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SUMMARY 

Many tropical angiosperms rely on frugivores for seed dispersal and evolved fleshy fruits to attract 

them. Although both sides of the interaction are generalists, frugivores do not feed on the full 

range of fruit species in their habitats and angiosperms rely on the dispersal services of only a 

share of the frugivore community. This observation led to the “Dispersal Syndrome Hypothesis”, 

which postulates that over time fruits evolve to specialize on certain guilds of frugivorous seed 

dispersers and consequently their traits evolve in response to the dietary and sensory capacities 

of their main dispersal agents.  

Fruit traits such as size, seed size and husk thickness have been shown to be malleable to 

selection pressures exerted by their main seed-dispersal vectors. Additionally, due to competition 

for dispersal services and the need to promote consumption of ripe fruits and thus dispersal of 

mature seeds, fruits are also under selection pressures to provide reliable signals for ripeness. A 

prime example is fruit color, which has evolved independently in many bird-dispersed species to 

signal ripeness and possibly nutrient content. Fruit odor, similarly, has been speculated to be a 

signaling system between plants and frugivores with elaborated olfactory capabilities, but this has 

only recently received support in figs (genus Ficus) dispersed by bats. Yet data are still restricted 

to the narrow bat-fig model system and it is not clear whether fruit olfactory signaling has evolved 

in other plant genera and in the communication with other taxa, and thus indeed a recurring 

component of some Dispersal Syndromes. 

Primates are one of the most important seed dispersal vectors in the tropics. Until recently, their 

olfactory capabilities were considered low and thus irrelevant for the study of their feeding ecology. 

This view has been utterly revisited over the past years and primates are now known to possess 

high olfactory capacities. Therefore, under the framework of the Dispersal Syndrome Hypothesis, 

it is likely that fruits whose seeds they disperse evolved olfactory signals for ripeness, too.  

This thesis explores the evolution and functions of fruit aroma in the communication between 

primates and plants. The first chapter is a theoretical review regarding the roles of olfaction in 

primate feeding ecology. It concludes, based on available behavioral works, that frugivory is the 
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dietary category that requires most reliance on olfaction in feeding primates, and that olfactory 

cues are used solely for the function of fruit selection from very short distances. So, primate-

dispersed fruits are expected to be under pressure to provide signals that are not necessarily 

carried away to long distances, but rather maximize the ability to identify ripe fruits from close 

proximity.  

The second chapter is a comparative analysis of fruit odor in four Neotropical plant species, two 

dispersed by primates and two by birds. It demonstrates that ripe primate-dispersed fruits bear 

odors that are strong, compound-rich and significantly different from the odors of unripe fruits. 

Thus, their odors provide a reliable signal for ripeness that could be used for fruit selection. In 

contrast, bird-dispersed fruits emit relatively weak and compound-poor odors that are not different 

from the odors of unripe fruits. Hence, their odor profiles are not informative regarding their level 

of ripeness. Since each bird-dispersed species is phylogenetically closer to one primate-dispersed 

species than they are to one another, these patterns of odor release are independent of 

phylogeny. Therefore, the chapter concludes that fruit odor as a reliable signal for ripeness 

evolved in these two primate-dispersed species, independent of phylogeny and hence it is likely 

to constitute an adapted communication system with seed-dispersing primates.  

The third chapter reports olfactory-discrimination experiments that confirmed that primates indeed 

“understand” the signal – that they can physiologically discriminate between odors of ripe and 

unripe primate-dispersed fruits and choose ripe fruits based on their odor in the absence of cues 

from other trajectories. It further reports experiments which show that no single compound or 

compound class in the odor of fruits is significantly more important than others to allow ripe-fruit 

recognition. 

The final section provides a synthesis of the results and a framework for integrating the study of 

primate olfaction and fruit chemistry into a new “chemical ecology of primate-plant interactions”.  
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1. GENERAL INTRODUCTION 

1.1. Seed dispersal and the evolution of fruit traits 

1.1.1. The benefits of seed dispersal 

The ability to disperse seeds away from the mother tree promotes an individual plant’s fitness in 

many ways. Seeds suffer disproportionally high mortality rates when deposited in dense clusters 

around the mother tree, mainly due to an overly exposure to species-specific pathogens or 

predators and to competition with kin (Janzen 1970; Connell 1971). Dispersal away from the 

mother tree allows seeds to colonize open habitats and, potentially but rarely, to reach preferred 

microsites through “directed dispersal” (Howe and Smallwood 1982; Wenny 2001; Howe and Miriti 

2004). Further, seed dispersal promotes gene flow that counters the formation of spatial-genetic 

structure (i.e. the tendency of spatially close plants to be genetically similar) and thus decreases 

the probability of inbreeding and homozygosity. Its contribution to the spatial reshuffling of alleles 

within a population –the reduction in spatial-genetic structure - is roughly double than that of 

pollination because seeds are diploid and pollen is haploid (Hamrick and Trapnell 2011). This 

process yields the template for recruitment of future generations (Nathan and Muller-Landau 

2000) and is therefore a key factor in maintaining of ecological systems. 

Contemporary and extinct plants have employed different strategies to achieve seed dispersal 

(van der Pijl 1982). The most primitive dispersal modes were abiotic – namely by wind or water 

(Tiffney 1986). Biotic dispersal probably originated in the Permian (ca. 299 – 252 my bp) or even 

slightly earlier, although in early stages diaspores were probably swallowed accidentally by 

herbivores (Tiffney 2004). Fleshy fruits – i.e. fruits that are covered with a soft, nutritious tissue 

that attracts frugivores - first appeared during the Mesozoic, even though earliest fleshy tissue 

has not necessarily served as a reward for dispersal agents (Mack 2000). The rewarding role of 

fruit flesh – its function as an attractant to seed-dispersal agents – may have evolved secondarily 

out of the non-rewarding flesh and became the predominant seed dispersal strategy in 

angiosperms after their major radiations of the Tertiary, which were accompanied with radiations 
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of frugivorous dispersal agents such as passerine birds, bats and primates (Sussman 1991; 

Tiffney 2004; Sussman et al. 2013). Fleshy fruits have evolved many times independently in most 

angiosperm families deep into the Tertiary (Bremer and Eriksson 1992; Bolmgren and Eriksson 

2005; Eriksson 2014). In contemporary ecological systems biotic seed dispersal is present, 

although not necessarily exclusively, in over a half of angiosperm families (Tiffney and Mazer 

1995) and the vast majority of tropical taxa produce fleshy fruits and rely on endozoochory for 

seed dispersal (Howe and Westley 1988).  

This heavy focus on endozoochory is not surprising given its many advantages to efficient 

dispersal. The main factor that has promoted an independent evolution of fleshy fruits is that 

abiotic dispersal faces an inevitable tradeoff between dispersal distance and seed quality. On one 

hand, the greater the distance seeds are dispersed away from the mother tree, the less likely they 

are to be deposited next to conspecifics and kin and hence suffer from density-dependent 

mortality (Janzen 1970; Connell 1971). On the other hand, this distance is negatively correlated 

with seed mass because heavier seeds are more difficult to disperse through abiotic means. Small 

seeds contain less energy and are therefore less likely to establish in shaded environments where 

photosynthetic efficiency is lower. As a result, larger seeds are less likely to escape density-

dependent mortality, but are more likely to establish in low-light conditions. Biotic seed dispersal 

breaks away from this tradeoff by allowing the dispersal of large, energy-rich, seeds to greater 

distances (Tiffney 1984, 2004; Leishman et al. 2000; Bolmgren and Eriksson 2005, 2010). Thus, 

not surprisingly, the independent evolution of fleshy fruits in many taxa is associated with 

environmental changes to more shaded conditions (Bolmgren and Eriksson 2005) and in 

contemporary dense tropical forests endozoochory is by far the most important mean of seed 

dispersal (Howe and Westley 1988). Once established, dispersal by biotic factors can provide 

several other benefits to the plant. First, seed passage in the gut of the frugivore can increase the 

probability of germination (Traveset and Verdú 2002). Second, the deposition of seeds along with 

fecal material often leads to their secondary dispersal by dung beetles, which bury the seeds and 

so protect them from seed predators (Culot et al. 2010a).  
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1.1.2. The evolution of fruit traits in the context of plant-frugivore interactions 

Given these benefits, it is not surprising that the production of energetically costly fleshy fruits was 

selected in so many angiosperms, especially in dense tropical forests. Accordingly, the notion that 

rewarding fleshy fruits, as a whole, have adapted in response to selection pressures exerted by 

frugivores is not controversial. However, whether or not particular characteristics of fruits can be 

attributed to their interactions with frugivores is still a matter of debate. The frugivore community 

is often very diverse and consequently seed treatment by the different frugivores is very different. 

For example, a highly durable seed’s coat can protect it from rough treatment in the gut, but also 

inhibit germination if not reduced by the same gut treatment (McKey 1975). Thus, all fleshy-fruit 

producing plants face a tradeoff. On one hand, they could produce generalist fruits that are 

consumed by many different frugivores but provide poor dispersal services due to, for example, a 

mismatch between the seed coat and the gut treatment by many consumers. Alternatively, they 

could produce specialized fruits that are accessible to only a share of the frugivore community, 

and so suffer from a smaller number of dispersal vectors but achieve higher quality through a 

better match between seed and frugivore traits (McKey 1975).  

A major point of disagreement is where on this specialist-generalist spectrum most fruits lie. 

Frugivore-dispersed fruits come in a great variety of sizes, shapes and colors (van Roosmalen 

1985a; Howe and Miriti 2004). Rather than being randomly distributed across taxa, these traits 

tend to be correlated with one another and go hand in hand with dispersal by only a share of the 

frugivore community (Janson 1983; Gautier-Hion et al. 1985; Voigt et al. 2004; Lomáscolo et al. 

2010). Frugivores, in turn, tend to be selective regarding the fruits they consume (Julliot 1996a; 

Flörchinger et al. 2010) and the major frugivore guilds vary in their sensory capacities, 

physiological requirements and food acquisition strategies. Given the differences between 

frugivores, any fruit trait faces a tradeoff because being attractive to one dispersal vector would 

render the fruit less attractive to another. For example, to be attractive to small birds with little 

handling capacities, fruits ought to be small enough to fit their gape width (Wheelwright 1993; 

Galetti et al. 2013). Such small fruits may be relatively unattractive to large-bodied frugivores.  
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This reality led to the “Dispersal Syndrome Hypothesis” (van der Pijl 1982; Janson 1983), which 

postulates that even in a system of generalists, plants would be forced to specialize on dispersal 

by only a share of the frugivores community. Thus, the main prediction of the Dispersal Syndrome 

Hypothesis is that fruit traits would be under selection pressures exerted by the sensory capacities 

and physiological requirements of their main dispersal vectors.  

The main evidence for the validity of the Dispersal Syndrome Hypothesis derives from the 

correlations between fruit characteristics and fruit choice by frugivores (Janson 1983; Gautier-

Hion et al. 1985; Lord 2002; Poulsen et al. 2002; Link and Stevenson 2004). These adaptationist 

views have, however, been criticized. First, some of these correlations disappear once phylogeny 

is controlled for, which means that much of the variation in fruit characteristics is more easily 

explained by common ancestry than by adaptation (Jordano 1995). Second, abiotic factors can 

strongly affect fruit traits (Bollen et al. 2005). Finally, fruit characteristics that were ascribed to 

selection pressures by some frugivores can actually be found in regions that they do not inhabit – 

which puts a question mark over the causal link between frugivore behavior and fruit traits 

evolution (Fischer and Chapman 1993). These issues were at least partly addressed in later 

studies that still found support for frugivore-driven adaptations in fruit traits (Lomáscolo et al. 2008, 

2010; Flörchinger et al. 2010; Lomáscolo and Schaefer 2010; Donatti et al. 2011; Valido et al. 

2011). Thus, the Dispersal Syndrome Hypothesis – i.e. the notion that fruit traits are shaped by 

selection pressures exerted by frugivorous seed-dispersers – still offers a strong explanatory and 

predictive model for the evolution of fruit traits (Schaefer and Ruxton 2011). Nonetheless, the 

criticisms serve as a reminder that adaptation cannot be inferred as a default explanation and that 

many confounding factors should to be considered.  

The evidence for and against the Dispersal Syndrome Hypothesis were almost fully based on 

comparative analysis of physical and morphological characteristics of fruits such as their size, 

shape and husk thickness (Janson 1983; Gautier-Hion et al. 1985; Fischer and Chapman 1993; 

Jordano 1995; Lord 2002). Another fruit trait that has been shown to correlate with dispersal vector 

and to have probably evolved in this context is fruit color (Lomáscolo and Schaefer 2010). 
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Conspicuous fruit colors are common in fruits dispersed by birds (Janson 1983; Herrera 2002; 

Link and Stevenson 2004), who are tetrachromatic and probably possess the most acute color-

discrimination capacity among vertebrates (Bennett and Théry 2007). Fruit color has also been 

shown to promote consumption by birds and thus mediate the mutually beneficial interaction of 

birds and plants (Geravis et al. 1999; Cazetta et al. 2007). Finally, fruit color is at least partially 

correlated with nutrient content, thus making it a reliable signal for reward quality (Cazetta et al. 

2011; Schaefer et al. 2014). So, fruit color is assumed to have evolved as a reliable signal for fruit 

ripeness: by allowing birds to easily identify ripe fruits and possibly their quality, it promotes 

ingestion of the ripe fruits seed dissemination. Reliable communication between birds and plants 

translates into fitness benefits for both parties. 

 

1.1.3. Fruit odor – an evolved signal for fruit ripeness? 

Similarly to color, fruit odor has a potential to signal ripeness and quality to seed-dispersal vectors 

if they are capable of detecting the olfactory signal and using it for food acquisition. Given the 

similarity between color and odor, this hypothesis is almost a trivial extension of the Dispersal 

Syndrome Hypothesis. In fact, the notion that fruit odor is a part of the signaling syndrome of fruit 

dispersed by olfactory guided frugivores has often been presented as if it had been fully 

established (Howe and Westley 1986, 1988).  

However, analysis of wild fruits odor – the prerequisite for testing this hypothesis – has been 

extremely rare and the vast majority of studies focused on cultivated species (Rodríguez et al. 

2013), whose odor profiles have been under artificial selection for generations and are therefore 

uninformative with regards to the ecological function of fruit odor. Further, the very idea that fruit 

secondary metabolites, volatile and non-volatile, fulfill any function is not fully established. The 

reason why they are labeled as “secondary” is that when first identified, they were considered to 

have no clear function in plant physiology (Schaefer and Ruxton 2011). While it is now clear that 

secondary compounds have many, mainly defensive, functions in leaves (Farmer 2014), their 
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presence in fruits has been considered by some to be a result of pleiotropic constraints (i.e. their 

synthesis in leaves) and hence non-adaptive (Eriksson and Ehrlén 1998).  

Thus, despite many speculations regarding potential adaptive functions of fruit secondary 

metabolites (Cipollini and Levey 1997), the hypothesis that fruit odor – i.e. its volatile secondary 

metabolites profile – is an adapted signal to frugivores has remained practically untested until 

quite recently (Herrera 2002) and was finally addressed as it was shown that fruit odor in bat-

dispersed figs (genus Ficus) tends to be stronger and more unique (i.e. different from the odor of 

unripe fruits) than in bird-dispersed species and that bats direct their foraging efforts according to 

this olfactory signal (Hodgkison et al. 2007, 2013; Borges et al. 2008, 2011, 2013; Lomáscolo et 

al. 2010). So, it is now established that fruit odor promotes fig consumption and seed dispersal by 

bats and that it is likely to have adapted in response to selection pressures by frugivorous bats 

similarly to fruit color in bird-dispersed species.  

Yet despite of the support this hypothesis received, it constitutes a beginning rather than an end 

of the investigation of the role chemical communication takes in the interaction between fruits and 

seed dispersers. All studies focused on the narrow bat-fig model system and, therefore, there is 

so far no evidence that olfactory signals for ripeness have evolved in other plant families and as 

a result of interaction with other frugivore guilds – thus indeed a recurring component in many 

Dispersal Syndromes. 

 

1.2. Primates: seed dispersal and sensory ecology 

1.2.1. Primate frugivory and seed dispersal 

Primates and plants are involved in a myriad of different interactions. These range between 

antagonistic interactions such as herbivory (Dittus 1985) or granivory (seed predation) (Palminteri 

et al. 2012) and mutualistic interactions such as seed dispersal (Chapman and Onderdonk 1998) 

and occasionally pollination (Heymann 2011). Of the latter two, pollination is rather restricted and 
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the more common primate-flower interaction is florivory (flower predation) (Heymann 2011). Seed 

dispersal, on the other hand, is probably the most prominent interaction between primates and 

plants. Fruits are by far the most important feeding item in the primate order as a whole: roughly 

3 out of 4 primate species eat fruits at least occasionally, and in 40% of the species fruits 

contribute to at least 50% of the diet (Hohmann 2009). Thus, even species that are often 

categorized as mainly folivorous or insectivorous often include ripe fruits in their diets and provide 

seed dispersal services to plants.  

This strong reliance on fruits, along with the fact that primates constitute a significant share (up to 

40%) of the frugivore biomass in the tropics (Chapman 1995; Chapman and Russo 2007), implies 

that primates have, one way or the other, a significant effect on the reproductive success of plants. 

Even when only ripe fruits are consumed (i.e. when the seeds are fully viable), several aspects 

affect the quality of the seed dispersal services – and, compared to alternative dispersal agents, 

determine whether the interaction leads to effective seed dispersal or to seed waste (Schupp 

1993; Schupp et al. 2010). Seed-dispersal effectiveness (henceforth SDE) is defined as the 

product of two main factors: the quantity (how many seeds are dispersed?) and quality of dispersal 

(the probability that a single dispersal event would lead to the establishment of an adult plant). 

The quantity variable is determined by the number of visits to a given plant species and the 

number of seeds removed per visit, which are in turn a function of several variables: body size, 

handling behavior, local abundance and the degree of frugivory. The quality fraction is less 

straightforward to estimate, and relies on the treatment the seed receives in the mouth and gut, 

and on its deposition: the deposition location and microenvironment, whether it is deposited with 

many other con- and heterospecific seeds and whether it is surrounded by fecal material, which 

may promote secondary dispersal (Schupp et al. 2010).  

So what is the seed dispersal effectiveness of primates? The overall effectiveness is not trivial to 

quantify (Chapman et al. 2013) and is anyway relative because in the absence of alternatives, 

even a low-SDE dispersal vector would be better than nothing. Regarding the quantity component 

of SDE, primates, and especially large-bodied species, were reported to disperse excessive 
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amounts of seeds that amount to 25,000 seeds/km2/day by woolly monkeys (Stevenson 2000) or 

16,000 seeds/km2/day by a single Bornean gibbons group (McConkey et al. 2002). These figures 

are often translated into a higher proportion of seeds dispersed relative to other dispersal vectors 

such as birds (Howe 1980; Clark et al. 2005), thus implying that at least for the quantity component 

of SDE, primates can be considered “good dispersal vectors”. On the other hand, primates also 

employ a rather wasteful feeding strategy that often leads to substantial seed waste (Howe 1980).  

The quality component of SDE is even more difficult to quantify. The effect of primate gut-passage 

treatment on germination probability is, on average, positive but lower than that of birds and bats 

(Traveset 1998; Traveset and Verdú 2002). However, the removal of pulp, even without 

swallowing the seeds, can significantly improve the survival and germination rates in some 

species (Lambert 2001). Further, primates, with body masses that apart from few outliers range 

between few hundreds of grams and several kilograms (Smith and Jungers 1997), are larger than 

other seed dispersers such as passerines (Martin et al. 2011) or bats (Thomas 1984) and 

therefore tend to move seeds to greater distances (Clark et al. 2005; Nathan et al. 2008). 

Additionally, larger-bodied dispersal vectors can disperse larger seeds (Kaplin and Lambert 2002) 

– which is one of the main advantages of endozoochory (see 1.1.1). On the other hand, the large 

body mass of primates also leads to the ingestion of many seeds in a single feeding bout and 

hence to deposition of these seeds together - a process that to some extent counters the positive 

effect of dispersal as means of escaping density-dependent seed mortality (Howe 1986). Finally, 

the deposition of seeds along with fecal material promotes secondary dispersal by dung beetles 

and therefore increases the probability of establishment (Vander Wall and Longland 2004,Culot 

et al. 2010a). Thus, although making generalizations regarding the quality component of primate 

SDE is impossible outside of a clear context with quantifiable reference points (e.g. alternative 

dispersal by birds), primates certainly have the potential to score high not only on the quantity 

component of SDE, but on the quality component too.  

Yet another point that makes primates, as a group, a good dispersal vector is that while they show 

substantial variation in traits directly related to their SDE such as group size, body mass, feeding 



General introduction - Primates: seed dispersal and sensory ecology 

9 
 

behavior, movement patterns and many other aspects (Campbell et al. 2010), they also show a 

significant overlap with regards to the fruit species they consume (Stevenson et al. 2000; 

Yamagiwa and Basabose 2009). Thus, plants that rely on primates for seed dispersal are usually 

consumed by several primate species (e.g. Janson 1983; Link and Stevenson 2004). As a result, 

the dispersal services that primates, as a group, provide are heterogeneous and potentially 

complementary. For example, specialization on dispersal by primates may provide a tree with 

removal of large quantities of seeds and their dispersal to great distances by larger-bodied 

primates, but also dispersal of a smaller number of seeds in smaller clumps. Additionally, dispersal 

by small primates is more likely to reach forest patches in early regeneration stages (Oliveira and 

Ferrari 2000,Culot et al. 2010b). All in all, through relatively high SDE quantity, positive SDE 

quality and diverse complementary dispersal services, primates prove to be essential for forest 

regeneration in many systems (Kaplin and Lambert 2002; Nuñez-Iturri and Howe 2007; Nuñez-

Iturri et al. 2008; Anzures-Dadda et al. 2011). 

 

1.2.2. The effects of primate feeding ecology on fruit characteristics 

Given the diverse and generally positive seed-dispersal services primates provide, it is not 

surprising that many fruit species strongly rely on primates for seed dispersal. In the Neotropics, 

for example, while fruits mainly dispersed by birds may also be consumed by several non-flying 

mammals, many fruits evolved thick protective husks inaccessible for most birds and bats and 

rely on primate dispersal almost exclusively (Janson 1983; Link and Stevenson 2004). When 

searching and choosing these fruits, primates may use their manual capacities to remove the husk 

and investigations from various sensory capacities – tactile, visual and olfactory – to detect the 

fruits and assess their quality (Dominy et al. 2006). Accordingly, under the Dispersal Syndrome 

Hypothesis framework (see 1.1.2), we may ask ourselves which selection pressures primate seed 

dispersal has generated on the characteristics of fruits they disperse? How primate behavior, 

feeding strategy and sensory capacities shaped the fruits that rely on their dispersal services?  
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Primate-dispersed fruits tend to contain larger seeds (Howe 1986) which are also offered in fruits 

larger than those of bird or bat dispersed species (Janson 1983; Link and Stevenson 2004; 

Flörchinger et al. 2010). The ability to promote dissemination of large seeds is a boon in sunlight-

challenging tropical environments (see 1.1.1) and it is thus not surprising that many plant species 

evolved to rely on primates and other non-flying mammals, even at the price of the need to 

produce larger fruits to accommodate their larger body masses (Herrera 2002). Primate-dispersed 

fruits also tend to be better protected (i.e. to have a thicker husk) than fruits dispersed by bats or 

birds (Janson 1983; Link and Stevenson 2004; Flörchinger et al. 2010). This is presumably a 

direct response to the complex manual capacities of primates (Torigoe 1985), which allows them 

to open fruits and in turn allows fruits to be better protected against antagonists while retaining 

the availability to their main dispersal vectors. Finally, nutrient content has been suggested to vary 

between fruits dispersed by different frugivore assemblages. Primate-dispersed fruits were 

predicted to contain lower amounts of lipids compared to fruits dispersed by bats or birds (Howe 

1986). The few direct comparisons of primate and non-primate dispersed fruits published to date 

do not report significant differences in their nutrient content (Flörchinger et al. 2010) or minor 

differences in sugar and fiber content, which may in turn derive from abiotic factors (Voigt et al. 

2004). Nonetheless, these two studies were conducted in the Paleotropics, where the primate-

bird dispersal syndromes are less distinct than in the Neotropics (cf. Janson 1983; Gautier-Hion 

et al. 1985). 

Another fruit trait that may have been under selection pressures by seed-dispersing primates is 

color. Fruit color has been shown to have evolved in bird-dispersed fruits to mediate the interaction 

between birds and plants (see 1.1.2). Primates are the only eutherian mammals known to have 

evolved trichromatic vision (Jacobs 2009), and trichromacy is habitual among all cattarrhines and 

presents population level polymorphisms in which some females are trichromats whereas all 

males and the rest of the females are dichromats, in most platyrrhines and in some strepsirrhines 

(Dominy 2004a; Leonhardt et al. 2008; Jacobs 2009). Given that vision is considered the main 

sensory modality in primates (Fobes and King 1982) and that it is involved in every phase of their 

food acquisition process (Dominy et al. 2001, 2006), it becomes probable that fruits dispersed by 
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primates would use color to communicate with them similarly to bird-dispersed fruits. Accordingly, 

the dominant view for the evolutionary forces leading to the evolution of primate trichromacy in 

primates is their frugivory – thus implying a coevolutionary process in which fruit color and primate 

color vision enhance each other (Regan et al. 2001).  

