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Abstract  

The research conducted and compiled in this thesis contributes to the knowledge of the long-term 

vegetation, climate and fire dynamics as well as human impact on montane and peat-swamp rainforests 

of Indonesia. We applied multi-proxy palaeoecological methods to three sediment/peat cores taken 

from Lake Kalimpaa and Lake Lindu in Central Sulawesi and from Air Hitam peatland in Jambi Province, 

Sumatra.  

The Lake Kalimpaa record is the first archive from Central Sulawesi providing information on 

palaeovegetation dynamics under the background of reconstructed palaeoenvironmental and 

palaeorainfall conditions throughout the past ca. 1500 years. The palaeovegetation as reconstructed 

from the palynological analysis reveals that around Lake Kalimpaa the Fagaceae family dominates the 

entire recorded period, as it still does today. Two disturbance events (ca. AD 1090-1190 and ca. AD 

1450-1620) occurred in the catchment area of Lake Kalimpaa as reconstructed from sediment grain size 

and geochemical analyses. Comparison with fire frequency derived from macro-charcoal analysis 

indicates that these events were caused by forest fires. The regional correlation of these events with 

periods of drought registered elsewhere in Sulawesi and in Java suggests that centennial-scale increases 

in fire frequencies at Lake Kalimpaa were consequences of the vegetation being more prone to fire, 

probably due to more frequent and/or longer El Niño events. Despite that, Fagaceae did not decrease, 

indicating resilience towards droughts of at least one species of the family. However, palynological 

diversity values indicate that within-landscape diversity (Whittaker’s gamma diversity) decreased when 

fires increased. Palynological rate of change and compositional turnover indicate that vegetation 

communities were more resilient to fire disturbance during periods of average high rainfall. 

Palynological, charcoal and diatom reconstructions of the Lake Lindu core reveal that humans have 

modified the landscape at the Lindu plain for at least 1000 years. Evidence of frequent burning and 

possible shifting cultivation from an earlier phase from ca. AD 1000 to 1200 might be related to the 

metal age population which erected the megaliths in the province of Central Sulawesi. From ca. AD 

1200-1700 decreases of macro-charcoal concentrations and pioneer vegetation indicators show that 

the use of the landscape of the Lindu plain had become more permanent. Due to the little research 

conducted so far on the megalithic culture of Central Sulawesi, it remains uncertain whether the 

architects of such a cultural change were the megalith people or a different ethnic group. A phase of 

forest recovery from ca. AD 1730 to 1910 correlated with a decrease in human activities in the valley, 

which historical reports describe as mostly limited to fishing and cattle grazing. These results suggest, 

that when human pressure on the landscape decreases as a consequence of different strategies of 

subsistence, the montane ecosystems possess a great capacity of recovery and fagaceous forest 

communities can expand within a relatively rapid time scale.   
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The multi-proxy palaeoenvironmental and palynological results from the Jaw SPT core in the Air Hitam 

inland peat in central Sumatra show a picture of a highly dynamic system. Since the beginning of peat 

accumulation around 7800 years ago net balance accumulation exceeded degradation, and the system 

remained a carbon sink. At first the peatland in Air Hitam was fed by fluvial run-off and the vegetation 

gradually changed from mixed Dipterocarpaceae swamp to marshy swamp communities dominated by 

Durio trees around 5300 years ago. A marked change in the vegetation community’s composition 

occurred at the beginning of the late Holocene about 4500 years ago. A pole forest established, with 

Pandanus thickets colonizing the area as the dome developed into a rainfall-fed ombrogenous system. 

At the same time, macro-charcoal peak detection analysis reveals that fire frequency increased, possibly 

a consequence of the ENSO-onset.   

Peat accumulation rates and hence carbon storage in the dome of the Air Hitam was considerable in 

the past. Higher rates of peat/carbon accumulation were found to correlate with Pandanus expansion 

under ombrotrophic settings. The testate amoebae assemblage indicates that the phases of 

ombrogenous Pandanus-pole forest were characterized by lower water table fluctuations. Despite the 

lower biomass input the peat accumulation rate was in average higher than during the mixed-swamp 

community phases. The correlation between high peat accumulation and relatively drier phases linked 

to ENSO makes the area of Air Hitam potentially one of the most effective carbon sequestering 

ombrotrophic peatlands in the view of future climate scenarios. 

The results of charcoal analysis in montane (Lake Kalimpaa) and peat-swamp (Air Hitam) ecosystems 

show that although rare, wildfires did occur in the past in Central Sulawesi and Sumatra. The regime of 

fire, in particular the frequency, was found to correlate with regional scale drought episodes in Central 

Sulawesi. Both, fire frequency and magnitude of events, increased at Air Hitam in correlation with the 

increase in the number of El Niño events in the late Holocene. These results indicate that fire regime of 

montane ecosystems in Central Sulawesi and peat-swamp forests in Jambi can change in the long-term 

following changes in rainfall patterns and ENSO variability. However, our results indicate that the effects 

of fire and droughts on the carbon storage functions of the two systems under study might not have 

been marked. In particular, Fagaceae representation around Lake Kalimpaa was not affected by 

increases of fires caused by drought and carbon accumulation capacity of the ombrotrophic-Pandanus 

dominated ecosystems in Air Hitam did not change (but rather increased) when frequency and 

magnitude of fires increased. These results suggest that under natural conditions, fires occur in these 

ecosystems, but the effects on their carbon storage functions in time can be relatively low.   

A strong acceleration of disturbance driven by human activities is underlined by the results in both the 

regions under study for the past decades.  The overall results of this research highlight that the pressure 

exerted over millennia on montane and peat-swamp rainforests in Indonesia has been of a different 

magnitude than the modern anthropogenically driven changes. 
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The results from the research compiled in this thesis highlight the value of using a multi-proxy approach 

in order to better understand dynamics and functions of tropical ecosystems and to identify the most 

important drivers of long-term changes. 
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correlation of disturbance events and regional droughts as discussed in the text and interpreted by 
Wündsch et al. (2014) 

Figure 7.1 a) Map of the study region showing the location of the Lake Lindu sediment core (star). Upper left 

location of the Lore Lindu National Park (LLNP, dark grey) in Central Sulawesi (light grey); upper right 
location of the Lindu plain, Bada, Besoa and Napu valleys, borders of the LLNP and other places 
mentioned in the text; bottom locations of the villages of the Lindu plain and the coring site. Data 
source, Land Cover 2011, the Ministry of Forestry, the Republic of Indonesia 
(http://appgis.dephut.go.id/appgis/download.aspx); b) upper photo view of the Langko village and 
grassland on the southwestern shore of the Lindu lake in 1902 (from Sarasin and Sarasin 1905). 
Bottom photo; view of the alang-alang (Imperata cylindrica) grassland from the village of Puroo in 
2012, photo by S. Biagioni; c) example of charred leaf remain from grass found at 120 cm (ca. AD 
1100) and details of dumb-bell silica body 

Figure 7.2 a) Chronology of the Lake Lindu sediment record as well as inclination (inc), the natural remanent 

magnetization (NRM) and maximum angular deviation values (MAD); b) comparison of the Lake Lindu 
inclination record to that from Lake Kalimpaa (Haberzettl et al. 2013) and the CALS3 K.4e (Korte and 
Constable 2011) model output calculated for the location of the sediment core from Lake Lindu 

Figure 7.3 Summary diagram from the Lake Lindu sediment core divided into temporal zones and sub-zones. The 

black lines are the locally weighted scatter plot smoothings (LOWESS) fitted to the sample values (light 
grey bars) to highlight trends. X-axes are rescaled for a better visualization of the least abundant taxa. 
a) Upper diagram Moraceae-Urticaceae (expressed in percentages of the total pollen sum); sum of 
lower montane rainforest, swamp, pioneer, secondary forest, anthropogenic, palms and long-
distance transported pollen taxa (expressed as percentages of total pollen sum excluding Moraceae-
Urticaceae); total Pteridophyta spores (expressed as percentages of sum of pollen and Pteridophyta 
spores); pollen, Pteridophyta and diatom concentrations (counts/cm3). Lower diagram: macro- and 
micro-charcoal concentrations (counts/cm3); swamp pollen taxa sum (percentages of the total pollen 
sum excluding Moraceae-Urticaceae); selected non-pollen palynomorph (NPP) concentrations 
(counts/cm3); selected diatoms (counts/cm3); CONISS dendrogram of the square root transformed 
proportions of all taxa (dissimilarity coefficient Edwards and Cavalli-Sforza’s chord distance); b) most 
significant pollen taxa within the groups (percentages of the total pollen sum excluding Moraceae-
Urticaceae); selected Pteridophyta taxa (expressed as percentages of sum of pollen and Pteridophyta 
spores) 

Figure 7.4 Principal component analysis (PCA) of all percentage data of identified pollen and spore taxa. 

Percentages calculated on the total sum of all taxa square root transformed. First, second and third 

http://appgis.dephut.go.id/appgis/download.aspx
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axes are shown (cumulative explained variation 29%). Scatterplots represent the sample scores. 
Results are centered by taxa. Group of adjacent samples are marked differently to highlight the 
different groups corresponding to different prehistoric and historic phases. Palynological sub-zones 
are given in light grey; a) first and second axes scatterplots; b) second and third axes scatterplots 

Figure 8.1 Map of the Sunda shelfwith the red star representing the location of the Air Hitam inland peat. The 

light shaded area delineates the Sunda Shelf as it was exposed at the time of the Last Glacial Maximum 
(based on Sathuamurthy and Voris 2006). Line markers show the extension of peat deposits (data 
source: FAO Harmonized Soil Map of the World, Histosols and Gleysols layers only). Square symbols 
correspond to the approximate position of the available studies on peatlands in the area modified 
from Dommain et al. (2011): 1) Muara Telang (Furukawa 1994); 2) Sugihan (Brady 1997); 3) Batang 

Hari Delta (Cameron et al. 1989; Esterle and Ferm 1994; Sabiham 1988; Sabiham and Furukawa 1986; 
Silvius et al. 1984); 4) Pulau Kijang (Furukawa 1994; Shibata et al. 1997); 5) Siak Kanan (Diemont and 

Supardi 1987a; Neuzil 1997; Ruppert et al. 1993; Supardi et al. 1993); 6) Palau Padang (Brady 1997); 

7) Pulau Bengkalis (Neuzil 1997; Supardi et al. 1993); 8) Siak Kecil (Gunawan et al. 2012); 9) Pekan 

Nanas (Haseldonckx 1977); 10) Tasek Bera (Morley 1982; Phillips and Bustin 1998; Wüst et al. 2002; 
Wüst and Bustin 2004); 11) Rajang River Delta (Staub and Esterle 1993; Staub and Esterle 1994; Staub 

and Gastaldo 2003); 12) Batu Niah (Cole 2012; Cole et al. 2015); 13) Sungai Dua Forest Reserve and 

Senadin (Cole 2012; Cole et al. 2015); 14) Baram River area (Anderson 1964; Anderson and Muller 

1975; Brünig 1974; Dommain et al. 2015; Esterle and Ferm 1994; Morley 2013; Muller 1963; Sabiham 

1990; Tie and Esterle 1992; Wilford 1960; Woodroffe 2000); 15) Lawas River area (Anderson 1963; 
Morley et al. 2011; Muller 1963; Wilford 1960); 16) Teluk Keramat (Neuzil 1997); 17) Rasau Jaya 

(Anshari et al. 2010; Diemont and Supardi 1987b; Notohadiprawiro 1981); 18) Pemerak (Anshari et 

al. 2001; Anshari et al. 2004); 19) Sebangau (Kershaw et al. 2000; Morley 1981; Morley 2013; Neuzil 

1997; Page et al. 1999; Page et al. 2004; Page et al. 2006; Rieley and Page 1997; Sieffermann et al. 

1988; Sieffermann et al. 1992; Sieffermann et al. 1996; Yulianto and Hirakawa 2006; Yulianto et al. 

2004; Wüst 2009; Wüst et al. 2008); 20) Pulau Petak Delta (Notohadiprawiro 1981; Sabiham 1988; 
Sumawinata 1998); 21) Kutai lake area (Hope et al. 2005). Different colors of the squares denote 
different ages for the initiation of the peat and the pollen symbol (blue) indicates the sites where 
palynological analysis was conducted 

Figure 8.2 Monthly mean precipitation, temperature values and annual means for the Air Hitam area (2.047685°S 

102.665362°E) based on the interpolations of observed data representative of the period 1950–2000. 
Data source: WorldClim — Global Climate Data, http://www.worldclim.org/ 

Figure 8.3 Maps of the study areawith black star symbolsmarking the locations of the coring. Left: altitudinal map 

of the Air Hitam watershed (Digital Elevation Model: ASTER GDEM Version 2, METI and NASA). Right: 
current land-use of the study area. Data source: Land Cover 2011: the Ministry of Forestry, the 
Republic of Indonesia (http://appgis.dephut.go.id/appgis/download.aspx); river data: digitalized from 
Bakosurtanal, Peta Rupa Bumi Indonesia scale 1:50.000, 2013 

Figure 8.4 Stratigraphy, color and characteristic of the three peat/sediment cores and AMS radiocarbon dates 

(star symbol) 

Figure 8.5 Age-depth profile of Jaw SPT core. Smoothing spline proved the best fitting model, with extrapolated 

basal points and surface (3 cm) age set at −62 years (AD 2012). Red symbols depict outliers. Dotted 
line indicates peat initiation depth (664 cm) and estimated age 

Figure 8.6 Summary diagram of the Jaw SPT core analyses with zonation based on constrained cluster analysis 

and palynological data. The black lines are the locally weighted scatterplot smoothing (LOWESS) fitted 
to the sample values (light green and gray lines) to highlight trends. a) Sea-level relative changes of 
the Malacca Strait (Geyh et al. 1979); peat thickness (cm); peat accumulation rate (mm/yr); pollen 
groups (expressed as percentage of total pollen and spores); macro-charcoal concentrations 
(counts/cm3), peak magnitude (particles/cm2 per peak) and fire frequency (number of fires per 800 
years). The gray symbol “//” indicates a scale break used on large values on the x-axis to highlight 
smaller peaks; palynological diversity index (DI, ET(10)) and palynological compositional change or 
turnover (PCC, standard deviation units). b) Most important and common pollen and spore taxa 
expressed as percentage of total pollen and spore sum. Dashed black lines are the exaggerated 
LOWESS lines (5x) for less abundant taxa. c) Testate amoeba environmental groups and size classes 
(expressed as percentage of the total sumof testate amoebae); testate amoebae diversity index (DI, 

http://www.worldclim.org/
http://appgis.dephut.go.id/appgis/download.aspx
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ET(28)). d) Most important and common testate amoebae taxa (expressed as percentage of the total 
sum of testate amoebae) 

Figure 8.7 Samples scatterplot of the principal component analysis (PCA) of all percentage data of identified pollen 

and spore taxa. Percentages calculated on the total sum (Pandanus excluded) of all taxa square root 
transformed. First and second axes cumulative explained 34% of the variation in pollen and spore taxa 
data. Differently marked palynological zones correspond to different vegetation phases. Gray arrows 
correspond to the variation of testate amoeba environmental groups (water, peat moss, green moss, 
soil and indicators of drier conditions) and size classes (large, medium and small) used as 
supplementary variables. Only most important taxa are shown 

Figure 9.1 a) Map of Sundaland, showing the study area (yellow square) in the Province of Jambi (red line) in 

Sumatra. Grey areas represent the Sunda shelf. Black areas represent peatlands (data source for peat 
FAO Harmonized Soil Map of the World, Histosols and Gleysols layers only); b) location of the Jaw SPT 
core (yellow circle) in the Air Hitam peat dome (dark grey area) 

Figure 9.2  Selected results of the Jaw SPT core analyses. The diagrams are dived in the two phases:  minerotrophic 

(light blue) and ombrotrophic (light red). From the top: dipterocarp-mixed swamp and peat swamp 
pollen and spore taxa (%). In light gray the % values of Pandanus pollen. Testate amoebae water and 
dry indicators (%); sediment/peat characteristics; long-term apparent carbon accumulation rate 
(LORCA, C g/m2 yr) and peat accumulation rates (mm/yr); fire frequency and magnitude calculated 
on the fire peaks (asterisks) detected with the software CharAnalysis. Cut symbol denote fire peaks 
which were cut to highlight trend in minor peaks 

Figure 9.3 a) Comparison of LORCA (expressed as C g/m2 per yr) during the Holocene of Sebangau, Palangka Raya 

(Central Kalimantan; Page et al. 2004; Neuzil 1997), Teluk-Kemarat (West Kalimantan; Neuzil 1997) 
and Siak Kanan (Riau, Sumatra; Diemont and Supardi 1987a) with the Air Hitam peat dome as 
calculated from the Jaw SPT core analysis. Average (dots) and min, max values (whiskers) are shown. 
Data source for all other sites other than Air Hitam: Dommain et al. 2011; b) Boxplots of the Jaw SPT 
LORCA (average, first and third quartiles, min and max values) divided in the minerotrophic (ca. 7800-
4500 cal yr BP) and ombrotrophic phase (4500 cal yr BP-present) 

Figure 9.4 a) Schematic overview of the network of interactions as the system changed from the minerotrophic 

to ombrotrophic settings. Large blue arrows represent changes (increase/decrease) of the most 
important parameters reconstructed from the proxy results from minerotrophic to ombrotrophic 
phase. Graphs show the minerotrophic (white) and ombrotrophic (light green) phases. Black lines 
where present represent the locally weighted scatter plot smoothings (LOWESS) fitted to the sample 
values (grey bars) of: a) dry and b) water testate amoeba groups (%), c) Pandanus pollen (%), d) macro-
charcoal peaks frequency per 800 yr and e) LORCA (C g/m2 per yr) 

Figure 9.5 Comparison of Jaw SPT core results with other proxies of environmental and climatic variability for the 

last 8000 years. a) sea-level changes (median, min and max values in m) in the Strait of Malacca (Geyth 
et al. 1979); b) Borneo stalagmite δ18O record from Gunung Buda National Park (Partin et al. 2007); c) 
δD records of n-C30 and n-C2 alkanoic acids from marine sediment cores in northwest Sumatra 
(Niedermeyer et al. 2014); d) modelled number of El Niño events per 100 years based on red colour 
intensity of sediments from Laguna Pallcacocha, Ecuador (Moy et al. 2002); selected results of the Jaw 
SPT core analyses (Biagioni et al. 2015b; Chapter 8): e) fire peak magnitude and fire frequency 
(asterisks indicate correspondence of high in magnitude fire peaks as reconstructed from macro-
charcoal analysis of Jaw SPT core and high numbers of El Niño events modelled from Laguna 
Pallcacocha. Cut symbol denote fire peaks which were cut to highlight trend in minor peaks); f) testate 
amoeba dry indicators as % of total sum; g) LORCA 

Figure 9.6 Diagram comparing 15N natural abundance, % of total open pioneer pollen and spore group and % of 

the pioneer pollen taxa Macaranga/ Mallotus as compared to reconstructed fire frequency. The 
diagram is dived in minerotrophic and ombrotrophic phases. Pink bars highlight phases in which 
increase in 15N natural abundance corresponds to increases of the open pioneer group and/or 
Macaranga/Mallotus, while grey bars highlight phases where there was no correspondence 
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Preface 

“Everything is the way it is because it got that way” 

On Growth and Form, D’Arcy Wentworth Thompson (1917) 

 

In the book, On Growth and Form, Thompson coniated this famous aphorism for a scientific view of the 

universe. In its apparent simplicity, it emphasizes the importance of forces and processes, in other 

words, of history, to understand why everything is the way it is. The basic concept is that one cannot 

truly understand modern forms/systems while simply looking (observing) their current state, which is a 

static picture of something dynamic in an ever-changing state. To understand it is necessary to uncover 

the mechanisms that generated this modern state.  

Ecological research on natural (and anthropogenic) ecosystems is often (if not always) focused on 

present-day states. Investigating such a relatively short time interval is often insufficient to fully 

understand ecosystem dynamics such as succession, stability, tipping points and biodiversity patterns. 

Hence, the history (here palaeoecology) of an ecosystem, how it got to be this way, is equally important. 

How montane tropical rainforests in Central Sulawesi and peat swamp rainforests in the Jambi Province 

in Sumatra have responded to climate changes and human activities in the past and how they developed 

to be what they are today, those are the key questions this thesis aims to investigate.   

Thesis aims  

This thesis and the research behind it are devoted to investigate long-term vegetation dynamics, 

climate, fire regime and human disturbance in hot-spot montane ecosystems of the Lore Lindu National 

Park in Central Sulawesi and an inland peatland of Jambi, Sumatra (Indonesia). The main aims are: 

o Reconstructing past vegetation and climate dynamics in the two study areas 

o Investigating the history of human impact on the landscape  

o Assessing the impact and role of droughts (e.g. El Niño) and fires 

o Adding a historical perspective to the evaluation of current and future changes 

Thesis outline 

The first 4 chapters are dedicated to the introduction of the two regions under study and a general 

overview of the methodologies applied. An overview of the importance of tropical rainforests in 

Indonesia and the current and future drivers of change is given in Chapter 1. Chapter 2 includes a 

description of the multi-proxy palaeoecological methods applied and studied sites. Sulawesi and the 

montane ecosystems of the Lore Lindu National Park are described in Chapter 3. In Chapter 4, an 
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overview of the state of knowledge of peatlands of Southeast (SE) Asia is given with particular attention 

to the peat-swamp rainforests in Sumatra.  

The following chapters are organized according to the manuscripts which are currently published 

(Chapters 5 to 8) or prepared for submission (Chapter 9) and include the results of the research: 

Chapter 5 

ENSO and monsoon variability during the past 1500 years as reflected in sediments from Lake Kalimpaa, 

Central Sulawesi (Indonesia) 

Reconstructions of local climate variability as reflected in sediment are indispensable when the final aim 

is to investigate climate sensibility-resilience of natural tropical rainforests. The multi-proxy 

investigation included palaeorainfall proxies and fire/disturbance indicators which are used to highlight 

general trends in climate and periods of disturbance in the catchment area of Lake Kalimpaa for the last 

ca. 1500 years. 

Chapter 6 

Assessing resilience/sensitivity of tropical mountain rainforests towards climate variability of the last 

1500 years: The long-term perspective at Lake Kalimpaa (Sulawesi, Indonesia) 

Following the climate reconstruction from Chapter 5, the vegetation dynamics are reconstructed using 

palynological analysis and they are used to investigate the long-term effects of climate variability and 

disturbance on the tropical montane rainforests. 

Chapter 7  

Unravelling the past 1000 years of history of human-climate-landscape interactions at the Lindu plain 

(Sulawesi, Indonesia) 

Human-landscape interactions in the past are reconstructed in the Lindu plain, an important cultural 

lake valley and known fish reserve in Central Sulawesi. The effects of pre-colonial and post-colonial 

cultural changes are discussed in the light of climate variability for the last ca. 1000 years.  

Chapter 8 

8000 years of vegetation dynamics and environmental changes of a unique inland peat ecosystem of the 

Jambi Province in Central Sumatra, Indonesia 

Despite their importance as global carbon sink, peatlands of SE Asia have rarely been studied and our 

current knowledge of dynamics and ecology of these ecosystems remains incomplete. Palaeoecological 

and palynological multi-proxy analyses were carried out on a core taken from the thick Air Hitam inland 

peat in the Jambi Province of Central Sumatra. The long-term development of the peatland is discussed, 

highlighting dynamics of vegetation community phases in relation to local hydrology and climate over 

time.  
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Chapter 9 

Effects of long-term climate and environmental variability on the development of inland tropical peat 

swamp ecosystems in Jambi Province, Sumatra, Indonesia  

The long-term development of the peat-swamp ecosystems are compared to regional climatic and 

environmental records to investigate the relative importance of each factor in shaping todays system.  

Chapter 10  

The main findings of the research are summarized and synthesized to give comprehensive conclusions. 

Further, possible uncertainties are mentioned and recommendations for future research aspects to be 

covered are given.  
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CHAPTER 1 - Introduction  

Tropical rainforests of Indonesia 

At the beginning of the second half of the 20th century the tropical rainforests of Indonesia covered 

about 160 million hectares. Despite their limited geographic extension compared to the African and 

South American tropics, these ecosystems are widely acknowledged as biodiversity hotspots 

(Mittermeier et al. 1999; Myers et al. 2000; Figure 1.1) and are regarded as particularly important due 

to the numerous ecological and socio-economic services that they provide at the local, regional and 

global scale. Through photosynthesis and respiration, tropical rainforests absorb carbon dioxide and 

store the carbon (Figure 1.2) significantly affecting the global carbon flux with consequent impact on 

climate (Malhi and Grace 2000). Most of the carbon is stored as living biomass (aboveground and 

belowground) and dead organic matter (i.e. dead trees, leaf litter and soil organic matter).  

Additionally, to their global function as carbon sink, tropical rainforests are highly diverse ecosystems 

and provide essential services for the local human populations. For instance, rainforest ecosystems 

provide ecological services such as erosion and flood prevention, water filtration, pollination-functions 

and have resources like timber and medicinal plants. 

Figure 1.1 Conservation International map showing biodiversity hotspots of the world. These are biogeographical 
units of quite unequal size featuring exceptional concentrations of endemic plant and vertebrate species and 
experiencing exceptional loss of habitat. In the blue square approximate position of Indonesia 
(http://www.conservation.org/How/Pages/Hotspots.aspx) 
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Phytogeography of Indonesia 

With ca. 41,000 species of 

vascular plants, the Malesian 

archipelago, where Indonesia is 

located, is one of the most 

species-rich areas of the world 

(Roos 1993). Alfred Russel 

Wallace already recognized in 

1863 that this area presented 

islands which were 

biogeographically markedly 

different. Following his pioneer 

work, more “lines” or 

biogeographic borders were drawn ever since (Figure 1.3). The area cutted centrally by these lines is 

refered to as Wallacea (Philippines, Sulawesi, the Lesser Sunda Islands and the Moluccas; from 

Dickerson 1928). Located on the western side of Wallacea is the Sunda shelf or Sundaland (Malay 

Peninsula, Sumatra, Java and Borneo) and to the eastern side (New Guinea) is the Sahul shelf (Figure 

1.3; van Welzen et al. 2011). Despite the fact that 

these boundaries were based on faunal data, Van 

Welzen et al. (2011) found in their assessment of 

phytogeographic regions that, with the exception of 

Java, the separations apply to plants as well. Their 

analysis, so far the only study including a complete 

data set of vegetation distribution, shows that 

phytogeographically, the Malesian area can be 

divided in three sections corresponding to the Sunda 

Shelf, the Wallacea (including parts of Java), and the 

Sahul Shelf. Therefore, plant species dispersion is 

also affected by the boundaries marked by the 

faunal lines. Traditiolally, these distribution patterns 

have been explained as caused by present day 

climatic regional differences and past sea-level 

changes (van Welzen et al. 2011). For instance, when 

sea-levels were up to 120 m lower during the Last 

Glacial Maximum (LGM: ca. 21,000 cal yr BP; Figure 

Figure 1.3 Map of Southeast Asia showing the main biogeographic lines. 

The grey areas represent Sunda and Sahul shelves (modified from Moss 

and Wilson 1998) 

Figure 1.4 Reconstruction of sea-level history since 
the LGM (21,000 cal yr BP) for the Sunda shelf (from 
Hanebuth et al. 2011) 
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1.4), large areas currently submerged were exposed (Emmel and Curray 1982; Hanebuth et al. 2000), 

resulting in dry Sunda and Sahul Shelves (Voris 2000; Bird et al. 2005; Sathiamurthy and Voris 2006). 

The removal of the marine barriers, would have enhanced terrestrial migration and rainforests probably 

expanded during glacial periods (Cannon et al. 2009). Opposite to that, dispersal barriers were 

reinforced durint periods of high sea-levels such it is the current interglacial (Tjia 1996; Woodroffe 2000; 

Figure 1.4). 

Modern climate of Indonesia 

The position of Indonesia between two continents (Asia and Australia) and two oceans (Indian and 

Pacific) makes it climatically one of the most interesting parts in the world (Gunawan 2006).  The heat 

source of Indonesia and the Pacific is a major driver of the global circulation (McBride and Frank 1999). 

Particularly important is the role of the Indonesian region in providing energy for the operation of the 

north-south tropical Hadley cell and the east-west Walker circulation (Yan et al. 1992). The on-land main 

variable of Indonesia's climate is rainfall (Aldrian et al. 2004). In general, monthly rainfall is between 170 

and 330 mm, as convective activity is very high in the archipelago (Aldrian and Susanto 2003).  

At the intra-annual scale rainfall pattern are mostly driven by the changes in the seasonal insolation 

which affects the monsoon circulation and the position of the Intertropical Convergence Zone (ITCZ; 

Dommain et al. 2014). Roughly every six months, the onset of the Asian monsoon brings heavy 

precipitation from the northwest followed by the dry south easterlies of the Australian monsoon (Figure 

1.5). Therefore, a wetter season in most part of Indonesia occurs from October to March during the 

Asian monsoon and a drier season coincides with the Australian monsoon from April to September 

(Gunawan 2006). Inter-annual variations in rainfall are influenced by the strengths of the monsoons, 

the phase of El Niño-Southern Oscillation (ENSO) and, particularly in Sumatra, by the Indian Ocean 

Dipole (IOD; Saji et al. 1999; 

Dommain et al. 2014). ENSO is a 

hemispheric or global 

phenomenon currently occurring 

every 2 to 7 years and 

characterized by two different 

phases (Torrence and Compo 

1998). During El Niño (La Niña) 

warm (cold) phases, Indonesia 

experiences lower (higher) rainfall 

than in other years (Philander 

1990; Cane 2005). The IOD is an 

Figure 1.5 Contour maps of NCEP/NCAR reanalysis datasets showing the 
composite means of surface precipitable water in kg/m2 with arrows 
denoting wind directions for the period 1981–2010. Left: wet season (Dec–
Jan–Feb, left) corresponding to the Asian summer monsoon. Right: dry 
season (Jul–Aug–Sep, right) corresponding to the Australian monsoon 
(Biagioni et al. 2015a) 
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aperiodic oscillation of the Indian Ocean SST’s. A positive (negative) IOD phase corresponds to the 

cooling (warming) of waters in the eastern Indian Ocean, which is accompanied by droughts (higher 

precipitations) in Sumatra (Webster et al. 1999). 

Recent drivers of Indonesian rainforest changes 

Starting in the 1950s, the commercial exploitation of rainforests and their conversion to plantations in 

Indonesia have grown rapidly and in less than 50 years more than 50% of the rainforests were converted 

(Forest Watch Indonesia/Global Forest Watch 2002). Miettinen et al. (2011) have shown that in 

Indonesia deforestation did not stop with the start of the new millennium, but is continuing at a high 

rate. The consequences of such a transformation are not restricted to the tropical regions directly 

affected, but expand beyond to inderectely affect the whole world (Miettinen et al. 2011). One major 

global concern regards the amount of carbon released into the atmosphere through deforestation of 

tropical rainforests and its potential contribution to global anthropogenic climate change (Houghton et 

al. 2000; Defries et al. 2002; Achard et al. 2004; Defries et al. 2007; Skutsch et al. 2007; van der Werf et 

al. 2009). Beside the indirect negative climatic feedback, the ongoing massive deforestation and forest 

degradation is causing habitat loss and forest fragmentation, which have a vast impact on biodiversity 

loss and species extinction in Indonesia. 

Besides direct human pressure an additional potential driver of change for tropical rainforests is 

represented by anthropogenic climate change. The IPCC Fifth Assessment Report (Stocker 2014) 

provides climate change predictions for the SE 

Asian region and predicts a warming in the range 

of 0.8oC to 3.2oC by the end of 21st century. 

Although mean precipitation predictions sees a 

moderate increase in rainfall for the whole SE 

Asia, the scale varies at the regional level and 

there is an explicit pattern of increasing rainfall 

during the wet season and decreasing during the 

dry season (Figure 1.6). Adding to this pattern of 

increased seasonality, ENSO-related precipitation 

variability at the inter-annual scale will likely be 

intensified due to the increase in moisture 

availability (Li et al. 2007; Stocker 2014).  

How the tropical ecosystems will respond to 

regional climate changes and how vegetation 

changes and climate will interact in the tropical 

Figure 1.6 Maps of precipitation changes for Indonesia in 
2081-2100 with respect to 1986-2005. Top: dry season 
from June to September. Bottom: wet season from 
December to March. Model scenario: RCP4.5 scenario 
with CMIP5 model. The grey lines represent areas where 
the signal is smaller than one standard deviation of natural 
variability (generated from KNMI Climate Change Atlas: 
http://climexp.knmi.nl/) 

http://climexp.knmi.nl/plot_atlas_form.py?id=someone@somewhere
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regions of SE Asia is still a matter of speculation. The testing of how forests respond to increasing carbon 

dioxide, temperature and rainfall variability needs large and difficult manipulation experiments which 

ecologists have only just started to conduct in the tropics. The complexity of the matter is further 

underlined by the often contradicting results of vegetation models and field experiments which show 

remarkable variability in forest sensitivity to climate change (e.g. Allen et al. 2010; Schuldt et al. 2011; 

Schippers et al. 2015; Van der Sleen et al. 2015). 

Undoubtedly, we need to improve our understanding of how tropical forests respond to climate 

variability and disturbance on the long-term.  

Scientific investigations in Indonesia: the projects and regions under 
study 

In order to investigate the ecological and socio-economic consequences of transformation of tropical 

rainforests in Indonesia, the Georg-August-University of Göttingen has started to work in Indonesia in 

collaboration with Indonesian Universities in Sulawesi, Java and Sumatra already in 2000.  

The project “Environmental and land-use change in Sulawesi, Indonesia (ELUC)” has been conducted 

between October 2010 and December 2012 in the Lore Lindu National Park (LLNP), Central Sulawesi 

(https://www.uni-goettingen.de/de/189495.html). The Collaborative Research Centre CRC 990 

“Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems 

(EFForTS)” started in the Jambi Province, Sumatra in 2012 (http://www.uni-

goettingen.de/en/310995.html). Within those two interdisciplinary research projects, palaeoecological 

and palaeoenvironmental investigations were carried out in the studied regions in order to provide a 

valuable contribution by showing how the natural vegetation has responded to climate variability and 

human activities in the long-term. 

  

https://www.uni-goettingen.de/de/189495.html
http://www.uni-goettingen.de/en/310995.html
http://www.uni-goettingen.de/en/310995.html
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CHAPTER 2 - Palaeoecology 

“I shall collect plants and fossils, and with the best of instruments make astronomic observations. Yet this 

is not the main purpose of my journey. I shall endeavor to find out how nature's forces act upon one 

another, and in what manner the geographic environment exerts its influence on animals and plants. 

In short, I must find out about the harmony in nature” 

Alexander von Humboldt, Letter to Karl Freiesleben (June 1799) 

 

The contribution of palaeoecological investigations   

Modern ecosystems are the result of the combined action of ecological and historical factors. The 

relative importance of each of these agents in shaping the present-day world can be evaluated using 

both ecological and palaeoecological investigations (Rull 2010).  Within the tropical ecology there are 

still many knowledge gaps concerning the dynamic processes that govern the functioning of Indonesian 

rainforests. One of the main uncertainties regards the long-term impact of climate variability and 

disturbance on these ecosystems (Cole et al. 2012). 

The investigations and reconstructions of long-term vegetation dynamics unravel the ecosystem 

responses to climate change and disturbance in the long-term and add to the understanding of the state 

and functioning of today’s ecosystems (Schüler 2012). Indirectly, this knowledge increases our 

understanding on how these ecosystems might respond to current and future change scenarios (Willis 

et al. 2010). Palaeoecological investigations on natural sediment archives represent a powerful tool 

which can be used to quantitatively unravel past vegetation dynamics and their response to long-term 

perturbance. These “palaeo” approaches have extensively been used in temperate ecosystems since 

the pioneer works of Von Post (1916) and Erdtman (1921) revealed the potential of microscopic fossils 

to provide insights into past vegetation and climate change. However, the employments of 

palaeoecological analysis in tropical regions have only recently gained attention. As a consequence, 

despite their importance, the tropical regions of Indonesia are one of the least studied regions in the 

world (Figure 2.1).  

Montane rainforests and peat-swamp rainforests are amongst the least known and most threatened 

ecosystems in Indonesia in the view of current and future scenarios of change (Chapter 3 and Chapter 

4). With this research we aimed at filling this gap of knowledge for these important ecosystems in the 

regions under study. 
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Figure 2.1 NEOTOMA and Latin American Pollen Database pollen records. Red dots: NEOTOMA database; blue dots: 
African Pollen Database; yellow dots: inventoried sites for inclusion from Latin America and Japan. (Figure from 
Grimm et al. 2013) 

The multi-proxy approach in palaeoecology 

In order to extend modern ecological observations on the dynamics of tropical ecosystems, we can look 

back into the past using sedimentary records with preserved fossil organisms or palaeoecological 

proxies (Birks and Birks 2006). Palaeoecological proxies include a wide variety of biological and non-

biological remains. The basic idea is that, as statistical proxy, a palaeoecological proxy preserves physical 

characteristics of the past for direct measurements and enables scientists to reconstruct the 

environmental conditions that prevailed in the past. In other words, they are indirect evidences of 

certain climatic and environmental conditions in the past, which are no longer present for direct 

measurement. When more than one independent proxy is included in a palaeoecological study, such an 

investigation is called multi-proxy (Birks and Birks 2006). The main advantage of applying a multi-proxy 

approach is that misinterpretations of single proxy-data are reduced when several others are combined 

in the reconstruction. Additionally, the use of different proxies allows hypothesis on causalities of 

changes to be tested (Birks and Birks 2006). Coring of natural sediment archives was done in Sulawesi 

(Chapter 3) at Lake Kalimpaa and Lake Lindu and in an inland peat dome in Sumatra (Chapter 4; Figure 

2.2 and Table 2.1). The investigations follow a multi-proxy approach and different palaeoecological and 

palaeoenvironmental proxies are used in collaboration with other researchers. The main body of the 

palaeoecological research, however, is made of pollen, spores and charcoal analyses. As a consequence, 

further details will be given in the following paragraphs on the applications and methods of such proxies.   
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Vegetation history: methods of palynology 

The word palynology derives from the Greek (palunō, "strew, sprinkle" and -logy) and literally means 

"study of dust or particles that are strewn". A palynological analysis involves the quantitative study of 

palynomorphs which are both plants and animal remains that are microscopic in size and resistant to 

decay. Despite wide varieties of objects falling into the category of palynomorphs, the two most widely 

used are pollen grains and spores. A pollen grain forms in the anthers and is the microgametophyte of 

seed plants developed from the microspore. Its function is to be transferred in the female gamete for 

Figure 2.2 Location of the studied sites in Indonesia (yellow circles). Black areas represent peatlands, the brown 

areas montane ecosystems (at altitude >1000 m asl based on DEM SRTM 90 m). Data source for peat: Land and 

Water Development Division, FAO, Rome, Harmonized Soil Map of the World (Histosols and Gleysols layers only) 

Table 2.1 Detailed information on the sites and sediment cores studied 
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fertilization. Spore is the general term used for microscopically, unicellular asexual or asexual 

reproductive units of cryptogams (such as algae, bryophytes, ferns and fungi).  

A series of circumstances have contributed to make the use of pollen and spores so popular, which Birks 

and Birks (1980) summarized in the following principles: 

o “Pollen grains and spores are produced in large quantities during the natural reproductive 

cycles of plants. Vegetation composition can therefore be inferred from the pollen grains 

released into the environment (pollen rain), as these are assumed to be a function of the 

number of parent plants”  

o “The majority of pollen grains and spores produced by plants never fulfil their reproductive 

function, and are deposited within sediments. They preserved as fossils being made of 

compounds that are highly resistant to most forms of decay other than oxidation” 

o “Fossil pollen grains and spores can be extracted from sediments deposited in anoxic conditions 

and thanks to their morphological taxonomic features they can be identified down to 

family/genus/species level under the microscope” 

o “The stratigraphic level at which they are extracted corresponds with particular periods in the 

past and the timeline can be reconstructed using methods such as radiocarbon dating” 

These principles allow palynologists to reconstruct the vegetation dynamics of the past by counting 

fossil pollen grains and spores preserved under anoxic conditions in sediment deposits.  

Laboratory methods for sediment pollen and spores analyses have been defined and standardized by 

Faegri et al. (1989). The methods employed the use of chemical reactors and sieving in order to remove 

the large quantities of organic and inorganic materials contained in sediments and “clean” the sample 

to facilitate the analysis under the light microscope (Figure 2.3).  
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Figure 2.3 Workflow of palynological method applied in the research (modified from Faegri et al. 1989) 

Fire regime history: methods of micro and macro-charcoal analyses 

Fires occur when there is sufficient combustible biomass (fuel), ignition occurs and the environmental 

conditions (e.g. weather) allow for the combustion to take place or continue unimpeded (Herawati and 

Santoso 2011). The source of ignition includes human activities. For instance, in tropical forests, 

agriculture, logging and hunting are often linked to fires. Environmental conditions such as a dry climate 

increase the probability of fire as can cause biomass to become more combustible. Changing conditions 

lead to different fire pattern, intensity and frequency. Typically a fire regime can be described using 

these three elements (Figure 2.4). It follows that 

different climatic regions and/or ecosystems are 

charachterized by different fire regimes.  

If oxygen is abundant and combustion is 

unimpeded ash is the end product of fire. 

However, incomplete combustion of organic 

material leads to carbonization or pyrolysis and 

the product is inorganic carbon compound or 

charcoal (Clark 1984; Patterson et al. 1987; 

Braadbaart and Poole 2008). Charcoal is 

resistant to oxidation and microbial activity and 

Figure 2.4 Controls on fire and the make-up of fire regime 
at different space and time scales (from Moritz et al. 
2005) 
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thus during and following a fire event, charred particles are deposited and preserved in natural palaeo-

archives (lakes, swamps, peats). Along the stratigrafic of a sediment core, layers with abundant charcoal 

particles or charcoal peaks are then used to reconstract fire history around the site of deposition.  

Palaeoecologists have used charcoal as a proxy for palaeofire and the applications are many, including: 

analysis of climate-fire-vegetation linkages (e.g. Clark and Royall 1995; Gavin et al. 2006), investigation 

on the prehistoric use of fire (e.g. Pitkänen and Huttunen 1999; Wick and Möhl 2006) and the analysis 

of regional and global biomass burning in connection with carbon cycle and the effects on the global 

atmospheric CO2 concentration (e.g. Carcaillet et al. 2002). 

Generally, charcoal derived from plant material is black, opaque, brittle and angular, with an elongate-

prismatic appearance possibly displaying some cellular structure (Swain 1973; Clark 1982; Griffin and 

Goldberg 1983; Patterson et al. 1987; Enache and Cumming 2006). Despite these generalizations, 

charcoal morphology is often surprisingly variable and irregular. This is due to the fact that different 

kind of fires (e.g. temperature) and source of combustion can produce fragments with different 

structure and size.  Morphologically the charcoal remains differ depending on temperature of formation 

and the fuel (bark, trunk, branches and leaves). Additionally, the initial morphology is often modified 

through taphonomic processes (Enache and Cumming 2006), as charcoal fragments can be transported 

for kilometers before to burial (Garstang et al. 1997; Clark et al. 1998; Pisaric 2002). The source of 

charcoal in a natural archive can be regional (distant) or local (close or within the deposit area; Whitlock 

et al. 2001). Mathematical models and empirical studies following modern fires indicate that charcoal 

abundance of particles >100-125 μm in diameter decreases when the distance from the deposition 

environment and the fire increases (e.g. Whitlock and Millspaugh 1996; Clark and Patterson 1997; 

Gardner and Whitlock 2001). These results confirm that charcoal particles larger than >100-125 μm are 

not transported far from the fire margin. Following that, size classes can be defined based on the 

distance from fire source and the signal they bare as: 

o microscopic (micro) charcoal, <125 μm -> regional or long distance-transported signal of fire  

o macroscopic (macro) charcoal >125 μm -> local signal of fire 

Micro-charcoals have mostly been examined on the same slides used for pollen analysis. The sample 

preparation procedure was therefore standard pollen laboratory preparations (Sadori and Giardini 

2007). While it is possible to distinguish and separate larger size of charcoal particles with the pollen-

slide method, the standard chemical procedure results in fragmentation of the particles and loss of the 

local fire signal.  

A more appropriate method to quantify local signal of fire, is by quantifying macro-charcoal particles 

using with the sieving-method. By gently washing and sieving continuously spaced subsamples, only the 

larger particles are retained (>125 μm), the fragmentation is greatly reduced and the macro-charcoal 

so quantified embodies the local signal of fire. Since 2004, a diagnostic and analytical tool called 
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CharAnalysis is available for sediment macro-charcoal analysis 

(https://sites.google.com/site/charanalysis/). CharAnalysis is a program for analyzing sediment-

charcoal records via removal of noise and a signal cleaning of the fire peaks to reconstruct local fire 

regime history. Not all macro-charcoal records are suitable for such a decomposition analysis. A certain 

number of assumptions must be met as pointed out by Higuera et al. (2007): (I) contiguous sampling at 

a fine sampling interval is needed as discontinuous sampling misses charcoal peaks; (II) adequate age-

depth control and time resolution. They recommend a sampling resolution of less than about 0.12 times 

the mean fire-return interval (e.g. 12 yr for a 100 yr mean FRI).  

Comparison of the pollen-slide and sieving methods at the same site (Carcaillet et al. 2001) reveals that 

the two charcoal series do not represent exactly the same signal, as only half of the pollen-slide charcoal 

signal contains the sieving charcoal signal. The pollen-slide method is complex and strongly influenced 

by long-distance transported micro-charcoal particles. It is therefore best used to infer regional biomass 

burning in connection to for example climatic reconstructions. The sieving method, on the other hand, 

shows distinct peaks, and it is more suitable when the goal is to reconstruct the local fire history 

(Carcaillet et al. 2001).   

As a consequence, depending on the final aim of the investigation, either one or both methods should 

be used. 

  

https://sites.google.com/site/charanalysis/
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CHAPTER 3 - Sulawesi 

The island of Sulawesi is considered a globally important conservation hotspot due to the unicity of its 

biogeographic history as a large island between Asia and Australasia and complex geology (Wallace 

1869; Hamilton 1979; Holloway and Hall 1998; Wilson and Moss 1999; Cannon et al. 2007). Opposite to 

the other large islands in South East Asia, Sulawesi remained isolated during period of high sea-level 

such it was during the Last Glacial Maximum and for the past 8 million years (Audley-Charles 1983; 

Cannon 2005; Figure 3.1). 

Roos et al. (2004) observed that despite this 

long history of isolation, plant species diversity 

patterns are not dissimilar from those of the 

other large islands in SE Asia and level of 

endemism is relatively low (<15%). However, as 

pointed out by Cannon (2005), the lack of high 

endemism in Sulawesi might be at least partily 

due to the little collection effort being done so 

far (estimated 23 specimens per 100 km2; 

Whitten et al. 2002). An example of this lack of 

knowledge comes from the recent discovery of 

new, likely endemic, species of Magnolia (M. 

sulawesiana) and Elaeocarpus (E. firdausii) 

during tree inventories in montane areas of 

Central Sulawesi (Brambach et al. 2013; 

Brambach et al. 2016).  

Addionally to its status as a biodiversity hotspot, Sulawesi has also been highlighted as an important 

model or case study for testing the effect of climate change on plant species adaptation and population 

dynamics (Cannon 2005). Due to the complex geology and isolated biogeographic location, plant species 

occuping the landscape in Sulawesi have limited migration opportunities and might be particularly 

sensitive, if not vulnerable, to changes in rainfall patterns in the future (Cannon 2005).  

Figure 3.1 Map showing sea level changes of Sunda, Sahul 
and Wallacea biogeographic regions (at -60 m and -120 m 
and modern). In green the island of Sulawesi (modified from 
O’Connell et al. 2010) 
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The Lore Lindu National Park 

With an area of about 2,300 km2, the Lore Lindu National Park (LLNP) is one of the few remaining 

contiguous areas of montane rainforest in Sulawesi (Culmsee et al. 2010; Figure 3.2). Most parts of the 

protected area are covered by upland and montane 

rainforests ranging from 800 m to 2700 m in 

elevation, on intermediate soils. The forests are 

classified to be in good to old growth conditions 

(Cannon et al. 2007). The majority of Sulawesi’s 

unique fauna (over 50% of the mammals and 68% 

of the birds) are present within the Park making the 

LLNP one of the most biologically important areas 

in the Indonesia.  

The current area covered by the LLNP resulted from 

the integration of two natural sanctuaries and a 

natural preservation area, which were formerly 

separated (Adiwibowo 2005). The two natural 

reserves were the Lore Kalamanta Wildlife Reserve 

(131000 ha) located in Poso District and the Lore 

Lindu Wildlife Reserve (67000 ha) located in the 

Donggala and Poso Districts. The nature preserve 

areas included The Danau Lindu Tourism/Protected 

Forest (31000 ha) located in Donggala District 

(Helmi 2001; The Nature Conservancy 2001). In 

1977, UNESCO declared Lore Kalamanta and Danau 

Lindu forests as Biosphere Reserved areas and in the following 20 years the area was slowly converted 

into the LLNP.  During the Third World National Park Congress held in Bali on 1982, the Minister of 

Agriculture declared the establishment of the LLNP, including 231,000 ha of conservation area (Decree 

of the Minister of Agriculture No. 736/Menteri/X/1982). Eleven years later in 1993, eventually the 

government altered the function of the Danau Lindu Tourism/Protected Forest (31,000 ha), the Lore 

Kalamanta Wildlife Reserve (131,000 ha), and the Lore Lindu Wildlife Reserve (67,000 ha) to that of a 

national park (Decree of the Minister of Forestry No. 593/Kpts-II/1993). However, the decree stated 

that the boundary was temporary. The permanent boundary (229,000 ha) was determined after surveys 

in 1999 (Minister of Forestry and Estate Crops Decree No. 464/Kpts-II/1999). The Lindu and Besoa 

valleys were moved outside the National Park and the park had 11,000 ha less than previously stated 

(Adiwibowo 2005). 

Figure 3.2 Map of Sulawesi showing Central Sulawesi 
(grey), the boundaries of the Lore Lindu National Park 
(LLNP, red) and primary rainforests (green, data source: 
Land Cover 2011, the Ministry of Forestry, the Republic 
of Indonesia) 
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Geology of the Central Sulawesi 

Sulawesi is geologically very complex, being located at the crossroad of three different plates, the Asian, 

the Australian and the Pacific plates (Figure 3.3). The main orogenic belt of the island formed during the 

Oligo-Miocene. The central part of Sulawesi contains two metamorphic units. The western unit belongs 

to the substratum of the western arm and the eastern unit to an Oligo-Miocene suture (Villeneuve et 

al. 2002). The mountains of the LLNP are part of the western unit at the boarder to the eastern suture 

unit. They mostly consist of intrusive rocks such as crystalline and metamorphic granites, granodiorites, 

schists, and phyllitic rocks.  

 

Figure 3.3 Simplified geological map of Sulawesi with approximated location of the LLNP in the red square (modified 
from Villeneuve et al. 2002) 
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Vegetation 

The LLNP is among the parts of Sulawesi for which the largest plant collections are available (Cannon et 

al. 2007) and the forests are species-rich tropical montane forests (236 tree species in 62 families 

Culmsee et al. 2010). A series of investigations conducted in the LLNP along an altitudinal gradient 

described the main changes in composition and structure (Culmsee and Pitopang 2009; Culmsee et al. 

2010; Culmsee et al. 2011), which in tropical mountain rainforests have been often used to understand 

biogeographic regional affinities (Keßler et al. 2002; Ashton 2003). Based on tree species composition 

and forest structure changes, the communities of the LLNP can be roughly divided in sub-montane (700-

1300 m asl), lower montane (1300-1700 m asl), mid-montane (1700-2000 m asl) and upper montane 

(above 2000 m asl; F. Brambach personal communication). According to the studies, the lower altitude 

sub-montane forests are the most diverse in terms of plant tree family. A trend of decreasing diversity 

with increasing elevation was also observed. The composition and dominance patterns also changed 

along the elevational gradient, with the exception of the Fagaceae and Myrtaceae, which remain always 

important components in the tree communities. Diversity was at the lowest level in the lower and mid-

montane elevations, where Fagaceae dominate the aboveground (AGB) biomass. Interestingly, the 

estimated AGB did not decrease from submontane to mid-montane despite the lower diversity. 

Markedly different were the upper montane communities where the tropical conifers Podocarpaceae 

became the most important family (Figure 3.4).  

Dipterocarpaceae are the dominant trees in the rainforests of Borneo, Sumatra and Malaysia but they 

are almost completely absent in Sulawesi. Only 

six species are reported located mostly in the 

south Sulawesi and at lower elevation (Keßler et 

al. 2002). This has been explained as the result 

of timing of evolution and radiation and the 

geographic history of Sulawesi. The seeds of 

Dipterocarpaceae cannot be dispersed are not 

easily dispersed via sea or air and therefore the 

species need land bridges to expand. The 

Dipterocarpaceae radiated about 25 Ma 

(Morley 2000) when Sulawesi was already 

separated from Sundaland and was an orogenetically active and unstable area. The isolation of Sulawesi 

earlier in the geological – time scale (Eocene, 45 Ma) might have limited the dispersion of the 

dipterocarps which today remain in low number in the island (Suzuki et al. 2006). Culmsee et al. (2010) 

study revealed that the niches filled by the Dipterocarpaceae in western Malesia are, in Sulawesi, 

occupied by other tropical Gondwanan elements in particular many magnoliids (Culmsee et al. 2010).  

Figure 3.4 left: view of the mid-montane rainforest 
dominated by Fagaceae; right: view of the mossy upper 
montane rainforest dominated by Podocarpaceae (photos 
of P. Lembcke) 
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Biogeographical patterns are significantly different with elevation (Culmsee and Leuschner 2013). Based 

on the tree species and family compositions, the lower and mid-montane forests seem comparable to 

the Bornean forest at 1700 m altitude (Western Wallacean distribution) in having their two most 

important families in common, the Fagaceae and Myrtaceae. In contrast to that, the geographical 

isolated mountaintops have a more distinct assemblage with unique phylogenetic diversity despite the 

low diversity in terms of species number. Western Malesian taxa are found in these communities as 

well. However, in addiction to that, also elements from Papuasian/eastern Malesian subregions and the 

Philippines such as Trimeniaceae and Paracryphiaceae are found (Culmsee et al. 2011). 

The importance of Fagaceae 

Studies of tree families along altitudinal transects have highlighted the importance of Fagaceae mainly 

with the genera Lithocarpus and Castanopsis (Culmsee et al. 2010; Culmsee and Leuschner 2013). They 

were abundant at all elevations, particularly in the lower and mid-montane forests where they 

contribute for the most part to the AGB. 

The genera  Castanopsis and Lithocarpus 

evolved at least 40 Ma and they are 

today found everywhere in Malesia 

(Soepadmo 1971; Manos and Stanford 

2001; Cannon and Manos 2003; Culmsee 

and Leuschner 2013). While in western 

Malesia, the Dipterocarpaceae became 

dominant in everwet forests about 25 

Ma, the Fagaceae became important in 

the uplands of Malesia (Morley 2000; 

Dam et al. 2001).  

Culmsee et al. (2010) in their assessment 

of aboveground biomass (AGB) 

differences between different montane 

communities, found that, opposite to 

what was experienced in other tropical 

montane rainforests, in Sulawesi, AGB 

does not decrease steadily with elevation (Figure 3.5). Further, they observed that almost all the 

montane forests where no elevation AGB decrease was shown were dominated by Fagaceae at mid-

altitudinal levels. They conclude that the Fagaceae play an important role as carbon stores in the 

Figure 3.5 Comparison of estimated aboveground tree biomass 

(Mg ha-1) in relation to elevation (m asl.) in Southeast Asian and 

Neotropical forests (from Culmsee et al. 2010)  
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montane forests of Sulawesi and conservation efforts aiming at preserving ecosystem functions should 

focus on this family.  

Ecologically, the relatively lower temperatures found in the uplands, do not seem to be disadvantageous 

for tropical Fagaceae, which are today most diverse in the montane forests of SE Asia (Manos and 

Stanford 2001; Manos et al. 2008). A more important limiting role might be played by rainfall, as the 

current geographical distribution of Lithocarpus and Castanopsis suggests an intolerance to seasonal 

climates (Soepadmo 1971; Cannon and Manos 2003).  

