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ABSTRACT 

The ribosome translates the genetic information encoded in the mRNA into amino acid sequence of a 

peptide chain. The catalytic site of the ribosome where peptide bonds are made, the peptidyl 

transferase center, consists of RNA and usually does not accessory proteins for function. By applying 

systematic sequence permutations in several in-vitro translation assays we discovered that the 

ribosome – while proficient in making peptide bonds between most amino acids – is surprisingly slow 

when synthesizing polyproline and PPG motifs. The combination of poor A- and P-site substrates led 

to the inhibition of peptide bond formation after incorporation of the second proline into the 

nascent chain resulting in robust ribosomal stalling. Linear-free-energy relationships (LFER) of 

peptidyl transfer using different proline analogs as well as the investigation of sequence-context 

effects in the nascent peptidyl chain revealed that the poor reactivity of peptidyl-Pro-tRNAPro in the P 

site of the ribosome originates from stereo-electronic properties of proline which induce an 

unfavorable orientation of the peptidyl-tRNA in the peptidyl transferase center. We showed that the 

functionally uncharacterized elongation factor P (EF-P) is a specialized translation elongation factor 

which augments the peptidyl transferase activity of the ribosome by alleviating proline-induced 

stalling. The identified function of EF-P as facilitator of polyproline synthesis explains the pleiotropic 

phenotypes observed in EF-P knockout strains in vivo. EF-P catalyzes peptidyl transfer entropically, 

presumably by positioning of the peptidyl-tRNA, its CCA end and/or the attached amino acid in a 

more active conformation. In Escherichia coli EF-P is lysylated and hydroxylated at Lys34 a residue 

that points to the peptidyl transferase center. Kinetically we show that this unique modification is 

crucial for the catalytic activity of EF-P. Because the modifications are specific for bacteria, these 

findings may pave the way for the discovery of new antibiotics. 
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1 INTRODUCTION 

1.1 Translation 

1.1.1 General overview 

Translation is the last step of gene expression, in which the ribosome decodes the genetic 

information of messenger RNA (mRNA) into an amino acid sequence determining the structure and 

function of the newly synthesized protein. The ribosome is , a large ribonucleoprotein complex (~ 2.5 

MDa), which is composed of roughly 60% RNA and 40% proteins (in bacteria). The prokaryotic 70S 

ribosome comprises two functional parts (Fig. 1): the small 30S subunit which consists of 22 proteins 

(designated S1 - S22) and the 16S rRNA (~1500 nts) and the large 50S subunit which consists of two 

RNA molecules, the 23S, 5S rRNA (~2900 and ~120 nts, respectively) and 36 proteins (designated L1 - 

L36). The small subunit contains the decoding center which communicates correct base-pairing of 

the mRNA codon with the anticodon of transfer RNAs (tRNA) to the translation machinery and the 

large subunit contains the peptidyl transferase center where peptide bond formation is catalyzed 

exclusively by the 23S rRNA, defining the ribosome as a ribozyme (Ban et al, 2000; Nissen et al, 2000; 

Noller et al, 1992). 

 

Fig. 1: Overview of the prokaryotic translation cycle 
The main phases of translation: Initiation, elongation (which entails decoding, peptide bond formation and 
translocation), termination and recycling, see description in the text. Ribosomal subunits are depicted in grey, 
charged initiator tRNA in blue, other tRNAs in light blue (and dark blue in the structure) and proteins are colored 
violet. The structure was generated in PyMol (https://www.pymol.org) using PDB 4v5d. 

 
tRNAs are short, non-coding RNA molecules which fold in a L-shaped tertiary structure and serve as 

adaptors which assign mRNA codons to the respective amino acids esterified to their acceptor end. 

The ribosome provides three tRNA binding sites: the aminoacyl (A) site which accommodates the 

incoming aminoacyl-tRNA delivered by EF-Tu, the peptidyl (P) site which binds the peptidyl-tRNA and 
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the exit (E) site from which deacylated tRNA dissociates from the ribosome. The main phases of 

translation, namely initiation, elongation, termination and ribosome recycling are coordinated by a 

set of auxiliary protein factors, many of which are GTPases. 

In bacteria, protein synthesis begins with the binding of initiation factors (IFs) 1, 2 and 3, charged 

initiator tRNA (fMet-tRNAfMet) and mRNA to the small ribosomal subunit (Milon & Rodnina, 2012). 

While interaction of the Shine-Dalgarno sequence of the mRNA with the almost complementary 3’ 

end of the 16S rRNA positions the mRNA (Shine & Dalgarno, 1974; Studer & Joseph, 2006), IF2 

recruits and stabilizes the initiator tRNA base paired to the start codon in the P site (Milon et al, 

2010). The correct assembly of this so-called 30S initiation complex (30S IC) allows the association of 

the large subunit catalyzed by IF2 and modulated by IF1 and IF3, which triggers the dissociation of IFs 

(MacDougall & Gonzalez, 2015; Simonetti et al, 2008). The resulting 70S initiation complexes (IC) with 

fMet-tRNAfMet bound to the start codon in the P site of the small and large subunit (P/P) is competent 

to enter the elongation phase of translation. 

Translation elongation is an iterative cycle of three steps: It starts with the delivery of aminoacyl-

tRNA (aa-tRNA) to the A site in a ternary complex (TC) with elongation factor Tu (EF-Tu) and GTP. 

Correct base-pairing of the aa-tRNA anticodon with the mRNA codon exposed in the 30S A site leads 

to conformational changes within the 30S subunit which trigger GTP hydrolysis by EF-Tu. EF-Tu*GDP 

has a reduced affinity to the tRNA and thus the acceptor end of the aa-tRNA accommodates into the 

peptidyl transferase center. Accommodation of aa-tRNA starts with a large movement of the tRNA 

body by more than 70 Å from the so called A/T to the A/A state followed by the relaxation of the CCA 

end into the peptidyl transferase center. Aa-tRNA is stabilized by interactions with L16 and helices 38 

and 69 and locally by interactions of G2553 of the ribosomal A-loop with the CCA end by forming an 

A-minor interaction with U2506-G2583. tRNA accommodation induces a conformational 

rearrangement of the peptidyl-tRNA which exposes the labile ester bond in a near-attack 

conformation (Schmeing et al, 2005b). Subsequently, the peptidyl moiety of the P-site peptidyl-tRNA 

is transferred to the A site-bound aa-tRNA, resulting in a peptide chain extended by one amino acid 

bound to the A-site tRNA and a deacylated tRNA bound to the P site. Peptide bond formation shifts 

the dynamic equilibrium of tRNA movements from the classical (A/A and P/P) towards the hybrid 

state conformation in which the anticodon stem loop remains in the A (or P) site of the 30S but the 

acceptor end moves towards the P (or E) site of the 50S (Moazed & Noller, 1989). These hybrid P/E 

and A/P conformations of tRNAs correlate with a rotation of the small relative to the large ribosomal 

subunit into a rotated state (Frank & Agrawal, 2000; Julian et al, 2008; Munro et al, 2010) and 

constitute the transition to elongation factor G (EF-G) induced translocation. Binding of EF-G*GTP 

strengthens the rotated ribosomal state (Adio et al, 2015; Cornish et al, 2008; Fei et al, 2008) and 

subsequent GTP hydrolysis drives the translocation of the tRNAs together with the mRNA relative to 
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the ribosome by one codon (Rodnina et al, 1997). Concomitantly, a backward rotation of the 

ribosomal subunits results in the formation of the classical, non-rotated conformation of tRNAs and 

the ribosome (Frank & Agrawal, 2000; Holtkamp et al, 2014). Thus, the peptidyl-tRNA is moved from 

the A to the P site and the deacylated P-site tRNA is moved to the E site from where it dissociates. As 

a consequence of translocation, the A site becomes vacant and can accommodate an aa-tRNA 

corresponding to the next mRNA codon. The stepwise extending peptidyl-chain travels through the 

ribosomal exit tunnel where it can undergo co-translationally folding restricted by the dimensions of 

the exit tunnel while finally domain folding occurs post-translationally (Mittelstaet, 2012; Nilsson et 

al, 2015; Waudby et al, 2013; Wilson & Beckmann, 2011; Ziv et al, 2005). 

When the ribosome approaches a stop codon, a release factor (RF) binds to the A site and triggers 

the hydrolysis of the nascent peptide from its tRNA by positioning a catalytic water molecule 

(reviewed in (Rodnina, 2013)). Tripeptide sequences in RF1 and RF2 lead to stop codon specificity 

with RF1 recognizing UAG and UAA and RF2 recognizing UGA and UAA stop codons (Ito et al, 2000).  

A conserved GGQ motif of which the Gln is post-translationally methylated in both factors 

(Nakahigashi et al, 2002) is required for optimal coordination of the catalytic water molecule 

(Dincbas-Renqvist et al, 2000; Shaw & Green, 2007; Weixlbaumer et al, 2008). Subsequent to the 

peptidyl-chain release, GTP-hydrolysis by RF3 catalyzes the dissociation of RF1/RF2 from the 

ribosome (Peske et al, 2014). The post-termination complex is disassembled by the concerted action 

of EF-G, IF3 and the ribosome recycling factor (RRF) into tRNA, mRNA and ribosomal subunits which 

can participate in a new round of protein synthesis (Hirokawa et al, 2006; Nurenberg & Tampe, 

2013). 

1.1.2 Peptide bond formation 
Upon peptide bond formation the α-amino group of the aa-tRNA in the A site nucleophillically attacks 

the carbonyl carbon of the peptidyl-tRNA in the P site which results in a tetrahedral adduct. The 

tetrahedral adduct subsequently dissociates yielding the new peptidyl-tRNA lengthened by one 

amino acid in the A-site and a deacylated tRNA in the P-site. The uncatalyzed aminolysis reaction in 

solution is expected to proceed through two tetrahedral intermediates: Attack of the α-NH2 group 

results in the zwitterionic intermediate (T±) which involves the formation of an oxyanion. Subsequent 

deprotonation of the NH2 group forms a negatively charged intermediate (T-) (Fig. 2) the 

decomposition of which results in the reaction products (Satterthwait & Jencks, 1974). Biochemical 

data using small model substrates (Dorner et al, 2003), kinetic analysis with intact P-site substrates 

(Weinger et al, 2004), molecular dynamics simulations (Trobro & Aqvist, 2006; Wallin & Aqvist, 2010) 

as well as structural studies (Schmeing et al, 2005a) indicated that the ribosome catalyzed reaction 

involves a proton-shuttle mechanism in which the proton of the nucleophile is abstracted and 
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transferred to the leaving group (reviewed in (Rodnina, 2013)). In the proposed mechanism the 

2´hydroxyl group of A76 of the P site substrates abstracts the proton from the attacking nucleophile 

and shuttles it directly or indirectly via additional water molecules to the 3´-hydroxylgroup of the P-

site substrate in a step wise or fully concerted manner (reviewed in (Rodnina, 2013)). Investigation of 

the ribosomal reaction by heavy-atom kinetic isotope effects (KIE) measured on isolated 50S subunits 

indicated that the formation of the tetrahedral transition state and the proton shuttle take place in a 

rate-limiting step and are thus concerted (Fig. 2) (Hiller et al, 2011).  

 

Fig. 2: Reaction scheme of aminolysis in solution and on the ribosome 

A- and P-site tRNAs prior to peptidyl transfer are depicted on the left side, deacylated P-site tRNA and A-site 
peptidyl-tRNA on the right side. The proposed transition states of the in-solution reaction (T± and T-) and 
ribosome-catalyzed reaction (concerted, 8 membered) are shown in the middle. Adopted from (Rodnina, 2013) 

 

Furthermore, analysis of kinetic solvent isotope effects (KSIE) revealed that three protons are 

shuttled indicating an 8-membered transition state (Fig. 2) (Kuhlenkoetter et al, 2011). Rapid 

breakdown of the tetrahedral intermediate in a separate step suggested that in contrast to the in-

solution reaction the T± does not accumulate. Consistently, the rate of peptide bond formation does 

not correlate with the nucleophilicity of the attacking amine, suggesting an uncharged amine in the 

transition state (Kingery et al, 2008).   Recently,  the proton wire mechanism  as an alternative model 

to the 6- and 8-membered proton shuttle mechanisms was proposed in which the 5´-phosphate 

oxygen of A76 (aa-tRNA) and the N-terminal α-amine of ribosomal protein L27 assist in the 

deprotonation of the nucleophile (Polikanov et al, 2014). Notably, both models are in agreement 

with the available biochemical and kinetic data. Analysis of the activation parameters revealed that 

the ribosome catalyzes peptide bond formation by lowering the activation entropy (Sievers et al, 

2004) suggesting an important contribution of substrate positioning or desolvation as well as 

electrostatic shielding to catalysis (Schroeder & Wolfenden, 2007; Sievers et al, 2004; Trobro & 

Aqvist, 2005). Extensive base substitution studies of rRNA bases in the active site revealed that none 

of them is essential for peptidyl transfer and that ionizing residues of the ribosomal active site 
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contribute only little to catalysis which argues against general acid or base catalysis by the ribosome 

(Beringer et al, 2003; Beringer et al, 2005; Bieling et al, 2006; Youngman et al, 2004) (reviewed in 

(Beringer, 2008; Beringer & Rodnina, 2007a)). Overall, the ribosome might stabilize the transition 

state by providing a network of electrostatic interactions and of prearranged hydrogen-bond 

acceptors/donors which allow fast shuttling of protons (Schmeing et al, 2005a; Sharma et al, 2005; 

Trobro & Aqvist, 2005; Trobro & Aqvist, 2006). Furthermore, conformational changes within the 

ribosomal active site modulate peptide bond formation (Beringer et al, 2005; Brunelle et al, 2006; 

Katunin et al, 2002). Interaction of full-length aa-tRNA with residues of the 23S rRNA induces an 

active conformation of the ribosomal active site and disruption of this interaction (by small substrate 

analogs) leads to sensitivity of the reaction towards base substitutions and pH (Beringer & Rodnina, 

2007a; Brunelle et al, 2006; Katunin et al, 2002; Youngman et al, 2004), indicating that substrate 

positioning is a major part of catalysis. 

For the most substrate combinations the rate of peptidyl transfer is limited by buffer- dependent 

accommodation of aminoacyl-tRNA (Johansson et al, 2008; Thomas et al, 1988; Wohlgemuth et al, 

2010) which masks the intrinsic reactivity differences of peptide bond formation induced by the A- or 

P-site substrate (Ledoux & Uhlenbeck, 2008; Wohlgemuth et al, 2008). While peptidyl transfer can be 

slowed down by protonation at low pH which inactivates the nucleophile, accommodation is pH-

independent (Beringer et al, 2005; Bieling et al, 2006). To avoid kinetically obscured reactions, 

virtually all studies on peptide bond formation rely on the antibiotic puromycin (Pmn) or its 

derivatives (C-Pmn) as A-site substrate (Beringer & Rodnina, 2007a; Brunelle et al, 2006; Hiller et al, 

2011; Katunin et al, 2002; Kingery et al, 2008; Kuhlenkoetter et al, 2011; Sievers et al, 2004; 

Wohlgemuth et al, 2006; Wohlgemuth et al, 2008). Pmn (3'-deoxy-N,N-dimethyl-3'-[(O-methyl-L-

tyrosyl)amino]adenosine) is an analog of aa-A76 of the acceptor arm of aa-tRNA which rapidly 

diffuses into the peptidyl transferase center without rate-limiting accommodation steps (Sievers et 

al, 2004). Substrate-dependent reactivity differences (Wohlgemuth et al, 2008), the pH-dependence 

(Katunin et al, 2002) as well as kinetic isotope effects (Hiller et al, 2011; Kuhlenkoetter et al, 2011) 

further established that the Pmn reaction kinetically reports the peptidyl-transfer reaction. 

1.2 Elongation factor P 

Elongation factor P (EF-P) is a small (21 kDa) protein which comprises three mainly β-barrel domains 

(I, II and III, Fig. 3A). Its domain arrangement and the overall shape resemble that of a tRNA, with the 

N-terminal domain I representing the acceptor end and the C-terminal domain III resembling the 

anticodon stem of tRNA (Fig. 3D) (Choi & Choe, 2011; Hanawa-Suetsugu et al, 2004). Furthermore, 

most of the surface is negatively charged (Hanawa-Suetsugu et al, 2004). Comparison of EF-P 

structures from different organisms and within different asymmetric units indicates that domain I 
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can adopt different orientations relative to domain II and III (Choi & Choe, 2011). EF-P is universally 

conserved in all three domains of life; sequence and structure similarities of EF-P and its archaeal and 

eukaryotic orthologs called initiation factors 5A (aIF5A and eIF5A, respectively) indicate functional 

conservation among the bacterial, archaeal and eukaryotic orthologs (Park et al, 2010). Although the 

archeal and eukaryotic orthologs lack the C-terminal domain III of bacterial EF-P, 42% residues of 

Thermus thermophilus EF-P are conserved or similar in eIF5As and the structures of the remaining 

domains superimpose very well (Fig. 3D) (Hanawa-Suetsugu et al. 2004). Whether the discrepancy in 

domain numbers is the result of a deletion event in eukaryotes or a duplication event in bacteria is 

not known (Hanawa-Suetsugu et al, 2004).  

A C  E 
 
  
                                           
       I                                    II 
 
                                           III 

 

B D 

  

Fig. 3: Structures of EF-P/eIF5A, tRNA and the ribosome 
A) EF-P from E. coli illustrated as cartoon with electrostatic potential of the surface (PDB: 3A5Z). Domain 
numbering as indicated. B) tRNAfMet from T. thermophilus (PDB: 3HUY). C) eIF5A from Saccharomyces cerevisiae 
(PDB: 3ER0). D) Superposition of E. coli EF-P (black, PDB: 3A5Z), eIF5A from S. cerevisiae (purple, PDB: 3ER0) 
and initiator tRNA from T. thermophilus (grey surface, PDB: 3HUY). E) Ribosome-bound EF-P and initiator tRNA 
(red and blue, respectively; PDB: 3HUY) aligned onto ribosome-bound A- and P-site tRNAs (light and dark blue, 
respectively; PDB: 4v5d) from T. thermophilus. Figures were generated in PyMOL (https://www.pymol.org). 

 
Deletion strains in E. coli, Pseudomonas aeruginosa, Agrobacterium tumefaciens and Salmonella 

enterica serovar typhimurium suggest that EF-P is not essential in bacteria (Baba et al, 2006; Balibar 

et al, 2013; Peng et al, 2001; Zou et al, 2011). In yeast and higher eukaryotes eIF5A is essential and 

occurs in different tissue-specific isoforms (reviewed in (Park et al, 2010)). EF-P binds the ribosome in 

a 1:1 molar ratio (Aoki et al, 2008). A structural investigation showed that it spans both ribosomal 

subunits and binds between the E and P site (Fig. 3E) (Blaha et al, 2009). Its C-terminal domain III 

contains a conserved sequence motif (GDT) in a flexible loop (not resolved in the crystal structure) 

which was proposed to interact with the 30S ribosome or the mRNA (Choi & Choe, 2011). Its N-
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terminal domain I - in analogy to the acceptor end of tRNA - points towards the peptidyl transferase 

center and contacts the CCA end of the P-site tRNA (Blaha et al, 2009). At the very tip of domain I, 

EF-P and its orthologs are posttranslationally modified at a conserved lysine or arginine residue, 

notably by different enzymes and with different modifications (Fig. 4). In E. coli EF-P is modified at 

Lys34 with an R-β-lysine and a hydroxyl-group. The first step of the EF-P lysylation pathway (Fig. 4A) 

involves the conversion of S-α-Lys to R-β-Lys by a homolog of lysine 2,3 aminomutase (LAM) family 

named EpmB (YjeK) (Bailly & de Crecy-Lagard, 2010; Behshad et al, 2006; Roy et al, 2011). R-β-Lys is 

then activated by adenylation and the lysyl moiety is transferred to the ε-amino group of Lys34 of 

EF-P. This step is catalyzed by EpmA (alternative names: YjeA, PoxA or GenX), a homolog of the 

catalytic domain of class II Lys-tRNA synthetases (Lys-RS2) (Ambrogelly et al, 2010; Bailly & de Crecy-

Lagard, 2010; Navarre et al, 2010; Yanagisawa et al, 2010). A third modifying enzyme EpmC (YfcM) 

hydroxylates the conserved Lys34, presumably at its C5(δ) (Peil et al, 2012). The modification further 

extends EF-P into the direction of the peptidyl transferase center and a molecular model suggests 

that it could reach within 2 Å of the C-terminal amino acid of the P site-bound tRNA (Lassak et al, 

2015). Lysylation of EF-P is relevant for its catalytic proficiency in vivo and in vitro (Navarre et al, 

2010; Park et al, 2012; Zou et al, 2012).  

 

 

Fig. 4: Modification of EF-P, e/aIF5A 
A) EF-P modification pathway in E. coli. B) 
Rhamnosylated EF-P from S. oneidensis / P. 
aeruginosa. C) Hypusinylated a/eIF5A. 
Modifications are depicted in boxes. Figure 
adapted from (Doerfel & Rodnina, 2013) 

 
Notably, ~70% of bacteria do not encode EpmA or EpmB, suggesting that either EF-P remains 

unmodified or is modified by different enzymes in these organisms (Bailly & de Crecy-Lagard, 2010). 

Indeed, recent bioinformatics studies and biochemical data indicate that a wide range of EF-P 

modifications have evolved among different organisms: For example, Shewanella oneidensis and P. 

aeruginosa belong to a subclass of bacteria (~9%) with a strictly conserved Arg and do not encode 

EpmA, B, C but the glycosyltransferase EarP (Lassak et al, 2015; Rajkovic et al, 2015). In both 
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organisms EF-P is rhamnosylated by EarP at Arg32/34 (Fig. 4B), a position structurally equivalent to 

Lys34 of E. coli EF-P. Deletion of earP in S. oneidensis phenocopys strains where EF-P cannot be 

modified, indicating that, similar to the lysylation of E. coli EF-P, glycolysation is required to activate 

EF-P in these organisms (Lassak et al, 2015; Rajkovic et al, 2015). Furthermore, several bacterial 

species encode a gene cognate to deoxyhypusine synthase (DHS) which modifies eIF5A in eukaryotes 

(Brochier et al, 2004). In eukaryotes eIF5A Lys51 is transformed into hypusine [Nε-(4-aminobutyl-2-

hydroxy)-l-lysine] (Fig. 4C) by addition of a spermidine moiety by DHS and subsequent hydroxylation 

of the deoxyhypusine intermediate by deoxyhypusine hydroxylase (DOHH) (Park, 2006). In archaea 

aIF5A exists in both hypusinated and deoxyhypusinated forms (Park et al, 2010). While the 

modification in eIF5A is essential in eukaryotes (Park et al, 2010; Schnier et al, 1991), the deletion of 

EF-P or of the EF-P-modifying enzymes EpmA or EpmB but not EpmC in bacteria results in pleiotropic 

phenotypes reducing the general fitness: growth defects (Abratt et al, 1998; Balibar et al, 2013; 

Charles & Nester, 1993; Iannino et al, 2012; Kaniga et al, 1998; Peng et al, 2001), changed 

susceptibility to a wide range of external stressors such as antibiotics (Abratt et al, 1998; Balibar et al, 

2013; Bearson et al, 2011; Iannino et al, 2012; Navarre et al, 2010; Zou et al, 2012), motility defects 

(Bearson et al, 2011) and the reduction of the virulence potential (Charles & Nester, 1993; Iannino et 

al, 2012; Kaniga et al, 1998; Marman et al, 2014; Navarre et al, 2010; Peng et al, 2001) observed in a 

great range of organisms (E. coli, P. aeruginosa, S. typhimurium, Bacillus subtilis, A. tumefaciens, 

Shigella flexneri and Brucella abortus). 

EF-P was identified in 1975 as a protein which increases the yield of formylmethionyl-puromycin 

(fMet-Pmn) (Glick & Ganoza, 1975). In the following, EF-P was shown to stimulate poly-Phe/Lys 

synthesis and the translation of a natural mRNA (Aoki et al, 1997; Aoki et al, 2008; Ganoza & Aoki, 

2000; Ganoza et al, 1985; Glick & Ganoza, 1975; Glick & Ganoza, 1976; Green et al, 1985). However, 

the identified effects were relatively small (up to 2-fold) and their cellular relevance remained 

unclear. Based on biochemical and structural investigations, EF-P was proposed to position the 

tRNAfMet in the P site (Aoki et al, 2008; Blaha et al, 2009) or to promote the first peptide bond (Blaha 

et al, 2009; Glick & Ganoza, 1975). For a/eIF5A serveral functions have been proposed, e.g. to 

promote the formation of the first peptide bond, the translation of certain mRNAs, to affect peptide 

release and to influence cell-cycle progression as well as mRNA decay (reviewed in (Zanelli et al, 

2006)). Inactivation of eIF5A leads to accumulation of polysomes and increased ribosome transit 

times, which indicates that the factor is involved in translation elongation (Gregio et al, 2009; Saini et 

al, 2009). However, the cellular concentration of EF-P in the cell (1/10 of ribosomes) (An et al, 1980) 

suggests that its function is not required in general but is restricted to a specific translational event 

(Saini et al, 2009) which remained unknown. 
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1.3 Proline 

During the course of this thesis the function of EF-P in facilitating translation of polyproline motifs 

was discovered by us (Doerfel et al, 2013) and others (Ude et al, 2013) and was further validated for 

EF-P and eIF5A (Bullwinkle et al, 2013; Gutierrez et al, 2013; Peil et al, 2013; Woolstenhulme et al, 

2013) (see Discussion). For better understanding why efficient translation of proline runs needs EF-P, 

it is important to introduce stereo-electronic properties of proline. 

Proline is the only proteinogenic imino acid with its five-membered ring spanning the α-carbon (Cα) 

and the amino group. The cyclic side-chain limits the number of accessible conformations of the 

prolyl ring by restricting the torsion angle of the N–Cα bond (φ = -63 and -75). The prolyl ring can 

adopt two main conformations with the Cγ puckered away or towards the carboxyl group (exo or 

endo conformation, respectively; Fig. 5A) (Ramachandran et al, 1970). Furthermore, proline restricts 

the backbone conformation of neighboring residues (MacArthur & Thornton, 1991). It influences the 

torsion angle of the preceding peptide bond by allowing a 180° rotation around the peptide bond 

resulting in two distinct isomeric states named cis and trans (Fig. 5B) (Brandts et al, 1975; Grathwohl 

& Wuthrich, 1976; Pal & Chakrabarti, 1999; Reimer et al, 1998).  

 

Fig. 5: Steric properties of the prolyl ring 
A) Endo and exo puckered prolyl ring. B) Cis and trans isomers of proline with R and X representing the N- and C-
terminal peptide chain, respectively.  

 

While other proteinogenic amino acids sterically favor the trans conformation, cis and trans isomers 

of proline are almost isoenergetic (∆G ~0.7 kcal/mol difference) (Owens et al, 2007). However, 

isomerization is rather slow and kinetically unfavorable (∆G≠ ~20 kcal/mol) (Fischer et al, 1994). 

Notably, less than 10% of Xaa-Pro bonds in protein structures adopt the cis conformation (reviewed 

in (Dever et al, 2014; Yaron & Naider, 1993)). Due to its steric restrictions and its limited ability to 

participate in hydrogen bonding proline is rarely found in α-helical structures and not in β-sheets. 

When proline is not located in the first turn of an α-helix it produces a significant bent (Barlow & 

Thornton, 1988). Proline is often found in irregular structures such as β-turns, α-helical capping 

motifs and polyproline helices (Bhattacharyya & Chakrabarti, 2003; Chakrabarti & Pal, 2001; 

MacArthur & Thornton, 1991) illustrating proline’s impact on protein folding and secondary structure 

(Brandts et al, 1975; Craveur et al, 2013; Raleigh et al, 1992). Moreover, the conformation of the 

prolyl ring can influence the stability of secondary structures as demonstrated for collagen, which is 
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the most stable when its Pro-Pro-Gly repeats comprise an endo- followed by an exo-puckered proline 

which is strengthened by 4-R-hydroxylation of the middle proline residue (Berg & Prockop, 1973; 

Vitagliano et al, 2001). On the other hand, proline introduces structural flexibility due to its 

propensity to cis-trans isomerize; this phenomenon can mediate e.g. channel opening, as described 

for 5-hydroxytryptamine type 3 receptors (Lummis et al, 2005), and can regulate autoinhibition 

control of the eukaryotic Crk adaptor protein (Sarkar et al, 2007; Xia & Levy, 2014), protein 

dimerization (Jenko Kokalj et al, 2007; Solbak et al, 2010) and membrane binding (Evans & 

Nelsestuen, 1996) by providing isomer-dependent binding interfaces (reviewed in (Craveur et al, 

2013)).  

Despite or perhaps because of these properties defining its functional relevance, proline has a low 

reactivity in peptide bonds formation as peptidyl acceptor (Johansson et al, 2011; Pavlov et al, 2009) 

as well as peptidyl donor (Muto & Ito, 2008; Rychlik et al, 1970; Wohlgemuth et al, 2008): while other 

amino acids have a similar reactivity as P-site substrate (within a ~ 10 fold difference range among 

them) proline is ~700-fold slower than the fastest measured amino acid (Wohlgemuth et al, 2008). In 

line with its low reactivity, proline can induce ribosomal stalling at APP or WPP/P sequences during 

elongation (Tanner et al, 2009; Woolstenhulme et al, 2015; Woolstenhulme et al, 2013). In addition, 

in mammalian cells PPD and PPE were identified to induce ribosome accumulation (Ingolia et al, 

2011). Furthermore, C-terminal prolines in a nascent peptide reduce termination efficiency 

(Björnsson et al, 1996; Hayes et al, 2002; Sunohara et al, 2002; Tanner et al, 2009) and increase stop 

codon read-through (Mottagui-Tabar et al, 1994). Consistently, proline is statistically 

underrepresented at the -1 position of UAA stop codons in E. coli (Arkov et al, 1993). Finally, proline 

is the C-terminal residue of the TnaC leader peptide which induces translational stalling (Cruz-Vera et 

al, 2006) and unreactive Pro-tRNAPro in the A site is required for SecM-mediated stalling (Muto et al, 

2006). Notably, ribosome stalling upon synthesis of these two leader peptides involves interactions 

of the nascent chain with the ribosomal exit tunnel in addition to the presence of Pro-tRNAPro (Cruz-

Vera et al, 2006; Muto et al, 2006). Importantly, the amino acid and not the tRNAPro are essential for 

stalling (Hayes et al, 2002; Pavlov et al, 2009; Tanner et al, 2009). Possible explanations for proline’s 

poor reactivity in the A site are steric constraints originating from the cyclic prolyl ring and a reduced 

chemical reactivity of the secondary amine compared to the primary amine in all other proteinogenic 

amino acids (Pavlov et al, 2009). Because in solution Pro-tRNAPro has a similar reactivity compared to 

other aa-tRNAs (Hentzen et al, 1972), its poor reactivity as peptidyl-donor may derive exclusively 

from steric restrictions inherent to proline (Wohlgemuth et al, 2008) or induced by interactions with 

the ribosome. Thus, the conformational properties of proline may impose structural constrains on 

the positioning of proline, the nascent chain and the peptidyl-tRNA, thereby impairing the trajectory 

for nucleophilic attack (Hayes et al, 2002; Muto et al, 2006; Tanner et al, 2009). Notably, in model 
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peptides comprising a WPP motif  CH∙∙∙π interactions between the Cα-H of the first proline and the 

aromatic side chain of tryptophan  were reported to stabilize the Trp-cisPro-Pro conformation 

leading to a back-folded conformation (Ganguly et al, 2012) of this identified stalling motif (Tanner et 

al, 2009). Alternatively, proline may influence the ribosome conformation leading to slow peptide 

bond formation (Tanner et al, 2009). 