Indeed, most primate dispersed fruits, at least in the Neotropics, change their color at ripeness 

(Regan et al. 2001) and become more conspicuous to foraging primates (Matsumoto et al. 2014; 

Melin et al. 2014). However, the color-vision-frugivory connection may not be so straightforward. 

First, regarding what primates can do with their color vision, as opposed to birds (see 1.1.2), there 

is no evidence that they can detect differences in fruit quality (i.e. nutrient content) based on fruit 

color (Dominy 2004a; Dominy and Lucas 2004). Accordingly, among polymorphic species, 

trichromatic individuals do not find fruits in higher rates (Dominy et al. 2003) or enjoy an increased 

caloric intake from fruits (Vogel et al. 2006). Second, regarding the evolution of fruit color, primate-

dispersed fruits provide visual signals that are less conspicuous than bird-dispersed fruits 

(Lomáscolo and Schaefer 2010), which implies that, all other things being equal, selection 

pressures exerted by the primate visual system on fruit color were weaker than those generated 

by birds’ tetrachromacy. Finally, trichromacy proves to be more useful in folivory (Dominy and 

Lucas 2001, 2004). Thus, it is far from certain that primate color vision has evolved mainly in the 

context of frugivory, and therefore, fruit color in most species is probably not, or at least to a 

significantly lesser degree, an adaptation to signal ripeness to them similarly to the patterns we 

observe in bird-dispersed fruits. So, despite the supposed primacy of vision among the sense of 

primates, it appears to have had a minor effect on the evolution of fruit traits. 

 

1.2.3. Primate olfaction 

Olfaction – the sense of smell – has long been speculated, and recently confirmed for bat-fig 

interactions, to have exerted selection pressures on fruit traits, namely fruit odor (see 1.1.3). 

However, for long this speculation has been absent from the discussion of primates and the fruits 
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they disperse. This is mainly due to the fact that primates have traditionally been viewed as 

“microsmats”, whose sense of smell is reduced to practically negligible levels (Laska et al. 2000; 

Heymann 2006). This view was established in the early days of the study of primates (e.g. Elliot 

Smith 1927) and was based on the observation that primates have simpler nasal structures (Smith 

et al. 2007) and, relative to their brain size, small Main Olfactory Bulbs (MOB) – the brain structure 

dedicated to initial processing of olfactory stimuli (Baron et al. 1983; Ankel-Simons 2007). This 

has been viewed as a direct consequence of the elaboration of vision (Cartmill 1974) – a notion 

that is in line with the alleged increase in the centrality of vision among “higher” primates (Kirk and 

Kay 2004) and with the fact that the trends of reduction in nasal complexity and relative MOBs 

size are most apparent in the very same “higher” primates (Baron et al. 1983; Ankel-Simons 2007; 

Smith et al. 2007). Alongside our own experience as a vision-oriented species, the notion of 

“microsmatic primates” prevailed and the study of primate olfaction was almost absent for many 

decades. 

First breaches in this paradigm came about when social functions of the sense of smell have been 

identified in several primate species (Michael et al. 1976) and eventually also in humans (Wysocki 

and Preti 2004). Yet the biggest blow to the notion of “microsmatic primates” came from a series 

of studies that, instead of speculating on primates’ olfactory capacities based on anatomical 

proxies, measured actual performance in detection and discrimination tasks and demonstrated 

that, at least with regards to some compounds and compound classes, primate species of all main 

lineages outperform “macrosmats” such as dogs or rodents (Laska and Freyer 1997; Laska et al. 

2000, 2005a,Laska and Seibt 2002a,b). These discoveries allowed to finally depart from the 

traditional notion that “olfaction doesn’t matter” and led to a proliferation of studies that looked at 

the ecological functions of olfaction (Bolen and Green 1997; Bicca-Marques and Garber 2004; 

Phillips et al. 2004,Laska et al. 2007a; Siemers et al. 2007; Melin et al. 2009). However, these 

studies were often not integrated in a clearly defined framework, and were thus either not fully 

comparable or not controlling for all confounding factors. For example, several studies (e.g. Gilad 

et al. 2004; Dong et al. 2009) used counts of potentially functional olfactory receptor genes (ORs), 

which code the different receptors responsible for detection of volatile compounds, as a proxy for 
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interspecific comparisons of “olfactory acuity”. However, none tried to elucidate what actual 

physiological capacity a higher number of ORs may generate. Other studies (e.g. Siemers et al. 

2007) performed controlled behavioral experiments without clear definitions of the actual function 

of the sense of smell in primates’ feeding ecology, and found themselves demonstrating high 

performance in tasks that are ecologically irrelevant. As a result, even though the notion that 

“olfaction doesn’t matter” shifted to “it may indeed matter”, it is difficult to pinpoint large-scale 

evolutionary directions in primate olfaction: it is not clear how the sense of smell helps, if at all, to 

the process of food acquisition and thus which ecological niches generated selection pressures 

that promoted elaboration of different olfactory capacities. Consequently, apart from vague 

speculations (e.g. Howe 1986), primate olfaction has been absent from the study of seed dispersal 

and was ignored as a potential factor exerting selection pressures on fruit characteristics.  

 

1.3. Synthesis: the chemical ecology of primate seed dispersal 

The “chemical domain” in primate-plant interaction remains, therefore, unexplored. From the 

plants side of the interaction, the systematic investigation of fruit’s employment of volatile 

compounds as a signaling mechanism to seed dispersers is limited to the narrow model system 

of bats and figs. From the primate side, it is by now accepted that the sense of smell may have 

an important role in their feeding ecology, but data are scarce and unintegrated and we do not 

know what primates actually do with their sense of smell in the process of food acquisition and in 

which species and contexts it is prominent. However, the data collected so far points at a clear 

direction: if fruits are likely to have evolved to signal ripeness through olfactory cues, and if 

primates are important seed dispersers and have a good sense of smell, it becomes very likely 

that just like primate anatomy shaped fruit morphology, their sense of smell exerted selection 

pressures that shaped fruit chemical profiles.  

The goal of this thesis is to explore this underinvestigated “chemical domain” of primate-plant 

interactions. The main hypothesis tested is that fruit odor in primate-dispersed species is an 



General introduction - Synthesis: the chemical ecology of primate seed dispersal 

14 
 

adaptation to primate seed dispersal, i.e. it has evolved in order to promote consumption of ripe 

fruits by primates and the dispersal of mature seeds. To test this hypothesis, both sides of the 

interaction – primates and plants – ought to be looked at. Thus, the thesis is comprised of three 

chapters that alternate between these two parties. 

The first, still introductory, chapter 2 is a theoretical review that attempts to critically summarize 

and organize the available behavioral data regarding the use of olfaction in the process of primate 

food acquisition. Its goal is to examine the roles of the sense of smell in primate feeding ecology 

and determine in which contexts it becomes most important. More specifically, it asks two main 

questions: 

a. What is the main function of olfaction in primates’ feeding ecology? 

b. Which ecological niches favor more reliance on the sense of smell? 

Despite the scarcity of data, this introductory chapter concludes that frugivory is a context that 

often requires more reliance on olfaction and, more importantly, that the main function of olfaction 

in this context is food selection rather than detection. This means that primates are unlikely to rely 

on olfaction to locate feeding trees: they probably do so using their spatial cognition in the longer 

range and vision from a shorter range. Olfaction, in contrast, is used to determine, within a feeding 

tree, whether each individual fruit is ripe or unripe. 

If this is indeed the case, it implies that the putative selection pressures exerted by the primate 

sense of smell on fruits would not act to generate particularly strong odors that could be carried 

away to long distances, but rather to emit unique odors that reliably mark ripe fruits and allow 

primates to know that an individual fruit is ripe and thus promote its ingestion and consequent 

seed dispersal. To address this, chapter 3 switches its focus to the plant side of the interaction. 

Its first goal is to examine whether fruit species whose main dispersal vector is primates bear an 

odor which is potentially informative of their ripeness level. So, its first question is: 

c. Do fruits of primate-dispersed species emit a unique odor at ripeness, thus making their 

olfactory signature a reliable indicator for their ripeness level? 
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Second, to examine whether this could be considered an adaptation for that function rather than 

a byproduct which is secondarily used by primates, the chapter employs a comparative approach. 

It compares the patterns of odor production in ripe and unripe fruits from four species: two primate- 

and two bird-dispersed. Birds are considered to have much lesser reliance on olfaction and higher 

visual capacities. Thus, under the Dispersal Syndrome framework, they are expected to focus 

their signaling efforts on visual cues. By comparing to patterns of odor change at ripeness to bird-

dispersed species, it allows asking the question: 

d. Is the production of unique odor at ripeness a distinct feature of species whose main dispersal 

vector is primates (or other olfactory-developed frugivores), or does it also exist in species 

whose main dispersal vector is olfactory-less-dependent such as birds – and is thus an 

inevitable byproduct of fleshy-fruit maturation? 

Further, the four plant species used as a model system correspond to a phylogeny in which each 

primate-dispersed species is phylogenetically closer to one bird-dispersed species than they are 

to one another. This allows to control for the effects of constraints on evolution, or phylogenetic 

inertia (Gould and Lewontin 1979), and ask: 

e. Is the pattern of production of a unique odor at ripeness in primate-dispersed species 

independent of phylogeny? 

The chapter demonstrates that fruits of primate-dispersed species indeed emit an odor unique to 

the ripe phase. This, however, does not yet prove that these odors have anything to do with the 

communication between primates and plants. To establish that, chapter 4 returns to the primate 

side of the interaction and reports bioassays conducted with captive monkeys that examines 

whether primates “understand” the signal putatively emitted by fruits. More specifically, it asks: 

f. Can primates physiologically discriminate between the odors of ripe and unripe primate-

dispersed fruits?  

g. If yes, do they use this capacity to select ripe fruits in the absence of other cues such as 

color, texture etc.? 
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The chapter provides data that confirms that primates “understand” this signal, and thus provide 

the final support to the hypothesis that fruit odor is an adaptation to signal ripeness to seed-

dispersing primates. However, the odor of fruits is complex and composed of many different 

volatile compounds, some of which may be produced for other functions (Cipollini and Levey 

1997). Identification of the components of odors that evolved as a direct response to selection 

pressures exerted by primate sensory ecology is not only a difficult task – it may be impossible, 

and it is in fact slightly naïve to think that the compounds composing fruits odor are fully 

independent from one another. Yet assuming that the main function of odor production in the 

context of signaling to seed dispersers is an enhancement of the perceived uniqueness of the ripe 

fruits (i.e. how different is the smell of ripe and unripe fruits in the eyes, or rather the nose, of the 

frugivore), a starting point in elucidating which compounds have evolved for this function would 

be to compare their relative contribution to the discrimination capacity of primates. Thus, chapter 

0 asks: 

h.  Which compounds in the odor profiles of primate-dispersed fruits disproportionally contribute 

to primates’ ability to identify them against unripe fruits? 

 

To summarize, questions (a) and (b) examine what primates tend to do with their sense of smell 

in the context of food acquisition, and establish the predictions with regards to the selection 

pressures on fruit traits that are expected under the Dispersal Syndrome Hypothesis. Question 

(c) tests whether the volatile profile of primate-dispersed fruits is in accordance with these 

predictions, while questions (d) and (e) examine, through comparison to other species, whether 

this pattern is likely to be an adaptation evolved for this function. Returning to the primate side of 

the interaction, questions (f) and (g) ask whether primate physiological capacities and food-

selection behavior correspond to the predictions that derive from the observed patterns of fruit 

odor release. Finally, question (h) addresses a more proximate level and asks which particular 

components of fruit odor can be attributed to the putative “odor as an evolved signaling 

mechanism” hypothesis tested here. 



Olfaction in primate feeding ecology  

17 
 

 

 

2. OLFACTION IN PRIMATE FEEDING ECOLOGY 

 

Led by the Nose: Olfaction in Primate Feeding Ecology 

2015 

Evolutionary Anthropology 24: 137-148 

DOI: 10.1002/evan.21458 

 

With: 

Eckhard W. Heymann, Behavioral Ecology and Sociobiology Unit, German Primate Center, 

Kellnerweg 4, 37077 Göttingen, Germany 

  

http://onlinelibrary.wiley.com/doi/10.1002/evan.21458/abstract


Olfaction in primate feeding ecology  

18 
 

Abstract 

Olfaction – the sense of smell – was a latecomer to the systematic investigation of primate sensory 

ecology after long years in which it had been considered to be of minor importance (Heymann 

2006). This view shifted with the growing understanding of its role in social behavior (Michael et 

al. 1976) and the accumulation of physiological studies which demonstrated that the olfactory 

abilities of some primates are on par with those of olfactory-dependent mammals such as dogs 

and rodents (Laska and Freyer 1997; Laska et al. 2000). Recent years have seen a proliferation 

of physiological, behavioral, anatomical and genetic investigations of primate olfaction that has 

begun shedding light on its importance in the process of food acquisition. However, integration of 

these works has been limited and it is therefore still difficult to pinpoint large-scale evolutionary 

scenarios, namely what functions the sense of smell fulfills in primates’ feeding ecology and which 

ecological niches favor heavier reliance on olfaction. Here, we review available behavioral and 

physiological studies from the field or captivity, and try to elucidate how and when the sense of 

smell can help primates in the process of food acquisition.  
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2.1. Introduction 

The mammalian sense of smell is managed by several functionally distinct systems of which the 

major ones are the main and the accessory olfactory systems (Smith and Bhatnagar 2004). 

Although some overlap between the two exists (Baxi et al. 2006), the accessory olfactory system 

is generally dedicated to processing intraspecific social cues and signals (e.g. pheromones) 

whereas the main olfactory system deals with airborne chemicals from other sources (Lledo et al. 

2005). Thus, chemosensation via the main olfactory system is what most of us would recognize 

as smelling: it allows sampling, detection and identification of volatile compounds from the 

environment (Fig. 2.1). 

 

 

Figure 2.1. Smelling through the main olfactory system. (1) Airborne chemicals enter the nasal 

cavity when inhaling or when actively sniffing. (2) The odorants reach the olfactory epithelium, 

which hosts millions of nerve cells. Each nerve cell expresses only one type of olfactory receptor 

and projects to the main olfactory bulb – the first processing unit of the main olfactory system. (3) 

Odorants bind to only few olfactory receptors and evoke action potentials that are carried to the 

main olfactory bulb. (4) The signal from the one or more odorants is processed in the main olfactory 

bulb and then passed to the olfactory cortex, the limbic system and the rest of the brain (Mori et 

al. 1999; Buck 2004; Lledo et al. 2005). Figure adapted from an original by Patrick J. Lynch, 

medical illustrator; C. Carl Jaffe, MD, cardiologist; CC 2.5. 
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There is, by now, little argument over the notion that primates have a good sense of smell. High 

olfactory ability entails two major olfactory capacities: olfactory sensitivity and discrimination 

capacity. Olfactory sensitivity is the ability to detect odorants at relatively low concentrations and 

discrimination capacity is the ability to perceive that two odors are different from one another and 

thus also to recognize odors. In a series of physiological studies, several primate species from 

different lineages have been shown to possess high olfactory sensitivity (Laska et al. 2000,Laska 

and Seibt 2002b) and discrimination capacity .(Laska and Freyer 1997,Laska et al. 2005a). 

Notably, their performance was on par with that of mammals which are considered to be highly 

olfactory-dependent such as dogs or rodents. These high olfactory capacities have been 

demonstrated to be relevant in various contexts, from social behavior (Palagi and Dapporto 2006) 

to predator avoidance (Sündermann et al. 2008). Not surprisingly, another context in which the 

sense of smell has been shown to be useful is food acquisition. Studies in the wild described 

“sniffing” behavior in foraging primates and many captive experiments have shown that primates 

of several lineages can use olfactory cues to detect or choose feeding items (Dominy et al. 2001, 

2006). It thus became clear that the sense of smell is likely to play an important role in primate 

feeding ecology.  

But beyond knowing that it may be important, how much do we know about what it actually does? 

In which contexts is it most informative? Which ecological niches favor higher reliance on olfaction 

and possibly select for higher olfactory sensitivity or discrimination capacity?  

Previous attempts to answer some of these questions have focused on comparative analyses of 

anatomic and genetic components of the primate main olfactory system. Interspecific variation in 

several features of the main olfactory system has been documented: species differ in the surface 

area of the olfactory epithelium (Smith et al. 2004), the size of the main olfactory bulb (Stephan et 

al. 1981) and the number of functional olfactory receptor genes, which code the receptors 

expressed on the olfactory epithelium (Rouquier et al. 2000). Several studies interpreted 

interspecific variation in these traits as evidence that frugivorous and insectivorous diets, as well 

as a nocturnal activity time, are associated with superior olfactory capabilities. Another argued 

that the acquisition of trichromatic vision in primates has led to a reduction in olfactory capacities  

(Tab. 2.1). Yet the basic assumptions behind them are questionable and most importantly, it is 

unclear which olfactory capacities these measurements approximate and whether they are at all 

useful in assessing the level of reliance on olfaction in a species (Box 2.1, 2.2).  

Thus, current conceptions regarding how and in which contexts olfaction plays a role in primate 

food acquisition are still primarily based on genetic and anatomical proxies, while behavioral 

works, when taken separately, often serve as no more than anecdotal support for the notion that 

the primate sense of smell can be useful. However, many behavioral studies have accumulated 

since the last reviews dealing with the roles of olfaction in primate feeding ecology (Dominy et al. 
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2001, 2006) and addressing them together allows to begin to understand how the high olfactory 

capacities of primates translate into success in realistic ecological tasks in the context of food 

acquisition.  

Here, we take a step in this direction and review available behavioral studies regarding the role(s) 

of olfaction in primate feeding ecology. Rather than simply describing all instances of usage of 

olfaction in the context of food acquisition, we organize relevant behavioral studies in a way that 

can help departure from the general notion that olfaction is useful and elucidate what primates do 

with their sense of smell when addressing feeding challenges, when it is useful and when it is not. 

We ask two main questions: 

• What function the sense of smells fulfills in primate food acquisition? 

• Which ecological niches favor higher reliance on olfaction? 

The starting point for the first question is the distinction between the searching and selection 

phases (Dominy et al. 2006), i.e. the localization vs selection and quality assessment of food 

resources. These two levels may require different capacities and provide different kinds of 

information: “where food might be?” as opposed to the quality of individual items such as fruits on 

a tree that provides fruits of different degrees of ripeness. We then move on to the second question 

and examine two aspects of ecological niches that have been suggested to generate different 

requirements from the olfactory system: dietary strategies and the availability of visual cues. The 

goal is to use behavioral works and apply a (qualitative) comparative approach to examine 

whether species with different diets or those for whom visual cues are less available tend to use 

their sense of smell more than other primates when searching for or choosing food items. A 

concluding section emphasizes the difficulties presented by currently available data and offers 

directions for future studies.  

 

Box 1.1. Linking brain structures and olfactory performance 

Two main anatomical features of the main olfactory system have been considered to be good 

proxies to estimate the importance of olfaction in different species: the surface area of the olfactory 

epithelium, on which olfactory receptors are expressed, and the size of the main olfactory bulb 

(MOB), which projects to the olfactory epithelium and processes its input (Mori et al. 1999; Smith 

et al. 2004; Lledo et al. 2005). The surface area of the olfactory epithelium can potentially be 

indicative of olfactory sensitivity because it could host more olfactory receptors, thus allowing 

detection of odorants at lower concentrations (Smith et al. 2004). However, the fact that the 

number of receptors per unit of area is not constant across taxa renders it an unreliable 
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measurement (Smith et al. 2004). The MOB, on the other hand, is clearly defined in the brain and, 

due to its direct projection to the olfactory epithelium, may present a better approximation for the 

actual number of olfactory receptors and thus olfactory sensitivity.  

Volumetric data for the size of the MOB in dozens of primate species are available (Stephan et 

al. 1981) and have been used to compare different species and lineages (Baron et al. 1983; Barton 

et al. 1995; Barton 2006). But how should size be measured? Primates’ brain size is strongly 

correlated with body mass (Jerison 1955) and individual brain structures change allometrically 

with brain size (Finlay and Darlington 1995). Thus, variation in MOB size that derives from 

differences in body mass is presumably not informative for any adaptationist discussion. This logic 

led comparative studies of primates (Baron et al. 1983; Barton et al. 1995; Barton 2006) and other 

taxa (Hutcheon et al. 2002) to use the relative rather than absolute size of the MOB. This 

approach, however, has been criticized. In contrast to total brain volume, which is assumed to 

grow with body mass to accommodate the increase in muscle mass and sensory input from a 

higher surface-area of the skin, olfactory information, or sensory demand, is not directly related to 

body size. It is therefore doubtful whether a larger animal would require a larger MOB (Smith and 

Bhatnagar 2004). Additionally, the MOB is not fully constrained by total brain volume and shows 

some degree of independent evolution (Barton and Harvey 2000; Finlay et al. 2001), and the total 

number of neurons in the primate main olfactory bulb is correlated with its absolute mass (Ribeiro 

et al. 2014). The size of the eyes or the primary visual cortex (V1) follows this same logic. Larger 

animals do not need larger eyes, and the absolute size of the visual cortex is correlated with the 

number of neurons and consequently with success in solving visual challenges between and 

within species (de Sousa and Proulx 2014). Thus, other studies used the absolute, and not 

relative, size of the MOB as a proxy for olfactory sensitivity (Heritage 2014).  

Making things even more complex, when scaling aspects of the olfactory system to body or brain 

size, most studies log-transform the variables in order to meet the assumptions of the statistical 

methods employed (Baron et al. 1983; Barton et al. 1995; Barton 2006). Although this is a 

standard procedure, it might alter the conclusions drawn from the same dataset (Fig. 2.2). For 

example, before log-transformations, the nocturnal owl monkeys (Aotus spp.) have the largest 

MOB to brain ratio in all anthropoids. After transformation, they lag behind six other diurnal taxa 

(Stephan et al. 1981).  

The question of proper scaling is not unique to the main olfactory system. For example, different 

legitimate measurements of brain size support different hypotheses regarding encephalization in 

primates (Deaner et al. 2000). This emphasizes that before using any measurement as a proxy 

for another trait, the functional and biological relations between the two must be fully understood. 

So, while it is plausible that there is some connection between the size of the MOB in a species 

and its olfactory capabilities, it is difficult at this point to draw any direct line between the two.  
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Figure 2.2. Same data, different conclusions. Differences in MOB (main olfactory bulb) size between 

folivorous (Fol) and frugivorous/faunivorous (Fru/Fau) primates using three legitimate scaling methods: 

absolute MOB volume, MOB volume relative to body mass and MOB volume relative to body mass when 

both variables are log-transformed. MOB volume and body mass data are from Stephan et al. (1981) (N = 

36 frugivorous/faunivorous and N = 8 folivorous species) and dietary categories from Kappeler and Heymann 

(1996). Asterisk denotes significance at α = 0.05 from an independent contrasts linear regression model 

(Felsenstein 1985). Analyses were conducted on R 3.0.3 (R Core Team 2014) with package Caper (Orme 

et al. 2012) using an independent-rates soft-bounded constraints phylogeny from Springer et al. (2012). The 

absolute MOB size of folivorous primates is on average a bit larger but in a statistically non-significant level 

(F = 0.53 (1, 42), p = ns). This is probably because folivorous species tend to be larger (Terborgh 1992) and 

thus have larger brains and MOBs. The effect is reversed when looking at relative MOB size (F = 1.05 (1, 

42), p = ns) and becomes statistically significant only when data are log-transformed (F = 4.14 (1, 42), p = 

0.048). This may reflect genuine higher emphasis on olfaction in these species, or merely an artifact of 

wrongly correcting for a larger body size in folivores.  

 

 

 

Box 2.2. The genetics of olfaction and comparative studies 

The Nobel winning discovery of the olfactory receptor (OR) gene family (Buck and Axel 1991) 

introduced molecular biology to the study of olfaction and vice versa. Members of this massive 

gene family code the majority of the different olfactory receptors of the main olfactory system. 

They are expressed on the olfactory epithelium, and a broader range is assumed to be associated 

with the ability to detect more compounds or better discriminate between odors (Young and Trask 

2002; Nei et al. 2008). Since some OR genes have lost functionality in all primate lineages 

(“pseudogenization”), the remaining number of intact genes, or the proportion of pseudogenes, 

has been used to infer inter-specific variation in olfactory discrimination capacity (Rouquier et al. 

2000; Gilad et al. 2004; Zhang et al. 2007; Dong et al. 2009; Matsui et al. 2010). This assumption 

is partially supported by physiological studies (Rizvanovic et al. 2013) and is rather sound because 
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animals like rodents, which are generally considered as highly olfactory-dependent, tend to have 

substantially more intact ORs than animals such as dolphins, which are considered to have little 

or no reliance on olfaction (Niimura 2012).  