Climate 

In the LLNP, mean annual temperature decreases with elevation from 21˚C at 1000 m to 14˚C at 2400 

m (Culmsee et al. 2010). Precipitation patterns are not easily described as they change markedly due to 

the complex topography. However, mean annual precipitation is estimated to be between 1900 and 

2100 mm (Hijmans et al. 2005; WorldClim 2006). Precipitation patterns in the mountainous regions of 

the LLNP are controlled by the seasonal migration of the ITCZ across the equator and inter-annual 

changes in ENSO. As the ITCZ migrates southward during the austral summer, the northwest monsoon 

delivers humid air and heavy rainfall, whereas during austral winter the southeast monsoon brings 

relatively cool, dry conditions while the ITCZ is positioned over mainland Asia (Gunawan 2006). In the 

montane areas of Central Sulawesi the rainfall is strongly determined by the local topography. The air 

masses reaching the area from the northwest and southeast are lifted orographically, leading to a 

formation of clouds and rainfall throughout the year. However, the monthly amount of rainfall formed 

during the southeast monsoon is slightly less than that of the northwest monsoon, as the former brings 

humid air masses, while the latter brings dry air from the Australian continent and the rainfall is 

therefore purely orographic. The modern intra-annual climate of the montane areas of the LLNP can be 

described as perhumid with at most two months of slightly lower precipitation, corresponding to the 

southeast monsoon peak in August (Gunawan 2006).  

The inter-annual variability of rainfall is influenced by the coupled ocean-atmosphere phenomenon El 

Niño-Southern Oscillation (ENSO). In particular, during El Niño warm phases, Central Sulawesi 

experiences lower rainfall than in other years. 



25 
 

Prehistory and history of Central Sulawesi 

Central Sulawesi is rich in Metal Age megaliths, large worked stones in the shape of cylindrical vats, 

statues, urns and mortars (Kaudern 1938; Sukendar 1976; Bellwood 1979; Sukendar 1980a; Sukendar 

1980b; Kirleis et al. 2012; Figure 3.6). The majority are located in the valleys of Napu, Besoa and Bada. 

The absolute age of the megaliths has not been determined with precision (archaeological estimates 

range from 3000 BC to 1300 AD). At the Pokekea site in the Besoa valley Kirleis et al. (2011 and 2012) 

established a terminus ante quem for the erection of the large stone vats called “kalambas” of ca. AD 

830. Palynological analysis of sediment cores show that the opening of the forest in the valley via 

continuous burning started from ca. 2000 years ago and the authors suggest a link between this 

landscape transformation and the early construction phase of the megalith monuments. The 

relationship between the megalithic culture and the indigenous people that live around the Park today 

remains open to speculation. It seems likely that Proto-Malay and Palaeo-Mongoloid people migrated 

into the area, but much more research is needed in order to answer this fundamental question related 

to the megaliths and their creators. 

The first Europeans who visited Central Sulawesi came from Portugal and Spain via the Philippines in 

the middle of the 16th century. Their arrival marked the introduction of new plant and animal species in 

particular  corn, tomato, chili peppers and horses (Davis 1976). A more important impact was the arrival 

of the Dutch, who opened up the areas in the lowlands starting in the 17th century. Before the Dutch 

arrival, there was little wetland rice growing, and agriculture activities were mostly focused on upland 

dryland rice, corn, and tubers grown under a shifting system. Population density in Central Sulawesi was 

very low. The small isolated communities lived in the mountains and were ruled by kings and it seems 

the settlements were not permanent at the time (Kreisel et al. 2004). Contrary to the inhabitants of the 

Figure 3.6 Cup-marked stones named Kalambas and one decorated disc-shaped lid close to Kalambas from 
Pokekea archaeological site in Besoa valley 
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Poso region, methods of wet-rice cultivation were already well known to inhabitants in western Central 

Sulawesi before the arrival of the Dutch, as reported by Valentyn (1724). 

Today, the Central Sulawesi region is ethnically and culturally heterogeneous and comprises 15 

indigenous groups, speaking 24 distinct languages. However, most of the people living around the 

National Park today are of recent arrivals, or descendants of recent arrivals. The majority moved into 

the area as participants in the government’s transmigration programs (at a peak in the 1970-80s) and 

as a result of conflicts elsewhere (Kreisel et al. 2004). 

  



27 
 

CHAPTER 4 - Sumatra 

Peatlands of Southeast Asia: an overview 

The peatlands of SE Asia are the largest peatland areas in the tropics (Dommain et al. 2011). Estimates 

indicate they cover an area of about 236,000 km2, which corresponds to about 60% of tropical peat 

area. The formation of such an extended area of peatland in SE Asia was favoured by a series of factors 

including low topography, high rainfall throught the year and substrated which impeded water 

permeation (Page et al. 2009). These conditions are found mostly in delta costastal areas and along 

riparian depressions (Page et al. 2011; Figure 4.1). The vast majority of peatlands in SE Asia are found in 

Indonesia (about 210,000 km2) and Malaysia (23,000 km2). These peatlands are major terrestrial carbon 

reservoirs. Current estimates indicate they store about 65 Gt of carbon, corresponding to 9% of the 

global peatland area and 11-14% of the global peat carbon stocks (Joosten 2009; Page et al. 2011).  

Besides their function as carbon sinks, tropical peatlands are covered by forested ecosystems (peat 

swamp rainforests) that are unique (Schrier-Uijl et al. 2013) and provide a large number of ecosystem 

services. These ecosystems function as important climatic mitigating areas, they supply water and 

prevent erosion (Yule 2010) during extreme climatic events such as the occurrence of El Niño and La 

Niña episodes. Additionally, they are valuable as a form of biological heritage and genetic resources. 

Furthermore, as shown by Kuniyasu (2002) in the lowland plain of the Kampar River in Sumatra, local 

villages and the majority of capital-less people, greatly benefit from the collection of forest products 

and fishing in peat-swamp areas.  

Figure 4.1 Distribution of peatlands in SE Asia (modified from Wüst et al. 2007) 
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Peatland conversion and fire in Sumatra 

Despite the fact that indonesian legislation stipulates peatlands with deep peat deposits should not be 

developed (Presidential Decree No. 32/1990), peat swamp forests are one of the ecosystems most 

threatened by deforestation in Indonesia, particularly in Sumatra (Miettinen et al. 2011). According to 

Giesen (1993; 1994) at the end of the last century, peat swamp and freshwater swamp forests in 

Sumatra covered an area of about 93,000 km². However, since the 1970es, the majority of Sumatran 

peatlands have been converted, logged and drained to such an extent that only a small portion (about 

9.3%) remain under pristine conditions (Miettinen et al. 2011). Based on the analysis of land cover maps 

of Miettinen et al. (2011) the Riau and the Jambi Provinces are the areas in Sumatra where  

deforestation and degradation of peatlands are concentrated. In 10 years, from 2000 to 2010, these 

two Provinces alone lost 40% of their peat swamp forest cover and it is estimated that only 35% of the 

peatlands in Riau and Jambi provinces remained forested in 2010. 

Conversion and degradation are causing loss of peat swamp forest species and elevated carbon 

emissions due to the decomposition of organic carbon-rich matter stored belowground in the peat 

(Couwenberg et al. 2010; Hooijer et al. 2010; Miettinen and Liew 2010). Addionally, drainage and 

exposure due to deforestation have increased the vulnerability of peat soil to fires (Page et al. 2002; 

Heil et al. 2007; Figure 4.2).  

Under natural conditions, tropical peat and swamp rainforests are protected from fires due to their 

permanently wet settings (Rieley et al. 1996). However, conversion to agricultural use requires both 

removal of the primary vegetation and soil drainage, resulting in peat shrinkage through a combination 

of water loss, enhanced aerobic decomposition and compaction (Figure 4.2). Drained peatland areas 

Figure 4.2 Schematic illustration of drainage effects on peatland dome (from Page et al. 2011) 
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with degraded opened canopy vegetation become extremely vulnerable to annual fires that further 

degrade these ecosystems (Hoscilo et al. 2011).  

Occasional but catastrophic fires on peatland can release immense quantities of carbon into the 

atmosphere from peat combustion (Page et al. 2002; Heil et al. 2007). For instance, widespread fires 

during the strong El Niño year of 1997-98 burned a total of 308,000 hectares of peat swamp and 

freshwater swamp forest only in Sumatra (Tacconi 2003). According to the Asian Development Bank 

study (Tacconi 2003) about 156 million (about 75%) of the 206.6 million tons of carbon emission 

estimated from the fires occurring in 1997-1998 were produced by burning peat.  

This suggests, as pointed out by Dommain et al. (2011), that in the future carbon emission from burning 

and oxidizing SE Asian peatlands might increase, if dry-season rainfall will decrease and extreme 

precipitation events linked to ENSO will increase, as predicted by climate models (Li et al. 2007; Stocker 

2014).  

Oil palm plantations 

Currently the majority of the plantations on peatlands are oil palm (OP; Elaeis guineensis) and pulpwood 

(Acacia) plantations (Miettinen et al. 2012; Figure 4.3). These plantations are for the most part managed 

by large-scale industries, while small-holder farmers mostly manage other kind of crops on peatlands 

such as coconut, pineapple, sago palm and rubber (Miettinen et al. 2012). OP plantation for palm oil 

production has expanded rapidly in the the past three decades and today Indonesia and Malaysia are 

the main global exporters providing 85% of the global palm oil demand (Fargione et al. 2008; Danielsen 

et al. 2009). This increase in demand has contributed to deforestation across the SE Asian region on 

peat soils (Figure 4.3). Between 1990 and 2010, more than 1 Mha of peatlands were converted to OP 

plantations (more than 15% of the total area) and only in the Jambi Province more than 75,000 ha 

(Miettinen et al. 2012). Miettinen et al. (2012) projections indicate that the extension of OP plantations 

on peatland may double by 2020. 
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Peat formation  

Peat deposits can be regarded as both orgainic soils and sedimentary deposits due to their mode of 

formation throught accumulation of organic material (Wüst et al. 2007). The main feauture of peat 

deposits beside having high organic content (50-60% of carbon by dry weight), is to have a very low bulk 

density with approximately 90% water (Neuzil 1997; Page et al. 1999; Hooijer et al. 2010; Page et al. 

2011).  

Peat accumulation occurs when net organic production exceeds net organic decomposition by bacteria 

and fungi and therefore largely depends on environmental conditions and settings. Despite the fact that 

the tropical climate (high temperature and annual precipitation) greatly favors decomposer organisms, 

the same conditions promote high primary production, with the result that often, production exceeds 

degradation, leading to net organic matter accumulation (Wüst et al. 2007). In the lowland tropics, input 

of organic matter derives mainly from the belowground root mass and partily from the aboveground 

biomass of the peat swamp forest (Cameron et al. 1989; Brady 1997; Wüst and Bustin 2004). 

On the long-term, precipitation, radiation, temperature and most importantly local hydrology and 

geomorphology influence the development and differentiation of peatlands (Moore and Bellamy 1974;  

Barber 1981; Cecil et al. 1993; Esterle and Ferm 1994; Winston 1994). Similar to temperate peatlands, 

Figure  4.3 Extent of oil palm and Acacia plantations on peatland in 
2010 (modified from Miettinen et al. 2012) 
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the development of peatland can lead to deposits accumulating above river influence. Once this level is 

reached, peatlands may be more affected by factors such as climate variability, peat composition and 

hydrology (Clymo 1983). 

Rates of peat accumulation are recorded from tropical ombrogenous deposits in SE Asia (Dommain et 

al. 2011). They are calculated based on radiocarbon dating with the assumption that the decay of peat 

below the water table is not significant. Holocene average rates within deposits ranged from 0.54 mm/yr 

in Central Kalimantan to 1.83 mm/yr for deposits in Sumatra. The accumulation in SE Asia is much higher 

than the average temperate and boreal peat accumulation rates (0.2-0.8 mm/yr; Gorham 1991; Page et 

al. 2004; Page et al. 2010). 

Type of peatland in Southeast Asia 

Both ombrotrophic (rain-fed) and minerotrophic 

(receiving surface runoff and/or groundwater) 

peatlands can be found in SE Asia. Most of the 

ombrotrophic deposits evolved from a “primitive” 

minerotrophic peat stage with the influence of 

mineral rich groundwater (minerotrophic settings; 

Figure 4.4). Since ombrotrophic peat deposits receive 

all their water and nutrients from precipitation, they 

are generally acidic and nutrient-poor (Anderson and 

Muller 1975; Sieffermann et al. 1988; Rieley 1992; 

Neuzil 1997; Page et al. 2004). Tropical peatlands 

have been classified in several ways mostly as a tool 

for land-use planning and peatland development 

using attributes such as topographic position (e.g. 

Sieffermann et al. 1988; Morley 2013), vegetation 

communities (e.g. Anderson 1983) and fibre and peat 

composition (e.g. Esterle and Ferm 1994). According 

to Morley (2013), in SE Asia two main types of 

ombrotrophic peatland forests can be found: kerapah or watershed peats (Morley 2000), which mainly 

form inland, and basinal peats forming behind mangrove swamps. Kerapah peats are less common than 

basinal peats and they have been described so far only in Sarawak and Kalimantan (see Morley 2013 for 

an overview). The fact that the two types form on different locations make them different in regards to 

origin, substrate and long-term rates of peat accumulation (Anshari et al. 2001; Dommain et al. 2011). 

While kerapah peat swamp rainforests have developed in areas of podzolic soils (Brünig 1974; Brünig 

Figure 4.4 Diagrammatic cross sections of the stages 
of peat development (modified from Cameron et al. 
1989) 
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1990; Morley 2013; Figure 4.5), basinal peats are found in Sarawak, Sumatra and Kalimantan both in 

inland and coastal locations.  Close to the coastline, basinal peat swamp forests developed on 

prograding deltas behind mangrove swamps (e.g. Caline and Huang 1992). More in the inland, they can 

form along lowland river depressions in areas such as South Kalimantan (Sieffermann et al. 1992) and 

Central and South Sumatra (Sabiham 1990). Coastal peatlands developed more recently compared to 

the kerapah peatlands, usually following the stabilization of sea levels in the mid-Holocene and the 

uncovering of coastal areas following the lowering level of the sea after 5000 years ago (Dommain et al. 

2011).  

  

Figure 4.5 Kerapah (A) and basinal (B) peat catena compared. Ph.c. stands for Phasic communities (modified 
from Morley 2013)  
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The importance of vegetation communities  

Although in general the water table closely follows the peat doomed surface, when Brady (1997) 

monitored the water table levels on peat with different thicknesses in Sumatra, he observed declining 

water table levels with increasing peat depths. The smallest amplitude of water level movement also 

occurred in thicker deposits. It follows that surface flooding seems to be less common in deeper peat 

compared to shallow peat. Brady (1997) additionally noted that surface flooding was found to be 

uncommon in the pole forests over deep peat in Kalimantan (Kostermans 1958) and Sarawak (Anderson 

1961). Based on his results in Sumatra, Brady (1997) suggested that on thick peat deposits, peat 

accumulates more because of the accumulation of root biomass and declining decomposition, rather 

than from stagnant water logged conditions. The study of Grady et al. (1993) confirmed his hypothesis. 

While analyzing the fungal degradation of the maceral content of peat from Siaksriindrapura, Riau, they 

found that the root-dominated fibric peat found in deep deposits was more aerobic than that of the 

wood-dominated sapric peat found in thinner deposits. They suggested that peat in thicker deposits 

may be associated more with drier surface conditions compare to shallower deposits, where the 

influence of river flooding plays an important role. Similar results were found in Sumatra (Esterle and 

Ferm 1994) and Kalimantan (Moore and Hilbert 1992; Dehmer 1993). The accumulation of peat under 

these conditions, is therefore more strongly associated with the material deposited and therefore, plant 

species composition. 

These studies highlight how crucially important the vegetation cover is for the internal development 

and peat accumulation in space and time. The lowland peatlands of SE Asia are covered with peat 

swamp forest that is arranged into concentric forest communities associated generally with increasing 

peat depth on ombrotrophic peat domes (Anderson 1983; Brünig 1990). Anderson (1961) used the term 

"catenary stages" or “catena” to refer to this sequential pattern of forest types in Sarawak. Botanically, 

tropical peatlands are more diverse than temperate peatlands. Different tropical domed peat swamp 

rainforests are similar in respect to the vegetation structure but they often markedly differ in their forest 

species compositions.  So far, one of the best classifications of peat forests composition and structure 

is the one of Anderson (1961) based on peat swamp forests of Sarawak and Brunei. He distinguished six 

forest types or phasic communities along a gradient of peat depth. Forests of thin layers of peat at the 

edges of peat deposits showed high species richness and biomass. With increasing peat depth, tree 

heights, diameters, and species numbers declined. In the deepest peat in the central peat deposits, the 

forest types were characterized by a low canopy of pole-sized trees. These forest types have been 

referred to as "Padang or pole forest" (Figure 4.5). 

Similarly to what was found by Anderson in Sarawak and Brunei, an investigation of the peat swamp 

forests in Sumatra revealed that vegetation communities on shallow and deep peat are markedly 

different in their composition and structure (Brady 1997; Rieley and Ahmad-Shah 1996). The vegetation 
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changes with increasing peat depth include a reduction in tree species, a decrease in tree height, a 

decrease in basal area, an increase in tree stem density, and an increase in surface root biomass from 

mixed forest (on shallow peat) to pole forest (on thicker peat deposits; Brady 1997). 

The factors that drive these changes are linked to the decline in nutrient and moisture as the peat 

becomes deeper (Anderson 1961; Brünig 1971; Whitmore 1984). Nutrients enter the thick peatlands 

mainly via precipitation as river waters do not reach these peats which are located at higher elevations. 

As a result, only specialized plant species that have or can develop roots that can reach down to the 

underlying soil layers can trive under such conditions (Driessen 1977; Cameron et al. 1989).  

Temporal and spatial development of Southeast Asian peatlands: state 
of knowledge 

The onset and development of modern peat deposits in SE Asia range from the Late Pleistocene to the 

Holocene (from ca. 40 cal ka BP; Page et al. 2004). However, according to the review of Dommain et al. 

(2014), peat formed and accumulated for the most part after the LGM. Sea-level change has been 

identified by the authors as the primary driver for both peatland formation and expansion. This is related 

to the effect of sea-level change on both the regional atmospheric moisture availability and the 

hydrological gradient on the islands of the Sunda shelf (Dommain et al. 2014; Figure 4.6). 

The post LGM sea-level history of the 

Sunda Shelf has been divided in three 

main events: 1) rapid sea-level rise 

during deglaciation from ca. 19,000 to 

7000 cal yr BP, 2) a slow rise to the 

Holocene high stand at about 5000 cal 

yr BP and 3) the subsequent lowering 

of sea level by about 5 m (Hanebuth et 

al. 2000; Hanebuth et al. 2011; 

Dommain et al. 2014). During the 

deglatiation, sea-level rose rapidly to 

flood a large portion of the Sunda Shelf 

and causing a rise in the water table 

and paludification of the depression 

and low lying areas in land. However, 

the rapid transgression prevented the 

expansion of peatlands until about 

7000 cal yr BP, when the sea level rise 

Figure 4.6 Areas of coastal (top) and inland (bottom) peatlands in 
time with sea-level curve of Sunda shelf (modified from Dommain et 
al. 2014) 
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stabilization allowed for the first coastal peatlands in Sumatra to form (Sabiham 1988; Dommain et al. 

2011). Dommain et al. (2011) noted a connection between higher seasonality and El Niño droughts 

during the late Holocene and reduced accumulation and peat truncation in Borneo. However, in 

Sumatra carbon accumulation was uninterrupted, possibly as a result of the large increase in land 

availability in the coastland regions due to sea-level regression (Dommain et al. 2011). In contrast to 

northern temperate peatlands, limited carbon-related field research has been conducted in tropical 

peat-swamp rainforests, thus the influence of climate and land-use on the ecosystems and on the 

carbon storage are not well understood (Farmer et al. 2011).  

Palaeoecological studies represent a powerful tool, as they can be used to assess the impact of climate 

and environmental variability in the past as comparison to modern transformation led by human 

activities. However, little has been done in this direction so far in the peatlands of SE Asia, as only few 

studies have included palaeoenvironmental investigations (see Chapter 8 for details). 
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Abstract 

The climate of Sulawesi is driven by the monsoon system as well as the El Niño-Southern Oscillation 

(ENSO). Until now, mechanisms and long-term variations of these complex interacting climate processes 

have been poorly understood. This paper uses a sediment record from Lake Kalimpaa to investigate 

long-term rainfall trends of the past ca. 1500 years. Granulometric and geochemical data provide 

indications for an increasingly wetter climate (higher rainfall intensities and/or mean rainfall) on 

centennial to millennial time scales from approximately AD 560 to the 20th century. Highest rainfall 

intensities probably occurred at the end of the Little Ice Age (LIA). The trend towards wetter conditions 

during this time could also be detected in other palaeoclimatic studies from the region. A plausible 

explanation for these observations is the southward displacement of the Intertropical Convergence 

Zone (ITCZ) associated with changes in monsoon dynamics. However, comparison of the results with 

other proxy and model data indicates that the long-term rainfall variability in Central Sulawesi is also 

determined by variations in ENSO. During the 20th century the climate signal in the Kalimpaa record is 

superimposed by human impact. Moreover, the data suggest that two periods of disturbance occurred 

within the lake catchment between about AD 1090-1190 and AD 1450-1620. Comparison with fire 

frequency derived from macro-charcoal analysis indicates that these events were caused by forest fires 

which likely took place during periods of drought. Broadly simultaneous drought periods have been 

detected in records from East Java suggesting a regional drought occurrence affecting at least East Java 

and Sulawesi. 

Introduction 

Sulawesi belongs to the Greater Sunda Islands located in the Indo-Pacific warm pool (IPWP), which is 

the largest storage of warm surface ocean water globally (Gagan et al. 2004; Oppo et al. 2009). 

Consequently, this area is a substantial source of latent heat and has a great importance for 

understanding modern climate dynamics (Hope 2001).  

Several rainfall regimes occur in Indonesia in response to, for example, variations in the monsoon system 

and the El Niño-Southern Oscillation (ENSO; Aldrian and Susanto 2003). The seasonal rainfall in eastern 

Indonesia is mainly driven by the intensity of the Australian-Indonesian summer monsoon (Griffiths et 

al. 2010), whereas the ENSO cycle (Diaz and Kiladis 1992) is responsible for the complex inter-annual 

climatic variability in this region. While ENSO cold events (La Niña) enhance the rainfall in Sulawesi, 

ENSO warm events (El Niño) result in dry periods, which occasionally have led to extreme droughts in 

the past (Salafsky 1994; D’Arrigo et al. 2006; Keil et al. 2008). These drought events facilitated the 

occurrence of forest fires in tropical rainforests, as recorded in Borneo and Sulawesi during the strong 

El Niño of 1997/98 (Rowell and Moore 2000; Siegert and Hoffmann 2000; Sastry 2002).  
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The annual influence of the monsoon is dominant in most parts of Sulawesi, where the wet season 

coincides with the Australian-Indonesian summer monsoon from October to March and the dry season 

with the Asian summer monsoon from April to September (Aldrian and Susanto 2003; Gunawan 2006; 

Figure 5.1b-c). An 'anti-monsoonal' rainfall pattern has been observed in the northeast of Sulawesi. This 

area representing only a vast minority of the island is characterized by inverse occurrences of wet 

seasons from April to August and dry seasons from September to March as well as a more pronounced 

impact of ENSO (Aldrian and Susanto 2003; Aldrian et al. 2004; Gunawan 2006). The mechanism 

underlying this pattern is the strong influence of the ocean and its sea surface temperatures (SST) in 

this region. Due to the Indonesian Through flow (ITF), marine currents from a Pacific warm pool 

northeast of New Guinea can enter the Indian Ocean (Godfrey 1996; Morey et al. 1999). These currents 

mainly pass the Makassar Strait, but also influence the SST in the Molucca Sea northeast of Sulawesi 

(Figure 5.1a). During the boreal winter, the ITF brings cooler water from the warm pool to the Molucca 

Sea inhibiting the formation of a convective zone in the northeastern part of Sulawesi (wet season in 

the monsoonal regions of Indonesia). In contrast, during the boreal summer, warmer water supplied 

from the warm pool promotes the formation of a convective zone in northeastern Sulawesi (dry season 

in most parts of Sulawesi; Godfrey 1996; Gordon et al. 1999; Morey et al. 1999; Aldrian and Susanto 

 

 

Figure 5.1 a) Map of the research area showing 
the location of Lake Kalimpaa on the island of 
Sulawesi. Also depicted are the locations of 
other study sites mentioned in the text: (1) 
Makassar Strait (Oppo et al. 2009; Tierney et al. 
2010); (2) Halmahera: Kau Bay (Langton et al. 
2008); (3) East Java: Lake Lamongan (Crausbay 
et al. 2006), Lake Logung (Rodysill et al. 2012), 
Lake Lading (Konecky et al. 2013); (4) Makassar 
Strait (Newton et al. 2006); (5) South Sulawesi: 
Wanda site near Lake Matano (Hope 2001); (6) 
North Sulawesi: Lake Tondano (Dam et al. 
2001); (7) Besoa Valley, Central Sulawesi (Kirleis 
et al. 2011). The grey solid arrows represent 
the sea currents of the Indonesian throughflow 
(ITF) referring to Godfrey (1996) and Morey et 
al. (1999), whereas the dashed arrows depict 
further possible pathways. b) The generalized 
main wind directions over Sulawesi during the 
Australian–Indonesian summer monsoon (DJF: 
December-January-February) and c) during the 
Asian summer monsoon (JJA: June-July-
August). The basic map was created using 
MapCreator 2.0 
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2003; Gunawan 2006). According to Gunawan (2006), Central Sulawesi is characterized by a mixture of 

both monsoonal and 'anti-monsoonal' type of rainfall, and by the strong influence of ENSO. 

Topography also influences rainfall and causes substantial variations over short distances. In the 

mountainous regions of the LLNP rainfall is mainly generated orographically (Gunawan 2006). During 

boreal winters, the Australian-Indonesian summer monsoon brings moist air masses to Central Sulawesi 

reaching the island from the northwest. In the mountains around Palu Valley the ascending air leads to 

orographic rainfall with a strong correlation between altitude and precipitation totals. In contrast, dry 

air masses reach Sulawesi during austral winters, when precipitation is lower and solely generated 

orographically (Gunawan 2006). 

Thus far, neither the mechanisms nor the long-term variations of these complex interacting climate 

processes have been completely understood. Palaeoenvironmental data are needed to achieve more 

detailed knowledge of palaeoclimatic changes in Sulawesi; there are only a few palaeoclimatic studies 

from this region covering the past millennia. Marine records are available from Makassar Strait (Newton 

et al. 2006; Oppo et al. 2009; Tierney et al. 2010; Figure 5.1a) and Kau Bay (Halmahera; Langton et al. 

2008); lacustrine sediments from East Java (Lake Lamongan: Crausbay et al. 2006; Lake Lading: Konecky 

et al. 2013; Lake Logung: Rodysill et al. 2012) provide terrigenous archives with a suitable temporal 

resolution. Palynological evidence are available from two sites in the Besoa Valley, Central Sulawesi, and 

the pollen data of one of these exhibits a cooling trend during the Little Ice Age (LIA; Kirleis et al. 2011). 

However, palaeoclimatic studies from Sulawesi are rare and cover longer time frames with lower 

temporal resolutions (Lake Tondano: Dam et al. 2001; Wanda site near Lake Matano: Hope 2001; Figure 

5.1a). Therefore, it is necessary to carry out further investigations on palaeoenvironmental archives 

from Sulawesi to enhance the spatial and temporal resolution of proxy data.  

This study aims to contribute to a better understanding of palaeoclimatic changes in Sulawesi during 

the past 1500 years. The main objective is to investigate various sedimentological characteristics of a 

core from Lake Kalimpaa (Central Sulawesi; Figure 5.1a) in order to provide indications for long-term 

rainfall trends, palaeoenvironmental changes and fire history in the lake catchment. 

Site description 

Lake Kalimpaa (1°19'34.8''S, 120°18'31.9''E; Figure 5.1a), sometimes also referred to as Danau Tambing, 

is located at 1660 m asl in the LLNP in Central Sulawesi, Indonesia. It occupies an area of 6.5 ha and has 

a maximum water depth of 6.6 m. The lake is surrounded by small reed belts and a swamp area to the 

north (Haberzettl et al. 2013); it has an inflow from the northeast and an outflow to the southwest. 

Lake Kalimpaa is located in a mountain pass at the end of a side valley of the Palu Valley. Surrounding 

mountaintops in the northeast and southwest exceed altitudes of 2000 m asl. The lake’s catchment area 

of approximately 1.8 km² extends mainly to the north. The geological setting is characterized by the 
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Pliocene Kambuno Granite (Simandjuntak et al. 1991; Priadi et al. 1994; Leemhuis 2005) and its 

weathering products. Regional vegetation is characterized by montane rainforest which in the LLNP, is 

presently characterized by a 90 % intact canopy cover (Kirleis et al. 2011) and is dominated by Fagaceae, 

mostly represented by the two genera Lithocarpus and Castanopsis (Culmsee et al. 2010).  

There is no representative meteorological station in the vicinity of Lake Kalimpaa itself but there are 

records for the mountains of western Central Sulawesi and these can be used as representative of the 

catchment. Because of the close proximity to the equator temperatures are almost constant throughout 

the year. Daytime temperatures at higher altitudes range from 16 to 22 °C; annual precipitation is 

around 2000 to 3000 mm (Weber 2006). 

Materials and methods 

A 211 cm long composite sediment record consisting of three overlapping sections (KAL 1-1, KAL 1-2, 

KAL 1-3) was recovered from Lake Kalimpaa using a Livingstone piston corer (Livingstone 1955). 

Palaeomagnetic analyses showed that only KAL 1-1 and KAL 1-2 (153 cm composite length) were suited 

for palaeoenvironmental reconstruction since no reliable chronology could be established for the oldest 

part of the core (Haberzettl et al. 2013). Each section was split, photographed and described 

lithologically. The composite profile was compiled based on macroscopic marker layers. The chronology 

was adapted from Haberzettl et al. (2013; Figure 5.2a). Several sets of bulk samples which had been sent 

for radiocarbon dating revealed inconsistencies, i.e., ages were not in stratigraphic order. Since hard-

water effects can be excluded for Lake Kalimpaa another kind of reservoir effect is assumed. Probably 

Figure 5.2 a) The age-depth model for the Lake Kalimpaa record based on calibrated radiocarbon ages which are 
presented as medians referring to the 2σ ranges (Haberzettl et al. 2013). The grey data points are regarded as 
outliers and have been excluded from the final age depth model (Haberzettl et al. 2013). b) Comparison of 
declination and inclination of the Lake Kalimpaa record (Haberzettl et al. 2013) with the CALS3k.4 model output 
for the location of Lake Kalimpaa (Korte and Constable 2011) 
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the dated material of the bulk samples comprised both autochthonous and allochthonous organic 

matter. Therefore, only the youngest ages were used for the age-depth model that is based on linear 

interpolation (Haberzettl et al. 2013; Figure 5.2a). Despite these dating uncertainties the created age-

depth model seems to be a first order approximation which is corroborated by magnetostratigraphy. 

The comparison of palaeosecular variation data of the Kalimpaa record with the output of the CALS3k.4 

model (Korte and Constable 2011) shows many isochronic similarities for inclination as well as for 

declination (Figure 5.2b). Therefore, the age-depth model can be used as basis for further multi-proxy 

approaches on the Lake Kalimpaa record. A marked increase in sedimentation rate is obvious for the 

most recent sediments. While the mean sedimentation rate between 151 and 44 cm is about 

0.8 mm/yr, for the youngest sediments between 44 cm and the top of the core the age-depth model 

provides a sedimentation rate of ca. 9.2 mm/yr on average.  

After palaeomagnetic measurements u-channels of KAL 1-1 and KAL 1-2 were subsampled for 

subsequent geochemical and granulometric analyses. Grain size distribution was measured at an 

interval of 1 cm (N=153) with a Laser Diffraction Particle Size Analyser (Beckman Coulter LS 13320) 

utilizing the Aqueous Liquid Module and 10 s ultrasonic for dispersion. The Fraunhofer diffraction theory 

was used for optical modelling of light scattering (De Boer et al. 1987). Organic matter and carbonates 

were removed with H2O2 (30 %) and HCl (10 %), respectively and sodium pyrophosphate solution 

(Na4P2O7 · 10 H2O; 0.1 M) was used as a dispersion medium. The measurements were carried out in 

several runs until a reproducible signal was obtained. The first reproducible run was taken for further 

statistical treatment. The grain size fractions were calculated according to Ad-hoc AG Boden (2005). The 

skewness (φ-scale) was determined by the logarithmic method of moments by means of a modified 

version of Gradistat 4.2 (Blott and Pye 2001). 

Element concentrations of Al, Ca, Fe, K, Mg, Mn, P, S and Ti were measured at intervals of 2 cm (N=77) 

using ICP-OES (Varian 725-ES). For this purpose, oven-dried (50°C) aliquots were pestled (< 40 µm) and 

homogenized. The samples were digested with a microwave based procedure using modified aqua 

regia, which consists of 1 ml deionized water, 2 ml HCl (30 %) and 4 ml HNO3 (30 %). 

With the use of syringes, sediment samples were obtained at ca. 4 cm intervals (N=41) from the core 

and freeze-dried. Aliquots were ground and analysed for total organic carbon (TOC) and total nitrogen 

(TN) contents with a CNS element analyser (Euro EA 3000). TOC was determined after the destruction 

of carbonates with 2M H3PO4. Subsequently the molar TOC/TN ratio was calculated. 

Additionally, mineralogical investigations on the pestled samples (N=10) were carried out using an X-ray 

diffractometer (D8-Discover, Bruker AXS) equipped with a CuKα X-ray tube and a gas proportional 

counter (HI-STAR area detector, Bruker AXS). The evaluation of the data was performed by means of 

the software Match! 2.0.9 and MacDiff 4.2.6. 
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Macro-charcoal particles (>150 µm) were counted for samples evenly spaced at 1 cm intervals along the 

upper part of the sediment core (first 145 cm). The samples (1 cm3 each) were prepared following the 

method of Stevenson and Haberle (2005), which is a modification of a method developed by Rhodes 

(1998). Weak hydrogen peroxide (6% H2O2) was used to partially digest and bleach organic material in 

the sediment samples when counted under a binocular dissecting microscope. The sample preparation 

procedure aims to ensure that little particle fragmentation occurs during preparation. Results are 

expressed as number of charred particles per cm³.  

Charcoal raw data were interpolated to constant 5 years, corresponding approximately to the median 

temporal resolution. Interpolated charcoal concentrations (number of particles cm-3) were multiplied 

by estimated sedimentation rate (cm² yr-1) to obtain the charcoal accumulation rate (CHAR, particles 

cm-2 per 5 yr) of each sample. Low-frequency variations in a charcoal record (Cbackground) represent 

changes in charcoal production, sedimentation, mixing, and sampling. Cbackground was estimated with a 

locally weighted regression using a 100 yr window in order to maximize the signal-to-noise index and 

the goodness-of-fit between the empirical and the modeled Cnoise distributions (Higuera et al. 2009). 

Cbackground was subtracted to obtain a residual series, Cpeak. It is assumed that Cpeak is composed of two 

subpopulations (Higuera et al. 2008; Higuera et al. 2009): Cnoise, representing variability in sediment 

mixing, sampling, and analytical and naturally occurring noise, and Cfire, representing charcoal input from 

local fires. A Gaussian mixture model was used for each sample to identify the Cnoise distribution. The 

99th percentiles of the Cnoise distributions were considered as thresholds separating samples into ‘fire’ 

and ‘non-fire’ events. The peaks which passed the threshold criterion were subjected to a “Poisson 

minimum-count” screening in order to eliminate the peaks that result from statistically insignificant 

variations in charcoal counts. Peak fire episodes refer to one or more fires occurring within the time 

span of the charcoal peak. Past fire regime characteristics were inferred based on the temporal pattern 

of identified charcoal peaks via calculation of fire frequencies smoothed with a 200-year window. All 

statistical treatments were done using the program CharAnalysis (Higuera et al. 2009). 

Proxy determination for palaeoenvironmental processes 

Palaeorainfall proxies 

Grain size can be used as a proxy for variations in transport energy or lake levels and hence, climate 

variability (Conroy et al. 2008). In detail, high rainfall intensities and/or amounts possibly result in 

enhanced erosion in the catchment as well as an increased transport capacity and competence of the 

tributary which might lead to the deposition of coarser clastic material in the lake (Håkanson and 

Jansson 2002). According to Nichols (2009) grain size can yield information on the flow velocity and 

hence the runoff during the time of sediment deposition. 
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In the Lake Kalimpaa catchment sediment erosion and transport is likely driven by runoff. Channel 

erosion and denudation of soil material are probably the major causes for the transport of sediments, 

although dense vegetation cover accompanied by high interception protects the soil surface. 

It is assumed that the deposition of coarse grain sizes reflects periods or events characterized by high 

runoff and hence, higher rainfall intensities. In contrast, the deposition of fine grain sizes is linked to 

periods of lower average rainfall and thus, lower transport energy of the inflow. In such a small system 

probably lower runoff facilitates the deposition of finer particles due to the absence of turbulences in 

the lake water which are caused by the inflow during periods of greater rainfall and runoff. 

The skewness (Sk) of grain size distributions of deposited sediments is a result of the composition of the 

source material as well as the energy level of the transport process. If transport processes exhibit a high-

energy level, the deposited sediments become coarser and their grain size distributions are more 

positively skewed (on φ-scale). If the energy level is low, the deposited sediments become finer and 

more negatively skewed (McLaren and Bowles 1985).  

It is supposed that the main source of Al, Ca, K, Mg and Ti are the minerals of the Kambuno Granite and 

its weathering products. K is mainly associated with K-feldspars, biotite and muscovite as well as, to a 

lower extent, with illite. Mg is related to biotite and clay minerals, such as montmorillonite; Ca occurs 

for instance in plagioclase and illite. Ti is chemically immobile and occurs mainly in heavy accessory 

minerals like rutile and ilmenite, which are extremely resistant against weathering (Goldich 1938; Shotyk 

et al. 2001; Li et al. 2003). Therefore, Ti was used in many other studies on lake sediments as an indicator 

for the input of clastic, terrigenous material (e.g. Haberzettl et al. 2005; Whitlock et al. 2008; Kasper et 

al. 2012) a process that is often driven by precipitation and runoff in the lake catchment. 

During the chemical weathering of feldspars and micas to clay minerals, K, Ca, and Mg get dissolved. In 

contrast, Al which is part of feldspars and micas as well as clay minerals, is nearly insoluble and less 

mobile than the alkali and alkaline earth elements (Nesbitt et al. 1980; Middelburg et al. 1988). Kaolinite 

and gibbsite, which are common weathering products of granites under tropical conditions (West and 

Dumbleton 1970), contain Al but no K, Ca and Mg. Therefore, Al is used as denominator in various 

element/Al ratios in the following to compensate variable depletion effects which are primarily caused 

by concentrations of the redox sensitive element Fe. 

In many other studies element/Al ratios like K/Al and Ti/Al are related to weathering intensities in the 

source area, input pathways or the strength of transport processes (Boyle 1983; Lückge et al. 2001; 

Muller et al. 2001; Zabel et al. 2001). Engstrom and Wright (1984) and Mackereth (1966) found that 

alkali and alkaline earth elements (e.g. Ca, K and Mg) accumulate in lake sediments during periods of 

intense erosion, when mineral matter is transported into the lake. In contrast, low values of alkali and 

alkaline earth elements in lake sediments occur when erosion is low and leaching of the catchment soils 

is dominant. Granite is usually deeply weathered in tropical climates and thus, unweathered minerals 
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like feldspars are more prominent in areas with higher slope angles (Berry and Ruxton 1959). Therefore, 

the source area of feldspars and micas is possibly the steeper slopes around the lake and their transport 

into the sediment occurs via terrigenous runoff during periods of high erosion. Accordingly, K/Al, Ca/Al 

and Mg/Al reflect the variability of the proportion of chemically less weathered feldspars and micas to 

clay minerals, especially kaolinite. The Ti/Al ratio mainly reflects changes in grain size (Boyle 1983; Zabel 

et al. 2001). Ti is associated with coarser material while Al rather represents the fine-grained fraction so 

that the Ti/Al ratio is linked to the strength of fluvial transport which reflects hydrological variability. 

Therefore, Ti/Al, K/Al, Mg/Al and Ca/Al ratios may be used as proxies for palaeorainfall similar to other 

studies on tropical lake sediments (Felton et al. 2007; Warrier and Shankar 2009). High ratios are 

interpreted as periods and/or events of high erosion and, accordingly, high rainfall intensities in the lake 

catchment. 

Proxies for catchment disturbances and changes in redox conditions 

Fire frequency data derived from macro-charcoal analysis is used to reconstruct the fire history around 

Lake Kalimpaa. Such forest fires may cause substantial disturbances within the lake catchment regarding 

changes in vegetation and sedimentological processes. Enhanced erosion as well as an increased supply 

of organic matter entering the lake can be consequences of these disturbances. 

Fe, Mn, P, S, TOC and TN typically are part of a common reaction and transport cycle in sediments (Van 

Cappellen and Wang 1996). The significantly higher presence of allogenic Fe and Mn is characteristic of 

tropical lakes (Crowe et al. 2008). In soil samples from the upper horizons of nine sites in the catchment 

area of Lake Kalimpaa, average contents of ca. 2.5 % of Fe and ca. 340 ppm of Mn were measured 

(Markussen 2000). As it will be demonstrated later, Fe and Mn concentrations are significantly higher 

in certain sections of the sediment core than those in the topsoil. This cannot be explained solely by an 

increased input but rather by the accumulation of these elements due to another process(es), such as 

redox reactions in the sediment and/or the water column. Since this is accompanied by relatively high 

TOC/TN ratios which can indicate a shift to a more terrestrial origin of the organic matter (Mayr et al. 

2005; Meyers 1994; Haberzettl et al. 2008), it is hypothesized that sharp increases in TOC, TN, S, Fe and 

Mn concentrations result from the supply of organic material from the catchment. This promotes 

reducing conditions in the sediment due to microbial decomposition. In contrast, low molar TOC/TN 

ratios likely arise from a comparatively low input of terrestrial organic matter or a higher occurrence of 

phytoplankton, which is typically characterized by TOC/TN ratios ranging from 4 to 10 (Meyers 1994; 

Kasper et al. 2013). 

The microbiological decomposition of organic material in lake water and sediment is an oxygen-

consuming process that produces anoxic environments (Davison 1993). In lakes, Fe and Mn occur in 

various oxidation states (FeII, FeIII; MnII, MnIII, MnIV) dependent on the given redox conditions. Under 
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oxidizing conditions both elements exhibit low solubility, where Mn is soluble at higher redox potentials 

than Fe (Sigg and Stumm 1991). Fe that enters lakes via rivers, occurs mainly in particulate form (> 99 %; 

Salomons and Förstner 1984) as ferric (oxyhydr)oxide or bound in the lattice of micas and clay minerals. 

Mn is also predominantly supplied by solids, such as MnO2, and to lower amounts as dissolved Mn2+ 

(Engstrom and Wright 1984; Davison 1993). There seems to be a succession of redox processes in the 

sediment record from Lake Kalimpaa, during which particulate Fe(III)-(oxyhydr)oxides are dissolved to 

Fe2+ which precipitates as amorphous Fe(II)-sulphide or for instance mackinawite, or it becomes mobile 

and reprecipitates as Fe(III)-(oxyhydr)oxide at the oxic/anoxic boundary. The identification of Fe(II)-

sulphides is inferred from the black sediment colour and its association with high Fe and S bulk 

concentrations (Emerson 1976; Engstrom and Wright 1984). The affinity of P to be adsorbed on the 

surfaces of Fe-(oxyhydr)oxides is known from the literature (e.g. Lijklema 1980; Buffle et al. 1989). 

According to López et al. (2006), high Fe and P values are indicative for the precipitation and 

accumulation of authigenic Fe. Moreover, P is also associated with organic matter. 

Results 

Core lithology and mineralogy 

 The core sections KAL 1-1 and 1-2 consist mainly of finely laminated silts with a few homogeneous 

sections and distinct sand layers. Based on obvious changes in sediment structure, colour and 

macroscopic grain size, six lithological units can be distinguished (Figure 5.3). Unit I (153-128 cm; ca. AD 

560-1090) exhibits finely laminated blackish grey and light grey silts. Unit II (128-118 cm; ca. AD 1090-

1190) is characterized by homogeneous black sediments composed of fine silts to fine sandy coarse 

silts. Finely laminated, light greyish to grey layers consisting of medium to fine sandy coarse silts occur 

in unit III (118-93 cm; ca. AD 1190-1450; Figure 5.3). Mica particles, probably muscovite, are 

conspicuous between ca. 110 and 40 cm (ca. AD 1275-1965). Partially laminated, dark brown to black 

fine sandy coarse silts occur in unit IV (93-77 cm; ca. AD 1450-1620). Unit V (77-48 cm; ca. AD 1620-

1910) exhibits a greyish colour and contains partially laminated, fine sandy coarse silts with an 

intercalated sand layer. The uppermost unit VI (48-0 cm; ca. AD 1910-2006; Figure 5.3) consists of 

brownish medium to fine sandy silts. It is assumed that human impact in the catchment area (e.g. by 

road construction, camp site) superimposes any effects of climatically induced changes during the 

20th century (Haberzettl et al. 2013). Nevertheless, it cannot be excluded that also climate could have 

caused the marked increase in sedimentation rate for the most recent sediments. Since the distinction 

between climatic and human-driven impacts seems not possible with certainty, no palaeoclimatic 

interpretation has been done for unit VI in the following. X-ray diffractograms of all measured samples 

show comparable spectra. The most common sediment minerals are quartz, alkali feldspars, plagioclase, 
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muscovite, biotite (chemically unweathered minerals from the Kambuno Granite), kaolinite and to a 

lesser extent illite (weathering products of the Kambuno Granite). In some samples goethite and 

gibbsite were detected, which are typical for weathered granites in tropical regions as well as clay 

minerals (West and Dumbleton 1970). Furthermore, X-ray diffraction spectra indicate that carbonates 

are of minor importance in this record which was confirmed by multiple negative tests with hydrochloric 

acid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 a) and b) Geochemical 
and c) granulometric (Cl: Clay, FSi: 
fine silt, MSi: medium silt, CSi: 
coarse silt, FSa: fine sand, MSa: 
medium sand, CSa: coarse sand) 
parameters of the Kalimpaa 
sediment core plotted versus 
sediment depth (age scale is also 
depicted on the right). A schematic 
illustration of the lithology is given 
on each plot on the left. The grey 
and white bars represent the 
lithological units 
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Grain size analysis 

The core sections KAL 1-1 and 1-2 are dominated by medium to coarse silt and accessorily contain some 

fine sand layers. With a mean of ca. 78.3 % in all samples, silt is the most common fraction followed by 

sand (ca. 13.5 %) and clay (ca. 8.2 %). A correlation matrix of the calculated grain size fractions (Table 

5.1) exhibits positive correlations between clay (Cl), fine silt (FSi) and medium silt (MSi). Coarse silt (CSi) 

and fine sand (FSa) are also positively correlated but negatively correlated to the aforementioned. 

Moreover, there is a positive correlation between medium sand (MSa) and coarse sand (CSa) which are 

only sporadically present in the record (Table 5.1). On this basis, the grain size fractions can be grouped 

into classes, viz. one of Cl+FSi+MSi and one of CSi+FSa. They show an opposing trend (Figure 5.3c) but 

depend on each other and thus, probably represent the same palaeoenvironmental signal. In contrast, 

the third class consisting of MSa+CSa is interpreted as an additional signal. 

Units I and II (153-118 cm; ca. AD 560-1190) are characterized by low but slightly increasing CSi+FSa and 

Sk values as well as high but slightly decreasing Cl+FSi+MSi values (Figure 5.3c). The most prominent 

peak in MSa+CSa occurs at the base of unit II (at 128 cm; ca. AD 1090). The lowermost section of unit III 

(118-112 cm; ca. AD 1190-1250) exhibits low values for CSi+FSa and Sk as well as high values for 

Cl+FSi+MSi again. For the remaining part of unit III, IV and V (112-48 cm; ca. AD 1250-1910), CSi+FSa 

and Sk values first show a decreasing and then an increasing trend reaching their maxima within unit V 

(at 53 cm; ca. AD 1860; Cl+FSi+MSi vice versa). Over the entire record (units I to V), an increasing trend 

of CSi+FSa and Sk values as well as a decreasing trend of Cl+FSi+MSi values can be identified. 

Table 5.1 Correlation matrix including the Pearson product–moment correlation coefficient and the related p-value 
of the grain size fractions from all measured samples of the Lake Kalimpaa record. The limits of grain size fractions 

are according to Ad-hoc AG Boden (2005) as follows: clay (Cl), fine silt (FSi), medium silt (MSi), coarse silt (CSi), fine 

sand (FSa), medium sand (MSa) and coarse sand (CSa). Highly significant correlations (p < 0.001) are highlighted 
(bold: highly positively correlated, bold italic: highly negatively correlated) 
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Geochemistry 

With an average concentration of 9.3 % Al is the most abundant of the measured elements. It shows a 

decreasing trend from unit I to unit V (153-48 cm; ca. AD 560-1910; Figure 5.3a). Concentrations of K, 

Mg and Ti show an increasing and compared to Al opposite trend. Mg and Ti reach their maximum at 

53 cm (ca. AD 1860) together with maximum values in CSi+FSa and Sk. Ca values are low in unit I and II 

(153-118 cm; ca. AD 560-1190) and on a higher level in the units III-V (118-48 cm; ca. AD 1190-1910; 

Figure 5.3a). 

All graphs of the element/Al ratios exhibit a similar pattern (Figure 5.4). They are characterized by low 

values in unit I (153-128 cm; ca. AD 560-1090) and exhibit an increasing trend starting from unit II to V 

(128-48 cm; ca. AD 1090-1910) with maximum values at 53 cm (ca. AD 1860). Increased element/Al 

ratios coincide for large parts of the record with the macroscopic conspicuously presence of mica 

particles. A similar pattern in Ti/Al, K/Al, Mg/Al, and grain size data is especially notable for the sections 

comprising the highest peaks within unit V (at 53 cm, ca. AD 1860 and 49 cm, ca. AD 1910). 

TOC and TN are highly correlated (r = 0.97; p < 0.001). TOC values range from 0.24 % up to 5.85 %, TN 

from 0.02 % up to 0.31 % (Figure 5.3b). Both are low in unit I (153-128 cm; ca. AD 560-1090) and 

increase markedly in unit II (128-118 cm; ca. AD 1090-1190), with lower levels in unit III (118-93 cm; ca. 

Figure 5.4 Granulometric data (CSi + FSa: coarse silt + fine sand; skewness) as well as selected element/Al ratios of 
the Kalimpaa record plotted versus age. All graphs are interpreted to exhibit a rising trend to wetter conditions 
(higher rainfall intensities and/or mean rainfall) on centennial to millennial time scale from AD 560 to 1910. Note 
that the uppermost unit VI (grey bar) is not included in the palaeoclimatic interpretation 
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AD 1190-1450) and subsequently higher again in unit IV (93-77 cm; ca. AD 1450-1620). TOC and TN 

values remain on high levels in unit V (77-48 cm; ca. AD 1620-1910), where they reach their maximum 

of 5.85 % for TOC and 0.31 % for TN. The molar TOC/TN ratio shows two levels (Figure 5.5). The lower 

level in unit I (153-128 cm; ca. AD 560-1090) exhibits values of around 14.3 and the higher level within 

units II-V (128-48 cm; ca. AD 1090-1910) is characterized by mean values around 22.0. Fe 

concentrations average 5.7 % in the Kalimpaa record (Figure 5.3b) and reach a maximum of 25.7 % 

within unit II (128-118 cm, ca. AD 1090-1190). Fe and S concentrations are strongly correlated (r = 0.96; 

p < 0.001) and exhibit distinctive peaks in the units II and IV (128-118 cm, ca. AD 1090-1190 and 93-

76 cm, ca. AD 1450-1620; Figure 5.3b). Mn and P values also show peaks in these two sections, but are 

characterized by higher values in the sediments above and below the peaks of Fe and S. Especially in 

unit V (77-48 cm; ca. AD 1620-1910) Mn and P values are above average and show a similar pattern to 

TOC and TN (Figure 5.3b). 

Macro-charcoal and fire frequency 

A total of 11 fire episodes occurred locally during the past 1300 years, 7 additional fire episodes failed 

to pass the screen test (Figure 5.5). Fire frequencies were higher in unit II (up to 2 fires per 200 years at 

Figure 5.5 Macro-charcoal concentrations (number of particles per cm3), fire frequency, Fe, TOC and TOC/TN 
(molar) as well as the medium and coarse sand content (MSa + CSa) of the Kalimpaa record plotted versus age. 
Fire frequency calculated on the fire peaks detected with the software CharAnalysis, smoothed with a 200-year 
window. Fire peaks which passed the ‘Poisson minimum-count’ screening are indicated with black crosses, and the 
insignificant peaks are indicated as grey circles. Additionally shown are the Weinmannia pollen data (Biagioni et al. 
2015a) which probably act as secondary forest species in the Lake Kalimpaa catchment. The grey bars represent 
the lithological units II and IV (AD 1090–1190 and AD 1450–1620) which are interpreted as periods of disturbance 
events in the Kalimpaa catchment 
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128-118 cm; ca. AD 1090-1190) and unit IV (up to 4 fires per 200 years at 93-76 cm; ca. AD 1450-1620). 

In unit VI (48-0 cm; ca. AD 1910-2006) fire frequencies gradually increased until today. 

Discussion 

Palaeorainfall in Central Sulawesi 

Based on variations in the established palaeorainfall proxies (K/Al, Ca/Al, Mg/Al, Ti/Al, CSi+FSa, Sk) the 

Lake Kalimpaa record likely reveals a centennial to millennial-scaled trend towards wetter conditions 

characterized by higher rainfall intensities and possibly higher mean rainfall from ca. AD 560 to the 20th 

century. The period from ca. AD 560-1090 was characterized by drier conditions, while an increasingly 

wetter climate can be inferred from ca. AD 1090 to 1910 (Figure 5.4). 

A long-term trend towards wetter conditions is also observed in sediments from two other lakes in East 

Java (Rodysill et al. 2012; Konecky et al. 2013; Figure 5.6e). Rodysill et al. (2012) explain the trend as a 

consequence of migration of the ITCZ with increased precipitation during its southward displacement. 

In comparison, Konecky et al. (2013) conclude that the migration of the ITCZ influences the climate 

variability on multidecadal to centennial time scales while it is the strengthening of the Walker 

circulation and its associated changes in ENSO variability that produces the increasingly wetter climate 

during the last millennium. Yan et al. (2011) arrive at similar conclusions, namely, precipitation changes 

in response to the combined influence of the migration of the ITCZ and the position and strength of the 

Pacific Walker circulation in the western tropical Pacific. 

The palaeorainfall proxies obtained from the Lake Kalimpaa record show long-term similarities with 

ENSO variability from the eastern Pacific region as well as the South American continent (Figure 5.6a-c). 

An ENSO record derived from the sediments of Laguna Pallcacocha, southern Ecuador, reveals that the 

number of El Niño events per 100 years decreased since ca. AD 1150 until today (Moy et al. 2002) 

consistent with increasing terrigenous input to Lake Kalimpaa (Figure 5.6a-c). Another lacustrine archive 

from Galápagos exhibits a decreased ENSO frequency between AD 1300 and 1850 (Conroy et al. 2008). 

From Kau Bay (Halmahera; Figure 5.1a), a region where rainfall is strongly dependent on ENSO, it is 

known that the El Niño activity decreased steadily from ca. AD 1300 (Langton et al. 2008). A long-term 

trend starting from ca. AD 560 onwards is visible in both the established palaeorainfall proxies for the 

Kalimpaa record and the output of the coupled ocean atmosphere model from Clement et al. (2000; 

Figure 5.6a-b) which reflects the number of El Niño events occurring over a 500 year interval. These 

similarities of the ENSO and CSi+FSa data (Figure 5.6a-b, c) indicate that palaeorainfall in Central 

Sulawesi is related to the variability of ENSO on centennial to millennial time scale and thus, changes in 

the Pacific Walker circulation.  
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Two studies carried out at Makassar Strait (Newton et al. 2006; Oppo et al. 2009; Figures 5.1, 5.5d) 

revealed that the SST in this region was ca. 0.5 to 1.5 °C lower during the LIA (ca. AD 1550-1850) 

compared with modern SST and those during the Medieval Warm Period (MWP; ca. AD 900-1300; Oppo 

et al. 2009). The authors infer that a cooling of the North Pacific surface water, which is transported by 

ocean currents through the Makassar Strait, is responsible for lower SST during this period. These cooler 

SST phases are associated with the southward displacement of the Intertropical Convergence Zone 

(ITCZ) during the LIA, which led to wetter conditions at Makassar Strait (Newton et al. 2006), similar to 

the region around Lake Kalimpaa in Central Sulawesi (Figure 5.6a-d). Sachs et al. (2009) note that the 

ITCZ reached its southernmost position between AD 1400 and 1850 with the result that drier conditions 

occurred north of the equator and wetter conditions in the southern tropics (Newton et al. 2006). 

