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V. Summary  

 

Plants exhibit a large degree of phenotypic plasticity. Modifications of their genetically 

pre-defined body plan allow them to flexibly react to a wide range of environmental 

conditions. This includes changes in plant architecture, which are facilitated by the 

modular composition of the shoot. In the leaf axils of the primary stem, axillary buds are 

formed. Each of these buds has the potential to grow into a secondary stem, i.e. a branch. 

However, bud outgrowth is restricted and most buds are kept in a dormant state. To 

make the decision whether a bud is released from dormancy and grows into a branch, 

many endo- and exogenous factors are integrated in a complex network of hormones and 

transcription factors. This includes strigolactones (SLs), a novel class of phytohormones, 

which generally suppress bud outgrowth. The inhibitory effect of SLs is discussed to be 

mediated by flux modulation of the phytohormone auxin and/or regulation of other 

downstream targets directly within the bud. The most prominent example for a bud-

specific SL-regulated gene is BRANCHED1 (BRC1), whose transcript levels are positively 

influenced by SLs. It encodes a transcription factor which represses bud outgrowth, most 

likely by regulating cell cycling. SLs and BRC1 were extensively studied in model species 

such as Arabidopsis (Arabidopsis thaliana), pea (Pisum sativum), petunia (Petunia hybrida) 

and rice (Oryza sativa). In contrast, our knowledge of the genes and pathways in woody 

perennial species, such as the model tree poplar (Populus sp.), is limited.  

In this project, poplar orthologs of genes involved in SL biosynthesis (MAX4) and SL 

signaling (MAX2) were identified to investigate an anticipated role for SLs in controlling 

tree architecture. There are two orthologs each in poplar. To study their function, 

expression analysis was performed and transgenic lines were generated for amiRNA-

mediated knockdowns of the individual orthologs, as well as simultaneous silencing of 

both. MAX2 knockdowns were only partially successful and no phenotype could be 

observed, most likely due to a redundant function of the non-silenced ortholog. In 

contrast, MAX4 double knockdowns were successful and typical SL-deficiency phenotypes 

were observed in the corresponding amiMAX4-1+2 lines. This includes highly increased 

shoot branching, reduced plant height, reduced internode length and increased 

adventitious rooting. Direct quantification of SLs generally is difficult due to their low 

abundance, high instability and large diversity. Furthermore, standards and references for 

poplar SLs are not available, making measurements not feasible. Indirect evidence for SL-

deficiency in amiMAX4-1+2 plants was gathered instead, including successful 

complementation of the shoot phenotypes by grafting. Tree-specific aspects of bud 
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dormancy, especially winter dormancy, were also addressed. However, an influence of 

SLs could not be shown, indicating that SLs only appear to suppress bud outgrowth during 

the vegetative period.  

As a downstream target of SLs and, therefore, another important component of 

branching control, a poplar BRC1 ortholog was identified. This gene exhibited the typical 

expression patterns reported for other species and a significant down-regulation in the 

putatively SL-deficient amiMAX4-1+2 lines. In addition, a poplar BRC2 ortholog was found 

based on sequence and expression analysis. Both genes may control branching in poplar, 

integrating different environmental factors. 

Taken together, the data generated in this study supports a role for SLs and BRC1 as 

important regulators of bud outgrowth in poplar. The findings underline the high degree 

of conservation of fundamental processes involved in the control of plant architecture 

among a range of species, including trees. Beside of being a useful tool for discovering the 

role of SLs and BRC1 in poplar, the highly branching lines generated in this project may be 

economically valuable for the use on short rotation coppices, where they may exhibit 

improved re-sprouting and canopy closure after coppicing.  
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VI. Zusammenfassung 

 

Pflanzen verfügen über ein hohes Maß an phänotypischer Plastizität. Modifikationen ihres 

genetisch determinierten Aufbaus ermöglichen ihnen, flexibel auf ein breites Spektrum 

von Umwelteinflüssen zu reagieren. Dies umfasst Veränderungen der Pflanzenarchitektur, 

die durch den modularen Aufbau des Sprosses ermöglicht werden. In den Blattachseln 

des Primärsprosses werden Achselknospen angelegt. Jede einzelne dieser Knospen hat 

das Potenzial, zu einem Sekundärspross, d.h. einem Zweig, auszuwachsen. Der 

Knospenaustrieb wird jedoch reguliert und die meisten Knospen verbleiben in einem 

dormanten Status. Bei der Entscheidung, ob die Dormanz einer Knospe gebrochen wird 

und sie zu einem Zweig auswächst, spielen diverse endo- und exogene Faktoren eine 

Rolle, die in einem komplexen, aus Hormonen und Transkriptionsfaktoren bestehenden 

Regelnetz, integriert werden. Dieses umfasst Strigolactone (SL), eine neuartige Klasse von 

Phytohormonen, die im Allgemeinen den Knospenaustrieb hemmen. Es wird diskutiert, 

dass der inhibitorische Effekt der SL durch eine Modulation des Flusses des 

Phytohormons Auxin und/oder die Regulation anderer nachgelagerter Faktoren direkt in 

der Knospe herbeigeführt wird. Das bekannteste Beispiel für ein knospenspezifisches, SL-

reguliertes Gen ist BRANCHED1 (BRC1), dessen mRNA-Abundanz positiv von SL beeinflusst 

wird. Es codiert einen Transkriptionsfaktor der den Knospenaustrieb unterdrückt, was 

höchstwahrscheinlich über eine Regulation des Zellzyklus erfolgt. SL und BRC1 wurden 

umfassend in Modellarten wie Arabidopsis (Arabidopsis thaliana), Erbse (Pisum sativum), 

Petunie (Petunia hybrida) und Reis (Oryza sativa) untersucht. Im Gegensatz dazu ist das 

Wissen über die Gene und Stoffwechselwege dieses Regelkreises in verholzten, 

ausdauernden Arten wie dem Modellbaum Pappel (Populus sp.), limitiert. In der 

vorliegenden Arbeit wurden Pappel-Orthologe von Genen, die an der SL-Biosynthese 

(MAX4) und der SL-Signaltransduktion (MAX2) beteiligt sind, identifiziert und auf eine 

vermutete Funktion in der Regulation der Baumarchitektur untersucht. Es existieren 

jeweils zwei Orthologe in der Pappel. Um ihre Funktion zu charakterisieren, wurden 

Expressionsanalysen durchgeführt und transgene Linien für amiRNA-vermittelte 

simultane oder einzelne knock-downs der beiden Orthologe erzeugt. Knock-downs von 

MAX2 waren nur teilweise erfolgreich. Es konnte kein Phänotyp beobachtet werden, was 

höchstwahrscheinlich auf eine redundante Funktion des nicht herunterregulierten 

Orthologs zurückzuführen ist. MAX4 Doppel-Knock-downs waren hingegen erfolgreich 

und es konnten typische SL-Mangelphänotypen in den entsprechenden amiMAX4-1+2 

Linien beobachtet werden. Diese umfassten eine erhöhte Sprossverzweigung, eine 



VI. Zusammenfassung 

 XIX 
 

Reduktion der Pflanzenhöhe, eine verkürzte Indernodienlänge sowie eine erhöhte 

Adventivbewurzelung. Durch ihre geringe Konzentration, hohe Instabilität und große 

Diversität ist die direkte Quantifizierung von SL sehr anspruchsvoll. Außerdem sind 

Standards und Referenzen für Pappel-SL nicht verfügbar, was direkte Messungen nicht 

durchführbar machte. Stattdessen wurden indirekte Hinweise auf SL-Mangel in den 

amiMAX4-1+2 Pflanzen gesammelt. Ein Beispiel dafür ist die erfolgreiche 

Komplementation der Sprossphänotypen durch Pfropfung. Baumspezifische Aspekte der 

Knospendormanz, besonders die Winterdormanz, wurden ebenfalls untersucht. Ein 

Einfluss von SL konnte aber nicht nachgewiesen werden, was darauf hinweist, dass SL den 

Knospenaustrieb nur in der vegetativen Periode hemmen. 

Als ein SL-reguliertes Zielgen und daher eine weitere wichtige Komponente der 

Verzweigungskontrolle wurde ein Pappel BRC1 Ortholog identifiziert. Dieses Gen wies die 

typischen, in anderen Arten nachgewiesenen Expressionsmuster, sowie eine signifikant 

reduzierte Expression in den erzeugten amiMAX4-1+2 Linien auf, welche wahrscheinlich 

reduzierte SL-Level haben. Zusätzlich wurde auf der Basis von Sequenz- und 

Expressionsanalysen ein Pappel BRC2 Ortholog identifiziert. Beide Gene kontrollieren 

möglicherweise die Verzweigung in Pappeln und integrieren verschiedene 

Umwelteinflüsse. 

Zusammengefasst legen die in diesem Projekt gewonnenen Daten eine Rolle von SL und 

BRC1 als wichtige Regulatoren des Knospenaustriebs in Pappeln nahe. Die Ergebnisse 

machen deutlich, dass grundlegende Prozesse in der Kontrolle der Pflanzenarchitektur 

über ein breites Spektrum von Arten, einschließlich Bäumen, hoch konserviert sind. 

Abgesehen von ihrer Relevanz als Grundlage zur Erforschung der Rolle von SL und BRC1 in 

Pappeln, sind die in diesem Projekt erzeugten stark verzweigten Linien möglicherweise 

wirtschaftlich für die Nutzung auf Kurzumtriebsplantagen interessant, auf welchen sie 

vermutlich über verbesserte Eigenschaften im Stockaustrieb nach der Ernte und im 

Kronenschluss verfügen.    
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1 Introduction 

 

1.1 Plant architecture 

 

Plants are sessile organisms. Their stationary lifestyle implies that they cannot change the 

location when environmental conditions become unfavorable, such as mobile organisms 

like most metazoan animals are able to do. Instead, plants possess a high degree of 

adaptivity, enabling them to cope with a wide range of environmental factors. To a large 

extent, this adaptivity is based on phenotypic plasticity: plants of the same genotype can 

exhibit enormously different phenotypes (Nicotra et al., 2010). The most obvious 

morphological adaptation to different growth conditions is a variation of plant 

architecture. There is a possible range from a plant bearing just the main shoot and no 

lateral branches to a highly ramified plant, possessing a large number of first- and higher-

order branches. This flexible architecture is facilitated by the modular design of the plant 

shoot and a complex regulation of the branching process (McSteen and Leyser, 2005).  

During embryogenesis, the bipolar apical-basal axis of the plant is determined by the 

formation of the shoot apical meristem (SAM) and the root apical meristem (RAM) as 

stem cell niches, giving rise to the primary shoot and root, respectively. The SAM 

establishes the shoot by iteratively and theoretically indeterminately initiating so-called 

phytomers during post-embryonic development. The phytomers can be regarded as the 

basic modules of the plant shoot and consist of an internode and a node with one or 

more attached leaves. In addition to the SAM (or primary meristem), so-called axillary 

meristems (or secondary meristems) are established in the leaf axils, i.e. at the adaxial 

side of the leaf bases. These meristems can produce buds, which have the potential to 

grow out and form a branch. A branch is a secondary growth axis, built in the same way as 

the primary shoot. Leaf axils of the branch also bear axillary buds and higher-order 

branching can occur, forming a complex structure (Bennett and Leyser, 2006; McSteen 

and Leyser, 2005; Sussex and Kerk, 2001). An illustration of the typical architecture of a 

dicotyledonous plant is shown in Fig. 1.1. 

The branching process, outlined above, can be controlled at two levels: the formation of 

axillary meristems and subsequent regulation of their activity. There are many different 

mechanisms playing a role and especially bud outgrowth is influenced by numerous 

factors. In fact, many buds are arrested in a state of dormancy just after their formation. 

Endogenous factors such as the genetic background are integrated together with a large 

variety of exogenous conditions like the nutrient availability, damage, shading etc., to 
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decide whether a bud remains dormant or whether it becomes activated and grows into a 

lateral branch (Domagalska and Leyser, 2011). The underlying regulatory network allows 

the plant to flexibly adapt its genetically pre-defined body plan to the prevailing 

environmental conditions and react to changes. For example, as a response to loss of the 

shoot apex e.g. due to herbivory, axillary buds below the stump become activated and 

one or more lateral branches replace the lost shoot apex.      

In the following chapters, the process of axillary bud development and the mechanisms 

regulating bud outgrowth are reviewed. The focus is on the action of hormones and 

transcription factors during bud outgrowth regulation. Strigolactones (SL) as recently 

identified hormones involved in this process, and their action, including an influence on 

the transcription factor BRANCHED1 (BRC1), were a focus of this project. The special 

dormancy characteristics of perennial plants such as trees, and the economic significance 

of plant architecture, are discussed as well.  

 

 
Fig. 1.1 Illustration of the typical architecture of a dicotyledonous plant. The primary shoot and root are 

established by the shoot and root apical meristems (SAM and RAM), respectively. The shoot is built 

as a consecutive arrangement of phytomers, which consist of an internode and a node with its 

attached leaf. In the leaf axils, axillary meristems are established and develop into axillary buds, 

which have the potential to grow out to form axillary branches. Image from Teichmann and Muhr 

(2015), modified. 
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1.2 Development of axillary meristems 

 

The establishment of axillary meristems (AMs) in the leaf axils is an essential prerequisite 

for the formation of axillary buds and branches. When leaf primordia develop at the SAM, 

a boundary zone is formed between both structures as a region characterized by cells 

which are small, have stiff cell walls and exhibit a low dividing rate. In the center of this 

boundary zone, AMs develop (Janssen et al., 2014; Žádníková and Simon, 2014).  

In the formation of the boundary zone, several factors were described to play a role. A 

local minimum of the growth-regulating phytohormone auxin in the boundary zone, 

caused by an altered distribution of the auxin efflux carrier protein PIN-FORMED1 (PIN1), 

appears to be important for the formation of AMs (Wang et al., 2014a, 2014b). 

Furthermore, brassinosteroids (BRs) as phytohormones involved in the regulation of cell 

growth and proliferation (Fridman and Savaldi-Goldstein, 2013), appear to play a major 

role as well. The transcription factor LATERAL ORGAN BOUNDARIES1 (LOB1) was shown 

to regulate BR levels in the boundary zone via the BR-inactivating enzyme PHYB 

ACTIVATION TAGGED SUPPRESSOR1  (BAS1), leading to the low cell size and proliferation 

rate observed in this zone (Bell et al., 2012). In addition, the growth-regulating 

phytohormone cytokinin (CK) is discussed to be involved in AM initiation (Wang et al., 

2014b). Therefore, it appears that several hormones regulate the growth and division rate 

of cells in the boundary zone, keeping them in a slow-dividing and indeterminate state.  

In addition to phytohormones, several transcriptions factors (TFs) were reported to be 

essential during the development of AMs. Except for LOB1 as described above, also the 

KNOXI transcription factor SHOOT MERISTEMLESS (STM) plays a role. STM is important 

for maintenance of the meristematic identity of the SAM (Long et al., 1996), but it is also 

expressed in the boundary zone (Long and Barton, 2000). Its expression requires the 

Arabidopsis GRAS domain transcription factor LATERAL SUPPRESSOR (LAS) (Greb et al., 

2003). STM controls expression of the NAM-ATAF1/2-CUC2 (NAC) transcription factors 

CUP SHAPED COTYLEDONS1, 2, and 3 (CUC1, 2, and 3), which are essential for AM 

formation in Arabidopsis (Spinelli et al., 2011). Further transcription factors having 

important functions during AM development in Arabidopsis are the MYB transcription 

factor REGULATOR OF AXILLARY MERISTEMS1 (RAX1) (Keller et al., 2006) and the basic 

helix-loop-helix protein REGULATOR OF AXILLARY MERISTEM FORMATION (ROX) (Yang et 

al., 2012). While all genes mentioned above are Arabidopsis genes, numerous orthologs 

were described in other species, showing similar functions. It is discussed that many of 

the described factors act redundantly during formation of the boundary zone (Janssen et 
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al., 2014). They appear to be important in keeping the cells in this zone in a non-

differentiated state, allowing them to develop into the AM. 

Once established, the AM usually produces a few phytomers and then develops into an 

axillary bud (Bennett and Leyser, 2006; Stafstrom and Sarup, 2000). The bud can directly 

continue growth and form a branch, or its growth can be arrested. The resulting dormant 

bud can be activated at a later stage to resume growth, which is a tightly regulated 

process.  

 

 

1.3 Regulation of axillary bud outgrowth 

 

The outgrowth of axillary buds into lateral branches is regulated by a complex network 

involving hormones and transcription factors, integrating a multitude of endo- and 

exogenous factors which influence branching. In the following section, such factors are 

discussed. The three major hormones involved in bud outgrowth regulation are described 

along with BRANCHED1 (BRC1), a transcription factor playing a major role in integrating 

signals from different pathways in bud outgrowth control. 

 

 

1.3.1 Endo- and exogenous factors influencing bud outgrowth 

 

There are numerous factors having an impact on bud outgrowth. Undoubtedly, the 

genetic background has a major influence on plant architecture. Even within a given 

species, there are ecotypes, cultivars or varieties with low or high branch numbers. This 

becomes most evident in many cultivated species and often quantitative trait loci (QTL) 

are associated with this trait, for example in rice or willow (Cardoso et al., 2014; Salmon 

et al., 2014). In addition to the genetic background, also the position of a bud within a 

plant, which can be regarded as a “population” of competing buds, can play a role (Costes 

et al., 2014; White, 1979). A prominent example for the positional effect can be seen 

during apical dominance, a process in which the active apex suppresses outgrowth of 

axillary buds at the same shoot. When the apex is removed, usually one or few axillary 

buds grow out (Cline, 1997). These buds normally are the most apical buds, i.e. the ones 

closest to the decapitation site. The growing branches then re-establish apical 

dominance. Typically, buds which are located more basally, i.e. more distant from the 

decapitation site, will remain dormant. This indicates that the position of the bud can 
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decide about its fate. Beside of the genetic background and position effects, which both 

are endogenous factors, multiple exogenous factors significantly influence bud 

outgrowth. Such environmental factors can be biotic or abiotic or a linked combination of 

both, e.g. competition as a biotic factor will influence nutrient and light availability which 

are abiotic factors. For nutrients, especially the macronutrients nitrogen (N) and 

phosphorus (P), it is well-established that upon starvation, plants will suppress shoot 

growth and branching in favor of increased resource allocation to the root system, 

allowing the plant to scavenge a larger soil volume (Domagalska and Leyser, 2011). 

Shading by competing plants reduces the light red/far-red (R/FR) ratio and such a shift is 

detected by the phytochrome system, involving the photoreceptor phytochrome B 

(phyB). Branching then is repressed, allowing a resource allocation to the main shoot to 

outgrow competitors, known as the shade avoidance syndrome (Casal et al., 1986; 

Finlayson et al., 2010; González-Grandío et al., 2013; Pierik and Wit, 2014). Another 

environmental factor is removal of or damage to the apex, induced by herbivores, 

pathogens or harsh weather conditions. This will break apical dominance and induce bud 

outgrowth, as described above (Cline, 1997).   

All factors, endogenous as well as exogenous ones, are integrated in a complex regulatory 

network of hormones and transcription factors to decide whether a bud stays dormant or 

grows out to form a branch.  

 

 

1.3.2 Hormones in bud outgrowth regulation 

 

There are three well-established major hormones playing a role in the regulation of bud 

outgrowth. Auxin and the recently identified strigolactones (SL) inhibit bud outgrowth, 

while cytokinin (CK) has a promoting effect. In the following paragraphs, the role of these 

hormones, as well as the extensive cross-talk between them, is outlined. 

 

 

1.3.2.1 Auxin 

 

Auxins, especially indole-3-acetic acid (IAA) as the most prominent representative of this 

class of phytohormones, are involved in many processes of plant development, including 

the regulation of branching (Ljung, 2013). Already early decapitation studies showed that 

a substance derived from the shoot apex is required for apical dominance (Thimann and 

Skoog, 1933), and this substance was soon shown to be auxin (Thimann and Skoog, 1934). 
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Auxin is mainly synthesized in young expanding leaves at the shoot apex (Ljung et al., 

2001). It is transported basipetally in the so-called polar auxin transport stream (PATS), 

occurring in the xylem parenchyma cells and involving the action of PIN-FORMED (PIN) 

auxin efflux carrier proteins (Everat-Bourbouloux and Bonnemain, 1980; Gälweiler et al., 

1998; Wisniewska et al., 2006). This transport is essential for the inhibitory action of 

auxin, as revealed by experiments with auxin transport inhibitors (Panigrahi and Audus, 

1966). However, inhibition of bud outgrowth by auxin is not direct, as it was initially 

postulated (Thimann, 1937). Experiments with radiolabeled indole-3-acetic acid revealed 

that auxin transport is too slow to match bud outgrowth kinetics after decapitation. 

Furthermore, apex-derived auxin does not enter axillary buds (Booker et al., 2003; Brown 

et al., 1979; Hall and Hillman, 1975; Prasad et al., 1993) and the auxin concentration in 

axillary buds is not reduced after decapitation (Gocal et al., 1991). Therefore, the 

inhibitory effect of apically derived auxin appears to be indirect.  

A simple possibility to explain this indirect action is provided by the second messenger 

model, which was already postulated by Snow (1937) as an alternative to the direct action 

model. According to the model, auxin influences a second messenger, which relays the 

inhibitory signal directly into the buds. By now, there is well-founded evidence supporting 

this model, and cytokinin and strigolactones are suggested to be second messengers of 

auxin (Fig. 1.2). In the case of cytokinin (CK), an auxin-mediated reduction of the hormone 

level would suppress bud outgrowth. This is implied by the fact that CK can act directly in 

the bud to promote its outgrowth, as revealed by studies with externally applied CK 

(Sachs and Thimann, 1967). Indeed, auxin can influence the CK pool by affecting CK 

biosynthesis and degradation, as discussed below (chapter 1.3.2.2, p. 10ff). As a 

consequence, also the local CK concentration in the buds may be regulated by auxin. 

Regarding CK as a second messenger, this would well explain the indirect action of auxin. 

However, the regulatory system is more complex: CK appears to be not the only second 

messenger of auxin, as there is evidence for strigolactones playing a similar role. Like CK, 

also SLs can have a direct effect on bud outgrowth. However, instead of promoting bud 

outgrowth, they have a suppressing effect when they are supplied to buds (Brewer et al., 

2009). Therefore, an auxin-induced up-regulation of the SL pool would inhibit bud 

outgrowth. Indeed, auxin was shown to regulate the expression of SL biosynthesis genes, 

as discussed below (chapter 1.3.2.3, p. 11ff). The outcome of an auxin-mediated 

induction of SL as a second messenger is the same as a reduction of CK: both can relay the 

auxin signal into the bud and both effects will result in a suppression of bud outgrowth.  
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The findings discussed above provide well-founded support for the second messenger 

model. However, there appear to be additional effects involved in auxin-induced 

inhibition of bud outgrowth. An alternative model is based on the auxin canalization 

hypothesis (Sachs, 1981), which describes the differentiation of vascular tissue. According 

to the model, auxin is transported from a source to a sink, and a primary flux along a 

concentration gradient occurs in transport-competent cells. Auxin then modulates its own 

transport from the source to the sink via a positive feedback loop. This feedback occurs 

via the PIN-FORMED (PIN) auxin efflux carrier proteins, which are localized at the plasma 

membrane. This localization is polar and achieved by dynamic cycling (vesicle endo-and 

exocytosis) of PIN between the plasma membrane and an endosomal pool. Auxin induces 

PIN expression and inhibits PIN endocytosis, increasing the plasma membrane 

accumulation of its own transporter (Kleine‐Vehn et al., 2011; Paciorek et al., 2005; Sauer 

et al., 2006; Vieten et al., 2005). This will enhance and concentrate, i.e. canalize, the initial 

auxin transport into special groups of cells (Sachs, 1981, 2000). Consecutively, these cells 

may develop into vascular tissue (De Smet and Jürgens, 2007). With respect to the 

influence of auxin transport during bud outgrowth regulation, it is assumed that not only 

the shoot apex, but also axillary buds are active auxin sources, as they contain young 

leaves which are typical sites of auxin production (Ljung et al., 2001). Auxin export may be 

important for the formation of a vascular connection between the bud and the main stem 

(Sachs, 1968), which actively transports auxin in the PATS basipetally to the root (Fig. 1.2). 