1.4 Aims of the thesis 

The primary aim of this study was to identify the function of EF-P in translation. Subsequent aims 

were to understand the reasons for proline-induced ribosome stalling and the mechanism of EF-P 

function in alleviating this stalling. 
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2 RESULTS 

2.1 The catalytic function of EF-P 

2.1.1 Initiation 
To test whether EF-P influences the recruitment of the initiator tRNA (fMet-tRNAfMet) during 

translation initiation or stabilizes fMet-tRNAfMet on the small ribosomal subunit to support IC 

formation, 30S initiation complex formation was monitored in the presence and absence of EF-P (Fig. 

6A). For this purpose, activated 30S subunits were mixed with mRNA, initiation factors, GTP and 

different concentrations of f[3H]Met-tRNAfMet and the formation of 30S ICs in the presence or 

absence of EF-P was quantified by nitrocellulose filtration followed by [3H] scintillation counting 

(Materials & Methods). These experiments demonstrated that EF-P influences neither the affinity of 

initiator tRNA (K1/2(without EF-P)= 0.081 µM; K1/2(with EF-P)= 0.084 µM) nor the efficiency of 30S IC formation 

(61 and 59% of 30S IC formation in the presence and absence of EF-P, respectively). This indicates 

that EF-P is not required for 30S IC formation in general. This is corroborated by a chase experiment 

where 30S ICs containing 3H-labeled fMet-tRNAfMet were mixed with excess of unlabeled fMet-

tRNAfMet. The following exchange of bound 3H-labeled initiator tRNA by unlabeled tRNA was virtually 

identical in the presence and absence of EF-P (Ingo Wohlgemuth, unpublished).  

 

 
 

Fig. 6: EF-P does not influence initiation 
A) 30S initiation complex formation as a function 
of fMet-tRNAfMet concentration. B) 70S Initiation 
complex formation in the absence of initiation 
factors and GTP. C) Initiation with leaderless 
mRNA (starting with AUG). Experiments depicted 
in A, B and C were obtained without (open 
symbols) and with (closed symbols) EF-P (3 µM). 

 
Finally, EF-P was also not found to have any influence on 70S IC formation in the absence of initiation 

factors and GTP (Fig. 6B), further supporting the notion that EF-P has no critical function in 
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translation initiation. To investigate whether EF-P has a function in non-canonical initiation 

pathways, initiation at an mRNA lacking the 5' Shine-Dalgarno sequence and immediately starting 

with the AUG codon was monitored. Initiation at this so called leaderless mRNA is regulated by the 

ratio of IF2 and IF3 with IF2 increasing and IF3 decreasing the efficiency of initiation (reviewed in 

(Moll et al, 2002)). Initiation at the leaderless mRNA in the presence of IF1, 2 and 3 was not affected 

by EF-P (Fig. 6C), indicating that EF-P is also not required in this initiation pathway. 

2.1.2 Elongation 

2.1.2.1 The P-site substrate 

To test whether EF-P acts in translation elongation, di-/tri-peptide formation with various P-site 

substrates and puromycin as A-site substrate in the presence and absence of EF-P was investigated 

(Fig. 7). If not stated otherwise all experiments were performed with lysylated and hydroxylated 

EF-P. Puromycin (Pmn; 3'-deoxy-N,N-dimethyl-3'-[(O-methyl-L-tyrosyl)amino]adenosine) is an 

antibiotic that mimics the acceptor arm of aa-tRNA and does not require mRNA decoding for 

productive binding to the ribosome (Katunin et al, 2002; Sievers et al, 2004). Accordingly, the 

chemistry of peptide bond formation can be monitored, as it is not masked by a slower preceding 

step (e.g. decoding and tRNA accommodation in the A site). To cover a broad range of amino acids 

with different reactivities (Wohlgemuth et al, 2008), fMet-tRNAfMet or fMet-Xaa-tRNAXaa with Xaa 

corresponding to Gly, Pro, Phe, Val, Trp, Lys, Arg, Gln, Glu and Asp were used as P-site substrates. In 

order to monitor effects on the affinity and reaction catalysis, subsaturating Pmn concentrations 

were used (Katunin et al, 2002).  

 

 

Fig. 7: Influence of EF-P on di- and tripeptide formation with Pmn 
Rates of peptide bond formation between fMet-tRNAfMet or fMet-Xaa-tRNAXaa and subsaturating Pmn, where Xaa 
stands for different amino acids indicated in single letter code, in the absence (white bars) or presence (black 
bars) of EF-P. The reaction was performed in buffer A at 37 °C. 

 
Purified initiation or post-translocation complexes (ICs or PTCs) were mixed with Pmn (Katunin et al, 

2002). The reaction was stopped after variable incubation times, the tRNA hydrolyzed and educts 

(fMet-Xaa) and products (fMet-Xaa-Pmn) were separated by reverse phase chromatography followed 

by their quantification based on 3H or 14C labeled amino acids using scintillation counting (Materials 

& Methods). The kinetic range of fMet-Xaa-Pmn formation spanned three orders of magnitude with 
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Xaa = Pro (kobs= 0.012 ± 0.001 s-1) being the slowest and Xaa = Arg/Gln (kobs= 22 ± 4 s-1) being the 

fastest P-site substrates (Table S1). The reactivity trends of the substrates are the same at saturating 

and subsaturating Pmn concentration (Wohlgemuth et al, 2008). In agreement with previous results 

(Glick et al, 1979; Saini et al, 2009), for most P-site substrates the reactions were not or only slightly 

stimulated by EF-P (up to 6-fold for fMet-Pmn, fMet-Gly-Pmn and fMet-Asp-Pmn formation). In 

contrast, fMet-Pro-Pmn synthesis was accelerated 85-fold by EF-P (Fig. 7, Table S1). fMet-Pro-tRNAPro 

is remarkably slow as peptidyl-donor compared to other P-site substrates (Muto & Ito, 2008; 

Wohlgemuth et al, 2008). The acceleration by EF-P rendered the rate comparable to that of other 

substrates and thus compatible with overall translation. This suggests a specific effect of EF-P in 

accelerating the reaction with an otherwise inefficient P-site substrate.  

2.1.2.2 The A-site substrate 

To analyze whether the effect of EF-P is observed also with native A-site substrates and whether it is 

sensitive to the A-site substrate identity, di- and tripeptide formation with different aminoacyl-tRNAs 

was monitored (Fig. 8, Table S2). Based on the hypothesis that EF-P accelerates peptide bond 

formation with poor substrates, the poor A-site substrates Pro-tRNAPro and Gly-tRNAGly (Johansson et 

al, 2011; Pavlov et al, 2009) were used. Phe-tRNAPhe was used for comparison. Ribosome complexes 

containing either fMet-tRNAfMet or fMet-Pro-tRNAPro in the P site were mixed with saturating ternary 

complex (TC) EF-Tu∙GTP∙aa-tRNA concentrations (Materials & Methods). Saturating concentrations 

were chosen to reflect the potential differences in the rates of peptide bond formation, rather than 

preceding steps during decoding. Time-resolved di-/tripeptide synthesis was monitored in the 

presence and absence of EF-P by quench flow technique. Amino acids, di- and tripeptides were 

separated by reverse phase chromatography and quantified by scintillation counting of 3H- and 14C-

labeled amino acids (Materials & Methods).  

 

 
Fig. 8: Influence of EF-P on di- and tripeptide 
formation with native A-site substrates 
Rates of peptide bond formation between fMet-
tRNAfMet (fM) or fMet-Pro-tRNAPro (fMP) in the P 
site and Gly-tRNAGly, Phe-tRNAPhe, or Pro-tRNAPro 
(G, F, and P, respectively) in the A site in the 
absence (white bar) and presence (black bar) of 
EF-P. Reaction was performed in buffer B at 37 °C.  

While there was almost no effect (less than two-fold) for most combinations, EF-P enhanced 

formation of fMet-Pro-Gly (fMP-G) and fMet-Pro-Pro (fMP-P) by 8- and 16-fold, respectively (Fig. 8, 

Table S2). This indicates that indeed specific amino acid combinations in the P and A sites require 

EF-P for rapid peptide bond formation. The acceleration by EF-P was particularly strong for the very 
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slow combinations Pro-Gly and Pro-Pro. Notably, the combination of two consecutive prolines is 

known to induce ribosome stalling (Tanner et al, 2009). This suggests that the acceleration by EF-P 

promotes the rapid incorporation of these otherwise unfavorable amino acid combinations. 

2.1.2.3 Sequence context 

To further investigate the amino acid sequence context which requires EF-P for efficient translation, 

the sequences fMPF, fMPGF, fMPPF, fMPPPF, fMPPGF and fMPPG were translated in the presence 

and absence of EF-P (Fig. 9). Based on the previous results, combinations of poor A- and P-site 

substrates were chosen. By contrast, Phe-tRNAPhe is a good A-site substrate (Johansson et al, 2008; 

Wohlgemuth et al, 2010) which simplifies chromatographic separation of educts and products due to 

its hydrophobic character and enables the quantification of full-length peptides such as fMPPF and 

fMPPPF. In contrast to the previous experimental setup the reaction was started by mixing initiation 

complexes with EF-G and ternary complexes corresponding to the respective mRNA. Thus, the 

reaction comprises all steps of multiple consecutive elongation cycles. In contrast to the previous 

experiment, subsaturating concentrations of TCs were used to reflect more in-vivo like conditions. 

The translation kinetics varied substantially depending on the peptide sequence (Fig. 9, Table 1). 

 

Fig. 9: Oligopeptide formation in the presence and absence of EF-P 
Time-resolved formation of model oligopeptides in a reconstituted translation system in the absence (open 
circles) and presence (closed circles) of EF-P. For rates, see Table 1. Model peptides are indicated in the left corner 
of each panel and were quantified based on the incorporation of the last amino acid. 

 
In contrast to the previous assay where Pro-Gly formation was stimulated by EF-P (Fig. 8), synthesis 

of fMPF and fMPGF were not or only marginally influenced by EF-P. This could be explained by an 

EF-P independent step such as tRNA binding/accommodation and translocation which became rate-

limiting under the new conditions. The synthesis of fMPPF was 30-fold slower compared to synthesis 

of fMPF which might be caused by the combination of poor A- and P-site substrates or indicate that 
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the reactivity of a Pro can be reduced by a preceding Pro (see also section 2.2.1.4). The reaction was 

accelerated approximately 5-fold by EF-P which reduced the rate difference between fMPPF and 

fMPF considerably (from 30- to 9-fold).  

In the absence of EF-P only small amounts of fMPPGF, fMPPPF and fMPPG peptides were synthesized 

at slow rates (Fig. 9, lower panel). Notably, the amount of final product could not be increased by 

longer incubation times indicating either very strong stalling or the occurrence of side reactions such 

as drop-off of the tRNA, frameshifting or inactivation of ribosomes/TC (see below). The addition of 

EF-P accelerated the reaction and increased the amount of final products significantly. These results 

show that the above identified sequences PPP and PPG are targets for EF-P in a more complex 

translation system. 

Table 1: Oligopeptide formation 

 
kobs, s

-1 acceleration 
 no EF-P EF-P by EF-P 
fMPF 4.2 ± 0.6 6 ± 1 1.4 
fMPGF 1.5 ± 0.3 2.0 ± 0.3 1.3 
fMPPF 0.14 ± 0.03 0.7 ± 0.1 5 
fMPPG 0.02 ± 0.01 0.56 ± 0.04 28 
fMPPGF 0.03 ± 0.01 0.36 ± 0.04 12 
fMPPPF 0.015 ± 0.004 0.30 ± 0.06 20 
IC (0.2 µM final) vs. TC (2 µM each) in the presence of EF-G (1 µM) ± EF-P (3 µM). 
The reactions were performed in buffer B at 37 °C. 

 

2.1.2.4 Proline induced stalling leads to peptidyl tRNA dissociation 

Short peptidyl-tRNAs tend to dissociate from the ribosome (Heurgue-Hamard et al, 1998; Karimi & 

Ehrenberg, 1996; Karimi et al, 1998). Because fMPPGF, fMPPPF and fMPPG peptide translation was 

very slow (Table 1), the low yield of final product could be due to a drop-off of the peptidyl-tRNA 

from the ribosome prior to incorporation of the last amino acid. To test this possibility, the stability 

of peptidyl-tRNA binding to the ribosome during the synthesis of fMPPG and fMFFF was monitored 

over time (section 2.1.2.3) by nitrocellulose filter binding (Materials & Methods).  

For fMPPG the ratio of fMPP/ribosome decreased with time in the absence of EF-P (Fig. 10). This 

indicates a spontaneous dissociation of the fMPP-tRNAPro from the ribosome which reduces the yield 

of fMPPG peptide. With EF-P the ratio fMPP/ribosome stayed constant leading to efficient fMPPG 

synthesis. In the control with fMFFF-tRNAPhe, peptidyl-tRNA remained stably bound to the ribosome, 

even in the absence of EF-P. These data indicate that EF-P can stabilize the peptidyl-tRNAPro in the P 

site and thus extends the time window for peptide bond formation between the poor substrates 

fMetProPro-tRNAPro and Gly-tRNAGly (see also sections 2.2.1-2.2.3). 
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2.1.2.5 EF-P alleviates Pro-induced ribosome stalling in longer model peptides 

To test whether the identified Pro-containing sequences can induce ribosome stalling in a larger 

sequence context and whether stalling can be alleviated by EF-P, the in-vitro translation of the model 

protein PrmC was investigated (Fig. 11). For this purpose, mRNAs encoding PG, PP, PPG, and PPP 

sequences at positions 19-22 of a 75 amino acids (aa) long N-terminal fragment of the protein PrmC 

were engineered. Initiation complexes were prepared using the mRNA of the desired sequence and 

fluorescence-labeled BodipyFL-Met-tRNAfMet (BOF-Met-tRNAfMet). The reaction was started by mixing 

ICs with EF-Tu·GTP, total aa-tRNAs and EF-G. The translation products were separated by SDS-PAGE 

and visualized by BOF fluorescence detection (Materials & Methods). To estimate the length of the 

predominant peptide products and thus the position of pause sites, PrmC peptide markers of 

different length were generated and visualized on the same SDS-PAGE. 

Wild type prmC, which contains no potential stalling site, was rapidly translated to the full-length 

product independently of EF-P (Fig. 11). Synthesis of PrmC containing a Gly residue after the native 

Pro20 was slowed down as visualized by the appearance of a peptide of approx. 20 aa in length. 

However, this translational pausing was transient and independent of EF-P. Instead, two consecutive 

Pro residues at position 19 and 20 induced a stronger pausing event which was less pronounced in 

the presence of EF-P. When PPG or PPP motifs were introduced into the sequence, translation was 

strongly affected: in the absence of EF-P these sequences led to robust stalling with essentially no 

full-length product formation. In the presence of EF-P translation proceeded without remarkable 

pausing events, resulting in the formation of the full-length product. 

 

 
Fig. 10: Drop-off of peptidyl-tRNA from the ribosome 
Ribosome-bound fraction of short peptidyl-tRNAs 
resulting from translation of fMPPGF in the absence 
(white bars) or presence (black bars) of EF-P (3 µM) or 
of fMFFF in the absence of EF-P (gray bars). Peptides 
were labeled with f[14C]Met and [14C]Pro (fMPPG) or 
f[3H]Met and [14C]Phe (fMFFF). Error bars represent 
standard deviations (SD) from three replicates. 
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Fig. 11: EF-P prevents ribosome stalling on PPG and PPP sequences engineered into PrmC. 
Translation of the N-terminal domain of PrmC (75 amino acids) with wild-type (wt) or mutant sequences 
containing PG, PP, PPG or PPP in the absence (left time course) or presence (right time course) of EF-P. Peptides 
were separated by SDS-PAGE and visualized by the fluorescence of BOF attached to the N-terminus of the 
peptides. M1 and M2 are peptide markers for PrmC fragments of the indicated number of amino acids. 

 

2.1.2.6 Ribosomes stall at PP/G and can be rescued by EF-P 

To identify the exact stalling position upon translation of a PPG motif the translation of PPG 

containing prmC was repeated in the absence of EF-P with radioactively labeled [3H]Gly-tRNAGly and 

[14C]Pro-tRNAPro (section 2.1.2.5, Materials & Methods). This allows quantifying the amount of proline 

and glycine residues in relation to each other at a specific time point of translation (90 s). To 

determine the ratio of proline and glycine residues bound to the P- and A-site tRNAs, stalled 

ribosome-nascent chain complexes were purified by size exclusion chromatography (SEC) (Fig. 12 A). 

To determine the amino acid composition of the nascent peptide, the peptide was hydrolyzed from 

its tRNA and separated from single amino acids by HPLC (Materials & Methods). The ratio Gly:Pro 
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bound to the ribosome was 0.47 which corresponds to one glycine and two proline residues and is in 

good agreement with a ribosome stalling at the PPG sequence (Fig. 12B). Notably, a faint band 

corresponding to 14% of expected full-length product was quantified on the translation gel after 100 

s (Fig. 11). Considering that the entire peptide contains four Gly residues, the Gly:Pro ratio of 0.47 

would correspond to 14% PPGGGG (full-length product), 38% PPG and 48% PP bound to the 

ribosome. In the nascent peptide the Gly:Pro ratio was 0.26 (Fig. 12B) and clarifies the distribution of 

Pro and Gly residues bound to P- and A-site tRNAs: considering the 14% full-length peptide formed at 

100 s the Gly:Pro ratio in the remaining stalling peptide is 0:2 corresponding to two proline and no 

glycine residues. Thus, ribosome stalling occurs with a peptidyl-ProPro-tRNAPro in the P site and Gly-

tRNAGly in the A site. These data show that EF-P facilitates peptide bond formation involving the poor 

substrates Pro and Gly in a larger sequence context thereby alleviating translational stalling at 

polyproline sequences. 

 

 

 

Fig. 12: Identification of the stalling site in PrmC  
A) Chromatographic separation of a ribosome-
nascent chain complex stalled during synthesis of PPG 
containing PrmC from TC and free aa-tRNA by 
gelfiltration. Elution profile (black line); retention of 
ribosome-bound [14C]Pro (grey bars) and [3H]Gly 
(black bars). B) Gly/Pro stoichiometry on the 
ribosome (70S) and in the nascent chain (NC). 
According to the sequence PPG the stoichiometry 
Gly/Pro should be 0.5 or less if Gly is not 
incorporated. The experiment was performed and 
analyzed together with Ingo Wohlgemuth. 

To test whether stalled ribosomal complexes could be rescued by EF-P, translation of PrmC 

containing a PPP motif was monitored in the absence of EF-P, in the presence of EF-P and with 

delayed addition of EF-P, after robust stalling had occurred (Fig. 13). In the absence and presence of 

EF-P translation proceeded as seen in Fig. 11, with robust stalling in the absence of EF-P and efficient 

translation of full-length peptide in the presence of EF-P. The delayed addition of EF-P alleviated 

ribosome stalling, such that a considerable amount of full-length product was synthesized within 20 

s. In line with the observation that peptidyl-tRNA drop-off decreases for longer peptides (Heurgue-

Hamard et al, 1998), the ~20 amino acids-long peptidyl-tRNAPro appears to remain bound to the 

ribosome. Hence, binding of EF-P to the stalled ribosomal complex restores translation. This also 

shows that the ribosomes do not undergo inactivation upon stalling. 
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Fig. 13: Rescue of stalled ribosomes by EF-P 
Translation products of mutated prmC encoding a PPP motif were separated on SDS-PAGE. The translation was 
performed in the absence and presence of EF-P as well as with a delayed addition of EF-P after 100 s of reaction 
without EF-P, as indicated. 

 

2.1.2.7 EF-P enhances synthesis of E. coli proteins containing polyproline motifs 

Proline-induced ribosome stalling is strongly affected by the amino acid sequence context (Peil et al, 

2013; Starosta et al, 2014; Tanner et al, 2009; Woolstenhulme et al, 2013). Hence, the question 

arises whether native proteins containing polyproline stretches evolved sequences which reduce 

stalling at polyproline motifs or whether their synthesis relies on EF-P. Sequence analysis of E. coli 

K12 genes revealed that ~ 100 E. coli proteins contain three or more consecutive prolines and ~180 

contain at least one PPG motif. To test whether EF-P is required for efficient synthesis of these 

proteins, the synthesis of TonB, YafD (75 amino acid long N-terminal fragment), Rz1 and AmiB (1-159 

aa) (Fig. 14) as well as EspfU (1-154 aa), FlhC (1-94 aa) and Flk (1-87 aa) was investigated (Fig. 15), all 

containing polyproline motifs. Translation and analysis were performed as described for PrmC 

(section 2.1.2.5) but individual peptide markers were used for each protein. 

In all cases translation in the absence of EF-P stalled at positions corresponding to the polyproline or 

PPG motifs. The pausing time correlated with the length of the polyproline stretch with moderate, 

transient pausing at PP, PPP or PPG (TonB, YafD, EspfU) and strong stalling at 5-8× Pro (Rz1 or AmiB) 

which did not permit formation of any full-length product (Fig. 14). 

EF-P prevented ribosome stalling or strongly decreased the pausing time (Fig. 14 and Fig. 15, right 

panel). Translational pausing at positions other than the polyproline motifs was independent of EF-P. 

These data show that EF-P is specifically required to prevent ribosome stalling at polyproline 

stretches in the tested proteins and thus leads to efficient synthesis of full-length native proteins in 

vitro.  
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Fig. 14: EF-P alleviates PPP/PPG-induced stalling during synthesis of native E. coli proteins 
Translation products of TonB (239 aa), YafD (75 aa from the N-terminus), Rz1 (62 aa), and AmiB (159 aa from the 
N-terminus) were separated by SDS-PAGE. M3, and M4, peptide markers containing TonB fragments of the 
indicated lengths. M5, M6, and M7, peptide markers of the indicated lengths of YafD, Rz1, and AmiB sequences, 
respectively. The sequence of the respective protein is shown below each gel. 
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Fig. 15: In-vitro translation of proteins containing polyproline stretches 
Translation products of EspfU (1-154 aa), FlhC (1-94 aa) and Flk (1-87 aa) were separated on SDS-PAGE. M8, 9, 10 
and 11 correspond to peptide markers of the indicated length of EspfU, FlhC and Flk respectively. The sequence of 
the respective protein is shown below each gel. 

 

2.1.2.8 Stalling is mainly caused by the Pro moiety of Pro-tRNAPro 

Peptidyl transfer to Pro-tRNAPro is similar for the Pro codons CCA, CCU and CCG when exposed in the 

A site but two times slower for CCC (Pavlov et al, 2009). Additionally, tRNA isoacceptors have 

different abundance (Dong et al, 1996). Thus, proline-induced stalling might be codon-dependent i.e. 

caused by variable codon-anticodon interactions or caused by starvation of the tRNA isoacceptor 

corresponding to the mRNA codon exposed in the A site. To investigate these possibilities, four prmC 

constructs were generated containing a PPP motif encoded by a cluster of one of the four Pro-

codons. If proline-induced stalling depends on the Pro codon or the tRNA isoacceptor, the synthesis 

pattern should differ in the absence of EF-P. If the EF-P function depends on one of these factors the 

translation of the full-length product should differ for the prmC constructs. The time-resolved in-vitro 

translation of these constructs in the presence and absence of EF-P revealed an almost identical 

pattern of stalling and full-length product formation (Fig. 16A). In order to extract the rates of 
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product formation, bands referring to stalling and full-length products were quantified 

densiometrically (Fig. 16B,C). Stalling-products in the absence of EF-P were formed at similar rates 

with all codons (0.04 ± 0.004 s-1), indicating that the stalling efficiency was independent of the codon 

encoding proline. In the presence of EF-P, also the full-length products were formed at similar rates 

with all codons (0.03 ± 0.07 s-1) suggesting that EF-P recognized all isoacceptors of tRNAPro. 

 

Fig. 16: In-vitro translation of PrmC containing a PPP motif encoded by different Pro-codons 
A) Translation products of PrmC containing a PPP motif, with Pro being encoded by three CCG, CCC, CCU or CCA 
codons in the presence and absence of EF-P. M1 and M2 are PrmC peptide markers of the indicated lengths. B,C) 
Translation kinetics monitored in (A), visualized by quantification of stalling peptides without EF-P (B) and full-
length products in the presence of EF-P (C). The density of product bands were normalized to the total density in 
the respective line and shown relative to the band intensity at 100 s. 

 
To analyze the influence of the tRNA identity on peptide bond formation with proline, tRNAPhe was 

misaminoacylated with proline (Materials & Methods) and the reactivity of Pro-tRNAPhe in fMet-Pro-

Pmn (fMP-Pmn) formation was analyzed (Fig. 17). To avoid interference of the misaminoacylated 

tRNA in decoding (Pavlov et al, 2009) PTCs with f[3H]Met-[14C]Pro-tRNAPhe or f[3H]Met-[14C]Pro-

tRNAPro in the P-site were mixed with subsaturating Pmn and fMP-Pmn formation was monitored 

(Fig. 17, Materials & Methods). Due to low quantities of misaminoacylated tRNA, the PTCs were used 

without purification. However, the usage of unpurified complexes did not influence translation 

kinetics measured in the absence of EF-P, as rates of both controls (purified or unpurified PTCs 

containing fMet-Pro-tRNAPro) were virtually identical (0.015 ± 0.001 s-1 and 0.014 ± 0.001 s-1, 

respectively) and were consistent with rates determined previously (section 2.1.2.1). Surprisingly, 

fMet-Pro-Pmn formation with tRNAPhe followed two exponential kinetics with a dominant phase 

(kobs= 0.02 s-1, 81%) and a minor phase (kobs= 0.7 s-1, 19%) which could be explained by inhomogeneity 

of the complexes. The weighted average rate, corresponding to the overall half-time of the reaction 
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(kobs= 0.14 s-1) was 10-fold faster than that of the control reaction fMP-Pmn with tRNAPro, showing 

that tRNAPhe increased the rate of peptide bond formation with proline. However, the rate of fMP-

Pmn formation from tRNAPhe was still 30-fold slower than the rate of fMF-Pmn formation (kobs= 4.2 s-

1), suggesting that the poor reactivity of Pro-tRNAPro is at least in part caused by the amino acid. 

Peptide bond formation with Pro-tRNAPhe as A-site substrate is ~7-fold slower than with Pro-tRNAPro 

(Pavlov et al, 2009). Thus, the reduced reactivity of Pro-tRNAPro compared to Pro-tRNAPhe as P-site 

substrate is compensated by its increased reactivity as A-site substrate. These results suggest that 

the main reason for stalling at PPP motifs is not the tRNA identity but the amino acid. Addition of EF-

P accelerated both phases of fMP-Pmn formation with misaminoacylated tRNA by about 4-fold. 

However, compared to an 85-fold increase in the rate with tRNAPro this effect is small. Furthermore, 

the weighted average rate in the presence of EF-P (kobs= 0.5 s-1) was two-fold slower than EF-P-

catalyzed fMP-Pmn formation with tRNAPro (kobs= 1.1 s-1). This might be rationalized by a reduced 

affinity of EF-P to tRNAPhe.  

 

 
Fig. 17: Influence of the tRNA identity on peptide 
bond formation  
Tripeptide formation between fMet-X-tRNAY (0.15 µM) 
and subsaturating Pmn (1 mM), with X-tRNAY being: 
Pro-tRNAPhe, unpurified PTC (white circles); 
Pro-tRNAPhe, unpurified PTC + EF-P (black circles); 
Pro-tRNAPro, unpurified PTC (grey circles); 
Pro-tRNAPro, purified PTC (white triangles);  
Pro-tRNAPro, purified PTC + EF-P (black triangles); 
Phe-tRNAPhe, purified PTC (white squares). 

 

Table 2: Influence of tRNA identity on the rate of peptide bond formation 

X,Y kobs, s
-1 acceleration 

 no EF-P EF-P by EF-P 
Pro-tRNAPro 0.014 ± 0.05 1.1 ± 0.1 79 
Pro-tRNAPhe 0.14 ± 0.05 

[0.02 ± 0.003 (81%); 0.7 ± 0.3 (19%)] 
0.5 ± 0.2 

[0.07 ± 0.007 (85%); 2.8 ± 1.5 (15%)] 
3.6 

(3.5; 4) 
Phe-tRNAPhe 4.2 ± 0.3   
fMet-X-tRNAY (0.15 µM) vs. subsaturating Pmn (1 mM) ± EF-P (3 mM). Reaction performed in buffer A at 37 °C. 

 

2.1.3 Release 
In addition to being a poor substrate in the peptidyl transferase reaction, proline reduces the 

efficiency of RF-catalyzed translation termination (Hayes et al, 2002; Mottagui-Tabar et al, 1994; 

Tanner et al, 2009). Furthermore, Pro is statistically underrepresented at the -1 position of UAA stop 

codons in E. coli (Arkov et al, 1993). To investigate whether EF-P influences termination efficiency at 

UAA stop codons following a proline codon, posttranslocation complexes with f[3H]Met-[14C]Pro-

tRNAPro in the P site and UAA codon in the A site were mixed with release factor 1 (RF1) in the 

absence and presence of EF-P (Fig. 18). The termination reaction was monitored by nitrocellulose 
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filtration (Materials & Methods). In the presence and absence of EF-P the kinetics of peptide release 

followed single exponential behavior (Fig. 18). The rate of peptide release by RF1 ((1.9 ± 0.3) ×10-3 s-1) 

was increased by EF-P ((5.8 ± 0.7) ×10-3 s-1) approximately three-fold. Comparable results were 

obtained with yeast eIF5A, which stimulates translation termination by two-fold (Saini et al, 2009). 

Compared to the almost 90-fold effect of EF-P on translation elongation, its influence on termination 

appears negligible. This interpretation is in line with reduced termination efficiency with C-terminal 

proline in vivo, i.e. with EF-P present (Hayes et al, 2002; Tanner et al, 2009). Thus, ribosomes trapped 

at Pro-stop cannot be released by EF-P but require the SmpB/tmRNA rescue mechanism (Hayes et al, 

2002; Tanner et al, 2009).  

 

 
Fig. 18: EF-P in termination 
RF1-catalyzed peptide release at posttranslocation 
complexes with fMet-Pro-tRNAPro in the P site and 
UAA stop codon exposed in the A site in the 
absence (open symbols) and presence (closed 
symbols) of EF-P. 

