (middle) and
SA-IDDES (bottom)

above the flap. To prevent the unphysical interaction of the slat wake with the
boundary layer on the main wing, two strategies were followed: In a zonal approach
the RANS mode was enforced around the main wing element. This simulation ran
for about 30tCTU and then was stopped as the situationwith regard the separation on
the flap did not improve much. In figure 3 the streamlines for the zonal DDES show a
very flat recirculation bubble in the instantaneous8 velocity field, after which the flow
reattaches. The pressure distribution (fig. 2) is in better agreement with RANS and
experiments than the non-zonal approach. It can be seen, that the missing separation
on the flap leads to higher suction peaks on the slat and main wing. Because of
the missing separation the plateau on the flap is not reproduced, accordingly, this
simulation was stopped even before converged RMS values were available. Thus the
turbulent shear stress was not evaluated for the zonal approach.

In the middle part of figure 4, the vorticity distribution for the zonal approach is
shown, with dashed lines indicating the boundaries of the enforced RANS region.
The redesigned grid has a positive effect on the resolved structures in the slat cove.
Even though the situation is formally the same as in the non-zonal DDES up to the
interface of the enforced RANS zone, the structures are much smaller than before.
Once the free shear layer behind the slat trailing edge enters the RANS region,
the vortical structures do not die out immediately. Even though the shear layer is
preserved longer compared to the non-zonal DDES, it breaks up finally and again
penetrates into the near wall region of the boundary layer, leading to a somewhat
similar situation as in the standard DDES case on the less resolved grid.

8The averaging period was not long enough to provide statistically converged results

Fu et al. (Eds.): Progress in Hybrid RANS-LES Modelling, NNFM 117,
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Secondly, we consider IDDES [2] as alternative approach. IDDES was designed to
deal with unsteadiness in boundary layers and should as such be an ideal candidate for
the interaction between a shear layer and an underlying boundary layer, sufficient
resolution provided. This simulation was run for the longest time until statistical
convergence was reached after about 100tCTU. The mean and RMS values were
taken over the last 40tCTU. The suction peaks in the pressure distribution (fig. 2)
are higher than in the zonal DDES simulation but a small plateau can be seen at
the rear of the flap. This simulation is the first hybrid approach that results in
separated flow on the flap as the streamlines of the mean velocity show (fig. 3 right).
As in the zonal approach, first a flat recirculation bubble occurs, but behind that
the flow separates, even though the separation region is smaller than that predicted
in the RANS simulation. The beginning of the recirculation bubble is upstream of
the experimentally expected position and also earlier than predicted by the RANS
simulation, as the skin friction distribution illustrates.

The vorticity contours in figure 4 show again a break up of the shear layer behind
the slat. The resolved structures in the slat cove as well as above the flap are much
smaller than in the zonal approach. Also, the vortical structures that travel along
the main wing element are much smaller and they are preserved all the way to the
trailing edge. That this behavior is more physical might also be concluded from the
turbulent shear stress, shown at the bottom of figure 5, which is much smaller than
in the DDES. That it is still higher than in the RANS computation, might indicate
that the grid is not fine enough to resolve the vortical structures in the boundary
layer.

In figure 6 the Fourier transformation of the time signal of the lift coefficients of the
zonal DDES and the IDDES are compared. In both cases the standard deviation
is in the order of 0.02 which is about 1% of the mean value. Note, that the two
spectra are not exactly comparable due to the much shorter signal length available
for the DDES. Even though the lift value is integrated over the whole surface, the
influence of the small scale structures can be seen. Both spectra show a peak near
the frequency of 750Hz. In the zonal DDES this peak is slightly shifted to a lower
frequency. In the spectrum of the IDDES more peaks can be observed. These are
caused by the small scale structures in the wakes of the upstream elements that
interact with the respective downstream elements.

In figure 7 (top), the resolved turbulent kinetic energy that is obtained in the IDDES
simulation is compared with the modeled turbulent kinetic energy predicted with a
kω-RANS simulation. Above the flap the level of resolved energy is of the same order
of magnitude. However, in the slat and wing coves, the resolved turbulent kinetic
energy in the IDDES is higher than the modeled one in the RANS simulation. Figure
7 (bottom) presents the turbulent length scale based on the kω-RANS simulation as
percentage of the chord length. The length scale in the slat cove is about l = 0.07%c
and in the shear layer behind the slat even l = 0.04%c. With a cell size of 0.14% c
in the presented simulations the resolution is of the same order of magnitude. With
the approach of generating the three-dimensional grid by stacking two-dimensional
grids in spanwise direction, a higher resolution seems not feasible.

Fu et al. (Eds.): Progress in Hybrid RANS-LES Modelling, NNFM 117,
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Fig. 6: fft-analysis of the lift coefficient time signal from the zonal DDES and the IDDES

Fig. 7: Turbulent kinetic energy from kω-RANS (top left) and from SA-IDDES computation
(top right) and turbulent length scale l (bottom)

3 Conclusion

In this paper three hybrid RANS/LES simulation were presented: a SA-DDES, a
zonal SA-DDES and a SA-IDDES. Within the scope of this work, it was not pos-
sible, to achieve a statistically fully converged state within all simulations. In a
comparison of the mean pressure distributions obtained in the hybrid calculations
with the basic RANS results the latter coincide best with the experiments. This is
however inherent in the standard procedure of calibrating the inflow conditions using
RANS. To assess the differences observed in the three hybrid simulations streamlines
and the instantaneous vorticity were compared. Further insight was gained by the
evaluation of the total turbulent shear stress. In the SA-DDES an unphysical inter-
action of the slat-wake with the boundary layer on the main wing element can be
observed. Disturbances that penetrate into the formal RANS area that is shielded
by the delay function are neither damped correctly nor are they resolved. Thus, the

Fu et al. (Eds.): Progress in Hybrid RANS-LES Modelling, NNFM 117,
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RANS-model produces an erroneous eddy viscosity that is convected downstream
the main wing and leads to an increased wall normal shear stress in the region above
the flap. This prevents the flow from separating at the flap. The DDES approach is
therefore considered not to be able to deal with the confluence of shear layers with
boundary layers. In order to prevent or resolve this interaction, respectively, a zonal
SA-DDES and a SA-IDDES simulation were conducted on the same grid. It was
shown, that enforcing the RANS mode where the interaction occurs, did not help
to prevent unsteady structures from the shear layer penetrating into the boundary
layer. This is probably because the numerical dissipation on the relatively fine grid
(for RANS) does not dissipate the resolved eddies fast enough. The flow stayed at-
tached on the flap in the zonal SA-DDES, assumedly due to the same error that is
introduced in the non-zonal SA-DDES. With a much coarser grid in the enforced
RANS region, a similar zonal approach is used successfully in [13], here the sepa-
ration is predicted. Therefore it is concluded, that a zonal approach together with
a grid that is adapted to match the prescribed RANS zones can be recommended
from an engineering point of view if the focus of a simulation is on localized regions
while unsteady features in other regions can remain unresolved. The SA-IDDES was
the only one of the presented approaches that was able to predict the separation on
the flap. This demonstrates that this approach is able to predict the interaction of
the slat wake with the boundary layer on the main wing in a physically correct way.
However, the evaluation of the data indicates that the flow was still underresolved.
It is concluded that the IDDES approach is a very promising approach, but that a
very highly resolved grid is needed. The observed problems in the presented hybrid
RANS/LES simulations are further investigated. It seems, however, not feasible to
achieve a globally much finer resolution. Therefore, (1) the noise generated in the slat
cove and (2) the separation on the flap are now investigated separately, in order to
reduce the computational effort and to distinguish clearly the effects. Two different
grids are used with a very high resolution in the streamwise as well as in the spanwise
direction, adequate for a wall-modeled LES, in the respective region where the point
of focus lies. The rest of the computational domain is resolved with a much coarser
grid, and there the RANS mode is enforced. The detailed understandings from these
new simulations will help to reach the goal of hybrid simulations with RANS quality
as a lower limit for industrially relevant testcases.
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Abstract

This work is dedicated to the investigation of the resolution requirements for
hybrid RANS/LES simulations for aerodynamic flows at high-lift. First, results
of a local DDES for a limited section of a high-lift wing with deployed slats
and flaps of a full-aircraft configuration are presented. Based on the resolution
of this simulation the computational effort for a hybrid RANS/LES simulation
of the complete high-lift wing is estimated. Since this estimate results in pro-
hibitively high costs, the focus is shifted to the scale-resolving simulation of a
quasi two-dimensional segment of a three-element wing for the further investi-
gations. Three approaches, a zonal DDES, a global DDES and an IDDES, are
presented and the last one is evaluated with respect to the resolution of the
boundary layers as well as the free shear layers.
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1 Introduction

The idea of hybrid RANS/LES models is to reduce the computational effort compared
to a pure LES computation by treating attached boundary layers in RANS mode.
RANS models are reliable if applied to attached flows with a small or moderate
pressure gradient, while hybrid models like the Detached Eddy Simulation (DES)
model [1] have been applied with great success to test cases with massive separation,
fixed by the geometry. In these cases a clear superiority over RANS models has
been demonstrated [2]. Flows with smaller separation, caused by an adverse pressure
gradient, are still very challenging for the numerical simulation. The benefit of hybrid
RANS/LES models for these cases is under investigation.

The reduction of airframe-noise caused by the high-lift devices is one important
contribution to the reduction of the overall noise of an aircraft. The direct access
to the instationary sources of aerodynamic noise is another motivation for a hybrid
RANS/LES simulation.

When the ComFliTe project was started, the idea was to assess a local hybrid RAN-
S/LES approach for a section of a high-lift wing of a full-aircraft in landing configu-
ration near maximal lift Cl,max. At this point there were several open questions:

1. What are the expected computational costs for such a simulation?

2. Which model from the DES family is best suited for high-lift cases?

3. Which requirements for a proper mesh resolution can be given?

The outline of this paper is as follows: In Sec. 2 the numerical method is shortly
described. In Sec. 3 results from a local DDES of a section of a high-lift wing with
a small spanwise extent embedded into a global RANS simulation of a full-aircraft
configuration with focus on the aeroacoustics in the slat cove are presented. These
are used in Sec. 4 to estimate the computational effort for a local DDES for the
complete high-lift wing. With this estimate an answer to the first question could
be given: it is not feasible to perform a zonal DDES for a complete high-lift wing
of a full-aircraft configuration with the currently available computing resources and
the budget within the ComFliTe project. Therefore, in order to find answers to the
remaining open questions, the focus of the work was redefined and a three-element
airfoil with periodic boundary conditions in the span-wise direction was chosen as
the new test case. This configuration is described in Sec. 5. The results from several
hybrid simulations are shown in Sec. 6 and the evaluation of the grid resolution is
presented in Sec. 7. In the last section conclusions are drawn and an outlook is
given.

2 Numerical method

All simulations were performed with the DLR TAU code [3], a compressible finite
volume solver for the Navier-Stokes equations on unstructured meshes. The time-
accurate simulations employ a dual time-stepping scheme with a three-stage low-
storage Runge-Kutta scheme. The spatial discretization uses a central scheme with
artificial dissipation of matrix type. The convergence is accelerated by a 3w multi-grid
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scheme. Different turbulence models are implemented for the closure of the Reynolds-
Averaged NS-equations and based on these RANS models different variants of the
hybrid RANS/LES models are available. The different variants can be distinguished
by the function that switches from RANS to LES. In the original DES model [1] the
switching is based on the size of the grid cells, whereas the Delayed DES (DDES) [4]
variant provides a shielding function that is designed to ensure the RANS mode in
the whole boundary layer independent of the grid. The Improved DDES (IDDES)
[5] model additionally offers a mode that allows for wall modeled LES, resolving the
outer part of the boundary layer.

All hybrid simulations that are presented here, are based on the Spalart-Allmaras
turbulence model, utilizing the DDES as well as the IDDES model.