If the auxin gradient between the bud as a source and the stem as a sink is sufficient, an 

initial auxin flux can be established. Consequently, according to the canalization model, 

this initial flux will be enhanced and canalized. Ultimately, a vascular connection between 

the bud and the stem, i.e. a PATS connection of the bud to the main PATS in the stem, will 

form (Domagalska and Leyser, 2011). An implication from this model would be that 

exogenous auxin application to axillary buds would trigger outgrowth. However, this is 

not the case (Bayer et al., 2009). To explain this apparent contradiction, it is discussed 

that auxin export also plays a role for vascular patterning and development of the leaf 

primordia themselves. In this case, simple saturation of the bud with exogenous auxin 

would not simulate the more subtle auxin distribution pattern within the bud (Bayer et 

al., 2009).  

Summarized, auxin export from the bud appears to be important for both, leaf 

development as well as a vascular connection of the bud to the main stem. However, a 

given bud is not the only auxin source in the plant. It competes with all other buds, and 

more importantly with the main apex as well as existing branches, for the main stem as a 
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shared auxin sink with limited capacity. If there is an active apex feeding auxin into the 

stem, the auxin level is high and the sink capacity will be saturated. As a result, an initial 

auxin flux from the axillary buds to the stem along a gradient cannot occur and the buds 

stay dormant. Upon decapitation, the apex as the main auxin source is removed, the 

auxin level in the stem is reduced and one or more buds can establish auxin export along 

a gradient. They will grow out to form branches with active apices, feeding auxin into the 

PATS. Consequently, the auxin level in the main stem is increased back to normal levels, 

preventing further buds from establishing a gradient and growing out (Domagalska and 

Leyser, 2011). Interestingly, axillary buds of pea (Pisum sativum) plants exhibited a 

polarization of PIN transporters and increased auxin export after decapitation, providing 

experimental evidence for the auxin canalization model during bud outgrowth regulation 

(Balla et al., 2011). 

Summarized, there is experimental support for both, the second messenger model as well 

as the auxin transport canalization hypothesis. Possibly, both effects play a role, since 

they do not exclude each other. Auxin may regulate connection of axillary buds to the 

vascular system, and control sustained bud growth via CK and SL as well. There is 

evidence for an extensive cross-talk between the three hormones, as described in the 

following sections. 
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Fig. 1.2 Schematic illustration of models and hormonal pathways in bud outgrowth regulation. The major 

hormones involved in bud outgrowth control, auxin, cytokinin (CK) and strigolactone (SL), as well as 

the transcription factor BRANCHED1 (BRC1), are included. Auxin is mainly synthesized at the apex 

of an intact plant (A) and transported basipetally in the polar auxin transport stream (PATS) to the 

root, acting as an auxin sink. Auxin represses CK biosynthesis and promotes SL biosynthesis in the 

stem. Both hormones may relay the auxin signal directly into axillary buds (second messenger 

model), where they antagonistically regulate BRC1 transcript levels. This indirect action of auxin 

enhances BRC1 expression, leading to suppression of bud outgrowth. Auxin may also act by 

saturating the sink capacity of the stem (auxin transport canalization model). In addition to the 

apex, also axillary buds are active auxin sources, and the establishment of auxin export to the main 

stem acting as a shared auxin sink is suggested to be essential for vascular connection and 

outgrowth of the bud. However, high auxin levels in the stem, resulting from an active apex, 

prevent the establishment of an initial auxin flux (gray arrows, inactive pathway), thus suppressing 

bud outgrowth. SL can enhance this competition by inhibiting PATS via a depletion of PIN auxin 

efflux carriers from the plasma membrane of xylem parenchyma cells, further reducing the sink 

capacity of the stem and impeding the establishment of an initial auxin export from buds. After 

decapitation (B), the apex as the primary auxin source is lost. Furthermore, SL biosynthesis is 

reduced, dampening the inhibitory effect of SL on auxin transport in the PATS. Both effects 

increase the sink capacity of the stem, promoting the establishment of auxin export from buds and 

thus bud outgrowth (auxin transport canalization model). Also the promoting effect of SL on BRC1 

expression is dampened, while CK biosynthesis is de-repressed. Both lead to reduced BRC1 

expression, thus buds are released from outgrowth inhibition (second messenger model). Both 

models are not exclusive, and the effects may account for bud outgrowth regulation 

simultaneously. Image from Teichmann and Muhr (2015), modified.   
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1.3.2.2 Cytokinin 

 

Cytokinins (hereafter referred to as cytokinin; CK) such as zeatin or kinetin are a class of 

phytohormones involved in many processes of plant development, with the most 

prominent role being an inducing effect on cytokinesis, hence the name. CK biosynthesis 

involves the activity of ISOPENTENYLTRANSFERASE (IPT) enzymes and takes place 

predominantly in the root, but also in other tissues, e.g. in nodal regions of the stem 

(Chen et al., 1985; Miyawaki et al., 2004; Nordström et al., 2004). Acropetal CK long-

distance transport occurs in the transpiration stream, i.e. in the xylem (Kudo et al., 2010). 

As one of the three major hormones involved in branching control, cytokinin has a 

promoting effect on the outgrowth of axillary buds. This was shown for instance by 

experiments in which direct external application of CK on axillary buds triggered their 

outgrowth (Sachs and Thimann, 1964, 1967). The same effect was found when CK was 

locally overproduced in buds of transgenic plants, using an inducible promoter (Faiss et 

al., 1997). CK may act by influencing the expression of the transcription factor 

BRANCHED1 (BRC1), which is a negative regulator of bud outgrowth (see chapter 1.3.3, 

p. 19ff). This is supported by the finding that BRC1 transcript levels were found to be 

reduced after application of CK to axillary buds (Braun et al., 2012; Dun et al., 2012). 

As mentioned above, cytokinin levels are modified by auxin, and CK may act as a second 

messenger of auxin in bud outgrowth regulation (Fig. 1.2). Auxin can induce a decrease of 

the CK pool by down-regulation of IPT genes (Nordström et al., 2004; Tanaka et al., 2006). 

In addition, an auxin-induced up-regulation of CYTOKININ OXIDASE (CKX) genes, encoding 

enzymes which irreversibly inactivate CK, may cause a further reduction of CK levels 

(Shimizu-Sato et al., 2008). Decapitation studies provide additional support for the model. 

Expression of IPT genes in nodal areas of the stem is induced and CK levels in axillary buds 

are increased (in this chronological order) upon removal of the apex as an auxin source 

(Bangerth, 1994; Tanaka et al., 2006; Turnbull et al., 1997). This local regulation of CK in 

the stem and subsequent transport into the buds is discussed to be important for 

decapitation-induced bud outgrowth (Müller and Leyser, 2011). Summarized, there’s 

well-founded evidence for an auxin-mediated control of CK as a promotor of bud 

outgrowth. However, it should be noted that the role of CK as a second messenger of 

auxin is questioned in a recent publication (Müller et al., 2015). Based on studies in 

Arabidopsis ipt mutants, which showed a normal decapitation-induced branching 

response, the authors postulate that CK rather plays a role in overriding apical dominance 

under conditions favoring branching. The down-regulation of CK biosynthesis by auxin is 
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discussed to be a control mechanism, preventing activation of too many buds by 

additional auxin from already activated ones. Thus, there may be feedback-regulation 

leading to hormonal balance, which could be modified by other factors (Müller et al., 

2015). In addition to the regulation of CK by auxin, there appears to be extensive crosstalk 

between the hormones. In the bud, CK may influence auxin distribution. It was shown to 

modulate PIN1 expression and polarization, which may enhance auxin export from the 

bud (Kalousek et al., 2014). In addition, it is discussed that CK may induce local auxin 

biosynthesis in the young leaves within the bud (Müller and Leyser, 2011). Both effects 

would promote bud outgrowth according to the auxin transport canalization model.  

Taking the available data together, the exact role and mode of action of CK is not fully 

resolved, but there appear to be different mechanisms. Together with auxin, CK forms a 

complex regulatory network. Another player in this system is the group of strigolactones, 

which further modify and extend the network. 

 

 

1.3.2.3 Strigolactones 

 

Strigolactones (SLs) are a class of hormones with an inhibitory effect on bud outgrowth. 

Since they are a major focus of this work, the current knowledge about SL is summarized 

below in more detail than it was done for the other hormones.  

Like most phytohormones, SLs have multiple roles, with many of them only being 

discovered recently. SLs are found in root exudates of many plant species (Bouwmeester 

et al., 2007). The exudation matches well the first identified biological role of SL, an 

inducing effect on seed germination of the plant parasitic weed Striga lutea (Cook et al., 

1966), hence the name strigolactone. Later, SLs were also found to induce spore 

germination and hyphal branching of arbuscular mycorrhiza (AM) fungi, which is 

important during mycorrhiza establishment (Akiyama et al., 2005; Besserer et al., 2006). 

Therefore, plants may exude SLs from their roots to attract this form of symbiosis, which 

is supported by the finding that SL-exudation into the soil is enhanced upon phosphate- 

and in some cases also nitrogen-starvation, conditions which promote mycorrhiza 

formation (Kohlen et al., 2011; López-Ráez et al., 2008; Yoneyama et al., 2007). This 

mechanism may be the original reason for SL exudation, and it may be exploited by 

parasitic weeds such as Striga and Orobanche which use SLs as a germination cue 

(Bouwmeester et al., 2007; Xie et al., 2010). Except for these roles as signaling molecules 

in the rhizosphere, SLs function as phytohormones within the plant as well. They were 
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suggested to promote leaf senescence (Ledger et al., 2010; Snowden et al., 2005; Woo et 

al., 2001) and to be important regulators during drought and salinity stress (Ha et al., 

2014). Furthermore, SLs are implicated in the regulation of plant morphology and 

development: they were shown to promote internode elongation (de Saint Germain et 

al., 2013; Snowden et al., 2005) and secondary stem growth (Agusti et al., 2011). 

Additionally, SLs were reported to modulate root architecture: they suppress lateral root 

formation (Kapulnik et al., 2010; Ruyter-Spira et al., 2011) and adventitious rooting 

(Rasmussen et al., 2012), but promote root hair elongation (Kapulnik et al., 2010) and 

primary root growth (Ruyter-Spira et al., 2011). However, for this work, the most 

important role of SLs is their influence on shoot architecture. While the fundamental roles 

of auxin and cytokinin in bud outgrowth regulation were well-established for decades, the 

existence of an additional, third major hormone in branching control was suggested as 

well (Beveridge et al., 1997). This was based on the analysis of highly branched pea 

mutants (ramosus / rms), whose “bushy” phenotype could not be attributed to auxin or 

CK effects. Grafting studies revealed that the substance, later called “SMS” (shoot 

multiplication signal, Beveridge, 2006) is a mobile signal (Foo et al., 2001). It is 

transported acropetally in the shoot, and this transport was later postulated to occur in 

the xylem stream (Kohlen et al., 2011). The substance suppresses outgrowth of axillary 

buds, leading to the observed increased branching phenotype of mutant plants (Foo et 

al., 2001). Based on the analysis of further mutants and additional species (including 

Arabidopsis more axillary growth (max), petunia (Petunia hybrida) decreased apical 

dominance (dad) and rice (Oryza sativa) dwarf / high tillering dwarf (d/htd)), several 

genes involved in the biosynthesis and perception of the SMS were identified (reviewed in 

Beveridge, 2006; Waldie et al., 2014). Thus, large parts of the pathway were already 

known until finally, strigolactones or SL-derived compounds were found to be the elusive 

substance (Gomez-Roldan et al., 2008; Umehara et al., 2008). Following this 

breakthrough, the elucidation of the whole SL pathway gained increased attention and by 

now, large parts of SL biosynthesis are understood. 

Structurally, SLs are terpenoid lactones consisting of a tricyclic lactone part (ABC ring 

structure), which is connected to the D-ring lactone (butenolide) by an enol-ether bridge 

(Zwanenburg et al., 2009). The D-ring appears to be crucial for biological activity (Boyer et 

al., 2012). There are numerous modifications to this basic structure found in the 

anticipated common SL precursor 5-deoxystrigol, making SLs a highly diverse group of 

hormones. Many natural SLs (>15) such as strigol, orobanchol or sorgolactone were 

already identified in different species and characterized for their biological activity (Xie et 
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al., 2010; Yoneyama et al., 2009; Zwanenburg et al., 2009). Beside of the identification of 

natural SLs, multiple synthetic analogs like GR24, GR7 or Nijmegen-1 were produced and 

characterized (Akiyama et al., 2010; Boyer et al., 2012; Xie et al., 2010; Zwanenburg and 

Mwakaboko, 2011; Zwanenburg et al., 2009). Most likely, more different variants of 

natural and synthetic SLs will be discovered in the future, although the identification of 

natural SLs is technically challenging since SL concentrations in plants are very low and 

the substances are highly unstable, especially in moist environments due to hydrolysis 

(Akiyama and Hayashi, 2006; Babiker et al., 1987; Mangnus and Zwanenburg, 1992; Xie et 

al., 2010; Yoneyama et al., 2009; Zwanenburg et al., 2009). The instability is suggested to 

be important for signaling in the rhizosphere, where concentration gradients play a role 

(Parniske, 2008). 

In the following sections, SL biosynthesis and signaling will be discussed. The involved 

genes were identified by mutant analysis in several species and the nomenclature is not 

uniform, even within a given species. For simplicity reasons, common Arabidopsis 

nomenclature will be used here, although most genes were first described in other 

species. The corresponding gene names are compiled in Tab. 1.1. An illustration of the 

canonical SL pathway is shown in Fig. 1.3. 

 



Introduction 
 

14 
 

Tab. 1.1 Overview about components of the strigolactone pathway. Gene names in the commonly 

investigated species (Arabidopsis, pea, petunia and rice) are listed according to their activity in 

the SL pathway, starting from biosynthesis (green shading) via perception (blue shading) to 

downstream targets (red shading). The function of the corresponding protein is indicated and 

references are provided. 
 

Arabidopsis Pea Petunia Rice Function References 

AtD27   D27 Isomerase 
Waters et al., 2012a 

Lin et al., 2009 

MAX3 RMS5 DAD3 
D17 

(HTD1) 

CCD7 carotenoid 
cleavage 

dioxygenase 

Booker et al., 2004 
Johnson et al., 2006 
Ishikawa et al., 2005 

Drummond et al., 2009 

MAX4 RMS1 DAD1 D10 
CCD8 carotenoid 

cleavage 
dioxygenase 

Sorefan et al., 2003 
Arite et al., 2007 

Snowden et al., 2005 

MAX1  PhMAX1 
SLB1, 
SLB2 

P450 
cytochrome 

Stirnberg et al., 2002 
Drummond et al., 2011 

Cardoso et al., 2014 

AtD14  DAD2 D14 
α/β hydrolase,  

SL receptor 

Waters et al., 2012 
Hamiaux et al., 2012 

Arite et al., 2009 

MAX2 RMS4 PhMAX2A D3 F-box protein 

Stirnberg et al., 2002 
Johnson et al., 2006 

Drummond et al., 2011 
Ishikawa et al., 2005 

SMXL7   D53 

HSP101/ 
chaperonin-like  
protein, Class I  

Clp ATPase 

Stanga et al., 2013 
Jiang et al., 2013 
Zhou et al., 2013 

 

SL biosynthesis starts from an all-trans-β-carotene. This compound is isomerized to 9-cis-

β-carotene via the action of the isomerase AtD27 (Lin et al., 2009; Waters et al., 2012a). 

Then, two consecutive cleavage steps are performed by CAROTENOID CLEAVAGE 

DIOXYGENASE enzymes (CCD7 and CCD8; MAX3 and MAX4 in Arabidopsis) to produce 

carlactone via a 9-cis-β-apo-10’-carotenal intermediate. Based on protein localization and 

gene expression data, it was shown that these steps take place in the plastids, 

predominantly in roots and hypocotyls (Alder et al., 2012; Booker et al., 2004; Sorefan et 

al., 2003). Carlactone, being the product of these reactions, was suggested to be a mobile 

intermediate of SL biosynthesis based on grafting experiments: a max1 rootstock 

complemented the branching phenotype of d27, max3 and max4 scions, showing that 

MAX1 acts downstream of the aforementioned enzymes and utilizes a mobile substrate 

(Booker et al., 2005; Seto et al., 2014; Waters et al., 2012a). MAX1 is a cytochrome P450 

monooxygenase, localized in the cytoplasm and predominantly expressed in tissues 
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associated to the vasculature (Booker et al., 2005). The product of the MAX1 reaction was 

found to be carlactonic acid. This compound is then further processed in a MAX1-

independent reaction, yielding carlactonic acid methyl ester, which can directly interact 

with AtD14, a known SL receptor (Abe et al., 2014). Therefore, the whole pathway from 

the carotenoid precursor to at least one bioactive SL-like compound has been unraveled. 

However, the precise reactions leading to the high diversity of known SLs remain to be 

identified. Alternative pathways may also play a role, based on the finding that several SL 

biosynthesis mutants still have detectable levels of certain SL species (discussed in Waldie 

et al., 2014). With respect to their function, there appear to be SLs playing a major role as 

germination stimulants, while others seem to be involved predominantly in the regulation 

of bud outgrowth (Boyer et al., 2012).    

Compared to SL biosynthesis, our knowledge of SL signaling is limited. Nevertheless, there 

were some recent breakthroughs in the field, such as the identification of the above-

mentioned SL receptor D14 in rice. A loss-of-function mutation in D14 and its orthologs in 

Arabidopsis (AtD14) and petunia (DAD2) causes increased branching, similar to the 

phenotype of SL biosynthesis mutants. However, the phenotype cannot be 

complemented by treatment with the synthetic SL analog GR24, indicating that D14 is 

involved in SL signaling rather than SL biosynthesis (Arite et al., 2009; Hamiaux et al., 

2012; Waters et al., 2012b). D14 is an α/β hydrolase protein, which can directly bind 

GR24, as shown in petunia and rice (Hamiaux et al., 2012; Kagiyama et al., 2013). 

Although D14 possesses enzymatic activity and can hydrolyze GR24 after binding, the 

reaction is slow and the cleavage products are biologically inactive. These findings argue 

against a role of this reaction in generating a signal for downstream branching 

suppression, i.e. D14 is not involved in SL biosynthesis (Hamiaux et al., 2012; Nakamura et 

al., 2013; Zhao et al., 2013). The binding of GR24 and the hydrolysis reaction are 

discussed to rather have a role in modulating the activity of D14 as the SL receptor, e.g. 

by inducing a conformational change enabling the interaction with other components of 

SL signaling. Indeed, petunia DAD2 can bind PhMAX2A in the presence of GR24 in a dose-

dependent manner, and the hydrolytic activity is required for this interaction (Hamiaux et 

al., 2012). The same was shown for rice D14 having increased affinity to D3 in the 

presence of GR24 (Jiang et al., 2013). 

Thus, petunia PhMAX2A, rice D3, as well as their orthologs in Arabidopsis (MAX2) and pea 

(RMS4), are another component of the SL pathway. Mutants with defects in these genes 

exhibit highly increased branching, which cannot be complemented by grafting to a wild 

type rootstock or by GR24 treatment. This indicates that MAX2 is involved in SL signaling 
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as well (Beveridge et al., 1996; Drummond et al., 2011; Ishikawa et al., 2005; Stirnberg et 

al., 2002). MAX2 (formerly described as ORE9) is an F-box protein (Stirnberg et al., 2002; 

Woo et al., 2001). F-box proteins are generally involved in protein degradation. As part of 

an Skp1—cullin—F-box (SCF) E3 ubiquitin ligase complex, they are important for 

recognizing and recruiting substrate proteins for ubiquitination, i.e. marking them for 

proteasomal degradation (Ho et al., 2008). Notably, this also is a common feature of 

other plant hormonal signaling pathways, such as auxin, jasmonic acid (JA) or gibberellic 

acid (GA) signaling. The signaling chain finally leads to the degradation of transcription 

factors, inducing a transcriptional response of target genes (e.g. reviewed in Ho et al., 

2008). MAX2 was indeed shown to be part of an SCF complex, and the F-box domain is 

essential for complex formation: a mutant of MAX2 lacking the F-box motif could not 

associate with ASK1 and AtCUL1, which are SCF core components (Stirnberg et al., 2007). 

Summarized, it appears that SL binds to D14 as the SL-receptor, enabling it to bind to 

MAX2. This binding appears to regulate the incorporation of MAX2-D14 into the SCF 

complex or to modulate its activity, i.e. substrate binding affinity. It should be noted that 

beside of activation by D14, also the karrikin receptor KAI2 can interact with MAX2 upon 

binding of karrikins, components found in the smoke of burnt plant material. Thus, there 

appear to be different pathways converging at MAX2, which is in line with the pleiotropic 

max2 mutant phenotypes and different reported target proteins of the SCFMAX2 complex 

(reviewed in Waldie et al., 2014). Here, only relevant findings for the role of MAX2 and its 

targets in the SL-mediated suppression of bud outgrowth are discussed.  

Identification of substrate proteins marked for degradation via the SCFMAX2 complex was 

an important step to further unravel the SL signaling chain. For the regulation of shoot 

branching, the EAR motif-containing rice D53 protein appears to be the most significant 

target. It interacts with D3 and D14 and it is degraded in an SL-dependent manner, which 

can be prevented by a gain of function mutation protecting it from degradation, leading 

to a highly branched phenotype (Jiang et al., 2013; Zhou et al., 2013). Interestingly, D53 is 

a member of the rice SMAX1-LIKE (SMAXL) gene family. In Arabidopsis, SMAXL7 is also 

discussed to be a candidate gene playing a role in shoot branching regulation 

downstream of MAX2 (Stanga et al., 2013). However, the mode of action of D53/SMXL7 is 

not fully understood. In rice, D53 interacts with the protein TPR2, related to TOPLESS 

(TPL) transcriptional co-repressor proteins. Thus, D53 may regulate the transcription of 

downstream genes (Jiang et al., 2013). An alternative hypothesis is that endocytosis of 

the auxin efflux carrier PIN1 could be inhibited by D53, since D53/SMAXL are chaperonin-

like proteins which may sequester other proteins, i.e. prevent them from exerting their 
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normal function. If this is the case, SL-mediated degradation of D53 would increase PIN1 

removal from the plasma membrane and thus dampen auxin transport (Waldie et al., 

2014).  

 

 
Fig. 1.3 Schematic illustration of known components of the strigolactone pathway. SL biosynthesis starts 

from a carotenoid precursor and leads to the formation of carlactonic acid methyl ester and other 

strigolactones, which are detected by D14. Binding induces complex formation with MAX2, 

inducing the degradation of target proteins. Known genes / proteins from different species are 

listed and marked with different colors. Schematic illustration adapted from Waters et al. (2012a). 

 

Summarized, there are still many open questions and the exact SL signaling cascade 

remains elusive. Nevertheless, there are models trying to explain how SLs inhibit bud 

outgrowth. One is based on a direct action via the modulation of expression of the 

transcription factor BRC1, and the other model is based on the idea that SLs act indirectly 

by modulating auxin fluxes. Both models are discussed below.  

As mentioned earlier, SLs can act directly in the bud. For instance, application of SL on 

axillary buds was shown to inhibit their outgrowth in Arabidopsis and pea (Brewer et al., 

2009). An ultimate target of SLs during this direct action appears to be the transcription 

factor BRC1. SL-application increases BRC1 expression and conversely, BRC1 levels were 

reduced in SL-pathway mutants compared to the wild type (Braun et al., 2012; Dun et al., 
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2012). Thus, BRC1 appears to be a downstream target of SLs, leading to an inhibition of 

bud outgrowth. The action of SL in the bud may be influenced by auxin, which utilizes SL 

as a second messenger (Fig. 1.2). This is supported by the finding that auxin modulates 

the SL level by inducing expression of the SL biosynthesis genes MAX3 and MAX4 in 

Arabidopsis (Hayward et al., 2009), as well as orthologous genes in other species such as 

rice and pea (Arite et al., 2007; Johnson et al., 2006). In addition, a depletion of auxin 

levels by decapitation or treatment with the auxin transport inhibitor 1-N-

naphthylphthalamic acid (NPA), was found to reduce the expression of SL biosynthesis 

genes (Foo et al., 2005; Hayward et al., 2009; Johnson et al., 2006).  