 

 

2.2 Investigation of the catalytic mechanism of EF-P 

The findings described in the previous sections raise two central questions: first, what makes proline 

a particularly poor substrate for peptide bond formation and second, how does EF-P facilitate 

peptidyl transfer with proline? In the following these question will be addressed by different 

approaches: 

In section 2.2.1, the functions of EF-P in stabilizing the peptidyl-tRNA and accelerating peptide bond 

formation with poor substrates are further characterized and the importance of EF-Ps modification is 

investigated. In principle, EF-P can be considered as being composed of two functional parts, the EF-P 

body and the modification. Hence, functions performed by unmodified EF-P can be assigned to the 

body, while the functional difference of modified and unmodified EF-P can be assigned to the 

modification. Thus, comparison of the catalysis by modified and unmodified EF-P may allow drawing 

conclusions about these functional parts. 

In section 2.2.2 the mechanism of EF-P is investigated. In addition to stabilization of the peptidyl-

tRNA, the catalysis by EF-P may stem from positioning of the substrates/catalytic groups in an active 

conformation or from an active participation in the reaction chemistry, i.e. by donating functional 

groups into the active site. These questions are addressed by experiments that evaluate temperature 
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and pH dependences which should give insights in the activation parameters and involvement of EF-P 

in the chemistry step. 

Section 2.2.3 deals with the question of whether the poor reactivity of Pro-tRNAPro in peptide bond 

formation is due to its intrinsic reactivity or induced by the ribosome. To investigate these 

possibilities the stereo-electronic properties of proline are modified by different substituents on the 

prolyl ring and subsequently compared to the changed reactivity in peptide bond formation and 

hydrolysis/aminolysis in solution. 

2.2.1 The function of the EF-P body and the modification 

2.2.1.1 EF-P modification increases its catalytic proficiency 

In E. coli EF-P is posttranslationally modified at Lys34 which points into the direction of the peptidyl 

transferase center (Fig. 3E and Fig. 4, section 1.2) (Ambrogelly et al, 2010; Aoki et al, 2008; Peil et al, 

2012; Roy et al, 2011; Yanagisawa et al, 2010). The modification is crucial for the factor’s function 

(Bearson et al, 2011; Charles & Nester, 1993; Iannino et al, 2012; Navarre et al, 2010; Park et al, 

2012; Peng et al, 2001).  

To investigate the functional importance of the modification, the catalysis by EF-P in its modified and 

unmodified form was characterized. For this purpose, expression constructs containing either the 

gene encoding EF-P alone or EF-P together with different combinations of genes coding for EF-P-

modifying enzymes (EpmA, B, C) were used (kindly provided by Frank Peske and modified by 

Christina Kothe, MPI-BPC, Göttingen; Materials & Methods). When EF-P is overexpressed alone, the 

protein remains mostly unmodified, presumably due to insufficient amounts of the modifying 

enzymes. Accordingly, only upon co-expression of EF-P with EpmA and EpmB the ratio of EF-P and its 

modifying enzymes is restored, which leads to efficient lysylation of EF-P (Ambrogelly et al, 2010; 

Bailly & de Crecy-Lagard, 2010; Doerfel et al, 2013; Park et al, 2012; Roy et al, 2011; Yanagisawa et al, 

2010). Hydroxylation of Lys34 of EF-P is achieved by the additional co-expression of EpmC (Peil et al, 

2012). Unmodified, lysylated and lysylated/hydroxylated EF-P were purified by affinity 

chromatography using an N-terminal histidine tag (Materials & Methods) and the modification state 

was verified by mass spectrometry (carried out by Ingo Wohlgemuth, MPI-BPC, Göttingen, Fig. S1). 

Comparison of lysylated/hydroxylated EF-P obtained by recombinant overexpression and by native 

purification from E. coli revealed that the modification state and the catalytic proficiency of the 

factor were independent of the purification method (Fig. S1, Fig. 19C). No difference between 

lysylated and lysylated/hydroxylated EF-P in facilitating fMPPG synthesis was observed (Fig. 19C), in 

agreement with the absence of a phenotype for the EpmC gene deletion in S. typhimurium 

(Bullwinkle et al, 2013); therefore the function of EF-P hydroxylation was not further investigated. 

Instead, all assays were performed either with unmodified or lysylated/hydroxylated EF-P. Functional 
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activity of unmodified EF-P was tested in the in-vitro translation system (described in section 2.1.2.5) 

and further characterized using the tetrapeptide formation approach (described in section 2.1.2.3). 

In the in-vitro translation assay, unmodified EF-P facilitated synthesis of PrmC with an internal PPG 

motif, albeit less efficiently compared to modified EF-P (Fig. 19A, B). Pausing at PPG prior to 

continuation of synthesis of the full-length protein was longer in the presence of non-modified EF-P 

(+10 s) than with the modified EF-P. After overcoming the stalling, full-length peptide formation was 

essentially the same with unmodified and fully modified EF-P (0.029/0.03 ± 0.004 s-1, respectively) 

which is in agreement with the notion that synthesis of proline-free sequences is independent of 

EF-P.  

 

Fig. 19: Effect of the EF-P modification on the translation of the PPG motif 
A) Synthesis of PrmC (75 aa from N-terminus) containing a PPG sequence. Synthesized peptides were separated by 
SDS-PAGE and visualized by fluorescence imaging. B) Quantification of full-length product seen in (A) obtained 
without EF-P (white circles), with unmodified EF-P (grey circles) and fully modified EF-P (black circles). The density 
of the product band was normalized to the total density in the respective lane and presented in arbitrary units 
(a.u.). C) fM-PPG synthesis without EF-P (white circles), with unmodified EF-P (grey circles), with lysylated EF-P 
(black triangles) and lysylated/hydroxylated EF-P (overexpressed: black circles, native: white triangles).  

 
To identify the reason for the reduced activity of unmodified EF-P, the synthesis of the tetrapeptide 

fMPPG was investigated with modified and unmodified EF-P (Fig. 19C). This assay provides the 

precise quantification of the contribution of unmodified EF-P, as the translated sequence comprises 

the bona fide stalling site. Furthermore, the influence on tRNA stabilization/drop-off can be 

investigated. The reaction was performed as described in section 2.1.2.3 by mixing ICs with EF-G and 

TC(P,G) and monitors the time-resolved formation of the tetrapeptide. The rate of fMPPG synthesis 

in the presence of unmodified EF-P (0.12 ± 0.03 s-1) was intermediate between the rates obtained 

without and with modified EF-P (0.02 ± 0.01 s-1 and 0.56 ± 0.04 s-1, respectively) confirming a reduced 

activity of unmodified EF-P (Fig. 19C). Notably, unmodified EF-P strongly increased the yield of 

fMPPG peptide compared to the uncatalyzed reaction from ~10% to 74% of full-length product 
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obtained with modified EF-P. This indicates that unmodified EF-P is able to prevent peptidyl-tRNA 

drop-off from the ribosome. Apparently, the EF-P body can stabilize the peptidyl-tRNA in the P site 

(Fig. 19), while the modification additionally increases the catalytic effect of EF-P. 

To characterize the functional contribution of the EF-P body and the modification in more detail, the 

EF-P concentration dependence of unmodified and modified EF-P on fMPPG formation was 

investigated (Fig. 20, Table S3). The concentration dependence of the rates as well as of the reaction 

end level yielded hyperbolic curves  (Fig. 20C, D) that could be fitted to the Michaelis Menten 

formula extended by an offset that reflects the EF-P-uncatalyzed reaction 𝑌(𝐸𝐸−𝑃) = 𝑌𝑚𝑚𝑚∗[𝐸𝐸−𝑃]
𝐾1/2+[𝐸𝐸−𝑃]

+ 𝐶 

(Fersht, 1999). 

 

Fig. 20: Impact of the EF-P modification state on its catalytic proficiency 
A,B) Time courses of synthesis of the tetrapeptide fMPPG with increasing amount of unmodified (A) und lysylated 
/hydroxylated (B) EF-P. C) Yield of fMPPG peptide as a function of EF-P concentration with unmodified (grey 
circles) or modified (black circles) EF-P. D) Rate of fMPPG synthesis as a function of the concentration of 
unmodified (grey circles) and modified EF-P (black circles). Error bars represent SD. For exact values see Table S3. 
 

Table 3: EF-P dependence of fMPPG synthesis 

EF-P End level rate 

 
max end level/70S KM, µM kcat, s

-1
 KM, µM 

unmodified EF-P 0.37 ± 0.03 2.4 ± 0.5  0.12 ± 0.03 - 
modified EF-P 0.39 ± 0.02 0.08 ± 0.02 0.65 ± 0.02 0.27 ± 0.04 
fMPPG synthesis with modified and unmodified EF-P.  

 

As observed in the previous experiments, the maximal yield of fMPPG tetrapeptide was basically the 

same for unmodified and modified EF-P (Fig. 20C, Table 3). However, the EF-P concentration at which 
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50% of the maximum yield was reached was 30-fold higher with unmodified EF-P (Table 3). 

Furthermore, the maximal rate obtained with fully modified EF-P was approx. five-fold faster than 

that obtained with unmodified EF-P (Fig. 20D, Table S3). The KM obtained by fitting of the rate-EF-P 

could only be determined for modified EF-P because rate-acceleration with unmodified EF-P was too 

little. Comparison of the KM for the reaction rate and the end-level reveals that higher EF-P 

concentration is required for saturating the rate of the reaction compared to the end level.  

Upon tetrapeptide formation multiple steps are monitored (fM → fMP → fMPP → fMPPG) (Fig. 21).  

 

Fig. 21: Model for fMPPG formation 

EF-P is an activator which catalyzes every step of peptide bond formation and thus it has to be 

saturating for all steps to monitor kcat. The last step however is particularly slow and causes ribosome 

pausing /peptidyl-tRNA dissociation. To yield the maximal amount of product it might thus only be 

required to saturate the last very slow step which might explain why the KM is different when rate or 

product yield is monitored. Thus, modification of EF-P increased the apparent affinity of the factor to 

the stalling complex 30-fold. Furthermore, the kcat is increased five-fold. The differences on the KM 

and kcat together led to a > 100 fold difference of the kcat/KM demonstrating that EF-P modification 

increases the catalytic proficiency of the factor. 

2.2.1.2 Slow peptide bond formation competes with the translocation process 

Upon tetrapeptide formation (fM-PPG), fMet-Pro-Pro-tRNAPro dissociated from stalled ribosomes in 

the absence of EF-P prior to glycine incorporation (section 2.1.2.3). EF-P prevented peptidyl-tRNA 

dissociation, presumably by stabilizing the P-site tRNA (section 2.1.2.4). tRNA dissociation could be 

caused by a spontaneous dissociation of short peptidyl-tRNAs (from the P-site) as a result of the 

extended time window with poor substrates (Karimi et al, 1998; Pavlov et al, 2009). However, 

peptidyl-tRNA dissociation was induced by the presence of an A-site tRNA (Fig. 22). 

 

 
Fig. 22: A site-bound tRNA speeds up the dissociation of fMet-
Pro-Pro-tRNAPro from ribosomes 
The amount of fMet-Pro-Pro-tRNAPro bound to ribosomes was 
quantified by nitrocellulose filtration 100 s after initiation 
complexes primed on an mRNA coding for fMPPG were mixed with 
EF-G, and either TC(P) only or TC(P) and TC(G). The presence of the 
A-site tRNA (Gly-tRNAGly) facilitated the dissociation of the P-site 
tRNA. The reaction was performed in the absence (white bar) and 
presence (black bar) of EF-P. 

 



  RESULTS 
 

31 
 

Because tetrapeptide formation requires three consecutive elongation cycles, the reaction mixture 

contained EF-G to promote translocation. Thus, an alternative reason for the peptidyl-tRNA drop-off 

is an active release mechanism; as it was described for peptidyl-tRNA dissociation catalyzed 

cooperatively by IF1 and IF2 (Karimi et al, 1998) or by RRF, EF-G and RF3 (Heurgue-Hamard et al, 

1998). To investigate whether EF-G induces the peptidyl-tRNA dissociation and whether EF-P is able 

to counteract this influence, fM-PPG formation in the presence and absence of EF-P was monitored 

at varying concentrations of EF-G (Fig. 23A, B). 

 

Fig. 23: Impact of  the interplay of EF-P and EF-G on peptide synthesis 
A,B) Time courses of tetrapeptide fM-PPG translation with increasing amount of EF-G in the absence (A) and 
presence (B) of modified EF-P. C) EF-G concentration dependence of fM-PPG synthesis rate without (open circles) 
and with modified EF-P (closed circles). Trends represent visual guides. Error bars represent SD. D) Yield of fM-PPG 
peptide as a function of EF-G concentration without (open circles) and with modified EF-P (closed circles). Error 
bars represent SD of three replicates. 

 

Except for concentrations ≤0.125 µM EF-G the rate of product formation was independent of 

EF-G in the presence and absence of EF-P, indicating that translocation does not dominate the 

reaction kinetics (Fig. 23C,Table S4). Below 0.25 µM EF-G translocation presumably became rate 

limiting for fM-PPG synthesis. Increasing concentrations of EF-G considerably reduced the 

amount of final product in the presence and absence of EF-P (Fig. 23D) suggesting that at high 

EF-G concentrations peptide-bond formation and EF-G induced tRNA dissociation are competitive 

reaction pathways (see below). As seen from the steeper slope in Fig. 23D, the reaction in the 

absence of EF-P is more sensitive to the EF-G concentration. Furthermore, the different yield of 
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final product in the absence and presence of EF-P at a certain EF-G concentration shows that EF-P 

counteracts EF-G-induced peptidyl-tRNA drop-off to certain extent.  

Based on the current data peptidyl-tRNA dissociation cannot be deduced; one likely scenario involves 

unconventional translocation by EF-G: the ribosome stalls with fMetProPro-tRNAPro in the P site and 

Gly-tRNAGly in the A site (section 2.1.2.6). Due to very slow peptide bond formation EF-G might 

induce non-canonical translocation prior to the peptidyl transfer and would thus transfer the 

peptidyl-tRNA to the E site from where it dissociates. This latter idea is supported by the fact that the 

presence of an A-site tRNA increased the dissociation of the P-site tRNA (Fig. 22). Notably, there are 

examples showing that EF-G can induce translocation in a ribosome complex with an aminoacyl-tRNA 

in the A site (Semenkov et al, 2000). On the basis of these observations, reduction of peptidyl-tRNA 

dissociation by EF-P may be explained by a combination of two scenarios: First, EF-P accelerates the 

rate of peptide bond formation (section 2.1.2) and thereby reduces the time window in which 

dissociation could occur. Second, as EF-P binds both, the tRNA and the ribosome (Blaha et al, 2009) 

EF-P might function as a kind of anchor for the tRNA opposite to the EF-G binding site, thus physically 

counteracting premature translocation. Based on the crystal structure, Blaha et al. suggested that 

EF-P may stabilize the A-minor interactions of two G-C base pairs in the anticodon stem loop of 

tRNAfMet with ribosomal residues A1339 and G1338 of 16S rRNA which stabilise tRNAfMet and the 

breaking of which is a prerequisite for translocation (Blaha et al, 2009; Selmer et al, 2006). If the 

same contacts form between EF-P and tRNAPro, this stabilization would explain how EF-P inhibits the 

futile translocation of peptidyl-tRNA prior to peptide bond formation. 

2.2.1.3 Increasing MgCl2 concentrations reduce peptidyl-tRNA dissociation 

To further investigate the phenomenon of peptidyl-tRNA dissociation and its implications on EF-P 

function, the yield of final product was quantified depending on the MgCl2 concentration. MgCl2 

stabilizes peptidyl- and aminoacyl-tRNAs in the P and A site, respectively (Gromadski et al, 2006; 

Katunin et al, 1994; Konevega et al, 2004; Semenkov et al, 2000; Thompson et al, 1981). If indeed 

tRNA stabilization was the reason for the increased level of final product formation in the presence 

of EF-P, this might be also accomplished by increased MgCl2 concentrations. Because translation 

kinetics are strongly affected by MgCl2 (Johansson et al, 2012; Lucas-Lenard & Lipmann, 1967; 

Manchester & Alford, 1979; Wohlgemuth et al, 2010) only the final yield of fM-PPG formation was 

determined (Endpoints at 80 and 400 s with and without EF-P, respectively). The final product level 

was essentially independent of MgCl2 in the presence of EF-P (Fig. 24). By contrast, in the absence of 

EF-P the product level increased linearly with increasing MgCl2 concentrations up to the level of the 

EF-P-catalyzed reaction (Fig. 24, Table S5). This indicates that stabilization of the peptidyl-tRNA 

facilitates fM-PPG formation, supporting the notion that EF-P positions the peptidyl-tRNA.  
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Fig. 24: MgCl2 increases the yield of fMPPG 
tetrapeptide formation 
Yield of fMPPG tetrapeptide formation as a function 
of MgCl2 concentration in the absence (open 
symbols) and presence (closed symbols) of EF-P. 
Error bars represent SD of three experiments. 

 

2.2.1.4 EF-P selectively accelerates peptide bond formation with poor substrates. 

To access the EF-P effect kinetically more direct, single peptide bond formation was investigated. 

Furthermore, the focus of the investigation was changed from substrate stability to reactivity. With 

Gly-tRNAGly as A-site substrate the rate of peptidyl transfer depends on the P-site substrate (section 

2.1.2.2): the reaction with fMet-Pro-tRNAPro (4.2 ± 0.3 s-1) was approximately 7-fold slower than with 

fMet-tRNAfMet (28 ± 3 s-1). Moreover, a PPG motif in a protein sequence led to robust ribosome 

stalling while PG was readily translated (Fig. 11, section 2.1.2.5). Hence, the reason for stalling is 

unlikely to be an additive effect upon the consecutive incorporation of poor substrates but may be 

rather explained by a reduced reactivity of the C-terminal amino acid in the nascent chain caused by 

neighboring amino acids. To investigate whether the reactivity of a peptidyl-tRNA with a C-terminal 

proline could be further reduced by an alteration of the amino acid preceding proline, Pro-Gly 

peptide bond formation was monitored with another Pro preceding the C-terminal Pro (Materials & 

Methods). Because fMet-Pro-Pro-tRNAPro was used as P-site substrate instead of fMet-Pro-tRNAPro 

(Fig. 25), rate differences could be attributed to the changed reactivity of the P-site substrate. 

Peptidyl transfer from fMet-Pro-Pro-tRNAPro to Gly-tRNAGly (fMPP-G; 0.013 ± 0.001 s-1) was ~300 fold 

slower than for fMet-Pro-tRNAPro (fMP-G; 4.2 ± 0.3 s-1) demonstrating a strong influence of the 

sequence context in the nascent peptide. Thus, the neighboring residue may reduce the intrinsic 

reactivity of the C-terminal amino acid or may sterically inactivate the reaction by inducing an 

unfavorable conformation of the Pro-tRNA or of the catalytic environment. The EF-P body stabilizes 

the peptidyl-tRNA (sections 2.1.2.3 and 2.2.1.1) and thus may be sufficient to position the tRNA in an 

active conformation antagonizing potential steric constraints induced by the nascent chain. To test 

this hypothesis, the experiment was repeated in the presence of unmodified or modified EF-P (Fig. 

25). To monitor the effect on the catalysis, rather than on EF-P binding, saturating concentrations of 

EF-P were used. Unmodified and modified EF-P accelerated peptide bond formation in either 

reaction (fMP-G and fMPP-G). Notably, about a half of the catalytic acceleration can be attributed to 

the modification: the acceleration from no EF-P to unmodified EF-P and from unmodified EF-P to 
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modified EF-P was ~2.7-fold for fMP-G and ~10-fold for fMPP-G (Table 4), demonstrating that the 

latter reaction was more sensitive towards EF-P function. 

 

 

Fig. 25: Impact of the sequence context on peptide bond 
formation 
A,B) Time courses of peptide bond formation between 
different P-site substrates and Gly-tRNAGly in the A site in 
the absence of EF-P (open circles), with unmodified EF-P 
(grey circles) and modified EF-P (closed circles). fMet-Pro-
tRNAPro (A) and fMet-Pro-Pro-tRNAPro (B) were used as P-
site substrates. For better visualization, the amplitude 
was normalized (Materials & Methods). C) Rates of 
peptide bond formation without, with unmodified and 
modified EF-P (white, grey and black bars, respectively). 
Error bars represent SD for three replicates. 

 

Table 4: Peptidyl transfer to glycine as a function of the P-site substrate 

   kobs, s
-1   

 
no EF-P  unmodified EF-P  modified EF-P 

fM vs. Ga 28 ± 3  
 

 44 ± 5 

fMP vs. G 4.2 ± 0.3 𝑥 3.1
�⎯� 13.1 ± 0.5 𝑥 2.5

�⎯� 33 ± 3 
fMPP vs. G 0.013 ± 0.002 𝑥 9.2

�⎯� 0.12 ± 0.02 𝑥 10.8
�⎯⎯� 1.3 ± 0.2 

IC/PTC (0.2 µM) vs. TC(G, 10 µM) in the absence of EF-P, in the presence of unmodified EF-P (6 
µM) or lysylated/hydroxylated EF-P (3 µM). Reaction performed in buffer B at 37 °C. a Taken 
from Fig. 8, section 2.1.2.2. 

 
The rate differences obtained for modified and unmodified EF-P (in this assay and for tetrapeptide 

formation (section 2.2.1.1)) cannot be explained solely by a modification-dependent increase of the 

affinity of EF-P to the ribosome (section 2.2.1.1), because they are measured at saturating EF-P 

concentrations. Thus, the modification improves the catalytic proficiency of EF-P further to tRNA 

stabilization by the EF-P body. 

2.2.1.5 Impact of the EF-P modification on peptidyl transfer 

To investigate the maximal catalytic effect of the EF-P modification, peptidyl transfer from fMet-

tRNAfMet to Pmn was monitored in the absence or presence of unmodified or modified EF-P. The 

reaction was performed as described (section 2.1.2.1, Materials & Methods) with the difference that 

saturating Pmn concentrations were used. As mentioned, Pmn does not require decoding for 
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productive binding to the ribosome (Katunin et al, 2002; Sievers et al, 2004). Thus, saturating Pmn 

concentrations should allow monitoring the maximal effect of EF-P on the chemistry of peptide bond 

formation. The rate of peptide bond formation was similar without and with unmodified EF-P (4 ± 0.2 

and 4.7 ± 0.3 s-1, respectively), indicating that unmodified EF-P had only marginal effects on the 

reaction chemistry. Modified EF-P accelerated the rate approx. 10-fold (45 ± 6 s-1) which is 

comparable to its 6-fold acceleration of the reaction with subsaturating Pmn. The slight difference 

might be caused by Pmn binding in case of subsaturating Pmn concentrations. 

 

 
Fig. 26: Impact of EF-Ps modification on fMet-Pmn 
formation 
Time courses of peptide bond formation between 
fMet-tRNAfMet and Pmn in the absence of EF-P 
(open circles), in the presence of unmodified EF-P 
(grey circles) and in the presence of modified EF-P 
(closed circles). 

 

2.2.2 Variation of physico-chemical parameters 
The lysyl-moiety of modified EF-P protrudes into the peptidyl transferase center and may come 

within a hydrogen bond distance (~ 2Å) of the C-terminal amino acid of the peptidyl-tRNA (Lassak et 

al, 2015). In general, the ε-amino group of lysine often participates in hydrogen bonding and can act 

as a general base in catalysis. Although the unperturbed pKa of the amino group of lysine in 

polypeptides is close to 10, it is sensitive to environmental effects that can lower it substantially 

(down to 5.3) (Isom et al, 2011; Schmidt & Westheimer, 1971). Thus, the EF-P modification might act 

either indirectly by positioning the CCA end of the tRNA and/or the C-terminal amino acid in the 

nascent chain and/or by direct covalent general base catalysis. To investigate the catalytic 

contribution of EF-P, peptide bond formation in the presence and absence of EF-P was investigated 

at different temperatures and pH. A change of the rate-parameter dependence might indicate 

whether EF-P is involved in the chemistry step and if yes, how. 

2.2.2.1 pH-dependence of peptide bond formation with a native A-site substrate 

Nucleophiles (in this case, aminoacyl-tRNA) are only reactive in their deprotonated form, which 

renders their reactions pH dependent (Fahnestock et al, 1970). However, the formation of most 

dipeptides is independent of pH (Beringer et al, 2005; Bieling et al, 2006; Johansson et al, 2011). 

These contradictory observations can be explained by a rate-limiting and pH-independent 

accommodation step kinetically masking peptide bond formation (Pape et al, 1998; Rodnina et al, 

1994; Wohlgemuth et al, 2010). Nevertheless, peptidyl transfer can be kinetically accessed – and 
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thus the involvement of EF-P in this process studied – when the reaction is slower than the rate of 

tRNA accommodation (Beringer & Rodnina, 2007b). The formation of fMet-Gly-tRNAGly was reported 

to be pH-dependent in the pH range of 6.5-8.5. Furthermore, its rate/pH profile revealed the 

presence of one ionizing group involved in catalysis that was assigned to the α-amino group of Gly-

tRNA (Johansson et al, 2011).  

This raises the question of whether catalysis by EF-P is pH-dependent. If EF-P was involved in general 

base catalysis, EF-P should change the pH dependence. To test this, the rate of fMet-Gly dipeptide 

(fM-G) formation was measured at pH values ranging from 6.6-8.5 in the presence and absence of EF-

P (Fig. 27A,B; Table S7). Reactions were performed as described (section 2.1.2.2, Materials & 

Methods).  

 

Fig. 27: pH dependence of fM-G formation 
A,B) Time courses of peptidyl transfer between fMet-tRNAfMet and Gly-tRNAGly in the absence (A) and presence (B) 
of EF-P as a function of pH at 37 °C. For better visualization, amplitudes were normalized (Materials & Methods).  
C) Dependence of the reaction rate on pH without (open circles) and with EF-P (closed circles). For values see 
Table S7. Error bars represent SD from up to five replicates. Data were fitted to a model with one ionizing group; a 
fit to a model with two ionizing groups is shown in dashed lines. D) Acceleration of fMG formation by EF-P as a 
function of pH. 

 
In the absence of EF-P the rate of fM-G dipeptide formation was pH-dependent and increased with 

pH, consistent with the assertion that the chemistry step was monitored. However, at higher pH 

values the rate reached a maximum of ~70 s-1. In the presence of EF-P the reaction was pH-

dependent as well, but reached a maximal value at a slightly lower pH compared to the EF-P-

uncatalyzed reaction (Fig. 27C, Table S7). Both the EF-P catalyzed and uncatalyzed reactions 

appeared to have the same maximal rate (70 ± 4 s-1) which led to an apparent reduction of the EF-P 
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effect at higher pH (Fig. 27D). The pH-dependence of kpep was fitted to a model assuming one ionizing 

group (Materials & Methods): 

 
𝑘𝑝𝑝𝑝 (𝑝𝑝) =

𝑘𝑝𝑝𝑝𝑚𝑚𝑚

1 + 10(𝑝𝑝𝑎−𝑝𝑝)  (10) 

The estimated pKa values were 7.2 ± 0.4 without EF-P and 6.8 ± 0.1 with EF-P. The value in the 

absence of EF-P is in good agreement with the published pKa for Gly-tRNAGly (~7.4) as A-site substrate 

(Johansson et al, 2011). Notably, fM-G formation without EF-P was much better described by a 

model with two ionizable groups (R2= 0.98 compared to 0.94 with one proton) with pKa1= 7.7 ± 0.7 

and pKa2= 6.9 ± 0.8 (equation 12), indicating a simultaneous influence of the nucleophile and an 

additional ionizing group.  

 
𝑘(𝑝𝑝) =

10−𝑝𝑝𝑎1−𝑝𝑝𝑎2 × 𝑘𝑚𝑚𝑚
10−𝑝𝑝𝑎1−𝑝𝑝𝑎2 + 10−𝑝𝑝−𝑝𝑝𝑎1 + 10−2𝑝𝑝

 (12) 

The maximal rate observed for fM-G formation could either correspond to the maximal rate of 

peptide bond formation (Johansson et al, 2011) or to a preceding step (decoding/accommodation of 

the A-site substrate) which became rate-limiting at high pH (Pape et al, 1998; Rodnina et al, 1994). 

Accordingly, two interpretations are possible: i. EF-P could accelerate peptide bond formation to its 

maximal rate by lowering the pKa of the attacking nucleophile (from 7.2 to 6.8) and thus, catalyze the 

reaction chemistry. ii. The intrinsic rate of peptide bond formation could be kinetically masked by a 

reaction that becomes limiting at high pH, resulting in a kinetically limited apparent pKa, whereas the 

intrinsic pKa of the nucleophile is the same with and without EF-P. This caveat in the interpretation 

hampers a straightforward interpretation in terms of the catalytic mechanism of EF-P. 

To distinguish between these possibilities, a pH dependence of fMPG tripeptide formation from 

fMet-Pro-tRNAPro and Gly-tRNAGly was performed (Fig. 28, Table S8, Materials & Methods). If the rate 

of 70 s-1 reflected decoding/accommodation of Gly-tRNAGly, it should not become rate limiting for the 

formation of the fMPG tripeptide, which was almost 10-fold slower than fMG formation determined 

at pH 7.5 in the absence of EF-P (section 2.1.2.2). As for fM-G formation, the rate of fMP-G formation 

increased with pH in the absence of EF-P (Fig. 28). In the presence of EF-P, rates measured above pH 

7 were pH-independent, with an average rate of 38 ± 3 s-1. Consequently, the rate acceleration by 

EF-P decreased for higher pH. At pH 8.7 the rates with and without EF-P were similar (35 and 40 s-1, 

respectively), suggesting that both reactions have the same maximal rates in this assay as well. 

Notably, the maximal rates for fM-G and fMP-G formation were different (70 ± 4 s-1 and 38 ± 3 s-1, 

respectively), which might indicate that the slower fMP-G formation indeed monitors the chemistry 

step of peptidyl transfer. Alternatively, the accommodation of Gly-tRNAGly might be influenced by the 

P-site substrate, as already reported earlier for Phe-tRNAPhe (Rodnina et al, 1994). 
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Fig. 28: Peptidyl transfer from fMet-Pro-tRNAPro to Gly-tRNAGly at different pH 
A,B) Time courses of peptidyl transfer from fMet-Pro-tRNAPro to Gly-tRNAGly in the absence (A) and presence (B) of 
EF-P as a function of pH at 37 °C. For better visualization, amplitudes were normalized (Materials & Methods). C) 
Dependence of the reaction rate on pH in the absence (open circles) and presence of EF-P (closed circles), see also 
Table S8. Error bars represent SD from up to six replicates. D) Acceleration of fMP-G formation by EF-P as a 
function of pH. 

 
The data were fitted to a model with one ionizing group (equation 10, Materials & Methods), which 

resulted in pKa values of 8.5 ± 0.1 in the absence and 6.6 ± 0.2 in the presence of EF-P. Thus, EF-P 

shifted the pH-sensitive kinetic window to lower pH values. If the maximal rate reflects the reaction 

chemistry, this would indicate that EF-P catalyzed the reaction chemistry in a way which led to earlier 

deprotonation of the attacking nucleophile. However, the pKa value of the ionizing group that is seen 

in the absence of EF-P is too high to correspond to that of Gly-tRNAGly; this makes the assignment of 

the rate-limiting reaction step uncertain (see Discussion, section 3.4.3). 