It comes, however, with some caveats. To begin with, potentially functional ORs can be expressed 

in non-olfactory tissues while pseudogenes can be expressed in the olfactory epithelium (Zhang 

et al. 2007). Thus, the number of intact OR genes is not necessarily equivalent to the number of 

expressed functional receptors in the main olfactory system. Moreover, even a good estimation 

of the actual number of functional receptors in the main olfactory system would only be a very 

crude proxy for the ability to rely on olfaction to address real-life challenges. The primate OR 

family has gone through a birth-and-death process that included positive and purifying selection 

(Gilad et al. 2005; Dong et al. 2009). This means that the functional genes in a given species are 

not simply a fraction of the ancestral stock but a unique combination of genes that may be well 

adapted to species-specific ecological requirements. For example, a hypothetical dietary 

specialist may rely on olfaction more than a generalist and present superior sensitivity and 

discrimination capacities in its respective niche, but possess a smaller total number of functional 

OR genes because its olfactory system has to deal with less diverse stimuli. Lastly, given the 

combinatorial nature of olfaction, even a relatively modest set of about 400 intact ORs present in 

humans allows the detection and discrimination of over 400,000 different volatile compounds (Mori 

and Manabe 2014) and of up to 1012 different odor mixtures (Bushdid et al. 2014). It is therefore 

hard to argue that this comparatively small number of functional ORs is necessarily associated 

with a handicapped sense of smell (Weiss 2014).  

Thus, ignoring results from behavioral works and relying only on genetics has led to unwarranted 

conclusions. For example, in one of the more insightful genetic works to date, the authors note 

that the number of functional OR genes is similar in different haplorrhine lineages and thus cannot 

account for “the reduced olfactory ability in apes and [Old World monkeys]” (Dong et al. 2009, p. 

263). This alleged reduced ability, however, has never been demonstrated in any physiological or 

behavioral test and its validity is based only on the not-fully established assumption that a 

relatively smaller main olfactory bulb is associated with a reduction in olfaction (Box 2.1). 

The genetics of olfaction clearly has a potential for going beyond low-resolution measurements 

such as “discrimination capacity” and telling us which species is adapted to work with which 

olfactory stimuli, and so to what extent a species’ main olfactory system has adapted to cope with 

the relevant ecological challenges. This, however, requires much more than counts of intact 

genes. It would not only require identifying the ecologically relevant odors, but also knowing which 

genetic makeup generates higher sensitivity to these stimuli and better discrimination between 

them. Although this approach is beginning to be established (Touhara 2014), we are still far from 
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understanding the environment-olfaction interaction in such resolution for any species, let alone 

for primates. 

 

2.2. Olfaction: what is it good for? 

Food acquisition is a multi-step process that includes locating food and assessing its quality 

(Dominy et al. 2001, 2006). Olfaction can potentially be useful in both: over the usually longer 

distance to detect food items and over the shorter distances for quality assessment and selection 

of individual items (Dominy et al. 2006). Information from these two phases does not fully overlap. 

For example, a high quality fruiting tree may still have many undesired unripe fruits. Thus, finding 

it and identifying the ripe fruits are completely different tasks that may challenge primates in 

different ways. 

 

2.2.1. Food detection 

Olfactory guided long-distance food detection is probably the more challenging task and requires 

not only the ability to detect and identify the cue, but also to follow the odor and track its source. 

In macroscopic scales, air movement over an odor source creates an odor plume, similarly to 

smoke issued from a chimney. Odor plumes have a weak chemical gradient across large 

distances and therefore maintain the integrity, i.e. proportion of odorants, over long distances in 

a rather narrow plume. This allows animals to scent-track the origin of the plume, usually by 

meandering in and around it (Vickers 2000). Humans have been shown to be able to scent-track 

in two-dimensional open-field conditions where the trail was restricted to the ground and 

movement free (Porter et al. 2007). Yet odor plumes are carried in the air and as opposed to 

insects, which can meander around an odor plume, primate movement in the three-dimensional 

space is restricted. Thus, olfactory-based long-distance location of feeding sources is a challenge 

in which primates are not expected to excel. 

Indeed, behavioral evidence for the ability of primates to use their sense of smell to find food over 

large distances is scarce. Two studies tested the ability of several wild and semi-wild New World 

primates to detect fruit-baited feeding platforms based on olfactory cues (Bolen and Green 1997; 

Bicca-Marques and Garber 2004). Owl monkeys (Aotus spp.) and one out of two emperor tamarin 

(Saguinus imperator) groups were capable of detecting the baited platform above chance level 

using only olfactory cues. However, these were the exceptions. Titi monkeys (Callicebus cupreus), 

tufted capuchins (Cebus apella), saddleback tamarins (Saguinus fuscicollis) and the second 
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emperor tamarin group failed this task. Moreover, the task was to detect baited platforms from a 

distance of only few meters, which is easier than the distances over which most primates search 

for fruits.  

A more recent study reported the failure of captive owl monkeys to locate baited feeding boxes 

based on olfactory cues (da Costa and Bicca-Marques 2014). The authors suggested that issues 

such as motivation and experimental design may have contributed to the negative results. Yet it 

still indicates that tracking food sources using olfactory cues is a task in which even owl monkeys, 

which perform better than other New World species in similar tasks (Bolen and Green 1997; Bicca-

Marques and Garber 2004), may not excel. Apart from that, neither positive nor negative evidence 

for long-distance olfactory foraging is available. The absence of evidence is not necessarily 

evidence of absence, but the fact that the typical and easily identified scent-tracking behavior 

most of us would identify from dogs is practically absent from the primate literature suggests that 

this may simply not be a part of their normal feeding strategy. 

Successful use of olfaction to detect food has been implied only in shorter distances, when 

tracking odor plumes is not required. Slender lorises (Loris lydekkerianus lydekkerianus) increase 

the level of olfactory investigation when foraging for invertebrates (Nekaris 2005) and mouse 

lemurs (Microcebus murinus) can detect insect prey using only their sense of smell (Piep et al. 

2008). In addition, short-distance olfactory guided foraging has been suggested to allow diademed 

sifakas (Propithecus diadema) to locate inflorescences hidden in the leaf litter (Irwin et al. 2007). 

 

2.2.2. Food selection 

Olfactory-based selection or assessment of individual items is probably an easier task that would 

usually be conducted at a very short distance in combination with other senses (Dominy et al. 

2006). Here, the challenge is to discriminate between the odors of, for example, ripe and unripe 

fruits and choose accordingly. Indeed, evidence for the importance of olfaction to primate food 

selection is much more abundant.  

Several studies reported an increase in sniffing behavior in situations that require quality 

assessment of feeding items (Fig. 2.3). As opposed to passive inhaling, sniffing is an active 

process of sampling to the main olfactory system in which repetitive sampling in differing speeds, 

volumes and frequencies increases the ability of the animal to assess odorant identity and 

concentration (Mainland and Sobel 2006; Verhagen et al. 2007). Thus, elevated levels of sniffing 

are indicative of more thorough olfactory investigation and reliance on olfactory cues. Sniffing of 

feeding items from short distances has been described in captivity (Zschoke and Thomsen 2014) 
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and in the wild (van Roosmalen 1985b; Matsumoto-Oda et al. 2007). Since sniffing occurs after 

the item is located, it clearly fulfills the function of quality assessment. Applying a more quantitative 

approach, two studies on wild spider monkeys (Ateles geoffroyi) and white-faced capuchins 

(Cebus capucinus) examined patterns of sniffing behavior when selecting figs (Hiramatsu et al. 

2009; Melin et al. 2009). Both species increased their sniffing behavior when feeding on fig 

species that are visually cryptic – i.e. do not provide a reliable visual cue for ripeness. This 

demonstrates the importance of olfaction for fruit selection after their location. Additionally, 

Experiments held in captivity showed that tufted capuchins increase the rate sniffing rate when 

unpalatable secondary compounds (pepper) are added to otherwise desired food (Visalberghi and 

Addessi 2000) and that both spider monkeys and squirrel monkeys (Saimiri sciureus) increase 

frequency of sniffing when facing novel items, probably in an attempt to estimate their quality 

(Laska et al. 2007c). So, evidence from the wild and captivity indicates that sniffing – active, 

repetitive olfactory sampling - is common when examining feeding items from close proximity and 

increases when facing novel items or when visual cues are unavailable.  

Furthermore, few works examined experimentally whether primates can rely on olfactory cues to 

assess the quality of feeding items. In captivity, three lemur species (ruffed lemurs – Varecia 

variegata, Coquerel’s sifakas – Propithecus coquereli, ring-tailed lemurs – Lemur catta) were 

challenged to discriminate between food items under two conditions: preferred red (ripe fruits or 

young leaves) and less-preferred green (unripe fruits and mature leaves) (Rushmore et al. 2012). 

Olfactory cues, either alone or in combination with visual cues, aided all three species to correctly 

choose the desired items. Our own work suggests that both cotton-top tamarins (Saguinus 

oedipus) and common marmosets (Callithrix jacchus) can quickly learn (within 1 h) to discriminate 

between random novel odors marking positive and negative rewards and use them to select 

desired odorless rewards (Rathke & Nevo, unpub. data). Finally, based on discrimination between 

positive (food-related) and negative stimuli, captive pigtailed macaques (Macaca nemestrina) 

learn to achieve high success rates in foraging tasks (Hübener and Laska 1998).  
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Figure 2.3. Sniffing of feeding items. (A) In the final stage of quality assessment, a white-faced capuchin 

in Área de Conservación Guanacaste, Costa Rica, sniffs a ripe fruit of Spondias purpurea after its removal 

(photo: Fernando Campos). (B) A chimpanzee sniffing fruits of Ficus bracylepis in Kibale National Park, 

Uganda (photo: Nathaniel J. Dominy). (C) A verreaux’s sifaka sniffs a flower of Vanilla madagascariensis, 

which they occasionally consume (Andrea Springer, pers. comm.) in the Kirindy Forest, Madagascar. 

Although sniffing of ingested flowers in primates has not been systematically recorded, it is likely that 

olfactory cues are involved in the selection process (photo: Andrea Springer). 

 

2.2.3. Summary: the function of olfaction in food acquisition 

Olfaction can potentially serve two separate functions in primate feeding ecology: food detection 

and selection. In fruit foraging, detection is usually conducted over long distances and evidence 

for the use of olfaction in this process are scarce to non-existent. In contrast, there is much more 

evidence, from the wild and from captivity, for reliance on olfaction for quality assessment of 

feeding items. Olfaction can be useful for locating feeding items only when olfactory sensation 

takes place over very short distances that do not require tracking odor plumes. For example, 

insectivores may use it to determine whether tree-holes contain prey. However, in this case the 

use of olfaction is functionally very similar to selection. Olfaction may also be used for quality 

assessment of caught invertebrates, but we are not aware of any study that tested that. 

An earlier account of primate sensory ecology (Dominy et al. 2001) schematically portrayed the 

different “sensory boundaries” of primate food perception – i.e. the distances from which the 

foraging primate can gather information through several sensory trajectories. While 

acknowledging that evidence for the use of olfaction over long distances had been scarce, it still 
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placed the olfactory boundary far away from the foraging primate, somewhere between the visual 

and auditory boundaries. Given the data that have accumulated since, we believe that the 

olfactory boundary should be pushed back and considered to be almost as small as the tactile 

boundary. As important as olfaction may be, current evidence suggest that it serves primates 

mainly at very short distances. 

 

2.3. Which ecological niches favor reliance on olfaction? 

So olfaction could play an important role in primate feeding ecology, even if primarily from short 

distances, and there are examples for reliance on olfaction to acquire food in many contexts: when 

feeding on fruits or invertebrates, at day or night and by representatives of all major lineages. 

However, there is a good reason to believe that its importance – i.e. the fitness benefit from the 

ability to acquire olfactory information quickly and accurately – is not constant across the diverse 

ecological niches which primates occupy. Variation in the relative size of the main olfactory bulb 

and the share of functional olfactory receptor genes has been interpreted as evidence for 

differences in the importance of olfaction across these ecological niches (Tab. 2.1), but the validity 

of these proxies is questionable (Box 2.1, 2.2).  

Here, we examine whether available behavioral data indicate that olfaction is more important in 

some ecological niches than it is in others. We look at studies that quantified sniffing behavior and 

directly tested success rates in foraging tasks that represent superior olfactory sensitivity or 

discrimination capacity. The relationship between the two is bidirectional: ecological contexts in 

which olfactory cues can provide more useful information, or those in which cues from other 

trajectories are less available, are expected to increase the level of reliance on olfaction. This 

should manifest in increased olfactory sampling of feeding items, i.e. sniffing. Over evolutionary 

time, a likely scenario is that species that show higher dependence on olfactory cues would be 

subjected to selection pressures for elaboration of olfactory sensitivity and discrimination capacity. 

Superior ability to exploit olfactory cues should lead, in turn, to higher allocation of time to olfactory 

investigation during the food-selection processes, and thus elevated sniffing behavior. 
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2.3.1. Dietary strategies 

Olfaction may play a role foraging for practically all primates’ dietary categories. Fleshy fruits often 

bear odors that are unique to their ripe phase and may have even evolved to be olfactory-

conspicuous to frugivores (Hodgkison et al. 2007, 2013). Further, fruit volatile compounds may be 

indicative of their nutrient content (Goff and Klee 2006) and mouse lemurs have been reported to 

consume fruit species that are more odorous than other sympatric species (Valenta et al. 2013). 

Olfaction may be useful for in other categories as well. The volatile signatures of broken young 

and mature leaves are different (Kant et al. 2009) and invertebrates sometimes emit odors that 

may allow their identification (Hilker and McNeil 2008). However, choosing these items or 

searching them over short distances also involve acquiring information from other sensory 

trajectories: auditory cues when catching prey, tactile cues when choosing fruits or leaves and 

visual cues in practically all. Additionally, young leaves tend to grow in predictable locations on 

the branch (Fleming 2005), which may provide a “micro-spatial” cue. Thus, olfactory cues may be 

very useful in some cases and redundant in others, and the questions asked here is whether 

feeding on items of some dietary categories is associated with more reliance on the sense of smell 

than others. 

Although only few studies allow addressing this question, those available indicate that olfaction is 

particularly useful when feeding on fruits. Here, too, evidence comes from studies that quantified 

the frequency of sniffing behavior, i.e. the tendency to sample the odor of feeding items, and from 

more direct interspecific comparisons of success rates in foraging tasks. In controlled experiments 

conducted in captivity, spider monkeys were found to increase their sniffing behavior more than 

squirrel monkeys when addressing novel feeding items (Laska et al. 2007c). This was explained 

by spider monkeys’ higher degree of frugivory as opposed to the more insectivorous squirrel 

monkeys, thus indicating that more frugivorous species tend to rely more on their sense of smell. 

Another study compared the tendency to rely on olfactory cues (sniff) as opposed to visual cues 

in discrimination tasks in three captive Malagasy primates of different dietary categories. 
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Frugivorous ruffed lemurs showed the highest tendency to sniff items and could solve the task 

only when olfactory cues were present. Folivorous Coquerel’s sifakas showed a lower level of 

sniffing behavior and could not solve the task based solely on olfactory cues. Ring-tailed lemurs, 

as generalists, were intermediate. They tended to use more visual than olfactory investigation, but 

could solve the task using either of them alone (Rushmore et al. 2012). Taken together, these 

studies indicate that more frugivorous species have a higher tendency to sniff feeding items while 

species that show a lesser degree of frugivory are less likely to employ olfactory investigation and 

rely more on visual cues.  

In another set of studies, mouse lemurs have been shown to be able to detect both fruits and 

invertebrate prey hidden under opaque lids based solely olfactory cues, but success rates were 

much higher for fruits and approximated 100% (Siemers et al. 2007; Piep et al. 2008; Siemers 

2013). Capuchin monkeys, who were reported to employ their sense of smell when choosing fruits 

(Melin et al. 2009), fail to locate invertebrates from close proximity when only olfactory cues are 

available in captive conditions (Phillips et al. 2004). Capuchins were also shown to have higher 

olfactory discrimination capacity for fruity (as opposed to fishy) odors, thus indicating that their 

sense of smell is particularly tuned to fruity stimuli (Ueno 1994). Thus, species that consume both 

fruits and invertebrates achieve higher success rates in foraging tasks when using olfaction for 

fruit foraging. Finally, physiological studies in several primate species reported high sensitivity to 

and discrimination of odorants commonly present in fruits (Hernandez Salazar et al. 2003,Laska 

et al. 2006a,b). Whether or not the primate sense of smell is similarly tuned to odorants emitted 

by invertebrates or leaves is unknown. 

So, although comparative behavioral data are still based on a small number of species, they 

indicate that olfaction is more important in fruit selection than it is in foraging for invertebrates or 

leaves. This may derive from differences in the difficulty of using olfaction in these tasks. In fruit 

foraging, as noted above, the main function of olfaction is not to locate a fruit but to determine 

whether it is ripe or not. Fruit odor can be endlessly re-sampled (sniffed) from a very short distance 

and may have even evolved to be olfactory conspicuous – i.e. to provide a reliable odor signal for 
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ripeness (Hodgkison et al. 2007; Borges et al. 2008). Thus, when choosing fruits primates can 

extract more information via the olfactory trajectory and species for whom fruits constitute a larger 

share of the diet may have evolved superior olfactory capabilities. This, in turn, makes frugivorous 

species more likely to resort to reliance on olfactory cues and show elevated levels of sniffing 

behavior. Invertebrates, on the other hand, are expected to be under selection pressures to 

reduce their olfactory signature and even though there are descriptions of reliance on olfaction 

when finding them over short-distances, visual and auditory cues probably play a bigger role in 

their location. Finally, there are not even anecdotal reports of sniffing behavior in leaf foraging, 

thus suggesting that folivores may rely even less on olfactory cues when selecting leaves. The 

most likely explanation is that other cues – namely the location, texture and possibly color of the 

leaves – provide sufficient sensory information.  

 

2.3.2. Availability of visual cues 

The importance of olfaction for food acquisition depends, then, on the information given by the 

target’s volatile signature and also by the potential of acquiring similar information through other 

sensory trajectories, thus rendering olfaction redundant. Vision is often considered to be the main 

primate sensory modality (Fobes and King 1982) and it is likely that the availability of visual cues 

reduces the importance of olfaction, and that by extension species whose visual capacities are 

higher would tend to rely less on their sense of smell, i.e. they will show reduced levels of sniffing 

behavior and, over time, may evolve to possess less acute olfactory sensitivity or discrimination 

capacity due to relaxation of selection pressures. The notion of a tradeoff between olfaction and 

vision in primates goes back to the earliest stages of biological anthropology (Elliot Smith 1927) 

and has been in the heart of the hypothesis that primates evolved as “visual predators” in which 

the enlargement of the orbitals forced a reduction of the olfactory apparatus (Cartmill 1974). It is 

further supported by the fact that primate olfactory and visual brain structures are negatively 

correlated (Barton et al. 1995). Here, we ask whether two factors that determine differences in the 
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availability of visual cues - activity time and variation in color-vision capacities - predict differences 

in the level of reliance on olfaction. 

 

Activity time 

Among anthropoids, the prediction that the nocturnal owl monkeys tend to rely on olfaction more 

than diurnal counterparts (Wright 1989) has been confirmed in two independent studies (Bolen 

and Green 1997; Bicca-Marques and Garber 2004). Both employed similar experimental 

approaches and demonstrated that owl monkeys perform better in olfactory-based food-detection 

tasks than their diurnal counterparts. Yet since these results are based on a single species, to 

show that this is indeed a pattern they need to be replicated in strepsirrhines, in which more 

nocturnal species are available. Another interesting parallel would be a comparison of day and 

night feeding in cathemeral species or in diurnal species such as spider and woolly monkeys 

(Lagothrix spp.), which occasionally forage at night (Carlos Peres, pers. comm.). 

 

Color vision 

Primates are the only eutherian mammals known to have acquired full trichromatic vision (Jacobs 

2009). However, not all species are fully trichromatic. Old World monkeys, apes and New World 

howler monkeys (Alouatta spp.) are habitually trichromatic, whereas all other species are di- or 

monochromatic, or present population-level polymorphism in which all males and some females 

are dichromats and the rest of the females are trichromats (Leonhardt et al. 2008; Jacobs 2009).  

The prediction that a full trichromatic vision is associated with a reduction in olfaction has been 

mainly addressed in genetic works (Tab. 2.1). Two behavioral studies measured the tendency to 

sniff fruits before ingestion in wild groups of two New World monkey species. They genotyped the 

females to determine whether they were di- or trichromatic and tested the hypothesis that 

dichromats sniff fruits more often to compensate for the lack of visual information available to 
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trichromatic group members. Results were contradictory: an effect was found in capuchins (Melin 

et al. 2009) but not in spider monkeys (Hiramatsu et al. 2009).  

Evidence from comparative physiological studies provides a clearer picture. In a series of studies, 

M. Laska and colleagues compared olfactory sensitivity and discrimination capacity in three New 

and Old World monkey species: pigtailed macaques, squirrel monkeys and spider monkeys 

(Laska and Seibt 2002a,b,Laska et al. 2005a,b, 2006a, 2007b). Although not addressing the 

question directly, these experiments included male New World monkeys which are necessarily 

dichromats, female New World monkeys that may have been trichromats and Old World monkeys, 

which are trichromats. The results, encompassing a wide range of odorants, did not reveal any 

clear difference between New and Old World species and therefore imply that differences in color 

vision are not necessarily associated with interspecific differences in olfactory sensitivity or 

discrimination capacity. 

Thus, the prediction of lesser reliance on olfaction by trichromats is, to this point, not unequivocally 

supported by available data. Although based on only few studies, if the lack of a trade-off between 

full color vision and olfaction is indeed genuine, two non-mutually exclusive explanations come to 

mind. The first is that acquisition of trichromatic vision does not impose strong constraints on 

olfaction. Trichromacy was achieved through a duplication of the M-L opsin gene (Jacobs 2009) 

and the expression of three rather than two opsin genes in the eye should not impose any 

constraints on olfaction like those attributed to the enlargement of the orbitals, which supposedly 

forced a reduction in olfaction (Cartmill 1974). A second, functional, potential explanation is that 

there is little overlap in the information that color vision and the sense of smell provide. 

Trichromatic vision has been speculated to specifically help in long-distance detection of fruits 

(Melin et al. 2014). Thus, if the sense of smell is indeed less important in anything beyond the 

short distance, color vision and olfaction may be complementary: trichromacy helps identifying 

fruit-bearing trees and olfaction is used in the short distance, along with other senses, to determine 

whether an individual fruit is ripe. 
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Table 2.1 - Which ecological niches favor reliance on olfaction in primate feeding ecology? Summary 

of the behavioral evidence for differences in the level of reliance on olfaction when feeding on different dietary 

categories, between diurnal and nocturnal species and between tri- and dichromats, and a comparison to 

the conclusions from anatomical and genetic analyses. For the issues in interpreting the variation in 

anatomical and genetic features of the main olfactory system, see Box 2.1, 2.2. 

 

Behavior  
Anatomy (main olfactory 
bulb size) 

Genetics (olfactory 
receptor repertoire) 

Diet Primates rely on 
olfactory cues 
more when eating 
fruits. Folivory 
requires the least 
reliance on 
olfaction. 

Ueno 
1994; 
Phillips et 
al. 2004; 
Laska et 
al. 2007c; 
Siemers 
et al. 
2007; 
Piep et al. 
2008; 
Rushmore 
et al. 
2012; 
Siemers 
2013 

Frugivores/insectiv
ores have a 
relatively larger 
main olfactory 
bulb 

Baron et 
al. 1983; 
Barton et 
al. 1995; 
Barton 
2006 

No clear 
difference 

Gilad et 
al. 2004, 
2007 

Activity 
time 

Nocturnal owl 
monkeys 
outperform diurnal 
NWM in food 
searching tasks 

Bolen and 
Green 
1997; 
Bicca-
Marques 
and 
Garber 
2004 

Nocturnal species 
have a relatively 
larger main 
olfactory bulb 

Baron et 
al. 1983; 
Barton et 
al. 1995; 
Barton 
2006 

No difference (but 
based on one 
species) 

Gilad et 
al. 2004, 
2007 

Color 
vision 

No clear 
differences in 
olfactory 
sensitivity or 
discrimination 
between Old 
World and New 
World monkeys 
 

Laska and 
Seibt 
2002a,b; 
Laska et 
al. 
2005a,b, 
2006a, 
2007b 
 

Not directly tested  No connection 
between 
trichromacy and 
loss of functional 
olfactory receptors 
 
 

Matsui et 
al. 2010 

 Within species: 
mixed results 

Hiramatsu 
et al. 
2009; 
Melin et 
al. 2009 

  Howler monkeys 
have more 
olfactory receptor 
pseudogenes 
 

Gilad et 
al. 2004, 
2007 

 

 

2.4. What next?  

The proliferation of behavioral and physiological work in the recent years has begun to establish 

trends that allow us to depart from the vague notion that olfaction may be important to primate 

feeding ecology and to begin to understand how it helps primates to acquire food and in which 

contexts it becomes useful. Currently available data indicate that olfaction is used primarily in 
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short distances and usually for food selection, and support arguments for some of the factors that 

have been suggested to affect the level of reliance on olfaction (diet, activity period) but less for 

others (color vision). However, these data are still too scarce and unstandardized to reach clear 

conclusions. We are therefore hopeful that emphasizing these gaps in the available data will 

encourage future studies. More specifically, we see three main approaches that would significantly 

improve our understanding of the roles of olfaction in primate feeding ecology: (1) chemical 

ecology of primate feeding behavior: connecting primate physiological capacities and ecologically 

relevant chemically resolved stimuli; (2) a systematic comparative approach in behavioral studies 

to control for the many confounding factors; (3) identification of similar and contrasting trends in 

non-primate taxa. 