In addition to the direct action of SL appearing to be influenced by auxin, SL is also 

discussed to have an indirect mode of action. Interestingly, auxin is involved as well. 

Auxin transport rates in the stem of Arabidopsis max SL-pathway mutants were found to 

be enhanced, while auxin transport was reduced upon application of SL or an induction of 

SL biosynthesis. This matches well the observations that expression and plasma 

membrane accumulation of PIN auxin efflux carriers was increased in max mutants, 

whereas SL-treatment reduced PIN accumulation (Bennett et al., 2006; Crawford et al., 

2010). These findings imply that SLs inhibit auxin transport by causing a depletion of PIN 

proteins (potentially via degradation of D53, as discussed above) from the plasma 

membrane, creating an interlocking feedback loop between both hormones. The 

inhibitory effect of reduced auxin transport on bud outgrowth may be explained by the 

auxin transport canalization model: reduced transport would lower the auxin sink 

capacity of the stem and prevent establishment of an initial auxin export from axillary 

buds (Crawford et al., 2010). SLs may also directly inhibit the establishment of an initial 

auxin export from axillary buds (canalization process), thereby preventing outgrowth 

(Waldie et al., 2014). 

Summarized, strigolactones are phytohormones suppressing branching and there appear 

to be different modes of action. Most notably, there is extensive crosstalk with auxin, and 

both hormones influence each other. 
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1.3.2.4 Other hormones 

 

Hormones in plants usually have multiple functions, depending on their spatio-temporal 

distribution and concentration. As outlined above, the three major hormones in bud 

outgrowth regulation, auxin, cytokinin and strigolactones, form a complex regulatory 

network which integrates various inputs to mediate a branching response. There is 

extensive cross-talk and its fine-tuning appears to be important during the regulation of 

bud outgrowth. 

It should be noted that other phytohormones may play a role as well, modulating the 

regulatory network. Such a connection was for instance suggested for the strigolactone 

and brassinosteroid pathways (Wang et al., 2013). In addition, abscisic acid (ABA) was 

implicated to be involved in branching suppression upon shading (Reddy et al., 2013) and 

suggested to modulate SL biosynthesis (López-Ráez et al., 2010). Thus, the regulation of 

branching is based on a complex regulatory framework. It is likely that more interactions 

involved in the fine-tuning of the network will be identified in the future. 

 

 

1.3.3 Transcription factors in bud outgrowth regulation: BRANCHED1  

 

BRANCHED1 (BRC1) is a regulator implicated in the negative control of bud outgrowth, 

and it is classified as a TB1 CYCLOIDEA PCF (TCP) type transcription factor (Aguilar-

Martínez et al., 2007; Finlayson, 2007). The TCP transcription factors are found in most 

investigated plant species and are known to control meristems and lateral organ 

development (Martín-Trillo and Cubas, 2010). Thus, they regulate many growth-related 

processes such as leaf development or shoot branching (Doebley et al., 1997; Palatnik et 

al., 2003).  

The TCP gene family has several members discussed to result from gene duplications and 

subsequent diversification. The common feature of TCP transcription factors is the 

conserved TCP domain, containing a basic helix-loop-helix (bHLH) motif with a length of 

59 amino acids. This domain is implicated in DNA binding and mediating protein-protein 

interactions (Cubas et al., 1999; Martín-Trillo and Cubas, 2010; Navaud et al., 2007). 

Based on differences in this domain, the TCP proteins are grouped into two classes (I and 

II). While class I is generally implicated in promoting growth and cell division, class II is 

discussed to have an inhibitory effect (Martín-Trillo and Cubas, 2010).  

BRC1 encodes a class II TCP factor (CYC/TB1 sub-clade), correlating well with its role in 

inhibiting bud outgrowth. It was first identified in maize as TEOSINTE BRANCHED1 (Zea 
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mays TB1; Doebley et al., 1997). Orthologs were described in other monocots such as rice 

TEOSINTE BRANCHED1/FINE CULM1 (Oryza sativa OsTB1/FC1; Takeda et al., 2003) and 

sorghum TEOSINTE BRANCHED1 (Sorghum bicolor SbTB1; Kebrom et al., 2006), as well as 

in dicots such as Arabidopsis BRANCHED1 (Arabidopsis thaliana AtBRC1; Aguilar-Martínez 

et al., 2007; Finlayson, 2007), pea BRANCHED1 (Pisum sativum PsBRC1; Braun et al., 2012) 

and tomato BRANCHED1-LIKEb (Solanum lycopersicum SlBRC1b; Martín-Trillo et al., 2011). 

Expression of BRC1 and its orthologs in other species was found to be specific to dormant 

axillary buds, as shown in qPCR, Northern Blot, promoter-β-glucoronidase (GUS) fusion 

and in situ hybridization experiments. While expression levels were high in inactive 

axillary buds, BRC1 expression was strongly reduced in active, growing buds, where 

tested. In other tissues, expression was not detectable or low. However, basal transcript 

levels were detected especially in floral and apical structures (Aguilar-Martínez et al., 

2007; Braun et al., 2012; Doebley et al., 1997; Finlayson, 2007; Martín-Trillo et al., 2011; 

Minakuchi et al., 2010; Takeda et al., 2003). 

BRC1 loss-of-function mutants were described to have significantly increased bud 

outgrowth, leading to a higher number of branches (see references above). 

Correspondingly, overexpression of BRC1 orthologs resulted in reduced bud outgrowth in 

rice and wheat (Lewis et al., 2008; Takeda et al., 2003). Thus, BRC1 is a negative regulator 

of bud outgrowth. Downstream targets of BRC1 may be factors in the control of cell 

cycling, such as PROLIFERATING CELL NUCLEAR ANTIGEN (PCNA), whose expression is 

known to be controlled by TCP type transcription factors (reviewed in Müller and Leyser, 

2011). Furthermore, comparative microarray experiments using wild type and brc1 

mutant buds revealed the regulation of genes associated with ribosomal and cell cycle 

functions. The same experiments also suggest a BRC1-dependent regulation of abscisic 

acid (ABA) related genes (González-Grandío and Cubas, 2014). ABA is a phytohormone 

connected to bud dormancy (Fedoroff, 2002). Thus, BRC1 appears to regulate dormancy-

related hormonal signaling in addition to direct interference with the cell cycle. 

Due to its function as a transcription factor involved in the suppression of bud outgrowth, 

BRC1 is a potential molecular target of different pathways. Indeed, BRC1 is discussed to 

be a central hub at which different branching pathways are integrated to make the 

decision whether a bud grows out or stays dormant (Aguilar-Martínez et al., 2007). For 

instance, BRC1 transcript levels respond to shading-induced changes in the light red/far-

red (R/FR) ratio. This ratio is sensed by the phytochrome system. Upon shading, 

branching is suppressed in favor of increased primary shoot growth as part of the so-

called shade avoidance syndrome (Pierik and Wit, 2014). At high planting density, which is 
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a typical shade-inducing condition, Arabidopsis BRC1 was found to be upregulated 

(Aguilar-Martínez et al., 2007). Furthermore, in Arabidopsis and sorghum, BRC1/OsTB1 

expression was increased at low R/FR conditions and in phyB mutants (González-Grandío 

et al., 2013; Kebrom et al., 2006). These findings indicate that BRC1 translates light signals 

into a bud outgrowth response. However, BRC1 expression is regulated by additional 

factors, most importantly by cytokinin and strigolactones. The antagonistic regulatory 

effect of both hormones on BRC1 fits well to their proposed role as second messengers of 

auxin acting directly in the buds, as described in the previous chapters.  

CK application onto buds leads to reduced BRC1 expression in pea and rice (Braun et al., 

2012; Dun et al., 2012; Minakuchi et al., 2010). Conversely, BRC1 transcript levels were 

slightly reduced in Arabidopsis mutants of ALTERED MERISTEM PROGRAM1 (AMP1), 

which exhibit increased CK levels (Aguilar-Martínez et al., 2007; Helliwell et al., 2001). 

Thus, CK may promote bud outgrowth by negatively affecting BRC1 expression. SL 

application, in contrast, was found to increase BRC1 expression in pea (Braun et al., 2012; 

Dun et al., 2012), while BRC1 transcript levels were reduced in Arabidopsis and pea SL 

pathway mutants (Aguilar-Martínez et al., 2007; Braun et al., 2012; Dun et al., 2012). 

Furthermore, rice fc1 and pea Psbrc1 mutants do not exhibit a reduction of bud 

outgrowth upon SL application anymore (Braun et al., 2012; Minakuchi et al., 2010). Thus, 

part of the SL action appears to be suppression of bud outgrowth by upregulating BRC1 

expression.  

Interestingly, there appears to be a functional diversification upon BRC1-like genes. In 

Arabidopsis, there is a paralog of BRC1 (BRANCED2; BRC2), which was reported to play a 

minor role in the regulation of bud outgrowth, too (Aguilar-Martínez et al., 2007; 

Finlayson, 2007). However, while BRC1 transcript levels are reduced in SL pathway 

mutants, BRC2 expression is not changed (Aguilar-Martínez et al., 2007). This indicates 

that BRC1 is the major factor in relaying SL signals in Arabidopsis. Also in petunia, 

different BRC1 orthologs were reported to have diversified in their function. While 

PhTCP2 seems to be regulated by the R:FR response upon shading, PhTCP3 (and to a 

lower extent PhTCP1) are discussed to be the major hub for the SL response. This includes 

the response to phosphorus limitation, a condition which increases SL levels (Drummond 

et al., 2015). A diversification of BRC1 gene function is also conceivable in the model tree 

poplar. Due to the whole genome duplication event in the Salicaceae family (Tuskan et 

al., 2006), several BRC1 orthologs may exist. While there are 24 TCP genes in Arabidopsis, 

34 members of this family were found poplar (Navaud et al., 2007). Therefore, diversified 

functions or a high degree of redundancy are likely.   
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1.3.4 Bud outgrowth regulation in the perennial context 

 

Our current knowledge about the regulation of bud outgrowth is largely based on studies 

of mostly herbaceous annual plants. The published data discussed in the previous 

chapters was predominantly generated using Arabidopsis, rice, pea and petunia as model 

systems. However, the perennial lifestyle of many plants found in temperate regions, 

such as the model tree poplar, requires a more complex regulation of bud activity. Most 

importantly, the harsh climatic conditions during winter require growth cessation in 

autumn as an adaptation strategy. Therefore, these species possess additional stages of 

dormancy and bud types, making them more complex systems to study.  

In both, annual and perennial plants, dormant axillary buds exist during the growth 

phase. They are principally capable of growing out, but their outgrowth is suppressed by 

other parts of the plant. This “correlative inhibition” can for example be the result of an 

actively growing apex, suppressing outgrowth of the axillary buds below (apical 

dominance). The resulting growth inhibition is called paradormancy (Allona et al., 2008; 

Arora et al., 2003). Annual plants only possess this stage of dormancy. When the growing 

season ends and the conditions become unfavorable, they die back and only their seeds 

survive. In contrast, perennial plants possess two additional stages of dormancy, called 

eco- and endodormancy. When the environmental conditions become adverse and inhibit 

bud outgrowth at the end of the growing season, the buds initially enter ecodormancy. In 

this stage, they are principally still capable of growing out (Allona et al., 2008). Thus, 

ecodormancy is a reversible state of bud suppression. However, at a later time point, the 

buds undergo physiological adaptations, such as the production of a bud-scale, to survive 

winter. Short photoperiods and cold temperatures induce a deep state of dormancy, 

called endodormancy or winter dormancy. Then, even favorable conditions cannot trigger 

bud outgrowth until a certain chilling requirement (a cumulative time period of cold 

temperatures) is fulfilled. This reverts the buds to an ecodormant state and they can grow 

out when the conditions become favorable, if outgrowth is not prevented by 

paradormancy (Allona et al., 2008; Arora et al., 2003).  

When dormancy is released and the buds become activated, they grow into branches. In 

temperate perennials, bud development and outgrowth may occur within the same 

growth season. However, both processes can also take place in subsequent seasons with 

an intervening period of winter dormancy. The formed branches are designated 

accordingly as sylleptic (bud development and outgrowth in the same season) or proleptic 

(bud outgrowth after winter dormancy) (Hallé et al., 1978; Remphrey and Powell, 1985). 
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Another interesting feature of temperate perennials is an additional type of dormant 

buds. In annual species, only dormant axillary buds can be found. The apical meristem 

does not form dormant buds: it either grows indeterminately or differentiates, for 

example into floral organs (Wang and Li, 2008). In contrast, temperate perennials cease 

growth of the apical meristem in autumn until resuming active growth in spring. During 

winter, the inactive apical meristem rests in a dormant apical bud (Arora et al., 2003). 

Taken together, the additional bud types and dormancy stages make temperate perennial 

plants, including trees such as poplar, an interesting system to study bud outgrowth 

control mechanisms.  

 

 

1.4 Economic significance of plant architecture 

 

Plant architecture is a trait with a high economic significance. A striking example for this 

can be found in maize (Zea mays ssp. mays). While the anticipated wild maize ancestor 

teosinte (Zea mays ssp. mexicana and Zea mays ssp. parviglumis) has a high number of 

tillers (basal branches in grasses), the domesticated crop normally produces no tillers, but 

just a main shoot. This was reported to result from increased expression of the maize 

BRC1 ortholog, TB1 (Doebley et al., 1997). A similar finding was made in pearl millet 

(Pennisetum glaucum), in which QTL mapping exhibited a polymorphism in the TB1 

promoter (Remigereau et al., 2011). Also in low-tillering rice (Oryza japonica) cultivars, 

TB1 is discussed to be regulated by the transcription factor SQUAMOSA PROMOTER 

BINDING PROTEIN-LIKE 14 (SPL14), and this was correlated with the tiller number (Lu et 

al., 2013). Thus, BRC1 orthologous genes were selected several times independently 

during crop domestication, indicating the prominent role of BRC1 during bud outgrowth 

regulation in crop species. For monocot crops, an architectural ideotype was described, 

which includes a low number of tillers (Peng et al., 2008). 

Also the SL pathway appears to be important for economically relevant aspects of plant 

architecture. In rice, STRIGOLACTONE BIOSYNTHESIS1 and 2 (SLB1 and SLB2), orthologs of 

the Arabidopsis SL biosynthesis gene MAX1, were identified during mapping of a tillering-

relevant QTL (Cardoso et al., 2014). Additionally, SLs appear to regulate economically 

important aspects of plant architecture in trees. Fast-growing trees such as poplar 

(Populus sp.) or willow (Salix sp.) can be grown on so-called short rotation coppices 

(SRCs), which are harvested by coppicing in frequent intervals for bioenergy production. 

The rootstocks re-sprout after coppicing, and the re-sprouting efficiency is important. A 
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relevant QTL for this trait was reported to contain a willow ortholog of the Arabidopsis SL 

biosynthesis gene MAX4 (Salmon et al., 2014). Furthermore, the SL pathway is discussed 

to be a promising target for the modification of branching patters in ornamental plants 

such as chrysanthemum (Dendranthema grandiflorum) (Liang et al., 2010). 

Thus, BRC1-like genes, as well as genes of the SL pathway, play a role in controlling 

relevant traits of commercially produced plants and may be important targets for 

breeding programs. While a reduction of branching, especially a reduction of tiller 

numbers in monocots, is usually a favored trait (Wang and Li, 2008), also increased 

branching can be beneficial, as the aforementioned willow example shows. In addition to 

improved re-sprouting on SRCs, also the total biomass production may be enhanced. The 

crown architecture on plantations for bioenergy production is an important trait. A high 

degree of sylleptic branching leads to earlier canopy closure, which is particularly 

important during the establishment phase of a SRC. Thus, a high number of sylleptic 

branches was defined as part of a poplar ideotype on SRCs (Ceulemans et al., 1990; 

Scarascia-Mugnozza et al., 1989). Highly branched plants may have an increased leaf area 

index, enhancing light capture efficiency and photosynthesis, which in turn leads to 

higher biomass production (Broeckx et al., 2012; Ceulemans et al., 1990). Modifications of 

SL-pathway genes in poplar thus may improve plant architectural traits, similar to the 

findings made in willow. 

 

 

1.5 Aim of the project 

 

The aim of this project was the investigation of bud outgrowth control mechanisms in the 

model tree Populus sp. A focus was on the role of strigolactones, as well as poplar BRC1 

orthologs as potentially SL-responsive factors in bud outgrowth regulation. 

About both, only little information can be found in the literature with respect to woody 

perennials. However, recent publications indicate that strigolactones are important 

branching regulators in tree species as well. Willow buds were shown to respond to SL 

treatment (Ward et al., 2013). Furthermore, a willow MAX4 ortholog was found at an 

important QTL for re-sprouting behavior after coppicing, as mentioned above (Salmon et 

al., 2014). Interestingly, willow and poplar orthologs of genes involved in the 

strigolactone pathway were shown to be able to largely complement the increased 

branching phenotype of the corresponding Arabidopsis mutants (Czarnecki et al., 2014; 

Salmon et al., 2014; Ward et al., 2013). These findings indicate a high degree of 
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conservation of the SL pathway and provide strong hints that SLs play a similar role in 

trees compared to herbaceous annual plants, which were commonly investigated. 

However, the information from complementation data is rather indirect and Arabidopsis 

was used as a heterologous system. Although it is not a tree, kiwifruit (Actinidia chinensis) 

is a woody perennial as well. Its MAX3 and MAX4 orthologs (AcCCD7 and AcCCD8) were 

also shown to complement the corresponding Arabidopsis mutant phenotypes. 

Additionally, a RNAi-mediated knockdown of AcCCD8 was shown to increase branching 

(Ledger et al., 2010), providing a more direct proof und underlining  the importance of the 

significance of SLs in woody perennials.  

However, willow and kiwifruit are non-model species. For willow, no whole genome 

sequence is available and it is not amenable to current genetic transformation techniques 

(Ward et al., 2013). In contrast, poplar is the model tree species. It is amenable to genetic 

transformation and vast genomic resources, including a whole genome sequence, are 

available. Therefore, poplar lines with modifications in the SL pathway would be a 

valuable resource to study the role of SLs in trees in more detail. The production of such 

plants was a major focus of this project. Beside of extensive phenotyping, the plants were 

to be used to study the role of SLs in tree-specific aspects of dormancy. Furthermore, it 

was a major aim to analyze the influence of SL deficiency on poplar BRC1. In Arabidopsis 

and other species, this major regulator of bud outgrowth is SL-responsive. However, a 

role for BRC1 in trees has not been reported yet.   

Beside of being a valuable platform for the investigation of SLs, BRC1 and related factors 

in trees, manipulations of the SL pathway in poplar would modify the tree architecture. 

Poplar with altered branching patterns may be beneficial for the use on SRCs, as it was 

discussed for willow. Increased branching would enhance re-sprouting after coppicing 

and could positively influence the biomass yield due to early canopy closure (Broeckx et 

al., 2012; Salmon et al., 2014). It would result in a higher bark content of the stem 

biomass, as the surface area is increased relative to the stem volume. This would be an 

undesirable effect if the biomass is used as woodchips for energy production (increased 

alkali metal content). In contrast, it may be beneficial if the biomass is used for other 

purposes, such as a feedstock for industrial and pharmaceutical chemicals (Salmon et al., 

2014). 
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1.6 Strategy 

 

The strategy to obtain poplar lines with defects in SL biosynthesis and signaling was to 

identify poplar orthologs of known SL pathway genes by sequence and expression 

analysis. The identified genes were intended as targets for amiRNA-mediated 

knockdowns and the generated transgenic lines were to be investigated for 

corresponding phenotypes, with a focus on tree architecture.  

Poplar BRC1 orthologs were to be identified as well, based on sequence comparison and 

expression patterns, with a focus on tree-specific aspects of bud outgrowth regulation. 

Expression was to be analyzed in the generated poplar SL pathway knockdown lines to 

investigate the anticipated regulation of BRC1 by SLs. 
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2 Materials and methods 

 

In the following sections, all equipment and methods used in this work are stated. 

Standard media (e.g. LB) and routine methods (e.g. preparation of competent bacteria 

and transformation, nucleic acid extraction, polymerase chain reaction, gel 

electrophoresis) are based on well-established protocols, which are compiled in e.g. 

Sambrook and Russell (2000). The exact procedures are described in detail.  

 

 

2.1 Equipment 

 

Technical equipment used during this work is listed in Tab. 2.1. In the following chapters, 

only the device type is stated. The model and manufacturer names can be identified in 

the table. 

 

Tab. 2.1 Technical equipment used during this work. The device type, model and manufacturing 

company are indicated. 

Device type Model Manufacturer 

Analytical scale ED224S Sartorius AG, Göttingen, Germany 

Autoclave Varioklav 135S 
HP Medizintechnik GmbH, 

Oberschleißheim, Germany 

Bead mill TissueLyser LT Qiagen AG, Hilden, Germany 

Digital camera DMC-FZ150 Panasonic Corporation, Kadoma, Japan 

Electric power supply (for 

electrophoresis) 
BluePower 500 

Serva Electrophoresis GmbH, 

Heidelberg, Germany 

Electrophoresis chamber Sub-Cell GT 
Bio-Rad Laboratories Inc., Hercules, 

U.S.A. 

Electroporation device BioRad MicroPulser 
Bio-Rad Laboratories Inc., Hercules, 

U.S.A. 

Freezer -80 °C HFU 686 Basic 
Thermo Electron LED GmbH, 

Lengenselbold, Germany 

Gel documentation system GenoPlex 
VWR International GmbH, Darmstadt, 

Germany 

Incubator IPP500 
Memmert GmbH & Co. KG, Schwabach, 

Germany 

Laboratory centrifuge, cooled Heraeus Fresco 17 
Thermo Electron LED GmbH, Osterode, 

Germany 

Laboratory centrifuge, cooled Heraeus Multifuge 3SR+ 
Thermo Electron LED GmbH, Osterode, 

Germany 

Laboratory scale KERN 572 Kern & Sohn GmbH, Ballingen, Germany 

Laboratory scale ED62025-CW Sartorius AG, Göttingen, Germany 

Laboratory shaker Laboshake RO500 
C. Gerhardt GmbH & Co. KG, 

Königswinter, Germany 
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Device type Model Manufacturer 

Laminar flow cabinet S2020 1.8 
Thermo Electron LED GmbH, 

Lengenselbold, Germany 

Magnetic stirrer, heated RH basic 2 
IKA-Werke GmbH & Co. KG, Staufen, 

Germany 

Microplate photometer Infinite M200 
Tecan Group AG, Männedorf, 

Switzerland 

Microwave R-26ST Sharp Corporation, Osaka, Japan 

pH-meter inoLab pH720 WTW GmbH, Weilheim, Germany 

Photometer BioPhotometer plus eppendorf AG, Hamburg, Germany 

Plant growth cabinet AR-66L/3 
CLF Plant Climatics GmbH, Wertingen, 

Germany 

Real-time thermocycler 
CFX96 Real-Time PCR 

Detection System 

Bio-Rad Laboratories Inc., Hercules, 

U.S.A. 

Shaking incubator New Brunswick Excella E24R Eppendorf AG, Hamburg, Germany 

Shaking incubator New Brunswick Innova 44 Eppendorf AG, Hamburg, Germany 

Stereo microscope M165C 
Leica Mikrosysteme GmbH, Wetzlar, 

Germany 

Thermocycler T100 Thermal Cycler 
Bio-Rad Laboratories Inc., Hercules, 

U.S.A. 

Thermomixer Thermomixer comfort Eppendorf AG, Hamburg, Germany 

Ultrapure water system Arium 611DI Sartorius AG, Göttingen, Germany 

UV transilluminator 2UV TFML-30 UVP LLC, Upland, U.S.A. 

