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Introduction 

Worldwide, forests are under pressure through global change. Since the climate of the 

Northern Hemisphere is predicted to become drier and warmer in the future (IPCC, 2007), 

current forest management schemes aim at converting mono-specific forest stands into 

structurally more diverse forests with a higher abundance and diversity of native deciduous 

tree species (Brang et al., 2008; Kolström et al., 2011; Pretzsch et al., 2013; Schmitz 

et al., 2014). The goal of this is not only to reduce the susceptibility of forests to climate 

change and pests („Insurance-Hypothesis“ (Yachi & Loreau, 1999)) but also to preserve 

overall biodiversity (Fritz, 2006). This last goal is embedded in the convention on biological 

diversity (Rio, 1992) (BMU, 2010). Yet, evidence for overall positive effects of increased tree 

diversity on biodiversity in temperate forests is scarce. Studies on tree diversity effects so far 

provide opposing results across study regions and taxa (Vehviläinen et al., 2007; Sobek et al., 

2009a, 2009c; Schuldt et al., 2010; Scherber et al., 2014). 

Another aspect of global change and a major threat to biodiversity is the increasing 

fragmentation of habitats (Fahrig, 2003). Once covering the major part of the land surface 

(Ellenberg & Leuschner, 2010), today forests constitute only one third of the total area of 

Germany (Schmitz et al., 2014) and primeval forests completely vanished. As a result, in 

Central Europe and globally forests are highly fragmented (Harper et al., 2005). Forest 

fragmentation is accompanied by an increase in forest edge zones. Edge effects can strongly 

alter environmental conditions and resource distribution in forest remnants and affect species 

invasion from the matrix (surrounding habitat), community composition and biotic 

interactions (Murcia, 1995; Ries et al., 2004). Thus, small fragments are exposed to the risk of 

not holding an “interior zone/habitat” anymore - to the detriment of species relying on inner 

forest conditions (Laurance & Yensen, 1991; Bender et al., 1998; Tscharntke et al., 2012). 

Therefore, from a conservation perspective it is important to assess not only depth and 

strength that edge effects penetrate into forests, but also where they occur, where they do not 

occur and which species are affected (Ries & Sisk, 2010 and references therein). Edge effects 

are commonly believed to extend only a few meters into forests, generally not exceeding a 

depth of 50 m (Murcia, 1995). Hence, the majority of studies only assessed edge effects or 

edge vs. interior differences on small spatial scales (Duelli et al., 2002; Pohl et al., 2007; 

Wermelinger et al., 2007; Noreika & Kotze, 2012; Vodka & Cizek, 2013). However, evidence 

is increasing that edge effects can occur across large distances up to more than one kilometre. 

This has recently been shown for environmental factors, plants, invertebrates and vertebrates 

(Laurance, 2000; Ewers & Didham, 2008; Bergès et al., 2013; Hofmeister et al., 2013; 
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Pellissier et al., 2013). Patch contrast (difference in habitat quality between fragment and 

adjacent matrix) and the three-dimensional architecture (sensu plant structure) can influence 

the depth and strength that edge effects penetrate into fragments (Cadenasso et al., 2003; Ries 

& Sisk, 2004; Ries et al., 2004; Collinge, 2009). Patch contrast can have an impact on species 

invasion into forests since species are more likely to permeate into fragments with a low patch 

contrast (Cadenasso et al., 2003; Ries & Sisk, 2004; Noreika & Kotze, 2012). A remnant’s 

architecture can influence factors such as wind and light penetration into the fragment, which 

in turn affect microclimatic conditions (e.g. temperature and humidity), understory plant 

growth, resource distribution and habitat heterogeneity (Ries et al., 2004). This can have far-

reaching consequences on patch-dependent species and on the colonisation of remnants by 

edge and open-habitat species (Driscoll et al., 2013 and references therein). 

Tree species composition shapes the (canopy) architecture of forests (Getzin et al., 2012; 

Seidel et al., 2013) and may therefore play an important role in this context. Tree species 

differ with respect to crown architecture, canopy cover, time of leaf budding, leaf litter quality 

and so forth. This can affect environmental and microclimatic conditions such as light 

availability on the forest floor, soil moisture and pH, litter layer depth and nutrient availability 

(Barbier et al., 2008; Wulf & Naaf, 2009; Jacob et al., 2010). Central European deciduous 

forests are typically dominated by the tree species Fagus sylvatica L. (Ellenberg & 

Leuschner, 2010), a shade tolerant, highly competitive autogenic ecosystem engineer, 

strongly shaping its environment by a dense, little light transmitting canopy, thick mats of 

acidic, slowly decomposing leaf litter and a species-poor herb layer (Guckland et al., 2009; 

Jacob et al., 2010; Mölder et al., 2014).  

A mixture of different tree species may thus reduce litter depth and increase light availability, 

herb diversity, habitat heterogeneity and niche and resource diversity (Paillet et al., 2010; 

Vockenhuber et al., 2011). These factors have been shown to increase plant and invertebrate 

species richness in forests (Huston, 1994; Brändli et al., 2007; Sobek et al., 2009b; 

Vockenhuber et al., 2011; Lange et al., 2014) and may reduce the contrast between the 

variable conditions at the forest edge and the forest interior, thus enabling the permeation of 

species not explicitly adapted to inner forest conditions.  

Results of Vockenhuber et al. (2011) indicate interacting effects of edge proximity and tree 

diversity on herb layer characteristics. However, their study was not designed for explicitly 

testing this hypothesis and to my knowledge there is no other study that did. 

The way that species respond to edge proximity and tree diversity may depend on species 

specific requirements. Generalists and open habitat species are often positively affected by 
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forest edge zones (Rainio & Niemelä, 2003 and references therein) and may benefit from 

altered environmental conditions induced by a more diverse tree layer. Forest species are 

more likely to suffer from forest edge zones due to factors such as drier microclimate, 

heterogeneous environmental conditions and competition for resources with invading species 

but may on the other hand benefit from an increase in niche and resource diversity. The same 

may be true for species of different body size since this is linked to the sensitivity to 

environmental changes (Janzen & Schoener, 1968; Peters, 1986). Therefore, we test if the 

response of organisms to edge proximity and tree diversity depends on life history traits and 

habitat affinity. 

Finally, forest canopy and understory have very different prerequisites regarding 

microclimate, habitat structure and composition of inhabiting species. Therefore, tree 

diversity and edge effects may differ across forest strata.  

This thesis is the first to analyse the relative effects of forest edge, tree diversity and stratum, 

considering interactions among these potential predictors of changes in community structure 

of herb layer plants, ground-dwelling arthropods (ground beetles, rove beetles and spiders) 

and the total flying beetle fauna (captured with flight interception traps). In this context, the 

following main research questions were addressed: 

 

1. Does tree diversity have overall positive effects on forest biodiversity across taxa? 

2. Do tree diversity and forest edge interactively affect species richness and composition 

of arthropods and understory plants? 

3. Do edge effects differ across forest strata? 

4. Are tree diversity effects different across forest strata? 

5. Are different functional groups (in terms of habitat specialisation and body size) of 

plants and invertebrates differently affected by edge proximity, tree diversity (and 

forest stratum)? 

 

Study region 

The study was conducted in the Hainich National Park. The Hainich region - a forested 

mountain range running 24 km from north to south (highest elevation at 494 m a.s.l.) - is 

located in northwestern Thuringia, Germany. It is based on limestone (Triassic Upper 

Muschelkalk), mainly covered by beech forest communities of calcareous soils. The main soil 

type is (stagnic) Luvisol with partial loess cover (Leuschner et al., 2009; Schmidt et 
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al., 2009). With a total area of 16.000 ha, this forest is the largest connected deciduous forest 

in Germany.  

Its southern part, an area of 7.500 ha (Fig. 1 and 2), has been declared as national park in 

1997. It is located between the cities of Mühlhausen, Bad Langensalza and Eisenach 

(51° 5′ 0″ N, 10° 30′ 24″ E). The mean annual temperature of the region ranges between 7 and 

8 °C, while the mean annual precipitation varies between 600 and 700 mm (Grossmann & 

Biehl, 2007). In 2011 the national park was included into the UNESCO World Heritage sites 

“Primeval Beech Forests of the Carpathians and the Ancient Beech Forests of Germany”. The 

main forest communities of the study area are Hordelymo-Fagetum, Galio-Fagetum and 

Stellario-Carpinetum (Mölder et al., 2006), with distinct differences in herb layer 

characteristics between spring (spring ephemerals) and summer (Fig. 3 and 4).  

Historically, the forest has been used since the 12
th

 century as irregular coppice with standards 

system (“Mittelwald”). From the middle of the 19
th

 century on it was converted into high 

forest (“Hochwald”) and multiple aged forest system (“Plenterwald”). Since the study site 

became military restricted area in 1964, management was reduced to a minimum, allowing for 

a near natural development of the forest until today (Mölder et al., 2006). 

Figure 1 Distribution of the twelve transects within the forest of the Hainich National Park. 

 

 

Hainich Forest 
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An outstanding characteristic of this area is the mosaic of forest stands with contrasting tree 

diversity ranging from 1 to 14 tree species/ha (Fig. 2), which results from the past  

Figure 2 Forest stands in the Hainich National Park with contrasting tree species diversity. Top: Beech 

dominated forest stand with low tree species richness; bottom: forest stand rich in tree species. 
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management but with comparable climate and soil conditions (Mölder et al., 2006; Leuschner 

et al., 2009). This makes the Hainich National Park particularly suitable for the purpose of 

this project. 

Figure 3 Characteristic plants occurring on the study sites: From top left to bottom right: Campanula 

trachelium, Corydalis cava, Circaea lutetiana, Hepatica nobilis, Leucojum vernum, Stellaria holostea, Primula 

elatior, Senecio ovatus. 



CHAPTER 1 

- 14 - 

Transects ranging from the forest edge up to 500 m into the forest interior were established 

both in forest stands poor and rich in tree species. The target organisms were studied along 

each transect: herb layer plants with vegetation relevés, ground-dwelling arthropods with 

pitfall traps and the flying beetle fauna with flight interception traps. Forest stands with low 

tree species diversity were strongly dominated by beech (Fagus sylvatica). In contrast, beech 

dominance was reduced in forest stands with high tree species diversity (Fig. 2) and they 

Figure 4 Characteristic plant species occurring on the study sites: From top left to bottom right: Anemone 

nemorosa, Pulmonaria obscura, Melampyrum nemorosum, Daphne mezereum, Cardamine pratensis, Fragaria 

viridis, Anemone ranunculoides. 
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contained a higher abundance and diversity of other deciduous tree species (Quercus robur L., 

Quercus petrea LIEBL., Tilia sp., Acer campestre L., Acer platanoides L., Acer 

pseudoplatanus L., Fraxinus excelsior, Carpinus betulus L., Tilia cordata MILL. and T. 

platyphyllos SCOP. Less abundant were Prunus avium L., Betula pendula ROTH, Populus 

tremula L., Ulmus glabra HUDS., Salix caprea L. and Sorbus torminalis (L.)). The matrix 

consisted of abandoned grassland. 

In contrast to other studies conducted in the region within the framework of the research 

training group ‘Graduiertenkolleg 1086: The role of biodiversity for biogeochemical cycles 

and biotic interactions in temperate deciduous forests’ this study covers the whole forested 

area of the Hainich National Park (Fig. 1).   

 

Chapter outline 

Chapter 2: How forest edge–center transitions in the herb layer interact with beech 

dominance versus tree diversity  

This chapter studies the effects of tree diversity and distance from the forest edge on herb 

layer vegetation. Higher tree diversity led to increased plant species richness of the herb layer 

in the forest interior. In the high tree diversity level plant species richness remained constant 

with increasing distance from the edge, whereas it strongly declined in the beech dominated 

forest stands poor in tree species. The dominance of forest specialist species within the plant 

community increased with distance from the forest edge and was much higher in the low tree 

species level. The fraction of forest generalists decreased from the forest edge towards the 

centre and was higher under increased tree diversity. The plant community composition in the 

high tree diversity level was different and more variable compared with the low tree diversity 

level. Furthermore, the variability of the community composition was stronger with 

increasing influence of the forest edge. Litter depth mediated by tree diversity was identified 

as most important predictor of plant species richness. 

 

Chapter 3: Tree diversity and species’ traits moderate forest edge responses of ground-

dwelling beetles and spiders 

This study explores differences in tree diversity and edge response across different taxa of 

ground-dwelling arthropods (ground beetles, rove beetles and spiders) and different species’ 

traits (habitat specialisation and body size). 

No general conclusion could be drawn for total species richness of the three taxa, since each 

taxon responded individually. Yet, dividing the species into habitat affinity groups (habitat 



CHAPTER 1 

- 16 - 

generalists (including open-habitat species) and forest species) and according to their body 

size into small and large species revealed general patterns across all taxa studied.  

The species richness of forest species was hardly influenced by edge proximity. Species 

richness of habitat generalists strongly declined from the forest edge towards the forest 

interior. However, this effect was mitigated by increased tree diversity (not for spiders). Our 

results show that among all ground-dwelling arthropods, generalists and in particular small 

species benefitted from an increase in tree diversity, whereas the species richness of forest 

species was not affected. However, analysing the response of individual species showed that 

some forest species benefitted, whereas others suffered from increased tree diversity. We 

attribute our findings to changes in environmental conditions induced by tree diversity and 

edge proximity. 

 

Chapter 4: Interacting effects of forest stratum, edge and tree diversity on beetles 

In this chapter forest stratum was added as a third component to the study design and edge 

and tree diversity effects on beetles were compared between forest canopy and understory.  

Edge effects extended up to 500 m into the forest interior and were not affected by tree 

diversity.  However, edge effects were weaker in the canopy compared with the understory, 

which is likely to result from a higher, edge-like microclimatic variability and harshness in 

the canopy. The species richness of habitat generalists strongly declined from the forest edge 

towards the forest interior and drove the response of total beetle species richness. On the 

contrary, saproxylic and forest species only responded weakly. The richness of saproxylic and 

forest species peaked in the canopy, whereas habitat generalists and non-saproxylic species 

dominated the forest understory.  

Pathways driving beetle richness differed across forest strata. In the canopy, tree diversity and 

dead wood amount were the decisive factors, whereas in the understory tree diversity effects 

were less strong and edge proximity and canopy openness were more important. In 

conclusion, tree diversity effects in the canopy were more direct, while effects in the 

understory were more indirect. 

 

Conclusions 

This thesis is the first to analyse the relative effects of forest edge, stratum and tree diversity 

in consideration of their interactions, thereby predicting plant and arthropod communities in 

forests.  
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The three studies show that increased tree diversity in general enhances biodiversity in 

forests. We thus conclude that converting mono-specific beech into mixed forest stands will 

contribute to preserving overall biodiversity of plants and arthropods as embedded in the 

convention on biological diversity 2020. Saproxylic arthropods, a group containing many 

threatened species, may explicitly benefit from that. However, this study also showed that 

forest stands of contrasting tree diversity can house distinctly different communities of plants 

and arthropod and that some forest species may even suffer from increased tree diversity. This 

underlines the importance of not only increasing tree diversity as sole conservation goal, but 

also to preserve old-growth mono-beech forests as specified in the UNESCO World Heritage 

sites “Primeval Beech Forests of the Carpathians and the Ancient Beech Forests of Germany”. 

Across all groups studied the species richness of specialised species (forest and saproxylic 

species) were least affected by edge effects.  

Interactions of tree diversity and edge proximity seem to gain relevance from the canopy 

towards the forest floor. In concordance, species in the canopy are more directly and stronger 

affected by tree diversity, whereas tree diversity effects became weaker and more indirect in 

the understory by altering environmental conditions, such as habitat heterogeneity, litter depth 

and resource distribution, thereby enhancing the colonisation of species not explicitly adapted 

to inner forest conditions. Furthermore, more factors not linked to tree diversity seem 

important on the forest floor. 

In conclusion, for gaining a deeper understanding of forest fragmentation the relative 

importance of edge, stratum and tree diversity, but also species’ life-history traits (e. g. body 

size) and habitat specialisation should be considered.   

 

  



CHAPTER 1 

- 18 - 

References 

Barbier S., Gosselin F., & Balandier P. (2008) Influence of tree species on understory 

vegetation diversity and mechanisms involved—A critical review for temperate and 

boreal forests. Forest Ecology and Management, 254, 1–15.  

Bender D.J., Contreras T.A., & Fahrig L. (1998) Habitat loss and population decline: A meta-

analysis of the patch size effect. Ecology, 79, 517–533.  

Bergès L., Pellissier V., Avon C., Verheyen K., & Dupouey J.-L. (2013) Unexpected long-

range edge-to-forest interior environmental gradients. Landscape Ecology, 28, 439–453.  

BMU (2010) Indikatorenbericht 2010 zur Nationalen Strategie zur biologischen Vielfalt-

Stand. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), 

Berlin.  

Brändli U.-B., Bühler C., & Zangger A. (2007) Waldindikatoren zur Artenvielfalt – 

Erkenntnisse aus LFI und BDM Schweiz | Forest structures and species diversity – 

Findings from the NFI and BDM. Schweizerische Zeitschrift fur Forstwesen, 158, 243–

254.  

Brang P., Bugmann H., Bürgi A., Mühlethaler U., Rigling A., & Schwitter R. (2008) 

Klimawandel als waldbauliche Herausforderung. Schweizerische Zeitschrift für 

Forstwesen, 159, 362–373.  

Cadenasso M.L., Pickett S.T.A., Weathers K.C., & Jones C.G. (2003) A Framework for a 

Theory of Ecological Boundaries. BioScience, 53, 750–758.  

Collinge S.K. (2009) Ecology of fragmented landscapes. Johns Hopkins University Press, 

Baltimore.  

Driscoll D.A., Banks S.C., Barton P.S., Lindenmayer D.B., & Smith A.L. (2013) Conceptual 

domain of the matrix in fragmented landscapes. Trends in ecology & evolution, 28, 605–

613.  

Duelli P., Obrist M.K., & Fluckiger P.F. (2002) Forest edges are biodiversity hotspots - Also 

for Neuroptera. Acta Zoologica Academiae Scientiarum Hungaricae, 48, 75–87.  

Ellenberg H. & Leuschner C. (2010) Vegetation Mitteleuropas mit den Alpen: In 

ökologischer, dynamischer und historischer Sicht. UTB, Stuttgart.  

Ewers R.M. & Didham R.K. (2008) Pervasive impact of large-scale edge effects on a beetle 

community. Proceedings of the National Academy of Sciences of the United States of 

America, 105, 5426–5429.  

Fahrig L. (2003) Effects of Habitat Fragmentation on Biodiversity. Annual Review of 

Ecology, Evolution, and Systematics, 34, 487–515.  

Fritz P. (2006) Ökologischer Waldumbau in Deutschland. Fragen, Antworten, Perspektiven. 

oekom Verlag, München.  



CHAPTER 1 

- 19 - 

Getzin S., Wiegand K., & Schöning I. (2012) Assessing biodiversity in forests using very 

high-resolution images and unmanned aerial vehicles. Methods in Ecology and 

Evolution, 3, 397–404.  

Grossmann M. & Biehl R. (2007) 10 Jahre Nationalpark Hainich - Auf dem Weg zum 

Urwald. Landschaftspflege und Naturschutz in Thüringen, 44, 146–151.  

Guckland A., Jacob M., Flessa H., Thomas F.M., & Leuschner C. (2009) Acidity, nutrient 

stocks, and organic-matter content in soils of a temperate deciduous forest with different 

abundance of European beech (Fagus sylvatica L.). Journal of Plant Nutrition and Soil 

Science, 172, 500–511.  

Harper K.A., MacDonald S.E., Burton P.J., Chen J., Brosofske K.D., Saunders S.C., 

Euskirchen E.S., Roberts D., Jaiteh M.S., & Esseen P.-A. (2005) Edge influence on 

forest structure and composition in fragmented landscapes. Conservation Biology, 19, 

768–782.  

Hofmeister J., Hošek J., Brabec M., Hédl R., & Modrý M. (2013) Strong influence of long-

distance edge effect on herb-layer vegetation in forest fragments in an agricultural 

landscape. Perspectives in Plant Ecology, Evolution and Systematics, 15, 293–303.  

Huston M.A. (1994) Biological Diversity: The Coexistence of Species. Cambridge University 

Press, Cambridge.  

IPCC (2007) Fourth assessment report: climate change 2007. Working Group I Report. The 

Physical Science Basis. IPCC, Geneva.  

Jacob M., Viedenz K., Polle A., & Thomas F.M. (2010) Leaf litter decomposition in 

temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). 

Oecologia, 164, 1083–1094.  

Janzen D.H. & Schoener T.W. (1968) Differences in Insect Abundance and Diversity 

Between Wetter and Drier Sites During a Tropical Dry Season. Ecology,, 49, 96–110.  

Kolström M., Lindner M., Vilén T., Maroschek M., Seidl R., Lexer M.J., Netherer S., Kremer 

A., Delzon S., Barbati A., Marchetti M., & Corona P. (2011) Reviewing the Science and 

Implementation of Climate Change Adaptation Measures in European Forestry. Forests, 

2, 961–982.  

Lange M., Türke M., Pašalić E., Boch S., Hessenmöller D., Müller J., Prati D., Socher S.A., 

Fischer M., Weisser W.W., & Gossner M.M. (2014) Effects of forest management on 

ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are 

mainly mediated by changes in forest structure. Forest Ecology and Management, 329, 

166–176.  

Laurance W. (2000) Do edge effects occur over large spatial scales? Trends in ecology & 

evolution, 15, 134–135.  

Laurance W.F. & Yensen E. (1991) Predicting the impacts of edge effects in fragmented 

habitats. Biological Conservation, 55, 77–92.  



CHAPTER 1 

- 20 - 

Leuschner C., Jungkunst H.F., & Fleck S. (2009) Functional role of forest diversity: Pros and 

cons of synthetic stands and across-site comparisons in established forests. Basic and 

Applied Ecology, 10, 1–9.  

Mölder A., Bernhardt-Römermann M., & Schmidt W. (2006) Forest ecosystem research in 

Hainich National Park (Thuringia): First results on flora and vegetation in stands with 

contrasting tree species diversity. Waldökologie-Online, 3, 83–99.  

Mölder A., Streit M., & Schmidt W. (2014) When beech strikes back: How strict nature 

conservation reduces herb-layer diversity and productivity in Central European 

deciduous forests. Forest Ecology and Management, 319, 51–61.  

Murcia C. (1995) Edge effects in fragmented forests: implications for conservation. Trends in 

Ecology & Evolution, 10, 58–62.  

Noreika N. & Kotze D.J. (2012) Forest edge contrasts have a predictable effect on the spatial 

distribution of carabid beetles in urban forests. Journal of Insect Conservation, 16, 867–

881.  

Paillet Y., Bergès L., Hjältén J., Odor P., Avon C., Bernhardt-Römermann M., Bijlsma R.-J., 

De Bruyn L., Fuhr M., Grandin U., Kanka R., Lundin L., Luque S., Magura T., Matesanz 

S., Mészáros I., Sebastià M.-T., Schmidt W., Standovár T., Tóthmérész B., Uotila A., 

Valladares F., Vellak K., & Virtanen R. (2010) Biodiversity differences between 

managed and unmanaged forests: meta-analysis of species richness in Europe. 

Conservation biology, 24, 101–12.  

Pellissier V., Bergès L., Nedeltcheva T., Schmitt M.-C., Avon C., Cluzeau C., & Dupouey J.-

L. (2013) Understorey plant species show long-range spatial patterns in forest patches 

according to distance-to-edge. Journal of Vegetation Science, 24, 9–24.  

Peters R. (1986) The ecological implications of body size. Campridge University Press, 

Campridge.  

Pohl G.R., Langor D.W., & Spence J.R. (2007) Rove beetles and ground beetles (Coleoptera: 

Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western 

Canadian foothills forests. Biological Conservation, 137, 294–307.  

Pretzsch H., Schütze G., & Uhl E. (2013) Resistance of European tree species to drought 

stress in mixed versus pure forests: evidence of stress release by inter-specific 

facilitation. Plant biology (Stuttgart, Germany), 15, 483–495.  

Rainio J. & Niemelä J. (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. 

Biodiversity & Conservation, 12, 487–506.  

Ries L., Fletcher R.J., Battin J., & Sisk T.D. (2004) Ecological responses to habitat edges: 

mechanisms, models, and variability explained. Annual Review of Ecology, Evolution, 

and Systematics, 35, 491–522.  

Ries L. & Sisk T.D. (2004) A predictive model of edge effects. Ecology, 85, 2917–2926.  



CHAPTER 1 

- 21 - 

Ries L. & Sisk T.D. (2010) What is an edge species? The implications of sensitivity to habitat 

edges. Oikos, 119, 1636–1642.  

Scherber C., Vockenhuber E.A., Stark A., Meyer H., & Tscharntke T. (2014) Effects of tree 

and herb biodiversity on Diptera, a hyperdiverse insect order. Oecologia, 174, 1387–400.  

Schmidt I., Leuschner C., Mölder A., & Schmidt W. (2009) Structure and composition of the 

seed bank in monospecific and tree species-rich temperate broad-leaved forests. Forest 

Ecology and Management, 257, 695–702.  

Schmitz F., Polley H., Hennig P., Kroiher F., Marks A., Riedel T., Schmidt U., Schwitzgebel 

F., & Stauber T. (2014) Der Wald in Deutschland –- ausgewählte Ergebnisse der dritten 

Bundeswaldinventur. Bundesministerium für Ernährung und Landwirtschaft, Bonn.  

Schuldt A., Baruffol M., Böhnke M., Bruelheide H., Härdtle W., Lang A.C., Nadrowski K., 

von Oheimb G., Voigt W., Zhou H., Assmann T., & Fridley J. (2010) Tree diversity 

promotes insect herbivory in subtropical forests of south-east China. The Journal of 

ecology, 98, 917–926.  

Seidel D., Leuschner C., Scherber C., Beyer F., Wommelsdorf T., Cashman M.J., & 

Fehrmann L. (2013) The relationship between tree species richness, canopy space 

exploration and productivity in a temperate broad-leaf mixed forest. Forest Ecology and 

Management, 310, 366–374.  

Sobek S., Gossner M.M., Scherber C., Steffan-Dewenter I., & Tscharntke T. (2009a) Tree 

diversity drives abundance and spatiotemporal β-diversity of true bugs (Heteroptera). 

Ecological Entomology, 34, 772–782.  

Sobek S., Steffan-Dewenter I., Scherber C., & Tscharntke T. (2009b) Spatiotemporal changes 

of beetle communities across a tree diversity gradient. Diversity and Distributions, 15, 

660–670.  

Sobek S., Tscharntke T., Scherber C., Schiele S., & Steffan-Dewenter I. (2009c) Canopy vs. 

understory: Does tree diversity affect bee and wasp communities and their natural 

enemies across forest strata? Forest Ecology and Management, 258, 609–615.  

Tscharntke T., Tylianakis J.M., Rand T.A., Didham R.K., Fahrig L., Batáry P., Bengtsson J., 

Clough Y., Crist T.O., Dormann C.F., Ewers R.M., Fründ J., Holt R.D., Holzschuh A., 

Klein A.M., Kleijn D., Kremen C., Landis D. a, Laurance W., Lindenmayer D., Scherber 

C., Sodhi N., Steffan-Dewenter I., Thies C., van der Putten W.H., & Westphal C. (2012) 

Landscape moderation of biodiversity patterns and processes - eight hypotheses. 

Biological reviews, 87, 661–685.  

Vehviläinen H., Koricheva J., & Ruohomäki K. (2007) Tree species diversity influences 

herbivore abundance and damage: meta-analysis of long-term forest experiments. 

Oecologia, 152, 287–98.  

Vockenhuber E., Scherber C., Langenbruch C., Meißner M., Seidel D., & Tscharntke T. 

(2011) Tree diversity and environmental context predict herb species richness and cover 

in Germany’s largest connected deciduous forest. Perspectives in Plant Ecology, 

Evolution and Systematics, 13, 111–119.  



CHAPTER 1 

- 22 - 

Vodka Š. & Cizek L. (2013) The effects of edge-interior and understorey-canopy gradients on 

the distribution of saproxylic beetles in a temperate lowland forest. Forest Ecology and 

Management, 304, 33–41.  

Wermelinger B., Flückiger P.F., Obrist M.K., & Duelli P. (2007) Horizontal and vertical 

distribution of saproxylic beetles (Col., Buprestidae, Cerambycidae, Scolytinae) across 

sections of forest edges. Journal of Applied Entomology, 131, 104–114.  

Wulf M. & Naaf T. (2009) Herb layer response to broadleaf tree species with different leaf 

litter quality and canopy structure in temperate forests. Journal of Vegetation Science, 

20, 517–526.  

Yachi S. & Loreau M. (1999) Biodiversity and ecosystem productivity in a fluctuating 

environment: The insurance hypothesis. Proceedings of the National Academy of 

Sciences, 96, 1463–1468.  

 

 

 

 

 



 

- 23 - 

 

 

 

CHAPTER 2  

HOW FOREST EDGE–CENTER TRANSITIONS IN THE 

HERB LAYER INTERACT WITH BEECH DOMINANCE 

VERSUS TREE DIVERSITY 

 

 

 
 

 

Authors: Normann C., Tscharntke T. & Scherber C. 

First published online: January 19, 2016 in Journal of Plant Ecology  

 



CHAPTER 2 

- 24 - 

Abstract 

Forest fragmentation and the associated augmentation of forest edge zones are increasing 

worldwide. Forest edges are characterized by altered plant species richness and community 

composition. As the tree layer and its species composition has been shown to influence herb 

layer composition, changes in tree species composition or richness may weaken or strengthen 

edge effects in forest ecosystems. We studied effects of the edge–center transition, tree 

species composition and their potential interaction on the understory vegetation in the Hainich 

National Park, Germany’s largest connected deciduous forest, allowing to cover large edge-

center transects. 

We established 12 transects in an area of 75 km
2
 of continuous forest, 6 beech-dominated and 

6 in multispecies forest stands. Each transect reached from the forest edge up to 500 m into 

the forest interior. Vegetation relevés were conducted in regular, logarithmic distances along 

each transect. 

Herb species richness was influenced by an interaction of edge effects and tree diversity level. 

