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Abstract

Cracks patterns are influenced by the substrates beneath them. From buried craters to

crocodile skin, crack patterns are found over an enormous range of length scales. Regardless

of their scale, substrates can impart geometry and symmetry to a crack pattern. There are

two central problems discussed in this thesis - how does an uneven substrate affect a crack

pattern? how can crack patterns be quantified? To answer these questions, crack patterns

are generated by drying mud slurries over sinusoidal and radially sinusoidal substrates. It is

observed that as the thickness of the cracking layer increases, the crack patterns transition

from wavy to ladder-like to isotropic. Four main measures of the crack pattern are intro-

duced to quantify the observations - one parameter which measures the relative alignment

of these crack networks, one parameter that measures the orientation of cracked regions, one

parameter which measures uses the Manhattan metric to compare crack patterns and Fourier

methods which are used to characterise the transitions between crack pattern types. These

results are explained these results with a model, based on the Griffith criteria of fracture.

This model suggests that there is a transition region between wavy to ladder-like cracks. The

metrics developed here and results can be adapted to any connected networks of cracks.
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Chapter 1

Introduction

Fracture patterns are common in nature. From graben patterns on the surface of Mercury

to crack patterns in thin films, they cover a spectrum of length scales. Everyday examples of

fracture patterns can be seen in mud puddles, drying paint, rocks, glaze in ceramics. Despite

their prevalence, little is known about what influences the geometry and topology of a crack

pattern. A crack pattern generally forms atop a substrate, the substrate holds the cracking

material and when stresses build up, fractures in the cracking material occur, these fractures

spread till they terminate at a boundary and newer fractures emerge and connect with the

older cracks. In case of mud puddles and paint cracks, it is the drying that drives the mud

or the paint to develop stresses within them, causing them to crack.

The current work aims to better understand how substrates affect crack patterns by

achieving two goals -

• To quantify the effect of the substrates on crack patterns.

• To define new measures to measure a crack pattern.

The attempt is to develop general methods for analysing crack patterns and apply it to

the current experimental system to study the effect of non flat substrate. The substrate

generally imparts symmetry and orientation onto a crack pattern, hence any quantification

must account for this in order to effectively describe a crack pattern.

In order to achieve the goals above, crack patterns are generated by drying clay slurries

on sinusoidal and radially sinusoidal plates and studied. There are three control parameters

to the problem, the amplitude and wavelength of the sinusoidal and radially sinusoidal plate

and the layer height of the deposited slurry. Various parameters are defined to quantify crack

patterns, these parameters are measured for crack patterns generated at increasing layer

heights and compared to a numerical model.

The base unit of a crack pattern is a single crack, hence the physics of fracture and

formation is essential in understanding how fracture patterns are influenced by the substrate.

The physics of fracture comes under the purview of fracture mechanics which has long been

a traditional engineering disciple. Fracture mechanics is a study of the failure of materials.

It looks at formation of cracks and dynamics of crack propagation.
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In the next few sections starting with basic elasticity, some simple ideas in fracture me-

chanics will be presented. Crack patterns formed due to mud cracks are discussed as a model

system followed by a collection of examples highlighting crack patterns at various length

scales. These examples are discussed in terms of how substrates impart symmetry and ori-

entation onto a crack pattern. In some cases, the substrate can also be used to control the

formation of cracks and crack pattern, these examples are also discussed.

1.1 Linear elasticity

Fracture is a complex process and depends on a material’s structure. A simple example -

take a chocolate bar and apply force on each end of the bar and the bar breaks, or pull on a

sheet of plastic from any two ends and observe as the sheet comes apart into two pieces.

The chocolate falls under the category of brittle materials while the plastic sheet behaves

like a ductile material.

Ductile materials undergo plastic deformation - they will remember the deformation even

after the applied loading has been removed. Ductile materials do not easily fracture under

stress. Deformations change the shape of a ductile material, this shape change is non re-

versible. A common example of ductile material is copper, which can be drawn out into long

wires.

Brittle materials generally fracture under the influence of stress. For brittle materials like

ceramics and plastics (Acrylic, PMMA), the threshold for deformation is lower than that of

ductile materials.

Despite being structurally different (the chocolate has continuous structure compared

to the fibrous structure of a wooden plank), two materials in the same category (brittle vs

ductile) break in a similar manner. This hints towards the existence of underlying principles

which govern how materials in each category deform and fail.

In order to understand how materials fail it is necessary to know how they will deform

and behave under the influence of an external loading. The study of deformations and the

subsequent effects comes under the theory of elasticity. In many ways, elasticity theory pro-

vides the tools required to talk about fracture mechanics. Hence, basic ideas about elasticity

are discussed in this section. The core focus is on the strain and stress tensors, later few

ideas about two dimensional elasticity are discussed as well.

1.1.1 Strain

The deformation of a body under the influence of an external force can be described by the

strain tensor [85, 77, 55] -

eij =


ex exy exz

eyx ey eyz

ezx ezy ez

 , (1.1)

where the strain tensor components contain three normal strains ex, ey and ez and three
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shear strains exy, eyz and exz. The strain tensor is symmetric since it can be shown that

eij = eji [77, 55] where i and j are the components x, y, z. The notation ei represents ex, ey

or ez, and the notation eij represents exy, eyz or exz. It is also important to note that the

first index in exy, refers to the surface normal and the second index points to the direction

of deformation. The strain tensor can be expressed in terms of displacements where

eij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
, (1.2)

where the ui and uj are displacements of the body.

For a bar with its long axis lying along the x direction (figure 1.1 (a)), under the influence

of a force Fx and for small deformation, the component ex represents the extension per unit

length of the bar along the x axis. ex is positive when the bar is elongated due to force

Fx, and negative when under compression. In figure 1.1 (a) the force Fx lies parallel to the

normal vector of CD. Hence ex is known as normal strain. The component exy of the strain

tensor is exy = 1/2γxy (figure 1.1 (b)) where γxy is the engineering strain. The shear strain

in the block is proportional to the change in angle of the cube γxy ≈ φ. The angle φ is the

change in the angle of the block EFGH which is given by φ = π/2 − θ or φ = α + β. This

relation holds for small angles, when α ≈ tanα, which can be only true for α << 1, the same

condition holds for β [77, 55]. All other components of the strain tensor can be defined in a

similar fashion. The small angles condition means that the definition of the shear strain as

the sum of α and β is only valid for small strains.

The deformation of a body leads to build up of internal forces with within the body.

These internal forces can be represented using the stress tensor.

θxFxF

A
'A

B

'

x

y

(a) (b)

C

D
'B

C

'D

E

F

G

α

β
H

Figure 1.1: Normal strain and shear strain. In (a) a bar which lies along the x axis is being

pulled apart by a force Fx the normal strain ex can expressed as (A′C ′ −AC)/AC which is

the extension per unit length. Figure (b) shows the deformation of a block EFGH where

the engineering strain γxy can be expressed as the change in the angle of the block.

1.1.2 Stress

Points within a material body respond to deformations by developing internal forces which

try to restore a body to equilibrium. Take for example a volume element of a 3 dimensional

bar similar to the one in figure 1.1 (a), under the influence of a Fx. Internal forces will develop
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within the body in response to the extension of the bar. The sum of all the forces within

the bar must cancel out to zero since the bar is at rest. This means that forces between the

various volume elements, according to Newton’s 3rd law must cancel out. This is essential

to express the next step where the forces on the volume can be expressed as forces on a

surface [77, 55] -
∂Tn (x)

∂x
=

∫∫
S
Tn (x)dS, (1.3)

where Tn (x) is the traction vector. For a cross section the bar, the surface S is the surface

that bounds the entire body. The notation Tn is used to represent Tn = [
−→
Tx,
−→
Ty,
−→
Tz] where

each of the components can be written as [77] -

−→
Tx = σxx̂ + σxyŷ + σxzẑ,
−→
Ty = σyxx̂ + σyŷ + σyzẑ,
−→
Tz = σzxx̂ + σzyŷ + σzẑ,

(1.4)

where the σ’s can be written as -

σ =


σx σxy σxz

σyx σy σyz

σzx σzy σz

 , (1.5)

andσ is the stress tensor. Each component of the traction vector represents three components

of the stress tensor ( equation 1.4). These components of the stress tensor are visualized in

figure 1.2. It is important to note that the traction vector is defined with respect to a surface

normal. In figure 1.2, for a normal vector ~n = x̂ which refers to a plane in yz, there will be

only one component of the traction vector. This vector contains three component of the stress

tensor which will be σx, σxy, σxz. The traction vector is essentially a surface force density

which is integrated over the surface S bounding a material body to give the resultant force

on the body.

Figure 1.2: Traction vector and its components. Components of traction vector Tn =

[ ~Tx, ~Ty, ~Tz], where each component of the traction vector is expanded upon on volume

element and shows the components of the stress tensor. Figure adopted from [77]

The σi are all normal stresses and σij are shear stresses. Similar to the strain tensor, the

stress tensor is symmetric, hence σij = σji.
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Going back to the example of the bar in figure 1.1 (a). When the bar is pulled and held

at rest, the forces on the bar balance out and the net force is zeros. If there were unbalanced

forces in the bar, it would deform to account for them. Apart from the applied loading, the

bar is also balances gravity, hence it is possible to write for any volume element of the bar

[55]

∇ · σ + ρg = 0. (1.6)

This states that the sum of all forces acting on the body is zero, these forces are- internal

stresses that balance out the applied loading and gravity. This is a necessary condition for

the body to remain at rest.

Apart from gravity, there can be other external body forces acting on the body. These

body forces (examples include magnetic forces) can be generalized and the above equation

can be written explicitly as [77] -

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ FBx = 0,

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ FBy = 0,

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ FBz = 0,

(1.7)

where the body forces have three components, F̃B = FBxx̂+FByŷ+FBz ẑ. In the special

case where body force is gravity acting in the y direction according to figure 1.1 (a), then

FBx = FBz = 0 and the only body force component remaining will be FBy = ρg.

The set of equations present above are known as the equilibrium equations since they

describe the equilibrium condition for a material body. They are crucial in the study of

elasticity of a material since by solving the equilibrium equation with appropriate boundary

conditions, it is possible to calculate the various stress acting on the body. This is relevant to

fracture mechanics since it is the build up of stresses within a body that cause fracture. If the

applied loading in figure 1.1 (a) were to exceed a threshold value then the internal stresses in

the material will be large enough to break bonds between the individual molecules causing a

crack to be initiated. Hence, an accurate description of the stresses in a material due to the

applied loading is needed to predict the threshold value where fractures can be initiated.

So far, stress and strain have been looked at separately, however it can be shown that

stress and strain are related. For an isotropic material, the relationship between the strain

and the stress is expressed as [77, 55]

σij = λekkδij + 2µeij , (1.8)

where λ and µ are elastic constant. λ and µ are the Lamé constants. The product ekkδij rep-

resents the diagonal components of the strain tensor. A note on notation, σij here represents

all the terms of the stress tensor where if i = j refers to the normal stresses, whereas i 6= j

refers to the shear stresses. The above equation means the internal stresses in a material can

be expressed in terms of a material’s elastic properties, and in terms of the strain in the ma-

terial. It is interesting to note that normal stress in a material are dependent on both elastic
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constants whereas the shear stresses are related to the strains by only the shear modulus. For

example, σx is dependent on the three normal strains ex, ey and ez and on λ and µ, whereas

σxy = 2µexy. Equation 1.8 also suggests that if stress is applied along one of the coordinate

axis there will be strain in all coordinate axis. This is represented in figure 1.1 (a) where the

stresses within the bar in the x direction cause displacement and strain in the y direction as

well. The above equation can also be expressed in terms of the strain [77, 55]-

eij =

(
1 + ν

E
σij

)
− ν

E
σkkδij . (1.9)

Here ν = λ/[2 (λ+ µ))] is called the Poisson’s ratio and E = µ (3λ + 2µ)/ (λ + µ) is the

Young’s modulus.

The description of stress and strain according to equations 1.1 and 1.5 are three dimen-

sional. Sometimes, a problem in elasticity can be reduced to a two dimensional version. This

approach is also commonly used in fracture mechanics to simplify a system making it easier

to analytically solve the equilibrium equations (equation 1.7) and acquire the stresses around

a crack. Next, a two dimensional formulation of elasticity is presented.

1.2 Two dimensional formulation of elasticity

The formalism of elasticity, which has been discussed so far, is for three dimensions. However,

for many systems a two dimensional formulation of elasticity is sufficient and captures the

essential physics. Two dimensional elasticity is also commonly used in fracture mechanics.

Typically a plane stress condition is used to solve the stress in a film due to cracking.

Linear elasticity can be reduced to two dimensions confining all the strains or stresses to

a single plane ([77, 84]). The first condition to be discussed will be plane strain which is an

approximation useful for a thick plate. These are plates which are long in the z direction

compared to the dimensions of the plate in the xy plane. Under this condition, the strain

tensor becomes

e =


ex exy 0

eyx ey 0

0 0 0

 . (1.10)

The z direction strain tensor components are zero hence the strain tensor becomes two

dimensional. Normally for a thick plate, applying a strain in the xy direction would also

cause a strain in the z direction, this is known as Poisson’s effect. Take a 3 dimensional

version of the bar in figure 1.1 (a), where the force is being applied in the x direction, if the

height of bar which is its dimension in the z direction is very large compared to the x and y

dimensions, the strain tensor components ez, eyz, exz would be very small and since the strain

tensor is symmetric, ezy, ezy would also be small. Mathematically, the strain tensor for the

thick plate can be simplified be setting the z components of the strain tensor to zero.

The stress tensorfor the plane strain condition can be written using equation 1.8-

6



σ =


σx σxy 0

σyx σy 0

0 0 ν (σx + σy)

 , (1.11)

where ν is Poisson’s ratio. Despite there being no strain in the z direction, the normal

stress in the z direction is non zero. Hence, a plane strain condition does not mean that the

stress in the body will be confined to a plane.

Suppose, now the height of the 3 dimensional bar is reduced from being very large in

the z direction to very small compared to the dimensions of the bar in the xy plane. Such

a condition represents a thin film. For thin films, only stress in the xy plane are relevant

and the stress in the z direction can be ignored. The stress tensor for plane stress condition

becomes [77]

σ =


σx σxy 0

σyx σy 0

0 0 0

 . (1.12)

For thin films, the normal stress and shear stress in the z direction will be negligible

hence, there are no z components of the stress tensor. The strain tensor under the plane

stress condition becomes[77]

e =


ex exy 0

eyx ey 0

0 0 − ν

1 + ν
(ex + ey)

 . (1.13)

Here the z component of the strain is non-zero, which means that regardless of height of

the film being small the strains in the z direction will still present.

Plane strain and plane stress are commonly used in fracture mechanics. Plane strain

conditions are normally used to solve the problem of a crack traversing in a film bonded to

a rigid substrate, moving parallel to the direction of a uni-axial stress. Solutions to such

problem are given by Beuth [12]. Plane stress is commonly used in conditions where the

crack propagates along the surface normal. A simple example is the tearing of a paper sheet,

if the paper sheet were placed in the xy plane and a loading was applied in the x direction,

a crack would initiate and propagate in the xy plane. Since the sheet is thin, a plane stress

formulation must be used to solve for the stress and strain with the sheet.

The tearing of paper sheet is a common example of fracture. An interesting question that

arises when studying the tearing of paper is under what conditions will a tear in the paper

propagate? Two methods are discussed in the next section which answer this question.

1.3 Driving a single crack

Crack growth can be explained using an energy balance argument. This model was presented

by Alan Griffith (1921) expresses the total energy of a crack in a plate under uni-axial loading

perpendicular to the direction of crack propagation [40]. The total energy of such a system

is a product of the strain energy released due to crack growth and the amount of energy
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required to new surfaces due to cracking. Strain energy in the body is built up due to the

applied loading, it is a product of the strain and stress in the body UE = (1/2)σijeij [77].

The amount of energy required to create new surfaces is propotional to the length of the

crack and is given by Us = 2γa [57] where γ represents the surface energy per unit area and

a is the length of the crack. The term γa is multiplied by 2 to account for the two surfaces

created. The total energy can be written as U = UE +Us [57]. A threshold can be defined by

taking the first derivative of U with respect to the crack length and setting this this to zero

dU/da = 0. This condition is known as the Griffiths criteria[57, 37]. A crack that meets the

Griffiths threshold will only propagate if applied loading is increased, above this threshold a

crack will keep propagating without the need for an external applied loading.

While the Griffith criteria are illuminating with respect crack propagating, they are not

easily applicable to systems since they require the calculating of the total energy without

taking into account dissipative forces. A alternate approach was put forward by Irwin (1957)

where he considered crack tips as points where stresses are concentrated. He defined the

criteria for crack extension in terms of the amount of stress at the crack tip. He introduced

the idea of the stress intensity factor which can be used to predict the point of fracture.

The stress intensity factor is dependent on the the size of the crack, geometry of the body

in which the crack is propagating, and is proportional to the stress in the cracking body.

The benefit of this approach is that the stress intensity factors can be empirical acquired

and used to predict when a material will crack further. The stress intensity factor breaks up

crack extension into three different modes. A sheet of paper lying in the xy plane can be

torn in three ways- first it can be pulled apart by a uni-axial force in the xy plane, which is

equivalent to applying a normal stress perpendicular to the direction of crack propagation.

This mode which cause the crack to grow in a straight line is called opening. Second method

is by applying a shear stress, this mode is know as sliding. A third method is to tear the

sheet out of plate. This means a loading is applied in the z direction to cause the sheet to

tear out of its plane. This mode is known as tearing. The three modes of fracture capture

the different ways cracks can extend into a material.

While the stress concentration approach is useful in expressing the stress around a crack

tip, is generally limited in use, since it cannot address situations like dynamic fracture pro-

cesses, where cracks spontaneously propagated fast, wavy cracks where a crack oscillates

back and forth around a direction of propagation or the spontaneous splitting of the crack

tip. Furthermore, multiple cracks may be created in a material, and as these cracks grow they

may interact and intersect with each other which leads to the formation of a crack pattern.

Such is the case with the system of mud cracks which is being studied in this thesis.

1.3.1 Mud cracks

So far the discussion has been focused on a single crack driven by an uni-axial external applied

loading. Mud cracks differ from the above since mud cracks do not have uni-axial loading

conditions, they can meander and they interact and intersect with other cracks. In drying

mud puddles, cracks intersect and form complex geometries making it difficult to apply the
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ideas like the Griffith criteria or stress concentration factor in order to understand how cracks

will propagate in the system. Nevertheless, energy arguments like the Griffiths criteria can

be used as a guide to understand how cracks extend in mud puddles. Before discussing the

formation of crack patterns, the mechanism driving crack formation in mud is discussed.

The driving force behind the formation of mud cracks is the internal stresses built up

due to evaporation of water within pores. In wet mud, a network of clay particles form the

frame of a porous network filled with water. The pores of the network are filled with water;

evaporation causes the water to recede creating tiny menisci within the pores. The pressure

difference at the air water interface leads to contraction of the clay network. Since the clay

network adheres to a boundary, the clay network resists contraction, which leads to the build

up of internal stresses in the material [13, 37]. The internal stress of such a network are

represented as an effective stress σ̄ = σij−pδij [13] where σij is the stress in the clay network

and the p is the capillary pressure. The pressure p is positive for compression hence it is

subtracted from the stress in the clay network. For a drying slurry the pressure becomes

more and more negative over time hence the effective stress in the porous medium increases.

The term pδij comes from the assumption that there are no shear stresses in the network due

to the capillary forces because the drying slurry is assumed to be isotropic [13].

A crack can emerge from defects within the drying slurry. The build up of effective stress

causes the crack to release the stress locally. The first crack propagates until it hits the

boundary and terminates. Meanwhile a second crack will emerge and start propagating, if it

approaches close to the first crack, it bends and intersects the first crack at approximately 90◦.

Figure 1.3 shows an example of a T-junction in a mud crack generated on a flat substrate.

This is because cracks release more stress normal to the direction of propagation then in

their direction propagation. Many cracks emerge and propagate as the slurry dries, forming

junctions as they intersect with each other. This process continues until the average spacing

between the cracks reaches proportional to the height of dried slurry, at this point the cracks

do not propagate further but starting opening. This is the point of crack saturation, where

the cracks can grow no further.[6]

Figure 1.3: Intersection of cracks on a flat substrate. Crack pattern is generated by drying

a Bentonite slurry. In this figure many cracks can be seen to intersection at approximately

90◦. This happens because cracks tend to bend to in order to release the maximum amount

of strain energy.

The physics of the formation of the crack pattern shown in figure 1.3 is scale free. If the

same experiment is done at the kilo-meter scale, provided all factors in the system scale with
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the crack spacing, the thickness of the crack will increase by the scaling factor. This is not

restricted to mud cracks. The scale free nature of the crack pattern would not change even if

the pattern was generated over a non flat substrate. As long as the structure of the substrate

is scaled accordingly, the crack pattern generated on the substrate will remain the same.

In the next section, examples of crack patterns at the kilometer, meter and micrometer

scales are presented. Many of these crack patterns do not form on flat substrates and the

driving force behind crack formation are different from poroelastic forces which drive mud

cracks. These examples serve to highlight how universal crack patterns are which is the

motivation behind studying how crack pattern form on non flat substrates and developing

methods to quantify them.

1.4 Big to small - crack patterns over various length scales

In nature cracks there are seldom single, isolated cracks. Most fracture processes lead to

multiple cracks which interact and form a crack pattern. Simple examples of crack patterns

are cracks in mud puddles [52], which were mentioned in the last section or paint cracks [48].

One defining feature of crack patterns is that they form network-like structure where the

nodes of the network represent intersections between two or more cracks ([16, 15]). These

nodes shall be referred to as crack intersection points. In some cases, the stress within the

cracking material is insufficient for crack propagation, this leads to cracks that are either

completely disconnected from the crack network, or cracks with only one end terminating at

a crack intersection point [42]. Cracks in a crack pattern can be classified based whether or

not they are connected to the crack network. Cracks connected to other cracks at both ends

will be referred to as connected cracks , cracks connected only at one end with the second

end free with be called hanging cracks and cracks disconnected from the crack network

with be called unconnected cracks. Most crack patterns form a base closed network

with few hanging and unconnected cracks. The presence of a large number of hanging and

unconnected cracks hints that the crack pattern has not matured[42].

Attempts have been made to cast geological fracture patterns as networks and study their

network properties ([86, 59]). Here the metric between two crack intersection points becomes

irrelevant. The crack pattern is replaced with an equivalent graph, and properties of the

graph are measured ([5, 38]).

Not all crack patterns can be cast as a closed network[4]. Three examples of such crack

patterns are given in the figure 1.4.

Many crack patterns presented below form on uneven substrates which influence the

structure of the crack pattern. The substrate affects the crack pattern by imparting symmetry

and topology to it. If the substrate decides what type of crack pattern forms, is it possible that

by studying the symmetry and topology of the crack pattern, the structure of the substrate

can be predicted? To answer this question, two approaches can be taken- one method involves

directly measuring the effect of the substrate on the crack pattern. This requires access to

the substrates of all the crack patterns presented below, these substrates can be scaled down
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(a) (b) (c)

Figure 1.4: Echelon, En Passant and spiral cracks: (a) Echelon cracks on a rock’s surface.

The cracks are parallel to each other and roughly the same length. Echelon cracks are a

combination of all three modes of fracture ([75], [70]). Figure adapted from [38]. (b) En

Passant cracks occur when two cracks, parallel but not lying in the same line, travelling

toward each other intersect ([33, 38]). Figure adopted from Fender et al[33]. (c) Spiral cracks

occur due to detachment of a film from the surface. Here, mode 1 and 2 fracture dominate.