 

2.4.1. Chemical ecology of primate feeding behavior 

Something almost fully missing from available studies is an understanding of the chemical world 

with which the primate olfactory system has to deal in foraging and food selection. There are 

practically no published analyses of the odors of fruits primates consume or invertebrates they 

catch in the wild. So far, to our knowledge, only one study conducted chemical analyses of natural 

odors of fruits consumed by primates (Valenta et al. 2013), but even there the actual chemical 

profiles of primate-consumed fruits have not been published.  

Modern techniques allow relatively easy and cheap sampling and analysis of volatile compounds 

in the field (Kalko and Ayasse 2009) and introducing them to the study of primate feeding ecology 

could resolve many questions. If indeed olfaction is more relied upon in fruit foraging and in some 

contexts in insect foraging, the targets for chemical investigation should be the odor profiles of 

ripe, unripe and overripe fruits, and occupied and non-occupied tree holes or other microhabitats 

in which prey can be found. This can, first, establish whether there is even a potential for reliance 

on olfactory cues: if an unripe fruit smells just like a ripe one, there is no need to look further. Once 

the “olfactory distance” between desired and undesired items is understood, many questions can 

be asked. Can primates discriminate between the odors? Are success rates in choosing the right 



Olfaction in primate feeding ecology - What next? 

37 
 

fruit or tree hole greater when the odor is present? Is this ability learned or innate? Further 

investigations can focus on individual compounds or compound classes and see which contribute 

to primates’ discrimination capacity. Finally, if certain compounds or compound classes turn out 

to be more important than others, functional genomics may be able to identify the olfactory 

receptors that allow their detection. Several studies have identified primate olfactory receptor 

genes that have gone through positive selection (Gilad et al. 2005; Dong et al. 2009). Thus, by 

connecting the two, future work may be able to reveal in great detail which chemical stimuli are 

relevant enough to have exerted significant selection pressures on the primate olfactory receptor 

gene repertoire. This is a trail that can lead to very high-resolution understanding of lineage-

specific olfactory adaptations. 

A more comprehensive knowledge of the olfactory challenges faced by primates can then be 

taken to the lab and applied in controlled captive experiments that would connect physiological 

capacities and the ability to deal with ecologically relevant challenges. So far, there has been 

almost a complete separation: studies have been either about physiology but less ecologically 

relevant, or vice versa. For example, available data suggest that in fruit foraging the main function 

of olfaction is fruit selection, but it is unclear which aspects of the primate olfactory system have 

been under positive selection due to this requirement. By measuring olfactory sensitivity and 

discrimination capacity of ecologically relevant and chemically known stimuli, comparative 

analyses can test whether more frugivorous species show higher sensitivity to the odorants 

emitted by fruits or higher discrimination capacity between these odorants and the odors of unripe 

fruits. When choosing fruits the most important information is not whether the fruit is there, but 

whether it is ripe, unripe, overripe or potentially infested. Considering that fruits are not expected 

to be under selection pressures to lower their olfactory signature, olfactory discrimination capacity 

is expected to be more important than sensitivity, and thus it can be predicted that the degree of 

frugivory in a species is positively correlated with discrimination capacity of relevant odorants. 

A similar approach can be applied to location of slow or sedentary invertebrates from short 

distances. Here, the information sought after is mostly whether the prey is present or not. 
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Furthermore, if primates and other predators use olfactory cues to locate these slow sedentary 

invertebrates, they are expected to be under selection pressures to lower their olfactory signature. 

Thus, it may turn out that olfactory sensitivity, and not discrimination, is the olfactory capacity most 

important for insectivores.  

So, comparison of olfactory capacities when dealing with ecologically relevant stimuli could help 

departure from a rather simplistic discussion regarding “olfactory elaboration”: olfaction can be 

useful in more than one way and different ecological challenges are expected to exert different 

selection pressures on the various aspects of the main olfactory system. Moreover, establishing 

the connection between an ecological challenge and olfactory capacity could be used to reassess 

the quality of measurements such as the size of the main olfactory bulb and the olfactory receptor 

gene repertoire as proxies for actual olfactory performance in species-specific ecological 

challenges. 

 

2.4.2. Comparative behavioral tests 

The main issue in the search of olfactory adaptation is the many confounding factors. For example, 

howler monkeys, as the only New World primate with routine trichromacy (Jacobs 2009), can be 

an interesting model taxon for examining whether elaboration of color vision is associated with a 

reduction in olfaction (Gilad et al. 2004). However, their rather folivorous diet (Neville et al. 1988), 

which may also predict a reduction in the reliance on olfaction, requires controlling for diet before 

any conclusions regarding the interplay between color vision and olfaction can be drawn. Other 

confounding factors may be related to non-feeding functions of olfaction. Although some social 

signals are processed by the independent accessory olfactory system in mammals, the main and 

accessory olfactory systems show some functional overlap (Baxi et al. 2006). Thus, the main 

olfactory system is expected to respond to selection pressures from various non-feeding 

behaviors. Crucially, diet and activity time are somewhat correlated with social structure in 

primates: many insectivores are also nocturnal and solitary. Hence, it is likely that high olfactory 
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capabilities are promoted by one factor and are secondarily employed in other contexts, making 

it difficult to determine the relative contribution of each factor.  

The problem of numerous confounding factors can only be addressed if future studies take a more 

comparative approach and are designed to control for all relevant variables. For instance, 

contrasting howler monkeys with muriquis (Brachyteles sp.), the other rather folivorous New World 

primate who does not share howlers’ habitual trichromacy, could help resolve the question 

whether trichromatic vision is associated with lesser reliance on olfaction. Moreover, perhaps the 

most efficient approach to control for the relevant factors would be to focus on intraspecific 

variation and compare conspecific di- and trichromatic New World monkeys or lemurs.  

 

2.4.3. Comparison to other taxa 

Finally, the processes examined here are not confined to the primate order. Other taxonomic 

groups such as bats or birds are at least as ecologically diverse and also possess other strong 

sensory modalities which may have had an effect on olfactory evolution. Comparative anatomical 

and genetic studies that looked at carnivores (Gittleman 1991), birds (Healy and Guilford 1990; 

Steiger et al. 2008), bats (Hutcheon et al. 2002) and other mammals (Hayden et al. 2010) are now 

available. Behavioral studies showed both similar and different trends: long-distance olfactory-

based detection is common in procellariiform birds (Nevitt 2000), whereas bats use olfaction in 

both detection and selection (Thies et al. 1998; Korine and Kalko 2005). Considering the 

similarities and differences between primates and other taxa would shed additional light on 

ecological adaptations, proximate mechanisms and constraints and help unravel universal trends 

in olfactory ecology and evolution. 
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Abstract 

Fleshy fruits contain a myriad of secondary metabolites which may fulfill various non-mutually 

exclusive ecological functions. Among them are defense against pathogens and herbivores, 

manipulation of frugivores’ gut retention time or controlling the germination process. In addition, it 

has been suggested that aroma compounds may be used as fruit-selection cues by frugivores 

and that plants may be under selection to provide a reliable signal for ripeness to seed-dispersal 

vectors through ripe fruit aroma. A previous project has demonstrated that fruit odor of two 

Neotropical primate-dispersed plant species can be used by primates to identify ripe fruits. Here, 

we provide preliminary data supporting the hypothesis that olfactory conspicuousness of ripeness 

in these two species may be an evolved signal rather than a cue exploited by primates. We 

analyzed the odors of ripe and unripe fruits of the two species along with odors of two sympatric 

species whose main dispersal vector is passerine birds. We show that only primate-dispersed 

species significantly change their odor profiles upon ripening. Thus, odor of bird-dispersed species 

is not informative regarding their ripeness level and is likely to fulfill other functions. We discuss 

these data in light of the multiple hypotheses for the presence of fruit secondary metabolites and 

offer a roadmap for future studies to establish the hypothesis that fruit odor is an evolved signal 

for ripeness.  



Fruit aroma: adaptation to primate seed dispersal? - Introduction 

43 
 

3.1. Introduction 

Plants synthesize over 100,000 different secondary metabolites (PSMs) that fulfill a myriad of 

functions (Knudsen et al. 2006). In vegetative parts, the main function of PSMs is direct or indirect 

defense against pathogens and herbivors. Flowers and fruits also utilize PSMs for defense. 

However, in many species they also interact with animal vectors of pollination and seed dispersal 

and hence their PSM profiles are subjected to multidirectional, sometimes conflicting, selection 

pressures. While many questions remain unresolved, the biochemistry, ecology and evolution of 

floral fragrance, i.e. their volatile PSM profiles, have received a great deal of attention over the 

past decades. In contrast, inquiries into the nature of fruit PSMs, especially volatiles, have lagged 

behind.  

 

Why do fruits contain secondary metabolites? 

Several hypotheses have been put forward to explain the presence of fruit PSMs. A commonly 

held null hypothesis is that their presence in fruits derives directly from synthesis of defensive 

compounds in vegetative parts or unripe fruits and thus requires little further explanation (Eriksson 

and Ehrlén 1998). However, PSM profiles of ripe fruits are not strictly correlated with those of 

leaves or unripe fruits (Whitehead and Bowers 2013). This indicates that fruit PSMs may go 

beyond pleiotropy. 

Cipollini and Levey (1997) have suggested several non-mutually exclusive adaptive functions of 

fruit PSMs. Like in vegetative organs, PSMs can play a defensive role. They can be of general 

toxicity and thus also deter mutualists (the defense trade-off hypothesis). For example, iridoid 

glycosides in a hybrid bush honeysuckle defend fruits against pathogens and insects but may 

deter birds – a major seed disperser (Whitehead and Bowers 2013). Alternatively, PSMs can be 

toxic to antagonists without deterring legitimate dispersers (directed toxicity). For instance, 

capsaicinoids in chilli peppers (Capsicum spp.) deter mammalian seed predators without 

decreasing the fruits’ palatability to seed-dispersing birds (Tewksbury and Nabhan 2001). 
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Nonetheless, an a-priori assumption that fruit PSMs play a defensive role is unwarranted. For 

example, terpenoids are often considered to be defensive compounds. Yet downregulation of 

limonene synthesis in Citrus fruits renders the fruits less susceptible to microbial pathogens and 

less attractive to invertebrate antagonists (Rodríguez et al. 2011).  

Somewhat ironically, the attraction/repulsion hypothesis postulates that defensive PSMs may be 

directed against legitimate vertebrate dispersal vectors in order to prevent excessive feeding by 

a single seed disperser and subsequent deposition of the seeds in a clump. A variation of the 

attraction/repulsion hypothesis is the protein assimilation hypothesis, according to which PSMs 

may inhibit protein assimilation by frugivores and thus promote further movement and deposition 

of the seeds away from the mother tree. These hypotheses have so far received little support.  

Ripe fruit PSMs can also manipulate the frugivore’s gut retention time in order to maximize the 

dispersal distance while avoiding excessive damage during digestion. Yet while few studies 

demonstrated that some fruit PSMs alter frugivores’ gut-retention time, none has unequivocally 

established a connection to an increased fitness benefit (e.g. Wahaj et al. 1998). In addition, PSMs 

may function in inhibiting seed germination. This ensures that the seeds do not germinate 

prematurely, and the removal of the pulp by frugivores triggers germination after the dispersal 

event (Cipollini and Levey 1997). Several studies have reported inhibiting effects of either 

individual compounds, fruit pulp or pulp extracts. However, the effect is not universal (a compound 

which inhibits germination in one species does not necessarily have the same effect in others) 

and it is not always clear whether inhibition has a positive effect on individual plants’ fitness (e.g. 

Wahaj et al. 1998).  

 

PSMs as seed-disperser attractants 

Fleshy fruits are selected to be attractive and PSMs have also been suggested to act as frugivore 

attractants. The attraction/association hypothesis postulates that PSMs may provide cues 

regarding fruit ripeness or quality. They can do so through visual cues (pigments such as 



Fruit aroma: adaptation to primate seed dispersal? - Introduction 

45 
 

carotenoids and anthocyanins) or via the chemical senses through aroma compounds. 

Candidates for such compounds are those whose biosynthesis is directly associated with desired 

macronutrients (Cipollini and Levey 1997). For example, nitrogen-containing compounds derive 

from amino acid metabolism (Knudsen et al. 2006) and can therefore provide an honest signal for 

protein content. In this case it is difficult to distinguish between cues, which provide information 

but are not necessarily selected to fulfill this function- and signals, which are selected to convey 

information.  

PSMs may also provide act as signals directed at frugivores even without direct biochemical 

association with the reward. For instance, lipid content in a community of Mediterranean fleshy 

fruits is positively correlated with fruit color, which in turn promotes consumption by birds 

(Schaefer et al. 2014). A similar process has been observed in pollination systems (Schiestl 2015). 

The logic here is that generalist mutualists can learn to prefer plants that provide a signal and 

“punish” cheaters. Thus, through repeating interactions over evolutionary time-scales, reliable 

signals may be selected. Aroma compounds which reliably signal a fruit’s ripeness and promote 

ingestion and further foraging on the same plant may even be selected to be present in the pulp 

rather than the husk. They may be favored in fruits whose thick, leathery or non-permeable husk 

constrains efficient odor emission 

 

Volatile PSMs – fruit odor as a signal for vertebrate dispersal vectors 

The hypothesis that fruit odor, its volatile PSMs profile, can be a signal to seed dispersers is not 

new. Yet in practice it has been rarely addressed in both empirical studies and theoretical 

considerations. For example, in their thorough book on plant-animal communication, Schaefer 

and Ruxton (2011) discuss the potential roles of ethylene and ethanol as odor cues, not signals. 

The strongest evidence that plants employ volatile PSMs to signal ripeness to frugivores comes 

from a comparison of different fig species (Ficus spp.). The odor of ripe bat-dispersed figs is 

attractive to them and thus mediate the communication between the plants and their primary seed 
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dispersers (Hodgkison et al. 2013). Bat-dispersed figs also change their odor profile upon 

ripening, which allows bats to easily detect and identify the ripe fruits; at the same time, bird-

dispersed species do not show a pronounced shift in odor at ripeness, thus indicating that the shift 

of odor in bat-dispersed figs is not a trait that characterizes all figs but only those which rely on 

olfactory-guided bats for seed dispersal (Borges et al. 2008). Finally, bat-dispersed fig species 

tend to emit higher amounts of odor than do bird-dispersed figs (Lomáscolo et al. 2010). Overall, 

this mirrors the patterns known in pollination ecology: bat-pollinated flowers tend to be odiferous 

while bird-pollinated flowers are usually scentless. Otherwise, studies addressing this question 

are practically absent and most data available on ripe fruit odor bouquets come from cultivated 

species and is therefore less relevant. 

In a recent project on the role of primate olfaction in fruit selection, we showed that spider monkeys 

(Ateles geoffroyi), Neotropical frugivorous primates which are important seed disperses, can 

readily discriminate between odors of ripe and unripe (husk or pulp) fruits of two primate-dispersed 

Neotropical species, Couma macrocarpa (Apocynaceae) and Leonia cymosa (Violaceae) (Nevo 

et al. 2015). This is consistent with the observation that in food acquisition, primates employ their 

sense of smell mainly for quality assessment of individual fruits (Nevo and Heymann 2015). 

Primates are important seed dispersers in the tropics and in the Neotropics they constitute a 

significant part of a more-or-less discrete mammalian dispersal syndrome. Thus, there are many 

fruiting species that rely on the dispersal services of primates and other similar arboreal mammals 

and they may be a suitable model system to test the hypothesis that the odors used by primates 

are not only cues but evolved signals. 

Here, we present preliminary data supporting this hypothesis. We compared patterns of odor 

emission between C. macrocarpa and L. cymosa and two sympatric bird-dispersed species, under 

the assumption that passerine-dispersed fruits tend to signal through visual rather than olfactory 

signals. We sampled fruit odors of ripe and unripe, intact and open (husk and pulp odor) fruits of 

the two primate-dispersed species and of bird-dispersed Maieta guianensis (Melastomataceae) 

and Psychotria cincta (Rubiaceae). Compound identity and concentration were analyzed using 
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gas-chromatography coupled with mass-spectrometry. In each species, we examined whether 

odor profiles of ripe and unripe fruits are significantly different from one another, either at the intact 

(husk odor) or open (pulp odor) conditions. The logic is that due to the various functions of fruit 

PSMs, fruits of all species, ripe and unripe, are expected to emit at least trace amounts of odor. 

Yet crucially, most non-signaling functions can be achieved by a similar odor bouquet whereas 

signaling to seed dispersers requires a substantial change in the odor profile to reliably signal 

ripeness. Thus, it was predicted that if odor has evolved as a signal for vertebrates, a significant 

shift in the odor profile upon ripening is expected only in species that rely on olfactory-guided 

primates.  

 

3.2. Methods and materials 

Fruits from different trees were enclosed in unused oven bags (Toppits, Germany). After 2.5 h 

their headspace was collected for 10 min onto a self-produced absorbent Chromatoprobe trap 

(1.5 mg Tenax-TA, 1.5 mg Carbotrap. Both Supelco, Sigma-Aldrich, Germany). Samples were 

kept frozen in -20°c and analyzed on a Hewlett Packard 6890 Series gas chromatographic–mass 

selective detector (GC–MS; Agilent Quadrupol 5972) equipped with a DB-5ms capillary column 

(30 m long, 250 µm in diameter, film thickness: 0.25 µm, J&W). Sample size was N = 9 to N = 15 

fruits per species/condition. Compounds were tentatively identified by comparing their mass 

spectra and retention indices with published data. Identity of the majority of dominant compounds 

was confirmed by running synthetic compounds in identical conditions. Data were analyzed for 

each species separately. Principal component analyses were used to reduce the number of 

variables in the dataset and eliminate collinearity between them. Then, PCs which explained at 

least 90% of the original variance were used in discriminant function analyses and MANOVA tests 

which examined whether the overall odor bouquet of ripe and unripe fruits differ either in the intact 

(husk odor) or open (pulp odor) conditions. More details on the study system, sampling and 

analyses are available in appendix 1.  
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3.3. Results 

Discriminant function analyses and subsequent MANOVA tests revealed clear differences 

between odor bouquets of ripe and unripe primate-dispersed fruits, but not in the two bird-

dispersed species. In the bird-dispersed P. cincta the DFA produced overlapping clusters and the 

odor of ripe fruits was indistinguishable from that of unripe fruit in both intact and open conditions 

(Fig. 3.1). The first linear discriminant function (DF1) significantly separated odor samples from 

the four conditions in the species (ripe/unripe, intact/open) (Wilks’ lambda = 0.18, chi-square = 

59.09 (15), p < 0.001) while DF2 did not (Wilks’ lambda = 0.69, chi-square = 12.71 (8), p = 0.12). 

Consequently, MANOVA tests could not discriminate between the odor profiles of ripe and unripe 

fruits in either intact (N = 21, F(4, 16) = 1.69, adjusted p = 1) or open (N = 19, F(4, 14) = 2.16, 

adjusted p = 1) conditions. Similarly, odor profiles of ripe and unripe M. guianensis fruits showed 

strong overlap in either intact or open conditions. Discrimination was stronger and both DFs were 

significant (DF1: Wilks’ lambda = 0.2, chi-square = 58.53 (12), p < 0.001; DF2: Wilks’ lambda = 

0.68, chi-square = 14.05 (6), p = 0.03). However, discrimination between odor profiles of ripe and 

unripe fruits was still low (intact: N = 20, F(4, 15) = 4.9, adjusted p = 0.08. Open: N = 21, F(4, 16) 

= 3.31, adjusted p = 0.3). Thus, in either intact or open conditions, ripe and unripe bird-dispersed 

species emit odors that are similar and do not provide reliable information regarding their ripeness 

level. 

In contrast, DFAs in primate-dispersed species generated clearly separate clusters of ripe and 

unripe fruits. In C. macrocarpa the DFA as a whole was significant (DF1: Wilks’ lambda = 0.39, 

chi-square = 110.58 (24), p < 0.001; DF2: Wilks’ lambda = 0.46, chi-square = 26.41 (14), p = 0.02) 

(Fig. 3.1) and the odor profiles of ripe and unripe fruits were significantly different in both intact (N 

= 21, F(8, 12) = 8.33, adjusted p < 0.01) and open conditions (N = 20, F(8, 11) = 22.6, adjusted p 

< 0.001). In L. cymosa (DF1: Wilks’ lambda = 0.052, chi-square = 125.33 (21), p < 0.001; DF2: 

Wilks’ lambda = 0.35, chi-square = 44.95 (12), p < 0.001) the odor profiles of intact ripe and unripe 

fruits were indistinguishable (N = 25, F(7, 17) = 2.01, adjusted p = 0.9) but the odor of open ripe 
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fruits formed a cluster significantly different from the odor of unripe open fruits (N = 24, F(7, 16) = 

12.63, adjusted p < 0.001). Thus, in both species, ripe fruits are characterized by odors that are 

unique to the ripe phase and are indicative of their ripeness level. 

 

 

Figure 3.1. Discriminant function analyses to estimate the discrimination potential between odor 

profiles of ripe and unripe fruits of each species. DFAs were conducted on principal components that 

accounted for at least 90 % of the original variance (C. macrocarpa: 8 PCs, L. cymosa: 7, P. cincta: 5, M. 

guianensis: 4). Numbers adjacent to axes are the proportion of between-group variance explained by the 

respective discriminant function. Clearly distinct odor profile of ripe fruits (intact, open or both) is present only 

in primate-dispersed species (for test statistics, see 3.3) 
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3.4. Discussion 

Ripe fruits of the two primate-dispersed species emit odors that are significantly different from 

odors of conspecific unripe fruits (husk, pulp or both), which renders their aromas unique to the 

ripe phase and reliably convey information to primates, their main dispersal vector (Nevo et al. 

2015). In contrast, fruits of the two bird-dispersed species emit odors that are indistinguishable 

from the odors of unripe fruits. Passerines have elaborated visual capacities and fruits they 

disperse tend to provide very conspicuous visual cues (Lomáscolo and Schaefer 2010). Thus, it 

is possible that M. guianensis and P. cincta have been under selection to focus their signaling 

efforts on the visual cues. This pattern is similar to bird-pollinated flowers, which often emit only 

trace amounts of odors and provide conspicuous visual signals. A possible function of the volatile 

compounds identified is defense, since in contrast to primate-dispersed species, in order to be 

available to small understory passerines these and similar fruits are soft and only lightly protected 

by a protective husk. Thus, they are more susceptible to pathogens and herbivores than C. 

macrocarpa and L. cymosa, which are protected by a thick husk. Other alternative explanations 

may also explain the presence of these volatiles in the two bird-dispersed species.  

Each of the primate-dispersed species is phylogenetically closer to one of the bird-dispersed 

species than they are to one another (see appendix 1). Taken together, these results indicate that 

the olfactory conspicuousness – the substantial shift in odor profile upon ripeness - of C. 

macrocarpa and L. cymosa may not be an inevitable characteristic of fleshy-fruit maturation which 

can be used by primates as a cue for fruit selection, but possibly an evolved signal whose function 

is to convey information to seed-dispersing primates. At the same time, these conclusions are 

based on only four species and it is hence impossible to extrapolate from them to the entire 

system. Thus, while they indicate that signaling ripeness to seed-dispersing mammals may be an 

evolved function of fruit odor, this hypothesis remains to be established.  
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3.4.1. How to continue? A roadmap for inferring whether fruit odor is an evolved signal for 

ripeness 

Inferring adaptation is never a straightforward task, especially in multidimensional traits such as 

fruit odor and when various, non-mutually exclusive, alternative explanations are applicable. We 

therefore suggest three approaches which together can establish the hypothesis that signaling to 

vertebrates is one of the functions PSMs fulfill in some taxa: the ecological, comparative and 

integrative approaches. 

 

Ecological approach 

Before asking whether fruit odor is an evolved signal directed at vertebrates, it must be established 

that it is at the very least used as a cue, i.e. that seed-dispersal vectors indeed rely on in the 

process of food selection. This can be done both in observational studies that quantify sniffing 

behavior of frugivores in the wild or in controlled experiments that annihilate other cues and ask 

whether the vertebrate can identify ripe fruits in the absence of cues from other sensory modalities. 

A second prediction that should be confirmed is that these olfactory cues are not redundant in the 

more natural scenario, when cues from other sensory modalities are available. Here, an effective 

experimental design could present vertebrates with choice tests between items that provide visual 

cues, olfactory cues or a combination of both. The expectation is that the presence of odor 

provides non-redundant information regarding fruit maturity and hence the combination of 

olfactory and visual cues should be preferred over visual cues alone. Finally, the hypothesis that 

some components of fruit odor have evolved, or are maintained, by selection by vertebrate 

frugivores also requires that these vertebrates would show consistent preference for fruits with a 

more pronounced signal.  

 

Comparative approach 
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A second phase in establishing that that fruit odor is an evolved signal for ripeness is to 

demonstrate its absence in plant lineages that rely on dispersal services by animals which are 

less likely use olfaction in fruit selection. Given the alternative adaptive and non-adaptive 

explanations for the presence of fruit PSMs, all fruits are likely to emit some VOCs (volatile organic 

compounds). Thus, the prediction in a comparative study would not be that fruits whose primary 

seed dispersers are not olfactory-guided do not have an odor at all, but that their odors are 

substantially less informative than those of fruits that depend on olfactory-guided vertebrates. 

Hence, the main prediction should be that all other things being equal, the former emit odor 

bouquets that are not significantly different between ripe and unripe fruits while the latter show a 

pronounced shift in the VOC profile upon ripening. While the data presented above provide 

preliminary support that this is the case in four Neotropical species, confirmation of this hypothesis 

would require a much larger dataset that would allow quantitative phylogenetic-controlled 

analyses.  