Vortex mixer Vortex Genius 3 
IKA-Werke GmbH & Co. KG, Staufen, 

Germany 

Water bath, heated WNB10 
Memmert GmbH & Co. KG, Schwabach, 

Germany 

 

 

2.2 Chemicals 

 

Chemicals used during this work are listed in Tab. 2.2. The application of the 

corresponding component is indicated. In the following chapters, only the chemical 

names are stated. The manufacturer names can be identified in the table. 

 

Tab. 2.2 Chemicals used during this work. The chemical name, supplier and application are indicated.  

Chemical name Supplier Used for 

2-mercaptoethanol 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 

RNA extraction 

 

2-propanol 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
DNA extraction 

3‘,5‘-dimethoxy-4‘-

hydroxyacetophenone  

Sigma-Aldrich Corporation, St. 

Louis, U.S.A. 

Poplar transformation, induction of 

Agrobacterium 

Acetic acid 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
TAE buffer 
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Chemical name Supplier Used for 

Acetone 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
Solvent 

Agar (Difco) 
Becton, Dickinson and Company, 

Sparks, U.S.A. 
Bacterial growth media 

Agar (Kobe I) 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
Preparation of plant growth media 

Agar (Plant) 
Duchefa Biochemie B.V, Haarlem, 

The Netherlands 
Preparation of plant growth media 

Bromophenol blue 
Merck KGaA, Darmstadt, 

Germany 
Gel loading dye 

CaCl2 
Merck KGaA, Darmstadt, 

Germany 
Buffer solutions 

Chloroform:Isoamylalcohol 

24:1 

AppliChem GmbH, Darmstadt, 

Germany 
RNA extraction 

Cefotaxime sodium 
Duchefa Biochemie B.V, Haarlem, 

The Netherlands 

Poplar transformation, elimination 

of Agrobacterium 

Cetyltrimethylammonium 

bromide (CTAB) 

Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
RNA extraction 

Dimethyl sulfoxide (DMSO) 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
Buffer solutions 

Ethylenediaminetetraacetic 

acid (EDTA) 

Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
Buffer solutions 

Glycerol 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 

Bacterial -80 °C storage, gel loading 

buffer 

Kanamycin sulphate 

monohydrate 

Duchefa Biochemie B.V, Haarlem, 

The Netherlands 

Poplar transformation, selective 

agent 

KCl 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
Buffer solutions 

Meat extract (Lab-Lemco 

powder) 
Oxoid Ltd., Basingstoke, U.K. Bacterial growth media 

Methyl jasmonate (JA) 
Sigma-Aldrich Corporation, St. 

Louis, U.S.A. 
Leaf JA treatment 

Murashige & Skoog medium 

including vitamins 

Duchefa Biochemie B.V, Haarlem, 

The Netherlands 
Preparation of plant growth media 

MgSO4 
Sigma-Aldrich Corporation, St. 

Louis, U.S.A. 
Growth media, buffer solutions 

NaCl 
VWR International GmbH, 

Darmstadt, Germany 
Growth media, buffer solutions 

Orange G 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
Gel loading dye 

PEG-1450 
Sigma-Aldrich Corporation, St. 

Louis, U.S.A. 

Poplar bud hormone treatment 

solution 

Peptone (Bacto) 
Becton, Dickinson and Company, 

Sparks, U.S.A. 
Bacterial growth media 

Plant agar 
Duchefa Biochemie B.V, Haarlem, 

The Netherlands 
Preparation of plant growth media 

Pluronic F-68 
Thermo Fisher Scientific Inc., 

Waltham, U.S.A. 
Poplar transformation, surfactant 
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Chemical name Supplier Used for 

Polyvinylpyrrolidon K30 (PVP 

K30) 

Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
RNA extraction 

rac-GR24 
Chiralix B.V., Nijmegen, The 

Netherlands 

Poplar treatment (synthetic 

strigolactone analog) 

Sucrose 
Duchefa Biochemie B.V, Haarlem, 

The Netherlands 

Preparation of plant and bacterial 

growth media 

Sodium dodecyl sulphate (SDS) 
Merck KGaA, Darmstadt, 

Germany 
Buffer solutions 

Thidiazuron 
Duchefa Biochemie B.V, Haarlem, 

The Netherlands 

Poplar transformation, growth 

regulator 

Ticarcillin disodium / 

Clavulanate potassium 

Duchefa Biochemie B.V, Haarlem, 

The Netherlands 

Poplar transformation, elimination 

of Agrobacterium 

Tris 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 
Buffer solutions 

Tween-20 
Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany 

Poplar bud hormone treatment 

solution 

Yeast extract (Bacto) 
Becton, Dickinson and Company, 

Sparks, U.S.A. 
Bacterial growth media 

 

 

2.3 Oligonucleotides 

 

Oligonucleotides were designed using the Geneious software (Kearse et al., 2012) and 

synthesized by Life Technologies Inc. (Carlsbad, U.S.A). The lyophilized oligonucleotides 

were dissolved in 10 mM Tris-HCl pH 8.0 buffer solution to a final concentration of 

100 µM. From these stocks, working stocks were prepared as a 1:10 dilutions with sterile 

water (10 µM final concentration). Oligonucleotides were used for amplification of genes 

for cloning and sequencing, diagnostic PCR to screen for correct bacteria and plant 

transformants, as well as quantitative PCR for expression analysis. All oligonucleotides 

used in this work are listed in Tab. 2.3. 

 

Tab. 2.3 Oligonucleotides used during this work. Number and name of the oligonucleotide, the sequence 

and the purpose are indicated. 

Oligonucleotide name Sequence 5'-3' Purpose 

8 PtMAX4-1_F CACCATGGCTTCCTTGGCATTTTCC Cloning of P. x can MAX4-1 

9 PtMAX4-1_R TTATTTCTTTGGCACCCAGCATC Cloning of P. x can MAX4-1 

10 PtMAX4-2_F CACCATGGTTTCTGATCAGTATGAGAGCAA Cloning of P. x can MAX4-2 

11 PtMAX4-2_R TTACTTCTTCGGCACCCAGC Cloning of P. x can MAX4-2 

12 PtMAX4-1+2_seq1 ACCGCCAAATCGAATCGGAG 
Sequencing of P. x can MAX4 

orthologs 

13 PtMAX4-1+2_seq2 GGATGGGTCCACTCGTTTCC 
Sequencing of P. x can MAX4 

orthologs 

18 EF1_F AAGCCATGGGATGATGAGAC qPCR reference gene 
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Oligonucleotide name Sequence 5'-3' Purpose 

19 EF1_R ACTGGAGCCAATTTTGATGC qPCR reference gene 

22 M13_F CGTTGTAAAACGACGGCCAGT 
Sequencing of inserts in 

pENTR/D-TOPO. 

23 M13_R CAGGAAACAGCTATGACCATG 
Sequencing of inserts in 

pENTR/D-TOPO. 

24 MAX4-1+2_partial_F1 CACCCGATGGCTATGCCACATTAGTC 
Cloning of P. x can MAX4 

orthologs 

25 MAX4-1+2_partial_F2 CACCACACTGGCGTGGTCAAGCTC 
Cloning of P. x can MAX4 

orthologs 

26 MAX4-1+2_partial_R1 CCCAGCATCCATGTAATCCATA 
Cloning of P. x can MAX4 

orthologs 

34 PtMAX4-1+2_seq3R TAAGCCTCCGATTCGATTTG 
Sequencing of P. x can MAX4 

orthologs 

35 PtMAX4-1+2_seq4 GAGCATGGGAAAGGAATGG 
Sequencing of P. x can MAX4 

orthologs 

36 PtMAX4-1+2_seq5R AGGGTGTTGGGGAAGTTAC 
Sequencing of P. x can MAX4 

orthologs 

39 PtMAX2-1_F CACCGTCTTCAACAATACAGGCC Cloning of P. x can MAX2-1 

40 PtMAX2-1_R ATGATCATTATTCGTTTAGAAAG Cloning of P. x can MAX2-1 

41 PtMAX2-2_F CACCCCGTGTGTGCTCTCTCTC Cloning of P. x can MAX2-2 

42 PtMAX2-2_F2 CACCATGGCTGCTACCATGAAC Cloning of P. x can MAX2-2 

43 PtMAX2-2_R GGAAAAAAAAAACTCAGATCAG Cloning of P. x can MAX2-2 

44 PtMAX2-1_F2 CACCATGGCTAAAAAATTTAACACTAATG Cloning of P. x can MAX2-1 

45 PtMAX2-1_R2 TCAATCAGGAATCGCACG Cloning of P. x can MAX2-1 

46 PtMAX2-2_R2 TCAGTCGAGGATCTGACG Cloning of P. x can MAX2-2 

47 PtMAX2-1_seq1 GGATTCAAGTCCCATGAG 
Sequencing of P. x can MAX2 

orthologs 

48 PtMAX2-2_seq1 CAATCACTGCAGCTTGTC 
Sequencing of P. x can MAX2 

orthologs 

49 Ptc-miR408_F CAAGGGGAAGCGTGTTCC 
Amplification/sequencing of 

amiRNA backbone. 

50 Ptc-miR408_R TGTCCTCAAAGGACGTTTGTC 
Amplification/sequencing of 

amiRNA backbone. 

51 pK7WG_F (RB) GCGGGAAACGACAATCTG 
Sequencing of inserts in 

pK7WG. 

53 pK7WG(2)_R (T35S) TTGCGGACTCTAGCATGG 
Sequencing of inserts in 

pK7WG(2). 

64 ami*MAX2-1_F ATAGTACCCTCGGGTTTCG Diagnostic PCR. 

65 ami*MAX2-2_F CACGTTAACTGCCCCATC Diagnostic PCR. 

66 ami*MAX2-1+2_F CAACCGTGGGAAGTCTATTATG Diagnostic PCR. 

67 ami*MAX4-1_F GAAACGGATATGCTCTGTTATG Diagnostic PCR. 

68 ami*MAX4-2_F TCACACACGACAAACTTAGATG Diagnostic PCR. 

69 ami*MAX4-1+2_F CGACAGGTTCATATTTCCTTTG Diagnostic PCR. 

70 SpecR_F TAGCTTCAAGTATGACGGGC Diagnostic PCR. 

71 SpecR_R CGGTTCGTAAGCTGTAATGC Diagnostic PCR. 

85 KanR_F2 GCTTGGGTGGAGAGGCTATT Diagnostic PCR. 

86 KanR_R2 TCAAGAAGGCGATAGAAGGC Diagnostic PCR. 

93 PcMAX2-1_qPCR_F GCCCGTGGGAGAGGTTTTAT qPCR 

94PcMAX2-1_qPCR_R CAATGTCCTGTGGAGGCCAA qPCR 
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Oligonucleotide name Sequence 5'-3' Purpose 

95 PcMAX2-2_qPCR_F TGGCTGGCCTGTATGATTGT qPCR 

96 PcMAX2-2_qPCR_R CACGCTGTGATGGTTTGTGC qPCR 

97 PcMAX4-1_qPCR_F TAGAGAAGCTCCGTCTACAAAATCT qPCR 

98 PcMAX4-1_qPCR_R AATTTCCCATGTCGACTCCCG qPCR 

99 PcMAX4-2_qPCR_F TTGGAGAGGCTGAGGCTACA qPCR 

100 PcMAX4-2_qPCR_R GGGCTCCCATCCAAAGGAAT qPCR 

111 PcUBQ_qPCR_F GTCCACCCTCCATTTGGTCC qPCR reference gene 

112 PcUBQ_qPCR_R GGTCTTTCCTGTGAGCGTCT qPCR reference gene 

118 Potri.008G115800_qPCR_F GCTTCCAGGTGGGACAAACT qPCR 

119 Potri.008G115800_qPCR_R TGGTGGTAGCTTCATGTTCGT qPCR 

120 Potri.010G130200_qPCR_F ATTTCATGACCACCCCGCAT qPCR 

121 Potri.010G130200_qPCR_R GGCTTTCTTCAACATGGGCG qPCR 

122 Potri.012G059900_qPCR_F TGCACAACACTGGAACTCCT qPCR 

123 Potri.012G059900_qPCR_R TGCATGCCTGATCCCATGTC qPCR 

124 Potri.015G050500_qPCR_F AGTGGAGTCCCTCTCTTCCC qPCR 

125 Potri.015G050500_qPCR_R AGGCCTCATGATCCCATGTTT qPCR 

126 Potri.017G112000_qPCR_F AGCTCTCACCACTCACTTGC qPCR 

127 Potri.017G112000_qPCR_R GCAGATGGCCTCAACTTCCT qPCR 

 

 

2.4 Vectors and plasmids 

 

The vectors and plasmids used in this work are listed in Tab. 2.4.  

For sequencing of the candidate genes, the corresponding P. x canescens gene was cloned 

into pENTR/D-TOPO (Life Technologies Inc., Carlsbad, U.S.A.) and plasmid DNA was 

sequenced.  

The amiRNA constructs were obtained in the vector pUC57 (cloned by GenScript USA Inc., 

Piscataway, U.S.A.) and transferred into the binary Gateway destination vector pK7WG2 

(VIB, Gent, Belgium) for transformation of plant material. A vector map of pK7WG2 is 

shown in Appendix Fig. 7.1 (p. 150). 

 

Tab. 2.4 Vectors and plasmids used during this work. The vector name, as well as the insert type and the 

purpose of use are indicated. 

Vector Insert Purpose 

pENTR/D-TOPO - Gateway entry vector 

pENTR/D-TOPO PxMAX4-1 (partial) Sequencing of P. x can MAX4-1 (partial). 

pENTR/D-TOPO PxMAX4-2 (partial) Sequencing of P. x can MAX4-2 (partial). 

pENTR/D-TOPO PxMAX2-1 Sequencing of P. x can MAX2-1. 

pENTR/D-TOPO PxMAX2-2 Sequencing of P. x can MAX2-2. 

pUC57 amiMAX2-1 Hosting synthesized amiRNA construct. 

pUC57 amiMAX2-2 Hosting synthesized amiRNA construct. 

pUC57 amiMAX2-1+2 Hosting synthesized amiRNA construct. 

pUC57 amiMAX4-1 Hosting synthesized amiRNA construct. 
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Vector Insert Purpose 

pUC57 amiMAX4-2 Hosting synthesized amiRNA construct. 

pUC57 amiMAX4-1+2 Hosting synthesized amiRNA construct. 

 pK7WG2 - Gateway destination vector 

 pK7WG2 amiMAX2-1 #1 amiRNA expression destination construct. 

 pK7WG2 amiMAX2-2 #4 amiRNA expression destination construct. 

 pK7WG2 amiMAX2-1+2 #6 amiRNA expression destination construct. 

 pK7WG2 amiMAX4-1 #7 amiRNA expression destination construct. 

 pK7WG2 amiMAX4-2 #9 amiRNA expression destination construct. 

 pK7WG2 amiMAX4-1+2 #11 amiRNA expression destination construct. 

pK7WG2 GUS GUS control construct, for testing poplar transformation. 
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2.5 Plants 

 

2.5.1 Plant material 

 

The female Populus x canescens (Aiton) Sm. clone INRA 717-1B4 was used as a wild type 

reference in all experiments carried out during this work. Populus x canescens is a natural 

poplar hybrid also known as Populus tremula x Populus alba or gray poplar. It is amenable 

to genetic transformation and was used as a host for the production of transgenic 

amiRNA lines for targeted knockdowns of genes involved in the strigolactone pathway 

(amiMAX4 and amiMAX2 lines).   

 

 

2.5.2 Plant culture media, vessels and substrates 

 

Poplar stem cuttings were routinely propagated in an in vitro culture system. As culture 

vessels, 580 ml glass jars (WECK-Sturzglas Rundrand 100, J.WECK GmbH u. Co. KG, Wehr, 

Germany) were used. For improved gas exchange, a Paramoll N260/200 fleece ring (Mank 

GmbH, Dernbach, Germany) was placed between the jar and the lid. The jars were sealed 

with Micropore surgical tape (3M GmbH, Neuss, Germany) to prevent contamination.   

As standard growth medium in the in vitro culture, half-strength Murashige & Skoog 

(½ MS) medium containing vitamins (Duchefa Biochemie B.V, Haarlem, The Netherlands), 

supplemented with 20 g/l sucrose (Duchefa Biochemie B.V, Haarlem, The Netherlands) 

and solidified with agar (Kobe I agar, Carl Roth GmbH & Co. KG, Karlsruhe, Germany), was 

used. 

When potted plants for growth in soil were required, young, in vitro grown plants (about 

6 cm tall) were transferred to plastic pots containing substrate (Fruhstorfer Erde Typ T25, 

HAWITA Gruppe GmbH, Vechta, Germany) supplemented with 5 % (v/v) washed screed 

sand (0/8 mm) to prevent excess moisture. Plants were fertilized with a compound 

fertilizer (WUXAL, AGLUKON Spezialdünger GmbH & Co. KG, Düsseldorf, Germany) when 

necessary and transferred to bigger pots containing fresh substrate (Fruhstorfer Erde 

Typ T, HAWITA Gruppe GmbH, Vechta, Germany) roughly every 6 weeks. 
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2.5.3 Plant growth conditions 

 

The in vitro culture vessels were placed in a growth cabinet (AR-66L/3, CLF Plant Climatics 

GmbH, Wertingen, Germany) or a growth chamber (Johnson Controls, Milwaukee, U.S.A.). 

A day/night period of 16/8 hours was maintained. The temperature was 22 °C (18 °C 

during the dark phase in the growth chamber). For lighting, fluorescent tubes (840 and 

Fluora, OSRAM GmbH, München, Germany) were adjusted to a light flux of 70-80 µE PAR. 

The relative humidity was adjusted to 60 %.  

After the transfer of plants from the in vitro culture to pots with substrate, the pots were 

placed on a plastic tray covered with a transparent lid to increase the relative humidity. 

For acclimatization of the plants to standard conditions in the growth chamber, the lid 

was lifted successively over the course of two weeks and removed afterwards. Plants 

were grown in the growth chamber to a size of about 10-50 cm and then transferred to a 

greenhouse, if required. 

In the greenhouse, a minimum temperature of 22/14 °C (day/night) was maintained by 

heating. Natural daylight was supplemented with metal halide lamps (HQI-TS 250W/D, 

OSRAM GmbH, München, Germany) to maintain a 16 h photoperiod. 

Some plants were also grown at outdoor conditions as indicated.  

If required, greenhouse- and outdoor-grown plants were treated with insecticides and 

fungicides.      
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2.6 Bacteria 

 

During this work, Escherichia coli (E. coli) strains DH5α or TOP10 were used as hosts for 

molecular cloning and propagation of plasmids. Agrobacterium tumefaciens strain 

GV3101 pMP90 was used as a vector for genetic transformation of poplar.  

 

 

2.6.1 Bacterial growth media and growth conditions 

 

E. coli was grown at 37 °C in liquid LB medium (10 g/l tryptone, 5 g/l yeast extract, 5 g/l 

NaCl) or on solid LB plates (additional 15 g/l agar, poured into Petri dishes). 

A. tumefaciens was cultivated at 28 °C in liquid YEB medium (5 g/l beef extract, 5 g/l 

peptone, 5 g/l sucrose, 1 g/l yeast extract, 2 mM MgSO4) or on solid YEB plates (additional 

15 g/l agar, poured in Petri dishes). If required, the appropriate antibiotics were added 

according to Tab. 2.5. Liquid cultures were grown in plastic culture tubes or Erlenmeyer 

flasks under constant shaking (180 rpm).  

For long-term storage of bacteria, glycerol was added to a fresh liquid culture to a final 

concentration of 25 % (v/v) and aliquots were stored in a cryogenic vial (Corning Inc., 

Corning, U.S.A.) at -80 °C.  

 

Tab. 2.5 Antibiotics used during this work for selection of bacteria. The concentration of the stock 

solutions and the final concentration for bacterial selection, as well as the manufacturer, are 

indicated. 

Antibiotic Stock Manufacturer [Final] E. coli  [Final] Agrobacterium 

Carbenicillin 100 mg/ml in H2O Duchefa 100 µg/ml 50 µg/ml 

Gentamicin 25 mg/ml in H2O Roth   25 µg/ml 

Kanamycin 50 mg/ml in H2O Roth 50 µg/ml   

Rifampicin 50 mg/ml in DMSO Duchefa   50 µg/ml 

Spectinomycine 100 mg/ml in H2O Duchefa 100 µg/ml 100 µg/ml 
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2.6.2 Competent cells and transformation 

 

The production and transformation of competent bacterial cells used during this work is 

described below. 

For cloning purposes, chemically competent E. coli DH5α were prepared. For pENTR/D-

TOPO cloning, the chemically competent E. coli TOP10 cells provided with the pENTR/D-

TOPO cloning kit (Life Technologies Inc., Carlsbad, U.S.A.) were used instead. Electro-

competent A. tumefaciens GV3101 pMP90 were prepared for transformation with binary 

destination vectors.  

 

 

2.6.2.1 Chemically competent E. coli cells and transformation 

 

For the preparation of chemically competent E. coli cells, a starter culture of the strain 

DH5α was inoculated from -80 °C storage in 5 ml LB medium and incubated overnight at 

37 °C under constant shaking. 200 ml of fresh LB medium were inoculated with 2 ml of 

the starter culture and grown in a shaking incubator at 37 °C until the culture reached an 

OD600 of 0.3 – 0.5. The cells were harvested by centrifugation for 10 min at 3450 rcf and 

4 °C. The supernatant was discarded and the cells were resuspended in 200 ml ice-cold 

100 mM CaCl2. After incubation for 25 min on ice, the cells were harvested by 

centrifugation (as previously) and the supernatant was discarded. The pellet was 

resuspended in 8 ml ice-cold 100 mM CaCl2 and ice-cold glycerol was added to a final 

concentration of 15 % (v/v). After incubation for one hour on ice, 100 µl aliquots were 

prepared, snap-frozen in liquid nitrogen and stored at -80 °C.  

For transformation of competent E. coli, the appropriate amount of DNA (100 ng purified 

plasmid DNA or 1-2 µl of LR reaction) was added to an aliquot of competent cells 

previously thawed on ice. After 20 min incubation on ice, a heat-shock was performed for 

45 s at 42 °C in a water bath. The cells were immediately cooled for 2 min on ice and 

400 µl of LB medium (no antibiotics) were added. After incubation at 37 °C for one hour in 

a shaking incubator, the cells were plated on LB medium containing the appropriate 

antibiotics and incubated overnight at 37 °C. Individual colonies were picked, re-streaked 

on fresh LB medium plates and successful transformation was confirmed by colony PCR. 
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2.6.2.2 Electro-competent A. tumefaciens cells and transformation 

 

For the preparation of electro-competent A. tumefaciens cells, a starter culture of strain 

GV3101 pMP90 was inoculated in 20 ml YEB medium (containing rifampicin and 

gentamicin) and incubated overnight at 28 °C under constant shaking. A 400 ml YEB 

rifampicin gentamicin culture was inoculated with the starter culture and grown in a 

shaking incubator at 28 °C until the culture reached an OD600 of 0.3 - 0.6. The cells were 

harvested by centrifugation for 10 min at 4.000 rcf and 4 °C. The supernatant was 

discarded. The cells were resuspended in 400 ml ice-cold sterile water and pelleted again 

by centrifugation (as previously). This washing step was repeated once with 200 ml ice-

cold sterile water. The pellet was then washed once in 16 ml ice-cold 10 % glycerol and 

finally resuspended in 8 ml ice-cold glycerol. 50 µl aliquots were prepared, snap-frozen in 

liquid nitrogen and stored at -80 °C. 