Such spiral crack patterns have been observed in egg albumin as well. Figure adapted from

[38]

.

and studied for different conditions. It is a difficult approach since substrates, for example,

at the planetary scale are not easily accessible. Such an approach would also not work well

with bonded films or soft substrates since they may break if the cracking layer is being

removed. This approach also destroys the crack pattern, which is required to understand

how the substrate affects the cracking material. A better approach is to study the crack

pattern and find ways to relate the topology of the crack pattern to the substrate. For a

given substrate, crack pattern can be generated for various layer heights and quantified. By

studying how the crack pattern changes with layer height, it would be possible to correctly

decipher the effect of the substrate on the crack pattern. This is the approach used in the

thesis. This approach requires development of measurement parameters which can quantify

a crack pattern. In order to do so, it is essential to look at crack patterns at various length

scales to understand how these crack patterns were formed and how can they be classified

according to their structure.

Combining ideas from the last section and this section, the reasons to measure crack

patterns can be broadly broken down into two points-

• To understand how various fracture driving mechanism influence the formation of cracks

and crack patterns.

• To decipher how the substrate affects the symmetry and topology of a crack pattern.

1.4.1 Kilometer scale

The examples below show a rich variety of crack patterns at the kilometer scale. An important

question to keep in mind while going through these examples is what role do the substrates

play in the determination of the crack pattern? Two main examples are discussed -graben

patterns in craters and polygonal terrain on Mars. The graben pattern have a circular
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(a) (b) (c)

Figure 1.5: (a) Graben pattern on the surface of Mercury. These patterns for due to repeated

deposition of lava over an impact crater. Notice the radial symmetry of the graben pattern.

Figure adapted from [34]. (b) Polygonal terrain in a 14 km diameter crater. Figure adapted

from [31] (c) Here polygonal terrain of two length scales can be observed, the larger length

scale polygonal terrain is 70-350 m size, the smaller length scale polygonal terrain is 5-20 m

in size Figure adopted from [31]

.

symmetry, which reflect the symmetry of the substrate. The polygonal terrain show crack

patterns that form due to thermal contraction of a layer above the substrate.

Cracks have been observed on the surfaces of all the inner celestial bodies- Mercury[14],

Venus[8],the Moon[32] and Mars[63]. They have also been seen on the surface of Jupiter’s

moon Europa ([44],[39]). This suggests that cracks are ubiquitous to moons and planets. The

surface of a moon or a planet is hardly constant, geological processes, meteor impacts and

gravitational forces of others constantly introduce stresses on a celestial body’s surface ([89?

, 21? ]). These stresses can generate cracks that range in length from hundreds of kilometres

to hundreds of meters .

On Mercury, graben patterns have been observed in ghost craters (buried craters) ([43],[14]).

Grabens are depressions created in a surface due to slip. Grabens and graben networks have

been observed on Venus[53], the Moon[60], Earth and many other planetary bodies ([65],[76]).

Ghost craters ([7],[21]) form due to filling and cooling of lava. These craters typically range

in size between 20 km to 60 km [14]. Apart from graben patterns, craters contain wrinkle

ridges [74], and graben that extend radially outward from the crater[34]. Unsurprisingly,

these craters lie in regions of high volcanic activity. Freed and Blair [14, 34] showed in a set

of papers that three mechanisms could lead to the formation of graben patterns: thermal con-

traction, uplift of the basin floor and subsidence due to cooled lava within the crater. They

concluded that the repeated filling and cooling of craters, essentially thermal contraction,

lead to the graben patterns observed in figure 1.5 (a).

Figure 1.5 (b) shows polygonal terrain on the surface of Mars. El maary et al. ([30],[31]

suggest that the larger thicker cracks could have formed due to dessication while the smaller
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Figure 1.6: Cracks due to dessication. Coyote lake, Califonia, US. The crack spacing varies

from 30 to 75 cm in size. Figure adapted from [31]

cracks within could be due to thermal stresses. Dessication cracks are driven by poroelastic-

ity [26] and on Earth, dessication cracks have been observed in dried lakes. Another typical

example of dessication cracks are mud cracks, which can be commonly observed in dried pud-

dles ([52],[41]). Thermal contraction cracks form because, changes in temperature can lead

to expansion and contraction in the material [54]. Large scale changes or cyclic changes in

temperature over long term can cause enough stresses in the material to build up, which can

lead to fracture. An example of thermal contraction cracks on Earth is the cracking of lake

ice. As the temperature drops during the evenings, lake ice cracks due contraction. During

morning and mid day, ice melts and fills the cracks in between. Thermal contraction cracks

are most commonly found in the polar regions of Earth[49]. In both cases, the contraction

of the material leads to cracking, hence dessication cracks and cracks due to thermal stresses

are generally known as contraction cracks.

Both dessication and thermal contraction cracks tend to form similar crack patterns. The

difference lies in the length scale of the crack pattern. For example, in figure 1.6 shows a

crack network formed due to dessication of a dried lake on Earth. Crack spacing of ranging

from 30 m to 75 m have been observed [31].

The graben patterns found atop craters have radial symmetry and the polygonal terrain

has cracks that form square like cracked regions. The crack are almost perpendicular to each

other. For the graben patterns, the symmetry of the substrate is obvious, while this is not

true for the polygonal terrain. These are two types of crack patterns that form due to two

different mechanism. Below crack patterns at the centi-meter scale are presented.

1.4.2 Centimeter scale

To find crack patterns, one hardly needs to go as far as Mercury or Mars. From paint

cracks to craquelure, many examples of crack patterns exist from the centimetre to the meter
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scale. The focus here on crack in paintings, where environmental effects on the substrate

determines if a painting cracks or not, and memory effects in pastes where periodic driving

forces determine the structure of the crack patterns.

Craquelure is defined as a dense crack pattern. It is commonly found in paintings and

in glaze. The study of craquelure has received much attention because of its applications to

conservation of paintings[2, 19, 20, 9].Figure 1.7 (a) shows an image of a painting where the

right part of the painting, glued to a wooden piece whereas the left side of the canvas is left

hanging ([10],[9]). Fixing the canvas prevents cracks from occurring.

Karpowickz [46] measured the strain in a gel under uniaxial stress, and postulated that

cracks in a painting could be due to viscoelastic recovery after drying. He also showed how

exposing brittle thin films to high humidity causes contraction of the film leading to a ”typical

craquelure pattern” [47].

Berger and Russell [11] measured the stress change in a canvas due to varying environ-

mental conditions. In figure 1.7 (b), the top plot shows the changing temperature and relative

humidity, and the bottom plot shows the change in stress due to large scale changes in humid-

ity. Berger and Russell suggest that in order to conserve an oil painting and prevent cracks,

a canvas must be stretched so that it remains stiff. The tension in the canvas can be com-

promised due the change in the environmental conditions, mainly humidity. Cyclic changes

in humidity or temperature can either overstretch or contract the canvas. They suggest that

one of the best ways to prevent cracks is to attach a rigid support to the canvas in order to

prevent loss of tension.

Nakahara et al.[68, 62] studied the memory effects in pastes. They found that pastes had

“remembered” the direction of vibration, and when dried and formed cracks in a direction

opposite to the direction vibration. In other cases, pastes cracked along the direction of flow.

Figure 1.8 shows a dried magnesium carbonate hydroxide paste that has cracked in a direction

perpendicular to vibration direction, and parallel to the direction of flow. They conducted

experiments with colloidal particles and showed that in a paste, decreasing particle size leads

to a stronger memory effect due to vibration.

The driving force of fracture for the two systems presented here are the same. In both

cases, drying causes stress in the cracking materials and crack patterns form. Unique to

each system is an external factor that affects the cracking process. In the paint cracks, the

structure of the substrate gets altered due to change in humidity. By studying the crack

pattern is it possible to determine how the substrate changes? In order to understand this,

crack patterns must be generated using substrates of varying stiffness in order to determine

conclusively if a stiffer substrate will necessarily prevent paint cracks. Cracks in pastes with

memory are a unique system. There is no variation in the substrate however a driving force

alter the cracking medium and induces internal stresses within the material. Quantifying

the crack pattern would allow a comparison between the crack pattern and the driving force

that generated the crack pattern. This in turn could assist in predicting what type of crack

pattern will be generated based on the magnitude and direction of shaking. The next set of

examples will deal with micro-scale cracking.
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(a) (b)
Figure 1.7: Role of substrate in formation of craquelure: Experiments to study the effect of

changing environmental conditions on the canvas .(a) On the left side of the painting, crack

patterns are observed. On the right side of the painting, no crack are observed due to the

present of a wooden support. Figure adapted from [10] . (b) Top panel shows the changing

environmental conditions with respect to time to which the canvas is exposed. The line with

pluses represents the change in relative humidity. The solid line represents the change in

temperature which is generally allowed to vary between 22◦-25◦ C. (b) The bottom panel

represents the change in stress due to the change in environmental conditions. Notice that

the maxima in stress occur at the same time points as the maxima of the relative humidity

[11]. Figure adopted from [11]

.

1.4.3 Microscale and below

Three types of crack patterns are presented here - cracks in a gallium nitride film, cracks in

blood droplets and finally cracks in an Au/PDMS bilayer. The cracks in the gallium nitrite

films and the Au/PDMS bilayer occur due to misfit strains that occur between the deposited

material and the substrate. These misfit strains occur due to difference in elasticity and are

common in epitaxial growth processes as well since, in process of deposition or growth of the

material, any defects cause strains to build up in the the crystal structure and this in turn

causes fractures.

Fracture patterns at the micron scale are shown in figure 1.9. In figure 1.9 (a), a gallium

nitrite film is deposited on a silicon substrate [78]. The film is approximately 5µm in thickness.

Thin films of such size are routinely used in industry, especially in building circuits for micro
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Figure 1.8: Memory effects in pastes: (a) memory of vibration- A water poor paste of

magnesium carbonate hydroxide (volume fraction ρ = 12.5%) is shaken at an amplitude

a = 15mm and frequency f = 2Hz [68] . The arrow shows the direction of shaking. Primary

cracks are perpendicular to the direction of vibration; secondary cracks are parallel to the

direction of vibration [68]. (b) A water rich paste of magnesium carbonate hydroxide (volume

fraction ρ = 6.7%) is shaken in the direction of the arrow. Here, the primary cracks are

perpendicular to the direction of shaking [68]. What do the crack patterns tell us about the

stress distribution inside the medium?

mechanical electronics machines (MEMS) [69, 3]. In figure 1.9 (a) the thicker cracks are the

primary cracks, and thinner cracks are the secondary cracks. Cracking in microfilms at such

length scales can be disastrous. Numerous attempts have been made to better understand

how cracking occurs in thin films [12, 91, 88, 90] some of these ideas are discussed in the next

section.

Figure 1.9 (b) shows a dried and cracked droplet of blood. Blood is a colloid that consists

of plasma and celluar matter which include red blood cells, white blood cells and platelets.

Sobac and Brutin [80] showed how a drying droplet of blood have two regimes, and how in

the second regime, which is defined primarily by diffusion, a radial crack pattern is formed.

In a follow up paper in 2014 [81], they show how as a gelation front reaches the center, cracks

follow. The drying mechanism is similar to that of the coffee ring effect. They also showed

that the crack spacing, is roughly proportional to the thickness of the drop of blood. As a

droplet dries fully, in the center of the dried blood droplet, an isotropic crack pattern forms.

They observed delamination along the edges of the droplet as well.

Figure 1.9 (c) shows a pattern created using controlled cracking in gold, PDMS bilayer.

Here, micro-groves were built into the PDMS substrate then a gold film was deposited and

cracked. By controlling the frequency of notches at will and the spacing between the notches,

it is possible to create crack patterns [28, 50, 51].

Kim et al.[51] describe methods to use controlled fracture to create nano and micro-

structures. When PDMS is strained then exposed to plasma and the strain is released, cracks

form [72, 18, 67]. This is because the surface of the PDMS oxidizes which creates a thin stiff

layer. The elastic mismatch between the stiff surface and interior of the PDMS causes cracks

to occurs [58]. By precisely controlling the stress it is possible to control crack spacing and

by controlling the oxidation time of PDMS surface, the crack depth can be controlled. In this

paper, Kim et al. refer to various other methods of nano fabrication and suggest potential
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application to biological systems [51].

(a) (b) (c)
Figure 1.9: Crack patterns at the mirco-scale: (a) 5µm thick gallium nitrite film. Cracks

appear along the cleavage planes. Cracks tend to intersect at 60◦. Darker cracks are the

primary cracks, the second generation of cracks are fainter and are in general parallel to each

other [78]. Figure adapted from [78] . (b) Crack pattern of a dried blood droplet. Droplet

diameter is 8.6 mm, at room temperature of 22◦C and relative humidity of RH = 42%.

Initially as the droplet dries, it gels[80] . The region of geletion shrinks and during this

shrinkage, crack form along the edges and propagate inwards[81]. Inside the droplet, a finer

crack pattern can be seen [80]. Figure adapted from [80]. (c) Crack pattern generated by

on a Au/PDMS bi-layer. Gold is deposited onto a layer of PDMS under strain. The PDMS

layer contains notches. A detailed method of fabrication is presented in [50]. Figure adapted

from [80].

The three crack patterns presented conclude the examples of crack patterns at different

length scales. From the micro scale to the macro scale, in all the examples, the substrates

play a major role in determining how crack patterns form and propagate. In two of the cases

- memory pastes and blood cracks- although there is no substrate, external influences alter

how the crack pattern can evolve. In the case of blood cracks, the crack pattern can change

based on the temperature, humidity or pH of the environment. This may happen due to

change in drying rate or change in the structure of the cells within in the blood droplet.

Some references have been made to quantifying crack patterns. In the next section,

previous attempts to quantify crack patterns will be discussed.

1.5 Quantification of crack patterns

There are numerous approaches that have been attempted quantify a crack pattern. There

are two approaches used- one approaches involves generating either a purely artificial network

or an artificial network based on a real network and developing methods to analyse them. The

second approach involves using real crack networks to define measures for a crack pattern.

Andresen et al. study fracture outcrops by representing them as an artificial networks

and measuring network parameters [5]. Such an approach has also been used by Valentini et

al. to analyse rock fractures networks [86]. Fracture outcrops are lines of cracks that are part
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of exposed geological structures. Examples of these geological structures are large boulders

or sedimentary rocks. Andresen et al. took various fracture outcrops and generated networks

by labelling cracks as nodes. The intersection between the cracks are labeled as edges which

connect the nodes. They measured the degree distribution, the clustering coefficient, the

efficiency of the network and the characteristic path length. The degree k of a node is the

total number of neighboring nodes. If the degree distribution P (k) follows a power law, then

the network is considered scale free. The clustering coefficient measures the local connectivity

of the network. The clustering coefficient has a value between 0 and 1 where values close to

1 represents a condition where two neighbours of a single node share an edge of the network.

The clustering coefficient is a means to measure the local connectivity of the network. Such

local measures would be useful pattern seen in polygonal terrain where local structure exists

with a larger crack pattern. The efficiency E of the network is a measure of how well different

parts of the networks are connected to each other, and this is a global measure of the pattern.

E is proportional to the inverse of the distance between two nodes in the network. It falls

between 0 and 1 except for the case where E =∞. This too can be generally applied to many

crack patterns. For example, comparing the blood cracks and the memory paste cracks, E

may be smaller for the blood cracks since very few radial cracks are connected to each other (

white regions in the figure 1.9 (b)) whereas in figure 1.8 a path between any two vertices of

the crack pattern can be found by travelling along the crack pattern. The last parameter they

mention is the characterstic path length L which represents the average distance between any

two nodes in the network. The average path length is large for fracture networks that have

a small E value since the network is not well connected. While the methods discussed by

Andresen et al. work well at characterizing networks, they may not be easily applicable to

real crack patterns. Firstly, they require a crack pattern with a large number of cracks, in

order to plot any meaningful distributions of P (k). With systems like that of Nakahara

et al., it would be difficult to get the adequate statistics. Secondly, the measures contain

very little information about the substrate of the crack pattern. This is required initially to

understand how a crack patterns evolve.

Hafver et al. [42] took a different approach where rather than using existing crack patterns

as models they generated artificial crack patterns and made measurements on them. Their

cracks were straight lines whose position was chosen according to a probability which was

weighted by a distance map of the pattern, and whose the orientation was chosen randomly.

Once a line was placed, it was extended in both directions until it either met another line or

hit a boundary. Hafver et al. had two control parameters for their patterns: γ which controls

the homogeneity of the pattern and ω which controls the topology of the pattern. γ could take

the values −2 ≤ γ ≤ 2 whereas 0 ≤ ω ≤ 1. For a value of ω = 0 lines form a tree like structure

and for ω = 1 the lines generate polygonal structures. A pattern with γ = 2 and ω = 0 is an

isotropic pattern where most lines have one free end. The free end refers to one end of the

line not intersecting with the boundary, or with any other line. On the other extreme where

γ = −2 and ω = 0 most of the lines in the pattern lie at the boundary; no lines are present

in the center of the image. Increasing the value of ω to 1 with γ = 2, generates a pattern
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where the majority of lines lie along the diagonal to the square boundary or perpendicular

to the diagonal. Values of γ = 2 and ω = 1 generate an isotropic pattern where there are no

free ends for any line, all lines are connected on both ends to either another line or to the

boundary. Using ω, Hafver et al. define an order parameter R = (1−ω)/ (1+ω) which is the

ratio of the free ends to the number of intersections of lines. Since replacing the lines with

cracks does not affect the definition of the parameter, they propose that ω can be used as a

measure of crack patterns as well. Another order parameter they define is the measured value

of γ. They measure γ based on the temporal hierarchy of the pattern. Both the parameters

are applied to crack patterns in gelatin confined to a Hele-Shaw cell, ice fractures on Mars

and weathering cracks on the surface roads. Similar to the parameters of Anderesen et al.

such a parameter does not characterise the symmetry of the pattern. A radial crack pattern

can either have cracks extending radially outwards or cracks that lie parallel to boundary,

the two parameters can be tuned such that in both those cases the values of ω and γ are

the same. Furthermore, the parameter R is then dependent on the number of free ends in

the crack pattern, hence if a crack pattern were allowed to evolve for long enough, R will

drastically change. This is a benefit for time lapse imaging of a crack pattern but if the crack

pattern has an overall directionality, which can be imposed by the substrate, then R would

not be able to capture the influence of the substrate.

Bohn et al. [16] took an experimental approach to defining an order parameter. They

studied the temporal and hierarchical evolution of glaze in ceramics by analysing a crack pat-

terns generated by drying starch slurries on a rectangular polymethylmethacrylate (PMMA)

substrate. They show that orientation of the first fracture is non-deterministic for low

layer heights and with increasing layer height, the orientation and structure of the first

crack becomes deterministic. They quantify this using two order parameters, these are

δ = |d1 + d2|/
√
A and ∆ =

√
d1

2 + d2
2/
√
A where d1 is the distance along the rectan-

gle, between one end of the crack and the center of the left edge of the rectangle, d2 is the

same, however for the right edge. The definitions of these are shown in figure 1.10. Both

parameters δ and ∆ yield 0 if a crack divides rectangular region into two equal halves. For

a curved crack δ > 0 and ∆ > 0. These parameters approach close to zero with increasing

layer heights. The large spread in values of δ and ∆ at low layer heights is what signifies the

disorder whereas at large layer heights the standard deviation of both order parameters is

small. Both these order parameters can be written according to the symmetry of the region

bounding the crack pattern, however, since they pertain to only a single crack, they cannot

be used to analyse current experiments because the information about the first crack is lost

in a mature crack pattern.

The various methods to quantify crack patterns that have been presented above have

a certain realm of applicability. The δ and ∆ parameters serve to quantify a crack in a

rectangular domain, the network parameter presented by Andersen et al. are suited for

crack patterns with large number of intersections, the parameters R and γ are best suited to

study an evolving crack pattern. None of these parameters contain any information about

the orientation or the symmetry of the substrate, hence it is difficult to apply them to the

19



(a) (b)

Figure 1.10: Definitions of d1 and d2. Figure reproduced from [16]

current problem.

1.6 Scope of the thesis

The thesis is divided into 6 chapters. This section concludes the end of chapter 1 which

aims to present introductory ideas about the research problem. The second chapter contains

the experimental details and information about the image processing methods used to pre-

pare the images for analysis. Two types of uneven substrates are used in generating cracks

patterns- sinusoidal plates and radially sinusoidal plates, details about the number of plates

and variation in amplitudes and wavelengths of the plates are discussed. The procedure of

preparation of the slurry is also discussed. Some preliminary raw images of crack patterns

are shown. Once images of crack patterns have been acquired, they must be processed, such

that metrics and measure can be applied. The image processing of crack patterns is also

discussed in chapter 2 - Materials and methods.

Chapter 3 - Analysis of crack patterns - defines new measures that are used to classify

crack patterns. These measures employ the symmetry and orientation of the substrate to

quantify crack patterns generated in chapter 2. The algorithm of each measure is described in

this chapter and a few crack patterns are analysed as examples. Along with the measurement

parameters, the method to measure the crack spacing is also presented.

In chapter 4 - Results, the data for different measurement parameters are presented. The

chapter begins with the data for time evolution of a measurement parameter. This is done to

set a minimum time of drying for the experiments, it also shows that the measurements are

made on crack patterns that do not evolve further i.e that a crack pattern is mature. The

measurement parameters are plotted with respect to increasing dimensionless layer height.

The crack spacing is also plotted with the layer height H in centimeters.

Chapter 5 - Discussion presents the analysis of the data from chapter 4. The effectiveness

of quantification is discussed. The order parameters are compared to each other and their

extremes are discussed. The experimental results are compared with finite element model

(FEM) simulations carried out by Lucas Goehring.

The final chapter - Future directions - presents a host of new ideas that can be explored,

it primarily discusses the micro scale and geological equivalents of the current experimental

setup.
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Chapter 2

Materials and methods

In order to study crack patterns over uneven substrates, clay slurries are dried over sinusoidal

substrates and radially sinusoidal substrates. This chapter presents the experimental details

and preliminary stages image analysis of these crack patterns. It aims to describe how the

experiments were carried out, some preliminary observations and image processing procedures

which convert the raw images into binary and skeleton images.

The first section in the chapter describes the experimental setup and the procedure fol-

lowed to generate crack patterns. The experimental setup consists of five sinusoidal plates

and two radially sinusoidal plates. These two types of plates represent two different but

simple symmetries. The preparation of the bentonite slurry is also described in this section.

As mentioned in the chapter 1, the control parameters for the experiment are the am-

plitude A, the wavelength λ for the sine wave plate and the layer height of the clay is H.

The amplitude and wavelength are fixed values for each plate. The choice of layer heights

for each plate and their values are discussed in section 2.1.1. Preliminary observations about

the types of crack patterns are also given there.

Section 2.2 provides methods required to prepare the crack pattern for analysis. The

crack patterns generated due to dried bentonite slurries were imaged. These images are

converted to binary images, and then skeleton images for further analysis. The procedure for

this conversion is described. Once the skeleton images are generated and spurs are removed,

the points where two or more cracks intersect are found. Using these points, a list of all

neighbouring vertices for each vertex are identified and stored.

2.1 Experimental setup and procedure

In order to generate crack patterns, bentonite slurries were dried over sinusoidal and radially

sinusoidal substrates. All substrates used in the experiment were 20 cm by 20 cm. Plates 1-5

were made using computer numerical control (CNC) milling with a resolution of 400 µm for

plates 1, 4 and 5, and a resolution of 200 µm for plates 2 and 3. These substrates were made

of acrylic since it is perfectly stiff compared to the dried mud slurries. In these substrates,

the height profile along the height, which shall be referred to as the z direction is given by

z (x, y) = A sin (2πx/λ). A list of amplitude A, and wavelengths λ is presented in table 2.1.
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Figure 2.1: Substrate images . (a) is a top down view of plate 1 . (b) is a top down view of

radial plate 1. (c) is a side view of plate 1.

The radially sinusoidal plates 1 and 2 were 3d-printed by the company 4D concepts since it

was not possible to use CNC milling to create the radial structure of the plates. The height

profile of the radial plates is given by z (r, θ) = A sin (2πr/λ). The radially sinusoidal plates

were made using acrylic photo-polymer. Figure 2.1 contains examples of a sinusoidal and a

radially sinusoidal plate. Figure 2.1 (a) shows a top down view of the sinusoidal plate 1 while

figure 2.1 (b) shows radial plate 1 and figure 2.1 (c) shows the side view of plate 1. A flat

plate made from acrylic was used as the control plate for all the experiments. This plate has

the same dimensions as the rest of the plates.