2.2.2.2 Activation parameters 

Compared to model reactions in solution, the ribosome catalyzes peptidyl transfer entropically, 

presumably by positioning the substrates (Johansson et al, 2008; Sievers et al, 2004; Wohlgemuth et 

al, 2008). To investigate how EF-P augments the peptidyl transferase activity, the temperature 

dependence of fMP-G formation was measured with and without EF-P (as described in section 

2.2.2.1 and Materials & Methods) (Fig. 29A, B, Table S9). The reaction between fMet-Pro-tRNAPro and 

Gly-tRNAGly was chosen for three reasons: in the absence of EF-P the monitored reaction step was (i) 

pH-dependent, (ii) not limited by a pH-independent step at pH 7.5 and 37 °C, and (iii) sensitive to 
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EF-P (section 2.2.2.1). As expected, the reaction rates increased with increasing temperature in the 

presence and absence of EF-P (Fig. 29C). For the reaction without EF-P the corresponding Arrhenius 

plot (log(k) vs. 1/T) was linear (Fig. 29D), indicating that there is no change in the rate-limiting step. In 

the presence of EF-P the Arrhenius plot was linear below 30 °C and almost parallel to the plot of the 

EF-P-uncatalyzed reaction. Above this temperature the Arrhenius plot deviates from its linear 

behavior (Fig. 29D), indicating a change in the rate-limiting step. This step probably corresponds to 

the pH-independent step monitored previously (Fig. 28C). Accordingly, activation parameters were 

determined without the rate obtained at 37 °C. The free energy of activation (∆𝐺≠), the enthalpy of 

activation (∆𝐻≠) and the activation entropy (𝑇∆𝑆≠) were determined according to equations 4-6 

(Materials & Methods) (Table 5). Apparently, EF-P catalyzed the reaction entropically with an 

energetic contribution (∆∆𝐺≠) of -1.5 ± 0.2 kcal/mol.  

 

Fig. 29: Temperature dependence of fMP-G formation at pH 7.5 
A,B) Time courses of peptidyl transfer between fMet-Pro-tRNAPro and Gly-tRNAGly in the absence (A) and presence 
(B) of modified EF-P as a function of temperature. The pH was adjusted at the respective temperature. For better 
visualization, amplitudes were normalized (Materials & Methods). C) Correlation of the reaction rate with the 
temperature without (open circles) and with modified EF-P (closed circles). Error bars represent SD. D) Arrhenius 
plot for fMP-G formation in the presence (closed circles) and absence (open circles) of EF-P.  

Table 5: Activation parameter of fMP-G formation at pH 7.5 

fMP-G ∆G≠ ∆H≠ T∆S≠ 
 kcal/mol kcal/mol kcal/mol 
no 17.3 ± 0.6 24 ± 1 6.7 ± 0.5 
EF-P a 15.6 ± 1 25 ± 1 9.5 ± 0.7 
Activation parameters were calculated according to equation 4-6 (Materials & 
Methods) for 25 °C (298.15 K). a The value at 37 °C was excluded from the fitting 
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The Arrhenius plot of the EF-P catalyzed reaction at pH 7.5 deviates from a linear behavior (Fig. 29D) 

indicating that above 30 °C a different step becomes rate limiting. This is in agreement with the lack 

of pH dependence of the EF-P-catalyzed reaction at this temperature and pH value (7.5) (section 

2.2.2.1). 

To circumvent this problem, a temperature dependence was performed at pH 6.5 (Fig. 30A, B, C; 

Table S10). At this pH the rate of fMP-G formation in the presence of EF-P was in the linear part (Fig. 

28) and thus the chemistry step is presumably rate limiting. As for the reaction at pH 7.5, the rate 

increases with temperature. Notably at 10 °C and 15 °C the kinetics in the absence of EF-P showed a 

biphasic behavior (Fig. 30A). This might be explained by two interconvertible populations of 

ribosome complexes. However, because the reason for the heterogeneity is not known, these  data 

were excluded from analysis. At pH 6.5, the reactions with and without EF-P yield linear Arrhenius 

plots (Fig. 30D) and the corresponding activation parameters reveal that EF-P again contributed 

entropically to catalysis, with an overall catalytic contribution (∆∆𝐺≠) of -3 ± 0.2 kcal/mol (Table 6).  

 

Fig. 30: Temperature dependence of fMP-G formation at pH 6.5 
A,B) Time courses of peptidyl transfer between fMet-Pro-tRNAPro and Gly-tRNAGly in the absence (A) and presence 
(B) of modified EF-P as a function of the temperature. For better visualization, amplitudes were normalized 
(Materials & Methods). C) Correlation of the reaction rate with the temperature without (open circles) and with 
modified EF-P (closed circles). Grey circles correspond to the rates obtained by double exponential fitting of the 
reaction without EF-P at 10 and 15 °C. Error bars represent SD. D) Arrhenius plot for fMP-G formation in the 
presence (closed circles) and absence (open circles) of EF-P. 
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Table 6: Activation parameter of fMP-G formation at pH 6.5 

fMP-G ∆G≠, 
kcal/mol 

∆H≠,  
kcal/mol 

T∆S≠,  
kcal/mol 

no a 19 ± 1 26 ± 2 7 ± 1 
EF-P 16.3 ± 0.7 27 ± 3 11 ± 2 
Activation parameters were calculated according to equation 4-6 (Materials & 
Methods) for 25 °C (298.15 K). a The values obtained at 10 and 15 °C were 
excluded from the fitting. 

 

2.2.3 Variation of the substrate  
To determine to which extent EF-Ps catalysis is due to substrate positioning or due to direct 

participation in the reaction chemistry, it is important to understand what makes Pro-tRNAPro a poor 

substrate for the peptidyl transferase center. The main cause of stalling seems to be neither the 

tRNA nor the Pro codons but the amino acid itself (section 2.1.2.8) (Pavlov et al, 2009; Tanner et al, 

2009). 

2.2.3.1 Substitution on the prolyl ring modulates steric and electronic properties of 
proline  

To dissect potential structural and electronic features causing the low reactivity of proline and 

thereby identify properties targeted by EF-P function, the impact of proline-analogs (Pro*, P*, Fig. 

31) on translation was investigated. Pro analogs differ from proline in their structural preferences 

and the pKa values of their amino- and carboxyl-groups (Table S11, Table S12). On the basis of a 

nucleophilic substitution mechanism for peptide bond formation the different pKas should result in 

different intrinsic reactivities of the Pro derivatives (Fersht, 1999). 

The conformation of the X-Pro bond (cis or trans), with X being any amino acid, influences the 

electron density distribution within the analogs. In combination with a slow isomerization rate as for 

proline, this leads to conformer-specific carboxyl pKa values (Bedford & Sadler, 1974; Hunston et al, 

1985). Furthermore, the electronegativity of the substituent influences the proline pucker (Improta 

et al, 2001) which itself correlates with the cis-trans conformation (Shoulders & Raines, 2009). Thus, 

the steric and electronic properties are highly interdependent. To identify possible properties 

responsible for the poor reactivity of proline, the following Pro analogs were chosen (Fig. 31): The 

influence of ring size was addressed by the Pro derivatives azetidine-2-carboxylic acid (Aze) and 

pipecolic acid (Pip) which have four and six-membered rings, respectively.  3,4-Dehydroproline 

(3,4-Dhp) and 4,5-(cis/trans)-Methanoproline (cis-/trans-MePro) are conformationally arrested, in 

that the ring of 3,4-Dhp has a flat conformation (Flores-Ortega et al, 2007; Kang & Park, 2009) and 

cis-/trans-MePro simulate particular pucker arrangements (Hanessian et al, 1997). Finally, the Cγ 

substituted Pro-analogs 4-(R/S)-Fluoroproline (4-(R/S)-Flp), 4-(R/S)-Hydroxyproline (4-(R/S)-Hyp), 



  RESULTS 
 

42 
 

4-(R/S)-Methylproline (4-(R/S)-Mep) deviate from proline in their cis-trans equilibria and pucker 

preferences (Bretscher et al, 2001; DeRider et al, 2002; Improta et al, 2001; Panasik et al, 1994). 

 

Fig. 31: Structure of proline and proline analogs 
Pro: Proline, Aze: Azetidine-2-carboxylic acid, Pip: Pipecolic acid, 3,4-Dhp: 3,4-Dehydroproline, (cis/trans)-MePro: 
4,5-(cis/trans)-Methanoproline, 4-(R/S)-Flp: 4-(R/S)-Fluoroproline, 4,4-F2-Pro: 4,4-Difluoroproline , 4-(R/S)-Hyp: 
4-(R/S)-Hydroxyproline, 4-(R/S)-Mep: 4-(R/S)-Methylproline. 

 

2.2.3.2 Pro derivatives were accepted by the translation machinery 

To investigate whether the different Pro analogs are accepted by the translation machinery, all 

analogs were charged on tRNAPro by prolyl-tRNA synthetase (Pro-RS) (Maretial & Methods). This 

shows their similarity to proline, indicating that they are appropriate Pro mimics to study proline 

incorporation. Because large quantities of tRNA were required, it was transcribed in vitro. The 

transcript was as active as native tRNAPro (Fig. S2), indicating that the lack of tRNA modifications in 

the transcript did not diminish translation efficiency or hamper recognition by EF-P. 

Misaminoacylated Pro*-tRNAPros were recognized by EF-Tu and ternary complexs (EF-Tu∙GTP∙Pro*-

tRNAPro) were stable enough to be isolated by size-exclusion chromatography (Fig. S3). Furthermore, 

all Pro*-tRNAPros were active as A-site substrates as quantified by fMet-Pro* dipeptide formation. 

2.2.3.3 Substitutions in the prolyl ring strongly modulate rate of peptide bond formation 

To investigate the kinetics of proline incorporation and to get further insight how EF-P accelerates 

peptide bond formation with proline residues, incorporation of Pro analogs was characterized in the 

different approaches used previously for proline: (i) to investigate the chemical step of peptidyl 

transfer rather than preceding steps like A-site binding and accommodation of aa-tRNA or 

conformational changes the formation of fMP*-Pmn was monitored (as described for proline in 

section 2.2.1.4, Materials & Methods); (ii) to account for additional effects of a native A-site 

substrate fMP*-G formation was monitored (section 2.1.2.2, Materials & Methods) and finally, the 

translation of the tetrapeptide fM-P*P*G with Pro*-tRNAPro serving as A- and P-site substrate was 

investigated (section 2.1.2.3, Materials & Methods) (Fig. 32A, B, C, respectively). 
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Fig. 32: Impact of prolyl ring substitutions on translation 
Time courses of different kinetic approaches performed without (open circles) and with EF-P (closed circles). 
Formation of fMP*-Pmn (A), fMP*-G (B), the tetrapeptide fM-P*P*G (C). 
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All analogs tested could be incorporated into peptides, however, rates of product formation differed 

substantially (Fig. 32,Table S14). In the absence of EF-P rates of fMP*-Pmn formation with different 

analogs spanned seven orders of magnitude (~0.00006-21 s-1). Thus, the substituents in the prolyl 

ring dramatically altered the reactivity of proline and caused large rate differences, with 4-R-Flp 

being the fastest (21 s-1) and cis-MePro being the slowest substrate (~0.00006 s-1). Interestingly, 

proline adopted a middle position (0.14 s-1), showing that substitution at the prolyl ring did not per se 

interfere with the translation apparatus. Considering the smaller kinetic range for proteinogenic 

amino acids other than proline (kpep~8-100 s-1; measured in the same experimental setup) 

(Wohlgemuth et al, 2008), this dynamic range is surprising. Notably, the rate of 4-R-Flp (21 s-1) was 

comparable to that with Phe or Val (16 s-1 for each). Except for 4-S-Mep the time courses could be 

fitted to single-exponential kinetics that could be attributed to the chemical step (Fig. 32A). Double-

exponential kinetics can be rationalized by two ribosome populations (Katunin et al, 2002). EF-P 

accelerated peptide pond formation with all Pro analogs (Fig. 32A). Even the reactions with 4-R-Flp 

and 4,4-F2-Pro with rates comparable to that of proteinogenic amino acids other than Pro were 

accelerated by EF-P. Calculation of the free energy from the rate acceleration revealed an averaged 

catalytic contribution of -2.5 ± 0.5 kcal/mol by EF-P. Notably, EF-P accelerated slower reactions 

slightly stronger than faster reactions (from 6- to 90-fold rate-acceleration for 4-R-Flp (kpep = 21 s-1) 

and 4-S-Hyp (kpep = 0.007 s-1), respectively, (Table S14), leading to more uniform rates. Thereby EF-P 

did not alter the reactivity trends of the Pro derivatives. Notably, the effect for cis-MePro might be 

underestimated because the reaction was too slow to be measured with high precision. 

 

Fig. 33: Similar contribution of EF-P to catalysis 
A) fMP*-Pmn formation without (white bars) and with (black bars) EF-P. B) EF-P induced rate acceleration 
(defined as the ratio (kobs, EF-P/kobs,no)) as a function of the EF-P-uncatalyzed rate. Average rates and SD from up to 
four replicates plotted.  

 

The same reactivity trends were observed upon fMP*-G formation (Fig. 32B). However, the kinetic 

range was slightly narrower compared to fMP*-Pmn formation (four orders of magnitude), most 

probably due to rate-limiting aa-tRNA accommodation (see below). Apart from 4-S/R-Mep, 4,4-F2-Pro 



  RESULTS 
 

45 
 

and trans-MePro reactions followed single-exponential kinetics. Two exponential traces could be 

rationalized by two populations of ribosomal complexes or multiple sampling of the ternary complex. 

EF-P accelerated the reaction of all analogs ‒except of those which were faster than ~70 s-1‒ to 

different extend (Table S14). Notably, the rate ~70 s-1 matched the maximal rate of fM-G formation 

(section 2.2.2.1), suggesting that it represents Gly-tRNAGly accommodation into the A site. This 

indicates that, at least for some Pro analogs, the rate of peptidyl transfer was limited by tRNA 

accommodation and thus the observed rate acceleration by EF-P was artificially reduced.  

Upon tetrapeptide formation the reactivity of the Pro analogs is reflected in their incorporation rate 

and in the final product yield, due to the competitive site-reaction of peptidyl-tRNA dissociation 

(section 2.2.1.2). For all Pro analogs, the final product level and the observed rates were in good 

agreement with their respective reactivities observed in the previous assays (Fig. 32C, Table S14).  

For Pro derivatives which have been poor substrates in the previous assays (cis-MePro, 4-S-Flp and 4-

S-Hyp) no final product was formed in the absence of EF-P. Pro analogs which have been good P-site 

substrates performed equally well in this more complex approach. EF-P generally accelerated the 

reaction and prevented dissociation of the peptidyl-tRNA, leading to increased product levels of final 

product for all Pro-derivatives, although it remained minmal for cis-MePro and 4-S-Mep. 

The substituent effects propagated through all assays tested and thus through all steps of several 

elongation cycles showing their robustness and in-vivo relevance. 

2.2.3.4 The ribosome-catalysed reaction is more sensitive to substituent effects than the 
in-solution reaction 

Several explanations could rationalize the observed rate differences obtained with different Pro 

analogs: Because the nucleophilic attack on carbonyl esters is sensitive towards steric and electronic 

effects introduced by substitutions at the non-leaving acyl group (Fersht, 1999), the rates may reflect 

intrinsic reactivities of the different fMet-Pro*-tRNAs. Alternatively, the position and/or chemical 

nature of the substitution might interfere with the ribosomal active site. Finally, intrinsic analog-

specific reactivities could be modulated by the ribosome e.g. by restricting the conformation of the 

peptidyl chain in the active site. 

To distinguish between the influence of intrinsic and ribosome-specific effects the reactivity of the 

Pro analogs was determined off the ribosome. Provided that the reactions on and off the ribosome 

are mechanistically comparable, this should allow monitoring only the intrinsic reactivity differences. 

As model reaction the nucleophilic attack on the ester bond of fMet-Pro*-tRNAPro by aqueous 

glycinamide was monitored, with glycinamide optimally reflecting the nucleophilicity of an aa-tRNA 

(Schroeder & Wolfenden, 2007). In addition, the hydrolysis of peptidyl-tRNA was determined as a 

less complex and kinetically well accessible model reaction (Fig. 34). The peptidyl-tRNAs, containing 
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radioactive fMet, were incubated in the presence or absence of 0.2 M glycinamide serving as N-

nucleophile at 37 °C.  The decomposition into radioactive peptide and unlabeled tRNA was 

monitored by nitrocellulose filtration (section 5.4, Materials & Methods).  

 

Fig. 34: Decay of peptidyl-tRNA fMet-Pro*-tRNAPro   
Hydrolysis of peptidyl-tRNA fMP*-tRNAPro (closed circles) and decomposition of peptidyl-tRNAs in the presence of 
0.2 M unprotonated glycinamide (open circles). Pro* as indicated in each panel. For rates see Table 7. 

Table 7: Rates of fMet-Pro*-tRNAPro decay 

Pro* khydrol 

×105 s-1 
kaminol 

×105 s-1 
kdecay 

×105 s-1 
Pro 6.3 ± 0.5 3.7 ± 0.5 10 ± 0.5 
4-S-Flp 3 ± 0.3 2 ± 0.4 5 ± 0.4 
4-R-Flp 23 ± 1 9 ± 3 32 ± 3 
4,4-F2-Pro 31 ± 1 28 ± 5 59 ± 5 
4-S-Hyp 14 ± 1 4 ± 1 18 ± 1 
4-R-Hyp 6.3 ± 0.1 7 ± 2 13 ± 2 
cis-MePro 1.7 ± 0.2 1.8 ± 0.3 3.5 ± 0.3 
trans-MePro 8.4 ± 0.3 6.6 ± 0.6 15 ± 0.6 
4-S-Mep  3.7 ±0.9 - - 
4-R-Mep 3.8 ±0.04 10 ± 1 14 ± 1 
3,4-Dhp 5.6 ± 0.2 (4.4 ± 1) (10 ± 1) 
fMet 11 ± 0.6 11 ± 1 22 ± 1 
Rates of fMet-Pro*-tRNAPro (0.5 µM) decomposition in the absence (khydrol) or 
presence (kdecay) of glycinamide (1 M; 0.2 M unprotonated) in 20 mM HEPES-HCl pH 
7.5 at 37 °C, 100 mM KCl and 7 mM MgCl2. The rate of aminolysis (kaminol) was 
determined according to kaminol = kdecay-khydrol. 

 

The rate of aminolysis (kaminol) was determined according to  𝑘𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑑𝑑𝑑𝑑𝑑 − 𝑘ℎ𝑦𝑦𝑦𝑦𝑦. Consistent 

with other model systems (Bruice et al, 1970), substituent effects on aminolysis and hydrolysis 

showed the same tendencies (Table 7, Fig. 34), indicating a sensitivity of both reactions. 

Decomposition rates of all peptidyl-tRNAs were almost evenly distributed over the kinetic range, with 

peptidyl-tRNAs with Pro*= 4,4-F2-Pro and 4-R-Flp being the most reactive and cis-MePro being the 
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most unreactive species. Notably, the kinetic range of hydrolysis/aminolysis rates was strikingly small 

compared to that on the ribosome, with a maximal difference of 18 to 16-fold, respectively (Table 7). 

However, the rates of hydrolysis/aminolysis in solution (k) and that of peptide bond formation on the 

ribosome (kpep) correlate linearely in a log-log plot (Fig. 35), demonstrating that the substituents 

similarely effect the ribosomal and in-solution reactions. In other words, the reactivity determining 

features are inherent characteristics of the substrates. Notably, the slope of the plot is not 1 as it 

would be expected for an equal sensitivity towards Pro substitutions on and off the ribosome but 

~0.2. This indicates a dramatically increased sensitivity of the ribosomal reaction towards intrinsic 

reactivity differences compared to both in-solution reactions. Possible reasons might be the different 

environment of the ribosome and/or conformational constraints within the peptidyl transferase 

center which amplify unfavorable conformational preferences of the substrates. 

 

 
Fig. 35: Correlation between substituent effects 
on the ribosomal and in-solution reactions. 
Hydrolysis (closed circles)/aminolysis (open circles) 
of peptidyl-tRNA in solution and peptide bond 
formation on the ribosome for all Pro derivatives. 
Average rates and SD from three replicates are 
plotted. For some points SD is too small to be 
visible. P values are 0.007 and 0.003 for the 
correlation with hydrolysis and aminolysis, 
respectively. 
 

 

2.2.3.5 The reactivity does not correlate with the electrophilicity of the P-site substrate 

If reactivity differences were primarily caused by a changed electrophilicity of the P-site substrate, 

the rate of peptidyl transfer should correlate with the pKa of the respective analog. Because the 

conformation of the X-Pro bond modulates the carboxyl pKa determined in model peptides (Table 

S11) and the Pro analogs have a characteristic cis-trans ratio (Table S12), an weighted average pKa 

was calculated based on the isomer specific pKa values and the respective cis-trans equilibria of each 

Pro* (Table S11). The resulting impirical pKa values of the Pro analogs were in the range of 2.8-3.6 

and did not correlate with the rate differences in peptide bond formation on the ribosome (Fig. 36). 

Moreover, the carboxyl- pKa of other amino acids such as valine, phenylalanine and alanine, the kpep 

of which are > 100-fold faster than for Pro (Wohlgemuth et al, 2008), is similar as well (Table S13). 

Overall, this indicates that the electrophilicity of proline does not explain its poor reactivity as P-site 

substrate. 
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Fig. 36: The electrophilicity of the P-site substrate 
does not correlate with the reaction rate. 
Correlation of the rate of peptidyl transfer with the 
electrophilicity of Pro derivatives. Rates of fMet-
Pro*-Pmn formation were replotted from Table 
S14. The pKa values were calculated from the cis 
and trans pKa of the respective Pro*, taking the 
cis-trans equilibrium into account. Rates of fMet-
Xaa-Pmn formation, with Xaa= Ala, Val and Phe 
were replotted from (Wohlgemuth et al, 2008). 

 

2.2.3.6 Isomery 

The five-membered prolyl ring is subject to conformational restrictions which are accompanied by 

rapidly interconverting exo and endo puckers and a tendency to form cis isomers. Thus, the steric 

properties of proline might render its poor reactivity. 

Comparison of the rate of peptide bond formation of four R/S-analog pairs revealed that the R 

isomer is generally more reactive than the S isomer (Fig. 37A).  Although R/S configurations relate to 

the analogs only, the interrelated isomer and pucker preferences could be of relevance for the EF-P 

mechanism. R-(Flp, Hyp) and trans-MePro adopt the trans conformation more frequent than their S 

or cis counterparts (Table S12). However, a more qualitative comparison does not show any obvious 

correlation between the rate of peptide bond formation and the trans preference (Fig. 37B). 

 

 

Fig. 37: Peptide bond formation is faster with R analogs 
A) Relative rates of fMP*-Pmn formation for Pro* normalized to Pro. B) Influence of trans content of the X-P* bond 
on the rate of fMP*-Pmn formation. 4-(R/S)-Hyp (squares), 4-(R/S)-Flp (circles), 4-(R/S)-Mep (diamonds), cis/trans-
MePro (triangles). S isomers (open symbols), R isomers (closed symbols). Pro, 3,4-Dhp and 4,4-F2-Pro in grey 
asterisk, star and circle, respectively. C) Effect of the stereochemistry of Pro*on kpep of the reaction with Pmn. 
Plotted are the kpep values for each pair of analogs that differ only in their substituent orientation at the Cγ atom, in 
the R- (black bars) or S- (white bars) configuration. Isomer and pucker preference are as indicated. Cis- and trans-
MePro are covalently arrested pucker mimics.  The average values and SD are calculated from up to four replicates. 
For exact values, see Table S12 and Table S14. 

 
Although there is no strict coupling, trans-stereoisomers tend to prefer the exo pucker conformation 

(Hinderaker & Raines, 2003; Milner-White et al, 1992; Vitagliano et al, 2001). Cis-MePro is an 
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exception in that it mimics the endo pucker conformation but has a trans-X-Pro* bond content 

comparable to other R-substituted analogs. Because cis-MePro was an exceptionally poor substrate, 

the pucker conformation rather than the cis-trans preference might determine the rate of peptide 

bond formation (Fig. 37C). Alternatively, the observed reactivity differences could originate from the 

orientation of the substituent. The electron donating methyl group in 4-(R/S)-Mep leads to a higher 

content of cis-X-P* bonds and endo pucker in the R- compared to the S-analog. However, 4-R-Mep 

was more reactive in peptide bond formation compared to 4-S-Mep, supporting the notion that R-

analogs are better substrates than their S-counterparts, irrespective the pucker conformation. 

Notably, an unfavorable positioning of S-substrates due to a clash with the ribosome is unlikely to 

cause the poor reactivities, because the trends in solution are similar. 

A way to test whether the conformational freedom of the prolyl ring influences the rate of peptide 

bond formation is to vary the ring size. Aze and Pip are 4 and 6 membered Pro derivatives; 

respectively and the conformational freedom of the prolyl ring is decreased in Aze (flat 

conformation) and increased in Pip (mainly chair, boat conformations). Upon peptidyl transfer from 

fMet-Pro*- tRNAPro to Pmn, with Pro* being either Pro, Aze or Pip the latter two show double-

exponential kinetics (Fig. 38), suggesting that the complexes formed with Aze and Pip were 

heterogeneous for unknown reason. In case of Aze the slower rate could correspond to cis-trans 

isomerization. The weighted average rates, taking the relative contribution of both rates into 

account, of Aze and Pip were in the same order of magnitude as proline (0.14, 0.3 and 0.35 s-1 for 

Pro, Aze and Pip, respectively, Table 8) indicating that conformational restrictions inherent to the 

five-membered ring were not a dominant underlying characteristic of Pro-mediated stalling. 

 

 
Fig. 38: Impact of ring size on peptide bond formation 
fMP*-Pmn formation in the presence (closed circles) and 
absence (open circles) of EF-P with P* being either Pro, Aze or 
Pip as indicated.  
 

Table 8: Influence of the ring size on the rate of peptidyl-transfer 

 aa rate 1, s-1 rate 2, s-1 Weight average 
rate, s-1 

 - EF-P 
 Pro 0.14 ± 0.1  0.14 ± 0.1 
 Aze 0.12 ± 0.04 (60%) 0.55 ± 0.26 (40%) 0.3 ± 0.1 
 Pip 0.5 ± 0.06 (68%) 0.03 ± 0.01 (32%) 0.35 ± 0.05 
 + EF-P 
 Pro 8.2 ± 0.8  8.2 ± 0.8 
 Aze 2.4 ± 0.3 (66%) 45 ± 13 (34%) 17 ± 5 
 Pip 27 ± 3 (81%) 0.7 ±0. 3 (19%) 22 ± 3 

 

 

Furtheremore, the rate of cis-trans interconversion of peptide bonds preceeding Aze and Pip is 

increased (0.1-1 s-1) compared to Pro (10-4-10-3 s-1) (Kern et al, 1997), further indicating that cis- or 
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trans-conformations of the X-P bond influence the rate of peptide bond formation only slightly, if at 

all. EF-P accelerates the reaction of all substrates to a similar extend (~60 fold), which might indicate 

that a shared characteristic is targeted. 

2.2.3.7 Impact of Pro analogs on activation parameters 

To further understand the substituent effects and to dissect EF-Ps contribution, the thermodynamic 

impact of Pro derivatives on peptidyl transfer was investigated. The analog pair 4-(S/R)-Flp was 

chosen because R- and S-Flp have the same substituent but large opposite substituent effects. The 

rate of peptidyl transfer from fMet-(R/S)-Flp-tRNAPro to Pmn (10 mM) was monitored at different 

temperatures at pH of 7.5 in the presence and absence of EF-P (Fig. 39A-D, Table S15). The reaction 

was performed and analyzed as described (Materials & Methods).  

 
 

Fig. 39: Temperature dependences of Pmn reaction 
A,B,C,D) Temperature dependences of fMP*-Pmn 
formation ± EF-P with P*= 4-R-Flp (A,B) or 4-S-Flp 
(C,D) monitored by consumption of fMP*. See Table 
S15 for rates. For better visualization, amplitudes 
were normalized (Materials & Methods). E) Arrhenius 
plot of the reactions in A-D. 4-R-Flp (circles), 4-S-Flp 
(quadrats) in the absence (open symbols) or presence 
(closed symbols) of EF-P. Mean of up to four 
technical replicates are shown, with the SD being 
smaller than the symbol size.  

 
All reactions followed the Arrhenius law (Fig. 39E) and the activation parameters were calculated 

according to equations 3-6 (Materials & Methods). Due to experimental restrictions in quantifying 

rates >100 s-1 with high precision, the rate for 4-R-Flp in the presence of EF-P at 37 °C was excluded 
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from the fitting (Materials & Methods). The Arrhenius-plots of the four reactions revealed almost 

parallel linear relationships which resulted in similar activation enthalpies for all four reactions 

(∆𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎≠
 = 22.5 ± 2 kcal/mol, Table 9). Accordingly, rate differences were of entropic origin: The 

activation entropy was more favorable in 4-R-Flp than in 4-S-Flp (Table 9). In the presence of EF-P the 

activation entropy was more favorable for 4-R-Flp (𝑇𝑇𝑇𝑇 𝐸𝐸𝐸 – 𝑛𝑛 𝐸𝐸𝐸
≠ = 2.4 kcal/mol) and 4-S-Flp 

(𝑇𝑇𝑇𝑇 𝐸𝐸𝐸 – 𝑛𝑛 𝐸𝐸𝐸
≠  = 6.6 kcal/mol) compared to the EF-P uncatalyzed reactions (Table 9), supporting 

the idea that the rate acceleration by EF-P is entropically driven (see section 2.2.2.2). EF-P improved 

the free energy of activation (𝛥𝛥𝛥≠) by -1.2 kcal/mol for 4-R-Flp and -2.5 kcal/mol for 4-S-Flp. 

Table 9: Activation parameter for fMP*-Pmn formation with P* = 4-(R/S)-Flp 

Pro* ∆G≠, kcal/mol ∆H≠,  kcal/mol T∆S≠,  kcal/mol 
4-R-Flp, no EF-P 16 ± 1 22 ± 2 6 ± 0.6 
4-R-Flp, EF-P a 15 ± 1 24 ± 1 8.4 ± 0.7 
4-S-Flp, no EF-P 22 ± 1 20 ± 2 - 2.2 ± 0.2 
4-S-Flp, EF-P 19 ± 1 24 ± 1 4.4 ± 0.3 
Activation parameters were calculated for 25 °C according to equations 4-6 (Materials 
& Methods). a The value at 37 °C was excluded from the fitting 
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3 DISCUSSION 

3.1 The biological role of EF-P  

The first part of this study dealt with the investigation of the function of EF-P in translation, which 

was not established at the beginning of this thesis. We showed that EF-P specifically accelerates 

peptide bond formation with proline and glycine residues, thereby preventing ribosome stalling and 

facilitating efficient synthesis of proteins containing polyproline motifs (section 2.1.2) (Doerfel et al, 

2013). At the same time Ude and colleagues came to the same conclusions (Ude et al, 2013); 

subsequently, the function of EF-P was confirmed by several other groups (Bullwinkle et al, 2013; Peil 

et al, 2013; Starosta et al, 2014; Woolstenhulme et al, 2013). After our results on EF-P were 

presented, also eIF5A was found to facilitate peptide bond formation with consecutive prolines 

(Gutierrez et al, 2013), suggesting that the function is conserved in prokaryotes and eukaryotes. The 

function of EF-P in translation elongation depends on β-lysylation of Lys34 but not on hydroxylation 

(section 2.2.1.1) (Bullwinkle et al, 2013; Doerfel et al, 2013; Ude et al, 2013). This is corroborated by 

similar, albeit somewhat milder, phenotypes caused by deletions of genes encoding EpmA or EpmB 

compared to deletion of the EF-P gene (Marman et al, 2014; Zou et al, 2012), while deletion of EpmC 

in S. typhimurium causes no noticeable phenotype (Bullwinkle et al, 2013). 