With increasing distance from the forest edge, herb species richness remained constant in 

multispecies forest stands but rapidly decreased in beech-dominated forest stands. Further, 

herb richness was higher in the interior of multispecies forest stands. Percent forest specialists 

increased and percent generalists decreased with distance from the edge and this contrasting 

pattern was much more pronounced in beech-dominated transects. By using structural 

equation modeling, we identified litter depth mediated by tree species composition as the 

most important driver of herb layer plant species richness. 

 

Keywords 

community composition, Fagus sylvatica, functional groups, habitat specialists and 

generalists, litter depth, tree diversity 
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Introduction 

Forests are highly fragmented all over the world (Harper et al., 2005). One consequence of 

forest fragmentation is the rapid increase of area covered by forest edge zones (Fahrig 2003; 

Honnay et al., 2002). Forest edge zones may indirectly reduce the actual area of forests, as 

matrix effects have been shown to reach deep into the forest, thus altering the habitat 

conditions (Murcia 1995). As a result, small forest remnants may hold no ‘forest interior’ 

anymore, since edge zones do not represent suitable habitat for species that depend on inner 

forest conditions (Bender et al., 1998; Laurance & Yensen 1991; Tscharntke et al., 2012). 

Consequently, from a conservation perspective, it is essential to evaluate the depth, strength 

and underlying mechanisms of edge effects in forest ecosystems, if the aim is to preserve 

species diversity in forests. 

Forest herb species communities can be affected by edge effects since their composition is 

shaped by altered habitat conditions such as increased light availability, altered rates of 

herbivory, reduced soil moisture, fertilizer drift or increased atmospheric deposition (Burke & 

Nol 1998; Gonzalez et al., 2010; Honnay et al., 2002; Pellissier et al., 2013; Wuyts et al., 

2013). Furthermore, conditions at the edge are more heterogeneous compared to the forest 

interior (Ewers & Didham 2006). Overall, plant species richness at forest edges is often 

higher than in the forest interior (Murcia 1995; Ries et al., 2004), since the edge can promote 

generalist, edge and open land species. In the 1990s, there was a consensus that the maximum 

distance at which forest plant communities are influenced by edge effects does not exceed ca. 

50 m (Murcia 1995), whereas recent findings indicate that edge effects may reach several 

hundred meters into forest interiors (Bergès et al., 2013; Hofmeister et al., 2013; Pellissier et 

al., 2013; Vockenhuber et al., 2011). This emphasizes the need of taking larger spatial scales 

into account when evaluating the edge’s impact on forest plant communities. 

Another important factor determining herbaceous plant species richness in Central European 

forests is tree species composition (Barbier et al., 2008; Wulf & Naaf 2009). Because tree 

species differ in traits such as growth height, leaf size, crown shape, canopy cover, time of 

leaf budding and leaf litter quality, tree species determine microclimatic conditions via light 

transmittance through the canopy, soil moisture, soil pH, litter depth and nutrient availability 

(Guckland et al., 2009; Jacob et al., 2010; Wulf & Naaf 2009). 

The common beech Fagus sylvatica L., a shade tolerant, highly competitive autogenic 

ecosystem engineer species, strongly determines the environmental conditions in a beech 

forest, primarily due to low light availability (dense canopy structure) and a thick litter layer 
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(acidic, slowly decomposing leaf litter) (Härdtle et al., 2003; Jacob et al., 2010; Wulf & Naaf 

2009). In Central Europe, most broadleaved forests are dominated by beech. 

However, current ecological forest management schemes aim at establishing a higher 

abundance and diversity of other native deciduous tree species, thus reducing beech 

dominance (Barbier et al., 2008; Röhrig et al., 2006). This may result in an increasing species 

diversity of herb layer plants (Barbier et al., 2008; Vockenhuber et al., 2011) and proportion 

of generalist species (Mölder et al., 2006) due to indirect soil-mediated processes, but also 

due to increased habitat heterogeneity, light availability and altered herbivore pressure (Wirth 

et al., 2008). Yet, mechanisms are insufficiently understood (Barbier et al.,, 2008; Bengtsson 

et al., 2000) and analyses explicitly disentangling multiple mechanisms and pathways 

between tree diversity, herb layer diversity and herb layer species composition are still 

missing. 

A habitat remnant’s three-dimensional architecture (sensu plant structure) is shaped by its tree 

species composition (Seidel et al., 2013). It can determine the extent of edge effects (Murcia 

1995; Pellissier et al., 2013; Ries et al., 2004), since it predicts factors such as light and wind 

penetration into a patch, in turn affecting abiotic factors (light availability, temperature, 

humidity) and thereby understory plant growth (Ries et al., 2004). Moreover, edge effects are 

stronger in habitat remnants with a high patch contrast (=quality contrast between two 

adjacent habitats or matrix and fragment) and matrix species are more likely to penetrate 

fragments with a low patch contrast (Cadenasso et al., 2003; Ries & Sisk 2004). Increased 

tree diversity in beech forests may reduce the contrast between heterogeneous conditions at 

the edge and conditions in the forest interior inter alia due to a higher light availability and 

habitat heterogeneity. This may lead to weaker edge effects compared with beech-dominated 

forest stands. Nevertheless, we are not aware of any study explicitly assessing interactions 

between tree diversity and edge effects. In this study, the following main hypotheses were 

tested: 

1. Multispecies forest stands affect herb species richness positively. 

2. Overall herb species richness, and especially species richness of generalist, edge and 

open land species, is higher at forest edges. 

3. Edge effects on herb species richness are more pronounced in beech-dominated forest 

stands than in multispecies forest stands, which enable generalists, edge and open land 

species to permeate deeper into the forest. 

4. Effects of tree layer and edge proximity on herb species richness are indirectly 

mediated by changes in soil pH, litter depth and light availability.  
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Material and Methods 

The study region Hainich (forested mountain range running 24 km from north to south, 

highest elevation 494 m a.s.l.) is situated in northwestern Thuringia, Germany (51°5′0″N, 

10°30′24″E). The bedrock is mainly limestone, covered by beech forest communities 

(Leuschner et al., 2009). With an area of 16,000 ha, this forest is the largest continuous stretch 

of deciduous forest in Germany. This enabled us to study edge effects on a large spatial scale. 

The study was conducted in Hainich’s southern part (National Park and part of UNESCO 

World Heritage sites ‘Primeval Beech Forests of the Carpathians and the Ancient Beech 

Forests of Germany’). 

The forest comprises areas with low tree species richness (dominated by F. sylvatica L.) and 

areas rich in tree species (containing up to 14 species per hectare); see Mölder et al., (2006) 

and Leuschner et al., (2009) for a detailed description of the study site. 

 

Site selection 

We laid out transects, reaching up to 500 m from the forest edge into the forest interior. 

Twenty-three forest stands were selected a priori using a map of the forest communities 

provided by the National Park administration. Twelve forest stands met the criteria of being 

either poor (c. 3 species) or rich (c. 6 species) in tree species, being of a similar age class and 

having a low variability of tree species richness within each stand. Six transects were situated 

in beech-dominated forest stands with a low tree species diversity (hereafter referred to as 

beech-dominated forest stands) and six in forest stands with a low beech dominance and a 

high tree species diversity (hereafter referred to as multispecies forest stands). Transects were 

distributed evenly along the edge of the whole Hainich forest, with a minimum distance of 

750 m between transects. 

Plots were established at different distances from the forest edge. As we expected the 

strongest changes to happen close to the edge (Didham & Lawton 1999), we chose the 

distances of 0, 4, 8, 32, 80, 200 and 500 m. However, the maximum distance of 500 m could 

not be reached on all transects, because tree species composition changed, stand age differed 

or the distance to the next edge was not large enough. Thus, 4 of the 12 transects only had a 

length of 200 m (2 transects in each tree diversity level). This yielded a total number of 80 

plots for vegetation relevés (see below). The ‘0 m’ point of the transects was set at the 

position where canopy tree trunks of the forest began. 

The surrounding matrix consisted of (partially abandoned) grassland of different successional 

stages. Forest edges consisted of dense shrub belts characterized by blackthorn (Prunus 
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spinosa L. s. str.), whitethorn (Crataegus laevigata (Poir.) DC.) and saplings of ash (Fraxinus 

excelsior L.). Nomenclature of plants follows Wisskirchen and Haeupler (1998). 

 

Tree layer measurements 

On each plot, tree surveys were conducted in an area of 20 × 40 m (longer side parallel to 

forest edge), except for plots directly at the forest edge (distances 0, 4 and 8 from the forest 

edge), where only one tree relevé was placed (Supplementary Figure S1). This resulted in a 

total number of 56 tree relevés. All trees (diameter at breast height (DBH) ≥ 10 cm) and DBH 

were recorded. We assessed % beech (based on basal area), number of tree species (tree SR) 

and tree species diversity (Shannon–Wiener diversity index (H′) based on basal area as it 

includes not only species richness but also the abundances of species (Magurran 2004)). 

 

Vegetation measurements 

Herb layer surveys were conducted on six subplots per plot. Subplots measured 1 × 3 m 

(longer side parallel to forest edge) and were arranged in a row running parallel to the forest 

edge (Supplementary Figure S1). Distance between relevés was ~1 m. 

All flowering plant species up to 70 cm height and their cover (in percent) was recorded. For 

further analysis, the cover of every plant species was averaged over the six relevés per plot by 

taking the arithmetic mean. The survey was carried out twice to account for both spring 

ephemerals characteristic for deciduous forests and summer vegetation (Dierschke 1994), 

resulting in 960 relevés in total. The spring survey was done in April 2012, the summer 

survey in July/August 2012. Tree saplings were excluded from further analyses as they were 

not independent from the tree layer. 

 

Measurement of environmental variables 

Canopy openness was assessed using fish eye photographs (see Supplementary Appendix B 

for detailed procedure). Litter depth was measured in the center of each of the subplots using 

a tape measure. For the analyses, the six values were averaged for each plot. 

Soil samples from the upper 30 cm of mineral soil were taken at plots of distances 0, 32, 80, 

200 and 500 m using a soil corer. Twelve subsamples per plot were taken in a grid of 3 × 4 m 

around the center of each plot and pooled into a single sample. Since grids for the plots in 0, 4 

und 8 m distance would have overlapped each other, only the plot at 0 m was sampled as a 

representative for the plots of 4 and 8 m distance. The soil samples were dried (40°C) and 



CHAPTER 2 

- 29 - 

sieved (2 mm mesh size). Soil pH was electronically measured in a suspension of 10 g soil 

and 25 ml 0.01 mol/l CaCl2. 

 

Data analysis 

Tree diversity level, tree SR, H′ trees and % beech were all highly correlated (|rho| > 0.6; 

Supplementary Table S1). Therefore, only tree diversity level was used in the analyses. Spring 

and summer surveys were pooled. All analyses were performed using R, version 3.0.2 (R 

Core Team 2014). 

 

Analysis of plant species richness. 

We started with simple mixed-effects models (lme, ‘nlme’ package (Pinheiro and Bates 2000)) 

containing only the design variables distance (distance from the forest edge, continuous 

variable), tree diversity level (factor) and their two-way interaction as fixed effects. Distance 

was log-transformed. Transect was included as random effect. Plant species 

richness was transformed using ¼ powers as indicated by a Box–Cox transformation. Models 

were initially fitted using Restricted Maximum Likelihood (‘REML’) method and variance 

functions were used to account for heteroscedasticity or non-normality. We calculated 

corrected Akaike information criterion (AICc) per model. The model with the lowest AICc 

value was considered the best maximal model. This best maximal model was re-fitted using 

maximum likelihood. The minimal adequate model was arrived at using stepwise model 

selection based on AICc (stepAICc function, ‘MASS’ package, corrected for small sample 

sizes by C. Scherber (2009, http://www.christoph-scherber.de/stepAICc.txt)). 

 

Analysis of plant community structure. 

Plant species were subdivided into forest specialization groups according to Schmidt et al., 

(2011): (i) forest specialists (species predominantly occurring in closed forests), (ii) 

generalists (species occurring in forests as well as in open land), (iii) edge species (species 

preferring forest edges or clearings) and (iv) open land species (comprising species occurring 

partly in forests, but preferring open land and true open land species (joined into ‘true open 

land species’)). These four groups formed a multinomial response variable analyzed using 

multinomial models with distance (log) and tree diversity level as explanatory variables. The 

number of species in each of the four classes was used as a response matrix in these models. 

Multinomial models were calculated using the Mixcat package in R (Papageorgiou and Hinde 

2012) with transect as a random effect. As Mixcat did not offer predict or plot methods, we re-
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fitted these models without random effects using the multinom function in R for plotting 

(‘nnet’ package (Ripley 2013)). The significance of terms in the final model was assessed 

using sequential likelihood ratio tests. 

 

Analysis of plant community composition. 

Redundancy analyses (function rda, ‘vegan’ package (Oksanen et al., 2013)) were conducted 

to test the effect of tree diversity level (factorial variable) and distance on plant community 

composition. Distance was treated as a factor to enable a characterization of the plots at 

different distance classes. Prior to analyses, the community data matrix was Hellinger-

transformed, thereby giving lower weight to rare species (Legendre and Gallagher 2001). We 

used a permutation test (function permutest, ‘vegan’ package (Oksanen et al., 2013)) with 999 

permutations to asses statistical significance. 

 

Analysis of additional covariate effects. 

We additionally used structural equation modeling (SEM) to disentangle pathways between 

exogenous design variables (tree diversity level and distance from the forest edge), 

environmental variables (canopy openness, litter depth and soil pH) and herb layer plant 

species richness. 

The model was fitted using the SEM function (‘lavaan’ package (Rosseel 2012)). The model 

was built on the hypothesis that (i) light availability, litter depth and pH are key factors 

predicting plant diversity in forests (Barbier et al., 2008; Brunet et al., 2010; van Oijen et al., 

2005) and (ii) that these variables are influenced by both or at least one of the two design 

variables. Prior to model fitting, all variables were recoded to a common scale (range ~0–

100). Distance from the forest edge was log-transformed. We used maximum likelihood 

estimation with robust standard errors and a Satorra–Bentler-scaled test statistic (estimator = 

Maximum Likelihood Estimation: ‘MLM’). Model fit was assessed based on χ2 values and 

associated P values, Root Mean Square Error of Approximation (RMSEA), Standardized Root 

Mean Square Residual (SRMR) and Confirmatory Fit Index (CFI of the model). 
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Results 

Overall characteristics of the forest stands 

Tree species richness in the plots ranged from one (only F. sylvatica) to nine. Shannon 

diversity (H′) ranged from 0 to 1.81 and the percentage of beech based on relative basal area 

ranged from 0 to 100%. Forest stands poor in tree species were strongly dominated by F. 

sylvatica (% beech c. 83.5, H′ trees c. 0.45), whereas in forest stands with a high tree diversity 

(% beech c. 26.5, H′ trees c. 1.32), several other deciduous tree species occurred 

(Supplementary Table S2). Additional abundant tree species were Quercus robur L., Quercus 

petraea Liebl., Tilia sp., Acer campestre L., Acer platanoides L., Acer pseudoplatanus L., F. 

excelsior and Carpinus betulus L. Less abundant were Prunus avium L., Betula pendula Roth, 

Populus tremula L., Ulmus glabra Huds., Salix caprea L. and Sorbus torminalis (L.). Tilia 

cordata Mill. and T. platyphyllos Scop. could not be reliably separated in the field and were 

thus only determined to genus level. 

 

Herb layer characteristics 

Totally, 124 plant species from 96 genera were recorded. They comprised 94 forb species (34 

forest specialist species, 42 generalists, 7 edge species and 10 open land preferring species, 1 

not specified), 15 graminoid species (10 forest specialists, 4 generalists, 1 not specified), 15 

shrub species (3 forest specialists, 10 generalists, 2 not specified). Species number varied 

between 2 and 49 species per plot. In total, 88 species were found in the beech-dominated 

forest stands, whereas 109 species were found in multispecies forest stands. 

The five most frequently occurring species on the plots were Anemone nemorosa L. (on 96% 

of plots), Ranunculus ficaria agg. (74%), Hordelymus europaeus (L.) Jessen ex Harz (64%), 

Viola reichenbachiana Boreau (63%) and Stellaria holostea L. (55%) (for complete species 

list, see Supplementary Table S3). 

 

Plant species richness 

Plant species richness of the herb layer was significantly affected by an interaction between 

tree diversity level and distance from the forest edge (Fig. 1, Table 1). In beech-dominated 

forest stands, species richness of the herb layer decreased by ca. 60% with increasing distance 

from the forest edge. 85% of the total decrease (13 species lost) occurred within the first 80 m 

from the forest edge. However, no edge effect was detected in stands rich in tree species—

herb species richness remained almost constant with increasing distance from the edge. 
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Table 1 Results of linear mixed effects model testing the effects of tree diversity level and distance from the 

forest edge on species richness of herb layer plants. Plant species richness was power-transformed (x^0.25). 

Distance was log-transformed. All variables included in the minimal adequate model are shown. DF = degrees of 

freedom. Bold characters depict P-values < 0.05.  

 Explanatory Estimate SE DF t P 

Plant species richness Intercept 2.16 0.08 66 25.45 <0.001 

 distance -0.07 0.02 66 -3.44 0.001 

 tree diversity level -0.04 0.12 10 -0.36 0.726 

 distance x tree diversity level 0.06 0.03 66 2.14 0.036 

Abbreviations: distance = distance from forest edge (m) 

 

 

 

 

 

Plant community structure 

The proportion of the forest specialization groups was significantly influenced by both tree 

diversity level and distance from the forest edge (Fig. 2, Table 2). The proportion of forest 

specialist species such as Anemone ranunculoides and Galium odoratum increased with 

increasing distance from the forest edge. At the same time, the proportion of generalists (e.g. 

Fragaria vesca and Lilium martagon) decreased. The strongest changes were observed within 

the first 80 m from the forest edge. The proportion of forest specialist species was higher 

beech-dominated compared multispecies forest stands, whereas the proportion of generalist 

species was reduced. So, the difference between forest specialists and generalists strongly 

decreased with increasing tree diversity. 

 

Figure 1 Interaction plot showing the 

relationship of herb layer plant species 

richness and distance from the forest edge 

(m) depending on tree diversity level. Lines 

show predictions from the lme model 

(Table 1). Plant species richness and 

distance from forest edge (m) were back-

transformed for graphical presentation. 
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Table 2 Result of sequential likelihood ratio tests of multinomial models testing the effect of distance from the 

forest edge and tree diversity level on the proportion of species of four different forest specialization groups. 

Distance was log-transformed. Resid. DF = Residual DF, Resid. Dev. = Residual deviance, LR stat. = Likelihood 

ratio statistic (difference of residual deviance). Bold characters depict P-values < 0.05. 

No. Explanatory Resid. DF Resid. Dev Test DF LR stat. P 

1 1 237 2583.99  - NA NA NA 

2 distance 234 2554.83 1 vs 2 3 29.16 <0.001 

3 distance + tree diversity level 231 2534.20 2 vs 3 3 20.63 <0.001 

Abbreviations: distance = distance from forest edge (m) 

 

In beech-dominated forest stands, forest specialists dominated the plant community from the 

edge on, whereas in multispecies forest stands they only became dominant with increasing 

distance from the edge. 

The proportion of edge and open land species was very low compared with forest specialist 

and generalist species. Their proportion was highest in multispecies forest stands and within 

the first 32 m from the edge. Actual species numbers of the four forest specialization groups 

at the forest edge and in the forest interior are shown in Supplementary Table S4. 

 

 

Plant community composition 

The partial RDAs (Fig. 3, Table 3) showed that tree diversity level and distance from the 

forest edge had a significant impact on the community composition of herb layer plants both 

Figure 2 Proportional response of plant species belonging to four different forest specialization groups 

on distance from the forest edge (%) depending on tree diversity level. Lines show predictions from 

minimal adequate multinomial models (Table 2), but distance from forest edge (m) was back-

transformed for graphical presentation. 
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in spring and summer. No interaction could be detected. Variability in community 

composition was higher in multispecies forest stands and on plots closer to the forest edge 

(within the first 32–80 m). Species composition beyond 80 m distance became more and more 

distinct with increasing distance from the forest edge. 

 

 

 

 

Figure 3 RDA ordination plots showing the effect of tree diversity level and distance from the forest edge (m) 

on plant species composition in spring and summer with minimum convex polygons: (a) tree diversity effect in 

spring (grey circles: multispecies forest stands, black circles: beech-dominated forest stands), (b) distance effect 

in spring, (c) tree diversity effect in summer (grey circles: multispecies forest stands, black circles: beech-

dominated forest stands), (d) distance effect in summer (Table 3). Larger minimal convex polygons indicate a 

larger variability in community composition among plots. Note that the axes of the subplots originate from 

different models and are therefore not the same. 



CHAPTER 2 

- 35 - 

Table 3 Results of the RDA analyses testing the influence of tree diversity level and distance from the forest 

edge on the plant community composition in spring and summer. Bold characters depict P-values < 0.05. 

    % variation F P 

Partial RDA spring tree diversity level 8.0 5.38 0.005 

 

distance 3.0 1.99 0.02 

Partial RDA summer tree diversity level 8.4 4.54 0.005 

  distance 2.9 1.55 0.0499 

Abbreviations: distance = distance from forest edge (m) 

 

 

Additional covariate effects 

The result of the SEM showed that the a priori hypothesis corresponded well with the 

observed covariance matrix (÷2 = 1.395; P = 0.693; degrees of freedom = 3; RMSEA = 0.000; 

SRMR = 0.016; CFI = 1.000, detailed statistical output given in Supplementary Table S5). 

Increased tree diversity increased soil pH and reduced litter depth, whereas canopy openness 

was only weakly affected. The pH decreased with distance from the forest edge and canopy 

openness was slightly reduced. Increased canopy openness and pH led to reduced litter depth. 

Increasing litter depth strongly reduced plant species richness, whereas canopy openness had 

no and pH only a weak positive effect (Fig. 4). 
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Figure 4 structural equation model showing the effects of tree diversity level, distance from the forest 

edge and other environmental variables on the plant species richness of the herb layer (χ2 = 1.395; P = 

0.693). Reference level for tree diversity level was ‘beech-dominated’. Error terms are indicated by small 

grey errors. Numbers next to errors are standardized path coefficients. Blue arrows indicate a positive (+), 

orange arrows a negative (−) relationship. Arrow width shows effect strength. Error terms were omitted 

for clarity. Percentages are r2 values. See Supplementary Table S5 for detailed results. 
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Discussion 

Covering the whole forest area of the National Park, our study indicates that plant species 

richness of the herb stratum was affected by an interaction between edge–center transition and 

tree species composition. The proportion of forest specialists increased while the proportion 

of generalist decreased with distance from the edge in both beech-dominated and multispecies 

forest stands. In multispecies stands, the proportion of generalist, edge and open land species 

was generally increased. The floristic composition was determined independently by tree 

diversity level and edge proximity. 

 

Effects of tree species composition 

In line with Mölder et al. (2008) and Vockenhuber et al. (2011), we found a positive 

relationship between tree and herb species diversity. Reduced beech dominance and increased 

tree diversity influenced the herb layer indirectly by reducing litter depth—the most important 

predictor of herb layer species richness in our study system. Thick mats of leaf litter have 

been shown to reduce the diversity of ground vegetation due to its function as mechanical 

barrier which many species are not able to overcome (Kostel-Hughes et al., 2005; Xiong and 

Nilsson 1997 and references therein). Forest specialist species may be better adapted to thick, 

acidic litter layers since beech-dominated forests exhibit the natural potential vegetation of 

most parts of Central Europe (BfN 2000). Therefore, higher tree species diversity in beech 

forests may create environmental conditions suitable for a broader range of species such as 

generalist, edge and open land species. Beech dominance played a major role in our study, 

while in other studies with different tree compositions, contradictory results from positive to 

no effect of overstory diversity on herb layer species richness have been found (as 

summarized in Ampoorter et al., 2014; Barbier et al., 2008; Both et al., 2011). 

Light availability did not influence plant species richness and was only weakly affected by 

tree species composition. This can be the case when a forests overall light regime is rather 

dark like it is typically the case in Germany’s unmanaged forests. Under these conditions, soil 

parameters might gain importance (Schmidt et al., 2002). When light availability is higher, 

like in managed forests, the amount of light may become the decisive driver of herb species 

richness (Mölder et al., 2014). 

Furthermore, the mix of many different tree species may have created a pattern of more 

heterogeneous environmental conditions compared with overall monotonous conditions in 

beech-dominated forest stands. According to the ‘environmental heterogeneity hypothesis’ 

(Huston 1994), this promotes plant species richness because here the individual habitat 
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requirements of more herb layer species are met. Furthermore, this explains the higher 

variability within the community composition of multispecies forest stands. 

 

Edge effects 

The proportion of open land, edge and generalist species and the variability within the 

community composition increased with increasing edge proximity while the proportion of 

forest specialist species declined. Honnay et al. (2002) observed a similar pattern. Changes in 

environmental conditions towards the edge such as reduced litter depth, increased pH and 

more light availability might have been the reason for this (Matlack 1994; Murcia 1995), 

since these factors are well known to increase overall herb layer species richness (Barbier et 

al., 2008; Brunet et al., 2010; van Oijen et al., 2005) and enhance plant invasion into forests 

(Honnay et al., 2002). Similar findings have been attributed to the drift of agrochemicals, 

higher input of base cations with throughfall deposition, higher decomposition rates of leaf 

litter, higher wind exposure and leaf litter originating from fewer trees at edges (Wirth et al., 

2008). Overall, conditions at the forest edge are usually more heterogeneous thanin forest 

interiors (Ewers & Didham 2006; Marchand & Houle 2006). In sum, these factors might have 

increased the range and proportion species which are not explicitly adapted to forest interior 

conditions (Schmidt 2011). 

In both diversity levels, the strongest changes in the proportion of forest specialization groups 

were observed within the first 80 m from the forest edge, whereas changes were in total 

observed up to a distance of 500 m from the forest edge. This is in line with recent studies 

showing long distance edge influences on forest herb layer vegetation (Hofmeister et al., 

2013; Pellissier et al., 2013). The same pattern was observed for the community composition, 

where a high variability occurs up to a distance of 80 m. Beyond that point, species 

composition becomes increasingly distinct indicating more stable environmental conditions 

within the forest interior in both tree diversity levels. In contrast, (Fraver 1994; Matlack 1994; 

Honnay et al., 2002) observed changes in community composition only up to a maximum 

distance of 23 m from the edge. Forest edges in this study were characterized by shrub belts 

(closed edges) potentially diminishing the strength of edge effects (Didham & Lawton 1999). 

Therefore, patterns found here may be more pronounced in forests with open edges. 

 

Interacting effects of tree species composition and edge proximity 

Species responses to habitat edges can be positive, negative or neutral, often mediated by 

changes of environmental conditions (Murcia 1995; Ries et al., 2004). In the present study, 
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the edge response of the herb species richness was dependent on tree diversity level (positive 

in beech-dominated and neutral in multispecies stands). As discussed above, forest edges are 

overall heterogeneous environments suitable for a broad range of species (Ewers & Didham 

2006; Murcia 1995). Beech-dominated forests were characterized by overall monotonous 

conditions, a deep litter layer and low soil pH leading to a high fraction of forest specialist 

species. In contrast, multispecies forest stands were more heterogeneous with a thin litter 

layer and higher soil pH promoting a higher diversity of herb species. Therefore, we deduce 

our finding to a stronger environmental contrast between forest edge and center in beech-

dominated forest than multispecies forest stands. 

 

Observational versus experimental studies 

In this study, we cannot completely separate tree diversity effects from effects of altered 

beech dominance (Baeten et al.,, 2013; Nadrowski et al.,, 2010). This problem could be 

avoided in experimentally planted forest stands (Bruelheide et al., 2014; Scherer-Lorenzen 

2014). However, most synthetic forest stands containing more than two-species mixtures have 

only been established during the last 20 years and differ from near-natural mature forests in 

many respects (Baeten et al., 2013; Leuschner et al., 2009). This makes drawing direct 

conclusions to ‘real world’ forests difficult. Therefore, at present, it is reasonable to take 

advantage of given natural tree diversity gradients in mature forests, that provide comparable 

stand conditions as it is the case in the Hainich National Park (Leuschner et al., 2009). 

Insights from both experimental and observational studies should be compared when 

assessing the functional role of tree species diversity in forests (Baeten et al., 2013; Leuschner 

et al., 2009). 

 

Conclusion 

Our results demonstrate that the edge response of herb layer plant species richness in forests 

can be shaped by tree species composition. The differences between forest interior and forest 

edge in environmental traits and habitat heterogeneity are greater in beech-dominated forests, 

presumably causing the greater edge–center differences. Multispecies forest stands did not 

only increase species richness in general but also enhanced the variability in community 

composition of the herb layer and the proportion of species not explicitly adapted to inner 

forest conditions. SEM revealed that tree diversity level determined herb species richness 

primarily via changes of the litter depth. 
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Pathways might be different in managed forests (Lange et al., 2014; Mölder et al., 2014). 

Therefore, future studies should be conducted both in managed and abandoned forests 

incorporating a larger range of forests with respect to tree species 

composition. 
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Appendix 

 

Appendix A 

 

Figure S1 Location of plots along transects 
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Appendix B 

Description of fish eye photograph processing 

Canopy openness was assessed using fish eye photographs taken with a Nikon Coolpix 8400 

camera plus Nikon FC-E9 fisheye converter and UR-E16 adapter ring (Nikon Corporation, 

Chiyoda, Tokyo, Japan). Photographs were processed using Adobe Photoshop CS6 (Adobe 

Systems Inc., San Jose, California, USA) in the following way: 1. The image background was 

converted into an editable layer, 2. the ellipse selection tool was used to select an exactly 

circular area, excluding the black margin contained in each photograph, 3. in the layers menu, 

"layer mask" was selected and then "reveal selection" chosen; the formerly black area was 

thus removed and replaced by a transparent background. We then used Adobe Photoshop 

Lightroom 5.2 (Adobe Systems Inc.) and performed the following adjustments to all 

photographs: Contrast was set to -100, highlights were set to -73, whites were set to +7, black 

was set to -100 and clarity was set to 66. In the tone curve, lights were set to +96. SideLook 

1.1.01 was then used to (automatically) estimate the optimal threshold for converting 

photographs into black-and-white pictures (Nobis and Hunziker 2005). Canopy openness was 

then calculated using Gap Light Analyzer 2.0 (Cary Institute of Ecosystem Studies, 

Millbrook, New York, USA). 
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Appendix C 

Table S1: Spearman’s rank correlation coefficients (rho) of variables describing tree species composition. All 

correlations were highly significant (P < 0.001)).  

