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Abstract

In this work we investigate, via computer simulations with an implicit-solvent
coarse-grained model, the interplay between curvature and composition in self-
assembled lipid structures comprised by two lipid species with different spon-
taneous curvatures. The different structures considered in this study are: i)
planar bilayers with thermally induced shape fluctuations, which allow the in-
vestigation of low curvature regimes, ii) cylindrical bilayers with different mid-
plane radius of curvature and iii) inverted-monolayer tubes immersed in an
hydrophobic solvent. Beside these different self-assembled morphologies and
curvature regimes, this study also considers different degrees of segregation
between unlike lipid species.

To analyze the results from simulations with planar and cylindrical bilay-
ers, a phenomenological model describing the thermodynamics of mixing in
the two monolayers of lipid membranes was proposed. The novelty of this
model is that beside incorporating contributions from the free energy of mix-
ing on the two membrane leaflets, it also accounts for their difference in cur-
vature. The later contribution becomes particularly important for membranes
whose local curvature modulations are comparable to the inverse bilayer thick-
ness. A salient prediction of the model is the existence of a saturation curvature
for which the composition difference between the apposing leaflets becomes
maximal. The occurrence of this saturation curvature will depend on system
segregation. In particular, for low incompatibility between lipid species, the
saturation curvature may lie beyond the inverse bilayer thickness, which sets
a limit on the curvatures that are physically accessible to the system. In con-
trast, for high incompatibility the saturation curvature may be comparable to
the thermally-induced curvature fluctuations observed in planar bilayers.

Another advantage of the proposed model is that many of its parameters can
be directly measured from easily accessible experimental quantities, such as the
power spectra of shape and composition fluctuations. Furthermore, the two
parameters to fit from measurements of the local curvature and composition
asymmetry across the bilayer, are directly related to the intrinsic curvature of
the constituting lipids.



Finally, spontaneous curvatures from the analysis with bilayer membranes
were in good agreement with those obtained from a common experimental
technique, where lipids with unknown curvature are inserted into an inverted
structure whose self-assembled and spontaneous curvatures coincide. It has
been seen, however, that this technique may only be used under low segrega-
tion conditions and that the anisotropy of this inverted structures together with
the change of lipid conformations due to the interdigitation of the hydrophobic
solvent inside of the tail region may induce errors in the determination of the
spontaneous curvature of the guest lipids.
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Kurzfassung

Mittels Computersimulationen eines vergroberten Membranmodells mit impli-
zitem Losungsmittel habe ich in dieser Arbeit das Wechselspiel zwischen Kriim-
mung und Zusammensetzung in selbst-assemblierten Lipid-Strukturen, welche
aus zwei Lipidarten mit unterschiedlichen spontanen Kriimmungen bestehen,
untersucht. Verschiedene Strukturen wurden betrachtet: i) plane Doppelschich-
ten mit thermischen Undulationsfluktuationen, welche es erlauben den Bereich
schwacher Kriimmung zu studieren, ii) zylindrische Membranrthren mit un-
terschiedlicher Kriimmung, sowie iii) invertierte wurm-artige Mizellen (Rohren
von Einzelschichten) in einem hydrophoben Losungsmittel. Zusétzlich zu die-
sen unterschiedlichen, selbst-assemblierten Strukturen betrachtet diese Studie
auch verschiedene Unvertrédglichkeiten zwischen den beiden Lipidarten.

Zur Analyse der Simulationsdaten planer Doppelschichten und Membran-
rohren schlage ich ein phdnomenologisches Modell vor, welches die Thermo-
dynamik der Lipidmischung in den beiden Monolagen der Membran erfasst.
Die Neuheit dieses Models besteht darin, dass es neben der freien Energie der
Mischung in den beiden Monolagen auch deren Kriimmungsunterschied be-
riicksichtigt. Letzter Beitrag wird besonders wichtig, wenn die lokale Mem-
brankriimmung mit der inversen Doppelschichtdicke vergleichbar wird. Eine
besondere Vorhersage des Modells ist die Existenz einer Sattigungskriimmung,
bei welcher der Zusammensetzungsunterschied zwischen den beiden, gegen-
tiberliegenden Monolagen maximal wird. Das Auftreten dieser Sattigungskriim-
mung hdngt von der Unvertrédglichkeit der Lipidarten ab: Fiir niedrige Unver-
traglichkeit kann die Sattigungskriimmung tiber der inversen Membrandicke,
welche die maximale, physikalisch erreichbare Kriimmung kennzeichnet, lie-
gen. Im entgegengesetzten Fall starker Unvertraglichkeit kann die Sattigungs-
kriimmung vergleichbar mit der durch thermische Fluktuationen induzieren
lokalen Membrankriimmung werden.

Ein weiterer Vorteil des vorgeschlagenen Modells besteht darin, dass viele
Modellparameter unmittelbar durch einfach zugangliche experimentelle Kenn-
grofsen -wie etwa die Potenzspektren von Form- und Zusammensetzungsfluk-
tuationen -messbar sind. Die weiteren zwei anpassbaren Modellparameter, wel-
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che die gemessenen Asymmetrien der lokalen Kriimmung und Zusammenset-
zung zwischen den Monolagen quantifizieren, stehen in unmittelbarem Zusam-
menhang zu den intrinsischen spontanen Kriimmungen der beiden Lipidarten.

Die spontanen Kriimmungen, welche aus der Analyse der Doppelschichten
erzielt wurden, stimmen gut mit denen, welche aus einer gebrauchlichen expe-
rimentellen Technik bestimmt wurden, iiberein. Dabei werden Lipide mit einer
unbekannten spontanen Kriimmung (als Géste) zu einer invertierten Struktur
hinzugefiigt, bei der die spontane Kriimmung der Einzelschicht mit der Kriim-
mung der inversen Struktur tibereinstimmt. Meine Simulationen zeigen jedoch,
dass diese Technik nur fiir schwach unvertrdgliche Mischungen funktioniert
und dass die Anisotropie der invertierten Struktur und die Anderung der Li-
pidkonformationen durch das Eindringen des hydrophoben Losungsmittel in
die Schwanzregion zu Fehlern in der Bestimmung der spontanen Kriimmung
des Gastlipids fithren kann.
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Chapter 1

Introduction

1.1 Plasma membrane

One of the first approaches to explain the difference between living organisms
and inorganic matter, relied on the existence of a vital spirit governing the pro-
cesses of organic entities. Drawbacks to this approach first appeared when
chemists successfully synthesized organic compounds from inorganic materi-
als.? Since then, it has been shown that, although different in the complexity
of their structure, both kinds of compounds are ruled by the same microscopic
physical laws. However, knowing the properties of the these building blocks
at a molecular level does not provide much information on the behavior of an
entire cell, where a plethora of proteins, lipids and nucleic acids merge together
and give rise to a new set of properties and collective phenomena. Examples
of these are: the self-ensemble of phospholipids into complex structures like
micelles, liposomes or bilayers, solute transport through ion channels, cellular
movement and cell adhesion.

Until recently, these complex structures and processes were understood in a
descriptive way, only in the context of biological sciences. To achieve a quanti-
tative understanding of the fundamental laws ruling their behavior it is neces-
sary to apply some methods and tools developed in a physics approach. In this
context, particularly important are the tools used in soft and condensed mat-
ter physics to study the physical properties of objects (e.g., atoms, molecules,
grains of sand, or soap bubbles) placed in sufficiently close proximity to each
other, so that interactions between them cannot be ignored.

During the last decades an increasing amount of research has been focused
on the physical mechanisms behind biological processes, such as the complex
biochemical reactions taking place in lipid membranes. These membranes are
molecular aggregates present in all kinds of living matter. Together with pro-

1
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Figure 1.1: Schematic representation of the plasma membrane. Image by Mari-
ana Ruiz Villareal.

teins, they constitute the plasma membrane surrounding the cell and many of
its organelles, such as mitochondria, the Golgi apparatus and even the envelope
of some virus species. A schematic representation of the plasma membrane is
shown in Fig[1.1]2 Beside working as a barrier, isolating these cellular structures
from their env1r0nment and defining their shape, the selective permeability of
the plasma membrane plays an active role in the regulation of the processes tak-
ing place therein.?# Likewise, proteins embedded into the extracellular mem-
brane regulate the transport of nutrients in and out of the cell. Furthermore, the
presence of transmembrane receptors confer cells the ability to recognize sig-
nals from the exterior and activate specific processes in response. Examples of
these include the production of specific proteins, the contraction of muscle cells
and cellular division. 56

The role of the lipid membrane in these regulatory mechanisms comes about
via lipid-protein interactions. Recent experimental evidence suggests that the
expression of certain protein and antigen activities is only possible in the pres-
ence of specific phospholipids.” This hypothesis is supported by the observed
compartmentalization of proteins within composition inhomogeneities of the
lipid membrane (also known as lipid rafts).® These highly dynamic and tran-
sient structures are characterized by a sub-second time scale and their typical
sizes are in the range of 10 - 200 nm. The origin of these rafts, however, is still
under debate. Possible mechanisms to explain their formation include:

e The limited spatial extent of rafts is related to the large but finite corre-
lation length of composition fluctuations in the ultimate vicinity of the
critical point of the multicomponent lipid membranes.”



1.1. PLASMA MEMBRANE

e Ultra-low line tension due to the presence of lineactants in conjunction
with thermal fluctuations results in a microemulsion-like structure.1041

e Quenched disorder due to interactions with proteins of the cytoskeleton
prevents macroscopic phase separation.#12

e The curvature-composition coupling imparts a microemulsion-like struc-
ture on the mixture with a characteristic length scale dictated by the elastic
properties of the membrane.1*

In this work I devise computer simulation techniques that support this last hy-
pothesis. Specifically, I investigate the correlation between the local curvature
and composition in binary mixture membranes and quantify the spontaneous
curvature of the individual lipid species. Furthermore, I point out that besides
raft-formation, the coupling between curvature and composition may account
for packing effects that are particularly important on highly-curved structures,
such as membrane tubes or transition states that occur in transformation of
membrane shapes (e.g., pore formation, fusion and fission).

1.1.1 Lipid self-assembly

The characteristic feature of membrane forming lipids is their amphiphilic na-
ture. These lipids comprise an hydrophilic head-group, which favors the in-
teraction with water and other polar substances, and an hydrophobic group,
consisting of one or two long hydrocarbon chains, which can be saturated or
unsaturated. Being non-polar, these hydrocarbon tails are typically confined
into dense liquid regions when suspended in water. Schematics of lipids that
self-assemble into bilayer membranes are shown in Fig[T.2] It is the presence
of these two opposite interactions with water, within a single molecule, what
makes lipids an essential component for the formation of thin, albeit resistant
and flexible, enclosures of individual entities, such as cells and many of their
organelles.t>®

Besides the lipid-water and lipid-lipid interactions inherent to the amphiphi-
lic architecture, the self-assembly of lipids into different morphologies is also
dictated by their geometry. This can be reasoned in the following heuristics:
starting from very diluted conditions, increasing the concentration of lipids in
solution, will eventually result in the formation of an oil-water interface. Once
this stage has been reached, further increments of the lipids concentration will
result in reductions of the projected area per lipid. The reason for this is to min-
imize the unfavorable contact between the hydrophobic region and the solvent,
thus resulting in an effective attraction of molecules at the interface.2%2! This at-
traction will be characterized by a prominent negative peak in the profile of the

3



CHAPTER 1. INTRODUCTION

NBD-lyso-PPE (16:0) NBD-lyso-OPE (18:1)
POPC NBD-DPPE (16:0) NBD-DOPE (18:1)
o P o2 o P o £
ol B C % ETr e " } NBD
=y NS NN SN
\N{
SN— §4H §H §H §H
P
°=Fgo' °={\o °={\0' °="{J\o °={\o'
H ~H H
ORI RS CURY RN ¢
[e] 0 o 0 2 0o 0 0
(¢} o o o

CHj
CHs CHs CH; CHy

Figure 1.2: Schematic representation of common membrane lipids. Image taken
from Kamala et al. [19].

pressure distribution, perpendicular to the interface.?#2> At some point, how-
ever, the incompressibility conditions of the hydrophobic liquid will be met.
This equilibrium state will be dictated by the force balance between the attrac-
tion at the interface and the steric repulsion between the tightly packed, yet
highly-mobile lipid tails. Once this equilibrium state has been reached, both the
area of the hydrophilic head-groups, ay, and the volume, vy, of the hydropho-
bic tails will remain constant and further concentration increments will result in
global deformations of the self assembled structure that satisfy the incompress-
ibility requirements. The optimal values of ap and vy, together with the critical
tail length, 1y, (which sets a limit in the length of the chains) provide a crude,
first estimation of the geometrical shape of the individual lipids and their fi-
nal aggregates. With these quantities, it is possible to define the dimensionless

packing parameter®*

Vo

o =—. 1.1

aolo (1.1)
This parameter quantifies the ratio of the tail volume to the volume projected
by the optimal head-group area. Therefore, it can be thought of as a measure
of the intrinsic or spontaneous lipid curvature (that is, the curvature in absence
of external constraints or unbalanced torsional forces). For example, to self-

4



1.1. PLASMA MEMBRANE

Figure 1.3: From left to right, schematic representation of self-assembled spher-
ical micelles, vesicles and planar bilayers. Image by Mariana Ruiz Villareal.

assemble N lipids into a spherical micelle of total volume V and surface area A,
the ratio between the current, a., and the optimal, ay, area per lipid is given by
Ge _gv0 _gh, (1.2)
ap TQp T
where 1 is the micelle radius. Since r is bounded by 1, this expression im-
plies that as long as the the packing parameter is smaller than 1/3, it is possible
to self-assemble the hypothesized cone-like lipids, into spherical micelles (left-
most schematics in Fig[1.3). In the same manner, wedge-like lipids with packing
parameters 1/3 < « < 1/2 will self-assemble into cylindrical micelles. Lipid ar-
chitectures with packing parameters between 1/2 and 1 will result in vesicles
and planar bilayers, whereas architectures with « > 1 will no longer be solu-
ble in water and at high concentrations will organize into structures with liquid
crystalline order, such as the inverted hexagonal or inverted cubic phases.

1.1.2 Bilayer heterogeneity

Biological membranes typically comprise a mixture of hundreds of different
lipid species. Although the packing parameter of most of these lipids is close to
1, there are remarkable examples where deviations from the cylindrical geom-
etry are considerable. Sphingolipids, for instance, are an entire family of mem-
brane lipids with cone-like geometry and whose packing parameters can be as
low as o« ~ 0.4. These lipids are usually found in the extracellular monolayer
of mammalian cells, in mol fractions between 10 — 20 %. When inserted into an
homogeneous flat bilayer, these lipids will induce a torque on each monolayer
(T ~ [ Tzdz, with TT the pressure profile across the bilayer). When torques re-
main unbalanced, their net effect is to bend the individual monolayers along
their normal direction. If these “wrong” lipids are distributed symmetrically in

5
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Al @®

Figure 1.4: Ordered-disordered lipid rafts induced by the shape readjustment
of non-cylindrical lipids. Labels denote the following: A) intracellular space
or cytosol, B) extracellular space or vesicle/Golgi apparatus lumen, 1) non-raft
membrane, 2) lipid raft, 3) lipid raft associated transmembrane protein, 4) mon-
raft membrane protein, 5) glycosylation modifications (on glycoproteins and
glycolipids), 6) GPI-anchored protein, 7) cholesterol and 8) glycolipid. Image
by Artur Jan Fijalkowski.

both monolayers, the torques will act in opposite directions, therefore attempt-
ing to tear the bilayer apart. Creating a void region within the hydrophobic in-
terior, however, would be a very energetically unfavorable process.?> Therefore,
up to a critical concentration, the inserted sphingolipids will have to reshape in
order to fit into the matrix of cylindrical lipids. This shape readjustment will
result in a macroscopic elastic stress stored in the flat bilayer.28

Shape deformations induced by the inclusion of non-cylindrical lipids into
stress-free, flat bilayers, will be constrained by the incompressibility condition
of the hydrophobic interior: if the hydrophobic volume per lipid has to re-
main constant, the transformation of cone-shaped lipids into cylindrical ones
will induce (in general) an overall compression of the tails cross-sectional area
and a concomitant stretching along the axial direction. Such deformations will
come along with a drastic reduction of the tail configurational entropy, there-
fore promoting the emergence of regions where the lipid tails are highly order
along the membrane normal (see region 2 of Fig. The lateral diffusion of
these elongated lipids, however, is still comparable to that of the cylindrical
(unstretched) lipids in the fluid-disordered state (denoted as Ly). For this,
this compression-induced lipid arrangement is usually named a liquid-ordered
phase (Lg).

In recent years, the coexistence of these ordered and disordered phases has
been extensively investigated in ternary model systems.1?2%31 Usually, these
systems comprise a mixture of sphingolipids and cholesterol (which has a small

6



1.1. PLASMA MEMBRANE

Figure 1.5: Two-photon microscopy images of GUVs where L and L, phases
are shown in blue and red, respectively. The two leftmost images show the ar-
rangement of the Lg phase into hexagonal and inverted hexagonal structures.
The rightmost image is the transversal projection of a osmotically deflated vesi-
cle, exhibiting the preference of the Lg to accommodate into low-curvature re-
gions. The scale bar is 5 um. Image reproduced from Baumgart et al. [32].

polar head-group and a rigid ringed structure, that fits into the voids between
sphingolipids, hence functioning as a spacer) together with fairly cylindrical
lipids, such as dioleoylphosphatidylcholine (DOPC). These studies have shown
the phase separation of L, and L phases into domains characterized by length
scales in the order of few micrometers (see images a and b in Figll.5).
However, domains observed on these model systems are orders of magnitude
larger than the nanometer-scale lipid rafts occurring in real cells. This length
scale discrepancy, has been attributed to the absence of membrane proteins and
the underlying cytoskeleton, entities which have been hypothesized to impose
additional constraints in the limited size of lipid rafts.

Another interesting feature observed in this model system is the confine-
ment of phase-separated domains within regions of the membrane with well
defined curvature. For example, experiments with osmotically deflated vesicles
collapsing into branched structures, like the one shown in the rightmost panel
of Fig[1.5, have exhibited the preference for L, and L g domains to accommodate
into low and high curvature regions, respectively.®2 A similar behavior has been
observed in micropipette aspiration experiments, where tight bilayer tubes are
pulled out from large, phase separated vesicles. The absence of the disordered
phase within the highly-curved tubes confirms the preference of the stiffer L
domains for flatter regions.?® In addition, segregation of phase-separated do-
mains has also been observed in planar bilayers supported on patterned sur-
faces with high and low curvature regions.

So far, we have presented some examples where externally imposed geo-

7



CHAPTER 1. INTRODUCTION

= 25- %g (%)

= L

& SM PC PS PE £

T 7]

‘a 8 .
= <3 Cytosolic
v 2

= i}

S 0 N ——

° Q

= =

@ <]

E 3

: 5

0

F 25

Exoplasmic

Figure 1.6: Schematic of the composition asymmetry between the inner and
outer monolayers of mammalian’s plasma membrane. Image reproduced from
Marquardt et al. [35].

metric constraints modulate the lateral organization of L, — Lg phase-separated,
model membranes. A common feature in all these examples is that the compo-
sition of the two apposing bilayer leaflets are symmetric. However, it is well
known that the inner and outer monolayers of biological membranes, have a
rather asymmetric lipid composition. For instance, the plasma membrane of
mammalian cells has an inner leaflet rich in phosphatidylserine (PS) and phos-
phatidylethanolamine (PE). These lipid families usually display an inverted-
cone geometry with the head group at the vertex. In contrast, the outer leaflet is
usually enriched by sphingolipids and phosphatidylcholine (PC), which results
in lipids with conical geometry (n schematic representation of the mammalian’s
plasma membrane is shown in Fig.35 Since the monolayer spontaneous cur-
vature is (to a large extent) an additive quantity of the intrinsic curvature of
its individual lipids, an asymmetric lipid composition across the mammalian
plasma membrane, will result in monolayers with opposite (complementary)
spontaneous curvatures.

The complementary spontaneous curvatures between the apposing mono-
layers in an asymmetric membrane will help to relieve the stress induced by
the isochoric deformation of the lipid tails, needed to prevent the formation of
voids in the hydrophobic interior. In an optimal situation (and also neglect-
ing the curvature shift due to the bilayer thickness), these curvatures will have
the same magnitude and opposite signs (let’s say C, = C and C; = —C for
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(a) Mixed bilayer (b) Sorted bilayer

Figure 1.7: Shape-modulated bilayer due to the lateral sorting of lipids. Cone-
shaped lipids are shown in red and inverted-cone ones are shown in blue.

the upper and lower monolayers, respectively), therefore resulting in a tension-
less bilayer with a finite spontaneous curvature, C . This particular occurrence
of monolayer spontaneous curvatures resulting in a curved, tensionless bilayer
will be referred to as “commensurate”.

If the monolayers spontaneous curvatures are not commensurate, there will
be a residual stress to be distributed between the two leaflets. This stress redis-
tribution will ultimately induce deviations on C,, and C; from their tensionless
values. This situation is most likely to occur in closed bilayers, such as vesi-
cles or membranes tubes, where the composition of the two leaflets is highly
asymmetric, that is, if the outer monolayer is almost entirely populated by cone-
shaped lipids whereas the inner monolayer is occupied by inverted-cone ones.
This scenario corresponds to the simplest and perhaps most intuitive case of
saturation between the two leaflets of the membrane. In the third chapter, how-
ever, we will see that, in a more general sense, the saturation state of the two
monolayers will be dictated by the overall composition of the system.

Far from saturation, the stress can be further relieved via a coordinated in-
sertion of the “wrong” lipid species into otherwise homogeneous domains in the
two monolayers (for example insertion of cone-shaped lipids into a domain of
inverted-cone ones in the lower monolayer coinciding with a complementary
scenario in the upper monolayer). The net result of this process will be a local
modulation of the membrane shape, where the curvature of the two apposing
monolayers are commensurate (as shown in Fig[1.7b). Thus, this interplay be-
tween the compositional asymmetry across the bilayer and the local curvature,
provides a mechanism for the formation of lipid rafts. Furthermore, it accounts
for the composition asymmetry between the inner and outer leaflets of many
naturally occurring biological membranes.
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1.2 Outline

Several models have been proposed to describe the lateral sorting of lipids and
its interplay with membranes curvature in model bilayer mixtures comprised
of two or three lipid species together with cholesterol. Although most of these
models explicitly distinguish the composition on each bilayer leaflet (subject to
normalization constrains), only few of them consider their difference in curva-
ture. This simplification is valid for planar bilayers in the absence of strong
shape fluctuations and curved surfaces with radius of curvature much larger
than the bilayer thickness. However, important contributions to the lateral sort-
ing of lipids may arise when this assumption is not met, examples of these are
membrane tubes, necks, stalks, pore rims, etc. This work introduces a simple
phenomenological model that explicitly takes this curvature difference into ac-
count, resulting in further contributions to the free energy of mixing. Further-
more, this new model offers a straightforward way to measure the spontaneous
curvature of the individual lipids species, a task that nowadays remains an ex-
perimental challenge. The model is validated with molecular dynamics simu-
lations of binary-mixture, self-assembled structures with different geometries
and under different segregation conditions.

This dissertation is arranged as follows: in the next chapter, the physical
background and the computational details needed to carry out our simula-
tions, are discussed. It starts by introducing the coarse-graining concept and
the two qualitatively different approaches to achieve the dynamical descrip-
tion of a systems with a reduced number of degrees of freedom. There, the
relevant interactions to be accounted for, when developing lipid bilayers mod-
els, are pointed out. The second section introduces the implicit-solvent, coarse-
grained model by Homberg et al., together with a generalization aimed to de-
scribe multicomponent systems. In the third section, the integration schemes
needed to carry out the simulation in different thermodynamic ensembles (mi-
crocanonical, canonical, semi-grand canonical and tensionless), are described.
The last section describes the domain-decomposition parallelization strategy
implemented in this work.