3 Local DDES of a High-Lift Wing

The full-aircraft configuration is a model of the A320 wing-body with nacelles and
deployed slats and flaps. The wind-tunnel model has a half span width of 1.08 m
and a mean chord length of cmean = 0.224 m. Experiments were performed at a
Mach number of Ma = 0.2 and a Reynolds number of Re = 1.34 × 106 at an angle
of attack of α = 4◦. The experimental data for this test case were obtained within
the research project HICON [6]. One of the objectives of the project was to reduce
the noise emissions of aircraft through innovative high-lift configurations. Therefore,
the spectra emitted by the high-lift devices of a wind-tunnel model of an A320 were
measured with microphone arrays. Additionally, the mean pressure distributions
were taken in several span-wise positions.

The objective of the numerical investigation was to assess the influence of the model
slat tracks on the emitted spectra. Therefore, a single model slat track, located at
60% span width, was included in the geometry. The aim of this work was to compare
the noise that is generated by the model slat track to the noise that is emitted by a
real slat track.

In order to obtain information about the instationary sources of noise, a local DDES
was performed: the scale-resolving approach was used in the vicinity of the slat track
while in the major part of the computational domain the RANS approach was used.
To provide a mesh for this zonal approach, an appropriate hybrid grid for a RANS
simulation with about 30 × 106 points was used as a basis. This basic mesh was
refined in a region around the track of about 7% span-wise extent. The refined grid
consisted of 80× 106 points, with all additional 50× 106 points located in the focus
region, the wake of the slat track. A view of the region with the model slat track
is presented in Fig. 1. The dark area on the main wing indicates the surface of the
refined region for the zonal approach.

Spatial Resolution Requirements for the spatial resolution can be estimated by
the measured frequencies: The acoustical data range from f0 = 2000 Hz to f1 =
40, 000 Hz. With a speed of sound of about a = 343 m/s at a temperature of
T = 293 K and a free-stream velocity of u∞ = 68 m/s the distance that one acoustic
wave travels per acoustic oszillation period is ` = u∞ + a/f1 ≈ 0.01 m. To resolve
this distance appropriately about 30 points are needed. Therefore, the cell size in
the focus region should be about ∆x = 3.33× 10−4 m.

Kroll et al. (Eds.): Computational Flight Testing, NNFM 123, pp. 43-57, Springer,
2013



120 Reuß, Knopp, Schwamborn

Fig. 1: Focus region of the local DDES of a full-aircraft configuration in high-lift with a
single slat track

The refined grid was generated using the CENTAUR software. CENTAUR generates
hybrid grids with hexahedral or prismatic cells in the near wall regions and tetrahe-
dral cells in the farfield. The grid generation is controlled by sources that define the
cell size in different regions. While on the one hand this process needs little interac-
tion from the user, on the other hand no full controll over the shape of the elements
is possible. The average cell size in the stream-wise and span-wise direction in the
focus region is ∆x = ∆y = 3.6× 10−4 m. The average number of surface points in a
stream-wise cut through the wing is 2600. In the wall-normal direction the number
of points in the structured layers is 30.

The generation of the refined grid was very time-consuming with one run lasting
several days. Therefore, it was not possible to perform many iterations of the grid
generation process, so that finally a compromise had to be made regarding the ge-
ometrical quality of the grid elements: unfavorable acute-angled and skewed grid
cells could not be avoided completely. These can deteriorate the convergence rate
of a simulation considerably, which was the case in the present simulations. So, in
order to ensure an appropriate convergence per physical time step, the number of
inner iterations had to be almost doubled compared to typical values from other hy-
brid RANS/LES simulations (e.g. those presented later on), leading to an increased
computational effort for each physical time step.

Temporal Resolution The time step that is necessary for the resolution of the
aeroacoustics can also be estimated from the measured frequencies. In order to
resolve one period of the highest frequency of f = 40, 000 Hz with about 30 time
steps, the time-step size should be about ∆tacous ≈ 1 × 10−6 s. A similar estimate
is obtained if the time is computed as the ratio between cell size ∆x and sum of
far field velocity u∞ and speed of sound a. However, if the focus is not on the
aeroacoustics the estimate of the time step can be solely based on the free stream
velocity ∆t = ∆x/u∞ ≈ 5 × 10−6 s. In order to get physically meaningful spectra
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several periods of the lowest frequencies must be simulated. 100 periods of the
2000 Hz frequencies would result in 0.05 s simulation time. This would all together
result in 50,000 physical time steps using ∆tacous. However, in order to get converged
mean-flow and turbulent statistics a certain number of Convective Time Units (CTU),
tCTU = `/u∞, is needed as well, where ` is a characteristic length of the geometry,
e.g. ` = 0.253 m the averaged chord length of the airfoil in the refined region. Then
tCTU = 0.0037 s is the time that it takes the flow to pass the characteristic length.
In order to get accurate second order statistics, 50tCTU are usually necessary which
leads to 185,000 physical time steps using ∆tacous.

Parallel speedup With this large number of grid points the region of linear
speedup extends to large numbers of processors. In the current case the compu-
tations were performed on 2048 cores of the DLR C2A2S2E cluster. At the time of
the computations this was one third of the available resources of the cluster. The
speed of the computation was almost doubled through doubling the number of pro-
cessors.

With this massive parallel computational effort about 20 minutes of real time were
needed to simulate one physical time step. Simulating 50,000 physical time steps
would then have taken 694 days which was beyond the scope of the resources that
could be acquired for this work. Therefore, it was decided to reduce the temporal
resolution by a factor of 10. With the reduced number of required time steps of 5,000
this still lead to a real simulation time of 69 days without interruption.

A scale-resolving hybrid RANS/LES simulation starts with an initial transient phase.
In this phase the generation of turbulent content builds up. This phase must be
overcome before reliable statistics can be computed and it is not clear a-priori how
long it lasts, but at least several convective times tCTU are needed. An indicator for
a fully developed turbulent flow are converged mean values.

During the simulations of the A320 some uncertainties aroused from other hybrid
RANS/LES simulations of airfoil flows, that were conducted at the same time. These
and limited computational resources led to the decision to stop the simulations pre-
maturely. Even though the statistical evaluation of the results was not possible with
the limited data available, still relevant insights into the computational effort of a
such a scale-resolving simulation could be gained.

A representative qualitative result is presented in Fig. 2, depicting an iso-surface of
the Qinv-criterion:

Qinv =
1
2
[
|S|2 + |Ω|2

]
> 0

with S = 1
2

[
∇u+ (∇u)T

]
and Ω = 1

2

[
∇u− (∇u)T

]
, which is an indicator for a

vortex, where the norm of the vorticity tensor dominates that of the rate of strain.
The criterion can be used to visualize the small scale structures that form in the
wake of the slat track. The span-wise velocity component v is used to demonstrate
the three-dimensional nature of the structures. It can be clearly seen that the major
vortical structure over the main wing originates from the slat track, which is itself
not visible in the picture.
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Fig. 2: Iso-surface of the Qinv-criterion to visualize the turbulent structures in the wake of
the slat track, colored with the span-wise velocity component v.

4 Estimation of the Resolution Requirements for a
DDES for a Complete High-Lift Wing

In order to be able to compare the resolution for different test cases, all scales are
given in percentage of the retracted chord length. In the case of the A320 the average
retracted chord length in the refined region around the slat track, c = 0.253 m, is
used. The span-wise extent of the refined mesh region is Ly = 26%c. The average cell
size in the stream-wise and span-wise direction in this region is ∆x = ∆y = 0.14%c.
Hereby, in the focus region, the number of points in span-wise direction can be
roughly approximated as Ly/∆y ≈ 200. With about 50 × 106 points in total in the
refined region this leaves about Nx,z = 250, 000 points in one plane normal to the
span-wise direction.

The resolution of the limited zonal DDES is extrapolated in order to estimate the
expected computational effort of a global DDES for a similar high-lift wing configu-
ration. The geometry has a span width of Lspan = 425%c = 1.088 m. Neglecting the
span-wise variation of the chord length and using the same resolution ∆y over the
entire wing leads to a total number of points Ny = 3000 in the span-wise direction.
If in each plane a similar resolution with Nx,z = 250, 000 was used, the total number
of points would be 750× 106. In this estimation the nacelle is omitted.

Even if it were possible to avoid the geometrical difficulties described above and thus
to halve the computational effort, with the estimated time step of ∆t = 5 × 10−6 s
(focus on aerodynamics) an overall real time of about 10 years would be necessary
to simulate 50tCTU on the same number of processors. However, this estimate is
based on a grid with a very high resolution of the slat cove area, as in the zonal
approach the focus was on the acoustics in this region. If the local phenomena of
the high-lift devices are not resolved in particular and instead the focus of a hybrid
RANS/LES simulation is on the wake of the entire airfoil, then the costs can be
reduced considerably. In order to investigate the physics of the high-lift devices, the
need for a test case with manageable complexity became obvious. The remedy was
using a cut through a wing with deployed high-lift devices with periodic boundary
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conditions in the span-wise direction. This way the size of the computational domain
can be decreased considerably and it is possible to focus on the local flow phenomena
that are caused by the high-lift devices.

5 DLR-F15 Three-Element Airfoil: Test Case
Description

The investigated DLR-F15 three-element airfoil was developed in the project LEISA
as a two-dimensional cut through a generic aircraft wing with deployed slat and flap
[7]. Here, experimental data at a moderate angle of attack of α = 7◦ are used,
as the separation at the wind-tunnel side-walls is considered minor for low angles.
Thus the flow can be regarded as almost two-dimensional and it is justified to use
periodic boundary conditions in the span-wise direction in the simulations. Measure-
ments were performed in the low-speed wind-tunnel NWB at DLR Braunschweig at
a Reynolds number of Re = 2× 106 based on the retracted chord length and a Mach
number of Ma = 0.15. The wind-tunnel model has a chord length of c = 0.6 m and a
span width of 2.8 m. The experimental data used for validation consist of the mean
pressure distribution in three span-wise sections and infrared measurements to locate
the transition from laminar to turbulent flow. However, there are no experimental
data available for the mean velocity or the Reynolds stresses.

Even though the geometrical complexity of the test case is significantly reduced,
compared to the full-aircraft configuration, the accurate prediction of the physical
phenomena of the flow is still very challenging: All elements produce a wake flow that
interacts with the following elements. Additionally, driven by an adverse pressure
gradient, the flow separates at the flap at this angle of attack. In order to capture
this separation the upstream flow must be accurately predicted.

In a three-dimensional simulation the geometrical extent of the computational do-
main is fixed, whereas the decision about the span-wise extent of the quasi two-
dimensional simulation is left to the user. Here, some guidelines can be found in
[8], where the coherence of the perturbation pressure over the span-wise extent is
analyzed. The authors write that the span-wise extent of the computational domain
should be at least 80% of the slat chord length cslat in order to allow the solution in
the slat cove and on the main wing element nose to become completely de-correlated
if periodic boundary conditions are used. Here, with cslat = 20%c this results in a
recommended span-wise extent of 16%c. On the other hand using twice the height
of the separation region on the flap (2.5%c in the RANS simulations) is considered
sufficient for the resolution of the separation. In the presented simulations a span-
wise extent of 9%c is chosen, to ensure sufficient resolution of the separation on the
flap.

The geometrical quality of the grid elements can be easily controlled in this case: The
three-dimensional grid is obtained by stacking a number of identical two-dimensional
grids with constant step size in the span-wise direction (y-direction). The two-
dimensional grid has also been constructed with CENTAUR and consists of about
200,000 points in the xz-plane with 2000 points on the surfaces of all three elements
and 45 cells normal to the wall in the structured layers. The first node above solid
walls is located at a distance of about one in plus units. The cell size in the focus
region, i.e. the slat cove and in the separation region above the flap, is about 0.14%c.
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Using 64 layers of this grid in span-wise direction over a spanwise extent of 9%c leads
to a total number of 12.8× 106 points. After the first DDES simulation the grid was
redesigned. The number of points was not significantly changed but the resolution
in the slat cove and above the flap was increased, while the resolution of the leading
edges of all elements was decreased. With ` = 0.6 m and a free-stream velocity of
u∞ = 50 m/s one convective time unit is tCTU = 0.012 s; resolving one CTU by 600
steps the time step in the simulation was chosen as ∆t = 2× 10−5 s.