  
Tree diversity 

level 
Tree SR H' tree 

Tree SR 0.61  - 
 

H' tree 0.69 0.87  - 

% beech -0.77 -0.80 -0.83 

Tree diversity level: factorial explanatory variable (beech-dominated vs. multispecies 

forest stands), H' tree: Shannon-Wiener diversity index (H’) based on basal area, % 

beech (based on basal area) 
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Appendix D 

Table S2 Summary statistics of variables describing tree diversity in low and high tree diversity stands 

calculated from a tree species survey on 20 x 40 m relevés around the plots. Values are means ± standard error 

(SE). H’ = Shannon-Wiener diversity index based on basal area (Magurran, 2004). 

  beech-dominated multispecies stands 

Tree SR 3.11 ± 0.37 6.32 ± 0.3 

% beech 83.49 ± 3.81 26.5 ± 4.03 

H‘ tree 0.45 ± 0.08 1.32 ± 0.05 

Tree diversity level: factorial explanatory variable (beech-

dominated vs. multispecies forest stands), H' tree: Shannon-Wiener 

diversity index (H’) based on basal area, % beech (based on basal 

area) 
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Appendix E 

Table S3 List of plant species recorded (Classification of forest specialization types according to Schmidt et al. 

(2011): 1.1: mainly closed forests, 1.2 mainly forest edge or clearings, 2.1 forests as well as open land, 2.2 partly 

in forests, but mainly open land, O: openland, B: tree, K: herb, S: shrub. Nomenclature of plants following 

Wisskirchen and Haeupler (1998). 

Species 

Functional 

group 

Forest 

specialisation 

Mean cover (%) 

spring 

Mean cover (%) 

summer 

Acer campestre tree B 2.1 0.080 0.148 

Acer platanoides tree B 2.1 0.255 1.451 

Acer pseudoplatanus tree B 2.1 1.301 2.647 

Aconitum lycoctonum forb K 1.1 0.002 0.017 

Actea spicata forb K 1.1 0.013 0.038 

Aegopodium podagraria forb K 2.1 1.130 1.555 

Ajuga reptans forb K 2.1 0.008 0.019 

Alliaria petiolata forb K 2.1 0.663 0.055 

Allium olacerum forb K 2.2 0.006  - 

Allium ursinum forb K 1.1 5.737  - 

Allium vineale forb K 2.2 0.008  - 

Anemone nemorosa forb K 2.1 24.788 0.014 

Anemone ranunculoides forb K 1.1 0.396  - 

Angelica sylvestris forb K 2.1 0.004 0.015 

Anthriscus sylvestris forb K 2.2 0.004 0.017 

Arctium nemorosum forb K 1.2 0.090 0.216 

Arum maculatum forb K 1.1 0.251 0.007 

Asarum europaeum forb K 1.1 0.193 0.261 

Brachypodium pinnatum graminoid K 2.1  - 0.001 

Brachypodium sylvaticum graminoid K 1.1 0.138 0.533 

Bromus ramosus graminoid K 1.1 0.002 0.044 

Calamagrostis epigejos graminoid K 2.1  - 0.010 

Campanula patula forb K O 0.004 0.006 

Campanula persicifolia forb K 1.2 0.015 0.019 

Campanula rapunculoides forb K 2.1 0.021 0.006 

Campanula trachelium forb K 1.1 0.006 0.019 

Cardamine bulbifera forb K 1.1 0.383 0.004 

Cardamine pratensis forb K 2.1 0.002 0.003 

Carex remota graminoid K 1.1  - 0.001 

Carex sp. graminoid K  - 0.002  - 

Carex sylvatica graminoid K 1.1 0.284 0.401 

Carpinus betulus tree B 1.1 0.323 0.460 

Chaerophyllum temulum forb K 1.2 0.002 0.010 

Circaea lutetiana forb K 1.1  - 0.152 

Colchicum autumnale forb K 2.1 0.004 0.002 

Convallaria majalis forb K 2.1 0.083 0.330 

Cornus sanguinea shrub S 2.1 0.018 0.085 

Corydalis cava forb K 1.1 0.383  - 

Corylus avellana shrub S 2.1  - 0.004 

Crataegus laevigata shrub S 2.1 0.260 0.318 

Dactylis polygama graminoid K 1.1 0.525 0.563 

Dactylorhiza maculata forb K 2.1 0.002 0.002 

Daphne mezereum shrub S 1.1 0.004 0.015 

Deschampsia cespitosa graminoid K 2.1 0.190 0.182 

Elymus caninus graminoid K 1.1 0.033 0.044 

Epilobium montanum forb K 2.1  - 0.002 

Epipactis helleborine forb K 1.1  - 0.004 

Epipactis purpurata  forb K 1.1  - 0.002 

Euonymus europaea shrub S 2.1 0.180 0.195 

Fagus sylvatica tree B 1.1 3.546 4.451 

Festuca gigantea graminoid K 1.1  - 0.067 

Filipendula ulmaria forb K 2.1  - 0.039 

Fragaria vesca forb K 2.1 0.036 0.074 

Fragaria viridis forb K 2.2 0.019 0.056 

Fraxinus excelsior tree B 2.1 0.544 1.535 

Gagea lutea forb K 1.1 0.045  - 

Galeopsis tetrahit forb K 2.1  - 0.019 

Galium aparine forb K 2.1 0.010 0.028 

Galium odoratum forb K 1.1 0.071 0.077 

Galium sylvaticum forb K 1.1 0.098 0.197 
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Geranium robertianum forb K 2.1 0.050 0.104 

Geranium sylvaticum forb K 2.1 0.002 0.004 

Geum urbanum forb K 2.1 0.313 0.549 

Hedera helix shrub S 1.1 0.289 0.372 

Hepatica nobilis forb K 1.1 0.139 0.153 

Heracleum sphondylium forb K 2.2 0.008 0.007 

Hieracium murorum forb K 2.1 0.000 0.008 

Hordelymus europaeus graminoid K 1.1 0.405 0.619 

Hypericum hirsutum forb K 1.2 0.014 0.014 

Hypericum perforatum forb K 2.2 0.002  - 

Impatiens parviflora forb K 1.1  - 0.030 

Lamium album forb K 2.2 0.002 0.010 

Lamium galeobdolon forb K 1.1 0.551 0.727 

Lamium maculatum forb K 2.1 0.048 0.030 

Lapsana communis forb K 2.1  - 0.003 

Lathraea squamaria forb K 1.1 0.008  - 

Lathyrus vernus forb K 1.1 0.081 0.146 

Leucojum vernum forb K 2.1 0.415  - 

Lilium martagon forb K 2.1 0.032 0.033 

Listera ovata forb K 2.1 0.044 0.004 

Lonicera xylosteum shrub S 1.1 0.131 0.177 

Luzula sylvatica forb K 2.1 0.003 0.010 

Lysimachia nummularia forb K 2.1  - 0.010 

Maianthemum bifolium forb K 1.1 0.004 0.012 

Melampyrum nemorosum forb K 1.2  - 0.003 

Melica uniflora graminoid K 1.1 0.129 0.364 

Mercurialis perennis forb K 1.1 1.790 2.161 

Milium effusum graminoid K 1.1 0.140 0.253 

Mycelis muralis forb K 2.1 0.004 0.011 

Myosotis sp. forb K  - 0.002 0.010 

Neottia nidus-avis forb K 1.1  - 0.006 

Oxalis acetosella forb K 1.1 0.238 0.605 

Paris quadrifolia forb K 1.1 0.021 0.040 

Phyteuma spicatum forb K 2.1 0.044 0.019 

Picea sp. tree B  - 0.002 0.002 

Pimpinella major forb K 2.1 0.004 0.004 

Pimpinella saxifraga forb K 2.1 0.004 0.004 

Poa nemoralis graminoid K 2.1 0.077 0.068 

Polygonatum multiflorum forb K 1.1 0.197 0.273 

Polygonatum verticillatum forb K 2.1  - 0.069 

Populus sp. tree B 2.1  - 0.006 

Primula elatior forb K 2.1 0.240 0.271 

Primula veris forb K 2.1 0.016 0.016 

Prunella vulgaris forb K 2.2  - 0.002 

Prunus avium tree B 2.1 0.154 0.221 

Prunus spinosa shrub S 2.1 0.035 0.167 

Pulmonaria obscura forb K 1.1 0.091 0.158 

Quercus sp. tree B 2.1  - 0.026 

Ranunculus auricomus forb K 2.1 0.551 0.009 

Ranunculus ficaria forb K 2.1 3.677 0.006 

Ranunculus lanuginosus forb K 1.1 0.050 0.071 

Ribes alpinum shrub S 2.1 0.174 0.154 

Ribes uva-crispa shrub S 2.1 0.021  - 

Rosa sp. shrub S  - 0.033 0.049 

Rubus idaeus shrub S 2.1 0.005 0.119 

Rubus sp. shrub S  - 0.035 0.077 

Rumex sanguineus forb K 1.1 0.008 0.006 

Sambucus nigra shrub S 2.1 0.116 0.153 

Sanicula europaea  forb K 1.1 0.040 0.083 

Senecio ovatus forb K 1.2 0.117 0.340 

Sorbus aucuparia forb K 2.1 0.007 0.003 

Sorbus torminalis tree B 2.1  - 0.006 

Stachys sylvatica forb K 1.1 0.022 0.127 

Stellaria holostea forb K 1.1 1.416 1.674 

Stellaria media agg. forb K 2.2 0.001 0.010 

Taraxacum sect. Ruderalia forb K 2.1 0.038 0.016 

Tilia sp. tree B 1.1 0.031 0.074 

Torilis japonica forb K 1.2  - 0.004 

Ulmus glabra tree B 1.1 0.002 0.014 
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Urtica dioica forb K 2.1 0.115 0.178 

Veronica chamaedrys forb K 2.1  - 0.001 

Veronica montana forb K 1.1 0.002 0.004 

Viburnum opulus shrub S 2.1  - 0.041 

Vicia sepium forb K 2.1 0.028 0.043 

Viola hirta forb K 2.1 0.017 0.047 

Viola odorata forb K 2.1 0.040  - 

Viola reichenbachiana forb K 1.1 0.275 0.362 
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Appendix F 

Table S4 Actual species numbers of the four forest specialization groups at forest edge (0 m) and in the forest 

interior (500 m) depended on the tree diversity level (values are mean values ± standard error). 

 

  

  low tree diversity   high tree diversity 

  Forest edge Forest interior   Forest edge Forest interior 

Forest specialists  10.5 (± 1.52)   8.25 (± 1.6)  

 

 9.83 (± 2.71)  13.25 (± 1.11) 

Generalists  9 (± 1.48)   4 (± 0.71)  

 

 12.5 (± 2.96)  7 (± 1.47) 

Edge species  1 (± 0.26)   0 (± 0.00)  

 

 1.83 (± 0.87)  1 (± 0.00) 

Open land species  0.83 (± 0.48)   0 (± 0.00)     1 (± 0.45)  0.5 (± 0.5)  
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Appendix G 

Table S5 Results of the structural equation model (Fig. 4). 

lhs op rhs Estimate SE Z P Std.coef 

Canopy openness ~ Tree diversity level 3,541 2,300 1,540 0,124 0,165 

Canopy openness ~ logdist -0,265 0,099 -2,666 0,008 -0,264 

Litter depth ~ Tree diversity level -14,370 3,534 -4,066 0,000 -0,374 

Litter depth ~ logdist 0,127 0,182 0,699 0,485 0,071 

Litter depth ~ Canopy openness -0,487 0,189 -2,576 0,010 -0,272 

Litter depth ~ pH -0,349 0,152 -2,296 0,022 -0,236 

pH ~ Tree diversity level 10,368 2,430 4,267 0,000 0,399 

pH ~ logdist -0,469 0,114 -4,126 0,000 -0,388 

Plant SR ~ Litter depth -0,449 0,123 -3,639 0,000 -0,430 

Plant SR ~ pH 0,220 0,155 1,422 0,155 0,143 

Plant SR ~ Canopy openness 0,041 0,167 0,246 0,806 0,022 

        Residual Covariances: 

     Canopy openness ~~ Canopy openness 104,451 19,300 5,412 0,000 0,903 

Litter depth ~~ Litter depth 212,888 35,450 6,005 0,000 0,576 

pH ~~ pH 116,630 17,577 6,635 0,000 0,691 

Plant SR ~~ Plant SR 294,015 42,579 6,905 0,000 0,730 

Tree diversity level ~~ Tree diversity level 0,250  -  -  -  - 

Tree diversity level ~~ logdist 0,000  -  -  -  - 

logdist ~~ logdist 115,344  -  -  -  - 

        Intercepts 

       Canopy openness ~1 

 

55,863 4,974 11,230 0,000 5,194 

Litter depth ~1 

 

86,065 17,419 4,941 0,000 4,479 

pH ~1 

 

76,753 5,145 14,918 0,000 5,906 

Plant SR ~1 

 

38,961 13,563 2,873 0,004 1,941 

Tree diversity level ~1 

 

0,500  -  -  -  - 

logdist ~1   41,438  -  -  -  - 
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Abstract 

Habitat fragmentation is among the major reasons for the worldwide biodiversity loss. The 

extent to which edge effects penetrate into forest fragments may depend on habitat structure. 

Here, we test for the first time the hypothesis that tree species richness can mitigate edge 

responses of arthropods.  

We established 12 transects in Germany’s largest deciduous forest extending from the edge 

up to 500 m into the forest interior (six in low and six in high tree diversity stands) and 

sampled ground-dwelling arthropods along each transect. 

No consistent pattern was found for the total species richness of carabids, staphylinids and 

spiders. However, the response of all taxa to edge and tree diversity depended on habitat 

affinity and body size. In the low tree diversity level the number of habitat generalists 

declined strongly from the edge towards the forest interior. This effect was mitigated by 

increased tree diversity (except for spiders). Small-sized habitat generalists in particular were 

promoted by increased tree diversity. Forest species richness did not respond explicitly to 

edge proximity or tree diversity and size class was not important. However, some forest 

species suffered, whereas others benefited from increased tree diversity. In contrast, species 

specific responses of habitat generalists to diverse forests were in general positively. 

We conclude that the role of forest edge effects can be modified by tree diversity and depends 

on species’ traits such as body size and habitat specialisation, which need to be taken into 

account to understand and qualify the conservation value of habitat fragments. 

 

Keywords 

carabids, deciduous forest, edge effect, spiders, staphylinids, body size 
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Introduction 

Edge effects are an important component of global forest fragmentation as influences from the 

matrix can substantially alter the characteristics of forest fragments. Thereby, forest edge 

zones are created with different conditions to the forest interior (Murcia, 1995). The 

occurrence of these forest edge zones can reduce the actual size of forest remnants, often to 

the detriment of forest specialist species (Bender et al., 1998; Tscharntke et al., 2012). 

Therefore, carrying out investigations about the impact of edge effects on species 

communities is an important issue in conservation biology. 

Species richness and diversity of secondary consumers are often highest at forest edges and 

decline towards the forests´ core due to changes in environmental conditions, such as 

temperature, light availability or humidity (Murcia, 1995; Jokimäki et al., 1998; Ries et al., 

2004). Thus, open-habitat, edge and generalist species are usually most abundant at forest 

edges (Molnár et al., 2001), whereas the species richness and abundance of forest species are 

more likely to be affected negatively or indifferent towards edge proximity. 

In the past years, many studies have been published on edge responses of ground-dwelling 

forest arthropods such as spiders, carabids and staphylinids (Buse & Good, 1993; Baldissera 

et al., 2004; Koivula et al., 2004; Gallé & Torma, 2009). The extent to which edge effects 

penetrate into the forest found in these studies ranges from several meters (Pohl et al., 2007; 

Noreika & Kotze, 2012) up to distances of more than 1 km (Ewers & Didham, 2008). 

However, edge effect studies on large spatial scales are still scarce. 

A habitat fragment’s three-dimensional architecture (mainly in the sense of plant structure) 

has been suggested as an important factor predicting the extent of edge effects (Cadenasso et 

al., 2003; Murcia, 1995; Ries et al., 2004), as it can affect factors such as light and wind 

penetration into a patch that consequently change abiotic factors such as temperature or 

humidity and biotic factors like understorey plant growth (Ries et al., 2004). Moreover, 

architectural patch contrasts (=quality contrast between two adjacent habitats or matrix and 

fragment) can determine the strength of edge responses (Cadenasso et al., 2003; Ries & Sisk, 

2004; Collinge, 2009; Noreika & Kotze, 2012) because species are more likely to penetrate 

from the matrix into fragments with a low patch contrast. 

Tree species diversity can be an important determinant of forest architectural complexity 

(Getzin et al., 2012; Seidel et al., 2013). Environmental and microclimatic conditions may be 

altered due to species specific differences in canopy cover, growth height, litter quality and 

timing of leaf budding (Barbier et al., 2008; Wulf & Naaf, 2009). In Central Europe, broad-

leaved forests poor in tree species are typically dominated by the common beech (Fagus 
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sylvatica L.) which has a dense, low light transmitting canopy that creates thick mats of acidic 

slowly decomposing leaf litter (Guckland et al., 2009; Jacob et al., 2010). Mixtures of 

different tree species can lead to higher light availability, reduced litter depth, increased herb 

diversity and higher environmental heterogeneity (Vockenhuber et al., 2011). The latter is a 

key factor for increased arthropod species richness, due to higher niche diversity and resource 

availability (Lange et al., 2014). These factors may contribute to lower patch contrasts 

between forest and surrounding grassland of forest stands rich in tree species compared with 

forest stands poor in tree species (= beech dominated) which should consequently lead to less 

strong edge responses. In particular, species that are not explicitly adapted to inner forest 

conditions (species predominantly occurring in open habitat or forest edges and habitat 

generalist species, hereafter referred to habitat generalists) may thus be enabled to permeate 

deeper into diverse forests. 

Body size is related to several life history traits such as metabolic rate, home range, 

generation time, or space use (Peters, 1986; Woodward et al., 2005). Smaller species have 

been shown to be more susceptible to changes in environmental conditions such as moisture 

or temperature (Janzen & Schoener, 1968; Peters, 1986). According to Ribera et al. (2001) 

‘species in temporally stable, adverse, and spatially homogeneous environments have on 

average larger body sizes. As the opposite is likely to be the case in forest stands rich in tree 

species, we expect advantages for smaller species in those forest stands. This may apply in 

particular for small habitat generalists because the majority of these species are not explicitly 

adapted to forest conditions and thus may react especially sensitively to altered microclimatic 

parameters in forests. 

As study organisms we chose carabids, rove beetles and spiders as they constitute an integral 

part of the forest soil macrofauna and because they are considered as good indicators of 

environmental change (Ekschmitt et al., 1997; Rainio & Niemelä, 2003; Pohl et al., 2007). 

This study is the first to test potential interactions between tree diversity and edge effects and 

their impacts on ground-dwelling secondary consumers. Using a transect approach the study 

was conducted in Hainich National Park, Germany’s largest deciduous forest.  

The following main hypotheses were tested: 

1. Tree diversity: Increased tree diversity has a positive impact on the total species 

richness of ground-dwelling arthropods. Habitat generalists, especially small species, 

may increase in species richness due to changes in environmental conditions such as a 

more open canopy accompanied by increased tree diversity. No general trend is 

expected for forest species, but we expect differences in species level responses. 
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2. Edge effects: Arthropod total species richness is highest at the forest edge and declines 

nonlinearly towards the forest interior. This pattern is expected to be driven by habitat 

generalists, while the decline of small species might be stronger compared to large 

species. The number of forest species may increase with distance from the forest edge 

towards forest interior. 

3. Interrelations: Edge effects are stronger in beech dominated forests, because of a 

higher contrast in environmental conditions (and habitat heterogeneity) between forest 

edge and interior. Habitat generalists, especially small species, may show higher 

abundances and species richness in diverse forests, thus reducing the decline of total 

species richness from the forest edge into the forest interior.  

 

Material and Methods 

Study site 

The study was conducted in the Hainich National Park, which forms part of Germany’s 

largest connected deciduous forest. The study area is situated in the northwest of the Federal 

state of Thuringia in the centre of Germany (51° 5′ 0″ N, 10° 30′ 24″ E). 

Most of the national park´s area (75 km
2
) is covered by beech forest communities on 

calcareous soils. It used to be a military training area in the time of the German Democratic 

Republic (GDR), which allowed for a near-natural development of the forest for the last c. 50 

years. The national park´s core zone has been designated as a UNESCO World Heritage site 

(“Primeval Beech Forests of the Carpathians and the Ancient Beech Forests of Germany”) in 

2011. An outstanding characteristic of this area are forest stands differing in tree species 

richness, ranging from one species (Fagus sylvatica L.) to 14 deciduous tree species per 

hectare (Mölder et al., 2006). This makes it particularly suitable for the purpose of this study. 

See Mölder et al. (2006) for a detailed description of the study site. 

 

Site selection 

A transect survey was conducted with transects distributed over the whole forested area of the 

Hainich National Park. They extended from the forest edge up to 500 m into the forest 

interior.  

We selected a total pool of 23 forest stands from a map of forest communities provided by the 

national park administration. As tree diversity and percentage of beech where highly 

correlated (results not shown), transects with a proportion of beech < 75 % were defined as 

“high tree diversity level” and transects with a proportion of beech > 75 % as “low tree 
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diversity level”. From the original selection of 23 potential forest stands, we selected 12 

stands of defined species richness, comparable age class and low variability of tree diversity 

within each stand. Overall, we ended up with 12 transects (one for each forest stand) with a 

minimum distance of 750 m between transects (six in low, six in high tree diversity stands). 

Tree diversity and species richness were higher in high diversity forest stands compared with 

low diversity stands (Table 1). 

As we expected the strongest changes in species richness, abundance and community 

composition of the observed taxa to occur close to the edges (Didham & Lawton, 1999), we 

placed sampling plots at distances of 0, 4, 8, 32, 80, 200 and 500 m from the forest edge 

within each transect. Additionally, one plot was placed outside the shrub belt of the forest 

edge. However, the maximum distance of 500 m could not be reached on all transects, 

because tree species composition changed, stand age differed or the distance to the next edge 

was not large enough. Thus, four of the 12 transects only had a length of 200 m (two transects 

in each tree diversity level). This resulted in a total of 92 plots. The “0 m” point of each 

transect was set where the tree trunks began. 

The forest edges were characterised by dense shrub belts mainly consisting of blackthorn 

(Prunus spinosa L. s. str.), whitethorn (Crataegus laevigata (Poir.) DC.) and saplings of ash 

(Fraxinus excelsior L.). The whole forest area was surrounded by abandoned grassland of 

different successional stages. 

 

Sampling methods 

We sampled ground-dwelling invertebrates along all transects using funnel traps (Duelli et al., 

1999). Traps were sunk into PVC tubes (10 cm diameter) and filled with a saturated salt water 

solution and a detergent. Additionally, traps were equipped with a wire mesh (1 cm mesh 

size) inserted to prevent small mammals from falling into the traps. Each trap was covered 

with a plastic cover.  

At each plot, two traps were placed at a distance of 5 m from each other (parallel to the forest 

edge). Sampling was performed for a total period of two consecutive years in four sampling 

periods of two weeks each (late May, middle of July and early September 2011, middle of 

April 2012). Specimens caught were then transferred into ethanol (70 % vol.). Only ground 

beetles, rove beetles and spiders were selected as these were the main arthropod groups 

sampled. Only adult specimens were determined to species level and used for analysis. 
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Traits 

Ground beetles, rove beetles and spiders were divided into four functional groups. First, they 

were classified according to habitat preference: (1) forest species, i.e. species predominantly 

occurring in forests; (2) habitat generalists, i.e. species occurring both in forests and 

elsewhere. We joined open habitat and habitat generalist species (i.e. all species not 

predominantly occurring in forests) in the group “habitat generalists” since the actual habitat 

generalists constituted the largest fraction of this group and all species (including the open-

habitat species) were captured either inside the forest or directly at the forest edge. The 

classification was based on published literature (Appendix S1). 

Secondly, all species within each habitat preference group of a given taxon were further 

subdivided into small and large bodied species. This resulted in four categories (“forest 

small”, “forest large”, “habitat generalist small”, “habitat generalist large”). To classify 

organisms into body size classes, the mean body length of each species was determined based 

on published literature (Appendix S1). In case of sexual dimorphism, the mean body length of 

both sexes was used. For each taxon and habitat preference group (e. g. spiders, forest 

species) we determined the specific median body size. Species larger than the median were 

defined as large, whereas species smaller than the median were defined as small. 

 

Vegetation measurements 

Overall plant species richness and vegetation cover of the herb layer was recorded on six 

botanical subplots of each of the plots inside the forest, except for the plot outside the forest. 

For a detailed description of the survey procedures see Appendix S2. 

 

Tree layer measurements 

In an area of 20 x 40 m, we conducted tree surveys on each of the 80 plots that were located 

inside the forest, except for the plots of 0, 4 and 8 m where only one tree relevé was placed. 

This yielded a total number of 56 tree relevés, where all trees (DBH ≥ 10 cm) were recorded. 

Tree species richness and diversity on the plots was estimated using the number of tree 

species as well as the Shannon-Wiener diversity index (H’) based on basal area as it includes 

both species richness and abundances of species (Magurran, 2004) (Tree species richness: 1 - 

9, H’: 0 - 1.81 % beech (basal area): 0 - 100 %).  

The most abundant tree species was the common beech (Fagus sylvatica L.), which strongly 

dominated forest stands poor in tree species. Other abundant tree species on diverse plots 

were Quercus robur L., Quercus petrea LIEBL., Tilia sp., Acer campestre L., Acer platanoides 
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L., Acer pseudoplatanus L., Fraxinus excelsior and Carpinus betulus L.. Less abundant were 

Prunus avium L., Betula pendula ROTH, Populus tremula L., Ulmus glabra HUDS., Salix 

caprea L. and Sorbus torminalis (L.). Lime was only determined to genus level as Tilia 

cordata MILL. and T. platyphyllos SCOP. could not be reliably separated in the field.  

 

Measurement of environmental variables 

Canopy openness was used as an indirect measure of light availability on the plots inside the 

forest. It was calculated using fish-eye photographs (see Appendix S3 for details).   

Soil samples from the first upper 30 cm of the mineral soil were taken using a soil corer 

(Pürckhauer) in order to analyse pH. 12 subsamples were taken in a grid of 3 x 4 m around the 

plot centre at the distances 0, 32, 80, 200 and 500 m. Subsamples were joined in one sample, 

dried at 40 °C and sieved (2 mm mesh size). The pH was electronically measured (suspension 

of 10 g soil and 25 ml 0.01 mol/l CaCl2).  

In addition, litter layer thickness (measured from the estimated mean top of the litter layer to 

the boundary of the humus layer) was recorded on all plots (except of the plot outside the 

shrub belt) using a tape measure. Litter depth was measured in the centre of each of the six 

botanical subplots. The mean of the six subplots was calculated for further analyses. 

The total volume of lying and standing dead wood with a length > 1 m was recorded on every 

tree relevé plot. Threshold diameter for dead wood pieces was 7 cm, if the thicker end lay 

inside of the plot. Dead wood volume was then calculated following Meyer (1999).  

Based on the method of the Second Swiss National Forest Inventory (Brassel & Lischke, 

2001) adjusted to the tree relevé plot size, we assessed the structural diversity of the plots. 

The method consisted of the assessment of several parameters such as stage of development, 

stand structure, coverage of shrub layer and presence of standing dead trees. Each parameter 

received a certain value from which the structural diversity could be calculated. Using the 

method of Brassel & Lischke (2001), theoretical values for structural diversity can range from 

3 (low diversity) to 56 (high diversity). Actual values of this survey ranged from 11 to 31. 

 

Since a part of the pitfall traps was destroyed by wild boars (Sus scrofa L.), we excluded the 

sampling periods of July and September from further analyses. From the remaining sampling 

periods, only one of the two traps per plot and sampling period was selected. In case one trap 

was destroyed and one was intact, the undamaged one was chosen. In case both traps were 

intact we chose the sample containing more individuals. For each taxon, the mean species 
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abundances calculated from the two sampling occasions. Values were then rounded (values < 

1 were rounded to 1). 

 

Statistical analyses 

Spearman’s rank correlation showed that the tree diversity describing parameters tree 

diversity level, tree species richness and H’ trees and proportion of beech (based on relative 

basal area) were highly correlated. Therefore, only tree diversity level was included as 

factorial explanatory variable in the following statistical models. All analyses were conducted 

using R, version 3.0.2 (R Development Core Team 2013).  

The main models did not include environmental parameters as explanatory variables because 

they were not independent of the design variables “tree diversity level” and “distance from 

forest edge” (Table 1). Additional effects of environmental parameters on the three taxa were 

analysed with Spearman’s rank correlation tests. 

Total species richness of each taxon was analysed using generalized linear mixed models fit 

by penalized quasi-likelihood (glmmPQL, “nlme” package (Venables & Ripley, 2002)) and 

poisson (carabids) or negative binomial errors (spiders, rove beetles). Explanatory variables 

were tree diversity level and distance from forest edge (distance). Distance was log-

transformed to account for increasing distance between plots within one transect. Prior to 

running the glmmPQL’s we fitted four generalized linear models (without random effects) 

either with poisson or negative binomial model errors and either untransformed or log-

transformed distance. Then Akaike´s Information Criterion, corrected for small sample sizes 

(AICc), was calculated for each of the models (AICc, “MuMIn” package (Burnham & 

Anderson, 2002)). The model with the lowest AICc value was considered the best maximal 

model. The best maximal model was then re-fitted using glmmPQL with transect as random 

factor to account for unmeasured transect-specific environmental effects. In addition, we 

weighted data points according to the number of sampling periods from which each sample 

mean had originated (…,weights=NoOfSamples…). We started off with the full models 

containing interactions between explanatory variables. Model simplification was conducted 

manually by removing non-significant effects starting with the interactions. 