The first section of Chapter 3 gives a short review of the phenomenolog-
ical, mean-field models aiming to describe the free energy of the membrane.
Following a fairly chronological order, it starts with the models by Canham
and Helfrich, which pointed out the importance of the elastic properties and
the curvature of the bilayer, to duly describe the geometrical conformations of
closed vesicles as well as the power spectra of shape fluctuations of extended
membranes. The section continues with the seminal models by Leibler and
Andelman, accounting for the heterogeneity of the membrane via a coupling
term between the local curvature and density (or composition) fields. Finally,
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the section closes with subsequent generalizations that incorporate the bilayer
structure of the membrane into the density field.

The second section of Chapter 3 introduces a new model which, beside in-
corporating contributions from the free energy of mixing on each monolayer,
also accounts for their difference in curvature. As will be seen, this generaliza-
tion will account for packing effects that are particularly important in systems
whose local curvature is comparable to the inverse bilayer thickness. Finally, in
section 3, the influence of a possible curvature dependence on the elastic prop-
erties of the system is investigated.

Chapter 4 concerns itself with the results of simulations of bilayer structures
with different geometries and segregation conditions. The first section of this
chapter deals with the setup of the coarse-grained model introduced in Chap-
ter 2 and presents some preliminary measurements used to validate the cho-
sen parametrization. The second section investigates the elastic and demixing
properties of planar bilayers and, from these studies, many of the parameters
of the mean-field model introduced in Chapter 3 are evaluated. The third sec-
tion investigates the correlation between the local curvature and composition
in planar bilayers, with thermally induced shape fluctuations. From this study,
the spontaneous curvatures of the two lipid species in the system are evalu-
ated. Finally, the chapter closes with an extension of the findings with planar
bilayers to highly-curved membrane tubes, where the composition of the two
monolayers are close to saturation conditions. The results obtained from these
simulations show that the proposed phenomenological model duly accounts for
the important packing effects emerging at high curvatures.

Chapter 5 introduces an alternative method to measure the spontaneous cur-
vature of lipid monolayers. This method is based on the idea that the insertion
of lipids with unknown curvature into an otherwise tensionless and uncon-
straint inverted structure (where the intrinsic lipids curvature coincides with
the geometrical curvature of the inverted aggregate), will induce expansions or
contractions of the inverted phase. These deformations are proportional to the
concentration of the lipids with unknown curvature. The chapter starts with
a brief introduction to self-assembled inverted structures and the idea of lipid
curvature additivity in these inverted phase, pointing out important effects due
to the stretching of lipids at the intersection between three or more inverted ag-
gregates. In the second section, a method to prevent these stretching effects is
provided and the thermodynamics of the suggested systems is investigated, re-
sulting in a new method to determine the intrinsic curvature of the species from
pressure measurements. The chapter closes with the simulation results in these
systems and the comparison with the results obtained in Chapter 4.

The thesis closes with a summary of the most important findings and an
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outlook for possible extensions.
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Chapter 2
Model

This chapter introduces the physical background and computational details re-
quired to carry out the simulations. In the first section, we present an overview
of the coarse-graining techniques, making a clear distinction between the sys-
tematic and minimalistic approaches. Within the minimalistic description, we
provide a brief guide of the relevant features to be taken into account when de-
veloping models for lipid bilayers. In the second section, we present a detailed
description a generalization to the implicit-solvent, coarse-grained model by
Homberg and Miiller®. This generalization is required to study the structural
and dynamical properties of bilayers that contain more than one lipid species.
The third section concerns itself with the algorithms needed for the compu-
tational implementation of the model in different thermodynamic ensembles.
Finally the chapter closes with the description of the parallelization strategy
adopted to speedup the simulations.

2.1 Coarse-Graining

Even when quantum effects can be completely neglected, the classical study of
mesoscopic systems can be carried out at different levels of description. At the
most fundamental level, every single atom, in each molecule of the system, is
included. This description comes with a finely tunned parametrization of the in-
teraction force fields between particles. Depending on the chemical complexity
of the molecules, these interactions may contain terms accounting for specific
chemical bonds, such as bond-bending, dihedral and torsion angle potentials, as
well as non-bonded interactions, including van der Waals forces and other elec-
trostatic interactions.??7*2 Since the aim of this description level is to repro-
duce local properties of the system in great detail (for instance, typically atom-
istic simulations of lipid bilayers include few hundred lipids spanning an area
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~ 1—10 nm? and over time scales on the order of few nanoseconds43'45), the
correct parametrization of the force field is crucial. Usually, these phenomeno-
logical parameters are tuned to fit the results of quantum calculations of small
fragments of the molecules.*®™% Another characteristic feature of the atomistic
description is that, since it includes the positions and momenta of all particles
in the system, its dynamics is completely deterministic (for closed systems), i.e.,
it is solely dictated by Hamilton equations of motion.

Evidently, the large number of particles needed to study mesoscopic sys-
tems, such as small lipid vesicles or planar bilayers exhibiting the formation
of composition domains (typically consisting of 10* — 10° lipids and character-
ized by time scales in the order of 10~° — 10~° seconds), makes unfeasible the
implementation of such a detailed description.

On the opposite side of this spectrum of coarse-grained models is the ther-
modynamical level. Here, instead of particle positions and momenta, the rel-
evant variables are the dynamical invariants of the system, such as mass, mo-
mentum and energy. In contrast to the atomistic description, there are no equa-
tions of motion describing the evolution of the system: i.e., the relevant vari-
ables settle in the equilibrium state. Consequently, the characteristic time scale
becomes infinite.

In between these two levels, lies the so-called coarse-grained description,
where the system is represented by a smaller number of degrees of freedom
than the ones it actually has. Of course, such a representation is not unique.
In general, different representations will be characterized by different length
and time scales.*#4°>3 Within the systematic or bottom-up approach to coarse-
graining, the relevant properties from a more detailed level of description are
used to parametrize a new model at a coarse-grained scale. For instance, in the
united atom model for polymers, each carbon atom is grouped with its bounded
hydrogen atoms into a single interaction center. The sole fact of reducing the
number of particles in the system, makes the new representation more compu-
tationally efficient than its atomistic counterpart, while still preserving the main
architectural features of the original molecule. Furthermore, by coarse-graining
the carbon-hydrogen bonds the characteristic time scales associated with them
(the fastest fluctuating modes in the atomistic description) have been also elim-
inated. This is an additional contribution to the computational efficiency of the
coarse-grained model, which allows to use longer integration steps during sim-
ulations. However, this immediately leads to a question on the dynamics of the
new system: how does the Hamiltonian description has to be modified after
coarse-graining? Instead of addressing this question directly, pioneers of the
systematic description (Kirkwood™¥, Green°>, Zwanzig”®*” and Mori®® among
others) searched for criteria that guarantee the existence and thermodynamic
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stability of coarse-grained models.

The basic idea behind the systematic approach consists in evaluating the
multidimensional potential of mean force, effective Hamiltonian or free energy
surface, Ucg, of the reduced degrees of freedom,*? {R},

exp (_UCETER}]) _ J@ [{r}] exp (—%%Er}]) §(R—R[r)]), (2.1)

where a4 is the Hamiltonian in the detailed, all-atom description, charac-
terized by the set of coordinates {r}. This definition for the effective Hamilto-
nian results in an identical probability distributions for both the coarse-grained
and the detailed systems. Therefore, the coarse-grained description should ulti-
mately yield the correct thermodynamics. There is, however, a major drawback
that usually prevents a direct use of this exact result: there is no guarantee that
Ucg can adopt any particular functional form. In general, it will consist of a
complicated collection of multi-body interactions.>”

In order to obtain a tractable and computationally efficient description, sev-
eral methods have been developed to approximate the expressions for Ucg
in terms of pairwise interactions. The idea behind these methods is to repro-
duce specific properties from reference simulations with the detailed, all-atom
model. For example, in the Boltzmann inversion®2 approach (which relies on
the uniqueness theorem by Henderson®?), Ucg is iteratively approximated by
matching the structure of the original system, via the radial distribution func-
tion gaa ({r}). This approach is suited to parametrize the potential of mean
force in diluted or semi-diluted systems, where high-order density correlations
are unimportant. A drawback of this methods is that the resulting Ucg is par-
ticularly sensitive to properties of the reference system, such as temperature,
pressure and composition and, therefore, it is hardly transferable to study other
systems. An alternative approach that partially avoids this inconvenience is
the force matching®*®> method. The aim of this method is to match the aver-
age force on the coarse-grained interaction centers to the one expected from the
all-atom system. The matching procedure starts with a given functional for the
effective Hamiltonian. It usually consists of a long-rang Coulomb contribution,
parametrized by the charge of the pseudo atoms, whereas the short-range inter-
actions are accounted for by cubic splines, parametrized by knot values, which
are realizations of the interaction potential at predetermined, discrete distances.
Then, the effective Hamiltonian is obtained by finding the optimal values of the
pseudo-charges and knot values, which minimize the sum of squared devia-
tions between the atomistic forces and those obtained from the coarse-grained
description. By explicitly including different geometries and different tempera-
tures, the transferability issue is overcome. This systematic approach to coarse-
graining has been extensively used over the last three decades to explore a
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plethora of phenomena in different scientific areas and, in particular, it has a
long-standing tradition within the polymer physics community. 27668

A completely different philosophy for the development of coarse-grained
models is the so-called minimalistic or top-down approach. In contrast to the
systematic scheme, this paradigm does not attempt to derive a new level of de-
scription from an already well established and finely described one. Instead,
it directly proposes an Ansatz for the minimal set of relevant interactions and
length scales, needed for the emergence of the desired mesoscopic phenomena.
An immediate consequence of this approach is the loose identification of the
chemical components, which can not be tracked back to an specific atomistic
description. Nevertheless, the relevant interactions may be designed to repro-
duce the essential properties of a whole group of chemical compounds. An
example are coarse-grained models for biological bilayers.*®6?*?2' A character-
istic property of these bilayers is the amphiphilic nature of their constituting
lipids, that usually have a hydrophobic tail, comprising two long fatty acid
chains and an hydrophilic, polar head-group. When in solution, tails line up
against one another in order to avoid the unfavorable contact with water, leav-
ing the head-groups exposed at both sides of the bilayer. The key ingredient in
this description seems to be the effective repulsion between the hydrophilic and
hydrophobic groups, instead of the underlaying, specific mechanisms originat-
ing this repulsion. Another essential feature for this amphiphilic nature is the
connectivity of molecules within a single chain, which prevents the macroscopic
phase separation of the hydrophilic and hydrophobic blocks.1>18

Another aspect related to the amphiphilic architecture (but not to the chem-
ical specificity) which has a large influence on the morphological aggregation
of lipidic systems, is the volumetric ratio between the hydrophobic and hy-
drophilic blocks.”***Z The experimental evidence shows that lipids whose tail
and head-groups have a similar size, tend to aggregate into bilayer structures
(such as flat membranes or cylindrical tethers) whereas lipids with small head-
groups and large tails, aggregate into inverted phases, where head-groups ac-
commodate on the surface of cylindrical or spherical geometries, with tails point-
ing in the outward direction. Conversely, lipids with short tails and large heads
also aggregate with heads over spherical or cylindrical geometries, but with
tails pointing inwards. These two remarks emphasize the importance of pre-
serving the amphiphilic structure when accounting for the lipid architecture in
the coarse-grained description.

Within the aggregation mechanism described above, the interaction of the
hydrophobic and hydrophilic blocks with solvent particles, seems to play a ma-
jor role. Indeed, the proper characterization of the head-solvent interactions is
crucial when hydrogen bonds have to be included. However, in a more coarse-
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grained description, it may be advantageous to completely remove the solvent
and effectively incorporate its effects within the interactions among heads and
tails. 102009766l This approach will result in an enormous speedup of simula-
tions, since the number of solvent molecules is a quantity that scales with the
system size. However, the development of such models requires a high degree
of physical intuition and their validity can only be inferred after comparing
their predictions with experiments. Fortunately, during the last decade, the de-
velopment of implicit-solvent models is rapidly increasing and nowadays there
is a general picture of the relevant interactions needed to reproduce the correct
physics in lipid bilayers. In the following section we will introduce an implicit-
solvent, coarse-grained model, which has been proved to reproduce the correct
thermodynamic behavior and phase diagram of lipid bilayers.*® Furthermore,
we will generalize this model to study the correlation between the geometrical
conformations and the amphiphilic characteristics of mixed bilayers.

2.2 Coarse-grained, solvent free model

In this work, we extend the coarse-grained, solvent free model developed by
Homberg et al.*®®2 The aim of this generalization is to study static and dynamic
properties of bilayer structures composed by a mixture of lipid species differing
by the type and size of their polar head-groups. The model incorporates two
contributions: i) bonded interactions, acting solely between closely connected
monomers within a single chain (i.e., statistically independent chains) and ii)
non-bonded interactions, potentially acting on any pair of beads and having a
large influence on the packing properties of the system. This section presents a
detailed description of these interactions.

2.2.1 Bonded interactions

The bonded Hamiltonian consist of two terms. The first term considers lipids as
a linear (single-tailed) collection of N beads, held together by identical harmonic
springs with force constant ks and rest length 1 (as shown in Fig,

j{spr K N-1

b S 2
b= 2N (rya - 2.2
KT 5 £ (T1,1+1 lo)", (2.2)

where 1141 = [t — 1ill, r; is the position vector of the i-th bead in the chain,

kg is the Boltzmann constant and T is the temperature of the system.
Analogously to the freely-joined model, this bead-spring description results in

a Gaussian probability distribution function for the chain mean-square end-to-
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end distance,®¥% R2 = ((ry — r1)2>. However, it is computationally more effi-
cient, since it avoids the expensive evaluations associated with the constrained
bond length in the freely-joined model.

Due to their relatively low molecular weight (i.e., degree of polymerization),
biologically relevant, membrane-forming lipids are characterized by high orien-
tation correlations along the tail.*’ This makes it necessary to extend the bead-
spring description with an energy contribution that favors the orientation along
the chain (i.e., enhances chain stiffness). Intuitively, the simplest way to include
this is by means of the bond angle, even though there are more elaborated mod-
els including torsion angles and even cross-coupling terms between the bond
stretching, bond angle and torsional components.***? In this model, incorpora-
tion of orientation correlations follows the simplest approach. However, instead
of the bond angle, its cosine is computed, since this computational implemen-
tation is more efficient.

The aforementioned contributions result in the following expression for the
bonded Hamiltonian of the model

PP ! N—1
kB_]?l' = 35 Z (Tiir1 — o) + Ky Z (1—cos0;), (2.3)
o1 i

where 0; is the angle between bonds at the i-th bead, i.e., cos 0; = &i_1: - tiit1,
with # = r/r, and k, is the strength of the angular interaction.

2.2.2 Non-bonded interactions

The bonded interactions described in the previous section are intended to im-
pose a gross constraint on the accessible configurations to closely connected
beads. However, they do not affect far neighbors (which can come to close con-
tact for sufficiently large chains), nor the monomers in different chains. Here,
these contributions are accounted for by a phenomenological Hamiltonian, ex-
pressed in terms of local monomer densities, p. This Hamiltonian resembles a
third-order virial expansion for the excess free energy, though it is assumed to
be valid for all densities, not only in the limit where they become vanishingly
small.®? This way, the non-bonded Hamiltonian reads:

Fop HPe J d3r 5. (1) [v(xﬁ )

e R R

Sopmey ), @4

where the Einstein sum convention over repeated Greek sub-indexes (i.e. bead
species) has been used. In order to keep simple notation, the following deriva-
tion will only consider a mixture of two lipid species. Although, it is straightfor-
ward to relax this constraint. Each lipid has two components: i) a hydrophobic
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B-type beads
Hydrophilic
~—A
C-type beads
Hydrophilic

A-type beads
Hydrophobic
A-type beads
Hydrophobic

Figure 2.1: Chain architecture of the lipids considered in this study.

tail and ii) a hydrophilic head-group. The hydrophobic beads, labeled as A, will
be common to all lipids. On the contrary, the hydrophilic beads will be differ-
ent for each species, and labeled as B and C. Both architectures comprise the
same total number of beads, N, though the relative length of head-group, N,
and tail, No, = N — Ny, blocks, may differ among the species, as depicted in
Fig2.1] The densities appearing in this expression are re-defined as:

R3 nN
Poc = 5> D 8l —1)8a,, (25)
i=1

where n is the total number of chains in the system and t; stands for the species
of the i-th bead. These functions have been normalized to account for the av-
erage number of «-type beads within a unit volume R3,. Furthermore, with
this re-definition of densities, the non-bonded Hamiltonian becomes an explicit
function of the particles coordinates, a necessary requirement for particle-based
simulations. Nevertheless, the sharp delta function in this expression makes
infeasible the computational implementation of systems described by such a
Hamiltonian. Later on, these densities will be further re-defined in order to
obtain a computationally tractable description of the system.
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Expansion coefficients

Now is time to address the expansion coefficients in the phenomenological
Hamiltonian, Eq As will be seen, these coefficients have a major influence
on the thermodynamical properties of the system. We begin this discussion ap-
pealing to the hydrophobic nature of the lipid tails: when in solution, tails will
melt into a dense liquid, in order to avoid the unfavorable contact with water.
In a solvent free model, however, this scenario might be better described as a
thermodynamic state where the hydrophobic melt coexists with its infinitely di-
luted vapor, i.e., at a zero coexistence pressure. This way, we can use the single
component version of Eq2.4Jto find an approximate expression for the equation
of state of the hydrophobic interior, yielding:

kpT [vaa o | 2waaa 3
P~ —— . 2.6
Rgo 2 PA 3 PA ( )
A second expression relating these coefficients is obtained from the dimension-
less, inverse compressibility or bulk modulus,

kN = (RS p/kgT) (OP/dp)t = vaap +2waaap™. (2.7)

Evaluating these expressions at the coexistence density, pcoex = —3VaAA/4WAAA,
we find a way to relate the expansion coefficients vaa and waaa, with macro-
scopic, equilibrium properties of the lipid species:

kN + 3 3 (KN —|—2>
and WAAAZE .

VAA = -2 (2.8)

Pcoex pgoex

An important aspect to notice is the opposite sign of these coefficients. This is an
immediate consequence of the coexistence requirement and justifies the choice
of a third-order expansion for the non-bonded Hamiltonian.®>$¢ At low densi-
ties (i.e., large intermolecular distances) a slight increase of density will result in
a pressure drop (vaa < 0, as shown in Fig[2.2). This reflects the large-distance
dominance of attractive interactions, which further promote the aggregation of
the melted phase. On the other hand, at high densities, the excluded volume
interactions come into play and prevent the system from collapsing. A typical
example of this, is the harsh repulsion of Lennard-Jones potentials at short in-
termolecular distances. Macroscopically, this is manifest by a positive slope of
the P vs p curve (i.e., wapa > 0), in the high density regime.

In contrast to tails, head-group beads should be highly soluble in water.
It is therefore reasonable to assume they will be in good-solvent conditions,
where the close contact with solvent molecules is favored over other head-
group beads.?’2! In this case, interactions with solvent are zero and the good-
solvent assumption immediately sets the sign of both expansion coefficients:
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they have to be non-negative. This also implies that the qualitative behavior of
the equation of state will be left unchanged if we set one of them to zero. In
this work, we chose wgpg = wcee = 0, in agreement with the high-solubility
picture (in which low density interactions play the main role), that provides
the lowest pressure mismatch when the hydrophilic densities approach the co-
existence density of the hydrophobic interior (see Fig[2.2). In order to further
reduce this mismatch, it is necessary that the second order coefficients become
small when compared to waaa.

— EOS hydrophobic
— EOS hydrophilic

R3 P/ kgT
o

pcoex

p

Figure 2.2: Equation of state of pure hydrophobic and hydrophilic beads at co-
existence.

The interaction between beads of different species, vy, is associated with the
incompatibility or Flory-Huggins parameter,®2% x ;s N, for each pair of different
bead species («, 3).8* For the hydrophobic-hydrophilic interactions we have:

1
XABN = Pcoex |VAB — = (VAA +VBB)| - (2.9)

2
This parameter quantifies how different are the x-f3 interactions from those
between pure substances, a- and B-f. If x4gN < 0, the species will mix
well, whereas, if xogN > 0, it will be energetically more favorable to phase-
separate, which should be the case for the hydrophobic-hydrophilic interac-
tions. We choose our parameters so that xAgN = xacN and, from now on, we
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denote them by x,N > 0 (where the new subindex stands for tail-head). Con-
cerning the hydrophilic-hydrophilic interactions, we will explore both the high
and low incompatibility regimes and, to keep a consistent notation we replace
xBcN — XnnN.

For simplicity and since they do not change the qualitative behavior of the
system, the rest of third-order coefficients, involving at least one hydrophobic
species, are set equal to waaa, whereas those involving pure hydrophilic beads
are set to zero. Then, the final mapping of the non-bonded expansion coeffi-
cients to macroscopic observables of lipid bilayers will be as follows:

kN +3

VAA — —2 ’ (2108)
pCOQX
N  vaa+v
Vap = vac = A 4 YAA T VBB (2.10b)
Pcoex 2
N
vpe = Shh= | VBB ;VCC, (2.100)
coex
vgg = vce = 0.1, (2.10d)
3/ kN
WAAA = WAAB = WABB = 5 ( 3 ) , (2.10e)
2 pcoex
3/ kN
pCOEX
Wgpp = Wpgc = Wpcc = Weee = 0. (2.10g)

Weighted densities

In the previous section, we discussed the role played by the expansion coeffi-
cients to set up, in broad terms, a meaningful thermodynamic behavior of the
system. However, there is a key aspect of the model which still has to be mod-
ified in order to properly reproduce the important packing effects, observed
in biological membranes. This aspect is the definition of densities in Eq2.5
As it stands, this definition is advantageous because of its explicit dependence
on particles coordinates, which is a basic ingredient in molecular simulations.
However, the impulsive forces originating from this definition of densities are
hard to deal with, due to their short integration time requirements. More im-
portantly, it completely overlooks the ability of real particles to allow certain
degree of overlap when in crowded environments. In order to provide this fea-
ture to our model, the original molecular densities are convoluted with weight-
ing functions, w(r), that smooth and spread them over a characteristic region,
1o, which can be thought of as the radius of the associated coarse-grained seg-
ment.?%?! Important requirements to be fulfilled by these weighting functions
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are: normalization, fd3w(r) = 1 (the total number of particles before and after
reweighting must remain the same), vanish to zero at the cut-off distance r. and
be differentiable everywhere (to avoid the emergence of impulsive forces).

In the previous discussion on the equation of state of the hydrophobic bead
species, we identified third-order terms with the typical harsh repulsions at
short intermolecular distances, whereas second-order terms account for attrac-
tive interactions at large scales. This suggest the use of different weighting func-
tions for the second- and third-order densities. In this work we follow the same
approach as Hoémberg and Miiller®2 and set the second-order weighting func-
tion as follows:

(TC_a)3/ 0<T<a,
H(r) =A< 213 -3 (a+r)r?+6arer—3arz+13, a<r<r,, (2.11)
O’ T‘C < T,

where A is a normalization constant. Notice that the interpolation between the
constant and zero potential regions is done via a cubic spline, which guarantees
a smooth match at the end points, a and .. The third-order weighting function

I /12

04 06 08 1.0
T/TC T

0.0 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

T/Te

Figure 2.3: Main plot: weighting functions for the second- and third-order den-
sities (denoted by the subindex m = 2, 3), for a = 0.9r.. Inset: Negative deriva-
tives of these functions, which are proportional to the force between particles.
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is defined as:

_ 15 (TC_T,)Z’ T<Te
V3(r) = 5{{ 0, < (2.12)
These functions, together with their negative derivatives (which are propor-
tional to the force between particles) are shown in Fig2.3] Notice that a has
been chosen so that second-order interactions act only in the long-range limit,
confining particles within the cutoff radius r..