Tab. 1: Temporal and spatial resolution of the A320 and the DLR-F15 test case

A320 DLR-F15
cell size in focus region 0.0014c 0.0014c
No. of points on surface 2600 2000
No. of wall-normal structured points 30 45
No. of points in xz-plane 250,000 200,000
time step ∆t 1× 10−5 s 2× 10−5 s
No. of time steps per tCTU 370 600

In Table 1 the spatial and temporal resolution of the A320 and the DLR-F15 test
case are compared.

6 DLR-F15 Three-Element Airfoil: Results

Part of the following simulations were performed within the European project ATAAC
[9] and a detailed presentation is given in [10]. Here only those results are repeated
that are relevant to the current investigations. Three different approaches were ap-
plied: a DDES, a zonal DDES and an IDDES. Concerning the second question raised
in the introduction regarding the best approach to treat multi-element airfoils the
results can give a guideline: The DDES approach seems to be unable to handle the
confluence of the shear layer of the slat with the boundary layer on the main-wing
element. Two possibilities to handle this flaw were exploited:

1. In the confluent region the RANS mode is enforced and the transport of insta-
bilities into the boundary layer is suppressed.

2. IDDES is used which was designed to deal with unsteadiness in boundary layers
by switching into an wall modeled LES mode. Therefore, it should be an ideal
candidate for the interaction between a shear layer and an underlying boundary
layer, sufficient resolution in space and time provided.

In the following, snapshots of the flow are compared for the different hybrid ap-
proaches. Then the mean pressure distributions are compared with RANS results.

Vorticity An instantaneous snapshot of the contour of the vorticity is shown in
Fig. 3. This snapshot gives an impression of the large range of scales that are present
in the flow.
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Fig. 3: Instantaneous contour of the vorticity: SA-DDES (top), zonal SA-DDES (middle)
and SA-IDDES (bottom).

The vortical structures in the DDES (top) are quite coarse in the slat cove. Behind
the slat trailing edge the free shear layer breaks up and the unsteady structures
penetrate into the boundary layer on the main wing. This disturbance of the formal
RANS layer is persistent all the way over the main wing element even very close to
the wall, where a steady-state RANS solution would be expected. Associated with
these unsteady events, additional turbulent kinetic energy is transported into the
boundary layer and at the same time it seems that the turbulence production of the
RANS model is increased, leading to massively overpredicted levels of turbulent shear
stress. This shear stress is responsible for the wall-normal transport of momentum
in the boundary layer. An increased shear stress also leads to a higher transport of
momentum towards the wall over the flap, which prevents the separation on the flap.

In the vorticity distribution of the zonal DDES (middle), the boundaries of the
enforced RANS region are indicated by the gray lines. The redesigned grid has a
positive effect on the resolved structures in the slat cove. Even though the situation
is formally the same as in the non-zonal DDES up to the interface of the enforced
RANS zone, the structures are much smaller than before. Once the free shear layer
enters the RANS region, the vortical structures are not damped immediately. Even
though the shear layer is preserved longer compared to the non-zonal DDES, it breaks
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up finally and again penetrates into the near wall region of the boundary layer, leading
to a similar situation as in the standard DDES case on the less resolved grid.

For the IDDES (bottom) the vorticity contours show again a break up of the shear
layer behind the slat. The resolved structures in the slat cove as well as above the
flap are much smaller than in the zonal approach. Compared to the DDES result
the vortical structures that travel along the main wing element are much smaller and
they are preserved all the way to the trailing edge, indicating that the IDDES runs
in WMLES mode.

Pressure Distribution The pressure distributions of all three hybrid approaches
are compared with two different Spalart-Allmaras based RANS simulations in Fig. 4.
These reference RANS simulations differ in the way how the transition from laminar
to turbulent flow is handled. In the first case, RANS 1, the transition is prescribed on
all elements, i.e. the slat is laminar, on the main wing and flap transition locations
are prescribed similar to the observed position in the infra-red measurements. In
the second simulation, RANS 2, no laminar regions are prescribed on the flap. This
choice has a big influence on the solution and uncertainties concerning the transition
settings are transported to the hybrid simulations since it is not feasible to compare
different settings for all the approaches. Therefore, the setting without laminar
regions on the flap was chosen. The DDES was carried out for about 22tCTU . With

Fig. 4: Mean pressure distribution from SA RANS, DDES, zonal DDES and IDDES

this approach the flow stayed attached: in the pressure distribution no plateau can
be seen at the rear of the flap. The suction peaks on all elements are too small and
the pressure distribution deviates significantly from the experimental data and the
RANS simulations.

In a zonal DDES the RANS mode was enforced around the main wing element. This
simulation ran for about 30tCTU and then was stopped when again no separation on
the flap was observed. The pressure distribution is in better agreement with RANS
and experiments than the non-zonal DDES. The missing separation on the flap leads
to higher suction peaks on the slat and main wing and the plateau on the flap is not
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reproduced.

The IDDES was run for the longest time until statistical convergence was reached
after about 100tCTU . The mean and RMS values were evaluated based on the last
40tCTU . The suction peaks in the pressure distribution are higher than in the zonal
DDES simulation but a small plateau can be seen at the rear of the flap. The IDDES
approach predicts separated flow on the flap.

7 DLR-F15 Three-Element Airfoil: Assessment of
Resolution

The grid resolution was estimated using three different approaches. An additional
RANS simulation using the Wilcox kω-model was performed. The turbulent length
scale from that RANS simulation was used to evaluate the resolution in the recir-
culation region and in the free shear layer. A global estimate of the resolution was
obtained from the comparison of the modeled and the resolved turbulent kinetic en-
ergy. The ratio of modeled to total shear stress was used to evaluate the resolution
in the near wall regions.

7.1 Turbulent Length Scale

In Fig. 5, the turbulent length scale ` =
√
k/ω that is computed from the kω-RANS

simulation is shown as percentage of the chord length. The length scale in the slat
cove is about ` = 0.07%c and in the shear layer behind the slat even ` = 0.04%c.
With a cell size of 0.14%c in the grid the resolution is of the same order of magnitude,
but little too low. With the approach of generating the three-dimensional grid by
stacking two-dimensional grids in span-wise direction, a higher resolution does not
seem feasible, given the computational ressources.

Fig. 5: Turbulent length scale ` from kω-RANS as percentage of the chord length

7.2 Ratio of Modeled to Resolved Turbulent Kinetic Energy
(TKE)

In Fig. 6, the resolved TKE that is obtained in the IDDES simulation is compared
with the modeled TKE predicted with the kω-RANS simulation. Above the flap the
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Fig. 6: Turbulent kinetic energy (in m2/s2) from SA-IDDES (top) and from kω-RANS (bot-
tom)

Fig. 7: Ratio of resolved TKE to total TKE in the SA-IDDES

level of resolved energy is of the same order of magnitude in the two approaches.
However, in the slat and wing coves the resolved TKE is higher in the IDDES. In
Fig. 7 the ratio of the modeled to the total turbulent kinetic energy is shown. In
the literature a value of 0.8 is taken as a threshold for a well resolved LES. This
value is reached in the slat cove; however, in the wake behind the slat this estimation
suggests that the wake is under-resolved.

7.3 Ratio of Modeled to Resolved Shear Stress

The total turbulent shear stress is given by

(τxz)
turb
total = µt

(
du

dz
+
dw

dx

)
︸ ︷︷ ︸

(τxz)turbmodelled

− ρ〈u′w′〉︸ ︷︷ ︸
(τxz)turbresolved

.
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In Fig. 8 the ratio of the modeled to the resolved shear stress in the IDDES on the
upper side of the main wing element is shown. The thick solid line indicates the edge
of the boundary layer, estimated by the Ξ = y|du/dy| criterion of Stock and Haase
[11]. The dashed line indicates a value of the hybrid switch function fd = 0.95

Fig. 8: Ratio of modeled to resolved shear stress on the upper side of the main wing element
in the IDDES

Fig. 9: Ratio of resolved velocity fluctuations in stream-wise and wall-normal direction on
the upper side of the main wing element in the IDDES

and thus the edge of the formal RANS region of the hybrid approach. Here it can
be seen, that the whole formal RANS region is treated in the RANS mode since the
modeled stress is larger than the resolved stress. To further estimate the resolution
in the outer part of the boundary layer, the ratio of the averaged velocity fluctuations
in the stream-wise and the wall-normal direction is shown in Fig. 9. In an under-
resolved LES artificially large streaks in the stream-wise direction can be observed
[12]. These structures can be identified and characterized by a large anisotropy in the
ratio of the stream-wise to the wall-normal velocity fluctuations. In a well resolved
LES a ratio of about 1.5 is expected [13]. Here, the ratio is about 8 in the outer part
of the boundary layer indicating an under-resolved LES. Finally the resolution in the
wake behind the slat trailing edge is estimated using the same approach. The ratio
of the stream-wise to the wall-normal velocity fluctuations, shown in Fig. 10, takes
values between 4 and 9 in a part of the wake. This indicates again that a higher
resolution of the wake would be needed.
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Fig. 10: Ratio of resolved velocity fluctuations in the stream-wise and the wall-normal di-
rection in the wake behind the slat trailing edge in the IDDES

8 Conclusions and Outlook

Results of a zonal DDES of a A320 wing-body configuration with deployed slat and
flap were presented. The focus of this simulation was on the acoustics in the slat-
cove. Even for this zonal approach it was not possible to achieve converged mean flow
and turbulent statistics. However, conclusions regarding the computational effort of
such a simulation could be drawn. The presented results were used to estimate the
computational effort of a global DDES simulation for a similar configuration and it
could be stated that this simulation would not be possible within the framework of
the ComFliTe project.

As a consequence, the DLR-F15 three-element airfoil was chosen as the further
test case and three hybrid approaches were tested: zonal DDES, global DDES and
IDDES. Instantaneous snapshots of the vorticity were compared for all approaches
and it was found, that the DDES is not able to handle the confluence of the free shear
layer behind the slat with the attached boundary layer on the main wing. Enforcing
the RANS mode in the region of confluence in the zonal approach is not sufficient,
if no additional means are taken to damp the resolved structures in the free shear
layer. With both approaches, zonal and global DDES, the separation on the flap
was suppressed through this improper representation of the confluence through the
hybrid model. One possibility would be to use a much coarser grid in the enforced
RANS region in the zonal approach in order to increase the numerical dissipation and
damp the LES solution. This approach could be recommended from an engineering
point of view if the focus of a simulation is on local features while unsteady features
in other regions can remain unresolved.

The IDDES approach, however, was able to predict the separation on the flap. This
demonstrates that this approach is able to handle the interaction of the slat wake
with the boundary layer on the main wing in a physically correct way. However, the
evaluation of the data indicates that the flow was still under-resolved, which leads to
the conclusion that the IDDES approach is very promising, but that a very highly
resolved grid is needed.
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Abstract

Different sensors that provide a measure for the resolution of the LES content
in hybrid RANS/LES computations are proposed and investigated. In an a-
priori test on isotropic turbulence a suitable sensor is identified. Based on that
sensor an automatic local mesh refinement is performed for an IDDES of the
flow over a backward facing step. The results obtained on locally adapted grids
are compared to results on globally refined grids. It is shown, that the proposed
sensors can detect underresolved LES regions and that the local mesh refinement
can help to reduce resolution errors caused by a too coarse grid spacing.

1 Introduction

The assessment of the grid resolution in hybrid RANS/LES methods is crucial to
ensure the reliability of the results [1]. Therefore, only a very careful mesh design
can provide sufficient resolution in the LES regions while keeping the total number
of points as low as possible. In complex cases, where the location of the LES regions
is not known in advance, this may even be impossible.
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Thus, robust sensors are proposed in this work to assess the LES resolution. They are
applied in combination with the automatic grid adaptation module, that is provided
by the DLR-TAU code [12].