3.1.1 EF-P inactivation causes pleiotropic in-vivo phenotypes 
Consistent with the determined function, quantitative mass spectrometric analysis of the proteome 

of ∆efp strains of S. typhimurium and ∆efp strains of E. coli revealed that an above-average number 

of downregulated proteins contain PPP and PPG motifs (Hersch et al, 2013). Furthermore, the 

majority of proteins containing PPP as well as specific XPPY motifs are down-regulated in ∆efp, 

∆epmA, ∆epmB in E. coli and the expression can be restored by complementing the cells with 

modified EF-P in vivo (Peil et al, 2013). Some of the identified down-regulated proteins readily 

explain phenotypes observed in cells lacking modified EF-P. Deletion of EF-P, EpmA and/or EpmB 

genes modulate a variety of cellular functions including cell viability, growth, virulence, motility, and 

sensitivity to low osmolarity, detergents, and antibiotics (Abratt et al, 1998; Balibar et al, 2013; 

Bearson et al, 2011; Charles & Nester, 1993; Iannino et al, 2012; Kaniga et al, 1998; Marman et al, 

2014; Navarre et al, 2010; Peng et al, 2001; Zou et al, 2012). About 7% of annotated E. coli genes 

encode motifs of three or more consecutive prolines or PPG motifs. Notably, proteins of the basal 

transcription-translation machinery are underrepresented, while metabolic enzymes, transporters 

and regulatory transcription factors are frequent among proteins containing PPP or PPG motifs 

(Doerfel et al, 2013). Consistently, quantitative comparison of the wild type and ∆efp proteome of S. 

typhimurium by stable isotope labeling of proteins in cell culture (SILAC) revealed that metabolic 
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proteins and two-component regulatory systems that regulate cell motility and chemotaxis are 

overrepresented among proteins that are down-regulated in cells lacking EF-P (Hersch et al, 2013). 

Transcriptional repressors were not identified (Hersch et al, 2013), presumably because they escaped 

the dynamic range of current mass spectrometers due to their low abundance. The pleiotropic 

phenotypes observed in ∆efp/∆epmA/∆epmB strains can be rationalized by EF-Ps function in 

accelerating proline incorporation. 

3.1.1.1 Susceptibility to external stimuli 

A prominent group of misregulated proteins in cells lacking functional EF-P are membrane proteins 

(Balibar et al, 2013; Navarre et al, 2010; Zou et al, 2012). Membrane proteins play important roles in 

many metabolic pathways and are essential for antibiotic-induced lethality (Girgis et al, 2009; 

Kohanski et al, 2008; Silver, 2011; Tamae et al, 2008; van Stelten et al, 2009). Consistently, an altered 

membrane permeability caused by the lack of functional EF-P may explain the increased 

susceptibility to external stressors in ∆efp strains (Hersch et al, 2013; Zou et al, 2012). This idea is 

supported by in-vitro data showing that internal polyproline motifs in TonB led to robust stalling and 

that efficient translation is restored by EF-P (section 2.1.2.7) (Doerfel et al, 2013; Ude et al, 2013). 

TonB supplies energy for the function of TonB-dependent transporters that import siderophores 

(ferric chelates), vitamin B12, nickel ions and carbohydrates (Noinaj et al, 2010). Reduced iron uptake 

due to a TonB deficiency may contribute to reduced growth phenotypes observed in ∆efp strains 

(Doerfel et al, 2013). Another interesting example is CadC whose translation depends on EF-P in vitro 

and in vivo (Ude et al, 2013). CadC regulates translation of the lysine/cadaverine antiporter CadB and 

the lysine decarboxylase CadA. CadA generates the polyamine cadaverine (Cad) which inhibits the 

activity of porins (OmpF and OmpC) (Miller-Fleming et al, 2015). Furthermore, translation of Rz1 - an 

outer membrane lipoprotein involved in host lysis by bacteriophages (Berry et al, 2012; Berry et al, 

2008) - stalls at a polyproline motif in its periplasmic domain and efficient synthesis depends on EF-P 

in vitro and  in vivo (section 2.1.2.7) (Doerfel et al, 2013; Ude et al, 2013). 

3.1.1.2 Motility 

∆efp, ∆epmA, ∆epmB strains of S. typhimurium (Bearson et al, 2011; Hersch et al, 2013; Zou et al, 

2012) and B. subtilis (Kearns et al, 2004) show reduced motility. This observation may be explained 

by the reduced synthesis of proteins involved in cell motility, the expression of which is decreased in 

∆epmA S. typhimurium (Bearson et al, 2011; Hersch et al, 2013). Consistently, FlhC and Flk which 

regulate expression of flaggelar proteins require EF-P to be efficiently synthesized in vitro (section 

2.1.2.7) (Doerfel et al, 2013; Ude et al, 2013). 
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3.1.1.3 Virulence 

In several pathogenic organisms deletion of genes encoding EF-P and its modifying enzymes is 

connected with a reduction of the virulence potential (Charles & Nester, 1993; Iannino et al, 2012; 

Kaniga et al, 1998; Navarre et al, 2010; Peng et al, 2001). This may be explained by the altered 

expression of virulence factors containing polyproline motifs. In A. tumefaciens deletion of the EF-P 

encoding chvH gene causes avirulence by reducing the cellular level of the virulence factor VirE2. 

Consistent with the presence of a PPP motif in VirE2, this phenotype can be rescued by introduction 

of E. coli EF-P (Peng et al, 2001). In some cases the altered virulence potential may be explained by 

an impaired pathogen-host interaction due to altered expressions of membrane associated proteins. 

In B. abortus deletion of the EF-P-encoding gene leads to a penetration defect which causes 

avirulence (Iannino et al, 2012). In S. flexneri deletion of genes encoding for EF-P or EpmA reduces 

expression of several virulence effector proteins including IpaA, -B, and -C and IcsA involved in 

pathogen-host interaction and leads to reduced mRNA levels of virB and virF encoding master 

virulence regulators (Marman et al, 2014). Consistently, the sequence of IpaA contains LPTPP and 

TPPL which lead to weak ribosome stalling in vivo and in vitro (Peil et al, 2013). This indirect evidence 

for the involvement of EF-P in virulence is further supported by in vitro-investigations: EspFU, which 

requires EF-P for efficient synthesis in vitro (section 2.1.2.7)(Doerfel & Rodnina, 2013), is a key player 

during the infection of eukaryotic hosts by enterohaemorrhagic E. coli (EHEC) (Campellone et al, 

2004; Sallee et al, 2008). The fact that virulence proteins contain polyproline motifs in combination 

with different modification pathways in eukaryotes and bacteria opens the possibility to generate 

new antimicrobials which target EF-P or its modifying enzymes (Doerfel et al, 2013). 

3.1.2 Potential regulation by the EF-P modification state 
As discussed in the previous section, the expression of a variety of proteins depends on proper EF-P 

function, resulting in far-reaching consequences for the cellular fitness in the absence of EF-P. 

Because the cellular level of spermidine- the basis for eIF5A modification- is tightly controlled by the 

metabolism in eukaryotes, the modification status of eIF5A was proposed to function as a late 

response which transmits environmental changes by regulation of the cell proliferation (Miller-

Fleming et al, 2015). In yeast, spermidine was proposed to serve mainly for eIF5A modification 

(Chattopadhyay et al, 2008; Chattopadhyay et al, 2003). In E. coli, the modification of EF-P is based 

on lysine, which in other contexts is involved in regulatory processes: The lysine-dependent gene 

regulation mechanism of the lysC riboswitch (Caron et al, 2012; Smith-Peter et al, 2015) or the 

necessity of lysine to induce CadC expression (Ude et al, 2013) demonstrates the potential of lysine 

to regulate the modification status of EF-P. Considering that EF-P requires posttranslational 

modification to acquire its full catalytic proficiency, the EF-P modification pathway may allow 
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regulation of translation, e.g. in a manner similar to that in eukaryotes. This might explain why 

polyproline or PPG sequences are found with high frequency in metabolic enzymes (Doerfel et al, 

2013). On the other hand, in S. oneidensis and P. aeruginosa EF-P is modified with a sugar derivative 

(Lassak et al, 2015), which may thus connect translation to the energy status in the cell.  

3.2 What makes proline slow in peptide bond formation? 

EF-P is a specialized translation elongation factor which promotes the synthesis of polyproline 

stretches that are otherwise poor substrates in peptide bond formation and would cause ribosome 

stalling (see above). Having thus determined the function of EF-P in bacterial translation, the 

question arises how EF-P promotes synthesis of polyproline motifs. Similarely to the reduced 

termination efficiency and slow peptide bond formation caused by proline (Hayes et al, 2002; Pavlov 

et al, 2009; Tanner et al, 2009), proline-induced stalling is mainly caused by the amino acid (section 

2.1.2.8). Thus, as it will be discussed in the following sections, the analysis of the catalytic mechanism 

of EF-P is linked to the question what makes polyproline motifs poor substrates for protein synthesis. 

3.2.1 Poor reactivity of proline 
Proline is the only proteinogenic amino acid with a ring spanning the α-carbon and the amino group. 

However, substitutions on the pyrrolidine-ring dramatically alter the reactivity of Pro in both 

directions (sections 2.2.3.3 and 2.2.3.4). Some Pro analogs even show reactivities similar to other 

proteinogenic amino acids. This indicates that imino acids are not per se unreactive in peptide bond 

formation. Notably, substituent effects are immense on the ribosome and only small in solution; 

however the residual trend is similar (Fig. 35, section 2.2.3.4). Because steric and electronic 

properties of proline are highly interdependent (Improta et al, 2001; Shoulders & Raines, 2009) 

interpretations of their impact on peptide bond formation have to be made with caution. The 

electrophilicity of the carbonyl-carbon of different Pro analogs and other proteinogenic amino acids 

such as Val, Phe or Ala is similar (section 2.2.3.5). This indicates that the electrophilicity of proline 

does not explain its poor reactivity as P-site substrate or its stalling properties on the ribosome and 

suggests that the steric properties of proline lead to stalling. Consistently, when analog pairs such as 

Flp, Hyp and MePro were compared, peptidyl transfer was faster for the analog that preferred exo 

and trans conformations; however, when all analog pairs were considered no clear correlation was 

observed (section 2.2.3.6). This could indicate that there is not only one particular conformation that 

is favorable for nucleophilic attack, but that the peptidyl-tRNA can acquire one out of an ensemble of 

possible conformations. To conclude, there is no simple explanation based on electrophilicity and 

preferences for single conformations. However, the entropic character of substituent effects (section 

2.2.3.7) in combination with their dramatic effect on the ribosome-catalyzed reaction suggests that 
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an unfavorable positioning of the peptidyl-Pro-tRNAPro is exaggerated in the ribosomal active site 

compared to the reaction in solution and thus is a major determinant for proline´s reduced reactivity. 

For the future it will be interesting to cocrystallize peptidyl-Pro-tRNAPro and modified EF-P in complex 

with the ribosome and to use such structures for detailed molecular dynamic simulations. Our 

biochemical data may provide orthogonal information and serve as benchmark for such studies. 

3.2.2 Proline in proteins and in the cell 
Proline is a poor substrate for the peptidyl transferase center which can induce ribosome stalling but 

at the same time is important for protein structure and function. Thus, presumably the same 

properties of proline lead to a necessity of minimizing translational stalling and yet keeping the 

necessary functionality. Although EF-P might reduce the evolutionary pressure, stalling motifs should 

be avoided as long as they are not functionally relevant. Interestingly, the frequency of proline is 

declining in taxa from all domains of life (Jordan et al, 2005). Furthermore, not all polyproline-

containing proteins depend on EF-P in vivo (Hersch et al, 2013), but stalling at polyproline sequences 

appears to be strongly influenced by the sequence context (Elgamal et al, 2014; Starosta et al, 2014; 

Woolstenhulme et al, 2013). Accordingly, engineered PPP/PPG sequences can lead to very strong 

stalling upon in-vitro translation of a model protein, whereas stalling at the same sequences 

occurring in endogenous proteins was less severe (compare stalling at PPG in PrmC or YafD, section 

2.1.2.5 and 2.1.2.7). This indicates that the sequences of endogenous proteins may already be 

slightly optimized for translation of such motifs (Doerfel et al, 2013). As demonstrated, all Pro 

analogs could be incorporated into peptides (section 2.2.3), indicating the possibility of their 

potential biotechnological application. Keeping in mind the characteristics of different substituents, 

e.g. in stabilizing peptide structure and functional flexibility this opens the intriguing possibility of 

tuning proteins in structure and function. 

3.2.3 Sequence context effects of Pro-induced stalling 
The rate of fMPP-G formation was reduced ~300-fold compared to fMP-G formation (Fig. 25, section 

2.2.1.4). Notably, not only the A-site substrate but also the C-terminal amino acid in the nascent 

chain and the P-site tRNA were identical in the two reactions. Hence, the rate differences must have 

been caused by Pro at the -1 position in the nascent peptide, thus demonstrating that proline-

induced stalling is affected by the amino acid sequence context. This 300-fold reactivity difference of 

fMet-Pro-Pro-tRNAPro compared to fMet-Pro- tRNAPro as P-site substrate indicate that stalling at PPP 

motifs is not due to the accumulation of moderate peptidyl-transferase effect over several 

consecutive steps, but a cumulative effect. (A rate-reduction due to different accommodation rates is 

unlikely, because fMP-G formation was not rate limited by accommodation at pH 7.5 (Fig. 28, section 

2.2.2.1)). A context effect is corroborated by the identification of several amino acids (X,Y) that 
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increase ribosome stalling at XPPY motifs (Elgamal et al, 2014; Hersch et al, 2014; Peil et al, 2013; 

Starosta et al, 2014; Woolstenhulme et al, 2013). Similarly, the efficiency of translation termination 

was influenced by the second and last amino acids in the nascent chain with ProPro being most 

severe (Björnsson et al, 1996; Hayes et al, 2002; Mottagui-Tabar et al, 1994). Two possible 

explanations may account for the observed sequence context dependence in Pro-induced stalling: 

One possibility is that the Pro-residue at the -1 position may reduce the intrinsic reactivity of the C-

terminal proline. As a result, the P-site substrate may have a reduced propensity to act as 

electrophile for peptide bond formation. This possibility is corroborated by the fact that neighboring 

amino acids influence stereo-electronic properties of proline (Owens et al, 2007; Renner et al, 2001). 

However, the reaction rate does not correlate with the carboxyl-pKa of the P-site substrate (Fig. 36), 

arguing against the idea that a changed electrophilicity is the major source for the sequence 

dependency of Pro-induced stalls. Another, more likely explanation can be deduced based on steric 

considerations: the nascent chain extended by one amino acid might change the 

conformation/orientation of the C-terminal Pro residue or that of the peptidyl-tRNA in the peptidyl 

transferase center. Because unmodified EF-P stabilizes the peptidyl-tRNA (see below, sections 2.1.2.3 

and 2.2.1.1) and accelerates fMP-G and fMPP-G formation only to the half extend compared to 

modified EF-P (Fig. 25, section 2.2.1.4) the low reactivity of the peptidyl-Pro-tRNAPro has most likely 

been partially caused by a mispositioning of the tRNA. This mispositioning seemed to be amplified by 

two consecutive prolines (section 2.2.3.6), possibly inducing an unfavorable conformation of the 

nascent chain and thereby further distorting the position of the tRNA as well as the reactive ester 

bond. Notably, a recent structure of human pre-termination complex with a stalling peptide 

containing two C-terminal proline residues revealed that the conformation of the active site residue 

Hs U4493 corresponding to E. coli U2585 was drastically changed, presumably due to a clash with the 

penultimate proline residue (Matheisl et al, 2015). Although this structure was obtained in another 

organism is shows that two C-terminal proline residues in the nascent peptidyl-chain can have wide 

reaching consequences on the conformation of the nascent chain as well as residues of the ribosomal 

active site. 

3.3 EF-P binds to the ribosome in a tRNAPro-specific fashion  

EF-P specifically accelerates peptide bond formation with proline. This raises the question where this 

specificity of EF-P comes from. The crystal structure of ribosome-bound EF-P shows that it is bound 

between the E and P sites of the ribosome (Blaha et al, 2009); this implies that the E site has to be 

empty to allow EF-P binding. The propensity for a vacant ribosomal E site increases with ribosomal 

pausing which in turn would then become a prerequisite for EF-P binding. As proline is a poor A- and 

P-site substrate (Johansson et al, 2011; Muto & Ito, 2008; Pavlov et al, 2009; Rychlik et al, 1970; 



  DISCUSSION 
 

58 
 

Wohlgemuth et al, 2008) the specificity of EF-P to proline could be just coincidental due to prolines 

ability to robustly stall ribosomes. However, this is not the case, as EF-P had only marginal effects on 

other stalling sequences in vivo (Hersch et al, 2013; Woolstenhulme et al, 2013) and specifically 

rescues stalled complexes with a peptidyl-tRNAPro (Doerfel et al, 2013; Peil et al, 2013; Starosta et al, 

2014; Ude et al, 2013). EF-P may thus specifically recognize tRNAPro or the mRNA codon exposed in 

the E site. Alternatively, EF-P could bind unspecifically to any stalled complex with an empty E site, 

but the reaction with other amino acids could be insensitive to EF-P. On the ribosome, EF-P interacts 

with the P-site tRNAfMet (Blaha et al, 2009) and may be able to contact the mRNA in the E site (Choi & 

Choe, 2011); however the region of EF-P that point towards the mRNA is unresolved in the crystal 

structure (Blaha et al, 2009) indicating structural flexibility at this site. Notably, the structure was 

obtained with tRNAfMet and not tRNAPro, and also the codon in the E site was not a Pro codon but a 

Lys codon (AAA), which might have prevented specific interactions of EF-P with the codon and the 

tRNA. EF-P had a reduced catalytic effect when misaminoacylated fMet-Pro-tRNAPhe was used instead 

of tRNAPro (Fig. 17, section 2.1.2.8). Notably, for the reaction of these two P-site substrates the codon 

exposed in the E site was identical (AUG), suggesting that the tRNA and not the mRNA codon reduced 

the EF-P effect with misaminoacylated Pro-tRNAPhe. Additionally in both cases, the C-terminal amino 

acid (Pro) was the same. Thus, although the amino acid (Pro) would have been sensitive towards EF-P 

function, the possible effect of EF-P was reduced with tRNAPhe. These data could be explained by a 

reduced affinity of EF-P to tRNAPhe which would indicate that specific recognition of tRNAPro is 

required for EF-P to be fully effective. This would require tRNAPro to contain specific recognition 

elements. If so, EF-P would have coevolved with tRNAPro to increase specificity. Notably, tRNA 

modifications are not important for EF-P recognition, as the usage of the in-vitro transcribed tRNAPro 

did not alter EF-P function (section 2.2.3.2 and 5.2).  

3.4 How does EF-P catalyze peptide bond formation? 

3.4.1 EF-P body stabilizes and positions the peptidyl-tRNA 
EF-P prevents the dissociation of a peptidyl-tRNA with short nascent chains from the P site (sections 

2.1.2.3 and 2.2.1.1), most probably by direct interaction. This is corroborated by structural 

investigations showing interaction surfaces between the P-site tRNAfMet and unmodified EF-P (Blaha 

et al, 2009). Moreover, the fact that EF-P seems specific for tRNAPro further supports the idea of a 

direct contact that is responsible for tRNA stabilization (section 2.1.2.8). Because tRNA 

stabilization/positioning is accomplished to the same extent by unmodified EF-P i.e. by the EF-P body 

(section 2.2.1.1) tRNA stabilization might reflect the main function of the EF-P body. In the crystal 

structure tRNAfMet adopts virtually identical conformations and positions in the presence and absence 
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of unmodified EF-P (Blaha et al, 2009). Because fMet-tRNAfMet is more stably bound to the P site 

compared to peptidyl-tRNA (Lancaster & Noller, 2005) it might not require additional positioning 

and/or stabilization. Consistently, unmodified EF-P only slightly accelerates fMet-Pmn formation 

(section 2.2.1.5). In contrast, unmodified EF-P accelerated the synthesis of fMP-G and fMPP-G 3-fold 

and 10-fold, respectively. The reactivity of the P-site substrate decreases from fMP- to fMPP-tRNA, 

which is consistent with an increase of conformational constraints of the nascent chain due to its 

increasing proline content which might be transmitted to the tRNA. Thus, the positioning effect by 

unmodified EF-P might be of greater relevance for substrates which are more mispositioned 

compared to others.  

3.4.2 The modification of EF-P contributes to catalysis  
Compared to unmodified EF-P, modified EF-P further accelerates the rates of peptidyl transfer 

(sections 2.2.1.1, 2.2.1.4, 2.2.1.5 and 2.1.2.2) as well as translation of longer peptides (section 

2.1.2.3) and has an increased capacity to overcome ribosome stalling (section 2.1.2.5). Notably, rate 

differences were preserved at saturating EF-P concentrations and thus cannot solely be explained by 

a reduced affinity of the unmodified factor (sections 2.2.1.1 and 2.2.1.4). This is corroborated by 

similar phenotypes caused by deletion of the modifying enzymes and deletion of EF-P (Marman et al, 

2014; Zou et al, 2012) and the fact that the unmodified EF-P K34A variant provided in trans cannot 

rescue efp deletion strains of E.coli (Ude et al, 2013). Hence, it can be assumed that in addition to the 

stabilization and alignment by the body of EF-P its posttranslational modification contributes to the 

catalytic effect. A molecular model suggests that the β-lysyl-moiety of modified EF-P reaches into the 

ribosomal active site and is located in the close proximity (2 Å) of the C-terminal proline attached to a 

P site-bound tRNA (Fig. 40, (Lassak et al, 2015)).  

 

 
Fig. 40: Model of lysylated EF-P with aminoacyl-
tRNA 
Close-up view of ribosome bound EF-P. Model of 
Lys 34 of EF-P modified with R-β-lysine (red) and 
the CCA-end of Pro-tRNA (grey) bound to the 
ribosomal P site. The model was recreated from 
Lassak et al, 2015 and generated in PyMOL 
(https://www.pymol.org), based on PDB: 3HUY. 

However, shorter modifications in eukaryotes and other phylogenetic groups of bacteria argue 

against a conserved function of EF-P/eIF5A involving a direct interaction of the modification with the 

peptidyl chain. Therefore, the modification was proposed to primarily stabilize the CCA end of the 

peptidyl-tRNA (Doerfel et al, 2013; Lassak et al, 2015). However, a lack of conservation in the length 
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of the modification does not exclude the possibility that the β-lysyl moiety of E. coli EF-P actively 

participates in the chemistry step of peptidyl transfer. 

3.4.3 EF-P function does not involve general acid or base catalysis 
To investigate whether EF-P participates in general acid-base catalysis, the rate of peptidyl transfer 

was monitored at different pH values. The experiments show that EF-P shifts the pH optimum of 

peptidyl transfer from fMet-tRNAfMet or fMet-Pro-tRNAPro to Gly-tRNAGly (fM-G and fMP-G, 

respectively) to lower pH ranges (sections 2.2.2.1). The pKa value for fM-G formation in the absence 

of EF-P (7.2) is in good agreement with the pKa determined previously (7.4) (Johansson et al, 2011)); 

although both values are smaller than the pKa of Gly-tRNAGly in solution (7.8) (Johansson et al, 2011). 

Johansson and colleagues explain the discrepancy between the pKa of Gly-tRNAGly on the ribosome 

and in solution was explained by a ribosome-induced down-shift of the pKa (Johansson et al, 2011). 

However, an alternative explanation is a change of the rate-limiting step at high pH. In the latter case 

the maximal rate of fM-G formation (70 s-1) would correspond to a pH-insensitive step that leads to 

an apparent, kinetically down-shifted pKa (Fersht, 1999). For the current dataset, the latter 

interpretation is more likely, because the rate of fMP*-G synthesis with Pro derivatives serving as P-

site substrates was likewise limited at 70 s-1 (Fig. 32, section 2.2.3.3). The fact that both reactions 

have the same upper rate limit is in good agreement with the rate-limiting accommodation of Gly-

tRNAGly which kinetically masks peptide bond formation. Accordingly, the down-shifted pKa observed 

in the presence of EF-P is determined kinetically as well. 

 

Fig. 41: pH dependent fM-G and fMP-G formation.  
Linear (A) and logarithmic plot (B) of pH-dependent fM-G and fMP-G formation (circles and triangles, respectively), 
determined in the absence (open symbols) and in the presence of modified EF-P (closed symbols). Except for fM-G 
without EF-P, the pH dependencies were fitted to a model with one ionizing group. 

 
The maximal rate of fMP-G formation from fMet-Pro-tRNAPro and Gly-tRNAGly was reduced compared 

to that of fM-G formation (38 ± 3 s-1 and 70 ± 4 s-1, respectively; Fig. 41A). Assuming a rate of Gly-

tRNAGly accommodation of 70 s-1 (see above), this might suggests that fMP-G formation actually 

monitors the chemistry of peptide bond formation. However, the Arrhenius plot for fMP-G formation 
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determined at pH 7.5 in the presence of EF-P deviates from linearity above 30 °C indicating a change 

in the rate-limiting step (Fig. 29D, section 2.2.2.2), thus arguing against a rate limiting chemistry step 

at 37 °C. Accordingly, as for fM-G formation, the pKa measured for fMP-G formation in the presence 

of EF-P (pKa = 6.6) seems to be set kinetically. Due to the small biochemically accessible range in 

which the reaction with EF-P was pH-dependent, the initial slope of the log(k)-pH dependence was 

not well defined (Fig. 41B), which precluded the determination of the number of ionizing groups 

involved in catalysis. The pKa value determined in the absence of EF-P was 8.5 and thus too high to 

correspond to the α-amino group of Gly-tRNAGly. Furthermore, because the maximum rate at high pH 

values may represent a rate-limiting step other than the chemistry step, the real pKa of the latter 

reaction might be even higher than 8.5, further aggravating the discrepancy to the literature value of 

Gly-tRNAGly (pKa = 7.8, (Johansson et al, 2011)). The slope of 0.9 for the log(k)-pH plot (Fig. 41B) 

indicates that only one ionizing group was titrated. Thus, the reaction depends on the deprotonation 

of one group which is presumably not the attacking nucleophile. This observation could be 

interpreted as a pH-dependent conformational change within the ribosomal active site. The 

conformation of active site residues is modulated by pH (Beringer et al, 2005; Hesslein et al, 2004; 

Xiong et al, 2001) and accordingly, observed pKas have been assigned to pH-dependent 

conformational changes of the peptidyl transferase center (Bieling et al, 2006; Katunin et al, 2002; 

Muth et al, 2001; Okuda et al, 2005). Because the reaction in the absence of EF-P is not limited by the 

reaction chemistry, the change of the pH dependence by EF-P is most probably not the result of the 

acid-base catalysis of the chemistry step. Instead, EF-P might influence local rearrangements of the 

ribosomal active site. Additionally, EF-P positions the peptidyl-tRNA (see above) and may improve 

the electrostatic environment at the peptidyl transferase center (see below).  

Further evidence against general acid-base catalysis by EF-P is provided by the entropic character of 

the contribution of EF-P to catalysis as demonstrated for fMP-G (section 2.2.2.2) and fMP*-Pmn 

formation (sections 2.2.3.7). Because acid-base catalysis would involve bond formation and breaking 

unique to the EF-P catalyzed reaction, the lack of a favorable enthalpic contribution by EF-P disfavors 

the idea of that EF-P donates functionally active groups (Wolfenden et al, 1999). Also the 

independence of the peptidyl transfer from fMP*-tRNAPro to Pmn of the carboxyl-pKa of the P-site 

substrate (and thus of the electrophilicity of the attacked carbonyl carbon) (Fig. 36, section 2.2.3.5) 

argues against general acid catalysis by EF-P.  

3.4.4 A possible catalytic mechanism of EF-P 
The EF-P body interacts with the tRNA body (Blaha et al, 2009) and facilitates peptide bond 

formation by stabilization as well as positioning of the peptidyl-tRNA in the ribosomal active site 

(sections 2.2.1, 2.2.1.4 and 2.2.1.5). The modification of EF-P extends the factor along the CCA end of 
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the peptidyl-tRNA and further increases the catalytic proficiency of the factor (sections 2.2.1, 2.2.1.4 

and 2.2.1.5). The pH titrations indicate that EF-P is not involved in general acid-base catalysis but 

accelerates peptidyltransfer by altering a pH-dependent rate-limiting step (section 2.2.2.1). Notably, 

for small substrates conformational changes within the ribosomal active site can be pH-dependent 

and are critical for efficient peptidyl transfer (Beringer & Rodnina, 2007a; Brunelle et al, 2006; 

Schmeing et al, 2005b). Moreover, a recent crystal structure of a peptidyl-ProPro-tRNAPro in the P site 

of human ribosomes shows that the nascent chain induce a rearrangement of the ribosomal residue 

Hs U4493 (Matheisl et al, 2015). In E. coli the corresponding U2585 residue is critical to allow a 

reorientation of the ester-linkage on the peptidyl-tRNA favorable for nucleophilic attack (Schmeing et 

al, 2005b). Although the structure was obtained in another organism, it shows that the nascent chain 

containing two C-terminal Pro residues can stall the ribosome by adopting conformations that lead to 

rearrangements of ribosomal residues.  In analogy to these findings, the peptidyl chain of the poor P-

site substrate fMet-(Pro)-Pro-tRNAPro might sterically induce an unreactive orientation of the 

peptidyl-tRNA itself and of ribosomal residues. Notably, the reactivity of the P-site substrate 

decreases with fM-, fMP- and fMPP-tRNA, which would be consistent with an increase of 

conformational constraints (section 2.2.1.4). The analysis of linear-free-energy relationships (LFER) 

with proline analogs (section 2.2.3) supports the idea that an unfavorable orientation or 

conformation of the peptidyl-tRNA plays a major role in proline-induced stalling. EF-P accelerates the 

reaction with fMetPro-Pro-tRNAPro more than with fMetPro-tRNAPro (section 2.2.1.4), indicating that 

its function is more important for substrates with constrained peptidyl-chains. Apart from the 

stabilizing and positioning function of the EF-P body, modified EF-P might additionally accelerate 

peptide bond formation by positioning of the peptidyl-tRNA CCA end and/or the amino acid attached 

to the peptidyl-tRNA in a more active conformation. The analysis of the activation parameter 

revealed that EF-P catalyzes peptide bond formation by lowering the entropy of activation (sections 

2.2.2.2 and 2.2.3.7) which is in good agreement with the induction of conformational changes. In 

addition to the positioning effects, a favorable entropic term may be due to an improved 

electrostatic environment at the peptidyl transferase center or a better orientation of water 

molecules involved in catalysis (Polikanov et al, 2014; Sharma et al, 2005; Trobro & Aqvist, 2005; 

Wallin & Aqvist, 2010). Thus, EF-P might as well support the preorganization of catalytic water 

molecules or the H-bond network required for efficient proton-shuttling. 
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4 MATERIALS AND METHODS 

4.1 Equipment 

Table M1: Equipment 

Device  Manufacturer  
Milli-Q Advantage A10 Millipore  
pH meter, pH electrode WTW 
Vortex Genie 2  Scientific Industries  
Water bath RE104 and E100  Lauda  
Benchtop centrifuge 5415R and 5810R  Eppendorf  
Centrifuge Avanti J-26 XP Beckmann Coulter 
Centrifuge Avanti J-30I Beckmann Coulter 
Ultracentrifuge Optima XPN-100 Beckmann Coulter 
Galaxy mini star  VWR  
Electrophoresis power supply EV261 Peqlab Biotechnologie  
Mini gel electrophoresis chamber Peqlab Biotechnologie  
PCR thermocycler Peqstar  Peqlab Biotechnologie  
Nanodrop 2000C Peqlab Biotechnologie  
Bio-vision imaging system Peqlab Biotechnologie 
Emulsiflex C-3 homogenizer  Avestin  
FLA-9000 biomolecular imager Fuji 
Plates incubator INE600 Memmert  
Incubator shaker series Innova44  New Brunswick  
ӒKTA FPLC GE Healthcare  
ӒKTA Explorer GE Healthcare  
Liquid scintillation counter  PerkinElmer  
RQF-3 Rapid Quench-Flow Instrument KinTek 

 

4.2 Software 

Table M2: Software 

Software  Provider  
Pymol 1.3  Schrödinger  
GraphPad Prism 5.0  GraphPad software  
MultiGauge 2.0  Fujifilm  
FluorEssence 3.5  Horiba Scientific  

 

4.3 Chemicals and consumables 

Chemicals were purchased from Sigma Aldrich, Roche Molecular Biochemicals or Merck, unless 

stated otherwise. Chemicals for electrophoresis (agarose, acrylamide and SDS) were obtained from 

Serva, GTP from Jena Bioscience, kits for DNA preparation from Macherey-Nagel and protein 

concentrators, nitrocellulose filters, sterile filters were purchased from Sartorius. Radioactive 
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compounds were obtained from Hartmann Analytic. Scintillation liquid IRGA-SAFE Plus and 

Quickszint 361 were obtained from PerkinElmer and Zinsser Analytics, respectively. 