Tierney et al. (2010), who examined marine sediments off the coast of Southwest Sulawesi (Figure 5.1a), 

inferred that the hydrological variability and the monsoon strength in the Indo-Pacific warm pool (IPWP) 

Figure 5.6 Comparison of a) coarse silt and fine sand data (CSi + FSa) representing terrigenous input to Lake 
Kalimpaa with other studies; b) modelled number of El Niño events using input data from the eastern Pacific region. 
Shown is the number of events in 500-year overlapping windows (overlapping every 10 years; digitized from 
Clement et al. 2000); c1) red colour intensity of sediments from Laguna Pallcacocha, Ecuador, representing the 
layers deposited during El Niño events (grey) and (c2) the resulting modelled number of El Niño events per 100 
years (black; Moy et al. 2002); d) reconstructed sea surface temperatures of Makassar Strait derived from Mg/Ca 
ratios (Newton et al. 2006); and e) leaf wax δD from Lake Lading (East Java) as palaeorainfall proxy (Konecky et al. 
2013). The periods of the ‘Little Ice Age’ (LIA; AD 1550 to 1850) and the ‘Medieval Warm Period’ (MWP; AD 900–
1300) according to Oppo et al. (2009) are shown on the right 
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are dependent on migrations of the ITCZ. These authors suggest teleconnections between ENSO and 

the monsoon with a weak Indian monsoon and a more El Niño-like mean state during the MWP and a 

strong Indian monsoon and a more La Niña-like mean state during the LIA (Tierney et al. 2010). It seems 

therefore that the southward displacement of the ITCZ may have caused higher rainfall intensities and 

possibly higher mean rainfall around Lake Kalimpaa during the LIA. 

Both the monsoon and ENSO climate systems are interacting through teleconnections (Ju and Slingo 

1995; Soman and Slingo 1997; Torrence and Webster 1999). Variations in the Pacific Walker circulation 

and/or SST anomalies during El Niño events could influence the global scale divergence, which can result 

in a shift of the ITCZ and thus, changes of the monsoon dynamics (Ju and Slingo 1995; Soman and Slingo 

1997; Torrence and Webster 1999). The position of the ITCZ as well as the mean state of ENSO/Pacific 

Walker circulation, therefore, may be considered interactive and co-responsible for the long-term 

rainfall variability in Central Sulawesi on centennial to millennial time scale. The interpretation of the 

Kalimpaa record suggests a general weakening of the Pacific Walker circulation and a more El Niño-like 

mean state from ca. AD 560 to 1090. In contrast, the strengthened Pacific Walker circulation and the 

southward displacement of the ITCZ probably are the causes for the wetter climate in Central Sulawesi 

during the LIA, which is consistent with the interpretation of Yan et al. (2011). 

Palaeoenvironmental disturbance events in the catchment of Lake Kalimpaa 

In the Lake Kalimpaa record, peaks in Fe, Mn, P, S, TOC and TN occur almost simultaneously with 

increased fire frequency in unit II (128-118 cm; ca. AD 1090-1190) and unit IV (93-76 cm; ca. AD 1450-

1620; Figure 5.5). The most prominent peaks of these elements coincide in unit II with macro-charcoal 

and MSa+CSa (Figure 5.5). Increased fire frequency data indicate periods during which forest fires 

occurred more frequently in the drainage basin of Lake Kalimpaa. Hence, it is assumed that these 

disturbance events are a potential cause for the increased supply of organic material into the lake, which 

in turn may lead to enhanced TOC, TN and TOC/TN values. A similar pattern showing increased TOC and 

charcoal values was found in the sediments from Lago dell’Accesa (Tuscany, Italy; Vannière et al. 2008). 

As a result of microbial decomposition of the organic matter, anoxic conditions prevailed at Lake 

Kalimpaa and thus, enhanced the formation of black sediment layers which contain high Fe, Mn, P and 

S amounts. 

As noted, the deposition of MSa+CSa seems to reflect a different process compared to the other grain 

size fractions (Table 5.1). Due to the simultaneous occurrence of the most prominent peaks in MSa+CSa 

and macro-charcoal (Figure 5.5), the deposition of these coarse materials is interpreted as an input 

signal after catchment disturbance (Cerdà and Lasanta 2005) which is likely associated with a forest fire 

around ca. AD 1090 (Figure 5.5). Thus, the fire likely facilitated the erosion and deposition of MSa+CSa. 
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Following the first period of inferred increasing fire frequency (ca. AD 1090-1210) changes in the 

vegetational composition occurred within the catchment. These alterations are reflected within the 

units II and III (123-95 cm; ca. AD 1140-1430) and were characterized by an expansion of Weinmannia 

which probably acts as secondary forest species in the Kalimpaa drainage basin (Biagioni et al. 2015a). 

In contrast, Weinmannia pollen concentrations remained low after the second period of disturbance 

(ca. AD 1460-1620). However, pollen data of fast-growing pioneer species like Macaranga and Mallotus 

increased during this period indicating disturbance in the forest (Biagioni et al. 2015a). Weinmannia 

increased again in unit VI (47 to 35 cm; ca. AD 1930-1975), when the vegetation cover in the catchment 

area was likely disturbed due to the road construction (Figure 5.5).  

Considering the macro-charcoal and sedimentological findings from KAL 1-1 and 1-2, at least two 

disturbance events occurred in the catchment area that are reflected in units II and IV (ca. AD 1090-

1190; ca. AD 1450-1620). The changes in fire frequencies between ca. AD 1090-1190 and ca. AD 1450-

1620 have affected the geochemical composition of the lacustrine sediments. The alterations within the 

catchment during the 20th century are possibly caused by human impact (Haberzettl et al. 2013). 

From archaeological and palynological investigations in Central Sulawesi it has been concluded that 

anthropogenic impact in the Besoa Valley, ca. 25 km south of Lake Kalimpaa, started ca. 2000 years ago 

(Kirleis et al. 2011; Kirleis et al. 2012) when the montane rainforest was replaced by grassland. However, 

considerable human modifications of the landscape in the catchment of Lake Kalimpaa are not assumed 

before the 20th century. 

Natural fires occurring during drought periods seem to be the most likely triggers of the assumed 

disturbances in the Kalimpaa drainage basin. Probably drought stress accompanied by increased plant 

mortality (McDowell et al. 2008; Zach et al. 2010) fostered the forest fires as it is known from eastern 

Borneo during the strong El Niño event from 1997/98 (Siegert and Hoffmann 2000; Van Nieuwstadt and 

Sheil 2005), when fires also occurred on Sulawesi (Rowell and Moore 2000; Sastry 2002). Droughts in 

Indonesia result from the failure of the monsoon, which often coincides with ENSO warm events 

(D’Arrigo et al. 2006). According to Quinn et al. (1978), over 90 % of droughts in Indonesia during the 

period from AD 1861 to 1976 are associated with a warm phase of ENSO. 

The ca. 800 year-record obtained from Lake Lamongan (Crausbay et al. 2006; Figure 5.1a) reveals two 

periods of multidecadal drought from ca. AD 1275-1325 and ca. AD 1450-1650 (Figure 5.7), probably as 

a result of ENSO variations. More recent investigations on the timing of droughts in East Java have been 

carried out by Rodysill et al. (2013) who use U-series dating and suggest that the onset of the latter 

drought at Lake Lamongan was more than 300 years later around ca. AD 1790.  
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In sediments from Lake Logung (also East Java; Figure 5.1a) spanning the past ca. 1400 years, the long-

term trend towards wetter conditions was superimposed by four decadal to centennial-scale droughts 

between ca. AD 930-1130, ca. AD 1460-1640, ca. AD 1790-1860 and ca. AD 1985-2008 (Rodysill et al. 

2012; Figure 5.7). The authors discuss these drought occurrences in relation to both migration of the 

ITCZ and variability in ENSO. Two of the four droughts (ca. AD 1460-1640 and ca. AD 1790-1860) took 

place when the ITCZ was displaced to the south, a period that is actually characterized by a wetter mean 

climate on centennial to millennial time scale. These droughts hence represent unusual events on an 

inter-annual to multidecadal time scale. 

Comparisons of the data from Lake Kalimpaa with the drought occurrences observed by Crausbay et al. 

(2006) and Rodysill et al. (2012, 2013) show that disturbance events at Lake Kalimpaa partly coincide 

with drought periods in East Java. The older two of four drought periods observed in the Lake Logung 

record, match temporally with disturbance events at Lake Kalimpaa (Figure 5.7; Rodysill et al. 2012). 

Therefore, it is suggested that they are regional in spatial extent since age differences are within the 

range of dating uncertainties. The second drought period (ca. AD 1450 to 1620) at Lake Kalimpaa 

coincides well with findings from Lake Logung (ca. AD 1460-1640) and the radiocarbon dated drought 

Figure 5.7 Comparison of the Fe 
data from Lake Kalimpaa 
indicative for disturbance 
events with total inorganic 
carbon (TIC) data representing 
periods of drought at Lake 
Logung, East Java (Rodysill et al. 
2012). The black bars on the 
right represent periods of 
drought (based on radiocarbon 
dating) observed from Lake 
Lamongan, also East Java 
(Crausbay et al. 2006). The grey 
bar on the right represents the 
time period of the more recent 
drought at Lake Lamongan on 
the basis of U-series dating 
(Rodysill et al. 2013). The 
greyish bars (representing the 
core units II and IV of the 
Kalimpaa record which were 
deposited when disturbance 
events occurred in the 
catchment) are linked to 
periods of drought obtained 
from the Lake Logung record 
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at Lake Lamongan (ca. AD 1450-1650; Crausbay et al. 2006), but not with the same drought period 

applying U-series dating (Rodysill et al. 2013; Figure 5.7).  

These similarities indicate the occurrence of two drought periods that found their expression at least in 

Central Sulawesi and East Java during this time. Thus, it seems likely that the long-term trend towards 

higher rainfall intensities and possibly higher mean rainfall was superimposed by individual, inter-annual 

to multidecadal-scaled drought periods which were likely associated to intense ENSO warm events. The 

drought indicated from ca. AD 1450 to 1620 occurred during a period when the ITCZ was displaced to 

the south (Sachs et al. 2009) and wetter conditions were prevailing at Lake Kalimpaa on the centennial 

to millennial time scale. This may indicate that the movement of the ITCZ is not the main trigger for 

inter-annual to multidecadal drought occurrences in Central Sulawesi, but rather the variability of the 

Pacific Walker circulation and hence, ENSO. 

Conclusions 

The Lake Kalimpaa record is one of only a few terrestrial archives from Sulawesi providing information 

on palaeoenvironmental and palaeorainfall changes as well as fire history throughout the past ca. 1500 

years. The two main conclusions of this study are: a) in Central Sulawesi a long-term trend towards 

wetter conditions (higher rainfall intensities and/or mean rainfall) probably occurred on the centennial 

to millennial time scale starting from ca. AD 560 to the 20th century with highest rainfall intensities 

during the LIA; b) two disturbance events (ca. AD 1090-1190 and ca. AD 1450-1620) caused by forest 

fires occurred in the catchment area of Lake Kalimpaa. A comparison with other records exhibits that 

the long-term trend towards wetter conditions is associated with migrations of the ITCZ and the 

millennial-scale variability of ENSO/Pacific Walker circulation. The disturbance events around Lake 

Kalimpaa are probably related to regional droughts affecting at least East Java and Sulawesi. The 

occurrence of droughts in Indonesia which can be accompanied by forest fires, are mostly caused by 

the failure of the monsoon during ENSO warm events (El Niño years). While a major human impact in 

the Kalimpaa catchment cannot be excluded completely before the 20th century, this seems rather 

unlikely considering the regional correlation of drought periods at these times. 
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Abstract 

The tropical montane rainforests of the LLNP in Sulawesi, Indonesia provide many ecosystem services 

for the population inhabiting the area and harbour unique biodiversity in a key area for phytogeography. 

The mountain regions of Central Sulawesi experience perhumid climate conditions with few seasonal 

changes in precipitation, making the vegetation a possible sensitive target for future changes of 

precipitation patterns. The ecological consequences are hard to predict due to the lack of knowledge of 

the dynamical processes that govern these tropical forests. This research aims to shed light on the long-

term response of the montane vegetation of LLNP to stress caused by climate variability and human 

activities in the past. Palynological data are used to reconstruct forest vegetation dynamics and are 

compared to centennial time scale data of fire frequencies, palaeorainfall proxies and regional climate 

reconstructions to assess the drivers of these changes. Results reveal that the Fagaceae family 

dominates the entire recorded period, as they still do today. Fire episodes occurred locally only ten 

times in the last 1500 years but two periods were characterized by higher frequencies: between ca. AD 

1070 and 1200 and between ca. AD 1450 and 1660. The regional correlation of these events with 

periods of drought registered in Java suggests that centennial-scale increases in fire frequencies at Lake 

Kalimpaa were consequences of the vegetation being more prone to fire, probably due to more frequent 

or more intense El Niño events. In both cases Fagaceae did not decrease, indicating resilience towards 

droughts and fires of at least one species of that family. Following the first period of increased fire 

frequencies, the vegetation went through a long secondary forest phase lasting about two and a half 

centuries (ca. AD 1200-1450). Weinmannia was co-dominant together with Lithocarpus/Castanopsis. 

The second period of increased fire frequencies corresponds to a phase when records across the tropics 

show that the Intertropical Convergence Zone (ITCZ) was displaced to the south. High effective rainfall 

enhanced the growing of swamp taxa like Pandanus around the lake. Human-landscape interactions are 

evident only starting from the 20th century (from ca. 1950 to present) with Weinmannia rising probably 

due to the logging of emergent Agathis trees and/or landslides caused by the construction of the road 

which today passes near the lake. In general, palynological diversity values indicate that within-

landscape diversity (Whittaker’s gamma diversity) decreased when fires increased. Palynological rate of 

change and compositional turnover indicate the vegetation communities were more resilient to fire 

disturbance during period of high rainfall. A different trend is apparent starting from the second half of 

the 20th century, suggesting a change in the dynamical response of the vegetation communities to forest 

fires, possibly as a consequence of increasing human activities around the lake. The emergent tree 

Agathis, while being more responsive to long-term rainfall variability in the past, did not reestablish 

itself following the years of intensive selective logging in the second part of the last century. These 

findings improve our knowledge of the long-term ecology of Central Sulawesi, one of the world’s 

hotspots of biodiversity. 
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Introduction 

At the dawn of the 19th century Indonesia was one of the richest tropical countries in the world in terms 

of forest cover and biodiversity (Baas et al. 1990). However, forest cover decreased from estimated 170 

million ha around 1900 to 98 million ha by the end of the 20th century. The deforestation process is still 

accelerating today, due to extensive logging and conversion of forest to agricultural land (Miettinen et 

al. 2011). Aware of the consequences of these rapid changes, national and international efforts to 

develop forestry conservation plans started from the 1980s (Wardojo and Masripatin 2002; e.g. 

UNESCO Man and Biosphere Programme and Biodiversity Action Plan for Indonesia). These efforts 

include strategies aimed at protecting biodiversity and restoring ecosystem services by monitoring 

natural forest ecosystems in Indonesia. The Lore Lindu Biosphere Reserve and National Park (LLNP) in 

Central Sulawesi is part of the UNESCO Man and Biosphere Programme (MAB) and represents one 

example of these national and international management measures aimed to protect both natural 

ecosystems and cultural heritage. The protected area of 217982 ha comprises one of the largest 

continuous montane rainforests of Sulawesi and shows unique biodiversity (Cannon et al. 2007) 

representative of Sulawesi’s key position for biogeographical questions in SE Asia and Malesia (e.g. van 

Balgooy 1987; van Welzen et al. 2011). Studies of tree families along altitudinal transects have 

highlighted the importance of Fagaceae mainly with the genera Lithocarpus and Castanopsis (Culmsee 

et al. 2010). However, developing long-term forest ecosystem management plans is not an easy task. 

Apart from encroachment on the forest by population pressure and largely uncontrolled extraction of 

forest resources, an additional potential stress factor to consider is climate change.  

The main variable of Indonesia's climate is not temperature, which is rather constant throughout the 

year, but rainfall (Aldrian et al. 2004). The inter-annual variability of rainfall is influenced by the coupled 

ocean-atmosphere phenomenon El Niño-Southern Oscillation (ENSO): during El Niño (La Niña) warm 

(cold) phases, Indonesia experiences lower (higher) rainfall than in other years (Philander 1990; Cane 

2005). Predictions of changes in ENSO variability are uncertain, as it is not clear how this phenomenon 

is related to climate forcing factors and to what extent the increasing anthropogenic greenhouse gas 

emission will influence ENSO variability. Climate models predict a wide range of responses of ENSO from 

weaker to stronger, from more El Niño-like to more La Niña-like average conditions (e.g. Collins 2005; 

van Oldenborgh et al. 2005; Guilyardi 2006; Merryfield 2006). The tropical regions of SE Asia could 

experience a shift in precipitation patterns leading to more frequent and/or more severe droughts in 

the future (Christensen et al. 2007; Sheffield and Wood 2008). The ecological consequences of these 

scenarios for forests of the LLNP are hard to predict. Palaeoecological and palaeoenvironmental studies 

in Sulawesi are still rare, but they are important as they show vegetation, fire and climate history and 

add to the understanding of vegetation response to climate variability and human disturbance. In 

conservation science, palaeoecological data are invaluable for making well-founded predictions on how 
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the biological component of ecosystems may respond to future perturbations such as climatic changes 

(Willis et al. 2010; Cole 2012). The last 2000 years are of particular interest as they include marked 

regional to global scale climate variations that can be reconstructed at decennial to centennial 

resolution. However, the few available studies in Sulawesi (Gremmen 1990; Dam et al. 2001; Hope 2001) 

discuss long-lasting variations in the climate regime and have a relatively low temporal resolution for 

the last few thousand years. The aim of this study is to evaluate the response of the montane rainforests 

of LLNP to past stress caused by climate variability and human activities at the decennial to centennial 

time scale for the last 1500 years. We present results of palynological analysis of a sediment core taken 

from Lake Kalimpaa, located in the center of the Fagaceae dominated montane rainforest of LLNP.  

 Study area 

The study area is located in the northern part of the LLNP in Central Sulawesi (Figure 6.1). Sulawesi is the 

biggest island of the Wallacea biogeographical region, a relatively young, geologically highly complex 

island world (Hall 2009).  The crossroad position between the Sunda shelf (part of East Asia) to the west 

and the Sahul shelf (part of Australasia) to the east and the biogeographic complexity makes it a global 

biodiversity hotspot for plants and animals, with high levels of endemism (Myers et al. 2000).  

Figure 6.1 Map of the study region with the black star marking the location of Lake Kalimpaa. Upper left: location 
of the site with grey lines marking the separation of Sunda, Wallacea and Sahul biogeographic regions. Bottom left: 
location of Lore Lindu National Park in Central Sulawesi and primary upland rainforests cover (data source: Land 
Cover 2001, the Ministry of Forestry, Republic of Indonesia). Right: detailed altitudinal map of the location of Lake 
Kalimpaa showing the border of Lore Lindu National Park (black line) and the road which passes near the lake 
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Lake Kalimpaa (1°19’35’’S, 120°18’32’’E, also known as Lake Tambing) lies at 1660 m asl and was chosen 

because of its small catchment and its remote position far from the valleys in the north and south of 

LLNP which are more strongly impacted by human activities. The lake has an area of ca. 6.5 ha and a 

maximum water depth of 6.6 m and is therefore likely to record local vegetation changes in the past. 

About 200 m northeast of the shoreline the main asphalt road through the National Park passes and 

separates the lake area from the steeper mountainous area leading up to the peak of Mt. Rorekautimbu 

(ca. 2400 m asl). A small inflow reaches the lake mainly through a small swamp forest area in the 

northeast, dominated by Pandanus and palm species, and a small outflow is located in the southwest. 

Modern vegetation 

The rainforests of the LLNP are species-rich tropical forests. Most of the forests are still in good or old-

growth condition and are situated in mountain areas (Cannon et al. 2007). The vegetation gradient 

ranges from upper montane rainforest, above 2000 m asl, dominated by conifers and Myrtaceae to lower 

montane rainforest between 1000 and 2000 m asl. Tree transect studies along an altitudinal gradient in 

the LLNP revealed that Fagaceae, mainly represented by the genera Lithocarpus and Castanopsis, are 

important at all elevations but are dominant in the lower montane rainforest between 1200 and 1800 

m asl, followed by Myrtaceae, Theaceae, Symplocaceae, Magnoliaceae, Melastomataceae and 

Juglandaceae (Culmsee et al. 2011).  

Around Lake Kalimpaa, Castanopsis acuminatissima (Fagaceae) was found to be the dominant species, 

followed by Bischofia javanica (Phyllanthaceae), Calophyllum soulattri (Clusiaceae), Castanopsis 

argentea (Fagaceae), Prunus arborea (Rosaceae) and Ficus sp. (Moraceae) (Febriliani et al. 2013).  

Fagaceae play a key role in these forests in terms of aboveground biomass, which maintains a steady 

value despite altitudinal changes in forest structure and composition as opposed to the decline of 

biomass with increasing elevation usual for non-Fagaceous montane forests.  Therefore, the Fagaceae 

dominated forest of LLNP is of particular interest in light of climate mitigation initiatives, which aim to 

reduce CO2 emissions via forest preservation and restoration (Culmsee et al. 2010). The modern 

distribution of Lithocarpus and Castanopsis (Soepadmo 1971) indicates that these two tropical genera 

avoid seasonal climates. Their actual presence in Central Sulawesi seems to represent no exception.  

Climate 

The modern climate of Indonesia is controlled by the seasonal migration of the ITCZ across the equator 

and inter-annual changes in ENSO (Figure 6.2). As the ITCZ migrates southward during the austral 

summer, the northwest monsoon delivers humid air and heavy rainfall to Indonesia, whereas during 

austral winter the southeast monsoon brings relatively cool, dry conditions while the ITCZ is positioned 

over mainland Asia (Gunawan 2006). In the montane areas of Central Sulawesi the rainfall is strongly 
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determined by the local topography. The air masses reaching the area from the northwest and 

southeast are lifted orographically, leading to the formation of clouds and rainfall throughout the year. 

However, the monthly amount of rainfall formed during the southeast monsoon is slightly less than that 

of the northwest monsoon, as the former brings humid air masses, while the latter brings dry air from 

the Australian continent and the rainfall is therefore purely orographic. The modern intra-annual climate 

of the montane areas of the LLNP can be described as perhumid with at most two months of slightly 

lower precipitation, corresponding to the southeast monsoon peak in August (Gunawan 2006). Mean 

annual precipitation ranges between 1800 and 2100 mm, whereas mean annual temperature decreases 

with elevation from 21°C at 1000 m asl to 14°C at 2400 m asl (Hijmans et al. 2005; WorldClim 2006; 

Culmsee et al. 2010).  

Figure 6.2 Contour maps of 
NCEP/NCAR reanalysis datasets. 
a) Composite means of surface 
precipitable water in kg/m2 
with arrows denoting wind 
directions for the period 1981–
2010 for wet season (Dec–Jan–
Feb, left) and dry season (Jul–
Aug–Sep, right); b) composite 
means of precipitation 
anomalies in mm/day during 
the strong El Niño of 1997–
1998 
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Human-landscape interactions 

Few human activities were attested in the area of Lake Kalimpaa before the nearby road was 

constructed from 1970 to 1980. The following decades have seen the intensification of human 

disturbance of the forest, which was subjected to logging of Agathis by the company Kebun Sari PT 

(Adiwibowo 2005 p.113 and references therein). 

Prehistoric evidence of human-landscape interactions in Central Sulawesi are provided by combined 

palynological and archeological investigations in the Besoa valley around 40 km from the site of Lake 

Kalimpaa. The oldest indication of human impact might derive from the pollen record from the 

northeastern part of Besoa valley, which shows that an abrupt change of the vegetation composition 

occurred around 2000 years ago. Fagaceae-dominated montane rainforests were replaced by grassland 

vegetation and fires increased (Kirleis et al. 2011; Kirleis et al. 2012).  

Material and methods 

A 211 cm long sediment core was recovered from Lake Kalimpaa in 2006 using a Livingstone piston corer 

(Livingstone 1955). At the Department of Palynology and Climate Dynamics, University of Göttingen, 

Germany the core was split lengthwise, photographed and described lithologically and then stored in 

darkness at 4°C. Due to the complexity of the age-depth modeling of Lake Kalimpaa sediment core, the 

chronology here is adapted from Haberzettl et al. (2013, Figure 5.2a) where further details can be found. 

Several sets of bulk samples which had been sent for radiocarbon dating were not in stratigraphic order. 

A hard water-effect was excluded for Lake Kalimpaa due to the negligible sedimentary calcite contents 

(Wündsch et al. 2014). A mixture of allochthonous and autochthonous organic matter was considered 

as possible cause for the dating uncertainties. As a consequence, the older ages were considered as too 

old and only the youngest ages were used for the age-depth model, which is based on linear 

interpolation. The age-depth model was constructed for the first 155 cm, the lowermost reliable date 

being at 151 cm sediment depth (Haberzettl et al. 2013). This age-depth model was then corroborated 

by magnetostratigraphy. The palaeosecular variation of the Kalimpaa core was compared with the 

output of the CALS3k.4 model (Korte and Constable 2011). Both inclination and declination show 

isochronic similarities (Figure 5.2b), validating the age-depth model. Therefore, the upper 155 cm of the 

core was used for multi-proxy palynological and palaeoenvironmental analyses. The reconstruction of 

the palaeoclimatic conditions based on granulometric and geochemical analyses and the local fire 

history using macro-charcoal analysis were done on the same sediment core by Wündsch et al. (2014), 

see Chapter 5 for details. 
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Palynological analysis 

In total 40 sediment subsamples (0.5 cm³) were taken at 4 cm intervals along the core for analyzing 

pollen, spores and micro-charcoal particles. The samples were prepared using standard methods (Faegri 

et al. 1989) including 70% HF treatment. Before sample processing, the marker Lycopodium clavatum 

was added to the samples for the calculation of the concentration. Pollen and spore identification is 

based on the reference collection of tropical pollen and spores at the Department of Palynology and 

Climate Dynamics at the University of Göttingen, pollen keys and atlases for SE Asia (Flenley 1967; 

Powell 1970; Huang 1972; Garrett-Jones 1979; Stevenson 2000) as well as the online Australasian Pollen 

and Spore Atlas (APSA) hosted at Palaeoworks, Australian National University, Canberra 

(http://apsa.anu.edu.au). Identified pollen grains were counted to a sum of 300, excluding aquatic 

pollen. Percentages were calculated relative to the pollen sum. Castanopsis and Lithocarpus were 

counted together because pollen grains from these two genera are not distinguishable morphologically. 

The concentrations of the Pteridophyta spores were calculated as well in order to isolate the local 

climatic signal of this group. Concentrations are expressed in the diagrams as counts per cm3 of 

sediment. Pollen taxa are grouped in lower montane, upper montane and herbaceous taxa according 

to their altitudinal distribution and ecology (Keßler et al. 2002; Culmsee et al. 2010; Flora Malesiana 

collection: http://floramalesiana.org; Prosea collection: http://prosea.nl). For plotting and calculations 

the software C2 was used (Juggins 2007).  

Micro-charcoal analysis 

Micro-charcoal particles were counted on the same 40 slides analyzed for pollen and spores. Only micro-

charcoal particles that were found under a normal light microscope as black and completely opaque 

with sharp edges have been considered (10-150 µm). Following Finsinger and Tinner (2005), 200 items 

(total of micro-charcoal particles and Lycopodium clavatum spores) were counted and the 

concentration per unit of volume was calculated. The 95% confidence intervals of the micro-charcoal 

concentrations were calculated using Mosimann’s equation (Maher 1981) to evaluate the errors derived 

from the standard deviation of the number of markers in Lycopodium tablets and volumetric sampling, 

and thus isolate samples with significant variation in the amount of micro-charcoal. 

Numerical analysis 

Clustering 

Local pollen assemblage zones are defined numerically according to the dissimilarity matrix of Euclidian 

distances of squared root transformed percentage data, via constrained cluster analysis using the 

software CONISS (Grimm 1987; Grimm 1993). All pollen and spore taxa were included in the analysis. 

http://apsa.anu.edu.au/
http://floramalesiana.org/
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Palynological diversity index (PDI) 

From the palynological results palynological diversity indices were estimated via ‘rarefaction analysis’ 

(Siegel 1986) which is the calculation of the expected number of taxa E(Tn), in a random sample of n 

individuals from a smaller population of N individuals containing T taxa (Birks and Line 1992). The small 

size of Lake Kalimpaa indicates that it collects a large portion of pollen from the near surroundings and 

the PDI is probably close to Whittaker’s gamma diversity/within-landscape diversity or at least within 

pollen-source diversity (Whittaker 1977; Odgaard 2007). Rarefaction was calculated with the software 

PAST (Hammer et al. 2001). 

Palynological compositional change (PCC) or compositional turnover 

Detrended canonical correspondence analysis (DCCA) was used to determine the amount of 

palynological compositional change or compositional turnover using age as the external constraint (Birks 

2007; Birks and Birks 2008). Results were scaled in standard deviation (SD) units of compositional 

turnover (= beta diversity or diversity between habitats or communities within a landscape: Hill and 

Gauch 1980). Changes in palynological composition were estimated by looking at the range of sample 

scores on the first, time-constrained DCCA axis. Larger variation in the sample scores within the 

sequence implies greater compositional turnover between time-constrained samples. All pollen and 

spores were included in the analysis. Percentages were transformed to square roots to stabilize 

variances, rare taxa were not down-weighted, detrending was by segments and non-linear scaling was 

applied. The DCCA was implemented using CANOCO 5 (ter Braak and Smilauer 2002). 

Rate of Change (ROC) or velocity 

A linear interpolation of pollen and spore percentages was done to provide a time series of equal time 

intervals of 10 years. Time steps were then computed by dividing the chord distance of adjacent 

subsamples by the time interval in calibrated years (AD). The analysis used the distances computed from 

square root transformed pollen and spore percentages data. A LOWESS smoother (span=0.3) has been 

fitted to the plot to highlight the major trends in the estimates. The analysis was performed by MULTIV 

software (http://ecoqua.ecologia.ufrgs.br/ecoqua/MULTIV.html). 

Results   

Stratigraphy of the Lake Kalimpaa core 

The Lake Kalimpaa profile consists of laminated silt-clay sediments with organic matter. The laminae are 

irregularly distributed and they are characterized by alternating darker and lighter bands. Between 153 

cm and 128 cm (ca. AD 560–1090) the sediments are finely laminated blackish grey and light grey silts. 

From 128 cm to 118 cm (ca. AD 1090–1190) sediments are homogeneous black composed of fine silts 

http://ecoqua.ecologia.ufrgs.br/ecoqua/MULTIV.html
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to fine sandy coarse silts. From 118 cm to 93 cm (ca. AD 1190–1450) the sediments are finely laminated, 

with light greyish to grey layers consisting of medium to fine sandy coarse silts. Partially laminated, dark 

brown to black fine sandy coarse silts occur from 93 cm to 77 cm (ca. AD 1450-1620). The sediments 

from 77 cm to 48 cm (ca. AD 1620–1910) exhibit a greyish color and contain partially laminated, fine 

sandy coarse silts with an intercalated sand layer. The top of the core consists of partially laminated 

brownish medium to fine sandy silts (Wündsch et al. 2014). 

Chronology 

According to the age-depth model (Haberzettl et al. 2013; Figure 5.2a), the first 155 cm of the Lake 

Kalimpaa core represents the past 1500 years. A marked increase in sedimentation rate characterizes 

the most recent sediments. While the mean sedimentation rate between 151 and 44 cm is about 0.8 

mm year-1, for the youngest sediments from 44 cm to the top of the core, the age-depth model provides 

a sedimentation rate of ca. 9.2 mm year-1 on average. A single pollen grain of Pinus was identified at 30 

cm depth. Pinus was only recently introduced in Central Sulawesi during a restoring campaign which 

started in 1960-70 in three different locations near the study site (Tamandue, east Napu valley; 

Bolapapu-Boya and Nano, Kulawi valley). Therefore, the presence of Pinus confirms that the first 30 cm 

of the Lake Kalimpaa core records the past 30-40 years.  

Palynological and micro-charcoal results 

The pollen diagram shows the most important pollen and spore taxa (Figure 6.3) out of the 121 different 

types which were identified 122 rare types are still unknown. Based on the constrained cluster analysis 

the diagram is divided into 7 pollen and spore assemblage zones from Kal-I to Kal-VII. Zone 

characteristics are summarized in Table 6.1. Throughout the whole record the pollen assemblage 

reflects the lower montane rainforest tree taxa, represented mainly by Lithocarpus/Castanopsis (21-

43%), Weinmannia (1-32%), Euphorbiaceae (1-14%), Clethra (up to 11%), Elaeocarpaceae (up to 4%) 

and Myrtaceae (up to 4%). Swamp taxa are also well represented by Pandanus (up to 14%). Fern spores 

are highly diverse (66 morphological types) and abundant (up to 18%). Only few taxa are restricted to 

the upper montane vegetation: Phyllocladus, Ericaceae, Chlorantaceae and Myricaceae (Culmsee et al. 

2011). Pollen concentration ranges between ca. 14x103 and 273x103 grains cm-3 (mean 97x103 grains 

cm-3) with the exception of an unusual high value at 43 cm sediment depth (680x103 grains cm-3). 

Micro-charcoal particles show constantly high values along the studied core but only one peak at 143 

cm (ca. AD 820) is statistically significant. 
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Zone Core 
depth 
(cm) 

Age (AD) Sedimentation 
rate (mm yr-1) 

Pollen zone characteristics Palynological Diversity Index (PDI), 
Palynological Compositional Change 
(PCC) and Rate of Change  (ROC) 

Charcoal results and fire frequencies * 

Kal-I  155-128  ca. 550-1070 from 0.4 - 1 Relatively high proportion of herbaceous taxa 
especially Gunnera (up to 2%) and Poaceae (up to 
2%); low values of Agathis (up to 1%); total 
concentrations of Pteridophyta the lowest of the entire 
record (<5614 spores cm-3), in particular tree ferns 
(<4%)  

High values of PDI and increasing trend 
from 62 to 75 pollen and spore types at the 
end of the zone; maximum PDI value at 
139 cm depth (ca. AD 930); PCC constant; 
increasing trend of ROC corresponding to 
PDI increases 

One significant peak in the curve of micro-
charcoal at 143 cm (ca. AD 820); macro-charcoal 
particles absent except at 144 (ca. AD 794) and 
140 (ca. AD 900) cm; increase of fire frequency at 
the end of the zone (from 0 to 1.93 fires 200 yr-1); 
low values of peak magnitude (<3 pieces cm-2 per 
peak); one local fire episode at 140 cm depth (ca. 
AD 880) 

Kal-II 128-121  ca. 1070-1170  1 Increasing proportion of Agathis (up to 2%); decrease 
of Gunnera and Poaceae; high values of Clethra 
characterize the upper boundary of the zone (up to 
11%); increase of Pteridophyta spore concentration 
and rise of tree fern (up to 3%) and Blechnum spores 
(up to 2%) 
 

Decreasing trend of PDI; minimum value  
at 123 cm (ca. AD 1140, 59 pollen and 
spore types) 

Rise of fire frequencies up to 125 cm (ca. AD 
1120, 2.93 fires 200 yr-1). High values of peak 
magnitude, maximum at 128 cm (ca. AD 1090, 57 
pieces cm-2); three fire episodes 

Kal-III 121-93  ca. 1170-1450  1 Rise of Weinmannia curve (up to 23%) and mirrored 
decrease of Lithocarpus/Castanopsis; Agathis less 
represented at the beginning of the zone 

Decreasing trend of PDI continues with 
minimum value at 107 cm (ca. AD 1306, 52 
pollen and spore types) and then 
increasing trend towards the end of the 
zone; PCC and ROC changes occur at 115 
cm (ca. AD 1200) 

Decrease of fire frequencies with minimum at 107 
cm (ca. AD 1306, 0.78 fires 200 yr-1) and then 
increasing trend towards the end of the zone. One 
single local fire event detected at 100 cm (ca. AD 
1386) 

Kal-IV 93-73 ca. 1450-1660  1 Increase of Pandanus pollen (up to 15%); frequent 
occurrence of pioneer, light-demanding 
Euphorbiaceae: 
Macaranga/Mallotus (up to 8%) and 
Baccaurea/Bischoffia (up to 3%); tree ferns decrease 

High, oscillating values of PDI (between 66 
and 74 pollen and spore types); minimum 
at 83 cm (ca. AD 1554, 56 pollen and spore 
types) 

Increasing trend of fire frequencies continues, with 
maximum at 83 cm (ca. AD 1554, 3.56 fires 200 
yr-1); four fire episodes 

Kal-V 73-45  ca. 1660-1950  1 Decreasing trend of Pandanus; decreased proportions 
of Macaranga/Mallotus and Baccaurea/Bischoffia; 
frequent occurrence of Lycopodiaceae (up to 9%), 
Huperzia (up to 2%), Asplenium (up to 1%) and tree 
ferns (up to 9%) 

Beginning of a decreasing trend of PDI Decrease of fire frequencies, with minimum at 38 
cm (ca. AD 1826, 0.14 fires 200 yr-1) and then 
rising trend towards the end of the zone; no fire 
peak passed the minimum-count screen test 

Kal-VI 45-36 ca. 1950-1970  from 1 to 5.5 Rise of Weinmannia curve (up to 32%) and Fabaceae 
(up to 18%); decreased proportion of Agathis; spores 
of Pteridophyta almost absent (total sum less than 1% 
at 43 cm, ca. AD 1960); pollen concentrations jump to 
677,247 grains cm-3 

Lowest PDI value at 43 cm (ca. AD 1960, 
44 pollen and spore types); ROC 
increases 

Rising trend of fire frequency  continues; no fire 
peak passed the minimum-count screen test 

Kal-VII 36-0 ca. 1970-2006  from 5.5 to 23 Decrease of Weinmannia; low values of Agathis (less 
than 1%); increase of Pandanus (up to 12%) and 
Moraceae/Urticaceae (up to 3%); first appearance of 
Lamiaceae pollen type and Isoetes spores 

Rapid increase of PDI (between 60 and 70 
pollen and spore types); greatest change 
in PCC and ROC 

Rising trend of fire frequency continues to present; 
one local fire event  detected at 34 cm (ca. AD 
1976) 

Table 6.1 Zone characteristics, pollen and spores percentages, PDI, PCC, ROC, charcoal and fire frequencies of the Lake Kalimpaa core (* macro-charcoal data from Wündsch et al. 2014) 
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Palynological diversity, amount of compositional turnover and rate of change 

Palynological diversity values change markedly along the record. The lowest PDIs are recorded at 123 

cm (ca. AD 1140, 59 pollen and spore types), at 107 cm (ca. AD 1310, 52 pollen and spore types), at 83 

cm (ca. AD 1550, 56 pollen and spore types) and at 43 cm (ca. AD 1960, 44 pollen and spore types). In 

general, periods of higher (lower) palynological diversity correspond to periods of low (high) fire 

frequency (Wündsch et al. 2014; Figure 6.3b). Low PDIs however characterize zones Kal-III and Kal-VI 

due to the dominance of pollen from Weinmannia and Lithocarpus/Castanopsis which together account 

for up to 54% of the total sum of pollen and spores in Kal-III and up to 58% of the total sum of pollen 

and spores in Kal-VI. The zone representing approximately the last 40 years, Kal-VII, is characterized by 

a different pattern. Here, increasing fire frequencies correspond to higher PDIs.  

The length of the first time-constrained DCCA axis provides an estimate of the amount of palynological 

compositional change (PCC) or compositional turnover within the considered time period (Birks 2007). 

The total turnover estimate for the entire pollen record of Lake Kalimpaa is 0.924 SD. This gradient 

length indicates that samples of the sequence differ in their palynological composition by ca. 25% of the 

total assemblage (Hill and Gauch 1980). This suggests that important changes occurred in the 

community composition of the lower montane rainforests. These dynamics are not clearly visible when 

looking at the percentage curves of the most important taxa represented in the pollen assemblage of 

Lake Kalimpaa. The range of compositional turnover changes markedly at the beginning of Kal-III 

corresponding to the rise in Weinmannia proportion. Afterwards, when Weinmannia values decrease 

again, the range of compositional turnover changes slowly and linearly until Kal-VII where the greatest 

compositional change occurred. Since the PCC tends to emphasize changes in taxonomic composition 

(Anderson et al. 2006), we calculated also the rate of compositional changes or velocity (ROC) that 

estimates both changes in assemblage percentage values as well as changes in taxonomic composition, 

revealing also the changes in relative abundance (Anderson et al. 2006). As for PCC, ROC increases in 

zones Kal-III, and Kal-VII, suggesting that both taxonomic composition and relative abundance of taxa 

changed. Opposite to PCC, ROC values are high also in Kal-VI. 
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Figure 6.3 Summary diagram from Lake Kalimpaa showing the lithological table and: a) more common and 
significant pollen taxa (expressed in percentages of total pollen sum); b) more common spore taxa (percentages 
of total sum), total pollen and Pteridophyta concentrations (pollen-spore cm−3), micro charcoal concentrations. 
Macro-charcoal concentrations (particles cm−3), fire peaks which passed the “Poisson minimum-count” screening 
represented with + symbols and the grey circles representing the peaks which did not pass the screening and fire 
frequencies (per 200 yr) (from: Wündsch et al. 2014), palynological diversity index (PDI based on sum of 300), 
palynological compositional change or turnover (PCC in standard deviation units) and rate of change per 10 years 
(ROC, in black: 0.3 lowess smooth, in grey: raw data). Grey bars on micro-charcoal and PDI values represent 0.95 
confidence intervals. Outline curves showing an exaggeration of 3× to highlight variations of the taxa 
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Interpretation and discussion 

For the interpretation of possible drivers, the change in pollen assemblage zones is compared with 

palaeoclimatic and fire history reconstructions based on macro-charcoal, grain size and geochemical 

investigations on sediment samples of the Lake Kalimpaa core as interpreted by Wündsch et al. (2014) 

as well as other regional records of palaeoclimate (Figure 6.3 and Figure 6.4 and Chapter 5). 

Palaeoclimatic evidence from continental Asia, Africa and the Americas (e.g. Haug et al. 2001; Tierney 

and Russell 2007; Tierney et al. 2010) suggests that the ITCZ mean position has changed during the past 

millennium, leading to a substantial rearrangement of rainfall patterns across the tropical and 

subtropical regions of the world. Superimposed onto the latitudinal movements of the ITCZ is the 

decade- to century-scale rainfall variability caused by changes in amplitude and frequency of the ENSO 

phenomenon. El Niño phases are associated with cooler sea surface temperatures (SSTs) in the West 

Pacific Warm Pool (WPWP) region and warmer SSTs in the central and eastern Pacific, which drive 

anomalous easterly winds across the equatorial Pacific and Indonesia and weaken the Walker circulation 

and vertical convection over the WPWP. The anomalous easterlies prevail into austral summer, delaying 

the arrival of the northwest monsoon causing droughts in SE Asia (Cane 2005).  

The analysis of palaeorainfall and fire proxies on the Lake Kalimpaa core, revealed a trend from ca. AD 

560 to the 20th century of increasing rainfall intensities associated with a southern migration of the ITCZ. 

Additionally, two disturbance events (ca. AD 1090-1190 and ca. AD 1450-1620) caused by forest fires 

occurred in the catchment area of Lake Kalimpaa. The authors interpreted these events associated with 

increased fire frequency around Lake Kalimpaa as probably related to regional droughts affecting at 

least East Java and Sulawesi (Wündsch et al. 2014; Figure 6.4).  

Vegetation composition and fires  

Pollen and spore analyses of the sediment core from Lake Kalimpaa illustrate the dynamics of the lower 

montane rainforest during the past 1500 years. If Phyllocladus pollen grains are excluded, the sum of 

taxa restricted to the upper montane rainforest never reaches 3% (mean value 1%). Therefore, the Lake 

Kalimpaa pollen record reflects local vegetation of the lower montane rainforest, with little influence 

from long-distance transported pollen from upper montane vegetation. The pollen assemblage reveals 

that Fagaceae (Lithocarpus/Castanopsis) dominated the vegetation surrounding the lake for the entire 

period recorded, together with Cunoniaceae, Euphorbiaceae, Clethraceae, Elaeocarpaceae, Myrtaceae, 

Pandanaceae and Pteridophyta. In the background of the Fagaceae-dominated pollen spectrum, 

changes in certain local taxa indicate a dynamic response of the forest to climate variability. The lack of 

correlation between micro-charcoal concentrations and local fire frequencies confirms that the former 

were transported from long distances, probably from lower altitudes, as macro-charcoal analysis of a 
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sediment core taken at Mt. Rorekautimbu (ca. 2400 m asl) indicates that the upper montane mossy 

forests were free of fires for at least the last 9000 years (Biagioni data unpublished). 

Long-term palaeoecology and drivers of change 

From ca. AD 550 to 1070 (zone Kal-I) values of tree ferns, represented by species of Cyatheaceae and 

Dicksoniaceae were low. In the lower montane rainforest of the LLNP most tree fern species are slow 

growth forest species occurring only in rather shady forest and do not tolerate strong seasonality (de 

Winter and Amoroso 2003). Additionally, drier conditions might be inferred by the low presence of 

Agathis, a very large emergent tree, which is confined to regions with rainfall well distributed over the 

year (de Laubenfels 1986). Small openings in the forest might be indicated by the frequent occurrence 

of herbaceous species, in particular Poaceae and Gunnera. Pollen-based vegetation reconstruction at 

Lake Kalimpaa suggests that the climate was drier from ca. AD 550 to 1070. This is confirmed by run off 

proxies which are related to palaeorainfall such as grain size and geochemical element ratios of the 

sediment of the Kalimpaa core (Wündsch et al. 2014, Figure 6.4).  

The rising trend in palynological diversity index (PDI) observed from ca. AD 900 to 1070 corresponds to 

increasing mean average rainfall as indicated by run off proxies (Wündsch et al. 2014, Figure 6.4). This 

suggests that rainfall was a limiting growth factor for certain taxa (for example Agathis and tree ferns), 

reducing within-landscape diversity (gamma diversity). A gradual increase in the rate of change curve 

(ROC) is also observed for this period, while the range of the palynological compositional change or 

turnover (PCC) remained constant confirming that changes occurred within the vegetation communities 

and no marked changes in taxonomic composition occurred.  

Natural fires started by lightning or spontaneous combustion occur in SE Asian rainforests but usually 

do not completely destroy the forest and merely cause the death of a few trees (Mueller-Dombois and 

Goldammer 1990; Flenley and Butler 2001). However, if lightning occurs during a period of frequent or 

longer than normal droughts the rainforests become more susceptible to fire and the frequency of fire 

episodes increases. The low frequency of local fire episodes from AD 550 to 1070 might indicate that 

the vegetation composition around Lake Kalimpaa was less prone to fire during this period and thus 

long periods of drought were not common despite permanent drier than average conditions. An 

exception is recorded at ca. AD 800-900 when regional and local fires were more common, as indicated 

by both micro- and macro-charcoals. 

From ca. AD 1070 to 1170 (zone Kal-II) a change in the frequency of fire episodes occurred towards more 

frequent fires per 200 yr. Long-term disturbance can be inferred from the increase of pollen of Clethra, 

a genus of light-demanding trees which tend to remain sterile in dense forest and only flower at forest 

borders and in more open vegetation. The maximum of Blechnum might be the consequence of 

frequent fires as some species of Blechnum are colonizers after fire disturbances and can re-sprout from 
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trunks after fire. Increasing fire frequencies in Lake Kalimpaa suggest that longer and or more frequent 

droughts occurred during this century. Furthermore, grain size data of the Lake Kalimpaa sediment core 

show high variability of sand and clay at 136-118 cm, ca. AD 1010 to 1190, suggesting that the rainfall 

regime was characterized by alternating intensive rain and dry periods (Wündsch et al. 2014). The 

geochemical composition of the lacustrine sediments also shows variation as a consequence of 

disturbance around the lake. Fe and S markedly increased as a result of enhanced supply of organic 

Figure 6.4 a) Locations of the sites mentioned in the text; b) comparison of palynological diversity index (PDI), 
palynological compositional change or turnover (PCC), rate of change (ROC), selected % pollen taxa (Fagaceae, 
Weinmannia and Macaranga/Mallotus)with % of clay grain size, % of Fe, number of fire episodes per 200 years of 
Lake Kalimpaa sediment core (Wündsch et al. 2014) and total inorganic carbon (%, TIC) from Lake Logung, Java, as 
drought indicator (Rodysill et al. 2012), δD value of leaf waxes from the Makassar Strait cores 31MC and 34GGC (3 
point moving average of raw data) interpreted to represent rainfall amount changes as a consequence of the ITCZ 
mean position changes (Tierney et al. 2010). In black: 0.3 lowess smooth, in grey: raw data. Grey areas underline 
the correlation of disturbance events and regional droughts as discussed in the text and interpreted by Wündsch et 
al. (2014) 
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material into the lake which promotes reducing conditions in the sediment due to its microbial 

decomposition (Wündsch et al. 2014). 

Results from a sediment core from the megalithic Pokekea complex in the Besoa Valley (Kirleis et al. 

2011; Kirleis et al. 2012), about 40 km south of Lake Kalimpaa, show that the sediment composition 

changed from lacustrine to peaty between ca. AD 710 and 1280 and the pollen concentrations decrease 

due to hydrological variations. This indicates an aridification of the floodplain area and may have been 

caused by either human impact or drought (Kirleis et al. 2011). Similar to Lake Kalimpaa, leaf wax δD 

data from Makassar Strait (Tierney et al. 2010) and geochemical data from East Java (Rodysill et al. 

2012), record droughts during this period. The regional correlation suggests that the increased number 

of fire episodes at Lake Kalimpaa were not caused by human activities but more likely were 

consequences of natural fires resulting from more frequent and/or longer droughts. Droughts in 

Indonesia result from the failure of the monsoon, which often coincides with El Niño warm events (Cane 

2005). 

The change in fire regime was accompanied by decreasing PDIs. However, Lithocarpus/Castanopsis did 

not decrease during this period, indicating that at least one species of Fagaceae was not affected by the 

increase in fire episodes.  

During the following three centuries, from ca. AD 1170 to 1450 (Kal-III), the greatest change in 

composition occurred as indicated by PCC. At the beginning of the zone (from ca. AD 1170 to 1300) fire 

frequencies were very low. However, drier climate conditions can be inferred from the relatively low 

abundance of Agathis and high (low) values of clay (sand) (Wündsch et al. 2014). This might be related 

to a more northerly position of the ITCZ and the corresponding weakening of the northwest monsoon 

over Indonesia (Tierney et al. 2010). This is consistent with records from SE Asia and mainland Asia which 

suggest that the ITCZ reached its northernmost extent between AD 900 and 1100, shifted southward 

and reached its southernmost extent between AD 1420 and 1640, and then began to shift northward 

again between ca. AD 1700 and 1800 (Wang et al. 2005; Zhang et al. 2008; Sachs et al. 2009). A more 

northerly position of the ITCZ would have shifted the tropical rain belt away from Indonesia on a mean 

annual basis and could have resulted in a longer dry season in the montane areas of Central Sulawesi 

compared to today’s annual conditions. In contrast, a southward migration of the ITCZ would have 

strengthened the northwest monsoon, causing wetter conditions with rainfall more evenly distributed 

over the year.  

At the same time, PDIs decreased and ROC increased as a consequence of the rise of the Weinmannia 

proportion. The co-dominance of Weinmannia trees in the lower montane rainforests surrounding Lake 

Kalimpaa might represent a secondary forest phase following the previous hundred years of more 

intense fire disturbance and the onset of drier/more seasonal conditions. Pioneer species like 

Macaranga/Mallotus are little represented in this period, possibly due to their faster replacement in 
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the forest. Weinmannia species can act as pioneers but also grow into tall canopy trees (unlike 

Macaranga and Mallotus). Therefore, they are more adapted in terms of competition for space with 

other canopy trees and can be considered late succession secondary forest trees or ‘long-lived pioneer’ 

trees (Lusk 1999). Little information is available about this genus in the montane vegetation of the LLNP. 

However, Febriliani et al. (2013) reported Weinmannia descombesiana as one of the common species 

found as seedling in the understory around Lake Kalimpaa and Weinmannia  descombesiana has been 

observed growing along roads and disturbed patches of forest (Brambach, personal communication). 

Starting from ca. AD 1300 Agathis increased, pointing to increasing average rainfall consistent with the 

southward migration of the ITCZ, while Weinmannia slowly decreased. 

From ca. AD 1450 to 1660 (Kal-IV) a major change in fire regime towards more frequent fire episodes 

occurred. Increasing fire frequencies suggest longer or more frequent periods of drought. Similarly, 

multidecadal- to centennial-scale droughts are recorded in Lake Logung (Rodysill et al. 2012, Figure 6.4) 

and Lake Lamongan (Crausbay et al. 2006) in Java. In contrast, the increasing presence of Pandanus, a 

small tree nowadays locally abundant in swamp depressions around the lake, indicates that, on average 

and in normal conditions, rainfall was high during this period. The ITCZ reached its southernmost 

position during this period, when archives across Indonesia record the wettest conditions for the last 

2000 years. A confirmation that higher rainfall characterized the central Sulawesi area during this period 

comes also from the sediment of the Pokeka site core where the growth of peat indicates a hydrological 

change towards wetter conditions (Kirleis et al. 2011). Cooler SSTs are inferred from foraminifera from 

Makassar Strait marine cores (Newton et al. 2006; Oppo et al. 2009). Modeling experiments show that 

if there was a cooling over the entire tropics, the Pacific would change more strongly in the west than 

in the east, where strong upwelling holds the temperature closer to pre-existing values. Hence, the east-

west temperature gradient would weaken, leading to a more El Niño-like state (Cane 2005). The 

persistence of a high rainfall regime on the centennial to millennial time scale, superimposed onto 

decadal scale periods of drought, might explain the apparently contradictory abundance of swamps and 

more frequent fire episodes. Disturbance of the area around the lake is also underlined again by 

increased Fe and S in the Lake Kalimpaa sediment core (Wündsch et al. 2014). Fast-growing, light-

demanding pioneer trees like Macaranga/Mallotus and Baccaurea/Bischoffia increased while 

Lithocarpus/Castanopsis show no variation. Both PCC and ROC remained on the ranges of the previous 

zone, suggesting that vegetation communities did not change markedly. Diversity was high, probably 

due to the presence of pioneer and fire tolerant taxa. However, an exceptionally low PDI value 

characterized the 16th century while, at the same time, fire frequencies were supposedly very high.  

The following centuries from ca. AD 1660 to 1950 (Kal-V) were characterized by an unclear mixture of 

climate and disturbance indicators. Initially, fire frequencies decreased and fast-growing pioneer species 

like Macaranga/Mallotus decreased. The increased presence of Lycopodiaceae and Asplenium might 
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indicate either wetter conditions or fast colonization after disturbance. However, from the second half 

of the 19th century a decreasing trend in PDI is apparent while at the same time fire frequencies 

increased and Pandanus decreased. 

Two decades of intense disturbance around Lake Kalimpaa are clearly recorded during the last century 

(ca. AD 1950-1970, Kal-VI). The pollen concentration increased notably, while spores of Pteridophyta 

almost disappeared during that period. Spores of ferns are relatively heavy and are usually transported 

over short distances by water. The absence of fern spores point towards an interruption of water inflow 

from rivers and/or small streams into the lake, while the increase of long-distance transported pollen 

grains such as Phyllocladus indicates that the deposition of allochthonous materials increased. From the 

1960s to the beginning of the 1980s the logging company Kebun Sari was active in the surrounding area. 

The road, which today enables access to the mountain areas surrounding Lake Kalimpaa, was 

constructed in this period. It is possible that the construction works changed the course of an influent 

stream, temporarily blocking the inflow into the lake while sediment deposition increased as a 

consequence of higher erosion caused by the activities of the company in the area. Kebun Sari’s main 

target was the valuable wood of Agathis. The logging of these trees is reflected in the pollen diagram by 

the decrease of Agathis percentages. A second phase of high frequencies of Weinmannia in this period 

might confirm the role of at least one Weinmannia species as a secondary forest tree, as indicated by 

the relative synchronicity between the disturbance event and the rise of Weinmannia during this period. 