The paper is organized as follows: In Sect. 2 the numerical method that is used
throughout all simulations and the adaptation algorithm are described. Specific
details about the resolution sensors are given in Sect. 3 and the proposed sensors are
assessed in a-priori tests on isotropic turbulence. Actual mesh refinements based on
one of the proposed sensors are performed for the flow over a backward facing step
in Sect. 4. In Sect. 5 conclusions are drawn and an outlook is given.

2 Numerical Method

The simulations are performed using the DLR TAU code, an unstructured finite
volume solver for the compressible Navier-Stokes equations, that provides hybrid
RANS/LES methods based on different RANS models. The influence of the numer-
ical settings on the quality of scale resolving simulations is subject to an in-depth
study in [11]. The reference settings that are described there are used in this work.

The Hybrid RANS/LES Method

All simulations that are shown here use the Improved Delayed DES (IDDES) [13]
based on the Menter-SST RANS model. In [4] it was shown, that a modification
of the filter width in the hybrid model can help to reduce the grey area in Zonal
DES. Following the same route here, the filter width in the IDDES is modified,
using ∆ω =

√
N2
x∆y∆z +N2

y∆z∆x +N2
z∆x∆y, with N the normalized vortic-

ity vector. In the present unstructured dual grid metric ∆x is the maximal ex-
tent in x-direction of all connected dual-edges. In the IDDES the original length
scale comprises three different parts: the maximum length hmax and the maxi-
mum wall normal extent hwn of all connected dual edges and the wall distance dw:
∆ = min(max[Cwdw; Cwhmax; hwn]; hmax). The maximum edge length hmax also
occurs in α = 0.25− dw/hmax. In the modified filter width hmax is replaced by ∆ω,
however, only the second occurrence in the length scale equation is replaced, in order
to preserve the wall-modelled LES capabilities. In [11] this procedure is validated for
the fully-developed channel flow.

The Adaptation Algorithm in the DLR-TAU Code

The TAU-adaptation module [2] was originally designed for the equidistribution of
differences or gradients of a preliminary flow solution by local hierarchical grid re- and
derefinement. The main steps of the adaptation algorithm include a preparing loop
over all elements. Considering the geometry and the implemented subdivision cases
of the element type, some of the edges are excluded from subdivision. This check is
repeated until all edges that would lead to invalid refinement cases are forbidden.

In the next step all edges allowed for subdivision that are marked by the edge indica-
tor are subdivided. A following loop over all elements checks and ensures the validity
of all element refinements by subdivision of additional edges and faces if needed. In
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Fig. 1: Regular (left) and
irregular bridging
(right) hexahedral
subdivision cases.

this step all the bridging subdivisions between the refined and unrefined grid areas
are created.
The new point coordinates at the surface are determined by a quadratic spline inter-
polation to reconstruct the curvature. In the inner grid parts a linear interpolation is
used. Finally, the new elements are constructed and the current solution is interpo-
lated to the new points. The result is a locally refined grid with bridging elements
introduced into the original grid structure. In Fig. 1 the implemented subdivisions
for hexahedral elements are shown.

3 Resolution-Sensors for Local Mesh Adaptation

In this work the original adaptation indicator is replaced by a suitable sensor that
attempts to measure the quality of the LES resolution. Several sensors have been
proposed in the literature and some of them are presented here.

Since a grid refinement in hybrid RANS/LES simulations not only reduces the nu-
merical error but also changes the model, in [7] and [3] systematic grid and model
variations have been performed to distinguish the numerical from the modelling er-
ror. For complex test cases these exhaustive variations are not affordable. Instead,
a resolution estimation that can be obtained from a single simulation is preferable.
One concept for such a sensor, proposed by Pope [10], is the ratio of the resolved
turbulent kinetic energy (TKE) kres to the total TKE ktot. In practice the total
TKE is split into the resolved grid scale and the modelled subgrid-scale (sgs) TKE:

S =
kres
ktotal

=
kres

kres + ksgs
. (1)

The resolved TKE can be computed directly from the resolved quantities, kres =
1/2〈(u − 〈u〉)2〉, where u is the velocity and 〈u〉 denotes the mean. But for the
subgrid-scale TKE an appropriate model is required. In [8] it is proposed to estimate
the sgs TKE contribution by explicitly filtering the solution:

ksgs =
1
2
〈u2

sgs〉 , (2)

where usgs = u − 〈u〉. The space-filtered velocity u is given by the convolution
integral u =

∫
Ω1
G(x − y)u(y, t)dy where G denotes the top hat filter function

with filtering kernel Ω1. In the following the filtering is denoted as u = G ∗ u.
In [8] the kernel of the top hat filter comprises all direct neighbours, whereas here
larger supports of the filter function are tested, too. A filter with a larger support
is constructed by recursive application of the top hat filter: GΩn ∗ u = Gn ∗ u =
G ∗ ... ∗ G ∗ u.
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Using these extended filters the approximate deconvolution model (ADM) [14], [5]
provides another possibility to compute usgs. Here, the unfiltered velocity is con-
structed using the approximated inverse of a filter function. The idea is to use a
filter G with a filter width larger than the local mesh spacing. The filtered solu-
tion u2 = G ∗ u contains only scales larger than the smallest scales that can be
resolved on the grid. The solution u1 that would be obtained using the local mesh
spacing as filter width is reconstructed by the deconvolution of the coarser solution:
u1 = G−1 ∗ u2. This approach is used in order to get an estimation of the exact
solution as follows: Let uDNS be the solution of a DNS and G a filter operator, then
the solution of an LES is uLES = G ∗ uDNS or uDNS = G−1 ∗ uLES. If H = Id − G is
replaced into the geometric series

∞∑
j=0

Hj = 1/(1 +H) = (1 +H)−1 then follows G−1 =
∞∑
j=0

(1− G)j .

Now the series representation is truncated at a finite N . In [14] is stated that N = 3
already yields acceptable results, and for N > 5 no further improvement can be
expected, so N = 4 is chosen here. This gives

G−1 = 5− 10G + 10G2 − 5G3 + G4 .

With the decomposition uDNS = uLES + usgs the sgs velocity is given by

usgs = (Id− G−1) ∗ uLES . (3)

Another model for the subgrid-scale TKE is proposed by Lilly [9]:

ksgs = 〈νt〉2/(c∆)2, with c = 0.094 . (4)

If the basic RANS model provides a model-equation for the TKE (e.g. k−ω, k− ε),
it is also possible to use the mean of that quantity:

ksgs = 〈k〉 . (5)

Validation of the Sensors Based on Isotropic Homogeneous Turbulence

For an a-priori assessment of the different sensor formulations, they are evaluated for
the initial field of the well known decaying isotropic turbulence (DIT) test case. The
computational domain is a cubic volume with an edge length L = 2π. The number of
points in the fine, medium and coarse grid G1, G2 and G3 are n1 = 1283, n2 = 643

and n3 = 323 respectively. For the DIT measured spectra are available, from which
experimental values for the sensors can be estimated. The cut-off wave-number is
κc = npnt/2. The total TKE is the area under the power spectrum ktot =

∫∞
0
E(κ)dκ

while the resolved TKE is kres =
∫ κc

0
E(κ)dκ.

The initial solution is constructed as a superposition of all frequencies from the
measured spectrum. From this initial solution the different sensor formulations are
evaluated. In this test the homogeneous turbulence is regarded as frozen and the
temporal average is replaced by a spacial average. Thus an a-priori evaluation is
possible. In Fig. 2 the resulting sensor values are listed. On the x-axis the relative
cell size w.r.t. to the finest grid cell size is plotted.
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Eq. for ksgs G1 G2 G3

Exp. - 0.92 0.75 0.55
S1, n = 2 (2) 0.83 0.78 0.71
S1, n = 4 (2) 0.77 0.71 0.64
S2 (3) 0.58 0.47 0.37
S3 (4) 0.80 0.74 0.68
S4 (5) 0.85 0.81 0.76

x/ x,G1

S
=k

re
s/k
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t

1 2 3 4
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Fig. 2: A-priori sensor values for different grids for the DIT test case.

The most complex sensor S2, which is based on the approximate deconvolution model,
reproduces the slope of the experimental TKE ratio the best. However, it gives an
overall far too pessimistic estimation of the grid resolution, therefore it is not chosen
for the sample application to the backward facing step in Sect. 4.

Apart from S2, the slope of all sensors is similar except for a constant offset. They
all estimate the resolution of the coarsest grid too optimistic and underestimate the
resolution of the fine grid. The sensor S1 with the smaller explicit filter size as well
as the sensor S4 also overestimate the medium grid.

Since an underpredicted grid resolution is considered the conservative (i.e. “safer”)
approach the sensor S1 with the larger support of n = 4 is chosen for the sample
application in Sect. 4.

Modified Adaptation Indicator

The above sensor definitions provide a local value for each grid point. However, since
the sensors are only applicable to LES, a certain amount of local resolved turbulence
is necessary, to draw conclusions in hybrid RANS/LES computations. Therefore,
the evaluation of the sensor is limited to regions where a specified threshold of the
resolved turbulence intensity T = 1/u

√
2/3(〈u′2〉+ 〈v′2〉+ 〈w′2〉) is exceeded. In this

work T0 = 0.1 is chosen, as this value is typically reached in a turbulent boundary
layer.

For the adaptation algorithm an edge-wise indicator is constructed: The edge is
marked for subdivision if the sensor indicates an insufficient grid resolution at one
of the adjacent points, i.e. S < S0. Since in [10] it is stated that an LES should
resolve at least 80% of the turbulence by the grid, the threshold is chosen as S0 = 0.8.
Additionally, the mode of the hybrid RANS/LES model is taken into account: If the
model operates in RANS mode, i.e. the IDDES hybrid switching-function f̃d = 1,
the edge is not refined.

A smoothing of the refined region is performed by spreading the indicator over further
elements. Elements touched by the edge indicator and their neighbours up to a
specified number of element layers around them are subdivided isotropically to make
sure that the marked grid parts reside completely in the isotropically refined grid area.
In the present work, marking four additional layers of elements leads to acceptably
smooth regions.
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Fig. 3: Dimensions and denotation of the
computational domain of the flow over
a backward facing step.

h, nh

4h, nx,1

4h, ny

8h, nz

25h, nx,2

Tab. 1: Number of grid points in the globally refined and the locally adapted grids.

G1 G2A G2 G3A G3

npnt 2.127.000 810.000 274.000 132.000 36.000

4 Application to a Backward Facing Step Flow

The test case of the flow over a backward facing step (BFS) is determined in terms
of the step hight h = 0.0127m. Experimental data for a Reynolds-number based on
h of Reh = 37500 are given by Driver and Seegmiller [6]. The dimensions of the
computational domain are shown in Fig. 3. The point-numbers in the coarse grid
G3 are nx,1 = 11, nz = 21, nx,2 = 50, nh = 24 and ny = 15. A family of grids -
G1 fine, G2 medium and G3 coarse - has been constructed based on G3 by a global
refinement with a factor of 2 in each direction.

Based on the sensor S1 (cf. Fig. 2) the medium and coarse grids have been locally
adapted. The adapted grids are referred to as G2A and G3A hereafter. Since in
the adaptation algorithm the edges are bisected, the resolution in the refined regions
is the same as in the next globally refined grid, i.e. G1 and G2A have the same
resolution in the adapted LES region, G2 and G3A respectively. A comparison of
the total point-numbers in the different grids is shown in Table 1.

First, the sensor values resulting from the different mesh resolutions are compared in
Fig. 4. Regions with a local turbulence intensity lower than T0 = 0.1 are blanked. In
the left column the globally refined grids are shown, the respective adapted coarser
grid is shown in the same line in the right column, the adapted regions are outlined
by the black lines.