For transformation of electro-competent A. tumefaciens, the appropriate amount of DNA 

(100 ng of purified plasmid DNA) was added to an aliquot of competent cells previously 

thawed on ice. The mixture was transferred into an electroporation cuvette. An electric 

pulse (pre-defined program mode “Agr”) was applied using a Bio-Rad MicroPulser 

electroporation device. 800 µl YEB medium (no antibiotics) were added immediately and 

the mixture was incubated at 28 °C under constant shaking for two hours before plating 

on YEB medium containing the appropriate antibiotics (rifampicin, gentamicin and 

spectinomycine in case of transformation with pK7WG2-based destination clones). Plates 

were incubated at 28 °C for 2 days. Individual colonies were picked, re-streaked on fresh 

YEB medium plates and successful transformation was confirmed by colony PCR. 
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2.7 DNA extraction 

 

2.7.1 Plasmid DNA extraction 

 

Plasmid DNA was extracted from E. coli which was used as a cloning host and for 

propagation of plasmids. 4 ml liquid LB medium containing the appropriate antibiotics 

were inoculated with the bacterial strain and incubated overnight in a shaking incubator. 

The cells were collected by centrifugation and plasmid DNA was extracted using the 

NucleoSpin Plasmid Kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany) according to 

the manufacturer’s instructions. The DNA concentration was measured using a 

spectrophotometer and plasmid DNA was stored at -20 °C. 

 

 

2.7.2 Plant DNA extraction 

 

For high-purity DNA extraction using plant material, the DNeasy Plant Mini Kit (Qiagen 

AQ, Hilden, Germany) was used according to the manufacturer’s instructions. 

For the extraction of DNA for analytical PCR, e.g. from leaf material of in vitro grown 

P. x canescens plants to check their transgenic status, a quick DNA preparation protocol 

was used. 

 

Extraction buffer 0.2 M Tris-HCl pH 8.0 

 1.25 M NaCl 

 0.025 M EDTA 

 0.5 % (w/v) SDS 

TE buffer 10 mM Tris-HCl pH 8.0 

 1 mM EDTA 

 

Up to 100 mg of plant material were collected in a 2 ml plastic tube containing a 5 mm 

stainless steel bead (Qiagen AG, Hilden, Germany). The material was snap-frozen in liquid 

nitrogen and stored at -80 °C if required. The tissue was disrupted at 50 Hz for 2x1 minute 

using the Qiagen TissueLyser LT. The following steps were carried out at room 

temperature. 300 µl of extraction buffer were added, the mixture was thoroughly mixed 

by vortexing and incubated for one minute. After centrifugation at 17.000 rcf for five 

minutes, the supernatant was transferred to a new tube, mixed thoroughly with 300 µl 



Materials and methods 
 

40 
 

2-propanol and incubated for five minutes. After centrifugation at 17.000 rcf for five 

minutes, the supernatant was discarded. The pellet was air-dried and resuspended in 

100 µl TE buffer. The DNA concentration was measured using a spectrophotometer and 

samples were stored at -20 °C. 

 

 

2.8 Sequencing of plasmid DNA 

 

For sequencing of plasmids, 600-1200 ng purified plasmid DNA were mixed with 30 pmol 

(3 µl of a 10 µM stock) sequencing primer (see chapter 2.3; p. 30f) and adjusted with 

sterile water to a final volume of 12 µl. If required, several reactions with different 

sequencing primers were performed to cover the full length of the region of interest. The 

samples were delivered to SEQLAB GmbH (Göttingen, Germany) using the Barcode 

Economy Run Service. 

Sequences were downloaded as files in the “.ab1” format and analyzed using the 

Geneious Software (Kearse et al., 2012). 

  

 

2.9 Polymerase chain reaction (PCR) 

 

Polymerase Chain Reaction (PCR) was performed for DNA amplification. This was done for 

the initial amplification of genes for cloning, as well as for analytical amplification such as 

colony PCR to check for bacterial colonies harboring the correct plasmid or to monitor the 

transgenic status of transformed plants. For cloning purposes, a proofreading DNA 

polymerase (Phusion Hot Start II, Thermo Fisher Scientific Inc., Waltham, U.S.A.) was used 

to reduce the mutation rate. For analytical PCR, a standard Taq DNA polymerase 

(DreamTaq DNA polymerase, Thermo Fisher Scientific Inc., Waltham, U.S.A.) was used. 

The PCR reaction mixtures were prepared as a master mix, if applicable, according to the 

DNA polymerase manufacturer’s instructions. As buffers, the solutions provided with the 

polymerase were used. Oligonucleotides (chapter 2.3; p. 30f) were added from a 10 µM 

working stock. A dNTP mixture (10 mM each) was prepared from 100 mM dATP, dTTP, 

dCTP and dGTP (Thermo Fisher Scientific Inc., Waltham, U.S.A.) and added to the 

appropriate final concentration. As template, purified DNA was used at the 

recommended concentration. For colony PCR, a small fraction of a bacterial colony was 

resuspended in sterile water and directly used as template. 
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The reaction mixes were prepared in a volume of 25 µl or 50 µl in 200 µl single PCR tubes, 

8-well stripes or 96-well plates. Reactions were performed in a thermocycler instrument 

according to the recommendations of the DNA polymerase manufacturer. 

PCR products were checked by agarose gel electrophoresis for purity and correct size. 

Products were purified for downstream processing either directly or as an excised band 

from an agarose gel using the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel 

GmbH & Co. KG, Düren, Germany).    

 

 

2.10 Agarose gel electrophoresis 

 

Loading dye 6x 10 mM Tris-HCl pH 8.0 

 60 % (v/v) glycerol 

 60 mM EDTA 

 0.03 % (w/v) Orange G 

 0.03 % (w/v) Bromophenol blue 

 

TAE buffer 50x 2 M Tris 

 1 M acetic acid 

 50 mM EDTA 

 

Agarose gel electrophoresis was performed for the analysis of DNA and RNA length, 

purity and integrity. Agarose gels (typically 1 % agarose) were prepared by dissolving the 

agarose (LE agarose, Biozym Scientific GmbH, Hessisch Oldendorf, Germany) in the 

appropriate amount of 1x TAE buffer by heating in a microwave oven. One drop of 

0.025 % ethidium bromide solution (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) was 

added per 50 ml of gel prior to polymerization. The gel was placed in an electrophoresis 

chamber and covered with 1x TAE buffer. The samples were mixed with 6x loading dye 

(1x final concentration) and loaded into the gel pockets next to a DNA size standard 

(GeneRuler DNA ladder 50bp, 100bp or 1kb, Thermo Fisher Scientific Inc., Waltham, 

U.S.A.). Gels were run at 90-120 V for the appropriate time and documented on a gel 

documentation system.     
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2.11 Cloning of P. x canescens MAX ortholog candidate genes 

 

Since the sequence of the P. x canescens MAX ortholog candidate genes was unknown 

but required for amiRNA design, the genes were amplified from P. x canescens genomic 

DNA by PCR using a proofreading DNA polymerase. The PCR products were checked for 

the correct size by agarose gel electrophoresis, purified from the gel using a purification 

kit and cloned into the vector pENTR/D-TOPO using the pENTR/D-TOPO Cloning Kit (Life 

Technologies Inc., Carlsbad, U.S.A.). Correct clones were identified by colony PCR, plasmid 

DNA was extracted and the cloned insert was sequenced.  

 

 

2.12  amiRNA design 

 

For the design of artificial microRNA (amiRNA) constructs to specifically target the 

messenger RNAs (mRNAs) of the selected candidate genes for degradation, the WMD3 

Web MicroRNA Designer tool (http://wmd3.weigelworld.org/cgi-bin/webapp.cgi) 

(Schwab et al., 2006) was used. The P. trichocarpa reference sequences of the target 

genes were used as input, and the corresponding amiRNA sites were designed using 

default settings. The highest-ranked amiRNAs (best fit to target(s) and low probability of 

off-targets, based on P. trichocarpa genome sequence information) were considered. 

Since the design was based on the P. trichocarpa target gene reference sequences, the 

target sites of the amiRNAs were confirmed in the corresponding P. x canescens 

sequences. The latter were obtained by cloning and sequencing of the candidate genes. 

There are two copies each of MAX4 and MAX2 in poplar which may be functionally 

redundant. Hence, amiRNAs for individual and simultaneous silencing were designed. The 

miRNA and miRNA* sites of the endogenous poplar microRNA precursor ptr-miR408 (Lu 

et al., 2005) were replaced with the designed sequences to obtain candidate-gene specific 

amiRNAs. The amiRNA constructs were designed with flanking Gateway attL sites to 

facilitate direct cloning into the Gateway destination vector pK7WG2.  

An overview about the amiRNA and amiRNA* sites designed and used in this work to 

engineer amiRNAs specific for silencing of the intended SL-pathway genes is shown in 

Tab. 2.6. An example sequence of a full-length amiRNA construct designed and used in 

this work is given in Appendix Fig. 7.2 (p. 151). 
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Tab. 2.6 Overview about the amiRNA and amiRNA* sequences designed and used during this work. The 

target genes are indicated together with the corresponding sites leading to amiRNA specificity. 

Sequences are noted in 5’-3’ orientation. 

Target gene(s) amiRNA sequence amiRNA* sequence 

MAX4-1 TTAACAGTGCATATCCGTCTC GAAACGGATATGCTCTGTTAT 

MAX4-2 TTCTAAGATTGTCGTGTGCGA TCACACACGACAAACTTAGAT 

MAX4-1 + MAX4-2 TAAGGAATTATGAACCTGCCG CGACAGGTTCATATTTCCTTT 

MAX2-1 TTCGAAAGCCGAGGGTACCAT ATAGTACCCTCGGGTTTCGAT 

MAX2-2 TAGATGGCGCAGTTAACGCGA TCACGTTAACTGCCCCATCTT 

MAX2-1 + MAX2-2 TTAATAGTCTTCCCACGGCTG CAACCGTGGGAAGTCTATTAT 

 

 

2.13  Synthesis and cloning of amiRNA constructs 

 

The amiRNA constructs used in this work were based on the endogenous poplar 

microRNA precursor ptr-miR408 (Lu et al., 2005) and designed as described in 

chapter 2.12 (p. 42f). In order to circumvent laborious cloning procedures, the constructs 

were designed with flanking attL sites and ordered as synthetic DNA constructs in the 

pUC57 vector from GenScript (Piscataway, U.S.A.). The constructs were then directly 

transferred into the binary Gateway destination vector pK7WG2 by performing a LR 

reaction. 

 

 

2.14  LR reaction (Gateway cloning) 

 

The Gateway system features quick recombination of DNA sequences via att sites, 

allowing the shuttling of an insert flanked with these sites from one vector to another. 

Frequently, so-called LR reactions are carried out to transfer an insert present in a 

Gateway entry or donor vector (flanking attL1 and attL2 sites) into a Gateway destination 

vector (attR1 and attR2 sites). In this work, the cloning of the insert into an entry or donor 

vector was omitted for cloning of the amiRNA constructs. The constructs were 

synthesized directly with flanking attL sites, allowing immediate recombination with the 

binary destination vector pK7WG2.  

The LR reactions were carried out using the Invitrogen Gateway LR clonase II enzyme mix 

(Life Technologies Inc., Carlsbad, U.S.A.) according to the manufacturer’s instructions. 

Usually, incubation time was extended from 1 hour to overnight for enhanced yield, as 
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recommended. 1 µl of the reaction mixture was directly used for the transformation of 

competent E. coli cells. 

 

 

2.15  Genetic transformation of P. x canescens plants 

 

Co-incubation medium 2,2 g/l MS medium incl. vitamins 

 20g/l sucrose 

 7 g/l plant agar 

 pH adjusted to 5.8 

 

Selection medium 2,2 g/l MS medium incl. vitamins 

 20g/l sucrose 

 7 g/l plant agar 

 0.01 % (w/v) Pluronic F-68 

 0.0022 mg/l Thidiazuron 

 150 mg/l Cefotaxime 

 200 mg/l Ticarcillin Clavulanate 

 50 mg/l Kanamycin 

 pH adjusted to 5.8 

 

Rooting medium 2,2 g/l MS medium incl. vitamins 

 20g/l sucrose 

 7 g/l plant agar 

 150 mg/l Cefotaxime 

 200 mg/l Ticarcillin Clavulanate 

 50 mg/l Kanamycin 

 pH adjusted to 5.8 

 

P. x canescens was transformed using A. tumefaciens as a vector according to a 

transformation protocol adopted from Tobias Brügmann (AG Fladung, Thünen Institute of 

Forest Genetics, Großhansdorf, Germany). All steps were carried out under sterile 

conditions.   

All transformations were performed using Agrobacterium tumefaciens strain GV3101 

pMP90, harboring the amiRNA construct in the binary vector pK7WG2, which contains a 
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kanamycin resistance gene (NEOMYCIN PHOPHOTRANSFERASE II) for plant selection. The 

appropriate Agrobacterium strain was streaked out from -80 °C storage on YEB plates 

containing antibiotics, and cultivated as described (see chapter 2.6.1; p. 36ff). From this 

fresh culture, a 4 ml liquid culture (same medium) was inoculated and incubated 

overnight. This starter culture was used to inoculate 100 ml liquid YEB medium (pre-

warmed to 28 °C, no antibiotics for rapid growth of the bacteria) as the main culture. The 

main culture was incubated under standard conditions and the optical density at 600 nm 

(OD600) was measured frequently. When it reached 0.25 to 0.8, 3‘,5‘-dimethoxy-4‘-

hydroxyacetophenone (acetosyringone) was added to a final concentration of 20 µM and 

the culture was further incubated for 30 minutes to induce the bacteria.        

In parallel to the bacterial culture, the plant material was prepared. For the 

transformation, approx. 6 weeks old P. x canescens wild type plants grown in vitro under 

standard conditions (see chapter 2.5.2; p. 34ff), were used. These plants have little 

lignification, making them easier to process and regeneration efficiency is higher 

compared to older plants. Whole shoots were harvested and the leaves and shoot tips 

were discarded. If required, the stems were stored in liquid ½ MS medium for several 

hours before cutting into small explants (approx. 3-8 mm) using a scalpel blade. 

The explants were transferred into the Agrobacterium main culture and incubated for 

30 minutes in a shaking incubator at 120 rpm and 28 °C. After this inoculation step, the 

explants were retrieved from the bacterial culture using a sieve. Excess liquid was 

removed by blotting on filter paper and the explants were distributed in Petri dishes 

containing co-incubation medium. These plates were then incubated for three days at 

25 °C in the dark to allow the bacteria to overgrow the explants and transform the plant 

cells.  

For removal of Agrobacterium, the explants were collected and washed 1x in sterile 

water, 3x in 400 µg/ml ticarcillin clavulanate and 1x in sterile water (in this order). Each 

washing step was carried out in an Erlenmeyer flask for five minutes under manual 

shaking and the explants were retrieved using a sieve. After the last washing step, excess 

liquid was removed by blotting on filter paper, and the explants were distributed in Petri 

dishes containing selection medium (including kanamycin). As a control for regeneration 

efficiency, the same medium without kanamycin was used. 

The plates were placed in a growth cabinet at approx. 10 µE lighting. Regenerates 

developed after 2-6 weeks and were transferred into culture vessels containing rooting 

medium for further growth. The light intensity was increased to approx. 20 µE. If 

required, the regenerates were subsequently transferred to fresh rooting medium every 
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four weeks. When shoots emanated from the regenerates, cuttings were made and 

placed on rooting medium. Rooted cuttings were sampled (leaves) and the transgenic 

status was tested by PCR. To avoid false-positive results from bacteria persisting in the 

plant tissue, a second PCR was performed to exclude this possibility (PCR against the 

spectinomycine resistance gene on the vector backbone of pK7WG2, used for bacteria 

selection). 

Confirmed transgenic lines received a line number, were adapted to standard in vitro 

cultivation conditions (increased light intensity) and propagated. An illustration of the 

transformation procedure is given in Fig. 2.1. 

 

 
Fig. 2.1 Illustration of the genetic transformation of poplar. P. x canescens wild type plants grown in vitro 

(A) serve as a starting material for the transformation. After co-incubation with A. tumefaciens, the 

explants are arranged on the appropriate medium (B). After 4-6 weeks, regenerates develop (C). 

After further cultivation, the regenerates start to produce shoots (D) which are used to prepare 

cuttings (E). Rooted cuttings (F) are analyzed by PCR and transgenic plants are assigned with a line 

number. 
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2.16 Gene expression analysis 

 

For gene expression analysis, quantitative PCR (qPCR) was performed. Total RNA was 

extracted from various plant tissues and used for synthesis of complementary DNA 

(cDNA) by in vitro reverse transcription. The cDNA was used for quantification by qPCR. 

 

 

2.16.1 RNA extraction 

 

Total RNA was extracted from plant tissues using the innuPREP Plant RNA Kit (Analytik 

Jena AG, Jena, Germany) or a CTAB-based extraction protocol (“pine method”) (Chang et 

al., 1993). The detailed protocols are outlined in the following sections.  

For poplar leaf material, the RNA extraction kit was a reliable and fast option and was 

used if only this tissue type was tested. For other tissue types, the performance of the kit 

was insufficient and the CTAB-based protocol was used instead. For high quality RNA 

extraction from axillary buds, a combination of both protocols was required, as suggested 

by Ruttink et al. (2007). In this case, the samples were initially processed according to the 

CTAB-based protocol. After LiCl precipitation, the samples were used as starting material 

for RNA extraction using the kit.     

After RNA extraction, the RNA concentration was determined using a spectrophotometer. 

If required, RNA integrity was monitored on a 1 % agarose gel. 

 

 

2.16.1.1 RNA extraction using the innuPREP Plant RNA Kit 

 

For leaf material, the innuPREP Plant RNA Kit was highly effective and therefore used if 

only this tissue type was tested, as for the expression analysis of the poplar MAX2 

orthologs in transgenic amiMAX2 lines (see chapter 3.7.1; p. 91ff). 

Up to 100 mg of leaf material were collected in a 2 ml plastic tube containing a 5 mm 

stainless steel bead (Qiagen AG, Hilden, Germany). The material was snap-frozen in liquid 

nitrogen and stored at -80 °C if required. The tissue was disrupted at 50 Hz for 3x1 minute 

using the Qiagen TissueLyser LT. 450 µl lysis solution PL (supplied with the kit) were 

added and the mixture was incubated for 10 min in a Thermomixer at 1.400 rpm and 

room temperature. The following steps were carried out according to the manufacturer’s 
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instructions. RNA samples were eluted in 50 µl RNase-free water. Samples were stored 

at -80 °C. 

 

 

2.16.1.2 RNA extraction using a CTAB-based protocol 

 

A CTAB-based protocol (Chang et al., 1993) was used for poplar tissues (roots, bark, 

developing xylem, wood, axillary buds) for which the kit-based RNA extraction did not 

yield sufficiently high RNA quality and quantity.  

 

Isolation buffer 2 % (w/v) CTAB 

 2 % (w(v) PVP K30 

 25 mM EDTA 

 2 M NaCl 

 100 mM Tris-HCl pH 8.0 

 

SSTE buffer 0.5 % (w/v) SDS 

 1 mM EDTA 

 1 M NaCl 

 10 mM Tris-HCl pH 8.0 

 

The plant material was harvested, snap-frozen in liquid nitrogen and stored at -80 °C, if 

required. The tissue was disrupted by manual grinding using a mortar and pestle, cooled 

with liquid nitrogen. 1.5 ml isolation buffer and 30 µl 2-mercaptoethanol were mixed, 

heated to 65 °C in a water bath and added to 200 mg of the plant material. The sample 

was briefly mixed and incubated for 15 min at 65 °C prior to incubation for 15 min under 

shaking at 160 rpm and room temperature. 1.5 ml chloroform:isoamylalcohol (24:1) were 

added. After shaking for 15 min at 160 rpm and room temperature, the samples were 

centrifuged for 15 min at 17.000 rcf. The aqueous (upper) phase was transferred to a new 

tube and 1.5 ml chloroform:isoamylalcohol (24:1) were added. After shaking for 15 min at 

160 rpm and room temperature, the samples were centrifuged for 15 min at 17.000 rcf. 

The aqueous phase was transferred to a new tube and the volume was determined. The 

0.3-fold volume of 8 M LiCl (4 °C) was added and the RNA was precipitated overnight on 

ice. 
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The samples were centrifuged for 40 min at 4 °C and 17.000 rcf and the supernatant was 

discarded. For extraction of RNA from poplar buds, at this step the processing was 

continued using the RNA extraction kit as described above, starting with the addition of 

buffer PL. For all other tissues, extraction was continued according to the CTAB-based 

protocol by dissolving the pellet in 100 µl SSTE buffer (pre-warmed to 65 °C) in a 

Thermomixer at 42 °C and 850 rpm. 100 µl chloroform:isoamylalcohol (24:1) were added, 

the sample was mixed by vortexing and centrifuged for 5 min 17.000 rcf and room 

temperature. The aqueous phase was transferred to a new tube. The 

chloroform:isoamylalcohol extraction was repeated once and after transfer of the 

aqueous phase to a new tube, 200 µl ethanol (96 %, ice-cold) were added and the RNA 

was precipitated for at least 2 h on ice. The samples were centrifuged for 40 min at 4 °C 

and 17.000 rcf and the supernatant was discarded. The pellet was washed with 400 µl of 

70 % ethanol. The samples were centrifuged at 4 °C and 17.000 rcf and the supernatant 

was discarded. The pellet was air-dried at 37 °C and resuspended in 20 µl RNase-free 

water. Samples were stored at -80 °C. 

 

 

2.16.2 cDNA synthesis (reverse transcription) 

 

Complementary DNA (cDNA) was prepared by reverse transcription of total RNA using the 

Fermentas RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Fisher Scientific 

Inc., Waltham, U.S.A.). The obtained cDNA was used as template DNA for quantification 

by qPCR.  

Prior to cDNA synthesis, a DNase I treatment was performed to eliminate possible 

contaminations by genomic DNA. The following components (provided with the kit or 

purchased separately from the same manufacturer) were added to an RNase-free tube: 

 

Total RNA   up to 1 μg  

10X Reaction Buffer with MgCl2   1 μl  

DNase I  1 μl (1 u)  

RNase Inhibitor RiboLock  0.5 µl (10 u) 

Water, nuclease-free   to 10 μl 

 

The samples were incubated for 30 min at 37 °C and the reaction was terminated by 

adding 1 µl 50 mM EDTA and incubation for 10 min at 65 °C. 
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For cDNA synthesis, the following reagents were added: 

 

5X Reaction Buffer   4 μl  

Oligo (dT)18 primer  1 µl 

RiboLock RNase Inhibitor (20 u/μl)   0.5 μl (10 u) 

10 mM dNTP Mix   2 μl  

RevertAid H Minus Reverse Transcriptase 1 μl (200 u) 

Water, nuclease-free  to 20 μl 

 

The mixture was incubated for 60 min at 42 °C and the reaction was terminated by 

incubation for 5 min at 70 °C. The product of the reaction was stored at -80 °C. 

The cDNA quality was tested by standard PCR using intron-spanning primers, which reveal 

genomic DNA contamination. 

 

 

2.16.3 quantitative PCR (qPCR)  

 

Quantitative PCR (qPCR) was performed for analysis of the expression of a gene of 

interest relative to a reference gene. As reference genes, poplar UBIQUITIN (UBQ; 

Potri.001G418500) or poplar ELONGATION FACTOR 1 (EF1; Potri.001G224700) were used 

(Regier and Frey, 2010). 

The reaction setup was done using the SsoFast EvaGreen Supermix (Bio-Rad Laboratories 

Inc., Hercules, U.S.A.), containing all required components except for primers and 

template. Primers were added to a final concentration of 500 nM each. Reaction mixes 

were prepared as master mixes for each primer pair and distributed in 96 well plates 

(Multiplate clear, Bio-Rad Laboratories Inc., Hercules, U.S.A.). As template, 6 µl of a 1:10 

dilution of the cDNA were added to gain a final reaction volume of 15 µl. For each 

reaction, three technical replicates were made. Reactions for different target genes in the 

same sample were always performed on the same 96 well plate.  

The reaction was performed according to the recommendations in the SsoFast EvaGreen 

Supermix protocol on a CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories 

Inc., Hercules, U.S.A.).  

Data analysis was done using the Bio-Rad CFX Manager software (Bio-Rad Laboratories 

Inc., Hercules, U.S.A.) and Microsoft Excel (Microsoft Corporation, Redmond, U.S.A.). 