To test if habitat specialisation and body size class had an impact on the response of species 

richness on tree diversity level and distance from forest edge, we fitted an additional 

generalized linear mixed model separately for each taxon. This model contained “forest.size” 

(levels: forest species_large, forest species_small, habitat generalist_large, habitat 
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generalist_mall) as an additional explanatory variable and allowed for interactions between all 

three explanatory variables. The remaining procedure was the same as described above. 

Finally, we fitted multinomial models (multinom function, nnet library, (Ripley, 2013)) to 

assess the species-level responses of each taxon to tree diversity level and distance from the 

forest edge. As response variable we used a matrix containing the abundances of each species 

(including only species with a total abundance of > 10 individuals). No transformation of 

explanatory variables was performed as multinomial models are inherently nonlinear 

(Scherber et al., 2014). Models were automatically simplified using stepwise model selection 

based on AICc (stepAICc function, “MASS” package, corrected for small sample sizes by C. 

Scherber (2009, http://wwwuser.gwdg.de/~cscherb1/stepAICc.txt)). Multinomial models were 

fitted without random effects, as additional models (fit using the bayesx function in R, 

package “R2BayesX”) showed higher AIC values, indicating that model fits were not 

improved by the incorporation of random effects. 

 

Results 

In total we recorded 12298 specimens from 335 species. Ground beetles were the most 

abundant group (5481 individuals). 20 of 43 ground beetle species were forest species, 23 

were habitat generalists (all species that do not predominantly occur in forests). The most 

abundant species were Pterostichus oblongopunctatus F. (19.8 %), Pterostichus burmeisteri 

HEER (17.57 %) and Abax parallelepipedus PILL. & MITTER. (15.14 %). Rove beetles 

comprised 3686 individuals from 94 species (25 forest species, 69 habitat generalists). The by 

far most dominant species was Philonthus decorus GRAV. (66.77 %), followed by Liogluta 

microptera THOMS. (4.94 %) and Aleochara ruficornis GRAV. (2.33 %). We found 3131 

spider specimens from 98 species (49 forest species, 45 habitat generalists). The most 

abundant species were Trochosa terricola THORELL (10.0 %), Inermocoelotes inermis L. 

KOCH (9.01 %) and Diplocephalus picinus BLACKWALL (7.7 %). 

 

Overall species richness 

Total species richness responded differently to edge proximity and tree diversity level, 

depending on taxon (Fig. 1, Table S1). Total species richness of ground beetles was not 

affected by any of the two design variables. Contrarily, total species richness of rove beetles 

was significantly influenced by an interaction between both factors. While species richness 

remained constant in the high diversity level with increasing distance from the forest edge, it 

rapidly declined in the low tree diversity level. 70 % of this decline was observed within a 
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distance 80 m from the edge.  Total species richness of rove beetles was higher in the forest 

interior of the high tree diversity level compared with the forest interior of the low tree 

diversity level. Spider total species richness significantly decreased with increasing distance 

from the forest edge (60 % of total decline within first 80 m), but was not affected by tree 

diversity.  

 

Response of small vs. large and forest vs. habitat generalist species 

When habitat specialisation categories and body size class (incorporated in the explanatory 

variable “forestsize”) were included into the models, all three taxa responded differently to 

edge proximity and tree diversity, depending on body size and habitat specialisation type. The 

two beetle taxa were significantly influenced by a three-way interaction of all explanatory 

variables, whereas spider species richness was influenced by two-way interactions between 

“forestsize” and tree diversity level as well as a two-way interaction between “forestsize” and 

distance from the forest edge (Fig. 2, Table S2).  

In general, forest species reacted slightly positively (carabids) or not at all (staphylinids and 

spiders) to increasing distance from the forest edge. Carabid forest species richness slightly 

increased in the high tree diversity level, whereas staphylinid and spider forest species 

richness tended to decrease. In contrast to that, the habitat generalists species richness of all 

three taxa rapidly decreased with increasing distance from the forest edge in the low tree 

diversity level (strongest changes within the first 80 m from the edge). Overall, this decline 

was dampened (or even reversed as found for small habitat generalist staphylinids) in the high 

tree diversity level and the number of habitat generalists increased in the high tree diversity 

level. The relative increase in species number in the forest interior of the high tree diversity 

level was particularly pronounced for small habitat generalists. 

 

Species-level responses 

Edge proximity and tree diversity had a significant impact on the species-level relative 

abundance of ground beetles, rove beetles and spiders (Fig. 3).  

In general, forest stands poor in tree species were dominated by only a few species, whereas 

in the high tree diversity level more species had higher abundances and the community was 

more heterogeneous. Also, the response to the edge differed with tree diversity level.  
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Environmental variables 

Most of the environmental parameters such as litter layer thickness, pH and herb layer 

characteristics differed with edge proximity and tree diversity level (Table 1).  

All environmental parameters measured had an influence on the focal taxa, whereas the 

correlations differed between the three taxa, but also between the species richness of the 

functional groups (Table 2). 

 

 

 

Table 1 Summary statistics of parameters characterising the forest stands at the forest edge (distance from forest 

edge 0 m) and the forest interior (distance from forest edge 500 m) in the high and in the low tree diversity level. 

Values are means ± standard error (SE). H’ = Shannon-Wiener diversity index based on basal area (Magurran, 

2004). 

 

  low tree diversity high tree diversity 

  Edge Interior Edge Interior 

pH 5.52 ± 0.38 4.16 ± 0.09 6.25 ± 0.44 5.51 ± 0.69 

Litter layer thickness (cm) 2.28 ± 0.70 3.19 ± 0.33 1.32 ± 0.28 1.9 ± 0.44 

Canopy Openness (%) 12.36 ± 1.61 10.78 ± 0.71 12.28 ± 1.03 11.05 ± 0.44 

Dead wood volume (m
3
) 0.46 ± 0.24 0.29 ± 0.19 2.5 ± 0.93 2.23 ± 1.32 

Forest structural diversity 26.5 ± 1.57 18.25 ± 1.31 23 ± 2.42 20.5 ± 1.04 

Herb layer overall plant SR 32.50 ± 5.10 18.25 ± 2.02 28.50 ± 6.09 29.50 ± 3.66 

Herb layer plant cover (spring) 30.72 ± 6.59 49.33 ± 12.15 34.11 ± 8.65 61.67 ± 9.97 

Herb layer plant cover (summer) 34.29 ± 9.33 18.33 ± 4.75 28.78 ± 7.90 32.92 ± 6.23 

No. tree species 4.83 ± 1.19 1.75 ± 0.48 7.33 ± 0.84 6.5 ± 0.50 

% beech area 60.48 ± 12.07 97.66 ± 1.48 7.91 ± 2.37 34.32 ± 13.99 

H‘ tree area 0.91 ± 0.22 0.1 ± 0.06 1.47 ± 0.1 1.35 ± 0.11 

Abbreviations: SR = species richness 

 

 

 

 

  

Figure 1 Effects of distance from the forest edge and tree diversity level on the total species richness of ground 

beetles, rove beetles and spiders. Curves represent predictions from the glmmPQL model (Table S4). Distance 

from the forest edge (m) was back-transformed for graphical illustration. Note the different scales on the y-axis. 
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Figure 2 Effects of the explanatory variables distance from the forest edge (m), tree diversity level and forest 

size on species richness of carabids, staphylinids and spiders. Curves show predictions from the glmmPQL 

models (Table S5). Distance from the forest edge was backtransformed for graphical presentation. 
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Figure 3 Relative abundance of single species to distance from the forest edge (m) and tree diversity level found 

for carabids, staphylinids and spiders. Curves show predictions from the minimal adequate multinomial models 

of the three taxa. Note different scales on the y-axes. Complete species names are listed in Table S6. 
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Table 2 Spearman’s rank correlation coefficient (rho) between environmental parameters characterising the 

forest and total species richness (SR), SR of small forest species, SR of large forest species, SR of small habitat 

generalists and SR of large habitat generalists of ground beetles, rove beetles and spiders.  

 

  total SR 

SR small 

forest species 

SR large  

forest species 

SR small  

habitat 

generalists 

SR large  

habitat 

generalists 

Ground beetles           

pH -0.02 -0.11 -0.10 0.15 0.04 

Litter layer thickness (cm) -0.18 -0.20 0.15 -0.33** -0.13 

Canopy Openness (%) 0.42** 0.37** 0.04 0.37** 0.40** 

Dead wood volume (m
3
) 0.16 0.14 0.14 0.03 0.14 

Forest structural diversity 0.13 0.01 0.11 0.22* 0.16 

Herb layer overall plant SR 0.15 0.07 -0.12 0.27* 0.16 

Herb layer plant cover (spring) 0.17 0.14 0.21 -0.02 0.07 

Herb layer plant cover (summer) 0.27 0.16 0.08 0.29** 0.16 

      

Rove beetles      

pH -0.08 -0.03 -0.28* 0.11 -0.02 

Litter layer thickness (cm) 0.11 0.16 0.38** -0.09 -0.14 

Canopy Openness (%) 0.00 -0.26* -0.05 0.04 0.25* 

Dead wood volume (m
3
) 0.21 -0.10 -0.06 0.30** 0.27* 

Forest structural diversity 0.29** 0.15 0.16 0.25* 0.20 

Herb layer overall plant SR 0.03 -0.08 -0.04 0.04 0.14 

Herb layer plant cover (spring) 0.10 0.04 0.13 -0.02 0.07 

Herb layer plant cover (summer) 0.04 -0.10 0.09 -0.10 0.21 

      

Spiders      

pH 0.11 0.06 -0.23* 0.32** 0.42** 

Litter layer thickness (cm) -0.04 0.01 0.27* -0.34** -0.29** 

Canopy Openness (%) 0.36** 0.35** 0.10 0.28* 0.20 

Dead wood volume (m
3
) -0.09 -0.02 -0.08 -0.08 -0.12 

Forest structural diversity 0.27* 0.31** 0.11 0.04 0.10 

Herb layer overall plant SR 0.09 0.01 0.02 0.15 0.23* 

Herb layer plant cover (spring) 0.17 0.13 0.24* 0.01 0.10 

Herb layer plant cover (summer) 0.30** 0.23 0.12 0.19 0.29** 

 **= p-value <0.01; *= p-value <0.05; Abbreviations: SR = species richness 
 

 

Discussion 

This study has clearly shown that responses of ground-dwelling arthropods to edge proximity 

and tree diversity depended on taxon, body size and habitat specialisation. While carabid 

species richness was unaffected by edge or tree diversity, staphylinids and spiders showed 

opposing patterns. The same was true for species of different sizes and forest specialisation 

classes: Responses to forest edge and tree diversity were strongly modified by whether 

organisms were small or large and whether they preferred forest habitats or not. The richness 

of habitat generalists strongly declined with increasing distance from the forest edge. 

However, this effect was mitigated by increased tree diversity level, and small habitat 

generalists even increased in the interior of species-rich stands. The response of forest species 
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was less unidirectional. This pattern was further reflected in a wide variety of single species 

responses.  

Up to date, the majority of studies on tree compositional effects considered different types of 

forest stands such as pure coniferous vs. mixed or different successional stages (Riihimäki et 

al., 2005; Fuller et al., 2008; Do & Joo, 2013), but actual tree diversity was scarcely 

addressed. Thus, our study is likely the first to show clear effects of tree diversity on edge 

effects in ground-dwelling arthropods. Hence, our finding that edge effects can be mediated 

by (tree) biodiversity is a novel insight, so far not found in previous studies. 

However, results from the present study may not always easily translate to other forest 

systems (Nadrowski et al., 2010; Schuldt et al., 2011; Bruelheide et al., 2014), as our forest 

stands were dominated by beech acting as ecosystem engineer (Lawton, 1994; Mölder et al., 

2014).  

 

Total species richness 

Many previous studies reported that species richness of ground-dwelling arthropods is highest 

at forest edges (Jokimäki et al., 1998; Horváth et al., 2002; Gallé & Fehér, 2006; Elek & 

Tóthmérész, 2010), as communities from different habitats may merge. However, in the 

present study the total species richness response differed among taxa. Spider total species 

richness decreased with increasing distance from the edge, whereas carabids did not respond. 

As hypothesized, the edge response of staphylinid species richness depended on tree diversity, 

being neutral in high diversity stands and declining towards the centre in low tree diversity 

stands. This resulted in a higher rove beetle species richness in the forest interior of the high 

tree diversity stands. Spider and carabid total species richness were not affected by tree 

diversity. According to this, comparable previous studies showed taxon dependent responses 

to alterations in tree species composition (Riihimäki et al., 2005; Schuldt et al., 2008; Sobek 

et al., 2009a, 2009b, 2009c; Scherber et al., 2014). 

It appears that the response of the total species richness of the focal taxa was driven by the 

response of habitat generalists, with the exception of carabids where the negative response of 

habitat generalists and the weak positive response of forest species compensated each other 

and may have been the reason of an overall indifferent response.  

 

Forest specialisation, edge effects and tree diversity 

In concordance with previous studies, the richness of habitat generalists species across taxa 

was highest at the forest edge and declined strongly towards the interior (Niemelä et al., 1993; 
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Horváth et al., 2002), whereas forest species richness was less sensitive (Heliölä et al., 2001; 

Koivula et al., 2004). 

We found that habitat generalists species were positively affected by higher tree diversity and 

thus permeated deeper into diverse than into beech dominated forests. Furthermore, edge 

responses were mitigated by high tree diversity (found for carabids and staphylinids but not 

for spiders). This benefit from high tree diversity was particularly pronounced for small 

habitat generalists.  

We believe that our findings can be attributed to changes of environmental parameters and 

habitat heterogeneity. Explanations for the observed patterns might be similar for all focal 

taxa, although beetles and spiders in particular have different life histories, but exploit similar 

resources (Alaruikka et al., 2002).  

The overall positive response of habitat generalists to edge proximity may be ascribed to 

edges being more dynamic and heterogeneous habitats meeting the requirements of different 

kinds of species  (Didham et al., 1998; Ewers & Didham, 2006; Marchand & Houle, 2006).  

Increased tree diversity can also have profound effects on environmental parameters such as 

soil pH (Barbier et al., 2008; Guckland et al., 2009). Here, reduced litter thickness and 

increased canopy openness appear as the most important environmental factors for the 

increased richness of species explicitly preferring forests which is in line with other studies 

(Fuller et al., 2008; Guillemain et al., 1997; Molnár et al., 2001; but see Ziesche & Roth, 

2008). Forest species showed contrasting responses to several environmental parameters, 

which might indicate an affinity to thick litter layers and moist, cool microclimatic conditions 

(Bultman & Uetz, 1982; Pohl et al., 2008). However, overall, forest species responded less to 

altered environmental parameters compared with habitat generalists and only responded very 

weakly to increased tree diversity. 

Tree assemblages consisting of more different tree species cause a pattern of patchily 

distributed resources, thus increasing habitat heterogeneity and niche differentiation (Beatty, 

2003; Sobek et al., 2009a, 2009b). Habitat heterogeneity is generally regarded as driver of 

species diversity ("environmental heterogeneity hypothesis" (Huston, 1994); “enemies 

hypothesis” (Russell, 1989)), because heterogeneous habitats meet the requirements of a 

broader range of species. Small scale effects have been shown for forest’s carabid, staphylinid 

and spider assemblages (Fuller et al., 2008 and references therein; Pohl et al., 2007; Ziesche 

& Roth, 2008). As demonstrated here, generalist species being more tolerant for changes of 

environmental conditions may benefit more from spatial heterogeneity than specialist species 
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being less tolerant (McIver et al., 1992; Ye et al., 2014). Furthermore, this may favour the 

invasion of species not exclusively residing in forest habitats.  

 

Body size, edge effects and tree diversity 

Large habitat generalists were not affected negatively, but the relative increase of species 

richness with increased tree diversity was particularly accentuated for small habitat 

generalists. In the course of evolution, it has been hypothesized that terrestrial species 

increase in size under stable and monotonous conditions (Brown & Maurer, 1986; Ribera et 

al., 2001). Consequently, a shift of arthropod assemblages towards smaller and less 

specialised species in more heterogeneous habitats has been reported (Šustek, 1987; Blake et 

al., 1994; Brändle et al., 2000; Gibbs & Stanton, 2001; Alaruikka et al., 2002; Magura et al., 

2006). Matching our results for the two beetle taxa Blake (1996) found carabid forest species 

to be larger than habitat generalists (results not shown).  

Small species have been shown to be more susceptible to changes in environmental 

conditions such as moisture or temperature than large species (Janzen & Schoener, 1968; 

Peters, 1986). Therefore, microclimatic conditions in the beech dominated forest stands might 

have been particularly unhostile for small species not explicitly adapted to forests. Thus, this 

group might benefit more from conditions in the high diversity forests being more open and 

heterogeneous compared with large species. In line with our results, Tyler (2008) explained 

less small carabid species in beech forest Podzol sites with a negative effect of increased litter 

depth and litter structure influences the distribution of small and large bodied rove beetles 

differently.  

Moreover, small and large species have been shown to forage on different spatial scales 

(Peters, 1986; Woodward et al., 2005). Thus, forage efficiency might have been promoted by 

higher tree diversity due to lower spatial resistance (reduced litter depth) and increased prey 

abundance. Furthermore, Blackburn & Gaston (1994) argued that species of different body 

size than the original species are more likely to invade a habitat, which would in this case be 

smaller-bodied species. Body size had no substantial impact on the edge or the tree diversity 

response of the forest species.  

However, large spiders and rove beetles tended to react slightly negatively to increased tree 

diversity, which can be related to more heterogeneous and less stable environmental 

conditions (Blake et al., 1994; Alaruikka et al., 2002; Niemelä et al., 2002).  
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Species specific responses 

The dominance structure of the observed arthropod communities clearly changed with 

increased tree diversity and distance from the forest edge. Overall, more species reached 

higher relative abundances in the high tree diversity level, whereas the low tree diversity level 

was dominated by few forest species. The results found for the habitat generalist species 

richness are reflected in the species specific responses, as certain species not predominantly 

occurring in forests increased more in abundance in the high tree diversity level, such as the 

red-listed lycosid species Pirata uliginosus (Thorell 1856) or the staphylinid species 

Philonthus laevicollis (Lacordaire 1835). Among all taxa some forest species were favoured 

whereas others suffered from high tree diversity. Species with a high conservation value 

benefitting from high tree diversity were Abax parallelus (Duftschmid 1812), a species 

preferring species rich oak-hornbeam forests (Assmann, 1995; Müller-Kroehling, 2013), and 

the red-listed Carabus irregularis (Fabricius 1792), a species of ravine forests (Müller-

Kroehling, 2008). In contrast, the red-listed linyphiid species Saloca diceros (O. P.-

Cambridge 1871) and the red-listed Pterostichus burmeisteri (Heer 1838), a typical species of 

beech forests (Müller-Kroehling, 2009), preferred beech dominated forests. These individual 

responses may explain the overall weak responses of forest species richness. This underlines 

the qualitative gain of information when modelling the response of whole arthropod 

communities rather than exclusively analysing community level responses (Scherber et al., 

2014). The relative abundance of forest species might have declined not only due to changes 

in environmental conditions unfavourable for these species but also because of competition 

with invading species from the matrix (Pohl et al., 2008).  

 

Conclusions 

We have shown that tree diversity modified edge effects in Germany’s largest deciduous 

forest, presumably due to alterations of environmental parameters and habitat heterogeneity. 

However, as the environmental parameters analysed were not independent, we emphasize the 

need of more experimental studies investigating the effects of certain environmental 

parameters independently.  

We showed that both eco-evolutionary background and the life history trait body size could 

be used to predict the response of the three taxa to tree diversity and edge proximity. Habitat 

generalists and among these particularly small species benefited most from increased tree 

diversity, whereas forest species only responded weakly. This pattern resembles results found 

in disturbed forests and small forest fragments (Deichsel, 2006) indicating similar underlying 
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mechanisms. We conclude that increased tree diversity, by creating more open and 

heterogeneous environmental conditions, mitigated the edge-interior contrast and thus enabled 

the invasion of more species not exclusively residing in forests. 

According to Rainio & Niemelä (2003), the response of a good indicator species group to 

habitat alteration should reflect the response of other species. Our results demonstrate that 

total species richness is not an appropriate proxy for species responses to habitat alterations, 

but that the same functional groups of different taxa might resemble each other more and 

allow for more causal overall conclusions. This is in particular of interest in the case of rove 

beetles, the responses of which to habitat fragmentation are still largely unknown (Pohl et al., 

2007, 2008). 

The weak impairment of forest species richness by edge proximity might be due to the near 

natural, dense shrub belt surrounding the national park’s forests. This would further underline 

the importance of natural forest edges for maintaining forest species diversity. 

In our study, the dominance structure of the arthropod communities was altered by tree 

diversity and edge proximity. Some red-listed species clearly relied on beech-dominated 

forests, whereas others were promoted by increased tree diversity. This highlights the 

importance of maintaining not only old growth beech forests (like the UNESCO World 

Heritage sites “Primeval Beech Forests of the Carpathians and the Ancient Beech Forests of 

Germany”) but also near natural forests rich in tree species as a conservation goal. 

Our study highlights the importance of taking into account tree diversity, but also life history 

traits of species when addressing edge effects in forests. 
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Appendix 

 

S1 

Data bases: 

www.carabids.org 

http://wiki.spinnen-forum.de 

http://www.araneae.unibe.ch 
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S2 

Vegetation measurements: 

Vegetation surveys of the herb layer were conducted comprising six botanical subplots per 

plot. They had a size of 1 x 3 m (longer side parallel to forest edge) and were arranged in a 

row running parallel to the forest edge. Distance between relevés was approximately 1 m. 

All flowering plant species up to 70 cm height and their cover (in percent) were recorded. For 

further analysis the cover of every plant species was averaged over the six relevés per plot by 

taking the arithmetic mean. The survey was carried out twice to account for both spring 

ephemerals characteristic for deciduous forests and summer vegetation, resulting in 960 

relevés in total. The spring survey was done in April 2012, the summer survey in July/August 

2012.  

 

References: 

Dierschke, H. (1994) Pflanzensoziologie: Grundlagen und Methoden. Ulmer, Stuttgart. 

 

 

S3 

Assessment of canopy openness: 

Canopy openness was assessed using fish eye photographs taken with a Nikon Coolpix 8400 

camera plus Nikon FC-E9 fisheye converter and UR-E16 adapter ring (Nikon Corporation, 

Chiyoda, Tokyo, Japan). Using Adobe Photoshop CS6 (Adobe Systems Inc., San Jose, 

California, USA) the photographs were processed in three steps: 1. The image background 

was converted into an editable layer, 2. the ellipse selection tool was used to select an exactly 

circular area, excluding the black margin contained in each photograph, 3. in the layers menu, 

"layer mask" was selected and then "reveal selection" chosen; the formerly black area was 

thus removed and replaced by a transparent background. Thereafter we used Adobe 

Photoshop Lightroom 5.2 (Adobe Systems Inc.) and performed adjustments to all 

photographs in the following way: Contrast was set to -100, highlights were set to -73, whites 

were set to +7, black was set to -100 and clarity was set to 66. In the tone curve, lights were 

set to +96. Using SideLook 1.1.01 we (automatically) estimated the optimal threshold for 

converting photographs into black-and-white pictures (Nobis & Hunziker, 2005). We then 

calculated canopy openness with Gap Light Analyzer 2.0 (Cary Institute of Ecosystem 

Studies, Millbrook, New York, USA). 

References: 
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Nobis, M., & Hunziker, U. (2005) Automatic thresholding for hemispherical canopy-

photographs based on edge detection. Agricultural and Forest Meteorology, 128, 3-4, 

243–250.  

 

 

 

 

 

 

Table S4 Results of the generalised linear mixed models testing the effects of tree diversity level (reference level 

= treediversityhigh) and distance from the forest edge on the total species richness of carabids, staphylinids and 

spiders. Distance from the forest edge was log-transformed. Only the results of simplified models are shown, if 

simplification was necessary. DF = degrees of freedom. Bold characters depict P-values < 0.05. 

 

Explanatory Estimate SE DF t p 

            

total SR Carabids 

     Intercept 2.21 0.07 79 31.67 <0.001 

      total SR Staphylinids 

     Intercept 2.32 0.12 76 19.49 <0.001 

treediversityhigh -0.31 0.17 10 -1.82 0.099 

distance -0.09 0.03 76 -2.95 0.004 

treediversityhigh x distance 0.10 0.04 76 2.28 0.025 

      total SR Spiders           

Intercept 2.68 0.08 79 35.23 <0.001 

distance  -0.09 0.02 79 -4.64 <0.001 
Abbreviations: distance = distance from forest edge (m) 
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Table S5 Results of the generalized linear mixed models testing the effects of tree diversity level, distance from 

the forest edge, body size class and habitat preference on species richness of carabids, staphylinids and spiders. 

Distance from the forest edge was log-transformed. Only the results of simplified models are shown, if 

simplification was necessary. Reference level of the explanatory variable tree diversity level (treediversity) was 

treediversityhigh. and Forest specialisation and body size class were included in one explanatory variable 

(forestsize, reference level = forestsize_forestLarge). DF = degrees of freedom. Bold characters depict P-values 

< 0.05. 

 

Explanatory Estimate SE DF t p 

            

SR Carabids 

     Intercept 1,13 0,15 342 7,65 <0.001 

treediversityhigh 0,00 0,20 10 0,01 0,989 

distance 0,02 0,03 342 0,74 0,457 

forestsize_forestSmall -0,27 0,18 342 -1,47 0,142 

forestsize_othersLarge -0,42 0,20 342 -2,13 0,034 

forestsize_othersSmall -0,25 0,21 342 -1,17 0,241 

treediversityhigh x forestsize_forestSmall 0,10 0,25 342 0,39 0,699 

treediversityhigh x forestsize_othersLarge 0,27 0,26 342 1,03 0,306 

treediversityhigh x forestsize_othersSmall -0,34 0,30 342 -1,13 0,259 

treediversityhigh x distance 0,03 0,04 342 0,60 0,546 

distance x forestsize_forestSmall 0,01 0,05 342 0,14 0,886 

distance x forestsize_othersLarge -0,08 0,05 342 -1,51 0,132 

distance x forestsize_othersSmall -0,51 0,09 342 -5,94 <0.001 

treediversityhigh x distance x forestsize_forestSmall 0,00 0,06 342 -0,02 0,986 

treediversityhigh x distance x forestsize_othersLarge -0,01 0,07 342 -0,17 0,868 

treediversityhigh x distance x forestsize_othersSmall 0,27 0,11 342 2,48 0,014 

      SR Staphylinids 

     Intercept 1,03 0,17 334 6,09 <0.001 

treediversityhigh -0,37 0,25 10 -1,45 0,177 

distance -0,01 0,04 334 -0,24 0,813 

forestsize_forestSmall -1,31 0,34 334 -3,81 <0.001 

forestsize_othersLarge 0,20 0,22 334 0,94 0,350 

forestsize_othersSmall 0,14 0,23 334 0,61 0,541 

treediversityhigh x forestsize_forestSmall 0,30 0,49 334 0,61 0,542 

treediversityhigh x forestsize_othersLarge 0,20 0,32 334 0,62 0,538 

treediversityhigh x forestsize_othersSmall -0,35 0,35 334 -1,00 0,318 

treediversityhigh x distance 0,03 0,06 334 0,40 0,689 

distance x forestsize_forestSmall -0,02 0,10 334 -0,26 0,796 

distance x forestsize_othersLarge -0,12 0,06 334 -1,90 0,058 

distance x forestsize_othersSmall -0,23 0,07 334 -3,26 0,001 

treediversityhigh x distance x forestsize_forestSmall 0,01 0,14 334 0,07 0,946 

treediversityhigh x distance x forestsize_othersLarge 0,06 0,09 334 0,61 0,544 

treediversityhigh x distance x forestsize_othersSmall 0,27 0,10 334 2,65 0,009 

      SR Spiders 

     Intercept 1,23 0,14 346 8,88 <0.001 

treediversityhigh -0,13 0,14 10 -0,92 0,381 

distance 0,01 0,03 346 0,35 0,729 

forestsize_forestSmall 0,24 0,17 346 1,43 0,153 

forestsize_othersLarge 0,15 0,21 346 0,70 0,484 

forestsize_othersSmall -0,46 0,23 346 -2,02 0,045 

treediversityhigh x forestsize_forestSmall 0,20 0,16 346 1,31 0,192 

treediversityhigh x forestsize_othersLarge 0,47 0,23 346 2,08 0,038 

treediversityhigh x forestsize_othersSmall 1,01 0,22 346 4,51 <0.001 

distance x forestsize_forestSmall 0,01 0,04 346 0,19 0,850 

distance x forestsize_othersLarge -0,64 0,07 346 -8,57 <0.001 

distance x forestsize_othersSmall -0,34 0,06 346 -5,91 <0.001 

Abbreviations: distance = distance from forest edge (m) 
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Table S6 List of carabid, staphylinid and spider species recorded along the 12 transects. The explanatory 

variable “forestsize” consists first of the habitat specialisation category and second of the body size class. 

Classification into trait groups was conducted following data bases, literature and expert knowledge listed in S1. 