 

Integrative approach 

Finally, another approach that would help establishing that the odors vertebrates use in fruit 

selection are signals rather than cues is an examination, and exclusion, of alternative 

explanations. Once it is established that fruit odor mediates the communication between seed 

dispersers and plants (i.e. that it is a cue), exclusion of alternative hypotheses would increase the 

probability that a major selection pressure for the presence of ripe fruits VOCs is selection by 

frugivores. For example, biochemical pleiotropy can be excluded if odor profiles of ripe fruits are 

significantly different, quantitatively or qualitatively, from VOC profiles of other plant organs and 

unripe fruits. Adaptive functions can be tested using various designs. Antibiotic properties of odor 

components can be estimated using classical antibiotic tests or through genetic manipulation of 

odor profiles and comparison of the susceptibility of wild-type and genetically-modified fruits to 

various antagonists. Other functions can be tested using both correlational studies of natural 

populations or controlled experiments. 
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This approach, however, suffers from several shortcomings. First, fruit volatiles may fulfill many 

different functions, some not yet conceived and eliminating all might prove impossible. Second, in 

many cases it is impossible to fully exclude a function. For example, a study can show that certain 

VOCs in ripe fruits are not effective defenders against pathogens which are known to attack the 

fruit. Yet it could still be that these substances are highly effective against another pathogen which 

is not even identified as an antagonist of the plant species due to its effective defense 

mechanisms. In this case, a highly effective defensive compound may actually be considered to 

have no defensive properties. Third, PSMs may act in concert with other PSMs or require specific 

conditions which are difficult to replicate in controlled experiments. Finally, PSMs could fulfill 

various non-mutually exclusive functions, or their contemporary main function could be a 

secondary adaptation. For example, floral odorants which convey information to pollinating 

invertebrates are believed to have originally evolved as defensive barriers. Thus, filtering out the 

relative role of each function on the presence of a certain compound or compound group is neither 

sufficient nor straightforward. 

 

3.5. Conclusions 

Fruit PSMs have been suggested to fulfill various, non-mutually-exclusive functions. An attractive, 

yet under-investigated, hypothesis is that their role is to signal ripeness to seed-dispersing 

vertebrates. The data presented here provide preliminary support for this hypothesis. Yet to 

establish this hypothesis many factors ought to be controlled. We suggest three approaches 

which, together, may allow to disentangle this complex question and we are in hope that future 

studies will take this path to provide more established answers to the question whether fleshy 

fruits whose main dispersal vectors are olfactory-dependent vertebrates have evolved to 

communicate with them via olfactory signals. 
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Primates are now known to possess well-developed olfactory sensitivity and discrimination 

capacities that can play a substantial role in many aspects of their interaction with conspecifics 

and the environment. Several studies have demonstrated that olfactory cues may be useful in fruit 

selection. Here, using a conditioning paradigm, we show that captive spider monkeys (Ateles 

geoffroyi) display high olfactory discrimination performance between synthetic odor mixtures 

mimicking ripe and unripe fruits of two wild, primate-consumed, Neotropical plant species. Further, 

we show that spider monkeys are able to discriminate the odor of ripe fruits from odors that 

simulate unripe fruits that become increasingly similar to that of ripe ones. These results suggest 

that the ability of spider monkeys to identify ripe fruits may not depend on the presence of any 

individual compound that mark fruit ripeness. Further, the results demonstrate that spider 

monkeys are able to identify ripe fruits even when the odor signal is accompanied by a substantial 

degree of noise.
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4.1. Introduction  

Primates have traditionally been considered as primarily visually-oriented animals with a poorly 

developed sense of smell (Le Gros Clark 1971; Fobes and King 1982). This view was mainly, if 

not exclusively, based on an interpretation of neuroanatomical and – more recently – genetic 

findings and not on behavioral or physiological evidence (Laska et al. 2005a). Meanwhile, an 

increasing number of studies now suggest that olfaction may play a significant role in regulating 

a wide variety of primate behaviors (Michael et al. 1976; Kappel et al. 2011) and that the olfactory 

sensitivity and discrimination capacities of both human and nonhuman primates are not generally 

inferior to that of nonprimate species believed to have a keen sense of smell (Laska et al. 2000).  

A high olfactory sensitivity and well-developed olfactory discrimination capabilities have been 

reported in several primate species of different lineages (Hübener and Laska 1998; Laska et al. 

2000, 2005a,Laska and Seibt 2002b). These olfactory capabilities have been shown to be 

particularly tuned to detection, discrimination and identification of compounds common in fruits 

(Ueno 1994,Laska and Seibt 2002a,b; Hernandez Salazar et al. 2003,Laska et al. 2006a). 

Additionally, behavioral studies from captivity and the wild demonstrated that non-human primates 

can rely on olfactory cues in fruit selection tasks (Nevo and Heymann 2015; Pablo-Rodríguez et 

al. 2015). 

While psychophysical studies quantified the olfactory sensitivity for and discrimination 

performance of primates with compounds that are potentially relevant for feeding on fruits (Laska 

and Seibt 2002b,Laska et al. 2006a), they all used monomolecular stimuli. Yet fruit odor is 

composed of complex mixtures of odorants (Hodgkison et al. 2007, 2013) and in natural fruit-

selection primates need to identify complex odor signatures of ripe fruits and be able to 

discriminate them from odor profiles of unripe fruits. Thus, although these studies showed a 

potential to rely on olfactory cues in frugivory, they could not demonstrate whether and how high 

olfactory sensitivity and discrimination capacity translate into success in food acquisition tasks 

mimicking a real-life situation. On the other hand, most behavioral studies that employed more 

ecologically-realistic approaches used chemically undefined stimuli (Bicca-Marques and Garber 
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2004; Hiramatsu et al. 2009; Melin et al. 2009) or chemically known stimuli of domesticated fruit 

species (Rushmore et al. 2012) whose odor profiles may have been enhanced through artificial 

selection and are therefore not representative of the challenges primates face when selecting 

fruits in the wild. So, the connection between primate olfactory physiology and feeding ecology is 

not yet fully established. First, the ability to discriminate between complex odor mixtures that mimic 

odors of wild ripe and unripe fruits has not been experimentally demonstrated. Second, it is 

unknown whether sensitivity to, or discrimination of, any particular compound or compound family 

disproportionally increases their capability to identify ripe fruits. 

A recent study (Nevo et al., unpublished data) provided detailed analyses of the chemical profiles 

of the fruit odors of two Neotropical plant species whose seeds are dispersed primarily by 

primates. By comparison to patterns of odor emission in fruits whose main seed-dispersal vectors 

are birds, which are demonstrated to be less olfactory-, and more visually, dependent, it was 

hypothesized that odors of ripe fruits consumed by primates are not merely a cue that primates 

can potentially exploit, but an evolved signal whose function is to facilitate the communication 

between seed-dispersing primates and plants. More specifically, it was suggested that since 

primates and other, extant or extinct, frugivores tend to use olfactory cues in fruit selection (Nevo 

and Heymann 2015), fruits that rely on their seed-dispersal services have evolved to emit an odor 

which is unique to the ripe phase, i.e. significantly different from the odor of unripe fruits of the 

same species. This was hypothesized to increase the ability of primates and other frugivores to 

identify ripe fruits when selecting between ripe and unripe fruits in a feeding tree and hence their 

foraging efficiency. In turn, this should increase the overall attractiveness of a fruit and allow the 

plant to outcompete con- and heterospecifics in attracting dispersal vectors. However, without 

bioassays that test the ability of primates to detect the odors and discriminate them from the odors 

of unripe fruits, this claim remains tentative. 

The current study attempts to build upon these chemical analyses of odors emitted by primate-

consumed fruits and takes a step forward in connecting primate olfactory physiology and feeding 

ecology. Nevo et al. provide chemical characterizations of the odors of ripe and unripe fruits of 
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two Neotropical plant species, Couma macrocarpa (Apocynaceae) and Leonia cymosa 

(Violaceae). Both plant species provide indehiscent fruits (i.e. whose peel does not open upon 

maturation) with a soft, leathery peel that acquires a yellow color when ripening. Analyses of the 

chemical profiles revealed that in one species, C. macrocarpa, peel odor (i.e. odor of the intact 

fruits) profiles of ripe and unripe fruits are strong, rich and distinct (i.e. different between ripe and 

unripe fruits). In contrast, intact ripe and unripe L. cymosa fruits bear weak and similar odors, 

whereas the pulp (open fruits) is very odorous and its composition differs significantly between 

ripe and unripe fruits. Thus, it was predicted that in C. macrocarpa the odor of intact fruits would 

be sufficient to inform primates that an individual fruit is ripe while in L. cymosa primates must first 

manipulate the fruits and expose the pulp, and only in this phase receive the signal that the fruit 

is ripe.  

The goal of the current study was to assess whether the odor profiles of fruits of these two species 

indeed have the potential to mediate the interaction between plants and primates by signaling 

ripeness at the fruit selection phase, and to examine whether this ability depends on few 

compounds or compound classes that characterize the odors of ripe fruits. Using five captive 

black-handed spider monkeys (Ateles geoffroyi) as a model system, we addressed the following 

questions:  

1. Can spider monkeys discriminate between odor profiles of ripe and unripe fruits 

(C. macrocarpa: peel odor, L. cymosa: peel and pulp odor)? 

2. Does the ability to discriminate between odor profiles of ripe and unripe fruits of 

a certain plant species depend on one or a few compounds or compound classes that mark 

ripe fruits? Are odor profiles of unripe fruits that are more similar to the odor of ripe fruits 

with regards to these compounds more difficult to discriminate from the odor of ripe fruits? 

To address these questions, we employed an olfactory conditioning paradigm (Laska et al. 2003). 

We used synthetic odor mixtures that mimicked the odors of ripe and unripe fruits (peel odor in C. 

macrocarpa and both peel and pulp odors in L. cymosa). We first trained the monkeys to identify 



Use of fruit odor for fruit choice in black-handed spider monkeys - Results 

60 
 

the odor of ripe fruits and associate it with a food reward. Then, to address the first question, we 

tested the ability of spider monkeys to discriminate between the odors of ripe and unripe fruits of 

each species in a given condition (intact or open) using the full odor mixtures (i.e. those mimicking 

the natural odors of ripe and unripe fruits, respectively, as closely as possible). To address the 

second question, we employed a series of similar experiments in which we tested the ability of 

spider monkeys to discriminate between the odor of ripe fruits and the odor of “partially ripe” fruits. 

Partially ripe fruits were odor mixtures similar to the odor of unripe fruits which were manipulated 

to resemble the odor of ripe fruits with regards to one or more compounds (i.e. the concentration 

of compounds was manipulated so that one or more compounds in the odor of unripe fruits were 

matched to their respective concentration in the odor of ripe fruits). Thus, in each of these 

experiments, the odor of unripe fruits became more similar to the odor of ripe fruits with regards 

to one or more compound while all the other odorants in the mixture remained at concentrations 

appropriate for unripe fruits. The question was whether this would decrease the monkeys’ ability 

to discriminate between the odors.  

 

4.2. Results 

4.2.1. Couma macrocarpa – peel odor (intact fruits) 

Figure 4.1 shows the performance of the five spider monkeys in the training phase (Fig. 4.1, odor 

pair 1) and in discriminating between the odor of intact ripe and unripe fruits of Couma macrocarpa 

(Q1, odor pair 2) and odors mimicking different degrees of ripeness of this fruit (Q2, odor pairs 3-

13). With all 13 odor pairs, either all five animals (6 cases), or at least the majority of animals (7 

cases) scored ≥70.0% correct decisions (corresponding to p < 0.05 in a binomial test; see 

methods) and therefore succeeded in discriminating between the stimuli above chance level. With 

11 of the 13 odor pairs, the majority of animals even scored ≥76.7% correct decisions 

(corresponding to p < 0.01). Thus, the spider monkeys were clearly able to distinguish between 

odors of intact ripe and unripe fruits (Q1) and between ripe fruits and partially ripe fruits (Q2).  
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Discrimination performance did not differ between treatments (Friedman’s test: n = 5(11), χ2 = 

14.59, p = 0.2), implying that none of the odor mixtures, including partially ripe odor mixtures that 

were more similar to the fully-ripe odor, were more difficult to discriminate compared to other odor 

mixtures. 

 

 

Figure 4.1.Performance of five spider monkeys in discriminating between the odor of ripe intact fruits 

of Couma macrocarpa and odor mixtures mimicking different degrees of ripeness of this fruit. Each 

data point represents the percentage of correct decisions per odor pair and animal. Horizontal lines indicate 

chance level at 50%, and criterion levels at 70% (corresponding to p < 0.05 in a binomial test; see methods) 

and at 76.7% (corresponding to p < 0.01). The numbers and composition of odor pairs are given in Table 

4.1. Anethole (odor pair 1) served as a monomolecular training stimulus. Ripe vs unripe (odor pair 2) 

corresponds to question 1 from the introduction. Odor pairs 3-13 correspond to question 2. Colors in odor 

pairs 3-13 mark different odorant categories and darker shades within them (left to right) indicate increasingly 

ripe odor mixtures within these categories. 
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4.2.2. Leonia cymosa – peel odor (intact fruits) 

Discrimination performance between odor profiles of ripe and unripe intact Leonia cymosa odors 

was overall very low. Mean success rates of 4 out of 5 spider monkeys was lower than 70% 

(mean: 58%) and thus not different from chance whereas one individual achieved 80% success. 

Success rates were equally low in the training phase (ripe fruits vs anethole) (mean: 59%). So, as 

a group, the monkeys showed difficulties in identifying the odor of ripe intact L. cymosa fruits and 

as a result could not recognize ripe fruits based on their odor in the intact condition. To exclude 

the possibility that the inability to discriminate the odor of ripe intact L. cymosa fruits from anethole 

or from the odor of intact unripe fruits derives from the inability to detect the odor, we tested the 

discrimination capacity from water. Success rates of all five individuals were equal to, or higher 

than, 76.7% (mean: 80%).  

 

4.2.3. Leonia cymosa – pulp odor (open fruits) 

Figure 4.2 shows the performance of the five spider monkeys in the training phase (Fig. 4.2, odor 

pair 1) and in discriminating between the odor of open ripe and unripe fruits of Leonia cymosa 

(Q1, odor pair 2) and odors mimicking different degrees of ripeness of this fruit (Q2, odor pairs 3-

10). With all 10 odor pairs, either all five animals, or at least the majority of animals succeeded in 

discriminating between the stimuli above chance level (p < 0.05). With 8 of the 10 odor pairs, all 

five animals even scored ≥76.7% correct decisions (corresponding to p < 0.01). Thus, the 

monkeys readily discriminated between odors of open ripe and unripe fruits and between the odor 

of ripe fruits and partially ripe fruits. 

Differences in discrimination performance between treatments approached significance 

(Friedman’s test: n = 5(8), χ2 = 14.73, p = 0.065) but subsequent post-hoc analyses (pair-wise 

Wilcoxon Signed-Rank tests followed by the Bonferroni correction for multiple testing) revealed 
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that discrimination performance in all tasks was statistically indistinguishable (all pairwise 

comparisons: adjusted p = 1). Thus, similarly to intact C. macrocarpa fruits, none of the odor 

mixtures, including partially ripe odor mixtures that were more similar to the fully-ripe odor, were 

more difficult to discriminate compared to other odor mixtures. 

 

 

Figure 4.2 Performance of five spider monkeys in discriminating between the odor of ripe open fruits 

of Leonia cymosa and odor mixtures mimicking different degrees of ripeness of this fruit. Each data 

point represents the percentage of correct decisions per odor pair and animal. Horizontal lines indicate 

chance level at 50%, and criterion levels at 70% (corresponding to p < 0.05 in a binomial test; see methods) 

and at 76.7% (corresponding to p < 0.01). The numbers and composition of odor pairs are given in Table 

4.3. Anethole (odor pair 1) served as a monomolecular training stimulus. Ripe vs unripe (odor pair 2) 

corresponds to question 1 from the introduction. Odor pairs 3-10 correspond to question 2. Colors in odor 

pairs 3-10 mark different odorant categories and darker shades within them (left to right) indicate increasingly 

ripe odor mixtures within these categories. 
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4.3. Discussion 

The first question we addressed was whether spider monkeys can discriminate between the odors 

of ripe and unripe fruits. The results were positive in both plant species: in C. macrocarpa the 

animals successfully discriminated between the odors of intact (peel odor) ripe and unripe fruits 

(Fig. 4.1, odor pair 2); in L. cymosa they failed to do so, but could readily discriminate between 

the odors of open ripe and unripe fruits (pulp odor) (Fig. 4.2, odor pair 2). These results suggest 

that spider monkeys can rely on fruit odor for identification of ripe C. macrocarpa and L. cymosa 

fruits in the wild: during the food-selection process individuals sample the odors of ripe and unripe 

fruits. In an unordered series of visual, olfactory and tactile examination (Dominy et al. 2006), they 

are exposed to the odor of both the intact (peel odor) or open (pulp odor) fruit. As a result, they 

learn to associate the odors of ripe fruits with a reward, in a process that is similar to the 

conditioning paradigm employed here. Thus, over time, the ability to discriminate between odors 

of ripe and unripe fruits of these species is likely to translate into the ability to assess the fruits’ 

ripeness based solely on their odor. 

These results are in line with the hypothesis that fruit odor in C. macrocarpa and L. cymosa is an 

evolved signal to seed-dispersing primates and/or other contemporary or extinct frugivores. Nevo 

et al. showed that the emission of a unique odor at ripeness, either of the intact or open fruits, 

characterizes plants whose seeds are dispersed by primates and not by birds. Our results confirm 

that spider monkeys have the ability to discriminate between the odors of ripe and unripe fruits 

and thus the potential to use fruit odor to identify ripe fruits. While alternative explanations cannot 

at this point be ruled out, these results indicate that selection by monkeys and other frugivores 

may have driven an evolution of unique odor at ripeness in fruit species whose seeds they 

disperse. 

The second question we addressed was whether the ability of spider monkeys to discriminate 

between odors of ripe and unripe fruits depends on one or perhaps a few odorants or odorant 

classes which may be indicative of ripeness. Using an odor mixture that did not mimic a natural 

stimulus, a previous study has found that discrimination performance in squirrel monkeys (Saimiri 
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sciureus) decreases when odor mixtures become increasingly similar and that some odorants 

disproportionally contribute to their ability to do so (Laska and Hudson 1993). Here, using stimuli 

that mimicked natural fruit odors, only minor differences in the performance of the spider monkeys 

between the different odor pairs was observed and none was statistically significant. For example, 

in intact C. macrocarpa, adding methyl salicylate (Fig. 4.1, odor pair 9) to the odor of unripe fruits 

yielded a slight, but statistically insignificant, decrease in the spider monkeys’ discrimination 

performance. However, when adding all relevant aromatic compounds (Fig. 4.1, odor pair 10: 

methyl salicylate, ethyl salicylate, p-cymene), which was expected to yield an odor mixture that 

resembles the odor of ripe fruits even more, the spider monkeys’ discrimination performance was 

slightly higher and statistically indistinguishable from their ability to discriminate between the full 

ripe and unripe odors (Fig. 4.1, odor pair 2). Thus, we interpret all deviations from the baseline 

discrimination level (ripe vs. full unripe, odor pair 2) as statistical noise and are left to conclude 

that none of the manipulations of unripe odors caused any systematic decrease in the ability of 

the spider monkeys to discriminate between odors of ripe and unripe fruits. In summary, even as 

the odors of ripe and partially ripe fruits became increasingly similar, spider monkeys still readily 

discriminated between them and identified the full ripe odor mixture. 

These results exemplify the acute sense of smell in spider monkeys and suggest that the ability 

to identify ripe fruits does not depend on any single compound. Further, these results show that 

even when the odors of ripe and unripe fruits become increasingly similar, the monkeys still readily 

discriminate between them and can use olfactory cues to determine whether a fruit is ripe or not. 

Finally, the results show that the monkeys quickly learn to successfully solve novel olfactory tasks 

(discrimination between a known rewarding and a variety of novel non-rewarding odors). This 

ability is beneficial because natural fruit odors are not uniform: individual fruits may develop under 

different conditions and therefore unripe fruits may emit some compounds in concentrations 

similar to the ripe fruits, and vice versa (Hodgkison et al. 2007). As a result, the ability to recognize 

the odor of ripe fruits against different combinations of partially ripe odor should allow spider 

monkeys to select fruits of an optimal degree of ripeness in a natural environment, in which signals 

are often accompanied with some degree of noise.  
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Thus, odor profiles of ripe C. macrocarpa and L. cymosa, which are composed of a plethora of 

different odorants, show a complexity that allows them to remain unique, and hence identifiable 

by spider monkeys and probably other primates and non-primate frugivores as well, even when 

the concentration of some compounds substantially deviates from the mean typical for a given 

ripeness level. This increases the signal’s specificity and ensures the reliability of communication 

despite inevitable noise with regards to the concentration of some compounds, and may therefore 

be an adapted feature of fruit odor in the two plant species. On the other hand, it should be 

considered that the biosynthetic machinery used for production of plant secondary metabolites is 

non-specific, and therefore volatile plant secondary metabolites are always produced in complex 

mixtures (Fischbach and Clardy 2007). Therefore, it could be that if fruits are under selection to 

emit an odor that signals their ripeness, the only way to achieve that is through complex mixtures 

of volatiles. In this case, odor complexity of ripe C. macrocarpa and L. cymosa is an inevitable 

byproduct of signaling via the olfactory trajectory and it is possible that if a more compound-

specific biosynthetic pathway for synthesis of volatile secondary metabolites were available, a 

simpler odor mixture could function equally well in conveying information to seed-dispersal 

vectors. 

Our results further highlight that the sense of smell of a species cannot be summed up simply as 

“good” or “bad”. As fruit specialists that feed on fruits of many different plant species (di Fiore et 

al. 2008), spider monkeys would benefit from the ability to learn olfactory discrimination tasks and 

maintaining high discrimination ability between complex mixtures even when signals include a 

substantial amount of noise. Other, more specialist species, may possess olfactory systems that 

serve them well in their respective ecological niche but which do not require to maintain such high 

discrimination capacity in diverse, noisy, conditions. So, their olfactory systems may be useful and 

good – but entail different capacities. 

In conclusion, our study provides the first attempt to examine how primate olfactory discrimination 

capacity translates into success in ecologically realistic fruit-selection tasks. It confirms that spider 

monkeys achieve high discrimination performance between odor profiles of ripe and unripe fruits 
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of two wild plant species, and therefore identify ripe fruits based on their volatile profiles. Further, 

our results show that the ability of spider monkeys to discriminate between the odors of ripe and 

unripe fruits does not depend on single compounds or compound classes. This unique odor 

signature, which retains information regarding fruit ripeness even when some noise is introduced, 

should enhance the overall attractiveness of the fruits to frugivores and therefore contribute to 

facilitating the mutually-beneficial interaction between plants and seed-dispersing primates and 

possibly other seed-dispersal vectors.  

 

4.4. Methods 

4.4.1. Animals 

Testing was carried out using four adult female and one adult male black-handed spider monkeys 

(Ateles geoffroyi). The male was 8 years old, and the females were 9, 10, 11, and 15 years old, 

respectively, at the start of the study. The spider monkeys were kept in outdoor enclosures at the 

UMA Hilda O’Farrill (environmental management unit), maintained by the Universidad 

Veracruzana near Catemaco, Veracruz, Mexico, and were thus exposed to natural environmental 

conditions concerning ambient temperature, relative humidity, and light. All spider monkeys had 

served as subjects in previous olfactory experiments and were familiar with the basic test 

procedure (Løtvedt et al. 2012; Wallén et al. 2012; Sarrafchi et al. 2013). Maintenance of the 

animals has been described in detail elsewhere (Hernandez Salazar et al. 2003). As they were all 

captive born, it is unlikely that they had been familiar with fruits of Couma macrocarpa and Leonia 

cymosa prior to the current experiments.  

The experiments reported here comply with the Guide for the Care and Use of Laboratory Animals 

(National Institutes of Health Publication no. 86-23, revised 1985) and also with current Swedish, 

German, and Mexican laws. They were performed according to a protocol approved by the ethical 

board of the Federal Government of Mexico’s Secretariat of Environment and Natural Resources 

(SEMARNAT; Official permits no. 09/GS-2132/05/10). 
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4.4.2. Odorants  

Odor stimuli were synthetic odor mixtures mimicking the odors of ripe and unripe fruits of Couma 

macrocarpa (intact) and Leonia cymosa (intact and open) as well as of intermediate degrees of 

ripeness of both fruits. For this, we prepared mixtures mimicking the odor of partially-ripe fruits in 

which the concentration of one or more compounds as present in the unripe fruit was manipulated 

to match the concentration in the odor of the respective ripe fruit. 

We used commercially available odorants (Tab. 9.1) dissolved in near-odorless diethyl phthalate 

(99%, Sigma Aldrich, Germany). Although not all odor chemicals identified in the natural fruits 

(Nevo et al.) were available, we obtained most of the major components. This allowed 

reconstructing of a substantial proportion of the natural odors (C. macrocarpa - ripe intact: 84%, 

unripe intact: 84%; L. cymosa – ripe intact: 69%, unripe intact: 77%, ripe open: 87%, unripe open: 

68%).  