After the disturbance around the lake ended, the forest quickly recovered its former state, as indicated 

by the decrease of Weinmannia. The exceptionally low PDI value and high ROC might be partly artifacts 

due to the dominance of Weinmannia and the absence of most of the Pteridophyta spores from the 

pollen assemblage.  

During the last decades, from ca. 1970 to present (Kal-VII), the record indicates that a highly diverse 

lower montane rainforest surrounded Lake Kalimpaa, as shown by the high values of PDI. The greatest 

change in PCC and ROC occurred in this period. For the first time in 1500 years, increasing fire 

frequencies correspond to higher diversity. This suggests a change in the dynamical response of the 

vegetation communities after disturbance occurred, possibly as a consequence of increasing human 

activities around the lake. However, changes in PDI, PCC and ROC values might be a consequence of the 

high sediment accumulation rate that characterized the uppermost 30 cm of the Lake Kalimpaa core 

(Haberzettl et al. 2013). The percentage of Agathis pollen did not return to the values shown before the 

Kebun Sari logging activities started in the second half of the 20th century. 

Conclusions  

Pollen, spore, and charcoal records from Lake Kalimpaa reveal the long-term response of the Fagaceae-

dominated montane rainforest towards climate variability and human disturbance for the past 1500 
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years. The pollen results show the resilience of the Fagaceae towards the decennial to centennial scale 

climate variability of the past 1500 years. However, the vegetation seems to be more prone to fires 

during long periods of drought despite the annual ever-wet conditions and high rainfall regime. The 

combination of decreasing average rainfall, long-term fire and human disturbances increased the 

chance for at least one species of Weinmannia to become common in open patches of the lower 

montane forest of the LLNP. However, the system was more resilient to fire disturbance when average 

rainfall was higher. 

Important human manipulation of the landscape is only visible starting from the 20th century with 

changes in sedimentary processes as well as vegetation composition.  

While the long-term results suggest that these ecosystems have shown resilience to natural climate 

disturbances in the past, the more recent anthropogenic disturbances have changed the dynamical 

response of the vegetation communities to climatic disturbance events. 
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Abstract  

The Lindu plain, located in the northern mountainous region of the LLNP in Sulawesi, Indonesia, provides 

many ecosystem services for the population inhabiting the area and harbours a unique biodiversity. 

Palynological, charcoal and diatom analyses of a lake sediment core from Lake Lindu (Danau Lindu) 

reveal that during the last 1000 years the Lindu plain has been modified by human activities. Evidence 

of frequent burning and possible shifting cultivation from an earlier phase from ca. AD 1000 to 1200 

might be related to the metal age population which erected the megaliths in the province of Central 

Sulawesi. From ca. AD 1200–1700 there followed 500 years of wetter climate conditions, corresponding 

to the southward movement of the Intertropical Convergence Zone. At the same time, decreases of 

macro-charcoal concentrations and pioneer vegetation indicators show that the use of the landscape 

of Lindu plain had become more permanent. Following a phase of forest recovery from ca. AD 1730 to 

1910, the most recent part of the Lake Lindu record shows a trend towards deforestation that started 

in the late 20th century, lasting until now. The lake level started to fall at the beginning of the 20th 

century, as shown by the increase of sedimentation rate and supported by low pollen concentration 

and palaeomagnetic data. Such a change was unprecedented for the last 1000 years covered by the 

record, and it has no link to the climate variability as reconstructed for the last hundred years. If 

deforestation increases and a larger amount of water is channeled away from the lake for irrigation 

purposes, the lake level will continue to fall. This suggests that there is a need for better management 

of the forests surrounding the plain and of the irrigation systems in the area open for cultivation. 

Introduction 

Present-day tropical montane rainforests in the area of the LLNP in the province of Central Sulawesi, 

Indonesia, are rich in biodiversity and an important source of ecosystem services for the local population 

inhabiting the area. The montane rainforests within the LLNP, a UNESCO Man and Biosphere reserve 

since 1977, are mostly untouched old-growth forests (Cannon et al. 2007). However, during the last 

three decades, a growing population and political and economic initiatives have increased the pressure 

on previously relatively isolated communities, leading to conflicts for land and the opening up of further 

forested areas for agriculture (Acciaioli 2001). Within the context of sustainable management of 

conservation areas and agro-landscapes, palaeoecological and palaeoenvironmental studies provide a 

valuable contribution by showing how the vegetation and the environment have changed as a 

consequence of long-term climate variability and human-landscape interactions. In order to understand 
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the present and future landscape dynamics, it is important to have a historical perspective when 

analyzing the effects of environmental changes caused by human activities. However, little is known 

about the prehistory and history of the LLNP. 

Megaliths found in the area of the park indicate that well-organized human societies have been present 

there for at least the last 2000 years. Closer investigations have only been conducted in the Besoa valley 

in the southern part of the park (Figure 7.1), where pollen analysis has revealed that the valley has been 

deforested for 2000 years (Kirleis et al. 2011; Kirleis et al. 2012).  

Figure 7.1 a) Map of the study region showing the location of the Lake Lindu sediment core (star). Upper left 
location of the Lore Lindu National Park (LLNP, dark grey) in Central Sulawesi (light grey); upper right location of 
the Lindu plain, Bada, Besoa and Napu valleys, borders of the LLNP and other places mentioned in the text; bottom 
locations of the villages of the Lindu plain and the coring site. Data source, Land Cover 2011, the Ministry of 
Forestry, the Republic of Indonesia (http://appgis.dephut.go.id/appgis/download.aspx); b) upper photo view of the 
Langko village and grassland on the southwestern shore of the Lindu lake in 1902 (from Sarasin and Sarasin 1905). 
Bottom photo; view of the alang-alang (Imperata cylindrica) grassland from the village of Puroo in 2012, photo by 
S. Biagioni; c) example of charred leaf remain from grass found at 120 cm (ca. AD 1100) and details of dumb-bell 
silica body 

http://appgis.dephut.go.id/appgis/download.aspx
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Isolated from the valley to the north and south, the present-day economy of the four villages on the 

shore of Lake Lindu, Anca, Tomado, Langko and Puroo, is based on the trading of rice cultivated in the 

plains surrounding the lake and fish caught in the lake itself. Little is known of the prehistory of the Lindu 

plain where megaliths are also found. 

We present the results of a multi-proxy palaeoenvironmental study of a 123 cm long sediment core 

taken from Lake Lindu (1°19’16’’S, 120°04’36’’E at 960 m asl.), spanning the past ca. 1000 years. 

Palynological, charcoal and diatom data are used to reconstruct the vegetation and fire history of the 

Lindu plain, as well as the history of eutrophication of the lake. The aim is to characterize the timing and 

intensity of human activities during prehistoric and historic times. Results from the Lindu sediment core 

will shed light on the history of human-landscape interactions on the Lindu plain, a well-known fish 

reserve, and contribute to the understanding of the complex but still poorly known history of Central 

Sulawesi.  

Study area 

The Lindu valley is located in the highlands of Central Sulawesi and has an area of ca. 1000 km2 in the 

Takoekadju mountain range. In the northwest portion of the valley lies Lake Lindu, an ancient 

permanent freshwater lake, which is 10 km in length and 5-6 km in width (Figure 7.1a). Small streams 

originating from the surrounding mountains drain into the lake. At the north-eastern corner, the river 

Sungai Rawa is the only outlet and it flows northwards to join a tributary to the Palu valley (Sudomo et 

al. 1990). High mountain peaks and steep topography within a short distance characterize the area, as 

the result of the uplift that started in the Pliocene, following the juxtaposition of the east and north 

arms of Sulawesi (Moss and Wilson 1998). At an altitude of ca. 960 m asl, the lake basin covers an area 

of 32 km2. It is the eighth largest lake in Sulawesi and the largest water body within the area of the LLNP. 

The Lindu plain is the only large wetland habitat in the National Park.  

Climate and vegetation 

Central Sulawesi is characterized by high humidity and temperatures. Mean annual precipitation ranges 

between 1800 and 2100 mm, and mean annual temperature decreases with elevation from 21 °C at 

1000 m to 14 °C at 2400 m (Hijmans et al. 2005; WorldClim 2006; Culmsee et al. 2010). The modern 

climate of Indonesia is controlled by the seasonal movement of the Intertropical Convergence Zone 

(ITCZ) across the equator and inter-annual changes in the phase of the El Niño Southern Oscillation 

(ENSO) (Gunawan 2006). As the ITCZ moves southwards during the austral summer, the northwest 

monsoon delivers humid air and heavy rainfall to Indonesia, while during the austral winter the 

southeast monsoon brings relatively cool, dry conditions when the ITCZ is positioned over mainland 

Asia. According to Gunawan (2006), in the montane areas of Central Sulawesi, the rainfall is strongly 
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determined by the local topography. The air masses reaching the area from the northwest and 

southeast are lifted orographically, leading to the formation of clouds and rainfall throughout the year. 

As a consequence, the monthly amount of rainfall during the dry southeast monsoon is only slightly less 

than that of the wet northwest monsoon. The modern intra-annual climate of the montane areas of the 

LLNP can be described as perhumid with at most two months of slightly lower precipitation, 

corresponding to the southeast monsoon peak in August (Gunawan 2006). The inter-annual variability 

of rainfall is influenced by the coupled ocean-atmosphere phenomenon ENSO: during El Niño (La Niña) 

warm (cold) phases, Indonesia experiences lower (higher) rainfall than in other years (Philander 1990; 

Cane 2005). When El Niño occurs, the Lake Lindu catchment has experienced yearly low water and mean 

discharge despite the high retention capacity (Leemhuis and Gerold 2006), negatively affecting the fish 

population and the fishing market established by the local villages (Acciaioli 2000). 

The eastern, northern and northwest corners of the lake are covered with low-lying areas of marshy 

grassland. These open swamps are used by the local population for cultivating rice and grazing cattle. 

The mountain areas surrounding the lake are dominated by lower montane vegetation, in which the 

dominant tree families are Lauraceae, Fagaceae, Sapotaceae, Moraceae and Euphorbiaceae (Culmsee 

and Pitopang 2009). The higher peaks range from 2000 to 2400 m asl are covered with upper montane 

vegetation, in which Podocarpaceae, Myrtaceae and Fagaceae are the dominant tree families (Culmsee 

et al. 2011). 

Prehistory and history of Central Sulawesi (Table 7.1) 

Central Sulawesi is rich in metal age megaliths, large worked stones in the shape of cylindrical vats, 

statues, urns and mortars (Kaudern 1938; Sukendar 1976; Bellwood 1979; Sukendar 1980a; Sukendar 

1980b; Kirleis et al. 2012). The majority are located in the Napu, Besoa and Bada valleys, but megaliths 

are also found on the Lindu plain. The absolute age of the megaliths has not been determined with 

precision, but archaeological estimates range from 3000 BC to AD 1300. At the Pokekea site in the Besoa 

valley Kirleis et al. established a terminus ante quem for the erection of the large stone vats called 

kalambas of ca. AD 830 (Figure 7.1a; Kirleis et al. 2011; Kirleis et al. 2012). The authors further suggested 

a link between the opening of the forest in the valley when continuing burning started from ca. 2000 

years ago and the early construction phase of the monuments. The relationship between the megalithic 

culture and the indigenous people who live around the park today remains open to speculation. It seems 

likely that Proto-Malay and Palaeo-Mongoloid people migrated into the area, but much more research 

is needed in order to answer this fundamental question about the megaliths and their creators. 

The first Europeans who visited Central Sulawesi were the Portuguese in the middle of the 16th century, 

followed by the Spanish, who arrived via the Philippines. They never settled in large numbers, but their 

influence is still visible. They introduced maize, tomato, chili peppers and horses (Davis 1976).  
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Phases Time Central Sulawesi Lindu plain 
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5000 to 700 
years ago (?) 

Metal age population inhabits Central Sulawesi and 
builds a large number of megaliths 

Megaliths also found on the plain 

16th  century Portuguese and Spanish visit Central Sulawesi, 
introduction of maize, tomato, chili pepper and 
horses 
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1605 Dutch East Indian company (DEI) in Palu   

1648 Central Sulawesi comes under the rule of the Dutch 
East India company, but stays as a liege under the 
sultanate of Ternate (Moluku) 

  

1668 The Dutch conquer Makassar, Bugis flee from 
Makassar to Central Sulawesi 

  

17th cent.  Palu becomes an important sea trade harbour, the 
interior of the island remains isolated 

Lindu plain inhabited by an ethnic group 
named after Lindu 

1710 Central Sulawesi comes under the rule of Makassar 
(South Sulawesi) 

  

1891 Christianization of the Poso region (Central Sulawesi) Remote mountain populations of western 
Central Sulawesi including the Lindu 
plain, remained relatively isolated 

End of 19th cent.    First Europeans in the area, south of Palu 

1905 Start of direct impact on the cultural landscape Sarasin brothers visit Lindu plain and 
report of fishing traps, horses and 
lowering lake level  

1930   Discovery of schistosomiasis, the Dutch 
colonial administration maintained a 
policy of isolating the lake 
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1942 End of the Dutch rule and start of the Japanese 
colonial rule 

  

1945 Independence of Indonesia, Dutch wars of re-
conquest 

  

1949 Final admission of independence   

1950s   Bugis start fish market and clove gardens 
and open new areas for wet rice 
plantations 

1970s-80s Lore Lindu National Park Declaration of Lore Lindu National Park 
led to increased migration to the Lindu 
plain 

 

A more important impact was the arrival of the Dutch, who opened up the areas in the lowlands starting 

from the 17th century. Before the Dutch arrival, there was little wetland rice growing, and agriculture 

activities were mostly focused on upland dryland rice, maize, and tubers grown under a shifting system. 

Population density in Central Sulawesi was very low. The small communities were ruled by kings and 

were relatively isolated from each other, and they were mainly located in the surrounding mountains, 

with no permanent settlements existing at that time (Kreisel et al. 2004). In contrast to the inhabitants 

of the Poso region, methods of wet rice cultivation were already well known to the inhabitants of 

western Central Sulawesi before the arrival of the Dutch, as reported by Valentyn (1724). 

Today, the Central Sulawesi region is ethnically and culturally heterogeneous and comprises 15 

indigenous groups, speaking 24 distinct languages. However, most of the people living today around the 

National Park are recent arrivals, or their descendants. The majority moved into the area as participants 

Table 7.1 Overview of prehistory and history of Central Sulawesi and Lindu plain, as discussed in the text 
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in the government’s transmigration programs which were at a peak in the 1970-80s, and as a result of 

conflicts elsewhere (Kreisel et al. 2004). 

History of the Lindu plain 

According to Kaudern (1925), the Lindu plain has been inhabited since at least the 17th century by an 

ethnic group known by the same name. Accounts of the land-use strategies of the indigenous groups 

which lived in the area are derived mostly from reports by Dutch missionaries, in particular Albert 

Christian Kruyt and Nicolaus Adriani. They explored the mountainous regions in the first half of the 20th 

century following the Dutch Christianization mission, which began in 1891. The activities of the 

missionaries were centered in the eastern part of Central Sulawesi and particularly in the region around 

the river Poso, while the remote mountain populations of Central Sulawesi, including the Lindu plain, 

remained relatively isolated. This is probably due to the discovery on the Lindu plain in the 1930s of 

infestations of the snails that harbour the blood flukes causing schistosomiasis (Clarke et al. 1974). 

Indeed, according to Acciaoli (1989), the Dutch colonial administration maintained a policy of isolating 

the region after the initial attempts in the 1910s and 1920s to improve wet rice cultivation. After Kruyt 

and Adriani, the next Europeans to visit the Lindu plain were the Sarasin brothers, two natural scientists, 

who mapped the watercourses from Palu to Palopo (Sarasin and Sarasin 1905). 

The first people who started the exploitation of the resources of the Lindu plain were of Bugis origin 

from South Sulawesi, in the late 1960s. They first migrated into the area after the Kahar Muzakkar 

regional rebellion in the 1950s. They expanded the local economy by selling fresh and salted fish and 

starting the transport of fish from the lake by horse cart. Their arrival marked the opening up of new 

areas for wet rice cultivation, and clove gardens were established near the shore line (Weber et al. 

2003). Soon after the establishment of the Lore Lindu protected area in the late 1970s, the government 

granted a special status for the Lindu plain. A buffer zone was established in the surrounding forest to 

allow the Lindu villagers to maintain their fields and to have access to forest products. As a consequence, 

migration to the Lindu plain increased in the 1980s when arable land in Central Sulawesi became scarce 

following the establishment of the LLNP (Kreisel et al. 2004). 

Material and methods 

A 123 cm long sediment core (LINDU_3) was recovered from Lake Lindu in 2006 using a Kajak corer 

(Renberg 1991) at a water depth of 46.5 m. The core was split into two halves and transported to the 

Department of Palynology and Climate Dynamics, University of Göttingen, Germany, where it was 

photographed and described lithologically and then stored in darkness at 4°C.  
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Radiocarbon dating and palaeomagnetic analyses 

Altogether eight bulk sediment samples have been sent for radiocarbon dating, four to the Leibniz 

Laboratory for Radiometric Dating and Isotope Research at the University of Kiel, Germany, three to the 

AMS 14C Laboratory in Erlangen, Germany and one to the Poznań Radiocarbon Laboratory, Poland (Table 

7.2). Ages were calibrated using the R script CLAM with the SHCal_13 and postbomb_SH1-2.14C 

calibration datasets. Since some age reversals occurred, only the youngest ages were used to establish 

the chronology, and the resulting age-depth-model was tested using magnetostratigraphy.   

       

Sediment 
depth 
(cm) 

14C age BP 
/  negative 14C 

Age AD  

(mean; 2σ range; probability)a 
Delta 
13C 

Laboratory Laboratory code 

17 -1372 ± 20 1988 (1985-1990; 57%) -28.8 Kiel-2012 KIA47353 

20 -730 ± 40 2000 (1998-2004; 93%) -31.9 Erlangen-2008 Erl-12489 

32 530 ± 30 1430 (1405-1450; 95%) -30.3 Poznan-2008 Poz-24226 

53 350 ± 30 1570 (1490-1645; 95%) -27.2 Kiel-2012 KIA47354 

62 -482 ± 40 1958 (1957.61-1958.37; 5%) -13.1 Erlangen-2008 Erl-12490 

77 105 ± 20 1900 (1880-1930; 51%) -28.2 Kiel-2012 KIA47355 

86 542 ± 41 1420 (1390-1460; 94%) -33.5 Erlangen-2008 Erl-12491 

100 455 ± 20 1470 (1440-1500; 94%) -27.3 Kiel-2012 KIA47356 

       

 

The sediment core was sub-sampled with a u-channel and sent to the Sedimentary Paleomagnetism and 

Marine Geology Laboratory at the Institut des sciences de la mer de Rimouski (ISMER) of the University 

of Québec at Rimouski, Canada. The natural remanent magnetization (NRM) was acquired at 1 cm 

intervals on the u-channel using a 2G Enterprises 755 cryogenic magnetometer with stepwise 

alternating field (AF) demagnetization at peak fields of 0 to 90 mT with 5 mT increments from 0 to 80 

mT. Inclination and declination of the characteristic remanent magnetization (ChRM) were calculated 

using an Excel spreadsheet developed for that purpose (Mazaud 2005) with AF demagnetization steps 

from 5 to 90 mT (17 steps). This macro also allows calculation of component magnetizations and 

maximum angular deviation (MAD) values using principal component analysis (Kirschvink 1980). Due to 

the response function of the magnetometer pick-up coils some smoothing occurs, and the top and 

bottom ca. 7 cm of the u-channel have to be considered cautiously. 

Table 7.2 Accelerator mass spectrometry radiocarbon dates from Lake Lindu, calibrated age ranges at 95% 
confidence intervals (a Ages used for chronology are in bold; calibration done with R script CLAM, calibration curves 
SHCal13.14C and postbomb_SH1-2.14C for postbomb dates) 
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Palynological and micro-charcoal analyses 

Sediment samples of 0.5 cm³ were taken at 4 cm intervals (31 samples) along the core for analyzing 

pollen, spores and non-pollen palynomorphs (NPPs), and at 2 cm intervals for micro-charcoal particles 

(62 samples). The samples were prepared using standard methods including 70% HF treatment (Faegri 

et al. 1989). Before sample processing, the spores of the marker Lycopodium clavatum were added to 

the samples for the calculation of the concentrations. Pollen and spore identification is based on the 

reference collection of tropical pollen and spores at the Department of Palynology and Climate 

Dynamics at the University of Göttingen, which includes specimens collected from the LLNP in 2011 and 

2012, pollen keys and atlases for SE Asia (Flenley 1967; Powell 1970; Huang 1972; Garrett-Jones 1979; 

Stevenson 2000) and the online Australasian Pollen and Spore Atlas (APSA) hosted at Palaeoworks, 

Australian National University, Canberra (http://apsa.anu.edu.au). Identified pollen grains were counted 

to a sum of 300 and percentages were calculated relative to the pollen sums. Moraceae and Urticaceae 

were counted together because pollen grains from these two families are not distinguishable 

morphologically. The values of Moraceae-Urticaceae are overrepresented in the pollen assemblage due 

to the high production of pollen from these families (Jantz et al. 2014). Therefore, they are excluded 

from the total pollen sum for the calculation of the percentages of the remaining taxa. The opposite 

situation occurred for the Lauraceae, which is today one of the most important tree families in the area, 

but due to the thin and fragile exine, it is almost completely absent from the pollen assemblage. 

Concentrations are expressed in the diagrams as counts per cm3 of sediment. Pollen taxa are grouped 

into lower montane rainforest, swamp, pioneer and secondary rainforest, anthropogenic indicator, 

palm and upland long-distance transported according to their altitudinal and ecological distributions, 

based on field observation and available literature (Keßler et al. 2002; Culmsee et al. 2010; Flora 

Malesiana collection: http://floramalesiana.org; Prosea collection: http://prosea.nl). Important NPPs 

are presented as concentrations per unit of volume (counts/cm3). Poaceae pollen grains larger than 40 

µm were counted separately. Although it is not possible to distinguish the grains of Oryza sativa from 

other Poaceae under the compound light microscope, pollen grains belonging to this group are larger 

than 35-40 µm (Chaturvedi et al. 1998). This group is therefore used, in combination with other 

anthropogenic proxies, as a possible indicator of rice cultivation.  

Micro-charcoal particles that were seen under a normal light microscope as black and completely 

opaque with sharp edges have been counted (10-150 µm). Following Finsinger and Tinner (2005), at 

least 200 items, the total of micro-charcoal particles and Lycopodium clavatum spores, were counted 

and the concentration per unit of volume was calculated. Concentrations and proportions of the taxa 

are plotted against depth, and the ages of the record are discussed as time-windows in order to 

minimize the error due to the uncertainty of the age-depth model. For plotting and calculations, the 

software C2 was used (Juggins 2007).  

http://apsa.anu.edu.au/
http://floramalesiana.org/
http://prosea.nl/
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Macro-charcoal analysis 

Macro-charcoal particles (>150 µm) were counted in samples which were evenly spaced at 1 cm 

intervals along the sediment core (123 samples). The samples, of 2 cm3 each, were prepared following 

the methods of Stevenson and Haberle (2005) and Rhodes (1998). Weak hydrogen peroxide (6 % H2O2) 

was used to partially digest and bleach organic material in the sediment samples when counted under 

a binocular dissecting microscope. The sample preparation procedure aimed to ensure that little particle 

fragmentation occurred during preparation. Results are expressed as the number of charred particles 

per cm³. 

Diatom analysis 

Sediment samples for diatom analysis were prepared according to standard methods at 2 cm intervals 

(62 samples) (Wang et al. 2013). 0.5 cm3 sediment samples were treated with 30 % H2O2 and mounted 

using mounting media with a high refractive index (Mountmedia, Wako). At least 300 diatom valves 

were counted for each sample using an optical microscope with 1000× magnification. The diatom taxa 

were identified on the basis of reference collections and literature (Krammer and Lange-Bertalot 1986; 

Wang et al. 2010). 

Numerical analysis 

Local pollen assemblage zones were defined numerically by constrained cluster analysis using the 

software CONISS (Grimm 1987; Grimm 1993). The dissimilarity matrix was calculated as Cavalli-Sforza’s 

chord distances of squared root transformed percentage data. All pollen and spore taxa were included 

in the analysis. Unconstrained multivariate statistical analysis was done to characterize the changes in 

vegetation composition of the past 1000 years using the software CANOCO 5 (ter Braak and Šmilauer 

2002). The length of the compositional taxa gradient had a value of only 1.2 standard deviation (SD) 

units, so a linear model was chosen and a principal component analysis (PCA) was carried out with all 

identified pollen and spore percentage data. Data were centered and square root transformed to 

downscale the weight of a few dominant taxa. 

Results  

Lithology and chronology  

Sediment core LINDU_3 consisted entirely of sediments with laminations that measured in millimeters. 

From 123-78, 62-36 and 6-0 cm sediment depths dark blackish colors predominated. Intercalated were 

light brown to whitish colors between 78-62 cm and whitish colors between 36-6 cm.  
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As the sediment-water interface was intact, the top of the record represents the year of coring, 2006. 

According to a linear extrapolation of the lowermost accepted ages, the base of the Lake Lindu record 

has an age of AD 1030. Since the radiocarbon dating results were rather heterogeneous and had a 

number of age reversals, only the youngest ages were linearly interpolated (Table 7.2; Figure 7.2a). Such 

results for radiocarbon dating seem to be rather common on the island of Sulawesi, where dating has 

turned out to be a challenge in many sediment archives (Haberzettl et al. 2013).  

Palynological results 

In total, 209 different pollen taxa were encountered, of which 77 rare taxa remain unidentified. The 

most representative lower montane forest taxa in the pollen assemblage belong to the Moraceae and 

Urticaceae families (average 38 %; min 10 %, max 50 %) (Figure 7.3). The next most representative taxa 

of lower montane rainforest are Fagaceae, mostly represented by Lithocarpus-Castanopsis (average 

20%; min 9%, max 36%, percentages based on a total pollen sum excluding Moraceae-Urticaceae), 

Acalypha (average 6%, up to 17%), Peperomia (average 6%; min 2%, max 13%), Myrtaceae (average 3%, 

up to 9%), Engelhardtia (average3 %, up to 9%), Elaeocarpaceae (average 2%, up to 5%), Ilex (average 

Figure 7.2 a) Chronology of the Lake 
Lindu sediment record as well as 
inclination (inc), the natural 
remanent magnetization (NRM) and 
maximum angular deviation values 
(MAD); b) comparison of the Lake 
Lindu inclination record to that from 
Lake Kalimpaa (Haberzettl et al. 
2013) and the CALS3 K.4e (Korte and 
Constable 2011) model output 
calculated for the location of the 
sediment core from Lake Lindu 
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2%, up to 5%), Celtis (average 2%, up to 6%), Myrica (average 1%, up to 5%) and Freycinetia (average 

1%, up to 4%). All these taxa together account for 53% of the pollen sum on average. The group of 

swamp plants is represented mostly by Typha (up to 4%) and Callitriche (average 2%, up to 8%). Pioneer 

and secondary forest taxa are represented mostly by Macaranga (average 4%, up to 11%), Trema 

(average 2%, up to 8%) and Neonauclea pollen (average 2%, up to 5%). Anthropogenic indicators are 

represented mostly by Poaceae (average 13%, up to 20%), Mimosoideae (up to 4%) and Plantago (up 

to 0.8%). Palms are little represented (average 1%, up to 6%). Upper montane pollen taxa are rare and 

mostly represented by Phyllocladus (average 1%, up to 4%). Pteridophyta spores are abundant and 

diverse (average of the total sum of pollen plus spores 29%, min 12%, max 45%, total number of taxa 

81), although most of the taxa remain unidentified. 

Pollen concentration values are high at the bottom of the sediment core between 123 and 115 cm  

(average 120x103 grains/cm3), but they decrease from 115 to 75 cm (average 60x103 grains/cm3) and 

have even lower values in the top part of the core from 75 to 0 cm (average 40x103 grains/cm3). 

The record is divided into two large clusters by the CONISS analysis. The first zone is lin-1 from 123 to 

76 cm, and the second is lin-2 from 76 to the top of the core. Based on important changes and 

composition of the palynological, charcoal and NPP data, the two zones are additionally divided into six 

sub-zones: lin-1a (123-116 cm), lin-1b (116-84 cm), lin-1c (84-76 cm), lin-2a (76-64 cm), lin-2b (64-52 

cm) and lin-2c (52-0 cm). 
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Description of the palynological sub-zones 

Lin-1a (123-116 cm; ca. AD 1030-1200) 

The basal sub-zone of the record is characterized by low values of Lithocarpus-Castanopsis pollen 

(average 11 %), while other montane rainforest genera like Freycinetia and Acalypha have the highest 

values of the record (averages 2% and 16%). Poaceae pollen grains are well represented and they 

increase towards the top of the sub-zone (from 13% to 16%). Within this group, grains larger than 40 

µm are found. Swamp pollen taxa have low values (average 2%) mirrored by high micro-charcoal 

particles (average 120x103 part/cm3). Pioneer pollen taxa have high values, represented by Macaranga 

(average 7%) and Trema (average 5%). 

Lin-1b (116-84 cm; ca. AD 1200-1730) 

Lithocarpus-Castanopsis pollen values slightly increase (average 18%) while Acalypha decreases. Swamp 

pollen taxa values increase notably, represented mostly by Typha (up to 4%). Micro-charcoal 

concentrations decrease while Glomus spores increase. Tilletia and Plantago occur for the first time in 

this sub-zone. On average, the pollen concentrations decrease. 

Lin-1c (84-76 cm; ca. AD 1730-1910) 

In this sub-zone Lithocarpus-Castanopsis pollen values continue to increase (average 25%). Poaceae 

values decrease slightly (average 10%) and grains larger than 40 µm are no longer found. Swamp pollen 

taxa decrease (average 1%), mirrored again by high micro-charcoal values (average 80x103 

particles/cm3) and low Glomus concentrations (average 470 spores/cm3). 

Lin-2a (76-64 cm; early 20th century) 

In this sub-zone pollen preservation is poor, and grains show corrosion and are often folded. The pollen 

grains of Moraceae-Urticaceae are particularly badly preserved. 

Primary lower montane pollen taxa continue to rise, especially Lithocarpus-Castanopsis (average 29%). 

However, Freycinetia and Acalypha values markedly decrease (averages 0.5 and 3%), while Celtis 

increase (up to 6%). Pioneer and secondary pollen taxa are mostly represented by Macaranga (average 

Figure 7.3 (previous 2 pages) Summary diagram from the Lake Lindu sediment core divided into temporal zones 
and sub-zones. The black lines are the locally weighted scatter plot smoothings (LOWESS) fitted to the sample 
values (light grey bars) to highlight trends. X-axes are rescaled for a better visualization of the least abundant taxa. 
a) Upper diagram Moraceae-Urticaceae (expressed in percentages of the total pollen sum); sum of lower montane 
rainforest, swamp, pioneer, secondary forest, anthropogenic, palms and long-distance transported pollen taxa 
(expressed as percentages of total pollen sum excluding Moraceae-Urticaceae); total Pteridophyta spores 
(expressed as percentages of sum of pollen and Pteridophyta spores); pollen, Pteridophyta and diatom 
concentrations (counts/cm3). Lower diagram: macro- and micro-charcoal concentrations (counts/cm3); swamp 
pollen taxa sum (percentages of the total pollen sum excluding Moraceae-Urticaceae); selected non-pollen 
palynomorph (NPP) concentrations (counts/cm3); selected diatoms (counts/cm3); CONISS dendrogram of the 
square root transformed proportions of all taxa (dissimilarity coefficient Edwards and Cavalli-Sforza’s chord 
distance); b) most significant pollen taxa within the groups (percentages of the total pollen sum excluding 
Moraceae-Urticaceae); selected Pteridophyta taxa (expressed as percentages of sum of pollen and Pteridophyta 
spores) 
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5%) and Neonauclea (average 5%). As in the previous sub-zone, swamp pollen taxa continue to 

decrease, mirrored by high micro-charcoal and low Glomus concentrations. Tilletia values decrease 

markedly (average 47 counts/cm3). 

Lin-2b (64-52 cm; mid-20th century) 

The difference between this and the previous sub-zone is in the increase of swamp pollen taxa (average 

4%), while micro-charcoal concentrations decrease and Glomus increases. Peaks in Plantago pollen and 

Botryococcus colonies are recorded at the beginning of the sub-zone (1% and 7500 colonies/cm3). 

Lin-2c (52-0 cm; late 20th and beginning of 21st century) 

This sub-zone marks the start of a decreasing trend for primary lower montane and pioneer pollen taxa, 

which continues until the top of the record. In contrast, Poaceae pollen values start to increase and 

grains >40 µm are found again. Baccaurea values increase from 44 to 28 cm, followed by the increase 

of Neonauclea and anthropogenic pollen indicators like Poaceae > 40 µm, Mimosoideae and Apiaceae. 

Botryococcus values increase, starting from 14 cm and continuing to the top. Several peaks of Tilletia 

are recorded, starting from 38 cm. 

Macro-charcoal results  

Macro-charcoal particles are found in all the samples along the core. There are exceptionally high 

concentrations in Sub-zone lin-1a at the bottom of the record, from 123 to 113 cm. At the same depths, 

charred particles were larger than in the rest of the record and remains of grass leaves were observed 

(Figure 7.1c). 

Diatom results 

Overall, 42 diatom taxa were identified, of which planktonic diatom, Aulacoseira granulata is the most 

important species with an average of 97% of the total diatom sum throughout the core. The values of 

the benthic diatoms, Nitzschia frustulum, N. perminuta and Staurosira construens peak shortly in Sub-

zones lin-1a, lin-1b, and lin-2a. In Sub-zones lin-2b and lin-2c, the benthic diatom Staurosira construens 

is no longer present. The diatom concentration is stable with a lower average (3.25x108 valves/cm3) in 

Zone lin-1, while the mean concentration doubles (6.39x108 valves/cm3) with marked variations in Zone 

lin-2. 

Multivariate statistical analysis 

Principal component analysis (PCA) of all identified pollen and spore taxa was used to compare and 

characterized the patterns of palynological composition variation across the different prehistoric and 

historic phases in the Lindu results from ca. 1000 years ago (Figure 7.4). The first and second axes of the 

ordination diagram explain 22% of the variance. The samples in the middle Sub-zones lin-1c and lin-2a 

score mostly positively on the first axis, while the remaining samples score negatively (Figure 7.4a). The 
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scores of the second axis separate the assemblages into two groups (Figure 7.4b). Samples in Zone lin-

1 score negatively (pre-colonial period), while those in Zone lin-2 (post-colonial period) score positively. 

Discussion and interpretation 

According to the age-depth model, a clear increase in the sedimentation rate from 0.52 to 40 mm/yr 

can be observed from the base to the top of the Lake Lindu record (Figure 7.2). This is an even more 

distinct change than what was observed at the much smaller lacustrine system of Lake Kalimpaa, where 

the sedimentation rate increased from 0.8 to 9.2 mm/yr due to human disturbances in its surroundings 

(Haberzettl et al. 2013; Wündsch et al. 2014; Biagioni et al. 2015a). At Lake Tondano, a modern age was 

obtained at 100-90 cm (Dam et al. 2001). This date was explained as the probable result of the admixture 

of recent soil organic matter into the sediment, since its properties did not suggest a radical change in 

depositional activity (Dam et al. 2001). However, if this age is assumed to be correct, a similar change 

in sediment accumulation occurred as at Lake Lindu. This is in accordance with the observation that 

Lake Tondano is seriously threatened by increasing silting up, which according to references dating back 

to 1979 has been reaching values of 200 mm/yr (Lehmusluoto 1997; Dam et al. 2001). These 

comparisons make such a drastic change in sediment accumulation conceivable. However, since such a 

change without the occurrence of mass wasting events is unusually high, the chronology has been 

tested using magnetostratigraphy and comparison to geomagnetic field model output, since 

palaeomagnetic secular variations (PSV) can be used as a significant tool to correlate Holocene regional 

records (Yang et al. 2009; Barletta et al. 2010; St-Onge and Stoner 2011; Ólafsdóttir et al. 2013). 

A strong and stable ChRM (characteristic remanent magnetization) was isolated between 5 and 90 mT 

(Figure 7.2a). A viscous remanent magnetization was hardly observed and, when present, was easily 

removed at 5 mT. Maximum Angular Deviation (MAD) values of the ChRM of the Lake Lindu 

palaeomagnetic record are entirely below 3.5°, indicating a very well preserved magnetization (Stoner 

and St-Onge 2007). Unfortunately, declination seems to suffer from core twisting, which has often been 

observed with soft sediments (Ali et al. 1999; Haberzettl et al. 2013) and hence is not plotted. The 

inclination shows a trend from 15.4° to -38.2° from 123 to 78 cm, intersected by two high amplitude 

maxima in between. Values close to the ones expected, based on a geocentric axial dipole model (GAD 

= 2.64°S for Lake Lindu) for the site latitude, are only reached at the base of the core. After the 

decreasing trend, a change to -10.4° at 69 cm is observed. Thereafter, the amplitude of the variations is 

much lower, although distinct differences ranging between -7.4 and -16.4° (=9° difference) can be 

observed. From 32 cm to the top of the record, the amplitude further decreases to values between -17 

and -23.7° (=6.7° difference) (Figure 7.2a). This change in amplitude is consistent with the observed 

increase in the sedimentation rate. The lower the sedimentation rate, the higher the amplitude in 

inclination variations, because a longer period of time is recorded during intervals of lower 
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sedimentation rate. During this longer period, larger variations in the inclination can occur. In contrast, 

high sedimentation rates only record short time intervals with minor variations in the inclination. 

Therefore the synchronous occurrence of higher amplitudes during phases with lower sedimentation 

rates, and lower amplitudes when there are higher sedimentation rates, is in agreement with the 

chronology. Further support for the chronology comes from the comparison of the inclination record 

from Lake Lindu with the data obtained from Lake Kalimpaa (Haberzettl et al. 2013) and the CALS3K.4e 

spherical harmonic geomagnetic model output for the coring site (Figure 7.2b; Korte and Constable 

2011). While individual swings in the inclination curve of Lake Lindu are also found in the Lake Kalimpaa 

record, a similar general trend is found in the CALS3K.4e model. If one takes into account the error of 

the radiocarbon dating method itself of ±70 years for the accepted ages (Table 7.2) and the error in the 

chronology determined by age-modelling artefacts owing to linear interpolation, as well as the 

uncertainties contained in the CALS3K.4e model, an even better fit might be conceivable.  

Although the radiocarbon-based chronology is conservative, the palaeomagnetic analyses support this 

approach and indicate that the age-depth model is a good first order approximation as a basis for 

palaeoenvironmental reconstruction. In addition, the inclination data extend palaeomagnetic 

knowledge into an area where such information is very scarce.  

According to the age-depth model, the palaeoecological analyses of the Lindu core illustrate the 

vegetation, climate and fire history of the Lindu plain for the past ca. 1000 years. The following 

discussion divides the record into a pre-colonial period corresponding to Zone lin-1 starting from ca. AD 

1030 and a post-colonial period, lin-2 after ca. AD 1910, which also includes the post-independence 

period from 1949 and more recent history. 

The change in the sedimentation rate from lin-1 to lin-2 matches the change in pollen concentrations. 

The first zone is characterized by a low sedimentation rate and fits the higher than average pollen 

concentrations. The opposite is observed in Zone lin-2, where a high sedimentation rate corresponds to 

an average lower concentration of pollen. The increase in sedimentation rate can be linked to the fall in 

lake level at the beginning of the 20th century as observed by the Sarasin brothers in 1902 during their 

visit to the Lindu plain (Sarasin and Sarasin 1905).   

The stable high percentage values of Aulacoseira granulata, a widespread planktonic diatom, common 

in carbonate-rich, eutrophic lakes (van Dam et al. 1994; Gómez et al. 1995), indicates that Lake Lindu 

continued to have a high nutrient content. However, an increase in human activities in Zone lin-2 can 

be inferred from the unstable and higher diatom concentrations, corresponding to cultural 

eutrophication and increasing amounts of nutrients being washed into the lake (Horner et al. 1990; 

Kirilova et al. 2010).   
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Pre-colonial period (lin-1, 123-76 cm, ca. AD 1030-1910)  

At the beginning of the record (lin-1a, ca. AD 1030-1200), a well-developed montane rainforest 

surrounded the lake, as suggested by high values of Freycinetia, a climber found in old-growth montane 

rainforests. The grassland plain which today surrounds the lake shore was already developed, as 

indicated by high values of Poaceae. Also, indicators of human activities suggest a long history of 

landscape exploitation on the Lindu plain. Large Poaceae grains (>40 µm) which might include pollen of 

Oryza sativa type were already encountered. Local fires were very frequent or intense in this period, as 

shown by the high concentration of macro-charcoal. Large charred particles of grass were found, 

suggesting that fires burned the grassland on the lake shore. If humans caused the fires, it is possible 

that the opening of the forest was following a shifting system of cultivation, as a more permanent 

occupation would not have allowed pioneer fast growing taxa like Macaranga and Trema to proliferate 

around the lake. High values of micro-charcoal indicate high regional biomass burning, suggesting that 

the climate then was drier and/or periods of droughts were frequent. This is further confirmed by the 

low values of swamp taxa, indicating that the river discharge was low. The same period of drought and 

disturbance of the vegetation was recorded at Lake Kalimpaa, 15 km southeast (Wündsch et al. 2014; 

Biagioni et al. 2015a) and in the Besoa valley, 30 km south of the lake (Kirleis et al. 2011; Kirleis et al. 

2012). 

The increase in fungal spores of Glomus, starting from ca. AD 1200 to AD 1730 (lin-1b), is a good 

indicator of soil erosion in the lake catchment (Scott Anderson et al. 1984). Increasing soil erosion and 

the development of larger swamp areas around the lake point toward an increase in run-off and 

precipitation in this period and/or less frequent periods of drought, as also indicated by low micro-

charcoal values. The reconstruction at Lake Lindu matches with the reconstructions of the average 

position of the ITCZ. Palaeorecords from the Southern Hemisphere, anticorrelated with palaeorecords 

from the Northern Hemisphere (Haug et al. 2001; Tierney and Russell 2007; Tierney et al. 2010), show 

that the ITCZ moved southwards, reaching its southernmost position of the past 2,000 years during the 

period commonly known as the Little Ice Age (LIA), ca. 15th-17th  century. Such a changed position of the 

ITCZ to being more centered on the LLNP area would have caused seasonality to decrease and average 

annual precipitation to increase. Similar results were also found at Kalimpaa and Besoa (Kirleis et al. 

2011; Kirleis et al. 2012; Wündsch et al. 2014; Biagioni et al. 2015a). Characteristic swamp taxa were 

Typha and Callitriche, indicating that stagnant swampy depressions spread around the lake.  

Tilletia is a genus of smut fungi in the Tilletiaceae family, species of which are plant pathogens that affect 

various grasses including rice (Duran and Fischer 1961; Carris et al. 2006). Their occurrence for the first 

time in Sub-zone lin-1b and the decrease of pioneer taxa and macro-charcoal particles might indicate 

that a change occurred towards a more permanent and organized use of the plain, starting from around 

AD 1200. It is possible that increased precipitation had allowed wet rice cultivation to start on the shores 



98 
 

around the lake. The high values of Freycinetia indicate well-developed montane rainforests 

surrounding the lake, however Euphorbiaceae decreased, especially Acalypha, suggesting that 

disturbance of the forest also occurred.  

Starting from ca. AD 1730 (lin-1c), average precipitation decreased and/or periods of drought increased, 

as indicated by low values of swamp taxa and Glomus spores and high micro-charcoal values. 

Lithocarpus-Castanopsis increased, Poaceae decreased with no more evidence of large grains from this 

family, suggesting abandonment or decrease of human activities around the lake. When the Sarasin 

brothers visited the Lindu plain in 1902, they found that a small group of people were living on the shore 

line of the lake (Sarasin and Sarasin 1905). The grassland plain which is visible today was already present, 

but no wet rice cultivation was encountered, the plain being grazed by horses (Figure 7.1b). The 

inhabitants lived off garden products and fishing. In fact, Lake Lindu has been well known for a long time 

for the abundance of its fish. When Adriani and Kruyt first visited the lake in 1897, they reported that 

the indigenous people used fish traps to provide for local consumption in the village of Langko near the 

southwestern shore (Adriani and Kruyt 1898). The cultural difference observed from ca. AD 1730 might 

have been caused by decreased precipitation and/or occurrences of long periods of drought. The people 

living around the lake might have been forced to limit their activities to fishing and cattle grazing in 

consequence of the no-longer favorable climatic conditions. However, additional causes of cultural 

changes might have played a role. For instance, conflicts and/or spread of diseases can severely affect 

both human populations and cultivated plants, but such events are not detectable with pollen and 

palaeoecological analyses. 

Post-colonial period (lin-2, 76-0 cm, from ca. AD 1910) 

Taxa from montane rainforest continued to increase at the beginning of the 20th century (lin-2a), in 

particular Lithocarpus-Castanopsis. Moraceae-Urticaceae decreased, but this was possibly an artefact 

of the bad preservation of the pollen grains in this sub-zone. At the same time, secondary forest taxa 

increased, indicating recovery of the forest, while macro-charcoal values remained low and 

anthropogenic indicators like Tilletia concentrations decreased. Dutch missionaries arrived in this area 

following the submission of the Kulawi raja in 1905. According to Acciaioli (1989), the area around Lake 

Lindu remained relatively isolated, despite the substantial modifications to the surrounding lowlands, 

introduced by the Dutch.  

A clear increase in the sedimentation rate started at the beginning of the 20th century as indicated by 

the age-depth model, the change in amplitude of palaeomagnetic inclination and decreased pollen 

concentrations. Such a change in the sedimentation rate can be linked to the falling lake level observed 

by the Sarasin brothers in 1902 during their visit to the Lindu plain (Sarasin and Sarasin 1905). 
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Low values of Glomus and swamp taxa as well as high micro-charcoal values were also recorded in the 

previous sub-zone, lin-1c, suggesting that rainfall decreased and/or droughts increased before the 

increase in sedimentation rate observed from the early 20th century onwards. However, a link between 

human activities and the initial lowering in lake level could not be established, as this sub-zone records 

the recovery of the forest.  

The Botryococcus colonies in lake sediments are related to periods with a high delivery of nutrients, and 

their presence is often used as a palaeoenvironmental proxy (Guy-Ohlson 1992). The arrival of Bugis 

communities in the area during the second part of the 20th century marked the beginning of new 

landscape opening around the shore of wet rice fields (Acciaioli 2001).The peak in colonies in Sub-zone 

lin-2b in the mid-20th century might be a consequence of increasing nutrients washed into the lake, as 

human activities increased around it. At the same time, Glomus and swamp taxa increased and micro-

charcoal decreased, suggesting increased rainfall. However, the sedimentation rate remained high and 

the silting of the lake continued despite the changes in the rainfall regime. In this period, there is a clear 

lack of correlation between the change in the lake level and rainfall variability as reconstructed from the 

palynological assemblage. It seems likely that the trend towards a falling lake level continued from the 

mid-20th century until now, as a consequence of the diversion of larger amounts of water away from 

the lake for irrigation purposes (Acciaioli 2001) and erosion/sedimentation increased due to 

intensification of land-use practices.  

Clear palynological evidence for increasing human activities are recorded, starting from the late 20th 

century (lin-2c) with the re-occurrence of Poaceae pollen >40 µm and the gradual decrease in primary 

lower montane rainforest taxa up to the present time. Secondary forest taxa like Neonauclea and 

anthropogenic indicators like Mimosoideae, Apiaceae, Tilletia and Botryococcus increase markedly, 

starting from very recent time. The palynological evidence for an increase in human activities matches 

the increase in people migrating to the Lindu plain in search of available land to cultivate after the 1970s, 

following the establishment of the LLNP (Acciaioli 2001; Weber et al. 2003).  

Phases of prehistoric and historic human-landscape interactions on Lindu plain and 
the link to climate variability in Central Sulawesi 

Various phases of cultural use of the Lindu plain are evident from the Lake Lindu record (Figure 7.3; 

Figure 7.4). In particular, changes occurred from ca. AD 1200 to ca. AD 1730 showing a more permanent 

use of the landscape. At the same time, the reconstructed rainfall regime indicates wetter conditions. 

Such a cultural change can be explained in two different ways. The first hypothesis is that the builders 

of the megaliths changed their strategies on the Lindu plain by establishing more permanent 

settlements, taking advantage of the wetter climatic conditions for wet rice cultivation. Accordingly, the 

disappearance of the metal age culture that produced the megaliths would be recent, ending on the 
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Lindu plain only in the 16th-17th century. These populations might have persisted in isolation from South 

Sulawesi and Palu, with which the contacts with other populations from South Sulawesi, Europe and 

mainland Asia were established long before. Alternatively, the changes recorded at ca. AD 1200 might 

represent the end of the activities of the megalith builders on the Lindu plain. A different ethnic group 

with knowledge of wet rice cultivation techniques might have replaced the people of the megalith 

culture.  

 

There is not yet a clear chronology for the megalithic culture in Central Sulawesi. At the megalithic 

Pokekea site, the dating of the bottom sediments of one of the large stone vats called kalambas 

established that the site was at least 900 years old (Kirleis et al. 2011; Kirleis et al. 2012). However, in 

contrast to the Lake Lindu record where there was a phase of forest recovery, the pollen analysis of the 

Besoa valley shows that open grassland persisted uninterrupted from 2000 years ago when 

deforestation started. It is not known when the megalithic culture in Central Sulawesi ended, therefore 

in order to confirm the validity of these hypotheses, more research is needed on these megalith sites. 

The forest recovery phase recorded from ca. AD 1730 to the early 20th century matches with historical 

reports of a different use of the plain by the so-called Lindu people, whose activities there were mostly 

limited to fishing and cattle grazing (Sarasin and Sarasin 1905). Although different causes might explain 

such a radical cultural change, climate might have been one important factor. Indeed, drier conditions 

Figure 7.4 Principal component analysis (PCA) of all percentage data of identified pollen and spore taxa. 
Percentages calculated on the total sum of all taxa square root transformed. First, second and third axes are shown 
(cumulative explained variation 29%). Scatterplots represent the sample scores. Results are centered by taxa. 
Group of adjacent samples are marked differently to highlight the different groups corresponding to different 
prehistoric and historic phases. Palynological sub-zones are given in light grey; a) first and second axes scatterplots; 
b) second and third axes scatterplots 
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characterized this period as indicated by the low values of swamp taxa and high micro-charcoal 

concentrations.  

Starting from the mid-20th century, the arrival of Bugis communities and the more recent population 

encroachment onto the Lindu plain following the establishment of the LLNP caused major changes 

(Acciaioli 2000; Kreisel et al. 2004), as also shown by the change in palynological composition of the 

Lake Lindu record (Figure 7.4). The lake level fall began already in the early 20th century, possibly a 

consequence of long-term drier conditions. However, such a trend has continued until now, although 

the increase in swamp taxa and decrease in micro-charcoal indicate wetter conditions characterizing 

the mid-20th century. This suggests that the silting of the lake is not being caused by natural climatic 

conditions, but rather by increasing human activities. Indeed, local inhabitants of the Lindu plain 

recently declared that migrants to the area, who cut down forests for coffee and cocoa plantations, 

were responsible for the increasing shallowness of the lake and the streams feeding into it (Acciaioli 

2001). It is possible that, as deforestation increases, and larger amounts of water are used to irrigate 

new gardens and fields, river discharge will further decrease, damaging the cultivation and fishing 

activities on the Lindu plain and aggravating the effect of droughts caused by the occurrence of El Niño. 

A better management of the forested areas around the plain and the water resources of the basin would 

decrease the erosion and the sedimentation that have been decreasing the depth of Lake Lindu, as 

shown by its receding shoreline.  

Conclusions  

Palaeoecological analyses of a sediment core from Lake Lindu reveal a long history of human-landscape 

interaction on the Lindu plain, which has been modified by human activities during the past 1000 years. 

Although further investigations are needed, evidence of intense burning and possible shifting cultivation 

from an earlier phase from ca. AD 1030 to 1200 might be related to the metal age population which 

built megaliths in Central Sulawesi. From ca. AD 1200 to 1730, the climate became wetter as a 

consequence of the southward movement of the ITCZ. At the same time, fires decreased, and a more 

permanent effect on the landscape began. It remains open to speculation whether the architects of 

such a cultural change were the megalith people, or a different ethnic group. A phase of abandonment 

or less intense activities characterized the period from ca. AD 1730 to 1910. Following this phase of 

forest advancement, the more recent part of the Lake Lindu record shows a trend towards deforestation 

which started in the late 20th century until the present. The increase in sedimentation rate and lowering 

of lake level started at the beginning of the 20th century and these have continued until now, despite 

changes in the rainfall regime which occurred in the last hundred years, as reconstructed from the 

palynological record.  
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In conclusion, the Lindu record represents one further step in the increase of the knowledge of human 

and landscape history in Central Sulawesi and it highlights the potential for further palaeoecological and 

archaeological investigations in the area. 
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Abstract 

Despite their importance as global carbon sinks, peatlands of Southeast Asia have been rarely studied 

and our current knowledge of the dynamics and ecology of these ecosystems remains incomplete. 

Paleoecological and palynological multi-proxy analyses including analysis of pollen, spores, charcoal, 

testate amoebae and sediments were carried out on a 733 cm-long core taken from the Air Hitam 

peatland in the Jambi Province, Central Sumatra, Indonesia. The radiocarbon chronology reveals that 

peat formation started ca. 7800 years ago. The site was covered by dipterocarp-swamp mixed rainforest 

during the first 2000 years, after which freshwater swamp taxa became more important, in particular 

Durio trees. This lasted until ca. 4500 years ago, when the swamp vegetation shifted to a pole forest 

with abundant Pandanus thickets in response to a system change from minerotrophic to ombrotrophic 

conditions. For this period, macro-charcoal analysis reveals that fire frequency increased, possibly as a 

consequence of climate change linked to the onset of the modern El Niño Southern Oscillation (ENSO) 

in the late Holocene. The ombrogenous Pandanus-pole forest phases were characterized by lower water 

table fluctuations and higher peat accumulation rates. The area of Air Hitam has been for thousands of 

years a highly effective carbon sequestering peatland. Natural climate variability in the past did not 

affect the carbon storage function as suggested by the general increase in peat accumulation during 

relatively drier phases and increasing ENSO variability in the late Holocene. However, the recent changes 

caused by selective logging, drainage and conversion to oil palm plantations, have caused a decline in 

the peat swamp forest communities changing the ecological functions of the peatland. It is likely that 

the accumulated carbon will be released in the atmosphere due to exposure to aerobic conditions and 

its function will be lost unless a better management of the watershed is applied.  

Introduction 

The largest peatland areas in the tropics are currently found in Southeast (SE) Asia, where thick deposits 

of peat have accumulated as a consequence of conditions such as low topographic relief, high biomass 

production and high rainfall (Page et al. 2009; Page et al. 2010; Dommain et al. 2011). The majority of 

these peatlands formed in delta areas and along river valleys in low-altitude, watershed positions (Page 

et al. 2011). Estimates indicate that they cover an area of about 240,000 km2, of which the vast majority 

is in Indonesia (82%), Papua New Guinea (8.8%) and Malaysia (8.3%; Page et al. 2011). Their global 

importance as carbon reservoirs is well acknowledged, as they store an estimated 17–19% (65 Gt) of 

the global peat carbon pool (Page et al. 2011). In addition to their carbon storage function, the peat 

swamp ecosystems growing on tropical peatlands are regarded as unique (Schrier-Uijl et al. 2013) and 

provide a large number of eco-system services. For instance, tropical peat swamp rainforests are im-

portant climatic mitigating areas as they supply water and prevent erosion (Yule 2010) during extreme 

climatic events such as the occurrence of El Niño and La Niña episodes. Furthermore, as shown by 



105 
 

Kuniyasu (2002) in the lowland plain of the Kampar River in Sumatra, local villages and the majority of 

capital-less people, greatly benefit from the collection of forest products and fishing in peat swamp 

areas.  

For thousands of years, these extensive peat deposits have functioned as a large storage for carbon 

(Page et al. 2004; Page et al. 2010). However, since the 1970s, rapid land-use changes have turned the 

majority of the SE Asian peatlands into degraded ecosystems, which are now emitting the formerly 

stored carbon (Hooijer et al. 2010; Jauhiainen et al. 2010; Page et al. 2011; Kurnianto et al. 2015). Within 

Indonesia, the island of Sumatra has the largest area of peatland (72,000 km2; Wahyunto et al. 2004). 

According to Giesen (1993, 1994) at the end of the last century, peat swamp and freshwater swamp 

forests in Sumatra covered an area of 92,865 km2. However, less than 9.3% of the large areas of peatland 

in Sumatra remains in pristine conditions (Giesen 1994). The establishment and rapid increase of palm 

oil plantations and production in SE Asia have contributed to deforestation across the SE Asian region. 