In order to prepare bentonite slurries, bentonite (Acros Organics) was mixed with Milli-

pore deionized water with a weight ratio of 1:2 i.e twice as much clay compared to the weight

of the water was added. A commercial scale was used to weight the bentonite and the distilled

water. In all cases, two separate containers were used to prepare the slurry, bentonite powder

was weighed and stored in the first container; the distilled water was weighed and stored in

the second container. The bentonite powder was carefully added to the second container.

It was ensured that the bentonite powder landed in the center of the second container to

prevent power sticking to the edges of the container. The second container was set to rest

until all the bentonite was wet. After this, the mixture was stirred vigorously for 5 minutes.

After stirring, the resulting slurry was immediately poured on the substrate and left to dry.

Different proportions of the bentonite and water were tested. Higher ratios of bentonite to

water were prone to the memory effect studied by Nakahara et al. [68], lower ratios of ben-

tonite contained too much water which would fill the container but was too thin, it contained

too much excess water [68].

Crack patterns were generated with a range of bentonite weights, ranging between 60 to

300 grams (for all plates, refer to table 2.2) in 10 gram increments. The lowest bentonite
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weight was chosen such that the slurry barely covered the top of the peaks and when these

slurries had dried, it left a thin layer of dried bentonite on the peaks. Such thin layers

contained either fine cracks or no cracks at all.

The bentonite weights were translated to layer heights by calculating the density of the

bentonite sediment. In order to calculate the density, bentonite slurries were prepared and

allowed to settle in 5 graduated cylinders and in flat plate. The flat plate data was generated

for masses of 80, 100, 200 grams of bentonite. Both were imaged for 6 hours after which

the layer height of the settled bentonite layer was measured. It was observed that after 150

minutes, the layer heights remained unchanged in both geometries. In case of the flat plate,

the dried layer heights were also measured after the slurries dried. The graduated cylinders

did not dry for several days hence the dry layer height could not be measured. The results

for the wet layer height of the cylinders and the flat plate were averaged and the density was

found to be 0.49 ± 0.12 g/cm3. This density was then used to convert bentonite weights to

layer heights.

The substrates and the slurries were placed on a levelled surface to dry. For plates 1-5, the

drying was accelerated by two halogen lamps placed above the clay surface. While the room

was always kept closed during the experiments, there was no humidity or temperature control.

The halogen lamps generally maintained the temperature near the surface of the drying slurry

at approximately 50◦C, therefore the drying times were low. For example, a slurry containing

60 g of bentonite would dry and form a crack pattern in approximately 2 hours. As the

bentonite weights were increased the drying times also increased. In general, a minimum

of 4-6 hours of drying, based on the bentonite weight, was allowed in all experiments. For

the radially sinusoidal plates, the halogen lamps could not be used since the acrylic photo-

polymer melts if the temperature is above 40◦C. Hence, the slurries were dried using a small

heater which maintained the room temperature at 30◦C. The slurries on the radial plate,

including the low layer height slurries were dried overnight to ensure that the crack pattern

was mature enough. In case of large layer heights, usually with slurries that contained more

than 200 g of bentonite, the slurry was left to dry for 36 hours.

As the slurries dried, they were imaged using an overhead camera. The cameras used

were digital SLR cameras (Nikon D5100 and D5200). Images were taken after every minute

for plates 1-5 and the flat plate, whereas images were taken every 5 minutes for the radially

sinusoidal plates since the drying was slower.

2.1.1 Preliminary observations

The range of bentonite masses and layer heights for each plate is given in table 2.2. The

layer height H is in centimeters, and h = H/λ is the dimensionless layer height. For plates

1, 4, 1r and 2r the lower mass ranges were not explored since it was not possible to spread

the bentonite slurry evenly.

As the slurry dries, the crack pattern form sequentially. The first set of cracks propagate

until they hit the boundary, after this they start opening further. These cracks are referred

to as primary cracks. At intermediate layer heights, primary cracks lie parallel to the peaks
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Plate A (cm) λ (cm) a = A\λ
Wave plate

1 0.5 2 0.25

2 0.25 1 0.25

3 0.25 0.5 0.5

4 0.5 1 0.5

5 0.25 2 0.125

Radial wave plate

1r 0.25 0.5 0.5

2r 0.25 1 0.25

Table 2.1: List of amplitudes and wavelengths of the various plates. 1r and 2r are also called

radial plates 1 and 2.

Plate Mass range (g) H (cm) h = H/λ

Wave plate

1 90-300 0.46-1.53 0.23-0.76

2 60-300 0.30-1.53 0.30-1.53

3 60-300 0.30-1.53 0.60- 3.0

4 100-300 0.51-1.53 0.51-1.53

5 80-300 0.40-1.53 0.20-3.0

Radial wave plate

1r 80-300 0.40-1.53 0.20-3.0

2r 80-300 0.40-1.53 0.20-3.0

Table 2.2: List of bentonite masses, layer heights and dimensionless layer heights.

of the substrate. For low layer heights, most of the primary cracks were curved, whereas for

large layer heights, the primary cracks did not show any direction preference.

The secondary cracks occurred generally after the primary cracks had stopped propagat-

ing. Most secondary cracks tend to be smaller in length and thickness than primary cracks.

They started to grow either in a region between two primary cracks, or stemmed from the

edge of a single primary crack. For intermediate layer heights, the secondary cracks were

perpendicular to the primary cracks, which was true for low layer heights as well. However,

for low layer heights many of the secondary cracks were curved. They start growing and

terminate at a primary crack. For large layer heights, many secondary cracks that originate

from primary cracks tend to be unconnected on one end.

In order to analyse the crack pattern images, it is necessary to quantify the connectivity of

the crack pattern. This involves identifying the points where two cracks intersect (which are

known as crack intersection points) and calculating a connectivity matrix. The next section

deals with methods required to prepare the crack pattern for such analysis.
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Figure 2.2: Examples of (a) wavy (b) ladder-like and (c) isotropic crack patterns, the

substrates and layer heights are shown below.

2.2 Image processing

The images obtained in the last section are processed to obtain information about the crack

pattern image. The images are cropped and processed to acquire a contrast adjusted grayscale

image. After this, MATLAB is used to further clean, binarize and skeletonize.

Once skeleton images of the crack pattern are available, the vertices of the skeleton are

identified. The connections between the identified vertices are constructed and connections

are presented in form of a connectivity matrix. Using the skeleton image of the crack pat-

tern, the vertex location, and the connectivity matrix, tools are developed to quantify crack

patterns.

The amount of pre-processing required differs from image to image. Certain images require

minimal or no pre-processing. In the case of unconnected cracks and the radial unconnected

cracks, for example, no pre-processing stage is required in order to analyse images. In other

cases, extra care must be taken while pre-processing the images to ensure that relevant detail

is captured. Examples of this (large mud cracks) will be discussed in this chapter.

The methodology referred to in figure 2.3 is applied primarily to mud cracks. For other

crack patterns, this methodology may change based on the type of raw image of the crack

pattern. This is especially true for images similar to figure 2.7 (a). This is because the

contrast between the cracks and the background will vary with different images. In the

current experiments, the lighting conditions allowed for a good contrast for larger cracks.

Fine cracks, in general are difficult to capture. Since the focus here is on defining measures

on a connected crack pattern, finer cracks are removed.

2.2.1 Pre-processing of images

The goal of the pre-processing stage is to ensure that all the images are of the same type i.e

binary and skeleton images. This step is necessary for batch processing of images. In all cases,

regardless of the initial image type, the final image after pre-processing is a grayscale image

of the crack pattern where cracks are represented by the black region and the un-cracked
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Pre-processing

Processing

Measurements

Image cropping

Band-pass filtering

Contrast adjustment

Image cleaning

Binarization

Skeletonization

Vertex detection

Vertex connectivity

Order parameters

Figure 2.3: The steps of image processing. In the pre processing phase, three essential

functions are carried out: cropping, band-pass filtering and contrast adjustment. Processing

the image involves binarization and cleaning the binary image, followed by skeletonization

of the image and vertex detection. In order to make measurements, the vertex connectivity

must be acquired, using which measurement parameters are calculated.

(a) (b)
Figure 2.4: Raw and cropped images of a crack pattern. (a) Image of a crack pattern over

a flat substrate. (b) cropped version of (a). Edges of the image are removed to focus only

on the crack pattern. The images are converted to 8 bit and further processed.

regions are represented by the white region.

The first step in pre-processing the image involves correcting and cropping the image.
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(a) (b) (c)

Figure 2.5: An example of uneven lighting in a crack pattern image. (a) Image of a crack

pattern with uneven lighting. The dark band on the left side of (a) is the shadow due to

the wall of the container. (b) shows band-pass filtered image of (a). No noticeable shadow

is observed. (c)shows a contrast adjustment image of (b). No effect due to the shadow is

observed in the final grayscale image.

Image correction involves rotation. In each experiment, the position of the substrate with

respect to the camera can change due to the placement of the substrate. This can be easily

corrected by rotating the image. The rotation corrections are small (maximum adjustments

- 1.0◦), therefore they were carried out using imageJ.

Images such as the one shown in figure 2.4 (a) do not need any kind of rotation correction.

Figure 2.4 (a) is cropped along the edges, the cropped image is shown in figure 2.4 (b).

The second step in pre-processing the image involves putting the image through a band-

pass filter. The images are first converted to 8 bit, then the band-pass filter is applied. The

details of the band-pass filtering process are discussed in [45]. The band-pass filter in imageJ

allows for structures within a range to be filtered, an upper size of 40 pixels and lower size of

3 pixels was used for all images. The documentation for the ImageJ band-pass filter can be

found in [1]. An example of uneven lighting is shown in figure ?? (a). The band-pass filter

also ensures that the cracks in the image are highlighted well enough.

Once the band-pass filter has been applied and the resulting image is acquired, the last

step is contrast adjustment. The band-pass filtered image is a grayscale image, hence it has

a maximum and a minimum value, figure 2.6 (b) shows an example of a contrast adjusted

grayscale image.

2.2.2 Processing stage

The contrast adjusted images allow for large scale batch processing of images in MATLAB.

The first step of the processing stage was creating a binary image of the crack pattern. The

binarization of the image was done with a fixed threshold. The fixed threshold values was

acquired from MATLAB using the ‘graythresh’ function, which uses the Ostu method to

threshold a grayscale image [71].

Creating binary images from grayscale images can leave undesired features in the form
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of small isolated pixels or regions. Such features can occur due to uneven lighting, hence it

is best to apply the band-pass filter to each image before analysis. Effective application of

the band-pass filter can eliminate the need to even clean the image. It is also possible that

certain unwanted structures are present in the cracking material itself. In case of mud cracks,

impurities in the mud appear as small black regions in the binary image. Such impurities

can be removed by setting a threshold for object size, below which all objects are deleted.

An example of image cleaning is presented in figure 2.7, where the binary image of a blood

droplet is shown. In figure 2.7 (a) two crack patterns are presented. The first consists of the

large primary cracks with radial symmetry, the second is the pattern formed by the smaller

black cracks. The current method isolates the primary crack pattern however, in the process,

a small part of the secondary crack pattern appears in the binary image as well. This can

be either manually removed or can be removed after creating a skeleton image. The above

discussion serves as an example of the process of cleaning a binary image. In general, for

images with good contrast (figure 2.7 (a)), it is easy to threshold the image according to the

color rather than converting them to grayscale images.

(a) (b)

Figure 2.6: Band-pass filtered and contrast-adjusted images. (a) band-pass filtered image

where 3 pixels is the size of the smallest filtered structure and 40 pixels is the largest filtered

structure. (b) contrast adjusted image of the figure (a).

A binary image is a single matrix consisting of 0’s and 1’s which contains the minimum

essential information about the crack pattern, it also preserves the shapes and boundaries

of the crack pattern. As shown later, in case of the mud cracks, the binary images are used

calculate the crack spacing.

Binary images can be further simplified by creating skeleton images. The process of skele-

tonization involves removing pixels from the edges until structures that are one pixel thick

are left over. Figure 2.8 shows binary and skeleton images of a crack pattern. Skeletonization

of an image can create spurs, as shown in figure 2.8 (b). Spurs are artificial branches attached

to the crack network. They can be as small as a couple of pixels (as seen in figure 2.8 (c))

and can be as big as ten pixels.

While MATLAB has methods to remove spurs, a different approach is used here. A

labelled matrix is created from the skeleton image. In the labelled matrix, the pixels in each

closed region are assigned a unique value. For example, in figure 2.9, each closed region is
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Figure 2.7: Binary image of a blood droplet. (a) the color image of a dried blood droplet (b)

contrast adjusted grayscale image. (c) binary image where any feature which is less than 20

pixels in size has been deleted. This ensures that isolated regions and pixels are removed.

The pattern in the center of the image is due to the small cracks present in the center of the

droplets. Adapted from Brutin et al. [80]

assigned a label. The RGB image in figure 2.9 is a color representation where each label is

assigned a distinct color. The images in figure 2.9 are cropped from a larger image which is a

skeleton of figure 2.8 (a). The circled numbers in figure 2.9 (a) are a subset of all the closed

regions in figure 2.8 (a). A labelled image will contain a set R number of closed regions

R = {R0,R1,R2....Rn..RN} (2.1)

where N represents the total number of regions. All pixels that belong to the nth region

where 1 ≤ n ≤ N will have the same value.

A square of length 3 pixels centered around a pixel which is part of the crack network

and lies between region 2 and 5 (see fig 2.9 (b) will encompass 9 pixels. This is the pixel

neighbourhood which share three label values- 0, 2, 5. If the same procedure is carried out

on a pixel in the pixel neighbourhood of the spur figure 2.9 (b), only two label values will

be present- 0 and 5. For each pixel that forms the crack pattern, it is possible to define a

pixel neighbourhood. Furthermore, a list of labels can be written down which identify the

neighbouring labeled regions for each pixel. If B is the total number of black pixels, for

the bth black pixel in a labelled skeleton image, where 1 ≤ b ≤ B , it is possible to write a

Lb which is a list of unique label values extracted from the pixel neighbourhood. Then the

condition for a pixel to be part of the crack network is

n (Lb) ≥ 3 1 ≤ b ≤ B, (2.2)

where n (Lb) is the number of elements in the set Lb. Any pixels that do no satisfy this

condition are considered spurious pixels. Note, that the set Lb also contains the label value

zero which represents the cracks in the labeled skeleton image. Equation 2.2 becomes an

effective criteria for identifying spur pixels. All that remains to be done is to replace the

label of the end of spur pixel with that of label of its parent region. In this case, the label of

end of spur pixel will be changed from 0 to 5, eliminating the spur. This criteria is set for all
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(a) (b)

spurs

(c)
Figure 2.8: Binary and skeleton image. (a) is a binary image. Figure (b) is a section of the

binary image of a crack pattern shown in figure (a). Figure (c) shows the skeleton image

of figure (b) with spurs. These spurs occur due to the process of creating a skeleton image.

Figure (b,c) are 200 pixels by 200 pixels in size.

Figure 2.9: Spurs and labels. (a) Labelled matrix converted to RGB. Each of the circled

numbers in (a) represents a closed region. (b) Zoom of the indicated region which contains

a single spur.

the pixels in the skeleton image. This process not only eliminates spurs but also eliminates

unconnected cracks, leaving a connected network of pixels without dead ends.

The labeled matrix approach is useful for not just spur elimination, but also to find crack

intersection points. MATLAB has its own node detection algorithm that can be used to

detect nodes in a skeleton image. This algorithm is used in some parts of this thesis, mostly

due to its advantage of being faster than the labeled matrix approach. However the labeled

matrix approach gives good results for a single connected network.

Similar to the spur elimination algorithm, the unique values of labels in a square neigh-

bourhood of 3×3 pixels around a pixel is extracted from a labeled image. If there are four or

more unique labels in the square region, then the pixel is considered to be a crack intersection

point. This condition for the bth pixel can be written as

n (Lb) ≥ 4 1 ≤ b ≤ B. (2.3)

Figure 2.10 (a) provides a visualization where crack intersection points are identified with

30



blue circles. Figure 2.10 (b) is a zoom into one of the crack intersection points. The crack

intersection point lies at the intersection of more than three regions

Figure 2.10: Crack intersection points. (a) Blue circles indicate crack intersection points.

(b) Three regions (regions 4, 5, and 7) surround a crack intersection point. A square region

around a crack intersection point will overlap with three label values. Notice that this overlap

is true for all the crack intersection points in (a).

2.2.3 Vertex connectivity

Each crack intersection point is connected to other crack intersection points. The next

logical step is to find out, given a crack intersection point, what are its neighbouring crack

intersection points?

Two crack intersection points c1 and c2 are neighbours if and only if the condition

M = n (Lc1 ∩ Lc2) = 4 (2.4)

is satisfied where M is the total number of elements in the intersection of two labels. This

can be seen in figure 2.9 (a). For instance, the crack intersection point formed by regions

1,2 and 4 has three neighbours. The condition in equation 2.4 is tested for all pairs of crack

intersection points and a list of neighbours is compiled.

For each crack intersection point c , Nc can be defined as a list of its neighbours. For

example, for point A the NA = {B,C,D}. This list of neighbours is calculated for all crack

intersection points and used to make measurements on the crack network. The details of

these measurements will be covered in the next chapter.

Summary

This chapter presents the sequence of image processing steps: starting from the experimental

procedure to finally acquiring a binary, skeleton image along with a connectivity matrix for

crack intersection points.

The experimental procedure for generating crack patterns is described in the first section

of the chapter, followed by a brief description about the types of crack patterns observed

31



1

2

3

4

5

6

7

8

B

A
C

D

Figure 2.11: Neighbours algorithm. Point A is at the intersection of three regions -2, 4 and

5 and has three neighbours, points B, C and D. With point B, point A shares two regions- 2

and 4. With point C, it shares two regions- 4 and 5. With point D, it shares region 2 and 5.

Apart from this, the third region, which is shared by all the crack intersection points is the

crack pattern skeleton. This algorithm is repeated for all crack intersection points.

with increasing layer height. Two set of plates are used where radial plates 1 and 2 generate

crack patterns with radial symmetry. The main control parameter for the experiments is the

layer height. The layer height depends on the mass of bentonite used during each trial of the

experiments. In a sequence of trials, the bentonite mass is increased by 10 grams and crack

patterns are generated.

Images of the crack pattern are captured and processed. The image processing step is

needed to ensure the quantification of the crack pattern. Raw images of the crack pattern,

which are in jpeg format are converted to 8 bit, then a band-pass filter is applied to them.

Structures upto 40 pixels and down till 3 pixels are filtered. The filtering process removes

uneven lighting especially shadows. The filtered image is contrast adjusted to generate a

grayscale image. This grayscale image is converted to a binary image, then to a skeleton

image.

The second part of image processing involves elimination of spurs and the acquisition

of crack intersection points, its neighbours and a connectivity matrix. Spurs are eliminated

by converting a skeleton image of a crack pattern to a labelled image, then checking pixel

neighbourhood of all the pixels that form a connected crack network. By applying equation 2.2

to the pixel neighbourhood spurs are eliminated. Crack intersection points are also identified

in a similar way, where equation 2.3 is use to decide if a point qualifies as a crack intersection

point or not. Once the crack intersection points have been identified, its first neighbours are

identified and stored as a list.

In the next chapter, all the components- from the binary image to the list of neighbours

for each crack intersection points, are used to define measures of a crack pattern
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Chapter 3

Analysis of crack patterns

In the previous chapter, the prerequisites for analysis of a crack pattern were developed.

These prerequisites are: a labeled skeleton image of the crack pattern, a list of all the crack

intersection points and a list of neighbours of each crack intersection point. Using these, the

tools required to quantify these crack patterns are developed in this chapter.

So far, the description of crack patterns has been limited to a qualitative classification

of being wavy, ladder-like and isotropic. This chapter presents methods which attempt to

quantify the structure of a crack pattern. The methods are presented for images of sinusoidal

plates, and unless stated otherwise, also apply to radial plates. These analysis methods

are later applied to images of crack patterns for increasing layer heights, the data and the

interpretation is presented in the next chapter.

The content of this chapter is roughly divided into two sections, as shown in figure 3.1.

The first section deals with various measures which provide robust methods for quantifying

crack patterns. They condense information about the crack pattern into a single number,

which can be used, as seen in the next chapter, to show how substrates affect a crack pattern

with changing layer height. Three measures for a crack pattern are presented: the orientation

of crack intersection point neighbours, the orientation of cracked regions and the orientation

of individual cracks. The first order parameter involves measuring angles at crack intersection

points. Here angles are measured between the horizontal and ~rij , which is the vector between

the ith crack intersection point and its jth neighbour. The crack angles are measured for

neighbours of the ith crack intersection point using which an angle distribution is generated.

This angle distribution is condensed into a single value. In this section, the methods to

calculate angles for both sinusoidal and radially sinusoidal plates are described. Angles are

calculated for a crack pattern on sinusoidal and radially sinusoidal plates and the resulting

angle distributions are shown. The angles distributions are multiplied with a cos (4θ) function

and the value for SAngles is calculated. This value is used as a measure of order of a crack

pattern in the next chapter.

The second measure is the orientation of cracked regions. This parameter involves detect-

ing isolated cracked regions, fitting them with ellipses, and measuring their orientation. The

average value of the orientation, SOrt, is used as measure of order. The orientation of each

ellipse is a local measure of the order. The required methods to detect the cracked regions
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and calculate their orientation are described.

The third measure is the measurement of crack orientation, using methods developed for

measuring the orientation of cracked regions, the orientation of crack skeletons is measured

and angle distributions are plotted. The angle distributions calculated from the measurement

of crack orientation are analyzed in the same way as the angle distributions acquired from

measuring angles around crack intersection points. This method is similar to the first measure

since both involve calculating the orientation of cracks. This method is a direct measure of

the orientation of the cracks; it can be applied to unconnected cracks as well, whereas the

first measure requires a crack network in order to be used.

The second set of topics covered in the chapter involve two global methods of quantifying

crack patterns- the Manhattan metric and the Minkowski parameters. Other methods which

assist in describing the crack pattern quantitatively are- calculation of the crack spacing,

determination of crack lengths and determination of number of crack per wavelength of the

sinusoidal plate using Fourier methods.

The Manhattan metric approach is an attempt to define a global order parameter. The

Manhattan metric provides a measure of the distance between two points on a grid by travers-

ing either in the x direction or the y direction, but not a combination of both. Such a metric

is used to study geometries known as taxicab geometries. Simple examples of taxicab geome-

tries are, traveling in the grid like streets of Manhattan ( after which the metric has been

named) or moving on a chessboard. The analogy of the Manhattan metric is used to calculate

the distance traveled along the cracks between two crack intersection points. A ratio of the

straight line distance between the two crack intersection points and the distance traveled

along the crack is used to define a parameter sMan. This parameter is calculated for all pairs

of crack intersection points which are sorted based on the symmetry of the substrate. The

mean of SMan is used to represent a measure of order of the crack pattern.

Another global parameter that is presented uses Minkowski parameters to quantify the

structure of a crack pattern. The Minkowski parameters are defined in the context of a

foreground and a background of a spatially varying pattern. The foreground in the current

case are the crack intersection points which are plotted as single black pixels on a background

of white pixels. For increasing radii of disks that have their origins at these single pixels,

the three Minkowski parameters for two dimensions - the area, the boundary and the Euler

number are measured. A sample crack pattern is analyzed using the Minkowski parameters

and results are plotted for increasing radius of disks. The Minkowski parameters, unlike the

previous order parameters are not presented as a single value that provides a measure of the

crack pattern. Instead three plots, one for each Minkowski parameter, are generated and

shown.