After mixture preparation we sampled their headspaces to verify that their odors resembled the 

odors of natural fruits. Sampling was conducted according to a protocol identical to the one used 

for analysis of natural fruit odor in Nevo et al. 1 ml of mixture was placed in an open 2 ml Eppendorf 

tube and placed inside a sealed chamber made from an unused inert baking bag (Toppits, 

Germany) for 2.5 h. The accumulated headspace was then collected for 10 min in a constant 

airflow if 330 ml/min onto a self-made absorbent trap containing 1.5 mg of Tenax-TA and 1.5 mg 

Carbotrap (both Supelco, Sigma-Aldrich, Germany). Absorbent traps were loaded at the tip of a 

cleaned Teflon tube which was the only opening in the system. Absorbent traps were loaded 

immediately afterwards to a Hewlett Packard HP 6890 Series gas chromatographic–mass 

selective detector (GC–MS; Agilent Quadrupol 5972) equipped with a DB-5ms capillary column 

(30 m long, 250 µm in diameter, film thickness: 0.25 µm, J&W) and analyzed in conditions identical 

to those described in Nevo et al. We then adjusted the concentrations of the odorants in 

accordance with the results, until the headspace was similar to the odor of natural fruits in both 
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composition and intensity. To confirm that our synthetic mixtures sufficiently resembled the natural 

odors, we ran a principal component analysis (PCA) followed by a discriminant function analyses 

on the natural odor of ripe and unripe fruits of both species (data and analysis methods from Nevo 

et al.) and then verified that the synthetic mixtures scored on the DFAs similarly to the natural 

odors. All samples scored within the range of the natural odors on the discriminant functions and 

can thus be considered to be reasonable representatives of natural odors (Fig. 9.1, 9.2). 

This procedure led to 6 basic “recipes” mimicking the full odors of ripe and unripe fruits of C. 

macrocarpa (intact only) and L. cymosa (intact and open) (Tab. 9.2, 9.3), which we also used to 

generate the partially ripe odors. Due to time and budget constraints, we did not test all possible 

combinations of compounds in partially ripe mixtures but focused on compounds that showed 

large differences between ripe and unripe fruits. 

 

4.4.3. Behavioral test 

We assessed the olfactory discrimination performance of the spider monkeys using a food-

rewarded two-choice instrumental conditioning paradigm (Hernandez Salazar et al. 2003). The 

test apparatus consisted of a 50 cm long and 6 cm wide metal bar with two cube-shaped opaque 

PVC boxes with a side length of 5.5 cm attached to it at a distance of 22 cm from each other. 

Each container was equipped with a tightly closing hinged metallic lid, hanging 2 cm down the 

front of the container. From the center of the front part of the lid, a pin of 3 cm length extended 

towards the animal and served as a lever to open the lid. On top of each lid was a metal clip 

attached. This clip held a 70 × 10 mm absorbent paper strip (Schleicher & Schuell, Einbeck, 

Germany) which was impregnated at its distal end with 10 µl of an odorant used as rewarded 

stimulus (S+) or with 10 µl of an odorant used as unrewarded stimulus (S-). The paper strips 

extended approximately 3 cm into the cage when the apparatus was presented to the animals. 

The box with the absorbent paper strip bearing the S+ attached to the lid contained a food reward, 

a Kellogg’s Honey Loop®, while the one bearing the S- did not.  
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When presented with the test apparatus the monkeys sniffed both paper strips for as long as they 

liked and then decided to open one of the boxes. In the rare cases when a monkey tried to open 

a box without prior sniffing or tried to open both boxes, the experimenter held a chain connected 

to the lid tight so that the animal could not move the lid. After the decision and, in the case of a 

correct choice, after food retrieval the apparatus was immediately removed and prepared for the 

next presentation out of sight from the monkeys. Each monkey received three blocks of 10 trials 

(i.e., three sessions) per day. In five of the 10 trials of a session, the left box was baited and in the 

other five trials the right box was baited. The order of the “correct” and the “wrong” sides was 

pseudorandomized with the limitation that one box was not baited more often than three times in 

a row. At the end of each session the apparatus was thoroughly cleaned with 96% ethanol to 

ensure that no traces of odorants were left. 

Control tests without a food reward being present in the box bearing the absorbent paper strip 

with the S+ resulted in the same high level of correct choices as tests with a food reward being 

present in the box. Further, previous studies have shown that the animals consistently failed to 

perform above chance level when the S+ was presented at subthreshold (i.e. undetectable) 

concentrations, despite a food reward being present in the box bearing the absorbent paper strip 

with the S+. Together, this excludes the possibility that the monkeys smelled the food reward 

inside the box or based their decisions on cues other than the odors of the S+ and the S-. 

The animals were tested individually to avoid distraction from conspecifics. To this end, an animal 

voluntarily entered a small test cage (80 × 50 × 50 cm) adjacent to the group enclosure which 

could be closed by a sliding door for temporary separation. The animal sat on a bar mounted 

horizontally and parallel to the front side of the test cage. This front side of the test cage consisted 

of a stainless steel mesh with a width of 1 cm and had two openings of 5 × 5 cm allowing the 

animal to reach through the mesh, open the lid of one of the boxes of the test apparatus and to 

retrieve the food reward. The test apparatus could be attached to the outside of the front side of 

the test cage in such a way that the lids of the boxes were at a height consistent with the reach-

through openings. 
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We assessed the ability to discriminate between the odors of ripe and unripe fruits, or between 

the odors of ripe and partially ripe fruits, by assigning one odor mixture mimicking the ripe fruit 

odor as the rewarded stimulus (S+), and several other odor mixtures representing different 

degrees of unripe fruit odor as the unrewarded stimulus (S-). In order to allow animals to build a 

robust association between a given odorant and its reward value, the critical tests started by 

assessing the ability to discriminate between a ripe fruit odor as S+ and the monomolecular 

odorant anethole (described by humans as smelling of aniseed) as S-.  

With each stimulus combination, each spider monkey performed six sessions of 10 trials. The first 

three sessions were considered as training sessions intended to allow the animals to learn the 

differing reward values of the two stimuli, and the last three sessions were considered as critical 

sessions that were used for statistical analysis of discrimination performance. Data collection took 

place between May and September 2014. The spider monkeys were not maintained on a food 

deprivation schedule but were tested in the morning prior to the presentation of their daily ration 

of food. 

 

4.4.4. Experiments 

Tab. 4.1 - Couma macrocarpa – intact fruits 

 Full ripe vs. 

1 Anethole 

2 Full unripe odor 

 Partially ripe odors 

 Terpenoids: 

3 Unripe + (E-) Caryophyllene 

4 Unripe + α-Copaene 

5 Unripe + monoterpenes (E-β-Ocimene, D-Limonene, Myrcene, Sabinene, γ-Terpinen) 

6 Unripe + sesquiterpenes (α-Humulene, (E-) Caryophyllene, α-Copaene) 
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7 Unripe + monoterpenes + sesquiterpenes (E-β-Ocimene, D-Limonene, Myrcene, Sabinene, γ-Terpinen, α-
Humulene, (E-) Caryophyllene, α-Copaene) 

 Aromatic compounds and aldehydes: 

8 Unripe + Ethyl salicylate 

9 Unripe + Methyl salicylate 

10 Unripe + aromatic compounds (Ethyl salicylate, Methyl salicylate, p-Cymene) 

11 Unripe + Trans-2-nonenal 

12 Unripe + aldehydes (Trans-2-nonenal + Nonanal) 

13 Unripe + aromatic compounds + aldehydes (Ethyl salicylate, Methyl salicylate, Trans-2-nonenal, Nonanal) 

 

Tab. 4.2 - Leonia cymosa – intact fruits 

 Full ripe vs. 

1 Anethole 

2 Full unripe 

3 Water 

 

Tab. 4.3 - Leonia cymosa – open fruits 

 Full ripe vs. 

1 Anethole 

2 Full unripe 

 Partially ripe odors 

 Aromatic compounds: 

3 Unripe + Acetophenone 

4 Unripe + Benzaldehyde 

5 Unripe + p-Cymenene 

6 Unripe + aromatic compounds (Acetophenone, Benzaldehyde, Cumene, p-Cymene, p-Cymenene) 

 Terpenoids: 

7 Unripe + α-Copaene 

8 Unripe + E-β-Ocimene 
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9 Unripe + all terpenoids (E-β-Ocimene, α-Copaene) 

 Monoterpenes + aromatic compounds: 

10 Unripe + all aromatic compounds and monoterpenes (Acetophenone, Benzaldehyde, Cumene, p-Cymene, 
p-Cymenene, E-β-Ocimene)  

 

4.4.5. Data analysis 

For each individual animal, the percentage of correct choices from 30 trials per stimulus 

combination was calculated. Correct choices consisted both of animals opening a box equipped 

with the S+ and failing to open a box equipped with the S-. Conversely, errors consisted of animals 

opening a box equipped with the S- or failing to open a box equipped with the S+. Significance 

levels were determined by calculating binomial z-scores from the number of correct and false 

responses for each individual and condition. All tests were two-tailed and two different alpha levels 

were considerd: 0.05, corresponding to 21 out of 30 decisions (=70%) correct, and 0.01, 

corresponding to 23 out of 30 decisions (=76.7%) correct.  

To assess whether discrimination performance within species/condition (e.g. C. macrocarpa, 

intact fruits) differed between treatments, we conducted a one-way non-parametric repeated-

measures ANOVA (Friedman test). If the result of this test proved to be significant or approached 

significance, we further applied a post-hoc analysis of pairwise non-parametric repeated-

measures Wilcoxon signed-rank tests, whose p-values were then subjected to the Bonferroni 

correction for multiple testing. 
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5. SYNOPSIS 

Chapter 2 raised the questions (a) “which functions the sense of smell fulfills in the process of 

primate food acquisition?” and (b) “which ecological niches favor higher reliance on olfaction when 

searching and selecting feeding items?”. Its conclusions were that available studies are still not 

fully representative and integratable, but that some patterns emerge. Frugivory probably requires 

more reliance on olfaction than insectivory or folivory, and this is fully realized only in the context 

of food selection, and not detection of feeding trees over long distances. Thus, the main function 

of primate olfaction is recognizing, after the arrival to a fruiting tree, which fruits are ripe and which 

are unripe, or possibly over-ripe or infested. 

Chapter 3 examined the implications of this aspect of primate sensory ecology on the evolution of 

fruit traits. Plant fitness is expected to increase if a reliable signal for fruit ripeness is provided and 

in turn promotes consumption and consequent seed dispersal by the frugivore. Thus, under the 

Dispersal Syndrome Hypothesis, in the communication with primates, unique odor indicative of a 

fruit’s ripeness level is expected to be selected for in primate-dispersed species.  

However, fruit odor could have functions other than mediating the communication with seed-

dispersal vectors. Indeed, it might not have a clear function at all. So, to test the hypothesis that 

fruit odor in primate-dispersed species evolved as a signal for ripeness, a comparative study 

examined patterns of odor release in four Neotropical species, two dispersed by primates (Couma 

macrocarpa: Apocynaceae; Leonia cymosa: Violaceae) and two by small passerines (Psychotria 

cincta: Rubiaceae; Maieta guianensis: Melastomataceae). Passerines are assumed to rely less 

on olfactory cues and therefore to generate weaker to non-existent selection pressures for the 

production of an odor signal for ripeness. It set to test three predictions that derive from the 

hypothesis that fruit odor is an adaptation to primate seed dispersal: (c) that primate-dispersed 

fruits emit odors which are relatively strong and rich, and most importantly unique to the ripe phase 

– i.e. provide reliable information that the fruits are ripe; (d) that bird-dispersed species have 

poorer, weaker odor profiles indistinguishable from the odors of unripe fruits; and (e) that this is 

independent of phylogeny.  



Synopsis 

75 
 

To test these predictions, chemical analyses of the odor profiles of fruits of the four plant species 

were conducted. The odor of ripe and unripe fruits was sampled in two conditions, intact and open, 

that corresponded to two potential signaling mechanisms: husk (intact fruits) and pulp (open fruits) 

odor. The results confirmed the three predictions: ripe primate-dispersed fruits produced that were 

significantly different than those of conspecific unripe fruits (C. macrocarpa: in both intact and 

open conditions; L. cymosa: open only). Bird-dispersed fruits, each phylogenetically closer to one 

primate-dispersed species than they are to one another, emitted odors that were indistinguishable 

from those of unripe fruits. Thus, the chapter concluded that patterns of odor release in these four 

species are in line with the hypothesis that fruit odor in primate-dispersed species is an evolved 

signal as predicted by the Dispersal Syndrome Hypothesis. 

But even if patterns of odor release are in agreement with the predictions of the odor as an 

adapted signal hypothesis, to demonstrate that fruit odor is indeed a part of an evolved 

communication system, it was imperative to demonstrate that primates “understand” the signal, 

i.e. that (f) they can physiologically discriminate between the odors of ripe and unripe primate-

dispersed fruits, and (g) use this information to select ripe fruits in the absence of cues from other 

sensory trajectories.  

The bioassays reported in chapter 4 addressed these questions and showed that black-handed 

spider monkeys’ (Ateles geoffroyi) behavior was in agreement with the discrimination potential 

inferred from the chemical analyses presented in chapter 0. In C. macrocarpa, whose odor profiles 

were rich, strong and different already in the intact phase, the monkeys easily discriminated 

between the odors of intact ripe and unripe fruits and quickly learned to use the information to 

correctly choose ripe over unripe fruits in the absence of cues from other sensory trajectories. In 

L. cymosa primate behavior was also well predicted by the differences of chemical profiles of ripe 

and unripe fruits. In the intact condition, in which ripe fruit odor was weak and indistinguishable 

from the odor of unripe fruits, discrimination capacity of the monkeys was low. In contrast, in the 

open condition, in which ripe fruits emitted strong, rich odors significantly different from that of 

unripe fruits, spider monkeys easily discriminated between the odors and showed that they can 
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rely solely the olfactory signature of the fruits to identify ripe fruits. This positively answered 

questions (f) and (g) and confirmed that primates indeed “understand” the signal provided by the 

primate-dispersed fruits.  

Thus, acknowledging that the small model system of four species investigated here should be 

extended, all predictions of the hypothesis that fruit odor is an evolved signal for seed-dispersing 

primates have been met. Further, these results provide additional evidence supporting the 

Dispersal Syndrome Hypothesis, which predicts that fruit traits evolve in response to the 

anatomical, physiological and sensory capacities of their major dispersal vector. 

Finally, an additional set of experiments explored whether any of the compounds or compound 

classes present in the odor bouquets of primate-dispersed fruits are particularly important in 

enhancing primates’ discrimination capacity between odors of ripe and unripe fruits (question h). 

The results were negative: no single compound or compound class is, in itself, crucial for creating 

the perceived difference between the odors of ripe and unripe fruits.  
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6. GENERAL DISCUSSION 

6.1. The evolution of fruit odor 

Fruit secondary metabolites may have many functions (Cipollini and Levey 1997), some of them 

non-adaptive (Eriksson and Ehrlén 1998). Recent studies have focused on the long-untested 

prediction, under the Dispersal Syndrome Hypothesis, that fruits dispersed by olfactory-

dependent animals such as bats would be subjected to selection pressures to provide a reliable 

olfactory signal for ripeness. The data presented here joins these findings in showing that fruits 

dispersed by primates are likely to have been subjected to similar selection pressures and evolved 

to emit odor signals when ripe. It thus expands the fruit odor an adapted signal model, for the first 

time, to plants and dispersal vectors outside the bat-fig model system. Furthermore, they provide 

support for the Dispersal Syndrome Hypothesis by showing that fruit odor is likely to be yet another 

fruit trait that has been shaped by the sensory capacities of the plants’ major seed-dispersal 

vector. 

Potentially, fruit odor could serve two separate functions in the communication with primates: first, 

to guide them to the fruiting tree and second, to signal whether an individual fruit is ripe or not. 

However, as noted in chapter 2, the ability of primates to track odor plumes to detect feeding items 

over long distances is all but absent. Therefore, as apparent in the results here, the selection 

pressure that the primate sense of smell exerted on fruit odor has been to emit an odor that 

characterizes ripe fruits and allows primates to discriminate between ripe and unripe fruits – thus 

helping them in the selection rather than the foraging phase of food acquisition.  

In this context, it is not surprising that the compound classes dominating fruit odor in primate-

dispersed species are monoterpenes and sesquiterpenes. Terpenoids are heavier and less 

volatile than many other common volatile organic compounds and are therefore more efficient in 

signaling quality from short distances than location over long distances (Schaefer and Ruxton 

2011). Additionally, chapter 2 concluded that as opposed to the common notion, there is no clear 

tradeoff between olfaction and color vision in primates. Trichromatic vision, which is either habitual 
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or present in some individuals in all haplorrhines and many strepsirrhine species (Jacobs 2009), 

has been specifically speculated to be useful for detection of fruiting tree from a long distance 

(Melin et al. 2014). Taken together, this may indicate that fruit bimodal signaling – through color 

and odor – has evolved to fulfill two different functions: color promotes conspicuousness to 

primate groups over longer distances whereas odor signals the quality of individual fruits. This 

idea is further supported by the fact that primate-dispersed fruits are, in the eyes of primates, 

visually less conspicuous than bird-dispersed fruits (Lomáscolo and Schaefer 2010). This 

suggests that primate dispersed-species are under a milder selection pressure to be visually 

conspicuous – possibly because olfactory cues can provide reliable information at the fruit-

selection stage. 

When expanded to the interactions of other fruit species and non-primate frugivores, patterns of 

odor signaling are expected to be somewhat different. Not surprisingly, all works that discussed 

the evolution of fruit odor in bat-dispersed species (Hodgkison et al. 2007, 2013; Borges et al. 

2008; Lomáscolo et al. 2010) focused solely on husk odor. This is because bat and primate 

foraging behaviors are different. First, bats lack manual capacities and are not likely to manipulate 

a fruit and be exposed to the pulp odor before carrying the fruit away. Therefore, bats would not 

be able to choose a fruit correctly unless a reliable signal is provided without its manipulation in 

situ. Second, bats rely on olfaction in the search phase as well (Korine and Kalko 2005). Thus, it 

is likely that bat-dispersed fruits would be under selection pressure to provide olfactory signals 

that are carried farther away and enhance the long-distance detectability of the fruiting tree, not 

only the ripeness of individual fruits. 

The results from the second set of bioassays (question h) indicate that not all secondary 

metabolites emitted by the two primate-dispersed species are necessary for achieving the goal of 

allowing primates to identify that a fruit is ripe. This leads to an inevitable question: why should 

fruits synthesize a score of unnecessary compounds?  

One potential explanation is that the olfactory signal contains information that is not merely 

whether the fruit is ripe or not. The underlying working hypothesis in this project has been that the 
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signal was binary: simply ripe or unripe, like the one argued to be present in bat dispersed fruits 

(Hodgkison et al. 2007, 2013; Borges et al. 2008; Lomáscolo et al. 2010). In contrast, the signal’s 

content can, in addition to the information that the fruit is ripe, also provide information regarding 

fruit nutrient content. Dispersal vectors can be a limiting factor, which leads to inter- and 

intraspecific competition for seed dispersers (Alcántara et al. 1997). Thus, individual plants are 

under pressure to provide an attractive reward to seed dispersers, but also to provide reliable 

signals regarding the quality of the fruits they offer. Frugivores often need such sensory cues to 

assess the quality of fruits. Primates may rely on texture or ethanol content as a proxy for sugar 

content (Dominy 2004b), and birds use fruit color, which is assumed to be an evolved signal to 

birds similarly to odor in primate-dispersed species. Crucially, fruit color in bird-dispersed species 

is correlated with fat content and thus provides a reliable signal for fruit quality (Schaefer et al. 

2014).  

Therefore, the function of the rich odor bouquets emitted by C. macrocarpa and L. cymosa may 

be to signal fruit quality, and not merely that the fruits are ripe. In fact, most fruit volatiles are 

biosynthetically associated with nutrients and therefore provide reliable cues for fruit quality (Goff 

and Klee 2006). Further, the compound class that dominates the odors of intact C. macrocarpa 

and open L. cymosa fruits is terpenoids, whose main building block is isoprene (McGarvey and 

Croteau 1995), a compound whose emission from leaves is correlated with photosynthetic activity 

(Lerdau and Throop 2000). Thus, it is plausible that individual compounds in the bouquet are cues 

for the presence of specific nutrients, and that a terpenoid rich volatile bouquet is a reliable, 

“honest” (sensu Zahavi 1975; Zahavi and Zahavi 1997), signal for sugar content and fruit quality. 

This hypothesis can be confirmed if future studies show that terpenoid richness is indeed 

positively correlated with sugar content and that primates show a preference for fruits that emit 

terpenoid-rich bouquets.  

Other, less adaptive explanations may account for the excess of volatile compounds emitted by 

the two primate-dispersed species. Plant secondary metabolic biosynthetic pathways are typically 

non-specific: rather than synthesizing one compound, they produce several similar-yet-different 
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compounds (Fischbach and Clardy 2007). While it is unclear whether this has any adaptive 

function or whether it derives from a constraint that prevents fully specific biosynthesis, the 

inevitable result is that plant secondary compounds are often present in mixtures. As a result, 

fruits that are under selection to use secondary metabolites as olfactory signals for seed 

dispersers are forced, due to this constraint, to present an overly complex mixture. 

Finally, it should be noted that by focusing on the role of fruit secondary metabolites in 

communication with primates, the scope taken in this thesis is, admittedly, rather narrow. The 

many potential functions of fruit secondary compounds (Cipollini and Levey 1997), along with 

inevitable constraints, generate multiple selection pressures in varying directions (Borges 2015). 

Consequently, the discussion of the evolution of fruit odor should rather explore the evolution of 

fruit odors, not odor. In this context, it is far from surprising that fruit odor contained compounds 

that are unnecessary for discrimination between ripe and unripe fruits: synthesis of some of the 

compounds identified may have evolved to fulfill other functions, or may be present due to 

pleiotropic constraints (i.e. their synthesis in other plant organs, namely leaves). Therefore, 

although the trends documented here indicate that the need to signal ripeness to primates indeed 

exerted significant selection pressures that resulted in differences in patterns of odor release 

between primate- and bird-dispersed species, the main task of future research addressing this is 

to identify which components of fruit odor responded to which selection pressures.  

 

6.2. Primate olfaction: functions and evolution 

Just like the synthesis of fruit secondary metabolites is the result of many, differing, selection 

pressures combined with phylogenetic and developmental constraints (Borges 2015), so is the 

primate sense of smell: factors like activity time, modal diet and the availability of cues from other 

sensory trajectories join constraints to form species-specific olfactory capacities and overall level 

of reliance on olfaction. Thus, chapter 2 concluded that more systematic comparative studies of 

primate behavior are required to pinpoint large-scale evolutionary scenarios in primate olfactory 
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evolution. However, available behavioral works indicate that frugivory requires more reliance on 

olfactory cues than other dietary categories and that the function of olfaction in this context is fruit 

selection. It further speculated that the particular olfactory capacity that is expected to be crucial 

for fulfilling this function is olfactory discrimination, i.e. the ability to tell that two odors are different 

and thus also to identify odors, and not olfactory sensitivity – the ability to detect odorants at low 

concentrations. 

The data presented in chapters 3 and 04 are in line with these trends and predictions. Spider 

monkeys proved to be able to easily discriminate between odors of ripe and unripe fruits with 

which they had been previously unfamiliar, and to be able to use this ability to correctly choose 

ripe fruits almost immediately. Furthermore, they could easily discriminate the odors of ripe and 

unripe fruits even when the latter were manipulated to be increasingly more similar to the former. 

This indicates that primates do not rely on any individual compound for odor identification and that 

their olfactory system is acute and flexible enough to filter out a lot of noise and still identify stimuli. 

These results raise the discussion regarding the relative importance of olfaction to primate feeding 

ecology to a whole new level: if olfaction did not play a crucial role in primate feeding behavior, it 

could not exert any significant selection pressures on the consumed fruits and the patterns of fruit 

odor production would probably be very different. 

The work reported here provides the first detailed account of realistic chemical challenges with 

which the primate sense of smell has to deal in real-life ecological challenges. Based on only two 

plant species, the data presented here regarding this “olfactory space” is still limited. However, it 

is clear that the chemical signal identified in both primate-dispersed species contains a significant 

share of terpenoids. Terpenoids are by far the most important family of plant volatile compounds 

(Gershenzon and Dudareva 2007) and the ability to detect them and discriminate between them 

should be useful, apart from frugivory, in all chemically-mediated primate-plant interactions. Thus, 

future studies that wish to identify aspects of primate olfaction that evolved for food selection 

should focus on measurements of olfactory sensitivity and discrimination capacities to terpenoids 

and other compounds identified in fruit odor.  
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One question left unanswered by the data presented here is the level to which primate response 

to fruit olfactory signals is innate or learned. In insect-plant pollination interactions, which are in 

many cases much more specific than frugivore-plant interactions (Blüthgen et al. 2007), chemical 

communication is often based on a small number of compounds and the elicited insect behavior 

is often hard-wired (i.e. it is innate and does not require learning) (Lunau 1992). In contrast, 

primates can consume hundreds of different fruit species (van Roosmalen 1985b,Julliot 1996b; 

Culot 2009), some of which provide fruits only every other year (Chapman et al. 2005). Although 

there is no information regarding their volatile profiles, data from cultivated fruit species suggest 

that the diversity of fruit volatiles is enormous (McGrath and Karahadian 1994; Beaulieu and 

Grimm 2001; Franco and Janzantti 2005). Thus, the chemical stimuli primates deal with when 

choosing fruits are likely to be highly complex and unpredictable – a condition that strongly 

promotes plastic, learned, responses rather than innate reactions.  