Here it can be seen how the sensor reacts to the mesh refinement: The values in the
adapted regions are at the same level as those on the globally refined meshes.

In Fig. 5 the spanwise averaged sensor values at a position of x/h = 4 behind the
step at half the step height are compared. On the x-axis the relative cell size w.r.t.
to the finest grid cell size is plotted. The sensor values on the globally refined grids
and those on the locally adapted grids almost match exactly. All sensors indicate
that in the finest grid more than 80% of the turbulence is resolved. In contrast to the
a-priori test for the DIT, the sensors now show a clearer distinction. The sensors S3

and S4, that are directly based on νt and kRANS from the background RANS model,
do not react to the grid refinement, so that they are not suited as an indicator for
the grid resolution in this test case. Again the values from S1 with the two different
explicit filter widths share the same slope but exhibit an offset.

Remarkably, the sensor S2 that still shows the steepest slope now yields a positive
estimation for the finest grid. One explanation might be, that the a-priori test is
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G1 - SST IDDES G2A - SST IDDES 

G2 - SST IDDES G3A - SST IDDES 

G3 - SST IDDES 

S=kres/ktot: 0.6 0.7 0.8 0.9

Fig. 4: Comparison of the grid sensor values on different grids. The values are blanked if
the turbulence intensity is smaller than T0 = 0.1. On the left the globally refined
grids are shown, on the right the locally adapted grids are shown.

G1 G2A G2 G3A G3

S1,n=2 0.93 0.93 0.87 0.87 0.79
S1,n=4 0.87 0.87 0.78 0.78 0.68
S2 0.86 0.87 0.71 0.72 0.48
S3 0.98 0.98 0.98 0.98 0.99
S4 0.95 0.95 0.94 0.93 0.94
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Fig. 5: Sensor values for different grids for the BFS test case.

not suited for this sensor, because it does not only depend on the subgrid velocity
but also on the mean velocity itself which is zero for the DIT test case. It seems
worthwhile to assess this sensor in other applications.

In Fig. 6 the flow behind the step is shown. Following the streamtraces, four regions
can be distinguished, where different physical and modelling phenomena characterize
the simulation. The extent of the regions depends on the numerical scheme and on
the grid design. Upstream of the step, for x/h < 0 an attached turbulent boundary
layer is modelled in RANS mode, region 0. In the first region of interest, region I
(x/h = 0 to x/h ≈ 2) immediately behind the step, the hybrid model switches from
RANS to LES, which may be delayed due to the “grey-area” problem. An important
feature in region I is the topology of the secondary recirculation bubble in the corner
of the step. Its size influences the primary recirculation, by pushing the centre of the
primary recirculation further downstream. The second region, region II (x/h ≈ 2 to
x/h ≈ 7) around the reattachment point, is dominated by the LES and characterized
by high values of resolved TKE. The third region, region III (x/h > 7) downstream
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Fig. 6: Streamlines in the recirculation area in the fine (left) and adapted medium (middle)
grid. Resolved turbulence on the adapted medium grid G2A (right), the adapted
region is outlined.
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Fig. 7: Skin friction distribution (left), resolved Reynolds-stresses (middle) and eddy-
viscosity in a section at x/h = 4 (right) for different grids.

of the reattachment, is essentially a resolved attached boundary layer with turbulent
inflow. The different characteristics that dominate the flow make this a good testcase
to examine the validity as well as the limits of the proposed adaptation strategy.

It was found that using the filter width ∆ω reduces the grey area in region I signif-
icantly compared to the ∆edge-filter (not shown here) and taht resolved turbulence
develops quickly behind the step. However, in the grids G2 and G3 the resolution
in the centre region is rather coarse, and due to a low level of resolved turbulence
intensity this region is excluded from refinement. The coarse resolution of the upper
part of the shear layer can have a negative influence on its development.

As depicted in Fig. 4 the region of the secondary flow is considered well resolved
according to the sensor and thus not refined in the medium grid G2A. Nevertheless,
the size of this secondary recirculation is much larger than in grid G1. Both, this
and the resolution, influence the downstream behaviour of the flow. In Fig. 7 (left)
the skin friction distributions for all grids are compared. The plateau at x/h = 0 to
x/h ≈ 2 is the footprint of the secondary corner flow which has the smallest extent
on the finest grid G1. All other simulations are comparable in this regard.

The highest values of resolved turbulence are reached in region II. Here, the minimum
of the skin friction, i.e. the strongest backflow, is obtained. The location of the
minimum is influenced by the upstream flow, but in terms of the absolute minimum
value the effect of the grid refinement can be compared. Through the global grid
refinement the absolute values decrease. As expected, the locally adapted meshes
yield almost the same minimum values.

In Fig. 7 (middle) the mean values of the eddy-viscosity 〈µt〉 are shown for a cut at
x/h = 4. The global mesh refinement leads to lower levels of modelled turbulence.
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The local mesh-adaptation has the same effect. The solutions from the adapted
meshes, G3A (green) and G2A (orange), coincide with the corresponding globally
refined grids, G2 (red) and G1 (black).

In figure 7 (right) the resolved Reynolds stresses in the x-z plane 〈u′w′〉 are shown.
Compared to the experimental data all of the simulations exhibit large deviations.
But also when comparing the simulations among each other, no clear trend is found.
The profiles on the medium grid G2 agrees well with the fine grid G1. However, due
to the upstream flow the cut corresponds to different positions in the recirculation
region. The solution on the locally adapted grid G2A has a larger offset from the
globally refined solution than from the coarse-grid solution. Also for the coarser
grids the clear trend, that was observed before, is not confirmed in the Reynolds
stress. Even though the local mesh adaptation moves the result in the direction of
the globally refined grid, there is still a difference between the two results.

For the skin friction distribution behind the reattachment point, the local mesh
adaptation has even an adverse effect on the results. While for all non-adapted
refined grids the experimental skin friction is captured quite accurately, the local
mesh adaptation leads to a larger offset from the experiments. This might be because
the mesh refinement ends at the near-wall RANS layer. The strategy to confine the
adaptation indicator to LES regions seems not suited for attached turbulent boundary
layers in wall-modelled LES mode. Instead, it may be necessary to extend the refined
region down to the wall in this case.

5 Conclusion

Different formulations of a mesh sensor that assesses the resolution in the LES region
have been investigated. In the case of isotropic turbulence the proposed sensors have
been compared to experimental values. One of the sensors has been evaluated for a
family of grids for a backward facing step and was used as indicator for a local mesh
adaptation. The results of the globally and locally refined grids have been compared,
and the range of validity as well as the limits of the sensor have been examined.

It has been shown, that the proposed sensors are able to detect underresolved regions
in an LES. Moreover, the sensors can be used as input for a local mesh refinement.
This is an important step to automatically reduce the uncertainty w.r.t. mesh design
in hybrid RANS/LES modelling.

In the future the sensors will be applied to more complex testcases. In the case of
wall-modelled LES the possibility to improve the results by extending the refined
region down to the wall will be assessed.
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Abstract

This work is dedicated to the appropriate representation of the experimental
setup in the numerical prediction of the flow around multi-element airfoils. In
the simulations a high-fidelity Reynolds-stress RANS-model is applied. The well
established Menter-SST RANS-model is used as a reference. To assess the influ-
ence of the wind-tunnel walls three different numerical approaches with different
computational complexity are compared: A three-dimensional simulation of the
entire measurement section, a two-dimensional cut through the centerline of the
test section and the same two-dimensional cut but with inviscid wind tunnel
walls. The results show that it is sufficient to restrict the simulation to the
centerline section of the wind tunnel and treat the wind-tunnel walls as inviscid
walls.

Nomenclature

JHh Jakirlic-Hanjalic-homogeneous
RSM Reynolds-stress model
c retracted chord length [m]
α angle of attack [◦]
Cl non-dimensional lift-coefficient
µt eddy viscosity [Pa·s]
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k turbulent kinetic energy [m2/s2]
d+
w wall distance in wall-units

1 Introduction

One of the most important goals in the numerical prediction of aerodynamical flows
is to improve the prediction of the maximum lift for multi-element airfoils. Regarding
the flow physics modeling, one major challenge is the correct prediction of the free
shear-layers behind upstream elements and their interaction with attached boundary
layers on downstream elements under the influence of an adverse pressure gradient.
The application of standard RANS-models does not yield always satisfying results
for these test cases. Therefore, the high-fidelity JHh-v2 RSM [1] is used in this
work. The mid term goal is to assess the possible advantages of hybrid RANS/LES
simulations over pure RANS simulations. For a scale resolving simulation a very high
resolution is needed. For this reason it is not feasible to model the entire experimental
setup and it is desirable to restrict the numerical simulation to the centerline section.
Therefore, it is important to investigate the differences between the experimental and
numerical approaches. These investigations are performed using RANS simulations.

In this work three different approaches are compared: In the computationally most
expensive approach the entire experimental section of measurements with resolved
boundary layers on the wind tunnel walls as well as the three dimensional wind
tunnel model is included in the simulation. In the second approach a two-dimensional
cut through the centerline section of the wind tunnel is modeled and the influence
of the side wall effects is neglected. In the third approach the upper and lower
tunnel walls are treated as inviscid walls and the boundary layers at these walls are
not resolved. This is the computationally least expensive and, therefore, the most
desirable approach if scale resolving hybrid RANS/LES models are to be applied.

The investigated DLR F15 two-element airfoil is an industrially relevant test case
in the framework of the DFG Forschergruppe 1066 (FOR-1066). The experimental
database for this test case is provided by other partners in the same project [2].
To reduce the wind tunnel side wall effects in the experimental setup, the model is
equipped with droop noses at the model-wall junctions. The drooped leading edge
of the main wing reduces the effective incidence angle and thus the separation at the
model side wall junction.

2 Numerical method

The numerical simulations are performed with the DLR TAU code [3], a finite volume
solver for the Navier-Stokes equations on unstructured meshes. The time-accurate
simulations use a dual time-step scheme with an LUSGS solver. The spacial dis-
cretization uses central differences with artificial dissipation of matrix type. The
turbulence equations are discretized using a second order Roe-scheme. The conver-
gence is accelerated by a 3w multi-grid scheme. Different turbulence models are
implemented for the closure of the Reynolds-averaged NS-equations.

In the present paper, the two-equation model Menter k-ω SST [4] and the JHh-v2
Reynolds-stress model [1] are applied. The latter is an extended and recalibrated
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variant of the JHh RSM [5] which applies a length-scale equation based on the ho-
mogenous dissipation rate εh as well as low-Reynolds damping functions to accurately
model near-wall turbulence.

Grids. All grids were generated using the commercial grid-generation software
Gridgen which provides the generation of structured as well as unstructured regions.

The desired strategy in the envisaged hybrid RANS/LES simulation is to regard
only the centerline section of the experimental setup. This approach is chosen in the
two-dimensional simulations. The first strategy is to use a cut through the centerline
of the test section without resolving the boundary layers of the upper and lower
wind tunnel walls and instead use Euler boundary conditions. For this approach two
grids are compared. The first grid 1 has a reasonable RANS resolution with about
84,000 points. About 60 hexahedral elements resolve the boundary layer in the wall
normal direction with a first wall point at a distance of d+

w ≈ 1 in wall-units. The
main wing and flap are discretized with 430 and 240 points respectively. A detail
is shown in Fig. 1 (upper left). To check the grid influence, a second grid with a
much finer resolution is used. This very highly resolved grid would be appropriate
for a hybrid RANS/LES simulation. This grid 2 has about 200,000 points in the
x-z plane. About 100 hexahedral elements resolve the boundary layers in the wall
normal direction. The first node above the wall is located at a distance of about
d+
w ≈ 0.4 in wall-units. The surface of the main wing element is discretized with 685

points and 480 points are located on the surface of flap.

In the second approach the effects of the upper and lower wind tunnel walls are taken
into account. Grid 1 was modified to resolve the boundary layers at these walls with
about 60 hexahedral cells. The grid is shown in 1 (lower left).