4.4 Reaction buffers  

Most kinetics were performed either in buffer A or buffer B. Buffer A allows comparison of the new 

data with the literature because many studies were performed in this buffer. Furthermore, ribosomal 

complexes are more stable in buffer A compared to buffer B. However, buffer B is more 

physiological, the proofreading is better than in buffer A and the determined rates are more 

comparable to rates determined in vivo. For the experiments the buffer was chosen depending on 

the respective purpose of the experiment. 

Buffer A: 50 mM Tris-HCl pH 7.5 at 37 °C, 70 mM NH4Cl, 30 mM KCl and 7 mM MgCl2; buffer B: 50 

mM Tris-HCl pH 7.5 at 37 °C, 70 mM NH4Cl, 30 mM KCl, 3.5 mM MgCl2, 0.5 mM spermidine, 8 mM 

putrescine and 2 mM DTT; buffer C: 50 mM Tris-HCl pH 7.5 at 37 °C, 70 mM NH4Cl, 30 mM KCl, 1 mM 

spermidine, 16 mM putrescine and 4 mM DTT, for all pH titrations the buffer was supplemented with 

20 mM Bis-Tris; buffer D: 20 mM HEPES-HCl pH 7.5 at 37 °C, 100 mM KCl and 7 mM MgCl2. All buffers 

were filtered through a 0.2 μm cellulose acetate filter (Sartorius Stedim). For temperature 

dependencies, the pH of the buffer was adjusted at the respective temperature. 

4.5 Bacterial strains 

For molecular biological work E. coli DH5α or TOP10 cells were used; for expression E. coli BL21(DE3) 

cells were used. 

Table M3: Bacterial strains 

strain Genotype 
E. coli DH5α F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-

argF)U169, hsdR17(rK
- mK

+), λ– 
E. coli TOP10 
Invitrogene 

F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 
Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ- 

E. coli 
BL21(DE3) 

F– ompT gal dcm lon hsdSB(rB
- mB

-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) 

 

4.6 Cloning 

In general, genes encoding proteins of interest were amplified from E. coli genomic DNA by PCR using 

corresponding primers containing cleavage sides for restriction enzymes at their 5' ends and the 

amplified DNA fragments were digested with the respective restriction enzymes (NEB). The target 

vector was cleaved with the respective enzyme, dephosphorylated by arctic phosphatase (NEB), and 

the DNA fragment was ligated into the vector using Quick T4 DNA ligase (NEB) according to the 
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manufacturer’s protocol. The ligation mixture was transformed into E. coli TOP10 cells (Invitrogen) 

and plated on LB agar plates containing the antibiotic, for which the vector provides resistance. 

Colonies were picked and grown over night in LB medium containing antibiotic and the plasmid was 

purified using the NucleoSpin Plasmid kit (Macherey-Nagel) according to the manufacturer’s 

protocol. The sequence of the plasmid was determined by DNA sequencing.  

To introduce point mutations into plasmids by QickChange technique (Stratagene) (Constructs 08b-j) 

PCR primers which spanned the target position for mutation and contained the point mutation were 

generated. The mutation was introduced into the plasmid by PCR amplification of the complete 

vector using the primers. The template, not containing the mutation is digested by Dpn1, which 

digests methylated DNA, for 1-2 h at 37 °C. Plasmid multiplication and purification was performed as 

described above. 

4.6.1 Construct for overexpression of EF-P and its modifying enzymes  
The vector constructs containing genes encoding EF-P and its modifying enzymes EpmA and EpmB 

(pET28efp, pET28efp/epmA, pET28efp/epmA/B) were kindly provided by Frank Peske, MPI-BPC, 

Göttingen. The construct pET28efp/epmA/B/C was cloned on the basis of pET28efp/epmA/B by 

Christina Kothe, MPI-BPC Göttingen. The cloning strategy was as follows: Genes coding for EF-P (efp) 

and its modifying enzymes EpmA (epmA), EpmB (epmB) and EpmC (epmC) were amplified from the E. 

coli genome (BL21(DE3) cells). The genes were first cloned separately into pET24a and a construct 

containing the ribosomal binding site encoded by pET24a together with the respective gene was 

cloned into pET28a. The efp gene was cloned into pET28a, adding an N-terminal 6xHis tag to EF-P as 

described (Yanagisawa et al, 2010). To obtain EF-P in different modification statuses, EF-P was 

overexpressed either alone or together with its modifying enzymes from the following constructs: 

pET28efp, pET28efp/epmA, pET28efp/epmA/B and pET28efp/epmA/B/C (Fig. M1). Since only EF-P 

need to be purified, the other genes were cloned without tag.  

 

 

Fig. M1 EF-P constructs in pET28a 

 

4.6.2 Generation of mRNA constructs 
To generate mRNAs corresponding to proteins containing polyproline motifs the respective genes 

(encoding for release factor glutamine methyltransferase (PrmC; 1-75); TonB, outer membrane 

subunit Rz1; N-acetylmuramoyl-L-alanine amidase (AmiB, 1-159); flagellar transcriptional regulator 

(FlhC, 1-94); flagellar regulator (Flk, 1-87) and YafD (1-75)) were amplified from genomic DNA of E. 
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coli BL21(DE3) with primers introducing 3' Xho1 and 5' Nde1 restriction sites (Table M5). The PCR 

product was digested with Nde1 and Xho1 (New England Biolabs) and ligated into the pET24a vector 

(Novagen). The gene of secreted effector protein EspF(U) (1-154) from E. coli DH5alpha with 3' Xho1 

and 5' Nde1 restriction sites was purchased from Eurofins and cloned into pET24a as described for 

the other constructs. Some of these constructs were cloned by Christina Kothe and Jörg Mittelstät, 

MPI-BPC Göttingen (see Table M4). 

4.6.3 Construction of tRNAPro template 
The transcript of tRNAPro was prepared as described (Brown et al, 1979). Two partially 

complementary DNA oligomers containing isoacceptor tRNAPro with the anticodon CGG fused to T7 

RNA polymerase promoter were obtained from IBA (primer 1 and 2,Table M5), extended by PCR and 

cloned into pUC19 vector using SMA1 restriction site (Himeno et al, 1989). The CCG isoacceptor was 

chosen because its matching codon (CCG) is the most abundant of the four Pro codons (Dong et al, 

1996) and was reported to be the most efficient for proline incorporation (Pavlov et al, 2009). 

4.6.4 Constructs used in this study 
Table M4: Plasmids 

C Construct Comment 
01 pET28_efpa pET28 vector for expression of N-terminally 6xHis-tagged EF-P 
02 pET28_efp/epmA/Ba Like 01 but additionally for expression of EpmA and B 
03 pET28_efp/epmA/B/Cb Like 01 but additionally for expression of EpmA, B and C 
04 pET24a_epmAa pET24a vector containing EpmA gene, template for cloning 

EpmA with ribosomal binding site (RBS) of pET24a into pET28 
05 pET24a_epmBa Like 04 but encoding EpmB instead of EpmA 
06 pET24a_epmCb Like 04 but encoding EpmC instead of EpmA 
07 pUC19_tRNAPro pUC19 vector containing sequence of tRNAPro CGG 

isoacceptor fused to T7 RNA promoter 
08a pET24a_prmCc pET24a vector containing sequence of PrmC, template for 

mRNA formation 
08 
b-j 

pET24a_prmC_mod Like 08a, containing pointmutations introducing PG, PP, PPG, 
PPGF and PPP into PrmC sequence 

09-
15 

pET24a_XYb pET24a vector containing sequence of genes coding for TonB 
(09), YafD (10), Rz1 (11), AmiB (12), FlhC (13), Flk (14) and 
EspfU (15) 

16 pEX-K_EspfU1-154 pEX-K vector containing sequence of EspfU gene from E. coli 
DH5alpha (N-terminal fragment, 154 amino acids) 

Constructs were a provided by F. Peske; cloned by  b C. Kothe or c J. Mittelstät (Mittelstaet, 2012) 
 
 

4.6.5 Primer 
DNA oligonucleotides were obtained from IBA Life Sciences or Eurofins MWG Operon. 
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Table M5: DNA oligonucleotides 

Primer for cloning EF-P constructs 
Name Sequence  5'→ 3' Template/Comment 
EF-P_Nde1_F ATTCCTCATATGGCAACGTACTATAGCAA

CGATTTTCG 
For amplification from E. coli BL21(DE3) 
genome and cloning into pET28 by N-
terminal Nde1 and C-terminal Yba1 
restriction site 

EF-P_Xba1_R TGGTGGTCTAGATTACTTCACGCGAGAG
ACGTATTCACCAG 

EpmA_pET24_F GAGATATACATATGAGCGAAACGGCATC
CTGGCAGC 

For amplification from E. coli BL21(DE3) 
genome and cloning into pET24a by N-
terminal Nde1 and C-terminal Yba1 
restriction site 

EpmA_pET24_R GTGGTGCTCGAGTGCCCGGTCAACGCTA
AAGGCGATG 

EpmA_-Nde1_F TGACCAGCCCGGAATACCATACGAAACG
CCTG 

To remove internal Nde1 site in EpmA 
gene 

EpmA_-Nde1_R CAGGCGTTTCATACGGTATTCCGGGCTG
GTCA 

 

EpmA_pET28_F CAATTCCCCTCTAGAAATAATTTTGTTTAA
CTTTAAGAAG 

pET24a_EpmA, for cloning into 
pET28_efp 
F:EpmA including RBS, R: introduces 
Stop codon and EcoR1 site 

EpmA_pET28_R TGGTGGGAATTCTCTTATGCCCGGTCAAC
GCTAAAGGC 

EpmB_pET24a_F GAGATATACATATGGCGCATATTGTAACC
CTAAATACCCC 

For amplification from E. coli BL21(DE3) 
genome and cloning into pET24a by N-
terminal Nde1 and C-terminal Yba1 
restriction site 

EpmB_pET24a_R GGTGGTGGTGCTCGAGCTGCTGGCGTAG
CTGGAGATCCAG 

EpmB_pET28_F CCCCTCTAGAAAGAATTCTGTTTAACTTTA
AGAAGGAGATATAC 

pET24a_EpmB, for cloning into 
pET28_efp/EpmA; F: EpmB including 
RBS, introduces EcoR1 site; R: 
introduces Stop and BamH1 site 

EpmB_pET28_R GGTGGTGGATCCCTTACTGCTGGCGTAG
C 

EpmC_pET28_F AGTTGCTAGCAAGGAGATATACATATGA
ACAGTACACACCACTACGAGCAGTTG 

For amplification from E. coli BL21(DE3) 
genome and cloning into plasmid 02 by 
N-terminal Nde1 and C-terminal Pst1 
restriction sites 

EpmC_pET28_R TCAACTGCAGTCAGTTGAGCGCTTCCGGC
C 

Primer for tRNA transcript 
Name Sequence  5'→ 3' Template/Comment 
1 AGTTGCTGCAGTAATACGACTCACTATAC

GGUGAUUGGCGCAGCCUGGUAGCGCAC
UUCGUUCG 

For cloning of tRNAPro sequence into 
PUC19 using SMA1 restriction sites 

2 TGGTCGGTGATAGAGGATTCGAACCTCC
GACCCCTTCGTCCCGAACGAAGTGCGCTA
CCAGGCTG 

 

3 GTTTTCCCAGTCACGAC pUC19_tRNAPro, to generate PCR 
template for transcription 4 TGmGTCGGTGATAGAGGATTC 

m designates a 2'-O-methyl group to prevent nonspecific 3'mRNA extension by T7 RNA polymerase 
Primer for cloning translation constructs into pET24a 
Name Sequence  5'→ 3' 
tonB_Nde1_F GATTATGACTCATATGACCCTTGATTTACCTCGCCG 
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tonB_Xho1_R GACTTTCCTCGAGCTGAATTTCGGTGGTGCC 
yafD_Nde1_F TCAAAGTCACATATGCGAAAAAACACC 
yafD_Xho1_R ACATCTCGAGTTTATCAGGCTTGC 
Rz1_Nde1_F GAGTTAGCATATGCGAAAGCTGAAAATGATGC 
Rz1_Xho1_R TGCACTCGCGCCAGTCGTTCCCGGAG 
AmiB_Nde1_F GGTCATATGATGTATCGCATC 
AmiB_Xho1_R GGTCTCGAGTTAATTGCGCGCCGGTTC 
FlhC_Nde1_F CCTCATATGAGTGAAAAAAGCATTG 
FlhC_Xho1_R CCTCTCGAGTTAAACAGCCTGTACTCTC 
Flk_Nde1_F GGATACATATGATACAACCTATTTCCGGCCCTCC 
Flk_Xho1_R TCGAGACGAACCAGCCAGACCAGC 
Quickchange primers to modify 08a pET24a_prmC construct 
Name Sequence  5'→ 3' 
PrmC_PG_F GAGCGAAAGCCCGGGGCGTGATGCTGAAATCC 
PrmC_PG_R GGATTTCAGCATCACGCCCCGGGCTTTCGCTC 
PrmC_PP_F  CAGGCGAGCGAACCCCCGCGGCGTGATGC 
PrmC_PP_R  GCATCACGCCGCGGGGGTTCGCTCGCCTG 
PrmC _PPG_F CAGGCGAGCGAACCCCCGGGGCGTGATGCTGAAATCC 
PrmC _PPG_R CAGCATCACGCCCCGGGGGTTCGCTCGCCTGAAGTTG 
PrmC _PPP_F AACCCCCGCCGCGTGATGCTGAAATCC 
PrmC _PPP_R CATCACGCGGCGGGGGTTCGCTC 
PrmC _PPPG_F CGAGCCCGCCCCCGGGGCGTG 
PrmC _PPPG_R CGGGGGCGGGCTCGCCTGAAGTTGG 
PrmC _3x ccc_F AGCGAACCCCCCCCCCGTGATGCTGA 
PrmC _3x ccc_R CAGCATCACGGGGGGGGGGTTCGC 
PrmC _3x cca_F GGCGAGCGAACCACCACCACGTGATGCTGA 
PrmC _3x cca_R CAGCATCACGTGGTGGTGGTTCGCTCGC 
PrmC _3x cct_F GGCGAGCGAACCTCCTCCTCGTGATGCTGA 
PrmC _3x cct_R CAGCATCACGAGGAGGAGGTTCGCTCGC 
PrmC _3x ccg_F GGCGAGCGAACCGCCGCCGCGTGATGCTGA 
PrmC _3x ccg_R CAGCATCACGCGGCGGCGGTTCGCTCGC 
Primer for mRNA formation 
Name Sequence  5'→ 3'      Template/ Comment 
T7-5 forward TAATACGACTCACTATAG Forward primer for all mRNAs 
PrmC 14_R AAGTTGGCTTATTGCTTCACG pET24a_PrmC, generates template 

for mRNA of indicated length PrmC 28_R CAGCAGGATTTCAGCATCACGC 
PrmC 42_R AAAGGCGAGGATAAAAGTACGC  
PrmC 56_R ATCAAGTTGCTGACATTGTTCG  
PrmC 70_R ATGAGCAATGGGTTCACCATCG  
PrmC 75_R TCGCACCCCGGTTAAATGAG  
PrmC 84_R AACAAATAAACGGCAACGACCAGA  
PrmC 112_R ACGGCAAGGTTGTTCAGGCA  
PrmC 140_R ATCTACAGCGGTAATTTCGCAGT  
PrmC 168_R CCAGTCGCTTTGCAGAATGCG  
PrmC 196_R TTGTTGAAGATGTGGGTCCTGCT  
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PrmC 224_R CGACTGTTCGATGATATGCACGA  
PrmC 252_R GAGGATAAATGCTTGTCGCACCG  
TonB 56_R TTCGAGATCAGCAGGCGTAACC pET24a_TonB, generates template 

for mRNA of indicated length TonB 62_R CTGAACGGCTTGTGGCGG 
TonB 70_R CTCTACCACCGGCTCCGG  
TonB 80_R TTCGGGGATCGGCTCAGGTTC  
TonB 110_R TGGCTGCTCCTGTACCTTTTTCAC  
TonB 160_R CTGATTACGGCTTAATGCGCG  
TonB 239_R GTTCGCAGGCTTGGCTGAGAGGATTTG  
YafD_20_R TAAGATCCTTTCCGCAGGTTGTC pET24a_YafD, generates template 

for mRNA of indicated length yafD_75_R CAATAACACCAGATGTGCATC 
Rz1_40_R GCATTATCCACGCCGGAGG pET24a_Rz1, generates template 

for mRNA of indicated length Rz1_62_R GTTCCCGGAGGGTGAAATAATCC 
AmiB_90_R AGGCGTTCCAGAGCGAATC pET24a_AmiB, generates template 

for mRNA of indicated length AmiB_129_R CACATCGGCGTTAATCGTAAAGA 
AmiB_159_R GCGCGGTGCGACAACC  
FlhC_52_R CGGTGGGCTTCCGCGCAGTTC pET24a_FlhC, generates template 

for mRNA of indicated length FlhC_94_R CGCATCGACGCCATTACACA 
Flk_14_R TGGTGGTTGCCCAGGAGG pET24a_Flk, generates template for 

mRNA of indicated length Flk_94_R ACGAACCAGCCAGACCAG 
EspfU_117_R TGGTGGCGCAGGCCAGTTAG pET24a_EspfU, generates template 

for mRNA of indicated length EspfU_155_R CTCGAGGAATATGTTCAGCCATAT 
 

4.7 RNA 

4.7.1 Short mRNA constructs  
Short mRNAs were purchased from IBA Life Sciences. They are based on 002 mRNA and have a strong 

Shine-Dalgarno sequence (Calogero et al, 1988). The 5' → 3' sequence is GGCAAGGAGGUAAAUA 

followed by codons encoding the peptide of interest. The codons were chosen to be recognized by 

the most abundant tRNA isoacceptor (Dong et al, 1996). For Pro and Gly CCG and GGU were used 

respectively. Ile (AUU) served as last untranslated codon for all short mRNAs (Table M6).  

Table M6: Synthetic mRNAs 

Name Sequence 
fMPFI GGCAAGGAGGUAAAUAAUGCCGUUCAUU 
fMPGFI GGCAAGGAGGUAAAUAAUGCCGGGUUUC 
fMPFGI GGCAAGGAGGUAAAUAAUGCCGUUCGGUAUU 
fMPPFI GGCAAGGAGGUAAAUAAUGCCGCCGUUCAUU 
fMPPPFI GGCAAGGAGGUAAAUAAUGCCGCCGCCGUUCAUU 
fMPPGFVI GGCAAGGAGGUAAAUAAUGCCGCCGGGUUUCGUU 
fMPPPGI GGCAAGGAGGUAAAUAAUGCCGCCGCCGGGUAUU 
fMFGI GGCAAGGAGGUAAAUAAUGUUCGGUAUU 
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fMFFGI GGCAAGGAGGUAAAUAAUGUUCUUCGGUAUU 
fMFFFGI GGCAAGGAGGUAAAUAAUGUUCUUCUUCGGUAUU 
fMFPGI GGCAAGGAGGUAAAUAAUGUUCCCGGGUAUU 
fMGPFI GGCAAGGAGGUAAAUAAUGGGUCCGUUCAUU 
fMVGF GGCAAGGAGGUAAAUAAUGGUUGGUUUC 
fMWPPFI GGCAAGGAGGUAAAUAAUGUGGCCGCCGAUU 
fMKEFI GGCAAGGAGGUAAAUAAUGAAAGAAUUCAUU 
fMR2PGFI GGCAAGGAGGUAAAUAAUGCGACCGGGUUUCAUU 
fMQ2PGFI GGCAAGGAGGUAAAUAAUGCAGCCGGGUUUCAUU 
fMEG3I GGCAAGGAGGUAAAUAAUGGAGGGUAUU 
fMDPGFI GGCAAGGAGGUAAAUAAUGGACCCGGGUUUCAUU 
Pro1Stop GGCAAGGAGGUAAAUAAUGCCGUAAGUUAUU 
No SD AUGUUCAUCCCUUCUUAUACUACCUUCACG 

 

4.7.2 Transcription of long mRNAs 
For long mRNAs the open reading frames of the genes of interest were cloned into pET24a as 

described (section 4.6.2). Using the vector as a template, PCR constructs containing the T7 promoter 

and the Shine-Dalgarno sequence of the pET24a 5'UTR (GGGGAAUUGUGAGCGGAUAACAAUUCCCCC 

UCUAGAAAUAAAUUUUGUUUAACUUUAAGAAGGAGAUAUACAU) followed by the respective open 

reading frame were obtained (Primers are listed in Table M5). These oligonucleotides were further 

used as template for transcription, which was performed in transcription buffer containing 40 mM 

Tris-HCl pH 7.5, 15 mM MgCl2, 2 mM spermidine, 10 mM NaCl, 10 mM DTT, 3 mM NTPs each, 5 mM 

GMP, 10% (v/v) DNA template, 5 u/ml pyrophosphatase (PPase), 1.5% (v/v) RiboLock RNase inhibitor 

(Fermentas) and 0.8% (v/v) T7 RNA-polymerase for 3 h at 37 °C. For peptide markers mRNA 

templates of desired length of each protein were generated using reverse primer listed in Table M5. 

The mRNAs were purified with the RNeasy Midi Kit (Qiagen) according to the manufacturer’s 

protocol. The mRNA concentration was determined by OD260 measurement and calculated according 

to c = OD260/(ε∙d), with d is the diameter of the cuvette, ε is the extinction coefficient of the mRNA 

determined by nearest neighbor model. 

4.7.3 Preparation of the tRNAPro transcript 
The tRNAPro was cloned as described (section 4.6.3) and a template for transcription was amplified 

from the plasmid using primers 3 and 4 (Table M5). Transcription was performed by incubation of 

transcription template (~100 µg/ml) in 40 mM Tris-HCl pH 7.5, 15 mM MgCl2, 2 mM spermidine, 10 

mM NaCl, 10 mM DTT supplemented with 3 mM NTPs, 5 mM CMP, 0.01 u/µl PPase, 1.6 u/µl T7 RNA 

polymerase (Fermentas) and 0.6 u/µl RiboLock RNase inhibitor (Fermentas) for 3 h at 37 °C.  

The transcript was purified on a HiTrapQ HP column (GE Healthcare) in 50 mM NaOAc pH 5, 10 mM 

MgCl2 with increasing salt concentrations (up to 1.1 M NaCl).  Fractions containing tRNA transcript 
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were pooled, phenolized and precipitated with ethanol. The tRNA pellet was resolved in H2O and the 

concentration was determined by aminoacylation with [14C]proline. To confirm the functionality of 

the tRNA transcript it was compared to native tRNAPro in all assays applied. All kinetics were virtually 

identical for both tRNAs, indicating that the lack of modification does neither interfere with the 

translation apparatus nor with the function of EF-P (Fig. S1).  

4.7.4 Native tRNAs 
Native tRNAs (X-tRNAX, with X= fMet, Phe, Lys, Gly, Trp, Val, Arg and Glu) were prepared as described 

(Gromadski & Rodnina, 2004). αBodipyFL-Met-tRNAfMet (BOF-Met-tRNAfMet) was prepared as 

described (Mittelstaet et al, 2013). Other tRNAs (X-tRNAX, with X = Pro, Asp, Gln) were prepared from 

E. coli total tRNA by aminoacylation with the respective 14C-labeled amino acid (Kothe et al, 2006) 

followed by phenol extraction (Aqua-Phenol pH 4.5 RNA grade, Roth) and ethanol precipitation at -20 

°C over-night. The tRNA was pelleted by centrifugation at 5000 x g for 1 h at 4 °C, the pellet was dried 

in speedvac apparatus (Thermo Fischer) and dissolved in water. The aminoacyl-tRNA was enriched by 

high performance liquid chromatography (HPLC) on a LiChrospher WP 300 column (Merck) using a 

gradient of 0-15% ethanol in 20 mM ammonium acetate, pH 5.0, 400 mM NaCl and 10 mM 

magnesium acetate and precipitated using ethanol. The precipitated aa-tRNA was dissolved in water 

and stored at – 20 °C. 

4.7.5 Isolation of peptidyl-tRNA  
Peptidyl-tRNAs were obtained by extraction from posttranslocation complexes (PTCs, see next 

section) with 50 mM NaOAc pH 5, 500 mM KCl, 100 mM EDTA, for 10 min at 37 °C and separation of 

tRNA and ribosomal subunits by ultracentrifugation at 260,000 × g for 1 h at 4 °C. Supernatant 

containing peptidyl-tRNA fMet-Pro*-tRNAPro was purified and handled as described for the tRNA 

transcript. Additional purification and concentration of the peptidyl-tRNA was obtained by using 

Centrifugal filter units (Merck) according to the manufacturers’ protocol.  

4.7.6 Aminoacylation of tRNA 
Aminoacylation of tRNAPro with proline or proline analogs was performed in buffer containing 30 mM 

HEPES-HCl pH 7.5, 30 mM KCl, 10 mM MgCl2, 1 mM DTT and 3 mM ATP. 25 µM tRNAPro was mixed 

with 60 µM [14C]Pro or 2-5 mM Pro analog in the presence of 1 µM prolyl-tRNA synthetase (Pro-RS) 

and 0.5% IPPase and incubated at 37 °C for 30 min. The efficiency of aminoacylation was determined 

by nitrocellulose filtration with subsequent [14C] radioactivity counting. For unlabeled Pro analogs the 

efficiency of aminoacylation was estimated indirectly by quantification of the incorporation efficiency 

into peptides. Pro-RS can aminoacylate tRNAPro with all Pro-analogs but with different efficiency. 

Recognition of aa-tRNA by EF-Tu was confirmed by different migration behavior of the ternary 
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complex compared to EF-Tu on native PAGE (see below) (Ohtsuki et al, 2010) and by purification of 

ternary complex by size-exclusion chromatography (SEC, see section 4.7.9).  

Aminoacylation of 80 u/ml total tRNA (Roche) was performed in the same buffer but with 16 mM 

MgCl2 and 5% S100 instead of synthetase and 0.3 mM of each amino acid for 40 min at 37 °C. The pH 

of the total tRNA was adjusted to 7.5 by 1 M Tris-HCl. Amino acid stock solutions were obtained by 

dissolving the respective amino acid in water at 0 °C, except for Trp and Leu which were dissolved in 

0.3 M Tris-HCl at 37 °C and Glu, Asp and Phe which were dissolved in 0.1 M Tris-HCL at 50 °C. 

Aminoacylated tRNA was purified as described for tRNA transcript (see above). 

4.7.7 Misaminoacylation of tRNAPhe 
Phe-tRNAPhe was hydrolysed in 1/3 volume HEPES pH 9 at 37 °C for 8 h and deacylated tRNA was 

ethanol precipitated at -20 °C over-night. For misaminoacylation tRNAPhe was preincubated with 

Flexizyme dFx (Murakami et al, 2006) in 100 mM HEPES KOH pH 7.5, 100 mM KCl and 600 mM MgCl2 

for 5 min at room temperature followed by 4 min on ice. Subsequently, 5 mM Pro-3,5-dinitrobenzyl 

ester (Pro-DBE) was added and the aminoacylation reaction was kept on ice for further 60 min. 

Misacylated tRNA was EtOH precipitated (-20 °C over-night) and purified by TC-formation with 

subsequent gel filtration (as described above). 

4.7.8 Analysis of Pro*-tRNAPro binding to EF-Tu by native PAGE 
To determine the efficiency of aminoacylation of tRNAPro with Pro analogs and to prove the complex 

formation with EF-Tu a gel shift assay was performed as described with small changes (Ohtsuki et al, 

2010). To form binary complex (BC; EF-Tu·GTP) EF-Tu was preincubated with 1 mM GTP, 0.1 µg/µl 

pyruvate kinase and 3 mM phosphoenolpyruvate for 15 min at 37 °C in buffer containing 40 mM 

HEPES-KOH pH 7.6, 52 mM NH4OAc, 8 mM Mg(OAc)2. The BC was mixed with equal amounts of 

tRNAPro from the aminoacylation mixture and incubated at 37 °C for further 10 min. TC and BC were 

separated by gel electrophoresis on 5% native PAGE and visualized by staining with Coomassie. 

4.7.9 Purification of tRNA/TC by size-exclusion chromatography (SEC) 
The aminoacyl-tRNA was added to EF-Tu·GTP to form a ternary complex (see section 4.9.2) and the 

EF-Tu complexed tRNA was purified by FPLC gel filtration on two Superdex 75-10/300 GL columns (GE 

Healthcare) run in tandem in buffer A (Gromadski & Rodnina, 2004; Rodnina et al, 1995). The ternary 

complex was either used immediately or the aminoacyl-tRNA was phenolized and isolated by ethanol 

precipitation. The TC concentration was either determined by radioactivity counting (when 

radioactively labeled amino acids were used) or photometrically at 260 nm (when Pro analogs were 

used). Using this method, the recognition of Pro*-tRNAPro by EF-Tu·GTP was confirmed (see section 

5.3). 
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4.8 Proteins 

4.8.1 EF-P expression and purification  
For overexpression of EF-P E. coli BL21(DE3) cells were transformed with the respective construct 

(see section 4.6.4) and the cells were cultured in LB medium supplemented with kanamycin (30 

µg/ml) at 37 °C. At OD600 of 0.7 to 0.8 the expression was induced by the addition of IPTG (1 mM). 