Generally, the quantification cycle (Cq) was determined for all samples and the average of 
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the three technical replicates was calculated. The cycle number difference between the 

target and reference genes (ΔCq[target-reference]) was calculated and the relative 

expression was determined according to the formula 2−𝛥𝐶𝑞. The average and standard 

deviation of the relative expression were calculated for all biological replicates and 

different sample types were compared. 

 

 

2.17  Phenotyping of architectural plant traits 

 

The transgenic lines generated during this work were phenotyped for architectural traits 

to investigate the impact of the gene knockdowns on plant architecture. Therefore, plants 

were transferred from the in vitro culture to pots and grown in a growth chamber, a 

greenhouse or under outdoor conditions as described (see chapter 2.5; p. 33ff). 

P. x canescens wild type plants were always grown and evaluated in parallel. 

At an appropriate size (e.g. about 1.5 m shoot height for 3 months old greenhouse-grown 

plants), plants were photographed and the shoot height as well as the stem base 

diameter were measured. The number of nodes was counted and the number of 

branches and their position was recorded. In addition to this basic phenotyping, 

additional parameters were determined for several lines. The shoot was separated into 

stem and leaves (separately for the main stem and branches), and the corresponding 

biomass was determined by weighing. Beside this determination of the fresh weight, also 

the dry weight was measured after drying of the samples at 60 °C for an appropriate time 

(until they did not lose weight anymore). The root system was accessed by washing off 

the culture substrate. Excess water was removed using a salad spinner. The roots were 

photographed and the fresh and dry weight was determined as well. 

If required, samples were taken for RNA extraction and expression analysis. Leaves and 

buds were always harvested from a defined position (defined number of nodes counted 

from the apex). Bark, developing xylem and wood were sampled at the stem base just 

above the soil level. The bark was peeled off manually. Developing xylem was then 

scraped from the stem with a scalpel blade. The remaining tissue was cut into small 

pieces using secateurs and taken as a wood sample. From the root system, young, 

white/gray-colored tissue was collected. All samples were snap-frozen in liquid nitrogen 

and stored at -80 °C until processing.    
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2.18  Poplar leaf JA-treatment 

 

To confirm the jasmonic acid (JA) induced up-regulation of the expression of 

Potri.004G182100 which was used as JA-marker gene, P. x canescens wild type leaves 

from plants grown in a growth chamber (6 weeks old after potting) were detached and 

placed in a glass container containing wet filter paper to increase the moisture and to 

prevent wilting of the leaves. Methyl jasmonate (95 %) was pipetted on dry filter paper 

(1 µl per 1 l of container volume) and placed in the glass container. A mock-treatment 

without methyl jasmonate was performed. The leaves were collected after 22 hours, 

snap-frozen in liquid nitrogen and stored at -80 °C.    

 

 

2.19 Poplar GR24 treatments 

 

Treatments with the synthetic strigolactone analog rac-GR24 (Chiralix B.V., Nijmegen, The 

Netherlands) were performed to test the effect of the hormone on P. x canescens wild 

type stem cuttings bearing one or two axillary buds (one- and two-node-assays). 

Furthermore, application of the hormone directly to dormant buds was tested in intact 

wild type and transgenic amiMAX4-1+2 plants. In the latter, complementation of the 

increased branching phenotype was tested.  

 

 

2.19.1 GR24 treatment of P. x canescens stem cuttings 

 

Stem cuttings bearing one or two nodes (including the buds; the leaves were removed) 

were prepared from young in vitro grown P. x canescens plants. Cuttings from different 

plants were randomized and placed on standard ½ MS medium containing 5 µM GR24 or 

the same volume of acetone (0.05 % final concentration) which was used as solvent for 

GR24 as mock control. Bud outgrowth was defined as the unfolding of the first leaf and 

monitored daily.  

In one-node-assays, the single bud grows out in virtually all cuttings. Therefore, the 

average time until bud outgrowth was calculated. In two-node-assays, not all buds grow 

out. Therefore, the percentage of outgrown buds was calculated at a defined time point. 

 

 



Materials and methods 
 

53 
 

2.19.2  GR24 treatment of axillary buds 

 

Bud treatment solution 1 % (w/v) PEG-1450  

 6.25 % (v/v) ethanol 

 0.0125 % (v/v) Tween-20 

 0.05 % (v/v) acetone 

  

Plants grown in vitro were potted and acclimatized to growth chamber conditions. Bud 

treatment was started 3 weeks after potting and done twice a week, i.e. every 3-4 days. 

The first treatment was applied at freshly grown (after potting) buds at node 4 counted 

from the apex, while node 1 was counted as the most apical node bearing a young, 

unfolded and expanding leaf. Bud treatment solution was prepared according to Dun et 

al. (2009) with modifications recommended by C. Beveridge (University of Queensland, 

Brisbane, Australia; personal communication). 6 µl of bud treatment solution containing 

5 µM GR24 were pipetted directly on the buds. As mock control, 6 µl of bud treatment 

solution containing no GR24 (but acetone which was used as a solvent for GR24), were 

applied. The treatment was repeated twice for the same buds at the following treatment 

time points, i.e. the second and third treatment were done after 3-4 days each. While the 

plants grew, new buds reaching the position at node 4 counted from the apex were 

included in the treatment over the course of the experiment and the solution was applied 

three times in total as well. In total, axillary buds at 10-15 consecutive nodes were treated 

per plant. The time point of bud outgrowth was recorded for each individual bud and the 

time from the first treatment until outgrowth was calculated.  
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2.20  Poplar grafting 

 

Grafting of poplar was carried out to combine rootstocks and scions (shoots) of different 

genotypes (wild type and amiRNA lines) and to analyze the resulting plant architecture. 

Young, approx. 6 cm tall plants grown from cuttings propagated in vitro were potted and 

acclimatized to growth chamber conditions for 2.5 weeks. For the graft-combination of 

different genotypes (and self-grafted controls within the same genotype), a wedge-

grafting technique was used. The stem of the rootstock was cut horizontally approx. 

4-5 cm above the soil level using a clean scalpel blade. The stump was sliced vertically in 

the middle, about 5 mm deep. The scion was prepared by cutting the apex of a suitable 

plant/genotype at a length of approx. 2-3 cm. All leaves >1 cm were removed to reduce 

transpiration and the stump of the scion was sliced to form a wedge shape. The scion was 

carefully inserted into the sliced stump of the rootstock, ensuring as much direct contact 

of the tissues as possible. A 1 cm long piece of silicone tube (1.5/3.5 mm Ø; Carl Roth 

GmbH & Co. KG, Karlsruhe, Germany) was sliced longitudinal and wrapped around the 

graft union to stabilize it mechanically. To prevent drying of the graft union, it was 

wrapped in Parafilm M laboratory film (Bemis Inc., Neenah, U.S.A.). A photograph of a 

grafted plant is shown in Fig. 2.2 A. 

The grafted plants were placed in a tray with sufficient water and covered with a 

transparent plastic lid to maintain high humidity. Plants were further cultivated in a 

growth chamber. For the first day after grafting, the plants were kept entirely dark, and 

shading was successively removed over the course of one week. Then the humidity was 

reduced by stepwise lifting of the tray hood, as routinely done for acclimatization of 

plants potted from the in vitro culture. Shoots developing from axillary buds at the 

rootstock (below the graft union) due to initial release from apical dominance were 

removed using a scalpel blade. After 2-3 weeks, the plants formed a stable graft union. 

The Parafilm and silicone tube were removed. A close-up photograph of the graft union 

after healing is shown in Fig. 2.2 B. Further cultivation was done under standard 

conditions.  

For interstock grafting, the grafting procedure was repeated. When the graft union of the 

first grafting step was completely healed, another grafting step was performed by cutting 

of the rootstock 1-2 cm above to first graft union and inserting a new scion. Therefore, 

the scion of the first grafting step was turned into the interstock. 
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Fig. 2.2 Photographs of grafted poplar plants. Poplar plant directly after grafting. The grafting site is 

stabilized with a silicone tube and Parafilm (A). Close-up of the graft union after healing (B). 
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3 Results 

 

3.1 Identification of branching-relevant poplar SL-pathway genes 

 

To study the strigolactone (SL) pathway in poplar, candidate genes were selected based 

on published data. In Arabidopsis and other species, knockout mutants of the genes in 

this pathway exhibit highly increased branching (Seto and Yamaguchi, 2014). In this study, 

the genes MORE AXILLARY GROWTH4 (MAX4) and MORE AXILLARY GROWTH2 (MAX2) 

were chosen for analysis in poplar. MAX4 is involved in SL biosynthesis (Sorefan et al., 

2003) and MAX2 participates in SL signaling (Stirnberg et al., 2007) in Arabidopsis.  

To identify poplar orthologs of MAX4 and MAX2, a BLAST (Basic Local Alignment Search 

Tool) analysis was performed. The Arabidopsis protein sequences taken from TAIR (The 

Arabidopsis Information Resource; www.arabidopsis.org) (Lamesch et al., 2011) were 

used as a query to search for similar sequences in a poplar translated nucleotide database 

(TBLASTN search) on Phytozome (www.phytozome.org) (Goodstein et al., 2012). For both 

candidate genes, two poplar orthologs each with high ranks in the BLAST analysis were 

identified (Tab. 3.1). The presence of two orthologs was expected, since a whole genome 

duplication occurred in the Salicaceae family, which comprises poplar (Tuskan et al., 

2006). The genes identified here were also described in a recent publication as poplar 

orthologs of the Arabidopsis MAX genes and were shown to be able to (partially) 

complement the mutant phenotypes in Arabidopsis (Czarnecki et al., 2014). The 

corresponding annotation from this publication is included in (Tab. 3.1). 

Protein sequence alignments based on in silico translations of the Arabidopsis MAX genes 

and their poplar orthologs were done using the Geneious Software (Kearse et al., 2012), 

showing a high degree of conservation (Appendix Fig. 7.3 and Fig. 7.4, p. 152).   
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Tab. 3.1 Overview about the selected SL pathway candidate genes. Arabidopsis MAX4 and MAX2, as well 

as their corresponding poplar orthologs, are shown. The names of the poplar orthologs as used in 

this work are indicated together with the gene names used in a recent publication (Czarnecki et 

al., 2014). Gene IDs are indicated as they can be found in the TAIR (for Arabidopsis) and 

Phytozome databases (for poplar). 

Gene name 

(this work) 

Gene name 

(Czarnecki et 

al., 2014) Species Gene ID 

Length 

CDS 

[bp] 

Length 

genomic 

[bp] 

Length 

protein 

[aa] 

AtMAX4 
 

A. thaliana At4G32810 1713 3258 570 

PtMAX4-1 PtrMAX4b P. trichocarpa Potri.006G238500 1674 5367 557 

PtMAX4-2 PtrMAX4a P. trichocarpa Potri.018G044100 1674 3953 557 

AtMAX2 
 

A. thaliana At2G42620 2082 2329 693 

PtMAX2-1 PtrMAX2b P. trichocarpa Potri.011G066700 2016 3198 671 

PtMAX2-2 PtrMAX2a P. trichocarpa Potri.014G142600 2106 2890 701 

 

 

3.2 Sequencing of MAX genes in Populus x canescens 

 

In 2006, a poplar whole genome sequence was published (Tuskan et al., 2006). However, 

the species used in the sequencing project was Populus trichocarpa (black cottonwood), 

which is not well amenable to genetic transformation. In contrast, Populus x canescens 

(gray poplar, a natural poplar hybrid) is well-transformable using Agrobacterium 

tumefaciens as a vector. Established transformation protocols are available (e.g. as 

described by Filichkin et al., 2006), making it a suitable species for projects requiring the 

generation of transgenic poplar plants. Therefore, P. x canescens was also used in this 

work.  

In this project, targeted gene knockdowns using artificial microRNAs (amiRNAs) were 

carried out. This method can be used for knocking down genes with high specificity, but it 

requires precise knowledge of the target sequence. Since no whole genome sequence is 

available for P. x canescens and also expressed sequence tag (EST) data could not be 

found, the target genes intended to be knocked down were cloned and sequenced.  

Clones were obtained for all P. x canescens MAX4 and MAX2 orthologs, although for 

MAX4, only a truncated version could be successfully cloned. PCR using the forward 

primer initially designed for full-length amplification of both MAX4 orthologs did not yield 

any amplicon. This is most likely due to sequence variations at this site between 

P. trichocarpa and P. x canescens, combined with the fact that primer design was based 

on the P. trichocarpa sequence information. Therefore, an alternative forward primer 

within the predicted coding sequence (CDS) was designed and used for successful cloning 

of a truncated version of the gene. 
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The obtained clones were sequenced and compared to the P. trichocarpa reference 

sequences. The DNA and protein sequence identities are shown in Tab. 3.2. Both values 

were very high (>97.6 %), as expected for species from the same genus. However, 

differences on the single nucleotide level had to be considered for amiRNA design. 

Alignments of all MAX gene sequences from P. trichocarpa and P. x canescens are shown 

in Appendix Fig. 7.5 - Fig. 7.8 (p. 153f). For MAX4-1 and MAX4-2, the obtained 

P. x canescens sequences from a genomic clone were manually spliced according to the 

annotations from P. trichocarpa in order to show only relevant sequence data, and 

aligned to the P. trichocarpa reference CDS sequences. The introns are removed during 

mRNA processing and are not suited as targets for amiRNA. For MAX2-1 and MAX2-2, 

manual editing was not necessary since these genes do not contain introns. 

  

Tab. 3.2 Sequence and protein identity of P. x canescens (Pc) MAX4 and MAX2 orthologs compared to 

the corresponding P. trichocarpa reference sequence.  

Gene DNA sequence identity [%] Protein sequence identity [%] 

PcMAX4-1 98.5 97.9 

PcMAX4-2 98.5 98.9 

PcMAX2-1 98 98.1 

PcMAX2-2 97.6 99 

 

 

Based on the obtained sequence data, artificial microRNAs were designed as described in 

chapter 2.12 (p. 42f). Since there are two highly similar orthologs of MAX4 and MAX2 in 

poplar (designated MAX4-1 and MAX4-2 as well as MAX2-1 and MAX2-2), amiRNAs for 

silencing of individual MAX orthologs (amiMAX4-1 and amiMAX4-2 as well as amiMAX2-1 

and amiMAX2-2), and simultaneous silencing of both orthologs (amiMAX4-1+2 and 

amiMAX2-1+2), were designed. Individual silencing was performed based on the idea that 

the two orthologs may be functionally different, and unraveling these possible functions 

would be an interesting example of gene diversification. However, also similar functions 

were likely based on the knowledge of the highly similar sequences. This would lead to 

redundancy, masking the effect of individual knockdowns. Thus, simultaneous silencing of 

both orthologs was done as well to produce a knockdown phenotype. 
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3.3 Expression pattern of MAX genes in wild type poplar  

 

To investigate the expression patterns of the selected SL pathway candidate genes in 

poplar, publicly available microarray data from Populus balsamifera was evaluated. 

Additionally, qPCR expression analysis was performed for different tissues of 

Populus x canescens, the species used during this work. 

 

 

3.3.1 Expression pattern of MAX genes in P. balsamifera (poplar eFP browser) 

 

For an initial overview about the expression patterns of the poplar MAX candidate genes, 

the web-based tool Populus electronic Fluorescent Pictograph (eFP) browser 

(http://bar.utoronto.ca/efppop/cgi-bin/efpWeb.cgi) (Wilkins et al., 2009) was used. This 

tool allows to access transcript abundance data from an Affymetrix Poplar Genome Array 

experiment carried out with different Populus balsamifera tissues, including young and 

mature leaves, roots and developing xylem. The output of the web tool is a graphical 

illustration of the transcript abundance as shown in Fig. 3.1 for the poplar MAX4 

orthologs and in Fig. 3.2 for the MAX2 orthologs. Generally, expression of the candidate 

genes was low when compared to the reference gene UBIQUITIN (UBQ; 

Potri.001G418500), for example. This gene had a fluorescence readout of approximately 

30.000 units for example in the roots, while readouts for the MAX genes were well below 

2.000 units.  

For MAX4-1, the strongest signal was found in roots, while it was very weak in all other 

tissues. Absolute values for MAX4-2 were very low, with the highest expression in male 

catkins (Fig. 3.1). For MAX2-1 and MAX2-2, absolute values were higher and a more 

uniform expression pattern was found for both genes. Expression was rather high in roots 

and developing xylem, as well as young leaves (Fig. 3.2). 

 

http://bar.utoronto.ca/efppop/cgi-bin/efpWeb.cgi
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Fig. 3.1 Populus eFP browser expression data for MAX4-1 and MAX4-2 in different tissues. Yellow color 

indicates low transcript abundance, while red color represents high transcript levels. Note the 

respective absolute fluorescence readout scale at the top.  

 

 
Fig. 3.2 Populus eFP browser expression data for MAX2-1 and MAX2-2 in different tissues. Yellow color 

indicates low transcript abundance, while red color represents high transcript levels. Note the 

respective absolute scale at the top. Note the respective absolute fluorescence readout scale at 

the top.  

 



Results 
 

61 
 

3.3.2 Expression pattern of MAX genes in P. x canescens  

 

The poplar eFP browser data shown in the previous section is based on P. balsamifera 

samples. For expression analysis of the selected SL-pathway genes in P. x canescens, the 

species used in this work, a qPCR experiment was performed.  

Whole in vitro grown wild type plants were dissected into leaves, roots and stems and the 

expression levels of the candidate genes relative to UBIQUITIN (UBQ, Potri.001G418500) 

were determined. The obtained expression data is shown in Fig. 3.3. Expression of 

MAX4-1 and MAX4-2 was extremely low and could only be detected in roots and stems. 

MAX2-1 and MAX2-2 transcript levels were very low in roots. In leaves and stems, 

expression was also low, but considerably higher compared to MAX4 and well-detectable. 

 

 
Fig. 3.3 Expression of P. x canescens MAX4 and MAX2 orthologs in different tissues of in vitro grown 

WT plants. Expression levels were normalized against the reference gene UBQ. n=3 pools of 

tissue from 3 individual plants each. Error bars indicate standard deviation.  

 

For a more detailed analysis, greenhouse-grown wild type plants (4.5 months old) were 

separated into leaves, roots, dormant axillary buds, wood, bark as well as developing 

xylem, and subjected to qPCR analysis. As for in vitro grown plants, the expression levels 

of the candidate genes relative to UBQ were determined.  

Also in the greenhouse-grown plants, expression of MAX4-1 and MAX4-2 was generally 

very low. Transcripts of both genes could not be detected in leaves, dormant axillary buds 

and bark. Expression was extremely low in roots and developing xylem, but significantly 

higher in the wood samples (stem tissue without bark and developing xylem) (Fig. 3.4).  
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Expression of MAX2-1 and MAX2-2 was also low relative to the reference gene, but 

transcripts from these genes could be detected in all tested tissues. Expression appeared 

to be highest in leaves and lowest in roots (Fig. 3.5). 

 

 
Fig. 3.4 Expression of P. x canescens MAX4 orthologs in different tissues of greenhouse-grown WT 

plants. Expression relative to the reference gene UBQ was determined. The data was subjected 

to a Shapiro-Wilk normality test and a Kruskal-Wallis One Way Analysis of Variance on Ranks 

(ANOVA). For pairwise multiple comparison, a Tukey Test was performed. Differences with 

p<0.05 (n=6) were considered as significant. Error bars indicate standard deviation. 
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Fig. 3.5 Expression of P. x canescens MAX2 orthologs in different tissues of greenhouse-grown WT 

plants. Expression relative to the reference gene UBQ was determined. The data was subjected 

to a Shapiro-Wilk normality test and a Kruskal-Wallis One Way Analysis of Variance on Ranks 

(ANOVA). For pairwise multiple comparison, a Tukey Test was performed. Differences with 

p<0.05 (n=6) were considered as significant. Error bars indicate standard deviation. 
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3.4 Generation of MAX4 and MAX2 knockdown (amiMAX) lines 

 

For testing the significance of the SL pathway in poplar, orthologs of the SL biosynthesis 

gene MAX4 und the SL signaling gene MAX2 were identified (see chapter 3.1; p. 56ff) and 

selected for amiRNA-mediated knockdowns. This required the generation of transgenic 

plants, harboring the amiRNA constructs. 

The genetic transformation of P. x canescens was successful and for all constructs 

(individual as well as simultaneous knockdown of the MAX4 and MAX2 orthologs, six 

constructs in total), 12-14 independent transgenic lines were obtained each. An overview 

about these lines is given in Appendix Tab. 7.1 (p.155). Most of the MAX4 knockdown 

lines and some of the MAX2 knockdown lines were grown under greenhouse conditions 

for phenotyping, as discussed below. 

 

 

3.5 Target gene expression analysis and phenotyping: amiMAX4 lines 

 

For an initial characterization of the MAX4 knockdown (amiMAX4) lines generated in this 

work, transcript levels of the target genes were assayed by qPCR and compared to the 

expression in wild type plants to confirm efficient knockdowns. Furthermore, the plants 

were phenotyped for architectural and biomass traits. 

 

 

3.5.1 Target gene expression analysis in amiMAX4 lines 

 

For a confirmation of successful targeting of the poplar MAX4 genes by the amiRNA 

constructs, expression analysis was performed. The prerequisite for showing a successful 

knockdown is well-detectable expression in the wild type. Thus, for the characterization 

of knockdown efficiency, qPCR analysis was performed using wood samples from 

greenhouse-grown plants, which exhibit sufficient MAX4 expression (Fig. 3.4). Expression 

analysis was focused on representative amiMAX4-1+2 double knockdown lines which 

showed a robust branching phenotype as revealed during phenotyping (see below, 

chapter 3.5.2.1; p. 66ff).  

The reference gene used for the wood sample qPCR experiments was ELONGATION 

FACTOR1 (EF1, Potri.001G224700) instead of UBIQUITIN (UBQ, Potri.001G418500) which 

was used for normalization in other qPCR experiments. This was done because there were 



Results 
 

65 
 

stability problems with UBQ when the samples were stored and extracted at different 

time points. In contrast to UBQ, EF1 exhibited higher stability. 

Compared to the wild type (P. x canescens), the tested representative amiMAX4-1+2 lines 

(T14 #4A; T14 #6A; T22 #5A) expectedly showed significantly reduced transcript levels for 

both MAX4 orthologs (MAX4-1 and MAX4-2) (Fig. 3.6 A and B). A replication of this 

experiment with lines T14 #4A and T22 #5A, and an additional line showing a milder 

branching phenotype (T22 #13A), was done (Appendix Fig. 7.9; p. 155). The significant, 

simultaneous down-regulation of the target genes MAX4-1 and MAX4-2 was confirmed in 

all tested lines and the knockdown was therefore successful. 

 

 
Fig. 3.6 Expression analysis of MAX4-1 (A) and MAX4-2 (B) in representative amiMAX4-1+2 lines. 

Expression levels were analyzed in the P. x canescens wild type and three representative 

MAX4-1+2 double knockdown lines. Expression was normalized against the reference gene EF1. 

n= 3-7. Error bars indicate standard deviation. Asterisks indicate significant differences compared 

to the wild type (P. x can) according to Student’s t-test. One and two asterisks indicate p<0.05 

and p<0.01, respectively.  

 

 



Results 
 

66 
 

3.5.2 Architectural phenotyping of amiMAX4 lines 

 

The amiMAX4 lines generated in this project were evaluated by detailed phenotyping. A 

focus was put on the shoot architecture, but also biomass parameters were measured. 

Additionally, adventitious rooting and bud break in spring were investigated. 

  

 

3.5.2.1 Shoot architecture of amiMAX4 lines 

 

Based on published data for Arabidopsis, petunia, rice and pea (Arite et al., 2007; 

Snowden et al., 2005; Sorefan et al., 2003), an increased shoot branching phenotype was 

expected when genes of the SL pathway were knocked down. To test this hypothesis, the 

transgenic poplar MAX4 individual and simultaneous knockdown lines (amiMAX4-1, 

amiMAX4-2 and amiMAX4-1+2) were grown for phenotyping of shoot architectural traits. 

Three months old, greenhouse-grown plants were analyzed. Measured parameters were 

the number, position and length of branches, the plant height, the number of nodes, as 

well as the stem base diameter. Based on the number of nodes and the plant height, the 

average internode length was calculated. 