The Minkowski parameters are followed by methods which describe the measurement

of the crack spacing of a crack pattern. The crack spacing is measured in order to detect

correlations between the substrate structure and the geometry of the crack pattern. Further-

more, the crack spacing of an isotropic crack pattern is known. Hence, the question asked is:

will crack spacing at large layer heights approach the crack spacing for previously measured
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isotropic crack patterns? The crack spacing is measured in two ways. One involves using

the line dropping method where lines are plotted on a skeleton image of the crack pattern

and the distances between the crack and line intersections are measured and averaged. The

second method involves measuring the areas of cracked regions. The side of a square of the

same area is also used as a measure of the crack spacing.

The lengths of cracks are measured in order to calculate and study the change in the

distribution of crack length. The length of each crack is measured using the same methods

developed in the section where orientation of cracks are measured.

The final section of this chapter is one where Fourier methods are used to analyse the

crack pattern generated on a sinusoidal substrate. This is necessary in order to determine for

a given layer height, and answer of how many cracks there are per wavelength in a mature

crack pattern. The methods to calculate the spectral power of the crack density of a sample

crack pattern are described using the example of a ladder-like crack pattern. The spectral

power is plotted against the wave-number, which represents the number of wavelengths in

the dimensions of the sinusoidal plate.

Figure 3.1: An outline of the topics in the chapter. The chapter can be divided into two

sections. The measures aim to assign a single number to a crack pattern which quantifies

the effect of the substrate on the crack pattern, while the second section contains various

methods to describe the geometry and topology of a crack pattern.
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3.1 Crack angles distribution

The distribution of crack angles serves as a useful tool for comparison of crack patterns. In this

section the methods to acquire the angle distribution and the subsequent order parameters are

presented. A skeleton image of the crack pattern is used to measure the crack angles. In the

skeleton image, after identifying each crack intersection point, the crack angles are calculated

between the horizontal unit vector x̂ = [1 0] and ~rij , which is the vector that connects the ith

crack intersection point with its jth neighbours. Take the example in figure 3.2. Let x̂ be the

horizontal unit vector that lies on the dashed green line. Then, the angle θ1 is defined by -

cos θ1 =
~r1 · x̂
|~r1|

. (3.1)

Similarly θ2 and θ3 can be calculated. Figure 3.2 (a) is an image of the crack pattern, and

figure 3.2 (c) is the corresponding angle distribution.

Figure 3.2: Angle distribution of a crack pattern over sinusoidal substrate. (a) depicts the

the three neighbouring crack intersection points to the ith crack intersection point. The red

vectors join the crack intersection point to its neighbours, an example of this it the vector ~r1.

The angle θ1 is defined between the 1st crack intersection point and the green vector which is

x̂ = [1 0], it is perpendicular to the peak. (b) represents the full crack pattern from which the

crack intersection point in (a) is selected. The red points are the crack intersection points.

Figure (c) is an angle distribution of the all the measured angles. This angle distribution

goes from θ = 0◦ to θ = 180◦ and has 36 bins.

For the radial crack pattern in (figure 3.3), a crack intersection point and its neighbours

are shown in figure 3.3 (a). The equivalent of the horizontal vector x̂ is the radial unit

vectorr̂‖ which is parallel to the vector that connects the center of the image and the ith

crack intersection point. The angle θ1 is calculated using-

cos θ1 =
~r1 · r̂‖
|~r1|

. (3.2)

For all crack intersection points, angles between ~rij and the direction of the substrate x̂

or r̂‖ (depending on the system’s symmetry) are calculated and plotted as a histogram. The
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Figure 3.3: Angle distribution of a crack pattern over radial sinusoidal substrate. (a) shows

the neighbours of the ith crack intersection point which is part of a crack pattern generated

on a radially sinusoidal plate. The blue vector connects the center of image and the ith crack

intersection point. The vector r̂‖ is the vector perpendicular to circle lying atop the peak.

This vector is parallel to the blue vector. Figure (b) is a radially symmetric crack pattern

generated over the radially sinusoidal substrate. The red points are crack intersection points.

Figure (c) is angle distribution for the image in (b). The majority of the angles lie around

0◦, 90◦ and 180◦.

histogram satisfies the equation -

1

N

N∑
i=1

P
′

(θi)dθ = M, (3.3)

where P
′

(θi) is the probability distribution for the angles. N is the total number of bins for

the angle distribution. θi refers to the center value of the ith bin. In general, N = 36 bins are

used to generate the angle distributions, hence θ1 = 2.5◦, θ2 = 7.5◦ and so on. M is the total

number of angles measured over all crack intersection points. The probability distribution is

normalized by dividing the total count of angles in each bin by M such that,

1

N

N∑
i=1

P (θi)dθ = 1 (3.4)

where P (θi) = P
′

(θi)/M . Since each crack pattern will have varying numbers of crack

intersection points and hence varying number of measured angles, applying this normalization

condition scales the angle distribution such that it falls between 0 and 1 allowing for direct

comparison between two crack patterns.

Sample angle distributions are presented in figure 3.2 (c) figure 3.3 (c). For the crack

pattern in figure 3.3 (b), the angle distribution has peaks at θ = 0◦, 90◦, 180◦ (figure 3.3 (c)).

Once an angle distribution has been generated, it is multiplied by a cos 4θ function and

summed over θ to give the following order parameter,

SAngles (θ) =

N∑
i=1

[cos (4θi) P (θi))] , (3.5)

where N is the total number of bins of θ.
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From equation 3.5, SAngles will lie between 1 and -1. The SAngles = 1 case represents

cracks that lie parallel to the substrate, while SAngles = 0 case represents an isotropic crack

pattern, and SAngles = −1 caseS represents cracks that lie at 45◦ from the substrate.

The SAngles parameter requires prior information about the symmetry of the crack pattern.

For example, in case of the radial plates, without knowing about the radial symmetry of the

substrate, it is not possible to determine whether equation 3.1 or equation 3.2 should be

used to calculate the angle distribution. However, once the symmetry has been determined,

SAngles allows for comparisons between crack patterns (presented in the next chapter). It

simplifies an angle distribution down to a single number that can be assigned to each crack

pattern.

3.2 Orientation of cracked regions

In a mature crack pattern, intersecting cracks form closed loops that create isolated regions

of the cracking material. This is shown in figure 3.4. The orientation of these cracked regions

is calculated and the average orientation is used as a measure of the crack pattern.

A single isolated cracked region in a binary image can be described using a function

B (xi, yi) which sets all the pixels within the isolated region to zero and all the points outside

the region to one. B (xi, yi) can be though of as a intensity level in an image where -

B (xi, yj) =

1 pixel outside cracked region

0 pixel inside cracked region
(3.6)

where the (xi, yj) coordinates represent the pixel locations in the image. i = 1..B, j = 1..B

where B is the total number of pixels in the image. In the above argument, the function

B (xi, yi) represents a single cracked region as a discrete body. For ease of description the

cracked region will be considered a continuous body, hence xi → x and yi → y.

The central moments of the cracked regions are calculated, using which the orientation θ

is given by [24]

tan 2θ =
b

c− a
, (3.7)

where a, b and c are the central moments are defined by,

a =

∫∫
x′

2
B (x′, y′) dx′y′ d,

b = 2

∫∫
x′y′B (x′, y′) dx′y′ d,

c =

∫∫
y′

2
B (x′, y′) dx′y′ d,

(3.8)

where x′ = x − x̄ and y′ = y − ȳ where (x̄, ȳ) are the coordinates of the centroid of the

image. A covariance matrix is defined using a, b and c whose eigenvalues are the major and

minor axis of an ellipse [24]. Figure 3.4 shows the elliptical fit of cracked regions of two crack

patterns.
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Figure 3.4: (a) shows the elliptical fits of cracked regions which form an isotropic crack

pattern. The red curves represent the ellipses and the green lines represent the major axes of

the ellipse. The major axes of majority of the ellipses do not align with the y direction (bottom

to top of the image). (b) shows the elliptical fits on cracked regions which form a ladder-like

crack pattern. The ellipses are aligned in the y-direction.

The orientation of each cracked region is calculated and the the measure SOrt is defined

where

SOrt = 〈cos (2θ)〉,

this leads to

SOrt =


1 major axis of the ellipses parallel to the substrate

0 major axis at 45◦ to the substrate

−1 major axis perpndicular to the substrate

(3.9)

MATLAB provides a convenient way to calculate properties of isolated cracked regions.

The MATLAB function ‘regionprops’ measures many object properties. Out of the list of ob-

ject properties from ’regionprops’, the following are used for visualizing the elliptical fits and

calculating the value of SOrt - Orientation, Area, Centroid, MinorAxisLength and MajorAx-

isLength. The Orientation property uses equation 3.7 in order to calculate the angle of the

cracked region with respect to the substrate. The Area property is used as criteria in order

to exclude smaller pieces, especially along the edges, from influencing the total average value.

Only if the condition (Area) > 100 pixels is satisfied, a region is used in the final calculation

for Sort. The Orientation, Centroid, MajorAxisLength and MinorAxisLength quantities are

used to draw an ellipse around a single cracked region (See figure 3.4)

3.3 Orientation and length of cracks

The individual cracks in a crack pattern can be isolated. To achieve this, starting from a

gray-scale image, a skeleton image is acquired. In the skeleton image, the crack intersection
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points are identified. A square of length 3 pixels is drawn around each crack intersection

point. The value of the pixels inside this neighbourhood is set to the value of the pixels

in the un-cracked region of the image. This means that the value of all the pixels inside

the square region is set to 1. This deletes crack pixels in the square disconnecting the

crack network and leaving individual cracks as independent pieces which can be detected and

measured using the methods in the previous section (i.e ’regionprops’). A typical example is

presented in figure 3.5. The crack pattern in figure 3.5 (a) is reduced to a skeleton image,

then, as shown in figure 3.5 (b) a square is drawn around the crack intersection points. In

figure 3.5 (c) the regions deleted around the crack intersection point are highlighted. Deleting

crack intersection points on both ends of the crack isolates the crack from the network. In

figure 3.5 (d), all the isolated crack skeletons are detected and ellipses are drawn around each

isolated piece representing a crack.

Figure 3.5: Figure (a) A sample crack pattern using which a crack skeleton is created. In

figure (b) the red regions are crack intersection points. The black pixels in these regions are

removed leaving crack skeletons isolated from the crack network. In figure (c), the regions

near the crack intersection points have been replaced with white pixels, they are identified

with red circles. Figure (d) shows all detected isolated crack skeleton. Similar to figure 3.4 the

isolated objects are detected using ’regionprops’. The red regions represent the boundaries

of the elliptical fit and the green lines are the major axis of the fitted ellipse.

Two measurements are made on isolated skeletons of cracks. These measurements are the

crack orientation and crack length.

3.3.1 Orientation of cracks

The orientation of cracks is measured by creating isolated crack skeletons then using ’region-

props’ to detect and measure them. Similar to section 3.2 (Orientation of cracked regions),

the orientation of each crack skeleton is acquired from the ’Orientation’ property of ’region-

props’. Orientations are rescaled to lie in between 0◦ and 180◦ and plotted as an angle

distribution in a similar fashion to figure 3.2 (c). Similar to figure 3.2 (c), the normalized

angle distribution is multiplied with cos 4θ and the parameter COrt is calculated according
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to equation 3.5. The value of COrt is compared with SAngles figure 3.2 (c) is

SAngles = 0.41

COrt = 0.40
(3.10)

The parameter COrt serves as a comparison to SAngles . Both parameters measure the

orientation of the cracks that lie between two crack intersection points. Measuring the ori-

entation of crack skeletons is a more general approach since it does not require a connected

crack pattern. Such a method is applicable beyond crack patterns as well, wrinkle ridges on

the surface of Mars [34] to networks and beyond. Wrinkle ridges are unconnected structures

which form due to contraction of lava during cooling. They tend to form near the edges of

craters and such features can be quantified by the same methods used the calculate COrt .

3.3.2 Length of cracks

In the previous section, isolated cracks were detected using ‘regionprops’. One of the outputs

of ‘regionprops’ is ‘PixelList’. This provides a list of pixels belonging to the detected object.

Using this list, two quantities pertaining to the crack length are acquired- the average crack

length and the distribution of crack lengths. The basic algorithm to acquire each of these

quantities is presented here. Comparisons between crack patterns from different plates and

over a range of layer heights are presented in the next chapter.

Using the pixel list of the detected object, the end points of each crack must be identified.

This is done using the endpoints algorithm in the function ‘bwmorph’. Alternatively, the end

points can be identified by going pixel by pixel in the pixel list and counting the number of

neighbouring black pixels. For the pixels which have only one black pixel as a neighbour, this

is assigned as the endpoint of the isolated crack.

The values in ‘PixelList’ are stored in an n×2 array. The first pixel in ‘PixelList’ will be

the pixel with the lowest x and y coordinates. An example of this is shown in figure 3.6 (a),

where the yellow box represents a pixel which has the lowest x and y coordinates in the

collection of pixels which represent the isolated crack skeleton. In order to get the crack

length, the following operations are performed on ‘PixelList’ -

• Since the end points have been identified, the distance between a single endpoint and

each pixel in the crack skeleton is calculated. This is represented by

di =
√

(yi − yend)2 + (xi − xend)2 (3.11)

where xend and yend are the coordinates of one of the end points of the crack skeleton (in

figure 3.6 (a), shown as red points) xi and yi are the coordinates of a pixel in the crack

skeleton. All the distances between (xend, yend) and the rest of the crack skeleton pixels

are stored in d, where di represents the distance between the ith element of ’PixelList’

whose coordinates are (xi, yi) and the end point whose coordinates are (xend, yend).

• The collection of distances is contained within the array d which is sorted such that

d goes from the smallest to the largest value; the first element represents the end
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point pixel (xend, yend) hence d1 = 0. The rest of d goes from the closest pixel to

(xend, yend) till the second end point. The last element of the sorted d array is the

distance between the two end points of the crack skeleton. Sorting d requires a

sequences of rearrangements of its elements, this sequence of rearrangements is applied

to ‘PixelList’. This ensures that the first and the last element of ‘PixelList’ are the end

points of the crack skeleton and ‘PixelList’ represents the sequence of pixels going from

one end point to another.

• The distances between each pixel in ‘PixelList’ is calculated and to this, the distance

between the end points and the nearest crack intersection points is added to this. The

distances are summed and this sum represents the crack length for a single crack skeleton

• The crack length is divided by the x-dimension of the whole image which is in pixels.

This normalizes the crack length. For example, the x dimension of the full image of the

crack skeleton represented in figure 3.6 (a), is 1830 pixels, the normalized crack length

is 0.0208. The normalized crack length is multiplied by 20 cm which is the width of

the container. The gives the crack length in centimetres. For figure 3.6 (a), the crack

length is 0.416 cm.

The above algorithm provides a method to calculate the crack length of a single crack.

This algorithm is applied to all cracks in a skeleton image of a crack pattern and a crack

length distribution is generated. The crack length distribution for figure 3.2 (b) is shown in

figure 3.6 (b).

Figure 3.6: Figure (a) is a cracked skeleton. Two red points (towards the top of the image

and the bottom of the image) highlight the end points of the crack skeleton. The blue circles

near the end points indicate the crack intersection points. To accurately calculate the crack

length, the pixel to pixel distance between each pixel on the crack skeleton is calculated,

in addition the distance between the end points of the crack skeleton and the closest crack

intersection points are also calculated. Figure (b) is the normalized distribution of crack

lengths for figure 3.5 (d)

.
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Figure 3.7: (a) A cartoon of a taxicab geometry. Line 1 is the path that minimizes the

Euclidean distance between two points. This path is unique. For the Manhattan distance in

figure (a) the path is not unique, all the paths 2, 3 and 4 have the same Manhattan distance.

Figure (b) shows two paths. The first path (green line) dE shows the Euclidean distance

between the two crack intersection points, the second path (purple line) which shows the

Manhattan distance. The ratio dE/dMan will be 1/
√

2 for a grid like structure.

3.4 Manhattan metric

The Manhattan metric provides an alternate method to measure distances between crack

intersection points.

In Euclidean geometry, the shortest path between two points is a straight line. The norm

of the vector that connects two points is the Euclidean distance. In R2, this distance is

d =
√

(y2 − y1) + (x2 − x1). There are some geometries where Euclidean distances cannot

be calculated. An example of this is the grid presented in figure 3.7 (a). Staying on the grid

from the start node to end node is possible only by travelling either in the x direction or

along the y direction. Such a geometry is known as the taxi-cab geometry. A combination of

transverse displacements along both x and y direction, which is the essence of the Euclidean

distance, is not possible in a taxicab geometry. Since the shortest distance between two points

cannot be defined in terms of Euclidean distance, a new metric is defined. This metric is

known as the Manhattan metric [56]

m = |x1 − x2|+ |y1 − y2| (3.12)

Hence, the distance between two points in a Cartesian coordinate system can be measured

using either the Euclidean distance, or by the Manhattan distance if restricted to moving on

a grid. While in the case of the Euclidean distance there is only one path which minimizes

the distance between two points, in the case of the Manhattan metric, there are multiple

paths that minimize distances between two nodes on a grid.

Moving on a crack pattern is similar to moving along a grid. The crack intersection points
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become the nodes of the grid, and the cracks become the connecting lines between nodes.

However, the analogy ends there. Depending upon the crack pattern, each neighbouring pair

of nodes or crack intersection points are connected by curves. Hence the distances between

these crack intersection points are apporoximately Euclidean. In case of ladder-like crack

pattern, these curves are horizontal or vertical cracks similar to a grid, in case of an isotropic

crack pattern, these curves can be meandering cracks with curvature.

The general definition for the Manhattan distance, on a crack pattern, between two non

-neighbouring crack intersection points is

dMan =
N∑
i=1

di (3.13)

where di represents the Euclidean distance between two neighbouring crack intersection

points. In figure 3.7 (b), dMan is the sum of the d1 to d5. The Euclidean distance dE

between the two crack intersection points is presented for comparison.

In figure 3.7 (b), dMan is dependent on the geometry of the crack pattern, whereas dE is

dependent on the location of the crack intersection points in real space. For all pairs of non

neighbouring crack intersection points, the condition

dE ≤ dMan (3.14)

holds true. On a ladder-like crack pattern, travelling from a crack intersection point on the

top of the image to the bottom of the image, the ratio of dE and dMan would be close to 1.

Whereas, in case of an isotropic crack pattern, this is not the case. The ratio of dE and dMan

is represented as-

sMan =
dE

dMan
(3.15)

The parameter sMan is calculated for a single pair of crack intersection points. For sinusoidal

plates, sMan is calculated for all crack intersection points that form pairs between the top

part of the image to bottom -

SMan =
N∑
i=1

(sMan)i
N

(3.16)

where N is the number of pairs of crack intersection points.

Taking figure 3.8 (a) as an example, SMan is calculated in the following way -

• Starting with a labeled skeleton image of the crack pattern, the crack intersection points

are detected . For each crack intersection point, its neighbours are identified.

• The crack intersection points are sorted according to their location. All crack intersec-

tion points that lie in top 1/3 and the bottom 1/3 of the image are stored in a separate

arrays. Figure 3.8 (a) shows sorted crack intersection points on a crack pattern.

• An adjacency matrix is calculated for all crack intersection points. This is done by

creating an N × N matrix, where N is the number of crack intersection points. The

neighbours for each crack intersection point are identified from the neighbours list and

the Euclidean distance between is stored in the adjacency matrix as -
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A[i, j] =
√

(yj − yi) + (xj − xi) (3.17)

where A is the adjacency matrix and where i and j are neighbouring crack intersection

points. For the ith column of A, only those rows are non zeros whose index represent

the neighbours of the ith crack intersection point are non zero, the rest of the rows are

zero. Figure 3.8 (b) shows a simple cartoon of whose adjacency matrix is-

A =



0 0 d13 0 0 0

0 0 d23 0 0 0

d31 d32 0 d34 0 0

0 0 d43 0 d45 d46

0 0 0 d54 0 0

0 0 0 d64 0 0


(3.18)

• Pairs of crack intersection points are constructed where one crack intersection point

belongs to the top part of the image and the second point belongs to the bottom of the

image.

• For each pair of crack intersection points, the angle between the substrate and vector

connecting the pair of crack points is calculated. If the angle lies in between −5◦ and

5◦( where 0◦ is parallel to the ridges on the substrate) then, the pairs of crack inter-

section points combined with the adjacency matrix are put into the MATLAB function

’graphshortestpath’, otherwise the pair is ignored. For each pair of crack intersection

points, this function uses the Djikstra algorithm [73] to find the shortest path between

two points on a network. ’graphshortestpath’ outputs the sequence of crack intersection

points needed to travel in order to get from the starting crack intersection point to the

ending crack intersection point. Using Euclidean distances in the adjacency matrix,

it also outputs the total distance travelled along the crack pattern. This distance is

stored in a separate array. The distance along the crack between pairs of neighbours is

calculated for all pairs.

• The Euclidean distance between the pair of crack intersection points is calculated for

all pairs. This is divided by the distance acquired using ’graphshortestpath’ and the

final result is averaged which gives the value of SMan.

For radial crack patterns, the pairs are sorted by considering crack intersection points

which are inside a circle that has a diameter of 1/4 of the image and crack intersection points

that are located outside a circle with a diameter 1/3 the size of the image. Both the circles

are centred about the image. The pairs are formed by selecting one crack intersection point

from the inside region and another crack intersection point from the outside region. The rest

of the analysis is carried out in a similar fashion.

In case of ladder-like cracks SMan tends to be close to 1, for isotropic crack patterns the

lower limit of the value is 1/
√

2.
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Figure 3.8: Definition of the Manhattan metric (a) shows the crack intersection points sorted

according to their location. A crack intersection point from the top 1/3 of the image and

a crack intersection point from the bottom 1/3 are paired and the ratio of the Euclidean

distance and Manhattan distance sMan is calculated. This is done for all pairs of crack

intersection points in figure (a). Some of the points are missing from the top and the bottom

since 10% of points from each edge are ignored to prevent boundary effects. (b) is an example

of a connected set of points. The connections of figure (b) are represented in the adjacency

matrix equation 3.18.

3.5 Minkowski parameters

The Minkowski parameters are useful to describe spatial structures as they provide a global

measure of an spatial pattern by taking into account geometrical and topological information.

The three Minkowski parameters in two dimensions are the area A boundary length U and

the Euler number E. They are calculated in the the following manner -

• First, all crack intersection points are detected in a crack pattern and stored.

• Circles of radius 5 pixels are centred on each crack intersection point. These circles can

be generated by two methods. One involves plotting the crack intersection points in

separate image as single pixels. Then a disk is used as a structuring element to erode

the image. A second method, which is more efficient involves drawing circles around

each crack intersection point then converting them to masks. figure 3.9 was generated

using the second method.

• Images like the one presented in figure 3.9 (a) are generated for various values of radius.

Following this, the Minkowski parameters are measured and stored for each radius value.
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Figure 3.9: Figure (a) is a binary image with circles centered at crack intersection points.

This image is a snapshot of the code where for increasing radius, the existing circles are

replaced with circles of larger radius. In this snapshot image, the measurement of Minkowski

parameters are carried out. The sum of all the black pixels in the image is the total area

which is normalized by total number of pixels in the image. Figure (b) shows the boundary

pixels for a subset of objects in figure (a).

The Minkowski parameters are calculated using the following equations

A =
n (B)

n (P)

U =
n (U)

n (P)

E = Nobjects −Nholes

(3.19)

where B is the set of black pixels in an image and n (B) is the total number of boundary

pixels in the image. U is the set of boundary pixels and n (U) is the total number of

black pixels in the image. P is the the collection of all the pixels and n (P) is the

total number pixels in the image. NObjects are the number of objects in the image.

The number of objects and number of holes are defined with respect to foreground and

background pixels. MATLAB recognizes objects as a connected regions which has a

pixel value of 1, holes as connected regions with a pixel value of 0.