Using these functions, we define the new weighted densities of the model,

R3 nN
Pmalr) = 20 3 Do (5 — ) B 213)

i=1

With these new densities, we can rewrite the non-bonded Hamiltonian of the
system, Eqf2.4} in a computationally convenient way

j{ AY) B w B B
=D Sa [2%5026(&) 4 B G (1) Pay (x1) | - (2.14)
i

kgT 3N
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2.3 Numerical implementation

Using the coarse-grained, solvent free model introduced in the previous section,
we perform molecular dynamics (MD) simulations of lipid bilayer structures
under different thermodynamical conditions and geometries. These constrains
require the use of several statistical ensembles. In this section, we provide a
description of the numerical implementation of these ensembles.

2.3.1 Model discretization

The force field of this model is obtained by direct differentiation of the bonded
and non-bonded contributions to the Hamiltonian, Eq2.3/and Eq with re-
spect to the beads coordinates

l
Fipr =—K; [1 - } Tiitl, (2.15a)
Tiir1
ang krb A A
F 7 =———[Bir1—ti1,icos0i, (2.15b)
Ti1i ’
ky . . ky . .
F'8 = ® b1 —i110080;) — —2— [f_1 — Bi141 cOS 6], (2.15¢)
Ti—1,i Ti,i+1
k
F' = [#i_1; — Bii41 08 03], (2.15d)
' Tiit1 ' '
kgTR3 ) ,
Bl =— =2 DBy {Vtmtmﬁz(ﬁj)

j

PG, 1) [P + )] | @2150)

A remarkable feature of these equations is that both the bond angle and the
non-bonded contributions decompose into a sum of two-body terms. Besides
the coarse-grained nature and the absence of solvent, this feature adds to the
computational efficiency of the model. It also simplifies considerably the evalu-
ation of certain observables, such as the local pressure profile, whose moments
provide information on the elastic properties of lipid bilayers.

The equations of motion Eq2.15 will be integrated with the velocity Verlet
algorithm 289293 This is a second-order, two-step method which, beside its sim-
plicity and easy implementation, is symplectic, time-reversible and conserves
angular and linear omentum. The algorithm is as follows: in the first step (prior
to the evaluation of forces), velocities are updated by half a time step (At/2)
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using old forces, then positions are updated by a full time step using the inter-
mediate velocities

p(t+At/2) =p(t) + %F(t), (2.16)
r(t+ At) =r(t) + Atp(t + At/2). (2.17)

In the second step, forces are evaluated and then velocities are updated by an-
other half time step.

p(t+At) = p(t +At/2) + %F(t—FAt). (2.18)

A crucial factor for the implementation of any integration scheme is the ad-
equate selection of the time step, At.”* Even though there is no standard proce-
dure to do so, the ultimate goal is to avoid the long-timescale energy drift. For
all simulations in this work, we have set At = 0.0057, for which we do not ob-
serve drifts larger than 1% in 10° time steps (in the microcanonical ensemble),
and where we have defined the unit time, T = \/kpT/r., which will be mapped
to real time units once the self diffusion time of a single lipid is evaluated.

2.3.2 Simulation ensembles
Canonical (NVT)

Apart from the constant energy (microcanonical) simulations used to study the
stability of the velocity-Verlet integrator and set the adequate time step, all sim-
ulations in this work are done at constant temperature. The prototypical sta-
tistical ensemble satisfying such requirement is the canonical ensemble, where
the system is allowed to exchange energy with a thermal reservoir, but the con-
strains on constant volume and number of molecules are fixed. Allowing the
system to sample the desired new set of canonical configurations implies a mod-
ification to the standard (Newtonian) molecular dynamics scheme described in
the previous section. There is a large number of methods that have been de-
veloped to achieve this goal,® ranging from simple re-scaling of velocities to
the addition of stochastic terms governing the fluctuation and dissipation of
energy in the system. In this work, we follow the methodology developed by
Lowe (commonly referred as the Lowe-Andersen thermostat)?®“? where, in ev-
ery time step and after integrating the equations of motion using the velocity-
Verlet scheme, the relative velocities of all interacting pairs (in our case, those
separated by a distance shorter than the cutoff radius for non-bonded interac-
tions, r.) are randomly reassigned with probability 'At (where I is the collision
frequency with the thermal reservoir). The velocity update is done such that
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the total linear and angular momenta of the pair is conserved, i.e., the velocity
component along the line through their centers is taken from the distribution
&ijv/2kpT/m, where m is the bead mass and ¢ is drawn from a Gaussian distri-
bution with zero mean and unit variance. This way, the resulting new velocities
of the pair are given by

1 2kgT . .

Vi=vi—s (&j — — vy rij) By, (2.19)
1 2kgT . .

Vj = Vj + E (aij — — Vi~ l‘i)'> Ijj. (2.20)

Based on the original Andersen algorithm, the Lowe-Andersen thermostat
satisfies detailed balance. This guarantees the proper sampling of the desired
canonical distribution, regardless of the integration scheme (as long as it con-
serves energy).”” This is an advantage of the method when compared to other
popular choices, such as the Nosé-Hoover thermostat?'% or dissipative parti-
cle dynamics (DPD),2110%% which require the use of more sophisticated integra-
tion mechanisms. An additional feature of this thermalization procedure is the
contribution of the collision-induced impulsive forces to the fluctuating stress
of the system, which translates into an increased viscosity and enhances the
realization of liquid-like dynamics in the system.?640°

Tensionless (NP;T)

The surface tension, v, of a planar membrane parallel to the xy-plane is given
by106
Pn =Pz,
Y= (L(Pa—Py),  with (2.21)
Py = %(Pxx + Pyy)/

where Ly is the lateral extension of the simulation box along the x-axis (with
o« = X,Y,z), Pn (P¢) the instantaneous value of the normal (lateral) pressure,
and Py, are the diagonal components of the pressure tensor. In order to set
the desired tension of the system, our particular implementation of the NPT
ensemble allows lateral fluctuations of the simulation box (due to the absence
of solvent, i.e., P, = 0 outside the bilayer, fluctuations in the normal direction
are irrelevant). Changing the area, A(t), of the simulation region comes with a
re-scaling of bead coordinates. This makes necessary the use of more involved
integration schemes. Here, we follow the methodology developed by Kolb and
Diinweg'"” for the NPT ensemble and the later adaptation by Hémberg and
Miiller®®$2 for NP, T ensemble with the present solvent free model.
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The algorithm is as follows: a new degree of freedom, A(t), with mass, Q,
and conjugated momenta, 7tp, associated with the area of the simulation box,
is introduced. Then, in the first integration step, all conjugate momenta and
coordinates are updated by a half time step

At

Py = Prsy(0) + Sy (£(0)), (2.22a)
PL(At/2) = p.(0) + 5°F. (x(0)), (2.22b)
TA(AL/2) = Tia + %LZPt, (2.22¢)
A(At/2) = A(0) + Zg—tr_%ﬂA(At/Z), (2.22d)
Ty (AY) = 1/ (0) + A(%S/)z)%p; . (2.22¢)
r,(At) = 1,(0) + %oz(m/z), (2.22f)
A(At) = A(At/2) + %;%nA(At/Z). (2.22g)

After this step, particle coordinates are rescaled and new auxiliary momenta are
set

A(AL)

Ty (At) = A (2.23a)
" A(A)
Puy =~ P (2.23b)

In the second integration step, all conjugate momenta are updated by another
half time step

7ia (At) = 1A (AL/2) + %LZPU (2.24a)
Py (AY) =p, + %Fx/y (r(At)), (2.24b)
PL(AL) = p.(A/2) + SUF. (r(AL). (2.240)

Finally, oscillations of the additional degree of freedom, A(t), are damped via
coupling to a Langevin piston"”

At At At
—L,Pi - —L,Py — kgTyaAt/28E A, 2.25
5 LzPt = —L:Py YAZQL%WAJF\/ BIYAAL/2EA (2.25)
where 4 is the friction coefficient of the area “particle” and &4 is random num-
ber drawn from a Gaussian distribution with zero mean and unit variance.
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Semi-grand canonical (NAuT)

Most of our simulations consist of a blend of lipids which differ by the length
and type of their polar head-groups. Studying the equilibrium properties of
such mixed systems via MD simulations in the canonical ensemble can be a very
inefficient process, especially when the system approaches the demixing critical
point.2Y81% The reason for this is that the relaxation of composition fluctuations
is entirely mediated by diffusion. Therefore, the characteristic time for the ag-
gregation of composition domains within the bilayer, will be several orders of
magnitude larger than the characteristic time of single chain conformations.
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Figure 2.4: Mutation of lipid species in the semi-grand canonical implementa-
tion.

A common strategy to optimize the sampling of composition fluctuations is
to work in the semi-grand canonical ensemble, where the total number of lipids
in the system remains fixed, but the relative concentration of the species can
fluctuate around an average value, set by their difference in chemical potential,
Ap MU Our numerical implementation of this ensemble is based on Monte
Carlo moves with an acceptance probability

Pacc = min {1/ ei(AEiAH)/kBT} , (2.26)

where AE is free energy difference of the system before and after the move. The
algorithm is as follows:
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1. An arbitrary lipid is selected and the energy of the system is recorded.

2. The lipid is randomly mutated into a new species (see Fig2.4) and the
energy of this new configuration is evaluated.

3. The probability acceptance of the move is evaluated (using Eq{2.26) and
compared to a random number, & (drawn from an uniform distribution
between 0 and 1).

4. The Monte Carlo move is accepted if & < P, or rejected otherwise.

2.4 Parallelization

A systematic study of the interplay between the lateral organization of lipids
and the bilayer shape requires the simulation of systems characterized by dif-
ferent length scales. On the one hand, we simulate highly-curved systems, with
lateral dimensions comparable to the bilayer thickness, ty, (i.e., with a small
number of lipids) and whose properties are highly influenced by local pack-
ing effects. On the other hand, we simulate planar bilayers, whose lateral di-
mensions are considerably larger than their thickness (L, L, ~ 10t,) and where
shape fluctuations, as well as entropic effects, play a major role. The compu-
tational cost of these simulations is led by non-bonded interactions which, be-
side requiring the evaluation of local densities in every time step, scale as the
square of the number of neighboring beads within a cutoff radius, r.. Further-
more, some of the simulation are done in the vicinity of the demixing critical
point, where the correlation of composition fluctuations is slowed down. These
factors make necessary the use of parallelization algorithms to simulate large
systems. This section is intended to provide a brief description of the paral-
lelization strategy used in this work.

Domain decomposition

The parallelization strategy followed in this work is the domain decomposition.*12

The simulation region is split into several domains and a single computational
unit (denoted as processor from now on) is assigned to each of them. Each
processor is in charge of calculating the forces and integrating the equations of
motion of all particles within its boundaries. To evaluate the forces on particles
at each domain boundaries, every process stores a copy of the positions and
velocities of particles in the nearby domains that lay within its interaction radius
(we will refer to this region as the shell of the process, as shown in Fig[2.5a).

30



2.4. PARALLELIZATION
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(a) Single domain (green) and its asso-
ciated shell (red) which contains infor-
mation from beads in its neighboring
domains (those laying within its inter-
action radius). Other domains are de-
limited by the thin, continuous line.
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(b) Two-steps communication scheme
between domains. Numbers indicate
the sequence in which communication
is performed and s-subscripted labels
stands for shell information from the
corresponding neighbor.

Figure 2.5: Domain decomposition of the simulation box.

The described approach is particularly suitable to study the dynamics of sys-
tems interacting via non-bonded interactions. However, difficulties arise when
simulating chain-like structures that may include both pairwise or multi-body
interactions, like the bonded interactions in our model. In such cases, a method
is needed to deal with the connectivity between beads. Single processor algo-
rithms can easily overcome such difficulty by making use of the linear memory
storage of the beads in a single chain and evaluate all the interactions acting
on these beads in a single loop. However, this ordering is completely lost in
distributed computations after few simulation steps. We handle this difficulty
by assigning a passport that has to be shared whenever information of a spe-
cific bead is required. This passport consist of a unique id number for the bead
in the whole system (i.e., a bead index assigned at the beginning of the simula-
tion) and the id number of the neighboring beads needed to evaluate its bonded
interactions.

Communication scheme

This particular implementation takes advantage of the solvent-free nature of the
simulation model and the geometry of planar bilayers (which are the most com-
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putationally demanding, due to their large number of lipids) and divides the
simulation region into rectangular parallelepipeds, perpendicular to the bilayer
plane. The process assigned to each division maintains two data structures: a
core data structure, that stores the complete information (coordinates, velocities,
weighted densities, passports, etc) of all beads within its boundaries, and shell
data structure that stores the corresponding shell information. To facilitate the
insertion and deletion of data, as particles are copied or moved between do-
mains, this information is stored in linked lists. The communication exchange
between processes has two steps (see Fig[2.5b)):

1. Each processor exchanges information with its neighbors in the east and
west directions. Processor B fills a sending buffer with the information of
its own beads that lay within the interaction range of processor A. Once
the message is sent, the communication buffer is ready to receive the in-
coming message from process C. This information will be added to the
shell data structure. Then the procedure is repeated, but with all pro-
cesses exchanging information in the opposite direction, that is, sending
to C and receiving from A.

2. The same procedure as in 1 is repeated, but in the north and south direc-
tion. The only difference is that messages sent to adjacent processors now
contain information from beads stored in the shell structure.

Therefore, this communication scheme only requires four data exchanges to
collect the needed information from the eight surrounding neighbors of any
domain.

Neighbor list

The main reason to adopt a parallelization strategy is to speedup the evaluation
of the double sums in the expressions for the non-bonded interactions, Eq
and the weighted densities, Eq2.13] whose naive implementation scales with
the square of the total number of particles. The domain decomposition of the
simulation region among n,, processors would, ideally, reduce the original work-
ing load by a factor ~ 1/n2. However, the short-range nature of this non-
bonded interactions may still result in an inefficient implementation if domains
are larger than the cutoff radius of soft interactions, r., since there will be many
non-interacting pairs within each domain. On the other hand, a drastic reduc-
tion of the domain size will create too much communication overhead, which
is a major factor in detriment of efficiency for any parallelization scheme. To
allow for low communication overhead and high efficiency in the detection of
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interacting pairs, each processor maintains a list with all the possible interact-
ing neighbors, within a radius 1. + 1y, for every particle in its core data struc-
ture.*813 The Verlet radius,?? v, serves as a buffer to regulate the evaluation
of this neighbor list (which remains a time consuming task within each domain)
and redistribution of particles between domains (once bead coordinates are up-
dated). The main idea is that particles relocation and evaluation of the neighbor
list will happen only after few simulation steps, when the maximum distance
traveled by a single particle (in any domain) satisfies Armax = 1v /2.

Ensembles

Following this parallelization strategy, simulations in the microcanonical en-
semble can be done with a single exchange of information per integration step.
However, a more efficient implementation may result if, instead of evaluating
the weighted densities in both the core and shell data structures, only the core
evaluations are carried out and, afterwards, densities are broadcasted to the
neighboring processes. In contrast to this free choice to achieve a better per-
formance, the stochastic and pairwise nature of the thermalization algorithm
makes mandatory the use of a new communication step, where each domain
transfers its reassignment of particles velocities in the shell. To avoid multiple
modifications, due to the repeated shell pairs in the different domains, each pro-
cess evaluates a thermalization step only when the id of its core particle is larger
than that of the particle in the shell.

The initial step for the semi-grand canonical parallelization is the random
selection of possible chains undergoing a type mutation. This can be done by a
single processor at the beginning of every integration step and broadcasted to
all other domains within the first data exchange. Then, each mutation has to
be carried on individually, in the domains spanned by the chain in turn. This
type reassignment requires a new calculation of densities. Instead of evaluat-
ing these new densities using the original neighbor list (which stores all the
interacting pairs, though in an unsorted way), a linked-cell list is constructed,
exclusively, for the beads in the current chain.

Most of the simulations in this work were done at constant volume. A reason
for this was to avoid the additional communication overhead, as well as the
involved re-scaling of coordinates, required by the tensionless ensemble, which
is not suitable for domain decomposition algorithms. Instead, NP;T simulations
were implemented in a single processor and were mainly used for equilibration
purposes, setting the desired average tension in the system.
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The final simulation algorithm used in this work is summarized in Fig[2.6}

First velocity-Verlet step
If Arpax > 1v/2:
Update core
Update neighbor list
Update shell
Else:
Update shell
Evaluation of forces:
Evaluate bonded forces (passports)
Evaluate densities in the core
Update densities in the shell
Evaluate non-bonded forces
Second velocity-Verlet step
Thermalization
Update velocities in the core
Update velocities in the shell
Semi-grand canonical moves:
Construct linked-cell list
Swap chain type
Evaluate new densities and energy
Accept or reject the new type
Record observables

Figure 2.6: Domain decomposition algorithm for NVT and NAuT ensembles.
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Benchmark

The efficiency of this implementation was tested for a pre-assembled, planar
bilayer with 42120 chains. Each chain comprised 16 beads, for a total of 673920
beads. We considered two lipid species, with a difference in chemical potential
such that the average concentrations of both species were the same. In addition,
the incompatibility between head-group beads was chosen to locate the system
close to the demixing critical point. The results of this test are shown in Fig[2.7]
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Figure 2.7: Efficiency of the domain decomposition implementation.
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Chapter 3

Phenomenological membrane
models

In this chapter we introduce the theoretical framework needed for the analy-
sis of the coarse-grained simulations. The first section gives a broad overview
of the mesoscopic, mean-field models for lipid membranes, starting from the
tirst elastic description by Canham and Helfrich, to the extended models that
account for the interplay between curvature and composition in those bilayers.
Many of these models account for contributions to the membrane free energy
from the energy of mixing of the individual monolayers. However, we point
out that most of these models have only partially transfered the two-monolayer
structure into the curvature field. Therefore, their applicability is restricted to
the study of system whose lateral dimensions are much larger than the mem-
brane thickness, i.e., they are not suitable for systems under strong curvature
constraints. In the second section, we develop a new model that, beside the
monolayers energy of mixing, explicitly considers the curvature of both leaflets
and the intrinsic coupling between curvature and composition.

Among the predictions of this model is the existence of saturation curva-
tures, for which the modulation of lipids composition reaches its maximum.
Furthermore, the model provides a quantitative description of the rate with
which such saturation value is reached. This growth rate is what we define
as the effective curvature-composition coupling. In the third section, we extend
the model to account for high-curvature corrections that are due to the modifi-
cation of the elastic properties of highly-bent membranes.
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3.1 Early membrane models

3.1.1 Elastic models
Canham and Helfrich Hamiltonians

Back in 1970, Peter Canham proposed one of the first models to duly account
for the peculiar biconcave shape of human red blood cells, without considering
any other organelle, but the cellular membrane.!* The key idea behind this
model was to identify bending (rather than stretching or torsion) as the relevant
quantity that characterizes the free energy of the lipid bilayer. Relying on elastic
theory, he proposed a generalization of the beam-bending energy to describe the
elastic energy of the membrane:

U = L d2r g (c% + cg), (3.1)

where the integral extends over the whole surface of the bilayer, k is the bending
modulus and c; and c; are the local, principal curvatures of the membrane. Few
years later, in 1973, Wolfgang Helfrich found a generalization of this expression
that became the cornerstone for most mesoscopic, mean-field models describ-
ing the thermodynamics of lipid bilayers. Instead of directly relying on elastic
theory, Helfrich started from a general quadratic expansion for the membrane
elastic energy in terms of the spatial derivatives of the local bilayer normal.
Then, appealing to physical grounds and symmetry arguments, he justified the
omission of irrelevant terms in the expansion.'!> The reasonings followed at
that stage were similar to those used by Oseen1® and Frank!” when deriving
the free energy of liquid crystals. Beside the curvature-independent term, v,
which accounts for energy contributions due to membrane stretching, the Hel-
frich generalization for the bilayer free energy is:

UZJ d’r [g (C1+C2—C0)2+|_<C1C2 —l—’Y] (3.2)
S

Compared to the Canham’s Hamiltonian, Eq[3.T} there are two additional
coefficients in this expression. The first one is the spontaneous curvature of the
bilayer, Cy. Due to symmetry, this quantity should vanish in completely homo-
geneous membranes. However, the presence of heterogeneities may lead to a
preferred curvature, thereby setting Cy # 0. For example, this may be the case
in membranes whose two apposing monolayers are composed of lipids with
different chemical identities or packing geometries. The second coefficient, g, is
the so-called saddle-splay or Gaussian modulus. It accounts for the membrane
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preference to adopt concave/convex or saddle shapes. This contribution, how-
ever, may be omitted when studying membranes with closed geometry (such
as closed vesicles) or idealizations where some of the lateral dimensions of the
membrane extend infinitely (such as infinite planar membranes or cylinders).
The reason for this, relies in the celebrated Gauss-Bonnet theorem, that relates the
surface integral of the local Gaussian curvature, K = cjcy, of a manifold §, to the
line integral of the geodesic curvature, kg, along the contour of § and the Euler
characteristic, x (8): a scalar invariant that describes the shape of a topological
space regardless of how it’s bent.

J &r K = 27y (8) +J ds kq. (33)
S 08

The immediate consequence of this result is that, for membranes without
boundaries, the second term in the Helfrich Hamiltonian, Eq. may be ne-
glected, since it will integrate into a constant with no influence on the physical
properties of the system. Taking this into account, the Helfrich Hamiltonian can
be rewritten as:

U = L d2r [zK (H — Cy)? +y}, (3.4)

were we have defined the mean curvature, H = 972, The practical use of this
expression will still depend on the way curvatures are computed, which in turn
will depend on the parametrization of the membrane.

The Monge gauge

One of the most appealing ways to describe membranes, thinking of them as
extended objects, is the so-called Monge gauge. In this description, the local
height, h, is measured with respect to a reference plane located at z = 0, as
shown in Fig. This way, the coordinates of any point on the membrane
are given by R = R(x,y, h(x,y)). Of course, this assumes that h(x,y) is single-
valued and, thus it’s restricted to the study of quasi-planar surfaces.

Within the Monge gauge, the mean curvature can be evaluated via the di-
vergence of the membrane normal, 2H = —V - .. However, the resulting ex-
pressions allow for analytic ways to find equilibrium configurations (those that
minimize the resulting Helfrich Hamiltonian) only in a very limited number of
cases. For this reason, it is usually assumed that h(x,y) is a smooth-enough
function (i.e., [Vh| < 1), so that a small gradient expansion results in an ap-
propriate description of membrane fluctuations. These simplifications yield the
most common approximation to the Helfrich Hamiltonian:

U= %L d%r [K <V2h>2 +y (Vh)z}. (3.5)
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Figure 3.1: Monge parametrization of a planar membrane patch.

Fluctuation spectra

The quadratic dependence of the Helfrich Hamiltonian on curvature, Eq[3.5
is enormously convenient when computing statistical averages and, in partic-
ular, it will provide an analytical path for evaluating equilibrium properties.
Another key aspect of this harmonic model is that shape fluctuations are com-
pletely determined by two uncoupled contributions: out-of-plane deformations
(bending) and in-plane compressions. By measuring the spatial correlation of
these undulations, we can determine the conditions favoring the appearance of
one kind of mode or another. To carry out this study;, it is convenient to evaluate
the Fourier expansion of height fluctuations:

: 2
h(r) = Z hqe'?” with q= Tﬁ (N ny), N,y €N, (3.6)
q

where, for simplicity, we have assumed a membrane patch with equal lateral
dimensions, L, replicating infinitely via periodic boundary conditions. With
this definition the Helfrich Hamiltonian, Eq. can be rewritten as follows:

2
Uy = % > |haf |kt +va?]. (3.7)
q

Then, invocation of the equipartition theorem, which states that every quadratic
term in the Hamiltonian contributes exactly kgT/2 to the average energy of the
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system, yields the desired expression for the membrane fluctuation spectra:

(Ingl?) = - Ty (3.8)

Now it is clear that compression modes will become dominant whenever
q < y/Y/k. Another remarkable feature of this expression is the simple depen-
dence on the phenomenological parameters of the model. This is one of the
reasons why measuring the fluctuation spectra has become one of the preferred
techniques to determine the bending modulus of lipid bilayers.