Forest species = species predominantly occurring in forests; Habitat generalists = species occurring in forests 

and elsewhere 

 

Species Abbreviation "forestsize" 

   Carabids 

  Abax carinatus Abax_cari forest species_large 

Abax parallelepipedus Abax_parp forest species_large 

Abax parallelus Abax_para forest species_large 

Carabus coriaceus Cara_cori forest species_large 

Carabus granulatus Cara_gran forest species_large 

Carabus irregularis Cara_irre forest species_large 

Cychrus caraboides Cych_cara forest species_large 

Molops elatus Molo_elat forest species_large 

Pterostichus burmeisteri Pter_burm forest species_large 

Pterostichus madidus Pter_madi forest species_large 

Abax ovalis Abax_oval forest species_small 

Harpalus latus Harp_latu forest species_small 

Lebia chlorocephala Lebi_chlo forest species_small 

Leistus rufomarginatus Leis_rufo forest species_small 

Molops piceus Molo_pice forest species_small 

Notiophilus biguttatus Noti_bigu forest species_small 

Platynus assimilis Plat_assi forest species_small 

Pterostichus oblongopunctatus Pter_oblo forest species_small 

Stomis pumicatus Stom_pumi forest species_small 

Trichotichnus nitens Tric_nite forest species_small 

Amara eurynota Amar_eury habitat generalist_large 

Amara ovata Amar_ovat habitat generalist_large 

Calathus fuscipes Cala_fusc habitat generalist_large 

Carabus nemoralis Cara_nemo habitat generalist_large 

Harpalus rufipes Harp_rufi habitat generalist_large 

Leistus spinibarbis Leis_spin habitat generalist_large 

Poecilus cupreus Poec_cupr habitat generalist_large 

Pterostichus macer Pter_mace habitat generalist_large 

Pterostichus melanarius Pter_mela habitat generalist_large 

Pterostichus niger Pter_nige habitat generalist_large 

Zabrus tenebrioides Zabr_tene habitat generalist_large 

Anchomenus dorsalis Anch_dors habitat generalist_small 

Badister bullatus Badi_bull habitat generalist_small 

Bembidion guttula Bemb_gutt habitat generalist_small 

Bembidion lampros Bemb_lamp habitat generalist_small 

Brachinus explodens Brac_expl habitat generalist_small 

Clivina fossor Cliv_foss habitat generalist_small 

Loricera  pilicornis Lori_pili habitat generalist_small 

Nebria brevicollis Nebr_brev habitat generalist_small 

Ophonus azureus Opho_azur habitat generalist_small 

Pterostichus ovoideus Pter_ovoi habitat generalist_small 

Pterostichus vernalis Pter_vern habitat generalist_small 

Trechus quadristriatus Trec_quad habitat generalist_small 

   

   Staphylinids 

  Dinothenarus fossor Dino_foss forest species_large 

Domene scabricollis Dome_scab forest species_large 

Euryporus picipes Eury_pici forest species_large 

Othius punctulatus Othi_punc forest species_large 

Philonthus decorus Phil_deco forest species_large 

Quedius fumatus Qued_fuma forest species_large 

Quedius lateralis Qued_late forest species_large 
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Quedius paradisianus Qued_para forest species_large 

Staphylinus erythropterus Stap_eryt forest species_large 

Xantholinus tricolor Xant_tric forest species_large 

Mycetoporus eppelsheimianus Myce_eppe forest species_NA 

Siagonium humerale Siag_hume forest species_NA 

Stenus ludyi Sten_ludy forest species_NA 

Anotylus mutator Anot_muta forest species_small 

Anthobium atrocephalum Anth_atro forest species_small 

Atheta britanniae Athe_brit forest species_small 

Atheta putrida Athe_putr forest species_small 

Enalodroma hepatica Enal_hepa forest species_small 

Eusphalerum semicoleoptratum Eusp_semi forest species_small 

Habrocerus capillaricornis Habr_capi forest species_small 

Leptusa ruficollis Lept_rufi forest species_small 

Othius subuliformis Othi_subu forest species_small 

Oxypoda annularis Oxyp_annu forest species_small 

Oxypoda rufa Oxyp_rufa forest species_small 

Quedius microps Qued_micr forest species_small 

Aleochara curtula Aleo_curt habitat generalist_large 

Aleochara ruficornis Aleo_rufi habitat generalist_large 

Bolitobius castaneus Boli_cast habitat generalist_large 

Gabrius osseticus Gabr_osse habitat generalist_large 

Ischnosoma longicorne Isch_long habitat generalist_large 

Lathrobium brunnipes Lath_brun habitat generalist_large 

Lathrobium fulvipenne Lath_fulv habitat generalist_large 

Lathrobium longulum Lath_long habitat generalist_large 

Liogluta pagana Liog_paga habitat generalist_large 

Ocypus fuscatus Ocyp_fusc habitat generalist_large 

Ocypus nitens Ocyp_nite habitat generalist_large 

Othius angustus Othi_angu habitat generalist_large 

Oxypoda acuminata Oxyp_acum habitat generalist_large 

Paederus brevipennis Paed_brev habitat generalist_large 

Parabolitobius formosus Para_form habitat generalist_large 

Pella humeralis Pell_hume habitat generalist_large 

Pella limbata Pell_limb habitat generalist_large 

Philonthus addendus Phil_adde habitat generalist_large 

Philonthus cognatus Phil_cogn habitat generalist_large 

Platydracus latebricola Plat_late habitat generalist_large 

Quedius curtipennis Qued_curt habitat generalist_large 

Quedius fuliginosus Qued_fuli habitat generalist_large 

Quedius nitipennis Qued_niti habitat generalist_large 

Rugilus rufipes Rugi_rufi habitat generalist_large 

Staphylinus caesareus Stap_caes habitat generalist_large 

Stenus clavicornis Sten_clav habitat generalist_large 

Tachinus rufipes Tach_rufi habitat generalist_large 

Tasgius melanarius Tasg_mela habitat generalist_large 

Xantholinus laevigatus Xant_laev habitat generalist_large 

Xantholinus linearis Xant_line habitat generalist_large 

Eusphalerum primulae Eusp_prim habitat generalist_NA 

Philonthus laevicollis Phil_laev habitat generalist_NA 

Platystethus nitens Plat_nite habitat generalist_NA 

Rhopalotella validiuscula Rhop_vali habitat generalist_NA 

Stenus ochropus Sten_ochr habitat generalist_NA 

Tasgius winkleri Tasg_wink habitat generalist_NA 

Xantholinus elegans Xant_eleg habitat generalist_NA 

Amischa analis Amis_anal habitat generalist_small 

Amischa bifoveolata Amis_bifo habitat generalist_small 

Anotylus insecatus Anot_inse habitat generalist_small 

Anthophagus angusticollis Anth_angu habitat generalist_small 

Atheta fungi Athe_fung habitat generalist_small 

Carpelimus elongatulus Carp_elon habitat generalist_small 

Cypha tarsalis Cyph_tars habitat generalist_small 
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Dinaraea angustula Dina_angu habitat generalist_small 

Drusilla canaliculata Drus_cana habitat generalist_small 

Eusphalerum tenenbaumi Eusp_tene habitat generalist_small 

Geostiba circellaris Geos_circ habitat generalist_small 

Ilyobates bennetti Ilyo_benn habitat generalist_small 

Ischnosoma splendidum Isch_sple habitat generalist_small 

Lesteva longoelytrata Lest_long habitat generalist_small 

Liogluta granigera Liog_gran habitat generalist_small 

Liogluta longiuscula Liog_long habitat generalist_small 

Liogluta microptera Liog_micr habitat generalist_small 

Mycetoporus lepidus Myce_lepi habitat generalist_small 

Ocalea picata Ocal_pica habitat generalist_small 

Oligota pumilio Olig_pumi habitat generalist_small 

Olophrum assimile Olop_assi habitat generalist_small 

Omalium caesum Omal_caes habitat generalist_small 

Omalium rivulare Omal_rivu habitat generalist_small 

Oxypoda brevicornis Oxyp_brev habitat generalist_small 

Oxypoda opaca Oxyp_opac habitat generalist_small 

Plataraea brunnea Plat_brun habitat generalist_small 

Rugilus orbiculatus Rugi_orbi habitat generalist_small 

Sepedophilus immaculatus Sepe_imma habitat generalist_small 

Sepedophilus pedicularius Sepe_pedi habitat generalist_small 

Sunius melanocephalus Suni_mela habitat generalist_small 

Tachinus laticollis Tach_lati habitat generalist_small 

Tachyporus nitidulus Tach_niti habitat generalist_small 

   

   Spiders 

  Agroeca brunnea Agro_brun forest species_large 

Amaurobius fenestralis Amau_fene forest species_large 

Anyphaena accentuata Anyp_acce forest species_large 

Apostenus fuscus Apos_fusc forest species_large 

Centromerus sylvaticus Cent_sylv forest species_large 

Ceratinella scabrosa Cera_scab forest species_large 

Clubiona terrestris Club_terr forest species_large 

Coelotes atropos Coel_atro forest species_large 

Haplodrassus silvestris Hapl_silv forest species_large 

Haplodrassus umbratilis Hapl_umbr forest species_large 

Harpactea lepida Harp_lepi forest species_large 

Histopona torpida Hist_torp forest species_large 

Inermocoelotes inermis Iner_iner forest species_large 

Linyphia hortensis Liny_hort forest species_large 

Macrargus rufus Macr_rufu forest species_large 

Nigma walckenaeri Nigm_walc forest species_large 

Ozyptila praticola Ozyp_prat forest species_large 

Pardosa alacris Pard_alac forest species_large 

Pardosa lugubris Pard_lugu forest species_large 

Pardosa saltans Pard_salt forest species_large 

Robertus lividus Robe_livi forest species_large 

Tegenaria silvestris Tege_silv forest species_large 

Xysticus luctuosus Xyst_luct forest species_large 

Zelotes apricorum Zelo_apri forest species_large 

Zelotes subterraneus Zelo_subt forest species_large 

Agyneta ramosa Agyn_ramo forest species_small 

Centromerus sellarius  Cent_sell forest species_small 

Diplostyla concolor Dipl_conc forest species_small 

Diplocephalus latifrons Dipl_lati forest species_small 

Diplocephalus picinus Dipl_pici forest species_small 

Formiphantes lephthyphantiformis  Form_leph forest species_small 

Gonatium rubellum Gona_rube forest species_small 

Hahnia pusilla Hahn_pusi forest species_small 

Maso sundevalli Maso_sund forest species_small 
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Micrargus herbigradus Micr_herb forest species_small 

Microneta viaria Micr_viar forest species_small 

Neon reticulatus  Neon_reti forest species_small 

Neriene peltata Neri_pelt forest species_small 

Saloca diceros Salo_dice forest species_small 

Tapinocyba insecta Tapi_inse forest species_small 

Tenuiphantes alacris Tenu_alac forest species_small 

Tenuiphantes cristatus  Tenu_cris forest species_small 

Tenuiphantes flavipes Tenu_flav forest species_small 

Tenuiphantes tenebricola Tenu_tene forest species_small 

Tenuiphantes tenuis Tenu_tenu forest species_small 

Walckenaeria corniculans Walc_corn forest species_small 

Walckenaeria cucullata Walc_cucu forest species_small 

Walckenaeria cuspidata Walc_cusp forest species_small 

Walckenaeria obtusa Walc_obtu forest species_small 

Alopecosa cuneata Alop_cune habitat generalist_large 

Alopecosa pulverulenta Alop_pulv habitat generalist_large 

Clubiona reclusa Club_recl habitat generalist_large 

Drassodes lapidosus Dras_lapi habitat generalist_large 

Drassyllus praeficus Dras_prae habitat generalist_large 

Haplodrassus signifer Hapl_sign habitat generalist_large 

Metellina mengei Mete_meng habitat generalist_large 

Micaria pulicaria Mica_puli habitat generalist_large 

Neriene clathrata Neri_clat habitat generalist_large 

Pardosa amentata Pard_amen habitat generalist_large 

Pardosa palustris Pard_palu habitat generalist_large 

Pardosa pullata Pard_pull habitat generalist_large 

Piratula hygrophila Pira_hygr habitat generalist_large 

Trachyzelotes pedestris Trac_pede habitat generalist_large 

Trochosa ruricola Troc_ruri habitat generalist_large 

Trochosa terricola Troc_terr habitat generalist_large 

Xysticus acerbus Xyst_acer habitat generalist_large 

Xysticus bifasciatus Xyst_bifa habitat generalist_large 

Xysticus cristatus Xyst_cris habitat generalist_large 

Xysticus kochi Xyst_koch habitat generalist_large 

Zelotes latreillei Zelo_latr habitat generalist_large 

Zora spinimana Zora_spin habitat generalist_large 

Aulonia albimana Aulo_albi habitat generalist_small 

Bathyphantes parvulus Bath_parv habitat generalist_small 

Centromerita bicolor  Cent_bico habitat generalist_small 

Ceratinella brevipes Cera_brev habitat generalist_small 

Dicymbium nigrum brevisetosum Dicy_nigr habitat generalist_small 

Drassyllus pusillus Dras_pusi habitat generalist_small 

Erigonella hiemalis Erig_hiem habitat generalist_small 

Meioneta saxatilis Meio_saxa habitat generalist_small 

Ozyptila simplex Ozyp_simp habitat generalist_small 

Ozyptila trux Ozyp_trux habitat generalist_small 

Pachygnatha degeeri Pach_dege habitat generalist_small 

Pachygnatha listeri Pach_list habitat generalist_small 

Palliduphantes pallidus Pall_pall habitat generalist_small 

Pardosa prativaga Pard_prat habitat generalist_small 

Phrurolithus festivus Phru_fest habitat generalist_small 

Phrurolithus minimus  Phru_mini habitat generalist_small 

Piratula latitans Pira_lati habitat generalist_small 

Pirata uliginosus Pira_ulig habitat generalist_small 

Porrhomma microphthalmum  Porr_micr habitat generalist_small 

Walckenaeria acuminata Walc_acum habitat generalist_small 

Walckenaeria antica Walc_anti habitat generalist_small 

Walckenaeria atrotibialis Walc_atro habitat generalist_small 

Walckenaeria dysderoides Walc_dysd habitat generalist_small 

Clubiona cf. similis Club_simi NA 

Enoplognatha sp. Enop_sp. NA 
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Liocranum sp. Lioc_sp. NA 

Scotophaeus sp. Scot_sp. NA 
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Abstract 

Edge effects are an important component of forest fragmentation, altering microclimatic 

conditions and species composition within forest remnants. Yet, major factors affecting 

strength and extent to which edge effects might penetrate into fragments have remained 

elusive. Here, we study for the first time how tree diversity and forest stratum alter edge 

effects and how these factors affect beetle communities. We sampled beetles over 7 months 

using 92 flight interception traps in the canopy and near the ground in the Hainich National 

Park; Germany’s largest connected deciduous forest. Traps were exposed along 10 transects 

(0–500 m) from the forest edge into the forest interior, comparing transects with high or low 

abundance of beech (low or high tree diversity). 

Tree diversity had no influence on the range or strength of edge effects. In the understory, 

edge effects extended up to maximal transect length of 500 m into the forest interior. Edge 

effects were weaker in the canopy than in the understory, likely because of higher, edge-like 

microclimatic variability and harshness in the canopy. The edge response of beetle species 

richness was driven by habitat generalists while forest and saproxylic species responded less 

strongly. 

The richness of forest and saproxylic beetles peaked in the canopy, whereas habitat 

generalists and non-saproxylic beetles strongly dominated the understory. Pathways driving 

beetle species richness differed across forest strata. Structural equation modelling showed that 

tree diversity (+, positive effect) and overall dead wood volume (+) were the most important 

factors driving beetle species richness in the canopy. In contrast, tree diversity effects (+) 

were less strong and canopy openness (+) and distance from the forest edge (-) were more 

important in the understory. 

 

Keywords  

canopy, Fagus sylvatica, forest species, habitat generalists, saproxylic beetles, understory 
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Introduction 

Forest fragmentation is increasing worldwide and is a major driver of biodiversity loss 

(Didham et al., 1996). Invertebrates in forest fragments are affected by fragment size, 

fragment shape, habitat connectivity and edge effects (Didham, 1997). Edges can cause 

alterations in microclimatic conditions and induce changes in invertebrate species richness 

and community composition (Murcia, 1995). How far and how strong edge effects on 

invertebrates penetrate into forests is variable. The depth of edge effects can range from a few 

meters (Noreika & Kotze, 2012; Vodka & Cizek, 2013) up to more than 1 km as shown by 

Ewers & Didham (2008). However, the majority of studies only examine edge effects on 

small spatial scales, thereby potentially missing out long range effects. Patch contrast (the 

difference in habitat quality between fragment and adjacent matrix) and a fragment’s three-

dimensional architecture (plant structure) can determine the depth and strength of edge effects 

in forest fragments (Cadenasso et al., 2003; Collinge, 2009; Ries & Sisk, 2004; Ries et al., 

2004). In this context, tree species composition might play an important role by determining a 

forest’s (canopy) architecture (Getzin et al., 2012; Seidel et al., 2013) and thereby light 

availability, microclimatic conditions, resource distribution and habitat heterogeneity. Current 

forest management schemes aim at converting monospecific forest stands into structurally 

more diverse forests with a higher abundance and diversity of native deciduous tree species 

(Pretzsch et al., 2013; Schmitz et al., 2014). In Central Europe, deciduous forests are 

commonly dominated by Fagus sylvatica L., creating (rather) homogeneous conditions by a 

dense canopy, a thick acidic litter layer and a species-poor herb layer (Mölder et al., 2008). 

Due to species specific differences in traits such as canopy cover, growth height or nutrient 

quality of the leaf litter (Barbier et al., 2008; Wulf & Naaf, 2009) an increase in tree species 

richness (and reduced beech dominance) should therefore lead to increased light availability, 

habitat heterogeneity and niche and resource diversity (Paillet et al., 2010) – factors positively 

affecting invertebrate species richness (Huston, 1994; Lange et al., 2014; Wermelinger et al., 

2007). This may not only increase the number of forest specialists (Sobek et al., 2009b), but 

also reduce the contrast between the forest interior and the more variable forest edge habitat 

and thus increase the permeation of species not explicitly adapted to inner forest conditions. 

Most studies on edge effects in forests only sample the forest understory. This is not sufficient 

for drawing conclusions about the entire system since forests are complex, highly structured 

habitats (Horchler and Morawetz, 2008). A forest’s understory and its canopy can 

considerably differ with respect to habitat structure (as well as structural diversity) and 

microclimate (Tal et al., 2008). Furthermore, arthropod diversity and community composition 
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have been shown to differ markedly across forest strata (Bouget et al., 2011; Gruppe et al., 

2008). 

Microclimatic conditions in the forest canopy may be less affected by forest edge proximity 

since it is an “edge-like” heterogeneous habitat itself (Didham & Ewers, 2014). In contrast 

to the understory, forest canopies are exposed to a high microclimatic variability throughout 

the day. While dry and warm conditions are characteristic features during the day, humidity 

increases as temperature drops during the night (Parker, 1995; Tal et al., 2008). In line with 

Didham & Ewers (2014) and Tal et al. (2008) found this microclimatic stratification to 

collapse at the forest edge as microclimatic variability at the ground increased, and they stated 

that this may in turn affect arthropod community composition. Consequently, we expect 

weaker edge effects on arthropods in the canopy and possibly different causal pathways 

between forest understory and canopy. Yet, surprisingly, studies comparing edge effects 

across forest strata are scarce.  

Not only may edge effects differ across strata but tree diversity effects may differ as well. 

Tree diversity in beech dominated forests has been shown to increase the diversity of several 

invertebrate taxa (Cesarz et al., 2007; Sobek et al., 2009a,b). However, it has hardly been 

tested if tree diversity effects differ across forest strata (but see Sobek et al., 2009c). As 

described above, forest canopy and understory differ with respect to arthropod community 

composition, abiotic conditions and micro-habitats. Therefore, we hypothesize that pathways 

determining arthropod communities in the canopy and understory are different. 

Furthermore, we expect differences between ecological groups of beetles due to differences in 

habitat requirements. Saproxylic beetles may particularly benefit from increased tree diversity 

in the forest canopy, because many species not only require sufficient amounts of dead wood 

but also sunny habitats (Müller et al., 2008; Schmidl & Bussler, 2008), and a higher tree 

diversity is likely to increase the amount of dead wood. In particular, Gamfeldt et al. (2013) 

showed that the probability of dead wood occurrence remained constant from 1 to 4 and 

increased from 4 to 10 tree species mixtures. 

Studies on forest beetles often examine saproxylic beetles only (Bouget et al., 2011; Gossner 

et al., 2013a,b). However, saproxylic beetles represent only a part of the entire beetle 

community in forests. Therefore, we compare different ecological groups of all captured 

beetles. The study was conducted in Hainich National Park, which forms part of Germany’s 

largest continuous broad-leaved forest. This area is especially suitable for testing our research 

questions since it consists of forest sites with a natural tree diversity gradient under 

comparable site conditions (Leuschner et al., 2009). We compared edge and tree diversity 
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effects on beetles in both canopy and understory on a large spatial scale. In particular, we 

hypothesize: 

1. Edge effects are stronger in forest stands with a low tree diversity (high patch contrast) 

compared with forest stands rich in tree species. 

2. Edge effects are weaker in the canopy than in the understory. 

3. Effects of tree diversity differ across forest strata. 

4. Different functional groups of beetles are differently affected by edge proximity, tree 

diversity and forest stratum. 

 

Methods 

Study area and study design 

The study region, the Hainich National Park, is situated between the cities of Bad 

Langensalza, Mühlhausen and Eisenach in the federal state of Thuringia in Central Germany 

(51°5 0″N, 10°30′24″E). The area is characterised by 75 km
2
 of beech forests on calcareous 

soils with the dominant forest communities Hordelymo-Fagetum, Galio-Fagetum and 

Stellario-Carpinetum. The parent material is Triassic limestone (Upper Muschelkalk) with a 

loess cover. The area has been a military restricted area and the forest has hardly been 

managed for 33 years before it became National Park in 1997 (Mölder et al., 2006, 2008). 

This allowed for a near-natural development of the forest. In 2011, the core zone has been 

declared as UNESCO World Heritage site (‘‘Primeval Beech Forests of the Carpathians and 

the Ancient Beech Forests of Germany”). 

Due to past management, the National Park’s forest consists of a mosaic of forest stands with 

contrasting tree diversity (ranging from 1 to 14 tree species/ha) but with comparable climate 

and soil conditions (Leuschner et al., 2009; Mölder et al., 2006), making it particularly 

suitable for our research questions. 

We laid out transects extending from the forest edge into the forest interior. Transects were 

evenly distributed over the whole forested area of the National Park. A pool of 23 potentially 

suitable transects were selected a priori using maps of forest types provided by the National 

Park’s administration. 10 of these transects fulfilled the criteria of being either poor (c. 3 

species) or rich (c. 6.5 species) in tree species, having a similar age class and a low variability 

of tree diversity within each stand and were permitted for this study by the National Park’s 

administration. Five transects were located in beech dominated forest stands with a low tree 

diversity and five transects were in forest stands with a high tree diversity. Minimum distance 

between transects was 750 m. 
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We expected the strongest changes in beetle communities close to the forest edge (Didham & 

Lawton, 1999). Therefore, we established plots at the distances of 0, 32, 80, 200 and 500 m 

from the edge. In four of ten cases the maximum distance of 500 m from the edge could not 

be implemented because tree species composition changed, stand age differed or the distance 

to the next edge was not large enough. The ‘‘0 m” point of the transects was set at the position 

where canopy tree trunks of the original forest began. 

Forest edges were characterised by dense shrub belts consisting of blackthorn (Prunus 

spinosa), whitethorn (Crataegus laevigata) and saplings of ash (Fraxinus excelsior). The 

surrounding habitats comprised (mostly abandoned) grasslands of different successional 

stages. 

 

Tree survey 

Around each of the 41 plots we conducted a tree survey (tree relevé sized 20 x 40 m, longer 

side parallel to forest edge). Each tree (DBH ≥ 10 cm) and its diameter at breast height (DBH) 

were recorded. We assessed tree species richness (SR), % beech (based on basal area) and the 

Shannon–Wiener diversity index (H’) based on basal area (Magurran, 2004). As Tilia cordata 

and Tilia platyphyllos could not be reliably separated in the field, lime was only determined to 

genus level. 

 

Beetle sampling and processing 

At each of the plots, two cross-window flight interception 

traps (Fig. 1) were installed which resulted in a total of 92 

traps. One trap was placed in the understory 1 m above the 

ground and another one in the forest canopy. Traps were 

positioned in the vertical centre ((tree crown base + tree 

height)/2) and horizontal outer part of beech tree crowns 

(Kowalski et al., 2011). Trap height ranged from app. 20 to 

28 m. Traps in the low diversity stands were bordering only 

other beech trees. In high diversity plots neighbouring trees 

were two different deciduous tree species other than beech. 

Each trap consisted of two translucent polycarbonate sheets 

(40 x 60 cm) fixed to two funnels made of tarpaulin, one at 

the top and one at the bottom of the traps and leading to 

collecting jars filled with ethylene–glycol (diluted with 

Figure 1 Flight interception trap 

used to sample beetles along 

transects extending from forest edges 

to the interior, across two vertical 

strata.  
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water 1:1). In the beginning of April the traps were installed for a period of seven months and 

were emptied monthly until the beginning of November 2012. 

Beetles were transferred into 70% ethanol and determined to species level. The nomenclature 

follows de Jong (2013). The abundance of each species per trap was pooled over the seven 

months of sampling. Ecological traits for each species were identified based on literature 

(Böhme, 2001, 2004; GAC, 2008; Gossner et al., 2013a; Koch, 1989a, 1989b, 1992; Köhler, 

2000; Weigel & Apfel, 2011). Beetles were grouped (1) according to their forest 

specialisation (variable name ForestSpec) into forest species (predominantly occurring in 

forests) and habitat generalists (occurring in forests and elsewhere) and (2) according to their 

dependence on dead wood as saproxylic and non-saproxylic species (variable name 

SaproxylicSpec). 

 

Measurement of environmental parameters 

Canopy openness was assessed on each plot using fish-eye photography (see Appendix A for 

a detailed procedure). Dead wood volume was recorded on each of the tree relevé plots. All 

standing and lying pieces of dead wood (length ≥ 1m, diameter ≥ 7 cm) were registered if the 

thicker end lay inside the plot. The total dead wood volume was then calculated following 

Meyer (1999). 

 

Data analysis 

To account for the hierarchical study design (transect, sampling point, stratum), we used 

mixed-effects models to assess the effects of tree diversity, distance from the forest edge, 

stratum, forest specialisation and dead wood dependence on beetle species richness. Tree 

diversity level, tree species richness, Shannon index and beech proportion were highly 

correlated (Table 1), and we decided to use only tree diversity level as variable in the 

following analyses. Multinomial models were used to analyse single species responses and 

beetle community composition. Finally, interrelations between the design variables, 

environmental variables and beetle species richness were analysed using structural equation 

modelling. All analyses were conducted using R (R Core Team, 2014). 

 

Table 1 Spearman’s rank correlation coefficients (rho) of parameters describing tree species composition. All 

correlations were highly significant (P < 0.001)). 

  Tree diversity level No. tree species H' tree area % beech area 

Tree diversity level  - 
   

No. tree species 0.77  - 
  

H' tree area 0.80 -0.91 - 
 

% beech area -0.78 -0.90 -0.91  - 
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Analysis of total beetle species richness 

Mixed-effects models for total beetle species richness (SR) included the fixed-effects terms 

distance from the forest edge (‘‘distance”, continuous), tree diversity level (‘‘treediversity”, 

categorical, levels: low and high) and stratum (‘‘stratum”, categorical, levels: canopy and 

understory). As distances along transects followed a power law, ‘‘distance” was log-

transformed. Transect and location along transect (e.g. at 32 m distance) were included as 

random effects as location was nested within transect (...,random = ~1|transect/location,...). 

The lowest hierarchical level (individual traps) was not explicitly included in the random-

effects part of the model as this would have saturated our models with random effects. 

Initial models contained three-way interactions among explanatory variables and were fitted 

using restricted maximum likelihood-method (REML) and variance functions to ensure 

homoscedasticity and normality of errors. We then calculated AICc (Akaike’s Information 

Criterion, corrected for small sample sizes, ‘‘MuMIn” package (Burnham and Anderson, 

2002)) for each model and selected the one with lowest AICc as the maximal model with 

optimal random part. This model was re-fitted using maximum likelihood. We then performed 

stepwise model simplification based on AICc (stepAICc function, ‘‘MASS” package, 

corrected for small sample sizes by C. Scherber (2009, http://www.christoph-

scherber.de/stepAICc.txt)). 

In additional models, we tested if forest specialisation and dead wood dependence influenced 

the response of beetle species richness to the design variables. For this, we fitted two further 

mixed-effects models and included either ‘‘ForestSpec” (levels: forest species, habitat 

generalists) or ‘‘SaproxylicSpec” (levels: saproxylic species, non-saproxylic species) as 

explanatory variables into the basic mixed-effects model (see above). Moreover, position of 

the flight interception traps (canopy or understory) was added to the randomeffects 

(...,random= ~1|transect/location/position,...). All following procedures were as described 

above. 

 

Community composition 

To analyse the effect of distance from the forest edge, tree diversity level and stratum on 

beetle community composition, we used multinomial models (multinom function, ‘‘nnet” 

library (Ripley, 2013; Scherber et al., 2014)) including three-way-interactions between 

explanatory variables. Although multinomial models are inherently nonlinear, we log-

transformed distance from the forest edge because it improved the model fit (compared using 

AICc). The response variable was a matrix containing the abundances of each species 
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(including only species with a total abundanceP20). We removed rare species as they 

contribute negligible information about treatment effects (Warton et al., 2014). Model 

simplification was conducted automatically using stepwise model selection based on AICc 

(see above). Significance of terms in final models was assessed using the Anova() function in 

the car library (Fox & Weisberg, 2011), setting MaxNWts = 2000 and error.df = 86. Note that 

multinomial models did not include random effects as these did not improve model fit. 

 

Additional covariate effects 

In order to analyse causal pathways between tree diversity level (exogenous design variable), 

distance from the forest edge (exogenous design variable) and additional observed variables 

characterising forest stands, structural equation models were fitted using the lavaan function 

(‘‘lavaan” package (Rosseel, 2012)) in R. Variables were standardized to a common scale 

(range approx. 0–10) prior to model fitting. Distance from the forest edge was 

logtransformed. To account for non-normal distribution of the response variable beetle SR, 

we used a maximum likelihood estimation with robust standard errors (Huber–White) and a 

scaled test statistic (equal to the Yuan–Bentler) that can be applied to complete and 

incomplete data (estimator = ‘‘MLR”). 

To account for potentially different pathways in the canopy and the understory, we set up 

multi-group models using ‘‘stratum” as grouping variable. 

Canopy openness and dead wood volume were included as additional explanatory variables. 

We built the model based on the hypotheses that (1) light availability and dead wood amount 

are the key factors predicting forest beetle biodiversity (Müller et al., 2008; Paillet et al.,2010; 

Ranius & Jansson, 2000) and that (2) these factors are influenced by both or at least one of the 

two design variables. 

Model fit was assessed using the Chi2-value and associated p-values, RMSEA, SRNR, CFI 

and AICc (Akaike’s Information Criterion, corrected for small sample sizes (‘‘MuMIn” 

package (Burnham and Anderson, 2002)) of the model. 