Figure 3.10 shows three plots of Minkowski parameters with increasing radius for the crack

pattern in figure 3.9 (a). Figure 3.10 (a) shows the change in the total area of the image

occupied by the disks with increasing radius. In figure 3.10 (a) the increase in total area is

steep. At approximately 60 pixels radius, disks start overlapping which reduces the rate of

increase in area. Figure 3.10 (b) shows the total number of boundary pixels (normalized by

the area) with respect to increasing radius. For non overlapping discs the total number of

boundary pixels increases with increasing radius. As the disks overlap, the U quickly falls to

zeros. As the disks overlap, regions two regions are formed. The first region is formed by the

black overlapping disks, is the background and the second region is formed by the trapped

foreground regions within the background region. Increasing the radius causes A to increase

since the foreground shrinks. However, the same effect causes the total number of boundary
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pixels to decrease dramatically, because the number of holes keeps decreasing. The peak in

figure 3.10 (b) represents a region with the largest number of boundary pixels. Beyond this

limit, the disks overlap and the foreground regions start shrinking. At approximately r = 80

pixels, the image contains a single large background object. This behaviour is confirmed by

the change in Euler number in figure 3.10 (c) where the number of isolated foreground regions,

which are the number of objects keeps increasing, until they reach a maximum. Beyond this

point a single region is created which is reflected in the drop of the euler number to 0.

3.6 Crack spacing

The crack spacing for a crack pattern is calculated using two different methods: one method

involves, dropping randomly generated lines onto a crack pattern, and measuring the distance

between two crack intersections. The second method involves calculating the crack spacing

using the crack regions. The area of individual cracked regions is calculated and the side

length of the square is used as the crack spacing.

3.6.1 Crack spacing using line dropping

The crack spacing algorithm is adapted from [38]. In order to calculate the crack spacing,

random lines are constructed by generating a single point on the line and the orientation of

the line. These lines are then placed on a skeleton image. It is important to to note that the

crack spacing will differ based on the what type of image is used. The skeleton image is ideal

to ensure that every single crack is captured. Once a line has been placed on the image, the

intersections between the line and crack pattern are calculated. These intersection points are

marked, then the distance between each intersection point is calculated, this value represents

the crack spacing. This procedure is carried out for many lines. Here, the number of dropped

lines is fixed at 1000 lines. The distances between intersecting points are calculated, and then

a contraharmonic mean of the crack spacing is used to generate the average crack spacing for

the crack pattern.

3.6.2 Crack spacing using cracked region

A second method to calculate crack spacing is to treat the areas of cracked regions as the areas

of squares and use to the length of the sides of these squares as a measure of separation. The

algorithm to detect cracked regions has been previously described and it is used to find the

order parameter SOrt in the section 3.2. This algorithm can be modified to output the area of

a cracked region A. The side of a square with equivalent area A is calculated. The side of the

square is converted from pixels to centimetres by multiplying it by the ratio 20 cm/
√
AImage

where AImage is the area of the image.
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Figure 3.10: Figure (a-c) present the plot of all three Minkowski parameters- the area of the

object A (r), the boundaries of the object U (r) and the Euler number E (r). The Minkowski

parameters are plotted against increasing radius in increments of 5 pixels. Figure (a) shows

that as the radius increases there is transition at approximately 75 pixels. In case of U (r)

and E (r) there are peaks at approximately 50 pixels. Such peaks and transitions are seen

for all crack patterns. The interpretation of these behaviour will be presented in the next

chapter.
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Figure 3.11: A snapshot the line dropping algorithm. The green dots are the intersections of

the line with the crack pattern. The line dropping code is best used with a skeleton image.

This is to ensure better intersection between the crack pattern skeleton and dropped lines.

For all crack patterns 1000 lines are dropped to measure the crack pattern.

3.7 Fourier method to analyse crack patterns

The evenly spaced primary cracks in a ladder -like crack pattern and the periodic structure

of the substrate suggests the application of Fourier methods to quantify the crack pattern.

To use Fourier methods, the crack density must first be calculated. The Fourier transform

of the crack density would then allow determination of number of cracks per wavelength of

the substrate.

The crack density is calculated by summing all the black pixels in the direction parallel

to the peaks and plotting them along the direction perpendicular to the peaks. Take the

example of figure 3.12 (a), the peaks are parallel to the y direction, hence the black pixels

which represent the cracks are summed along y and are plotted against the x direction. Hence

in figure 3.12 (b), at a given value of x, the ordinate represents the total number of black

pixels in the y direction, normalized by the y length of the image

Cd (x) =
Np (x)

Sy
(3.20)

where Sy is y-size of the image, BN (x) is the number of black pixels in the y direction and

Cd (x) is the normalized crack density. In figure 3.12 (b) the large peaks signify the primary

cracks; the smaller peaks signify secondary and tertiary cracks.

The spectral power, which is given by the absolute value square of Fourier transform of

Cd is calculated and plotted against the wavenumber ξx, seen in figure 3.12 (c). Spectral

power serves to distinguish between the ladder-like crack patterns, which are periodic, and

the wavy and isotropic patterns, which are non periodic. For a ladder-like crack pattern,

since the cracks align with the substrates, there are sharp peaks where the wave number ξx

of the crack pattern is an integer multiple of the wavelength λ of the substrate. It serves to

plot the spectral power with respect to the relative wavenumber ξxλ, where ξxλ = 1 signifies

a crack on top of the peak of the substrate, ξxλ = 2 signifies a crack atop the peak and a

crack in the trough of the substrate and so on.
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In the next chapter, the above Fourier methods are applied to all layer height for all

sinusoidal plates with an amplitude to wavelength ratio of 0.25 and 0.5. The relationship

between the layer height and number of cracks per wavelength is elucidated.

Summary

This chapter presented various methods that will be used to analyse crack patterns in the next

chapter. An attempt has been made to provide a step by step description of the algorithms

that were used to study the crack patterns.

Section 3.1 shows how to calculate the angle distribution for the angles that form between

neighbouring cracks and the vertical direction. The order parameter SAngles is constructed

by multiplying the angle distribution P (θ) by cos 4θ. It is shown that SAngles falls between

1 and -1, where SAngles = 1 indicates cracks that are parallel to the peaks of the substrate,

SAngles = 0 that there is no preference in direction and SAngles = −1 that they are at either

45◦ or 135◦ to the substrate. A complement to the crack angle distribution is the distribution

of angles acquired by detecting the orientation of individual cracks. These two methods are

compared and for the same crack pattern it is shown that the values acquired for SAngles are

similar. It must be stressed that such a comparison in no ways proves that these two methods

are equivalent, and as will be shown with the data in the next chapter, there are differences

between the two methods.

In the second section, the method to calculate the orientation of cracked regions is de-

scribed. This method involves isolating cracked regions and calculating their second moment

which is used to evaluate equation 3.7 from which the angle of the cracked region can be cal-

culated. The orientation of all cracked regions in a crack pattern is calculated and averaged

to yield SOrt which lies between 1 and -1. SOrt = 1 represents a crack pattern where the major

axis of the elliptical fits to the majority of the cracked regions lie parallel to a curve that lies

atop the peaks of the sinusoidal and radially sinusoidal plates. The methods developed in

section 3.2 are used to also calculate the orientation of individual cracks and also to isolate

crack skeletons whose lengths are measured to acquire crack length distributions.

Apart from the crack angles parameter SAngles and the orientation of crack regions SOrt ,

two other measures of the crack pattern are presented, these are Manhattan metric and the

Minkowski parameters. Both these are global measures of a crack pattern. The Manhattan

metric is used to defined the parameter SMan which is the ratio of the Euclidean distance

travelled and the Manhattan distance travelled between two crack intersection points. SMan is

calculated for pairs of crack intersection points where each element of the pair is picked from

top and bottom of the image. The mean value of SMan yields the parameter SMan which is

equal to 1 for crack patterns where there are crack going in the y-direction i.e parallel to the

peaks of the substrate. The three Minkowski parameters which are used to compare spatial

patterns are described in the context of crack patterns. These three Minkowski parameters

are the area A (r), the U (r) of the disks which have origins at crack intersection points and

the E (r) which is number of objects subtracted by the number of holes.
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Figure 3.12: (a) is a crack pattern at h = 0.29. (b) is a plot where the ordinate is the x

position (in pixels) of the image. The range of the plot is the total number of black pixels

per x position. (c) Fourier transform of figure 3.12 (a). The spatial frequency here represents

the number of wavelengths in a 20 cm plate where the base wavenumber is ξ= 20 i.e there

are 20 wavelengths within the dimensions of the substrate. The red stars represent the base,

the second and the third multiples of the spatial frequency of the substrate’s oscillations.

There are two methods presented in order to calculate the crack spacing of a crack pattern,

one involves using the line dropping algorithm another involves calculating the sides of a
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square with the same area as the area of a cracked regions. In the next chapter, both these

will be compared to see which, if any, is sensitive to the effect on the substrate.

The chapter closes by describing methods which use Fourier transforms to quantify the

number of cracks per wavelength. The crack density for a sample image is calculated, which

in turn is used to calculate the spectral power. The spectral power is plotted against the

wave-number and it is observed that peaks occur at multiples of wave-number 20 for the

sample image.

In the next chapter, the above methods will be applied to crack patterns over a range

of increasing layer heights and the change in the order parameters, the crack spacing and

other methods shown in figure 3.1 will be presented and discussed. One important aspect

that has not been mentioned in this chapter, and is the opening section of the next chapter,

is the time evolution of the order parameters. Since time lapse images of each crack pattern

were taken, the order parameters are measured over a range of time points and are plotted to

check whether they converge to a single value. This is also an essential check to ensure that

the crack pattern is mature and the fluctuations, if any, in the order parameters are minimal.
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Chapter 4

Results

This chapter presents the results obtained by applying the methods of crack pattern analysis

which were discussed in the previous chapter.

• This chapter opens by classifying experimentally observed crack patterns as either wavy,

ladder-like or isotropic. The resulting classification is plotted for each dimensionless

layer height, it allows for comparisons with the data acquired from crack pattern quan-

tification. It is a guide to the types of crack patterns found at each layer height.

• The second section deals with the time evolution of SAngles . This example is presented

to show that the crack patterns which are measured are mature crack patterns. It is

necessary to ensure this condition because, for example, SOrt is sensitive to the area

of the cracked region, which will change over time if the crack pattern is not mature.

In case of SAngles and COrt , if further connections in the crack patterns are formed

between cracks, this can alter the over all angle distribution, although the effect will be

small.

• The third section deals with the results of calculating the power of the Fourier transform

of the crack density. The Fourier methods are applied only to the sinusoidal plate. The

Fourier methods show that beyond a certain h = H/λ value, the spectral power of the

crack density falls to zero. The data for individual plates are individually discussed in

the next chapter.

• The fourth section combine the application of the three parameters SAngles , COrt and

SOrt to crack patterns and shows the subsequent result.

• The fifth section presents the data for the crack spacing over all layer heights. The

crack spacing over a flat plate is compared with the results for the sinusoidal plates.

The crack spacing of all but the radially sinusoidal plates are shown.

• The final section presents the measurements of the crack lengths. The idea is to explore

if there are changes in the length of a crack connecting two crack intersection points

due to crack pattern transitions with increasing layer heights.
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4.1 Observations of crack pattern transitions

In chapter 2, the procedure to generate crack patterns on an uneven substrate was described,

some elementary observations about the different types crack patterns were mentioned as

well. The control parameter for the experiments are- the amplitude of the substrate A, the

wavelength of the substrate λ, and the layer height H. Variations of these three parameters

are responsible for the observed transitions in the crack pattern. Figure 4.1 shows observa-

tional results based on the type of the crack pattern where crack patterns are classified as

either wavy, ladder-like or isotropic. There observations are made by eye. Since the main

control parameter in the experiments is the layer height, the amplitude to wavelength ratio

is plotted against the layer height in figure 4.1. In figure 4.1, each point represents a crack

pattern, and its type is determined purely by observation. The classification of the pattern

helps in forming a hypothesis which can be tested against the measurements of the crack

pattern.

The observations in figure 4.1 are made for plates 1-5. For A/λ = 0.5 no wavy cracks

are observed, up till h ≈ 1 ladder-like cracks are present. In the region 1 6 h 6 1.25 some

crack patterns seem to be isotropic, others are ladder-like. There were some crack patterns

which were a combination of both ladder-like cracks and isotropic cracks. This classification

was based on which pattern dominated the overall pattern. Beyond h = 1.25, all of crack

patterns were isotropic. For A/λ = 0.25, all three types of crack patterns were observed. The

overlap region between wavy cracks and ladder-like cracks is 0.35 6 h 6 0.5, above this region

ladder-like cracks are observed until a second region 0.75 6 h 6 1 where the transition from

ladder-like to isotropic cracks seems to occur. When A/λ = 0.125 the regions of transition

between wavy to ladder-like to isotropic seem very sharp. This is primarily because there is

only one plate with an A/λ = 0.125, plate 5. With all the other A/λ ratios, due to multiple

plates, a certain amount of ambiguity is there in deciding the type of crack pattern. For

the same layer height, two plates with the same A/λ ratio may have different type of crack

patterns in transition regions described above.

There are two interesting questions which can be posed. What is the nature of the

transition from ladder-like cracks to isotropic cracks? Observations by eye suggests that

the ladder-like to isotropic transition is continuous. How can we check this? Furthermore,

is it possible that beyond a certain layer height, only a single type of crack pattern can

be found? These are questions that will be answered through quantification of the crack

pattern. Quantification provides a means of checking how the crack pattern will evolve due

to the changes in the control parameters.

4.2 Time evolution of parameters

Time evolution of the measurement parameter SAngles is studied to ensure that the crack

pattern is mature before making a measurement. Figure 4.2 shows the time evolution of

SAngles for the crack pattern shown in inset of the same figure. The blue dashed line represents

the final value SAngles = 0.65± 0.04. The green lines represent error values. The error values
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Figure 4.1: Crack pattern transitions due to change in control parameters. The crack patterns

are sorted on the basis the amplitude to wavelength ratio a of the substrate. Based on

observations, one of three types of crack patterns: wavy, ladder-like or isotropic are assigned

to each crack pattern. For each amplitude to wavelength ratio, crack patterns are identified

over increasing dimensionless layer height h. The inset images are examples of wavy (left most

image), ladder-like crack pattern (second from left) and an isotropic crack pattern (right most

image).

are acquired by segmenting the final image into 4 equal, non overlapping pieces and measuring

SAngles values separately for each of them. These four values are averaged and used as error

bars. This procedure is adopted to calculate the error for SOrt as well as COrt parameters.

Up till approximately 2.5 hours the values of SAngles lie outside the regions defined by the

error values. Above this, although the SAngles values fall within the error region, the values

undergo significant variation. Beyond 4.5 h SAngles values stabilize. Hence a minimum of 4.5-

5 hours are required for the crack pattern to truly mature, and for reasonable measurements

to be made. In case of the radially sinusoidal substrate, where there is very little accelerated

drying, it is even more important to let the bentonite slurry dry out for a long duration.

To ensure that the crack pattern is mature, the slurries are dried over night. Details of the

process are given in the materials and the methods chapter.

4.3 Fourier methods

In the previous chapter, Fourier methods were used on a single image to acquire the power

spectrum. The power spectrum is used to differentiate between ladder-like like, wavy and

isotropic cracks. This is possible since ladder-like cracks show periodicity which is absent

in wavy cracks and ladder like cracks. Spectral power is calculated by first computing the
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Figure 4.2: Time evolution of SAngles for a sample crack pattern. The final value of SAngles =

0.65 ± 0.04. The final crack pattern is shown in the figure inset. Below two hours it was

observed that most of the cracks were unconnected. On average, it took a minimum of

4 hours under halogen lamps for bentonite slurries to dry before a mature crack pattern

formed. To ensure the crack pattern was mature, a minimum of 6 hours is before taking the

final image used in the analysis of crack patterns. In case of the radially sinusoidal plate,

since the substrate was sensitive to high temperature, the slurry was left to dry over night at

a minimum. For large layer heights, usually above h ≥ 2, the slurry was dried for over two

days to ensure that the crack pattern was mature.

Fourier transform f (ξx) of the crack density Cd (x) -

f (ξx) =

∞∫
−∞

Cd (x)e−i2πxdx, (4.1)

Here ξx is the cycles per unit distance in the image, it is referred to as the wave-number. In

order to ascertain which wave-numbers are dominant in the Fourier transform, the spectral

power is calculated and normalized. The spectral power is given by -

P (ξx) = |f (ξx)|2 (4.2)

Three modes of the spectral power are used for all crack patterns ξxλ = 1, 2, 4. ξxλ = 4

is used to show that there is no signal at higher modes.

In figure 4.3 the spectral power is plotted against relative wave number ξxλ. The power

approaches zero for all wave-numbers in figure 4.3 beyond h =0.75, for figure 4.3 (a) and for

h = 1.5 in figure 4.3 (b). Below this limit, non monotonic behaviour is observed for spectral
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Figure 4.3: spectral power plotted vs dimensionless layer height h. (a) Is for A/λ = 0.25

and (b) for A/λ = 0.5. The spectral power is plotted at three value of wavelengths - ξxλ =

1,ξxλ = 2, ξxλ = 4. ξxλ = 1 corresponds to one crack atop every peak. In (a), the normalized

power signal approaches zero for h > 0.75 and in figure (b) for h > 1.5. Below these limits,

the normalized power behaves non monotonically.
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power. In the region of non monotonic behaviour, the spectral power is highest for ξxλ = 2

and lowest for ξxλ = 4.

From the data it is clear that beyond h = 0.75 for figure 4.3 (a) and h =1.5 for figure 4.3 (b)

there is very little power in any of the measured wave numbers. At these layers most of the

observed crack patterns are isotropic. These results will be discussed further in section 5.1

4.4 Measurement parameters

In this section, measurement parameters are applied to crack patterns on plates 1-4, and radial

plates 1 and 2. They are plotted against dimensionless layer height h. The measurement

parameters plotted are-

• Angle distribution of cracks SAngles Section 3.1

• Orientation of individual cracks COrt Section 3.3

• Orientation of cracked regions SOrt Section 3.2

• The Manhattan metric type parameter SMan Section 3.4

4.4.1 Crack angles

SAngles is a parameter based on the angle distribution of crack angles, and applied to crack

patterns generated over variety of substrates. The angle between cracks and a unit vector,

defined by the substrate symmetry, are measured,processed and plotted against increasing

dimensionless layer height h in figure 4.4. For the sinusoidal plate, the angles are measured

between a vector ~rij and x̂ where ~rij is the vector that connects the ith crack intersection

point with its jth neighbour and x̂ is a unit vector that lies perpendicular to the substrate

peaks. In case of radially sinusoidal plates, the definition of ~rij remain the same, while the

unit vector becomes r̂i which connects the center of the image to the ith intersection point.

The measured angles are plotted as an angle distribution and using equation 3.5 to acquire

the parameter SAngles .

SAngles reduces the information about the crack pattern to a single number which lies in

between 1, that represents a crack pattern where the cracks are parallel and perpendicular

to the substrate, and -1, where the cracks lie at 45◦ and 135◦ with respect to the substrate.

When SAngles =0, the cracks have no preferential direction.

The parameter SAngles is found for all crack patterns generated over plates 1-4 and radial

plates 1 and 2. In figure 4.4 two figures, one for A/λ = 0.25 (figure 4.4) (a) and A/λ = 0.5

(figure 4.4) (b) show how SAngles changes with increasing dimensionless layer height. The

figure 4.4 (a) shows the data for all three plates- plate 1, plate 2 and radial plate 2. The

maximum dimensionless layer height value vary, since plate 1 has a higher wavelength (λ=2)

than plate 2 and radial plate 2. The values of SAngles for all three plates vary between an

upper limit of approximately 0.9 and a lower limit of -0.2. At low h values, reasonable

data collapse is observed for all three plates where a maximum in SAngles value occurs at
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Figure 4.4: Evolution of the parameter SAngles with increasing layer height. (a) contains the

data for A/λ = 0.25 and figure (b) for A/λ = 0.5. In both figures reasonable data collapse

is observed for all plates in each figure. In Figure (a), for low layer heights, SAngles is small.

With increasing h, a peak in SAngles occurs at h ≈ 0.5. The magnitude of this peak differs

for all three plates. Values of SAngles over h ≥ 0.5 decreases for all plates. In (b), a similar

trend to figure (a) can be seen in the region 0.5 ≤ h ≤ 1.5 where a peak in the data occurs at

h ≈ 1.0 for both plates 3 and 4. No noticeable peak in the data occurs for radial plate 1 in

this region of h values. Values of SAngles in the region h ≥ 1.5 remains close to SAngles ≈ 0.1

with large scatter in values for large layer heights.

h ≈ 0.6. The maximum value is not the same for all three plates, for plate 1, the maximum

SAngles value is approximately 0.7, where as the maximum for plate 2 and the radial plate 2

are within close to each other. With increasing dimensionless layer height, SAngles decreases

and for large values of dimensionless layer height, the scatter in the data is also also observed

for large layer heights.

In case of the A/λ = 0.5 (figure 4.4 (b)) a larger range of dimensionless layer heights are

explored with hmax ' 3.0. Similar to plate 1, due to a large wavelength (λ= 1), plate 4

goes upto hmax ' 1.5 whereas plate 3 and radial plate 1 go till hmax ' 3.0. The spread of

SAngles values remains similar to what is observed in figure (a). The behaviour of SAngles in

figure 4.4 (b) is, in principle, is also similar to figure (a) where a peak in SAngles is observed

at h ≈ 1.0.

SAngles measures the orientation of cracks with respect to the substrate. The data suggests

that for a specific layer height, there is a peak in the SAngles values. This layer height depends

on the A/λ ratio. COrt is another parameter that measures the orientation of cracks. In the

next section the result of measuring COrt are discussed.

4.4.2 Orientation of crack skeletons

The orientation of cracks COrt with respect to the substrate is quantified by measuring the

angle between the major axis of an elliptical fit to skeletons of individual cracks. Since

COrt and SAngles are defined in the same way, the range of values and their meaning is also
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(a) (b)
Figure 4.5: The change in the parameter COrt with increasing layer height. Figure (a)

contains the data for A/λ = 0.25 and figure (b) for A/λ = 0.5. The data in figure (a) has

a peak in the data for all plates at h ≈ 0.5. The highest value of COrt is for radial plate 2.

For h ≥ 0.5 the values for COrt decrease for all plates. The data in figure (b) has a peak at

h ≈ 1.0 for both plates 3 and 4. No peak is observed for radial plate 1. In the region where

1.0 ≤ h ≤ 1.53 the parameter COrt decreases and reaches a value COrt ≈ 0.1. for h ≥ 1.5 the

values COrt remain close to COrt ≈ 0.1. Note. the results for COrt are similar to the data

presented in figure 4.4.

the same.

Figure 4.5 shows the data for both A/λ ratios. In figure 4.5 (a), For plate 1, COrt has

a maximum value of COrt ' 0.7 at h ' 0.52. For plate 2, a peak in the data is observed at

h ' 0.53 where COrt ' 0.78. The COrt values for 0.53 6 h 6 1.5 falls to below 0. The data

for radial plate 2 has a peak at h ' 0.66 where COrt ' 0.69. In the range 0.66 6 h 6 1.52

the data for plate 2 decreases and approaches 0.

The data for A/λ = 0.5 is presented in figure 4.5 (b) which contains data for plate 3,4

and radial plate 1. In this figure dimensionless layer height values range from 0.61 6 h 6 3.0.

Plate 3 decays monotonically starting at its maximum value of COrt ' 0.79 at h ' 0.92 and

decreasing rapidly till COrt reaches close to 0 at h ≈ 1.7. Above this layer height, the value

of COrt settles around COrt ≈ 0.1 and fluctuates. This behaviour is also seen in the data for

the radial plate 1 where in region between 0.81 ≤ h ≤ 1.53 COrt falls to 0.1 and fluctuates

around this value.