3.1.2 Beyond purely elastic models

The Helfrich model has had many modifications since its introduction. An
example of this is the protrusion field, introduced by Lipowsky in the early
90’s,18 which accounts for the observed roughness of the membrane on length-
scales just above the bilayer thickness. This roughness is induced by the rel-
ative motion of individual lipids and its contribution to the fluctuation spec-
tra has the same mathematical dependence on the wave vector than the com-
pression modes. However, it is characterized by a different surface tension co-
efficient. 118712V There have also been generalizations accounting for the inter-
nal structure of the lipid tails inside the bilayer (described via a local orienta-
tional field, as it is usually done when studying liquid crystals) as well as the
interactions among these additional degrees of freedom and membrane inclu-
sions.1211422 This kind of models have been useful to elucidate essential condi-
tions to regulate membrane-mediated interactions between inclusion as well as
conditions for the stability of new membrane conformations, such as the rippled
phase usually observed on highly-hydrated phospholipid bilayers. >

The Leibler model

A common feature of all these models is that they consider membranes as ho-
mogeneous surfaces where the chemical identity of the constituting lipids does
not play any role. However, the presumed existence of rafts, 02122123 the evi-
dence of phase segregation in multicomponent membranes under the influence
of high curvatures (such as those characteristic of membrane-pulling experi-
ments) 22331267128 and the well-known composition asymmetry between the ap-
posing monolayers of certain types of cells and cellular organelles, 122430 are
only some examples of the imminent role that inter- and intra-composition
heterogeneities should play in the modulation of membrane shapes and the
plethora of processes regulated by these membranes.
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It was Leibler who, in 1986, first proposed a model to account for these
composition heterogeneities. Specifically, the model was aimed at incorporat-
ing the effect of freely-diffusing membrane inclusions, which were assumed
to interact stronger with the polar head-groups than with the lipid tails. These
asymmetric interactions result in an heterogeneous distribution of the adsorbed
molecules, since they prefer to accommodate into regions where the bilayer is
locally bent inwards/outwards, so that the contact with the polar head-groups
is maximized /minimized. He proposed to incorporate these interaction into
the continuous Helfrich description via a coupling term between membrane
curvature and the local density field of inclusions, ¢:

Uaoup = | e MM, (39)

where the new phenomenological parameter, A, quantified the strength and di-
rection of the coupling interaction (in the following, this parameter will be de-
noted the intrinsic curvature-composition coupling). In addition, the model
incorporated a power-series expansion in terms of density, accounting for the
interaction between inclusions.**! Predictions of this model include the peri-
odic curvature modulation of two-component vesicles, under strong segrega-
tion conditions, as well as the presence of shape instabilities, characterized by
high-order bending modes. Beside the intrinsic coupling, such instabilities were
triggered by the pressure difference between the interior and the exterior of the
vesicle. This additional term in the free energy, was a later contribution by An-
delman and coworkers, which directly coupled the pressure difference across
the membrane with its total enclosed inner area.15#133

Importance of the bilayer structure

Subsequent generalizations focused on capturing the two-leaflet structure of
lipid membranes. Although many of those new models fully transfered the dual
character into the composition or density field, the corresponding mapping into
curvature was only partially conferred, i.e., they assumed the curvature of ap-
posing monolayers to have the same magnitude but opposite signs, accounting
for the direction in which each monolayer locally bends (towards the hydropho-
bic interior or away from it). These generalizations exhibit the spontaneous
formation of large vesicles, configurations that result unstable against lamellar
or micellar phases in single-component systems. Such stabilization is possible
due to the ability of vesicles with different compositions in the inner and outer
leaflets to relieve the frustration of curvature energy.1%13¢ Furthermore, phase
separation in those systems may occur at finite length scales, i.e., their structure
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factor of composition fluctuations is characterized by the presence of high am-
plitude peaks at non-zero wave vectors. This provides an explanation for the
formation of lipid rafts as a direct consequence of the curvature-composition
coupling. 1135 However, two caveats arise from these models. First, stability
of the vesicular phase is only possible for compositions near the critical value
for the lamellar-vesicular phase transition. Whether these conditions can be
met in biologically relevant systems, has to be further investigated. Second,
conclusions from these models are drawn under the assumption of isotropic
curvatures, i.e., restricted to the study of only spherical vesicles.

In a complementary approach, Seifert showed the mechanism by which
curvature-induced phase segregation in two-component vesicles favors the ap-
pearance of budding transitions on initially spherical vesicles.1%¢ This was an
important contribution to reinforce the hypothesis of the curvature-composition
coupling as an essential mechanisms for the stabilization of curved bilayer mor-
phologies and the concomitant asymmetric distribution of lipids across the mem-
brane. However, recent experimental and theoretical findings on supported
planar membranes, have pointed out the importance of distinguishing coupled
and uncoupled phase separation between leaflets. These findings suggest that
it is the tendency to phase-separate in one of the monolayers, together with a
non-curvature dependent interaction (at least not explicitly) between leaflets,
what induces a coupled segregation across the bilayer.2%13” This poses a ques-
tion on the mechanisms regulating the correlated segregation of lipids in the
two leaflets of the membrane: so far, the intrinsic curvature-composition cou-
pling seems to be enough to explain this correlated segregation on curved mor-
phologies. What is, however, its relevance to account for the same phenomena
in planar membranes?

In the next section, we will introduce a new model able to describe the cor-
related segregation of lipids across the membrane, appealing to no other inter-
actions but the elastic energy and the intrinsic curvature-composition coupling.
The novelty of this description, when compared to the aforementioned ones,
is that it will fully transfer the two leaflets architecture of the bilayer into both
the local curvature and composition fields (i.e., it will relax the constraint of
equal magnitude and opposite sign for the curvature of apposing monolayers).
Beside the correlated segregation, this generalization will account for packing
effects that become particularly important in systems characterized by curva-
tures comparable to the inverse bilayer thickness, such as those occurring in
membrane-pulling experiments.
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3.2 Composition-dependent free energy of mixing

In the previous section we presented a brief overview of the mesoscopic, con-
tinuous models developed for the study of lipid membranes. We saw that, since
its introduction more than 40 years ago, the first elastic models by Canham and
Helfrich have been continuously extended to provide a more accurate descrip-
tion not only of membrane equilibrium shape deformations but also to account
for more intricate phenomena, such as the partial phase segregation of their
lipid constituents, as well as the underlaying mechanisms stabilizing these fi-
nite length-scale domains. A major breakthrough in this direction is the recogni-
tion that the intrinsic bilayer structure of the membrane provides a natural path
to relieve the frustration of curvature energy: If we consider the membrane to
be composed of lipids with different spontaneous curvatures (i.e., lipids with
different volume ratios for their polar head-groups and tails), lipids with large
head-groups will prefer to cluster into regions where the monolayer is bent to-
wards the hydrophobic interior (regions where the accessible area per lipid is
increased), whereas lipids with short head-groups will cluster in regions where
the monolayer is bent in the opposite direction. This mechanism will confer an
effective local curvature and lipid sorting, proportional to the difference in mol
fractions between lipid species. The effectiveness or strength of such sorting is
what we call intrinsic curvature-composition coupling. However, as we pointed
out, although these models considered the composition of each leaflet indepen-
dently, they also assumed the local curvature of apposing monolayers to have
the same magnitude and opposite signs (since the local normals of the mono-
layers point in opposite directions). This description is suitable for the study of
smooth surfaces in the absence of high curvatures. However, as local curvature
becomes comparable to the inverse bilayer thickness, the curvature difference
between apposing monolayers increases drastically. This would inevitably re-
sult in important packing effects, which can be accounted for by considering
the individual curvatures of each leaflet. In this section we will introduce a new
model that explicitly takes this curvature difference into account.

Curvature and composition in the bilayer structure

Consider a membrane consisting of two parallel leaflets separated by a distance
ty, which sets the bilayer thickness. A small patch of this model membrane
is schematically represented in Fig[3.2) where subindices u and 1 stand for the
upper and lower monolayers, respectively. Each of these monolayers is charac-
terized by its area, A, and radius of curvature, [R, /| = [1/H,l|. In order to
facilitate the analysis, we consider these two quantities to be expressed as func-
tions of the bilayer midplane area, A, and curvature, H, as well as the bilayer
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thickness. In these terms, the corresponding quantities for each monolayer read:

H —H
Hu == th 7 1 = th 7 (310)
1—%H 1+ 3H
th th
Au=A(1-TH), A=A (1+]H). (3.11)

Sign differences in these expressions stand for the fact that the local normals
of apposing monolayers point in opposite directions. This means that convex
curvatures on the upper leaflet, where the shielding hydrophilic region is bent
towards the hydrophobic interior (i.e., increasing the monolayers area with re-
spect to the bilayers midplane), will be paired to concave deformations of the
lower leaflet, where the hydrophilic region is bent away from the bilayer mid-
plane (i.e., resulting in a reduced area when compared to bilayers midplane).
Furthermore, when writing these expressions, we have adopted the convention
were convex deformations are assigned negative curvatures.

Beside its geometry, each leaflet patch is characterized by its lipid composi-
tion. For simplicity, our analysis will consider only two different lipid species.
The total number of lipids on each patch will be denoted as ny = ng; + Ny2,
where the Greek index denotes the monolayer, i.e., ® = u, I, and numerical
subindices stand for the different lipid species. The local composition or order
parameter on each leaflet is defined by:

Myl —Ny2

—1< d)cx =
Nyl + N2

<1 (3.12)

Energy contributions

The model incorporates three contributions to the free energy of the bilayer: the
elastic energy, due to out-of-plane deformations of each monolayer, the free en-
ergy of mixing between lipid species and the intrinsic coupling between curva-
ture and composition degrees of freedom. In this model, a possible inter-bilayer
coupling has been omitted, because the interaction of hydrocarbon tails across
the midplane is negligible.

The elastic contribution takes the form of a Helfrich Hamiltonian for each
monolayer:

Fben Km 2 Km 2
= —A,(Hy—C —A;(H—C)7, 3.1
T — 2 u(Hu—Cy) 4+ > 1 (H—Cy) (3.13)

where C,, and Cj are the spontaneous curvatures of the upper and lower leaflets,
respectively. In this expression we have assumed that the bending rigidity, km,
is the same for both monolayers. Furthermore, we have assumed that it is a
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Figure 3.2: Schematic representation of a curved membrane patch, where the
dotted surface represents the middle plane.

constant, independent of curvature and composition. The first of these assump-
tions is relaxed in the following section, where we consider an explicit quadratic
dependence on the midplane curvature. Though the second assumption is not
further justified from a theoretical point of view, a posteriori confrontation with
the simulation results shows that, indeed, it provides an appropriate descrip-
tion of the bilayer bending resistance.

A natural way to account for the intrinsic curvature-composition coupling
is via the spontaneous curvature of the individual monolayers. According to
the geometrical picture previously described, these curvatures should be pro-
portional to the composition difference between lipid species. In this work we
will assume a simple linear dependence between these quantities:

(0}
Cun=Co+ <—m7\) busts (3.14)
Km

where A is the intrinsic curvature-composition coupling, o, is the areal density
of lipids per monolayer and C; the average spontaneous curvature between
the two lipid geometries. Later it will be shown that the peculiar form of the
term in parenthesis recovers the standard definition of the intrinsic coupling (as
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originally introduced by Leibler in Eq[3.9). Furthermore, it must be noticed that
setting ¢, £ 1 in this definition, provides a one-to-one relation between the
phenomenological coefficients in our model and the spontaneous curvatures of
the lipid species (which will be denoted as C; and C_):

_Cn—Cqy and  Co= Ci+C

A
2Nm 2 ’

(3.15)

with Nm = Om/km. A gross estimation of the intrinsic coupling can be im-
mediately drawn from this expression, since typical values for the areal den-
sity of lipids and the bending rigidity per monolayer are: oy, ~ 2.0 nm~2 and
Km = 10.0 (in units of kgT).2>7¢ It is also well-known that, irrespective of their
sign, the spontaneous curvatures of biologically relevant lipids can be as large
as |C41] ~ 0.9 nm1.70 Therefore, we should expect to measure values of the
intrinsic coupling bounded by |A| < 4.5 nm from our simulations.

Finally, the energy of mixing takes the form of a simple mixture for each
monolayer:©/8

Fmix 1+« 1+ d« 1— ¢« 1—d« X 2
kBT_;n“{ 2 1“( 2 >+ 2 1“( 2 >+4<1 ‘b“)}’
(3.16)

where « is the monolayer index, the first two terms within the square brackets
stand for the entropy of the mixture and the last one is its enthalpy. The phe-
nomenological coefficient accompanying this last term, ¥, is the so-called Flory-
Huggins parameter, which accounts for the non-ideality of the mixture, i.e., it
quantifies the free energy of interaction between different lipid species. This
parameter is not to be confused with those introduced in the parametrization
of the coarse-grained model, Eq.[2.9and Eq. While these coarse-grained
definitions accounted for the two-body interactions between beads of different
species, either within a chain or among beads in different chains, the definition
in this mean-field model, Eq[3.16} effectively accounts for all the interactions
between chains or lipids, of different species.

The joint composition description

An important feature of this expression is that, beside compositions, it explic-
itly depends on the total number of lipids per leaflet, ny. For completely planar
bilayers, the population of each leaflet should be on average the same. How-
ever, for highly-curved membranes, such as small vesicles or membranes tubes,
the population should be proportional to the area of the corresponding leaflet
and, therefore, to its curvature. To make this dependence explicit, we will set
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Ny = 0mAy, Where the weak quadratic dependence of oy, on curvature is ne-
glected. Furthermore, since it is the joint contribution of both leaflets what ulti-
mately sets the thermodynamics of the system, we rather express the free energy
of the membrane in terms of the average composition, {, and the composition
difference between monolayers, ¢. These are defined by:

—1<¢=%<1 and q):@. (3.17)

This reparametrization is shown in Fig[3.3] where the red line in the left plot
is the locus of all configurations whose average composition equals {p = 1/2
(shown in red in the right plot). Note that among all configurations compatible
with such constraint, there are only two that extremize ¢: (¢, =1, $; = 0) and
(bu=0,¢; =1), yielding ¢ = —1/2 and ¢ = 1/2, respectively. The correspond-
ing extrema for different values of \ is given by ¢sy = & (1 — [|). These will be
referred to as the saturation values of the corresponding composition-difference
subdomain.

Rewriting the free energy of mixing in terms of these new variables and
taking into account the aforementioned curvature dependence via the number

$u ¢

A

+1 +1

-1 -1

(a) Composition domain in the single- (b) Composition domain in the joint-
monolayers representation, {1, Gy} monolayers representation, {1\, ¢}.

Figure 3.3: Composition domain in the single- and joint-monolayers represen-
tations. The red line on the right is the plot of the red line on left, under the

mapping Eq.
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of lipids per monolayer, results in the following expression:

Fmix o X 22 th B B
%ﬁ@T_&+%+§@ P —¢?) + TH(S—Su—xbd),  (318)

where the last term accounts for corrections due to the curvature-induced di-
lution or enhancement of interactions which, in turn, modify the monolayers
density. In this expression, the entropic contributions from the upper and lower
leaflets have been abbreviated as:

1+ -9 1+ —¢ 1-Vv+¢ 1-v+¢

Sy = > In ( > ) + > In ( > ) , (3.19a)
C1vtd, (1404 ) 1-v-b  (1-h—¢

S = > In ( > ) + > In ( > ) : (3.19b)

Curvature expansion and the equilibrium composition
To rewrite the elastic energy in the new parametrization, first we perform an

expansion to leading-order terms in curvature, so that Eq reduces to:

Fben _ Km 2 2 Km 2 2
o = A (Cl +Cu> + SEAGH (cl Cu> FkmAH (G +Cu).  (3.20)

Then, using the definition of the spontaneous curvature of a single monolayer
and its coupling to composition, Eq we can evaluate

C1— Cu = 2nmAd, (3.21a)
C? — C2 = dnmAd (Co +MmA), (3.21b)
CF + C2 = 203+ 4Conmhb + 20207 (W2 + ¢?) (3.210)

Plugging these relations back into Eq and retaining terms that depend on
H and ¢ only, we obtain:

Foen 2 242
———— =t Hp ( CoA A 2AH AP~ 3.22
e = O (CoM A ) + 2HO +nmA (3:22)

Note that the very last term of this expression can be incorporated into the def-
inition of the bare x parameter in Eq3.18} defining the effective incompatibility
coefficient Xeff = X — 21mA>.

Putting together the contributions from the elastic energy, Eq[3.22} and the
free energy of mixing, Eq[3.18| we obtain the final expression for the free energy
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of the bilayer:

t
=81+ S0+ X (1-92 = §7) + T H (S = Su —Xeirth))

+t,Hb (COA + nm7\21|)) +2AH¢. (3.23)

L
omAKgT

Minimizing this expression with respect to ¢, to find the equilibrium compo-
sition difference, ¢eq, for a given average composition and curvature (therefore
the irrelevance of dropping constant terms as well as those that only depend on
 when deriving Eq3.22), yields the following implicit relation:

% In In

2 2
(1+ deq) 1I)]Jr’thH

u+wﬁ—¢%]:
(1—deg)*—w2| 4

(1—)* - P

1
Xettd + EXeffthHlb —tyH <C07\ + nm7\21|)> —2A\H. (3.24)

For a fixed average composition, 1, this expression relates the composition
asymmetry between leaflets to the midplane curvature, therefore quantifying
the efficiency of the lipid-sorting mechanism. The graph of this expression for
different \-level curves is shown in Fig[3.4, These curves correspond to a set
of parameters compatible with the previous estimation of the implicit coupling
and, additionally, consider a system in the vicinity of the mean-field demixing
critical point, x. = 2.

An important feature to point out from these plots is the asymptotic ap-
proach towards the corresponding saturation value, ¢si = £(1 —[\[), as the
curvature increases. This saturation emerges when the local packing of lipids
becomes highly constrained. To elucidate the development of such a frustrated
state, a simple geometrical picture, appealing to the spontaneous curvature of
the individual lipid species, may be helpful: if these individual curvatures are
incommensurable, in the sense that their corresponding radius of curvature do
not differ exactly by one bilayer thickness (lets say Ry = Rand Ry = R+ 9, with
& > ty), it will be impossible (arguing on geometrical grounds only) to assem-
bly those lipids into vesicles or cylinders whose midplane radius, R,, equals
the average radius between the two species. If it were possible, such an ideal
system would necessarily be characterized by { = 0 and ¢eq = ¢ps = 1, ie,,
a membrane with completely opposite composition on its apposing leaflets, as
shown in Fig[3.5a] Furthermore, this saturation state will be characterized by
a finite midplane curvature, C, = 1/R, = 2/(2R + ty). When these curva-
tures are incommensurate, a complete phase separation across leaflets would
inevitably result in the presence of interstices. These would induce a high ten-
sion in the membrane due to the concomitant hydrophobic density mismatch or
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Figure 3.4: Solutions to the implicit relation, Eq between the composition
difference, ¢, and curvature, H, for t;, = 6.0 nm, Cy = —0.13 nm™!, xe¢ = 1.9,
Nm = 0.2 nm~2, A = 3.0 nm and different {-level curves.

the exposure of the lipid tails to the aqueous environment, factors that will ulti-
mately compromise the bilayer integrity. To avoid these situations, some lipids
will migrate to the “wrong” leaflet to fill the interstices, therefore allowing the
formation of highly-curved structures, though at the expense of a deteriorated
saturation state, as shown in Fig[3.5b]

Viewed from the perspective of low curvatures, flat membranes can only ac-
commodate a completely symmetric composition on each monolayer, i.e.,\p =0
and ¢eq = 0. Having zero curvature, they can be thought as infinitely extended
objects, composed by an infinite number of lipids. As this flat surface starts
to bend, lipids will have to be exchanged between monolayers to prevent the
formation of interstices, therefore inducing a composition asymmetry between
leaflets. This lipid exchange does not represent a problem for small curvatures,
since there will be many places to put these insertions, resulting in the same
curvature. It is therefore reasonable to expect a linear dependence of the com-
position difference on curvature. However, as the saturation point is reached,
the space to accommodate new insertions will become scarce and the system
may prefer to perform local reorganizations within the individual monolay-
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(a) Commensurate curvatures. (b) Incommensurate curvatures.

Figure 3.5: Assembly of lipids with commensurate and incommensurate curva-
tures. The red edges represent the location of the polar head-groups for each
species.

ers, which still contribute to increasing the composition difference, though in
a less efficient manner, until the scenario described in the previous paragraph
is finally reached. Of course, curvatures beyond this scenario have no physical
meaning, at least within this simplified description where lipids are not allowed
to modify their shape to adapt to their environment. In the following this will
be denoted as the saturation curvature.

The effective curvature-composition coupling, A

Another interesting feature observed in the curves shown in Fig[3.4} is that
the speed at which the saturation regime is reached, depends on \{. Quali-
tatively this can be understood as follows: shifting the average composition
shifts the saturation value, i.e., the maximum composition asymmetry across
the leaflets. This will inevitably modify the ability of the system to accommo-
date new lipid flip-flops and, furthermore, will also shift the maximum attain-
able curvature before the appearance of interstices becomes unavoidable (i.e.,
the region where the logarithmic damping becomes important). Of course, the
geometrical picture used so far is not enough to provide a quantitative descrip-
tion, since the way the lipid insertions are constrained will further depend on
how prone are the lipid species to mix. Fortunately, such a quantitative analy-
sis can be done in an analytic way, at least for composition differences smaller
than the corresponding saturation value, because in that limit Eq3.24] reduces
to an explicit relation, deq = AegfH, where Aqf is the -dependent, effective
curvature-composition coupling;:

30 (£55) +9 (nmh® — bxerr) +A (& +Co)

Netf = 5
Xeff — 142

(3.25)
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The first term in the numerator is nothing but the contribution from the pre-
viously described geometrical picture. Note that for systems with almost equal
compositions for both lipid species, i.e., P ~ 0, this contribution is small, mean-
ing that the saturation composition difference is to be reached at high curva-
tures. Furthermore, in the small-\p regime, it scales linearly, reflecting the large
capability of the system to accommodate new flip-flops. On the contrary, when
the system favors the presence of a single species, this contribution diverges
logarithmically, showing that the saturation will be reached at low curvatures,
i.e., almost flat configurations. Thus, this contribution is in complete agreement
with the previous (qualitative) discussion.

The second term is a correction to the entropic sorting that beside account-
ing for the elastic properties of the system (the bending rigidity, km = om/Mm
and via the intrinsic curvature-composition coupling, A), also incorporates the
propensity of the two species to mix. In general, a high segregation would
strongly reduce the ability of the monolayers to accommodate new insertions,
therefore shifting the saturation regime towards smaller curvatures than the
ones attained in the low incompatibility counterpart, i.e., we would expect the
presence of large effective couplings for strong segregation conditions.

The last term in the numerator is a constant that quantifies the saturation
curvature, though apart from the purely geometrical argument previously dis-
cussed, it is re-scaled by the intrinsic coupling, which could account for devia-
tions from the ideal case, due to the incommensurability of the two species.

Finally, the denominator of this expression turns out to be the inverse sus-
ceptibility of composition fluctuations. This quantity vanishes as the system
approaches the mean-field critical point, X. = 2, therefore enhancing the effec-
tive curvature-composition coupling.