On the other hand, innate response to predator-related odorants has been documented in mouse 

lemurs (Microcebus murinus) (Sündermann et al. 2008) and even in birds, whose web of 

interactions with fruits is as complex as that of primates, innate response to visual fruit stimuli 

coexists alongside learned behavior (Schaefer and Ruxton 2011). Additionally, the previous 

section (6.1) speculated that some volatile compounds – especially terpenoids – may be 

inherently associated with sugar content. Although learned discrimination between odors of ripe 

and unripe fruits may still be required, in this context some innate preference for terpenoid-rich 

odors may be selected. Thus, it cannot be excluded that at least some of primates’ 

“understanding” of fruit chemical signals is innate. Unfortunately, the experiments described in 

chapter 4 cannot shed light on this question because the experimental procedure required 

conditioning of the subjects before the experiments begun. Therefore, all they can tell us is that 

even without innate response, primates can learn to use olfactory cues to choose ripe fruits. Based 

on these results, it is impossible to tell whether any innate preference was present in the monkeys. 
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6.3. “Chemical coevolution” of primates and angiosperms? 

The major radiations of primates and angiosperms coincided (Eriksson 2014) and the two groups 

show a lot of co-dependency: many primate species of all lineages show at least some degree of 

frugivory and angiosperms, especially in the tropics, rely on their seed-dispersal services (see 

1.2.1). These observations have led to the “primate-angiosperm coevolution hypothesis”, which 

postulates that the major drive behind the early evolution of primates was their interactions with 

the co-evolving flowering plants (Sussman 1991; Sussman et al. 2013). Support for this notion is 

somewhat circumstantial: apart from the temporal coincidence and contemporary mutualistic 

interactions, it strongly relies on a single fossil (Bloch and Boyer 2002). So, coevolution sensu 

stricto – i.e. a tight process in which gradual changes in one taxon drive a change in another, 

which in turn drives further change in the former – might not best describe the complex, long-term 

and, most importantly, non-exclusive relationship between primates and angiosperms (Janzen 

1980).  

However, several angiosperm and primate traits can clearly be attributed to the interaction with 

one another: the patterns of fruit production and spatial distribution have had a profound effect on 

primate social evolution (Wrangham 1980) and primate-dispersed fruits tend to have larger seeds 

and fruits as well as a thick husk (Janson 1983; Howe 1986), which makes them better protected 

and more viable but less accessible to many other frugivores.  

The chemical communication described here may represent yet another aspect of primate-plant 

shared evolutionary history. The presence of unique odor marking ripe fruits of only primate-

dispersed fruits, independent of phylogeny and used by monkeys to identify ripeness, strongly 

indicates that the plant side of the interaction is shaped by the interaction with primates. Whether 

or not primate olfactory evolution has been shaped by the chemical communication with plants 

more difficult to answer with the data presented here. However, the quasi-comparative review of 

behavioral data (chapter 2) indicated that frugivory is the dietary category which requires and can 

benefit the most from olfaction and physiological studies showed that the primate sense of smell 

is particularly tuned to detect and discriminate fruit-related odorants (Ueno 1994,Laska and Seibt 
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2002a; Hernandez Salazar et al. 2003,Laska et al. 2006a,b). Thus, although not based on data 

presented here, it seems safe to assume that fruit odor has shaped primate olfactory evolution as 

well. 

Nonetheless, whether or not we can identify selection pressures acting on both sides of the 

primate-plant interactions, this does not imply that fruit odor or primate relevant olfactory 

capacities have evolved de novo as a direct response to the interaction with one another. Due to 

differences in generation length and to the fact that both plants and frugivores are generalists, 

tight species-to-species coevolutionary processes between plant and seed disperser are very 

unlikely (Herrera 1985). The more likely scenario is of softer, diffuse, coevolution (Janzen 1980; 

Herrera 1985): fleshy fruits evolved independently in many lineages (Bremer and Eriksson 1992; 

Bolmgren and Eriksson 2005; Eriksson 2014) and, due to the benefits of producing larger seeds 

and a thick-husked protected fruit (see 1.1.1), converged to produce the typical “mammal 

dispersal syndrome” fruits (Janson 1983; Link and Stevenson 2004) and rely on the dispersal 

services of relatively larger, arboreal, mammals. The taxa that filled this ecological niche may 

have been different in various ecological systems and time periods: early “mammal fruits” may 

have relied on dispersal by frugivorous multituberculates and later ones may have evolved when 

rodents, plesiadapiforms or early euprimates filled this niche (Eriksson 2014). As long as selection 

pressures exerted by the occupants of this niche were consistent and directional, evolution of fruit 

traits in response is expected (Janzen 1980; Herrera 1985).  

Olfaction is a major sensory modality in most mammals (Ache 1991) and since primates are now 

known to share this olfactory acuity with other mammals (e.g. Laska et al. 2000), olfactory 

signaling of fruit ripeness is expected to be a part of the mammalian dispersal syndrome in many 

systems. Indeed, it is impossible at this point to determine whether the olfactory signals described 

here have originated as a result of selection pressures exerted by primate seed dispersal or 

whether it was the interaction with other similar mammals. But even if primates radiated only later 

into the olfactory-guided arboreal frugivorous mammal niche, the fact that fruit odor still mediates 

mutually beneficial communication with the contemporary occupants of this niche implies that they 
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are likely to have continued generating these same selection pressures. Thus, even if olfactory 

signals originated when interacting with other species, their function in communicating with 

primates drives plants to retain olfactory signaling in the sense of “use it or lose it”. 

 

6.4. Caveats 

Although the data presented are in line with the predictions generated by the hypothesis that fruit 

odor has evolved as a communication system with seed dispersers, the study suffers from several 

limitations that should be addressed before generalizations to primate-plant interactions as a 

whole can be made. First, the four model plant species are relatively far-related. This was 

inevitable since the selection of model species had to be done in field conditions because it had 

been impossible to predict which species would provide fruits in sufficient amounts. Within family 

plant taxonomy is still frequently revisited and even in families in which the phylogeny is 

considered to be resolved, there was a risk of wrong identification in the field. Either of the two – 

wrong identification or a major revision of the family’s phylogeny - could render the results of the 

study meaningless if the control for phylogeny, i.e. the fact that primate-dispersed species are 

each phylogenetically closer to one bird-dispersed species than they are to one another, were 

lost. In principal, the fact that species are relatively far-related does not weaken the conclusions 

because patterns of odor release in the four species are still independent of phylogeny. Yet the 

farther species are, the more changes in the relevant traits in either direction could have taken 

place since their last common ancestor. Thus, conducting a similar study on a smaller scale – 

within family or even genus – could be more informative. 

Second, due to time and budget constraints, sample sizes were rather small. The model system 

of four species is clearly too small to determine whether the patterns described here can indeed 

be generalized to the entire range of fruit-bearing plants dispersed by primates, in the Neotropics 

and beyond. Less problematic, given the consistent results and the standards in the field, the five 

individuals available for the bioassays (chapter 4) can be considered a reasonable sample for the 
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physiological experiments conducted. Yet it would clearly be beneficial to repeat them with more 

individuals – preferably from other primate species, and possibly not in captivity. 

Finally, the bioassays that tested primate reaction to fruit odor used synthetic mixtures instead of 

natural odors. This allowed presenting standardized mixtures to all participants. Further, the 

additional set of experiments which examined the roles of individual compounds in primate 

discrimination capacity could be conducted only when stimuli are synthetic. Yet while the synthetic 

mixtures reasonably resembled the odor of natural fruits (see appendix 2), they did not contain all 

identified compounds and they could not reflect the natural variation in the odor of fruits from the 

same species and ripeness level. Thus, although using synthetic mixtures has had many benefits, 

the conclusions drawn from the experiments would be strengthened if they are replicated using 

odors of natural fruits.  

 

6.5. Concluding remarks: towards an evolutionary chemical ecology of primate plant 

interactions 

Chemical ecology – the study of the role of chemical compounds in mediating interactions 

between organisms – is a well-established interdisciplinary field. Among its model systems, insect-

plant interactions have taken a prominent role while work with vertebrates has been rarer. 

Primates, whose sense of smell had been considered almost negligible up until the turn of the 

new century, have only recently begun receiving attention. The majority of work has focused on 

intraspecific communication, but by now there are numerous studies describing the roles of 

chemosensation in primates’ interaction with their environment, too. However, as noted in 

chapters 2 and 4, integration of works has been limited. Physiological studies documented 

olfactory sensitivity and discrimination capacities for a myriad of ecologically irrelevant stimuli, and 

behavioral works ignored primate olfactory physiology and as a result could not conclude much 

beyond a general notion that primates can sometimes use their sense of smell. The gap that lies 

between them is the lack of any knowledge regarding the chemical world with which the primate 
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sense of smell interacts, which can be used to connect primate and plant physiology and thus to 

explore how they interact on the proximate level and how they may have affected the evolution of 

one another. 

The current study provides a first attempt to fill this gap by importing methods and approaches 

from chemical ecology into the study of non-human primates. It provides the first detailed chemical 

analyses of the odor of primate-consumed fruits alongside bioassays that measured the ability of 

primates to use a clearly defined physiological capacity (discrimination) to solve real-life feeding 

tasks. The comparative approach employed in chapter 3 puts this interaction in an evolutionary-

ecological context. On the other hand, as mentioned above (6.46.4), as a first step in this direction 

it still suffers from several limitations that qualify its conclusions.  

Furthermore, the patterns described here are only a private case: two Neotropical primate-

dispersed species. Different ecological systems have experienced different evolutionary histories 

that are expected to yield convergence of patterns in some and divergence in others. For example, 

in continental Africa primates and birds overlap in their sensory capacities (Jacobs 2009) and the 

fruit species on which they feed (Gautier-Hion et al. 1985). This predicts that chemical 

communication between primates and plants would turn out to be less significant in this system. 

On the other hand, in Madagascar lemurs play a much more important role in seed dissemination 

and their sensory systems are closer to those of Neotropical primates. So, it is predicted that 

patterns of primate-plant chemical communication would be similar to those implied for the 

Neotropics in this study.  

Thus, rather than providing final, full, answers, the current study should serve as a starting point 

for an investigation of the roles of fruit secondary compounds in mediating primate-plant 

interactions. The discussion in each chapter offered many questions for future studies and raised 

concerns regarding potential confounding factors. Rather than repeating them here, Fig. 6.1 

provides a synthesis of the approach taken in this thesis alongside the many open questions. It 

schematically portrays the myriad of questions and relevant factors to the investigation of the 

functions and evolution of chemically-mediated primate plant interactions and thus attempts to 
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provide a framework for future studies of both proximate mechanisms and ultimate functions of 

primate-plant chemical communication. 

 

Figure 6.1. Towards an evolutionary chemical ecology of primate-plant interactions. A synthesis of 

questions, approaches and potential confounding factors to investigate the evolution and ecological roles of 

chemical signals in primate-plant interactions. 
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8. APPENDIX 1 – SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

Methods and materials 

Model System. Odor samples of fruits were collected at the Estación Biológica Quebrada Blanco, 

Loreto, north-eastern Peru (4°21’S 73°09’W), between February and June 2013(for more details 

on the site, see Heymann 1995). Due to the difficulties of obtaining a sufficient amount of samples 

in the tropics, we restricted our analyses to four model species. Model species were selected 

during field work because it is impossible to predict which species would provide fruits in sufficient 

amounts in a given year. We selected species that were abundant and dyssynchronous (i.e. 

provided both ripe and unripe fruits at the same time). This was important for both technical and 

theoretical reasons: first, to allow sampling in both modes under the same conditions and second, 

because in fully synchronous species signals for ripeness are probably less important since there 

is no need to distinguish ripe from unripe fruits. We selected species that allowed to control for 

phylogeny and that are either primate or bird dispersed. Couma macrocarpa (Apocynaceae) is a 

canopy tree whose fruits are yellow, globular and large (> 4 cm in diameter) and dispersed by 

many primate species (Peres 1994; Culot 2009). Leonia cymosa (Violaceae) is an understory tree 

producing yellow globular fruits (ca. 3 cm in diameter) dispersed exclusively by primates 

(Pfrommer 2009; Reinehr 2010). Fruits of both species are protected with a thick husk preventing 

access from small birds. Psychotria cincta (Rubiaceae) provides small (ca. 0.5 cm in diameter) 

soft orange fruits. Fruits of this genus are dispersed by small birds (Snow 1981; Gorchov et al. 

1995). Maieta guianensis (Melastomataceae) provides small (ca. 1 cm in diameter) dark and soft 

berries like most other fleshy-fruit producing Melastomataceae. Apart from a single genus 

(Bellucia), all fleshy fruits from this family are dispersed by birds (Renner 1989; Stiles and Rosselli 

1993). Both species were observed to be consumed by small understory passerines (O.N., pers. 

obs.) and are usually inaccessible to primates because they grow on small bushes or treelets. 

Long-term behavioral and ecological field work on tamarin monkeys (Saguinus mystax, Saguinus 

nigrifrons), which are smaller than most other Neotropical primates, confirmed that P. cincta and 

M. guianensis are never consumed by primates even when they do have physical access to the 
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fruits (Smith 1997; Knogge and Heymann 2003; Culot 2009). Finally, all four model species are 

from families that include species dispersed by the other dispersal vector (i.e. primates in the case 

of the two bird-dispersed species and vice versa) (Wheelwright et al. 1984; Julliot and Sabatier 

1993; Ballard and Sytsma 2000,Culot et al. 2010b) as well as species producing non-

endozoochoric dry fruits (Bremer and Eriksson 1992; Clausing et al. 2000; Bolmgren and Eriksson 

2005; Ballard et al. 2014). Thus, while we cannot provide any information regarding ancestral 

states, fruit traits in these families showed, over evolutionary time, malleability that allowed many 

lineages to adapt in response to selection pressures exerted by different dispersal vectors. Each 

primate-dispersed species is phylogenetically closer to one bird-dispersed species than they are 

to one another (Davies et al. 2004). 

 

Collection of Fruit Odor Samples. Fresh ripe and unripe fruits were collected from different 

trees/shrubs, cleaned with a wet cloth and sampled, each fruit individually, within up to 4 h of 

removal. P. cincta infructescences often contain small clusters of 2-3 ripe or unripe fruits, which 

means that if it signals ripeness via the olfactory channel, it may be a combined signal of more 

than one fruit. We thus always sampled two fruits from the same infructescense at a time from 

this species. Within species, sampling in the four conditions (ripe/unripe, intact/open) was 

unordered, although for natural reasons ripe fruits (intact/open) tended to be sampled later in the 

season. For sampling of the pulp odor (open fruits), fruits were cut through with a clean knife. 

Fruits were enclosed in chambers of 30 cm unused inert oven bags (Toppits, Germany) for 2.5 h. 

Then, their headspace odors were collected for 10 min in a constant airflow of 330 ml/min onto a 

self-made adsorbent trap containing 3 mg 1:1 mixture of Tenax-TA and Carbotrap (both Supelco, 

Sigma-Aldrich, Germany) (Dötterl et al. 2005). Adsorbent traps were installed on a cleaned 

(ethanol EMSURE 99.9% and pentane EMSURE 99%, Merck, Germany) Teflon tube that 

penetrated the chamber and was the only opening in the system. Adsorbent traps were then 

packed individually in clean 1.5 ml vials sealed with Teflon caps (Supelco, Sigma-Aldrich, 

Germany) and held frozen in -20°C until analysis apart from a 4-day transportation period in which 

they were packed isolated with freezing packs (Techni-ice, Australia) frozen to -30°C. Sample size 
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was 9-15 fruits per species and condition (ripe or unripe, intact or open), totaling at N = 40 – 49 

samples per species in all conditions. To identify possible contaminations, we took at least one 

control sample (same conditions, chamber without a fruit) on every sampling day. 

 

Chemical Analyses. Samples were analyzed on a Hewlett Packard HP 6890 Series gas 

chromatographic–mass selective detector (GC–MS; Agilent Quadrupol 5972) equipped with a DB-

5ms capillary column (30 m long, 250 µm in diameter, film thickness: 0.25 µm, J&W) which had 

been fitted with the ChromatoProbe kit (Dötterl and Jürgens 2005). An adsorbent trap was loaded 

into the probe, which was then inserted into the modified GC injector at an injector temperature of 

300 °C. Volatile traps were injected splitless at an oven temperature of 40°C. After 1 min the split 

valve was opened and the oven temperature increased by 6°C / min until reaching 120°C and 

then by 10°C / min until reaching 310°C, a temperature which was held for 6 extra min. Tentative 

identification of most compounds was carried out using the Adams (2007) mass spectral data 

bases on MSD Chemstation (build 75) and confirmed by comparison of their retention indices with 

those from the published libraries (Adams 2007; NIST 11). Retention indices were calculated 

using an external alkane standard (C9 – C31) which was ran at the same conditions several times. 

We confirmed the identity of the majority of dominant compounds (see Tab. 8.1, 8.2, 8.3, 8.4) by 

running known synthetic compounds at the same conditions. Compounds were quantified using 

Amdis 2.71. Absolute amounts were estimated using an external standard of 0.01 mg p-Cymene 

which we ran 10 times under identical conditions. 

 

Statistical Analysis. Before further analyses, in each species, we excluded compounds which were 

present in less than eight samples of that species and compounds considered as contamination. 

We considered a compound to be a contaminant when it was present in similar concentrations in 

the control samples. Few compounds (e.g. limonene) were contaminants but also appeared in 

much bigger concentrations in C. macrocarpa, which implied that it was a genuine peak in this 
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species. We thus excluded it from the species in which the concentration was on par with that of 

control samples, but kept it for C. macrocarpa.  

To compare the odor profiles of ripe and unripe fruits in either intact or open conditions, we first, 

for each species separately, applied a principal component analysis (PCA) to reduce the number 

of variables and avoid collinearity between them. Since C. macrocarpa showed a high number of 

minor compounds, in order to avoid inflating the number of variables in the statistical tests we only 

used compounds whose absolute amounts exceeded 100 ng in at least one sample. We then 

used the PCs that accounted for at least 90% of the original variance (C. macrocarpa: 8 PCs, L. 

cymosa: 7, P. cincta: 5, M. guianensis: 4) as new variables in discriminant function analyses (DFA) 

applied for each species separately. We used DFAs to graphically examine, for each species, 

whether odor profiles of ripe and unripe fruits in both conditions (intact and open) form separate 

clusters. To answer the biologically relevant question whether odor is indicative of the ripeness 

level of the fruits and quantify the level of discrimination between the clusters of ripe and unripe 

fruits (intact or open) identified in the DFAs, we applied a post-hoc analysis comprised of a series 

of 8 pair-wise MANOVA tests. MANOVA tests are mathematically identical to DFA (Quinn and 

Keough 2002) and thus allow using the same data for this analysis in which, for each species, we 

tested whether the odor profiles of ripe and unripe intact fruits are significantly different from one 

another, and similarly whether profiles of open ripe and unripe fruits are different. P-values were 

then subjected to the Bonferroni correction for multiple testing. All analyses were conducted on R 

3.0.3 (R Core Team 2014) with packages MASS (Venables and Ripley 2002) and ade4 (Dray and 

Dufour 2007) and on SPSS v. 22. 

  



Appendix 1 – supplementary materials for chapter 3  

108 
 

Additional results 

Tab. 8.1. Compounds identified from Couma macrocarpa. Mean (±SD) estimated absolute amounts (mg) 

of compounds in all Couma macrocarpa samples in mg after 2.5 h sampling and retention indices (RI). 

Absolute amounts were calculated based on an external standard. Values are rounded and thus very small 

amounts are sometimes presented as 0. Compounds presented are those present in at least 8 samples in a 

species, including the minor compounds (< 100 ng in at least one sample) that were considered in the odor 

richness analysis but not odor production, PCA and DFA (see Methods). ID method: methods used for 

identification of the respective compound. RI: retention index matching published values. MS: strong match 

with published mass spectra. REF: compound identification verified by running a synthetic compound or, in 

cases of enantiomers and close derivatives, a mixture of known compounds. In unknown compounds, ID 

method provides dominant MS ions. Compound classes: terpenoids (TRP), aromatic compounds (AR), 

aldehydes (ALD), alcohols (ALC), esters (EST), acids (AC). 

Code ID Class RI 
ID 
method 

Ripe 
intact 

Unripe 
intact 

Ripe 
open 

Unripe 
open 

C1 Cumene AR 9.23 
RI, MS, 
REF 

0.004  
±(0.007) 

0.003  
±(0.007) 

0.01  
±(0.027) 

0.009  
±(0.029) 

C2 -Thujene  TRP 9.25 RI, MS 
0.001  

±(0.002) 
0.003  

±(0.007) 
0.001  

±(0.004) 
0.025  

±(0.061) 

C3 -Pinene   TRP 9.32 RI, MS 
0.051  

±(0.068) 
0.028  

±(0.044) 
0.094  

±(0.19) 
0.119  

±(0.276) 

C4 Benzaldehyde 
AR, 
ALD 

9.63 
RI, MS, 
REF 

0.01  
±(0.011) 

0.001  
±(0.003) 

0.189  
±(0.441) 

0.011  
±(0.02) 

C5 Sabinene TRP 9.73 RI, MS 
0.001  

±(0.003) 
0.027  

±(0.046) 
0  

±(0.001) 
0.03  

±(0.04) 

C6 Myrcene TRP 9.89 
RI, MS, 
REF 

0.023  
±(0.021) 

0.063  
±(0.1) 

0.047  
±(0.042) 

0.068  
±(0.084) 

C7 -Terpinene  TRP 10.17 RI, MS 0  ±(0) 
0.008  

±(0.014) 
0  

±(0.001) 
0.022  

±(0.041) 

C8 p-Cymene  
AR, 
TRP 

10.25 
RI, MS, 
REF 

0.004  
±(0.005) 

0.029  
±(0.038) 

0.011  
±(0.008) 

0.094  
±(0.161) 

C9 Limonene TRP 10.30 
RI, MS, 
REF 

0.026  
±(0.019) 

0.274  
±(0.418) 

0.057  
±(0.051) 

0.258  
±(0.339) 

C10 
(E)-

Ocimene  
TRP 10.47 

RI, MS, 
REF 

0.067  
±(0.105) 

0.014  
±(0.015) 

0.116  
±(0.208) 

0.025  
±(0.031) 

C11 Terpinene  TRP 10.58 
RI, MS, 
REF 

0.008  
±(0.025) 

0.018  
±(0.029) 

0.001  
±(0.002) 

0.028  
±(0.052) 

C12 Acetophenone AR 10.67 
RI, MS, 
REF 

0.002  
±(0.003) 

0.001  
±(0.002) 

0.003  
±(0.004) 

0.001  
±(0.003) 

C13 
cis-Linalool 
oxide 
(furanoid) 

TRP, 
ALC 

10.71 RI, MS 
0.002  

±(0.004) 
0  ±(0) 

0.016  
±(0.042) 

0.012  
±(0.014) 
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C14 Unknown   10.74 

Dominant 
ions: 43, 
85, 69, 58 

0.003  
±(0.005) 

0.017  
±(0.039) 

0.006  
±(0.006) 

0.011  
±(0.026) 

C15 
Unknown 
monoterpene  

TRP 10.86 

Dominant 
ions: 121, 
91, 79, 
105, 77, 
41, 93, 
136, 119 

0  ±(0) 
0.003  

±(0.006) 
0.001  

±(0.003) 
0.01  

±(0.018) 

C16 
trans-Linalool 
oxide 
(furanoid) 

TRP, 
ALC 

10.87 RI, MS 
0.001  

±(0.004) 
0  ±(0) 

0.016  
±(0.042) 

0.009  
±(0.011) 

C17 p-Cymenene 
AR, 
TRP 

10.91 
RI, MS, 
REF 

0  ±(0) 
0.005  

±(0.007) 
0  ±(0) 

0.015  
±(0.028) 

C18 Unknown  10.93 

Dominant 
ions: 89, 
41 

0.001  
±(0.002) 

0.003  
±(0.006) 

0.003  
±(0.007) 

0.015  
±(0.02) 

C19 
Methyl 
benzoate 

AR, 
EST 

10.96 RI, MS 
0.001  

±(0.003) 
0  ±(0) 

0.009  
±(0.012) 

0  ±(0) 

C20 Unknown   10.98 

Dominant 
ions: 55, 
41, 69, 
84, 96 

0  ±(0) 0  ±(0) 
0.022  

±(0.023) 
0  ±(0) 

C21 Linalool 
TRP, 
ALC 

11.01 
RI, MS, 
REF 

0.014  
±(0.027) 

0.002  
±(0.007) 

0.065  
±(0.158) 

0.077  
±(0.111) 

C22 (Z)-6-Nonenal  ALD 11.03 RI, MS 0  ±(0) 0  ±(0) 
0.033  

±(0.039) 
0  ±(0) 

C23 Nonanal ALD 11.06 
RI, MS, 
REF 

0.02  
±(0.014) 

0.015  
±(0.012) 

0.106  
±(0.065) 

0.013  
±(0.013) 

C24 

(E)-4,8-
Dimethyl-
1,3,7-
nonatriene 

TRP 11.14 RI, MS 
0.01  

±(0.014) 
0.024  

±(0.042) 
0.054  

±(0.107) 
0.152  

±(0.185) 