After 3 h of further incubation the cells were harvested and pelleted for 45min at 30000 x g using a 

JLA8.1 Beckmann rotor (Avanti J-26 XP centrifuge (Beckman Coulter)). Pellets were resuspended in 

Protino buffer A (20 mM Tris-HCl, pH 8.5, 300 mM, NaCl, 5 mM, 2-mercaptoethanol, 15% glycerol) 

supplemented with Complete Protease Inhibitor (Roche) and a trace of DNaseI. Cells were opened 

using an EmulsiFlex-C3 apparatus, and the cell extract was centrifuged for 30 min at 300,000 × g 

using JA25.30 Beckmann rotor (Avanti J-26 XP centrifuge (Beckman Coulter)). For purification of EF-P 

by affinity chromatography by its N-terminal His tag the supernatant was applied to a Protino Ni-IDA 

gravity-flow column (Macherey-Nagel). Following the manufacturers protocol the column was 

washed with Protino buffer A and the protein was eluted with Protino buffer A containing 250 mM 

imidazole. Purified protein was concentrated and the buffer was exchanged for cleavage buffer (20 

mM Tris-HCl, pH 8.4, 150 mM NaCl and 2.5 mM CaCl2) by membrane filtration (Vivaspin 10,000). The 

His-tag was cleaved off with 2 units thrombin (GE Healthcare) per 5000 pmol EF-P at room 

temperature overnight. The protein was concentrated by membrane filtration (Vivaspin 10,000) and 

the cleaved His tag and thrombin were removed by FPLC purification of EF-P on a HiTrapQ HP column 

(GE healthcare) using a 50 mM - 2 M NaCl gradient in 30 mM Tris-HCl, pH 7.5. Fractions containing 

EF-P were pooled, concentrated and the buffer was exchanged to buffer A containing 10% glycerol by 

membrane filtration (Vivaspin 10,000). The concentration was determined by absorbance at 280 nm, 

assuming an extinction coefficient of 25,440 cm-1 M-1 (calculated on: 

www.biomol.net/en/tools/proteinextinction.htm).  

4.8.2 Purification of native EF-P  
Native EF-P was prepared as previously described (Aoki et al, 1997; Doerfel et al, 2013) by first 

pelleting ribosome-bound EF-P followed by purification of EF-P by FPLC with small changes. E. coli 

MRE600 cells were opened in opening buffer (20 mM Tris-HCl pH 7.6, 30mM KCl, 10 mM MgCl2, 3 

mM 2-mercaptoethanol, 0.5 mM PefaBloc supplemented with one crystal of DNase) using an 

EmulsiFlex-C3 at 1.5 bar applied pressure and 1000 bar effective pressure (two cycles) and the lysate 

was centrifuged for 45 min at 30000 x g in a JA25.50 Beckmann rotor (Avanti J-30I centrifuge 

(Beckman Coulter)). The supernatant was collected and EF-P was dissociated from ribosomes by 

increasing the salt concentration to 700 mM KCl which leads to dissociation of the ribosomal 

subunits. Ribosomes were pelleted as described (Rodnina & Wintermeyer, 1995) by centrifugation at 
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300,000 × g for 5 h using TI 50.2 fixed angle rotor, Optima XPN-100 Ultracentrifuge (Beckman 

Coulter). The supernatant was dialyzed against dialysis buffer (25 mM HEPES pH 7.4 at 4 °C, 50 mM 

KCl, 10 mM MgCl2, 5 mM 2-mercaptoethanol, 0.5 mM PefaBloc, 5% glycerol). 

For purification by ion-exchange chromatography the sample was loaded on 42 ml Sepharose Q 

column (Company) and the protein was eluted by a gradient from 50 to 500 mM KCl in 25 mM HEPES 

pH 7.4 at 4 °C, 10 mM MgCl2, 5 mM 2-mercaptoethanol and 5% glycerol. Fractions containing EF-P 

were identified by a dot blot (section 4.8.3) using an anti-EF-P antibody (kindly provided by D. 

Görlich, Max Planck Institute for Biophysical Chemistry, Goettingen), pooled and concentrated by 

membrane filtration (Vivaspin 10,000). Further purification was obtained by two times gelfiltration 

on a HiLoad Superdex 26/60 75 µg column (GE Healthcare) in 25 mM HEPES pH 7.4, 200 mM KCl, 10 

mM MgCl2, 5 mM 2-mercaptoethanol, 5% glycerol. Fractions containing EF-P (identified by dot blot) 

were pooled and loaded onto 6 ml Recource Q anion exchange column (GE Healthcare). Purification 

was obtained by a gradient from 75-300 mM KCl in 25 mM HEPES pH 7.4, 10 mM MgCl2, 5 mM 2-

mercaptoethanol, 5% glycerol. Fractions were analyzed by dot blot and SDS-PAGE, and fractions 

containing EF-P were pooled and concentrated. For storage, the buffer was exchanged to 2 x buffer A 

before adding one volume of glycerol. The concentration of native EF-P was determined by 

comparing densiometrically quantified band intensities of the native EF-P and of overexpressed EF-P 

of known concentration. 

4.8.3 Identification of EF-P-containing fractions by dot blot 
To identify fractions containing EF-P, 1 µl fraction and 200 ng EF-P as control were spotted on 

nitrocellulose membrane and blocked for 1 h with NetG (1x PBS pH 7.5, 0.1% Tween 20, 0.25% 

gelatine) at RT. The membrane was incubated with first antibody (α EF-P, 1:20000 in NetG) for 1 h at 

RT, washed with NetG (3 x 15 min) and incubated with the second antibody (α rabbit IgG, 1:5000 in 

NetG) for 1 h at RT followed by washing with NetG. Positive spots were identified by incubating the 

membrane with Pierce Supersignal west pico chemiluminescence substrate 1:1 Luminol/Enhancer + 

Stable Peroxidase solution (Thermo Scientific) for several minutes before exposing on a 

chemiluminiscence film and developing it. 

4.8.4 Other Proteins 
Initiation factors (IF1, IF2, IF3), EF-Tu and EF-G were prepared as described (Gromadski & Rodnina, 

2004; Milon et al, 2007; Rodnina et al, 1999; Rodnina & Wintermeyer, 1995; Wieden et al, 2002). 

Gene of prolyl-tRNA synthetase was purchased from Keio collection (Baba et al, 2006); overexpressed 

in BL21(DE3) and purified by affinity chromatography on a Protino gravity-flow column (Macherey-

Nagel) using the poly-histidine tag, as described for EF-P (section 4.8.1). Pro-RS was stored in buffer A 
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containing 50% glycerol; the concentration was determined by absorbance at 280 nm, assuming an 

extinction coefficient of 54320 cm-1 M-1. 

4.9 Ribosomes 

Ribosomes were prepared as described from E. coli MRE600 (Rodnina & Wintermeyer, 1995). 

4.9.1 Initiation complexes (ICs) 
Initiation complexes were prepared by incubating 1 µM 70S ribosomes with 1.5 µM initiation factors 

(1, 2, 3), 3 µM mRNA , 1 mM GTP and 1.5 µM of 3H or 14C labeled fMet-tRNAfMet at 37 °C in buffer A 

for 30 min (Wohlgemuth et al, 2008).  Purification of complexes was performed by centrifugation 

through 400 µl sucrose cushion (1.1 M in buffer A) at 260,000 × g for 2 h. Pellets were dissolved in 

buffer A and stored at -80 °C. Notably, the concentration of ribosomes is limiting during the 

preparation which ensures that every ribosome is initiated at an mRNA. This leads to synchronized 

ribosomes and minimizes re-initiation and ribosomal cueing. For 30S initiation experiments 30S 

ribosomal subunits were activated by high magnesium (14 mM) for 30 min at 37 °C as described 

(Igarashi et al, 1982).  

4.9.2 Ternary complexes (TCs) 
If not stated otherwise ternary complexes (EF-Tu·GTP·aminoacyl-tRNA) were obtained by 

preincubation of 50 µM EF-Tu with 1 mM GTP, 0.1 µg/µl pyruvate kinase and 3 mM 

phosphoenolpyruvate (PEP) for 15 min in buffer A or B, followed by addition of 25 µM aa-tRNA and 

further incubation for 2 min. When Pro*-tRNAPro was used as A-site substrate, the EF-Tu complexed 

tRNA was purified by gel filtration on tandem Superdex 75-10/300 GL columns (GE Healthcare) 

(Gromadski & Rodnina, 2004; Rodnina et al, 1995) and the concentration of ternary complex was 

determined photometrically at 280nm. 

4.9.3 Post translocation complexes (PTCs) 
PTCs were formed by mixing initiation complexes with a twofold excess of the corresponding ternary 

complex (EF-Tu·GTP·X-tRNAX) in buffer A. To initiate translocation EF-G was added (1/10 molar ratio 

of ribosome concentration) after short incubation at 37 °C. After 30 s PTCs were loaded on sucrose 

cushion as described for initiation complexes. Concentration of PTCs was determined by double-label 

scintillation counting. 

4.9.4 PTCs containing Pro analogs 
To increase the efficiency of PTC formation with Pro-analogs, the MgCl2 concentration was increased 

to 14 mM and the incubation time prior to EF-G addition was increased to 5 min. To determine the 

efficiency of complex formation with proline analogs and thereby the PTC concentration, 
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incorporation of the next amino acid (Phe or Gly, labeled with 14C or 3H, respectively) encoded by the 

mRNA was monitored. For most analogs the efficiency of PTC formation was between 70-90%. 

Complexes with 4-S-Mep, 4-R-Mep, Aze and Pip reached only 20-50% PTC. 

4.10 Gel electrophoresis 

4.10.1 Soldium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) 
For analysis of proteins, SDS-polyacrylamide gels were prepared as described (Laemmli, 1970; Weber 

et al, 1972) and run vertically in SDS buffer (0.1% SDS, 192 mM glycine, 25 mM Tris pH 8.3). Resolving 

gels contained 15% acrylamide (acrylamide/bisacrylamide 29:1), 0.1% SDS, 400 mM Tris-HCl pH 8.8 

and the stacking gel contained 4% acrylamide (acrylamide/bisacrylamide 29:1), 0.1% SDS, 125 mM 

Tris-HCl pH 6.8. 

4.10.2 Tris-Tricine PAGE 
Short peptides and longer translation products were separated on Tris-Tricine PAGE. Tris-Tricine gels 

were performed according to Schägger and von Jagow using three gel layers with 4% T, 3% C for the 

stacking gel, 10% T and 3% C for the spacer gel and 16.5% T and 6% C for the separating gel; with T 

being acrylamide and C being bisacrylamide (Schagger & von Jagow, 1987). All gels contained 1 M 

Tris pH 8.45 and 0.1% SDS (separating gels additionally contained 13.5% glycerol) and were 

polymerized by addition of 10% ammonium persulfate solution (APS) and 1% tetramethylenediamine 

(TEMED). Samples were mixed with loading buffer (50 mM Tris-HCl pH 6.8, 12% (w/v) glycerol, 2% 2-

mercaptoethanol, 4% SDS) and incubated for 30 min at 40 °C before loading. PAGE was carried out 

with two running buffer (anode buffer: 0.2 M Tris-HCl pH 8.9; cathode buffer: 0.1 M Tric-HCl, 0.1 M 

Tricine pH 8.25, 0.1% SDS) at 30 V for 30 min followed by 2-4 h at 120 V. Alternatively, precast 16.5 % 

or 10-20% Tris-Tricine gels (Criterion, BIO-RAD) were used according to the manufacturer’s protocol. 

4.10.3 Native polyacrylamide gel electrophoresis (native PAGE) 
Protein-RNA complexes were analyzed on native PAGE. 5% native PAGE (5% Acrylamide (40% AA:AB 

(29:1)), 10 mM Mg(OAc)2, 4% glycerol, 1 mM EDTA, 50 mM Tris pH 8.4, 50 mM boric acid) was run in 

buffer containing 50 mM Tris pH 8.4, 50 mM boric acid, 1 mM EDTA, 10 mM Mg(OAc)2 at 4 °C for 2 h 

at 100 V with current below 10 mA. Gels were stained with Coomassie. 

4.10.4 Denaturing polyacrylamide gel electrophoresis (UREA PAGE) 
To determine the quality of mRNA, it was analyzed by denaturing PAGE. Urea gels (40% acrylamide 

(AA:AB  19:1), 8 M Urea in 100 mM Tris-borate/2 mM EDTA pH 8.3 (TBE)) were polymerized with 10% 

APS and 1% TEMED and run in TBE buffer for 15 min at 200 V prior to sample loading. Samples other 

than mRNA were mixed with loading dye (80% formamide, 0.1% bromphenol and 0.1% xylencyanol 
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in TBE) and preheated for 2 min at 95 °C. Gels were run at 50 °C at 100 V until the samples entered 

the gel followed by 200 V until the end. Gels were incubated in 20% acetic acid until the first running 

front turns yellow, stained with methylene blue staining solution (0.04% methylene blue in 80 mM 

NaOAc pH 5) and subsequently destained in tap water. 

4.11 Kinetics 

All experiments were performed in buffer A or B pH 7.5 at 37 °C if not stated otherwise. Time courses 

were performed either manually or in a quench flow apparatus (Fig. M2, KinTek Laboratories, Inc.). 

 

 

Fig. M2: Quench flow scheme 
The quench flow apparatus is a mechanic mixing device which enables monitoring rapid kinetics. In a first step 
two reactants are mixed (which starts the reaction) and the mixture is incubated for a variable time (tx) at a 
temperature of interest. Afterwards a third compound is added to the mixture which can be used to stop the 
reaction (quencher). The dead time of the machine reflects the mixing time of approximately 2 ms. The sample is 
further analyzed e.g. by HPLC. 

 

Equal volumes of two reactants are mixed rapidly and incubated for variable time before the reaction 

is stopped by addition of a quencher (0.5 M KOH final). The tRNA is hydrolyzed (30 min at 37 °C) and 

the sample is neutralized with acetic acid. If not stated otherwise, products and educts were 

separated on reversed phase columns (LiChrospher 100 RP-8 or Chromolith RP8 100-4.6 mm column, 

Merck) using 0-65% acetonitrile (ACN) gradient in 0.1% trifluoroacetic acid (TFA) and quantified by 

double-label scintillation counting. For reactions with Pro derivatives the quantification of products 

and educts was complicated by the fact that Pro analogs were not radioactive. In other words, 

f[3H]Met and f[3H]Met-Pro* were not distinguishable by scintillation counting. Therefore, the 

retention times of amino acids and peptides on the respective reversed phase columns was carefully 

determined by an exclusion procedure. In the Pmn assay with Pro derivatives (section 2.2.3.3) the 

decay of f[3H]Met-Pro*-tRNAPro upon product formation had to be monitored because traces of 

contaminating ICs (f[3H]Met-tRNAfMet) could react with Pmn as well and the products from both 

reactions could not be distinguished either by radioactivity counting or by chromatographic 

separation. 

fMet-Pmn formation (section 2.2.1.5) was quenched with 50% formic acid and fMet-Pmn was 

extracted with 1.5 NaOAc pH 4.5 saturated with MgSO4. For this purpose 500 µl 1.5 NaOAc pH 4.5 

saturated with MgSO4 were mixed with the sample prior to addition of 750 µl ethyl acetate; the 

upper phase was collected to determine the amount of f[3H]Met-Pmn by [3H] radioactivity counting. 
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To exclude a rate-limiting binding step of EF-P to the ribosome, EF-P (3 µM) was present in both 

syringes. If not stated otherwise all experiments were performed with lysylated and hydroxylated 

EF-P. Rate constants were evaluated by exponential fitting using GraphPad or Scientist software. 

Data shown are the mean of at least three independent experiments; error bars represent standard 

deviations. 

Most data were fitted to a single exponential function with the equation: 

 𝑌(𝑡) = 𝑌𝑚𝑚𝑚 + (𝑌0 − 𝑌𝑚𝑚𝑚) ∗ 𝑒−𝑘𝑜𝑜𝑜∗𝑡  (1) 

where Y(t) is the ratio product/(product + educt) at the time t, the Ymax is the maximal amount, Y0 is 

the initial ratio and kobs is the reaction rate. When necessary (section 2.2.3), data were fitted to a 

double exponential function with the equation: 

 𝑌(𝑡) = 𝑌𝑚𝑚𝑚 + 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 ∗ 𝑒−𝑘𝑓𝑓𝑓𝑓∗𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑒−𝑘𝑠𝑠𝑠𝑠∗𝑡  (2) 

where the spans are defined as: 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 (𝑠𝑠𝑠𝑠) = (𝑌0 − 𝑌𝑚𝑚𝑚) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 (𝑠𝑠𝑠𝑠) ∗ 0.01. The data 

evaluation was done with Graph Pad Prism software. In Figures showing an overview of temperature 

or pH-dependent reactions the time courses were normalized to match the same amplitude by Graph 

Pad Prism software for more clarity. However, all stated values are obtained from the original 

reaction time courses. 

4.11.1 Di- and tripeptide formation with puromycin 
The puromycin reaction was performed by mixing equal volumes of purified ribosomal complexes; IC 

or PTC (0.15 µM final) and Pmn (0.05-10 mM final) in buffer A or B at 37 °C and pH 7.5 if not stated 

otherwise (Katunin et al, 2002).  In section 2.1.2.1 subsaturating concentrations of Pmn were used to 

account for effects on both affinity and catalysis. In the reactions with dipeptidyl-tRNAs, the final 

Pmn concentration was 1 mM (Wohlgemuth et al, 2008), whereas with fMet-tRNAfMet the Pmn 

concentration was reduced to 100 µM, because the KM
 of the reaction, 300 µM, is lower than with 

dipeptidyl-tRNAs (Beringer & Rodnina, 2007a). The reactions were performed in buffer A. In sections 

2.2.1.5 and 2.2.3.3 high concentrations of Pmn (5-10 mM final) were used to monitor the rate of 

peptide bond formation and the effect of EF-P on catalysis. To improve solubility of Pmn at high 

concentrations (10 mM) 5% DMSO was added to buffer B. For the very fast reaction of 4-R-Flp in the 

presence of EF-P at 37 °C the rate was obscured by the dead time of the quench flow apparatus 

which is 2 ms. The rate was estimated on the basis of the initial concentration of the substrate as 

determined prior to mixing. 

4.11.2 Di- and tripeptide formation 
Purified initiation or post-translocation complexes (0.2 µM final), containing fMet-Xaa-tRNAXaa in the 

P site were mixed with saturating ternary complexes (EF-Tu∙GTP∙Yaa-tRNAYaa; 10 µM final) as 
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specified by the mRNA in buffer B at 37 °C (Doerfel et al, 2013). Because complexes were stored in 

buffer A, they were mixed 1:1 with buffer C to yield buffer B prior to the reaction. 

4.11.3 Tetra- and pentapeptide formation 
Purified initiation complexes (0.2 µM final) primed with mRNA encoding short peptides were mixed 

with ternary complexes (2 µM final each with tRNAs as specified by the mRNA sequence) in the 

presence of 1 µM EF-G in buffer B at 37 °C. When indicated, ternary complexes were purified by size 

exclusion chromatography, e.g. TCs with Proline analogs. In case of fM-PPG /fM-PPGF the observed 

rate comprises all kinetic steps of three/four elongation events which include accommodation of 

tRNAs, peptide bond formation and translocation.  

4.11.4 Hydrolysis of peptidyl-tRNA 
f[3H]Met-Pro*- tRNAPro (0.5 µM) was hydrolyzed in buffer D at 37 °C. Peptidyl-tRNAs were 

precipitated in 10% TCA, 50% EtOH and collected by nitrocellulose filtration. The extent of hydrolysis 

of the amino acyl ester bond was quantified by 3H scintillation counting (Kuhlenkoetter et al, 2011). 

Notably, peptidyl-tRNA and f[3H]Met-tRNAfMet could not be distinguished by scintillation counting. 

However, hydrolysis rates could be deconvoluted for most cases by the two-exponential behavior of 

tRNA decay. The exponentials were assigned by the comparative hydrolysis of f[3H]Met-tRNAfMet. In 

other cases the contribution of fMet-tRNAfMet was so small that is was neglected. 

4.11.5 Aminolysis of peptidyl-tRNA 
Aminolysis of peptidyl-tRNA (0.5 µM) was performed in buffer D, containing 1 M glycinamide (Sigma-

Aldrich) corresponding to 0.2 M unprotonated glycinamide at 37 °C (Schroeder & Wolfenden, 2007). 

Concentration of unprotonated glycinamide at pH 7.5 was calculated on basis of the published pKa of 

8.2 (Good et al, 1966). In the presence of amine, the rate of peptidyl-tRNA decomposition (kdecay) 

reflects the sum of two competing reactions, aminolysis and hydrolysis. The rate of aminolysis was 

calculated from the decay rate in the presence of glycinamide and the hydrolysis rate according to 

the equation  𝑘𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑑𝑑𝑑𝑑𝑑 − 𝑘ℎ𝑦𝑦𝑦𝑦𝑦.  

4.11.6 Termination experiments 
Peptide release experiments were performed as described (Kuhlenkoetter et al, 2011). In principle, 

ribosomal complexes (0.25 µM final) programmed with an mRNA encoding UAA termination codon 

were incubated at 37 °C in buffer A (with Tris-HCl being d by HEPES-HCl pH 7.5)  in the presence of 

RF1 (4 µM final). When intended, EF-P (3 µM final) was added. For quantification of peptide release 

tRNAs were precipitated in 10% TCA, 50% EtOH, intact peptidyl-tRNA was collected by nitrocellulose 

filtration and quantified by subsequent double-label scintillation counting. 
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4.11.7 In-vitro translation 
For in-vitro translation ICs were prepared as described above but with BOF-Met-tRNAfMet and with a 

long mRNA encoding the protein of interest.  Binary complexes (EF-Tu*GTP) were prepared as 

described and mixed with total aa-tRNA. The concentration of ternary complex was increased 

proportionally to the length of the protein to be translated (40 µM TC for 75 amino acids, prepared 

with 2 mM GTP, 3 mM PEP and 2 mM DTT). As low MgCl2 concentrations tend to inhibit multi-

turnover assays (Johansson et al, 2012; Wohlgemuth et al, 2010), the MgCl2 concentration was kept 

stable at 3.5 mM free MgCl2 by compensating for Mg2+ binding to GTP and PEP (Manchester & Alford, 

1979; Wohlgemuth et al, 2010). For exceptionally proline-rich proteins (TonB, AmiB, Rz1, and YafD), 

the total aa-tRNA was supplemented with Pro-tRNAPro (10 equivalents of Pro-tRNAPro per encoded 

proline). IC and TC were prepared in buffer A and mixed with an equal amount of buffer C to obtain 

buffer B. Ternary complex and EF-G (2 µM) were rapidly mixed with unpurified initiation complex (20 

nM) and incubated at 37 °C. EF-P (3 µM, either native or overexpressed lysylated/hydroxylated) was 

added both to the ternary and initiation complex. Specific peptide markers were synthesized in the 

same way with incubation time of 10 min in the presence of EF-P (3 µM) by using mRNAs of the 

desired length. The reaction was stopped after varying incubation times by addition of 1/10 volume 

of 2 M NaOH and peptidyl-tRNAs were hydrolyzed for 30 min at 37 °C. The samples were neutralized 

by 1/10 volume 2 M HEPES free acid, incubated in loading buffer (50 mM Tris-HCl pH 6.8, 12% (w/v) 

glycerol, 2% 2-mercaptoethanol, 4% SDS) for 30 min at 40 °C and loaded onto a 10-20% or 16.5% 

Tris/Tricine SDS gel (Criterion, BIO-RAD) and PAGE was carried out using commercial Tris/Tricine 

buffer (BIO-RAD) according to the manufacturer’s protocol. Alternatively Tris/Tricine SDS gel was 

prepared in house (section 4.10.2). Gels were incubated in water for 5 min and scanned on a FLA-

9000 fluorescence imager (Fuji) at 50 µm resolution.  Bodipy fluorescence was excited at 473 nm and 

monitored after passing a LPB (510LP) cut-off filter.  

To determine Pro and Gly incorporation efficiency relative to each other at a PPG sequence in 

mutant PrmC (section 2.1.2.6) ternary complexes were prepared with total aa-tRNA containing 

[14C]Pro-tRNAPro and [3H]Gly-tRNAGly. Ribosome-nascent-chain complexes were purified from tRNAs, 

ternary complexes, EF-G, and GTP by size-exclusion chromatography (Biosuite 450 8µm HR SEC, 

Waters, at a flow of 0.8 ml/min in buffer B). Bound [14C]Pro and [3H]Gly eluting in the ribosome peak 

were quantified by double-label scintillation counting. Additionally, ribosome bound peptidyl-tRNA 

was hydrolyzed in 0.5 M KOH for 30 min at 37 °C and subsequently neutralized with acetic acid. 

Translation products and amino acids were separated by reversed phase HPLC (Nucleosil 300-5 C4, 

Macherey Nagel) applying a gradient from 0 to 65% ACN /0.1% TFA in 20 min. Free and peptide 

incorporated [14C]Pro and [3H]Gly were quantified by scintillation counting. 
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4.11.8 Filter binding experiments 
To quantify the amount of ribosome-bound tRNA (e.g. to determine initiation efficiency), the 

translation mixture was filtered through a nitrocellulose filter (0.2 µM pore size, Sartorius) which 

allows single tRNA to pass through the pores while ribosome bound tRNAs are retained on the filter. 

To reduce unspecific binding, filters were washed with ice cold buffer A. The ribosome-bound aa- or 

peptidyl-tRNA retained on the nitrocellulose filter was quantified by scintillation counting of the 

specific radioactive labels. 

To quantify aminoacylation (e.g. in aminoacylation or hydrolysis reactions) tRNAs were precipitated 

in ice cold 10% TCA, 50% EtOH and filtered through a nitrocellulose filter (0.2 µM pore size, 

Sartorius). To minimize unspecific binding the filter was washed with 3 ml cold 5% TCA solution. 

Precipitated aa-tRNA sticks to the filter and free amino acids are washed through the filter. The 

extent of aminoacylation was quantified by scintillation counting of the filter. 

4.12 Mass spectrometry  

The identification and quantification of EF-P modifications was carried out by LC-MSMS and 

performed by Ingo Wohlgemuth, MPI-BPC, Göttingen (Doerfel et al, 2013). Protein samples (100 µg) 

were precipitated with acetone. Denaturation with Rapigest (Waters), reduction, alkylation, and 

trypsination were performed as described (Schmidt et al, 2010). Peptides were separated by 

reversed-phase Nanoflow chromatography on a Thermo Easy nLcII using chromatographic conditions 

as described (Schmidt et al, 2010). Eluting peptides were ionized by electrospray ionization (ESI) on a 

Q Exactive mass spectrometer (Thermo Fisher Scientific) and analyzed in the data-dependent mode.  

MS scans were acquired in the range m/z 350-1600 with a resolution of 70,000 and twelve peaks of 

the highest intensity were selected for HCD MS/MS fragmentation. The dynamic exclusion was 20 s. 

Singly-charged ions and ions with unrecognized charge state were excluded. Peptides were 

quantified by integrating over the corresponding extracted ion chromatograms (XIC). XICs were 

generated with a mass tolerance of 10 ppm using the Thermo Excalibur software (version 2.2 SPI48). 

The overall signal intensity in different runs was corrected by normalization, using as internal 

reference two razor peptides (VPLFVQIGEVIK and GDTAGTGGKPATLSTGAVVK) that were well 

observable and chemically stable. The charge state of highest intensity (z=3 for unmodified EF-P 

peptide and z=5 for lysylated and lysylated/hydroxylated EF-P peptide) and the most prominent peak 

in the isotope distribution of the respective peptides was selected for quantification by integration. 

Quantification based on the monoisotopic mass led to similar results, albeit at poor signal-to-noise 

ratios for low-abundance peptides. Spectra in Fig. S1 show the corresponding peptides with z=4 that 

were less populated but yielded better spectra then those with z=5. Because the degree of Met 

oxidation was reproducibly small, only the unoxidized peptides were quantified.  
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4.13 Calculation of Activation Energies 

Activation parameters were determined on basis of Arrhenius and Eyring equations for 25 °C. The 

Arrhenius equation describes the temperature dependence of reaction rates,  

 ln(𝑘) = ln(𝐴) −
𝐸𝑎

𝑅 × 𝑇
 (3) 

where A is the pre-exponential factor, Ea the activation energy, R the gas constant (8.314 J/mol*K) 

and T the absolute temperature. The enthalpy of activation (∆𝐻≠) of a reaction can be extracted 

from a linear Arrhenius plot (ln(k) vs. 1/T) with the slope 𝐸𝑎 = −𝑠𝑠𝑠𝑠𝑠 × 𝑅  according to  

 ∆𝐻≠ = 𝐸𝑎 − 𝑅𝑅 (4) 

The free energy of activation (∆𝐺≠) was calculated according to 

 
∆𝐺≠ =  −𝑅𝑅 × ln (

𝑘𝑝𝑝𝑝 × ℎ
𝑘𝐵 × 𝑇

)  (5) 

where h and kB are the Planck´s and Boltzmann´s constant (6.63 x 10-34 J x s and 1.38 x 10-23 J/K), 

respectively. The free energy of activation can be dissected into an enthalpic and an entropic term 

according to: 

 ∆𝐺≠ = ∆𝐻≠ − 𝑇∆𝑆≠. (6) 

When (∆𝐺≠) and (∆𝐻≠) are known the entropy of activation (𝑇∆𝑆≠) can be determined by 

rearranging equation 6. 

4.14 Determination of the pKa 

In section 2.2.2.1 the pKa of the titrated groups were determined from the pH dependence of the 

rate under investigation under the assumption that deprotonation is the rate-limiting step for the 

reaction to occur. 

A reaction which depends on the deprotonation of a single group (e.g. the α-amino group in case of 

peptide bond formation) follows the scheme 𝐻𝐻 
𝐾
⇔ 𝐻+ + 𝐴− and the rate of the reaction can be 

described by (Fersht, 1999): 

 
𝑘(𝐻) =

𝑘𝐻𝐻 × [𝐻+] + 𝑘𝐴− × 𝐾𝑎
𝐾𝑎 + [𝐻+]

 (7) 

Where the dissociation constant Ka for the acid is defined by 
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𝐾𝑎 =

[𝐴−] × [𝐻+]
[𝐻𝐻]

 (8) 

When the attacking nucleophile is protonated the propensity for the reaction to occur is zero, while 

it should be maximal when the nucleophile is deprotonated i.e. 𝑘𝐻𝐻 = 0 and 𝑘𝐴− = 𝑘𝑚𝑚𝑚. Under 

these assumptions equation 8 becomes: 

 
𝑘𝑝𝑝𝑝 (𝐻) =

𝑘𝑚𝑚𝑚 × 𝐾𝑎
𝐾𝑎 + [𝐻+]

 (9) 

With 𝑝𝑝𝑎 = −𝑙𝑙𝑙(𝐾𝑎) and 𝑝𝑝 = −log (𝐻+) equation 9 results in 

 
𝑘𝑝𝑝𝑝 (𝑝𝑝) =

𝑘𝑝𝑝𝑝𝑚𝑚𝑚

1 + 10(𝑝𝑝𝑎−𝑝𝑝)  (10) 

When the pH reaches the pKa of the titrated group the equation is simplified and the pKa corresponds 

to the inflection point of the pH dependence of the reaction. 