The effective curvature-composition coupling, as a function of the average
composition, is shown in Figl3.6, It is plotted for different incompatibilities
and with the same set of parameters than those used in Fig[3.4, These plots
exhibit the enormous curvature modulation for systems in the close vicinity of
the demixing critical point. Another interesting aspect is the lack of symme-
try with respect to the 1p and A axes. The former, is a direct consequences of
the constant term in the numerator of Eq[3.25] It reflects the natural tendency
of the system to favor the proper sorting of lipids, based exclusively on their
geometry. On the contrary, the fact that A.¢ becomes positive for certain com-
positions (p < —0.3 in this case, given the sign conventions for curvature and
composition) indicates that the system may prefer to accommodate lipids in
such a way that the composition of apposing leaflets is contrary to what would
be expected from the purely geometrical picture. However, as we have already
seen, even within the geometrical picture, the migration of lipids into curvature-
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Figure 3.6: Effective coupling, A.¢, between composition difference and curva-
ture, as a function of average compositions, \, for different incompatibilities,
Xeff- The rest of parameters for these curves are t, = 6.0 nm, Cy = —0.13 nm~},
Nm = 0.2 nm 2, A = 3.0 nm.

unfavorable regions may be possible. Therefore, it should be expected (or per-
haps not very surprising) that the inclusion of additional interactions, further
enhances this phenomenon, at least within a low-curvature regime.

3.3 Curvature-dependent bending rigidity

In the previous section we introduced a phenomenological model to study the
interplay between curvature and composition in lipid bilayers. The novelty
of this model is that it explicitly takes into account the difference of curvature
between the two leaflets of the membrane. However, in this model the bend-
ing rigidity of these monolayers is a constant, independent of curvature. This
assumption seems to be reasonable for systems in the presence of small defor-
mations, such as those typically induced by thermal fluctuations or for closed
bilayer structures, such as vesicles or membrane tubes, whose radius of curva-
ture is considerably larger than the bilayer thickness, t,. However, as curva-
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tures become comparable to t, 1, the presence of packing effects may ultimately
invalidate this assumption.”” In this section, we further extend our model to
incorporate the high-curvature contributions to the bending rigidity. However,
to facilitate the analysis, we will still assume that this dependence arises from
the curvature of the bilayer midplane. Therefore, the bending modulus of both
monolayers remains the same. Explicitly, we will consider:

Ku = K| = Knn (1 n %H2> : (3.26)

Plugging this expression into the definition of the elastic energy of the bilayer,

Eq we obtain:

Fp K o 2
= Ay Hu— |C —A

kBT > u { u 0o+ Ky (bu

2
+ 8 {Hl - {co + <G—m>\> q)l] } . (3.27)
2 K1

Using the relations for the area and curvature of each monolayer, in terms of the
corresponding quantities for the bilayer midplane, Egs. and expand-
ing up to second-order terms in H and retaining terms that include composition-
dependent prefactor only, we get the following contribution for the elastic en-
ergy of the membrane:

F
ben _ _ ¢ Hgp <C0?\ +nm>\21p) + 2AH G + mAZd?

1 K1T1m7\2 2,212
— = ttH-. 3.28

The only difference between this expression and the corresponding linear
expansion, Eq3.22) is the very last term, which vanishes for k; = 0. With
these H2-corrections, the implicit relation between the composition difference
and curvature reads:

1

(1 +¢eq)2 _ll)zl N thH (1 +11’)2 _(b%q]
(1-deg)’—w2] 4 [1-9) -l

1
XeftP + EXeffthHll) —tyH <C07\ + nmA21b> —2A\H

}\2
+ <K1212“ ) Peqt2H2. (3.29)
h
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Unfortunately, this expression does not become explicit (in general) in the
far from saturation limit. Different k{-level curves of this function are shown in
Fig[3.7] These plots stand for a system with a symmetric composition of lipids,
P = 0, and high incompatibility, X.¢s = 1.9, conditions under which the largest
effect is expected. The chosen values of k; (measured in units of kgTr2) have
intentionally been exaggerated, with respect to those reported in the literature
(typical values are below 2.0 kg T nm?),°Y with the intention to exhibit the small
effect of these H? contributions, therefore justifying the use if the simpler linear
expansion for the analysis of our simulations.
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Figure 3.7: H? corrections to the implicit relation between composition differ-
ence and curvature, Eq forp =0,t, = 6.0nm, Cg = —0.13nm !, xo = 1.9,
Nm = 0.2 nm™2, A = 3.0 nm and different «;-level curves.

A final remark for the role of these contributions is that, when the membrane
becomes less rigid, i.e., k1 < 0, saturation is reached faster. This is in complete
agreement with the geometrical picture, because an easy-bending leaflet will
have an increased capability to accommodate new insertions, thus further pro-
moting the lipid sorting.
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Chapter 4

Interplay between curvature and
composition in lipid bilayers

In the previous chapter we introduced a phenomenological model that describes
the thermodynamics of mixing in bilayer membranes composed of lipids with
different spontaneous curvatures. The novelty of this model is that it transfers
the bilayer structure of the membrane not only to the composition or density
tield, but also to the local curvature. We pointed out that this consideration cap-
tures important saturation effects that emerge when local shape modulations
are comparable to the bilayer thickness. In this chapter, we perform molecu-
lar dynamics simulations of lipid bilayers with different geometries (curvature
regimes) to validate the predictions of the aforementioned mean-field model.
These simulations are carried out within the implicit-solvent, coarse-grained
model introduced in Chapter 2.

In the first section, we provide an overview of previous works that helped
us to parametrize the two lipid species used in the simulations. There, we also
present the measurements of certain mechanical properties of one-component
bilayers and provide a first insight on the intrinsic curvature of the lipid species.
In the second section, we continue the study of the elastic and thermodynam-
ical properties of pure and mixed bilayers and, based on those studies, we de-
termine most of the coefficients in our mean-field model. The third section con-
cerns itself with the study of the correlation between the local curvature and
the composition asymmetry across the bilayer, in planar membranes far from
saturation. Under these conditions, it is verified that ¢eq and H are linearly
related, via the effective curvature-composition coupling. Finally, in the fourth
section, we investigate the lateral sorting of lipids in systems where the far-
from-saturation conditions are not met. For those cases, it is verified that the
implicit relation between curvature and composition, Eq3.24, duly accounts
for saturation stemming from packing effects.
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4.1 Simulation setup

The coarse-grained model introduced in the Chapter 2 has proved to reproduce
the rich phase diagram of biologically relevant lipids. In a previous work, Hom-
berg and Miiller®®%2 have carried out a systematic study of the parameter space
and lipid architectures leading to the self-assembly of different morphologies.
These morphologies include: i) micelles, characterized by the presence of a sin-
gle head-group interface, which encapsulates the hydrophobic interior. These
micelles are usually composed of convex, single-tailed lipids, where the vol-
ume fraction of the polar head-group is larger than that of the hydrophobic
tail. Depending on the curvature of the individual lipid species, micelles can
self-assemble into spherical, cylindrical or wormlike geometries. ii) Inverted
morphologies, also characterized by a single interface. In contrast to micelles,
the head-group interface of these inverted structures is bent in the direction of
the outer normal (concave deformations). These morphologies are observed for
lipids whose tail volume-fraction is considerably larger than that of their head-
group. Finally, the model also exhibits the self-assemble of iii) bilayer structures,
where the hydrophobic tails of two apposing monolayers come into close con-
tact, leaving the polar head-groups facing the “vacuum solvent”, preventing
the exposure of the hydrophobic interior. These morphologies are preferably
observed for “cylindrical” lipids, where the difference in volume-fraction be-

Table 4.1: Self-assembled morphologies obtained from a random initial config-
uration. The column headers on the right denote the molecular asymmetry,
e.g., 10/6 means Nao = 10 and Ng = 6. The morphologies are abbreviated:
s=spherical micelles, c=cylindrical micelles, w=wormlike micelles, b=bilayers,
i=inverted structures, i.e., bilayers with hydrophilic inclusions.

Pcoex KN xN ky | 10/6 11/5 12/4 13/3 14/2 15/1
15 100 40 O C b b i i i
15 100 40 5 S b b b i i
15 100 60 O S b b b i i
15 100 60 5 S b b i i i
18 80 20 5 S w w
18 80 30 5 S C W
18 80 40 5 S C w
20 100 20 5 S C b b
20 100 30 5 S C b i
20 100 40 5 S S C b
20 100 50 5 S S W b
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tween the hydrophobic and hydrophilic blocks is not as large as that of micelles
or inverted structures. A comprehensive list of the different parameters, chain
architectures and the resulting morphologies, studied by Homberg et al., is pro-

vided in Tab/4.1l

It is worth mentioning that beside the self-assembly of the different mor-
phologies reported in Tab/4.1} a more detailed study of the parameter space
has shown that the model is also able to reproduce the full phase diagram of
bilayer structures. Specifically, the fluid (L), gel (Lg), interdigitated gel (Lg;)
and gel-tilted (Lg/) phases have been observed. Non-surprisingly, the strength
of the bond-angle bending potential, ky, and the inverse compressibility, kN,
have a large influence on the emergence of the gel phases. If k;, = 0, chains
will become completely flexible and their conformations will resemble those
of a self-repelling random walk, where shape fluctuations are comparable to
the lipid extension, Reo. Conversely, if ky, is large, the orientation of successive
beads will be highly correlated. This alignment, together with the presence of
the polar head-group interfaces, will induce an smectic liquid-crystal ordering
of the lipids in the two monolayers.

Starting from a liquid bilayer (which in any case should exhibit certain de-
gree of orientational correlation), a similar transition towards the gel phase can
be achieved by increasing the inverse compressibility. In that case, the individ-
ual beads will become more rigid and will need to rearrange in order to avoid
overlaps with neighboring beads. Relocations along the bilayer plane, however,
will be avoided due to the concomitant exposure of the hydrophobic interior.
Therefore, beads will shift along the membrane normal, effectively enhancing
the orientational correlation along the chain and eventually crossing the border
between the fluid and the gel phases.

Based on these studies, we have selected the pair of lipid architectures and
set of parameters shown in Tab/4.2} to study the interplay between curvature
and lipid composition, described by our phenomenological expression for the
effective curvature-composition coupling, Agg. According to the results of Hom-
berg et al., the first of these lipids (which from now on will be referred to as B-
type or short head-group species) should self-assemble into fluid bilayers and
the second architecture (which we will denote as C-type or large head-group
species), should lie in the border between micelles and bilayers. Starting from
a completely random distribution of lipids within the simulation box, we have
verified that both species self-assemble into flat bilayer structures, as shown in
the snapshots in Fig.
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Table 4.2: Set of parameters used in this work for the study of the curvature-
composition coupling, Aeg.

Head-type Tail-type Npead Nutit ks lo Kb Peoex KN xiN
B A 4 12 19 0 5 18 100 30
C A 5 11 19 0 5 18 100 30

(a) Short head-group lipid (b) Large head-group lipid

Figure 4.1: Self-assembly of B- and C-type lipids (with short and large head-
groups, respectively) into planar bilayers.

4.1.1 Area per lipid

An important assumption made when deriving the mean-field theory for the
effective curvature-composition coupling, Eq[3.23| was the independence of the
areal density on curvature and composition. The main contribution to the com-
position dependence is due to the difference in area per lipid between the two
species, 1?9 although higher-order contributions may arise, due to interactions
between unlike species. To determine the area per lipid, we have performed
simulations of pure component systems in the NP;T ensemble at zero tension.
From these simulations, the area per lipid was obtained after averaging the area
fluctuations of the simulation box and dividing by the total number of lipids on
each monolayer (in this case, we simulated a total of 4680 lipids, i.e., 2340 lipids
per leaflet on average). We have found that the area per lipid of the two chain
architectures differs in less than 1%, being the average value of the two mea-
surements (a) = 0.565 + 0.00312. At first, this seems a contra-intuitive result,
since one would expect that the species with the larger head-group span over
a broader area. However, since the total number of beads per chain, N, is kept
fixed, the bulky tail would be effectively reduced as the length of the head-
group increases. It is the combined effect of these two, opposite behaviors that
leaves the area of these N-fixed chain architectures unchanged. However, equal
areas per lipid does not imply equal curvatures. The total volume dictates the
area per lipid, but it is the difference in volume fractions between the head-
group and tail blocks that determines the geometry of the corresponding lipid
architecture.!? A first indicator of the geometry changes induced when modify-
ing the relative length of the two blocks, might be grasped by considering the
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stress distribution across the bilayer.

4.1.2 Area compressibility

Simulations in the NP;T ensemble were also useful to evaluate the compress-
ibility modulus of the bilayer, k5, which quantifies the resistance of the system
to sustain area deformations and is defined by
oy
KA = A—, 4.1

A=A (4.1)
where 7 is the surface tension of the system. In the limit of small deformations
with respect to the equilibrium area at zero tension, Ay, this expression may be

approximated as
A—Ayp
= . 4.2
Y = Ka ( Aq ) (4.2)
Therefore, the leading-order term of the tensile deformations contribution to the
free energy of the bilayer will be quadratic,

KA 2
ZA() ( 0) ( )

Within this approximation, the distribution of areas in the NP;T ensemble
will be Gaussian,

_ K
P(A) = e FAI/KBT o exp | — 5 AOiBT (A —Ag)?|, (4.4)

with mean value equal to (A) = Ay and a variance inversely proportional to the
compressibility modulus, G%\ = ApkpT/ka. This yields the well-known relation
between the susceptibility of area fluctuations and the compressibility,

(A)

ke SR

(4.5)

Using this expression, we have found the compressibility of the short and
large head-group lipids to be ko = 31.97 and ko = 33.70, respectively. From
these, it is possible to obtain a first (although crude) estimation of the corre-

sponding bending rigidities, since k and ka are related via the following equa-
tion T3040

1
K= EKAtﬁ. (4.6)

Anticipating that our measurements of the bilayer thickness are composition
independent and yield t}, = 61, the estimated values of the bending rigidities,
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obtained from this expression for the short and large head-group lipid species
are k ~ 23.98 and «k ~ 25.28. Later, we will see that although slightly overesti-
mating, these values agree with the results obtained from the spectra of shape
fluctuation.

4.1.3 Lateral pressure profile

The lateral pressure profile along the bilayer normal (2 in this case) is defined as
the difference between the normal, PNy = P;,, and the lateral, Py, = (Pxx + Pyy)/2,
components of the pressure tensor, P,

F(Z) = PL(Z) — PN(Z). (4.7)

The integral of I'(z) along the normal direction yields the surface tension of the
system

t,/2

Y= J dzl'(z), (4.8)
—tn/2

and its first and second integral momenta are related to the product of the bend-

ing rigidity and the spontaneous curvature of a single monolayer, ky, Cp, and its

splay modulus, km, respectively. 4!

The condition of local mechanical equilibrium, V - P = 0, for a planar mem-
brane in the fluid state results in a diagonal tensor with the normal component
equal to the bulk pressure of the system. Therefore, in this work, I'(z) reduces
to the negative of lateral pressure, since PNy = 0 for our solvent free model.

To evaluate the pressure profile from simulated data, we discretized the sim-
ulation box along the perpendicular direction to the membrane plane, into small
slabs of thickness Az and volume AV. Then, taking advantage of the pairwise
discretization of the forces in our model, Eqs[2.15, we computed the contribu-
tion to the pressure at each slab, from the following expression for the local
virial 2223

1
Pioc(z) = Z MiVi ® Vi — o Z Fy @ 13f(z, zi, zj), (4.9)

ieslab i<j

where m, r and F are, respectively, the particle mass, velocities and forces. No-
tice that the second sum in this expression is weighted by the function f, which
sets the amount of virial to be added to the current slab. Following Lindhal
and Edholm,?? these weights were assigned as follows: if both particles i and
j belong to the current slab, f = 1. If both particles are outside the slab but it
is intersected by the line passing their centers, then f = Az/|z; — z|, and set
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50 — B-type lipid
' —  C-type lipid
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0 1 2 3 4 5 6 7

z/7e

Figure 4.2: Pressure profile for the short (blue) and large (red) head-group
species.

to zero otherwise. Finally, if one of the particles lies inside the box, we set
f = Az/2|z; — zl.

In Fig[4.2|we present the pressure profiles obtained from our tensionless sim-
ulations for the short (blue) and large (red) head-group species. However, since
for an homogeneous and flat membrane the profile is symmetric with respect
to the bilayer midplane, only the half corresponding to the upper monolayer is
shown. The pronounced pressure drop at z ~ 2 occurs exactly at the interface
between the tail and head-group blocks. The resulting negative pressure (con-
tractile force) is the response of the system trying to minimize the surface area
of that interface.’*!' Meanwhile, within the bulk, although still in the vicinity of
the interface, excluded volume interactions will come into play to counteract
the effect of bringing the particles into close contact. Since the equation of state
for the head-group beads has been set to good solvent conditions, this restoring
effect will be enhanced within the hydrophilic region, hence the prominence of
the peak at z ~ 3.

In accordance with this steric argument, the presence of a peak at z = 0 will
imply an increased density at the tail-tail interface. However, as we will see
in a later section, the pressure profile is homogeneous all over the hydropho-
bic interior. Therefore, it is not feasible that the excluded volume interactions
are responsible for this phenomenon. A more reasonable explanation associates
this peak with the increased configurational entropy of the chain-ends, which
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are less constrained to bonds with neighboring beads.™*! This reasoning, how-
ever, is still under debate and a more exhaustive analysis is in turn to extract
a final conclusion. Furthermore, when compared to the pressure profiles from
atomistic or systematically coarse-grained simulations, 1222142 our profiles lack
a dip in the hydrophobic peak as z — 0. This can be attributed to the absence of
a similar dip in the density profile at the tail-tail interface.

Over the last decade, the pressure profile and its integral momenta have
been extensively investigated by theoretical descriptions and computer simu-
lations. One of the main reasons for that was to provide a way of quantifying
the curvature of different lipid species. However, a drawback of this approach
is that, up to now, the experimental determination of the pressure profile is
not possible. Therefore the need of new strategies to evaluate the curvature
of individual lipid species and, furthermore, that this techniques provide a di-
rect method to compare measurements from computer simulations and experi-
ments.

4.2 Non-free parameters for the phenomenological
model

The phenomenological expression for the free energy of mixing of the bilayer,
Eq[3.23] depends on several macroscopic parameters, namely: the bilayer thick-
ness, ty, the areal density of lipids, om, and the bending rigidity, Ky, per mono-
layer, the effective incompatibility or Flory-Huggins coefficient between unlike
species, Xeff, the intrinsic curvature-composition coupling, A, and the average
spontaneous curvature between the two lipid species, Cy. As we have already
seen in our study of area fluctuations in single component membranes (from
where we obtained oy,), most of these parameters can be determined as inde-
pendent measurements of different properties of the pure or mixed systems.
Therefore, a complete interpretation of the results of our computer simulations,
only requires the fitting of two of those parameters: A and Cy. The aim of this
section is to describe how the rest of the parameters were determined.

4.2.1 Susceptibility of composition fluctuations

In this work, we study the interplay between the local curvature, H, and the
composition difference between the two monolayers, ¢eq, of the membrane.
As seen when introducing the mean-field model, the difference in composition
across the bilayer will be highly constrained by the overall composition of the
system, . Therefore, this study will require simulations at different 1 values.
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Figure 4.3: Average composition, 1, as a function of the imposed difference in
chemical potential between lipid species, Ay, for low and high Incompatibility
between unlike head-group beads, X N.

This can be achieved by several methods. One of them is setting the compo-
sition in both monolayers (beforehand) and then simulating the system in the
canonical ensemble. A drawback of this scheme is that composition fluctuations
are completely neglected. A second method allows the insertion and deletion of
both lipids species, i.e., grand-canonical simulations. This approach has the ad-
ditional advantage of incorporating fluctuations of both composition and total
number of particles. Another option is to carry out the simulations in the semi-
grand canonical ensemble, which allows the mutation of one lipid species into
the other, but the total number of particles in the system remains fixed. Here, the
mutation rate is controlled by an imposed difference in chemical potential be-
tween species, Ap. Due to its easy implementation and high acceptance rate, we
have adopted this last approach in our simulation studies. In addition to this,
we have previously mentioned that the lateral sorting of lipids will be strongly
influenced by X In order to account for this effect, our simulations consider
two regimes for the incompatibility between unlike head-group beads. These
two regimes will be denoted as low and high incompatibility cases, and their
corresponding incompatibilities will be given by xp,pN = 1.0 and x,n, N = 1.7.
The first task of our analysis for mixed systems, was to characterize the av-
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erage composition between the two membrane leaflets as a function of the im-
posed difference in chemical potential. This characterization is shown in Fig[4.3|
There we can observe that, for low incompatibility, 1 can be well described as
a linear function of Ap. In contrast, for high incompatibility, the transition be-
tween the two single-component regimes occurs in a narrow interval around
Ap ~ —4.2. This sharp transition denotes the proximity of the demixing critical
point (characterized by X.s = 2 within the mean-field description Eq[3.13). Of
course, our study will only make sense if the simulations for high incompatibil-
ity are within the mixed phase in the phase diagram. To verify this condition,
Ap was quasi-statically increased from its lowest value until we reached the
upper rightmost, red point in Fig From there, we followed the curve in the
backward direction. While doing so, we didn’t observed the appearance of any
hysteretic behavior, that would be the signature of a first order phase transition.
Furthermore, the probability distribution function of 1 for all the simulations
in the referred interval were unimodal, though the particular distribution for
Ap = —4.165 exhibited small deviations from a Gaussian. This anticipates that,
indeed, X.ff is quite close to the mean-field critical value, x. = 2, but still smaller.

The chemical potential for the average composition of the mean-field model
is given by the derivative of the bilayer free energy, Eq[3.23} with respect to
. This provides a direct method to evaluate x.¢ from the slope of the curves
shown in Fig{4.3] since

op 17t 1 O%F 2
_ b — 2 4.1
[aAu] SmAKET ( o ) Xeff + T2 (4.10)

Furthermore, the left hand side of this expression is nothing but the zero wave-
vector limit of the inverse susceptibility of composition fluctuations,

oy
;s

] = Sp = lim S(q). (4.11)
q—0

Within the random phase approximation and in the limit of small wave vec-

tors, the structure factor can be approximated as®?14314>
S0
S(q) = 1+ g7 (4.12)

where £ is a constant related to the correlation length of concentration fluctu-
ations. Therefore, measuring the fluctuation spectra of 1\ and extrapolating it
towards q — 0, provides an alternative method for the evaluation of ..

In Figld.4we present the measurements for the susceptibility of composition
fluctuations as evaluated from the slope of the data in Fig/4.3| (black dots) and
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Figure 4.4: Susceptibility of composition fluctuations as evaluated from the
slope of the 1 vs Ap curve (black) and from zero wave-vector extrapolation of
S(q) (red). The plot on the left (linear scale) shows the result from simulations
with high incompatibility and the corresponding results for low incompatibility
are shown on the right (logarithmic scale).

from the zero wave-vector extrapolation for the structure factor of composition
fluctuations (red dots). First, we point out the good agreement between the two
methods, although, in general, susceptibilities evaluated from the slope of the
chemical potential are higher than those from the fluctuation spectra. Also, no-
tice that for low incompatibility (right panel), the close proximity of data sam-
ples around Ap ~ —4.165 is prone to induce statistical errors in both methods
(perhaps, this is seen more clearly from the black dots in Figl4.3). However, ap-
pealing to linear response theory, Sy was set as the slope of the linear regression
for the 1 vs Au data set.

On the other hand, for high incompatibility (left panel in Fig[4.4), we observe
the expected enhancement of Sy as the system approaches the critical composi-
tion, P = 0 (i.e., Au ~ —4.165). In accordance with equation Eq/4.10} this results
in an asymptotic approach of x.¢ towards the mean-field critical value, x. = 2,
but always from below.

The incompatibilities resulting from this analysis are X = 1.5+ 0.3 and
Xeff = 197+ 0.1,

67



CHAPTER 4. INTERPLAY BETWEEN CURVATURE AND COMPOSITION
IN LIPID BILAYERS

4.2.2 Density profile

The next step in our analysis is to characterize the dependence of the bilayer
thickness, ty,, on the leaflet composition. Similar to the discussion on the area
per lipid, if the thickness difference between the two pure-component bilayers
is small, we would expect a linear dependence on 1, interpolating between the
two composition extremes. However, if this condition is not met, the concomi-
tant hydrophobic mismatch may result in higher-order contributions, modify-
ing not only the mechanical properties of the bilayer, but also the lateral segre-
gation of lipids.