Fig. 3.7 - Fig. 3.11 and Appendix Fig. 7.10 (additional lines, p. 156) show shoot 

architectural traits of amiMAX4-1, amiMAX4-2 and amiMAX4-1+2 plants compared to 

P. x canescens wild type control plants, and Fig. 3.12 shows the habitus of representative 

P. x canescens wild type and amiMAX4-1+2 plants. In total, 10-13 lines per genotype were 

scored for shoot architectural traits. 
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Fig. 3.7 Branching phenotype of amiMAX4 lines. The number of branches was counted in greenhouse-

grown plants. In this experiment, the P. x canescens wild type (left) did not produce any 

branches. n= 3-8. Error bars indicate standard deviation. Asterisks indicate significant differences 

compared to the wild type (P. x can) according to Student’s t-test. One and two asterisks indicate 

p<0.05 and p<0.01, respectively. 

 

 

 
Fig. 3.8 Plant height of amiMAX4 lines. The height was measured from the soil surface to the apex in 

greenhouse-grown plants. n= 3-8. Error bars indicate standard deviation. Asterisks indicate 

significant differences compared to the wild type (P. x can) according to Student’s t-test. One, 

two and three asterisks indicate p<0.05, p<0.01 and p<0.001, respectively. 
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Fig. 3.9  Number of nodes of amiMAX4 lines. The number of nodes was counted from the stem base (soil 

surface level) to the apex in greenhouse-grown plants. n= 3-8. Error bars indicate standard 

deviation. Asterisks indicate significant differences compared to the wild type (P. x can) according 

to Student’s t-test. One and two asterisks indicate p<0.05 and p<0.01, respectively. 

 

 
Fig. 3.10 Average internode length of amiMAX4 lines. The average internode length was calculated based 

on the plant height and the number of nodes of greenhouse-grown plants. n= 3-8. Error bars 

indicate standard deviation. Asterisks indicate significant differences compared to the wild type 

(P. x can) according to Student’s t-test. One, two and three asterisks indicate p<0.05, p<0.01 and 

p<0.001, respectively. 
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Fig. 3.11 Stem base diameter of amiMAX4 lines. The stem base diameter was measured directly above 

the soil level in greenhouse-grown plants. n= 3-8. Error bars indicate standard deviation. 

Asterisks indicate significant differences compared to the wild type (P. x can) according to 

Student’s t-test. One asterisk indicates p<0.05. 

 

 

 
Fig. 3.12 Habitus of P. x canescens wild type and amiMAX4-1+2 (T14 #4A) plants. The photograph was 

taken for representative specimen. Plants were 3.5 months old and grown under greenhouse 

conditions.    
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In the MAX4 double knockdown lines (amiMAX4-1+2), which are putatively deficient in SL 

biosynthesis due to the successful knockdown of both MAX4 orthologs, significant shoot 

architectural phenotypes were observed. In contrast, all measured parameters did not 

significantly differ between MAX4 individual knockdown lines (amiMAX4-1 and 

amiMAX4-2) and the P. x canescens wild type control. Therefore, only the observations 

made for amiMAX4-1+2 plants are described in the following section in detail. 

The most prominent phenotype exhibited by the amiMAX4-1+2 lines was highly increased 

branching compared to the wild type (Fig. 3.7 and Appendix Fig. 7.10 A, p. 156), leading to 

a “bushy” appearance of the plants (Fig. 3.12).  

The plant height was found to be reduced in most lines compared to the wild type (Fig. 

3.8 and Appendix Fig. 7.10 B, p. 156). However, this phenotype was less drastic compared 

to the branching phenotype, and not present in all lines. Despite of this reduction in the 

plant height, the number of nodes was not significantly changed in most lines (Fig. 3.9 

and Appendix Fig. 7.10 C, p. 156). Based on the plant height and the number of nodes, the 

average internode length was calculated. Consistent with the reduced height and a similar 

number of nodes in most amiMAX4-1+2 lines, the average internode length was 

significantly reduced compared to the wild type (Fig. 3.10 and Appendix Fig. 7.10 D, 

p. 156). The stem base diameter was significantly changed in some amiMAX4-1+2 lines 

compared to the P. x canescens wild type, although there is no clear trend visible as the 

measured diameter was increased in some lines and reduced in others (Fig. 3.11 and 

Appendix Fig. 7.10 E, p. 156). 

For confirmation of the phenotypes, the evaluation of architectural traits was done in 

another replicate for representative lines. The phenotypes were reproducible, as shown 

in Appendix Fig. 7.11 (p. 157). Especially the number of branches, the plant height and the 

average internode length showed exactly the same significant changes. The number of 

nodes and the stem base diameter were less stable parameters and showed some 

fluctuation among the different lines. 

For testing of the stability of the observed phenotypes under different growth conditions, 

the representative amiMAX4-1+2 lines T14 #4A and T22 #5A were grown together with 

the P. x canescens wild type in a controlled environment growth chamber (two replicates, 

Appendix Fig. 7.12 and Fig. 7.13; p. 158) and under outdoor conditions (Appendix Fig. 

7.14; p. 160). For the latter, the phenotypes were scored in winter after the first growing 

season. Overall, the phenotypes were stable. Especially the significantly increased 

number of branches, the reduced plant height and the reduced average internode length 

in amiMAX4-1+2 lines, were highly reproducible phenotypes. 



Results 
 

71 
 

3.5.2.2 Biomass traits of amiMAX4 lines 

 

For selected amiMAX4 lines, biomass traits of greenhouse-grown plants were determined 

in two replicates (Fig. 3.13 and Appendix Fig. 7.15, p. 161). The fresh and dry weight of 

roots and the shoot was measured. The shoot was separated into the stem (including 

branches) and leaves.  

 

 
Fig. 3.13 Biomass parameters of selected amiMAX4 lines. The total dry biomass of the plants (A), as 

well as the separate dry weights of the stem (including branches) (B), the roots (C) and the 

leaves (including leaves from the branches) (D), was determined. n= 3-8. Error bars indicate 

standard deviation. Asterisks indicate significant differences compared to the wild type 

(P. x can) according to Student’s t-test. One and two asterisks indicate p<0.05 and p<0.01, 

respectively. 

 

For the total dry biomass, a minor reduction was observed in the amiMAX4-1+2 lines 

T14 #1A and T14 #4A (Fig. 3.13 A), and this was found to be significant in a replication of 

the experiment (Appendix Fig. 7.15 A; p. 161). However, other amiMAX4-1+2 lines 

exhibited a similar or even higher (by trend, not significant) total dry weight compared to 

the P. x canescens wild type, so there is no general tendency for total biomass changes 

among all amiMAX4-1+2 lines. The amiMAX4-1 and amiMAX4-2 single knockdown lines 

did not exhibit any obvious total biomass changes in both replicates as well (Fig. 3.13 A 

and Appendix Fig. 7.15 A; p. 161). When the dry biomass was evaluated for stems, roots 

and leaves separately (Fig. 3.13 B-D), no clear changes were observed, too. Apparent 



Results 
 

72 
 

significant changes for the root and leaf biomass in some amiMAX4-1+2 lines (Fig. 3.13 C 

and D) were not entirely reproducible (Appendix Fig. 7.15 C and D; p. 161). 

Summarized, there appears to be no consistent change of biomass parameters in the 

amiMAX4 lines in three months old plants. However, for some amiMAX4-1+2 lines, the 

dry weight was reduced by trend. These lines tend to be the ones with strong shoot 

architectural phenotypes (Fig. 3.7 - Fig. 3.11; p. 67). 
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3.5.2.3 Root architecture of amiMAX4-1+2 lines: adventitious rooting 

 

Adventitious rooting is a trait which is influenced by strigolactones. SL pathway mutants 

of Arabidopsis and pea were shown to produce more adventitious roots, consequently SL 

appears to suppress this process (Rasmussen et al., 2012). Therefore, adventitious rooting 

was expected to be increased in the poplar amiMAX4-1+2 lines as well, if they are indeed 

SL-deficient. To investigate this hypothesis, stem cuttings of in vitro grown P. x canescens 

wild type and amiMAX4-1+2 (representative lines T14 #4A and T22 #5A) plants were 

prepared and cultivated under standard in vitro conditions as described in chapter 2.5 

(p. 33ff). Adventitious roots were counted.  

The number of adventitious roots was found to be significantly increased in the putatively 

SL-deficient amiMAX4-1+2 lines T14 #4A and T22 #5A compared to the P. x canescens 

wild type (Fig. 3.14). The results were reproducible in a second replicate (Appendix Fig. 

7.16, p. 162). 

 

 
Fig. 3.14 Adventitious rooting in representative amiMAX4-1+2 lines. The number of adventitious roots 

was counted for in vitro grown cuttings of the representative amiMAX4-1+2 lines T14 #4A and 

T22 #5A, as well as the P. x canescens wild type. Cuttings were 8 weeks old. n=15. Error bars 

indicate standard deviation. Asterisks indicate significant differences compared to the wild type 

(P. x can) according to Student’s t-test. Two and three asterisks indicate p<0.01 and p<0.001, 

respectively. 
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3.6 Detailed characterization of amiMAX4-1+2 lines 

 

The poplar MAX4-1 and MAX4-2 double knockdown lines (amiMAX4-1+2) exhibited 

successful silencing of the target genes, coinciding with architectural phenotypes which 

are typically observed in SL-deficient plants (chapter 3.5.2, p. 65ff). For further 

characterization of these lines, additional experiments were performed. The expression of 

SL-responsive marker genes was monitored and the shoot architectural phenotypes were 

complemented in a grafting study. Strigolactone treatment experiments were performed, 

including a complementation experiment. An anticipated role of SLs during bud break in 

spring was investigated and a possible crosstalk with the jasmonic acid (JA) pathway was 

addressed. The results of these experiments are described in the following chapters. 

 

 

3.6.1 Expression of SL-regulated marker genes in amiMAX4-1+2 lines 

 

Direct quantification of SL-levels in the putatively SL-deficient poplar amiMAX4-1+2 lines 

generated in this project relative to the P. x canescens wild type would confirm their 

expected SL deficiency. However, SL quantification is technically extremely challenging. 

The abundance of SLs generally is very low and they are highly unstable (Xie et al., 2010; 

Yoneyama et al., 2009). Furthermore, there appear to be structurally different and even 

less stable SLs in poplar compared to previously investigated species such as Arabidopsis 

(Koichi Yoneyama, Utsunomiya University, Tochigi, Japan, personal communication). 

References and standards, which are required for direct measurements or poplar SLs, are 

not available yet.  

For these reasons, indirect confirmation of SL-deficiency in the amiMAX4-1+2 lines was 

carried out. A frequently used possibility is the analysis of marker gene expression. Two 

SL-regulated marker genes were identified based on literature data: MORE AXILLARY 

GROWTH3 (MAX3) (Hayward et al., 2009; Mashiguchi et al., 2009) and BRANCHED1 

(BRC1) (Aguilar-Martínez et al., 2007; Braun et al., 2012). The expression of the poplar 

MAX3 and BRC1 orthologs in the amiMAX4-1+2 lines was expected to be changed 

compared to the wild type, if the amiMAX4-1+2 lines are indeed SL-deficient. 
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3.6.1.1 MAX3 expression in amiMAX4-1+2 lines  

 

MAX3 was identified as a SL-responsive marker gene based on published data. There is a 

MAX2-dependent negative feedback-regulation in the SL-pathway in Arabidopsis, acting 

on both CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes which are involved in SL 

biosynthesis (MAX3 and MAX4) (Mashiguchi et al., 2009). The authors of this study 

reported a >2-fold increase of MAX3 transcript levels in a max4 mutant relative to the 

wild type, due to release from negative feedback. In another study, a 6- to 10-fold 

increase of MAX3 expression in hypocotyls of max1, max2 and max4 mutants was 

reported (Hayward et al., 2009).  

Based on these findings, a poplar ortholog of MAX3 was selected as a promising, SL-

regulated marker gene. A BLAST analysis was performed as described for the 

identification of the poplar MAX4 and MAX2 orthologs (see chapter 3.1; p. 56ff). Only one 

gene (Potri.014G056800) was found to be a clear poplar MAX3 ortholog, although two 

copies were likely to be detected due to the whole genome duplication in the Salicaceae 

family, as described for MAX4 and MAX2. However, the identification of only one poplar 

MAX3 ortholog is in agreement with a recently published characterization of the poplar 

MAX genes (Czarnecki et al., 2014). 

Expression of poplar MAX3 was investigated in wood samples of representative 

amiMAX4-1+2 lines relative to the wild type. As reported for Arabidopsis max4 and pea 

rms1 mutants, increased transcript levels of Potri.014G056800 were expected. The results 

of the expression analysis are shown in Fig. 3.15. 
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Fig. 3.15  Expression analysis of MAX3 in representative amiMAX4-1+2 lines. Expression levels were 

analyzed in the P. x canescens wild type and three representative amiMAX4-1+2 double 

knockdown lines. Expression was normalized against the reference gene EF1. n= 3-7. Error bars 

indicate standard deviation. Asterisks indicate significant differences compared to the wild type 

(P. x can) according to Student’s t-test. Three asterisks indicate p<0.001. 

 

The relative expression of the poplar MAX3 ortholog was increased in all tested 

amiMAX4-1+2 lines by trend, but this was only significant in line T22 #5A. In a repetition 

of the experiment, no significant expression changes compared to the wild type were 

found in this line (Appendix Fig. 7.17; p. 162). Therefore, no reproducible significant 

upregulation of MAX3 transcript levels could be detected in the tested amiMAX4-1+2 

lines, even though there appears to be a trend. The error range was high, making it 

difficult to judge small differences in expression. 
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3.6.1.2 BRC1 expression in amiMAX4-1+2 lines 

 

Arabidopsis BRC1 encodes a transcriptional regulator being discussed to play a central 

role in bud outgrowth control. The closely related gene BRC2 was also reported to have a 

minor function in this process (Aguilar-Martínez et al., 2007; Finlayson, 2007). In 

Arabidopsis SL pathway mutants, including the SL-deficient max4-1 mutant, BRC1 is 

significantly down-regulated on the transcript level, while expression of BRC2 is not 

changed (Aguilar-Martínez et al., 2007). Also in the pea rms1 mutant (equivalent to 

Arabidopsis max4-1), a 10-fold reduction of PsBRC1 transcript was reported (Braun et al., 

2012). Therefore, a poplar ortholog of BRC1 appeared to be a promising marker gene for 

SL-deficiency. However, such a poplar gene has not been described yet. In this project, 

Potri.012G059900 was identified as a likely functional BRC-like ortholog. Also a putative 

BRC2 ortholog (Potri.010G130200) was found (see chapter 3.8, p. 95ff). The expression of 

these genes was investigated by qPCR in representative amiMAX4-1+2 lines and 

compared to the P. x canescens wild type. 

Since expression of both genes was found to be largely specific to dormant axillary buds 

in the wild type (Fig. 3.29), this tissue type was harvested from 3.5 months old, 

greenhouse-grown P. x canescens wild type and amiMAX4-1+2 plants after they were 

phenotyped for architectural traits (Appendix Fig. 7.11; p. 157). Dormant axillary buds 

were taken from nodes 15-30 counted from the plant apex. In amiMAX4-1+2 plants, not 

all positions could be sampled because branches already grew out frequently.  

 



Results 
 

78 
 

 
Fig. 3.16 Expression of putative P. x canescens BRC1 (A) and BRC2 (B) orthologs in dormant axillary 

buds of greenhouse-grown plants. Expression was determined in the P. x canescens wild type 

and three representative amiMAX4-1+2 double knockdown lines. Expression was normalized 

against the reference gene UBQ. n= 4-5. Error bars indicate standard deviation. Asterisks 

indicate significant differences compared to the wild type according to Student’s t-test. Two 

and three asterisks indicate p<0.01 and p<0.001, respectively. 

 

As revealed by the expression analysis, Potri.012G059900 (PcBRC1) transcript levels were 

significantly reduced in the amiMAX4-1+2 lines (Fig. 3.16 A). This reduction was less 

severe in line T22 #13A, which consistently showed milder architectural phenotypes (see 

chapter 3.5.2; p. 65ff). Therefore, Potri.012G059900 seems to be down-regulated in the 

amiMAX4-1+2 lines as expected for a poplar BRC1 ortholog in SL-deficient plants. This 

regulation appears to correlate with the strength of the architectural phenotype. 

In contrast to PcBRC1, transcript levels of the putative poplar BRC2 ortholog 

Potri.010G130200 were not changed in all tested amiMAX4-1+2 lines compared to the 

wild type (Fig. 3.16 B), similar to the observations made in Arabidopsis (Aguilar-Martínez 

et al., 2007).  
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The experiment was replicated and the results were confirmed. While there was no 

significant difference in the amount of detected transcripts of Potri.010G130200 in the 

amiMAX4-1+2 lines T14 #4A and T22 #5A compared to the wild type, Potri.012G059900 

was significantly down-regulated (Appendix Fig. 7.18; p. 163). 

 

 

3.6.2 Complementation of amiMAX4-1+2 phenotype: grafting  

 

The amiMAX4-1+2 lines generated in this project are expected to be SL-deficient. If this is 

the case, the typically observed phenotypes, especially increased branching and a 

reduced internode length, should be rescued in an amiMAX4-1+2 scion grafted to a wild 

type rootstock. The rootstock can synthesize SLs, which are transported acropetally into 

the scion where they were expected to completely suppress the SL-deficiency 

phenotypes. This was already successfully shown for the petunia dad1-1 mutant (Napoli, 

1996), the pea rms1 mutant (Foo et al., 2001) and the Arabidopsis max4-1 mutant 

(Sorefan et al., 2003). 

For the complementation by grafting, the P. x canescens wild type as well as the 

representative poplar amiMAX4-1+2 lines T14 #4A and T22 #5A were used. Beside of self-

grafted controls (rootstock and scion from different individuals of the same genotype), 

amiMAX4-1+2 scions were combined with wild type rootstocks and vice versa. Grafting 

was performed three weeks after potting of in vitro grown plants, using a wedge-grafting 

technique (see chapter 2.20, p. 54ff). After healing of the graft union (roughly 1 month), 

the plants were grown for 2 months in a greenhouse until evaluation of architectural 

traits was done. 
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Fig. 3.17 Architectural traits of grafted poplar plants. For grafting, the P. x canescens wild type, as well 

as the representative amiMAX4-1+2 lines T14 #4A and T22 #5A, were used. The upper label 

indicates the genotype of the scion, while the lower label specifies the genotype of the 

rootstock. The genotypes are also highlighted by the coloring of the bars (wild type green and 

knockdown line yellow). The number of branches (A), the plant height (B), the number of nodes 

(C) and the average internode length (D) were determined for greenhouse-grown plants. 

n= 8-9. Error bars indicate standard deviation. Asterisks indicate significant differences 

compared to the wild type (P. x canescens) according to Student’s t-test. Two and three 

asterisks indicate p<0.01 and p<0.001, respectively. 

 

The architectural traits of the grafted poplar plants are shown in Fig. 3.17. The self-

grafted control plants exhibited the normal phenotypes as observed previously in non-

grafted plants (see chapter 3.5.2.1; p. 66ff). Briefly, amiMAX4-1+2 plants showed 

significantly increased branching, a reduced plant height, a reduced number of nodes 

(T14 #4A only) and a reduced internode length, when compared to the P. x canescens 

wild type. However, none of these typical phenotypes of SL-deficient plants could be 

observed when an amiMAX4-1+2 scion was grafted on a wild type rootstock. No 

significant differences were found for all measured parameters compared to self-grafted 

wild type control plants. Also for the inversed control (wild type scion grafted on an 

amiMAX4-1+2 rootstock), no significant differences compared to wild type plants were 
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observed. Consequently, a wild type rootstock can fully complement the architectural 

phenotype of an amiMAX4-1+2 scion and an amiMAX4-1+2 rootstock does not have any 

influence on the phenotype of a wild type scion. 

In petunia and pea, also interstock grafting experiments were performed (Napoli, 1996; 

Foo et al., 2001). In these experiments, a wild type interstock fragment inserted into the 

stem of SL-deficient mutants was shown to be sufficient to complement the mutant 

phenotype of the scion. In this work, interstock grafting was performed as well. Although 

the replicate number was low and a self-interstock-grafted control of amiMAX4-1+2 line 

T14 #4A was not included due to limited plant material, this experiment provides a hint 

that also in poplar, a small (approx. 1 cm) wild type interstock stem segment can rescue 

the typically observed amiMAX4-1+2 phenotypes. The number of branches, the plant 

height, the number of nodes and the average internode length (Appendix Fig. 7.19 A-D; 

p. 164) of amiMAX4-1+2 line T14 #4A plants supplemented with a wild type interstock, 

were comparable to the corresponding parameters measured for wild type self-

interstock-grafted plants. The same was observed for wild type plants bearing a T14 #4A 

interstock.   
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3.6.3 GR24 treatment of wild type and amiMAX4-1+2 plants 

 

Generally, strigolactones are known to suppress bud outgrowth. For experiments to 

manipulate SL-levels, the synthetic strigolactone analog rac-GR24 (hereafter referred to 

as GR24) is routinely used. In this project, it was tested whether this substance is active in 

bud outgrowth inhibition in poplar. Stem cuttings (one or two nodes) were used to supply 

GR24 through the growth medium and bud outgrowth dynamics were monitored. 

Furthermore, it was tested whether direct application of GR24 on axillary buds can rescue 

the branching phenotype of the putatively SL-deficient amiMAX4-1+2 lines generated in 

this project.   

 

 

3.6.3.1 GR24 treatment of wild type and amiMAX4-1+2 stem cuttings 

 

To test whether the synthetic strigolactone GR24 is functional in poplar and can inhibit 

bud outgrowth, experiments using stem cuttings were performed. For a so-called one-

node-assay, P. x canescens wild type stem cuttings bearing one node (i.e. one axillary 

bud) were prepared from in vitro grown plants. The cuttings were placed on standard 

growth medium (1/2 MS agar medium) supplemented with GR24 (in acetone, 5 µM final 

concentration) or the same amount of solvent only (Mock, 0.05 % acetone final 

concentration). Since stem cuttings lack apical dominance (no apex present in the 

cutting), the single bud grows out in virtually all cuttings. The time point of bud outgrowth 

(defined as unfolding of the first leaf) was recorded for each cutting and the days until 

bud outgrowth were calculated. If GR24 is active in suppressing bud outgrowth in this 

assay, buds of treated cuttings were expected to grow out later. 
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Fig. 3.18 One-node-assay. Bud outgrowth rate of P. x canescens wild type stem cuttings after 5 µM 

GR24 treatment. The time point from preparation of the cuttings until outgrowth of their bud 

on medium containing no (0 µM) or 5 µM GR24 was recorded. n=19-22. Error bars indicate 

standard deviation. A Student’s t-test did not result in any significant difference between mock- 

and GR24-treated cuttings. 

 

However, bud outgrowth was not delayed in GR24-treated cuttings compared to the 

mock-treated control in two independent experiments (Fig. 3.18 and Appendix Fig. 7.20; 

p. 165). Interestingly, this is in agreement with observations made in other species, in 

which basally supplied GR24 alone failed to suppress bud outgrowth in one-node-assays. 

For example, even a 20 µM GR24 treatment (4-fold more than used in this work) did not 

delay bud outgrowth in Arabidopsis one-node stem segments (Crawford et al., 2010). 

Similar observations were made in chrysanthemum and willow (Liang et al., 2010; Ward 

et al., 2013). Only with auxin applied simultaneously to the apex, an additional inhibitory 

effect of GR24 was reported in these studies. This indicates the importance of a 

competing auxin source for SLs to take effect, which may be explained by the canalization 

model (see discussion chapter 4.4.3.1, p. 115ff). 