The three-dimensional grid is based on the modified grid 1 as the centerline section.
The surface grid is shown in Fig. 1 (right). The grid encloses one half of the experi-
mental setup and uses a symmetry boundary condition at the centerline section. It
contains 7.5 million grid points.

Fig. 1: Two- and three-dimensional grids used in the presented simulations
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3 Test case description

The experimental setup consists of the measurement section of the wind tunnel and
the measured F15 two-element profile. The wind tunnel has a quadratic inlet section
with an edge length of 1.3m. The entire test section has a length of 7.55m. Over a
length of 5.7m the upper and lower wall diverge. Over the last 1.85m the upper and
lower wall are retracted again. In this last section the side walls are also retracted.
The profile has a retracted chord length of c = 0.6m. The span-wise extend of the
wind tunnel model is 1.3m. The model is positioned 3.9m behind the inlet section
at a centered position. The flap is deployed with a deflection angle of αflap = 35◦.
Detailed experimental data including static pressure measurements at the centerline
section of the model and the upper and lower wall of the wind tunnel, PIV data
and oil-flow pictures were taken at incidence angles of α = 0◦ and α = 6◦. These
two incidence angles are used in the following simulations. The measurements were
performed with a velocity of 50m/s at a Reynolds number of about 2 million and a
Mach number of about 0.15.

4 Results

In this section the results that were obtained with the different strategies described
above are compared. In the first subsection the computationally least expensive
results that were obtained using a two-dimensional cut in the centerline section and
inviscid boundary conditions for the upper and lower wind tunnel wall are compared.
This relatively inexpensive approach is used to investigate the influence of the grid
resolution and the time-step size. Also a principal difference between the solutions
of the two applied turbulence models, the Menter-SST and the JHh-v2 RSM model,
is observed. The reason for this difference is investigated. In the next subsection
the results that were obtained in the simulations that take into account the wind
tunnel walls are presented and compared to the previously described results and to
the experimental data.

4.1 2D simulations with inviscid upper and lower wind tunnel
wall

First the appropriate mesh resolution and time-step size are investigated. In Fig. 2
three time-accurate simulations using the Menter-SST model at an incidence angle
of α = 6◦ are compared. The mean-pressure distribution, averaged in time, obtained
with different grids and time-steps are shown. The green line is the pressure dis-
tribution on the coarser grid 1 while the red line is computed on the finer grid 2.
There is hardly any difference between the two results and thus it is justified to use
the coarser grid in the following simulations. The influence of the time-step can be
seen in the comparison of the green line and the blue line. In the former simulation a
physical time-step of ∆t = 6 · 10−5s is used. This corresponds to 200 time-steps per
convective time unit. The blue line is from a simulation with a physical time-step
of ∆t = 3 · 10−5s, corresponding to 400 time-steps per convective time unit. The
only difference between these two lines can be seen at the very rear end of the flap in
the zoomed perspective. This difference is due to the resolution of the instabilities
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Fig. 2: Pressure distribution with Menter-SST model on grid 1 with different time steps
and on grid 2

that form behind the blunt trailing edge of the flap and has no influence on the
overall flow. Thus it is justified to use a time-step of ∆t = 3 · 10−5s in the following
simulations.

Fig. 3: Time curve of the lift-coefficient from Menter-SST and JHh-v2 RSM simulations
and corresponding sound-pressure-level

This finding is confirmed by the time curve of the lift-coefficient that is shown in Fig.
3. The green and blue lines are the results discussed earlier. The main behavior is
the same in both simulations. There is a very small difference of the mean lift that
is Cl = 2.95 with a time-step of ∆t = 6 · 10−5s and Cl = 2.952 with a time-step of
∆t = 3 · 10−5s. This little difference is again due to small differences in the very rear
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part of the flap and can be neglected. The distinct peak in the sound-pressure-level
at a frequency of 144 Hz shows up in both simulations. With the smaller time-step
the level of the larger frequencies is higher. The orange line in Fig. 3 is from a JHh-v2
RSM simulation on the coarser grid. Here the lift-curve oscillates with comparatively
high amplitudes with a peak frequency of 185 Hz and the mean lift is Cl = 2.979.

Fig. 4: Instantaneous streamlines in the wing cove at α = 0◦ predicted with the JHh-v2
RSM model

The time-accurate Menter-SST simulations converge to a nearly steady state. This
is not the case for the JHh-v2 RSM model. The flow in the cove of the main wing is
highly unsteady. The instantaneous streamlines in the cove at two different instances
in time are shown in Fig. 4. The separation bubble blows up and then breaks down
again, splitting into two smaller bubbles.

Fig. 5: Eddy-viscosity of the Menter-SST (left) and the JHh-v2 RSM simulation (middle)
and Reynolds-stress R11 (right)

The reason for this instability is shown in Fig. 5. Here the ratio of the modeled
turbulent eddy-viscosity to the laminar eddy-viscosity is shown. In the RSM simu-
lation the modeled turbulent eddy-viscosity is computed as µt = 0.09 · ρ · k2

RSM/ε,
with kRSM = 0.5 · Rii with the normal Reynolds-stresses Rii. The level of modeled
turbulence in the wing cove is considerably smaller in the JHh-v2 RSM simulation.
Here the α = 0◦ case is shown but the same observation can be made for α = 6◦.

This low level of modeled turbulence in the RSM simulation is due to a very quick
decay of the modeled Reynolds-stresses right behind the geometry-fixed separation
point at the sharp edge. The distribution of the first normal component of the
Reynolds-stress tensor is shown on the right in Fig. 5. The same rapid decay of
modeled Reynolds-stress occurs for all other components.

In Fig. 6 the mean-streamlines, averaged in time, obtained in the PIV measurement,
with the Menter-SST model and with the JHh-v2 RSM model are compared for the
incidence angle of α = 0◦. The Menter-SST model predicts the separation on the flap
in good agreement with the PIV data but the onset of the separation is predicted a
little too early. The influence of the instability in the RSM simulation triggers some
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Fig. 6: Mean-streamlines, averaged in time, from experiments and with the Menter-SST
and JHh-v2 RSM model at α = 0◦ colored with the stream-wise velocity

mechanism that prevents the flow from separating at the flap. Instead an instability
forms between the flow over the main wing and the flow through the gap between
main wing and flap. This instability leaves a footprint in the mean-streamlines.

Fig. 7: Mean-streamlines, averaged in time, from experiments and with the Menter-SST
and JHh-v2 RSM model at α = 6◦ colored with the stream-wise velocity

The corresponding comparison for the α = 6◦ case is shown in Fig. 7. At this
incidence angle the flow on the flap is attached. This behavior is predicted by both
models but there is a general difference between experiment and simulations: In the
experiment the flow through the gap thickens towards the trailing edge of the flap
while no strong bending is observed in the streamlines of the flow over the main wing.
In both simulations the streamlines from the main wing wake are bent towards the
flap while the gap flow is parallel to the flap without much thickening. In the RSM
results again an instability forms in the shear layer between the flow over the main
wing and the gap flow which can also be seen in the time averaged streamlines.

4.2 Simulations with viscous wind tunnel walls

The most expensive approach in terms of computational resources is to include the
whole measurement section in the numerical setup. Results from this approach pre-
dicted by the Menter-SST model and the JHh-v2 RSM model are shown in Fig. 8.
Here, the skin-friction lines are compared with oil-flow pictures from the experiment
at an angle of attack of α = 6◦.

In the upper row a view of the leading edge of the main wing from upstream is
depicted and the lower row presents a view of the flap from downstream. The oil-
flow visualization reveals a small separation region at the junction between main
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Fig. 8: Oil-flow pictures and skin-friction lines from Menter-SST and JHh-v2 RSM model
at α = 6◦

wing and side-wall. The flow is bent at the smooth transition region between the
droop nose and the main profile but at a small distance towards the centerline section
it is essentially undisturbed. The JHh-v2 RSM model that is shown in the center
column predicts this separation region at the main wing in good agreement with
the experimental observations. Opposed to that in the Menter-SST result the size
of the separation is massively over-predicted. In the span-wise direction the flow is
influenced by this separation over a great part of the main wing towards the centerline
section.

The view of the flap shows again the large influence of the separation region in the
SST simulation. The massively separated flow on the main wing shields the flow on
the flap such that the separation at the junction between flap and wind tunnel wall
is completely missing. Again the flow pattern is predicted much better by the RSM
model even though the size of the separation at the junction between flap and tunnel
wall is under-predicted.

Another observation in the three-dimensional Menter-SST simulation is an unphysi-
cal separation at the centerline section which is not in agreement with the PIV data.
This seems to be due to the massively disturbed flow in the centerline section because
of the over-predicted side-wall separation since in the two-dimensional simulations
no separation was predicted at this incidence angle.

For the α = 0◦ case only Menter-SST results are available, so far. At this lower
angle of attack, however, the SST model predicts the separation at the side wall
reasonably well and the flow in the centerline direction is undisturbed by the side-
wall separation. Also the size of the separation at the junction between the flap and
the wind tunnel side-wall is predicted in good agreement with the oil-flow picture.

The influences of the different approaches on the mean-pressure distribution in the
centerline section of the wind tunnel can be seen in Fig. 10 for the angle of attack
of α = 0◦.

For the two-dimensional Menter-SST simulation (orange line) the pressure distri-
bution shows a plateau in the rear part of the flap as in the experimental data.
Since the onset of the separation is to early as was shown in Fig. 6 the plateau
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Fig. 9: Oil-flow pictures and skin-friction lines from Menter-SST model at α = 0◦

Fig. 10: Comparison of the mean-pressure distribution obtained with different turbulence
models and numerical setups at α = 0◦

builds too early and the suction peak is predicted too low. No such plateau can
be seen in the two-dimensional JHh-v2 RSM simulation (light blue line) due to the
attached flow on the flap. Therefore, the circulation is predicted wrong in the RSM
simulation and the suction peaks are over-predicted on both elements and a larger
offset from the experimental data can be observed at the main wing. The three-
dimensional SST simulation (red line) predicts separation at the centerline section
but the separation point is shifted downstream compared to the experimental data.
In the mean-pressure distribution only a very small plateau can be seen close to the
trailing edge of the flap. Therefore, the pressure distribution is much closer to the
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RSM on the flap. On the main wing however, the difference between the two- and
three-dimensional SST simulations is very small. To further assess these results an
additional three-dimensional simulation using the JHh-v2 RSM model is planned.

For the α = 6◦ case more simulations are compared in Fig. 11 and the outcome is
more clear. Here, the third approach, the two-dimensional simulation with boundary
layer resolution at the upper and lower wind tunnel wall, is included. For this
approach the result from the Menter-SST model is presented.

Fig. 11: Comparison of the mean-pressure distribution obtained with different turbulence
models and numerical setups at α = 6◦

The pressure distribution of the two-dimensional Menter-SST simulation with invis-
cid tunnel walls (orange line) is in very good agreement with the experimental data.
The results that were obtained in the two-dimensional approach with boundary-layer
resolution with the SST model (dashed red line) show a little offset from the former
results but the general behavior is not changed. Only the pressure distribution in the
centerline section of the three-dimensional simulation using the Menter-SST model
is completely different. This is due to the massive separation that is predicted at the
side walls with this model.

The results from the two-dimensional JHh-v2 RSM simulation with inviscid tunnel
walls (light blue line) almost coincide with the corresponding SST results on large
parts of the profile. Only the instability above the flap leads to a bigger deviation
from the experimental distribution for the RSM model. The pressure distribution in
the centerline section of the three-dimensional simulation with the RSM model (blue
line) is very close to the two-dimensional results.
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5 Conclusion

Three different approaches to model the influence of the wind tunnel walls were
compared. For the least expensive approach, neglecting the boundary layers at the
tunnel walls and restricting the simulation to the centerline section of the wind tunnel,
the grid resolution and time-step size were evaluated. Here, it was found that using
the JHh-v2 RSM model leads to instabilities in the wing cove. A fast decay of the
Reynolds-stresses behind the separation point was found to be responsible for this
behavior.