 

 

 

  



    CHAPTER 4 

- 110 - 

Results 

Overall characteristics of the forest stands  

Forest stands poor in tree species (mean tree SR: 3.00 ± 0.34, mean beech %: 81.37 ± 4.48, 

mean H’ trees: 0.44 ± 0.08) contrasted with forest stands with a high tree diversity (mean tree 

SR: 6.43 ± 0.33, mean beech %: 25.46 ± 4.27, mean H’ trees: 1.37 ± 0.05) which were 

characterised by various other deciduous tree species such as Quercus robur, Quercus petrea, 

Tilia sp., Acer campestre, Acer platanoides, Acer pseudoplatanus, Fraxinus excelsior and 

Carpinus betulus. Additionally, Prunus avium, Betula pendula, Populus tremula, Ulmus 

glabra, Salix caprea and Sorbus torminalis occurred. 

 

Beetle taxa 

In total, we recorded 13,204 beetle specimens from 76 families and 536 species. They 

comprised 228 forest species and 290 habitat generalists (defined here as species not 

predominantly occurring in forests). 227 species (42.4% of all species) were saproxylic. 

Species richness and abundance per trap varied from 25 to 94 species and 63 to 458 

individuals. 61 species (of which 79% were saproxylic) had a high conservation value since 

they were either red-listed or protected by German law. 

The five most abundant species were Cortinicara gibbosa (Latridiidae; 13.2% of all 

individuals), Meligethes aeneus (Nitidulidae; 10.8%), Athous vittatus (Elateridae; 9.1%), 

Epuraea melanocephala (Nitidulidae; 4.4%) and Trixagus meybohmi (Throscidae; 3.2%) (see 

Appendix Table B1 for a complete species list). The most species rich families were 

Staphylinidae (111 species, 20.7% of all species), Curculionidae (39 species, 7.3%), 

Carabidae (31 species, 5.8%), Cerambycidae (12 species, 2.2%) and Elateridae (21 species, 

3.9%). The most abundant families were Latridiidae (2310 individuals, 17.5%), Nitidulidae 

(2213, 16.8%), Elateridae (1966, 14.9%), Curculionidae (1010, 7.65%) and Staphylinidae 

(915, 6.9%). 

 

Total beetle species richness 

In the understory, total species richness of beetles (Fig. 2, Table 2 (model a)) declined 

strongly from the edge towards the forest interior while this effect was mitigated in the 

canopy. Tree diversity had a strong positive impact on total beetle species richness both in the 

canopy and the understory. 
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Table 2 Results of mixed-effects models for predicting a) total beetle species richness, b) species richness of 

forest and non-forest species and c) saproxylic species and non-saproxylic species. Reference level of stratum 

was canopy, of treediversity low tree diversity, of ForestSpec forest, of SaproxylicSpec saproxylic. Distance 

from the forest edge was log-transformed.  

lme analysis   Estimate SE DF t P 

a) Effect of design variables 

on total beetle species 

richness 

Intercept 46,425 7,126 44 6,515 0,000 

Logdist -1,942 1,412 35 -1,375 0,178 

Treediversity 11,097 3,952 8 2,808 0,023 

Stratum 21,456 8,905 44 2,410 0,020 

Logdist:Stratum -3,565 1,883 44 -1,894 0,065 

 
 

     b) Effect of design variables 

and forest specialisation on 

beetle species richness 

Intercept 18,524 4,381 88 4,228 0,000 

Logdist -0,794 0,868 35 -0,915 0,366 

Treediversity 5,570 1,940 8 2,872 0,021 

Stratum -0,084 5,718 44 -0,015 0,988 

ForestSpec 8,748 4,858 88 1,801 0,075 

Logdist:Stratum -0,389 1,176 44 -0,331 0,742 

Logdist:ForestSpec -0,223 0,979 88 -0,228 0,820 

Stratum:ForestSpec 21,742 6,870 88 3,165 0,002 

Logdist:Stratum:ForestSpe

c -2,811 1,384 88 -2,031 0,045 

       c) Effect of design variables 

and saproxylic specialisation 

on beetle species richness 

Intercept 17,136 4,143 89 4,136 0,000 

Logdist -0,016 0,813 35 -0,019 0,985 

Treediversity 5,572 1,933 8 2,883 0,020 

Stratum 4,080 4,689 44 0,870 0,389 

SaproxylicSpec 10,934 3,771 89 2,899 0,005 

Logdist:Stratum -1,821 0,956 44 -1,906 0,063 

Logdist:SaproxylicSpec -1,694 0,742 89 -2,283 0,025 

Stratum:SaproxylicSpec 13,853 1,552 89 8,928 0,000 

“:” indicates interactions; Logdist = log-transformed distance from forest edge; ForestSpec = Forest 

specialisation; SaproxylicSpec= Saproxylic specialisation 

Fig. 2. Effect of distance from the forest edge, tree diversity and stratum on total 

beetle species richness. Lines represent predictions from a mixed-effects model 

(Table 2 (model a)). Distance from forest edge was back-transformed to the original 

scale for graphical illustration. 
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Forest species vs. habitat generalists 

Comparing forest species and habitat generalists (Fig. 3a, Table 2 (model b)) showed that the 

richness of forest species was higher in the canopy compared with the understory. Tree 

diversity had a positive effect on both habitat specialisation groups. The overall edge response 

of all groups was weak, except for habitat generalists whose species richness strongly 

increased towards the edge in the understory. 

 

Saproxylic vs. non-saproxylic species 

In the understory, the beetle community was strongly dominated by non-saproxylic beetles 

(Fig. 3b, Table 2 (model c)). This was not the case in the canopy, where the richness of 

saproxylic species strongly increased while the richness of non-saproxylic species decreased 

compared with the understory. Tree diversity affected both groups positively. The edge 

response of both groups was much weaker in the canopy compared with the understory and 

saproxylic species responded weaker than non-saproxylic species in the understory and not at 

all in the canopy.  

 

 

Effects on community composition 

Multinomial models showed that beetle community composition was driven by a two-way-

interaction of distance from the forest edge and tree diversity and by a two-way-interaction of 

distance from the forest edge and stratum (Fig. 4, Table 3). 

 

Figure 3 Effect of distance from the forest edge, tree diversity, stratum and (a) forest specialisation, (b) dead 

wood dependence on beetle species richness. Lines represent predictions from mixed-effects models (Table 2 

(models b and c)). Distance from forest edge was back-transformed to the original scale for graphical 

illustration. 
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Table 3 Results of the minimal adequate multinomial model testing the effect of tree diversity level, distance 

from the forest edge and stratum on beetle community composition. LR = Likelihood ratio statistic. 

  LR Chisq DF P 

Logdist -497053 1 1 

Treediversity 275329 1 <0.001 

Stratum 527244 1 <0.001 

Logdist:Treediversity 12000986 1 <0.001 

Logdist:Stratum 12196642 1 <0.001 

“:” indicates interactions; Logdist = log-

transformed distance from forest edge 

 

 

 

 

 

Figure 4 Effect of distance from forest edge, tree diversity and stratum on beetle community composition 

and relative abundance of single beetle species. Curves show predictions from a minimal adequate 

multinomial model. For full species names, see Appendix Table B1. 
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Causal pathways 

Structural equation modelling (Fig. 5, v2 = 1.469; P = 0.832, detailed statistical output in 

Appendix Table C1) revealed that our a priori hypothesis corresponded well with the 

observed covariance matrix. It explained 43% of the variance in beetle SR in the canopy and 

37% in the understory. We found a strong positive effect of tree diversity on dead wood 

volume. Canopy openness was only weakly affected by tree diversity. Increasing distance 

from the forest edge had almost no effect on dead wood volume and a slightly negative effect 

on canopy openness. 

Beetle species richness of the canopy was positively affected by tree diversity and dead wood 

volume. Additionally, canopy openness had a moderately positive effect. Increased distance 

from the forest edge had a weakly negative influence on beetle species richness of the canopy. 

On the contrary, in the understory, the negative impact of distance from the forest edge on 

beetle species was much stronger. The positive effect of tree diversity on beetle SR was 

attenuated compared with the canopy. Moreover, the positive effect of canopy openness was 

stronger compared with the canopy but the effect of dead wood volume was hardly existent. 

Including additional environmental variables into the model reduced model fit (based on 

AICc). 
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Figure 5 Multi-group structural equation model showing pathways between distance 

from the forest edge, tree diversity, other forest characteristics and beetle species 

richness (beetle SR) in (a) the canopy and (b) the understory (χ2 = 1.469; P  = 0.832; 

DF = 4; rmsea= 0.000; srmr = 0.023; cfi = 1.000). Numbers next to arrows are 

standardized coefficients. Green arrows indicate a positive (+) and red arrows a 

negative (-) relationship. Arrow width shows effect strength. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Discussion 

We have shown that three main drivers of forest biodiversity (tree diversity, edge proximity 

and stratum) influenced each other in determining beetle species richness, community 

structure (fraction of ecological groups within the community) and community composition in 

a temperate deciduous forest. 

 

Edge effects 

Total species richness increased with edge proximity – a commonly observed pattern at forest 

edges (Ewers & Didham, 2007; Jokimäki et al., 1998). Stronger edge effects in the understory 

compared with the canopy are likely to result from differences in microclimatic variability 

and resource distribution (Tal et al., 2008; Vodka & Cizek, 2013; Wermelinger et al., 2007). 

Microclimatic conditions in the understory deep inside the forest are often fairly constant 

(Didham & Ewers, 2014; Tal et al., 2008), but edge proximity can influence parameters such 

as light availability, litter depth, variability in temperature and humidity, species invasion as 

well as herb cover and diversity (Murcia, 1995), thus altering environmental heterogeneity 

and resource distribution for primary and secondary consumers. Forest canopies can be 

considered vertical edge-like habitats themselves (Didham & Ewers, 2014) and experience a 

high microclimatic variability during the day and hence may be less prone to being influenced 

by the forest edge. 

Some, but not all species are influenced by edge proximity (Rainio and Niemelä (2003) and 

references therein). Consequently, ecological groups responded differently, as habitat 

generalists (only in the understory) and non-saproxylic species showed a stronger edge 

response than forest and saproxylic species. This partly explains the pattern observed for 

overall beetle species richness. Species from the matrix may rather enter forests close to the 

ground than in the canopy and therefore cause a higher species richness of non-specialists 

near the edge in the understory compared with the canopy. 

In line with Ewers & Didham (2008) we found that the edge response of beetles occurred on a 

large spatial scale and extended up to 500 m into the forest interior. For plants and 

environmental factors, such as soil pH, this has recently been shown (Bergès et al., 2013; 

Hofmeister et al., 2013; Pellissier et al., 2013). However, evidence of long-ranging edge 

effects for arthropods are scarce (Ewers & Didham, 2008). 
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Tree diversity 

Tree diversity predicted beetle community composition and increased beetle species richness. 

Similar results on invertebrates have been shown in comparable systems (Cesarz et al., 2007; 

Sobek et al., 2009a, 2009b). However, opposing patterns have been found across different 

study approaches (e. g. observational vs. experimental) and regions (Scherer-Lorenzen, 2014). 

Overall, tree diversity effects were positive across all ecological groups and strata. Fagus 

sylvatica, the most abundant tree species on our study sites and in most Central European 

deciduous forests, creates monotonous stand conditions characterised by a dense canopy, 

nutrient poor acidic leaves, creating thick mats of leaf litter and a low diversity and cover of 

understory vegetation (Barbier et al., 2008; Mölder et al., 2008; Vockenhuber et al., 2011). 

Other tree species present on our plots differ from beech in terms of crown architecture, bark 

structure, leaf budding, nutritional quality, etc. (Barbier et al., 2008; Jacob et al., 2010; 

Nicolai, 1986). Higher tree diversity also leads to higher understory plant species richness 

(Mölder et al., 2008). Therefore, higher tree diversity increases environmental heterogeneity 

as well as niche, structural and resource diversity (Sobek et al., 2009b) both in the canopy and 

the understory. These factors are regarded as key drivers of arthropod biodiversity (Tews et 

al., 2004). 

 

Causal pathways 

Higher tree diversity increased the overall amount of dead wood of the forest stands fourfold. 

Gamfeldt et al. (2013) reported similar findings. This may result from tree species specific 

differences in the amount of dead wood produced, decay rate and the retention time at a tree 

(Beets et al., 2008; Lofroth, 1998). For example, oak produces more dead wood than beech, 

and the retention time in the crown is longer (Ammer et al., 2008). 

Tree diversity and the overall amount of dead wood in the forest stand were the most 

important predictors of beetle species richness in the canopy. Forest canopies are structurally 

very diverse habitats with respect to factors such as crown architecture, dead wood and rot 

holes (Bouget et al., 2011; Gruppe et al., 2008). A mixture of different tree species with 

different canopy architectures is likely to further increase this structural diversity (Seidel et 

al., 2013). A deep-fissured bark structure as found in oak, ash or lime (but not beech), as an 

example, increases colonisation by epiphytes, but also the accumulation of debris and 

compost (Nicolai, 1986) and thus leads to higher micro-structural/habitat diversity within the 

canopy. 
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In additional SEM analyses (Appendix Fig. D1, Table D1) we separated total dead wood into 

lying and standing dead wood and additionally included the basal area of oak trees, since 

these are known to accumulate exceptionally much dead wood in forest canopies (Ammer et 

al., 2008). All three variables increased with increasing tree diversity. It showed that our 

results were robust and that indeed beetles sampled in the canopy responded more strongly to 

downed than to standing dead wood. This can be explained by species moving across strata 

such as the two most dominant species of the canopy Cortinicara gibbosa and Athous vittatus, 

which additionally use understory habitats in parts of their life cycle (Honomichl, 1998; 

Stresemann, 2011). Moreover, beetle species richness showed a strong positive response to 

oak basal area indicating a link to increased deadwood in the canopy of forest stands rich in 

tree species. 

In the canopy, forest and saproxylic species constituted a higher fraction of the beetle 

community indicating a more special habitat compared with the understory where habitat 

generalists stronger dominated the beetle community. Previous studies reported the highest 

diversity of saproxylic beetles in habitats where both a high dead wood volume and sunlight 

availability were available (Jonsell et al., 1998; Müller et al., 2008; Vodka & Cizek, 2013; 

Wermelinger et al., 2007). The forest’s overall light regime was of minor importance in the 

canopy since light availability is in general higher compared with the understory and is thus 

not a limiting factor. Additionally, some species prefer certain tree species or genera and 

some tree species house a higher beetle diversity than others (Davies et al., 2008; Irmler et al., 

1996; Jonsell et al., 1998; Lindhe and Lindelöw, 2004; Sprick & Floren, 2008; Weigel & 

Apfel, 2011). Jonsell et al. (2007) examined saproxylic beetle diversity on logging residues of 

different tree species and stated that no tree species can be replaced by another without risking 

biodiversity loss. Matching our results, Walentowski et al. (2014) argued that there are only 

few beech specialist species and more species associated with other tree species such as 

Ulmus, Tilia, Fraxinus and Quercus because beech only became the dominant tree species of 

Central Europe in the post-glacial time. Therefore, increased canopy tree diversity is likely to 

have met the requirements of more specialist species. Since we can assume a higher number 

of species being associated with certain tree species, one factor contributing to the overall 

higher beetle diversity (γ-diversity) in forest stands rich in tree species may result from a 

higher species turnover among trees compared with species poor forest stands. In line with 

that Sobek et al. (2009a) reported an increase in β-diversity even among conspecific tree 

individuals in mixed forest stands compared with monospecific forest stands. 
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Besides the tree species, a forest’s understory is characterised by several potentially 

influential parameters such as herb, shrub and litter layer, but also soil characteristics and 

light availability – a strong limiting factor where light is scarce (Mölder et al., 2014). 

Additionally, in the understory fewer saproxylic and forest species were recorded and habitat 

generalists such as Meligethes aeneus strongly dominated the beetle community. Canopy 

openness and distance from the forest edge increasing in importance indicate that tree 

diversity effects on beetles in the understory may be less important or rather indirect 

compared with the canopy. 

Beetle community composition changed with increasing distance from the forest edge, but 

this depended on tree diversity level and forest stratum. Species specific requirements 

regarding microhabitat, microclimate and resource availability but also interspecific 

interactions may have shaped the beetle communities along the edge-interior gradient in the 

high and the low tree diversity level, but also in the canopy and the understory (Bouget et al., 

2011; Grimbacher and Stork, 2007). This is reflected in individual species preferring certain 

forest strata (e. g. Athous vittatus or Ernoporicus fagi), tree diversity levels (e. g. Orchestes 

fagi or Phyllobius argentatus) or forest edge or interior (e. g. Atomaria linearis). 

 

Study relevance 

The tree diversity effects reported here cannot be clearly separated from beech dominance 

effects, given that the forests studied here all contained beech (Nadrowski et al., 2010). 

However, comparable studies by Sobek et al. (2009a,b) and Vockenhuber et al. (2011) 

showed that including not only beech abundance but also tree diversity considerably 

improved the explanatory power of statistical models. Taking advantage of natural gradients 

in tree diversity under comparable site conditions offers the opportunity to obtain results with 

a high relevance for real-world systems (Leuschner et al., 2009; Pretzsch et al., 2013). Since 

planted tree diversity experiments (Bruelheide et al., 2014; Scherer-Lorenzen et al., 2007) are 

more independent in their study design, thus reducing confounding factors, they indisputably 

have advantages over observational studies. Yet, they differ from natural old-growth forest 

stands in many aspects making their results hardly transferable to mature forest stands 

(Pretzsch et al., 2013). Furthermore, they are unsuitable for studying the full natural beetle 

diversity, since many species depend on characteristics of mature trees/forest stands (Grove, 

2002) – a stage that has in most cases not yet been reached in planted forest biodiversity 

experiments. Nevertheless, studies on natural tree diversity gradients but with dominant tree 

species other than beech (Baeten et al., 2013) may help to assess the generality of our results.  
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Conclusions 

This is the first study assessing the relative effects of forest edge, stratum and tree diversity in 

consideration of interactions among these predictors on beetles in forests.  

The outcome of this study emphasizes the relevance of taking large spatial scales into account 

when addressing edge effect in forests. Many studies examined differences in arthropod 

communities between forest edge and forest interior and the majority of these studies placed 

the ‘‘interior plots” at max. 100 m away from the forest edge. This appears questionable in the 

light of our results. 

As pointed out by Didham (2010) it still remains unclear why the strength and range of edge 

effects is so variable. According to Ries & Sisk (2010) and references therein from a 

conservation perspective, it is not only important to find out where edge effects occur but also 

where they do not occur. By showing that edge effects in forests are much weaker in the 

canopy compared to the understory, we hope to contribute a puzzle piece to this debate that 

has so far been neglected. Our results indicate that the canopy habitat and canopy arthropods 

may be less impaired by fragmentation induced edge effects, than understory species and 

habitat. Furthermore, saproxylic beetle species yielded highest numbers in the canopy of 

forest stands rich in tree species. This is particularly relevant since there are many red-listed 

species among saproxylic arthropods and they often serve as target species for conservation 

(Davies et al., 2008; Lachat et al., 2012). Therefore, an increased diversity of deciduous tree 

species in mature beech forests may help to preserve the diversity of specialist beetle species 

in Central Europe. 

Our results demonstrate that pathways driving beetle diversity in forests may differ across 

forest strata. Therefore, a multi-layer sampling is recommended (Bouget et al., 2011; Su & 

Woods, 2001) if the aim is to draw conclusions about the whole system. 
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Appendix 

 

Appendix A 

Assessment of canopy openness: 

Canopy openness was assessed using fish eye photographs taken with a Nikon Coolpix 8400 

camera plus Nikon FC-E9 fisheye converter and UR-E16 adapter ring (Nikon Corporation, 

Chiyoda, Tokyo, Japan). Using Adobe Photoshop CS6 (Adobe Systems Inc., San Jose, 

California, USA) the photographs were processed in three steps: 1. The image background 

was converted into an editable layer, 2. the ellipse selection tool was used to select an exactly 

circular area, excluding the black margin contained in each photograph, 3. in the layers menu, 

"layer mask" was selected and then "reveal selection" chosen; the formerly black area was 

thus removed and replaced by a transparent background. Thereafter we used Adobe 

Photoshop Lightroom 5.2 (Adobe Systems Inc.) and performed adjustments to all 

photographs in the following way: Contrast was set to -100, highlights were set to -73, whites 

were set to +7, black was set to -100 and clarity was set to 66. In the tone curve, lights were 

set to +96. Using SideLook 1.1.01 we (automatically) estimated the optimal threshold for 

converting photographs into black-and-white pictures (Nobis and Hunziker, 2005). We then 

calculated canopy openness with Gap Light Analyzer 2.0 (Cary Institute of Ecosystem 

Studies, Millbrook, New York, USA). 

 

References:  

Nobis, M. & Hunziker, U. (2005) Automatic thresholding for hemispherical canopy-

photographs based on edge detection. Agric. For. Meteorol. 128, 243–250. 

  



CHAPTER 4                APPENDIX 

- 131 - 

Appendix B 

Table B1 

List of beetle species recorded along the 10 transects. The nomenclature follows de Jong (2013)*. Habitat 

generalists are defined here as species not explicitly adapted to forests. Forest species = species predominantly 

occurring in forests; Habitat generalists = species occurring in forests and elsewhere 

Species Abbr. Family Habitat preference Dead wood dependence 

Euglenes oculatus Eugl_ocul Aderidae forest species saproxylic 

Allecula morio Alle_mori Alleculidae forest species saproxylic 

Mycetochara maura Myce_maur Alleculidae forest species saproxylic 

Dorcatoma chrysomelina Dorc_chry Anobiidae forest species saproxylic 

Dorcatoma dresdensis Dorc_dres Anobiidae forest species saproxylic 

Dryophilus pusillus Dryo_pusi Anobiidae forest species saproxylic 

Ernobius abietinus Erno_abie Anobiidae forest species saproxylic 

Ernobius abietis Erno_abie Anobiidae forest species saproxylic 

Hadrobregmus pertinax Hadr_pert Anobiidae forest species saproxylic 

Hemicoelus costatus Hemi_cost Anobiidae forest species saproxylic 

Hemicoelus fulvicornis Hemi_fulv Anobiidae habitat generalist saproxylic 

Hyperisus plumbeum Hype_plum Anobiidae habitat generalist saproxylic 

Ptilinus pectinicornis Ptil_pect Anobiidae forest species saproxylic 

Ptinomorphus imperialis Ptin_impe Anobiidae forest species saproxylic 

Xestobium rufovillosum Xest_rufo Anobiidae forest species saproxylic 

Anthribus nebulosus Anth_nebu Anthribidae forest species saproxylic 

Platystomos albinus Plat_albi Anthribidae habitat generalist saproxylic 

Tropideres albirostris Trop_albi Anthribidae habitat generalist saproxylic 

Ceratapion gibbirostre Cera_gibb Apionidae habitat generalist non-saproxylic 

Cyanapion spencii Cyan_spen Apionidae habitat generalist non-saproxylic 

Eutrichapion ervi Eutr_ervi Apionidae habitat generalist non-saproxylic 

Eutrichapion viciae Eutr_vici Apionidae habitat generalist non-saproxylic 

Oxystoma cerdo Oxys_cerd Apionidae habitat generalist non-saproxylic 

Oxystoma craccae Oxys_crac Apionidae habitat generalist non-saproxylic 

Oxystoma ochropus Oxys_ochr Apionidae habitat generalist non-saproxylic 

Protapion apricans Prot_apri Apionidae habitat generalist non-saproxylic 

Protapion fulvipes Prot_fulv Apionidae habitat generalist non-saproxylic 

Diplocoelus fagi Dipl_fagi Biphyllidae forest species saproxylic 

Odonteus armiger Odon_armi Bolboceratidae habitat generalist non-saproxylic 

Bruchus rufimanus Bruc_rufi Bruchidae habitat generalist non-saproxylic 

Byrrhus pilula Byrr_pilu Byrrhidae habitat generalist non-saproxylic 

Byturus tomentosus Bytu_tome Byturidae habitat generalist non-saproxylic 

Cantharis decipiens Cant_deci Cantharidae habitat generalist non-saproxylic 

Cantharis figurata Cant_figu Cantharidae habitat generalist non-saproxylic 

Cantharis fusca Cant_fusc Cantharidae habitat generalist non-saproxylic 

Cantharis nigricans Cant_nigr Cantharidae habitat generalist non-saproxylic 

Cantharis obscura Cant_obsc Cantharidae forest species non-saproxylic 

Cantharis pellucida Cant_pell Cantharidae habitat generalist non-saproxylic 

Cantharis rufa Cant_rufa Cantharidae habitat generalist non-saproxylic 

Cantharis terminata Cant_term Cantharidae forest species non-saproxylic 

Malthinus flaveolus Malt_flav Cantharidae forest species non-saproxylic 

Malthodes guttifer Malt_gutt Cantharidae habitat generalist saproxylic 

Malthodes holdhausi Malt_hold Cantharidae forest species saproxylic 

Malthodes maurus Malt_maur Cantharidae forest species saproxylic 

Malthodes minimus Malt_mini Cantharidae forest species saproxylic 

Malthodes spathifer Malt_spat Cantharidae forest species saproxylic 

Metacantharis discoidea Meta_disc Cantharidae habitat generalist non-saproxylic 

Podistra rufotestacea Podi_rufo Cantharidae habitat generalist non-saproxylic 

Rhagonycha fulva Rhag_fulv Cantharidae habitat generalist non-saproxylic 

Rhagonycha lignosa Rhag_lign Cantharidae habitat generalist non-saproxylic 

Rhagonycha lutea Rhag_lute Cantharidae habitat generalist non-saproxylic 

Rhagonycha nigriventris Rhag_nigr Cantharidae habitat generalist non-saproxylic 

Rhagonycha translucida Rhag_tran Cantharidae habitat generalist non-saproxylic 
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Species Abbr. Family Habitat preference Dead wood dependence 

Acupalpus meridianus Acup_meri Carabidae habitat generalist non-saproxylic 

Amara aenea Amar_aene Carabidae habitat generalist non-saproxylic 

Amara convexior Amar_conv Carabidae habitat generalist non-saproxylic 

Amara familiaris Amar_fami Carabidae habitat generalist non-saproxylic 

Amara montivaga Amar_mont Carabidae habitat generalist non-saproxylic 

Amara ovata Amar_ovat Carabidae habitat generalist non-saproxylic 

Amara similata Amar_simi Carabidae habitat generalist non-saproxylic 

Anchomenus dorsalis Anch_dors Carabidae habitat generalist non-saproxylic 

Bembidion deletum Bemb_dele Carabidae habitat generalist non-saproxylic 

Bembidion guttula Bemb_gutt Carabidae habitat generalist non-saproxylic 

Bembidion lampros Bemb_lamp Carabidae habitat generalist non-saproxylic 

Bembidion lunulatum Bemb_lunu Carabidae habitat generalist non-saproxylic 

Bembidion properans Bemb_prop Carabidae habitat generalist non-saproxylic 

Bembidion quadrimaculatum Bemb_quad Carabidae habitat generalist non-saproxylic 

Brachinus explodens Brac_expl Carabidae habitat generalist non-saproxylic 

Dromius agilis Drom_agil Carabidae forest species saproxylic 

Dromius fenestratus Drom_fene Carabidae forest species saproxylic 

Dromius quadrimaculatus Drom_quad Carabidae forest species saproxylic 

Harpalus affinis Harp_affi Carabidae habitat generalist non-saproxylic 

Leistus spinibarbis Leis_spin Carabidae habitat generalist non-saproxylic 

Limodromus assimilis Limo_assi Carabidae forest species non-saproxylic 

Loricera pilicornis Lori_pili Carabidae habitat generalist non-saproxylic 

Microlestes maurus Micr_maur Carabidae habitat generalist non-saproxylic 

Notiophilus biguttatus Noti_bigu Carabidae habitat generalist non-saproxylic 

Poecilus cupreus Poec_cupr Carabidae habitat generalist non-saproxylic 

Poecilus versicolor Poec_vers Carabidae habitat generalist non-saproxylic 

Pterostichus diligens Pter_dili Carabidae habitat generalist non-saproxylic 

Pterostichus oblongopunctatus Pter_oblo Carabidae forest species non-saproxylic 

Tachys bistriatus Tach_bist Carabidae habitat generalist non-saproxylic 

Trechus obtusus Trec_obtu Carabidae forest species non-saproxylic 

Trechus quadristriatus Trec_quad Carabidae habitat generalist non-saproxylic 

Alosterna tabacicolor Alos_taba Cerambycidae forest species saproxylic 

Anaglyptus mysticus Anag_myst Cerambycidae habitat generalist saproxylic 

Anisarthron barbipes Anis_barb Cerambycidae habitat generalist saproxylic 

Anoplodera sexguttata Anop_sexg Cerambycidae habitat generalist saproxylic 

Grammoptera abdominalis Gram_abdo Cerambycidae habitat generalist saproxylic 

Grammoptera ruficornis Gram_rufi Cerambycidae forest species saproxylic 

Leiopus nebulosus Leio_nebu Cerambycidae forest species saproxylic 

Mesosa nebulosa Meso_nebu Cerambycidae habitat generalist saproxylic 

Obrium brunneum Obri_brun Cerambycidae forest species saproxylic 

Oxymirus cursor Oxym_curs Cerambycidae forest species saproxylic 

Phymatodes testaceus Phym_test Cerambycidae forest species saproxylic 

Phytoecia cylindrica Phyt_cyli Cerambycidae habitat generalist non-saproxylic 

Pogonocherus hispidus Pogo_hisp Cerambycidae forest species saproxylic 

Rhagium bifasciatum Rhag_bifa Cerambycidae forest species saproxylic 

Rhagium mordax Rhag_mord Cerambycidae forest species saproxylic 

Rhagium sycophanta Rhag_syco Cerambycidae forest species saproxylic 

Rutpela maculata Rutp_macu Cerambycidae forest species saproxylic 

Saperda scalaris Sape_scal Cerambycidae forest species saproxylic 

Stenocorus meridianus Sten_meri Cerambycidae habitat generalist saproxylic 

Stenostola dubia Sten_dubi Cerambycidae habitat generalist saproxylic 

Stenurella melanura Sten_mela Cerambycidae forest species saproxylic 

Tetrops praeustus Tetr_prae Cerambycidae habitat generalist saproxylic 

Tetrops starkii Tetr_star Cerambycidae forest species saproxylic 

Cerylon deplanatum Cery_depl Cerylonidae forest species saproxylic 

Cerylon fagi Cery_fagi Cerylonidae forest species saproxylic 

Cerylon ferrugineum Cery_ferr Cerylonidae forest species saproxylic 

Cerylon histeroides Cery_hist Cerylonidae forest species saproxylic 
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Species Abbr. Family Habitat preference Dead wood dependence 