 

When two ionizable groups influence the rate of the monitored reaction (as in case of peptidyl 

transfer to Pmn (Beringer et al, 2003; Katunin et al, 2002; Okuda et al, 2005)) the system can be 

described by the scheme in Fig. M3.  
 

 

 
Fig. M3: Reaction scheme involving two ionizing 
groups  

The rate of fMet-Pmn formation depends on two 
ionizing groups. One group can be assigned to Pmn (A) 
and the second (B) was assigned to a ribosomal group 
or a conformational change of the peptidyl transferase 
center. Both groups have to be deprotonated (A-B-) to 
obtain the maximal rate of product formation. 

 

Hereby A is the α-amino group of the attacking nucleophile and B is a second ionizing group/a 

conformational change of the peptidyl transferase center (Bieling et al, 2006; Muth et al, 2001). 

While the deprotonation of the nucleophile (A-) is a prerequisite for the reaction (→ k2 = 0; k3 = 0), the 

influence of B is, due to its elusive character, difficult to estimate. In the easiest model, both groups 

have to be deprotonated for the reaction to occur (k1 = kmax and k2-4 = 0). However, the literature 

suggest that deprotonation of one group is sufficient for the reaction to proceed at low rate (k4 ≠ 0) 

(Katunin et al, 2002). 

A simplified description of this situation is a doubly ionizing system (𝐻2𝐴 
𝐾1
⇔ 𝐻𝐴− + 𝐻+ 𝐾2

⇔ 𝐴2− +

2𝐻+) the rate of which can be described by (Fersht, 1999): 

 
𝑘(𝐻) =

𝑘𝐻2𝐴 × [𝐻+]2 + [𝐻+] × 𝐾1 × 𝑘𝐻𝐴− + 𝐾1 × 𝐾2 × 𝑘𝐴2−
𝐾1 × 𝐾2 + [𝐻+] × 𝐾1 + [𝐻+]2

 (11) 
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Using the conclusions described for the reaction scheme (𝑘𝐻2𝐴 = 𝑘3 = 0, 𝑘𝐻𝐴− = 𝑘2 + 𝑘4 = 0 + 𝑋 

and 𝑘𝐴2− = 𝑘1 = 𝑘𝑚𝑚𝑚) and with the definition 𝑝𝑝𝑎1/2 = −𝑙𝑙𝑙(𝐾1/2) , the following equation is 

derived to fit a reaction that depends on two ionizing groups: 

 
𝑘(𝑝𝑝) =

10−𝑝𝑝𝑎1−𝑝𝑝𝑎2 × 𝑘𝑚𝑚𝑚
10−𝑝𝑝𝑎1−𝑝𝑝𝑎2 + 10−𝑝𝑝−𝑝𝑝𝑎1 + 10−2𝑝𝑝

 (12) 

In this case, the pH at which the rate is half maximal is smaller than the pKa of the residue which 

deprotonates later. 
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5 SUPPLEMENTARY INFORMATION 

5.1 Determination of the modification status of EF-P 

The differently modified EF-P proteins used in this study were purified from E. coli cells either in their 

native state or after expression of EF-P (and its modifying enzymes) from a plasmid in trans. 

Overexpression of EF-P necessitated to confirm the modification status, which was performed by 

liquid chromatography-tandem mass spectrometry (LC-MSMS, see Materials & Methods). The data 

were acquired by Ingo Wohlgemuth, MPI-BPC, Göttingen (Fig. S1).  

 

Fig. S1: Analysis of the EF-P modification status by mass spectrometry 
A) MS/MS spectrum of the unmodified peptide (amino acids 15-34). The y-type product ion series clearly identify 
the sequence of the peptide lacking the modification. Inset: MS spectrum (m/z= 727.3696) of the intact and 
unmodified peptide (z=3). B) MS/MS spectrum of the lysylated peptide (amino acids 15-40). Inset:  MS spectrum 
(m/z= 735.3837) of the intact and lysylated quadruply charged peptide (z=4). C) MS/MS spectrum of the lysylated 
and hydroxylated peptide (amino acids 15-40). Inset: MS spectrum (m/z= 739.3825) of the intact, lysylated and 
hydroxylated quadruply charged peptide (z=4). D) Relative quantification of the modifications in different EF-P 
preparations. The unmodified (blue), the lysylated (red) and the lysylated/hydroxylated (green) peptides were 
quantified by integration of their respective extracted ion chromatograms (XIC). Error bars represent SD of three 
technical replicates. For the quantification, the charge states with the maximum signal intensity were used, z=3 for 
the unmodified EF-P and z=5 for the lysylated and lysylated/hydroxylated EF-P. Data were acquired by Ingo 
Wohlgemuth, MPI-BPC, Göttingen. 
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In agreement with the literature (Ambrogelly et al, 2010; Bailly & de Crecy-Lagard, 2010; Park et al, 

2012; Peil et al, 2012; Roy et al, 2011; Yanagisawa et al, 2010), EF-P expressed alone, in parallel to 

EpmA and EpmB or in parallel to EpmA, EpmB and EpmC resulted in unmodified, lysylated or 

lysylated/hydroxylated EF-P, respectively. Native EF-P was lysylated and hydroxylated. 

5.2 Confirming the functionality of the tRNA transcript 

To investigate whether the lack of modifications on the tRNAPro transcript impairs translation, the 

kinetics of aminoacylation and tetrapeptide formation were studied (Fig. S2). In both assays the 

kinetics were virtually identical for the tRNA transcript and native tRNAPro, demonstrating that the 

lack of modifications in the transcript did not influence the reactions considerably. These results 

were further supported by previous data, showing that the tRNA body has only minor effects on the 

kinetics of fMP dipeptide formation (Wang et al, 2014). 

 

 

Fig. S2: Comparison of native tRNAPro and tRNAPro transcript 
A) Aminoacylation of tRNAPro obtained from cells (closed circles) and by T7 RNA-polymerase transcription (open 
circles) with [14C]Pro by purified Pro-RS. B) Time course of fMPPG formation with native tRNAPro (open symbols) 
and tRNAPro transcript (closed symbols) in the absence (circles) and presence of EF-P (triangles).  
 

5.3 Purification of the ternary complex Pro*-tRNAPro∙EF-Tu∙GTP 

A problem in incorporating unnatural amino acids into protein can be a reduced affinity of EF-Tu for 

the respective aa-tRNA (Ieong et al, 2012). For the interpretation of the translation assays it was 

inevitable to exclude site reactions which could interfere with or limit the rate of the reaction of 

interest. Because the Pro analogs were not labeled and thus were difficult to detect, an indirect 

approach was chosen to circumvent problems which arise from inefficiently aminoacylated tRNA or 

reduced affinities for EF-Tu: Subsequent to aminoacylation of tRNAPro with the respective Pro analog 

a TC (Pro*-tRNAPro∙EF-Tu∙GTP) was formed and purified by size-exclusion chromatography (SEC) (Fig. 

S3). The sample eluted from the column in three peaks, where the first corresponded to Pro-RS, the 

second to TC and the third to uncharged tRNA and EF-Tu (the first peak was absent when the TC was 

formed with purified aa-tRNA and the second peak contained radioactivity when radioactively 
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labeled aa-tRNAs were used). Because a stable ratio of tRNA to EF-Tu was used for all Pro analogs 

and Pro, the efficiency of TC formation could be estimated from the ratio of peak2/peak3. Variable 

efficiencies of TC-formation with different Pro analogs may be traced back to different misacylation 

efficiencies of tRNAPro with the respective Pro analogs by Pro-RS. All TCs were stable enough to be 

isolated under non-equilibrium conditions, indicating that EF-Tu binds the misacylated tRNAs with 

sufficient affinity. For all experiments the TC obtained from peak 2 was used and thus inefficient 

delivery of Pro*-tRNAPro to the A site or underestimated tRNA concentrations are unlikely to 

influence reaction kinetics. 

 

 
Fig. S3: Purification of TC(P*) 
Isolation of the TC by size-exclusion 
chromatography (SEC). The upper panel shows the 
purification of [14C]Pro-tRNAPro  in complex with 
EF-Tu and GTP. The middle peak corresponds to 
the ternary complex (TC), identified by 
radioactively labeled aa-tRNA. The first peak 
corresponds to Pro-RS (the dashed profile was 
obtained with purified aa-tRNA) and the third peak 
contains uncharged tRNA and EF-Tu. The lower 
panels show the profile for TCs with Xaa-tRNAPro 
with Xaa= 4,4-F2-Pro, 4-R-Hyp and 4-S-Flp as 
representatives for Pro analogs.  

 

5.4 Determination of the optimal nucleophile concentration to monitor 

aminolysis 

To establish the optimal conditions for the aminolysis reaction the decomposition of fMet-tRNAfMet in 

the presence of increasing glycinamide concentrations was monitored (Fig. S4A). Only the 

unprotonated molecule participates in the reaction and the titration was limited by the amount of 

glycinamide dissolvable in the reaction mixture. The titration of glycinamide revealed a linear 

correlation of the rate of fMet-tRNAfMet decomposition (kdecay) and the amount of unprotonated 

glycinamide present (Fig. S4B).  
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Fig. S4: Dependence of the deaclyation rate on the nucleophile concentration 
A) Time courses of fMet-tRNAfMet decomposition at increasing concentrations of glycinamide. Concentrations 
reflect the amount of unprotonated glycinamide B) The rate of fMet-tRNAfMet decomposition increases linearly 
with the concentration of unprotonated glycinamide. Average rate and SD of three replicates are plotted. 

 
The Y-intercept in Fig. S4B corresponds to the rate of hydrolysis (khydrol), which competes with 

aminolysis. Thus, the rate of aminolysis (kaminol) at a certain glycinamide concentration can be 

determined according to  𝑘𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑑𝑑𝑑𝑑𝑑 − 𝑘ℎ𝑦𝑦𝑦𝑦𝑦. For the aminolysis of fMet-Pro*-tRNAPro in 

solution 0.2 M unprotonated amine at pH 7.5 was used as nucleophile concentration (Fig. 34).  

5.5 Influence of the MgCl2 concentration on fM-P*P*G formation 

As in the case of fM-PPG formation with proline (section 2.2.1.3), addition of MgCl2 could increase the 

yield of final product by stabilization of the peptidyl-tRNA: At low MgCl2 concentrations fM-P*P*G 

synthesis, where P* is 4-S-Mep, was inefficient but increased linearly with higher concentrations (Fig. 

S5, Table S6). For the, compared to proline, poorer substrate 4-S-Mep the MgCl2 optimum was 

shifted to higher concentrations compared to the reaction with Pro (from ~9 mM to > 14 mM), 

suggesting that either the substituent on the prolyl ring further destabilizes the peptidyl-tRNA or the 

decreased rate increased the time window for drop-off. As for Pro (Fig. 24, section 2.2.1.3) with EF-P 

the amount of final product seems to be independent of the MgCl2 concentration in the range of 4-

14 mM. It should be noted that all but the point at 3.5 mM were obtained with unpurified ternary 

complex. The increase of fM-PPG synthesis with unpurified ternary complex might be due to multiple 

sampling of TC because EF-Tu/tRNA can be recharged with GTP/amino acids. 

 
 

 
Fig. S5: MgCl2 dependence of tetrapeptide 
formation 
Yield of fMP*P*G tetrapeptide formation as a 
function of the MgCl2 concentration in the absence 
(open symbols) and presence (closed symbols) of 
EF-P; P* is 4-S-Mep using purified (triangles) and 
unpurified (circles) ternary complex. Error bars 
from two replicates. 
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5.6 Supplementary tables 

Table S1: Rate constants of di- /tripeptide formation 
from fMet-(Xaa)-tRNAXaa and subsaturating Pmn 

Xaa kobs, s
-1 acceleration 

 no EF-P EF-P by EF-P 
- 0.16 ± 0.01 0.91 ± 0.05 6 
G 0.42 ± 0.05 2.7 ± 0.3 6 
P 0.012 ± 0.001 1.1 ± 0.1 85 
F 4.1 ± 0.3 5.7 ± 0.7 1 
V 3.4 ± 0.4 10 ± 2 3 
W 2.2 ± 0.2 4.1 ± 0.4 2 
K 5.5 ± 0.9 6.6 ± 0.5 1 
R 22 ± 3 18 ± 4 1 
Q 22 ± 4 35 ± 4 2 
E 7.2 ± 0.7 13 ± 2 2 
D 0.78 ± 0.04 4.0 ± 0.8 5 
IC, PTC (0.15 µM) vs. Pmn (1 mM for all but fMet, 0.1 
mM for fMet). Reaction preformed at 37 °C in 50 mM 
Tris-HCl pH 7.5, 70 mM NH4Cl, 30 mM KCl and 7 mM 
MgCl2 (buffer A) ± EF-P (3 µM). 

 

Table S2: Rate constants of di- and tripeptide formation 
with a native A-site substrate 

 kobs, s
-1 acceleration 

 
no EF-P EF-P by EF-P 

fM vs. G 28 ± 3 44 ± 5 1.6 
fMP vs. G 4.2 ± 0.3 33 ± 3 8 
fM vs. F 90 ± 9 104 ± 14 1.2 
fMP vs. F 55 ± 5 61 ± 5 1.1 
fM vs. P 22 ± 2 32 ± 3 1.4 
fMP vs. P 0.33 ± 0.03 5 ± 1 16 
IC or PTC (0.2 µM) vs. TC (10 µM) ± EF-P (3 µM). Reactions 
were performed at 37 °C in 50 mM Tris-HCl pH 7.5, 70 
mM NH4Cl, 30 mM KCl, 3.5 mM MgCl2, 0.5 mM 
spermidine, 8 mM putrescine and 2 mM DTT (buffer B). 

 

 

Table S3: Titration of modified and unmodified EF-P on fM-PPG synthesis 

EF-P Unmodified EF-P Modified EF-P 
µM kobs, s

-1 plateau kobs, s
-1

 plateau 
0 0.038 ± 0.006 0.041 ± 0.002 0.038 ± 0.006 0.041 ± 0.002 
0.05 

  
0.13 ± 0.01 0.182 ± 0.006 

0.1 
 

 0.16 ± 0.02 0.28 ± 0.01 
0.2 0.05 ± 0.01 0.086 ± 0.007 0.33 ± 0.04 0.31 ± 0.01 
0.5 

 
 0.45 ± 0.04 0.35 ± 0.01 

1 0.086 ± 0.007 0.15 ± 0.003 0.52 ± 0.07 0.41 ± 0.01 
2 0.12 ± 0.02 0.22 ± 0.01 0.6 ± 0.1 0.42 ± 0.01 
3 

 
 0.6 ± 0.1 0.41 ± 0.02 

4 0.11 ± 0.01 0.29 ± 0.01   
6 0.13 ± 0.01 0.31 ± 0.01   
IC (0.2 µM) vs. TC (2 µM, each) in the presence of EF-G (1 µM). The reaction was performed 
in buffer B at 37 °C. A and B show single traces, C and D are average and SD. 

 

Table S4: fM-PPG synthesis as a function of EF-G 

EF-G no EF-P EF-P 
µM kobs, s

-1 plateau kobs, s
-1 plateau 

0.0625 
 

0.30 ± 0.01 
  0.125 

 
0.31 ± 0.01 0.21 ± 0.04 0.42 ± 0.02 

0.25 0.025 ± 0.003 0.21 ± 0.01 0.45 ± 0.06 0.42 ± 0.01 
0.5 0.024 ± 0.003 0.17 ± 0.01 0.50 ± 0.08 0.39 ± 0.01 
1 0.023 ± 0.007 0.12 ± 0.02 0.58 ± 0.08 0.35 ± 0.01 
2 

  
0.48 ± 0.09 0.29 ± 0.01 

4 
  

0.49 ± 0.07 0.22 ± 0.01 
fM-PPG formation: IC (0.2 µM) vs. TC (2 µM, each) ± EF-P (3 µM); EF-G as indicated. 
Reaction performed in buffer B at 37 °C. 
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Table S5: fM-PPG synthesis as a function of MgCl2 

MgCl2, Yield of fM-PPG formation 
mM no EF-P EF-P 
3.5 0.10 ± 0.03 0.50 ± 0.05 
4 0.19 ± 0.01  
5 0.28 ± 0.01  
6 0.36 ± 0.01  
7 0.44 ± 0.02 0.59 ± 0.03 
10 0.59 ± 0.02  
14 0.58 ± 0.04 0.57 ± 0.05 
IC (0.2 µM) vs. TC (2 µM, each), EF-G (1 µM) ± EF-P 
(3 µM); MgCl2 as indicated. Reaction was 
performed in buffer B at 37 °C.  

 

Table S6: fM-P*P*G synthesis as a function of MgCl2 

MgCl2, Yield of fM-P*P*G formation 
mM no EF-P EF-P 
3.5 0.016 ± 0.004 0.06 ± 0.003 
4.3 0.21  ± 0.03 0.87  ± 0.04 
7.8 0.55  ± 0.04 0.82  ± 0.09 
14.8 0.94  ± 0.03 1.09  ± 0.06 
IC (0.2 µM) vs. TC(P*, G) (2 µM, each) with P*= 
4-S-Mep, EF-G (1 µM) ± EF-P (3 µM); MgCl2 as 
indicated. Reaction was performed in buffer B at 
37 °C. Except for 3.4 mM MgCl2, unpurified 
complexes were used. 

 

 
 

Table S7: pH dependence of fM-G synthesis 

pH kobs, s
-1 x-fold 

 no EF-P EF-P acceleration 
6.66 8.4 ± 1.1 31 ± 2 3.6 ± 0.8 
7.12 25 ±3 50 ± 6 2.0 ± 0.5 
7.5 48 ± 12 58 ± 5 1.2 ± 0.4 
7.9 75 ± 14 64 ± 2 0.9 ± 0.2 
8.22 65 ± 13 70 ± 12 1.1 ± 0.4 
8.52 70 ± 4 72 ± 5 1 ± 0.1 
IC (0.2 µM) vs. TC(G) (10 µM) ± EF-P (3 µM). Reaction 
performed at 37 °C in buffer B at indicated pH. The 
standard error for pH was 0.05. 

 

Table S8: pH dependence of fMP-G synthesis 

pH kobs, s
-1 x-fold 

 no EF-P EF-P acceleration 
6.67 0.4 ± 0.1 17 ± 2 46 ± 12 
7.1 1.6 ± 0.2 35 ± 6 22 ± 4 
7.54 5 ± 2 42 ± 4 8 ± 3 
7.9 8.5 ± 0.8 35 ± 4 4.1 ± 0.5 
8.0 

 
43 ± 3 

 8.22 17 ± 3 36 ± 10 2.1 ± 0.3 
8.52 28 ± 8 35 ± 13 1.2 ± 0.4 
8.7 35 ± 5 40 ± 6 1.2 ± 0.2 
8.8 31 ± 10 40 ± 7 1.3 ± 0.2 
PTC-fMP (0.2 µM) vs. TC (10 µM) ± EF-P (3 µM). The 
reactions were performed at 37 °C in buffer B at 
indicated pH. The standard error for pH was 0.05. 

 

 

Table S9: Temperature dependence of fMP-G 
formation at pH 7.5 

Temp,  kobs, s
-1

 

°C no EF-P EF-P 
10 0.12 ± 0.01 1.9 ± 0.3 
15 0.32 ± 0.01 4.9 ± 0.5 
20 0.70 ± 0.04 9 ± 1 
25 1.66 ± 0.06 16 ± 1 
30 2.8 ± 0.3 35 ± 4 
37 5 ± 2 36 ± 8 
PTC-fMP (0.2 µM) vs. TC(G) (10 µM) ± EF-P (3 
µM). The reaction was performed at pH 7.5 in 
buffer B at indicated temperature. 

 

Table S10: Temperature dependence of fMP-G 
formation at pH 6.5 

Temp,  kobs, s
-1 

°C no EF-P EF-P 
10 
 

0.0022 ± 0.0006 (49%) 
0.17 ± 0.03 (51%) 

0.42 ± 0.04 
 

15 
 

0.009 ± 0.001 (78%) 
0.8 ± 0.2 (22%) 

1.45 ± 0.07 
 

20 0.027 ± 0.002 4.7 ± 0.4 
25 0.045 ± 0.009 9.1 ± 0.8 
30 0.108 ± 0.006 19 ± 3 
37 0.31 ± 0.06 28 ± 5 
PTC-fMP (0.2 µM) vs. TC(G) (10 µM) ± EF-P (3 µM). 
The reaction was performed at pH 6.5 in buffer B at 
indicated temperature. 
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Table S11: pKa values for proline and Pro analogues 

amino acid pKa, amino   pKa, carboxyl group 
 group   s-trans s-cis Weighted average 
Pro 10.7  3.55 2.85 3.42 
4-S-Flp 9.1  3.41 2.88 3.26 
4-R-Flp 9.1  3.19 2.37 3.08 
4,4-F2-Pro 6.5  2.93 2.34 2.80 
4-S-Hyp 10  3.62 3.19 3.49 
4-R-Hyp 9.7  3.15 2.39 3.04 
cis-MePro 9.6  3.5 2.91 3.41 
trans-MePro 9.6  3.38 2.78 3.33 
4-S-Mep  10.7  3.46 2.77 3.38 
4-R-Mep 10.7  3.53 2.81 3.38 
3,4-Dhp 9.8  3.03 2.37 2.93 
Aze 10.5  3.24 2.73 3.14 
Pip 10.8  3.63 3.37 3.60 
The values were determined in aqueous buffer at 25 °C (298 K). The pKa of the carboxyl-group 
was determined in Ac-Pro*; that of the amino group in the free amino acid. The weight average 
pKa was calculated from the cis and trans pKas taken the cis-trans equilibrium into account. If 
not stated otherwise, data were acquired by Dr. Vladimir Kubyshkin, Institut für Chemie, 
Technische Universität Berlin, Germany. For comparison, previously determined amino-pKa 
values of Pro, 4-R-Flp, 4,4-F2-Pro and 4-R-Hyp are 10.8, 9.2, 7.2 and 9.7, respectively (Eberhardt 
et al, 1996; Renner et al, 2001). 
 

Table S12: Parameters of amide rotation for proline and analogues 

amino acid Ktrans/cis
 a -ΔGtrans/cis

b Reference 
  kcal/mol  
Pro 4.60 0.90 ± 0.03 (Shoulders & Raines, 2009) 
4-S-Flp 2.50 0.54 ± 0.02 (Shoulders & Raines, 2009) 
4-R-Flp 6.69 1.13 ± 0.04 (Shoulders & Raines, 2009) 
4,4-F2-Pro 3.59 0.76 ± 0.03 (Shoulders et al, 2009) 
4-S-Hyp 2.30 0.49 ± 0.02  
4-R-Hyp 6.10 1.07 ± 0.04 (Shoulders & Raines, 2009) 
cis-MePro 5.81 1.04 ± 0.04  
trans-MePro 10.6 1.40 ± 0.05  
4-S-Mep  7.40 1.19 ± 0.04 (Shoulders & Raines, 2009) 
4-R-Mep 3.70 0.77 ± 0.03 (Shoulders & Raines, 2009) 
3,4-Dhp 5.40 1.00 ± 0.03  
Aze 4 0.82 ± 0.04 (Kern et al, 1997) 
Pip 6.75 1.13 ± 0.05 (Kern et al, 1997) 
a calculated as ΔG = -RTln(Ktrans/cis) for 298 K; b determined at 298 K for Ac-Pro*-OCH3 
peptides, except for Aze and Pip which have been determined in Ac-Pro*-4-nitroanilide. If 
not stated otherwise, data were acquired by Dr. Vladimir Kubyshkin, Institut für Chemie, 
Technische Universität Berlin, Germany. 

 

Table S13: pKa values, parameters of amide rotation and rate constants of peptide bond formation 

amino acid pKa, amino pKa, carboxyl groupb Ktrans/cis
 c -ΔGtrans/cis

d kpep
e 

 groupa s-trans s-cis Average   s-1 
Ala 9.87 3.56 3.11 3.56 170 3.04 ± 0.05 57 ± 4 
Phe 9.31 3.42 2.98 3.42 167 3.03 ± 0.01 16 ± 1 
Val 9.74 3.55 3.1 3.55 238 3.24 ± 0.11 16 ± 1 
Values were determined in aqueous buffer at 298 K; a determined for the free amino acid ; b determined for 
Ac-Xaa; c calculated as ΔG = -RTlnK; d determined for Ac-Xaa-OH; with Xaa being Ala, Phe or Val; all data were 
acquired by Dr. Vladimir Kubyshkin (Institut für Chemie, Technische Universität Berlin). e determined by fMet-
Xaa-Pmn formation (Wohlgemuth et al, 2008). 
  



  SUPPLEMENTARY INFORMATION 
 

92 
 

 

 

 

Table S14: Rate of reactions for Pro and Pro-derivatives 

Pro* fMP*-Pmn, kobs, s
-1 fMP*-G, kobs, s

-1 fM-P*P*G, kobs, s
-1 

 no EF-P no EF-P no EF-P 
Pro 0.14 ± 0.1 8.2 ± 0.8 4.2 ± 0.3 33 ± 2 0.018 ± 0.02 0.6 ± 0.02 
Aze 
 

0.55 ± 0.26 (40%) 
0.12 ± 0.04 (60%) 

45 ± 13 (34%) 
2.4 ± 0.3 (66%) 

    

Pip 0.5 ± 0.06 (68%) 
0.03 ± 0.01(32%) 

27 ± 3 (81%) 
0.7 ±0. 3 (19%) 

    

4-S-Flp 0.003 ± 0.0002 0.23 ± 0.02 0.15 ± 0.02 5 ± 0.5 no product 0.013 ± 0.001 
4-R-Flp 21 ± 2 121 ± 33 73 ± 10 63 ± 9 0.22 ± 0.02 0.53 ± 0.06 
4,4-F2-Pro 2.3 ± 0.2 67 ± 5 42 ± 4 (73%) 

0.07 ± 0.02 (27%) 
65 ± 14 (83%) 

0.3 ± 0.3 (17%) 
0.077 ± 0.005 0.7 ± 0.1 

4-S-Hyp 0.007 ± 0.0003 0.64 ± 0.06 0.3 ± 0.03 11 ± 1 0.004 ± 0.001 0.077 ± 0.008 
4-R-Hyp 0.2 ± 0.02 9.4 ± 0.5 4 ± 0.3 49 ± 7 0.039 ± 0.004 0.3 ± 0.04 
Cis-MePro 6 ± 1 × 10-5 0.001 ± 0.0004 0.001 ± 0.0001 0.037 ± 0.003 no product 0.013 ± 0.002 
Trans-MePro 
 

0.32 ± 0.03 14 ± 2 28 ± 4 (68%) 
1.7 ± 0.5 (32%) 

69 ± 11 (86%) 
0.6 ± 0.5 (14%) 

0.065 ± 0.008 0.64 ± 0.09 

4-S-Mep  0.09 ± 0.002 (21%) 
0.003 ± 0.0002 (79%) 

6 ± 1(38%) 
0.18 ± 0.03 (62%) 

9 ± 4 (32%) 
0.16 ± 0.03 (68%) 

26 ± 9 (72%) 
1 ± 1 (28%) 

0.009 ± 0.004 0.085 ± 0.008 

4-R-Mep 0.17 ± 0.03 12 ± 1 19 ± 3 (69%) 
0.6 ± 0.2 (31%) 

73 ± 9 (75%) 
1.9 ± 0.6 (25%) 

0.072 ± 0.006 0.51 ± 0.05 

3,4-Dhp 
 

0.01 ± 0.001 0.62 ± 0.07 2.8 ± 0.4 (67%) 
0.23 ± 0.07 (33%) 

21 ± 4 (82%) 
0.2 ± 0.1 (18%) 

0.005 ± 0.001 
 

0.12 ± 0.01 
 

fMP*-Pmn, fMP*-G and fM-P*P*G formation performed in buffer B at pH 7.5. Rates of biphasic time-courses were shown with the respective contribution in %. 
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Table S15: Rate of peptidyl transfer from fMet-(R/S)-Flp-tRNAPro to Pmn as a function of temperature 

Temp., °C kobs, s
-1 

 4-R-Flp  4-S-Flp 

 
no EF-P EF-P no EF-P EF-P 

15 1.2 ± 0.1 10 ± 1 0.0002 ± 0.00003 0.011 ± 0.001 
20 2.4 ± 0.3 23 ± 2 

  25 6.1 ± 0.4 45 ± 3 0.0008 ± 0.00004 0.055 ± 0.003 
30 9 ± 1 82 ± 11 0.0018 ± 0.0001 0.104 ± 0.006 
37 21 ± 2 121 ± 33 0.0028 ± 0.0002 0.23 ± 0.05 
PTC-fMP* (0.15 µM) vs. Pmn (10 mM) ± EF-P (3 µM). The reactions were performed at pH 7.5 in 
buffer B at indicated temperature. 
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7 Appendix 

7.1 List of abbreviations 

 
Abbreviation Description 
A site acceptor site 
A. tumefaciens Agrobacterium tumefaciens 
aa amino acid 
aa-tRNA aminoacyl-transfer RNA 
AmiB N-acetylmuramoyl-L-alanine amidase 
Aze Azetidine-2-carboxylic acid 
B. subtilis Bacillus subtilis 
B. abortus Brucella abortus 
(cis/trans)-MePro 4,5-(cis/trans)-Methanoproline 
DOHH deoxyhypusine hydroxylase 
DHS deoxyhypusine synthase 
E site exit site 
E. coli Escherichia coli 
EF elongation factor 
EpmA EF-P modifying enzyme 
FlhC flagellar transcriptional regulator 
Flk flagellar regulator 
IC initiation complex 
IF initiation factor 
Lys-RS2 class II Lys-tRNA synthetase 
mRNA messenger RNA 
nt nucleotide 
P site peptidyl-tRNA binding site 
Pip pipecolic acid 
Pmn puromycin 
PrmC release factor glutamine methyltransferase 
PTC posttranslocation complex 
P. aeruginosa Pseudomonas aeruginosa 
RF release factor 
RRF ribosome recycling factor 
Rz1 outer membrane subunit Rz1 
s second 
S. cerevisiae Saccharomyces cerevisiae 
S. typhimurium Salmonella enterica serovar typhimurium 
S. oneidensis  Shewanella oneidensis  
S. flexneri  Shigella flexneri  
T. thermophilus  Thermus thermophilus  
3,4-Dhp 3,4-Dehydroproline 
4,4-F2-Pro 4,4-Difluoroproline 
4-(R/S)-Flp 4-(R/S)-Fluoroproline 
4-(R/S)-Hyp 4-(R/S)-Hydroxyproline 
4-(R/S)-Mep 4-(R/S)-Methylproline 
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