In the three-dimensional simulation at an angle of attack of α = 6◦ the Menter-SST
model predicted a massive separation of the flow at the junction between the profile
and the wind tunnel wall that disturbed the flow even at the centerline section.
However, for an angle of attack of α = 0◦ the results with the Menter-SST model
looked much better. The JHh-v2 RSM model was only applied for α = 6◦ and the
flow at the model-tunnel junction was predicted in accordance with the experimental
data.

Comparing the pressure distribution at an angle of attack of α = 6◦, the following
could be observed: The influence of the boundary layer on the upper and lower
wind tunnel wall in a two-dimensional simulation is very small. This could be shown
for the Menter-SST model. The results using the JHh-v2 RSM model show good
agreement between the centerline section of the three-dimensional simulation and
the two-dimensional simulation with inviscid walls.

These results show that it is appropriate to neglect the influence of the wind tunnel
walls in a simulation as long as the experiments are designed to minimize the side
wall effects. The droop noses that were used in the present experiments are a good
approach to achieve this goal in the case of multi-element airfoils.

In the future it is planned to apply turbulence resolving models to this test case.
With respect to these simulation the current results are very important. Resolving
the entire three-dimensional setup in a scale resolving approach is not feasible with
the currently available computational resources. Based on this work it is now justified
to restrict the computational domain to the centerline section of the wind tunnel.
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Abstract

We consider the numerical simulation of a generic lateral vortex, that is generated
by a rapidly deflected NACA0021 airfoil. We use the SST k-ω URANS approach
and a hybrid RANS-LES method based on the SST model, where a zonal RANS-
LES interface is located little downstream of the airfoil trailing edge. The results
are assessed by reference with the experimental data. The mean flow behavior
and the induced angle of attack of the vortex can be predicted satisfactorily by
the URANS approach and the improvement using hybrid RANS/LES is small.
The hybrid RANS/LES results exhibit a delayed shear layer instability of the
wake, and the arising 2D roller type vortices lead to a significant overprediction
of the turbulent shear stress. We then apply a stochastic forcing in the region
of the airfoil trailing edge. This leads to a fast generation of turbulent content
in the wake and clearly improves the predictions for the turbulent stresses.

1 Introduction

The reliable prediction of an aircraft in high-lift configuration near stall using com-
putational fluid dynamics is still an open problem, especially in case of non-homoge-
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neous, i.e., disturbed, inflow conditions. In the joint research project FOR-1066 we
are interested in disturbances, whose characteristic length scales cover a range from
the airfoil chord length down to the small-scale turbulence. The goal is to identify
which length scales have the dominant effect on the stall behavior [9].

In order to study this question numerically, we need (i) a simulation method for
predicting airfoil stall, (ii) a method to account for large-scale disturbances in the
onflow and (iii) a test case with experimental reference data to validate the simulation
method.

Concerning (i) we use hybrid RANS/LES methods (HRLM) to simulate the flow
over multi-element airfoils near stall for homogeneous onflow. A modification of the
Delayed Detached Eddy Simulation (DDES) method [14] has been conceived and
was further developed during the project: the Algebraic DDES (ADDES) [5], [8]
and its improvements are described in section 2.1. With this method we want to
assess the role of the small-scale structures on the boundary-layer physics and its
separation behavior in the case of a disturbed onflow and compare the results with
Reynolds-stress model (RSM) predictions.

For (iii) we need a test case at a level of complexity and computational cost which are
feasible. Within the FOR-1066, a carefully designed, unique validation experiment
was performed [4]. A NACA0021 vortex-generator airfoil (VG) is mounted at α = 0◦

into the first part of the test section. At a time t0 the airfoil is rapidly deflected by
∆α = 10◦ in a well defined motion. As the VG airfoil is pitching up, the change in
circulation causes the generation of a layer of vorticity in its wake which partly rolls
up to a transversal vortex. This generic vortex is convected with the free-stream
velocity. In the preparation phase of the experimental campaign, the generation and
the evolution of the generic vortex in the empty wind-tunnel test section was studied.
In the main experiment, a DLR F15 two-element high-lift airfoil (HL) is mounted
downstream of the trailing edge of the VG airfoil and the interaction of the vortex
with the HL airfoil is studied.

The present work is dedicated to (ii). We consider the generation and the evolution
of the generic vortex in the empty test section. We apply the scale-resolving HRLM
approach and compare the results with unsteady RANS (URANS) results and with
the experimental data. The generation and evolution of the vortex without and with
interaction with the HL airfoil was studied using URANS simulations in [12]. Within
the FOR-1066 the influence of the VG position has been investigated in [16].

2 Hybrid RANS/LES Method

We use the DLR TAU code, an unstructured finite volume solver for the compressible
Navier Stokes equations. We use the low-dissipation setting from [6] to improve
the accuracy of the method for scale-resolving simulations. For hybrid RANS-LES
simulations, several background RANS turbulence models are supported, e.g., the
SA-model, the SST k-ω model, and the JHh RSM. Moreover, various RANS/LES
models like DES, DDES and IDDES as well as ADDES are provided.
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2.1 Improvements of the Algebraic Delayed DES Method

In some flow situations involving a strong adverse pressure gradient, DDES does not
ensure the RANS mode in the entire boundary layer, which can lead to premature
separation [7]. On the other hand, DDES can fail to detect thin separation regions
and undesiredly treat them in the RANS mode instead of the LES mode. Therefore,
the basic ADDES [5], [8] was developed for single element airfoils. In the ADDES
several algebraic sensors are available to identify RANS and LES regions: The ve-
locity profiles in the boundary layer are analyzed along wall-normal lines in order to
determine the outer edge of the boundary layer and to detect flow separation. If the
shape-factor H12 exceeds a model dependent critical threshold H12,crit, the flow in
the boundary layer is assumed to be separated. These sensors are used to control
the switching method between RANS and LES regions.

Several extensions were needed for the application scenario of the flow over a two-
element airfoil at homogeneous and at disturbed inflow conditions. Firstly, the al-
gebraic sensors to detect regions of attached boundary layers, separation and re-
attachment were reviewed for additional test cases, e.g., the separated flow behind a
wall-mounted hump, which support the previous results. Moreover, the implementa-
tion of the sensors was extended to allow for massive parallel simulations.

Additionally, we addressed the so-called grey-area problem typical for HRLM: after
the transition from RANS to LES the generation of resolved turbulence is delayed.
To mitigate this delay, the proposal of a modified length scale ∆ω in the LES region
from [1] was considered. Therein, the orientation of the local vorticity vector w.r.t.
the control volume is taken into account for determining the LES length scale. This
approach was generalized to a formulation, which is suited for general cell types in an
unstructured code: ∆ω =

√∑
iN · si ,, where N is the normalized vorticity vector

and si is the area-weighted normal vector of a dual cell face i.

Another way to resolve the grey-area problem is to add synthetically generated tur-
bulence at the RANS/LES interface. Therefore, we provided a flexible infrastructure
to introduce the synthetic turbulence in several arbitrary forcing volumes in the AD-
DES. The algebraic sensors can be used to define the forcing volumes automatically.
This infrastructure was used by project partners in FOR-1066 to implement the Syn-
thetic Turbulence Generator (STG), and the effectiveness of the method was shown
in [2], [3].

Moreover, we observed for the DDES of the flow around the DLR F15 three-element
airfoil [10], that unsteady vortical flow from the wing cove can penetrate into the
boundary layer on the flap. This can lead to a significant delay of flow separation on
the flap. Two solution strategies were developed during this work, based on a sensor
that recognizes turbulent boundary layers. In the case of sufficient mesh resolution
we make use of the wall-modelled LES capability of the Improved DDES (IDDES)
[15]. For this we coupled the algebraic sensors with the IDDES model. However,
the mesh resolution requirement for a wall-modelled LES at high Reynolds numbers
can be prohibitively high. Therefore, an alternative approach suited for simulations
with a lower grid resolution is pursued as well. In order to avoid an under-resolved
LES and to ensure a pure RANS solution, the ADDES is currenly beeing extended
by a model for the transition from LES to RANS. The approach uses sponge layers
to transfer resolved turbulence from the LES region into modelled Reynolds stresses
in the RANS region.
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Fig. 1: Application of the ADDES to the DLR F15 two-element airfoil: the wall-normal
lines are shown on the lower side, RANS regions are colored in green and separated
regions are colored in red.

An additional aim is to ensure a mesh resolution in the LES regions that resolves a
sufficient part of the turbulence spectrum. Therefore, we apply a local LES resolution
sensor which measures the ratio of the resolved turbulent kinetic energy (TKE) kres

to the total TKE ktot = kres + kmod. In [13] several formulations for the modelled
TKE are compared and the TKE sensor is used as an input variable for a local mesh
refinement using the adaptation tool that is available in the DLR TAU code: in LES
regions the grid is refined, if less then 80% of the total TKE are resolved, because
this is regarded as underresolved LES.

2.2 Applicability of the ADDES to a High-Lift Airfoil

The applicability of the method to the flow over the DLR F15 two-element airfoil is
demonstrated in Fig. 1. On the pressure side the wall-normal lines used to evaluate
the algebraic boundary-layer sensors are shown. As indicated on the lower side of the
flap, the lines are not confined to the near-wall structured layers of the grid, but can
be used also in regions of tetrahedral elements. The green area shows the parts of
the boundary layers where the algebraic sensors of the ADDES ensure RANS mode.
The regions of separated flow are marked in red, e.g. the separation on the flap and
in the cove of the main wing element. In those regions the ADDES switches into the
LES mode. Note, that behind the trailing edges of the main wing and the flap the
sensors detect separation, and the model is switched to LES to counter the grey-area
problem.

In order to reduce the computational costs, we designed a strategy to generate effi-
cient 2D-3D meshes using the adaptation module of TAU. To illustrate this, consider
the situation in which the LES mode is active only in the wing cove and on the
flap. Then a coarse mesh spacing in spanwise direction upstream of the wing cove is
sufficient, since only RANS mode is used there. In the region of the wing cove and
on the flap the mesh is anisotropically refined in the spanwise direction to match
the required LES resolution. Bridging elements are introduced between the elements
of different spanwise resolution. In Fig. 2 the situation is depicted. On the left,
the transition elements on the surface are shown. Within seven refinement steps the
number of cells in the spanwise direction is increased from one to 128. Here, the
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Fig. 2: Efficient 2D-3D grid around the DLR F15 two-element airfoil, obtained through grid
refinement in the spanwise direction.

Fig. 3: Experimental setup: the position of the HL airfoil and the PIV window are marked.

quadrilateral elements on the surface are split into bridging triangles. On the right
in Fig. 2 the transition elements in the refinement region are outlined in a spanwise
cut. The number of cells in the spanwise direction is indicated by the grey shades.
The single black line shows the outer bound of the near-wall structured grid layers.
In the efficient 2D-3D grid 35% of points are saved compared to a grid that is globally
refined in the spanwise direction.

3 Simulation of the vortex generation and transport
in a wind tunnel

The experimental setup is depicted in Fig. 3. The wind tunnel is operated at
uref = 50m/s yielding a Reynolds number of Re = 1.9 · 106 with respect to the
retracted chord length of the high-lift airfoil lref = 0.6m. The vortex generator airfoil
has a chord length of cVG = 0.3m. In the target setup the distance from the trailing
edge of the VG airfoil to the leading edge of the HL airfoil is 2m. The position of the
HL airfoil in the main experiment is marked. In the same position the PIV window
is outlined, where the data were measured in the preparation phase without the HL
airfoil.