An immediate question that arises when performing this analysis, is the
definition of the bilayer thickness itself. Of course, there is not a unique way
to define t; and a zoo of possible choices can be found in literature. A wide
subset of definitions are based on the profile of mass distribution along the bi-
layer normal (the other large subset relies on the distribution of electrical charge
across the bilayer).14¢ Among these, popular options include i) the peak-to-peak
distance between the head-group distributions in apposing monolayers, ii) the
peak-to-peak distance between backbones, i.e., the distance between the two
hydrophobic-hydrophilic interfaces characterized by the aforementioned drop
in the pressure profile (Figl4.2) and iii) the full width at half maximum (FWHM)
of the total hydrophobic contribution to the density profile. This last definition
is commonly used in cases where the functionality of inclusions (such as inte-
gral membrane proteins) is strongly affected by hydrophobic mismatches.!4” In
this work, we adopted the first definition. The justification for this election is
provided in the following paragraphs.

In Figld.5 we present the density profiles for systems with different compo-
sition and segregation conditions. From top to bottom, the first two plots cor-
respond to pure, short and large head-group bilayers. Conversely, the last two
plots stand for membranes with a vanishing average composition, i.e., P ~ 0,
and for low and high incompatibility. In all the panels, distributions from the
lower /upper monolayers (z < 0 / z > 0) are traced with solid/broken lines.
The individual contributions from hydrophilic beads in the short and large
head-group lipids are colored in blue and red, respectively. The sum of these
two hydrophilic contributions is shown in turquoise. From now on, we refer
to this distribution as the total head-group distribution for the corresponding
Ap and xppN. Analogously, the contribution of the two lipid species to the hy-
drophobic profile of the individual monolayers is drawn in green and the total
hydrophobic profile between the two leaflets is shown in gold.

Black solid line spanning trough all the panels, is located at the maximum
of the total head-group distribution for Ap = —2.0 and x,nN = 1.0 (of the
lower leaflet). Black broken lines in the lower panels indicate the location of
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Figure 4.5: Density profile for different compositions and incompatibilities.
From top to bottom (i.e., increasing label at the left of each panel), the first two
plots correspond to pure B- and C-type bilayers. The last two plots correspond
to systems with 1 ~ 0 and for low incompatibility and high incompatibility,
respectively.
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the same maximum for each panel. In a similar manner, vertical, red, solid
line is the locus of the left edge for the FWHM of the total hydrophobic profile,
for Ap = —2.0 and xy,nN = 1.0. Red broken lines in the other panels are the
corresponding left boundaries for the given values of Ap and xu,N.

Let us begin by comparing the hydrophobic profiles of different systems.
First, recall that tails in the B-type lipids (those whose pure bilayers are shown
in the first panel), are one bead larger than tails in the C-type lipids. Also, the
hydrophobic equation of state of both species was parametrized for the same
compressibility and coexistence density, Eqs[2.6|and These two facts would
immediately account for the same height of the total hydrophobic plateau in the
two, pure component systems (gold). They will also account for the shrinking
of the FWHM in pure C-type and mixed bilayers. On the other hand, the small
deviation between the low and high incompatibility cases may be attributed to
the softness of the model and the degree of segregation in the system: in well
mixed bilayers, the presence of unlike neighbors will induce stretching or com-
pression of the tails (depending on its length) to avoid an hydrophobic density
mismatch. However, the net cost of this homogenization would be a shift of the
overall hydrophobic density, in comparison to that of pure component bilay-
ers. Of course, the preference of one kind of deformation over the other would
result from the subtle balance between the chain stiffness and the compress-
ibility of the hydrophobic interior. In the mixed belayer, there is an additional
repulsion in the head-group region. This leads to a slightly larger area per head
group and, at fixed tail density, to a thinning of the bilayer. This is in agreement
with the results shown in panels 3 and 4, which indicate that, indeed, com-
pressions are preferred over elongations, as it is reflected by the slight increase
of the hydrophobic plateau level. As segregation increases and, in particular,
when the system is driven towards the vicinity of the demixing critical point
(as is the case for Ap = —4.165 and x,, N = 1.7), composition inhomogeneities
show up all over the membrane. At the interior of these inhomogeneities, lipid
stretching will resemble that of pure component systems and only the lipids at
the domain edge will experience an environment similar to that of well-mixed
bilayers. Therefore, it is expected that these highly-segregated systems exhibit
hydrophobic profiles in between those for pure component and well-mixed bi-
layers.

A final remark on the hydrophobic profiles is, as already mentioned, the
lack of a dip at the interface between the two monolayers. This dip has been
observed in simulations with atomistic and systematically coarse-grained mod-
els! 4142 and its origin has been attributed to excluded volume interactions,
which effectively prevent the interdigitation of the apposing monolayers. Our
lipid parametrization, however, seems to make the lipid ends too loose, there-
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fore missing the development of this dip.

Now we turn to the description of the head-group distributions. Given the
fact that C-type head-groups are one bead larger than the B-type ones (as re-
flected by the higher peak value in the 2nd panel), a simple geometrical argu-
ment would predict a ~ 4% shorter peak-to-peak distance in the former case. If
that were the case, such difference would be as large as the one shown in panel
4. However, a concentration increase, together with good solvent conditions,
will enhance the swelling of the largest head-group species, hence resulting
in a bigger peak-to-peak distance than the one expected from the geometrical
argument. In contrast, head-groups swelling in mixed system will be highly
influenced by the balance between beads solubility, favoring the dilution into
the vacuum-solvent, and the incompatibility between unlike species, promoting
the formation of clusters. The outcome of our simulations with mixed systems
(panels 3 and 4) shows that large head-groups will prefer to remain elongated,
whereas the short ones will slightly contract, in order to maximize the contact
with alike beads. This effect can be clearly seen by noticing that the maximum
of the large head-group distributions (in red) is farther away from the bilayer
midplane than the corresponding maximum for the short head-group (blue).
This situation is contrary to what would be expected from the geometrical ar-
gument. The net result of this elongation of large head-groups and contraction
of short ones, will be a total head-group distribution (shown in turquoise) closer
to the bilayer midplane than in pure component systems. For most of our sim-
ulations, however, this effect is smaller than what is expected from geometri-
cal arguments. Therefore, in later analysis of the interplay between curvature
and composition, we have set the bilayer thickness as the average of all the
hydrophilic peak-to-peak distances, namely, t, = 6.0517.. Furthermore, since
typical thickness values for biological, fluid membranes are in the range of 5 —7
nm, we have identified the length unit of our simulations as r. ~ 1 nm.

4.2.3 Power spectra of height fluctuations

As it was shown in our discussion of the elastic membrane models in Sec[3.1.1]
Eq[3.8] bilayer bending rigidity can be evaluated from the small wave-vector
limit of the power spectra of height fluctuations, {|hq*). To evaluate the fluctua-
tion spectra from our simulations, every membrane configuration was mapped
into a two-dimensional grid of 16 x 16 parallelepipeds, each spanning the entire
simulation box along the membrane normal. Then, the local membrane height,
hij, was calculated as the center of mass, along the axial direction, of all the
beads within the current parallelepiped. The fluctuation spectra was obtained
from the two-dimensional, discrete Fourier transform of the local height, hq,
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and the evaluation of Ihqlz.

’ kgT
(Ingl?) = o oy (4.13)

In Figld.6) we present the power spectra for different incompatibilities and
chemical potentials. From the results shown in the left panel, we conclude that,
for well-mixed systems (i.e., at low incompatibility), membrane elastic proper-
ties are independent of composition. This result is consistent with the previous
analysis on the area per lipid and the bilayer thickness, where we found that
the overall length and cross-sectional area of both lipid species are practically
the same. Having these two quantities a large influence on the rigidity of the
bilayer, 125l the independence on composition is not surprising. In contrast,
for high incompatibility, one would expect that the tendency to form domains
of lipids with the same spontaneous curvature, will have a noticeable influence
on membrane shape fluctuations. However, results from the simulations with
high segregation (shown in the right panel) do not exhibit systematic differences
neither between systems with different compositions nor when compared to the
low incompatibility case. In the end, bending rigidities obtained after averaging
over different compositions resulted in k = 20.48 & 0.5, for low incompatibility,
and k = 21.98 £ 2.7, for high incompatibility. Since these results are identical
within the error bar, the final bilayer bending rigidity is set as their average,
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Figure 4.6: Spectra of height fluctuations for different chemical potentials. Re-
sults for low /high incompatibilities are shown in the left/right panel.
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K=212+27.

Finally, we want to point out that results obtained from this analysis are
in good agreement (although slightly smaller) with the rough estimation from
the susceptibility of area fluctuations, Eq/4.6] for the pure component systems.
More importantly, these values are well within the reported values for biologi-
cally relevant, membrane-forming lipids. 1521153

4.24 Summary

In this section, we have provided a detailed description of the methods used to
independently determine most of the parameters in the mean-field model for
the free energy of mixing of bilayers composed of lipids with different sponta-
neous curvatures in Eq[3.23] We have seen that, for the particular parametriza-
tion of the coarse-grained model used in this work, changing the relative length
of the head-group block by one bead, while keeping the total number of beads
per chain fixed, results in lipid species whose overall length and cross-sectional
area are very similar. An immediate consequence of this is that, under well-
mixing conditions, the elastic properties of both pure and mixed bilayers will
be similar too. However, as we pointed out when analyzing the pressure profile
of pure bilayers, the similarity of overall lateral extensions does not imply that
both lipid species should have the same intrinsic curvature. We have envisioned
that this curvature difference would influence the elastic properties of mixed bi-
layers under strong segregation conditions. Nevertheless, the power spectra of
shape fluctuations, do not exhibit any systematic dependence on composition.
This apparent contradiction, however, can be rationalized in terms of the model
refinement introduced in Sec[3.3] There, we illustrated how the corrections due
to a curvature-dependent bending rigidity, would not have a significant effect
on the lipid sorting of planar membranes undergoing thermally-induced shape
fluctuations (region tyH ~ 0in Fig[3.7). Since such curvature dependence can be
translated into a composition-dependence, via the curvature-composition cou-
pling, the previous reasoning can be used to explain why composition depen-
dent contributions to the bending rigidity are negligible when compared to the
bare contribution, at least within the range of curvatures accessible to undulat-
ing planar bilayers.

The final values of the parameters to be used in our analysis of the curvature-
composition coupling are enlisted in Tab/4.3]
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Table 4.3: Summary of bilayer properties used in the curvature-composition
coupling analysis.

Quantity Symbol Unit Value
Bilayer thickness th nm 6.0
Average area per lipid (a) nm?  0.56

Incompatibility for high segregation ~ xe kT 1.97
Incompatibility for low segregation Xeff kgT 1.50
Bilayer bending rigidity K kgT 21.2

4.3 Effective curvature-composition coupling

Once the incompatibility between lipid species, as well as the thickness, areal
density and bending rigidity of the bilayer have been identified, there are only
two parameters left (A and Cp), to completely characterize the thermodynamic
state of the membrane, according to the mean-field model, Eq[3.23| When study-
ing the properties of this model, we found that, under specific segregation
conditions, the difference in composition between the two leaflets, ¢, is lin-
early related to the local curvature of the bilayer midplane, H, via the effective
curvature-composition coupling, A,

¢ = AegrH. (4.14)

As discussed, beside depending on the elastic and geometrical properties of
the membrane (the latter ones including A and Cy), the effective coupling also
depends on the average composition between the two leaflets. Furthermore,
we argued that the specific segregation conditions where this linear relation-
ship holds, are usually met within the range of curvatures accessible to planar
membranes in the presence of thermally-induced shape fluctuations. Therefore,
measuring ¢ and H in our simulations with planar bilayers, and afterwards fit-
ting the mean-field expression for the effective coupling, Eq[3.25, provides a
simple way to determine the intrinsic curvature-composition coupling, A, and
Co, parameters directly related to the spontaneous curvature of the individual

lipid species via Eq

4.3.1 Joint probability distribution for ¢ and H

Following a mapping procedure similar to the one used to evaluate the power
spectra of shape fluctuations, the local composition difference between the two
membrane leaflets, as well as the height of the bilayer midplane were mapped
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y/7c

X/ Te X/ Te

Figure 4.7: Interpolated grid mappings of the composition difference between
the two apposing monolayers, ¢, and the height of the bilayer midplane.

into a square grid, parallel to the plane of the membrane. An interpolated im-
age of these mappings is shown in Figld.7] The particular configuration used
to generate them, belongs to simulations in the close vicinity of the demixing
critical point. That means, they are characterized by a high incompatibility
(xnnN = 1.7) and Ap = —4.165 (where \ ~ 0). According to our phenomenolog-
ical description of the sorting mechanism, Sec[3.2} these conditions will enhance
the strength of the effective curvature-composition coupling. That is clearly
seen in the high degree of correlation between both mappings.

To evaluate the local curvature, every point on the height mapping was fitted
(within a local sub-mesh of 4 x 4 grid points) by a quadric function of the form

9(x,Y) = P1x* + P2y* + Paxy + pax + psy + Pe. (4.15)

In this Monge-like parametrization, the local mean curvature is given by2®

o (1+95) 9o —29xGyGxy + (1 + 3) vy (4.16)

2(1+ 92+ 91?4)3/2

where subindeces stand for the partial derivatives of g(x,y), with respect to the
corresponding variable. Within the limit of small curvatures, this expression
further simplifies to

Ixx t Gyy

H=
2

=P1+Pp2 (4.17)
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—-0.15 —-0.10 -0.05 0.00 0.05 0.10 0.15
thH

Figure 4.8: Joint probability distribution for the local curvature, H, and the com-
position difference between monolayers, ¢. It was evaluated from the simula-
tion run with Xy N — 1.7 and Ap = —4.130. Average, (), and most probable
values, beq, of particular distributions at fixed curvature are shown in squares
and circles, respectively. The the solid line is the linear fit for the most probable
data set.

Once curvature mappings were computed, the joint probability distribution
for the local curvature and composition, P(H, ¢), was evaluated from the corre-
lation of all the corresponding mappings, for a given incompatibility and differ-
ence in chemical potential (i.e., average composition between leaflets). For each
of these distributions, we computed the average, (), and the most probable,
$eq, composition differences at fixed curvature (shown in squares and circles,
respectively). Away from the demixing critical point, ¢ is Gaussian-distributed
and these two quantities coincide. However, as criticality is approached, the
emergence of correlations on length scales comparable to the system size, un-
dermines the validity of the central limit theorem and deviations from the Gaus-
sian distribution arise.1>* As already pointed out when studying the susceptibil-
ity of composition fluctuations, in our simulations such small deviations were
only observed for high incompatibility and Ap = —4.165.

Finally, the effective curvature-composition coupling, for each incompatibil-
ity and average order parameter, \p, was evaluated as the slope of the linear fit
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Figure 4.9: Effective curvature-composition coupling as a function of the av-
erage order parameter, . Data sets obtained from the slope of the ¢eq vs H
curve for high and low incompatibility, are shown in red and black circles, re-
spectively. The global fit of the phenomenological expression for the effective
coupling, Eq3.25} is given by the corresponding continuous lines.

of the ¢eq vs H curve. Then, our mean-field expression for Ag, as function of
P, was globally fitted for the low and high incompatibility data sets. The result
of these measurements and fits are shown in Fig[4.9]

A first remarkable feature to be pointed out from these results is the good
agreement between simulations and the phenomenological theory (notice that
the two continuous lines belong to a single fit). Also, in agreement with our pre-
vious analysis of the mean-field model, we verify that the effective curvature-
composition coupling is enhanced in the close proximity of the demixing critical
point. In that case, the strong segregation between lipids undermines the ability
of monolayers to accommodate lipid flip-flops, since new insertions would be
preferably located near alike species, therefore reaching saturation conditions
at smaller curvatures than those in the mixed case. Perhaps, this effect is bet-
ter visualized in the snapshots of particular configurations from low (left) and
high (right) incompatibility simulations, shown in Figf.10] Although in both
cases the height of the bilayer is modulated by the effect of thermal fluctua-

77



CHAPTER 4. INTERPLAY BETWEEN CURVATURE AND COMPOSITION
IN LIPID BILAYERS

(a) Low incompatibility (b) High incompatibility

Figure 4.10: Comparison of the lateral sorting of lipids in the upper and lower
leaflets of the bilayer, from simulations with low (left) and high (right) incom-
patibility.

tions, for low incompatibility the lateral segregation of lipids and the curvature
of the bilayer are uncorrelated. Conversely, for high incompatibility, short head-
group lipids in the upper and lower leaflets (in blue), tend to cluster into regions
where the bilayer is locally curved towards its normal (concave deformations),
whereas large head-group species (in red) prefer to accommodate within re-
gions curved in the opposite direction, where the accessible area per lipid is
increased.

Results in Figlt.9also reproduce the expected behavior for single-component
systems (those with \p = +1) where the effective coupling vanishes, since the
composition difference remains zero, regardless of the curvature of the bilayer
is. Furthermore, our simulations exhibit the predicted lack of symmetry with
respect to the A4 axis, which reflects the natural tendency of the system to favor
the proper sorting of lipids based exclusively on their geometry.

Finally, the fitted values for the intrinsic coupling and the average curva-
ture of both lipid species are A = 2.01 nm and Cy = —0.27 nm~!. The cor-
responding spontaneous curvatures for the individual lipid species obtained
from these values via Eq are C;q4 = 0.072nm~! and C_; = —0.61 nm™ .
First of all, these results are consistent with those presented in Tab4.1, where
short head-group lipids (C;1 = 0.072 nm™!) are reported to self-assemble into
planar bilayers, whereas large head-group ones are close to the phase bound-
ary between planar bilayers and cylindrical micelles. Also, these spontaneous
curvatures are in good agreement with experimental results from biologically
relevant membrane-forming lipids.155-157
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4.4 Cylindrical bilayers

Results presented in the previous section validate the hypothesis that, far from
saturation, the composition differences for a given order parameter (recall that
$eq € [1+ N[, 1—1]), is linearly related to the local curvature via the effective
curvature-composition coupling. A natural question, however, is what hap-
pens in systems where such conditions are not met. Examples of those occur
in membrane-pulling experiments, where cylindrical membrane tubes, whose
midplane radius of curvature is comparable to the bilayer thickness, are pulled
out (via micropipette aspiration) from giant unilamellar vesicles. We argue that
the lateral sorting of lipids in such systems will be duly described by the im-
plicit relation between ¢eq and H, Eq3.23] To verify this hypothesis, we have
done semi-grand canonical simulations with cylindrical membranes of different
radii (as those shown in Figd.17a)), for the two incompatibility regimes and for a
difference in chemical potential Ap = —4.160. We have chosen these two cases
since they should exhibit a good contrast between the saturation behavior for
low and high incompatibility, while avoiding the finite size effects emerging in
the close proximity of the demixing critical point. The corresponding average
compositions for low and high incompatibility are 1p = 0.004 and 1 = 0.242.

Of course, the self-assembly of the lipid species into cylindrical bilayers is
not a spontaneous process and their simulation required the pre-assembly of
such cylinders. The relaxation from these metastable states towards the equi-
librium planar configurations, however, is an enormously slow process. The
reason for this is the high barrier in the energy landscape, due to the exposure
of hydrophobic interior to the vacuum-solvent.

In order to equilibrate the number of lipids on each monolayer (which should
be proportional to their surface area), we opened two pores perpendicular to the
cylinder axis. These pores allowed the exchange of lipids between the inner and
the outer monolayers. The blank spot in the axial cut of Fig[4.1Tb|shows one of
these pores. These pores were created by applying an external hydrophobic
potential of the form,

2
upore = _kp (|r— rp| - Rp) ’ (4.18)

where r, denotes the center of the pore, k;, is the force constant of the potential
and R, is a cutoff distance which ultimately defines the radius of the pore. Act-
ing exclusively on tail beads, this potential creates a depletion region within the
hydrophobic interior, therefore triggering the redistribution of the hydrophilic
head-groups around the pore to shield the bilayer interior. In the end, this redis-
tribution creates an hydrophilic channel through which lipids can diffuse from
one monolayer to the other.
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(a) Cylinders of different radius (b) Cylinder with pore

Figure 4.11: Comparative of the different cylinder radii and axial cut showing
the pore used to equilibrate leaflets composition.

Once the surface density in both monolayers was equilibrated, pores were
closed and the recording of statistical properties began. In contrast to the local
analysis done for planar bilayers, in this case we computed the average radius
and composition of the entire, individual monolayers. The reason for this is that
instantaneous configurations exhibited only minor deviations from the cylin-
drical geometry (as can be clearly seen in the snapshots). Therefore, the bilayer
radius (computed as the average value between the two monolayers) provided
an accurate measurement of system curvature.

To compare the results from different tube simulations and the predictions
of phenomenological model, we took the set of parameters obtained in the anal-
ysis of planar bilayers (reported in Tab/4.3} together with the values of A and Cy
obtained from the fit of the effective coupling), and plugged them into the im-
plicit relation for ¢eq and H, Eq The solutions of this relation for the two
incompatibility cases (red and black continuous lines), together with the corre-
sponding data from planar (circles) and cylindrical (squares) configurations, are
shown in Figl4.12] The first remarkable feature is the nice agreement between
simulations in both curvature regimes and the model predictions for both in-
compatibilities. Here we want to stress that the parameters A and Cj used to
generate the solid lines, were obtained from a global fit of the effective coupling
datasets for low and high incompatibility, shown in Figi.9

Another remarkable feature is the anticipated contrast between both incom-
patibility cases, concerning the transition towards the saturation regime: at low
incompatibility, the well-mixing conditions shift the saturation curvature be-
yond the geometrical limits of the system. This turns the effective curvature-
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Figure 4.12: Comparison between the simulated equilibrium composition dif-
ferences and curvatures of planar (circles) and cylindrical bilayers (squares) and
the solution of the implicit, mean-field relation Eq[3.24] (continuous lines). Re-
sults for low and high incompatibility are shown in red and black, respectively.
All plots correspond to system with Ap = —4.160.

composition coupling into the only relevant quantity to describe the interplay
between curvature and the lateral sorting of lipids. Conversely, the entropy
loss associated with a high degree of segregation, favors the emergence of a fi-
nite curvature beyond which the composition asymmetry across the bilayer is
not dominated by the addition of alike lipids to already formed composition
domains, but by local lipid rearrangements within these domains, thus under-
mining the effectiveness of the sorting mechanism.
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Chapter 5

Spontaneous curvature from
inverted lipid structures

5.1 Self-assembly of inverted structures

So far, the discussion has focused on the study of bilayer structures with differ-
ent geometries and under qualitatively different segregation conditions. How-
ever, in Chapter 1 we saw that, beside bilayers, biologically relevant lipids can
self-assemble into inverted structures displaying liquid-crystalline order.12815?
An example of is the inverted hexagonal phase (schematics of this and other in-
verted phases are shown in Fig[5.1)). These phases consist of monolayers rolled
up into long cylinders with the lipid head-groups pointing towards the cylin-
der axis and the hydrophobic tails located at the outer shell of the monolayer.
This particular lipid orientation prevents the occurrence of inverted phases at
low concentrations, because the hydrophobic part is left unshielded from the
solvent. Furthermore, at high concentrations, the hydrophobic effect will re-
sult in densely packed structures where the close contact between neighboring,
inverted monolayers tries to be maximized.