Around one third of the peatlands of peninsular Malaysia, Borneo and Sumatra were converted between 

1990 and 2007 (5.1 Mha of the total 15.5 Mha) and most of the remaining peatland forests were 

intensively logged (Page et al. 2011). The conversion of peatlands to agricultural use requires both 

removal of the primary vegetation and soil drainage, resulting in peat subsidence through a combination 

of water loss, enhanced aerobic decomposition and compaction (Couwenberg et al. 2010; Miettinen et 

al. 2012). Such a change of the peatlands, leads to increasing sensitivity of these systems towards fires, 

with devastating results. For instance, widespread fires during the strong El Niño year of 1997–1998 

burned a total of 308,000 ha of peat swamp and freshwater swamp forests in Sumatra alone (Tacconi 

2003). It is estimated that the conversion of the coastal peatlands in SE Asia have caused the burning 

and emission of 1400 Mg per ha of carbon, which correspond to 2900 years of carbon accumulation in 

1 ha of coastal peat (Kurnianto et al. 2015). Peatland fires and climate are closely linked, as increase in 

fires were found to be coupled with periodical droughts caused by the occurrence of El Niño events (van 

der Werf et al. 2008). This suggests, as pointed out by Dommain et al. (2011), that in the future carbon 

emission from burning and oxidizing SE Asian peatlands might increase, if dry-season rainfall will 

decrease and extreme precipitation events linked to ENSO will increase, as predicted by climate models 

(Li et al. 2007; Stocker 2014).  

Because of the complex network of interactions of peatland dynamics, a better understanding of the 

main components and processes forming a peat system is needed when aiming at managing and/or re-

storing peatlands. In order to evaluate and predict peat processes that control peat accumulation, these 

components should be investigated (Brady 1997). These include age of the deposits, vegetation, 

hydrology and soil, as peat swamp ecosystems are the result of combined action of allogenic (climate, 

hydrology) and autogenic (vegetation) factors which vary in space and time depending on the thickness 

of the peat deposit and environmental/hydrological settings (Brady 1997). The relative importance of 
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each of these factors in shaping the system functions on the long-term can be evaluated using 

paleoenvironmental and paleo¬ecological investigations. This is due to the fact that in general the 

horizontal pattern of vegetation types found on the ground can also be found in a temporal succession 

in the center of the raised bogs (Anderson 1963), as palynological analysis carried out on peat deposits 

indicate (e.g. Anderson and Muller 1975). Thus peat deposits are important natural archives for 

dynamics and developments of peatlands. However, despite their global and local importance, in SE 

Asia only a few studies have included paleoecological and paleoenvironmental analyses (Figure 8.1).  

The goal of this multi-proxy study is to reconstruct the paleoecology and paleoenvironment of an 

Indonesian peatland, and to investigate the ecosystem development and dynamics since the peat began 

to accumulate. We present results of a 733 cm-long core taken from the Air Hitam peatland in the 

Sarolangun district, in the inland of the Jambi Province in Central Sumatra, Indonesia. We use pollen 

and spore data to infer the vegetation history and community phases, testate amoebae to infer 

paleohydrology and water table fluctuations and peat characteristics to infer the rate of decomposition 

of peat in relation to vegetation phases and peat accumulation rate. We apply the decomposition 

approach on macro-charcoal data, as developed by Higuera et al. (2009), in order to isolate peaks which 

are considered a signal of local fires and thus infer fire regime characteristics through time. We compare 

the reconstructed history of fire to vegetation and hydrology, to unravel the effects of changing fire 

regime on the peatland ecosystems for the past ca. 7800 years. The combined results of Air Hitam 

represent a further step forward to the gaining of a more comprehensive understanding of modern SE 

Asian peat swamp ecosystem dynamics and their functions in the long-term. 

Environmental settings of the study site 

Central Sumatra lies within the influence of the Intertropical Convergence Zone (ITCZ) and experiences 

a wet tropical climate. The mean annual rainfall for Air Hitam area is 2900 mm and annual temperatures 

average by 26.8 °C (Hijmans et al. 2005; Figure 8.2). Seasonality of rainfall is not usually marked, but a 

long wet season of 9–10 months is alternated with a short drier season of two or three months from 

May to September corresponding to the onset of the southeast monsoon (Aldrian and Susanto 2003). 

At the inter-annual scale variability of rainfall is influenced by changes in the phase of the El Niño 

Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). ENSO is a coupled ocean–atmosphere 

phenomenon consisting of two phases. During the El Niño warm phase, Indonesia experiences lower 

rainfall than in other years, while higher rainfall characterizes the cold phase La Niña (Philander 1990; 

Cane 2005). The IOD is an aperiodic oscillation of the Indian Ocean sea-surface temperatures. A positive 

IOD phase is accompanied by cooling of waters in the eastern Indian Ocean and droughts in Sumatra. 

The negative phase of the IOD brings the opposite conditions (Webster et al. 1999).  
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The eastern side of Sumatra is dominated by alluvial soils while the swampy areas of Riau and Jambi 

Province as well as South Sumatra are dominated by organosols (Whitten 2000).  

The Air Hitam area in the Sarolangun Regency is a topographic depression constricted to the north, 

south and west by higher elevation areas (>70 m asl, Figure 8.3). The watershed is characterized by three 

different watercourses as part of the Batang Asai and Air Hitam rivers which join to the east in the 

proximity of Pauh village. Behind the interfluvial terraces of the watercourses that crossed the area, two 

Figure 8.1 Map of the Sunda shelfwith the red star representing the location of the Air Hitam inland peat. The light 
shaded area delineates the Sunda Shelf as it was exposed at the time of the Last Glacial Maximum (based on 
Sathuamurthy and Voris 2006). Line markers show the extension of peat deposits (data source: FAO Harmonized Soil 
Map of the World, Histosols and Gleysols layers only). Square symbols correspond to the approximate position of the 
available studies on peatlands in the area modified from Dommain et al. (2011): 1) Muara Telang (Furukawa 1994); 2) 

Sugihan (Brady 1997); 3) Batang Hari Delta (Cameron et al. 1989; Esterle and Ferm 1994; Sabiham 1988; Sabiham and 

Furukawa 1986; Silvius et al. 1984); 4) Pulau Kijang (Furukawa 1994; Shibata et al. 1997); 5) Siak Kanan (Diemont and 

Supardi 1987a; Neuzil 1997; Ruppert et al. 1993; Supardi et al. 1993); 6) Palau Padang (Brady 1997); 7) Pulau Bengkalis 

(Neuzil 1997; Supardi et al. 1993); 8) Siak Kecil (Gunawan et al. 2012); 9) Pekan Nanas (Haseldonckx 1977); 10) Tasek 

Bera (Morley 1982; Phillips and Bustin 1998; Wüst et al. 2002; Wüst and Bustin 2004); 11) Rajang River Delta (Staub 

and Esterle 1993; Staub and Esterle 1994; Staub and Gastaldo 2003); 12) Batu Niah (Cole 2012; Cole et al. 2015); 13) 

Sungai Dua Forest Reserve and Senadin (Cole 2012; Cole et al. 2015); 14) Baram River area (Anderson 1964; Anderson 

and Muller 1975; Brünig 1974; Dommain et al. 2015; Esterle and Ferm 1994; Morley 2013; Muller 1963; Sabiham 

1990; Tie and Esterle 1992; Wilford 1960; Woodroffe 2000); 15) Lawas River area (Anderson 1963; Morley et al. 2011; 
Muller 1963; Wilford 1960); 16) Teluk Keramat (Neuzil 1997); 17) Rasau Jaya (Anshari et al. 2010; Diemont and Supardi 

1987b; Notohadiprawiro 1981); 18) Pemerak (Anshari et al. 2001; Anshari et al. 2004); 19) Sebangau (Kershaw et al. 

2000; Morley 1981; Morley 2013; Neuzil 1997; Page et al. 1999; Page et al. 2004; Page et al. 2006; Rieley and Page 

1997; Sieffermann et al. 1988; Sieffermann et al. 1992; Sieffermann et al. 1996; Yulianto and Hirakawa 2006; Yulianto 

et al. 2004; Wüst 2009; Wüst et al. 2008); 20) Pulau Petak Delta (Notohadiprawiro 1981; Sabiham 1988; Sumawinata 

1998); 21) Kutai lake area (Hope et al. 2005). Different colors of the squares denote different ages for the initiation of 
the peat and the pollen symbol (blue) indicates the sites where palynological analysis was conducted 
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peat domes are found and cut by the 

central course to a characteristic bilobate 

shape covering an area of about 400 km2 

(Figure 8.3). Wetlands International 

mapped the area of peatland in Sumatra 

in 2003. According to the report, the Air 

Hitam domes are characterized by thick 

peat deposit with average depths of more 

than 4 m above the mineral substrate 

(Wahyunto et al. 2003). Inland peatlands, 

such as the Air Hitam peat domes, form 

along river valleys and their initiation 

seems to have been the result of rising 

ground water levels and paludification due to changes in sea level (Dommain et al. 2011). The mineral 

substrate restricted water discharge leading to permanent waterlogged conditions and, under high 

rainfall conditions, accumulation of peat. The Air Hitam peat domes represent the largest contiguous 

area of thick peat outside the coastal environment in the Jambi Province. Cross-sections of the peatland 

reveal a series of hummocks and hollows rather than a perfect dome due to the complex 

geomorphology of the mineral and alluvial substrate.  

Most of the forest cover on the northern side of the peat dome was burned between 1990 and 2000 

(WWF Indonesia 2010) when the palm oil companies PT Era Mitra Agro Lestari (PT Emal) and PT Jambi 

Agro Wijaya (Jaw SPT) started to drain the Air Hitam peat domes to convert the area to palm oil 

plantations. Canals and ditches were built to facilitate the removal of water, necessary for starting palm 

oil plantations. There is no information on the vegetation communities covering the peat domes before 

the conversion started and currently the land is covered with palm oil plantations, degraded bare lands 

and a small forest remnant on the southeastern part of the northern dome (Figure 8.3). 

Materials and methods 

In 2012 three sediment/peat cores were taken on the northern section of the Air Hitam peat dome 

using a Russian Corer. The cores were named according to the two oil companies active in the area; PT 

Era Mitra Agro Lestari (PT Emal) and PT Jambi Agro Wijaya (PT Jaw). The first two cores B21 (2.053377°S 

102.694207°E; 53 m asl; 750 cm-long) and D21 (2.053321°S 102.721165°E; 47 m asl; 330 cm-long) were 

taken on young oil palm plantations (4–6 years) at the time under concession of PT Emal. The third core 

Jaw SPT was taken in the forest remnant under PT Jaw concession (2.047685°S 102.665362°E; 57 m asl; 

733 cm-long; Figure 8.3). The three cores were photographed and described at the University of Jambi 

Figure 8.2 Monthly mean precipitation, temperature values and 
annual means for the Air Hitam area (2.047685°S 102.665362°E) 
based on the interpolations of observed data representative of 
the period 1950–2000. Data source: WorldClim — Global 
Climate Data, http://www.worldclim.org/ 

http://www.worldclim.org/
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following the classification systems for SE Asian tropical peat (Esterle and Ferm 1994; Wüst et al. 2003) 

using peat attributes like color and plant part composition. Afterwards the cores were moved to the 

Department of Palynology and Climate Dynamics, University of Göttingen, Germany. Fourteen samples 

of small organic bulk samples, plant remains or charcoal (see Table 8.1) were collected from the three 

cores and sent for Accelerator Mass Spectrometry (AMS) radiocarbon dating o the Laboratories at the 

University of Erlangen in Germany and at the National Taiwan University to establish an absolute 

chronology for the deposits. The core Jaw SPT presents a complete peat section and the peat surface is 

the least disturbed of the three. It was therefore selected as master core and used for multi-proxy 

palaeoenvironmental analyses. The age-depth model of the Jaw SPT core was constructed with CLAM 

2.2 (Blaauw 2010) script in R (R Core Team 2012), using the Southern Hemisphere calibration curve 

SHCal13.14C. 

Palynological analysis  

In total 37 sediment subsamples (0.5 cm3) were taken in 20 cm intervals along the core for analyzing 

pollen and spores. The samples were prepared using standard methods (Faegri et al. 1989) and before 

sample processing, the marker Lycopodium clavatum was added to the samples for the calculation of 

the concentrations. Pollen and spore identification is based on the reference collection of Indonesian 

tropical pollen and spores at the Department of Palynology and Climate Dynamics at the University of 

Göttingen, peat swamp pollen and spore taxa at the Oxford Long-Term Ecology Laboratory at the 

Department of Zoology at the Oxford University and available literature and databases on SE Asian 

Figure 8.3 Maps of the study areawith black star symbolsmarking the locations of the coring. Left: altitudinal map 
of the Air Hitam watershed (Digital Elevation Model: ASTER GDEM Version 2, METI and NASA). Right: current land-
use of the study area. Data source: Land Cover 2011: the Ministry of Forestry, the Republic of Indonesia 
(http://appgis.dephut.go.id/appgis/download.aspx); river data: digitalized from Bakosurtanal, Peta Rupa Bumi 
Indonesia scale 1:50.000, 2013 

 

http://appgis.dephut.go.id/appgis/download.aspx
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tropical pollen and spore taxa (e.g. Flenley 1967; Powell 1970; Huang 1972; Anderson and Muller 1975; 

Garrett-Jones 1979; Sabiham and Furukawa 1986; Tissot et al. 1994; Stevenson 2000; Premathilake and 

Nilsson 2001; Kodela 2006;  Cole et al. 2015; Jones and Pearce 2015; The Australasian Pollen and Spore 

Atlas http://apsa.anu.edu.au). Identified pollen and spore grains were counted until a sum of more than 

300 pollen grains was reached. Pollen and spore percentages were calculated relative to the pollen and 

spore total sum. Pollen taxa are grouped in dipterocarp-swamp mixed rainforest, freshwater swamp, 

peat swamp and open/pioneer taxa according to their distribution and ecology (Anderson 1963; 

Anderson and Muller 1975; Esterle and Ferm 1994; Brady 1997; Haseldonckx 1977; Cameron et al. 1989;  

Phillips and Bustin 1998;  Page et al. 1999; Wüst and Bustin 2004; Hope et al. 2005; Yulianto and 

Hirakawa 2006; Gunawan et al. 2012; Morley 2013; Cole et al. 2015; Flora Malesiana collection:    

http://floramalesiana.org; Prosea collection: http://prosea.nl). A complete list of pollen and spore taxa 

included in the groups can be found in the Table 8.2. For calculations the software C2 was used (Juggins 

2007). 

Testate amoebae analysis 

Peat samples for testate amoebae analysis were taken from the same depth as those for pollen analysis. 

For extraction of testate amoebae 4 cm3 of sediments and two Lycopodium clavatum tablets were boiled 

in distilled water for 10 min and sieved over a filter of 500-μm mesh, with the filtrate then back-sieved 

over 10-μm mesh. Microscope slides were prepared and the tests (shells) of testate amoebae were 

identified and counted at 200x and 400x magnification. Due to the variable concentrations of tests, a 

count of 100 was not always achievable. However, it has been demonstrated elsewhere that a 

meaningful paleoenvironmental signal may still predominate over random noise and major changes for 

counts of less than 100 but more than 50 (Payne and Mitchell 2009). To downscale the effect of different 

counts, the percentages were calculated based on the initial calculation of concentrations per unit of 

volume. Determination of testate amoebae was based on Charman et al. (2000), Mazei and Tsyganov 

(2006), for details on taxonomic references see also Krashevska et al. (2007). Testate amoebae with 

similar habitat preferences were classified into four environmental groups: “water” group, includes 

testate amoebae predominantly occurring in water bodies and/or in the regularly flooded areas; “peat 

moss” group, includes testate amoebae predominantly occurring in submerged and/or dry peat 

bryophytes; “green moss” group, includes testate amoebae predominantly occurring in non-peat 

bryophytes, a habitat with high water table fluctuations; “soil” group, includes testate amoebae 

predominantly occurring in different soil horizons, a habitat with higher water table fluctuations. 

Additionally, based on the established literature dry indicators were distinguished and separately 

grouped (e.g. Chardez 1965; Bobrov et al. 1999; Charman et al. 2000; Bobrov et al. 2004; Mazei and 

Tsyganov 2006). The test size variation between and within the species can be indirectly related to 

http://apsa.anu.edu.au/
http://floramalesiana.org/
http://prosea.nl/
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hydrology and or temperature (Bobrov et al. 1999; Mitchell et al. 2008). In order to highlight the 

relationship between microhabitat changes and testate amoebae size, the tests were also clustered to 

the three different size classes based on the average longer axes measurements (small: <75 μm, 

medium: 75–105 μm and large: >105 μm). 

Macro-charcoal analysis 

Macro-charcoal particles (>150 μm) were counted for samples evenly spaced at 1 cm intervals on the 

first 661 cm (peat-organic layers). The samples (1 cm3 each) were prepared following the method of 

Stevenson and Haberle (2005) adapted from Rhodes (1998), which is a procedure that greatly limit 

particle fragmentation. Weak hydrogen peroxide (6% H2O2) was used to partially digest and bleach 

organic material in the sediment and samples were wet-sieved using a 125 μm filter. All charcoal 

particles were counted under a binocular dissecting microscope. Concentrations are expressed as 

number of charred particles per cm3.  

Numerical analysis 

Clustering 

Palynological zones are defined numerically according to the dissimilarity matrix of Euclidian distances 

of squared root transformed percentage data, via constrained cluster analysis using the software 

CONISS (Grimm 1987; Grimm 1993). All pollen and spore taxa were included in the analysis. 

Diversity index and palynological compositional change  

From the palynological and testate amoebae data, diversity indices (DIs) were estimated via ‘rarefaction 

analysis’ (Siegel 1986) which is the calculation of the expected number of taxa E(Tn), of a smaller 

population (n) as compared to the original (N) in a random sample of n individuals from a smaller 

population of N individuals (Birks and Line 1992).  

Empirical data suggests that the use of a pollen type diversity index based on the rarefaction analysis 

calculated on a small sample of pollen taxa (i.e. 10), well correlate to the landscape diversity around the 

deposit (Matthias et al. 2015). Additionally, tropical peat deposits are covered by forest, and flowers or 

inflorescences drop and become part of the peat. As a consequence, the pollen signature in the peat is 

dominated by this local surface vegetation, with little influence from the long-distance wind transported 

pollen component (Anderson and Muller 1975). For tropical peat swamp deposits, palynological DI is 

therefore probably close to Whittaker's gamma diversity/within-landscape (Whittaker 1977; Odgaard 

2007) which correspond to plant diversity of the peatland community over the site. Rarefaction was 

calculated with the software PAST (Hammer et al. 2001).  
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The amount of palynological compositional change or turnover (PCC) was estimated by detrended 

canonical correspondence analysis (DCCA) using as external constraint the sample age following the 

method described by Birks (2007). The gradient length, measured in standard deviation units, of the 

first time constrained axis is used as indicator of compositional turnover (Birks 2007). First, all pollen 

and spore percentages were transformed to square-roots to stabilize variances and rare taxa were not 

down-weighted. Detrending was done by segments with non-linear scaling. With the application of 

detrending and scaling options, the sample scores are scaled in standard deviation (SD) units of 

compositional change or turnover with time (Hill and Gauch 1980). The DCCA was implemented using 

CANOCO 5 (ter Braak and Smilauer 2002). 

Principal component analysis  

The relationships between vegetation communities in the different palynological zones were analyzed 

using principal component analysis (PCA) as implemented in CANOCO 5 (ter Braak and Smilauer 2002). 

PCA was carried out with all identified pollen and spore percentage data. Environmental groups and size 

classes of testate amoebae were included as supplementary environmental variables. Data were 

centered and square root transformed to downscale the weight of a few dominant taxa. 

From macro-charcoal to local fire history 

Charcoal raw data were treated using the peak detection analysis developed in the software 

Charanalysis (Higuera et al. 2009). The data were first interpolated to the median temporal resolution 

(11 years). The interpolated charcoal concentrations were multiplied by the estimated sedimentation 

rate (cm/yr) to obtain the charcoal accumulation rate (CHAR, particles/cm2 per yr) of each sample. The 

low-frequency variations in the charcoal record (Cbackground) are assumed to represent changes in 

secondary charcoal caused for instance by sediment remixing. To remove Cbackground a locally weighted 

regression was applied. A 400-year window which maximized the signal-to-noise index and the 

goodness-of-fit between the empirical and the modeled Cnoise distributions was used (Higuera et al. 

2009). The subtracted residual series, Cpeak is assumed to be composed of two subpopulations (Higuera 

et al. 2008; Higuera et al. 2009): Cnoise, representing variability in sampling and analytical and naturally 

occurring noise, and Cfire, representing charcoal input from local fires. A Gaussian mixture model was 

used to identify the Cnoise distribution. To separate these two populations, the 99th percentiles of the 

Cnoise distributions were considered as thresholds. An additional test, ‘Poisson minimum-count’ was 

done to eliminate the peaks from statistically insignificant counts. Finally, we inferred aspects of the 

local past fire regime based on the frequency of peaks and their magnitude. Peak magnitude, the 

number of charcoal pieces from all samples defining a given peak (i.e. all samples above the threshold 

value; number of pieces per cm2 per peak), is an estimation of total charcoal deposition per fire event 

(Higuera et al. 2009). Therefore, changes in peak magnitude at millennial time scales were used as a 
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proxy for fire size and/or fuel consumption for a given area burned. We used the distribution of fire 

frequencies (number of fire episodes per 800 years) to characterize the temporal characteristics of fire 

regimes at Air Hitam for the past ca. 7800 cal yr BP. 

Results  

Core descriptions and stratigraphy  

In general, the three cores mainly consist of dark brown hemic peat layers. Several layers with charred 

particles are observed in the core (Figure 8.4).  

Figure 8.4 Stratigraphy, 
color and characteristic of 
the three peat/sediment 
cores and AMS 
radiocarbon dates (star 
symbol) 
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The bottom part of the eastern, more marginal, core D21 from 333 to 237 cm depth represents the 

mineral substrate consisting of gray clay with red mottles of oxidizing material upon exposure to air, 

suggesting permanent anaerobic conditions at the time of deposition (Figure 8.4). Between 237 to 227 

cm core depth a layer of organic mud is found. Hemic peat with fibers and large wood remains 

characterizes the depth interval from 227 to 82 cm. A second organic mud layer is deposited from 140 

to 118 cm depth. The top 82 cm of the core consists of fine and coarse hemic peat with fibers, wood 

fragments and roots. 

The mineral substrate of the central core B21 could not be reached after 750 cm coring and deeper 

deposits could not be cored due to the difficulties in the field. The core mainly consists of coarse hemic 

peat and several layers of fine hemic peat. Macro-remains of wood fragments and fibers are observed 

from 424 to 68 cm depth. A layer of organic mud characterizes the core from 637 to 614 cm.  

The bottom mineral substrate of the master core Jaw SPT consists of olive clay from 733 to 727 cm. 

From 727 to 713 the sediments change to grayish-brown clay with silt and from 713 to 664 cm the 

deposits consist of olive-brown silty clay. A transitional peaty-clay zone is found from 664 to 658 cm and 

marks the beginning of peat accumulation. Fine to coarse hemic peat with wood fragments and fibers 

characterizes the depths from 658 to 496 cm. From 496 to 219 cm depth the deposits consist mainly of 

coarse hemic peat with fibers and wood fragments. From 219 up to 30 cm depth the sediment are 

mainly fine hemic to coarse hemic peat with fibers and large wood remains. The top 30 cm of the master 

core Jaw SPT consists of sapric (highly decomposed) peat with roots. Layers of organic mud are found 

at 252–244, 545–532 and 565–550 cm core depth. 

Chronology and peat accumulation rate of the master core Jaw SPT 

Of fourteen samples dated with the AMS radiocarbon method, the three derived from woody material 

are stratigraphically inconsistent (Table 8.1). The most likely explanation is that the wood samples were 

in fact root material. As a consequence, two of the dates from the core Jaw SPT are treated as outliers 

in the age-depth model (Figure 8.5). The best age-depth model fitted to the dates is a smoothing spline, 

and reveals that the Jaw SPT record spans the last ca. 8600 cal yr BP. The peat accumulation starts at 

664 cm core depth, ca. 7800 years ago. Peat accumulation rates per sample (mm/yr) are calculated 

based on the sample ages estimated from the age-depth model. Based on this estimate, the average 

peat accumulation rate from 664 cm to the top of the core is 0.9 mm/yr (min 0.5; max 1.6 mm/yr).  
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Table 8.1 Accelerator mass spectrometry radiocarbon dates from Air Hitam cores, calibrated age ranges at 95% 
confidence intervals. Calibration done with R script CLAM 2.2, calibration curve SHCal13.14C. Outliers are in light 
gray 
 

Core 

name 

Depth 

(cm) 

Material dated 14C age BP 

 

14C age cal 

yr BP 2σ 

range 

Laboratory 

code 

Jaw SPT 29 organic bulk sediment 78 ± 38 35 ± 40 Erl-19242 

Jaw SPT 157 charcoal 1140 ± 43 998 ± 72 Erl-18296 

Jaw SPT 242 charcoal 2404 ± 42 2406 ± 96 Erl-18297 

Jaw SPT 367 wood 1265 ± 55 1159 ± 111 Erl-18298 

Jaw SPT 474 leaf and partially charred wood 3780 ± 52 4081 ± 167 Erl-18299 

Jaw SPT 633 organic bulk sediment 6732 ± 54 7563 ± 97 Erl-19243 

Jaw SPT 662 wood 3138 ± 50 3287 ± 119 Erl-18300 

Jaw SPT 730 bulk of sediment 7770 ± 101 8562 ± 218 Erl-18301 

B21 307 wood 3394 ± 19 3558 ± 81 NTUAMS-447 

B21 746 wood 979 ± 5 883 ± 23 NTUAMS-326 

D21 96 leaf and wood 3601 ± 18 3855 ± 18 NTUAMS-327 

D21 226 wood 4187 ± 80 4674 ± 167 NTUAMS-328 

D21 257 organic bulk sediment 4516 ± 54 5127± 170 NTUAMS-451 

D21 326 organic bulk sediment  6955 ± 70 7738 ± 129 NTUAMS-330 

      

Figure 8.5 Age-depth profile of 
Jaw SPT core. Smoothing spline 
proved the best fitting model, 
with extrapolated basal points 
and surface (3 cm) age set at −62 
years (AD 2012). Red symbols 
depict outliers. Dotted line 
indicates peat initiation depth 
(664 cm) and estimated age 
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Palynological results 

The pollen diagram shows the paleovegetation groups and the most important pollen and spore taxa 

(Figure 8.6a and b). A total of 242 different pollen and spore types were identified including 87 rare still 

unknown types. The complete list of taxa groups can be found in the Table 8.2. Based on the constrained 

cluster analysis, 7 pollen and spore assemblage zones, Jaw-I to Jaw-VII are separated (Table 8.3). The 

most abundant group is represented by peat swamp taxa which oscillate between percentages of 3 and 

86%. Within this group, particularly from zone Jaw-III to Jaw-VI, pollen grains of Pandanus dominate 

(average for these zones 35%). After Pandanus, the most abundant pollen taxa of peat swamp are 

Parastemon (average 7%), Campnosperma (average 5%), Ilex (average 4%), Garcinia cuneifolia type 

(average 3%) and Austrobuxus (average 2%). The group of dipterocarp-swamp mixed rainforest shows 

mostly high values in zones Jaw-I and Jaw-II (average for the zones 21%; up to 43%). The 

Dipterocarpaceae are represented in order of importance by Hopea, Shorea, Dryobalanops and 

Dipterocarpus. Beside dipterocarps, important taxa of the group are Stemonurus type (average 2%), 

Cephalomappa (average 2%) and Stenochlaena palustris (up to 2%). Durio (average 6%; up to 44%), 

Blumeodendron (average 2%; up to 23%) and Calamus (average 1%; up to 5%) are the most common of 

the freshwater swamp group, particularly in zone Jaw-II. Open and pioneer taxa are mostly represented 

by Nephrolepis biserrata (average 4%), Ficus type (average 3%), Elaeocarpaceae (average 3%), and 

Macaranga/Mallotus (average 2%; Table 8.3). 

Testate amoebae results 

A total of 78 testate amoebae taxa were recorded. The most common taxa are Hyalosphenia subflava 

(average 56% of the total sum; 21 size-based morphotypes), Hyalosphenia minuta (6.4%), Cyclopyxis 

eurystoma parvula (4.9%) and Pyxidicula invisitata (2.9%). For details on most important environmental 

groups and taxa see Figure 8.6c, d and Table 8.3. 

Diversity indices and palynological compositional change or turnover  

The palynological diversity indices (DIs) remain rather uniform along the core (average 6 ET(10)). 

However, lower values are found in zone Jaw-IV when Pandanus pollen dominates the palynological 

assemblage (average 4 ET(10); Figure 8.6a). The testate amoeba DI varied more (Figure 8.6c) with ET(28) 

averaging by 6.  

The first time-constrained DCCA axis shows that total turnover or PCC at Air Hitam for the past ca. 7800 

cal yr BP is 2.1 SD (Figure 8.6a). Such a value is indicative of large differences between samples in the 

dataset (Hill and Gauch 1980), thus it indicates that important changes occurred in the community 

composition.  
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The range of compositional turnover changes strongly from zone Jaw-II to III and Jaw-VI to VII. A lesser-

marked change is recorded at the passage from Jaw-V to VI. 

Ordination results (PCA) 

The PCA clearly separates the vegetation compositions of the zones Jaw-I and II from the remaining 

zones Jaw-IV to VI (axis 1; Figure 8.7), while vegetation compositions of the last anthropogenic zone Jaw-

VII markedly separates from all other zones (Figure 8.7). The testate amoebae environmental groups 

and size classes, used as supplementary variables, explain 32% of the total variation. Water group and 

the larger size tests score negative on the second axis and are driven towards the first two zones Jaw-I 

and II. The opposite trend is observed for the smaller tests, green moss and soil groups, which score 

positive. The peat moss group and the medium size tests score negative on both axes. 

Macro-charcoal and fire history 

The macro-charcoal analysis of the Jaw SPT record, characterize the fire history at the site for the past 

7800 years (Figure 8.6a). The local signal-to-noise index always exceeded 3, indicating a good separation 

between peak and non-peak values. The most recent peak-fire event is detected at ca. AD 2001 (−51 yr 

cal BP; 5 cm depth). The approximated synchronicity between the period of forest conversion (WWF 

Indonesia 2010) and the recent charcoal peak support the assumption that identified charcoal peaks 

detectmajor local fire episodes. The mean fire return interval (95% confident interval) for the whole 

record is 133 yr (106–160 yr) indicating that large fire episodes have been rare on the peat dome for 

the past 7800 years. However, changes in fire regime are visible from the fire frequencies at the 

centennial time scale (Figure 8.6a). A total of 60 fire episodes occurred locally during the past 7800 

years, 1 fire episode failed to pass the ‘Poisson minimum-count' screening test. Fire frequencies are low 

in the zones Jaw-I, II, V and VI. Higher fire frequencies are recorded in the zones Jaw-III, IV and VII. High 

magnitude peaks are found in the zones Jaw-II, V and VI (Table 8.3; Figure 8.6a). 

Interpretation and discussion 

Opposite to most temperate and boreal peatlands, the vegetation of natural lowland tropical freshwater 

swamp and peat swamp forests is dominated by trees (Page et al. 1999). The majority of the tree families 

of lowland dipterocarp forests of SE Asia can live and proliferate in freshwater swamp and peat swamp 

forests. However, increasing peat thickness leads to markedly different nutrient and oxygen availability 

and as a consequence vegetation composition (Anderson 1983). One important parameter is 

represented by flooding and riverine influence on the system. In general, the margin of the domes, 

where flooding occurs are richer in nutrients, while the more central thick peat deposits are poorer in 

nutrients, are acidic and have low dissolved oxygen (Anderson 1961; Esterle and Ferm 1994). 
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Table 8.2: Ecological groupings of plant taxa identified (pollen and spores) 

Plant family Pollen/spore taxon Plant family Pollen/spore taxon Plant family Pollen/spore taxon Plant family Pollen/spore taxon 

dipterocarp-swamp mixed rainforest: taxa restricted or common in dry lowland rainforests and mixed swamp rainforests on 
shallow peat 

other: pollen-spore taxa with no habitat preference in peat-swamp rainforests 

Araceae Araceae Loranthaceae Loranthaceae Actinidiaceae   Actinidiaceae   Meliaceae Aglaia 
Blechnaceae Stenochlaena palustris Malvaceae Malvaceae Adiantaceae Adiantum Meliaceae Meliaceae  
Cannabaceae Gironniera Malvaceae subfam. Tilioideae Anacardiaceae Anacardiaceae  Menispermaceae Menispermaceae 
Celastraceae Lophopetalum Meliaceae Aglaia rubiginosa type Apocynaceae Alstonia Moraceae/Urticaceae Moraceae/Urticaceae 
Dipterocarpaceae Dipterocarpus type Pandanaceae Freycinetia Apocynaceae Anodendron Myristicaceae Knema 
Dipterocarpaceae Dryobalanops type Phyllanthaceae Bischofia Apocynaceae Apocynaceae Myristicaceae Myristicaceae  
Dipterocarpaceae Hopea type  Primulaceae Ardisia Arecaceae Areca Oleaceae Ligustrum 
Dipterocarpaceae Shorea type Proteaceae  Proteaceae Arecaceae Arecaceae Phyllanthaceae Aporosa 
Ericaceae Ericaceae Rosaceae  Rosaceae  Aristolochiaceae Aristolochiaceae Phyllanthaceae Phyllanthus 
Euphorbiaceae Cephalomappa Sapindaceae Pometia Davalliaceae Davallia Phyllanthaceae Phyllanthus urinaria type 
Euphorbiaceae Homalanthus Stemonuraceae Stemonurus type Dennstaedtiaceae Dennstaedtiaceae Piperaceae Peperomia   
Juglandaceae Engelhardia Vitaceae cf. Cissus Dryopteridaceae Elaphoglossum Piperaceae Piper 

freshwater swamp: taxa more abundant on peat deposit where river flooding occur (minerotrophic settings) Euphorbiaceae Acalypha Polypodiaceae Polypodiaceae 

Amaryllidaceae Narcissus Malvaceae Durio   Hymenophyllaceae  Hymenophyllaceae  Polypodiaceae Selliguea 
Arecaceae Calamus Malvaceae subfam. Sterculioideae  Hypodematiaceae Leucostegia Pteridaceae Pteris 
Arecaceae Oncosperma Menispermaceae Stephania Leguminosae Leguminosae Rubiaceae Hedyotis type  
Cannabaceae Celtis Phyllanthaceae Antidesma Leguminosae Koompassia Rubiaceae Lasianthus 
Euphorbiaceae Blumeodendron Polypodiaceae Microsorum heterocarpum type Leguminosae subfam. Mimosoideae   Rubiaceae Mussaenda 
  Rhizophoraceae  Rhizophoraceae  Lindsaeaceae Lindsaeaceae Rubiaceae Nauclea 

peat swamp: taxa more abundant in ombrotrophic peat-swamp rainforests on thick peat deposits Lycopodiaceae Huperzia Rubiaceae Rubiaceae 

Anacardiaceae Campnosperma Clusiaceae Garcinia cuneifolia type Lycopodiaceae Lycopodiaceae Rutaceae Rutaceae 
Anisophylleaceae Combretocarpus rotundatus Ebenaceae Diospyros Melastomataceae  Melastomataceae  Thelypteridaceae Thelypteridaceae 
Aquifoliaceae Ilex Pandanaceae Pandanus   Thymelaeaceae Thymelaeaceae 

Araliaceae Araliaceae Picrodendraceae Austrobuxus nitidus     
Blechnaceae Stenochlaena areolaris   Primulaceae Myrsine type     
Burseraceae Canarium Rubiaceae Randia       
Chrysobalanaceae Parastemon Sapotaceae Sapotaceae     

open-pioneer: if taxon increases in abundance, indicates early successional plant community and/or disturbed-open vegetation     

Apiaceae  Apiaceae  Lamiaceae Lamiaceae     
Aspleniaceae Asplenium Lycopodiaceae Lycopodium cernuum     
Blechnaceae Blechnum Moraceae Ficus type     
Cannabaceae Trema Myrtaceae   Myrtaceae       
Caryophyllaceae   Caryophyllaceae   Nephrolepidaceae Nephrolepis biserrata     
Convolvulaceae Ipomoea type Plantaginaceae Plantago     
Cyperaceae  Cyperaceae  Poaceae Poaceae      
Cyperaceae  Thoracostachyum Polypodiaceae Microsorum unctatum type     
Elaeocarpaceae Elaeocarpaceae Sapotaceae Palaquium      
Euphorbiaceae Macaranga/Mallotus Selaginellaceae Selaginella     
Flagellariaceae Flagellaria       
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Table 8.3 Zone characteristics and results of the Jaw SPT core analyses 

Palynological 
zone and core 
depth (cm) 
 

Age (cal yr BP); average 
peat accumulation rate 
(mm/yr); peat 
thickness from zone 
bottom (cm) 

Sediment and peat 
characteristics  
 

Pollen zone characteristics  Testate amoeba environmental and size groups 
 

Macro-charcoal and fire regime 
 

Jaw-I; 700-570 
 
 

- ca. 8340 to 6230  
- 0.6 
- peat starts from 664 cm 

 
 
 

olive-brown silty-clay 
from 700 to 664 cm; 
peaty-clay from 664 
to 658 cm; fine 
hemic to coarse 
hemic with wood 
fragments, fibers and 
charcoal 
 

Relatively high proportion dipterocarp-swamp mixed rainforest taxa 
(average 22%), in particular Dipterocarpaceae (average 7%) and 
peat-swamp taxa (average 26%); pioneer-secondary taxa peak at 640 
cm (58%; ca. 7400 cal yr BP); average low values of Pandanus (15%) 
with a peak at 580 cm (56%; ca. 6400 cal yr BP). Characteristic taxa 
of the zone are Shorea type, Hopea type, Blumeodendron, 
Combretocarpus rotundatus, Stemonurus type and Stenochlaena 
palustris 

Peat moss group is dominant (average 66%). From 660 to 640 
cm (ca. 7740–7420 cal yr BP) soil group has high values (up to 
18%). Water group is present with relatively high values 
(average 2.6%). Medium to large tests (>75 μm) have high 
values (tot. average 50%) 

Macro-charcoal concentration values and fire 
frequency low 
 

Jaw-II; 570-470 - ca. 6230 to 4500 
- 0.6 
- 94 

 
  

organic mud with 
wood to fine hemic 
with wood fragments 
to coarse hemic with 
charcoal 
 

Decrease of Dipterocarpaceae and peat swamp taxa (average 4% and 
16%) and increase of freshwater swamp taxa (average 34%), in 
particular with Durio (average 20%) and Calamus (average 4%). 
Characteristic taxa of the zone are Durio, Calamus, Cephalomappa, 
Blumeodendron, Stemonurus type 

From 580 to 540 cm (ca. 6350–5620 yr BP) few or no tests 
are preserved. From 520 cm (ca. 5260 cal yr BP) peat moss 
group increases to the top of the zone (average 46%) and 
water group values are high (average 8%). Medium to large 
tests (>75 μm) dominate in this zone (tot. average 53%) 

Fire frequency low. High peak in magnitude at 529 
cm (9000 particles per peak/cm2; ca. 5430 cal yr BP). 
 

Jaw-III; 470-290 
 
 

- ca. 4500 to 2500  
- 1 
- 194 
 
 

coarse hemic with 
wood fragments and 
fibers; one layer of 
fine hemic with 
fibers from 404 to 
427 cm 
 

Dipterocarp-swamp mixed taxa and freshwater swamp taxa decrease 
(average 4% and 6%) while peat swamp taxa increase (average 55%). 
Pandanus proportions highly increase to the top of the zone 
(average 22%). Open/pioneer taxa increase (average 18%). 
Characteristic taxa of the zone are Pandanus, Ilex, Garcinia cuneifolia 
type, Campnosperma, Parastemon, Austrobuxus nitidus, 
Stenochlaena areolaris and Nephrolepis biserrata 

Green moss group is found more frequently and dry 
indicators appear in this zone. Water group decreases 
(average 1%). Small tests (<75 μm) increase from 400 cm (ca. 
3580 yr BP) to the end of the zone (average 51.2%) 

Fire frequency high. No high magnitude peaks 
recorded 
 

Jaw-IV; 290-230 
 
 

- ca. 2500 to 1900 
- 1 
- 374 
 

coarse hemic with 
fibers and wood 
fragments; one layer 
of organic mud from 
244 to 252 cm 

Freshwater swamp taxa decrease markedly. Pioneer-secondary 
forest taxa and Pandanus increase continue (average 21 and 65%). 
Characteristic taxa of the zone are Pandanus, Macaranga and Ficus 
type 

Soil group increases markedly. Small tests (<75 μm) continue 
to be dominant (54%) 

Fire frequency slightly lower compares to Jaw-III. No 
high magnitude peaks recorded 

Jaw-V; 230-150 
 
 

- ca. 1900 to 1100  
- 0.9 
- 434 
 
 

hemic to coarse 
hemic with fibers, 
roots and charcoal 
 

Pioneer-secondary forest taxa and Pandanus decrease (average 11% 
and 15%) while peat-swamp and freshwater swamp taxa increase 
(average 53% and 4%). Characteristic taxa of the zone are Garcinia 
cuneifolia type, Durio, Parastemon, Stenochlaena palustris and 
Nephrolepis biserrata 

Green moss group increases (average 1.4%) while soil group 
disappears. Water group increases to the end of the zone (up 
to 11%). Larger tests, in particular the medium size class (75–
105 μm) gradually increase (average 52%) 

Fire frequency decreases to the top of the zone. Two 
high magnitude peaks recorded at 204 cm (9700 
particles per peak/cm2; ca. 1680 cal yr BP) and 165 
cm (5000 particles per peak/cm2; ca. 1250 cal yr BP) 

Jaw-VI; 150-30 
 
 

- ca. 1100 to 120  
- 1.2 
- 514 
 

hemic to coarse 
hemic with fibers 
and roots 
 

Peat-swamp taxa increase (average 70%) with Pandanus proportions 
increasing markedly (average 54%). Freshwater taxa decrease 
(average 1%). Characteristic taxa of the zone are Pandanus, 
Koompassia, Campnosperma and Myrtaceae 

Water group decreases (average 1.5%). Starting from 100 cm 
(ca. 650 cal yr BP) soil group and green moss group increase 
(average 6% and 2%). Small tests (<75 μm) gradually increase 
(average 54%) 

Fire frequency slowly increase to the top of the 
zone. Two high magnitude peaks recorded at 99 cm 
(4300 particles per peak/cm2; ca. 650 cal yr BP) and 
45 cm (1190 particles per peak/cm2; ca. 240 cal yr 
BP) 

Jaw-VII; 30-3 
 
 

- modern 
- 1.5 
- 634 
 

sapric with roots Pioneer-secondary forest taxa increase (average 20%) while 
Pandanus decrease (average 2%). Characteristic taxa of the zone are 
Parastemon and Nephrolepis biserrata 

Green moss and soil group have high values (average 8% and 
2%). Peat moss group decrease (average 26%). Small tests 
(<75 μm) dominate (average 84%) 

Fire frequency high. No high magnitude peaks 
recorded 
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Vegetation composition changes depending on the adaptation of different taxa to these boundary 

conditions. Marginal and more central-high communities were classified accordingly to Anderson into 

species associations or “Phasic Communities” (Anderson 1961; Anderson 1964; Anderson 1983). 

Available studies on peat domes in SE Asia (Figure 8.1) reveal that highly diverse swamp forests, where 

trees are large (>45 m height, 2–4 m girth) and understory plants are dense, are found on the margins 

of the deposits, where peat is shallow and flooding by rivers common. In response to flooding and 

standing water, trees develop buttressed roots and pneumatophores. These marginal forest 

communities have been described by Esterle and Ferm (1994) as freshwater swamp or well flooded 

swamps. In the central more topographically elevated areas, river flooding does not occur and most of 

the nutrients available to plants come from rainfall (Esterle and Ferm 1994). As a consequence, 

vegetation is less diverse and the trees that can cope with the limited nutrients are reduced in their size. 

To these forests is given the descriptive name of ‘pole forest’ (Brady 1997) or Phasic Community IV after 

Anderson (1963). Understory and subcanopy plants are sparse and adapted to poor in nutrient-acidic 

conditions such as Pandanus. Anderson described a ‘climax’ phase in the Baram River area in Borneo 

which was named ‘savanna like’ due to the characteristic open appearance. This forest was dominated 

by Combretocarpus rotundatus and small shrubs with the ground covered with moss and pitcher plants 

(Phasic Community VI after Anderson 1963). 

The following interpretation of the paleoenvironment and vegetation phases at the Air Hitampeat dome 

take into account the vegetation phasic community descriptions currently available from SE Asian 

peatlands (Figure 8.1). 

Studies on pollen dispersal in peat and swamp rainforests are rare (e.g. Anderson and Muller 1975; 

Morley 1981) and cannot be applied outside the specific site studied due to the uniqueness of each 

deposition environment and vegetation structure. However, in general, the pollen signal is strongly 

localized due to the closed canopy of tropical peat swamp rainforests, which limits regional deposition 

by wind and the strategy of tropical rainforests plants which are mostly animal pollinated as noted by 

Anderson and Muller (1975). However, on the more marginal or shallower peat deposits, where river 

flooding occurs, pollen can be transported by water from a longer distance and incorporated into the 

peat deposit (Morley 1981). Additionally, gap-phases within the peat swamp rainforest caused by wind 

disturbance or even fires could lead to a misinterpretation of a disturbance/secondary vegetation phase 

as true vegetation succession phase. Although these effects on the pollen deposition cannot be ruled 

out for the Jaw SPT palynological reconstruction, the high presence of peat swamp taxa through the 

record, suggests the main component of the palynological assemblage was made of the plants growing 

on the Air Hitam peatland. In order to downscale the effects of short-lived gap phases and local 

overrepresentation, the results are interpreted according to average trends via locally weighted 

scatterplot smoothing (LOWESS) fitted to the sample values (black lines on Figure 8.6a and b).
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Figure 8.6 (also previous page) Summary 
diagram of the Jaw SPT core analyses with 
zonation based on constrained cluster analysis 
and palynological data. The black lines are the 
locally weighted scatterplot smoothing 
(LOWESS) fitted to the sample values (light 
green and gray lines) to highlight trends. a) 
Sea-level relative changes of the Malacca Strait 
(Geyh et al. 1979); peat thickness (cm); peat 
accumulation rate (mm/yr); pollen groups 
(expressed as percentage of total pollen and 
spores); macro-charcoal concentrations 
(counts/cm3), peak magnitude (particles/cm2 
per peak) and fire frequency (number of fires 
per 800 years). The gray symbol “//” indicates 
a scale break used on large values on the x-axis 
to highlight smaller peaks; palynological 
diversity index (DI, ET(10)) and palynological 
compositional change or turnover (PCC, 
standard deviation units). b) Most important 
and common pollen and spore taxa expressed 
as percentage of total pollen and spore sum. 
Dashed black lines are the exaggerated 
LOWESS lines (5x) for less abundant taxa. c) 
Testate amoeba environmental groups and 
size classes (expressed as percentage of the 
total sumof testate amoebae); testate 
amoebae diversity index (DI, ET(28)). d) Most 
important and common testate amoebae taxa 
(expressed as percentage of the total sum of 
testate amoebae) 
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Environmental changes and palaeovegetation community phases 

Peat forming vegetation phase Jaw-I (ca. 8340-6230 cal yr BP, 700-570 cm) 

According to the basal radiocarbon age of the Jaw SPT core, peat started to accumulate on the northern 

section since at least 7800 years ago (640 cm core depth; Figure 8.5).  

Testate amoebae were not preserved in the basal mineral deposits. As the peat started to accumulate, 

medium to large tests dominated the assemblages suggesting that thewater table was high. However, 

indicators of wet (for e.g. Amphitrema sp. and Pyxidicula operculata) and drier (for e.g. Hyalosphenia 

minuta) conditions were alternatively abundant, suggesting that large fluctuations also occurred in this 

phase. Stenochlaena palustris is a scrambling high-climbing epiphyte common in periodically inundated 

areas, where the lower parts of the rhizome are frequently submerged. The high frequency of spores of 

Stenochlaena palustris in this phase confirms that the site was periodically subject to flooding. 

In this initial phase fine hemic peat indicates that the decomposition of the organic matter and 

humification were relatively high, while the presence of abundant wood fragments confirms that dense 

arborescent vegetation covered the area, possibly maintained by flooding, which can promote high 

biomass production but also high degree of decay. The vegetation as reconstructed from palynological 

analysis indicates a well-developed lowland rainforest covered the area with the high canopy 

constituted by Dipterocarpaceae and Koompassia trees. The sub-canopy was a mixed-swamp rainforest, 

with species such as Blumeodendron, Combretocarpus rotundatus and Campnosperma trees. 

Freshwater swamp rainforest phase Jaw-II (ca. 6230-4500 cal yr BP, 570-470 cm)  

During this period the palynological analysis reveals that the lowland Dipterocarpaceae-mixed rainforest 

taxa were slowly replaced by freshwater swamp taxa. The rattan Calamus is common in freshwater 

swamp forest and it has also been found in peat swamp forest and on alluvial flats (Anderson and Muller 

1975). Currently 8 species (1 endemic) of Durio are found in Sumatra (Lemmens et al. 1995). These are 

small to large trees (up to 50–60 m) with buttresses and pneumatophores (knee roots) present in trees 

growing in marshy places. Durio carinatus was found to be the dominant tree in the mixed swamp 

rainforest in Riau in Sumatra (Anderson 1976). The increasing trend of, first Calamus (from 560 to 520 

cm; from 6000 to 5300 cal yr BP) and then Durio pollen (from 520 to 480 cm; from 5300 to 4600 cal yr 

BP) suggests that a gradual change from freshwater to waterlogged-marshy conditions occurred in this 

phase. The poor preservation of testate amoebae in the lower part of this zone until ca. 5620 cal yr BP 

(540 cm) corresponds to a phase in which organic mud was deposited. Therefore, the reduced presence 

of testate amoebae might be a consequence of increasing river flooding and anoxic conditions, as also 

indicated by the peak of very small cosmopolitan less-sensitive (eurybiotic) and water demanding 

(hydrobiotic) testate amoebae taxa like Eughlypha rotunda, Difflugia lucida and Pyxidicula patens. 
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Following this initial phase, the testate amoebae assemblage is dominated by medium-large tests 

confirming that the water table was high, suggesting waterlogged conditions (Figure 8.6c). Parallel to 

the establishment of a swampy Durio-dominated vegetation, the reappearance of testate amoebae such 

as Trigonopyxis arcula and the peaks in Trigonopyxis arcula major and Centropyxis plagiostoma terricola 

indicate a gradual change from a system where most of water is coming from water flowing through 

mineral soil (minerotrophic settings) and waterlogged anoxic conditions to relatively drier rainfall-fed 

ombrotrophic acidic conditions. 

Pole forest phase Jaw-III (ca. 4500-2500 cal yr BP, 470-290 cm) 

A strong change in vegetation composition occurred around 4500 years ago as indicated by the marked 

shift in PCC. Freshwater swamp pollen taxa decreased abruptly indicating that the effects of river 

flooding became negligible in this phase. The strong increase of Pandanus pollen indicates thickets 

formed in the area as also confirmed by the occurrences of spores of Stenochlaena areolaris, a common 

epiphyte on Pandanus (Anderson and Muller 1975), so far reported only in the Philippines and Papua 

New Guinea (Chambers 2013) and found extinct in Borneo (Anderson and Muller 1975). The water 

group of testate amoebae decreased in this zone and the larger tests indicative of free standing water 

were gradually replaced by smaller sized taxa such as Centropyxis minuta, Pseudodifflugia gracilis 

terricola and Hyalosphenia minuta toward the top of the zone, confirming decreased water availability. 

Testate amoebae indicating drier conditions such as Assulina sp. and Trinema lineare cf. truncatum also 

occurred in this zone for the first time, suggesting that the water table was more regularly below the 

ground surface. A wet phase characterized the period from ca. 2900 to 2700 cal yr BP (330–310 cm 

depth) with the increase of testate amoebae taxa such as Arcella cf. discoides and Arcella conica, 

Pyxidicula operculata, P. invisitata and cf. Chlamydophrys minor.  

The increase of Campnosperma pollen started at the end of the previous phase and the presence 

remained strong in this period. Of the two species of Campnosperma found in Sumatra, Campnosperma 

coriaceum possess pneumatophorous roots and occurs gregariously in peat swamp with oligotrophic 

water while Campnosperma auriculatum can be codominant in freshwater swamps in places regularly 

inundated by euthropic water (Endert 1920; Wyatt-Smith 1959). It is not possible to distinguish 

palynologically species of the genus Campnosperma. However, the decrease of freshwater swamp taxa 

in this phase suggests that the major contributor of the Campnosperma pollen was Campnosperma 

coriaceum. Dense thickets of the terrestrial fern Nephrolepis biserrata are often formed in completely 

open secondary forest especially after fires (Anderson 1963). The fire frequency increased markedly in 

this zone as a greater number of fire episodes are detected from the macro-charcoal peak detection 

analysis. The increase of spores from Nephrolepis biserrata also indicate that the structure of the forest 

changed to a more open as the spread of Nephrolepis biserrata is enhanced by open light conditions. 

The more open structure of the vegetation is further highlighted by the increasing presence of 
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Autrobuxus and Ilex which are common trees in more open stands of peat swamp rainforests (Phasic 

community IV after Anderson).  

To the genus Parastemon belong tall trees which are common in peat swamp forests. Parastemon 

urophyllus is the only species reported in Sumatra and it is common in open scrub forest and in the 

Padang forest from Riau (notophyllous pole forest or Phasic community IV after Anderson). The increase 

of Parastemon pollen in this phase suggests that trees belonging to this genus were adapted to more 

open disturbed conditions. The relative high abundance of pollen of the giant trees of the genus 

Koompassia indicates that high canopy trees grew around the site.  

The environmental conditions reconstructed in this phase resemble the “Padang forest” after Anderson 

(Phasic communities IV–VI, Anderson 1983) or pole forest of Brady (1997). However, dominant species 

composition differs from that found elsewhere with the most abundant taxa being Pandanus, Ilex, 

Campnosperma, Garcinia cuneifolia type, Parastemon and Austrobuxus.  

In this phase the peat accumulation rate increased from an average 0.6 mm/yr to 1 mm/yr suggesting 

that the decomposition decreased and/or the accumulation of biomass increased (Figure 8.6a and Table 

8.3). A decrease in decomposition rate is suggested from the characteristics of the peat which changes 

to less decomposed-coarser hemic material. The increase in peat accumulation rate closely followed 

Pandanus expansion while testate amoeba results suggest that the water table was on average lower 

and fluctuations smaller compared to the previous dipterocarp-mixed and freshwater swamp phases. 

Pandanus thickets have massive interlocking root system which are quite resistant to decay (Phillips and 

Bustin 1998) thus their expansion might have act as an important driver for increasing peat 

accumulation rate at Air Hitam. Additionally, since the river influence decreased as indicated by the 

reduced importance of freshwater swamp taxa, all water and nutrients were received from precipitation 

leading to a nutrient-poor environment (ombrotrophic settings). Such conditions might have reduced 

the efficiency of decomposer organisms leading to decrease in humification as also indicated by peat 

composition. 

“Savanna” phase Jaw-IV (ca. 2500-1900 cal yr BP, 290-230 cm)  

In this phase Pandanus thickets dominated and the lower palynological diversity (DI) suggests fewer 

species were present at the site. High values of Ficus type and pioneer taxa such as Macaranga, suggest 

a strongly opened vegetation. Opposite to the model of peat development in the Batang Hari coastal 

peat dome (Esterle and Ferm 1994), this phase of Pandanus thickets are not accompanied by ponds on 

the surface as indicated by the dominance of small tests. Fire episodes continue to be common as 

indicated by high fire frequency. The relatively dry and open connotation of this phase resembles the 

“savanna” phase observed in the Baram area, on thick peat in central areas and disturbed patches 

(Anderson 1963). However, the vegetation composition reconstructed from Air Hitam is markedly 

different in respect to species composition. While in Baram, Combretocarpus rotundatus dominates the 
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communities, palynological results from this phase, suggest that Pandanus, Ficus and Macaranga were 

the most important taxa at Air Hitam. The increase of green moss group and dry indicator taxa like 

Nebela tincta in the testate amoeba assemblage further confirm this reconstruction. Cyclopyxis 

eurystoma and C. eurystoma parvula started to increase in the previous zone and are characteristic of 

the assemblage in this phase. They are small eurybiotic taxa and their presence in this zone suggests 

conditions were less suitable for other taxa more sensitive to environmental disturbance. 