4.4.3 Orientation of cracked regions

Cracked regions form because regions of the cracking material are isolated due to formation

of the crack pattern and the geometry of these regions is dependent on the type of crack

pattern. SOrt measures the orientation of these cracked regions using the methods described

in section 3.2. SOrt is acquired for all plates 1-4 and for radial plates 1 and 2. SOrt takes

values between 1 to -1 where SOrt = 1 represents a state where all the cracked regions lie

parallel to the peaks of the substrate. SOrt = −1 represents a state where all the cracked
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Figure 4.6: The parameter SOrt is plotted for both A/λ = 0.25 figure (a) and A/λ = 0.5 (fig-

ure (b)). In figure (a) a peak in the data of plate 1 and 2 occurs at approximately h ' 0.5,

no peak is observed for radial plate 2, however the maximum value occurs at h ' 0.5 as

well. For h ≥ 0.5, values of SOrt keep decreasing. In figure (b) two regimes are observed, in

the region 0.5 ≤ h ≤ 1.5 the values for all plates decrease till SOrt ≈ −0.1. Above h = 1.5

remains unchanged with a large amount of scatter in the data.

regions lie perpendicular to the substrate. The data for SOrt values over all plates and h

values is shown in figure 4.6.

Similar to figure 4.4, two plots are presented in figure 4.6- figure (a) for A/λ = 0.25

and (b) for A/λ = 0.5. For all plates, the dimensionless layer height values are the same

as figure 4.4. In figure 4.6 (a) the SOrt values range from a range of −0.1 ' SOrt ' 0.85,

with an outlier point at SOrt = −0.28. For plate 1, SOrt drops for the first three points then

increases again to a maximum value of SOrt ' 0.5 at h ' 0.4. Plate 2 starts with a higher

value compared to plate 1, however follows a similar trend. The maximum for plate 2 occurs

at h ' 0.5 beyond which the SOrt decreases to values around zero. Radial plate 2 data follows

a similar trend as that of plate 2 data, however in general is sightly higher than most of plate

2 SOrt values. No peak is observed, radial plate 2 data, the maximum value is the first point.

The SOrt values for radial plate 2 do not suffer the same magnitude of scatter as the values

for plate 2.

In figure 4.6 (b) the data for plates 3,4 and radial plate 1 are presented. The SOrt has

a maximum of SOrt ' 0.91 and a minimum of SOrt ' −0.22. Plate 3 has a maximum at

h ≈ 0.77 with SOrt ' 0.67, above h = 0.77 SOrt rapidly falls till h ' 1.5 beyond which

SOrt fluctuates around SOrt ≈ −0.1. Unlike plate 3, radial plate 1 does not have a maximum,

the first point is the highest value for the radial plate 1 which occurs at h ' 0.81 where

SOrt ≈ 0.7. In region 0.81 6 h 6 1.5 SOrt falls rapidly and beyond h ≈ 1.5, SOrt follows a

similar trend as plate 3. SOrt values for plate 4 start at SOrt ' 0.91 and fall till h ≈ 1.5 where

SOrt ≈ −0.07, which lies in the same neighbourhood as the values for plate 3 and radial plate

1.
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Figure 4.7: SMan for A/λ = 0.25 figure (a) and A/λ = 0.5 figure (b). Unlike earlier parameters

SAngles and COrt , there is no peak in the data at h = 0.5 in figure (a) and h = 1.0 (b). The

values of SMan cluster around SMan =0.96 and decrease above h > 0.5. In figure (b), the data

for plate 4 starts at a slightly lower value than its maximum which occurs at h1.0. Plate 3

does not have a peak, it monotonically decreases and then at approximately h ≈ 1.5 remains

fairly constant.

4.4.4 Manhattan metric approach

The parameter SMan uses a Manhattan metric type approach to quantify a crack pattern.

The parameter sman is calculated for two crack intersection points by taking a ratio of the

straight line distance to the distance along the crack network between the two points. This

ratio of distances is calculated for all crack intersection points and averaged to yield SMan .

Figure 4.7 shows evolution of the parameter SMan over a range of layer heights for both

A/λ = 0.25 and A/λ = 0.5. The smallest value that SMan can take is SMan = 1/
√

2 and the

maximum is 1. The minimum value of SMan corresponds to the ratio of distances between

two non neighbouring points on a grid. SMan values vary from 0.79 6 SMan 6 1.0. For plate

1, the initial points have SMan ≈ 0.95. Neither plate 1 nor plate 2 have a peak near h ≈ 0.5.

The SMan values for plate 2 monotonically decay till the last h value.

Figure 4.7 (b) contains the data for plate 3 and 4. The data for plate 4 starts at a high

value SMan ≈ 0.95, for h > 1 values the data for plate 4 decreases. The plate 3 data collapses

with the upper half of plate 4. Plate 3 decreases until h ≈ 1.5 and levels off at SMan ≈ 0.83

with very little scatter until the last few data points. Out of all there points there is one

large outlier which lies at SMan = 0.69.

The values of SMan show reasonable data collapse, there is little scatter compared to the

other parameters.

4.5 Crack spacing

The crack spacing is a parameter which captures the scale of the crack pattern. The attempt

here is to see if the crack pattern transitions affect the crack spacing. The crack spacing is
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measured using a line dropping algorithm. The algorithm involves plotting lines with random

orientation onto the skeleton image of a crack pattern and measuring the spacing between

crack intersections on these lines. The spacing between the intersections is measured and for

each line, averaged over all lines (see section 3.6.1).

The crack spacing is measured for plates 1-5 and for the flat plate. The results are shown

in figure 4.8. The crack spacing is divided by the layer height for each data point, this is

done to compare if the crack spacing is proportional to thickness of dried layer.

For the flat plate, at low layer heights, the ratio of crack spacing to layer height has a

large value which reaches a minimum around 2, above a layer height of H ≈ 1.25 cm. For

rest of the plates, the crack spacing to layer height ratio for low layer heights is smaller than

that of the flat plate. For plates 1,2 and 5, the behaviour of the ratio is similar to flat plate,

starting at a large value they decay till a layer height of 0.75 cm beyond which they do not

show any large scale variations. The ratio of crack spacing to layer height for plate 3 and 4

remains unchanged over the range of increasing layer heights. It is interesting to note that

at large layer heights, the ratio of crack spacing and layer height does not approach values of

the ratio of the same for the flat plate. For large H value, the crack spacing for the sinusoidal

plates must approach that of flat plate.

Figure 4.9 shows the crack spacing acquired from the
√
A where A is the area of the

cracked regions. The method is described in section 3.6.2. The crack spacing for the flat

plate is lower than the spacing for the line dropping method. The spacing for the sinusoidal

plates is similar to spacing calculated from the line dropping method.

4.6 Average crack length

Similar to crack spacing, the crack lengths are measured to see is crack pattern transitions

influence the crack length. Since, with increasing layer height the crack spacing also increases,

it can be expected that the length of the cracks that connect each crack intersection point

in the crack pattern also increases. Since the crack spacing / layer height ratio approaches a

constant value for large layer heights the question then becomes whether this also be true for

the ratio of crack length/ layer height. Figure 4.10 shows the data for both A/λ = 0.25 ( (a))

and A/λ = 0.5 ( (b)).

In figure 4.10 (a), the length/layer height ratio for plate 1 remains close to 1 for the most

part. For layer heights larger than 1.25 cm, the value of the ratio falls below 1 . For plate

2 and radial plate 2, the data starts at a higher value of length/layer height ratio and for

large layer heights end at approximately 0.9. The data for plates 3,4 and radial plate 1 are

presented in figure 4.10 (b). Here, too, the ratio crack length /layer height remains fairly

constant and close to 1.

The ratio of crack length/layer height does not show any dramatic changes with increasing

layer height. This result is similar to the result from the previous section where no variation

in the crack spacing/ layer height is observed with increasing layer height.
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Figure 4.8: The ratio of crack spacing/layer height with increasing layer height. The figure

contains the data for plates 1-5 and the flat plate. For the flat plate, all values of the ratio are

higher than for the rest of the plates. At low layer heights, plates 1,2 and 5 follow a similar

trend to the flat plate, they start with high values and decrease with increasing layer height.

For large layer heights approximately above 1.25 cm, the ratio remains constant with small

amount of scatter in the data. The value of the ratio remains essentially constant for plates

3 and 4.
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Figure 4.9: Crack spacing calculated using the
√
A method for plates 1-5 and the flat plate.

The crack spacing for the flat plate is slightly lower than the spacing calculated using the line

dropping method. There is little other difference between the crack spacing acquired from

the line dropping and
√
A method.

Figure 4.10: Figure (a) and (b) represent the change in crack length/H for increasing layer

height H. Figure (a) shows the data for A/λ = 0.25 and figure (b) for A/λ = 0.5. In both

plots of figure 4.10 the ratio crack length / layer height remains close to 1 for all plates.
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Summary

Crack patterns were quantified in this chapter by applying the methods of crack pattern

analysis developed in the previous chapter. Observations of crack pattern transitions were

presented in figure 4.1 where each crack pattern was labeled to be either a wavy, ladder-like

or isotropic crack pattern. It is essential to note that there is no necessity that a crack pattern

must strictly follow such a classification. A crack pattern may contain regions where it is

isotropic and regions where it is ladder-like, this assignment is merely a guide to the different

regimes of the observed crack patterns.

The time evolution of SAngles is presented for a sample crack pattern generated on plate

1. This crack pattern is used as an example to justify the drying and waiting time before

which the crack pattern is considered mature enough to be measured. In general a minimum

of 4 hours must be waited before a crack pattern has dried enough to be measured. While

the primary crack pattern forms fast, in less than 2.5- 3 hours, the finer cracks must make

connections before the crack pattern reaches a stage where it will remain unchanged.

Fourier methods are applied to crack patterns and the power of the Fourier transform

of the normalized crack density is acquired. Fourier methods are naturally suited for this

problem due to the periodic nature of the crack patterns. They are applied for plates 1-4 for

all layer heights. It is observed that above h = 1.5 no periodicity is seen any of the crack

pattern. Below this limit, peaks at value dimensionless layer heights are observed, the highest

of peaks are observed at around h = 0.5.

Section 4.4 presents the data for all the measurement parameters- SAngles , COrt , SOrt and

SMan . These parameters are calculated for all crack patterns generated on plates 1-4 and

radial plates 1 and 2. It is observed that, for both SAngles and COrt have similar data collapse.

These parameters behave non monotonically for all dimensionless layer heights with peaks

in the data at h = 0.5 for plates 1 and 2 which have an A/λ = 0.25 and for plates 3 and

4 at h = 1.0 with an A/λ = 0.5. It is observed that for plate 3, beyond h = 1.5 all three

parameters show scatter in the data. However they level off close to a constant value in this

regime.

The average crack spacing is measured using the line dropping method and presented

for all layer heights and for all plates including plate 5. All the curves collapse except for

the curve for the flat plate. This is true even for crack spacing at large layer heights. The

crack spacing is also determined by a second method where the
√
A is calculated plotted

for all plates. Here, the flat plate crack spacing was lower than the values acquired from

line dropping, the data for the sinusoidal plates were similar to data acquired from the line

dropping method

The chapter ends with the data of crack length measurement over all layer heights. The

data for all plates collapses and the the crack length/thickness ratio is close to 1. For a few

plates like plate 4 this value is slightly less that 1. This suggests that the length of individual

cracks is proportional to the layer height and is unaffected by the crack pattern transitions.

With this the quantification of the current experimental observation is completed, the

next chapter tackles interprets the results. It expands further on the descriptions of each
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measurement method presented in the previous chapter, and view them in the light of the

experimental observations. This comparison addresses both questions of the central questions

of the thesis which are - how are substrates influenced by crack patterns and how can crack

patterns be quantified.
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Chapter 5

Discussion

In the previous chapter, the data acquired from applying methods of crack pattern analysis

were presented. The cartoon in figure 5.1 provides a general outline of the goals of this

chapter. The first question to be addressed in this chapter is, how can the observations by

eye (figure 4.1 be connected to the data obtained from measurement parameters. Does this

data reflect the crack pattern transitions from wavy to ladder-like to isotropic? The second

crucial question that is being answered is, how applicable are the methods to the current

experimental system? Do all measures of provide similar information about a crack pattern,

if not, how are they different? The third question addressed is, what are the strengths and

the weaknesses of each method? There are limits of each method and they will break down

under certain conditions. Furthermore, certain assumptions about crack patterns have been

made in order to calculate each parameter, how these assumptions affect the measurements

are discussed.

The first section of the chapter deals with analysing crack patterns using Fourier methods,

combining the data acquired by calculating the power of crack density and the observations

presented in 4.1. Certain conclusions are drawn about the relevance of the peaks observed in

the data of figure 4.3.

The second section compares the flat plate crack spacing data with data obtained by

Goehring et al.[36]. The crack spacing data for the sinusoidal plates is discussed in context of

the pattern transitions observed in experiments, the lack of any change in the crack spacing

due to these transitions is explored.

The third section recaps the data for the parameter SAngles and reconciles the non mono-

tonic behaviour of SAngles with the crack pattern transitions observed in experiments. The

significance of the substrates symmetry is briefly discussed. This discussion is applied to

the parameter crack orientation COrt and the measure of orientation of cracked regions SOrt .

The angle distribution for wavy, ladder-like and isotropic cracks are presented and briefly dis-

cussed. In addition to the data in chapter 4, figure 4.4, the flat plate limit is presented and

its implications are discussed. This section also discusses the similarities between SAngles and

COrt .

The fourth section of the chapter briefly discusses SOrt in context of crack transitions. It

compares the difference between the parameters SAngles and SOrt . This section also illustrates
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Figure 5.1: Goals of the chapter

the similarity between orientation of liquid crystals and orientation of cracked regions.

The final section highlights the results of applying the Manhattan metric method to crack

patterns. The metric is a global parameter in contrast to SAngles and SOrt which are local

measures of the crack pattern. The implication of this are discussed.

5.1 Crack pattern analysis using Fourier methods

The normalized power is one of the measures of a crack pattern. This measure provides a

comparison between crack patterns by quantifying the periodicity of the pattern. Figure 5.2

shows the spectral power for ξxλ = 2 for plates 1 and 2. In figure 5.2, the power reaches a

peak at h = 0.5 and then falls off to zero.

To better understand the data for power for non isotropic cracks, the power values for

plate 2 are picked and plotted in figure 5.4.

Figure 5.4 shows the spectral power for plate 2 and suggests a transition from two cracks

per wavelength to one crack per wavelength. In figure 5.4, three modes of the spectral power

are plotted - ξxλ = 1, ξxλ = 2, ξxλ = 4. There is peak in the spectral power for ξxλ = 2

at h 6 0.4 and a peak in the data for ξxλ = 1 for h = 0.60. Beyond this regime the

spectral power falls to zero for all relative wavenumber. Three inset images are also shown in

figure 5.4, two of the images show the crack pattern near the peaks of the two modes. The

crack pattern corresponding to ξxλ = 2 has two cracks per wavelength, it contains mostly

straight primary cracks with few wavy secondary cracks. The crack pattern corresponding

to the peak at h = 0.6 contains a ladder-like crack pattern where there no secondary cracks
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parallel to the primary cracks.

The data in figure 5.4 suggests that the maximum in spectral power for modes ξxλ = 1, 2

occurs for crack patterns that are most ladder-like. A ladder-like crack pattern is represen-

tative of the structure of the substrate. Before a ladder-like crack pattern is observed, a

transition region exists for 0.4 ≤ h ≤ 0.6. The lower end of the transition region tends to

have two cracks per wavelength, where the primary cracks are aligned with the substrate.

However the secondary cracks tend to either be perpendicular to the substrate or be wavy.

These wavy cracks meander near the trough. Close to the higher end of the transition region

the secondary cracks appear perpendicular to the substrate. At values close to h = 0.6, a

ladder-like pattern is formed where the primary cracks are parallel and the secondary cracks

are perpendicular to the substrate. There are thin tertiary cracks that appear parallel to the

primary cracks as show in figure inset for h = 0.6 in figure 5.4.

In a crack pattern containing wavy cracks or an isotropic crack pattern, the spectral power

is very small. Two examples to are presented here : the first one is the comparison of power

vs h for crack patterns generated on the same plate at different layer heights and a second

example where the power for ξxλ = 2 is compared for two plates with the same A/λ. The

first example is illustrated in figure 5.3 where, the crack patterns are shown for three different

layer heights for the same substrate. Figure 5.3 depicts the crack patterns observed plate 1

at three layer heights, low, intermediate and high. For a crack pattern generated at low layer

heights, cracks are observed in the troughs, however no cracks are observed on the peaks.

In figure 5.3 (b), ladder-like cracks are shown where roughly two cracks per wavelength are

observed, For a crack pattern generated with a large layer height, (figure 5.3 (c)) the crack

pattern is isotropic, hence no information about the substrate can be gathered from looking

at the crack pattern. This is represented by small values of spectral power. Comparing these

crack pattern images with the data in figure 4.3, it is possible to observe that the values of

spectral power are small for wavy and isotropic cracks.

For two different substrates, as long as they have the same A/λ, the spectral power

will behave the same way and it must be scaled by the wavelength of the substrate to be

compared. In figure 5.2 the crack patterns at different points are shown. Similar to the

behaviour described above, wavy, ladder-like and isotropic cracks are observed. The spectral

power for the inset images of figure 5.2 are shown in figure 5.5, where the spectral power

is plotted against the wave-number. For a wavy crack pattern (figure 5.5 (a)) ξxλ = 1 and

ξxλ = 2 are extremely small. This is consistent with figure 5.2. The spectral power for the

ladder-like cracks is shown in figure 5.5 (b), where the order of highest to least is ξxλ = 2,

ξxλ = 1 and ξxλ = 3. This crack pattern represents the highest point in figure 5.2. The

spectral power behaviour in figure 5.5 (c) is representative of isotropic crack patterns. Here

there are no peaks at the realtive wave-number of 1, 2 or 4. Figure 5.2 suggests that only a

few of the plate 1 points are isotropic whereas for plate 2 a larger collection of h values lead

to isotropic crack patterns. This happens because the wavelength of plate 2 is smaller than

than of plate 1.

A limitation of the Fourier method is that prior knowledge about the substrate is required.
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Figure 5.2: Spectral power vs h for A/λ = 0.25 (Plate 1 and 2). At low layer heights, the

spectral power has small value. At these layer heights, wavy cracks are observed at these

layer heights. The crack pattern shown in the inset is from plate 1. At slightly higher layer

heights, ladder-like crack patterns can be seen, the inset figure is for plate 2. In plate 2 at

low layer heights both wavy cracks and ladder-like crack patterns can be seen. Here, straight

cracks lie on the peaks of the plate and the cracks between the peaks tend to be wavy, such

a pattern will still have a high value of spectral power at ξxλ = 2 since peak power does

not differentiate between line shapes. It merely represents how many divisions there are per

wavelength. Finally at large layer heights, crack patterns are isotropic. The inset figures are

is from plate 2. In figure 5.5, the spectral power vs the wave number is shown for each of the

crack patterns in the insets
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Figure 5.3: (a) Wavy, (b) ladder-like, (c) isotropic crack patterns. All crack patterns are

generated on plate 1 which has λ = 2 cm. Hence, 10 wavelengths within the width of the

image. Figure (a) represents a crack pattern at low layer heights where wavy cracks are

observed. The dotted lines indicate the location of the peaks on the substrate. Extremely

thin cracks which run perpendicular to the dotted lines appear on peaks, however in the

process of creating a binary image they are eliminated due to the threshold. The spectral

power for such a pattern is very low. Figure (b) is ladder-like crack pattern. For such a

pattern, spectral power would have a maximum at ξxλ = 1 or 2. Figure (c) is an isotropic

pattern which is generated due to large layer heights. Here very little information from the

substrate is passed upto the crack pattern.

Without knowing the inherent symmetry of the substrate and, in case of the sinusoidal

substrate, wavelengths of the substrate, it is not possible to plot figure 4.3 and hence acquire

the power. While the symmetry of the substrate can be easily determined by studying the

of the crack pattern, it is not possible to acquire the wavelength of the substrate by merely

looking at the crack pattern.

The wavelength of the sinusoidal or radially sinusoidal plates can only be determined when

the layer height at which the power has a maximum is determined, however in order to plot

the power, wavelength must be know. For example, In figure 5.3 (b), one can conclude the

crack pattern has a plane symmetry. Whereas without knowing the number of wavelengths

of the substrate, it is not possible acquire the power for any crack patterns. This dependence

of the crack pattern on structural information about the substrate makes it a unsuitable

candidate for general applicability.

5.2 Cracking over a flat substrate

The crack spacing of an isotropic crack pattern was measured by Goehring et al. (2012) [36].

The results are presented in figure 5.6 (a). Goehring et al. measured the crack spacing of mud

cracks dried in 150 mm Petri-dishes where the layer height was varied from 1 mm to 7 mm.

They measured the crack patterns using the same methods presented in previous chapter :

line dropping and the square root of the area of the cracked region
√
A. They observed that
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Figure 5.4: Normalized power at the selected wavenumbers for plate 2. Figure (a) shows a

crack pattern where there are roughly two cracks per wavelength, figure (b) shows a crack

pattern which has one crack per wavelength and figure (c) shows an isotropic crack pattern.

The crack patterns near the peak at h ≈ 0.4 have two cracks per wavelength, as the layer

height increase, the crack pattern becomes ladder-like and in the regime 0.4 6 h 6 0.6 the

crack patterns go from having two cracks per wavelength to one crack per wavelength.

74



Figure 5.5: Power vs wave number for three types of cracks. In each case, the base wave

number represents the number of wavelengths in the box. The wave number is proportional

to inverse of the wavelength.
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the crack spacing increases with increasing layer height and that for small layer heights the

ratio of the crack spacing to layer height was significantly larger than for large heights. They

also observed a 10− 15% decrease in the crack spacing using the line dropping method when

compared to the
√
A method [36].

Since the isotropic crack patterns generated by Goehring et al. are on a flat substrate,

their measurements are compared against the experiments and the subsequent measurements

on the flat plate. Figure 5.6 (b) shows the results of experiments conducted on the flat plate

where both line dropping and
√
A are used to a measure the cracking. In the figure, the ratio

of the crack spacing and layer height is large for small layer heights and for increasing layer

height the ratio decreases in magnitude.

In comparison to the results acquired by Goehring et al., the crack spacing in figure 5.6

is slightly lower, however the trend remains the same. In figure 5.6 (b), the crack spacing is

calculated using two different methods. The first is the line dropping second is by calculating

the
√
A of each cracked region. The data shows that the

√
A method is lower than line

dropping method. This too is in agreement with the results acquired by Goehring et al. The

crack spacing for flat plate is a control experiment and checks if at large layer heights the

crack spacing for the sinusoidal plate will converge close to the results of Goehring et al. and

the results in figure 5.6 (b).

The difference between the current result and Goehring et al. is also mainly because,

Goehring et al. measure the dry layer height whereas here the wet layer height is measured.

This means that the difference between their results and the results here represent the strain

developed due to drying.

5.3 Crack spacing over sinusoidal substrate

The crack spacing for all the sinusoidal substrates are significantly lower compared to the

crack spacing/H ratio for the flat plate (figure 4.8 where H is the layer thickness in centime-

tres. In the figure, the crack spacing values for plates 1,2 and 5 end at lower values than their

starting values. However, it is important to keep in mind that this difference is not significant

enough to constitute a trend. The crack spacing/H ratio for plate 5 is higher than all the

other plates. Conversely, the data for plate 4 and plate 1 have crack spacing values lower

than all other plates. Plate 5 has an amplitude of A =0.25 and plate 1 and 4 both have A =

0.5. The plates with the higher amplitude seem to have lower crack spacing/H ratio. While

these difference in magnitude do exist between the crack spacing/H ratio of the sinusoidal

plates, they are not significant compared to the difference of crack spacing/H ratio between

the sinusoidal and the flat plate.