In Chapter 1, we also discussed that, in an ideal scenario, lipid self-assembly
will result in tensionless configurations where the radius of the cylinder and
the intrinsic spontaneous curvature of the individual monolayers coincide.7¢160
One often assumes that the spontaneous curvature of such tensionless systems
is an additive function of the curvature of the individual lipids or, in other
words, the monolayer spontaneous curvature is a linear function of its com-
position, as expressed by Eq[3.14] This hypothesis has been validated by the
results from simulations with lipids bilayers presented in Chapter 4. These
ideas provide an immediate approach to measure the spontaneous curvature
of lipid species, other than the ones comprising the single-component inverted
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Im3m Fd3m Sponge Vesicles Bicelles

Figure 5.1: Schematic representation of the different lipid inverted phases.
Monoolein shows lamellar, bicontinuous cubic-Pn3m and Ia3d phases, hexag-
onal (H2) and fluid isotropic (L2) phases in the presence of water (upper
row). Additional structures (bottom row) like bicontinuous cubic phase-Im3m,
micellar cubic-Fd3m, sponge phase, vesicles and bicelles are also formed by
monoolein but in presence of additives, for example, other lipid(s), detergent or
salt etc. in water. Image reproduced from Kulkarni et al. [159].

phase. Starting from a tensionless and single-component structure with sponta-
neous curvature Cyqgt, the addition of lipids with a different intrinsic curvature,
Cguest, will result in a mixed inverted structure with curvature

Cmix = (1 - (bguest) Chost + (bguestcguest- (5-1)

Then, the spontaneous curvature of the guest species can be determined by
measuring the curvature of the mixed inverted cylinders for different lipid con-
centrations. Usually, the radius of the resulting cylinder is determined from
x-ray measurements of the lattice dimensions of the inverted structure 126160
Well-mixing conditions between the two species is a mandatory requirement
to characterize the intrinsic lipid curvatures via Eq[5.1] If these conditions are
not met, the guest lipids will segregate into specific regions of the monolayer,
therefore destroying the cylindric symmetry of the system, as it is shown in
Fig[5.2) for different concentrations. Here, it is important to stress that the pres-
ence of two monolayers with opposite curvatures prevents this situation to oc-
cur on spherical vesicles or membranes tubes. This is because, in these systems,

lipids can flip-flop or redistribute in a coordinated fashion between the two
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(a) d)guest =0.004 (b) d)guest =0.1 (C) d)guest =02

Figure 5.2: Anisotropic deformations of the inverted hexagonal phase due to
the high incompatibility between host and guest lipid species. The lipid archi-
tecture of the host species comprises 3 head-group beads (shown in blue) and 13
tail beads (shown in green). Analogously, the guest species comprises 4 head-
group beads (shown in red) and 12 tail beads (also shown in green). The lateral
dimensions of the simulation box for the 3 snapshots are L, = 23.2, L = 20.09
and L, = 5.4, where the Ly is parallel to the sheet short side and L, points
out of the page. The incompatibility between unlike head-group species is the
same as the low incompatibility case in the simulations with bilayer structures,
XneN = 1.0.

leaflets, in order to match their curvatures.

Another caveat of this method is that, as discussed in Chapter 1, the lin-
ear additivity of the individual lipid curvatures to the spontaneous curvature
of the resulting aggregate is only possible when the lipids geometry is left un-
changed in the mixed assemble. However, we have seen that, in order to pre-
vent the occurrence of voids inside the hydrophobic region, lipids may need to
undergo isochoric deformations, which ultimately modify their intrinsic curva-
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Figure 5.3: Schematic representation of the voids between tubes in the inverted
hexagonal phase.
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ture. On self-assembled bilayer structures (i.e., planar membranes, bilayer tubes
or vesicles) the presence of voids is greatly hindered because of the curvature
complementarity of the apposing monolayers. However, these voids would be
particularly prone to occur at the intersection between three of more inverted
monolayers, as schematically shown in Fig[5.3|for the inverted hexagonal case.
Therefore, the geometry of lipids at these locations may be considerably dif-
ferent from that of lipids sitting at the locations where the distance between
inverted monolayer is minimal. This anisotropic conditions will influence the
sorting of both host and guest lipids species and their net effect will ultimately
be reflected on the global curvature of the mixed system, C,ix. These effects,
however, are completely neglected by Eq5.1]

5.2 Prevention of void-induced stretching

A way to prevent stretching effects at the intersection between monolayers is
to suspend the inverted-cone shaped lipids into an incompressible, hydropho-
bic solution. Under such conditions, self-assembled monolayers will be less
urged to maximize the contact with neighboring aggregates and, instead, will
be effectively surrounded by the hydrophobic solvent, therefore resulting in the
formation of inverted worm-like micelles.01:162

The Helmholtz free energy of a single monolayer immersed into an incom-
pressible hydrophobic solvent of lipid tails will be given by

2
2 A—A
F(D,L) = %“A (R—l - c¢> + %‘%, (5.2)

where D and L are the lateral dimension of the region enclosing the hydropho-
bic solvent (as shown in left diagram of Fig[5.4) and Ay, is the area of the mono-
layer at zero tension. Since the tensionless simulations of planar bilayers re-
vealed that the two chain architectures considered in that case had the same
cross sectional area, A, turned out to be a composition-independent quantity.
However, the host and guest lipid species in the present analysis, may well have
different intrinsic areas, therefore resulting in a composition-dependent area of
the final, mixed monolayer. To account for this composition dependence we
will consider

Ad) = A() - €d). (53)

The coefficients ky, and k5 in EqJ5.2Jare the monolayer bending rigidity and
area compressibility, Cy, is its composition-dependent spontaneous curvature,
and A = 2nRL and R are, respectively, its surface area and radius of curvature,
defined at the center of mass of the lipids polar head-groups, as it is shown in

86



5.2. PREVENTION OF VOID-INDUCED STRETCHING

Figure 5.4: Schematic representation of a single inverted monolayer surrounded
by an hydrophobic incompressible solvent.

the right schematics of Fig[5.4] These last two quantities can be naturally related
to the lateral dimensions of the enclosing volume via the incompressibility con-
dition of both the hydrophobic solvent and the lipid tails. Under this condition,
the volume occupied by the dense hydrophobic liquid is given by

Voece = DL — 7t (R+A)?L, (5.4)

where A is the distance between the monolayer curvature plane and the tail-
hydrophobic solvent, which may well lie within the monolayer hydrophobic
region, because of the affinity between the hydrophobic solvent and the lipid
tails (like in a wet brush). Therefore, the dependence of the monolayer radius
on the lateral dimensions of the system, will be given by
- 1 2 _111/2

R(D, 1) =—A+ 7 [D Vel ] .
This relation provides a straightforward way to evaluate the pressure compo-
nents parallel and perpendicular to the cylinder axis, which can be defined as

(5.5)

1 [OF 1 oF
Pl=—— [ d — (2 .
I~ D2 (aL>D and L ="7p1 (aD)L (56)
Using EqJ5.2) these pressure components result in

. ZT[R VOCC Km —1

PI=—prte D2L(R+ A) [ER_ R (R _Cd’)]’ (5.7)
- 1 Km (11

PL="%7a [ER ?(R _Cd’ﬂ’ :8)
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where we have defined

_Km (e VKA _
o= (R —Cy) + A (2TRL= Ay, (5.9)

Therefore, measuring the pressure components and the monolayer radius in
systems with different lateral dimensions and compositions, provides an alter-
native way to evaluate the intrinsic curvatures of the individual lipids species,
C.+ and C_, which are encoded in the definition of the monolayer spontaneous
curvature

Cp =Co+A'd. (5.10)

Notice that this definition of A" differs from the one given in Eq where
an additional prefactor was included in order to recover the standard coupling

term between curvature and composition in the expression for the free energy
of the bilayer, i.e., last term in Eq

5.3 Simulation of inverted cylinders

In order to test the ideas discussed in the previous sections, we have performed
simulations of inverted lipid cylinders immersed in an hydrophobic solvent.
One of the lipid architectures used in these simulations is the most cylindrical
lipid from our simulations with planar bilayers, i.e., it comprises 4 hydrophilic
beads in the head-group and 12 hydrophobic beads in the tail, resulting in an
intrinsic spontaneous curvature C_ = 0.072 nm . These lipids are used as
the minority component (or guest species). For the second lipid species, we
consider the same 16-bead long, linear architecture, but with 3 beads on the
head-group and 13 beads on the tail. Having an inverted cone-shaped geome-
try, these lipids will comprise the host or inverted aggregate.

As it has already been discussed, the proper characterization of curvature of
these inverted phases can only be achieved if the incompatibility between lipid
species is low. For this reason, the virial coefficient between unlike head-group
beads has been set equal to that of alike head-group beads. Specifically, we
have set vgc = vgg = vce = 0.1 in Eq[2.10] Finally, for the molecules compris-
ing the solvent, we have replaced the head-group beads of the lipid structure
by tail beads, therefore resulting in chains with 16 beads, whose hydrophobic
properties are identical to those of the lipid tails.

All simulation in this study were done in the canonical ensemble, where the
volume and number of particles in the system remain fixed. For all cases, we
considered a mixture of 750 hydrophobic chains and 250 lipids. For these 250

88



5.3. SIMULATION OF INVERTED CYLINDERS

lipid, four composition ratios between the two lipid species were considered,
namely ¢ = {1.0, 0.8, 0.6, 0.4}, where

n —n t
d) _ host gues . (5.11)
Tlhost + Nguest

Here nyost and ngyest are the total number of host and guest lipids in the system.

In order to change the pressure of the system and the radius of curvature
of the inverted monolayer, we varied the length of the simulation box parallel
to the cylinder axis, L, while letting fixed its cross sectional area, D> = 19.0%.
Snapshots of the simulated cylinders for different compositions are presented
in Fig[5.5

The first part of the analysis consisted in identifying the geometrical con-
stants characterizing the hydrophobic region. This was done by measuring the
monolayer radius for different lengths, L, and then fitting Eq[5.5| to these data.
These results are shown in Fig[5.6, where different colors correspond to simu-
lations with different compositions and the fit of Eq[5.5is shown by the contin-
uous line. The characteristics of the hydrophobic region extracted from this fit
are Voeo = 1632.351‘2 and A = 0.94r.. These results verify that the volume oc-
cupied by the hydrophobic region is composition-independent. Furthermore,
the fact that A is smaller than the thickness of a planar monolayer, t,, = 3.07r,
denotes the interdigitation between the lipid tails and the hydrophobic solvent.
This interdigitation is facilitated by the spreading of the lipid tails induced by
curvature, and its net effect is to homogenize the hydrophobic region of the

@) ¢ = 1.0 (b) b = 0.8 ©) ¢ = 0.6 d) $ =04

Figure 5.5: Snapshots from simulations of inverted cylinders immersed in an
hydrophobic solvent, for different compositions of the guest lipid species. The
hydrophilic head-groups of the host lipid species are shown in blue and the
head-groups of the guest species are shown in red. Tails of both lipid species
and the hydrophobic solvent are shown in green. In all cases, the virial coef-
ficients controlling the interactions between like and unlike head-group beads,
have been set to 0.1.
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Figure 5.6: Radius of the inverted cylinder monolayers vs cylinder length. Re-
sult from simulations with different compositions are shown in color code and
the fit of EqJ5.5|corresponds to the continuous line.

monolayer. This is consistent with our previous investigations of the density
profile of planar bilayers, Figld.5, where it was found that the difference be-
tween the hydrophilic peak-to-peak distance and the hydrophobic full width
at half maximum was ~ 1.7r., therefore resulting in a hydrophobic-hydrophilic
interface width ~ 0.85r., on each monolayer.

During the simulations, the pressure components parallel and perpendicu-
lar to the cylinder axis, were evaluated from the virial. Then, having character-
ized the cylinder radius as a function of its length, Eq[5.7/was used to fit the par-
allel pressure from simulation with different compositions. The graphs of these
fits are shown in Fig[5.7and the parameters obtained from them are compiled
in Tab5.1} The first remarkable feature of these results is that the proportional-
ity constant between the tensionless area, A4, and composition is negative, thus
reflecting that the intrinsic area of the inverted-cone lipid species is larger than
that of the cylindrical species. This may be rationalized by noticing that tails
in the former case are one bead longer than those in the latter one. Therefore,
tails of the inverted lipids will spread over broader areas, consistently with the
interdigitation picture just described.
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Figure 5.7: Parallel pressure vs cylinder length. Results from simulations are
shown as dots and the corresponding fits of Eq/5.7/are shown as the continuous
line. Results from simulations with different compositions are distinguished by
color.

Another remarkable result is that the bending rigidity of these inverted cylin-
ders is similar to the one obtained in the simulations with bilayer membranes
(km = 10.6kpT). This is in good agreement with the aforementioned idea that
the bending rigidity is left practically unaffected by both composition and cur-
vature. A different behavior is observed for the area compressibility of the in-
verted monolayers, k5, whose value is almost a third of that obtained for bilayer
membranes. Possible reasons for this effect are the gain of configurational en-
tropy of the lipids tails in the curved geometry and the mixing of tails and the
hydrophobic solvent, which would make the whole hydrophobic region more
prone to fluctuate.

The values of A and Cp obtained from these simulations result in intrinsic
spontaneous curvatures C; = 0.45 and C_ = 0.11 for the inverted and cylin-
drical lipids species, respectively. In this case, the spontaneous curvature of
the cylindrical lipid species is slightly overestimated, when compared to the
result obtained from the analysis with bilayers, although still asserting that its
geometrical configuration is highly cylindrical. A possible explanation for this
curvature increase is that the natural tendency of the inverted configuration
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Table 5.1: Set of parameters obtained from the fits of Eq and Eq to the
cylinder radius and parallel pressure measured from simulations.

Quantity Symbol Unit Value
Hydrophobic incompressible volume Voce  To 1632.35
Hydrophobic-hydrophilic interface width A Te 0.94
Area-composition proportionality constant € T2 —10.52
Tensionless area of a symmetric mixed leaflet Ao 72 132.05
Monolayer bending rigidity Km kgT 11.06
Monolayer area compressibility KA kgT/ rg 11.82
Intrinsic curvature-composition coupling A Tl 0.17
Average curvature of the two lipid species Co Tl 0.28

to create voids at the end of the monolayer hydrophobic region, will promote
the interdigitation of solvent particles between the lipid tails. This interdigita-
tion would act as a spacer between tails that will ultimately result in an effec-
tive curvature increase. This effect could be accounted for by the inclusion of
a curvature-dependent term in the expression for the monolayer area at zero
tension, Eq[5.3l Furthermore, the addition of this term could help to improve
the quality of the fit.
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Chapter 6

Summary and outlook

In the fluid-mosaic model, lipids and proteins of the plasma membrane were
conceived as a passive fluid whose only function was to isolate the cell from
its environment. Since its introduction in 1972, the model has been further ex-
tended and, today, the plasma membrane is depicted as an active platform that
regulates and gives support to many cellular processes. To a greater or lesser
extent, this regulatory character of the plasma membrane, has to be dictated
by the properties of its constituent lipids. In particular, the interplay between
curvature and composition in lipid bilayers can drastically influence the lat-
eral organization of lipids in the membrane. For instance, recent studies sug-
gest that an intrinsic coupling between the local curvature and composition
in lipid bilayers may give rise to the formation of “rafts”, i.e., spatially modu-
lated phases or microemulsion-like domains of phospholipids and cholesterol,
whose properties differ from their surroundings. There is evidence that these
sub-micrometer, highly dynamic and transient structures are involved in many
membrane-mediated biological processes. In particular, they are thought to
compartmentalize such processes to a given area in the cell membrane and sta-
bilize larger platforms through protein-protein and protein-lipid interactions.
Additionally, this coupling provides a physical mechanism to explain the com-
position asymmetry between inner and outer leaflets observed in bilayers under
strong curvature deformations, as those in tube-pulling experiments.

In this work, we have devised computer simulation techniques to study the
interplay between the local curvature and composition in mixed lipid bilayers.
In Chapter 2, we have presented an extension of the implicit-solvent, coarse-
grained model by Homberg et al. This extension was necessary to study the
physical properties of self-assembled lipid structures with more than one lipid
species. Specifically, we have included additional terms in the non-bonded
Hamiltonian of the system, which beside accounting for the interactions be-
tween the lipids” hydrophobic and hydrophilic blocks, also account for the re-
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pulsion between unlike head-group species. These additional terms, however,
can be mapped to physical quantities that are easily accessible in experiments.
Therefore, our extension has left intact the simplicity and beauty of the original
model.

Since the relaxation of composition fluctuations is a diffusion-mediated pro-
cess, the simulation of mixed systems in the canonical ensemble result in a very
computationally inefficient process, specially when the system is in the close
proximity of the demixing critical point. Because of this, most of the simulations
in this work were carried out in the semi-grand canonical ensemble. This en-
semble was implemented as an hybrid approach were the equations of motion
where integrated by standard molecular dynamics techniques and, additionally,
Monte Carlo moves were used to mutate one lipid species into another, based
on an externally imposed difference in chemical potential between the lipid
species. The simulations were further optimized via the domain-decomposition,
parallelization technique. This parallel implementation showed a reasonable
scaling up to 64 cores, therefore allowing us to access the diffusion regime of
large systems (typically spanning ~ 10° particles).

In Chapter 3, we introduced a new model describing the thermodynamics of
mixing in the two monolayers of a membrane composed by lipid species with
different spontaneous curvatures. The novelty of this model is that, beside in-
corporating the intrinsic coupling between the local curvature and composition
fields, as well as contributions from the free energy of mixing on each mono-
layer, it also accounts for the local curvature difference between the two appos-
ing membrane leaflets. We pointed out that this last contribution is particularly
important for membranes whose local curvature modulations are comparable
to the inverse bilayer thickness. One of the main predictions of this model is
that the maximum composition difference across the membrane, which is com-
patible with the average composition between the two monolayers (recall that
¢ € [-1+ ], 1 —[pl]), is reached at a specific curvature. In other words, there
exist a “saturation curvature” for which the composition difference between the
apposing monolayers is maximal. We have also shown that the occurrence of
this saturation curvature will depend on the segregation conditions of the sys-
tem. In particular, for low incompatibility between lipid species, the theoret-
ical saturation curvature may be well beyond the inverse bilayer thickness, a
quantity that sets a limit on the physical curvatures accessible to the system. In
contrast, saturation conditions in strongly segregated systems can be reached
at small curvatures, such as those induced in planar bilayers by the effect of
thermal fluctuations.

Far from saturation, our phenomenological mean-field model predicts a lin-
ear relation between the equilibrium composition difference and membrane lo-
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cal curvature, where the proportionality term is what we denoted as the “effec-
tive curvature-composition coupling”. We have shown that this quantity depends
on the geometric and elastic properties of the bilayer, as well as the incompati-
bility between lipid species and the average composition of the system.

In the last section of Chapter 3, we have investigated possible further contri-
butions to the lipid sorting, due to a dependence of the bending rigidity on cur-
vature. There, we showed that the qualitative behavior just described remains
unchanged by this additional contribution. Furthermore, we saw that even for
highly-curved and strongly segregated systems, the quantitative corrections are
so small that can be effectively neglected.

In Chapter 4, we presented the results of bilayer membranes simulations.
The first two sections were devoted to the parametrization of the coarse-grained
model and the evaluation of the non-free parameters in the mean-field descrip-
tion. Several conclusion were drawn from these measurements: the character-
ization of the system average composition as a function of the imposed differ-
ence in chemical potential between the two lipids species aids to identify the
two segregation conditions used in this study. In particular, the diverging sus-
ceptibility of composition fluctuations for the high incompatibility case revealed
that those systems are in the close vicinity of the demixing critical point, but still
within the mixed phase. Another result, is that the particular choice of chain ar-
chitectures for this study results in lipid species that self-assemble into planar
bilayers with similar cross-sectional areas and longitudinal extension. Never-
theless, a quick glance at lateral pressure profile across the bilayer, suggested
that the intrinsic spontaneous curvature of both species are, indeed, different.
A final remarkable conclusion from this analysis is that the power spectra of
shape fluctuations do not seem to be influenced neither by composition nor
the segregation conditions of the system. Since curvature and composition are
related via the effective curvature-composition coupling, this last finding is in
good agreement with the negligible corrections to the lipid sorting due to a cur-
vature dependent bending rigidity.

In the third section of Chapter 4 we analyzed the interplay between cur-
vature and composition of planar bilayers, in terms of the phenomenological
mean-field model. Conclusions from this analysis can be summarized as fol-
lows:

e Low incompatibility results in a weaker coupling, since the elastic energy
gain when sorting lipids into curvature-favored regions cannot overcome
the concomitant entropy loss.

e High incompatibility results in much larger effects where, in addition to
the intrinsic coupling, the curvature dependence of the free energy of mix-
ing contributes to the lateral sorting of lipids. This combined effect results
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in a higher coupling that is further enhanced as the system approaches the
demixing critical point.

e The quantitative comparison between the phenomenological model and
the computer simulations demonstrates that a single set of parameters can
consistently describe the behavior of mixed membranes for different aver-
age compositions and incompatibilities.

e The spontaneous curvatures of the lipids species used in this study are in
good agreement with those reported for biologically relevant lipids.

Finally, since the linear relationship between curvature and the composition
difference across the bilayer holds only far from saturation and since this as-
sumption is expected to break down for highly-curved and strongly segregated
systems, we carried out simulation with cylinders of different radius and for
both incompatibility cases. From these simulations we conclude that the im-
plicit relation between curvature and composition, Eq{3.24, duly accounts for
the additional entropy of mixing contributions.

An alternative method to measure the intrinsic curvature of lipids was pre-
sented in Chapter 5. In the first section, a brief review of the structures resulting
from the self-assembly of inverted-cone shaped lipids was presented. It has
been argued that, in the absence of tension or additional packing constraints,
the curvature of these inverted and single-monolayer aggregates coincides with
the spontaneous curvature of their constituting lipids. This feature offers an
immediate mechanism to measure the spontaneous curvature of, for instance,
cylindrical or cone-shaped lipids, since the addition of these guest lipids will
induce the expansion or contraction of the mixed aggregate, which will be pro-
portional to the concentration of guest lipids. However, it has been seen that
if the two lipid species do not mix well, the concomitant segregation of the
guest species may induce significant deviations from the cylindrical geometry
that will ultimately make the characterization of the system curvature infeasi-
ble. Furthermore, even when the lipid species mix well, the system anisotropy
due to the stretching of the lipid tails sitting at the “voids” between different in-
verted structures (where significant packing frustration occurs), may still have
a large influence on the lateral organization of lipids.

In the second section, it was suggested to allow the self-assembly of in-
verted cylindrical monolayers within an hydrophobic solvent with the same
hydrophobic properties than the lipid tails. Studying the thermodynamics of
these immersed cylinders, a relationship between the pressure components of
the solvent + monolayer system and the geometric characteristics of the mono-
layer were found. Finally, the chapter closes with the analysis of such im-
mersed worm-like micelles. The main conclusions that result from this alterna-
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tive method are in agreement with those obtained from the analysis with bilayer
membranes. However, in this case there may be additional contributions to the
free energy of the systems accounting for an increase of the tensionless area of a
mixed monolayer, due to the interdigitation of solvent molecules between lipid
tails, needed to prevent the formation of voids.

A natural extension of this project would be to investigate the influence of
the curvature-composition coupling on the dynamical properties of the systems
studied so far. For instance, beside enhancing the complementary sorting of
lipids across the membrane, the emergence of packing effects on curved mem-
branes may drastically influence the lateral diffusion of their constituting lipids.
In particular, for membrane tubes such as those studied in Chapter 4, one would
expect that the more constrained environment experienced by lipids in the inner
leaflet, will result in a slower diffusion than that of lipids in the outer one. Nev-
ertheless, preliminary results from the temporal evolution of the lipids mean
square displacement (MSD) in the inner and outer leaflets of bilayer tubes with
different midplane radii, does not exhibit a significant curvature dependence
for the total MSD along the cylinder surface (in-plane), as shown in Figl6.1|

In the short-time limit, the in-plane MSD exhibits the typical ballistic behav-
ior, where particles diffuse freely, i.e., in the absence of interactions. Once that
particles had diffused a mean free path comparable to the cutoff radius of non-
bonded interactions, 1., they start to notice the presence of neighboring parti-
cles, through collisions which drastically alter their velocities. It is at that very
moment when one would expect packing effects to come into play, modifying
the frequency with which collisions occur: particles in the inner leaflet will col-
lide more frequently than those in the outer leaflet, since they will experience
a denser or more constraint environment, therefore resulting in an effectively
reduced mobility, i.e., after that time, dynamics in the outer leaflet will be faster
than in the inner one. This effect should become more pronounced as the mid-
plane radius curvature is decreased. A possible explanation for the absence of
this effect in the preliminary simulations may be attributed to the softness of the
implicit-solvent coarse-grained model and, perhaps, a fine-tuning of the virial
coefficients setting the incompressibility of the dense hydrophobic region may
be all that is required. Of course, such re-parametrization will have influence
on the lipid-sorting results presented in this work. However the qualitative
equilibrium features presented here, should be left unchanged, since making
the tails more incompressible may only lead to a enhancement of the interplay
between curvature and composition.