Catops picipes Cato_pici Cholevidae forest species non-saproxylic 

Catops tristis Cato_tris Cholevidae habitat generalist non-saproxylic 

Choleva cisteloides Chol_cist Cholevidae habitat generalist non-saproxylic 

Choleva elongata Chol_elon Cholevidae habitat generalist non-saproxylic 

Choleva reitteri Chol_reit Cholevidae habitat generalist non-saproxylic 

Nargus wilkini Narg_wilk Cholevidae forest species non-saproxylic 

Nemadus colonoides Nema_colo Cholevidae forest species saproxylic 

Aphthona euphorbiae Apht_euph Chrysomelidae habitat generalist non-saproxylic 

Chaetocnema aridula Chae_arid Chrysomelidae habitat generalist non-saproxylic 

Chaetocnema concinna Chae_conc Chrysomelidae habitat generalist non-saproxylic 

Crepidodera aurata Crep_aura Chrysomelidae habitat generalist non-saproxylic 

Crepidodera aurea Crep_aure Chrysomelidae habitat generalist non-saproxylic 

Galeruca tanaceti Gale_tana Chrysomelidae habitat generalist non-saproxylic 

Longitarsus luridus Long_luri Chrysomelidae habitat generalist non-saproxylic 

Longitarsus niger Long_nige Chrysomelidae habitat generalist non-saproxylic 

Orsodacne cerasi Orso_cera Chrysomelidae habitat generalist non-saproxylic 

Phyllotreta nigripes Phyl_nigr Chrysomelidae habitat generalist non-saproxylic 

Phyllotreta undulata Phyl_undu Chrysomelidae habitat generalist non-saproxylic 

Pyrrhalta viburni Pyrr_vibu Chrysomelidae habitat generalist non-saproxylic 

Cis castaneus Cis_cast Ciidae forest species saproxylic 

Cis glabratus Cis_glab Ciidae forest species saproxylic 

Cis micans Cis_mica Ciidae forest species saproxylic 

Ennearthron cornutum Enne_corn Ciidae forest species saproxylic 

Orthocis alni Orth_alni Ciidae forest species saproxylic 

Rhopalodontus perforatus Rhop_perf Ciidae forest species saproxylic 

Sulcacis fronticornis Sulc_fron Ciidae forest species saproxylic 

Clambus armadillo Clam_arma Clambidae habitat generalist non-saproxylic 

Clambus punctulum Clam_punc Clambidae habitat generalist non-saproxylic 

Opilo mollis Opil_moll Cleridae forest species saproxylic 

Tillus elongatus Till_elon Cleridae forest species saproxylic 

Adalia decempunctata Adal_dece Coccinellidae habitat generalist non-saproxylic 

Anatis ocellata Anat_ocel Coccinellidae forest species non-saproxylic 

Calvia decemguttata Calv_dece Coccinellidae habitat generalist non-saproxylic 

Calvia quatuordecimguttata Calv_quat Coccinellidae habitat generalist non-saproxylic 

Chilocorus renipustulatus Chil_reni Coccinellidae habitat generalist non-saproxylic 

Coccinella septempunctata Cocc_sept Coccinellidae habitat generalist non-saproxylic 

Exochomus quadripustulatus Exoc_quad Coccinellidae habitat generalist non-saproxylic 

Halyzia sedecimguttata Haly_sede Coccinellidae habitat generalist non-saproxylic 

Harmonia axyridis Harm_axyr Coccinellidae habitat generalist non-saproxylic 

Nephus bipunctatus Neph_bipu Coccinellidae habitat generalist non-saproxylic 

Scymnus frontalis Scym_fron Coccinellidae habitat generalist non-saproxylic 

Scymnus limbatus Scym_limb Coccinellidae habitat generalist non-saproxylic 

Tytthaspis sedecimpunctata Tytt_sede Coccinellidae habitat generalist non-saproxylic 

Colon latum Colo_latu Colonidae habitat generalist non-saproxylic 

Synchita separanda Sync_sepa Colydiidae forest species saproxylic 

Clypastraea pusilla Clyp_pusi Corylophidae habitat generalist saproxylic 

Orthoperus nigrescens Orth_nigr Corylophidae habitat generalist saproxylic 

Antherophagus pallens Anth_pall Cryptophagidae habitat generalist non-saproxylic 

Atomaria atricapilla Atom_atri Cryptophagidae habitat generalist non-saproxylic 

Atomaria diluta Atom_dilu Cryptophagidae forest species saproxylic 

Atomaria fuscata Atom_fusc Cryptophagidae habitat generalist non-saproxylic 

Atomaria linearis Atom_line Cryptophagidae habitat generalist non-saproxylic 

Atomaria nigriventris Atom_nigr Cryptophagidae habitat generalist non-saproxylic 

Atomaria turgida Atom_turg Cryptophagidae forest species saproxylic 

Cryptophagus pallidus Cryp_pall Cryptophagidae forest species non-saproxylic 

Cryptophagus pilosus Cryp_pilo Cryptophagidae habitat generalist non-saproxylic 

Micrambe abietis Micr_abie Cryptophagidae forest species saproxylic 

Acalles echinatus Acal_echi Curculionidae forest species saproxylic 
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Anthonomus rectirostris Anth_rect Curculionidae habitat generalist non-saproxylic 

Anthonomus rubi Anth_rubi Curculionidae habitat generalist non-saproxylic 

Barypeithes pellucidus Bary_pell Curculionidae unknown non-saproxylic 

Bradybatus fallax Brad_fall Curculionidae forest species non-saproxylic 

Bradybatus kellneri Brad_kell Curculionidae forest species non-saproxylic 

Ceutorhynchus erysimi Ceut_erys Curculionidae habitat generalist non-saproxylic 

Ceutorhynchus obstrictus Ceut_obst Curculionidae habitat generalist non-saproxylic 

Ceutorhynchus pallidactylus Ceut_pall Curculionidae habitat generalist non-saproxylic 

Ceutorhynchus sulcicollis Ceut_sulc Curculionidae habitat generalist non-saproxylic 

Coeliodes rana Coel_rana Curculionidae forest species non-saproxylic 

Coeliodes transversealbofasciatus Coel_tran Curculionidae forest species non-saproxylic 

Curculio glandium Curc_glan Curculionidae habitat generalist non-saproxylic 

Curculio nucum Curc_nucu Curculionidae habitat generalist non-saproxylic 

Curculio venosus Curc_veno Curculionidae forest species non-saproxylic 

Hypera nigrirostris Hype_nigr Curculionidae habitat generalist non-saproxylic 

Hypera postica Hype_post Curculionidae habitat generalist non-saproxylic 

Mogulones asperifoliarum Mogu_aspe Curculionidae habitat generalist non-saproxylic 

Orchestes fagi Orch_fagi Curculionidae forest species non-saproxylic 

Orchestes pilosus Orch_pilo Curculionidae forest species non-saproxylic 

Phyllobius arborator Phyl_arbo Curculionidae unknown non-saproxylic 

Phyllobius argentatus Phyl_arge Curculionidae habitat generalist non-saproxylic 

Phyllobius betulinus Phyl_betu Curculionidae habitat generalist non-saproxylic 

Phyllobius glaucus Phyl_glau Curculionidae habitat generalist non-saproxylic 

Phyllobius oblongus Phyl_oblo Curculionidae unknown non-saproxylic 

Phyllobius roboretanus Phyl_robo Curculionidae unknown non-saproxylic 

Phyllobius viridicollis Phyl_viri Curculionidae unknown non-saproxylic 

Polydrusus formosus Poly_form Curculionidae habitat generalist non-saproxylic 

Polydrusus pilosus Poly_pilo Curculionidae unknown non-saproxylic 

Polydrusus pterygomalis Poly_pter Curculionidae unknown non-saproxylic 

Polydrusus tereticollis Poly_tere Curculionidae unknown non-saproxylic 

Ruteria hypocrita Rute_hypo Curculionidae forest species saproxylic 

Sciaphilus asperatus Scia_aspe Curculionidae unknown non-saproxylic 

Sitona lineatus Sito_line Curculionidae habitat generalist non-saproxylic 

Stenocarus ruficornis Sten_rufi Curculionidae habitat generalist non-saproxylic 

Stereonychus fraxini Ster_frax Curculionidae forest species non-saproxylic 

Strophosoma melanogrammum Stro_mela Curculionidae unknown non-saproxylic 

Trachodes hispidus Trac_hisp Curculionidae forest species saproxylic 

Tychius picirostris Tych_pici Curculionidae habitat generalist non-saproxylic 

Dascillus cervinus Dasc_cerv Dascillidae habitat generalist non-saproxylic 

Aplocnemus nigricornis Aplo_nigr Dasytidae forest species saproxylic 

Dasytes aeratus Dasy_aera Dasytidae habitat generalist saproxylic 

Dasytes caeruleus Dasy_caer Dasytidae unknown unkown 

Dasytes plumbeus Dasy_plum Dasytidae habitat generalist saproxylic 

Megatoma undata Mega_unda Dermestidae habitat generalist saproxylic 

Drilus concolor Dril_conc Driliidae habitat generalist non-saproxylic 

Hygrotus impressopunctatus Hygr_impr Dytiscidae habitat generalist non-saproxylic 

Agriotes acuminatus Agri_acum Elateridae habitat generalist non-saproxylic 

Agriotes lineatus Agri_line Elateridae habitat generalist non-saproxylic 

Agriotes pallidulus Agri_pall Elateridae habitat generalist non-saproxylic 

Agriotes pilosellus Agri_pilo Elateridae habitat generalist non-saproxylic 

Agrypnus murinus Agry_muri Elateridae habitat generalist non-saproxylic 

Ampedus elongatulus Ampe_elon Elateridae habitat generalist saproxylic 

Ampedus nigroflavus Ampe_nigr Elateridae forest species saproxylic 

Ampedus quercicola Ampe_quer Elateridae forest species saproxylic 

Athous bicolor Atho_bico Elateridae habitat generalist non-saproxylic 

Athous haemorrhoidalis Atho_haem Elateridae habitat generalist non-saproxylic 

Athous subfuscus Atho_subf Elateridae habitat generalist non-saproxylic 

Athous vittatus Atho_vitt Elateridae habitat generalist non-saproxylic 
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Calambus bipustulatus Cala_bipu Elateridae habitat generalist saproxylic 

Dalopius marginatus Dalo_marg Elateridae habitat generalist non-saproxylic 

Denticollis linearis Dent_line Elateridae forest species saproxylic 

Denticollis rubens Dent_rube Elateridae forest species saproxylic 

Hemicrepidius hirtus Hemi_hirt Elateridae habitat generalist non-saproxylic 

Hemicrepidius niger Hemi_nige Elateridae habitat generalist non-saproxylic 

Hypoganus inunctus Hypo_inun Elateridae forest species saproxylic 

Melanotus villosus Mela_vill Elateridae forest species saproxylic 

Nothodes parvulus Noth_parv Elateridae habitat generalist non-saproxylic 

Endomychus coccineus Endo_cocc Endomychidae forest species saproxylic 

Dacne bipustulata Dacn_bipu Erotylidae forest species saproxylic 

Triplax lepida Trip_lepi Erotylidae forest species saproxylic 

Triplax russica Trip_russ Erotylidae forest species saproxylic 

Tritoma bipustulata Trit_bipu Erotylidae forest species saproxylic 

Eucnemis capucina Eucn_capu Eucnemidae forest species saproxylic 

Hylis cariniceps Hyli_cari Eucnemidae forest species saproxylic 

Hylis olexai Hyli_olex Eucnemidae forest species saproxylic 

Isorhipis melasoides Isor_mela Eucnemidae forest species saproxylic 

Melasis buprestoides Mela_bupr Eucnemidae forest species saproxylic 

Microrhagus lepidus Micr_lepi Eucnemidae forest species saproxylic 

Anoplotrupes stercorosus Anop_ster Geotrupidae forest species non-saproxylic 

Cyphon padi Cyph_padi Helodidae habitat generalist non-saproxylic 

Abraeus granulum Abra_gran Histeridae forest species saproxylic 

Abraeus perpusillus Abra_perp Histeridae forest species saproxylic 

Paromalus flavicornis Paro_flav Histeridae forest species saproxylic 

Plegaderus dissectus Pleg_diss Histeridae forest species saproxylic 

Cryptopleurum minutum Cryp_minu Hydrophilidae habitat generalist non-saproxylic 

Megasternum concinnum Mega_conc Hydrophilidae habitat generalist non-saproxylic 

Cryptolestes ferrugineus Cryp_ferr Laemophloeidae forest species non-saproxylic 

Lagria atripes Lagr_atri Lagriidae habitat generalist non-saproxylic 

Lamprohiza splendidula Lamp_sple Lampyridae habitat generalist non-saproxylic 

Lampyris noctiluca Lamp_noct Lampyridae habitat generalist non-saproxylic 

Cartodere nodifer Cart_nodi Latridiidae habitat generalist non-saproxylic 

Corticarina minuta Cort_minu Latridiidae habitat generalist non-saproxylic 

Cortinicara gibbosa Cort_gibb Latridiidae habitat generalist non-saproxylic 

Dienerella filiformis Dien_fili Latridiidae habitat generalist non-saproxylic 

Enicmus atriceps Enic_atri Latridiidae forest species saproxylic 

Enicmus brevicornis Enic_brev Latridiidae forest species saproxylic 

Enicmus fungicola Enic_fung Latridiidae forest species saproxylic 

Enicmus rugosus Enic_rugo Latridiidae forest species non-saproxylic 

Enicmus transversus Enic_tran Latridiidae habitat generalist non-saproxylic 

Latridius hirtus Latr_hirt Latridiidae forest species saproxylic 

Stephostethus alternans Step_alte Latridiidae forest species saproxylic 

Stephostethus angusticollis Step_angu Latridiidae habitat generalist saproxylic 

Stephostethus lardarius Step_lard Latridiidae habitat generalist non-saproxylic 

Agathidium nigripenne Agat_nigr Leiodidae forest species saproxylic 

Agathidium pseudopallidum Agat_pseu Leiodidae forest species non-saproxylic 

Agathidium seminulum Agat_semi Leiodidae habitat generalist saproxylic 

Agathidium varians Agat_vari Leiodidae habitat generalist saproxylic 

Amphicyllis globiformis Amph_glob Leiodidae forest species non-saproxylic 

Anisotoma humeralis Anis_hume Leiodidae forest species saproxylic 

Platycerus caraboides Plat_cara Lucanidae forest species saproxylic 

Sinodendron cylindricum Sino_cyli Lucanidae forest species saproxylic 

Elateroides dermestoides Elat_derm Lymexylidae forest species saproxylic 

Charopus flavipes Char_flav Malachidae habitat generalist non-saproxylic 

Malachius bipustulatus Mala_bipu Malachidae forest species saproxylic 

Abdera affinis Abde_affi Melandryidae forest species saproxylic 

Abdera flexuosa Abde_flex Melandryidae forest species saproxylic 
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Conopalpus testaceus Cono_test Melandryidae forest species saproxylic 

Hallomenus binotatus Hall_bino Melandryidae forest species saproxylic 

Hypulus quercinus Hypu_quer Melandryidae forest species saproxylic 

Melandrya caraboides Mela_cara Melandryidae habitat generalist saproxylic 

Melandrya dubia Mela_dubi Melandryidae forest species saproxylic 

Orchesia minor Orch_mino Melandryidae forest species saproxylic 

Orchesia undulata Orch_undu Melandryidae forest species saproxylic 

Phloiotrya rufipes Phlo_rufi Melandryidae forest species saproxylic 

Monotoma brevicollis Mono_brev Monotomidae habitat generalist non-saproxylic 

Rhizophagus bipustulatus Rhiz_bipu Monotomidae habitat generalist saproxylic 

Rhizophagus depressus Rhiz_depr Monotomidae forest species saproxylic 

Rhizophagus dispar Rhiz_disp Monotomidae forest species saproxylic 

Rhizophagus nitidulus Rhiz_niti Monotomidae forest species saproxylic 

Mordellistena neuwaldeggiana Mord_neuw Mordellidae habitat generalist saproxylic 

Mordellistena variegata Mord_vari Mordellidae habitat generalist saproxylic 

Mordellochroa abdominalis Mord_abdo Mordellidae habitat generalist saproxylic 

Tomoxia bucephala Tomo_buce Mordellidae forest species saproxylic 

Litargus connexus Lita_conn Mycetophagidae forest species saproxylic 

Mycetophagus atomarius Myce_atom Mycetophagidae forest species saproxylic 

Mycetophagus fulvicollis Myce_fulv Mycetophagidae forest species saproxylic 

Mycetophagus piceus Myce_pice Mycetophagidae forest species saproxylic 

Mycetophagus populi Myce_popu Mycetophagidae forest species saproxylic 

Mycetophagus quadripustulatus Myce_quad Mycetophagidae forest species saproxylic 

Amphotis marginata Amph_marg Nitidulidae habitat generalist saproxylic 

Cryptarcha undata Cryp_unda Nitidulidae forest species saproxylic 

Cychramus luteus Cych_lute Nitidulidae forest species saproxylic 

Epuraea aestiva Epur_aest Nitidulidae habitat generalist non-saproxylic 

Epuraea biguttata Epur_bigu Nitidulidae habitat generalist saproxylic 

Epuraea distincta Epur_dist Nitidulidae forest species saproxylic 

Epuraea melanocephala Epur_mela Nitidulidae forest species non-saproxylic 

Epuraea pallescens Epur_pall Nitidulidae forest species saproxylic 

Epuraea terminalis Epur_term Nitidulidae forest species saproxylic 

Glischrochilus hortensis Glis_hort Nitidulidae habitat generalist non-saproxylic 

Glischrochilus quadriguttatus Glis_quad Nitidulidae forest species saproxylic 

Glischrochilus quadrisignatus Glis_quad Nitidulidae habitat generalist non-saproxylic 

Meligethes aeneus Meli_aene Nitidulidae habitat generalist non-saproxylic 

Meligethes denticulatus Meli_dent Nitidulidae habitat generalist non-saproxylic 

Meligethes flavimanus Meli_flav Nitidulidae habitat generalist non-saproxylic 

Meligethes nanus Meli_nanu Nitidulidae habitat generalist non-saproxylic 

Pocadius ferrugineus Poca_ferr Nitidulidae forest species non-saproxylic 

Soronia grisea Soro_gris Nitidulidae habitat generalist saproxylic 

Ischnomera cyanea Isch_cyan Oedemeridae habitat generalist saproxylic 

Omalisus fontisbellaquaei Omal_font Omalisidae habitat generalist non-saproxylic 

Sericoderus lateralis Seri_late Orthoperidae habitat generalist non-saproxylic 

Olibrus flavicornis Olib_flav Phalacridae habitat generalist non-saproxylic 

Stilbus testaceus Stil_test Phalacridae habitat generalist non-saproxylic 

Phloeostichus denticollis Phlo_dent Phloeostichidae forest species saproxylic 

Phloiophilus edwardsii Phlo_edwa Phloiophilidae forest species saproxylic 

Bibloporus bicolor Bibl_bico Pselaphidae forest species saproxylic 

Bibloporus mayeti Bibl_maye Pselaphidae forest species saproxylic 

Bibloporus minutus Bibl_minu Pselaphidae forest species saproxylic 

Bryaxis nodicornis Brya_nodi Pselaphidae habitat generalist non-saproxylic 

Bythinus burrellii Byth_burr Pselaphidae habitat generalist non-saproxylic 

Bythinus macropalpus Byth_macr Pselaphidae habitat generalist non-saproxylic 

Euplectus brunneus Eupl_brun Pselaphidae forest species saproxylic 

Euplectus punctatus Eupl_punc Pselaphidae forest species saproxylic 

Trimium brevicorne Trim_brev Pselaphidae forest species non-saproxylic 

Tychus niger Tych_nige Pselaphidae habitat generalist non-saproxylic 
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Acrotrichis atomaria Acro_atom Ptiliidae habitat generalist non-saproxylic 

Acrotrichis fascicularis Acro_fasc Ptiliidae habitat generalist non-saproxylic 

Acrotrichis intermedia Acro_inte Ptiliidae habitat generalist non-saproxylic 

Baeocrara variolosa Baeo_vari Ptiliidae forest species saproxylic 

Ptenidium pusillum Pten_pusi Ptiliidae habitat generalist non-saproxylic 

Ptenidium turgidum Pten_turg Ptiliidae forest species saproxylic 

Pteryx suturalis Pter_sutu Ptiliidae forest species saproxylic 

Pyrochroa coccinea Pyro_cocc Pyrochroidae forest species saproxylic 

Pyrochroa serraticornis Pyro_serr Pyrochroidae forest species saproxylic 

Schizotus pectinicornis Schi_pect Pyrochroidae forest species saproxylic 

Chonostropheus tristis Chon_tris Rhynchitidae unknown non-saproxylic 

Deporaus betulae Depo_betu Rhynchitidae habitat generalist non-saproxylic 

Lasiorhynchites olivaceus Lasi_oliv Rhynchitidae habitat generalist non-saproxylic 

Neocoenorrhinus interpunctatus Neoc_inte Rhynchitidae unknown non-saproxylic 

Lissodema cursor Liss_curs Salpingidae habitat generalist saproxylic 

Lissodema denticolle Liss_dent Salpingidae habitat generalist saproxylic 

Rabocerus gabrieli Rabo_gabr Salpingidae habitat generalist saproxylic 

Salpingus planirostris Salp_plan Salpingidae habitat generalist saproxylic 

Salpingus ruficollis Salp_rufi Salpingidae habitat generalist saproxylic 

Vincenzellus ruficollis Vinc_rufi Salpingidae habitat generalist saproxylic 

Aphodius contaminatus Apho_cont Scarabaeidae habitat generalist non-saproxylic 

Aphodius depressus Apho_depr Scarabaeidae forest species non-saproxylic 

Aphodius fimetarius Apho_fime Scarabaeidae habitat generalist non-saproxylic 

Aphodius prodromus Apho_prod Scarabaeidae habitat generalist non-saproxylic 

Aphodius pusillus Apho_pusi Scarabaeidae habitat generalist non-saproxylic 

Aphodius rufipes Apho_rufi Scarabaeidae habitat generalist non-saproxylic 

Aphodius rufus Apho_rufu Scarabaeidae habitat generalist non-saproxylic 

Aphodius sphacelatus Apho_spha Scarabaeidae habitat generalist non-saproxylic 

Aphodius sticticus Apho_stic Scarabaeidae habitat generalist non-saproxylic 

Gnorimus nobilis Gnor_nobi Scarabaeidae habitat generalist saproxylic 

Onthophagus coenobita Onth_coen Scarabaeidae habitat generalist non-saproxylic 

Onthophagus fracticornis Onth_frac Scarabaeidae habitat generalist non-saproxylic 

Serica brunna Seri_brun Scarabaeidae habitat generalist non-saproxylic 

Valgus hemipterus Valg_hemi Scarabaeidae habitat generalist saproxylic 

Prionocyphon serricornis Prio_serr Scirtidae habitat generalist non-saproxylic 

Cryphalus abietis Cryp_abie Scolytidae forest species saproxylic 

Dryocoetes autographus Dryo_auto Scolytidae forest species saproxylic 

Dryocoetes villosus Dryo_vill Scolytidae habitat generalist saproxylic 

Ernoporicus fagi Erno_fagi Scolytidae forest species saproxylic 

Hylastes cunicularius Hyla_cuni Scolytidae forest species saproxylic 

Hylesinus crenatus Hyle_cren Scolytidae forest species saproxylic 

Hylurgops palliatus Hylu_pall Scolytidae forest species saproxylic 

Leperisinus fraxini Lepe_frax Scolytidae forest species saproxylic 

Lymantor coryli Lyma_cory Scolytidae habitat generalist saproxylic 

Pityogenes chalcographus Pity_chal Scolytidae forest species saproxylic 

Polygraphus grandiclava Poly_gran Scolytidae habitat generalist saproxylic 

Scolytus carpini Scol_carp Scolytidae forest species saproxylic 

Scolytus intricatus Scol_intr Scolytidae forest species saproxylic 

Taphrorychus bicolor Taph_bico Scolytidae forest species saproxylic 

Xyleborinus saxeseni Xyle_saxe Scolytidae forest species saproxylic 

Xyleborus germanus Xyle_germ Scolytidae forest species saproxylic 

Xyleborus peregrinus Xyle_pere Scolytidae forest species saproxylic 

Xyloterus domesticus Xylo_dome Scolytidae forest species saproxylic 

Xyloterus signatus Xylo_sign Scolytidae forest species saproxylic 

Anaspis flava Anas_flav Scraptiidae habitat generalist saproxylic 

Anaspis frontalis Anas_fron Scraptiidae forest species saproxylic 

Anaspis marginicollis Anas_marg Scraptiidae forest species saproxylic 

Anaspis rufilabris Anas_rufi Scraptiidae forest species saproxylic 
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Anaspis thoracica Anas_thor Scraptiidae forest species saproxylic 

Anaspis varians Anas_vari Scraptiidae habitat generalist saproxylic 

Neuraphes elongatulus Neur_elon Scydmaenidae forest species non-saproxylic 

Neuraphes rubicundus Neur_rubi Scydmaenidae forest species non-saproxylic 

Stenichnus collaris Sten_coll Scydmaenidae forest species non-saproxylic 

Stenichnus scutellaris Sten_scut Scydmaenidae forest species non-saproxylic 

Dendroxena quadrimaculata Dend_quad Silphidae forest species non-saproxylic 

Nicrophorus interruptus Nicr_inte Silphidae habitat generalist non-saproxylic 

Nicrophorus investigator Nicr_inve Silphidae forest species non-saproxylic 

Nicrophorus vespilloides Nicr_vesp Silphidae forest species non-saproxylic 

Thanatophilus sinuatus Than_sinu Silphidae habitat generalist non-saproxylic 

Uleiota planatus Ulei_plan Silvanidae forest species saproxylic 

Aspidiphorus orbiculatus Aspi_orbi Sphindidae forest species saproxylic 

Achenium humile Ache_humi Staphylinidae forest species non-saproxylic 

Acidota crenata Acid_cren Staphylinidae forest species non-saproxylic 

Aleochara sparsa Aleo_spar Staphylinidae forest species non-saproxylic 

Alevonota rufotestacea Alev_rufo Staphylinidae habitat generalist non-saproxylic 

Aloconota coulsoni Aloc_coul Staphylinidae habitat generalist non-saproxylic 

Aloconota gregaria Aloc_greg Staphylinidae habitat generalist non-saproxylic 

Amarochara bonnairei Amar_bonn Staphylinidae forest species saproxylic 

Amischa analis Amis_anal Staphylinidae habitat generalist non-saproxylic 

Amischa forcipata Amis_forc Staphylinidae forest species non-saproxylic 

Amischa nigrofusca Amis_nigr Staphylinidae habitat generalist non-saproxylic 

Anomognathus cuspidatus Anom_cusp Staphylinidae forest species saproxylic 

Anotylus hamatus Anot_hama Staphylinidae habitat generalist non-saproxylic 

Anotylus insecatus Anot_inse Staphylinidae habitat generalist non-saproxylic 

Anotylus mutator Anot_muta Staphylinidae forest species non-saproxylic 

Anotylus rugosus Anot_rugo Staphylinidae habitat generalist non-saproxylic 

Anotylus tetracarinatus Anot_tetr Staphylinidae habitat generalist non-saproxylic 

Anthobium atrocephalum Anth_atro Staphylinidae forest species non-saproxylic 

Anthophagus angusticollis Anth_angu Staphylinidae habitat generalist non-saproxylic 

Atheta aegra Athe_aegr Staphylinidae habitat generalist non-saproxylic 

Atheta cauta Athe_caut Staphylinidae habitat generalist non-saproxylic 

Atheta elongatula Athe_elon Staphylinidae habitat generalist non-saproxylic 

Atheta fungi Athe_fung Staphylinidae habitat generalist non-saproxylic 

Atheta inquinula Athe_inqu Staphylinidae habitat generalist non-saproxylic 

Atheta negligens Athe_negl Staphylinidae forest species non-saproxylic 

Atheta nidicola Athe_nidi Staphylinidae forest species non-saproxylic 

Atheta oblita Athe_obli Staphylinidae forest species saproxylic 

Atheta orbata Athe_orba Staphylinidae habitat generalist non-saproxylic 

Atheta palustris Athe_palu Staphylinidae habitat generalist non-saproxylic 

Atheta triangulum Athe_tria Staphylinidae habitat generalist non-saproxylic 

Atrecus affinis Atre_affi Staphylinidae forest species saproxylic 

Bisnius fimetarius Bisn_fime Staphylinidae habitat generalist non-saproxylic 

Callicerus obscurus Call_obsc Staphylinidae habitat generalist non-saproxylic 

Carpelimus corticinus Carp_cort Staphylinidae habitat generalist non-saproxylic 

Carpelimus pusillus Carp_pusi Staphylinidae habitat generalist non-saproxylic 

Coprophilus striatulus Copr_stri Staphylinidae habitat generalist non-saproxylic 

Coryphium angusticolle Cory_angu Staphylinidae forest species saproxylic 

Cypha longicornis Cyph_long Staphylinidae habitat generalist non-saproxylic 

Cyphea curtula Cyph_curt Staphylinidae forest species saproxylic 

Dropephylla ioptera Drop_iopt Staphylinidae forest species saproxylic 

Eusphalerum atrum Eusp_atru Staphylinidae habitat generalist non-saproxylic 

Eusphalerum limbatum Eusp_limb Staphylinidae habitat generalist non-saproxylic 

Eusphalerum luteum Eusp_lute Staphylinidae habitat generalist non-saproxylic 

Eusphalerum minutum Eusp_minu Staphylinidae habitat generalist non-saproxylic 

Eusphalerum primulae Eusp_prim Staphylinidae habitat generalist non-saproxylic 

Eusphalerum rectangulum Eusp_rect Staphylinidae habitat generalist non-saproxylic 
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Species Abbr. Family Habitat preference Dead wood dependence 