One reason why the crack spacing/H ratio results in figure 4.8 for the sinusoidal plates

do not agree with the flat plate results, especially at large wavelengths could be because the

thickness in the sinusoidal plates is not constant. In the crack spacing/H ratio the value

for H = A sin ( (2πx/λ)) where λ is the wavelength of the plate. Hence, the ratio of crack

spacing/H using line dropping may not give the desired comparison.
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Figure 5.6: The crack spacing for an isotropic crack pattern. The pattern is generated on

flat substrate. The ordinate is the crack spacing by the layer height. For small layer height,

Goehring et al. find that the crack spacing is significantly larger than the layer height.

Reprinted with permission of Dr L.Goehring. Figure (b) is the result of calculating crack

spacing using two methods of crack spacing calculations are employed. The red data points

were calculated using the
√
A method, whereas the blue data points were calculated using

the line dropping method.

In figure 4.9, crack spacing is calculated using the
√
A method. As mentioned, the data

collapse for this method is better. While calculating the
√
A, the shape of the cracked region is

ignored and only the area is used. Hence while measuring a cracked region, the line dropping

algorithm may drop a line in a direction in which the length of the region is the longest this

value will be greater than the
√
A method, which explains lower values of crack spacing/H

ratios for the flat plate. Furthermore, consider two different cracked regions which have very

different shaped but the same area. In such a case, the line dropping algorithm would yield

different values for the crack spacing, where as the
√
A would yield the same spacing. Hence

this may also influence the result for the flat plate. What is interesting is that there is little

difference between the data for the sinusoidal plates in figures 4.8 and 4.9. In both figures,

the data for plates 1 and 4 essentially behave in the same way, the data for plate 5 in figure 4.9

as compared to figure 4.8. While the values are lower, the trends seem to be the same.

The crack spacing contains no information about the transition from wavy to ladder-like

to isotropic crack patterns since it remains relatively constant over the range of layer height.

While there is no signature of crack pattern transitions in the crack spacing/H ratio, there is

however an impact on the ratio due to presence of an uneven substrate. For example, the flat

plate approximation is not valid even in case of plate 5 regardless of having a low A/λ and at

large layer heights. Hence, since the crack spacing cannot be used as a means to distinguish

crack patterns of different geometry and topology, the various parameters developed in the

previous chapter are used quantify crack patterns.
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5.4 Angle distributions of crack pattern

The angle distribution provides a measure of the crack pattern. The advantages of using the

angle distribution as a measure over the Fourier methods was discussed in the last chapter.

One major advantage is that, it is not necessary to know anything about structure of the

substrate. What is required, however, is information about the the symmetry of the substrate.

The symmetry of the substrate decides the direction of the unit vector that is used to measure

the angles. In general, by looking at the direction of the primary cracks the symmetry of the

crack pattern can be deciphered. Using this it is possible to assign an appropriate unit vector.

Take for example the crack pattern in figure 5.3 (b). Without knowing anything about the

structure of the substrate and by looking at the direction of the primary cracks, one can

conclude that the angles for such a crack pattern are best measured in Cartesian coordinate

system where the unit vector lies parallel or perpendicular to the crack pattern. Contrast

this with the cracks in figure 5.7 (a) where the symmetry of the crack pattern suggests the

use of a radial unit vector is appropriate in order to calculate the angle distribution. What

of figure 5.7 (b)? Which unit vector should be used to calculate the angle distribution for

such a crack pattern? The answer is that it does not matter. This can be inferred from the

values of the various measurement parameters at large layer heights which all leads to zero

for isotropic patterns regardless of the choice of reference vector.

In present experimental geometries, as mentioned in the previous chapter, the two unit

vectors used to measure angles are : x̂ which is the unit vector perpendicular to the peaks of

the sinusoidal plate and r̂ which is used for the radial plates. It lies in the direction of the

vector that connects the center of the image and the ith crack intersection point. In figure 5.8,

the angle distributions for the three representative crack patterns are shown for plate 1 and

2. Figure 5.8 (a) shows the angle distribution of a crack pattern with wavy cracks. In this

distribution, there is large peak at θ = 90◦ with gradual decay in the distribution of angles

on either side of the 90◦ peak. This suggests that in a wavy crack pattern, many cracks lie

along the direction of the substrate. This happens because most of the slurry settles in the

troughs of the substrate. Only a thin layer of the slurry remains atop the peak. Here the

layer height is too small for the dried slurry to crack. As the slurry dries, wavy cracks form

because a crack approaches the peak and either turns away due to the small layer heights, or

eliminates at another crack forming a crack intersection point. In figure 5.3 (a), the primary

cracks are wavy cracks which approach the peak then turn away, they travel from the top

to the bottom of the plate. The primary cracks are surrounded by secondary curved cracks.

This curvature ensures that while the primary cracks lie parallel to the peaks, angles other

than 90◦ are also present.

Going back to the earlier discussion of the Fourier method where it was stated that the

power cannot distinguish between a straight line and a curved line. The angle distribution

differs for a crack pattern where the primary cracks are wavy cracks. Compare figure 5.8 (a)

which is a wavy crack pattern to figure 5.8 (b) where the crack pattern is ladder-like. There

are three prominent peaks in the distribution at θ = 0◦, 90◦, 180◦, where as in the former,

while there is a peak at 90◦, the peaks 0◦ and 180◦ are absent. This angle distribution of
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figure 5.8 (b) strongly reflects a pattern where there are crack parallel and perpendicular

to the substrate. There are virtually no other angles present near θ = 45◦, 135◦. For the

crack pattern in figure 5.8 (a), the cracks are perpendicular to the substrate are absent.

Hence no peaks are seen 0◦and180◦. Hence, the angle distributions can be used distinguish

between crack patterns that are wavy and ladder-like. The final image in figure 5.8 is the

angle distribution of an isotropic crack pattern where there is no peak at θ = 90◦, there are

no dominant angles in this specific angle distribution. This shows that the crack have no

preference of direction.

The angles distributions generated so far need to be condensed into a single number

and this is done by calculating SAngles . This parameter has a maximum value of 1 and a

minimum value of -1. In figure 4.4, SAngles was used as a means to quantify crack patterns.

One interesting exercise is to use SAngles to check how the results of figure 5.8 (b) vary with

changing bin size. In figure 5.9, using two different bin sizes angle distributions are generated.

For the bin size of 2◦, SAngles ≈ 0.74 and for 10◦, SAngles ≈ 0.72. For the standard bin size

of 5◦, SAngles = 0.75, hence this variation is not significant and is within the error values of

point for a standard bin size.

Applying SAngles to plates 1-4 and radial plates 1 and 2, one finds that the SAngles behaves

non monotonically with increasing layer height. At low layer heights h < 0.6, wavy cracks

are observed. Plate 1 is observed to have the maximum number of crack patterns with wavy

cracks. This is reflected in the SAngles values for plate 1 where close to half of the data points

lie to the right of peak in SAngles . Plate 4 has wavy cracks as well and they are captured by

the low values of SAngles at small layer heights in figure 4.4 (b).

As mentioned in Chapter 4, peaks are observed for A/λ = 0.25 at approximately h ≈ 0.5

and for A/λ = 0.5 at approximately h ≈ 1. These peaks suggest that there is a relationship

between the periodicity of the substrate and the periodicity of the crack pattern. At this

point, the crack pattern is representative of the substrate since the crack pattern contains

the same number of primary cracks as the number of wavelengths of the substrate. With

the primary cracks lying on the peaks, the secondary crack generally occur perpendicular to

the peaks, this is what is observed in a ladder-like crack pattern. Hence a ladder-like crack

pattern represents a condition where the influence of the substrate on the crack pattern is

maximum. The influence of the substrate wanes with increasing layer height. The change

from a ladder-like crack pattern to an isotropic pattern is quantified by the decay of SAngles at

large layer heights in figure 4.4. The decay of SAngles for A/λ = 0.25 i.e plate 1 and 2 has a

constant slope, whereas for plate 3 and 4 A/λ = 0.5 the decay tends levels off at h ≈ 1 beyond

this there is a large amount of scatter in the data. At h ≈ 1, SAngles reaches a minimum.

SAngles values for the sinusoidal and radially sinusoidal plates, at large h values must be

comparable to the SAngles value for crack patterns generated on the flat plate. This is shown

in figure 5.10 where the black line is SAngles value for the flat plate ( SAngles = 0.0079± 0.1).

The red lines are the errors for the flat plate SAngles values. In figure 5.10 (a) plate 2 and

radial plate 2 values either come close to or lie within the flat plate error range. In case of

figure 5.10 (b), both plate 3 and radial plate 1 have values within the flat plate error range.
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These trends for both 5.10 (a) and (b) suggest that even at large layer heights, plate 1, plate

4 do not generate crack patterns that are entirely isotropic. This is essentially due to the

large wavelengths of the both plates which restricts them from exploring higher h values.

Figure 5.7: Crack patterns generated on radial plate 2. For both crack patterns a radial

unit vector r̂ is used to measure the angles. Figure (a) is a crack pattern at low layer height

where the primary cracks rest atop the peaks. Between peaks, the presence of wavy crack

can be see. Figure (b) is a crack pattern at a large height, in such a situation it is difficult

to decipher whether to use a radial unit vector or a Cartesian unit vector.

The behaviour of SAngles with increasing h values captures the essential features of crack

pattern transitions for all plates. A supporting case for the behaviour of SAngles is made by

measuring the orientation of crack skeletons. The average crack orientation COrt yields angle

distributions similar to the one observed in figure 5.8 for the three types of cracks. The crack

orientation in figure 4.5 bear close resembles to figure 4.4. At low layers heights, in both

figure 4.5 (a) and figure 4.4 (a), the values start close to 0.2 and in both cases there are peaks

at h ≈ 0.5. For figure 4.4 (b) and figure 4.5 (b) the results are also the same for the sinusoidal

plate, however the values of radial plate 1 are lower in figure 4.5 (b) compared to figure 4.4 (b).

Nevertheless, COrt for radial plate 1 behaves similarly to the data in figure 4.4 (b) especially

at large layer heights.

COrt not only confirms the results of SAngles , but also provides a new way to calculate

the angle distribution with certain advantages. A major advantage of COrt over SAngles is

that COrt does not require the calculation of crack intersection point neighbours. This is

useful at low layer heights where the crack pattern contains many connected network. In

such networks, finding neighbours of crack intersection points is difficult but since COrt does

not require a connected network, it can be used to quantify crack patterns. This also means

that COrt can be applied in quantifying and measuring the average orientation of unconnected

cracks. This would not be possible with SAngles . One situation where COrt may not work

would be when the curvature of the cracks is too high, since calculating COrt involves the
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(a)

Wavy cracks
Plate 1
h ≈ 0.21

ladder like
Plate 2
h ≈ 0.58

(b)

isotropic

(c)

Plate 2
h ≈ 1.5

Figure 5.8: Angle distribution of the three types of crack pattern : wavy (figure (a)), ladder-

like (figure (b)) and isotropic (figure (c))
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≈ 0.74(a) SAngles SAngles(b) ≈ 0.72

Δθ = 2° Δθ = 10°

Figure 5.9: Variation of angle distribution with the bin size. The standard bin size used to

calculate the angle distributions for all dimensionless layer heights was 5◦. In figure (a) the

bin size used is 2◦, in figure (b) the bin size is 10◦. The SAngles value for the standard bin

size is SAngles ≈ 0.75, as shown above there is little variation in SAngles values

.

orientation of an elliptical fit of the crack skeleton.

Both SAngles and COrt measure information about the crack pattern at the level of the

crack intersection points. While this has certain advantage, this may become cumbersome

for crack patterns with large number of crack intersection points. In such situations, the

parameter SOrt can be used.

5.5 Orientation of cracked regions as measure of crack pat-

terns

The parameter SOrt serves to forego the use of crack intersection points and instead relies

on crack regions to measure a crack pattern. The crack patterns must still be connected

networks for this method to work. SOrt is applied to the same system as in last section,

plates 1-4 and radial plates 1 and 2. Figure 4.6 shows the data for plate 1-4 and the two

radial plates. The behaviour of SOrt is similar for plates 1 and 2 with a peak at h ≈ 0.5.

However there is no peak observed in the data for A/λ = 0.5. The data for radial plate 1

collapses with the data for plate 2, it does not however share the peak with plate 1 and 2.

The lack of a peak in figure 4.6 (b) will be first addressed. Recall, in the last section,

it was mentioned that cracks below the peak were wavy, however as per figure 5.11 this

turns out to be not true. This discrepancy highlights the difference between the parameters

SAngles and SOrt . In figure 5.10 (b), although the values of SAngles are lower than that of the

peak, this does not necessarily mean that the crack pattern is wavy. Notice in figure 5.10 (a),

the initial values for plate 1 are as low as SAngles ≈ 0.3, whereas for figure 5.10 (b) the lowest

value on the left side of the peak is SAngles ≈ 0.6. Somewhere between these two values, the

crack patterns start becoming more ladder-like, however, wavy cracks are also present in the

pattern. The parameters SAngles and COrt are sensitive to coexistence of wavy cracks and
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Error range
of flat plate

Error range
of flat plate

IsotropicWavy

Figure 5.10: SAngles over all layer heights. The black lines represents the flat plate data where

SAngles = 0.0079± 0.1, the red lines represents the error range values for the flat plate. The

peaks in the data represent the point where the crack pattern has strictly one vertical crack

per wavelength. This crack will be located on the peak, below this limit wavy cracks occur

to the left of peak. To the right of the peak, an isotropic crack patterns are observed.

ladder-like cracks, and this where SOrt is different. SOrt is unaffected by the local curvature of

the crack. For example, if SOrt values are calculated for an ellipse whose major axis is parallel

to the length of a rectangle, both geometries will yields the same value of SOrt . Any changes

in local curvature along the edges of the ellipse will not greatly alter the average orientation

of the ellipse. This applies to cracked regions as well, hence in patterns like those presented

in figure 5.11, the curvature of the wavy cracks is of little consequence to the parameter SOrt .

Even for the wavy cracks, if both their ends terminate at a crack intersection point and they

form a closed region which is long in direction parallel to the peak of the substrate then their

orientation will be close to θ = 90◦. Due to this insensitivity to local curvature, the initial

values of SOrt are very high. This is also the same reason why there is no peak in the radial

plate 2 data for SOrt .

The insensitivity to curvature has its benefits. Looking back, suppose, only the data in

figure 5.10 (a) and (b) were presented, one would naively jump to the conclusion that the

crack patterns to the left and the right of any peak in the data are not affected by the the

substrate. However, measuring SOrt would clearly show that this is not the case.

The one major drawback of using SOrt occurs at large layer heights where there a very

few cracked regions. For example, in case of plate 3, at the lowest layer heights, 1291 cracked

regions are measured, but at the highest layer height, only 63 regions are measured. The

small number of regions is what is responsible for the scatter in the values of the SOrt at large

layer heights. With increasing layer height, the crack spacing increases which cause the area

of the cracked regions to increase as well. As the cracked region area keeps increasing, the

scatter in the data for SOrt also increases. Hence, for large layer heights SOrt will break down

and will not yield consistent results but will have large errors.

An interesting parallel exists between SOrt and the orientational order parameter defined

for liquid crystals given by Stephen et al. (1974) [83]-
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S =

〈
d cos2 (θ)− 1

d− 1

〉
= 〈cos (2θ)〉, (5.1)

where θ is the orientation of a single molecule, the angled brackets indicate an average

over all molecules in the system. The orientation of the molecule is measured with respect

to a director, which is calculated by averaging the orientation of all the molecules in the

neighbourhood of the molecule. The values of S range from -1 to 1. The value of 1 represents

a nematic structure, whereas the value of 0 represents an isotropic state. The order parameter

S quantifies the change in structure of the system, for example with increasing temperature,

liquid crystals will transition from an ordered phase to an isotropic phase. This is reflected

in the sharp drop of S at a certain temperature.

The order parameter S and SOrt are similar. Both measure orientations around a director.

In case SOrt , the director is a global director. It is predefined by the structure of the substrate.

SOrt can though as a two dimensional analogue to the order parameter S.

An interesting extension to SOrt would be add the concept of the director. This would

identify a direction of bias for the crack pattern which in turn would aid in quantify the crack

pattern in for example, a condition where the layer height is not constant. In such a situation

a crack pattern can suddenly transition between wavy cracks to a ladder-like pattern.

SOrt , as a measure of the crack pattern, is less local than SAngles and COrt , it does

not depend on crack intersection points or the local orientation of the cracks. SAngles and

COrt operate on the level of a pair of intersection points, whereas it would take a minimum of

three crack intersection points to define a cracked region, for large layer height, larger number

of crack intersection points are required to define a cracked region, therefore it SOrt can be

considered less local than SAngles and COrt . However, SOrt will always be influenced by the

orientation of the neighbouring regions . In the next section a global measure of the crack

pattern, SMan , is presented.

5.6 Walking along a crack pattern: The Manhattan metric

The measures of a crack pattern discussed so far have all been local. SAngles and COrt measure

crack angles around a crack intersection point, SOrt measures the orientation of regions which

contain few cracks. What is lacking is a global measure of the crack pattern. A measure that

uses points or structures that are not nearest neighbours to quantify a crack pattern. The

benefit of such an approach is that local variations in the structure do not affect the overall

measurement of the crack pattern.SMan is a measure that utilizes the full crack pattern.

SMan involves calculating the ratio of distances sMan for each pair of crack intersection points

that lie on opposite ends of the image and averaging them to yield SMan (note: it is small

s for each pair of points compared to S for the whole pattern). The ratio of distances is the

ratio of the Euclidean distance over the distance traveled over the crack pattern. A caveat

with the measurement of SMan is the low range of values explored, SMan goes from 1 which

occurs for a straight line to 1/
√

2 where
√

2 represents the least distance, calculated using

the Manhattan metric, between two non-neighbouring grid points. The implications of this
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Figure 5.11: Crack patterns generated on plate 4. From left to right the dimensionless layer

height h = 0.48, 0.58, 0.69. For h ≈ 0.5, Most of the cracks are parallel to the peaks however

some wavy cracks are present. These wavy cracks are generally between the peaks. For

h ≈ 0.6 and h ≈ 0.7 the crack pattern is ladder-like. It is interesting to note that second

figure contains many secondary cracks that are connected to main ladder-like crack pattern,

contrast this with the third figure where there is a ladder-like crack pattern however most

of the secondary cracks that lie parallel to the peaks are disconnected from the main crack

pattern. The Fourier methods presented in the earlier section will distinguish between these

two crack patterns, however SOrt makes no such distinction.

range and the effectiveness of SMan will be discussed below in context to the data acquired

for the sinusoidal plates.

Figure 5.12 shows the data for SMan measurements over plates 1-4. For A/λ = 0.25

SMan does not behave similar to any of the order parameters. Most of the values for SMan are

clustered around SMan = 0.96 for plate 1. Plate 2 does approach the values for the flat

plate, however here too the ordinate values are very small. The situation is better for A/λ =

0.5 plates where a peak can be seen at h ≈ 1.0. This figure also contains the data for

the Manhattan metric with the flat plate data averaged and shown as the black line. The

red dashed lines are the error values for the flat plate. One would expect that since the

flat plate represents a completely isotropic pattern. The value of SMan would be close to

0.707. However, this is not observed. For all the flat plate crack patterns. the ratio SMan is

0.81 ± 0.025. This difference could be due to restriction placed during the calculation of

SMan that two crack intersection points can form pairs if they are within 10◦ of each other.

The selection of this range is arbitrary however, it is done to ensure that measurements are

made along the direction of the substrate. Another aspect that could be responsible for the

higher values of SMan is that while the ratio of distances does involve traversing the crack

pattern, the distance between two neighbouring crack intersection points is the Euclidean

distance. This means in certain situations below such the sMan values will be higher that

what one would achieve traversing along the crack pattern.

In figure 5.12 the points labelled 1 and 2 represent the crack patterns in figure 5.13 (a)

and (b), which show the path traversed along a ladder-like and an isotropic crack pattern.

For the ladder-like crack pattern, the Manhattan metric approach gives sMan close to 1, and
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Figure 5.12: SMan for all layer heights. The black line in the image represents SMan =

0.81 ± 0.025. The red lines are plus and minus of the error. The green line represents the

value 0.707 which is the shortest distance between two non neighbouring points on a grid

using the Manhattan metric. SMan does not differentiate between wavy cracks and ladder-like

cracks for A/λ = 0.25 hence no peak is observed in figure (a). The numbers 1 and 2 refer to

figure 5.13 (a) and (b).

for isotropic cracks the values lower, close to 0.8. Notice despite large variations in the path

for the isotropic cracks the sMan values are still close to 0.8. This suggests that SMan values

are extremely sensitive to variations in the crack pattern. While the range of y values for

SMan is small, the error one of these values is also extremely small. Hence even a difference

of 0.1 is significant in representing changes in crack pattern. This is seen in figure 4.1 (b)

where the scatter in SMan values at large layer heights is very minor. While scatter is present

at larger layer heights, this is because there are fewer vertices and here forming a top section

and bottom section of crack intersection points is not possible.

Unlike the parameters SAngles and SOrt there is no definitive signature of wavy cracks

within the data for SMan . This is because, as it is currently defined, SMan would not follow

the curvature of the cracks since between neighbouring points, the traveled path is a straight

line. While it cannot identify wavy cracks, SMan can be used to differentiate between ladder-

like and isotropic cracks.

The attempt so far as been to experimentally study various substrates and understand

how crack patterns change with changing layer heights. In the next section a model proposed

by Dr. L.Goehring is presented and the data for SAngles is compared with the model.

5.7 Comparison with simulations

The experimental data is compared to FEM simulations carried out by Lucas Goehring.

These simulations explain the transition from wavy cracks to straight cracks by calculating

the strain energy due to a crack opening over a sinusoidal surface.

The drying clay is modeled as a poroelastic material. The stress in the medium is described
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Figure 5.13: sMan measurements on a ladder-like and isotropic crack pattern. Two paths

are presented for each image. Figure (a) corresponds to 1 in figure 5.12 and figure (b)

corresponds to 2 on in figure 5.12.
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(a)

(b)

Figure 5.14: Examples of the simulation region where FEM simulations are carried out. δ (x)

represents the crack opening displacement. This region has been exaggerated for clarity. The

bottom profile in both figures is given by equation 5.4. The black regions are regions of high

stress release, and the white region is stressed.

by

σ̄ij = σij − p, (5.2)

where σ̄ij is total stress in the material which depends on the stress in the clay stress in the

clay network, which is denoted by σij and p is the capillary pressure within the pores. The

stress in the clay network σij can be expresses in terms of the strain as

σij =
E

1 + ν

(
eij +

ν

1− 2ν
ellδij

)
, (5.3)

the strains in the material eij can be expressed in terms of the displacement of the cracking

medium (equation 1.2).

Equations ( 5.2, 5.3, 1.2) are solved in regions such is shown in figure 5.14 where the top

surface is z = 1 and the bottom surface is given by

z = 1− ` = A cos
(2πx

λ
+ φ

)
, (5.4)

where ` is the local layer thickness, A is the amplitude of the cosine wave and λ is the

wavelength. The left side of both the regions in figure 5.14 is set to x = 0 and the right side

is set to x = 10. There are no displacements along the y axis i.e a plane strain condition is

applied in the y direction. The surface of the cracking medium which is z = 1 is assumed to

be traction free. The lower surface is set to u = 0 which means there is a no slip.

The model involves calculating the amount of work done in creating the crack. The drying

slurry has internal stresses that build up, this is the stress in the material before it cracks

??. The work done due to a crack opening can be expressed as a product of the displacement

and the forces on the cracking medium-

G =
1

2`

∫ 1

1−`
δxσ
∗
x + δzσ

∗
xzdz, (5.5)

where δx is the crack opening in the x direction, δz is the displacement in the z direction,

σ∗x is the stress in the material in the x direction before the crack opening and σ∗xz is the

shear stress in the material due to crack opening.