In conclusion, this work has investigated the interplay between curvature
and composition in binary mixture lipid structures, with different topologies
(planar membranes, cylindrical bilayers and reverse worm-like micelles) and

97



CHAPTER 6. SUMMARY AND OUTLOOK

over a broad range of curvatures. Furthermore, two qualitatively different seg-
regation regimes have been considered. Concerning the analysis of the bilayer
structures, a new phenomenological mean-field model has been proposed to
describe their thermodynamics of mixing. The novelty of this model is that be-
side considering contributions from the free energy of mixing of the individual
monolayers, it also considers their difference in curvature. It has been shown
that these two features account for entropic contributions to the lateral sorting of
lipids that become particularly important when the local membrane shape mod-
ulations are comparable to the bilayer thickness. Based on this model, a new
methodology to measure the intrinsic curvature of the two lipid species com-
prising the bilayer has been proposed. The spontaneous curvatures obtained
from this analysis have been found to be in good agreement with those ob-
tained from a commonly employed experimental technique, where lipids with
unknown curvature are inserted into an inverted structure whose macroscopic
curvature coincides with the intrinsic curvature of its constituting lipids, there-
fore validating the proposed new method.
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Figure 6.1: Mean square displacement (MSD) of lipids in bilayer tubes. Results
for tubes with midplane radii R = 6.0r. and R = 16.0r. are shown by continuous
and dashed lines, respectively. Results for the inner leaflet are displayed in red
and result from the outer leaflet are shown in blue.

98



Bibliography

[1] S. L. Miller, Science 117, 528 (1953).

[2] S.]. Singer and G. L. Nicolson, Science 175, 720 (1972).

[3] S. Mishra and P. G. Joshi, Journal of Neurochemistry 103, 135 (2007).
[4] S. Semrau and T. Schmidt, Soft Matter 5, 3174 (2009).

[5] E.Li,, and K. Hristova, Biochemistry 45, 6241 (2006).

[6] M. Z. Gilcrease, Cancer Letters 247, 1 (2007).

[7] D.]. Triggle, in , edited by ]J. E. Danielli, A. C. Riddiford, and M. D. Roen-
berg (Elsevier, 1970), vol. 3 of Recent Progress in Surface Science, pp. 273
290.

[8] K. Simons and E. Ikonen, Nature 387, 569 (1997).

[9] A.R. Honerkamp-Smith, S. L. Veatch, and S. L. Keller, Biochimica et Bio-
physica Acta - Biomembranes 1788, 53 (2009).

[10] S. A. Safran, P. A. Pincus, D. Andelman, and F. C. MacKintosh, Physical
Review A 43,1071 (1991).

[11] R. Brewster and S. A. Safran, Biophysical Journal 98, L21 (2010).
[12] A. Yethiraj and J. C. Weisshaar, Biophysical Journal 93, 3113 (2007).

[13] T. Fischer and R. L. C. Vink, Journal of Physics: Condensed Matter 22,
104123 (2010).

[14] M. Schick, Physical Review E 85, 031902 (2012).
[15] R. Goetz and R. Lipowsky, Journal of Chemical Physics 108, 7397 (1998).
[16] H. Noguchi and M. Takasu, Physical Review E 64, 041913 (2001).

99



BIBLIOGRAPHY

[17] R. G. Larson, L. E. Scriven, and H. T. Davis, Journal of Chemical Physics
83, 2411 (1985).

[18] B.Smit, A. G. Schlijper, L. A. M. Rupert, and N. M. V. Os, Journal of Phys-
ical Chemistry 94, 6933 (1990).

[19] M. M. Kamala, D. Mills, M. Grzybeka, and J. Howard, Proceedings of the
Royal Society of London Series A 106, 22245 (2009).

[20] S. A. Safran, Statistical thermodynamics of surfaces, interfaces, and membranes
(Addison-Wesley Reading, MA, 1994).

[21] J. N. Israelachvili, Intermolecular and surface forces (Academic Press, 1991),
2nd ed.

[22] E. Lindahl and O. Edholm, Journal of Chemical Physics 113, 3882 (2000).
[23] D. H. Tsai, Journal of Chemical Physics 70, 1375 (1979).

[24] J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham, Journal of the Chem-
ical Society, Faraday Transactions 2: Molecular and Chemical Physics 72,
1525 (1976).

[25] M. A. Lemmon, Traffic 4, 201 (2003).

[26] V. A.Frolov, A. V. Shnyrova, and J. Zimmerberg, Cold Spring Harbor Per-
spectives in Biology 3 (2011).

[27] N. Kahya, D. Scherfeld, K. Bacia, and P. Schwille, Journal of Structural
Biology 147, 77 (2004).

[28] J. Korlach, P. Schwille, W. W. Webb, and G. W. Feigenson, Proceedings of
the National Academy of Sciences 96, 8461 (1999).

[29] M. D. Collins and S. L. Keller, Proceedings of the National Academy of
Sciences 1052, 124 (2008).

[30] A. Tian, B. R. Capraro, C. Esposito, and T. Baumgart, Biophysical Journal
97, 1636 (2009).

[31] T. Baumgart, A. T. Hammond, P. Sengupta, S. T. Hess, D. A. Holowka,
B. A. Baird, and W. W. Webb, Proceedings of the National Academy of
Sciences 104, 3165 (2006).

[32] T. Baumgart, S. T. Hess, and W. W. Webb, Nature 425, 821 (2003).

100



BIBLIOGRAPHY

[33] A. Callan-Jones, B. Sorre, and P. Bassereau, Cold Spring Harbor Perspec-
tives in Biology 3 (2011).

[34] R. Parthasarathy, C. han Yu, , and J. T. Groves, Langmuir 22, 5095 (2006).
[35] D. Marquardt, B. G. Barbara, and G. Pabst, Membranes 5, 180 (2015).

[36] M. Homberg and M. Miiller, Journal of Chemical Physics 132, 155104
(2010).

[37] N. Attig, K. Binder, H. Grubmiiller, and K. Kremer, eds., Computational soft
matter: from synthetic polymers to proteins; NIC winter school, 29 February -
6 March 2004, Gustav-Stresemann-Institut, Bonn, Germany - Lecture Notes,
vol. 23 of NIC series (FZ], John von Neumann Institute for Computing,
Jiilich, 2004).

[38] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford sci-
ence publications (Oxford University Press, 1989), reprint ed.

[39] P. Schuster, Berichte der Bunsengesellschaft fiir physikalische Chemie 87,
291 (1983).

[40] A. ]. Stone, The theory of intermolecular forces (Clarendon Press, Oxford,
1996).

[41] S. L. Price, in Reviews in Computational Chemistry (John Wiley & Sons, Inc.,
2007), pp. 225-289.

[42] P. Ilg, V. Mavrantzas, and H. C. Ottinger, Multiscale modeling and coarse
graining of polymer dynamics: simulations guided by statistical beyond-
equilibrium thermodynamics (Wiley-VCH Verlag GmbH & Co. KGaA, 2010),
pp- 343-383.

[43] D.R. Heine, A. R. Rammohan, and J. Balakrishnan, Molecular Simulation
33, 391 (2007).

[44] A.Polley, S. Vemparala, and M. Rao, Journal of Physical Chemistry B 116,
13403 (2012).

[45] ]J. T. Kindt, Molecular Simulation 37, 516 (2011).

[46] C. Lubich, From quantum to classical molecular dynamics: reduced models and
numerical analysis, Zurich lectures in advanced mathematics (European
Mathematical Society, 2008).

101



BIBLIOGRAPHY

[47] S. Grimme, Journal of Chemical Theory and Computation 10, 4497 (2014).

[48] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang,
P. Cieplak, R. Luo, T. Lee, et al., Journal of Computational Chemistry 24,
1999 (2003).

[49] M. Miiller, K. Katsov, and M. Schick, Physics Reports 434, 113 (2006).

[50] P. Esparfiol, Statistical mechanics of coarse-graining (Springer Berlin Heidel-
berg, 2004), vol. 640 of Lecture Notes in Physics, pp. 69-115.

[61] R. Bradley and R. Radhakrishnan, Polymers 5, 890 (2013).

[52] S.J.Marrink, A. H. de Vries M., and A. E. Mark, Journal of Physical Chem-
istry B 108, 750 (2004).

[53] P. de Gennes, Scaling concepts in polymer physics (Cornell University Press,
1979).

[54] J. Kirkwood and E. P. Buff, Journal of Chemical Physics 19, 774 (2013).

[65] M. Born and H. S. Green, Proceedings of the Royal Society of London
Series A 188, 10 (1946).

[56] R. Zwanzig, Physical Review 124, 983 (1961).

[57] R. Zwanzig, Non-equilibrium statistical mechanics (Oxford University Press,
2001).

[58] H. Mori, Progress of Theoretical Physics 33, 423 (1965).
[59] S.-K. Ma, Statistical mechanics (World Scientific, Philadelphia, 1985).

[60] W. Tschop, K. Kremer, J. Batoulis, T. Biirger, and O. Hahn, Acta Polymer-
ica 49, 61 (1998).

[61] D. Reith, M. Piitz, and F. Miiller-Plathe, Journal of Computational Chem-
istry 24, 1624 (2003).

[62] D. S. Frenkel and B. Smit, Understanding molecular simulation: from algo-
rithms to applications, Computational science series (Academic Press, San
Diego, San Francisco, New York, 2002).

[63] R. L. Henderson, Physics Letters A 49, 197 (1974).
[64] F. Ercolessi and J. B. Adams, Europhysics Letters 26, 583 (1994).

102



BIBLIOGRAPHY

[65] L. Lu, J. E Dama, and G. A. Voth, The Journal of Chemical Physics 139,
121906 (2013).

[66] F. Miiller-Plathe, European Journal of Chemical Physics and Physical
Chemistry 3, 754 (2002).

[67] A. Gorban, N. Kazantzis, Y. Kevrekidis, H. C. Ottinger, and C. Theodor-
opoulos, eds., Model reduction and coarse-graining approaches for multiscale
phenomena (Springer, Berlin-Heidelberg-New York, 2006).

[68] G. A. Voth, ed., Coarse-graining of condensed phase and biomolecular systems
(CRC Press / Taylor and Francis Group, Boca Raton, FL, 2009).

[69] L. R. Cooke and M. Deserno, Journal of Chemical Physics 123, 224710
(2005).

[70] E. Schmid, D. Diichs, O. Lenz, and B. West, Computer Physics Communi-
cations 177, 168 (2007), proceedings of the conference on computational
physics 2006.

[71] S. ]J. Marrink, H. J. R, S. Yefimov, D. P. Tieleman, and A. H. de Vries,
Journal of Physical Chemistry B 111, 7812 (2007).

[72] 1. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).

[73] A.Christiansson, E. A. Kuypers, B. Roelofsen, J. A. O. den Kamp, and L. L.
van Deenen, Journal Cell Biology 101, 1455 (1985).

[74] S. M. Gruner, Proceedings of the National Academy of Sciences of the
United States of America 82, 3665 (1985).

[75] A. A. Efimova, A. V. Sybachin, and A. A. Yaroslavov, Polymer Science
Series C 53, 89 (2011).

[76] N. Fuller and R. P. Rand, Biophysical Journal 81, 243 (2001).

[77] S. Leikin, M. M. Kozlov, N. L. Fuller, and R. P. Rand, Biophysical Journal
71,2623 (1996).

[78] J. M. Droutffe, A. C. Maggs, and S. Leibler, Science 254, 1353 (1991).
[79] O. Farago, Journal of Chemical Physics 119, 596 (2003).

[80] Z.-J. Wang and D. Frenkel, Journal of Chemical Physics 122, 234711 (2005).

103



BIBLIOGRAPHY

[81] A. Srivastava and G. A. Voth, Journal of Chemical Theory and Computa-
tion 10, 4730 (2014).

[82] M. Homberg, Ph.D. thesis, Georg-August University School of Science
(GAUSS) (2011).

[83] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of
polymeric liquids, kinetic theory (Volume 2) (Wiley-Interscience, 1987), vol-
ume 2 ed.

[84] M. Doi, Introduction to polymer physics (Oxford University Press, Oxford
and New York, 1996).

[85] M. Rubinstein and R. Colby, Polymer physics (Oxford University Press, Ox-
ford and New York, 2003).

[86] H. B. Callen, Thermodynamics (John Wiley & Sons, Inc., New York, N.Y.,
1960).

[87] M. L. Huggins, Journal of Chemical Physics 9 (1941).
[88] P.]. Flory, Journal of Chemical Physics 10, 51 (1942).

[89] P. de Gennes, Scaling concepts in polymer physics (Cornell University Press,
1979), 1st ed.

[90] P. Tarazona, Molecular Physics 52, 81 (1984).

[91] P. Tarazona, U. M. B. Marconi, and R. Evans, Molecular Physics 60, 573
(1987).

[92] L. Verlet, Physical Review 159, 98 (1967).

[93] M. Tuckerman, B. J. Berne, and G. J. Martyna, Journal of Chemical Physics
97,1990 (1992).

[94] M. . Winger, D. Trzesniak, R. Baron, and W. F. van Gunsteren, Physical
Chemistry Chemical Physics 11, 1934 (2009).

[95] P. H. Hiinenberger, Thermostat algorithms for molecular dynamics simulations
(Springer Berlin Heidelberg, 2005), vol. 173 of Advances in Polymer Science,
pp. 105-149.

[96] C.P. Lowe, Europhysics Letters 47, 145 (1999).

104



BIBLIOGRAPHY

[97] E. A. Koopman and C. P. Lowe, Journal of Chemical Physics 124, 204103
(2006).

[98] H. C. Andersen, journal of Chemical Physics 72, 2384 (1980).
[99] S. Nosé, Journal of Chemical Physics 81, 511 (1984).
[100] W. G. Hoover, Physical Review A 31, 1695 (1985).

[101] P.J. Hoogerbrugge and J. M. V. A. Koelman, Europhysics Letters 19, 155
(1992).

[102] P. Espafiol and P. Warren, Europhysics Letters 30, 191 (1995).
[103] R.D. Groot and P. B. Warren, Journal of Chemical Physics 107, 4423 (1997).

[104] I. Pagonabarraga, M. H. ]. Hagen, and D. Frenkel, Europhysics Letters 42,
377 (1998).

[105] L.-J. Chen, Z.-Y. Lu, H.-]. Qian, Z.-S. Li, and C.-C. Sun, Journal of Chemi-
cal Physics 122, 104907 (2005).

[106] J. G. Kirkwood and F. P. Buff, Journal of Chemical Physics 17, 338 (1949).
[107] A.Kolb and B. Diinweg, Journal of Chemical Physics 111, 4453 (1999).

[108] D.P. Landau and K. Binder, A guide to Monte Carlo simulations in statistical
physics (Cambridge University Press, 2009), 3rd ed.

[109] H. E. Stanley, Introduction to phase transitions and critical phenomena (in-
ternational series of monographs on physics) (Oxford University Press, USA,
1987).

[110] K. Binder, ed., Monte Carlo and molecular dynamics simulations in polymer
science (Oxford University Press, 1995), 1st ed.

[111] J. de Joannis, Y. Jiang, F. Yin, , and ]J. T. Kindt, Journal of Physical Chem-
istry B 110, 25875 (2006).

[112] S. Plimpton and B. Hendrickson, Journal of Computational Chemistry 17,
326 (1996).

[113] D. C. Rapaport, The art of molecular dynamics simulation (Cambridge Uni-
versity Press, 1995), 2nd ed.

[114] P. Canham, Journal of Theoretical Biology 26, 61 (1970).

105



BIBLIOGRAPHY

[115] W. Helfrich, Zeitschrift fiir Naturforschung 28, 693 (1973).

[116] C. W. Oseen, Transactions of the Faraday Society 29, 883 (1933).
[117] E C. Frank, Discussions of the Faraday Society 25, 19 (1958).

[118] R. Lipowsky and S. Grotehans, Biophysical Chemistry 49, 27 (1994).

[119] R. Goetz, G. Gompper, and R. Lipowsky, Physical Review Letters 82, 221
(1999).

[120] E. Lindahl and O. Edholm, Biophysical Journal 79, 426 (2000).

[121] K. Bohing, V. Kralj-Igli¢., and S. May, The Journal of Chemical Physics 119,
7435 (2003).

[122] J.-B. Fournier, Europhysics Letters 43, 725 (1998).

[123] C. Cametti, F. D. Luca, A. D’llario, M. Macri, G. Briganti, and B. Mar-
aviglia, in Trends in Colloid and Interface Science V, edited by M. Corti and
E. Mallamace (Steinkopff, 1991), vol. 84 of Progress in Colloid & Polymer
Science, pp. 465—469.

[124] L. M. Loura and M. Prieto, in Fluorescent Methods to Study Biological Mem-
branes, edited by Y. Mély and G. Duportail (Springer Berlin Heidelberg,
2013), vol. 13 of Springer Series on Fluorescence, pp. 71-113.

[125] H. Muddana, H. Chiang, and P. Butler, Biophysical Journal 102, 489
(2012).

[126] B.Kollmitzer, P. Heftberger, M. Rappolt, and G. Pabst, Soft Matter 9, 10877
(2013).

[127] R. Parthasarathy, C. han Yu, , and J. T. Groves, Langmuir 22, 5095 (2006).

[128] T.-Y. Yoon, C. Jeong, J. H. Kim, M. C. Choi, M. W. Kim, and S.-D. Lee,
Applied Surface Science 238, 299 (2004).

[129] D. Diedrich and E. Cota-Robles, Journal of Bacteriology 119, 1006 (1974).
[130] P.Janmey and P. Kinnunen, Trends in Cell Biology 16, 538 (2006).
[131] Leibler, Journal de Physique 47, 507 (1986).

[132] T. Taniguchi, K. Kawasaki, D. Andelman, and T. Kawakatsu, Condensed
Matter and Materials Communications 1, 75 (1993).

106



BIBLIOGRAPHY

[133] D. Andelman, T. Kawakatsu, and K. Kawasaki, Europhysics Letters 19, 57
(1992).

[134] E. W. Kaler, A. K. . Murthy, B. E. Rodriguez, and J. A. Zasadzinski, Science
245, 1371 (1989).

[135] S. A. Safran and F. C. MacKintosh, Physical Review E 47, 1180 (1993).
[136] U. Seifert, Physical Review Letters 70, 1335 (1993).

[137] S. May, Soft Matter 5, 3148 (2009).

[138] O. Edholm and J. F. Nagle, Biophysical Journal 89, 1827 (2005).

[139] E. Lindahl and O. Edholm, Biophysical Journal 79, 426 (2000).

[140] G. Brannigan and F. L. H. Brown, Journal of Chemical Physics 120, 1059
(2004).

[141] S. I. Mukhin and S. Baoukina, Physical Review E 71, 061918 (2005).
[142] J. Gullingsrud and K. Schulten, Biophysical Journal 86, 3496 (2004).

[143] K. Binder, in Theories and mechanism of phase transitions, heterophase polymer-
izations, homopolymerization, addition polymerization (Springer Berlin Hei-
delberg, 1994), vol. 112 of Advances in Polymer Science, pp. 181-299.

[144] H. Frielinghaus, D. Schwahn, K. Mortensen, L. Willner, and K. Almdal,
Physica B: Condensed Matter 234-236, 260 (1997).

[145] D. Schwahn and L. Willner, Macromolecules 35, 239 (2002).

[146] N. Kucerka, M.-P. Nieh, and J. Katsaras, Biochimica et Biophysica Acta
1808, 2761 (2011).

[147] T. Harroun, W. Heller, T. Weiss, L. Yang, and H. Huang, Biophysical Jour-
nal 76, 937 (1999).

[148] M. Kranenburg, J.-P. Nicolas, and B. Smit, Physical Chemistry Chemical
Physics 6, 4142 (2004).

[149] S. Leekumjorn and A. K. Sum, Biochimica et Biophysica Acta 1768, 354
(2007).

[150] E. Kurtisovski, N. Taulier, R. Ober, M. Waks, and W. Urbach, Physical
Review Letters 98, 258103 (2007).

107



BIBLIOGRAPHY

[151] W. Helfrich, Zeitschrift fiir Naturforschung 33A, 305 (1978).
[152] R. Dimova, Advances in Colloid and Interface Science 208, 225 (2014).

[153] R. S. Gracia, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova,
Soft Matter 6, 1472 (2010).

[154] S. Joubaud, A. Petrosyan, S. Ciliberto, and N. B. Garnier, Physical Review
Letters 100, 180601 (2008).

[155] S. Leikin, M. Kozlov, N. Fuller, and R. Rand, Biophysical Journal 71, 2623
(1996).

[156] N.Fuller, C. R. Benatti, and R. P. Rand, Biophysical Journal 85, 1667 (2003).

[157] D. Mannock, R. Lewis, R. McElhaney, P. Harper, D. Turner, and S. Gruner,
European Biophysics Journal 30, 537 (2001).

[158] J. M. Seddon and R. H. Templer, Polymorphism of Lipid-Water Systems (El-
sevier SPC, 1995), pp. 97-160.

[159] C. V. Kulkarni, W. Wachter, G. Iglesias-Salto, S. Engelskirchen, and
S. Ahualli, Physical Chemistry Chemical Physics 13, 3004 (2011).

[160] M. M. Kozlov, in Methods in Membrane Lipids, edited by A. M. Dopico
(Humana Press, 2007), vol. 400 of Methods in Molecular Biology, pp. 355—
366.

[161] G. Palazzo, Soft Matter 9, 10668 (2013).

[162] S.-H. Tung, Y.-E. Huang, and S. R. Raghavan, Journal of the American
Chemical Society 128, 5751 (2006).

108



Curriculum Vitae

Personal Data

Name Israel Abraham Barragan Vidal

Date of birth  29.07.1984

Place of birth Distrito Federal, México

Nationality =~ Mexican

Address Weender Landstrafe 54, 37075, Gottingen

Education

10.2001 - 05.2004

08.2005 - 06.2009
08.2009 - 11.2011

07.2012 -

Antonio Caso High School (ENP 6), Dis-
trito Federal (México)

Bachelor of Physics, Faculty of Sci-
ences, National Autonomous University
of México, Distrito Federal (México)
Master of Sciences (Physics), Faculty of
Sciences, National Autonomous Univer-
sity of México, Distrito Federal (México)
PhD student in the group of Prof. Dr.
Marcus Miiller, Institute for Theoreti-
cal Physics, Georg-August-Universitat,
Gottingen

Gottingen, 02.2016



	Introduction
	Plasma membrane
	Lipid self-assembly
	Bilayer heterogeneity

	Outline

	Model
	Coarse-Graining
	Coarse-grained, solvent free model
	Bonded interactions
	Non-bonded interactions

	Numerical implementation
	Model discretization
	Simulation ensembles

	Parallelization

	Phenomenological membrane models
	Early membrane models
	Elastic models
	Beyond purely elastic models

	Composition-dependent free energy of mixing
	Curvature-dependent bending rigidity

	Interplay between curvature and composition in lipid bilayers
	Simulation setup
	Area per lipid
	Area compressibility
	Lateral pressure profile

	Non-free parameters for the phenomenological model
	Susceptibility of composition fluctuations
	Density profile
	Power spectra of height fluctuations
	Summary

	Effective curvature-composition coupling
	Joint probability distribution for  and 

	Cylindrical bilayers

	Spontaneous curvature from inverted lipid structures
	Self-assembly of inverted structures
	Prevention of void-induced stretching
	Simulation of inverted cylinders

	Summary and outlook
	Bibliography