Peat-swamp rainforest phase Jaw-V (ca. 1900-1100 cal yr BP, 230-150 cm)  

From ca. 1900 cal yr BP, Pandanus and pioneers started to decrease while freshwater swamp and peat 

swamp taxa increased, suggesting the recovery of peat swamp vegetation at the study site. The peat 

accumulation slightly decreased, likely as a consequence of increasing decomposition as suggested by 

the occurrence of finer hemic peat layers in this phase. The increase in the medium to large-size tests 

and hydrobiotic taxa (e.g. Centropyxis aculeata oblonga, Arcella conica, Cyclopyxis cf. penardi) indicate 

increase in water availability. It is possible that the water channel, which today passes close to the Jaw 

SPT, formed in this phase. The flooding of the area occurred as is also indicated by the increased 

frequency of Stenochlaena palustris. The fire frequency decreased markedly. However, several fire 

peaks of high magnitude were recorded in this phase, suggesting that fire episodes were accompanied 

by a local increase in biomass burning. This could either indicate that the vegetation which characterized 

this phase was more sensitive to fire and/or fires affected larger areas. However, the increase in fire 

magnitude might also be linked to paleoclimatic conditions. Numerous paleorecords recording ENSO 

amplitude and frequency in the Holocene, indicate that the period between 2000 and 1200 cal yr BP 

might have been characterized by particularly severe El Niño episodes (Dommain et al. 2011 and 

reference therein). These strong paleo-El Niños and drought associated, would have increased fire 

susceptibility of the moisture sensitive peat swamp taxa, thus enhancing and magnifying the effects on 

the vegetation when fires occurred. 

Pole forest phase Jaw-VI (ca. 1100-120 cal yr BP, 150-30 cm)  

A marked increase in Pandanus characterizes this phase. Small-size tests and indicators of drier 

condition such as Hyalosphenia minuta and Trigonopyxis minuta, increased to the top of the zone. The 

reconstruction suggests that water table fluctuations were low and the ecological conditions were 

similar to those reconstructed from the zones Jaw-III and IV. As in these zones, again peat accumulation 

rates increase from average 0.9 mm/yr to 1.2 mm/yr, parallel to the expansion of Pandanus. However, 

despite that Pandanus dominated this phase, diversity remained relatively high (average 5 Et(10)), 

suggesting that a well-developed peat swamp rainforest surrounded the site with Koompassia, Shorea 

and Hopea as emergent trees and Campnosperma, Ilex and Garcinia cuneifolia as understory trees. Fire 

frequencies increased to the top of the zone and several peaks of high magnitude were recorded. 
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Modern anthropogenic disturbance Jaw-VII (modern, 30-3 cm)  

The top 30 cm of the Jaw SPT core are markedly different from the remaining deposit (Figs. 6 and 7). 

Highly decomposed sapric peat with root remains characterize this layer and the peat accumulation rate 

is high. However, as pointed out by Dommain et al. (2011) the rates of peat accumulation on the surface 

peat layer (acrotelm) are biased by the greater presence of decomposing organic material and living 

biomass and might not represent a realistic estimate of the recent rates of peat accumulation. The 

presence of this top layer of sapric peat might conform to the model of Esterle and Ferm (1994) in which 

they assume intense degradation of surface material and preservation of root biomass beneath the 

surface of the peat. As peat accumulate, the stratigraphic sequence is a function of vegetation 

(particularly roots) and humification at the time of the burial of peat underneath the water table (Esterle 

and Ferm 1994).  

The greatest vegetation turnover as reconstructed from the palynological analysis occurred in this 

phase. Pandanus and emergent trees such as Hopea, Shorea and Koompassia disappear and Parastemon 

and thickets of Nephrolepis biserrata dominates at the site, also observed in the field during the coring. 

The strong human impact in this modern phase is further highlighted by the increase in fire frequency. 

It remains uncertain why Parastemon was not subjected to logging while virtually all other large trees 

were removed. It might be related to the fact that the wood from this species is hard to use because of 

the silica content. The testate amoebae assemblage shows a marked change from peat moss to green 

moss and soil dominating communities and small-size tests dominate in this phase. The high presence 

of eurybiotic species such as Trinema spp., Cyclopyxis eurystoma and Cyclopyxis eurystoma parvula, 

indicates that environmental conditions were less favorable for testate amoeba species compare to the 

previous phases. While most of the Air Hitam peat dome was converted to oil palm plantations following 

intense logging in the 1990s, this small portion of land was not converted. However, the logging and the 

creation of a net of drainage channels on the dome to reduce water table height strongly changed the 

structure and composition of the vegetation and therefore conditions of the peat at the site. 

Similarities/dissimilarities of the vegetation phases  

With the exception of the last modern phase, the results from the PCA including all taxa, generally 

confirm a clear separation between the vegetation composition in the first two phases when 

minerotrophic conditions persisted and the following ombrotrophic phases (Figure 8.7). As indicated by 

the large shift in PCC from Jaw-II to Jaw-III, species composition changed overall. General observations 

on tropical SE Asian peatlands, indicate that freshwater swamp and peat swamp forests on shallow peat 

are generally more diverse, compare to the most advanced peat swamp communities on thick peat 

deposits. Opposite to that, the DI index estimated from the Jaw SPT core, suggests diversity did not 

change from minerotrophic to the ombrotrophic settings. The PCA results show that zones Jaw-III/pole 
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forest and Jaw-V/peat swamp phases were highly variable or dynamic and were more closely connected 

with the peat forming phase Jaw-I. The greatest distance, suggesting more marked differences in 

vegetation composition, is observed between the Jaw-VI/pole forest and Jaw-IV/“savanna” phases 

where Pandanus dominated with the freshwater swamp composition which characterized Jaw-II. 

Water table and peat accumulation rate changes 

Initially, from ca. 7800 to 4500 cal yr BP, minerotrophic conditions characterized the watershed in the 

Air Hitam area. Water table fluctuations were high and flooding of the area occurred frequently as 

indicated by the dominance of medium to large size tests and the alternative domination of wet and 

drier taxa. A well developed Dipterocarpaceae mixed-swamp rainforest covered the area and biomass 

input must have been very high. However, this was outbalanced by a high decomposition rate and peat 

accumulation remained low for the first 4500 years of the record (average 0.6 mm/yr). The change to 

ombrogenous conditions became apparent from ca. 4500 cal yr BP onwards, when a marked change in 

vegetation occurred and Pandanus thickets colonized the site, leading to an increase in peat 

accumulation rate (average 1 mm/yr) likely as a consequence of increasing root biomass associated with 

the formation of Pandanus thickets and decrease in decomposition under oligotrophic conditions. 

Figure 8.7 Samples scatterplot of the principal component analysis (PCA) of all percentage data of identified pollen 
and spore taxa. Percentages calculated on the total sum (Pandanus excluded) of all taxa square root transformed. 
First and second axes cumulative explained 34% of the variation in pollen and spore taxa data. Differently marked 
palynological zones correspond to different vegetation phases. Gray arrows correspond to the variation of testate 
amoeba environmental groups (water, peat moss, green moss, soil and indicators of drier conditions) and size 
classes (large, medium and small) used as supplementary variables. Only most important taxa are shown 
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Testate amoebae taxa tolerant of drier conditions appeared and the small size tests slowly replaced 

larger tests confirming decreased permanent water availability. The peat accumulation rate remained 

high to the top of the core although it slightly decreased from ca. 1900 to 1100 yr cal BP (Jaw-V), when 

Pandanus decreased sharply and a mixed-swamp rainforest, resembling the initial minerotrophic phases 

became established. As observed in Jaw-I and II, the increase in water table fluctuations and possibly 

river flooding, as indicated by the increase in the testate amoebae water group and freshwater swamp 

pollen taxa, were accompanied by higher decomposition and hence lower peat accumulation rate.  

Although in general the water table closely follows the peat dome surface, Brady (1997) found that the 

water table levels monitored on different peat thickness in Sumatra exhibited patterns of declining aver-

age level and fluctuations with increasing peat depth, with the lowest average water table depth 

occurring in the thickest peat site. The study of Brady (1997) suggests that on thick peat deposits, peat 

accumulates more because of the larger amount of fresh roots and declining rates of litter decay rather 

than from rising water levels and permanent stagnant conditions. This hypothesis was supported by the 

study of Grady et al. (1993). They analyzed the maceral content of peat from different layers of a deep 

deposit near Siak Sri Indrapura, Riau (Sumatra), and used the increase in fungal degradation of plant 

cells in peat as an evidence of higher oxygen levels in peat during degradation. The fungal degradation 

results suggest that the peat found in deep deposits is more aerobic than that found in thinner deposits. 

Thus it is thought peat accumulation in the thicker peat deposits of Riau are associated with drier surface 

conditions and changes in species composition rather than with a higher water table. In this model, the 

declining influence of river flooding along the gradient plays an important role. Vertical sequences of 

peat analyzed from deposits in Sumatra (Esterle and Ferm 1994) and in Kalimantan (Dehmer 1993; 

Moore and Hilbert 1992) suggest that increasing peat accumulation with thickness of the deposits was 

associated with reduced flooding in addition to a lower mean water table level, declining resource 

quality of plant inputs, and an increase in the root biomass.  

The results from the Jaw SPT core fits the model of Brady (1997) and Grady et al. (1993) as the increase 

in accumulation rate was likely a consequence of belowground biomass increase (in particular Pandanus 

roots) and decreasing decomposition characteristic of the oligotrophic conditions on ombrotrophic 

peatlands. This suggests a strong link between vegetation communities and peat accumulation rate 

changes over time at Air Hitam, as increase in peat accumulation rate closely followed increasing 

representation of Pandanus at the site. 

Drivers of change: sea-level, climate, fire and human impact 

Peat accumulation started at the Air Hitam watershed after 7800 years ago corresponding to the mid-

Holocene maximum in regional rainfall and the lowering and stabilization of the rate of sea-level rise 

(Geyh et al. 1979; Figure 8.6a). As a consequence of these changing conditions, the regional water table 
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in the islands of Sunda rose, causing flooding and paludification of the more depressed areas (Dommain 

et al. 2014). Initially, the peatland was influenced by the river flooding, which caused a high rate of 

decomposition. As a consequence, opposite to what observed in Central Kalimantan (Brünig 1996), the 

presence of a highly biomass productive dipterocarp-mixed swamp rainforest did not induce high peat 

accumulation rate in this initial phase. Starting from ca. 5000 cal yr BP, sea level started to decrease 

slightly due to hydro-isostatic adjustment of the Sunda shelf (Horton et al. 2005; Steinke et al. 2003; 

Dommain et al. 2011) causing the decrease of the regional water table in the inland, likely affecting the 

interfluvial peat domes. Additionally, peat thickness at Air Hitam likely reached a level above the 

influence of rivers discharge, causing a change towards a purely rainfall fed oligotrophic system. From 

ca. 4500 year ago, a more open pole forest colonized the area, with Pandanus thickets covering the site. 

Parallel to this, local fire episodes became more frequent, corresponding to the increase in ENSO 

variability in Indonesia as indicated by several paleoclimatic records (Haberle et al. 2001; Donders et al. 

2008). The burned open patched areas were colonized by the terrestrial fern Nephrolepis bisserrata and 

Parastemon trees. A stronger disturbance signal was found from ca. 2500 to 1900 cal yr BP. The diversity 

decreased markedly and pioneer taxa like Macaranga codominated the site together with Pandanus 

and Ficus. It remained uncertain if this phase represented an advanced phase of the catena as found by 

Anderson (Phasic Community VI; Anderson 1963) or a long-lived disturbance phase following fire 

burning of the canopy. Despite those major changes in the vegetation cover, peat accumulation rates 

remained high and decreased only slightly from ca. 1900 cal yr BP when the paleoenvironmental 

reconstructions indicate that a renewed mixed-swamp rainforest expanded on the site. According to 

Dommain et al. (2011), the occurrencesof strong paleo-El Niños starting from ca. 2000 cal yr BP, caused 

peat accumulation in many Central Kalimantan peat domes to cease. While fire frequency decreased 

overall in this phase, major fire peaks were recorded possibly in connection with the occurrences of 

strong El Niño episodes.  

Following this temporary mix-swamp rainforest phase dominated by Garcinia cuneifolia type and Durio, 

a low pole forest reestablished with abundant Pandanus thickets and the peat accumulation rate 

increased again from ca. 1100 cal yr BP onwards. The general increase in peat accumulation during the 

relatively drier phases and of increasing ENSO variability indicate that the peatland of Air Hitam has 

been potentially an effective carbon sequestering ombrotrophic peatland against the millennial scale 

climatic and environmental variability.  

Despite the resolution for the top modern 30 cm of the core being low (2 samples analyzed for 

paleoenvironmental reconstructions), major transformation of the landscape could be detected. 

Pandanus species and the majority of the trees were removed from the site and Parastemon and 

Nephrolepis biserrata dominate the assemblages. The general net greenhouse gases balance of tropical 

peatlands is affected by the conversion to oil palm plantations as the carbon stored is lost during the 
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conversion and subsequently for management processes when water table is kept artificially 

belowground (Verwer et al. 2008; Hooijer et al. 2010; Murdiyarso et al. 2010; Page et al. 2011; Kurnianto 

et al. 2015). The consequences of clearance and drainage of the Air Hitam peat dome are not predictable 

without long-term monitoring of the peat deposit. However, it is likely that the accumulated carbon will 

be transferred to the atmosphere due to exposure to aerobic conditions. The potential value as carbon 

sink of this area might soon be lost unless a better management of the watershed is applied. 

Conclusions  

In general, the domed shape of a peatland is derived from the combination of differential rates of 

biomass production, decomposition and preservation (Tie and Esterle 1992) and the long term function 

of a peatland as a carbon sink depends largely on the regional and local environmental settings for much 

of its history. The multi-proxy paleoecological and paleoenvironmental results from the core Jaw SPT of 

the Air Hitam peatland increase our knowledge on what were the most important factors driving the 

development of these ecosystems on a time scale of thousands of years, thus contributing to the 

understanding of how ecosystem dynamics and fire are linked to peat development through time.  

As for several other modern peatlands in SE Asia (Figure 8.1), peat initiated at the Air Hitam peat dome 

during the mid-Holocene rainfall maxima in combination with a slowing of the pace of sea level rise, 

which likely raised the water table in these inland settings leading to paludification (Griffiths et al. 2009; 

Partin et al. 2007; Dommain et al. 2011). Between the fluvial levees, in the depression that characterizes 

the Air Hitam area, peat started to accumulate. The peatland at Air Hitam was initially fed by fluvial run-

off and the vegetation gradually changed from mixed Dipterocarpaceae swamp to marshy freshwater 

swamp communities dominated by Durio trees at around 5300 years ago. The change from a 

minerotrophic to ombrotrophic setting occurred during the late Holocene about 4500 years ago, when 

peat growth reached a level above river influence leading to a marked change in vegetation community 

composition. A pole forest established with Pandanus thickets colonizing the area and freshwater 

swamp taxa decreased.  

The occurrence of fire in humid SE Asian peat swamp forests is often reported as an anomaly, due to 

the fact that pristine tropical peat swamps are permanently wet (Rieley and Ahmad-Shah 1996). Both 

historical records and charcoal reconstructed from paleo archives have demonstrated that fires do 

occur in the humid tropical forests but they are rare with return intervals of hundreds to thousands of 

years (Cochrane 2003). The results of the Jaw SPT core confirm for Air Hitam, fire return interval has 

been in the range of a hundred years. However, the correspondence between the increase in fire 

magnitude and frequency and ENSO onset in the late Holocene, suggests that the fire regime changed 

at the centennial time scale following regional climatic variability. Interestingly, the drier ombrotrophic 

Pandanus-dominated phases in the late Holocene were not accompanied by a decrease in peat 
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accumulation rates but rather increase. Pandanus thickets might be one of the most important drivers 

of peat accumulation at Air Hitam, downscaling the effects of the occurrence of more frequent regional 

droughts and less-suitable for peat development drier surface conditions. This might suggest that, under 

natural conditions, long-term climatic variability does not affect peatland development in the inland of 

Central Sumatra. However, recent changes in vegetation cover and hydrological settings following 

agricultural conversion might make the Air Hitam peatland more sensitive to drought, and fires might 

increase as observed elsewhere already in SE Asia peatlands (van der Werf et al. 2008). If extreme 

climatic events should increase in the future, longer or more severe drought might cause the loss of 

7800 years of carbon stored at Air Hitam. A better management of the watershed and, in particular, 

restoring measurements act at reestablishing the natural vegetation cover, might be fundamental in 

order for the Air Hitam peatland to maintain its state as carbon sink in time.  

In conclusion, the paleoenvironmental and palynological results from the Jaw SPT core further confirm 

the value of the inland peat system in Air Hitam and highlight the importance of conducting 

paleoenvironmental and charcoal analyses in order better reconstruct ecosystem-climate interactions 

in the tropical peatlands of SE Asia.  
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Abstract 

We studied the area of Air Hitam, a tropical peatland in the Jambi province (Sumatra) in order to 

investigate the long-term effects of environmental and climate variability on the development of the 

peatland and on its carbon accumulation capacity. We used multi-proxy palaeoenvironmental and 

palaeoecological analyses on a 733 cm-long and ca. 7800 cal yr BP old peat core. The combined results 

of pollen, spores, testate amoebae, peat characteristics, 15N natural abundance and macro-charcoal 

analyses reveal that changes in peat and long-term carbon accumulation rates were mostly a function 

of vegetation phases and sea-level changes. Higher rates of peat and long-term carbon accumulation 

were found to correlate with Pandanus expansion under ombrotrophic settings. The occurrences of 

several centennial-scale period of vegetation disturbance were reconstructed from pioneer and open 

pollen taxa and peat 15N natural abundance signatures. Increase in number of disturbance phases of 

forest community was paralleled with increase in fire frequency, as reconstructed from the macro-

charcoal analysis, which in turn followed the onset of modern ENSO amplitude during the late Holocene. 

Although the increase in fire occurrences caused disturbance of the vegetation communities for ca. 

7800 years, these ecosystems showed resilience to these relatively short-lived disturbance events.  

Introduction 

Large areas of tropical peatlands are found in the lowlands of SE Asia where they provide important 

ecosystem functions (Dommain et al. 2011; Page et al. 2011; Figure 9.1a). Despite their importance as 

major carbon sinks, peat swamp forests are one of the ecosystems most threatened by deforestation in 

Indonesia (Miettinen et al. 2011). Beside land-use change, it has been hypothesized that climate change 

and particularly, the increase in extremes rainfall anomalies and drought episodes, might disrupt the 

delicate equilibrium of these ecosystems in the future (Dommain et al. 2011). Palaeoecological multi-

proxy analysis of peat cores provides a longer temporal view of the dynamics of these ecosystems and 

can help understanding what are the most important drivers affecting their develop and functionality 

in time. In this study we use vegetation phases as reconstructed from pollen and spore data, 

palaeohydrology and water table fluctuations inferred from testate amoebae and local fire regime 

history as reconstructed from the macro-charcoal peak detection analysis from the peat core of Jaw SPT 

(Figure 9.1b), in the province of Jambi, Sumatra, Indonesia (Biagioni et al. 2015b; Chapter 8). 

Additionally, the long-term carbon accumulation rate (LORCA) are reconstructed using isotope analysis 

from the same core and peat characteristics are used to infer the rate of decomposition of peat in 

relation to vegetation phases and LORCA. 15N natural abundance and pollen and spore pioneer relative 

abundance are used as proxies for ecosystem disturbance. We use these results and we plot them 

against external potential drivers which include climate and sea-level change with the final aim of 
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assessing the relationship between peatland development, palaeoclimate and palaeoenvironment at 

the centennial to millennial time scale.  

Modern settings and palaeo-environmental dynamics 

Climatically, the eastern part of the Jambi province in Sumatra, Indonesia, experiences a wet tropical 

climate with mean annual precipitation ranging between 2400 and 2900 mm and annual temperatures 

average of 27˚C (WorldClim - Global Climate Data, http://www.worldclim.org/). Seasonality of rainfall is 

not marked, although the months from May to September are characteristically drier due to the 

southeast monsoon (Aldrian and Susanto 2003). The inter-annual scale rainfall patterns change when 

the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) occur. The El Niño warm 

phase of ENSO and the positive IOD cause decreasing rainfall, while the opposite trend with increasing 

rainfall characterizes the cold phase La Niña of ENSO and the negative IOD phase (Philander 1990; 

Webster et al. 1999; Cane 2005).  

The results from the palaeoecological reconstruction of the Jaw SPT core (2.047685°S 102.665362°E; 

Biagioni et al. 2015b; Chapter 8) indicates that peat started to accumulate in the Air Hitam depression 

at least 7800 years ago, and the vegetation reconstruction from pollen and spores suggests that until 

ca. 4500 years ago the vegetation was dominated by dipterocarp-mixed swamp rainforest taxa. 

Following, a change occurred towards more specialized vegetation adapted to live under oligotrophic 

conditions (Biagioni et al. 2015b; Chapter 8). 

Figure 9.1 a) Map of Sundaland, showing the study area 
(yellow square) in the Province of Jambi (red line) in 
Sumatra. Grey areas represent the Sunda shelf. Black 
areas represent peatlands (data source for peat FAO 
Harmonized Soil Map of the World, Histosols and Gleysols 
layers only); b) location of the Jaw SPT core (yellow circle) 
in the Air Hitam peat dome (dark grey area) 

http://www.worldclim.org/
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Methods 

In this study we use the palaeoenvironmental and palaeoecological proxies including pollen and spores, 

testate amoebae and macro-charcoal results from the Jaw SPT core. Methods applied and data analyses 

for these proxies are described in details by Biagioni et al. (2015b) and in Chapter 8.  

Using the classification systems for SE Asian tropical peat (Esterle and Ferm 1994; Wüst et al. 2003), we 

infer level of decomposition and humification from the peat attributes and plant composition (Cameron 

et al. 1989). According to the morphology of the botanical components, the peat is classified in fibric, 

hemic and sapric. The hemic peat is further divided in to coarse and fine (Esterle and Ferm 1994; Wüst 

et al. 2003). The degree of decomposition or humification increase from fibric to sapric and it is a 

function of the biomass characteristics of the vegetation communities and the hydrological settings.  

Pollen and spore taxa percentage results are grouped into two main groups based on the available 

accounts for the vegetation communities and the ecological descriptions of taxa currently available from 

SE Asian and Sumatran peat-swamp rainforests (e.g. Anderson 1963; Sabiham and Furukawa 1986; 

Cameron et al. 1989; Brady 1997; Page et al. 1999; Cole 2012; Gunawan et al. 2012; Cole et al. 2015). 

These groups are Dipterocarp-mixed swamp, which includes taxa commonly found in shallow marginal 

peat deposits and on fresh swamp rainforests in SE Asia and peat swamp taxa which includes taxa more 

representative of the communities growing on thick peat deposits (Table 8.2).  

Similarly, to infer average water table level and fluctuations, testate amoebae with similar habitat 

preferences were classified into environmental groups. Testate amoebae are unicellular protists, which 

can be found commonly in wet environments such as lakes, rivers, mosses, soils and estuaries all around 

the world (Mitchell et al. 2008). Their responses to the major ecological gradients in peatlands have 

been established (e.g. Chardez 1965; Bobrov et al. 1999; Charman et al. 2000; Bobrov et al. 2004; Mazei 

and Tsyganov 2006; Swindles et al. 2014), where the response is mostly related to moisture. For 

instance, seasonal changes in soil moisture in peatlands due to water table level fluctuations can affect 

testate amoebae to such an extent to cause shifts in abundance and community composition (Quinn 

2003; Warner et al. 2007; Mitchell et al. 2008). Two environmental groups are used as particularly 

significant: the water group, which includes taxa indicating high water availability and standing water, 

and the dry group, which includes taxa which can tolerate and live under drier conditions, increasing 

surface light and aerobic conditions (Chardez 1965; Bobrov et al. 1999; Charman et al. 2000; Bobrov et 

al. 2004; Mazei and Tsyganov 2006; Table 9.1).  

For the local fire regime reconstructions, we used the fire frequency and magnitude of macro-charcoal 

peaks as described in details in Biagioni et al. (2015b) and in Chapter 8. 

Additionally, dried and ground samples were analyzed every 10 cm along the core (total of samples 68) 

for total C and N by a CNS Elemental Analyzer (CN Elementar Analyzer Vario EL, Hanau, Germany) and 

15N natural abundance using isotope ratio mass spectrometry (IRMS; Delta Plus, Finigan MAT, Bremen, 
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Germany). Short-term phases of soil N cycle disruption, following ecosystem disturbance, might be 

detected in palaeoenvironmental core analyses. We use 15N natural abundance signatures of the peat 

to identify short-term disturbance events at the centennial time-scale. We compared the 15N signatures 

to the “open and pioneer” palynological group, which included pollen and spore taxa that indicate 

openness and disturbance of vegetation. Additionally, to deduce possible causes of change, the 15N 

signatures are plotted against fire frequencies, as reconstructed from the peak detection macro-

charcoal analysis. 

Long-term carbon accumulation rates (LORCA; g C /m2 yr) were calculated from the dry bulk density 

(g/cm3), carbon content (C %) and peat accumulation rates (mm/yr; Chambers et al. 2011). Peat 

accumulation rates (mm/yr) are calculated based on the age depth models as reconstructed from 14C 

AMS radiocarbon dates (Biagioni et al. 2015b; Chapter 8). All results are plotted using the program C2 

(Juggins 2007). 

Table 9.1: Environmental grouping of testate amoebae 
Water: taxa commonly living in very wet environment 

Amphitrema cf. lemanense  Difflugia lucida   
Amphitrema sp.  Euglypha cf. acanthophora   
Arcella conica Euglypha rotunda   
Arcella cf. discoides   Euglypha tuberculata   
Centropyxis aculeata oblonga    Heleopera petricola  
Centropyxis aerophila sphagnicola   Microchlamys cf. patella   
Centropyxis cf. hirsuta   Phryganella paradoxa   
Chlamydophyrus minor Pyxidicula cf. cymbalum 
Cryptodifflugia sacculus   Pyxidicula operculata  
Cyclopyxis ambigua  Pyxidicula patens  
Cyclopyxis cf. penardi Trigonopyxis arcula major  
Cyclopyxis cf. puteus    

Dry: taxa commonly living in drier conditions and/or in conditions with high aeration, surface light and water fluctuations 

Arcella cf. arenaria  Hyalosphenia minuta 
Assulina sp. Playfairina cf. valkanovi  
Centropyxis plagiostoma terricola Trigonopyxis arcula 
Corythion dubium   Trigonopyxis minuta 
Geamphorella lucida   Trinema lineare cf. truncatum 

Other taxa 

Centropyxis aerophila  Heleopera sylvatica  
Centropyxis cf. constricta   Hyalosphenia cf. ovalis   
Centropyxis cf. laevigata  Hyalosphenia cf. schoutedeni   
Centropyxis elongata  Hyalosphenia sublflava   
Centropyxis minuta   Microchlamys sylvatica 
Centropyxis ssp. Nebela cf. lageniformis 
Cryptodifflugia oviformis fusca  Nebela tincta 
Cryptodifflugia sp. cf. Plagiopyxis sp. 
Cyclopyxis arcelloides  cf. Pseudodifflugia gracilis terricola 
Cyclopyxis eurystoma Pseudodifflugia sp. 
Cyclopyxis eurystoma parvula Pyxidicula cf. invisitata 
Cyclopyxis kahli  Pyxidicula ssp. 
Cyclopyxis cf. machadoi   cf. Trachelocorythion pulchellum  
Cyclopyxis ssp. Trigonopyxis microstoma  
Euglypha ciliata glabra  Trinema complanatum 
Euglypha compressa glabra   Trinema cf. enchelys 
Euglypha cristata decora Trinema lineare 
Euglypha laevis   
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Results and discussion 

Vegetation community changes and phases of peat development  

The vegetation of natural lowland tropical peat swamp forests is dominated by trees (Page et al. 1999). 

Despite that most of the tree families of lowland dipterocarp forests of SE Asia are found in lowland 

peat swamp forests, the tree species composition of peat swamp forest varies considerably in response 

to peat thickness, acidity, nutrient and oxygen availability (Anderson 1961; Anderson 1964; Anderson 

1983). The spatial distribution of the different communities depends largely on the peat thickness and 

thus it can also be seen as a temporal succession as peat develop and accumulate over time (Anderson 

and Muller 1975; Morley 2013). The results from the pollen and spore analysis of the Jaw SPT highlight 

two distinct vegetation phases (Figure 9.2). The period from ca. 8400 to ca. 4500 cal yr BP (700-470 cm) 

was dominated by taxa commonly growing on shallow marginal peat that is representative of 

dipterocarp-swamp mixed rainforests. Peat swamp rainforest established from 4500 cal yr BP up to the 

present (470-3 cm).  

Minerotrophic settings (ca. 7800-4500 cal yr BP) 

According to the age-depth model, peat started to accumulate at least 7800 years ago (664 cm core 

depth). Until ca. 4500 cal yr BP, minerotrophic fresh-water setting characterized the area as indicated 

by the alternation of high and low values of water testate amoebae group, suggesting occurrence of 

large fluctuations of the water table (Figure 9.2). Additionally, the limited occurrence of dry indicators, 

suggests that the water table was commonly above ground and stagnant conditions might have 

persisted. In this initial phase. the peat was fine to coarse hemic, indicating that the decomposition of 

the organic matter and humification were relatively high. The vegetation, reconstructed by pollen and 

spore analyses, indicates that well-developed dipterocarp-swamp mixed rainforests covered the area. 

Characteristic taxa in this phase were Dipterocarpaceae, Durio, Blumeodendron, Pandanus and 

Stenochlaena palustris (Biagioni et al. 2015b; Chapter 8). The presence of abundant wood fragments in 

this core section supported the interpretation that dense arborescent vegetation covered the area, 

maintained by flooding, which promotes high biomass production and high degree of decay (Biagioni et 

al. 2015b; Chapter 8). As a consequence, LORCA values were relatively low in this initial phase. Fire 

episodes were not frequent during the whole phase, indicating that fires were not a common 

occurrence. However, one large magnitude peak (at ca. 5400 cal yr BP) suggests that a large fire episode 

occurred.  

Ombrotrophic settings (ca. 4500 cal yr BP to present) 

A change in the environmental conditions occurred at around 4500 cal yr BP. The testate amoebae dry 

indicators are consistently more present with higher values, indicating that surface wetness decreased 
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compared to the previous phase (Figure 9.3). However, the degree of humification decreased as 

indicated by the coarser hemic peat. Together, these proxies suggest that river flooding ceased to 

influence the network of interactions of the peat system. The decrease in fresh, oxygen- and nutrient-

rich, river water caused a change toward a system that was mostly influenced by nutrient poor rainfall, 

establishing ombrotrophic conditions. Starting from ca. 4500 cal yr BP, Pandanus increased and began 

to dominate together with Campnosperma, Ilex, Austrobuxus and Nephrolepis biserrata, to form a peat 

swamp rainforest (Biagioni et al. 2015b; Chapter 8). Interestingly, this reconstruction suggests that a 

positive correspondence between Pandanus and fire frequency existed on the long-term. Higher 

occurrence of Pandanus corresponds to periods of increased occurrences of fire episodes. Despite that 

the resolution of the palynological data did not allow us to deduce causalities, it is likely that the increase 

in fires and the formation of dense Pandanus thickets were interlinked (Figure 9.2). 
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Figure 9.2 Selected results of the Jaw 

SPT core analyses. The diagrams are 

dived in the two phases:  

minerotrophic (light blue) and 

ombrotrophic (light red). From the 

top: dipterocarp-mixed swamp and 

peat swamp pollen and spore taxa 

(%). In light gray the % values of 

Pandanus pollen. Testate amoebae 

water and dry indicators (%); 

sediment/peat characteristics; long-

term apparent carbon accumulation 

rate (LORCA, C g/m2 yr) and peat 

accumulation rates (mm/yr); fire 

frequency and magnitude calculated 

on the fire peaks (asterisks) detected 

with the software CharAnalysis. Cut 

symbol denote fire peaks which were 

cut to highlight trend in minor peaks 
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LORCA changes over time 

Lacks of evidence for hiatuses in the records indicate that peat accumulated continuously since peat 

initiation ca. 7800 years ago (Biagioni et al. 2015b; Chapter 8). Average peat accumulation rate 

calculated based on the age depth model from 664 cm to the top of the core is 0.9 mm/yr (min 0.5; max 

1.6 mm/yr), average LORCA is 51 C g/m2 yr (min 25; max 133).    

Conditions that favor peat preservation are found where primary production exceeds degradation by 

bacteria and fungi. Tropical climate favors decomposition but at the same time also highly productive 

rainforests and thus often production exceeds degradation leading to net organic matter accumulation 

(Wüst et al. 2007). Estimates of LORCA are available from few tropical ombrogenous deposits in SE Asia 

(Dommain et al. 2011; Dommain et al. 2014). When compared to other sites in SE Asia, the Jaw SPT 

average LORCA is within recorded ranges (Figure 9.3a). The larger difference is found within the record 

between the minerotrophic and the ombrotrophic phases (Figure 9.3b). Additionally, LORCA seems to 

increase markedly in correspondence to the expansion of the peat swamp forests and Pandanus thickets 

(Figure 9.4). This suggests that a strong link existed between ecosystem settings and LORCA at Air Hitam, 

as a peat swamp rainforest became established, LORCA increased. Such increase occurred despite that 

the establishment of a Pandanus-dominated vegetation possibly caused a decrease of aboveground 

biomass, compared to the woody and more diverse dipterocarp-mixed swamp communities of the 

minerotrophic phase. However, Pandanus thickets develop a massive interlocking root system and have 

a large belowground biomass quite resistant to degradation (Phillips and Bustin 1998). These results 

from the Air Hitam core highlight how crucially important are the vegetation communities covering 

ombrotrophic peat in relation to peat and carbon accumulation in space and time. 

 

 

Figure 9.3 a) Comparison of LORCA (expressed as C g/m2 per yr) during the Holocene of Sebangau, Palangka Raya 
(Central Kalimantan; Page et al. 2004; Neuzil 1997), Teluk-Kemarat (West Kalimantan; Neuzil 1997) and Siak Kanan 
(Riau, Sumatra; Diemont and Supardi 1987a) with the Air Hitam peat dome as calculated from the Jaw SPT core analysis. 
Average (dots) and min, max values (whiskers) are shown. Data source for all other sites other than Air Hitam: Dommain 
et al. 2011; b) Boxplots of the Jaw SPT LORCA (average, first and third quartiles, min and max values) divided in the 
minerotrophic (ca. 7800-4500 cal yr BP) and ombrotrophic phase (4500 cal yr BP-present) 
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Effects of sea-level changes and climate variability on the development of the Air 
Hitam peat dome 

As shown by the palaeoenvironmental data, internal dynamics linked to vegetation and hydrological 

changes were important factors influencing the development of the Air Hitam peat dome. However, 

regional changes in climate, in particular precipitation variability, as well as changes in sea-level were 

found to be equally important for the development and differentiation of peatlands in SE Asia (e.g. 

Dommain et al. 2011; Dommain et al. 2014). 

In order to investigate possible effects of climate and sea-level changes at the Air Hitam peat system, 

we compared the results from the Jaw SPT core to regional proxies of rainfall and sea-level changes for 

the last 8000 years (Figure 9.5).  

Sea-level changes 

According to the review study of Dommain et al. (2014), peatland formation in the lowlands of SE Asia 

was primarily triggered by sea-level change. As sea-level decreased during the deglaciation, land 

became submerged enhancing the atmospheric moisture and the hydrological gradient on land. The 

peatland formation in the inland Air Hitam peat dome occurred since at least 7800 years ago, 

corresponding to a phase in which the sea-level rise pace lowered (Figure 9.5a). This suggests that the 

formation of peat in Air Hitam was delayed, possibly as a consequence of the fact that the basin was 

constantly flooded until the rate of sea-level rise slowly decreased and regional water table stabilized. 

By 5000 years ago the sea-level had reached a level above its present modern level and it began to 

Figure 9.4 Schematic overview of the network of 
interactions as the system changed from the 
minerotrophic to ombrotrophic settings. Large blue 
arrows represent changes (increase/decrease) of the 
most important parameters reconstructed from the 
proxy results from minerotrophic to ombrotrophic phase. 
Graphs show the minerotrophic (white) and 
ombrotrophic (light green) phases. Black lines where 
present represent the locally weighted scatter plot 
smoothings (LOWESS) fitted to the sample values (grey 
bars) of: a) dry and b) water testate amoeba groups (%), 
c) Pandanus pollen (%), d) macro-charcoal peaks 
frequency per 800 yr and e) LORCA (C g/m2 per yr) 



143 
 

slowly retrocede. In the inland the marine regression would have caused the regional water table to 

decrease. This phase of sea-level decrease corresponds to the lowering of the water table fluctuations 

and the establishment of drier surface conditions at the Air Hitam peat as indicated by the testate 

amoebae dry indicators increase (Figure 9.5f). This suggests that the hydrological changes reconstructed 

for the ombrotrophic phase since 5000 years ago followed the sea-level decrease.  

Rainfall variability 

At the centennial- to millennial-time scale, the rainfall variability in the lowlands of Jambi is mainly a 

function of strength of the monsoons, amplitude and frequency of ENSO and IOD. The major climatic 

change from the late glacial to the Holocene in the Indo-Pacific Warm Pool was the increase in moisture 

due to both rising sea-level and the southward migration of the mean position of the ITCZ (e.g. Haug et 

al. 2001; Wang et al. 2005). Stalagmite analysis of δ18O from Borneo (Partin et al. 2007; Figure 9.5b) 

record a smooth trend of increasing rainfall following the deglaciation up to ca. 5000 years ago. When 

compared to records north (Haug et al. 2001) and south (Wang et al. 2005) of the equatorial line, this 

Holocene trend has been explained with a southward migration of the ITCZ in response to precessional 

forcing. While sea-level changes seem to have greatly influenced the development of the peat 

accumulation at the Air Hitam peat dome, increasing rainfall (associated with the migration of the ITCZ 

through the mid- to late Holocene) seems to have not had a major impact (Figure 9.5g). In fact, opposite 

to what Dommain et al. (2014) found in the coastal peatlands of Kalimantan and Sumatra, the maxima 

in LORCA at Air Hitam did not correspond with the Holocene rainfall maxima associated with the 

southernmost position of the ITCZ (Figure 9.5g) at around 5000 cal yr BP. This is likely related to the 

position of the site in the center of the ranging shift of the ITCZ. The migration north or south of its 

average position, likely did not have a marked effect on the rainfall patterns in Jambi. 

During the late Holocene, ombrotrophic settings, vegetation communities and lowering sea-level/water 

table fluctuations, corresponded to the increase in LORCA at the Air Hitam peat dome. At the same time, 

higher seasonality and El Niño droughts led to reduced accumulation and in some cases peat stopped 

to accumulate in Borneo (Dommain et al. 2011; Dommain et al. 2014). Since in the humid tropical 

rainforests, recurrent and large wildfires are mostly associated with drought periods, palaeo-fire regime 

reconstructions in SE Asia have been used to infer ENSO variability at the centennial to millennial time 

scale. Similar to what were found in several other records across SE Asia (e.g. Haberle et al. 2001; Gagan 

et al. 2004), fire frequency increased at the Air Hitam site starting from ca. 4500 cal yr BP, likely as a 

consequence of modern ENSO onset in the late Holocene (Figure 9.5e). Phases of more frequent El Niño 

events were attested in particular during the last 3000-2000 years (e.g. Moy et al. 2002; Woodroffe et 

al. 2003; Conroy et al. 2008). Within the age uncertainties due to radiocarbon dating and age-depth 

modeling, periods of frequent El Niño episodes as reconstructed from the red color intensity at the lake 

Laguna Pallcacocha in the southern Ecuadorian Andes, correlated to peaks of high fire magnitude of the 
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Jaw SPT core (Figure 9.5d-e). This suggests that increasing periods of drought led to increasing chances 

for the Air Hitam forests to burn. Despite the legacy left by ENSO and related fires, peat accumulation 

did not cease as in the peatlands of Borneo. This suggests that the effects of water table lowering and 

enhanced periods of droughts did not reach a threshold beyond which enhanced aerobic decay would 

have markedly affected the carbon balance of the Air Hitam peat dome. One explanation might be that 

natural wildfires were most likely affecting the aboveground vegetation, but not the below-water table 

peat deposits via smoldering fires, as no evidence are found of decrease in LORCA during phases of 

increased fire frequency and magnitude. 

The concomitant occurrences of a strong El Niño event and IOD positive anomaly in 1997/1998 have 

proven that when these two events occur simultaneously, the effects on negative rainfall anomaly 

(droughts) over western Indonesia is magnified. In order to test if the centennial scale IOD mean state 

and ENSO variability increased the chances of fires, we compare our record to the available IOD 

reconstruction from northwestern Sumatra stable hydrogen compositions of terrestrial plant waxes 

(Niedermeyer et al. 2014; Figure 9.5c). The pink band indicate phases of increasing δD plant wax 

interpreted as IOD positive mean state in the Indian ocean from 6500 to 4500 yr BP and from 2500 to 

2000 yr BP (Niedermeyer et al. 2014; Figure 9.5c). The first IOD positive mean state phase correspond 

to a period in which ENSO variability decreased as a consequence of reduced number of Eastern Pacific 

(EP) flavors events (Karamperidou et al. 2015). The second phase, on the other hand, lack evidences of 

changes in fire regimes as compared to previous or later periods. Altogether, this suggests that IOD 

mean state was not an important driver of change for fire regime changes in the Air Hitam peatland. 

One possible explanation might be related to the geographic location of Air Hitam on the eastern side 

of the Barisan mountain range. The location behind this topographic barrier might explain the little 

influence played by the Indian Ocean dipole mode at the site. However, more records recording rainfall 

anomalies linked to the Indian warm pool state are necessary in order to better constrain these results.  
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Figure 9.5 Comparison of Jaw SPT core 
results with other proxies of environmental 
and climatic variability for the last 8000 
years. a) sea-level changes (median, min and 
max values in m) in the Strait of Malacca 
(Geyth et al. 1979); b) Borneo stalagmite 
δ18O record from Gunung Buda National Park 
(Partin et al. 2007); c) δD records of n-C30 
and n-C2 alkanoic acids from marine 
sediment cores in northwest Sumatra 
(Niedermeyer et al. 2014); d) modelled 
number of El Niño events per 100 years 
based on red colour intensity of sediments 
from Laguna Pallcacocha, Ecuador (Moy et 
al. 2002); selected results of the Jaw SPT core 
analyses (Biagioni et al. 2015b; Chapter 8): e) 
fire peak magnitude and fire frequency 
(asterisks indicate correspondence of high in 
magnitude fire peaks as reconstructed from 
macro-charcoal analysis of Jaw SPT core and 
high numbers of El Niño events modelled 
from Laguna Pallcacocha. Cut symbol denote 
fire peaks which were cut to highlight trend 
in minor peaks); f) testate amoeba dry 
indicators as % of total sum; g) LORCA 
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Centennial scale fire disturbance and ecosystems recovery 

The 15N natural abundance signatures of peat may reveal environmental changes caused by the 

disturbance of the forest since 15N signature is essentially a function of N input and soil-N cycling 

processes over time (Nadelhoffer and Fry 1994). The soil 15N natural abundance signatures have been 

linked with soil N availability (e.g. gross rates of N mineralization and nitrification) of forests in Brazil, 

northwestern Ecuador and Panama (Sotta et al. 2008; Arnold et al. 2009; Corre et al. 2010), where high 

rates of mineral N production reflected high 15N signatures in soils and high soil N2O fluxes 

(Purbopuspito et al. 2006; Koehler et al. 2009; Wolf et al. 2011). This is linked to the fact that soil N 

availability controls losses of N from an ecosystem, and N losses are isotopically depleted, owing to 

fractionation during nitrification (aerobic condition) and denitrification (anaerobic condition). Thus, the 

higher the soil N availability and consequently the N losses, the more isotopically-enriched is the soil N 

(Amundson et al. 2003). Disturbance like fire can loss large fraction of biomass N, depleting the pool of 

actively cycling ecosystem N and provoking a N limitation during the earlier years after fire (e.g. 

Kauffman et al. 1995; McGrath et al. 2001). Decades to a century after fire, soil N cycle recuperates as 

biomass N pool buildup, and actively cycling ecosystem N and 15N signature increase. This was shown 

from a study of forest-age chronosequence (covering 3-200 years old successional forests after 

abandonment from slash-and-burn agriculture) in the Brazilian Amazon, where soil N availability, 

gaseous N losses and foliar 15N signatures of trees increase with chronosequence age (Davidson et al. 

2007). As a consequence, changes in the organic geochemical properties of peat may reveal 

environmental changes caused by the disturbance of the forest. Opposite to the C/N ratio, the results 

of Zaccone et al. (2011) on a peat core in Switzerland, suggest a lack of correlation between 13C and 15N 

with the humification proxies, suggesting their trends are conservative and preserved along the depth 

profile.  yr BP. Several positive peaks in 15N natural abundance were recorded in the Jaw SPT core for 

the last ca. 7800 cal yr BP (Figure 9.6). The majority of the peaks (66%) occurred in correspondence of 

phases in which open and pioneer pollen and spores taxa increased, indicating disturbance of the 

primary vegetation communities occurred. The 15N natural abundance signatures of the Jaw SPT core 

suggest forest changes, caused possibly by fire disturbance at the site. The pattern of increase in fire 

frequency followed by the increase in 15N signatures (Figure 9.6) suggests that the repeated occurrence 

of fires was the major cause of ecosystems disturbance for the past ca. 7800 years. The majority of the 

peaks were recorded in the ombrotrophic phase from ca. 4500 cal yr BP to present, while only two 

phases of 15N enrichment were detected in the initial minerotrophic phase. The vegetation after 

disturbance seemed to recover relatively quick, and phases of more open or pioneer vegetation lasted 

less than a hundred years. This suggests that while the peat-swamp communities at the Air Hitam peat 
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dome were sensitive towards short-term fire disturbance, the rate of recovery remained stable through 

time despite the large changes in the environmental settings. 

Conclusions  

Peat started to form in the Air Hitam area at least 7800 years ago corresponding to a phase of lowering 

rate of sea-level rise in the Sunda region. As peat accumulated over time, the hydrological and 

environmental conditions gradually changed. Initially, vegetation communities representative of 

productive and diverse dipterocarp-mixed swamp rainforests dominated the area. The hydrological 

gradient changed when sea-level started to decrease following the high stand in sea-level around 5000 

years ago. The combined effects of a decreasing regional water table level and the increased in peat 

depth above river influence caused a decrease water table fluctuations of the peat domed areas in Air 

Hitam. The decrease of fresh, oxygen- and nutrient-rich river water caused a change toward oligotrophic 

conditions, a system which was mostly fed by nutrient poor rainfall. The vegetation communities were 

replaced by peat swamp taxa and Pandanus thickets expanded in the area. Interestingly, LORCA 

increased in this later phase, following the expansion of Pandanus. The lack of correlation with regional 

rainfall maxima as reconstructed from monsoon and ITCZ records suggests that the most important 

factor influencing the increase in LORCA at Air Hitam was the expansion of Pandanus and their extensive 

roots system. Additionally, the millennial scale changes in ENSO played an important role. The 

Figure 9.6 Diagram comparing 15N natural 
abundance, % of total open pioneer pollen 
and spore group and % of the pioneer pollen 
taxa Macaranga/Mallotus as compared to 
reconstructed fire frequency. The diagram is 
dived in minerotrophic and ombrotrophic 
phases. Pink bars highlight phases in which 
increase in 15N natural abundance 
corresponds to increases of the open pioneer 
group and/or Macaranga/Mallotus, while 
grey bars highlight phases where there was no 
correspondence 
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occurrence of more frequent period of droughts correlated with the increase in fire frequency and fire 

magnitude in Air Hitam area. The link between phases of forest disturbance and fire suggests fires 

caused by El Niño occurrences affected the forest communities. However, the decrease of pioneer taxa 

was relatively rapid, lasting less than a hundred years. Thus the vegetation communities have shown a 

resilience capacity towards the centennial scale disturbance caused by natural fires.  
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CHAPTER 10 - Synthesis and implications 

The research conducted and compiled in this thesis contributes to the knowledge of the long-term 

vegetation, climate and fire dynamics as well as human impact on montane and peat-swamp rainforests 

of Indonesia. The use of a multi-proxy palaeoecological approach increased our understanding of how 

these ecosystems have responded to natural and anthropogenic driven changes in the past.  Altogether, 

these results represent a further step forward to the gaining of a more comprehensive understanding 

of modern tropical ecosystem dynamics and their functions in the long-term.   

Synthesis of the main results on vegetation, climate, fire dynamics and 
human-landscape interactions 

Montane ecosystems of Central Sulawesi 

The Lake Kalimpaa record is the first archive from Central Sulawesi providing information on 

palaeovegetation dynamics under the background of reconstructed palaeoenvironmental and 

palaeorainfall conditions throughout the past ca. 1500 years. Today’s climate of Sulawesi is driven by 

the monsoon system as well as by ENSO. The mountain regions of Central Sulawesi experience perhumid 

climate conditions with few seasonal changes in precipitation, making the vegetation a possible 

sensitive target for future changes of precipitation patterns (Wündsch et al. 2014; Biagioni et al. 2015a). 

The palaeovegetation, as reconstructed from the palynological analysis, reveals that around Lake 

Kalimpaa, the Fagaceae family dominates the entire recorded period, as they still do today. 

Granulometric and geochemical data from the Lake Kalimpaa record provide indications for an 

increasingly wetter climate (higher rainfall intensities and/or mean rainfall) on centennial to millennial 

time scales from approximately AD 560 to the 20th century. Since this trend towards wetter conditions 

was also detected in other palaeoclimatic studies from the region, a likely explanation for this is that the 

ITCZ migrated southward in this period of time (Wündsch et al. 2014). 

Two disturbance events (ca. AD 1090-1190 and ca. AD 1450-1620) occurred in the catchment area of 

Lake Kalimpaa. The comparison with the fire frequency record derived from macro-charcoal analysis 

indicates that these events were caused by forest fires. The regional correlation of these events with 

periods of drought registered elsewhere in Sulawesi and in Java suggests that centennial-scale increases 

in fire frequencies at Lake Kalimpaa were consequences of the vegetation being more prone to fire, 

probably due to more frequent and/or longer El Niño events. 

Despite that, Fagaceae did not decrease in their representation, indicating resilience towards droughts 

of at least one species of the family. However, palynological diversity values indicate that within-

landscape diversity (Whittaker’s gamma diversity) decreased when fires increased. Palynological rate of 
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change and compositional turnover indicate that the vegetation communities were more resilient to 

fire disturbance during periods of average high rainfall. 

At Lake Kalimpaa, human-landscape interactions are evident only starting from the 20th century (from 

ca. 1950 to present), with Weinmannia rising probably due to the logging of emergent Agathis trees 

and/or landslides caused by the construction of the road which today passes near the lake (Biagioni et 

al. 2015a; Chapter 6).   

The Lindu valley is located only 30 km west from Lake Kalimpaa but, opposite to what was found at Lake 

Kalimpaa, a longer history of human-landscape interactions was found from the palynological, charcoal 

and diatom reconstructions of the Lake Lindu core for the past ca. 1000 years (Biagioni et al. 2016; 

Chapter 7). Evidence of frequent burning and possible shifting cultivation from an earlier phase from ca. 

AD 1000 to 1200 might be related to the metal age population which erected the megaliths in the 

province of Central Sulawesi. From ca. AD 1200-1700, decreases of macro-charcoal concentrations and 

pioneer vegetation indicators show that the use of the landscape of the Lindu plain had become more 

permanent. Due to the little research conducted so far on the megalithic culture of Central Sulawesi, it 

remains uncertain whether the architects of such a cultural change were the megalith people or 

different ethnic groups. A phase of forest recovery from ca. AD 1730 to 1910 correlated with a decrease 

in human activities in the valley, which historical reports describe as mostly limited to fishing and cattle 

grazing (Sarasin and Sarasin 1905). These results indicate that when human pressure on the landscape 

decreases as a consequence of different strategies of subsistence, the montane ecosystems possess a 

great capacity of recovery and fagaceous forest communities can expand on a relatively rapid time scale. 

The most recent part of the Lake Lindu record shows a trend towards deforestation that started in the 

late 20th century, lasting until now, following the increase of human population encroachment on the 

margins of the LLNP.  

Inland peat-swamp ecosystems in Jambi, Sumatra 

The extended tropical peatlands of SE Asia have retained a large amount of carbon, functioning as a 

large sink for thousands of years (Page et al. 2004; Page et al. 2010). Currently, however, these peatlands 

are facing large scale degradation and conversion, turning from carbon sink to source (Hooijer et al. 

2010; Jauhiainen et al. 2010; Page et al. 2011).  

The need to manage peatlands requires a better understanding of the main components and processes 

of peat-forming systems. The study conducted in the peat dome of Air Hitam demonstrates that 

indicators used to evaluate and predict peat processes should be based on an understanding of the 

factors (in addition to age) that control peat accumulation. These include vegetation, hydrology and soil, 

as peat-swamp ecosystems are the result of combined action of allogenic (climate, hydrology) and 

autogenic (vegetation) factors which vary in space and time depending on the thickness of the peat 
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deposit and environmental/hydrological settings. Multi-proxy results depict a picture of a highly 

dynamic system (Chapter 8). Since the beginning of peat accumulation around 7800 years ago net 

balance accumulation exceeded degradation, and the system remained a carbon sink for ca. 7800 years. 

At first the peatland in Air Hitam was fed by fluvial run-off and the vegetation gradually changed from 

mixed Dipterocarpaceae swamp to marshy swamp communities dominated by Durio trees at around 

5300 years ago. A marked change in the vegetation community’s composition occurred at the beginning 

of the late Holocene about 4500 years ago. A pole forest established with Pandanus thickets colonizing 

the area as the dome developed into a rainfall-fed ombrogenous system. At the same time, macro-

charcoal peak detection analysis reveals that fire frequency increased, possibly as a consequence of the 

ENSO-onset.   

Peat accumulation rates and carbon storage in the dome of Air Hitam have been considerable in the 

past. Higher rates of peat/carbon accumulation were found to correlate with Pandanus expansion under 

ombrotrophic settings. The testate amoebae assemblage indicates that the ombrogenous Pandanus-

pole forest phases were characterized by lower water table fluctuations. Despite the lower biomass 

input peat accumulation rate was in average higher than during the mixed-swamp community phases. 

The correlation between high peat accumulation and relatively drier phases linked to ENSO makes the 

area of Air Hitam potentially one of the most effective carbon sequestering ombrotrophic peatlands in 

the view of future climate scenarios (Chapter 9).  

Impact of El Niño (droughts) and fires on the carbon storage function of the natural 
forest ecosystems 

Evidence from both historical records and charcoal particles embedded in stratigraphic records indicate 

that fires occurred in the everwet tropical forests although rarely (Cochrane 2003). Similarly, the results 

of charcoal analysis in montane (Lake Kalimpaa, Chapter 5 and  Chapter 6) and peat-swamp (Air Hitam, 

Chapter 8 and  Chapter 9) ecosystems show that although rare, wildfires did occur in the past in Central 

Sulawesi and Sumatra. The regime of fire, in particular the frequency, was found to correlate with 

regional scale drought episodes in Central Sulawesi. Both fire frequency and magnitude of events 

increased at Air Hitam in correlation with the increase in El Niño number of events. These results 

indicate that the fire regime of montane ecosystems in Central Sulawesi and peat-swamp forests in 

Jambi can change in the long-term following changes in patterns of rainfall and ENSO variability. 

However, our results indicate that the effects of fire and droughts on the carbon storage functions of 

the two systems under study might not have been marked. In particular, Fagaceae species 

representation around Lake Kalimpaa was not affected by increases of fires caused by drought, and the 

carbon accumulation capacity of the ombrotrophic-Pandanus dominated ecosystems in Air Hitam did 

not change (but rather increase) when frequency and magnitude of fires increased. These results 
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suggest that under natural conditions, fire occurs in these ecosystems, but the effect on their carbon 

storage function in time can be relatively low.   

A historical perspective of current and future changes 

Investigations on the long-term dynamics of vegetation communities using a multi-proxy 

palaeoecological approach extend our knowledge on how tropical ecosystems have responded to past 

climate variability and human activities and help putting the current and future scenarios of change into 

a more comprehensive historical perspective.  