For a value of A and λ the pre-stress in the material is calculated for φ = 0. Then

values of φ over the sinusoidal substrate, the strain energy released G and the crack opening

88



5.0=a

125.0=a

25.0=a

Figure 5.15: Transition from wavy to straight cracks. (a) Shows for various values of A and

λ the location of the crack is represented by the color of at point. The red and blue points

are the experimental data, the red diamonds are the ladder-like cracks, the blue circles are

the wavy cracks. The three lines of points represent the three amplitude to wavelength

ratios a = A/λ = 0.5, 0.25, 0.125. Point (1) represents a ladder-like crack pattern, point

(2) represents a crack pattern that is predominantly ladder-like however contains some wavy

cracks, point (3) is a wavy crack pattern. Figure (b) shows the strain energy release curves

for all three points.
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is acquired. This procedure is carried out over a large range of values and is plotted in

figure 5.15 (a). The wavelength and the amplitudes are normalized by the layer height H.

In figure 5.15 (a), the lighter regions represent cracks that are close to the peak. They

darker regions represents cracks located in the trough. A transition can be seen between the

white region and the grey region. This represents the transition from a ladder-like to wavy

crack pattern. Near the transition region, it is possible to observe a mixture of wavy and

ladder-like crack patterns. The experimental data points in figure 5.15 (a) are the same in

figure 4.1. No wavy cracks are present for a = 0.5 and this is reflected in the figure 5.15 (a).

For a = 0.25 at few layer heights, there are wavy cracks in crack pattern. This is reflected

well in figure 5.15 (a). The crack pattern fora = 0.125 show a transition from wavy crack

to ladder-like cracks and this is capture by the numerical model. Three points from the

experiments are picked up and the strain energy released according to model is plotted in

figure (b). Point (1) represents a ladder-like crack, point (2) represents a mixture of ladder-

like and wavy cracks and point (3) represents a wavy crack pattern.

The strain energy release curves for points (1), (2) and (3) are plotted in figure 5.15 (b).

The ordinate of the figure is Ĝ which is the normalized value the strain energy release. Strictly

speaking G corresponds to the crack energy release rate [12]

G =
1

2

σ20h

Ē
πg, (5.6)

where Ē = E/ (1 − ν2), σ0 is the stress in the medium, h is the depth of the crack in the

film and g is a dimensionless value which is a function of the elastic mismatch between the

substrate and the cracking film[12, 29]. Using ν = 1/3, G can be rescaled by 2Ē/πσ20 to get

Ḡ. In the model, h = ` hence Ḡ = `g.

In 5.15 (b), (1) represents the strain energy released for a ladder-like crack, it is evident

that G is a maximum at the peaks of a substrate i.e when φ = 0 or 2π. This suggests that

cracks will occur first on the peaks of the substrate. The strain energy release curve for (2)

is lower than that of (1). The maxima of the curve have moved closer to φ = π/2. This is

closer to the halfway point between the peak and the trough which suggests that the crack

can be located on either side of the peak. Empirically, this represents a condition where the

primary cracks lie atop the peaks but can slightly meander. In curve (3), there are two peaks

at φ = π/2 and φ = 3π/2 . These two peaks mean that there are two solution which are

permitted and that the experiment chooses both solutions. This condition is found at low

layer heights. For example point (3) is approximately λ/H ≈ 0.2 which, for plate 5, is one

of the lower layer heights. In figure 4.1, it is observed by visual inspection as wavy. Hence,

it can be concluded that wavy cracks can be observed for any of the gray regions in 5.15 (a).

While this model explains the experimental data, it also provides a predictive tool for future

experiments.
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Summary

The aim of this chapter was to bring together the experimental observations and the methods

of quantifications developed earlier. To facilitate a union of these ideas, three questions were

posed in the beginning of the chapter. The first question was : are the results of quantification

consistent with the experimental observations? The measures of crack pattern capture the

crack transitions to varying degree of success. The best results are seen with the parameters

SAngles , COrt and SOrt . For each parameter, the non monotonic behaviour in the data can be

attributed to the influence of the substrate on the crack pattern. At low layers heights, wavy

cracks are observed for plates 1,2 and 3, the amplitude of wavy cracks is directly controlled

by the wavelength of the substrate, hence the plates exerts influence on the crack pattern

even at low layer heights. For all the three parameters SAngles ,COrt and SOrt the peaks in

the data occur at intermediate layer heights h ≈ 0.5 for plates with A/λ = 0.25 and h ≈ 1.0

for plates with A/λ = 0.5. At these layer heights, there is a correlation between the crack

pattern and substrate, hence ladder-like crack patterns are observed. The region of large

heights yields some interesting results as well. It is observed in the data for all measurement

parameters that for plates with A/λ = 0.5, a constant value is reached after h ≈ 1.5, this

value as, shown for SAngles and SMan falls within the error range of measurements made on

crack patterns generated on the flat plate.

What is consistently true for all measurement parameters is that there is data collapse

between the sinusoidal plate data and the radially sinusoidal plate data depending on the

A/λ, the small differences, especially observed for SOrt are aberrations compared to consistent

agreement that the radial plate data has with the sinusoidal plates. The Fourier methods

developed in this chapter are interesting tools to analyse crack patterns. These methods

capture well the transition from two crack per wavelength to a single crack per wavelength,

that occurs around the peaks in the data of the measurement parameters.

Lastly, the crack spacing remains unchanged with increasing layer height, showing no

drastic changes as the crack pattern undergoes transitions. The crack spacing, in its current

form, may not be the most illuminating tool to characterize crack patterns over sinusoidal

substrate. The various height of the cracking layer must be taken into account while com-

paring the crack spacing with the thickness of the cracked layer.

The second question posed in the beginning of the chapter was is what are the strengths

and weakness of each method? The methods SAngles ,COrt and SOrt have very little difficulty

in measuring crack patterns. SOrt is not particularly suited for analysing wavy crack patterns

since it is unaffected by the local structure of the crack pattern.SOrt is also not well suited

for measuring crack patterns with very few cracked regions, but this restriction applies to

all parameters since any measurements on very few cracks will not yield a significant result.

SMan struggles at low layer heights and very large layer heights. This is because at low

layer heights it is difficult obtain a well connected network, and at large layer there are

very few vertices hence only a small number of pairs can be formed leading to SMan with

large fluctuations. While the method is useful to provide global measures for ladder-like

and isotropic crack patterns at intermediate and high layer heights, newer ways of neighbour
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detection are needed for better results at low and very large layer heights. One can argue that

since beyond h ≈ 2 no new changes in the crack pattern are seen. This is true to a large extent.

However, to generalize the method, it must be well defined within the conditions that is

defined in. Therefore, a with better neighbouring algorithms algorithms, the SMan parameter

has the potential to be an extremely good measure of crack patterns.

The final question posed during the introduction was what is the realm of applicability

of each crack pattern measures? For almost all parameters, crack patterns at large extremes

of low and layer heights pose problems. At low layer heights, the crack pattern is not well

connected and, as stated earlier, a well connected network is essential to measure crack

patterns with the current algorithms. With the except of COrt and SOrt , all the other

parameters require a well connected skeleton image for neighbour detection which is needed

calculate the final result. At large layer heights, the methods break down due to different

reasons. The measures SOrt and COrt have too few regions and cracks to measure hence any

measurement will not be statistically significant, this is readily seen in the large scatter in

their data at high layer heights. Out of all the parameters, SMan is best used for distinguishing

ladder-like cracks from isotropic cracks, although the range of values of SMan are small. It is

also useful since it is a global measure of the crack pattern. Fourier methods can be applied

at all layer heights and yield consistent results, they are best applied to periodic patterns like

the ones presented in this thesis. The generality applicability of Fourier methods to other

types of crack patterns remains to be explored.

In chapter 1 of this thesis, it was mentioned that the attempt was to address two issues-

one was to develop methods to analyse crack patterns and second was to apply this to crack

patterns generated on uneven substrates. The work until now has focused one type of uneven

substrate, which is the sinusoidal substrate with two different symmetries. Methods have been

developed to analyse these sinusoidal crack patterns. In the upcoming chapter, new systems

with uneven substrates are presented and how the existing parameters can be applied to such

systems will be discussed.
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Chapter 6

Future directions

Crack patterns form at various length scales. In the previous chapters, crack patterns were

studied on the centimeter scale and methods were developed to analyse them. Crack patterns

are however prevalent at many length scales. In the introductory chapter, examples of crack

patterns at the micro meter and the kilometer scale were shown. In this chapter, these length

scales will be further explored and the findings of the thesis briefly applied.

Two approaches are presented in this chapter. One approach looks at extending the cur-

rent experimental system to include sinusoidal substrates at the micro scale. This approach

is useful since it provides a means to check if the methods of crack pattern quantification

would carry over to lower length scales. It is reasonable to expect certain differences at the

micro scale when it comes to cracking since various factors such as interfacial forces, elec-

trostatic forces of the deposited material, the ratio of the particle size to the wavelength of

the sinusoidal structure of the substrate would all be factors that affect the drying process

and the final crack pattern. Furthermore, if the material properties of the cracking medium

or the substrate are chosen inappropriately, then the deposited material may not even form

cracks. Hence it is imperative to ensure that the right type cracking material and substrate

are selected.

The main focus of this section is the fabrication of a sinusoidal substrate which is done

generating wrinkling instabilities on Polydimethylsiloxane (PDMS). Previous literature on

the various methods to create wrinkling instabilities in PDMS are discussed followed by the

experimental details for creating wrinkle patterns. These pattern are characterized by using

atomic force microscopy, some result of these characterization are also shared.

The second approach, looks towards large length scales. In the introductory chapter, crack

patterns over craters were mentioned and as an example, the existence of graben patterns

on Mercury’s craters was briefly discussed. Inspired by these patterns, an attempt is made

to study contraction cracks on craters. Since it is not possible to fill in real craters with

mud and dry them, craters from the surface of Mars were selected and scaled down to be

used as substrates. These scaled down substrates were 3d printed and it was ensured that

not just the crater but the terrain around it was also properly scaled. Martian craters were

chosen primarily due to availability of high resolution images of the planet’s surface. Once

the craters were fabricated, bentonite slurries were deposited onto these miniature craters
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and crack patterns generated on them were studied. Finally, the chapter ends with a general

summary providing a brief recap of all the chapters.

6.1 Surface buckling on PDMS

The work carried out in this section was the outcome of a collaboration with Alina Mielke

[66]. Details about the experimental methods and measurements are found in her Bachelor

thesis titled : ”Wrinkling Instabilities in PDMS”.

Wrinkling or buckling instabilities are created by holding a sheet under tension or com-

pressing them. A common example is stretching a rectangular sheet of plastic. When such a

sheet is pulled along its long axis, buckles will form perpendicular to the applied tension. On

the other hard compressing an elastic sheet will also create buckles [22]. For a bulk medium,

buckling is induced by stretching or compressing a substrate and the depositing a stiff film

to substrate. Once the substrate is relaxed, the elastic mismatch between the stiff film and

the soft substrate will cause buckling. An argument of energy balance between the bending

energy of the film and the deformation energy of the substrate can be used to write down

a relationship between the thickness of the film atop the substrate and wavelength of the

buckling instability ( [17, 82, 13] )

λ = 2πt

(
Ef (1− νs)
Es (1− νf )

)1/3

(6.1)

where Ef is the Young’s modulus of the substrate, νf is the Poission’s ratio of the film, νs

Poission’s ratio of the substrate and t is the thickness of the film.

PDMS is used as the soft substrate since it is easy to control its stiffness. There are

various methods to create buckles on the surface of PDMS-

1. Bowden et al. [17] used three different methods to create buckles the surface of PDMS.

The first method involved heating PDMS block, then depositing a 5 nm titanium film,

followed by a 5 nm gold film. As the PDMS cools, buckles with a wavelength of

λ v 50µm form atop the surface of the PDMS.

2. Another method described by Bowden et al. is to heat the PDMS substrate, expose it

to O2 plasma and cool down the same.

3. Bowden et al. produced buckles by oxidizing the surface of PDMS and compressing it.

Buckles created in such a way are parallel to each other.

4. Chan and Cosby, [23] fabricated ripples on the surface of PDMS by swelling a block of

PDMS and a layer of silicate in the same system. The silicate does note swell greatly.

Since the silicate and the PDMS are bonded to the PDMS, as the PDMS tries to expand

beyond the interface length of the silicate, buckles form.

5. Stafford et al. [82] deposit polystyerene films atop PDMS substrates and gently com-

press the substrate to create buckles atop the PDMS.
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Figure 6.1: Inducing buckles on the surface of PDMS. Figure (a) A block of PDMS is pulled

and held with tension T. The surface is exposed to plasma, the top layer of the PDMS

oxidizes. Figure (b) : the strain is removed, as the block of PDMS relaxes, surface ripples

form.

Above are some of the most common and successful methods to create ripples atop PDMS.

In the current experiments, method 2 was used to create sinusoidal buckles. The schematic

in figure 6.1 gives a brief outline of the process.

The PDMS blocks were prepared using SLYGARD silicon elastomer and curing agent, a

ratio of 5:1 elastomer were mixed together, degassed and baked for an hour at 65◦. The ratio

of 5:1 was chosen to ensure that the PDMS was soft enough to be cut into rectangular pieces

of length 1 cm by 0.5 cm. The thickness of these pieces varied between 0.1-0.3 cm.

The pieces of PDMS were put into the setup where they of PDMS were clamped and

stretched to induce 33%, 50% or 66% strain. The whole setup was put into a plasma cleaner,

and exposed to plasma for 10-30 minutes based on the experiment. The setup was removed

from the plasma cleaner and left to cool, after which the PDMS pieces were slowly relaxed

and removed.

A sign of buckle formation is iridescent colour observed in the region of plasma expo-

sure (figure 6.2 (b)) which occurs due to diffraction. The plasma exposed samples were

then scanned using an atomic force microscope (AFM) and the wavelength was measured for

varying conditions. Table 6.1 provides a summary of the results. It shows the change in the

wavelength with oxidation time and strain ([66]). It was observed that with large oxidation

times the wavelength increases. The [72] change in stiffness or the height of the oxidation

layer due to expose to plasma has not been studied in depth, however it is known that the

atomic composition does get al.tered when it is exposed to oxygen plasma [72, 17]. Looking

at equation 6.1, it is possible that with increasing oxidation times the stiffness of the film also

goes up. This idea reconciles with the observation that at larger oxidation times, there are

more cracks. The increase in crack density could also be due to an increase in the stiffness

of the film. The change in the wavelength with the strain was also measured. No significant

change in the wavelength was observed with the change in strain. This is consistent with

equation 6.1.

The largest wavelength of buckles seen using the current methods is approximately λ ≈
4 µm. In general, a wavelength of λ ≈ 1 µm was the most reproducible with the least amount

of variation in the wavelength. While nanometer sized particles can be dried to create crack
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Table 6.1: Variation of wavelength λ with oxidation time and strain.

Time (min) λ (nm) std.dev Strain% λ (nm) std.dev

10.0 924.5 158.5 50.0 1753.0 171.5

20.0 1610.0 277.4 66.0 1766.7 217.3

30.0 4124.0 367.7

patterns on such a surface, the difference between the wavelength and size of the particles is

still too small. The next step, is to find means to increase the wavelength of the buckles. This

can be done by attempting the same experiment with compression, rather than stretching.

The best cracking material at the micro scale would be colloids. For instance, Polystyrene

beads with a diameter of 20 nm are available and would be well suited as a cracking medium.

An other option is to use silica particles, they are available with diameters as small as 11 nm

[87]. [61].

Attempts have been made here to make sinusoidal substrates that are similar to the

macroscopic experiments. Fabrication of controlled uneven substrates at the micro scale are

necessary to study cracking at the micro scale. Various methods have been presented which

can be explored further to fabricated sinusoidal micro substrates. Due to variety of other

interactions between the constituents of the system ( the cracking material, the substrate),

there are many options to explore in cracking in uneven substrates at the micro scale.

Figure 6.2: Image shows three samples of PDMS which were stretched, exposed to plasma

and relaxed. Iridescent color is observed on the surface of the PDMS pieces.

6.2 Crack patterns in craters

The work in this section was carried out in collaboration with Emmanuel Tobias Regenhardt

as part of his MSc lab course.

Crack patterns in craters are studied by scaling down the structure to the centimeter scale

and drying bentonite slurries atop them. On the geological scale, crack patterns or graben

patterns have been studied on the surfaces of Mercury and Mars [34]. However, these are

mature crack patterns whose substrates are inaccessible. In many cases, the substrates are

buried around hundreds of meters below surface of a planetary body. Knowing the structure of
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(a) (b)

Figure 6.3: AFM scans of buckles in PDMS. (a) AFM scan of PDMS where 50% strain is

applied to the sample. The sample is oxidized for 20 minutes, the amplitude is λ ≈ 1350nm.

(b) AFM scan of PDMS where 33% strain is applied to the sample. The sample is oxidized

for 30 minutes. The amplitude is λ ≈ 2600nm. The A/λ ratio is approximately 0.1.

the substrate, experiments can be performed at the meter scale in order to better understand

how these crack patterns form at such large length scales. While the exact conditions may

not be reproducible (for example factors such as- strength of gravity, the thermal conditions,

volcanic activity cannot be easily reproduced), it is still illuminating to study geological

structures as substrates for crack pattern since they will highlight the difference of how crack

patterns form on Earth and other planetary bodies.

Craters are chosen as the substrates to study crack patterns because craters are ubiquitous

on the surface of most planetary surfaces. Open craters and buried craters have been observed

on the surfaces of Mercury, Venus, Mars, Earth, Moon and many of Jupiter’s moons. Craters

have been extensively studied from a geophysical perspective [65, 64, 35] . Attempts have been

made to create surface profiles of cracters through throught high speed impact experiments in

sad beds. [79, 27]. Craters also have a radial symmetry which makes it ideal for application

of the various measurement parameters that have been developed in the previous chapters.

A Martian crater was used as a model crater (figure (6.4) since high resolution images of

the crater was available. In figure 6.4 the color represents the elevation. Using the elevation

data, a 3d model were generated. This model is shows in figure 6.5. The 3d model was

fabricated using CNC milling. The substrate is 10 cm by 10 cm. The diameter of crater is

approximately 3.4 cm and the depth of the crater is 1.6 cm. The aspect ratio is approximately

depth/diameter 0.47

Mud cracks were generated on the crater by drying Bentonite slurries prepared with 1:2

ratio of Bentonite to water. These slurries were deposited on the substrate and left to dry

for anywhere between 2-6 hours based on the layer height. The slurries were dried at room

temperature.

Figure 6.6 is a raw image of a a crack pattern generated at low layer height where Hc =

0.16 cm. The value of H is made dimensionless by dividing the wet layer height for a given

bentonite mass in a flat plate of dimensions 10 cm by 10 cm by the depth of the crater.

Hence at hc=1 the wet layer height in a flat box of dimension of 10 cm by 10 cm would be

the same height as the depth of the crater. Hence, the layer height in figure 6.6 becomes
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H/depth of crater = h = 0.1. At the largest layer height, there is a circular crack. The

diameter of this circular crack is smaller than the diameter of the crater. There are no cracks

inside the primary circular crack that is inside the crater. There are cracks that radially

spread outwards from the circular primary crack but terminate near the inner edge of the

crater.

Figure 6.7 shows binary images crater crack patterns at figure (a) H = 0.20 cm and

figure (b) H = 0.38 cm . In Figure 6.7 (a), some radially outward cracks are present whereas

no radial cracks are present in figure (b). As the layer height increase, while the circular

crack remains, the radial cracks disappear which suggests that with increasing layer height

information about the structure of the crater is lost.

In the current experimental set-up, only a small region around the crater is selected,

however, the region around a crater can also make for interesting surfaces to study cracking.

The regions around a crater tend to have smaller craters and ejecta patterns. Evidence of

this can be seen in figure 6.4 (a) where there are smaller craters that dot the landscape, these

could be smaller pieces of a fragmenting body. Figure 6.4 (b) contains ejecta patterns that

surround the crater which has radial symmetry.

Summary

At the micro scale, experiments were performed to fabricate sinusoidal substrates by oxidizing

the surface of rectangular pieces of PDMS with oxygen plasma while they were stretched.

The PDMS pieces were scanned with an AFM, buckles were observed on the surface. The

buckles were characterized and it was found that the wavelength increased with increasing

oxidation time. The largest wavelength of λ ≈ 4 µm was achieved for 30 minutes of plasma

exposure. Apart from the current method to construct sinusoidal substrates, various other

methods were presented as well. In order to continue these experiments, it would be essential

to investigate and identify the best method of fabricating sinusoidal substrates. While the

current methods is easily implementable the range of wavelengths is not sufficient for cracking

experiments.

On large length scales, a Martian crater was scaled down and mud cracks were generated

on its surface by drying bentonite slurries. The crack pattern in and around the craters

were observed to have radial symmetry. The scaled down version of a crater must be further

explored at larger layer heights. Craters are the starting point of geological structures that

represents uneven substrates. Another example of geological structures that can be studied

are dried river beds.

The micro scale and the kilometer scale systems show promise in further exploring and

better understanding the effect of uneven substrates on a crack pattern. These two directions

are pertinent extensions to the current set of experiments. They will also assist in refining

or even redefining the measures of a crack pattern.
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Figure 6.4: Satellite image of the Northern plains crater. The image resolution is 0.99

meters/pixel. The scale bar on the top right of the image read 500 meters. Image:

NASA/JPL/University of Arizona.
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Figure 6.5: 3d model of crater. This model was created using Blender [25] which converts

the color to height and generates a 3d model. The 3d model was scaled down and cropped.

Figure 6.6: Raw image of cracks in a crater. The wet layer height here is H = 0.16cm.

(a) (b)

Figure 6.7: Binary images of crack patterns generated over a crater. In figure (a) H = 0.20 cm

and in figure (b) H = 0.38 cm.
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Conclusion

In the beginning of the thesis, two questions were asked. How can crack patterns be quan-

tified? and what is the influence of an uneven substrate on a crack pattern? To answer

these questions, crack patterns were generated on sinusoidal plates and radially sinusoidally

plates by drying Bentonite slurries. The dominant control parameter in generating these

crack patterns was the dimensionless layer height h = H/λ. The generated crack patterns

were roughly classified into three types- wavy, ladder-like and isotropic. These crack pattern

were analysed using various methods.

First of these methods was using Fourier methods to study if there was a connection

between the periodicity of the crack pattern and the substrate. It was found that at certain

layer heights there are two cracks per wavelength and there is a transition to one crack per

wavelength. As this transition occurs, the crack pattern becomes increasingly ladder-like. At

large layer heights no relation between the crack pattern and substrate.

Next, measures of a crack pattern were developed by using the symmetry of the substrate

and the geometry of the crack patterns. The measurement parameters SAngles , COrt were

developed by calculating the angle distribution of the cracks and condensing it to a single

number.SOrt which is the orientation of cracked regions was calculated by measuring the

orientation each cracked piece and averaging it.SMan used a Manhattan metric type approach

to calculate the ratio of the Euclidean distance between two crack intersection point and the

distance traveled along the crack pattern. All these parameters, except SOrt , provided hint

towards a dimensionless layer height where the influence of the crack pattern is the strongest.

Incidentally, this point lies at the end of a region where the crack pattern transitions from

two cracks per wavelength to one crack per wavelength which is observed in the analysis of

the crack patterns using Fourier methods.

To analyse how uneven substrates affect crack patterns, quantification of the crack pat-

tern was required. This quantification was provided by the various measurement parameters.

Hence, the answer to the first question was required to answer the second question i.e both

question are intertwined. The effect of an uneven substrate cannot be studied without devel-

oping adequate methods which quantify a crack pattern.

Furthermore, a model based on Griffith’ criteria was introduced. This model maximized

the strain energy released due to the crack and showed that there is a transition between

wavy and ladder-like cracks. It predicted that at low layer height, there are two maxima of

strain energy release and that with increasing layer height the cracks occur atop the peaks.

The experimental data supports the model.
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While, measurement methods have been developed during the course of this work, more

needs to be done. The current set of experiments were restricted to the centimeter scale,

suggestions for experiments at the kilo-meter scale and the micro meter scale were also

furnished. In conclusion, crack patterns at various length scales must be studied and the

presented measurement parameters must be improved upon or redefined in the context of the

system to better understanding of how uneven substrates affect crack patterns.
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