C25 allo-Ocimene  TRP 11.29 
RI, MS, 
REF 

0.011  
±(0.014) 

0.003  
±(0.006) 

0.019  
±(0.025) 

0.01  
±(0.013) 

C26 
(2E,6Z)-2,6-
Nonadienal  

ALD 11.53 RI, MS 
0.002  

±(0.004) 
0  ±(0) 

0.077  
±(0.073) 

0.001  
±(0.002) 

C27 
Trans-2-
nonenal 

ALD 11.61 
RI, MS, 
REF 

0.008  
±(0.014) 

0  ±(0) 
0.213  

±(0.169) 
0.002  

±(0.007) 

C28 
Methyl 
salicylate 

AR 11.93 
RI, MS, 
REF 

0.034  
±(0.057) 

0  
±(0.001) 

0.269  
±(0.506) 

0.011  
±(0.013) 

C29 
Methyl 6-
nonenoate 

EST 12.21 RI, MS 
0.01  

±(0.025) 
0  ±(0) 

0.02  
±(0.01) 

0  ±(0) 
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C30 
Methyl 
nonanoate 

EST 12.25 RI, MS 
0.003  

±(0.009) 
0  ±(0) 

0.01  
±(0.006) 

0  ±(0) 

C31 Unknown  12.29 

Dominant 
ions: 123, 
43, 180 

0  
±(0.001) 

0.003  
±(0.008) 

0  
±(0.001) 

0.002  
±(0.006) 

C32 Unknown  12.31 

Dominant 
ions: 93, 
43, 121, 
41, 40, 
121, 108, 
136, 55, 
79, 66, 
151, 166 

0  ±(0) 0  ±(0) 
0.006  

±(0.011) 
0.001  

±(0.001) 

C33 
Ethyl 
salicylate 

AR 12.71 
RI, MS, 
REF 

0.015  
±(0.029) 

0  ±(0) 
0.079  

±(0.089) 
0  ±(0) 

C34 Neryl formate TRP 12.83 RI, MS 
0.002  

±(0.004) 
0  ±(0) 

0.013  
±(0.011) 

0  ±(0) 

C35 -Cubebene   TRP 13.50 RI, MS 
0.123  

±(0.129) 
0.122  

±(0.152) 
0.116  

±(0.112) 
0.111  

±(0.126) 

C36 -Ylangene    TRP 13.73 RI, MS 
0.004  

±(0.007) 
0.006  

±(0.011) 
0.007  

±(0.01) 
0.012  

±(0.017) 

C37 -Copaene TRP 13.80 
RI, MS, 
REF 

0.68  
±(0.459) 

0.74  
±(0.764) 

0.776  
±(0.757) 

1.21  
±(1.19) 

C38 -Bourbonene  TRP 13.87 RI, MS 
0.003  

±(0.003) 
0.002  

±(0.003) 
0.003  

±(0.003) 
0.001  

±(0.001) 

C39 -Cubebene   TRP 13.90 RI, MS 
0.013  

±(0.013) 
0.01  

±(0.014) 
0.01  

±(0.009) 
0.022  

±(0.026) 

C40 -Elemene   TRP 13.91 RI, MS 
0.012  

±(0.019) 
0.014  

±(0.025) 
0.015  

±(0.023) 
0.001  

±(0.004) 

C41 Unknown   14.00 

Dominant 
ions: 189, 
57, 43, 
133, 91, 
107, 71, 
148, 204 

0.002  
±(0.006) 

0.004  
±(0.01) 

0.005  
±(0.008) 

0.004  
±(0.007) 

C42 
(Z)-

Caryophyllene 
TRP 14.07 

RI, MS, 
REF 

0.007  
±(0.007) 

0.001  
±(0.002) 

0.025  
±(0.018) 

0.003  
±(0.01) 

C43 -Funebrene TRP 14.14 
RI, MS, 
REF 

0.001  
±(0.003) 

0.004  
±(0.007) 

0.001  
±(0.004) 

0.001  
±(0.002) 

C44 
(E)-
Caryophyllene 

TRP 14.24 
RI, MS, 
REF 

0.235  
±(0.189) 

0.073  
±(0.091) 

0.69  
±(0.452) 

0.057  
±(0.054) 

C45 -Copaene   TRP 14.34 RI, MS 
0.005  

±(0.003) 
0.007  

±(0.008) 
0.007  

±(0.008) 
0.015  

±(0.02) 
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C46 
-
Bergamotene  

TRP 14.35 RI, MS 
0.001  

±(0.003) 
0.009  

±(0.014) 
0  

±(0.001) 
0.002  

±(0.007) 

C47 
Unknown 
sesquiterpene 

TRP 14.54 RI 
0.003  

±(0.004) 
0.008  

±(0.011) 
0.011  

±(0.015) 
0.008  

±(0.009) 

C48 
Unknown 
sesquiterpene 

TRP 14.59 MS 
0.006  

±(0.015) 
0.01  

±(0.025) 
0.014  

±(0.026) 
0.008  

±(0.015) 

C49 -Humulene TRP 14.61 
RI, MS, 
REF 

0.021  
±(0.017) 

0.012  
±(0.016) 

0.069  
±(0.039) 

0.007  
±(0.008) 

C50 -Muurolene  TRP 14.78 RI, MS 
0.003  

±(0.003) 
0.003  

±(0.004) 
0.006  

±(0.009) 
0.011  

±(0.024) 

C51 Unknown   14.86 

Dominant 
ions: 41, 
105, 91, 
69, 162, 
119, 159 

0.001  
±(0.003) 

0.009  
±(0.018) 

0.001  
±(0.002) 

0.006  
±(0.01) 

C52 -Selinene   TRP 14.94 RI, MS 
0.077  

±(0.078) 
0.101  

±(0.134) 
0.073  

±(0.054) 
0.037  

±(0.035) 

C53 -Selinene TRP 15.00 
RI, MS, 
REF 

0.033  
±(0.033) 

0.04  
±(0.052) 

0.032  
±(0.027) 

0.02  
±(0.023) 

C54 
(E,E)--

Farnesene  
TRP 15.05 

RI, MS, 
REF 

0.032  
±(0.07) 

0.194  
±(0.363) 

0.035  
±(0.073) 

0.141  
±(0.258) 

C55 -Amorphene   TRP 15.22 RI, MS 
0.012  

±(0.012) 
0.012  

±(0.016) 
0.018  

±(0.013) 
0.021  

±(0.024) 

C56 
cis-
Calamenene 

TRP 15.26 RI, MS 
0.007  

±(0.01) 
0.003  

±(0.004) 
0.007  

±(0.009) 
0.013  

±(0.028) 

C57 
trans-Cadina-
1,4-diene  

TRP 15.38 RI, MS 
0.003  

±(0.005) 
0.004  

±(0.006) 
0.004  

±(0.005) 
0.004  

±(0.006) 

C58 -Calacorene   
TRP, 
AR 

15.48 RI, MS 
0.001  

±(0.002) 
0.001  

±(0.001) 
0.002  

±(0.003) 
0.005  

±(0.011) 

C59 
Unknown 
sesquiterpene 

TRP 15.89 RI 0  ±(0) 0  ±(0) 
0.021  

±(0.02) 
0  ±(0) 

 TOTAL    
1.45  

±(0.86) 
1.77  

±(1.82) 
3.08  

±(1.29) 
2.41  

±(2.21) 
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Fig. 8.1. Representative gas chromatograms of odor profiles of C. macrocarpa. Compound names are 

shown in Tab. 8.1. X marks contaminants. SX marks a solvent & unknown contaminant peaks present in all 

samples, including control. Presented samples were chosen according to their proximity to the group means 

(e.g. ripe intact). However, they may markedly deviate from the group mean with regards to some individual 

compounds and are thus for illustration only. 
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Tab. 8.2. Compound identified from Leonia cymosa. Mean (±SD) estimated absolute amounts (mg) of 

compounds in all Leonia cymosa samples in mg after 2.5 h sampling and retention indices (RI). Absolute 

amounts were calculated based on an external standard. Values are rounded and thus very small amounts 

are sometimes presented as 0. Compounds presented are those present in at least 8 samples in a species 

(see Methods). ID method: methods used for identification of the respective compound. RI: retention index 

matching published values. MS: strong match with published mass spectra. REF: compound identification 

verified by running a synthetic compound or, in cases of enantiomers and close derivatives, a mixture of 

known compounds. In unknown compounds, ID method provides dominant MS ions.  

Code ID Class RI 
ID 
method 

Ripe 
intact 

Unripe 
intact 

Ripe 
open 

Unripe 
open 

L1 Cumene AR 9.23 
RI, MS, 
REF 

0.001  
±(0.002) 

0.013  
±(0.023) 

0.011  
±(0.034) 

0.018  
±(0.054) 

L2 Benzaldehyde 
AR, 
ALD 

9.63 
RI, MS, 
REF 

0.014  
±(0.019) 

0.004  
±(0.009) 

0.062  
±(0.153) 

0.05  
±(0.153) 

L3 Myrcene TRP 9.89 
RI, MS, 
REF 

0  ±(0) 0  ±(0) 
0.025  

±(0.037) 
0.008  

±(0.028) 

L4 
Unknown 
monoterpene 

TRP 10.06 RI, MS 0  ±(0) 0  ±(0) 
1.083  

±(1.302) 
0  ±(0) 

L5 p-Cymene 
AR, 
TRP 

10.25 
RI, MS, 
REF 

0.003  
±(0.004) 

0.001  
±(0.001) 

0.02  
±(0.043) 

0.009  
±(0.032) 

L6 
(Z)-

Ocimene  
TRP 10.36 

RI, MS, 
REF 

0  ±(0) 0  ±(0) 
0.043  

±(0.059) 
0.003  

±(0.011) 

L7 
(E)-

Ocimene  
TRP 10.49 

RI, MS, 
REF 

0.006  
±(0.008) 

0  ±(0) 
5.999  

±(7.201) 
0.009  

±(0.01) 

L8 Acetophenone AR 10.67 
RI, MS, 
REF 

0.006  
±(0.006) 

0.008  
±(0.01) 

0.009  
±(0.009) 

0.003  
±(0.004) 

L9 
2,6-Dimethyl-
1,3,5,7-
octatetraene 

TRP 10.81 RI, MS 
0.001  

±(0.002) 
0.002  

±(0.004) 
0.091  

±(0.091) 
0.001  

±(0.003) 

L10 Unknown  10.87 

Dominant 
ions: 91, 
105, 77, 
119 

0  ±(0) 0  ±(0) 
0.031  

±(0.038) 
0  ±(0) 

L11 p-Cymenene  AR 10.92 
RI, MS, 
REF 

0  ±(0) 0  ±(0) 
0.199  

±(0.207) 
0.001  

±(0.002) 

L12 
p-1,3,8-
Menthatriene  

TRP 11.18 RI, MS 0  ±(0) 0  ±(0) 
0.171  

±(0.234) 
0  ±(0) 

L13 allo-Ocimene  TRP 11.29 
RI, MS, 
REF 

0.001  
±(0.003) 

0  ±(0) 
0.37  

±(0.62) 
0.012  

±(0.028) 

L14 
neo-allo-

Ocimene  
TRP 11.41 

RI, MS, 
REF 

0  ±(0) 0  ±(0) 
0.133  

±(0.187) 
0.001  

±(0.002) 
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L15 
(Z)-3-hexenyl 
2-
methylbutyrate 

EST 12.32 RI, MS 0  ±(0) 0  ±(0) 
0.002  

±(0.004) 
0.016  

±(0.025) 

L16 -Cubebene  TRP 13.50 RI, MS 
0.01  

±(0.025) 
0.002  

±(0.007) 
0.009  

±(0.016) 
0.031  

±(0.033) 

L17 -Ylangene   TRP 13.73 RI, MS 
0.008  

±(0.024) 
0.001  

±(0.002) 
0.012  

±(0.017) 
0.036  

±(0.081) 

L18 -Copaene  TRP 13.79 
RI, MS, 
REF 

0.043  
±(0.106) 

0.007  
±(0.009) 

0.06  
±(0.085) 

0.237  
±(0.535) 

L19 
Unknown 
sesquiterpene 

TRP 13.90 RI, MS 
0.002  

±(0.008) 
0  

±(0.002) 
0.005  

±(0.009) 
0.013  

±(0.02) 

L20 -Funebrene  TRP 14.13 
RI, MS, 
REF 

0  
±(0.001) 

0.004  
±(0.006) 

0.003  
±(0.005) 

0.005  
±(0.01) 

L21 
-Copaene 
<beta-> 

TRP 14.34 RI, MS 
0.004  

±(0.009) 
0  ±(0) 

0.008  
±(0.012) 

0.02  
±(0.052) 

L22 -Muurolene  TRP 14.78 RI, MS 
0.001  

±(0.004) 
0.001  

±(0.003) 
0.003  

±(0.004) 
0.007  

±(0.02) 

L23 -Muurolene  TRP 15.01 RI, MS 
0.004  

±(0.014) 
0  

±(0.002) 
0.017  

±(0.018) 
0.027  

±(0.059) 

L24 -Amorphene  TRP 15.21 RI, MS 
0.003  

±(0.007) 
0.001  

±(0.002) 
0.013  

±(0.014) 
0.017  

±(0.022) 

L25 
cis-
Calamenene 

TRP 15.26 RI, MS 
0.001  

±(0.002) 
0  

±(0.001) 
0.002  

±(0.002) 
0.006  

±(0.011) 

L26 
trans-Cadina-
1,4-diene  

TRP 15.37 
RI, MS, 
REF 

0.001  
±(0.002) 

0  ±(0) 
0.002  

±(0.003) 
0.003  

±(0.004) 

L27 -Calacorene  
TRP, 
AR 

15.47 RI, MS 
0  

±(0.001) 
0  ±(0) 

0.001  
±(0.001) 

0.002  
±(0.002) 

 TOTAL    
0.11  

±(0.21) 
0.04  

±(0.04) 
8.38  

±(9.07) 
0.53  

±(0.86) 
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Fig. 8.2. Representative gas chromatograms of odor profiles of L. cymosa. Compound names are 

shown in Tab. 8.2. X marks contaminants. SX marks a solvent & unknown contaminant peaks present in all 

samples, including control. Presented samples were chosen according to their proximity to the group means 

(e.g. ripe intact). However, they may markedly deviate from the group mean with regards to some individual 

compounds and are thus for illustration only. 
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Tab. 8.3. Compounds identified from Psychotria cincta. Mean (±SD) estimated absolute amounts (mg) 

of compounds in all Psychotria cincta samples in mg after 2.5 h sampling and retention indices (RI). Absolute 

amounts were calculated based on an external standard. Values are rounded and thus very small amounts 

are sometimes presented as 0. Compounds presented are those present in at least 8 samples in a species 

(see Methods). ID method: methods used for identification of the respective compound. RI: retention index 

matching published values. MS: strong match with published mass spectra. REF: compound identification 

verified by running a synthetic compound or, in cases of enantiomers and close derivatives, a mixture of 

known compounds. In unknown compounds, ID method provides dominant MS ions. Compound classes: 

terpenoids (TRP), aromatic compounds (AR), aldehydes (ALD), alcohols (ALC), esters (EST), acids (AC), 

ketones (KET) 

Code ID Class RI 
ID 
method 

Ripe 
intact 

Unripe 
intact 

Ripe 
open 

Unripe 
open 

P1 
Unknown 
C3-
benzene 

AR 9.53 MS 
0.009  

±(0.028) 
0.007  

±(0.018) 
0.04  

±(0.08) 
0  ±(0) 

P2 
Unknown 
C3-
benzene 

AR 9.63 MS 
0.003  

±(0.006) 
0.006  

±(0.009) 
0.008  

±(0.017) 
0  ±(0) 

P3 
3-
Octanone  

KET 9.86 MS, RI 0  ±(0) 0  ±(0) 
0.017  

±(0.034) 
0.021  

±(0.025) 

P4 Myrcene TRP 9.90 
MS, RI, 
REF 

0.005  
±(0.016) 

0.004  
±(0.013) 

0.001  
±(0.004) 

0.018  
±(0.039) 

P5 Mesitylene AR 9.94 MS, RI 
0.003  

±(0.006) 
0.008  

±(0.011) 
0.007  

±(0.013) 
0  ±(0) 

P6 p-Cymene AR, TRP 10.25 
MS, RI, 
REF 

0.024  
±(0.075) 

0.009  
±(0.029) 

0  ±(0) 
0.001  

±(0.003) 

P7 
(E)-

Ocimene  
TRP 10.47 

MS, RI, 
REF 

0  ±(0) 
0.006  

±(0.013) 
0  ±(0) 

0.009  
±(0.014) 

P8 Linalool TRP, ALC 11.01 
MS, RI, 
REF 

0  ±(0) 0  ±(0) 
0.036  

±(0.045) 
0.243  

±(0.237) 

P9 Nonanal ALD 11.06 
MS, RI, 
REF 

0.007  
±(0.009) 

0.009  
±(0.01) 

0.011  
±(0.014) 

0.003  
±(0.006) 

P10 -Copaene  TRP 13.79 
MS, RI, 
REF 

0  ±(0) 
0.002  

±(0.003) 
0.001  

±(0.002) 
0.001  

±(0.002) 

 TOTAL    
0.05  

±(0.13) 
0.05  

±(0.07) 
0.12  

±(0.16) 
0.3    

±(0. 3) 
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Fig. 8.3. Representative gas chromatograms of odor profiles of P. cincta. Compound names are shown 

in Tab. 8.3. X marks contaminants. SX marks a solvent & unknown contaminant peaks present in all samples, 

including control. Presented samples were chosen according to their proximity to the group means (e.g. ripe 

intact). However, they may markedly deviate from the group mean with regards to some individual 

compounds and are thus for illustration only. 
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Tab. 8.4. Compounds identified from Maieta guianensis. Mean (±SD) estimated absolute amounts (mg) 

of compounds in all Maieta guianensis samples in mg after 2.5 h sampling and retention indices (RI). 

Absolute amounts were calculated based on an external standard. Values are rounded and thus very small 

amounts are sometimes presented as 0. Compounds presented are those present in at least 8 samples in a 

species (see Methods). ID method: methods used for identification of the respective compound. RI: retention 

index matching published values. MS: strong match with published mass spectra. REF: compound 

identification verified by running a synthetic compound or, in cases of enantiomers and close derivatives, a 

mixture of known compounds. In unknown compounds, ID method provides dominant MS ions. Compound 

classes: terpenoids (TRP), aromatic compounds (AR), aldehydes (ALD), alcohols (ALC), esters (EST), acids 

(AC). 

Code ID Class RI 
ID 
method 

Ripe 
intact 

Unripe 
intact 

Ripe 
open 

Unripe 
open 

M1 Cumene AR 9.23 
MS, RI, 
REF 

0.025  
±(0.047) 

0.017  
±(0.038) 

0.012  
±(0.039) 

0.023  
±(0.051) 

M2 
Unknown C3-
benzene 

AR 9.53 MS 
0.017  

±(0.031) 
0.009  

±(0.02) 
0.01  

±(0.033) 
0.015  

±(0.029) 

M3 
Unknown C3-
benzene 

AR 9.62 MS 
0.006  

±(0.012) 
0.003  

±(0.005) 
0.003  

±(0.011) 
0.007  

±(0.014) 

M4 Benzaldehyde AR, ALD 9.63 
MS, RI, 
REF 

0.034  
±(0.096) 

0.031  
±(0.091) 

0.026  
±(0.071) 

0.045  
±(0.108) 

M5 
1-Octen-3-
one 

KET 9.77 MS, RI 0  ±(0) 0  ±(0) 
0.023  

±(0.025) 
0.014  

±(0.028) 

M6 1-Octen-3-ol ALC 9.82 MS, RI 0  ±(0) 0  ±(0) 
0.965  

±(0.822) 
0.356  

±(0.598) 

M7 3-Octanone   KET 9.86 MS, RI 0  ±(0) 0  ±(0) 
0.216  

±(0.171) 
0.111  

±(0.18) 

M8 Mesitylene AR 9.94 MS, RI 
0.008  

±(0.013) 
0.008  

±(0.011) 
0.003  

±(0.011) 
0.007  

±(0.014) 

M9 3-Octanol  ALC 9.99 MS, RI 0  ±(0) 0  ±(0) 
0.193  

±(0.244) 
0.026  

±(0.049) 

M10 p-Cymene  AR 10.25 
MS, RI, 
REF 

0.006  
±(0.019) 

0.02  
±(0.06) 

0.022  
±(0.07) 

0.024  
±(0.06) 

M11 Nonanal ALD 11.06 
MS, RI, 
REF 

0.016  
±(0.011) 

0.002  
±(0.007) 

0.01  
±(0.009) 

0.017  
±(0.011) 

 TOTAL    
0.11  

±(0.2) 
0.09  

±(0.21) 
1.49  

±(1.04) 
0.64  

±(0.95) 
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Fig. 8.4. Representative gas chromatograms of odor profiles of M. guianensis. Compound names are 

shown in Tab. 8.4. X marks contaminants. SX marks a solvent & unknown contaminant peaks present in all 

samples, including control. Presented samples were chosen according to their proximity to the group means 

(e.g. ripe intact). However, they may markedly deviate from the group mean with regards to some individual 

compounds and are thus for illustration only. 
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9. APPENDIX 2 – SUPPLEMENTARY MATERIALS FOR CHAPTER 4  

Table 9.1: origin and purity of compounds used for all mixture preparations 

Common name CAS Purity Origin 

Acetophenone 
98-86-2 ≥98% Sigma Aldrich, 

Germany 

Benzaldehyde 
100-52-7 ≥98% Sigma Aldrich, 

Germany 

(E-) Caryophyllene 87-44-5 80% Dragon, China 

Cumene 
98-82-8 98% Sigma Aldrich, 

Germany 

Diethyl phthalate 84-66-2 ≥99% Sigma Aldrich, 
Germany 

D-Limonene 
5989-27-5 98% Sigma Aldrich, 

Germany 

Ethyl salicylate 
118-61-6 99% Sigma Aldrich, 

Germany 

E-β-Ocimene 3779-61-1 90% + isomers Dragon, China 

α-Humulene 
6753-98-6 96% Sigma Aldrich, 

Germany 

Linalool 
78-70-6 97% Sigma Aldrich, 

Germany 

Methyl salicytate 
119-36-8 99% Sigma Aldrich, 

Germany 

Myrcene 
123-35-3 ≥90% Sigma Aldrich, 

Germany 

Nonanal 
124-19-6 ≥95% Sigma Aldrich, 

Germany 

p-Cymenene  
1195-32-0 ≥98% Sigma Aldrich, 

Germany 

p-Cymene  
99-87-6 99% Sigma Aldrich, 

Germany 

Sabinene 
3387-41-5 75% Sigma Aldrich, 

Germany 

Trans-2-nonenal 
18829-56-6 97% Sigma Aldrich, 

Germany 

α-Copaene  138874-68-7 70% ACC Corporation, CA, 
US 

γ-Terpinene  
99-85-4 97% Sigma Aldrich, 

Germany 
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Tab. 9.2: Recipe for odor mixtures mimicking the full odor of C. macrocarpa fruits. Amounts are in µl 

to create a mixture of 2ml. Odorant are from 100mg/ml solutions. 

Odorant Ripe intact (µl) Unripe intact (µl) 

(E-) Caryophyllene 94.92 28.57 

α-Copaene  94.92 228.57 

p-Cymene  0 1.14 

Ethyl salicylate 20.34 0 

α-Humulene 6.78 11.43 

D-Limonene 0.20 5.71 

Methyl salicytate 20.34 0 

Myrcene 0.41 3.43 

Nonanal 0.68 0 

Trans-2-nonenal 6.78 0 

E-β-Ocimene 2.71 0 

Sabinene 0 2.29 

γ-Terpinene  0.14 1.14 

Solvent (diethyl phthalate) 1752 1718 

 

Tab. 9.3: Recipe for odor mixtures mimicking the full odor of L. cymosa fruits. Amounts are in µl to 

create a mixture of 2ml. Odorant are from 100mg/ml solutions. 

Odorant Ripe intact (µl) Unripe intact 
(µl) 

Ripe open (µl) Unripe open 
(µl) 

Acetophenone 2.51 4.44 0 1.95 

Benzaldehyde 2.82 2.54 9.76 6.35 

α-Copaene  5.64 3.17 14.63 39.07 

Cumene 0 1.59 0 0.32 

p-Cymene  0.09 0.32 0 0.24 

p-Cymenene  0 0 14.63 0.049 

Myrcene 0 0 0.098 0.12 

E-β-Ocimene 2.67 0 536.58 0.32 

Z-β-Ocimene 0 4.44 0 0 

Solvent (diethyl 

phthalate) 1986 1983 1424 1951 
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Fig. 9.1. Discriminant function analysis of odor of intact C. macrocarpa fruits. Data and analysis of 

natural fruit odor are identical to those in Nevo et al. Red arrows indicate the scores of the synthetic mixtures 

used in the bioassays in this study relative to their respective groups, and hence how representative they 

are. 
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Fig. 9.2. Discriminant function analysis of odor of intact and open L. cymosa fruits. Data and analysis 

of natural fruit odor are identical to those in Nevo et al. Red arrows indicate the scores of the synthetic 

mixtures used in the bioassays in this study relative to their respective groups, and hence how representative 

they are. Ri Int: ripe intact; UR Int: unripe intact; Ri Op: ripe open; UR Op: unripe open. 
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