Eusphalerum semicoleoptratum Eusp_semi Staphylinidae habitat generalist non-saproxylic 

Eusphalerum signatum Eusp_sign Staphylinidae habitat generalist non-saproxylic 

Haploglossa marginalis Hapl_marg Staphylinidae habitat generalist saproxylic 

Haploglossa picipennis Hapl_pici Staphylinidae forest species non-saproxylic 

Haploglossa villosula Hapl_vill Staphylinidae habitat generalist saproxylic 

Holobus apicatus Holo_apic Staphylinidae forest species saproxylic 

Hypnogyra angularis Hypn_angu Staphylinidae forest species saproxylic 

Ischnoglossa obscura Isch_obsc Staphylinidae forest species saproxylic 

Ischnosoma longicorne Isch_long Staphylinidae habitat generalist non-saproxylic 

Lathrobium brunnipes Lath_brun Staphylinidae habitat generalist non-saproxylic 

Leptacinus batychrus Lept_baty Staphylinidae unknown non-saproxylic 

Leptacinus sulcifrons Lept_sulc Staphylinidae habitat generalist non-saproxylic 

Leptusa pulchella Lept_pulc Staphylinidae forest species saproxylic 

Leptusa ruficollis Lept_rufi Staphylinidae forest species saproxylic 

Lesteva longoelytrata Lest_long Staphylinidae habitat generalist non-saproxylic 

Liogluta alpestris Liog_alpe Staphylinidae forest species non-saproxylic 

Liogluta longiuscula Liog_long Staphylinidae forest species non-saproxylic 

Liogluta microptera Liog_micr Staphylinidae forest species non-saproxylic 

Lordithon lunulatus Lord_lunu Staphylinidae forest species non-saproxylic 

Medon brunneus Medo_brun Staphylinidae forest species non-saproxylic 

Notothecta flavipes Noto_flav Staphylinidae habitat generalist non-saproxylic 

Ocalea picata Ocal_pica Staphylinidae habitat generalist non-saproxylic 

Omalium caesum Omal_caes Staphylinidae habitat generalist non-saproxylic 

Omalium rivulare Omal_rivu Staphylinidae habitat generalist non-saproxylic 

Oxypoda acuminata Oxyp_acum Staphylinidae habitat generalist non-saproxylic 

Oxypoda brachyptera Oxyp_brac Staphylinidae habitat generalist non-saproxylic 

Oxypoda brevicornis Oxyp_brev Staphylinidae habitat generalist non-saproxylic 

Oxypoda haemorrhoa Oxyp_haem Staphylinidae habitat generalist non-saproxylic 

Oxypoda opaca Oxyp_opac Staphylinidae habitat generalist non-saproxylic 

Pella lugens Pell_luge Staphylinidae habitat generalist non-saproxylic 

Philonthus carbonarius Phil_carb Staphylinidae habitat generalist non-saproxylic 

Philonthus cognatus Phil_cogn Staphylinidae habitat generalist non-saproxylic 

Philonthus decorus Phil_deco Staphylinidae forest species non-saproxylic 

Philonthus laevicollis Phil_laev Staphylinidae habitat generalist non-saproxylic 

Philonthus sanguinolentus Phil_sang Staphylinidae habitat generalist non-saproxylic 

Phloeocharis subtilissima Phlo_subt Staphylinidae forest species saproxylic 

Phloeopora corticalis Phlo_cort Staphylinidae forest species saproxylic 

Phloeopora scribae Phlo_scri Staphylinidae forest species saproxylic 

Phloeopora testacea Phlo_test Staphylinidae forest species saproxylic 

Phyllodrepa floralis Phyl_flor Staphylinidae habitat generalist saproxylic 

Phyllodrepa melanocephala Phyl_mela Staphylinidae forest species saproxylic 

Phyllodrepa nigra Phyl_nigr Staphylinidae forest species saproxylic 

Plataraea brunnea Plat_brun Staphylinidae habitat generalist non-saproxylic 

Platystethus nitens Plat_nite Staphylinidae habitat generalist non-saproxylic 

Proteinus atomarius Prot_atom Staphylinidae habitat generalist non-saproxylic 

Quedius maurus Qued_maur Staphylinidae forest species saproxylic 

Quedius mesomelinus Qued_meso Staphylinidae habitat generalist non-saproxylic 

Quedius scitus Qued_scit Staphylinidae forest species saproxylic 

Rhopalocerina clavigera Rhop_clav Staphylinidae unknown non-saproxylic 

Rhopalotella validiuscula Rhop_vali Staphylinidae habitat generalist saproxylic 

Rugilus rufipes Rugi_rufi Staphylinidae habitat generalist non-saproxylic 

Scaphisoma agaricinum Scap_agar Staphylinidae forest species saproxylic 

Sepedophilus bipunctatus Sepe_bipu Staphylinidae forest species saproxylic 

Sepedophilus immaculatus Sepe_imma Staphylinidae forest species non-saproxylic 

Sepedophilus marshami Sepe_mars Staphylinidae habitat generalist non-saproxylic 

Sepedophilus testaceus Sepe_test Staphylinidae forest species saproxylic 

Stichoglossa semirufa Stic_semi Staphylinidae forest species non-saproxylic 

Tachinus laticollis Tach_lati Staphylinidae habitat generalist non-saproxylic 
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Tachinus rufipes Tach_rufi Staphylinidae habitat generalist non-saproxylic 

Tachyporus hypnorum Tach_hypn Staphylinidae habitat generalist non-saproxylic 

Tachyporus nitidulus Tach_niti Staphylinidae habitat generalist non-saproxylic 

Tachyporus obtusus Tach_obtu Staphylinidae habitat generalist non-saproxylic 

Tachyporus solutus Tach_solu Staphylinidae habitat generalist non-saproxylic 

Tinotus morion Tino_mori Staphylinidae habitat generalist non-saproxylic 

Xantholinus linearis Xant_line Staphylinidae habitat generalist non-saproxylic 

Xantholinus longiventris Xant_long Staphylinidae habitat generalist non-saproxylic 

Corticeus bicolor Cort_bico Tenebrionidae habitat generalist saproxylic 

Corticeus unicolor Cort_unic Tenebrionidae forest species saproxylic 

Diaperis boleti Diap_bole Tenebrionidae forest species saproxylic 

Tetratoma ancora Tetr_anco Tetratomidae habitat generalist saproxylic 

Aulonothroscus brevicollis Aulo_brev Throscidae forest species non-saproxylic 

Trixagus carinifrons Trix_cari Throscidae habitat generalist non-saproxylic 

Trixagus dermestoides Trix_derm Throscidae habitat generalist non-saproxylic 

Trixagus lesegneuri Trix_lese Throscidae unknown non-saproxylic 

Trixagus meybohmi Trix_meyb Throscidae unknown non-saproxylic 

Trox scaber Trox_scab Trogidae habitat generalist non-saproxylic 

Nemozoma elongatum Nemo_elon Trogositidae forest species saproxylic 

*De Jong, Y.S.D.M., 2013. Fauna Europaea version 2.6 [WWW Document]. http://www.faunaeur.org. 
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Appendix C 

 

 

Table C1 
Results of the structural equation model (Fig. 5). 
 

  Used Total 

  Number of observations per group          

 Canopy 45 46 

Understory 45 46 

 

Indices of model fit 

  Estimator ML Robust 

  Minimum Function Test Statistic                1.149 1.469 

  Degrees of freedom  4 4 

  P-value (Chi-square) 0.886 0.832 

  Scaling correction factor                                 0.782 

    for the Yuan-Bentler correction 

  
 

  Chi-square for each group: 

  
 

  Canopy 0.575 0.735 

Understory 0.575 0.735 

 
  Parameter estimates: 

  
 

    Information                                 Observed 

   Standard Errors                   Robust.huber.white   

 

 
Group 1 [Canopy]: Estimate Std.err Z-value P(>|z|) Std.lv Std.all 

Regressions: 

      
 

Deadwood vol~ 

      
 

  logdist -0.058 0.205 -0.281 0.778 -0.058 -0.039 

 
  treediversity 14.459 4.178 3.460 0.001 14.459 0.465 

 
Canopy openness~ 

      
 

  logdist -0.149 0.146 -1.018 0.309 -0.149 -0.166 

 
  treediversity 1.016 2.695 0.377 0.706 1.016 0.054 

 
Beetle SR~ 

      
 

  logdist -0.122 0.129 -0.947 0.344 -0.122 -0.113 

 
  treediversity 8.747 2.904 3.012 0.003 8.747 0.386 

 
  Canopy openness 0.236 0.129 1.831 0.067 0.236 0.197 

 
  Deadwood vol 0.224 0.136 1.639 0.101 0.224 0.307 

 
       Intercepts: 

      
 

Deadwood vol 8.117 9.229 0.879 0.379 8.117 0.522 

 
Canopy openness 51.894 8.239 6.299 0.000 51.894 5.493 

 
Beetle SR 30.881 10.271 3.007 0.003 30.881 2.728 

 
logdist 45.330 1.569 28.883 0.000 45.330 4.306 

 
treediversity 0.489 0.075 6.561 0.000 0.489 0.978 

 
       Variances: 

      
 

treediversity 0.250 0.002 0.250 1.000 

  
 

logdist 110.843 16.363 110.843 1.000 

  
 

Deadwood vol 189.268 62.376 189.268 0.782 

  
 

Canopy openness 86.528 22.591 86.528 0.970 

    Beetle SR 73.341 16.935 73.341 0.572     
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Group 2 [Understory]: Estimate Std.err Z-value P(>|z|) Std.lv Std.all 

Regressions: 

      
 

Deadwood vol~ 

      
 

  logdist -0.058 0.205 -0.281 0.778 -0.058 -0.039 

 
  treediversity 14.459 4.178 3.460 0.001 14.459 0.465 

 
Canopy openness~ 

      
 

  logdist -0.149 0.146 -1.018 0.309 -0.149 -0.166 

 
  treediversity 1.016 2.695 0.377 0.706 1.016 0.054 

 
Beetle SR~ 

      
 

  logdist -0.455 0.166 -2.742 0.006 -0.455 -0.329 

 
  treediversity 8.638 3.461 2.496 0.013 8.638 0.290 

 
  Canopy openness 0.487 0.31 1.573 0.116 0.487 0.316 

 
  Deadwood vol 0.069 0.081 0.855 0.393 0.069 0.074 

 
       Intercepts: 

      
 

Deadwood vol 8.117 9.229 0.879 0.379 8.117 0.522 

 
Canopy openness 51.894 8.239 6.299 0.000 51.894 5.493 

 
Beetle SR 41.883 11.834 3.539 0.000 41.883 2.880 

 
logdist 45.330 1.569 28.883 0.000 45.330 4.306 

 
treediversity 0.489 0.075 6.561 0.000 0.489 0.978 

 
       Variances: 

      
 

treediversity 0.250 0.002 0.250 1.000 

  
 

logdist 110.843 16.363 110.843 1.000 

  
 

Deadwood vol 189.268 62.376 189.268 0.782 

  
 

Canopy openness 86.528 22.591 86.528 0.970 

    Beetle SR 133.176 36.452 133.176 0.630     

 
       

 
       R-Square Group 1 [Canopy]: 

     
 

Deadwood vol 0.218 

     
 

Canopy openness 0.030 

     
 

Beetle SR 0.428 

     
 

       
 

       R-Square Group 2 [Understory]: 

     
 

Deadwood vol 0.218 

     
 

Canopy openness 0.030 

     
 

Beetle SR 0.370 
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Appendix D 

 

Additional structural equation model including tree diversity level and distance from forest 

edge as design variables, canopy openness, lying dead wood and standing dead wood 

separately, basal area oak (including Quercus robur and Q. petraea) and beetle species 

richness. Detailed modeling procedure was as described for the structural equation model 

Fig. 5 

 
Figure D1 

Structural equation model results showing pathways between distance from the forest edge, 

tree diversity, lying and standing dead wood, oak basal area and beetle species richness 

(Beetle SR) in a) the canopy and b) the understory (χ2 = 11.811; P  = 0.621; DF = 14; rmsea= 

0.000; srmr = 0.054; cfi = 1.000). Numbers next to arrows are standardized coefficients. 

Green arrows indicate a positive (+) and red arrows a negative (-) relationship. Arrow width 

shows effect strength. 
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Table D1 

Results of the additional structural equation model. 

 
  Used Total 

       Number of observations per group          

     Canopy 45 46 

     Ground 45 46 

     

        
 

       Estimator ML Robust 

       Minimum Function Test 

Statistic                11.519 11.811 

       Degrees of freedom  14 14 

       P-value (Chi-square) 0.645 0.621 

       Scaling correction factor                                 0.975 

         for the Yuan-Bentler correction 

      
 

       Chi-square for each group: 

      
 

       Canopy 5.760 5.906 

     Understory 5.760 5.906 

     
 

       Parameter estimates: 

      
 

         Information                                 Observed 

       Standard Errors                   Robust.huber.white 

     
 

       
 

       Group 1 [Canopy]: Estimate Std.err Z-value P(>|z|) Std.lv Std.all 

Regressions: 

       
 

lying deadwood ~ 

     
 

  logdist 0.148 0.188 0.789 0.43 0.148 0.149 

 
  treediversity 0.374 0.135 2.77 0.006 0.374 0.374 

 
standing deadwood ~ 

     
 

  logdist -0.198 0.103 -1.912 0.056 -0.198 -0.197 

 
  treediversity 0.317 0.143 2.219 0.026 0.317 0.316 

 
basal area oak ~ 

     
 

  logdist -0.11 0.139 -0.792 0.429 -0.11 -0.11 

 
  treediversity 0.506 0.131 3.851 0 0.506 0.505 

 
canopy openness ~ 

     
 

  logdist -0.166 0.163 -1.018 0.309 -0.166 -0.166 

 
  treediversity 0.054 0.143 0.377 0.706 0.054 0.054 

 
beetle SR ~ 

     
 

  logdist -0.16 0.079 -2.026 0.043 -0.16 -0.163 

 
  treediversity 0.206 0.107 1.936 0.053 0.206 0.21 

 
  canopy openness 0.11 0.07 1.574 0.116 0.11 0.113 

 
  lying deadwood 0.368 0.166 2.213 0.027 0.368 0.374 

 
  standing deadwood -0.054 0.139 -0.389 0.697 -0.054 -0.055 

 
  basal area oak 0.406 0.129 3.149 0.002 0.406 0.415 

 
       Intercepts: 

       
 

lying deadwood 0 0.135 0 1 0 0 

 
standing deadwood 0 0.137 0 1 0 0 

 
basal area oak 0 0.126 0 1 0 0 

 
canopy openness 0 0.145 0 1 0 0 

 
beetle SR 0 0.093 0 1 0 0 

 
logdist 0 0.147 0 1 0 0 

 
treediversity 0 0.147 0 1 0 0 

 
       Variances: 

       
 

treediversity 0.978 0.006 0.978 1 

  
 

logdist 0.978 0.144 0.978 1 
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lying deadwood 0.816 0.463 0.816 0.838 

  
 

standing deadwood 0.845 0.417 0.845 0.861 

  
 

basal area oak 0.719 0.284 0.719 0.733 

  
 

canopy openness 0.949 0.248 0.949 0.97 

    beetle SR 0.391 0.07 0.391 0.416     

 
       

 
       Group 2 [Understory]: Estimate Std.err Z-value P(>|z|) Std.lv Std.all 

Regressions: 

       
 

lying deadwood ~ 

     
 

  logdist 0.148 0.188 0.789 0.43 0.148 0.149 

 
  treediversity 0.374 0.135 2.77 0.006 0.374 0.374 

 
standing deadwood ~ 

     
 

  logdist -0.198 0.103 -1.912 0.056 -0.198 -0.197 

 
  treediversity 0.317 0.143 2.219 0.026 0.317 0.316 

 
basal area oak ~ 

     
 

  logdist -0.11 0.139 -0.792 0.429 -0.11 -0.11 

 
  treediversity 0.506 0.131 3.851 0 0.506 0.505 

 
canopy openness ~ 

     
 

  logdist -0.166 0.163 -1.018 0.309 -0.166 -0.166 

 
  treediversity 0.054 0.143 0.377 0.706 0.054 0.054 

 
beetle SR ~ 

     
 

  logdist -0.281 0.119 -2.364 0.018 -0.281 -0.279 

 
  treediversity 0.314 0.149 2.102 0.036 0.314 0.312 

 
  canopy openness 0.331 0.199 1.667 0.095 0.331 0.329 

 
  lying deadwood -0.094 0.093 -1.015 0.31 -0.094 -0.093 

 
  standing deadwood 0.184 0.12 1.535 0.125 0.184 0.183 

 
  basal area oak -0.012 0.141 -0.087 0.931 -0.012 -0.012 

 
       Intercepts: 

       
 

lying deadwood 0 0.135 0 1 0 0 

 
standing deadwood 0 0.137 0 1 0 0 

 
basal area oak 0 0.126 0 1 0 0 

 
canopy openness 0 0.145 0 1 0 0 

 
beetle SR 0 0.114 0 1 0 0 

 
logdist 0 0.147 0 1 0 0 

 
treediversity 0 0.147 0 1 0 0 

 
       Variances: 

       
 

treediversity 0.978 0.006 0.978 1 

  
 

logdist 0.978 0.144 0.978 1 

  
 

lying deadwood 0.816 0.463 0.816 0.838 

  
 

standing deadwood 0.845 0.417 0.845 0.861 

  
 

basal area oak 0.719 0.284 0.719 0.733 

  
 

canopy openness 0.949 0.248 0.949 0.97 

    beetle SR 0.588 0.155 0.588 0.593     

 
       R-Square Group 1 [Canopy]: 

      
 

       
 

lying deadwood 0.162 

     
 

standing deadwood 0.139 

     
 

basal area oak 0.267 

     
 

canopy openness 0.03 

     
 

beetle SR 0.584 

     
 

       R-Square Group 2 [Understory]: 

      
 

       
 

lying deadwood 0.162 

     
 

standing deadwood 0.139 

     
 

basal area oak 0.267 

     
 

canopy openness 0.03 

     
 

beetle SR 0.407 
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SUMMARY 

Major threats to global biodiversity include the continuous increase of forest fragmentation 

and the associated augmentation of forest edge zones. How much edge effects penetrate into 

the forest interior can be influenced by habitat structure with tree species composition 

weakening or strengthening edge effects. Here, we address for the first time forest edge and 

tree diversity effects and their potential interactions on the understory vegetation and 

arthropods, focusing on the Hainich National Park, Germany´s largest connected deciduous 

forest.  

A total of 12 transects extending from the forest edge up to 500 m into the forest interior were 

established – six of them in forest stands dominated by beech with a low tree species diversity 

and six in forest stands rich in tree species, containing up to nine deciduous tree species e. g. 

oak, ash, lime and maple. Understory vegetation and arthropods were studied along each 

transect. 

In the first manuscript (chapter 2) of this thesis we studied the understory vegetation along 

the edge-interior gradient.  

The herb layer plant species richness was influenced by an interaction of tree diversity and 

edge effects. In the high tree diversity forest stands herb species richness was not affected by 

edge proximity, whereas in beech dominated forest stands it strongly declined with increasing 

distance from the forest edge. This resulted in higher plant species richness in the forest 

interior of the high tree diversity level. The fraction of forest specialist species increased, 

while the fraction of forest generalists decreased from the forest edge towards the forest 

interior. The dominance of forest specialists was much stronger in the low tree diversity level. 

Plant community composition differed with tree diversity level and edge proximity and it was 

more variable in the high tree diversity forest stands and closer to the edge. Tree diversity 

mediated leaf litter thickness, which was identified as the most important predictor of plant 

species richness. 

The second manuscript (chapter 3) focuses on ground-dwelling arthropods (ground beetles, 

rove beetles and spiders) and the effect of body size and habitat specialisation on their 

response to tree diversity and forest edge proximity.  

While no consistent pattern was found for total species richness, the tree diversity and edge 

response acrIm doss all three taxa depended on habitat specialisation and body size. Neither 

tree diversity nor edge effects clearly affected the richness of forest species and body size was 

also not important. However, individual species suffered, whereas others were promoted by 

increased tree diversity. The species richness of habitat generalists strongly declined from the 
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forest edge towards the forest center in the low tree diversity level. This effect was mitigated 

in the high tree diversity level (except for spiders) and the species richness of habitat 

generalists, and among these the small species in particular, benefited from increased tree 

diversity. Individual habitat generalist species were generally positively affected. Changes in 

environmental conditions and habitat heterogeneity induced by tree diversity and edge 

proximity are most likely the reason for the observed patterns.  

In the third manuscript (chapter 4) forest stratum as a third component was added to the 

study approach. We studied the forest in its full three-dimensionality by addressing edge and 

tree diversity effects on beetles across forest strata. Therefore, flight interception traps were 

installed both in the canopy and the understory along ten of the transects for a seven month 

period from April until November.  

Edge effects influenced beetle species richness and community composition on a large spatial 

scale extending up to 500 m into the forest interior. However, edge effects were weaker in the 

canopy than in the understory - likely a result of higher, edge-like microclimatic variability 

and harshness in the canopy. Tree diversity did not influence edge effects. The edge response 

of total beetle species richness was driven by habitat generalists, which strongly declined with 

increasing distance from the forest edge, whereas saproxylic and forest species only 

responded weakly. Habitat generalists and non-saproxylic species dominated the forest 

understory. The richness of saproxylic and forest species peaked in the canopy. Tree diversity 

enhanced beetle diversity across all strata and forest specialisation groups. Structural equation 

modelling revealed that pathways driving beetle richness differed across strata. Tree diversity, 

dead wood amount and (partly) canopy openness were the most important drivers in the 

canopy, whereas canopy openness, edge proximity and to a lesser extent tree diversity were 

important in the understory. In conclusion, in the canopy tree diversity effects were stronger 

and more direct than in the understory. 

 

Overall, we conclude that for a deeper understanding of forest fragmentation the relative 

importance of edge, stratum and tree diversity, but also species’ life-history traits (e. g. body 

size) and habitat specialisation should be considered.   

Increasing the abundance and diversity of deciduous tree species in Central European forests 

may help to preserve the regional species diversity of plants and arthropods. However, some 

forest species may rely on old-growth pure beech forests. These have received special 

attention in the UNESCO World Heritage sites “Primeval Beech Forests of the Carpathians 

and the Ancient Beech Forests of Germany”. 
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ZUSAMMENFASSUNG 

Die fortschreitende Fragmentierung von Wäldern ist eine der Hauptursachen für den Verlust 

von Biodiversität weltweit. Mit zunehmender Fragmentierung steigt der Anteil an 

Waldrandzonen, in denen die Eigenschaften eines Waldes stark verändert sein können. Wie 

stark diese Randeffekte ein Fragment beeinflussen, kann von der Habitatstruktur abhängen. 

Die Habitatstruktur ist wiederum maßgeblich durch die Baumartenzusammensetzung 

beeinflusst.  

Die vorliegende Arbeit untersucht zum ersten Mal gleichzeitig die Einflüsse von 

Randeffekten und Baumartenvielfalt und deren mögliche Interaktionen auf 

Krautschichtvegetation und Arthropoden.  

Die Untersuchungen hierzu wurden im Nationalpark Hainich, Deutschlands größtem 

zusammenhängenden Laubwaldgebiet, durchgeführt. Dafür wurden 12 Transekte angelegt, 

die vom Waldrand bis zu 500 m in das Waldesinnere hineinreichten. Sechs Transekte in 

baumartenarmen Waldstandorten mit einem hohen Buchenanteil (Fagus sylvatica L.) und 

weitere sechs in baumartenreichen Waldstandorten mit einem niedrigen Buchenanteil. 

Baumartenreiche Standorte wiesen bis zu neun Baumarten auf, wie z.B. Eiche, Esche, Linde 

und Ahorn. Entlang der Transekte wurden die Krautschichtvegetation und die 

Arthopodengemeinschaften untersucht. 

Im ersten Manuskript (Kapitel 2 dieser Arbeit) wurde die Krautschichtvegetation entlang 

des Rand-Innen-Gradienten aufgenommen.  

Eine Interaktion zwischen Randeffekten und Baumartenvielfalt beeinflusste den 

Pflanzenartenreichtum. In Waldbereichen mit hoher Baumartenvielfalt blieb die Artenzahl der 

Krautschicht vom Rand bis ins Waldesinnere konstant, wohingegen sie in baumartenarmen 

Bereichen stark abfiel. Die Krautschicht war somit in baumartenreichen Waldstandorten im 

Waldesinneren höher. Der Anteil an Waldspezialistenarten nahm mit zunehmender 

Entfernung vom Waldrand zur Mitte zu. Parallel dazu nahm der Anteil an 

Waldgeneralistenarten ab. Die Dominanz der Waldspezialisten war in buchendominierten 

Standorten stärker ausgeprägt, als in baumartenreichen. Auch die Artenzusammensetzung der 

Krautschicht wurde von der Distanz zum Waldrand und der Baumartenvielfalt beeinflusst. Sie 

wies in baumartenreichen Standorten und mit zunehmender Nähe zum Rand eine hohe 

Variabilität auf. Die Baumartenvielfalt steuerte die Dicke der Streuschicht, die unter allen 

untersuchten Umweltfaktoren den größten Einfluss auf die Diversität der Krautschicht hatte. 

Im zweiten Manuskript (Kapitel 3 dieser Arbeit) wurden bodenlebende Arthropoden 

(Laufkäfer, Kurzflügelkäfer und Spinnen) untersucht. 
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Die Reaktion der Gesamtartenzahl auf Baumartenvielfalt und Entfernung zum Waldrand war 

je nach Taxon unterschiedlich. Allerdings zeigten sich übereinstimmende Muster, nachdem 

die Arten hinsichtlich ihrer Habitataffinität und Körpergröße in Gruppen eingeteilt worden 

waren. Über alle Taxa hinweg wurde die Anzahl der Waldarten weder von der 

Baumartenvielfalt noch von der Randnähe nennenswert beeinflusst und die Körpergröße der 

Waldarten spielte keine Rolle. Allerdings reagierten einzelne Waldarten positiv auf eine 

erhöhte Baumartenvielfalt, während andere davon negativ beeinflusst waren. Die Artenzahl 

der Habitatgeneralisten nahm vom Waldrand zur Waldmitte hin stark ab. Dieser Effekt wurde 

jedoch, außer bei den Spinnen, durch eine höhere Baumartenvielfalt abgeschwächt. Die 

Artenzahl der Habitatgeneralisten, insbesondere der kleinen Arten, reagierte positiv auf eine 

erhöhte Baumartenvielfalt im Waldesinneren. Die beobachteten Effekte sind 

höchstwahrscheinlich das Resultat von durch Baumartenvielfalt und Randnähe veränderten 

Umweltfaktoren und einer erhöhten Habitatheterogenität am Waldboden.  

Im dritten Manuskript (Kapitel 4 dieser Arbeit) wurde untersucht, ob sich Rand- und 

Baumartendiversitätseffekte zwischen verschiedenen Straten unterscheiden. Hierzu wurden 

entlang von zehn Transekten sowohl im Kronenraum als auch unmittelbar über dem Boden 

Kreuzfensterfallen installiert. In einem Zeitraum von sieben Monaten (April bis November 

2012) wurde dadurch die fliegende Käferfauna erfasst.  

Randeffekte auf Käfer wurden bis zu einer Distanz von 500 m vom Waldrand hin 

nachgewiesen. Im Kronenraum waren die Randeffekte schwächer ausgeprägt als im 

Unterholz, vermutlich durch eine höhere „randähnliche“ mikroklimatische Variabilität im 

Kronenraum. Die Gesamtartenzahl der Käfer nahm mit zunehmender Distanz zum Waldrand 

ab. Dieses Muster wurde vor allem durch die Habitatgeneralisten getrieben, wohingegen die 

Artenzahl der Waldarten und der xylobionten Arten kaum auf die Randnähe reagierten. Eine 

Beeinflussung des Randeffekts durch Baumartenvielfalt konnte nicht gezeigt werden. 

Habitatgeneralisten und nicht-xylobionte Arten dominierten die Käfergemeinschaft im 

Unterholz. Im Kronenraum wurden die höchsten Artenzahlen von Waldarten und xylobionten 

Arten nachgewiesen. Baumartendiversität wirkte sich über alle Straten und ökologischen 

Gruppen positiv auf die Artenvielfalt der Käfer aus. Besonders ausgeprägt war dieser Effekt 

im Kronenraum. Die Haupteinflussfaktoren, die den Käferartenreichtum steuerten, 

unterschieden sich also zwischen den Straten. So waren im Kronenraum Baumartenvielfalt, 

die Totholzmenge und zu einem geringen Teil der Kronenschluss die entscheidenden 

Faktoren. Im Unterholz hingegen war der Einfluss der Baumartenvielfalt geringer und die 
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Distanz zum Waldrand und der Kronenschluss besonders wichtig. Insgesamt waren die 

Effekte von Baumartenvielfalt im Unterholz indirekter und im Kronenraum direkter. 

 

Um Konsequenzen von Waldfragmentierung umfangreich zu verstehen, ist es nicht nur 

notwendig den Einfluss von Randeffekten, Baumartenvielfalt und Straten zu berücksichtigen, 

sondern auch die Eigenschaften (z. B. Körpergröße) und die Habitataffinität der beobachteten 

Arten. 

Diese Arbeit zeigt, dass eine erhöhte Baumartenvielfalt in zentraleuropäischen Wäldern zum 

Erhalt der Biodiversität von Pflanzen und Arthropoden beitragen kann. Das allein ist jedoch 

nicht ausreichend, da auch gezeigt wurde, dass einzelne Arten buchendominierte Wälder 

bevorzugen und es Unterschiede in der Artenzusammensetzung zwischen den verschiedenen 

Baumartendiversitätsstufen gibt. Dies hebt die Bedeutung des Erhalts alter Buchenwälder, 

verankert in den UNESCO-Welterbeflächen „Buchenurwälder in den Karpaten und alte 

Buchenwälder in Deutschland“, als besondere Schutzaufgabe hervor. 
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