The results from the investigation on the fagaceous montane rainforests surrounding Lake Kalimpaa in 

Central Sulawesi (Biagioni et al. 2015a; Chapter 6) suggest that the main driver of change for the past 

ca. 1500 years was rainfall variability. In particular, the occurrences of regional centennial scale long 

periods of drought and changes in the amount of rainfall following the migration of the ITCZ across the 

tropics were affecting the composition and diversity of the ecosystems. Interestingly, species turnover 

was less marked when drought episodes occurred in combination with millennial scale enhanced rainfall 

at the intra-annual scale. This suggests that the natural forest ecosystems are more resilient to the 

occurrences of episodes of droughts when the overall seasonality is less marked and perhumid 

conditions are established. Predictions of climate change in the area are still uncertain. However, if 

seasonality will increase and drought episodes will occur more frequently, the response of vegetation 

communities in the future might closely resemble the conditions reconstructed between ca. AD 1070 

and AD 1450. The occurrences of wildfire will likely increase in frequency, while communities’ diversity 

may decrease and long-living pioneers such as Weinmannia could become more common in disturbed 

patches of the forest. The growth of the valuable Agathis tree might be greatly reduced, as results 

indicate that species of this genus were sensitive towards patterns of decreasing rainfall and rates of 

recovery following selective logging have been slow. However, the overall function as biomass storage 

of the Fagaceae forests might persist even under changing rainfall conditions, as our results indicate 

that species from this family have been resilient towards rainfall variability and droughts. However, if 

changes in temperature caused by anthropogenic climate change should occur (Stocker 2014), 

competition and pressure from species currently growing at lower altitudes might increase and the 

overall composition of the forest could change. As no comparable conditions were found for the past 

ca. 1500 years, the consequences of temperature change over these ecosystems are currently hard to 

predict.  

A rapid acceleration of disturbance driven by human activities is underlined by the results in both 

regions under study for the past decades.  The overall results of this research highlight that the pressure 

exerted over millennia on montane and peat-swamp rainforests in Indonesia has been of a different 

magnitude as compared to the modern anthropogenic driven changes. In particular, increased in 
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siltation, as a consequence of forest conversion, is causing lake level decreases in both small basins, 

such as Lake Kalimpaa, and larger water basins, such as Lake Lindu in the montane regions of Central 

Sulawesi. The consequences of these rapid changes are likely to affect the ecosystem functions thought 

a loss of the ecosystems capacity to prevent flooding and landslides, affecting human welfare of the 

isolated communities living in the valleys. Natural forest cover on the upper slopes of the valleys has 

been underlined to be a particular important factor in relation to flood protection, erosion and siltation 

(Whiteman and Fraser 1997). Given the rapid rate of forest recovery experienced at the Lindu valley in 

the phase from ca. AD 1730 to 1910, a better management of irrigation channels and restoration of the 

degraded forest on the slopes of the valley might reverse this observed trend if actions are taken in the 

immediate future.  

The results from the multi-proxy reconstruction of the peat-swamp ecosystems of Air Hitam in Sumatra 

suggest that the most important factor influencing the increased carbon storage at Air Hitam was the 

expansion of Pandanus and its extensive roots system, while water table change, above ground biomass 

and rainfall variability overall played a less important role. 

However, the recent degradation of the area and the conversion to oil palm plantations greatly changed 

the vegetation communities on the peatland. Intensive logging activities virtually removed all of the 

large trees in the area and the constructions of channels and ditches have artificially lowered the water 

table. If peat accumulation is largely controlled by the quantity of belowground organic matter inputs 

(i.e. roots of Pandanus), as evidence in the study suggests, then the peat forests where root mats have 

declined or disappeared by natural or artificial causes will remain in equilibrium or subside, but will not 

expand. Net accumulations of peat will likely occur where high water levels and thick root mats still 

exist, and possibly in altered areas where these conditions are re-established. Under these conditions, 

climate-induced changes in precipitation will probably not alter factors to an extent in which peat 

accumulation ceases in the long-term, even under scenarios of fire regime changes. However, in order 

to preserve the potential value of this area as a carbon sink, a better management of the water table 

level should be applied and restoring measurements, act at re-establishing the natural vegetation cover, 

should be taken. 

Concluding remarks, uncertainties and perspectives 

The results from the research compiled in this thesis highlight the value of using a palaeo multi-proxy 

approach in order to better understand dynamics and functions of tropical ecosystems and the 

identification of the most important drivers of change.  

Despite their potential, so far the number of such investigations in Indonesia is still very limited. As a 

consequence, several uncertainties currently remain. For instance, a large question mark remains on 

the role of prehistoric communities in shaping present-day tropical ecosystems. The example of Central 
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Sulawesi is an emblematic one. Virtually nothing is known about the megalithic culture despite few 

studies (Kirleis et al. 2011; Kirleis et al. 2012), and the research conducted at the Lindu valley (Chapter 

7), suggests that this population might have played an important role, and it might have acted as a 

strong driver of change already thousands of years ago.  

Trying to predict the fate of montane tropical rainforests under future climate change scenarios requires 

an understanding of the long-term effect of climate variability on the different communities occupying 

different altitudinal niches. So far, no such study exists and one large uncertainty remains on how these 

ecosystems might respond to increases in temperature.  

The need to manage peatlands has recently gained large attention due to the fast rate of degradation 

and conversion these important ecosystems are experiencing in SE Asia. However, when a management 

of the systems is required in order to restore and/or preserve the ecosystem functions, a better 

understanding of the main components and processes of peat-forming systems is essential. Few 

restoration programs have taken this into consideration and so far the planning and approaches are 

limited to short-term studies on recovery and rate of survival of pioneer vegetation cover during early 

stage succession. Due to the fact that peat-swamp ecosystems in SE Asia are spread over large areas 

(and on different islands), environmental conditions are greatly different from one system to the other 

and generalizations are difficult to make. There is a need for more integrative investigations in key sites, 

in order to act in the most efficient way.  

Although there is still much to do before we can gain a deep understanding of the stability, resilience 

and recovery of tropical ecosystems in Indonesia, with our investigations in Central Sulawesi and 

Sumatra we have found that the use of a palaeoecological integrative approach can be a powerful tool 

and much can be learnt from the past.  

Slowly, we can move forward to our goal to unravel the processes and factors that brought tropical 

ecosystems to be the way they are today.  

 

 

 

 

 

 

 

 

 

  



155 
 

Bibliography 

Acciaioli, G., 1989. Searching for good fortune: the making of a Bugis shore community at Lake Lindu, Central 
Sulawesi. Australian National University, Canberra. 

Acciaioli, G., 2000. Kinship and debt: the social organization of Bugis migration and fish marketing at Lake Lindu, 
Central Sulawesi. In Bijdragen tot de Taal-, Land- en Volkenkunde, Authority and enterprise among the peoples 
of South Sulawesi 156(3), 589-617. 

Acciaioli, G., 2001. Grounds of conflict, idioms of harmony: custom, religion, and nationalism in violence avoidance 
at the Lindu Plain, Central Sulawesi. Indonesia 72, 81–114 (Cornell Southeast Asia Program). 

Achard, F., Eva, H.D., Mayaux, P., Stibig, H.-J., Belward, A., 2004. Improved estimates of net carbon emissions from 
land cover change in the tropics for the 1990s. Global Biogeochem. Cycles 18, GB2008.  

Ad-hoc AG Boden (Ad-hoc-Arbeitsgruppe der Staatlichen Geologischen Dienste und der Bundesanstalt für 
Geowissenschaften und Rohstoffe), 2005. Bodenkundliche Kartieranleitung. Stuttgart: Schweizerbart. 

Adiwibowo, S., 2005. Dongi-dongi - culmination of a multi-dimensional ecological crisis: a political ecology 
perspective. PhD thesis, University of Kassel, Germany. 

Adriani, N., Kruyt, A.C., 1898. Van Posso naar Parigi, Sigi en Lindoe Mededeelingen van vege het Nederlandsch 
Zendelinggenootschap 42, 369-535. 

Aldrian, E., Dümenil-Gates, L., Jacob, D., Podzun, R., Gunawan, D., 2004. Long-term simulation of Indonesian 
rainfall with the MPI regional model. Climate Dynamics 22, 795–814. 

Aldrian, E., Susanto, R., 2003. Identification of three dominant rainfall regions within Indonesia and their 
relationship to sea surface temperature. International Journal of Climatology 23, 1435–1452. 

Ali, M., Oda, H., Hayashida, A., Takemura, K., Torii, M., 1999. Holocene palaeomagnetic secular variation at Lake 
Biwa, central Japan. Geophysical Journal International 136, 218–228. 

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., 
Breshears, D.D., Hogg, E.H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., 
Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree 
mortality reveals emerging climate change risks for forests. Forest Ecology and Management, Adaptation of 
Forests and Forest Management to Changing Climate Selected papers from the conference on “Adaptation of 
Forests and Forest Management to Changing Climate with Emphasis on Forest Health: A Review of Science, 
Policies and Practices”, Umeå, Sweden, August 25-28, 2008. 259, 660–684. 

Amundson, R., Austin, A.T., Schuur, E.A.G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., Baisden, W.T., 
2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global biogeochemical cycles 
17(1). 

Anderson, J.A.R., 1961. The ecology and forest types of the peat swamp forests of Sarawak and Brunei in relation 
to their silviculture. PhD thesis, University of Edinburgh, UK.  

Anderson, J.A.R., 1963. The flora of the peat swamp forests of Sarawak and Brunei, including a catalogue of all 
recorded species of flowering plants, ferns and fern allies. Gardens Bulletin, Singapore 20, 131–228.  

Anderson, J.A.R., 1964. The structure and development of the peat swamps of Sarawak and Brunei. Journal of 
Tropical Geography 18, 7-16.  

Anderson, J.A.R., 1976. Observations on the ecology of five peat swamp forests in Sumatra and Kalimantan. In: 
Proc. ATA 106 Midterm Seminar, Peat and Podzolic Soils and their Potential for Agriculture in Indonesia. Peat 
and podzolic soils in Indonesia, 45-55. 

Anderson, J.A.R., 1983. The tropical peat swamps of western Malesia. In: Gore, A.J.P., (Eds.), Ecosystems of the 
World 4B: Mires: Swamp, Bog, Fen and Moor. Elsevier, Amsterdam, New York, 181-199.  

Anderson, J.A.R., Muller, J., 1975. Palynological study of a Holocene peat and a Miocene coal deposit from NW 
Borneo. Review of Palaeobotany and Palynology 19, 291–351.  

Anderson, M.J., Ellingsen, K.E., McArdle, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecology 
Letters 9, 683-93. 

Anshari, G., Kershaw, A.P., Van Der Kaars, S., 2001. A late Pleistocene and Holocene pollen and charcoal record 
from peat swamp forest, Lake Sentarum Wildlife Reserve, West Kalimantan, Indonesia. Palaeogeography, 
Palaeoclimatology, Palaeoecology 171, 213–228.  

Anshari, G., Kershaw, A.P., Van Der Kaars, S., Jacobsen, G., 2004. Environmental change and peatland forest 
dynamics in the Lake Sentarum area, West Kalimantan Indonesia. Journal of Quaternary Science 19, 637–655. 



156 
 

Anshari, G.Z., Afifudin, M., Nuriman, M., Gusmayanti, E., Arianie, L., Susana, R., Nusantara, R.W., Sugardjito, J., 
Rafiastanto, A., 2010. Drainage and land-use impacts on changes in selected peat properties and peat 
degradation in West Kalimantan Province, Indonesia. Biogeosciences 7, 3403-3419.  

Arnold, J., Corre, M.D., Veldkamp, E., 2009. Soil N cycling in old-growth forests across an Andosol toposequence 
in Ecuador. Forest ecology and management 257, 2079–2087. 

Ashton, P.S., 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives in 
Plant Ecology, Evolution and Systematics 6, 87–104.   

Audley-Charles, M.G., 1983. Reconstruction of eastern Gondwanaland. Nature 306, 48–50.   
Baas, P., Kalkman, K., Geesink, R., 1990. The Plant Diversity of Malesia. Kluwer Academic Publishers, Dordrecht, 

The Netherlands. 
Barber, K.E., 1981. Peat Stratigraphy and Climatic Change: A Palaeoecological Test of the Theory of Cyclic Peat Bog 

Regeneration. A.A. Balkema Publishers, The Netherlands. 
Barletta, F., St-Onge, G., Channell, J.E.T., Rochon, A., 2010. Dating of Holocene western Canadian Arctic sediments 

by matching paleomagnetic secular variation to a geomagnetic field model. Quaternary Science Reviews 29, 
2315–2324. 

Bellwood, P., 1979. Man’s conquest of the pacific. The prehistory of Southeast Asia and Oceania New York. Oxford 
University Press, UK. 

Berry, L., Ruxton, B.P., 1959. Notes on weathering zones and soils on granitic rocks in two tropical regions. Journal 
of Soil Science 10, 54–63. 

Biagioni, S., Wündsch, M., Haberzettl, T., Behling, H., 2015a. Assessing resilience/sensitivity of tropical mountain 
rainforests towards climate variability of the last 1500 years: The long-term perspective at Lake Kalimpaa 
(Sulawesi, Indonesia). Review of Palaeobotany and Palynology 213, 42–53.  

Biagioni, S., Krashevska, V., Achnopha, Y., Saad, A., Sabiham, S., Behling, H., 2015b. 8000 years of vegetation 
dynamics and environmental changes of a unique inland peat ecosystem of the Jambi Province in Central 
Sumatra, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 813–829. 

Biagioni, S., Haberzettl, T., Wang, L.-C., St-Onge, G., Behling, H., 2016. Unravelling the past 1,000 years of history 
of human–climate–landscape interactions at the Lindu plain, Sulawesi, Indonesia. Vegetation History and 
Archaeobotany 25, 1–17. 

Bird, M.I., Taylor, D., Hunt, C., 2005. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: 
a savanna corridor in Sundaland? Quaternary Science Reviews 24, 2228–2242.  

Birks, H., Line, J., 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary 
pollen-analytical data. The Holocene 2 (1), 1-10. 

Birks, H.H., Birks, H.J.B., 2006. Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany 15, 
235–251.  

Birks, H.J.B., 2007. Estimating the amount of compositional change in late-Quaternary pollen-stratigraphical data. 
Vegetation History and Archaeobotany 16 (2-3), 197-202. 

Birks, H.J.B., Birks, H.H., 1980. Quaternary Palaeoecology. Edward Arnold, London.  
Birks, H.J.B., Birks, H.H., 2008. Biological responses to rapid climate change at the Younger Dryas-Holocene 

transition at Kråkenes, western Norway. The Holocene 18 (1), 19-30. 
Blaauw, M., 2010. Methods and code for “classical”age-modelling of radiocarbon sequences. Quaternary 

Geochronology 5, 512–518. 
Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of 

unconsolidated sediments. Earth surface processes and Landforms 26, 1237–1248. 
Bobrov, A.A., Andreev, A.A., Schirrmeister, L., Siegert, C., 2004. Testate Amoebae (Protozoa: Testacealobosea and 

Testaceafilosea) as Bioindicators in the Late Quaternary Deposits of the Bykovsky Peninsula, Laptev Sea, 
Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 209 (1-4), 165-81.  

Bobrov, A.A., Charman, D.J., Warner, B.G., 1999. Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands 
in western Russia with special attention to niche separation in closely related taxa. Protist 150 (2), 125-136. 

Boyle, E.A., 1983. Chemical accumulation variations under the Peru Current during the past 130,000 years. Journal 
of Geophysical Research: Oceans (1978–2012) 88, 7667–7680. 

Braadbaart, F., Poole, I., 2008. Morphological, chemical and physical changes during charcoalification of wood and 
its relevance to archaeological contexts. Journal of archaeological science 35, 2434–2445. 

Brady, M.A., 1997. Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia. Phd thesis, University 
of British Colombia, Canada. 

Brambach, F., Nooteboom, H.P., Culmsee, H., 2013. Magnolia sulawesiana described, and a key to the species of 
Magnolia (Magnoliaceae) occurring in Sulawesi. Blumea - Biodiversity, Evolution and Biogeography of Plants 
58, 271–276.  



157 
 

Brambach, F., Coode, M., Biagioni, S., Culmsee, H., 2016. Elaeocarpus firdausii (Elaeocarpaceae), a new species 
from tropical mountain forests of Sulawesi. PhytoKeys 62, 1–14.  

Brünig, E.F., 1971. On the ecological significance of drought in the equatorial wet evergreen (rain) forest of 
Sarawak, Borneo. In: The water relations of Malesian forests - Transactions of the first Aberdeen-Hull 
symposium 192 on Malesian ecology, held in Hull, 1970, Flenley, J.R., (Eds.), 66-96.   

Brünig, E.F., 1974. Ecological studies in the kerangas forests of Sarawak and Brunei. Kuching: Borneo Literature 
Bureau for Sarawak Forest Department, Kuching, pp. 250. 

Brünig, E.F., 1990. Oligotrophic forested wetlands in Borneo. Chapter 13. In: Forested Wetlands, Lugo, A.E., 
Brinson, M., Brown, S., (Eds.), 299-333.  

Brünig, E.F., 1996. Conservation and Management of Tropical Rainforest. An Integrated Approach to Sustainability. 
CABI Publishing Series, pp. 339. 

Buffle, J., De Vitre, R.R., Perret, D., Leppard, G.G., 1989. Physico-chemical characteristics of a colloidal iron 
phosphate species formed at the oxic-anoxic interface of a eutrophic lake. Geochimica et Cosmochimica Acta 
53, 399–408. 

Caline, B., Huang, J., 1992. New insights into the recent evolution of the Baram delta from satellite imagery. Bull. 
Geol. Soc. Malaysia 32:1-13. 

Cameron, C.C., Esterle, J.S., Palmer, C.A., 1989. The geology, botany and chemistry of selected peat-forming 
environments from temperate and tropical latitudes. International Journal of Coal Geology 12, 105–156.  

Cane, M.A., 2005. The evolution of El Niño, past and future. Earth and Planetary Science Letters 230, 227–240.  
Cannon, C.H., 2005. Vegetation of Sulawesi: fine filter analysis. Report of the Ecoregional Conservation 

Assessment, The Nature Conservancy. 
Cannon, C.H., Manos, P.S., 2003. Phylogeography of the Southeast Asian stone oaks (Lithocarpus). Journal of 

Biogeography 30, 211–226.  
Cannon, C.H., Morley, R.J., Bush, A.B., 2009. The current refugial rainforests of Sundaland are unrepresentative of 

their biogeographic past and highly vulnerable to disturbance. Proceedings of the National Academy of 
Sciences 106, 11188–11193. 

Cannon, C.H., Summers, M., Harting, J.R., Kessler, P.J.A., 2007. Developing Conservation Priorities Based on Forest 
Type, Condition, and Threats in a Poorly Known Ecoregion: Sulawesi, Indonesia. Biotropica 39, 747–759.  

Carcaillet, C., Almquist, H., Asnong, H., Bradshaw, R.H.W., Carrion, J.S., Gaillard, M.-J., Gajewski, K., Haas, J.N., 
Haberle, S.G., Hadorn, P., others, 2002. Holocene biomass burning and global dynamics of the carbon cycle. 
Chemosphere 49, 845–863. 

Carcaillet, C., Bouvier, M., Fréchette, B., Larouche, A.C., Richard, P.J.H., 2001. Comparison of pollen-slide and 
sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene 11, 467–476.  

Carris, L.M., Castlebury, L.A., Goates, B.J., 2006. Nonsystemic Bunt Fungi-Tilletia indica and T. horrida: A Review of 
History, Systematics, and Biology*. Annu. Rev. Phytopathol. 44, 113–133. 

Cecil, C.B., Dulong, F.T., Cobb, J.C., others, 1993. Allogenic and autogenic controls on sedimentation in the Central 
Sumatra Basin as an analogue for Pennsylvanian coal-bearing strata in the Appalachian Basin. Geological 
Society of America Special Papers 286, 3–22.  

Cerdà, A., Lasanta, T., 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water 
and sediment yield. Catena 60, 59–80. 

Chambers, C.T., 2013. A review of the genus Stenochlaena (Blechnaceae, subfamily Stenochlaenoideae. Telopea 
Journal of Plant Systematics 15, 13–36.  

Chambers, F.M., Beilman, D.W., Yu, Z., 2011. Methods for determining peat humification and for quantifying peat 
bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. 
Mires Peat 7, 1–10. 

Chardez, D., 1965. Ecologie générale des Thécamoebiens. Bulletin de l’Institut Agronomique et des Stations de 
Recherche de Gembloux 33, 307–341. 

Charman, D.J., Hendon, D., Woodland, W.A., 2000. The identification of testate amoebae (Protozoa: Rhizopoda) 
in peats. QRA Technical Guide No. 9. London: Quaternary Research Association, London, pp. 147. 

Chaturvedi, M., Datta, K., Nair, P.K.K., 1998. Pollen morphology of Oryza (Poaceae). Grana 37, 79–86. 
Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., et al., 2007. Regional climate projections, 

chap. 11. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., et al., (Eds.), Climate change 
2007: The physical science basis. Contribution of working group I to the fourth assessment report of the 
intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp. 847-940. 

Clark R.L., 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediment. Pollen et 
Spores XXIV, 523–535. 

Clark, J.S., Lynch, J., Stocks, B.J., Goldammer, J.G., 1998. Relationships between charcoal particles in air and 
sediments inWest-Central Siberia. The Holocene 8, 19–30. 



158 
 

Clark, J.S., Patterson III, W.A., 1997. Background and local charcoal in sediments: scales of fire evidence in the 
paleorecord, in: Sediment Records of Biomass Burning and Global Change. Springer, pp. 23–48. 

Clark, J.S., Royall, P.D., 1995. Particle-size evidence for source areas of charcoal accumulation in late Holocene 
sediments of eastern North American lakes. Quaternary Research 43, 80–89. 

Clark, R.L., 1984. Effects on charcoal of pollen preparation procedures. Pollen et spores 26, 559–576. 
Clarke, M.D., Carney, W.P., Cross, J.H., Hadidjaja, P., Oemijati, S., Joesoef, A., 1974. Schistosomiasis and other 

human parasitoses of Lake Lindu in central Sulawesi (Celebes), Indonesia. The American journal of tropical 
medicine and hygiene 23, 385–392. 

Clement, A.C., Seager, R., Cane, M.A., 2000. Suppression of El Niño during the Mid-Holocene by changes in the 
Earth’s orbit. Paleoceanography 15, 731–737. 

Clymo, R.S., 1983. Peat. Ecosystems of the World: Bog, Swamp, Moor and Fen, vol 4A. Gore, A.J.P., (Eds.). 
Amsterdam, Elsevier: 159-224. 

Cochrane, M.A., 2003. Fire science for rainforests. Nature 421, 913–919. 
Cole, L., 2012. Disturbance, recovery and resilience in tropical forests: a focus on the coastal peat swamp forests 

of Malaysian Borneo. PhD thesis, University of Oxford, UK. 
Cole, L.E.S., Bhagwat, S.A., Willis, K.J., 2015. Long-term disturbance dynamics and resilience of tropical peat swamp 

forests. Journal of Ecology 103, 16-30.  
Collins, M., 2005. The CMIP modelling groups. El Niño- or La Niña-like climate change. Climate Dynamics 24, 89-

104. 
Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M., Steinitz-Kannan, M., 2008. Holocene changes in eastern 

tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews 27, 
1166–1180. 

Corre, M.D., Veldkamp, E., Arnold, J., Wright, S.J., 2010. Impact of elevated N input on soil N cycling and losses in 
old-growth lowland and montane forests in Panama. Ecology 91, 1715–1729. 

Couwenberg, J., Dommain, R., Joosten, H., 2010. Greenhouse gas fluxes from tropical peatlands in south-east Asia. 
Global Change Biology 16, 1715–1732.  

Crausbay, S.D., Russell, J.M., Schnurrenberger, D.W., 2006. A c. 800-year lithologic record of drought from sub-
annually laminated lake sediment, East Java. Journal of Paleolimnology 35 (3), 641-659. 

Crowe, S.A., O’Neill, A.H., Katsev, S., Hehanussa, P., Haffner, G.D., Sundby, B., Mucci, A., Fowle, D.A., 2008. The 
biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia. Limnology and Oceanography 
53, 319–331. 

Culmsee, H., Leuschner, C., 2013. Consistent patterns of elevational change in tree taxonomic and phylogenetic 
diversity across Malesian mountain forests. Journal of Biogeography, DOI: 10.1111/jbi.12138.   

Culmsee, H., Leuschner, C., Moser, G., Pitopang, R., 2010. Forest aboveground biomass along an elevational 
transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of 
biogeography 37, 960–974. 

Culmsee, H., Pitopang, R., 2009. Tree diversity in sub-montane and lower montane primary rain forests in Central 
Sulawesi. Blumea - Biodiversity, Evolution and Biogeography of Plants 54, 119–123.  

Culmsee, H., Pitopang, R., Mangopo, H., Sabir, S., 2011. Tree diversity and phytogeographical patterns of tropical 
high mountain rain forests in Central Sulawesi, Indonesia. Biodiversity and Conservation 20 (5), 1103-1123. 

D’Arrigo, R., Wilson, R., Palmer, J., Krusic, P., Curtis, A., Sakulich, J., Bijaksana, S., Zulaikah, S., Ngkoimani, L.O., 2006. 
Monsoon drought over Java, Indonesia, during the past two centuries. Geophysical Research Letters 33. 

Dam, R.A., Fluin, J., Suparan, P., van der Kaars, S., 2001. Palaeoenvironmental developments in the Lake Tondano 
area (N. Sulawesi, Indonesia) since 33,000 yr BP. Palaeogeography, Palaeoclimatology, Palaeoecology 171, 
147–183. 

Danielsen, F., Beukema, H., Burgess, N. D., Parish, F., Bruhl, C. A., Donald, P. F., Fitzherbert, E.B., 2009. Biofuel 
Plantations on Forested Lands: Double Jeopardy for Biodiversity and Climate. Conservation Biology 23 (2), 
348-358.  

Davidson, E.A., de Carvalho, C.J.R., Figueira, A.M., Ishida, F.Y., Ometto, J.P.H.B., Nardoto, G.B., Sabá, R.T., Hayashi, 
S.N., Leal, E.C., Vieira, I.C.G., Martinelli, L.A., 2007. Recuperation of nitrogen cycling in Amazonian forests 
following agricultural abandonment. Nature 447, 995–998.   

Davis, G., 1976. Parigi: A social history of the Balinese movement to Central Sulawesi, 1907-1974. PhD thesis, 
Stanford University, California, USA. 

Davison, W., 1993. Iron and manganese in lakes. Earth-Science Reviews 34, 119–163. 
De Boer, G.B., de Weerd, C., Thoenes, D., Goossens, H.W., 1987. Laser diffraction spectrometry: Fraunhofer 

diffraction versus Mie scattering. Particle & Particle Systems Characterization 4, 14–19. 
de Laubenfels, D.J., 1986. Coniferales. Flora Malesiana, series I (10). Wolters/Noordhoff and Kluwer Publishers, 

The Netherlands, pp. 429-442. 



159 
 

de Winter, W.P., Amoroso, V.B., 2003. Plant resources of South-East Asia No 15 (2). Cryptogams: Ferns and fern 
allies. Backhuys Publishers Leiden, The Netherlands, pp. 268. 

DeFries, R., Achard, F., Brown, S., Herold, M., Murdiyarso, D., Schlamadinger, B., de Souza Jr., C., 2007. Earth 
observations for estimating greenhouse gas emissions from deforestation in developing countries. 
Environmental Science & Policy, Options for including agriculture and forestry activities in a post-2012 
international climate agreement 10, 385–394.   

DeFries, R.S., Houghton, R.A., Hansen, M.C., Field, C.B., Skole, D., Townshend, J., 2002. Carbon emissions from 
tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. PNAS 99, 14256–
14261.   

Dehmer, J., 1993. Petrology and organic geochemistry of peat samples from a raised bog in Kalimantan (Borneo). 
Organic geochemistry 20, 349–362.  

Diaz, H.F., Kiladis, G.N., 1992. Atmospheric teleconnections associated with the extreme phases of the Southern 
Oscillation. In: El Niño: historical and paleoclimatic aspects of the southern oscillation, Diaz, H.F., Markgraf V., 
(Eds.). Cambridge University Press, UK, pp. 7–28. 

Dickerson, R. E., 1928. Distribution of Life in the Philippines. Bureau of Printing, Manila, The Philippines. 
Diemont, W.H., Supardi, 1987a. Accumulation of organic matter and inorganic constituents in a peat dome in 

Sumatra, Indonesia. In: International Peat Society Symposium on Tropical Peat and Peatlands for 
Development, Yogyakarta, Indonesia, February 9-14, 1987, 698-708. 

Diemont, W.H., Supardi, 1987b. Forest peat in Indonesia on former sea beds. In: International Peat Society 
Symposium on Tropical Peat and Peatlands for Development, Yogyakarta, Indonesia, February 9-14, 1987, 
709-717.  

Dommain, R., Cobb, A.R., Joosten, H., Glaser, P.H., Chua, A.F.L., Gandois, L., Kai, F.-M., Noren, A., Salim, K.A., Su'ut, 
N.S.H., Harvey, C.F., 2015. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in 
a tropical peat dome in Borneo (Southeast Asia): carbon accumulation in tip-up pools. Journal of Geophysical 
Research: Biogeosciences 120, 617–640. 

Dommain, R., Couwenberg, J., Glaser, P.H., Joosten, H., Suryadiputra, I.N.N., 2014. Carbon storage and release in 
Indonesian peatlands since the last deglaciation. Quaternary Science Reviews 97, 1–32.  

Dommain, R., Couwenberg, J., Joosten, H., 2011. Development and carbon sequestration of tropical peat domes 
in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science 
Reviews 30, 999–1010.  

Donders, T.H., Wagner-Cremer, F., Visscher, H., 2008. Integration of proxy data and model scenarios for the mid-
Holocene onset of modern ENSO variability. Quaternary Science Reviews 27, 571-579.  

Driessen, P.M., 1977. Peat Soils, their formation, properties, reclamation and suitability for rice cultivation. In Soils 
and Rice, 763-779. Los Banos (Philippines): International Rice Research Institute. 

Duran, R., Fischer, G.W., 1961. The genus Tilletia. Published by Washington State University, Pullman, Washington. 
Emerson, S., 1976. Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. 

Geochimica et Cosmochimica Acta 40, 925–934. 
Emmel, F.J., Curray, J.R., 1982. A submerged late Pleistocene delta and other features related to sea level changes 

in the Malacca Strait. Marine Geology 47, 197–216.  
Enache, M.D., Cumming, B.F., 2006. Tracking recorded fires using charcoal morphology from the sedimentary 

sequence of Prosser Lake, British Columbia (Canada). Quaternary Research 65, 282–292.  
Endert, F. H., 1920. De woud boom flora van Palembang. Tectona 13, 113-159. 
Engstrom, D.R., Wright Jr, H.E., 1984. Chemical stratigraphy of lake sediments as a record of environmental 

change. In: Lake sediments and environmental history: studies in palaeolimnology and palaeoecology in 
honour of Winifred Tutin. Haworth, E.Y., Lund, J.W.G., (Eds.). University of Minnesota, US. 

Erdtman, O., 1921. Pollenanalytische Untersuchungen von Torfmooren und marinen Sedimenten in  Sudwest-
Schweden (Dissertation, StockholmsHodgskola). (Arkiv for botanik vol. 17: 10). Uppsala: Almqvist & Wiksell, 
p. 173. 

Esterle, J.S., Ferm, J.C., 1994. Spatial variability in modern tropical peat deposits from Sarawak, Malaysia and 
Sumatra, Indonesia: analogues for coal. International Journal of Coal Geology 26, 1–41.  

Faegri, K., Kaland, P., Krzywinski, K., (Eds.) 1989. Textbook of pollen analysis. 4th edn Wiley, Chichester. 
Fargione, J., Hill, J., Tilman D., Polasky, S., Hawthorne, P., 2008. Land Clearing and the Biofuel Carbon Debt. Science 

319, 1235-1238.  
Farmer, J., Matthews, R., Smith, J.U., Smith, P., Singh, B.K., 2011. Assessing existing peatland models for their 

applicability for modelling greenhouse gas emissions from tropical peat soils. Current Opinion in 
Environmental Sustainability 3, 339–349. 

Febriliani, Sri Ningsih, M., Muslimin, 2013. Analisis vegetasi habitat anggrek di sekitar Danau Tambing kawasan 
Taman Nasional Lore Lindu. Warta Rimba 1 (1), 1-9. 



160 
 

Felton, A.A., Russell, J.M., Cohen, A.S., Baker, M.E., Chesley, J.T., Lezzar, K.E., McGlue, M.M., Pigati, J.S., Quade, J., 
Stager, J.C., others, 2007. Paleolimnological evidence for the onset and termination of glacial aridity from Lake 
Tanganyika, Tropical East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 405–423. 

Finsinger, W., Tinner, W., 2005. Minimum count sums for charcoal concentration estimates in pollen slides: 
accuracy and potential errors. The Holocene 15 (2), 293-297. 

Flenley, J.R., 1967. Highland Papua New Guinea pollen flora I. In: Flenley, J.R., (Eds.), The present and former 
vegetation of the Wabag region of New Guinea. Dissertation, Australian National University Canberra (extract 
at http://www.palaeoworks.anu.edu.au/databases.html). 

Flenley, J.R., Butler, K., 2001. Evidence for continued disturbance of upland rain forest in Sumatra for the last 7,000 
years of an 11,000 year record. Palaeogeography, Palaeoclimatology, Palaeoecology 171 (3), 289-305. 

Forest Watch Indonesia/Global Forest Watch, 2002. The State of the Forest: Indonesia. Bogor, Indonesia: Forest 
Watch Indonesia, and Washington DC: Global Forest Watch. 

Furukawa, H., 1994. Coastal Wetlands of Indonesia: Environment, Subsistence and Exploitation. Kyoto University 
Press, Kyoto, pp. 219.  

Gagan, M.K., Hendy, E.J., Haberle, S.G., Hantoro, W.S., 2004. Post-glacial evolution of the Indo-Pacific warm pool 
and El Nino-Southern Oscillation. Quaternary International 118, 127–143. 

Gardner, J.J., Whitlock, C., 2001. Charcoal accumulation following a recent fire in the Cascade Range, northwestern 
USA, and its relevance for fire-history studies. The Holocene 11, 541–549.  

Garrett-Jones, S.E., 1979. Pollen flora: lowland Papua New Guinea. In: Garrett-Jones, S.E., (Eds.), Evidence for 
changes in Holocene vegetation and lake sedimentation in the Markham Valley, Papua New Guinea. 
Dissertation, Australian National University Canberra (extract at 
http://www.palaeoworks.anu.edu.au/databases.html). 

Garstang, M., Tyson, P.D., Cachier, H., Radke, L., 1997. Atmospheric transport of particulate and gaseous products 
by fires. In: Clark, J.S., Cachier, H., Goldammer, J.G., Stocks, B., (Eds.), Sediment Records of Biomass Burning 
and Global Change. Proceedings of the NATO Advanced Study Institute 'Biomass Burning Emissions and Global 
Change', Held in Praia de Alvor Algarve, Portugal, October 1994.  pp. 207– 250. 

Gavin, D.G., Hu, F.S., Lertzman, K., Corbett, P., 2006. Weak climatic control of stand-scale fire history during the 
late Holocene. Ecology 87, 1722–1732. 

Geyh, M.A., Streif, H., Kudrass, H.R., 1979. Sea-level changes during the late Pleistocene and Holocene in the Strait 
of Malacca. Nature 278, 441-443.   

Giesen, W., 1993. The State of Natural Wetlands in Sumatra. Implications for conservation, and the general trend 
in Indonesia. Paper presented at the Workshop on Tropical Environmental Management: Biodiversity for 
Sustainable Development in SE Asia. Wallace Research University, Dumoga Bone NP, North Sulawesi, 8-18 
February 1993, pp. 39. 

Giesen, W., 1994. Habitat changes in wetlands of the Greater Sunda’s and implications for biodiversity. Presented 
at “Symposium pertama mengenai Berang-berang di Indonesia, dengan tema: Berang-berang bagi Manusia”, 
held at PHPA, Bogor, 7 April 1994, 45-55. 

Godfrey, J.S., 1996. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the 
atmosphere: A review. Journal of Geophysical Research: Oceans (1978–2012) 101, 12217–12237. 

Goldich, S.S., 1938. A study in rock-weathering. The Journal of Geology 17–58. 
Gómez, N., Riera, J.L., Sabater, S., 1995. Ecology and morphological variability of Aulacoseira granulata 

(Bacillariophyceae) in Spanish reservoirs. Journal of Plankton Research 17, 1–16. 
Gordon, A.L., Susanto, R.D., Field, A., 1999. Throughflow within Makassar Strait. Geophysical Research Letters 26, 

3325–3328. 
Gorham, E., 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. 

Ecological applications 1, 182–195.  
Grady, W.C., Eble C.F., Neuzil S.G., 1993. Brown coal maceral distributions in a modern domed tropical Indonesian 

peat and a comparison with maceral distributions. In: Middle Pennsylvanian-age Applachian bituminous coal 
beds. Cobb, J.C., Cecil, C.B., (Eds.). Modern and Ancient Coal-Forming Environments. Geological Society of 
America Special Paper 286. Boulder, Colorado, US. 

Gremmen, W.H.E., 1990. Palynological investigations in the Danau Tempe depression, southwest Sulawesi 
(Celebes), Indonesia. Modern quaternary research in Southeast Asia 11, 123-134. 

Griffin, J.J., Goldberg, E.D., 1983. Notes. Impact of fossil fuel combustion on sediments of Lake Michigan: a reprise. 
Environmental science & technology 17, 244–245. 

Griffiths, M.L., Drysdale, R.N., Gagan, M.K., Frisia, S., Zhao, J., Ayliffe, L.K., Hantoro, W.S., Hellstrom, J.C., Fischer, 
M.J., Feng, Y.-X., others, 2010. Evidence for Holocene changes in Australian–Indonesian monsoon rainfall from 
stalagmite trace element and stable isotope ratios. Earth and Planetary Science Letters 292, 27–38. 

http://www.palaeoworks.anu.edu.au/databases.html
http://www.palaeoworks.anu.edu.au/databases.html


161 
 

Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method 
of incremental sum of squares. Computers and Geosciences 13, 13-35. 

Grimm, E.C., 1993. TILIA v2.0 (computer software) Illinois State Museum, Research and Collections Centre, 
Springfield, IL, USA. 

Grimm, E.C., Bradshaw, R.H.W., Brewer, S., Flantua, S., Giesecke, T., Lèzine, A.M., Takahara, H., Williams, J.W., 
2013. Pollen Methods and Studies. Databases and their application. In: Elias SA Mock CJ (Eds) Encyclopedia of 
Quaternary Science 2, Elsevier, 831-838.  

Guilyardi, E., 2006. El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dynamics 
26, 329-348. 

Gunawan, D., 2006. Atmospheric variability in Sulawesi, Indonesia: regional atmospheric model results and 
observations. PhD thesis, University of Goettingen, Germany.  

Gunawan, H., Kobayashi, S., Mizuno, K., Kono, Y., 2012. Peat swamp forest types and their regeneration in Giam 
Siak Kecil-Bukit Batu Biosphere Reserve, Riau, East Sumatra, Indonesia. Mires and Peat 10, 1-17. 

Guy-Ohlson, D., 1992. Botryococcus as an aid in the interpretation of palaeoenvironment and depositional 
processes. Review of Palaeobotany and Palynology 71, 1–15. 

Haberle, S.G., Hope, G.S., van der Kaars, S., 2001. Biomass burning in Indonesia and Papua New Guinea: natural 
and human induced fire events in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 171, 
259-268.   

Haberzettl, T., Fey, M., Lücke, A., Maidana, N., Mayr, C., Ohlendorf, C., Schäbitz, F., Schleser, G.H., Wille, M., 
Zolitschka, B., 2005. Climatically induced lake level changes during the last two millennia as reflected in 
sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). Journal of Paleolimnology 33, 
283–302. 

Haberzettl, T., Kück, B., Wulf, S., Anselmetti, F., Ariztegui, D., Corbella, H., Fey, M., Janssen, S., Lücke, A., Mayr, C., 
others, 2008. Hydrological variability in southeastern Patagonia and explosive volcanic activity in the southern 
Andean Cordillera during Oxygen Isotope Stage 3 and the Holocene inferred from lake sediments of Laguna 
Potrok Aike, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 213–229. 

Haberzettl, T., St-Onge, G., Behling, H., Kirleis W., 2013. Evaluating Late Holocene radiocarbon-based chronologies 
by matching palaeomagnetic secular variations to geomagnetic field models: an example from Lake Kalimpaa 
(Sulawesi, Indonesia). In: Jovane, L., Herrero-Bervera, E. Hinnov, L.A., Housen, B.A., (Eds.), Magnetic Methods 
and the Timing of Geological Processes. Geological Society, London, Special Publications 373, 245-259. 

Håkanson, L., Jansson, M., 2002. Principles of Lake Sedimentology. Springer. Berlin, Germany. 
Hall, R., 2009. Southeast Asia's changing palaeogeography. Blumea - Biodiversity, Evolution and Biogeography of 

Plants 54 (1-3), 148-161. 
Hamilton, W.B., 1979. Tectonics of the Indonesian region. USGS Prof. Paper 1078, 345 pp. and map. 
Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education 

and data analysis. Palaeontologia Electronica, 4(1) 
(http://www.palaeoelectronica.org/2001_1/past/issue1_01.htm). 

Hanebuth, T., Stattegger, K., Grootes, P.M., 2000. Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level 
Record. Science 288, 1033–1035.   

Hanebuth, T.J., Voris, H.K., Yokoyama, Y., Saito, Y., Okuno, J.I., 2011. Formation and fate of sedimentary 
depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. 
Earth-Sci. Rev. 104, 92-110.  

Haseldonckx, P., 1977. The palynology of a Holocene marginal peat swamp environment in Johore, Malaysia. 
Review of Palaeobotany and Palynology 24, 227-238.  

Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward migration of the Intertropical 
Convergence Zone through the Holocene. Science 293 (5533), 1304-1308. 

Heil, A., Langmann, B., Aldrian, E., 2007. Indonesian peat and vegetation fire emissions: Study on factors 
influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitigation and 
adaptation strategies for global change 12, 113–133.  

Helmi, 2001. Sejarah Kawasan Taman Nasional Lore Lindu. Paper presented at the Workshop on the Lore Lindu 
National Park Management Plan, Bogor, July 30th - August 2nd 2001, Jakarta, Indonesia. 

Herawati, H., Santoso, H., 2011. Tropical forest susceptibility to and risk of fire under changing climate: A review 
of fire nature, policy and institutions in Indonesia. Forest Policy and Economics 13, 227-233. 

Higuera, P.E., Brubaker L.B., Anderson P.M., Brown, T.A., Kennedy, A.T., Hu, F.S., 2008. Frequent fires in ancient 
shrub tundra: Implications of paleorecords for arctic environmental change. PLoS One 3 (3).   

Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., 2009. Vegetation mediated the impacts of 
postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 
79, 201–219. 

http://www.palaeoelectronica.org/2001_1/past/issue1_01.htm


162 
 

Higuera, P.E., Peters, M., Brubaker, L., Gavin, D., 2007. Understanding the origin and analysis of sediment-charcoal 
records with a simulation model. Quaternary Science Reviews 26, 1790–1809.   

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate 
surfaces for global land areas International. Journal of Climatology 25, 1965-1978. 

Hill, M.O., Gauch, H.G., 1980. Detrended correspondence analysis, an improved ordination technique. Vegetation 
42, 47-58. 

Holloway, J.D., Hall, R., 1998. SE Asian geology and biogeography: an introduction. Biogeography and geological 
evolution of SE Asia 1–23. 

Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., Jauhiainen, J., 2010. Current and future CO2 
emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505-1514.  

Hope, G., 2001. Environmental change in the late Pleistocene and later Holocene at Wanda site, Soroako, South 
Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 171, 129–145. 

Hope, G., Chokkalingam, U., Anwar, S., 2005. The stratigraphy and fire history of the Kutai peatlands, Kalimantan, 
Indonesia. Quaternary Research 64, 407-417.  

Horner, R.R., Welch, E.B., Seeley, M.R., Jacoby, J.M., 1990. Responses of periphyton to changes in current velocity, 
suspended sediment and phosphorus concentration. Freshwater biology 24, 215–232. 

Horton, B.P., Gibbard, P.L., Milne, G.M., Morley, R.J., Purintavaragul, C., Stargardt, J.M., 2005. Holocene sea levels 
and palaeoenvironments, Malay-Thai Peninsula, Southeast Asia. The Holocene 15, 1199-1213.   

Hoscilo, A., Page, S.E., Tansey, K.J., Rieley, J.O., 2011. Effect of repeated fires on land-cover change on peatland in 
southern Central Kalimantan, Indonesia, from 1973 to 2005. International Journal of Wildland Fire 20, 578–
588.  

Houghton, R.A., Skole, D.L., Nobre, C.A., Hackler, J.L., Lawrence, K.T., Chomentowski, W.H., 2000. Annual fluxes of 
carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403, 301–304.   

Huang, T.C., 1972. Pollen flora of Taiwan. Ching-Hwa Press, Taipei, Taiwan.  
Jantz, N., Homeier, J., Behling, H., 2014. Representativeness of tree diversity in the modern pollen rain of Andean 

montane forests. Journal of Vegetation Science 25, 481–490. 
Jauhiainen, J., Vasander, H., Rieley, J., Page, S. E., 2010. Tropical Peat Carbon Gas Interaction: Technical report 2. 

Leicester, United Kingdom: University of Leicester, UK. 
Jones, S.E., Pearce, K.G., 2015. A pollen morphology study from the Kelabit Highlands of Sarawak, Malaysian 

Borneo. Palynology 39, 150–204. 
Joosten, H., 2009. The Global Peatland CO2 Picture. Wetlands International (Eds.), pp. 33.  
Ju, J., Slingo, J., 1995. The Asian summer monsoon and ENSO. Quarterly Journal of the Royal Meteorological Society 

121, 1133–1168. 
Juggins, S., 2007. C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and 

visualisation. Newcastle University, Newcastle upon Tyne, UK. 
Karamperidou, C., Di Nezio, P.N., Timmermann, A., Jin, F.-F., Cobb, K.M., 2015. The response of ENSO flavors to 

mid-Holocene climate: Implications for proxy interpretation. Paleoceanography 30, 527–547. 
Kasper, T., Frenzel, P., Haberzettl, T., Schwarz, A., Daut, G., Meschner, S., Wang, J., Zhu, L., Mäusbacher, R., 2013. 

Interplay between redox conditions and hydrological changes in sediments from Lake Nam Co (Tibetan 
Plateau) during the past 4000cal BP inferred from geochemical and micropaleontological analyses. 
Palaeogeography, Palaeoclimatology, Palaeoecology 392, 261–271. 

Kasper, T., Haberzettl, T., Doberschütz, S., Daut, G., Wang, J., Zhu, L., Nowaczyk, N., Mäusbacher, R., 2012. Indian 
Ocean Summer Monsoon (IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, 
central Tibetan Plateau (China). Quaternary Science Reviews 39, 73–85. 

Kaudern, W., 1925. Migrations of the Toradja in Central Celebes (Ethnographical Studies in Celebes: Results of the 
Author's Expedition to Celebes 1917-1920. Goeteborg: Elanders Boktryckeri Aktiebolag II. Göteborg. Sweden. 

Kaudern, W., 1938. Megalithic finds in Central Celebes. Ethnographical Studies in Celebes 5: Results of the author's 
expedition to Celebes 1917-1920. Elanders Boktryckeri Aktiebolag V, Göteborg. Sweden. 

Kauffman, J. B., Cummings, D. L., Ward, D. E. & Babbitt, R., 1995. Fire in the Brazilian Amazon: biomass, nutrient 
pools, and losses in slashed primary forests. Oecologia 104, 397–409. 

Keil, A., Zeller, M., Wida, A., Sanim, B., Birner, R., 2008. What determines farmers’ resilience towards ENSO-related 
drought? An empirical assessment in Central Sulawesi, Indonesia. Climatic Change 86, 291–307. 

Kershaw, A.P., Penny, D., van der Kaars, S., Anshuri, G., Thamotherampillai, A., 2000. Palaeoecological evidence 
for vegetation and climate in lowland Southeast Asia at the last glacial maximum. In: Metcalfe, I., Smith, J.M.B., 
Morwood, M., Davidson, I., Hewison, K. (Eds.), Floral and Faunal Migrations and Evolution in Australia–
Southeast Asia. Balkema. 

Keßler, P.J., Bos, M.M., Sierra Daza, S.E.C., Kop, A., Willemse, L.P.M., Pitopang, R., Gradstein, S.R., 2002. Checklist 
of woody plants of Sulawesi, Indonesia. Blumea suppl 14. 



163 
 

Kirilova, E.P., van Hardenbroek, M., Heiri, O., Cremer, H., Lotter, A.F., 2010. 500 years of trophic-state history of a 
hypertrophic Dutch dike-breach lake. Journal of Paleolimnology 43, 829–842. 

Kirleis, W., Muller, J., Kortemeier, C., Behling, H., Soegondho, S., 2012. Chapter 16: The megalithic landscape of 
central Sulawesi, Indonesia. Combining archaeological and palynological investigations. In: Bonatz, D., 
Reinecke, A., Tjoa-Bonatz, M.L., (Eds.), Crossing Borders in Southeast Asian Archaeology. Selected papers from 
the 13th International Conference of the European Association of Southeast Asian Archaeologists, Berlin, 
2010. 2 vol., NUS Press, Singapore, pp. 199-220.  

Kirleis, W., Pillar, V.D., Behling, H., 2011. Human–environment interactions in mountain rainforests: 
archaeobotanical evidence from central Sulawesi, Indonesia. Vegetation History and Archaeobotany 20 
(3):165-179. 

Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical 
Journal International 62, 699–718. 

Kodela, P.G., 2006. Pollen morphology of some rainforest taxa occurring in the Illawarra region of New South 
Wales, Australia. Telopea Journal of Plant Systematics 11, 346–389. 

Koehler, B., Corre, M.D., Veldkamp, E., Wullaert, H., Wright, S.J., 2009. Immediate and long-term nitrogen oxide 
emissions from tropical forest soils exposed to elevated nitrogen input. Global Change Biology 15, 2049–2066. 

Konecky, B.L., Russell, J.M., Rodysill, J.R., Vuille, M., Bijaksana, S., Huang, Y., 2013. Intensification of southwestern 
Indonesian rainfall over the past millennium. Geophysical Research Letters 40, 386–391. 

Korte, M., Constable, C., 2011. Improving geomagnetic field reconstructions for 0–3ka. Physics of the Earth and 
Planetary Interiors 188, 247–259. 

Kostermans, A., 1958. Secondary growth on areas of former peat swamp forest, in: Proceedings of the Symposium 
on Humid Tropics Vegetation, Held in Tjiawi, Indonesia. pp. 155–169.  

Krammer, K., Lange-Bertalot, H., 1986. Süswasserflora von Mitteleuropa: Bacillariophyceae. 1-4 Stuttgart, Gustav 
Fisher. 

Krashevska, V., Bonkowski M., Maraun M., Scheu S., 2007. Testate amoebae (protista) of an elevational gradient 
in the tropical mountain rain forest of Ecuador. Pedobiologia 51, 319-331. 

Kreisel, W., Weber, R., Faust, H., 2004. Historical Impacts on Use and Management of Natural Resources in the 
Rainforest Margins of Central Sulawesi. Book section in Land-use, Nature Conservation and the Stability of 
Rainforest Margins in Southeast Asia Environmental Science, 39-65. 

Kuniyasu, M., 2002. Environments and People of Sumatran Peat Swamp Forests II: Distribution of Villages and 
Interactions between People and Forests. Southeast Asian Studies 40.  

Kurnianto, S., Warren, M., Talbot, J., Kauffman, B., Murdiyarso, D., Frolking, S., 2015. Carbon accumulation of 
tropical peatlands over millennia: a modeling approach. Global Change Biology 21, 431–444.   

Langton, S.J., Linsley, B.K., Robinson, R.S., Rosenthal, Y., Oppo, D.W., Eglinton, T.I., Howe, S.S., Djajadihardja, Y.S., 
Syamsudin, F., 2008. 3500 yr record of centennial-scale climate variability from the Western Pacific Warm 
Pool. Geology 36, 795–798. 

Leemhuis, C., 2005. The Impact of El Niño Southern Oscillation Events on Water Resource Availability in Central 
Sulawesi, Indonesia. A hydrological modelling approach. PhD thesis, University of Göttingen, Germany. 

Leemhuis, C., Gerold, G., 2006. The impact of the warm phase of ENSO (El Nino Southern Oscillation) events on 
water resource availability of tropical catchments in Central Sulawesi, Indonesia. Advances in Geosciences 6, 
217-220. 

Lehmusluoto, P., Machbub, B., Terangna, N., Rusmiputro, S., Achmad, F., Boer, L., Brahmana, S.S., Priadi, B., 
Setiadji, B., Sayuman, O., others, 1997. National inventory of the major lakes and reservoirs in Indonesia. 
Expedition Indodanau Technical Report, Oy publisher. 

Lemmens, R.H.M.J., Soerianegara, I., Wong, W.C., 1995. Timber trees: minor commercial timbers (Prosea 5.2). 
Prosea — Plant Resources of South East Asia. Backhuys Publishers, The Netherlands, pp. 655. 

Li, W., Dickinson, R.E., Fu, R., Niu, G.-Y., Yang, Z.-L., Canadell, J.G., 2007. Future precipitation changes and their 
implications for tropical peatlands. Geophysical Research Letters 34.   

Li, X., Wei, G., Shao, L., Liu, Y., Liang, X., Jian, Z., Sun, M., Wang, P., 2003. Geochemical and Nd isotopic variations 
in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia. Earth and Planetary Science 
Letters 211, 207–220. 

Lijklema, L., 1980. Interaction of orthophosphate with iron (III) and aluminum hydroxides. Environmental Science 
& Technology 14, 537–541. 

Livingstone, D.A., 1955. A lightweight piston sampler for lake deposits. Ecology 36 (1), 137-139. 
López, P., Navarro, E., Marce, R., Ordoñez, J., Caputo, L., Armengol, J., 2006. Elemental ratios in sediments as 

indicators of ecological processes in Spanish reservoirs. Limnetica 25, 499–512. 



164 
 

Lückge, A., Doose-Rolinski, H., Khan, A.A., Schulz, H., Von Rad, U., 2001. Monsoonal variability in the northeastern 
Arabian Sea during the past 5000years: geochemical evidence from laminated sediments. Palaeogeography, 
Palaeoclimatology, Palaeoecology 167, 273–286. 

Lusk, C.H., 1999. Long-lived Light-demanding Emergents in Southern Temperate Forests: The Case of Weinmannia 
trichosperma (Cunoniaceae) in Chile. Plant Ecology 140 (1), 111-115. 

Mackereth, F.J.H., 1966. Some chemical observations on post-glacial lake sediments. Philosophical Transactions 
of the Royal Society B: Biological Sciences 250, 165–213. 

Maher L.J.J., 1981. Statistics for microfossil concentration measurements employing samples spiked with marker 
grains. Review of Palaeobotany and Palynology 32, 153–191. 

Malhi, Y., Grace, J., 2000. Tropical forests and atmospheric carbon dioxide. TREE 15, 332-337. 
Manos, P.S., Cannon, C.H., Oh, S.H., 2008. Phylogenetic relationships and taxonomic status of the paleoendemic 

Fagaceae of western North America: recognition of a new genus, Notholithocarpus. Madrono 55, 181–190. 
Manos, P.S., Stanford, A.M., 2001. The historical biogeography of Fagaceae: tracking the tertiary history of 

temperate and subtropical forests of the Northern Hemisphere. International Journal of Plant Sciences 162, 
S77–S93. 

Markussen, M., 2000. Zusammenfassender Endbericht des Aufenthaltes in Palu/Indonesien vom 20. Mai bis 10. 
August 2000 mit den Ergebnissen der bodenkundlichen Untersuchungen. Report, University of Göttingen, 
Germany. 

Matthias, I., Semmler,M.S.S., Giesecke, T., 2015. Pollen diversity captures landscape structure and diversity. 
Journal of Ecology 103, 880–890. 

Mayr, C., Fey, M., Haberzettl, T., Janssen, S., Lücke, A., Maidana, N.I., Ohlendorf, C., Schäbitz, F., Schleser, G.H., 
Struck, U., others, 2005. Palaeoenvironmental changes in southern Patagonia during the last millennium 
recorded in lake sediments from Laguna Azul (Argentina). Palaeogeography, Palaeoclimatology, 
Palaeoecology 228, 203–227. 