In the simulations, the spanwise centerline section of the wind tunnel is considered.
It was shown in [11] that the influence of the wind-tunnel side walls on the results
can be neglected. The computational domain has a length of 5.6m and a height of
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Fig. 4: Vortex generator grid with structured transition to vortex transport region. The
grid has been deformed such that the VG is at an incidence of α = 10◦

1.3m. The upper and lower wind-tunnel walls are modelled as inviscid slip-walls, at
the inflow and outflow farfield boundary conditions are used. From the experimental
data a vortex diameter of d/cVG = 0.83 is estimated. In order to cover it entirely,
Lz/cVG = 1 is chosen for the spanwise extent of the computational domain. The x,y
and z-coordinates correspond to the streamwise, wall-normal and spanwise directions
respectively, and the origin of the computational domain is located at the trailing
edge of the VG airfoil at α = 0◦.

The grid is shown in Fig. 4: 400 points are located on the surface of the VG airfoil
and 80 wall-normal layers of hexahedral elements cover the structured region that
transitions smoothly into the vortex transport region. Here, the cells have a size
∆x/cVG = ∆y/cVG = 0.017 except for the immediate wake region where the cells
have an aspect ratio of ∆x/∆y = 4. With 60 cells in the spanwise direction and a
cell size of ∆z/cVG = 0.017, the transport region is resolved with isotropic cells.

All simulations are based on the SST k-ω model. The region of the VG airfoil is
always simulated in URANS mode. In the HRLM simulations the DES mode is
manually activated at xURANS→HRLM/cVG = 0.017 behind the trailing edge of the
VG airfoil. In order to achieve the deflection of the VG airfoil, the deformation tool
in TAU is used after each solver step to deform the mesh. In the following all values
are normalized with the reference values, i.e. u∗ = u/uref , y∗ = y/lref and t∗ = t/tref ,
with tref = lref/uref .

3.1 Evaluation of statistics for time-dependent flow problems

In the experiments the streamwise and wall-normal velocity components were mea-
sured using 2d particle image velocimetry (PIV). In several positions time-resolving
data were recorded for the velocity magnitude and the induced angle of attack with
a five-hole probe (FHP). In order to obtain phase-locked averaged data the deflec-
tion of the NACA profile was repeated periodically with a down- and an upstroke.
The FHP data is averaged over 90 periods, and the PIV data are averaged over 300
repetitions of the experiment.

In general, it is not feasible to repeat a scale-resolving simulation this often to com-
pute the ensemble/phase averages. Instead the mean values and fluctuations need
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Fig. 5: Three weights for the WMA mean values are compared for the experimental FHP
velocity:
original data —; w(25) —; w(50) —; w(500) —

to be obtained from a single simulation. In the presence of instationary inflow con-
ditions, the mean values in the simulation are computed with a weighted moving-
average (WMA) formulation:

〈u〉t = 〈u〉t−1 + w(s) ∗
(
u(t)− 〈u〉t−1

)
,

where the influence of the old samples decays exponentially through the weighting
factor w(s) = 2/(s+ 1).

In order to assess w(s), the WMA mean values of the experimental FHP data using
three different weights are compared in Fig. 5. Too small weights (w(25)) lead to
strong oscillations, whereas with too large values (w(500)) the minima and maxima
are smeared. Here, the smoothest WMA mean values are obtained using w(50).

In order to obtain relevant values for the variances (e.g. Reynolds stresses) the
mean values should be statistically converged. Therefore, the number of samples is
virtually increased by assuming that the flow at different spanwise locations can be
regarded as different realizations of the same experiment. Thus, instead of taking
the ensemble average the spanwise average is used to improve the mean values.

3.2 Assessment of the HRLM

In the basic simulation (HRLM-basic) the shear layer behind the VG airfoil at α = 0◦

is very stable and two-dimensional rollers develop. The deflection of the vortex
generator alone is not sufficient to induce enough instability to break up the rollers
into 3D turbulence, cf. Fig. 6 (top). To provoke the breakup of the 2D rollers,
following approaches were tested: The grid was refined in the spanwise direction by
a factor of 4, the whole wake region was further refined, and the time step was reduced
by a factor of 10, all without success. Finally, a successful simulation was achieved
by exciting the wake artificially using a stochastic forcing approach (HRLM-forced):
In the region of the VG trailing edge the eddy viscosity is multiplied by a random
factor crand ∈ [0, 3] with unity expectation value E(crand) = 1. The region starts at
85% cVG, where the URANS mode is active, and has a wall-normal extent of 15%
cVG around the trailing edge, so that it is also effective in a small region downstream
of xURANS→HRLM where the simulation is switched to DES.

In Fig. 6 the turbulent structures in the wake are visualized by an isosurface of
the second invariant of the velocity-gradient tensor Qinv. The snapshot is taken at
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Fig. 6: Isosurface of Qinv to illustrate the turbulent structures at t∗ = 4.16 in the basic
HRLM (top) and in the HRLM with stochastic forcing (bottom).
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Fig. 7: Visualization of the position of the vortex at t∗ = 4.16 through the velocity difference
vectors.

t∗ = 4.16 when the vortex has reached the PIV window that is outlined in the side
plane. The vortex in the HRLM-basic computation (top) consists of 2D rollers. In
the HRLM-forced computation (bottom) the 2D rollers break up close downstream
of the trailing edge, and 3D turbulent content develops quickly.

To identify the vortex, the velocity difference vectors u′ = 〈u〉t∗=4.16 − 〈u〉t∗=0 are
plotted in Fig. 7. The position of the PIV window is indicated by the thick line.
The core of the vortex consists of two distinct centers of rotation at (x∗, y∗) =
(3.05,−0.08) and at (x∗, y∗) = (3.2,−0.03).
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Fig. 8: Influence of the vortex on the velocity magnitude at three positions: y∗ = 0.17 —;
y∗ = 0.0 — ; y∗ = −0.17 —.

3.3 Comparison with experimental data

First we consider the velocity u∗ and the induced angle of attack α. In the simulations
they are evaluated at three wall-normal probe positions at x∗ = 3.5: in the center
of the wake of the VG airfoil in the initial position at y∗ = 0.0, above at y∗ = 0.17
and below at y∗ = −0.17. In the experiment the FHP data were measured at the
same positions. The results are shown in Figs. 8 and 9. The experimental data
are phase-locked averages over 90 cycles whereas no averaging was performed on the
simulation data. For u∗ and α periodic fluctuations with a frequency f = 950Hz
can be observed in both hybrid simulations. With the transport velocity uref the
corresponding structure size l = 0.05m is 10 times larger than the local cell size and
corresponds to the average distance between the 2D rollers in the HRLM-basic case.
In the HRLM-forced case the correlation coefficient in the spanwise direction does
not drop below 0.6 (not shown here), which indicates that the 2D roller character is
partly maintained in this simulation.

In Fig. 8 an offset between the velocity magnitude in the simulations and the ex-
perimental data can be observed at all three probe-positions. This indicates that
the mean velocity in the wake is higher in the simulations. However, in the center
position at y∗ = 0 the maximum value is reached at the same time t∗ = 4.17 in all
curves, which proves that the vortex is transported with the same convection velocity
in the experiment and all simulations. The maximum value in y∗ = −0.17 is reached
at t∗ = 4.4 in the experiment, whereas in all simulations it is predicted at a later
time, indicating that the vortex roll-up is not as strong as in the experiment. In the
HRLM-basic case the large 2D rollers lead to strong distortions in the center position
y∗ = 0.0.

The measurements of the induced angle of attack α in Fig. 9 exhibit a steep gradient
during the vortex encounter which is not reproduced by the simulations. In the center
position at y∗ = 0 the experiments show a minimum which is not predicted by any
of the simulations, whereas the location and strength of the maximum agrees with
the experimental data for all simulations. Also in the other positions the magnitude
of the induced incidence angle is predicted in good agreement with the experiments
by all approaches.

In summary, the velocity magnitude u∗ and the induced angle of attack α show a
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Fig. 9: Influence of the vortex on the induced incidence angle at three positions:
y∗ = 0.17 —; y∗ = 0.0 — ; y∗ = −0.17 —.

Fig. 10: Mean streamwise velocity around the FHP positions (black circles) at t∗ = 4.16

close agreement in the mean vortex-transport characteristics for URANS and HRLM.

In Fig. 10 the mean streamwise velocity fields 〈u∗〉 at t∗ = 4.16 from the simulations
are compared with PIV measurements. The FHP positions are marked by the circles,
for reference. In the PIV the streamwise gradient is steeper and the inclination of the
wake is stronger. This again shows that the strong vortex roll-up in the experiments
is not predicted in the simulations. Moreover, in the experiment two distinct mini-
mum regions can be recognized well above the shear layer. In the URANS and the
HRLM-forced computations these regions are not captured. This might partly be a
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Fig. 11: Mean total turbulent shear stress around the FHP positions (black circles) at t∗ =
4.16

smearing effect of the WMA averaging and could be further amplified by the span-
wise averaging. In the HRLM-basic case the impact of the large 2D rollers produces
minimal values similar to the measured ones.

Alltogether, the WMA mean values show a good qualitative agreement with the
experiment. With respect to the averaging procedure in sec. 3.1 they seem to be
suited to compute reasonable velocity fluctuations for the evaluation of the resolved
turbulence.

In Fig. 11 the total turbulent shear stress is depicted: 〈u′v′〉tot = νt

(
∂u
∂y + ∂v

∂x

)
−

〈u′v′〉res. In the URANS simulation only the modelled part is shown, even though in
the simulation the resolved part is of the same order. This can be explained by the
averaging approach: the influence of the old values causes a deviation between the
WMA mean and the true mean that would be obtained by ensemble averaging. It
can be assumed that with the true mean value, RANS would predict no resolved tur-
bulence, so 〈u′v′〉RANS

res represents a systematic error in the statistical post-processing
procedure. The same systematic deviation exists for the HRLM approaches, how-
ever, it is not clear whether it is possible to transfer the quantification of the error
directly.

In both hybrid approaches the level of modelled shear stress is negligible. The level
of total turbulent shear-stress in the HRLM-forced computation is in acceptable
agreement with the experimental data. In the HRLM-basic case the large 2D rollers
lead to an overestimation of the turbulent shear stress by a factor of 4. Thus, only
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the HRLM-forced approach is considered suitable to predict the relevant turbulent
scales in the transported vortex.

4 Conclusion and Outlook

A method to simulate the generation and transport of a generic vortex using a hybrid
RANS/LES simulation has been presented. It has been shown that it is necessary to
introduce artificial disturbances to break up the wake of the vortex generator airfoil
into 3D turbulence. A combination of a weighted moving-average formulation and
spanwise smoothing has successfully been used to provide mean-flow statistics for
the unsteady process.

It has been shown that the mean vortex characteristics can be captured with a
RANS simulation and that the hybrid RANS/LES method yields the same mean
characteristics. It has been shown that HRLM with forcing predicts the resolved
turbulence in good agreement with the experiments, while without the forcing, large
2D rollers lead to an overestimation of the turbulent shear stress.

This work was the final step on the way to our target application: In the next
step we will bring together the vortex generator and a high-lift airfoil in order to
investigate the influence of the onflow disturbance on the airfoil stall behavior. In
the hybrid RANS/LES simulation the ADDES-based simulation strategy for the
high-lift airfoil proposed in Sec. 2.2 will be used. In the first setup that will be
investigated, the vortex does not directly interact with the high-lift airfoil so that
only its mean characteristics have an influence on the airfoil. Therefore, the vortex
transport will be modelled in the RANS mode and we will make use of the spanwise
grid adaptation. A coarse spanwise resolution will be used in the transport region,
whereas only around the high-lift airfoil the grid will be refined in spanwise direction
for HRLM.

In future investigations of a modified vortex-generator setup, where the vortex di-
rectly interacts with the high-lift airfoil, the URANS approach is considered insuf-
ficient to resolve the relevant scales of the vortex which interact with the airfoil
boundary layer. In this scenario the vortex must be modelled with a scale-resolving
approach. In this case it is necessary to investigate how the quality of the predicted
resolved turbulence improves when, instead of the random forcing, the synthetic
eddy method [2] that is available within the ADDES framework is used. It would
also be worthwhile to include the full 3D wind tunnel in further RANS simulations
to investigate the influence of the side walls on the vortex.
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