Mazaud, A., 2005. User-friendly software for vector analysis of the magnetization of long sediment cores. 
Geochem. Geophys. Geosyst. 6 (12), 1525-2027. 

Mazei, Y., Tsyganov, A., 2006. Freshwater Testate Amoebae. KMK Moscow (in Russian). 
McBride, J.L., Frank, W.M., 1999. Relationships between Stability and Monsoon Convection. J. Atmos. Sci. 56, 24–

36.   
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, 

D.G., others, 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive 
while others succumb to drought? New phytologist 178, 719–739. 

McGrath, D. A., Smith, C. K., Gholz, H. L. & de Assis Oliveira, F., 2001. Effects of land-use change on soil nutrient 
dynamics in Amazonia. Ecosystems 4, 625–645. 

McLaren, P., Bowles, D., 1985. The effects of sediment transport on grain-size distributions. Journal of Sedimentary 
Research 55. 

Merryfield, W.J., 2006. Changes to ENSO under CO2 doubling in a multi-model ensemble. Journal of Climate 19, 
4009-4027. 

Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. 
Chemical Geology 114, 289–302. 

Middelburg, J.J., van der Weijden, C.H., Woittiez, J.R., 1988. Chemical processes affecting the mobility of major, 
minor and trace elements during weathering of granitic rocks. Chemical Geology 68, 253–273. 

Miettinen, J., Hooijer, A., Tollenaar, D., Page, S., Malins, C., Vernimmen, R., Shi, C., Liew, S.C., 2012. Historical 
analysis and projection of oil palm plantation expansion on peatland in Southeast Asia. International Council 
on Clean Transportation 22. 

Miettinen, J., Liew, S.C., 2010. Degradation and development of peatlands in Peninsular Malaysia and in the islands 
of Sumatra and Borneo since 1990. Land degradation & development 21, 285–296.  

Miettinen, J., Shi, C., Liew, S.C., 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global 
Change Biology 17, 2261–2270.   

Mitchell, E., Charman, D., Warner, B., 2008. Testate amoebae analysis in ecological and paleoecological studies of 
wetlands: past, present and future. Biodiversity and Conservation 17, 2115-2137.   

Mittermeier R.A., Myers, N., Mittermeier, C.G. & Gil, P.R., 1999. Hotspots: earth’s biologically richest and most 
endangered terrestrial ecoregions. CEMEX CI. 

Moore, P.D., Bellamy, D.J., 1974. Peatlands. Elek science London, UK.  
Moore, T.A., Hilbert, R.E., 1992. Petrographic and anatomical characteristics of plant material from two peat 

deposits of Holocene and Miocene age, Kalimantan, Indonesia. Review of palaeobotany and palynology 72, 
199–227.  



165 
 

Morey, S.L., Shriver, J.F., O’Brien, J.J., 1999. The effects of Halmahera on the Indonesian throughflow. Journal of 
Geophysical Research: Oceans (1978–2012) 104, 23281–23296. 

Moritz, M.A., Morais, M.E., Summerell, L.A., Carlson, J.M., Doyle, J., 2005. Wildfires, complexity, and highly 
optimized tolerance. Proceedings of the National Academy of Sciences of the United States of America 102, 
17912–17917. 

Morley, R.J., 1981. Development and vegetation dynamics of a lowland ombrogenous peat swamp in Kalimantan 
Tengah, Indonesia. Journal of Biogeography 8, 383-404.  

Morley, R.J., 1982. Origin and history of Tasek Bera. In: Furtado, J.I., Mori, S. (Eds.), Tasik Bera: The Ecology of a 
Freshwater SwampMonographiae Biologicae. Dr.W. Junk Publishers, The Hague, NL, pp. 12–45. 

Morley, R.J., 2000. Origin and evolution of tropical rain forests. John Wiley & Sons publisher, US. 
Morley, R.J., 2013. Cenozoic ecological history of South East Asian peat mires based on the comparison of coals 

with present day and Late Quaternary peats. Journal of Limnology 72.    
Morley, R.J., Swiecicki, T., Thuy Thi Pham, D., Morley, R.J., Swiecicki, T., Thuy Thi Pham, D., 2011. A sequence 

stratigraphic framework for the Sunda region, based on integration of biostratigraphic, lithological and seismic 
data from Nam Con Son basin, Vietnam. Proceedings of the 35th Annual Convention Indonesian Petroleum 
Association 1, pp. 1175–1196. 

Moss, S.J., Wilson, M.E., 1998. Biogeographic implications of the Tertiary palaeogeographic evolution of Sulawesi 
and Borneo. Biogeography and geological evolution of SE Asia, 133–163. 

Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño/Southern Oscillation activity at 
millennial timescales during the Holocene epoch. Nature 420, 162-165.   

Muller, J., 1963. Palynological study of Holocene peat in Sarawak. Symp. Ecol. Res. In Humid Tropics Vegetation, 
Kuching, Malaysia, pp. 147–156. 

Muller, J., Oberhänsli, H., Melles, M., Schwab, M., Rachold, V., Hubberten, H.-W., 2001. Late Pliocene 
sedimentation in Lake Baikal: implications for climatic and tectonic change in SE Siberia. Palaeogeography, 
Palaeoclimatology, Palaeoecology 174, 305–326. 

Murdiyarso, D., Hergoualc’h, K.,Verchot, L.V., 2010. Opportunities for reducing greenhouse gas emissions in 
tropical peatlands, PNAS 107, 19655-19660.  

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J., 2000. Biodiversity hotspots for 
conservation priorities. Nature 403, 853–858. 

Nadelhoffer, K.J., Fry, B., 1994. Nitrogen isotope studies in forest ecosystems. Stable isotopes in ecology and 
environmental science. Blackwell publisher, Oxford, UK. 

Nesbitt, H.W., Markovics, G., Price, R.C., 1980. Chemical processes affecting alkalis and alkaline earths during 
continental weathering. Geochimica et Cosmochimica Acta 44(11), 1659–1666. 

Neuzil, S.G., 1997. Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits, 
Indonesia. In: Rieley, J.O., Page, S.E. (Eds.), Biodiversity and Sustainability of Tropical Peatlands. Samara 
Publishing, pp. 55–72. 

Newton, A., Thunell, R., Stott, L., 2006. Climate and hydrographic variability in the Indo-Pacific Warm Pool during 
the last millennium. Geophysical Research Letters 33. 

Nichols, G., 2009. Sedimentology and stratigraphy. John Wiley & Sons publisher, US. 
Niedermeyer, E.M., Sessions, A.L., Feakins, S.J., Mohtadi, M., 2014. Hydroclimate of the western Indo-Pacific Warm 

Pool during the past 24,000 years. PNAS 111, 9402–9406. 
Notohadiprawiro, T., 1981. Peat Deposition, an Idle Stage in the Natural Cycling of Nitrogen, and Its Possible 

Activation for Agriculture. In: Wetselaar, R., Simpson, J.R., Rosswall, T. (Eds.), Nitrogen Cycling in South-East 
Asian Wet Monsoonal Ecosystems. The Australian Academy of Science, Canberra, 139-147.  

O’Connell, J.F., Allen, J., Hawkes, K., 2010. Pleistocene Sahul and the origins of seafaring. The global origins and 
development of seafaring, 57–68. 

Odgaard, B.V., 2007. Biodiversity of past plant cover. In: Elias, S.A., (Eds.), Encyclopedia of Quaternary Science. 
Elsevier, 2511-2514.  

Ólafsdóttir, S. edís, Geirsdóttir, Á., Miller, G.H., Stoner, J.S., Channell, J.E., 2013. Synchronizing Holocene lacustrine 
and marine sediment records using paleomagnetic secular variation. Geology 41, 535–538. 

Oppo, D.W., Rosenthal, Y., Linsley, B.K., 2009. 2,000-year-long temperature and hydrology reconstructions from 
the Indo-Pacific warm pool. Nature 460, 1113–1116. 

Page, S., Hoscito, A., Wösten, H., Jauhiainen, J., Silvius, M., Rieley, J., Vasander, H., 2009. Ecological Restoration of 
Tropical Peatlands - Current Knowledge and Future Research Directions. Ecosystems 12, 888-905.  

Page, S., Wüst, R., Banks, C., 2010. Past and present carbon accumulation and loss in Southeast Asian peatlands. 
PAGES News 18, 25–26.  



166 
 

Page, S.E., Morrison, R., Malins, C., Hooijer, A., Rieley, J.O., Jauhiainen, J., 2011. Review of peat surface greenhouse 
gas emissions from oil palm plantations in Southeast Asia. In: The International Council on Clean 
Transportation (ICCT), White Paper 15. 

Page, S.E., Rieley, J.O., Shotyk, Ø., Weiss, D., 1999. Interdependence of peat and vegetation in a tropical peat 
swamp forest. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354, 
1885–1897.  

Page, S.E., Rieley, J.O., Wüst, R., 2006. Lowland tropical peatlands of Southeast Asia. In: Martini, I.P.,Martínez 
Cortizas, A., Chesworth,W. (Eds.), Peatlands: Evolution and Records of Environmental and Climate Changes. 
Elsevier, pp. 145–172. 

Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.-D.V., Jaya, A., Limin, S., 2002. The amount of carbon released from 
peat and forest fires in Indonesia during 1997. Nature 420, 61–65.  

Page, S.E., Wüst, R.A.J., Weiss, D., Rieley, J.O., Shotyk, W., Limin, S.H., 2004. A record of Late Pleistocene and 
Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): 
implications for past, present and future carbon dynamics. Journal of Quaternary Science 19, 625-635.    

Partin, J.W., Cobb, K.M., Adkins, J.F., Clark, B., Fernandez, D.P., 2007. Millennial-scale trends in west Pacific warm 
pool hydrology since the Last Glacial Maximum. Nature 449, 452-455.    

Patterson, W.A. III, Edwards, K.J., MacGuire, D.J., 1987. Microscopic charcoal as a fossil indicator of fire. Quaternary 
Science Reviews 6, 3–23. 

Payne, R.J., Mitchell, E.A., 2009. How many is enough? Determining optimal count totals for ecological and 
palaeoecological studies of testate amoebae. Journal of Paleolimnology 42, 483-495.  

Philander, S.G.H., 1990. El Niño, La Niña, and the Southern Oscillation. In: International Geophysics Series, R. 
Dmowska, R., Holton, J.R., (Eds.). Academic Press, New York, pp. 289. 

Phillips, S., Bustin, R.M., 1998. Accumulation of organic rich sediments in a dendritic fluvial/lacustrine mire system 
at Tasik Bera, Malaysia: implications for coal formation. International Journal of Coal Geology 36, 31–61. 

Pisaric, M.F., 2002. Long-distance transport of terrestrial plant material by convection resulting from forest fires. 
Journal of Paleolimnology 28, 349–354. 

Pitkänen, A., Huttunen, P., 1999. A 1300-year forest-fire history at a site in eastern Finland based on charcoal and 
pollen records in laminated lake sediment. The Holocene 9, 311–320. 

Powell, J.M., 1970. Highland Papua New Guinea Pollen Flora II. In: Powell, J.M., (Eds.), The impact of man on the 
vegetation of the Mt. Hagen region, New Guinea. Dissertation, Australian National University Canberra 
(extract at http://www.palaeoworks.anu.edu.au/databases.html). 

Premathilake, R., Nilsson, S., 2001. Pollen morphology of endemic species of the Horton Plains National Park, Sri 
Lanka. Grana 40, 256–279. 

Priadi, B., Polvé, M., Maury, R.C., Bellon, H., Soeria-Atmadja, R., Joron, J.L., Cotten, J., 1994. Tertiary and 
Quaternary magmatism in Central Sulawesi: chronological and petrological constraints. Journal of Southeast 
Asian Earth Sciences 9, 81–93. 

Purbopuspito, J., Veldkamp, E., Brumme, R., Murdiyarso, D., 2006. Trace gas fluxes and nitrogen cycling along an 
elevation sequence of tropical montane forests in Central Sulawesi, Indonesia. Global Biogeochemical Cycles 
20. 

Quinn, N.P., 2003. Testate Amoebae (Protozoa: Rhizopoda) Assemblages as Environmental Indicators of Water 
Tables and Soil Moisture in a Kettle-hole Peatland in Southern Ontario (M.Sc. Thesis). University of Waterloo, 
Canada.  

Quinn, W.H., Zopf, D.O., Short, K.S., Kuo Yang, R.T.W., 1978. Historical trends and statistics of the Southern 
Oscillation, El Niño and Indonesian droughts. Fish. Bull 76, 663–678. 

R Core Team, 2012. R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org  

Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., Dullo, W.-C., 2005. El Niño variability off Peru during the 
last 20,000 years. Paleoceanography 20.    

Renberg, I., 1991. The HON-Kajak sediment corer. Journal of Paleolimnology 6, 167–170. 
Rhodes, A.N., 1998. A method for the preparation and quantification of microscopic charcoal from terrestrial and 

lacustrine sediment cores. The Holocene 8, 113–117. 
Rieley, J.O., 1992. The ecology of tropical peat swamp forest: a Southeast Asian perspective, in: Proceedings of a 

Workshop on Integrated Planning and Management of Tropical Lowland Peatlands. Cisarua, Indonesia, 3–8. 
Rieley, J.O., Ahmad-Shah, A.A., 1996. The vegetation of tropical peat swamp forests. In: Maltgy, E., Immirzi, C.P., 

Safford, R.J., (Eds.), Tropical Lowland Peatlands of Southeast Asia. Proceedings of a Workshop on Integrated 
Planning and Management of Tropical Lowland Peatlands. IUCN Wetlands Programme/IUCN, The World 
Conservation Union, Gland, Switzerland, 55-73.  

Rieley, J.O., Page, S.E., 1997. Biodiversity and Sustainability of Tropical Peatlands. Samara Publ., Cardigan, pp. 369. 

http://www.palaeoworks.anu.edu.au/databases.html
http://www.r-project.org/


167 
 

Rieley, J.O., Page, S.E., Setiadi, B., 1996. Distribution of peatlands in Indonesia. Global Peat Resources. International 
Peat Society, Jyväskylä, Finnland 196–178.  

Rodysill, J.R., Russell, J.M., Bijaksana, S., Brown, E.T., Eggermont, H., 2012. A paleolimnological record of rainfall 
and drought from East Java, Indonesia during the last 1,400 years. Journal of Paleolimnology 47, 125–139. 

Rodysill, J.R., Russell, J.M., Crausbay, S.D., Bijaksana, S., Vuille, M., Edwards, R.L., Cheng, H., 2013. A severe drought 
during the last millennium in East Java, Indonesia. Quaternary Science Reviews 80, 102–111. 

Roos, M.C., 1993. State of affairs regarding Flora Malesiana: progress in revision work and publication schedule. 
Flora Malesiana Bulletin 11, 133–142. 

Roos, M.C., Keßler, P.J., Robbert Gradstein, S., Baas, P., 2004. Species diversity and endemism of five major 
Malesian islands: diversity–area relationships. Journal of Biogeography 31, 1893–1908. 

Rowell, A., Moore, P.F., 2000. Global review of forest fires. Forests for Life Programme Unit, WWF International. 
Rull, V., 2010. Ecology and palaeoecology: two approaches, one objective. Open Ecology Journal 3, 1–5. 
Ruppert, L.F., Neuzil, S.G., Cecil, C.B., Kane, J.S., 1993. Inorganic constituents from samples of a domed and 

lacustrine peat, Sumatra, Indonesia. Geological Society of America Special Papers. Geological Society of 
America, pp. 83–96. 

Sabiham, S., 1988. Studies on peat in the coastal plains of Sumatra and Borneo: part I: physiography and 

geomorphology of the coastal plains.東南アジア研究26, 308–335. 
Sabiham, S., 1990. Studies on peat in the coastal pains of Sumatra and Borneo: part IV: a study of the floral 

composition of peat in coastal plain of Brunei, Borneo. 東南アジア 研究27, 461–484. 
Sabiham, S., Furukawa, H., 1986. A study of floral composition of peat soil in the Lower Batang Hari River Basin of 

Jambi, Sumatra. Special issue: problem soils in Southeast Asia. 東南アジア研究24, 113–132. 
Sachs, J.P., Sachse, D., Smittenberg, R.H., Zhang, Z., Battisti, D.S., Golubic, S., 2009. Southward movement of the 

Pacific intertropical convergence zone AD 1400–1850. Nature Geoscience 2, 519–525. 
Sadori, L., Giardini, M., 2007. Charcoal analysis, a method to study vegetation and climate of the Holocene: The 

case of Lago di Pergusa (Sicily, Italy). Geobios 40, 173–180.   
Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. 

Nature 401, 360–363. 
Salafsky, N., 1994. Drought in the rain forest: effects of the 1991 El Niño-Southern Oscillation event on a rural 

economy in West Kalimantan, Indonesia. Climatic Change 27, 373–396. 
Salomons, W., Förstner, U., 1984. Metals in the Hydrocycle. Springer-Verlag. 
Sarasin, P., Sarasin, F., 1905. Reisen in Celebes: ausgeführt in den Jahren 1893-1896 und 1902-1903. CW Kreidel 

publisher (open library). 
Sastry, N., 2002. Forest fires, air pollution, and mortality in Southeast Asia. Demography 39, 1–23. 
Sathiamurthy, E., Voris, H.K., 2006. Maps of Holocene sea level transgression and submerged lakes on the Sunda 

Shelf. The Natural History Journal of Chulalongkorn University, Supplement 2, 1–43.  
Schippers, P., Sterck, F., Vlam, M., Zuidema, P.A., 2015. Tree growth variation in the tropical forest: understanding 

effects of temperature, rainfall and CO2. Global Change Biololy. Published online. doi:10.1111/gcb.12877. 
Schrier-Uijl, A.P., Silvius, M., Parish, F., Lim, K.H., Rosediana, S., Anshari, G., 2013. Environmental and social impacts 

of oil palm cultivation on tropical peat. Reports from the Technical Panels of the 2nd Greenhouse Gas Working 
Group of the Roundtable on Sustainable Palm Oil (RSPO) 131–168.  

Schuldt, B., Leuschner, C., Horna, V., Moser, G., Köhler, M., van Straaten, O., Barus, H., 2011. Change in hydraulic 
properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the 
perhumid tropics. Biogeosciences 8, 2179–2194. 

Schüler, L., 2012. Studies on late Quaternary environmental dynamics (vegetation, biodiversity, climate, soils, fire 
and human impact) on Mt Kilimanjaro. PhD thesis, University of Göttingen, Germany. 

Scott Anderson, R., Homola, R.L., Davis, R.B., Jacobson, G.L. Jr., 1984. Fossil remains of the mycorrhizal fungal 
Glomus fasciculatum complex in postglacial lake sediments from Maine Canadian. Can J Bot 62, 325–2328. 

Sheffield, J., Wood, E.F., 2008. Projected changes in drought occurrence under future global warming from multi-
model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31, 79-105. 

Shibata, S., Kawano, E., Nakabayashi, T., 1997. Research center for radioisotopes at University of Osaka Prefecture 
radiocarbon dates I. Radiocarbon 39, 79-87.  

Shotyk, W., Weiss, D., Kramers, J.D., Frei, R., Cheburkin, A.K., Gloor, M., Reese, S., 2001. Geochemistry of the peat 
bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace 
metals (Sc, Ti, Y, Zr, and REE) since 12,370 14 C yr BP. Geochimica et Cosmochimica Acta 65, 2337–2360. 

Sieffermann, G., Fournier, M., Triutomo, S., Sadelman, M.T., Semah, A.M., 1988. Velocity of tropical forest peat 
accumulation in Central Kalimantan province, Indonesia (Borneo). In: Proceedings VIII International Peat 
Congress, Leningrad 88, Section I. International Peat Society, Leningrad, 90-98.  



168 
 

Sieffermann, G., Rieley, J.O., Fournier, M., 1992. The low-land peat swamps of Central Kalimantan (Borneo): a 
complex and vulnerable ecosystem, Proceedings of the International Conference of Geography in the Asian 
Region, Yogyakarta, Indonesia, pp. 1–22. 

Sieffermann, R.G., Fournier, M., Rieley, J.O., Page, S.E., 1996. Évidence de deux phases de formations dans les 
“mega” tourbières dérivées de forêts pluviales de Bornéo. Dynamique à Long Terme des Écosystèmes 
Forestiers Intertropicaux. Paris, France 20-21-22 Mars 1996. Symposium – Résumés. CNRS, ORSTOM, Paris, 
pp. 253–256. 

Siegel, A.F., 1986. Rarefaction curves. In: Kotz, S., Johnson, N.L. (Eds.), Encyclopedia of Statistical Science. 7. Wiley 
and Sons, New York, 623-626.  

Siegert, F., Hoffmann, A.A., 2000. The 1998 forest fires in East Kalimantan (Indonesia): A quantitative evaluation 
using high resolution, multitemporal ERS-2 SAR images and NOAA-AVHRR hotspot data. Remote Sensing of 
Environment 72, 64–77. 

Sigg, L., Stumm, W., 1991. Aquatische Chemie: eine Einführung in die Chemie wässriger Lösungen und in die 
Chemie natürlicher Gewässer. Verlag der Fachvereine. 

Silvius, M.J., Simons, H.W., Verheugt, W.J.M., 1984. Soils, Vegetation, Fauna and Nature Conservation of the 
Berbak Game Reserve, Sumatra, Indonesia. RIN Contributions to Research on Management of Natural 
Resources 1984e3. Research Institute for Nature Management, Arnhem, pp. 146.  

Simandjuntak, T.O., Rusmana, E., Surono, et al., 1991. Geologic map and report of the Poso quadrangle, South 
Sulawesi. Scale 1:250,000. Bandung: Geological Research and Development Centre. 

Skutsch, M., Bird, N., Trines, E., Dutschke, M., Frumhoff, P., de Jong, B.H.J., van Laake, P., Masera, O., Murdiyarso, 
D., 2007. Clearing the way for reducing emissions from tropical deforestation. Environmental Science & Policy, 
Options for including agriculture and forestry activities in a post-2012 international climate agreement 10, 
322–334.   

Sodhi, N.S., Koh, L.P., Brook, B.W., Ng, P.K.L., 2004. Southeast Asian biodiversity: an impending disaster. Trends in 
Ecology & Evolution 19, 654–660.   

Soepadmo, E., 1971. Fagaceae. Flora Malesiana Series I (7), pp. 265. 
Soman, M.K., Slingo, J., 1997. Sensitivity of the asian summer monsoon to aspects of sea-surface-temperature 

anomalies in the tropical pacific ocean. Quarterly Journal of the Royal Meteorological Society 123, 309–336. 
Sotta, E.D., Corre, M.D., Veldkamp, E., 2008. Differing N status and N retention processes of soils under old-growth 

lowland forest in Eastern Amazonia, Caxiuanã, Brazil. Soil Biology and Biochemistry 40, 740–750. 
Staub, J.R., Esterle, J.S., 1993. Provenance and sediment dispersal in the Rajang River delta/coastal plain system, 

Sarawak, East Malaysia. Sedimentary geology 85, 191-201. 
Staub, J.R., Esterle, J.S., 1994. Peat-accumulating depositional systems of Sarawak, east Malaysia. Sediment. Geol. 

89, 91–106. 
Staub, J.R., Gastaldo, R.A., 2003. Late Quaternary incised-valley fill and deltaic sediments in the Rajang river Delta. 

In: Sidi, H.F., Nummedal, D., Imbert, P., Darman, H., Posamentier, H.W. (Eds.), Tropical Deltas of Southeast 
Asia - Sedimentology, Stratigraphy, and Petroleum Geology, Special Publication No. 76. SEPM, Tulsa, 71-87.  

Steinke, S., Kienast, M., Hanebuth, T., 2003. On the significance of sea-level variations and shelf paleo-morphology 
in governing sedimentation in the southern South China Sea during the last deglaciation. Marine Geology 201, 
179-206. 

Stevenson, J., Haberle S., 2005. Macro Charcoal Analysis: A modified technique used by the Department of 
Archaeology and Natural History, Palaeoworks technical papers. Department of Archaeology & Natural 
History, Research School of Pacific & Asian Studies, Coombs Building, Australian National University, ACT 0200, 
Australia.  

Stevenson, J., 2000. New Caledonia Pollen Flora In: Stevenson, J., (Eds.), Late Quaternary environmental change 
and the impact of Melanesian colonization in New Caledonia. Dissertation, University of New South Wales, 
Kensington (extract at http://www.palaeoworksanueduau/databaseshtml). 

Stocker, T. (Eds.), 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth 
assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 
US. 

Stoner, J.S., St-Onge, G., 2007. Chapter Three: Magnetic Stratigraphy in Paleoceanography: Reversals, Excursions, 
Paleointensity, and Secular Variation. Developments in Marine Geology, Elsevier 1, 99-138. 

St-Onge, G., Stoner, J.S., 2011. Paleomagnetism near the North Magnetic Pole: A unique vantage point for 
understanding the dynamics of the geomagnetic field and its secular variations. Oceanography-Oceanography 
Society 24, 42-50. 

Sudomo, M., Patrick Carney, W., Kurniawan, L., 1990. 20 years of progress in schistosomiasis research. Bul Penelit 
Keschat 18 (3-4), 18-23. 

Sukendar, H., 1976. Obyek kepurbakalaan di Palu Sulawesi Tengah. Kalpataru 3:61-104. 

http://www.palaeoworksanueduau/databaseshtml


169 
 

Sukendar, H., 1980a. Mencari peninggalan nenek moyang, pendukung tradisi megatitik di Tanah Bada (Sulteng). 
Kalpataru 5:1-63. 

Sukendar, H., 1980b. Tinjauan tentang peninggalan tradisi megalitik di daerah Sulawesi Tengah Pertemuan Ilmiah. 
Arkeologi 1977. 

Sumawinata, B., 1998. Sediments of the lower Barito Basin in South Kalimantan: fossil pollen composition. 東南ア

ジア研究36 (3), 293–316. 

Supardi, Subekty, A.D., Neuzil, S.G., 1993. General geology and peat resources of the Siak Kanan and Bengkalis 
island peat deposits, Sumatra, Indonesia. In: Cobb, J.C., Cecil, C.B., (Eds.), Modern and Ancient Coal-Forming 
Environments. Geological Society of America Special Paper 286, Boulder, 45-62.  

Suzuki, K., Ishii, k., Sakurai, S., Sasaki S., 2006. Plantation Technology in Tropical Forest Science. Springer Science 
& Business Media, 301 pp. 

Swain, A.M., 1973: A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments. 
Quaternary Research 3, 383–96. 

Swindles, G.T., Reczuga, M., Lamentowicz, M., Raby, C.L., Turner, T.E., Charman, D.J., Gallego-Sala, A., Valderrama, 
E., Williams, C., Draper, F., Honorio Coronado, E.N., Roucoux, K.H., Baker, T., Mullan, D.J., 2014. Ecology of 
Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for Palaeohydrological 
Reconstruction. Microbial Ecology 68, 284–298.  

Tacconi, L., 2003. Fires in Indonesia. Causes, Costs and Policy Implications. CIFOR Occasional Paper 38, Bogor, 
Indonesia, pp. 24.  

ter Braak, C.J.F., Smilauer, P., 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: 
Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA. 

The Nature Conservancy, Directorate General of Forest Protection and Nature Conservation, and Lore Lindu 
National Park Authority, 2001. Draft Management Plan 2002-2027: Lore Lindu National Park, Jakarta, 
Indonesia. 

Tie, Y.L., Esterle, J.S., 1992. Formation of lowland peat domes in Sarawak, Malaysia. In: Aminuddin, B.Y., Tan, S.L., 
Aziz, B., Samy, J., Salmah, Z., Siti Petimah, H., Choo, S.T., (Eds.), Proceedings of the International Symposium 
on Tropical Peatland, 6-10 May 1991, Kuching, Sarawak, Malaysia. Malaysian Agricultural Research and 
Development Institute, Kuala Lumpur, 81-89.  

Tierney, J.E., Oppo, D.W., Rosenthal, Y., Russell, J.M., Linsley, B.K., 2010. Coordinated hydrological regimes in the 
Indo-Pacific region during the past two millennia. Paleoceanography 25. 

Tierney, J.E., Russell, J.M., 2007. Abrupt climate change in southeast tropical Africa influenced by Indian monsoon 
variability and ITCZ migration. Geophysical Research Letters 34 (15). 

Tissot, C., Chikhi, H., Nayar, T.S., 1994. Pollen of wet evergreen forests of the Western Ghats, India. Publications 
du département d'écologie 35. Institut Français de Pondichéry. 

Tjia, H.D., 1996. Sea-level changes in the tectonically stable Malay-Thai Peninsula. Quaternary International 31, 
95–101.   

Torrence, C., Compo, G.P., 1998. A Practical Guide to Wavelet Analysis. Bull. Amer. Meteor. Soc. 79, 61–78.   
Torrence, C., Webster, P.J., 1999. Interdecadal changes in the ENSO-monsoon system. Journal of Climate 12, 2679–

2690. 
Valentyn, F., 1724. Oud en Nieuwe Oost-Indiën, Vervattende een Naaukerige en uitvoerige Verhandelinge van 

Nederlands Mogentheyd in die Gewesten, benevens eene wydlustige Beschryvinge der Moluccos, Ambonia, 
Banda, Timor, en Solor, Java, en alle de Eylanden onder de zelve Landbestieringen behoorende; het Comptoir 
op Suratte, en de Levens der Groote Mogols. Dordrecht, Amsterdam 5 vols, The Netherland. 

van Balgooy, M.M.J., 1987. A plant geographical analysis of Sulawesi. Biogeographical evolution of the Malay 
Archipelago 4, 94-102. 

van Cappellen, P., Wang, Y., 1996. Cycling of iron and manganese in surface sediments; a general theory for the 
coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. American Journal of 
Science 296, 197–243. 

van Dam, H., Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological indicator values of freshwater 
diatoms from the Netherlands. Netherland Journal of Aquatic Ecology 28, 117–133. 

van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N.P.R., Boom, A., Bongers, F., Pons, T.L., Terburg, G., Zuidema, 
P.A., 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency 
increased. Nature Geosci 8, 24–28.   

van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G.J., Kasibhatla, P.S., Jackson, R.B., Collatz, G.J., Randerson, 
J.T., 2009. CO2 emissions from forest loss. Nature Geoscience 2, 737–738.   

van der Werf, G.R., Randerson, J.T., Giglio, L., Gobron, N., Dolman, A.J., 2008. Climate controls on the variability of 
fires in the tropics and subtropics. Global Biogeochemical Cycles 22. 



170 
 

van Nieuwstadt, M.G., Sheil, D., 2005. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, 
Indonesia. Journal of Ecology 93, 191–201. 

van Oldenborgh, G.J., Philip, S., Collins, M., 2005. El Nino in a changing climate: a multi-model study. Ocean Science 
2, 267-298. 

van Welzen, P.C., Parnell, J.A.N., Slik, J.W.F., 2011. Wallace’s Line and plant distributions: two or three 
phytogeographical areas and where to group Java? Biological Journal of the Linnean Society 103 (3), 531-545. 

Vannière, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., Magny, M., 2008. Climate versus human-driven 
fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). 
Quaternary Science Reviews 27, 1181–1196. 

Verwer, C., van der Meer, P., Nabuurs, G., 2008. Review of carbon flux estimates and other greenhouse gas 
emissions from oil palm cultivation on tropical peatlands - Identifying the gaps in knowledge. Wageningen, 
Alterrra, The Netherlands.  

Villeneuve, M., Gunawan, W., Cornee, J.-J., Vidal, O., 2002. Geology of the central Sulawesi belt (eastern 
Indonesia): constraints for geodynamic models. International Journal of Earth Sciences 91, 524–537.   

Von Post, L., 1916. Forest tree pollen in south Sweden peatbog strata sequences. Pollen et Spores 9, 375–401. 
Voris, H.K., 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. 

Journal of Biogeography 27, 1153–1167.   
Wahyunto, Ritung, S., Subagjo, H., 2003. Peta Luas Sebaran Lahan Gambut dan Kandungan Karbon di Pulau 

Sumatera (Maps of Area of Peatland Distribution and Carbon Content in Sumatera, 1990–2002, First Edition). 
Edisi Pertama. Wetlands International / Indonesia Programme & Wildlife Habitat Canada (WHC), Edisi 
Pertama, Bogor, Indonesia. 

Wahyunto, Ritung, S., Subagjo, H., 2004. Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Kalimantan 
/ Map of Peatland Distribution Area and Carbon Content in Kalimantan, 2000-2002. Wetlands International – 
Indonesia Programme & Wildlife Habitat Canada (WHC). Edisi Pertama, Bogor, Indonesia. 

Wallace, A.R., 1869. The Malay Archipelago: the land of the orang-utan and the bird of paradise; a narrative of 
travel, with studies of man and nature. Courier Corporation. 

Wang, L.-C., Behling, H., Lee, T.-Q., Li, H.-C., Huh, C.-A., Shiau, L.-J., Chen, S.-H., Wu, J.-T., 2013. Increased 
precipitation during the Little Ice Age in northern Taiwan inferred from diatoms and geochemistry in a 
sediment core from a subalpine lake. Journal of Paleolimnology 49, 619–631. 

Wang, L.-C., Lee, T.-Q., Chen, S.-H., Wu, J.-T., 2010. Diatoms in Liyu Lake, eastern Taiwan. Taiwania 55, 228–242. 
Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., Li, X., 2005. The 

Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854-857. 
Wardojo, W., Masripatin, N., 2002. Trends in Indonesian forest policy. Policy Trend Report, 77–87. 
Warner, B.G., Asada, T., Quinn, N.P., 2007. Seasonal influences on the ecology of testate amoebae (Protozoa) in a 

small Sphagnum peatland in Southern Ontario, Canada. Microbial ecology 54, 91–100. 
Warrier, A.K., Shankar, R., 2009. Geochemical evidence for the use of magnetic susceptibility as a paleorainfall 

proxy in the tropics. Chemical Geology 265, 553–562. 
Weber, R., 2006. Kulturlandschaftswandel in Zentralsulawesi: historisch-geographische Analyse einer 

indonesischen Bergregenwaldregion. Universitätsverlag Göttingen. 
Weber, R., Kreisel, W., Faust, H., 2003. Colonial Interventions on the Cultural Landscape of Central Sulawesi by“ 

Ethical Policy”: The Impact of the Dutch Rule in Palu and Kulawi Valley, 1905–1942. Asian Journal of Social 
Science 31, 398–434. 

Webster, P.J., Moore, A.M., Loschnigg, J.P., Leben, R.R., 1999. Coupled ocean–atmosphere dynamics in the Indian 
Ocean during 1997–98. Nature 401, 356–360.   

Weiss, D., Shotyk, W., Rieley, J., Page, S., Gloor, M., Reese, S., Martinez-Cortizas, A., 2002. The geochemistry of 
major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past 
atmospheric dust deposition. Geochimica et Cosmochimica Acta 66, 2307-2323.  

West, G., Dumbleton, M.J., 1970. The mineralogy of tropical weathering illustrated by some west Malaysian soils. 
Quarterly Journal of Engineering Geology and Hydrogeology 3, 25–40. 

Whiteman, A., Fraser, A., 1997. The Value of Forestry in Indonesia. Indonesia-UK Tropical Forest Management 
Programme Report No. SMAT/EC/97/1. DFID. Jakarta, Indonesia. 

Whitlock, C., Dean, W., Rosenbaum, J., Stevens, L., Fritz, S., Bracht, B., Power, M., 2008. A 2650-year-long record 
of environmental change from northern Yellowstone National Park based on a comparison of multiple proxy 
data. Quaternary International 188, 126–138. 

Whitlock, C., Larsen, C., Smol, J., Birks, H., Last, W., 2001. Charcoal as a fire proxy, in: Tracking Environmental 
Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publisher, The 
Netherlands. 



171 
 

Whitlock, C., Millspaugh, S.H., 1996. Testing the assumptions of fire-history studies: an examination of modern 
charcoal accumulation in Yellowstone National Park, USA. The Holocene 6, 7–15. 

Whitmore, T.C., 1984. A vegetation map of Malesia at scale 1: 5 million. Journal of Biogeography 461–471.  
Whittaker, R.H., 1977. Evolution of species diversity in land communities (Birds and vascular plants). Evol. Biol. 10, 

1-67.  
Whitten, T., 2000. The ecology of Sumatra. Periplus Distributors, Tuttle Pub., (Singapore); North Clarendon, VT. 
Whitten, T., Mustafa, M., Henderson, G.S., 2002. Ecology of Sulawesi. Tuttle Publisher, Singapore. 
Wick, L., Möhl, A., 2006. The mid-Holocene extinction of silver fir (Abies alba) in the Southern Alps: a consequence 

of forest fires? Palaeobotanical records and forest simulations. Vegetation History and Archaeobotany 15, 
435–444. 

Wilford, G.E., 1960. Radiocarbon age determinations of quaternary sediments in Brunei and northeast Sarawak. 
British Borneo Geological Survey. Annual Report 1959, 16-20.  

Willis, K.J., Bailey, R.M., Bhagwat, S.A., Birks, H.J.B., 2010. Biodiversity baselines, thresholds and resilience: testing 
predictions and assumptions using palaeoecological data. Trends in Ecology & Evolution 25, 583–591.   

Wilson, M.E., Moss, S.J., 1999. Cenozoic palaeogeographic evolution of Sulawesi and Borneo. Palaeogeography, 
Palaeoclimatology, Palaeoecology 145, 303–337. 

Winston, R.B., 1994. Models of the geomorphology, hydrology, and development of domed peat bodies. 
Geological Society of America Bulletin 106, 1594–1604.  

Wolf, K., Veldkamp, E., Homeier, J., Martinson, G.O., 2011. Nitrogen availability links forest productivity, soil 
nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador: N2O + NO flux of tropical 
montane forests. Global Biogeochemical Cycles 25.   

Woodroffe, C.D., 2000. Deltaic and estuarine environments and their Late Quaternary dynamics on the Sunda and 
Sahul shelves. Journal of Asian Earth Sciences 18, 393–413.   

Woodroffe, C.D., Beech, M.R., Gagan, M.K., 2003. Mid-late Holocene El Niño variability in the equatorial Pacific 
from coral microatolls. Geophysical Research Letters 30.   

WorldClim, 2006. WorldClim version 14, Bioclim ESRI grids 30 arc-seconds (1 km) resolution. Available at:  
http://www.worldclimorg. 

Wündsch, M., Biagioni, S., Behling, H., Reinwarth, B., Franz, S., Bierbaß, P., Daut, G., Mäusbacher, R., Haberzettl, 

T., 2014. ENSO and monsoon variability during the past 1.5 kyr as reflected in sediments from Lake Kalimpaa, 
Central Sulawesi (Indonesia). The Holocene 24, 1743–1756. 

Wüst, R., 2009. Quantification of Soil Carbon Loss during the 1997/8 and 2002 Peatland Fires in the Mega-Rice 
Project Area, Indonesia. Progress Report for AINGRA08072.  

Wüst, R., Rieley, J., Page, S., van der Kaars, S., Wei-Ming, W., Jacobsen, G., Smith, A., 2007. Peatland evolution in 
Southeast Asia during the last 35,000 cal years: implications for evaluating their carbon storage potential, in: 
Proceedings of the International Symposium and Workshop on Tropical Peatland (27–29 August, Yogyakarta), 
25–40. 

Wüst, R.A., Bustin, R.M., 2004. Late Pleistocene and Holocene development of the interior peat-accumulating 
basin of tropical Tasek Bera, Peninsular Malaysia. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 
241–270.  

Wüst, R.A., Jacobsen, G.E., van der Gaast, H., Smith, A.M., 2008. Comparison of radiocarbon ages from different 
organic fractions in tropical peat cores: insights from Kalimantan, Indonesia. Radiocarbon 50, 359-372.  

Wüst, R.A., Ward, C.R., Bustin, R.M., Hawke, M.I., 2002. Characterization and quantification of inorganic 
constituents of tropical peats and organic-rich deposits from Tasek Bera (Peninsular Malaysia): implications 
for coals. International journal of coal geology 49, 215–249.  

Wüst, R.A.., Bustin, R.M., Lavkulich, L.M., 2003. New classification systems for tropical organic-rich deposits based 
on studies of the Tasek Bera Basin, Malaysia. Catena 53, 133-163.    

WWF Indonesia 2010: Sumatra’s Forests, their Wildlife and the Climate. Windows in Time: 1985, 1990, 2000 and 
2009. 

Wyatt-Smith, J., 1959. Peat swamp forests in Malaya. Malayan For. 22, 5-32. 
Yan, H., Sun, L., Oppo, D.W., Wang, Y., Liu, Z., Xie, Z., Liu, X., Cheng, W., 2011. South China Sea hydrological changes 

and Pacific Walker Circulation variations over the last millennium. Nature communications 2, 293. 
Yan, X.H., Ho, C.R., Zheng, Q., Klemas, V., 1992. Temperature and Size Variabilities of the Western Pacific Warm 

Pool. Science 258, 1643–1645.   
Yang, X., Heller, F., Yang, J., Su, Z., 2009. Paleosecular variations since∼ 9000 yr BP as recorded by sediments from 

maar lake Shuangchiling, Hainan, South China. Earth and Planetary Science Letters 288, 1–9. 
Yu, Z.C., Beilman, D.W., Jones, M.C., 2009. Sensitivity of Northern Peatlands to Holocene Climate Change. In: Baird, 

A., Belyea, L., Comas, X., Reeve, A., Slater, L., (Eds.), Carbon Cycling in Northern Peatlands, Geophysical 
Monograph Series, volume 184. American Geophysical Union, Washington, 55-69.  

http://www.worldclimorg/


172 
 

Yule, C.M., 2010. Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodiversity 
and Conservation 19, 393–409.   

Yulianto, E., Hirakawa, K., 2006. Vegetation and environmental change in the early-Middle holocene at a tropical 
peat swamp forest, Central Kalimantan, Indonesia. Tropics 15, 65–73.  

Yulianto, E., Hirakawa, K., Tsuji, H., 2004. Charcoal and organic geochemical properties as an evidence of Holocene 
fires in tropical peatland, Central Kalimantan, Indonesia. Tropics 14, 55-63. 

Zabel, M., Schneider, R.R., Wagner, T., Adegbie, A.T., de Vries, U., Kolonic, S., 2001. Late Quaternary climate 
changes in central Africa as inferred from terrigenous input to the Niger Fan. Quaternary Research 56, 207–
217. 

Zaccone, C., Casiello, G., Longobardi, F., Bragazza, L., Sacco, A., Miano, T.M., 2011. Evaluating the 
“conservative”behavior of stable isotopic ratios (δ13C, δ15N, and δ18O) in humic acids and their reliability as 
paleoenvironmental proxies along a peat sequence. Chemical Geology 285, 124–132. 

Zach, A., Schuldt, B., Horna, V., Tjitrosemito, S., Leuschner, C., 2010. The hydraulic performance of tropical 
rainforest trees in their perhumid environment-is there evidence for drought vulnerability? in: Tropical 
Rainforests and Agroforests under Global Change. Springer, 391–410. 

Zhang, P., Cheng, H., Edwards, R.L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, J., An, C., Dai, Z., 
Zhou, J., Zhang, D., Jia, J., Jin, L., Johnson, K.R., 2008. A test of climate, sun, and culture relationships from an 
1810-yr Chinese cave record. Science 322, 940-942. 

 

  



173 
 

Appendix A 

 

Identified pollen, spores and non-pollen palynomorphs (NPP) of the 

records – complete list and photos of selected taxa 
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Appendix A1: Table of identified pollen, spores and NPP taxa 

 

Abbreviations for palynological records: 

o kal: Lake Kalimpaa, LLNP, Central Sulawesi (Chapter 6) 

o lin: Lake Lindu, LLNP, Central Sulawesi (Chapter 7) 

o jaw: Jaw SPT, Air Hitam, Jambi Province, Sumatra (Chapter 8 and Chapter 9) 

 

Family pollen type photo n. record 
Actinidiaceae Saurauia 1 kal 

 Actinidiaceae    jaw 

Adoxaceae Viburnum  kal 

Alismataceae Sagittaria   lin 

Amaranthaceae Alternanthera 2 lin 

 Amaranthaceae 3 lin 

Amaryllidaceae Narcissus 4 jaw 

Amaryllidaceae/Liliaceae Amaryllidaceae/Liliaceae  kal 

Anacardiaceae Anacardiaceae  kal, jaw 

 Campnosperma 5 jaw 

Anisophylleaceae Combretocarpus  6 jaw 

Annonaceae Cyathocalyx  lin 

 Annonaceae   lin 

Apiaceae Apiaceae 7 lin, jaw 

Apocynaceae Alstonia  jaw 

 Anodendron 8 jaw 

 Apocynaceae  kal, lin, jaw 

Aquifoliaceae Ilex 9 kal, lin, jaw 

Araceae Araceae  lin, jaw 

 Pothos  10 lin 

Araliaceae Araliaceae 11 lin, jaw 

 Hydrocotyle 12 lin 

 Polyscias   kal 

 Schefflera  13 kal 

Araucariaceae Agathis  14 kal, lin 

Arecaceae Areca 15 lin, jaw 

 Arecaceae   jaw 

 Arecaceae cf. Gronophyllum  lin 

 Arecaceae echinate type  kal 

 Arecaceae indif.  lin 

 Arecaceae trichotomocolpate 
reticulate 

 kal 

 Arenga  16 lin 

 Calamus 17 kal, lin, jaw 

 Caryota  lin 

 Cocus type  lin 

  continue  
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Family pollen type photo n. record 
Arecaceae Oncosperma 18 jaw 

 Pinanga annulocolpate  lin 

Aristolochiaceae Aristolochiaceae  lin, jaw 

Asparagaceae Dracaena  lin 

Asteraceae  Asteraceae 19, 20 kal, lin 

 Senecio type  lin 

Begoniaceae Begoniaceae  kal, lin 

Brassicaceae Brassicaceae  lin, jaw 

Burseraceae Canarium 21 lin, jaw 

 Burseraceae   kal 

Cannabaceae Celtis 22 kal, lin, jaw 

 Gironniera  lin, jaw 

 Trema 23 kal, lin, jaw 

Caryophyllaceae  Caryophyllaceae  24 jaw 

Celastraceae Celastraceae 25 lin 

 Euonymus  26 kal 

 Lophopetalum 27 jaw 

Chlorantaceae  Chlorantaceae  28 kal 

Chrysobalanaceae Parastemon   29 jaw 

Clethraceae Clethra  30 kal 

Clusiaceae Clusiaceae  kal 

 Garcinia 31 jaw 

Combretaceae/Melastomataceae Combretaceae/Melastomataceae 32 kal, lin, jaw 

Convolvulaceae Ipomoea type  jaw 

 cf. Erycibe  lin 

Cornaceae Alangium  kal 

 Mastixia  lin 

Costaceae Costus 33 lin 

Cucurbitaceae Cucurbitaceae  kal, lin 

Cunoniaceae Cunoniaceae dicolporate type  kal 

 Weinmannia 34 kal, lin 

Cyperaceae Cyperaceae 35 kal, lin, jaw 

 Cyperus  36 lin 

 Scirpus   lin 

 Thoracostachyum/Mapania  jaw 

Daphniphyllaceae Daphniphyllum  kal, lin 

Dilleniaceae Dilleniaceae  lin 

Dipterocarpaceae Dipterocarpus 37 jaw 

 Dryobalanops   38 jaw 

 Hopea 39 jaw 

 Shorea  40 jaw 

Droseraceae Drosera 41 kal 

Ebenaceae Diospyros 42 lin, jaw 

Elaeocarpaceae Elaeocarpaceae 43 kal, lin, jaw 

Ericaceae Ericaceae 44 kal, lin, jaw 
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Family pollen type photo n. record 
Euphorbiaceae Acalypha 45 kal, lin, jaw 

 Blumeodendron 46 jaw 

 Cephalomappa 47 jaw 

 Homalanthus  kal, lin, jaw 

 Homonoia  lin 

 Macaranga/Mallotus 48 kal, lin, jaw 

 Neoscortechinia cf. nicobarica  lin 

 Euphorbiaceae    kal 

Fabaceae Caesalpinioideae indif.  lin 

 Caesalpinoideae - Cassia type  lin 

 Koompassia 49 jaw 

 Mimosoideae  lin, jaw 

 Mucuna 50 lin 

 Pterocarpus type  kal 

 Fabaceae indif.  kal, lin, jaw 

Fagaceae Fagaceae indif.  kal 

 Lithocarpus/Castanopsis 51 kal, lin 

Flacourtiaceae Flacourtiaceae  kal, lin 

Flagellariaceae Flagellaria  jaw 

Gentianaceae Fagraea 52 lin 

Gnetaceae Gnetum  lin 

Gunneraceae Gunnera 53 kal 

Haloragaceae Myriophyllum  lin 

Hamamelidaceae Hamamelidaceae  kal 

Hydrangeaceae Dichroa febrifuga  lin 

Hydrocharitaceae  Hydrocharitaceae   kal 

Icacinaceae Icacinaceae  lin 

 Platea  54 lin 

Iridaceae Iridaceae  kal 

Juglandaceae Engelhardtia 55 kal, lin, jaw 

 Juglandaceae indif.  kal 

Lamiaceae Lamiaceae  kal, lin, jaw 

Lauraceae Lauraceae  kal 

Lecythidaceae Barringtonia 56 kal 

Liliaceae Liliaceae  lin 

Loganiaceae Geniostoma 57 lin 

Loranthaceae Loranthaceae 58 kal, lin, jaw 

Lythraceae Lythraceae 59 kal, lin 

Malvaceae Helicteres  lin 

 Hibiscus  jaw 

 Malvaceae  kal 

 Sterculioideae    jaw 

 Tilioideae  lin 

Malvaceae (Brownlowioideae) Brownlowia  60 jaw 

Malvaceae (Bombacoideae) Durio  61 jaw 

  continue  



177 
 

Family pollen type photo n. record 
Melastomataceae Astronia  lin 

Meliaceae Aglaia 62 kal, lin, jaw 

 Aglaia rubiginosa type  jaw 

 Dysoxylum  63 kal 

 Meliaceae   kal, lin, jaw 

Menispermaceae Fibraurea   kal 

 Fibraurea tinctoria   jaw 

 Menispermiaceae   64 jaw 

 Stephania 65 kal, lin, jaw 

Menyanthaceae Menyanthaceae  kal 

Moraceae/Urticaceae Moraceae/Urticaceae 66 kal, lin, jaw 

Moraceae Ficus  67 lin, jaw 

Myricaceae Myrica 68 kal, lin 

Myristicaceae Knema  jaw 

 Myristicaceae  kal, lin, jaw 

Myrtaceae Myrtaceae 69 kal, lin, jaw 

Oleaceae Chionanthus   lin 

 Ligustrum  jaw 

 Oleaceae  kal 

Pandanaceae Freycinetia 70 kal, lin, jaw 

 Pandanus 71 kal, lin, jaw 

Paracryphiaceae Quintinia 72 kal, lin 

Pentaphylacaceae Ternstroemia  kal, lin 

Phyllanthaceae Antidesma 73 jaw 

 Aporosa 74 jaw 

 Baccaurea/Bischofia  75 kal, lin, jaw 

 Breynia 76 lin 

 Glochidion 77 lin 

 Phyllanthus  lin, jaw 

 Phyllanthus urinaria type  jaw 

Picrodendraceae Austrobuxus  78 jaw 

Pinaceae Pinus  kal 

Piperaceae Peperomia 79 kal, lin, jaw 

 Piper  lin, jaw 

Plantaginaceae Callitriche 80 lin 

 Plantago 81 kal, lin, jaw 

Poaceae Poaceae 82, 83 kal, lin, jaw 

Podocarpaceae Dacrycarpus 84 kal, lin 

 Phyllocladus 85 kal, lin 

 Podocarpaceae indiff.  jaw 

 Podocarpus 86 kal, lin 

 Sundacarpus  kal 

Pontederiaceae Pontederiaceae 87 lin 

Potamogetonaceae Potamogeton  kal 

Primulaceae Ardisia  jaw 
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Family pollen type photo n. record 
Primulaceae Discocalyx  lin 

 Maesa  lin 

 Myrsine 88 kal, lin, jaw 

Proteaceae   Proteaceae    kal, jaw 

Rhizophoraceae  Rhizophoraceae  89 jaw 

Rosaceae   Rosaceae    jaw 

Rubiaceae Gardenia  lin 

 Hedyotis   90 jaw 

 Lasianthus  jaw 

 Mussaenda  jaw 

 Nauclea 91 jaw, lin 

 Neonauclea 92 lin 

 Randia  93 kal, lin, jaw 

 Timonius  lin 

 Rubiaceae indif.  kal, jaw 

Rutaceae Acronychia  lin 

 Rutaceae indif.  kal, lin, jaw 

 cf. Melicope hookeri  lin 

 Zanthoxylum  94 kal 

Sapindaceae Acer   kal 

 Allophylus 95 lin 

 Dodonaea  lin 

 Pometia 96 jaw 

 Sapindaceae  kal 

Sapotaceae Palaquium type 97 jaw 

 Sapotaceae 98 kal, lin, jaw 

Scrophulariaceae Buddleja   kal 

Smilacaceae Smilax  lin 

Solanaceae Solanaceae  kal, lin 

Staphyleaceae Turpinia  lin 

Stemonuraceae Stemonuraceae 99 lin, jaw 

Styracaceae Styrax  100 kal 

Symplocaceae Symplocos 101 kal, lin 

Theaceae Gordonia  102 lin 

Theaceae  Theaceae indif.  lin 

Thymelaeaceae Thymelaeaceae  jaw 

Thymelaeaceae Wikstroemia  kal 

Trimeniaceae Trimenia  lin 

Typhaceae Typha 103 kal, lin 

Violaceae Violaceae 104 lin 

Vitaceae cf. Cissus  jaw 

Winteraceae Winteraceae  Lin 
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Family NPP type photo n. record 
Glomeraceae Glomus  105 lin 

Tilletiaceae Tilletia   106 lin 

Botryococcaceae Botryococcus   107 Lin 

    

    

    

Family spore type photo n. record 
Aspleniaceae Asplenium 108 kal, lin, jaw 

 Asplenium belangeri 109 lin 

 Asplenium macrophyllum 110 lin 

Blechnaceae Blechnum 111 kal, lin, jaw 

 Stenochlaena  lin 

 Stenochlaena areolaris  112 jaw 

 Stenochlaena palustris 113 jaw 

Cyatheaceae  Cyatheaceae  114 kal, lin 

Davalliaceae Davallia 115 kal, lin, jaw 

Dennstaedtiaceae Dennstaedtiaceae  jaw 

 Histiopteris  jaw 

 Microlepia 116 lin 

 Pteridium  lin 

Dicksoniaceae Dicksonia   117 kal 

Dryopteridaceae Arachniodes 118 lin 

 Dryopteris  kal 

 Elaphoglossum 119 lin, jaw 

 Polystichum 120 lin 

Hymenophyllaceae Hymenophyllaceae 121 kal, lin, jaw 

Hypodematiaceae Leucostegia 122 jaw 

Isoetaceae Isoetes  kal 

Lindsaeaceae Lindsaeaceae  lin, jaw 

Lycopodiaceae Huperzia 123 kal, lin, jaw 

 Lycopodiaceae indif.  jaw 

 Lycopodiella cernua 124 kal, lin, jaw 

 Lycopodium indif.  jaw 

 Lycopodium clavatum  kal 

 Lycopodium verrucato  kal 

Lygodiaceae Lygodium 125 lin 

Marattiaceae Angiopteris 126 lin 

Nephrolepidaceae Nephrolepis 127 lin, jaw 

Ophioglossaceae Ophioglossum 128 kal 

Osmundaceae Osmunda   kal 

Polypodiaceae Grammitids  kal, lin 

 Microsorum heterocarpum  129 jaw 

 Microsorum unctatum   jaw 

 Polypodiaceae 130 kal, lin, jaw 

 Selliguea  jaw 

  continue  
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Family spore type photo n. record 
Pteridaceae Adiantum 131 kal, lin, jaw 

 Anogramma  jaw 

 Pteris 132 kal, jaw 

Selaginellaceae Selaginella 133 kal, lin, jaw 

Thelypteridaceae Amauropelta 134 lin 

 Thelypteridaceae  kal, jaw 

Woodsiaceae  Woodsiaceae  135 lin 
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Appendix A2: Plates of selected pollen, spores and NPP taxa 

 

Black line on photos represents the scale bar = 10 µm 
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Appendix B 

 

Complete pollen, spores, NPP and charcoal records 

 

Outline curves showing an exaggeration of 5x to highlight variations of the taxa 
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Lake Kalimpaa 

LLNP, Central Sulawesi (Chapter 6) 
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Lake Lindu 

LLNP, Central Sulawesi (Chapter 7)  
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Jaw SPT, Air Hitam 

Jambi Province, Sumatra (Chapter 8 and Chapter 9) 
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