Notably, a second bud is sufficient as such an auxin source, as shown in the same studies: 

in two-node assays, GR24 was able to inhibit bud outgrowth without additional auxin 

supply. While this effect was observed for both buds in Arabidopsis (Crawford et al., 

2010), it was more specific for the lower bud in the case of chrysanthemum and willow 

(Liang et al., 2010; Ward et al., 2013).  
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To test whether GR24 can suppress bud outgrowth in a two-node-assay in poplar, 

appropriate cuttings were prepared from in vitro grown plants. In addition to the 

P. x canescens wild type, the representative amiMAX4-1+2 lines T14 #4A and T22 #5A 

were included in this experiment. The cuttings were cultivated in the same way as in the 

one-node-assay on medium containing solvent only (Mock) or 5 µM GR24. The time point 

of outgrowth was monitored for each bud individually. Since not all buds grow out in this 

assay, the bud outgrowth rate in percent was calculated 10 days after preparation of the 

cuttings instead of determining the time point of bud outgrowth. 

 

 
Fig. 3.19 Two-node-assay. Bud outgrowth rates of P. x canescens wild type and amiMAX4-1+2 stem 

cuttings after 5 µM GR24 treatment. Cuttings bearing two nodes were prepared and placed on 

medium containing no (0 µM) or 5 µM GR24. The percentage of outgrown buds 10 days after 

preparation of the cuttings was determined separately for the upper (A) and lower buds (B). 

n=3 culture vessels containing 7-8 cuttings each. Error bars indicate standard deviation. Asterisks 

indicate significant differences between MOCK- and GR24-treated cuttings according to Student’s 

t-test. One and two asterisks indicate p<0.05 and p<0.01, respectively. 
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When comparing mock- and GR24-treated cuttings, poplar two-node stem cuttings 

exhibited similar dynamics as previously reported in chrysanthemum and willow: while 

outgrowth of the upper bud was not significantly changed (Fig. 3.19 A), activation of the 

lower bud was strongly suppressed (Fig. 3.19 B). Generally, wild type and amiMAX4-1+2 

cuttings showed the same regulation. There were no significant differences in the bud 

outgrowth rates between the genotypes at both bud positions within a given treatment.  

 

 

3.6.3.2 GR24 treatment of buds in wild type and amiMAX4-1+2 plants 

 

External supply of SLs to plants which are defective in SL biosynthesis is expected to 

complement their increased branching phenotype. This was shown experimentally with 

GR24 fed to the vasculature or supplied directly onto the surface of axillary buds. For 

example, a single external application of 10 µl 100 nM GR24 directly to axillary buds of 

pea rms1-10 (equivalent to max4) mutant plants strongly inhibited bud outgrowth 

(Gomez-Roldan et al., 2008). Furthermore, 5 µM GR24 supplied every third day for 20 

days to the rosette axillary buds of Arabidopsis strongly suppressed branching in the 

max4-1 mutant (Gomez-Roldan et al., 2008). If the poplar amiMAX4-1+2 lines generated 

in this project are impaired in SL-biosynthesis and therefore are SL-deficient, their 

branching phenotype should be complemented as well by external application of SL. 

Therefore, external application of GR24 directly on axillary buds of the representative 

amiMAX4-1+2 lines T14 #4A and T22 #5A as well as P. x canescens wild type plants, was 

tested for suppression of bud outgrowth. 6 µl of a 5 µM GR24 solution (see chapter 

2.19.2; p. 53f) were applied directly to axillary buds and the time from the first treatment 

until bud outgrowth (defined as unfolding of the first leaf of the developing branch) was 

recorded. The percentage of growing buds at 7, 10, 14 and 17 days after treatment (DAT) 

was calculated. 
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Fig. 3.20  Bud outgrowth rates in amiMAX4-1+2 lines T14 #4A (A) and T22 #5A (B) after GR24 

treatment. The bud outgrowth rates in % at 7, 10, 14 and 17 days after the first treatment 

(DAT) are shown after application of a mock (-) or 5 µM GR24 (+) solution. n=5 plants. Per plant, 

10-15 nodes were treated and bud outgrowth was observed. Error bars indicate standard 

deviation. A Student’s t-test did not result in any significant differences in outgrowth between 

the mock- and GR24-treated buds at the corresponding time points. 

 

P. x canescens wild type control plants did not exhibit any bud outgrowth after mock- and 

GR24 treatments. All treated buds remained dormant over the course of the experiment 

(data not shown). Fig. 3.20 shows the bud outgrowth rates in amiMAX4-1+2 lines T14 #4A 

and T22 #5A after mock- and GR24 treatments. During the course of time, generally more 

buds grew out, which is a frequently observed phenotype in these lines. However, there 

were no significant differences between mock- and GR24-treated buds at a given time 

point. Interestingly, although this is not significant, the GR24-treated buds exhibited 

increased outgrowth rates by trend compared to the mock-treated controls. This is in 

contrast to the expected reduction in bud outgrowth by GR24 treatment, as it was 

reported for SL-deficient Arabidopsis and pea mutant plants (Gomez-Roldan et al., 2008). 

 

 

3.6.4 Spring bud break in amiMAX4-1+2 lines 

 

For the analysis of the effects of SL-deficiency on bud outgrowth, annual species (e.g. 

Arabidopsis, pea and rice) or species not undergoing winter dormancy (e.g. petunia), have 

been frequently used as described in chapter 1.3.2.3 (p. 11ff). In contrast, poplar is a 

perennial model species from temperate regions, and it has to survive harsh winters. This 

lifestyle requires further stages of dormancy. In addition to paradormancy (bud 



Results 
 

87 
 

outgrowth is suppressed by other parts of the plant, see chapter 1.3.4 (p. 22ff) for a 

discussion of the different dormancy stages) which can be found in annual species as well, 

poplar buds enter a deep state of dormancy during winter, called endodormancy (or 

winter dormancy). Thus, poplar features an additional stage of dormancy, and bud break 

after winter dormancy occurs in spring.  

To test a possible influence of SL-deficiency on the spring outgrowth behavior of 

endodormant buds, bud break was investigated in the putatively SL-deficient 

amiMAX4-1+2 poplar lines generated during this project. The representative 

amiMAX4-1+2 lines T14 #4A und T22 #5A were transferred to outdoor conditions in 

summer 2014, together with P. x canescens wild type plants as a reference. The plants 

exhibited the typically observed phenotypes of amiMAX4-1+2 lines, including increased 

branching rates (Appendix Fig. 7.14, p. 160). Bud break was monitored after the first 

period of winter dormancy. At a given time point (20.04.2015), the length of the 

expanding lateral buds or branches was measured at the 10 most apical nodes in all lines. 

Compared to the wild type, the bud length in the amiMAX4-1+2 line T14 #4A was 

significantly increased, indicating earlier bud break (Fig. 3.21). However, there were no 

significant changes in bud length in line T22 #5A compared to the wild type. 

 

 
Fig. 3.21 Bud elongation during bud break in spring in representative amiMAX4-1+2 lines and the 

P. x canescens wild type. At a given time point in spring (20.01.2015), the average bud/branch 

length was measured for the 10 most apical axillary buds of each plant. n= 4-8 plants. Error bars 

indicate standard deviation. Asterisks indicate significant differences compared to the wild type 

(P. x can) according to Student’s t-test. Two asterisks indicate p<0.01. 
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3.6.5 Analysis of possible JA-crosstalk in amiMAX4-1+2 lines 

 

Hormonal regulation in plants is complex and there is a large extent of crosstalk between 

different hormonal pathways, for example during plant development or the defense 

against pathogens (Depuydt and Hardtke, 2011; Derksen et al., 2013). Recently, such a 

crosstalk between strigolactones and jasmonic acid (JA) was reported (Torres-Vera et al., 

2014). Jasmonic acid is an important regulator of plant defense against necrotrophic 

pathogens like the fungi Alternaria alternata and Botrytis cinerea. The authors of the 

study found that a tomato (Solanum lycopersicum) Slccd8 (MAX4 ortholog) RNAi line, 

which only has a residual SL level of 5 % compared to the wild type, is more susceptible 

towards these pathogens. They report a significant reduction of the JA level in leaves 

(HPLC-MS/MS data), which coincides with a 4-fold reduction of expression of the JA-

marker gene PinII. Therefore, they hypothesize the existence of a crosstalk between SL 

and JA and therefore postulate a role for SL in plant defense (Torres-Vera et al., 2014). 

To investigate whether such a crosstalk is also present in poplar, a JA-regulated poplar 

marker gene was identified based on literature data. Transcript levels of the predicted 

chitinase gene Potri.004G182100 (POPTR_0004s18880) were shown to be upregulated in 

P. trichocarpa roots after JA-treatment (Plett et al., 2014). To investigate whether this 

regulation can also be found in leaves of P. x canescens wild type plants, detached leaves 

of plants grown in a growth chamber were treated with methyl jasmonate (JA) for 24 

hours and expression of Potri.004G182100, compared to a mock-treated control, was 

monitored. After JA-treatment, Potri.004G182100 was highly upregulated (approx. 365-

fold) (Fig. 3.22 A), making it a suitable marker gene for monitoring JA-levels. 
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Fig. 3.22 Relative expression of the JA-marker gene Potri.004G182100. Expression was normalized 

against the reference gene UBQ. A: Relative expression after mock- and JA-treatment. n= 1 pool 

of 4 leaves from 2 individual plants. B: Relative expression in leaves of P. x canescens wild type 

plants and the representative amiMAX4-1+2 lines T14 #4A and T22 #5A. n= 3-4. Error bars 

indicate standard deviation. A Student’s t-test did not result in any significant differences 

between the amiMAX4-1+2 lines compared to the wild type. 

 

For testing whether the expression of the selected JA-marker gene is changed in the 

putatively SL-deficient representative amiMAX4-1+2 lines T14 #4A and T22 #5A relative to 

the wild type, leaf samples were harvested from 1.5 months old greenhouse-grown plants 

and assayed by qPCR. Compared to the P. x canescens wild type, there was no significant 

change in the expression level of Potri.004G182100 in the tested amiMAX4-1+2 lines (Fig. 

3.22 B). Also no trend could be observed. While the average expression level was lower in 

line T14 #4A relative to the wild type, it was slightly increased in line T22 #5A. Since the 

tested highly JA-responsive marker gene was not regulated in the amiMAX4-1+2 lines, 

also the JA-level in leaves of these lines presumably is not changed, contrasting the data 

reported for the tomato RNAi line (Torres-Vera et al., 2014). 

The authors of the aforementioned study also reported significantly reduced salicylic acid 

(SA) levels in the tested tomato Slccd8 line, based on HPLC-MS/MS experiments. 

However, they could not observe any changes in expression of the SA-marker gene PR1a 

and conclude that the change in the hormonal level is not sufficient to modify the SA-

response (Torres-Vera et al., 2014). In P. trichocarpa,  the genes PtrWRKY60 

(Potri.018G019700) and PtrWRKY89 (Potri.006G109100) were previously shown to be 

transcriptionally upregulated in leaves specifically after SA-treatment (Jiang et al., 2014). 

Expression of these marker genes was also investigated in the same poplar amiMAX4-1+2 

lines and compared to the wild type as described above. No significant changes of the SA-
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responsive marker could be shown in the amiMAX4-1+2 lines compared to the wild type 

(see Appendix Fig. 7.21; p. 165), indicating that crosstalk between SL and SA is unlikely.  
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3.7 Target gene expression analysis and phenotyping: amiMAX2 lines 

 

In addition to MAX4, the MAX2 knockdown (amiMAX2) lines generated during this project 

were assayed by qPCR for target gene expression levels relative to the wild type for an 

initial characterization. Several lines were also phenotyped for architectural traits.  

 

 

3.7.1 Target gene expression analysis in amiMAX2 lines 

 

For expression analysis of the target genes in the amiMAX2 lines, leaves of in vitro grown 

plants appeared to be a suited tissue. Unlike the poplar MAX4 orthologs, of which 

transcripts were barely detectable in this material, MAX2-1 and MAX2-2 were expressed 

at a low, but well-detectable level in leaves of wild type plants (Fig. 3.3). This tissue type 

was therefore used for expression analysis in the MAX2 knockdown lines instead of wood 

samples which were used to check the knockdown efficiency in the amiMAX4 lines, as 

described above. 

 

 
Fig. 3.23 Expression analysis of MAX2-1 and MAX2-2 in transgenic poplar amiMAX2-1 lines. Expression 

levels were normalized against the reference gene UBQ. The relative expression levels of both 

MAX2 genes in the wild type (left) are marked as dashed lines. n= 1 pool of leaves from 3 in 

vitro grown plants. Error bars indicate standard deviation of 3 technical replicates during qPCR. 

For the wild type, average and standard deviation were calculated for 13 replicates (pools of 

leaves from 3 plants each). 
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Fig. 3.24 Expression analysis of MAX2-1 and MAX2-2 in transgenic poplar amiMAX2-2 lines. Expression 

levels were normalized against the reference gene UBQ. The relative expression levels of both 

MAX2 genes in the wild type (left) are marked as dashed lines. n= 1 pool of leaves from 3 in 

vitro grown plants. Error bars indicate standard deviation of 3 technical replicates during qPCR. 

For the wild type, average and standard deviation were calculated for 13 replicates (pools of 

leaves from 3 plants each). 

 

 
Fig. 3.25 Expression analysis of MAX2-1 and MAX2-2 in transgenic poplar amiMAX2-1+2 lines. 

Expression levels were normalized against the reference gene UBQ. The relative expression 

levels of both MAX2 genes in the wild type (left) are marked as dashed lines. n= 1 pool of leaves 

from 3 in vitro grown plants. Error bars indicate standard deviation of 3 technical replicates 

during qPCR. For the wild type, average and standard deviation were calculated for 13 

replicates (pools of leaves from 3 plants each). 
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In the amiMAX2-1 lines (Fig. 3.23), no reduction of MAX2-1 transcript levels was found. 

This was unexpected, since the amiRNA was designed to target transcripts of this gene for 

degradation. In contrast, MAX2-1 expression was increased in most knockdown lines 

compared to wild type plants. Interestingly, the same effect was observed for MAX2-2, 

which was not targeted by the amiRNA. 

In most amiMAX2-2 lines (Fig. 3.24), transcript levels of MAX2-2 were considerably 

reduced compared to the wild type. This was expected, because MAX2-2 was supposed to 

be targeted by the amiRNA. However, at the same time, MAX2-1 levels unexpectedly 

were increased in most lines compared to the expression level of this gene in the 

P. x canescens wild type. 

A similar pattern was observed in the amiMAX4-1+2 lines (Fig. 3.25), in which both 

orthologs were intended to be down-regulated by the amiRNA. In most lines, MAX2-2 

expression was found to be reduced as expected, but MAX2-1 levels were increased. 

Overall, the knockdown appeared to be successful for MAX2-2 in amiMAX2-2 and 

amiMAX2-1+2 lines. However, at the same time, MAX2-1 transcript levels were increased. 

Since technical problems during qPCR are unlikely to cause this consistent effect, and the 

plants did not exhibit any branching phenotype (see chapter 3.7.1, p. 91ff), an in-depth 

expression analysis using more replicates or other tissues was not performed. 

 

 

3.7.2 Architectural phenotyping of amiMAX2 lines 

 

As for a knockdown of the poplar orthologs of the SL biosynthesis gene MAX4, also a 

knockdown of the poplar MAX2 orthologs (putatively involved in SL signaling) was 

expected to lead to highly increased branching, based on literature data for other plant 

species (see discussion in chapter 1.3.2.3; p. 11ff). Although the knockdown of the poplar 

MAX2 orthologs was only partially successful as shown above (chapter 3.7.1, p. 91ff) and 

reduced transcript levels were only found for MAX2-2, a possible specialization of the 

different orthologs was considered. Potentially, also a knockdown of only one ortholog 

could then lead to an observable phenotype. Therefore, transgenic poplar MAX2 

individual and simultaneous knockdown lines were grown for phenotyping under 

greenhouse conditions for an assessment of shoot architectural traits.  
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3.7.2.1 Shoot architecture of amiMAX2 lines 

 

For phenotyping of shoot architectural traits of the amiMAX2 lines, 3.5 months old plants 

(after potting of the in vitro grown cuttings) grown under greenhouse conditions, were 

analyzed. Several parameters were measured: the number, position and length of 

branches, the plant height, the number of nodes, as well as the stem base diameter. 

Based on the number of nodes and the plant height, the average internode length was 

calculated. The architectural traits of amiMAX2-1, amiMAX2-2 and amiMAX2-1+2 plants 

compared to the wild type are shown in Fig. 3.26.  

 

 
Fig. 3.26 Architectural traits of amiMAX2 lines. The number of branches (A), the plant height (B), the 

number of nodes (C), the average internode length (D) and the stem base diameter (E) of 

selected amiMAX2 lines were determined for greenhouse-grown plants. amiMAX4-1+2 line 

T22 #15A was included as a control showing the typical phenotype of an SL-deficient plant. 

n = 4-10. Error bars indicate standard deviation. Asterisks indicate significant differences 

compared to the wild type (P. x can) according to Student’s t-test. One, two and three asterisks 

indicate p<0.05, p<0.01 and p<0.001, respectively. 
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In the amiMAX4-1+2 double knockdown line T22 #15A which was included as a control, 

branching was highly increased, the plant height and the average internode length were 

significantly reduced, and the number of nodes as well as the stem base diameter were 

not changed, as observed previously for this genotype (Fig. 3.26 A-E and chapter 3.5.2.1, 

p. 66ff). However, with respect to these parameters, the tested amiMAX2 lines largely did 

not differ from the P. x canescens wild type control. Only amiMAX2-1+2 line T15 #28A 

appeared to have a generally reduced growth phenotype (reduced plant height, number 

of nodes, average internode length and stem base diameter). However, it did not exhibit 

increased branching, as it was observed for amiMAX4-1+2 lines and expected for plants in 

which SL signaling is impaired. 

 

 

3.7.2.2 Biomass traits of amiMAX2 lines 

 

Because the investigated amiMAX2 lines grown under greenhouse conditions did not 

exhibit any phenotype significantly different from the P. x canescens wild type (see 

above), biomass parameters were not recorded.   
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3.8 Identification and characterization of poplar BRANCHED1 orthologs 

 

Arabidopsis BRANCHED1 (AtBRC1) and its orthologs in many other species, including 

monocots like rice and dicot species such as pea, were reported to be central regulators 

of bud outgrowth. This regulation includes the integration of signals from the SL-pathway, 

together with other factors such as cytokinin (Aguilar-Martínez et al., 2007; Finlayson, 

2007; Minakuchi et al., 2010; Braun et al., 2012). Both hormones, SL and CK, control BRC1 

expression antagonistically (Dun et al., 2012).  

Since BRC1 was reported to be a key element in branching control and its transcript levels 

are SL-responsive in the investigated species, it may be a target of strigolactones in poplar 

as well. For this reason, putative poplar BRC1 orthologs were identified and their 

expression was analyzed. Transcript levels of the candidate genes were monitored in 

dormant and growing buds as well as other tissue types of wild type plants. Furthermore, 

expression was investigated in dormant buds of representative, putatively SL-deficient 

amiMAX4-1+2 lines, as well as dormant buds of outdoor-grown wild type plants at 

different developmental stages including winter dormancy. 

 

 

3.8.1 Identification of poplar BRC1 candidate genes by sequence analysis 

 

As described for the identification of the poplar MAX gene orthologs (chapter 3.1, p. 56ff), 

a TBLASTN search was performed in the database Phytozome (www.phytozome.org) 

using the Arabidopsis BRC1 protein sequence taken from the TAIR database 

(www.arabidopsis.org) as query.  

Generally, among the BRC1 orthologs in different species, there is a high sequence 

similarity in the TCP domain, while other parts of the protein are less conserved. Beside of 

AtBRC1, there is a similar gene named AtBRC2 in Arabidopsis, which also plays a minor 

role in branching control (Aguilar-Martínez et al., 2007). The presence of two paralogous 

genes in Arabidopsis, combined with a whole genome duplication event in the Salicaceae 

family (Tuskan et al., 2006), suggested that more than one BRC1-like gene may exist in the 

poplar genome. Considering these findings, it is difficult to identify a true functional 

poplar BRC1 ortholog based on simple sequence similarity. However, candidate genes 

were identified. For this purpose, the 10 highest-ranked results from the BLAST search 

were used to build a ClustlW alignment of the sequences, which was then used for 

building a phylogenetic tree using the neighbor joining method and default settings, 
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including the bootstrap test of phylogeny. The analysis was done using the MEGA 5.2 

software (Tamura et al., 2011). 

 

 
Fig. 3.27 Phylogenetic tree of putative poplar BRC1 orthologs. The 10 highest-ranked candidate genes 

identified in a TBLASTN search against the AtBRC1 protein sequence were used to build a 

phylogenetic tree in the MEGA5.2 software, using a ClustlW alignment and the neighbor joining 

method. In the analysis, AtBRC2 was included. The part of the tree including the selected 

candidate genes is highlighted. Numbers indicate bootstrap values (1.000 replications) as 

calculated by the software.   

 

Based on the phylogenetic tree (Fig. 3.27), five candidate genes were selected as putative 

AtBRC1 and AtBRC2 orthologs (highlighted in Fig. 3.27). There are two pairs of genes 

clustering closely together: Potri.010G130200 and Potri.008G115800 as well as 

Potri.015G050500 and Potri.012G059900. These clusters are possibly the result of the 

aforementioned whole genome duplication event in the Salicaceae family (Tuskan et al., 

2006). The two genes each therefore appear to be closely related duplicates (paralogs), 

which is supported by the high bootstrap values. The fifth gene (Potri.017G112000) does 

not cluster together with any of the other genes.  

Based on the phylogenetic tree, it is not possible to assign any of the candidate genes 

clearly as an AtBRC1 ortholog. However, the Potri.010G130200 and Potri.008G115800 

cluster stands close to AtBRC2 and the bootstrap value is high, indicating that these two 

genes are most likely orthologs of AtBRC2. The Potri.015G050500 and Potri.012G059900 

cluster appears to be closer related to AtBRC1, although the low bootstrap values do not 

permit a clear classification. There is also the fifth candidate gene, Potri.017G112000, for 
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which no clear assignment is possible. Due to these uncertainties and because the 

phylogenetic analysis does not necessarily allow a judgment about the functionality of the 

genes, all five genes were regarded as putative functional poplar orthologs of AtBRC1. 

Possibly, even a poplar gene showing a higher similarity to AtBRC2 could be one or even 

the only functional BRC1 ortholog, and should be further analyzed. Tab. 3.3 provides an 

overview about the selected candidate genes. 

 
Tab. 3.3 Overview about the Arabidopsis BRC genes and their putative poplar orthologs. Arabidopsis 

BRC1 and BRC2 and their corresponding poplar orthologs, identified by a BLAST analysis, are 

shown. The poplar orthologs were named according to their corresponding chromosome 

numbers. 

Gene Species Gene ID 

Length 

CDS [bp] 

Length 

genomic 

[bp] 

Length 

protein [aa] 

AtBRC1 A. thaliana At3G18550 1302 1836 433 

AtBRC2 A. thaliana At1G68800 1071 1475 356 

PtBRC1-8 P. trichocarpa Potri.008G115800 1362 2222 453 

PtBRC1-10 P. trichocarpa Potri.010G130200 1419 1456 472 

PtBRC1-12 P. trichocarpa Potri.012G059900 1185 2185 394 

PtBRC1-15 P. trichocarpa Potri.015G050500 1209 1726 402 

PtBRC1-17 P. trichocarpa Potri.017G112000 1125 2033 374 

 
 

3.8.2 Expression of poplar BRC1 candidate genes in dormant vs. growing WT 

buds 

 

For a functional poplar BRC1 ortholog, expression in dormant axillary buds was expected. 

The transcript level should be reduced when the buds start to grow out, as it was 

observed in Arabidopsis (Finlayson, 2007). Therefore, greenhouse-grown P. x canescens 

wild type plants were sampled. Dormant axillary buds (size: 2-3 mm) were harvested and 

the plants were decapitated to induce outgrowth of the remaining buds. Three additional 

bud developmental stages were harvested according to their status: slightly swollen (size: 

3-5 mm), swollen (size: 5-8 mm) and growing (size: 8-20 mm). 

The expression of the selected BRC1 ortholog candidate genes was monitored in these 

samples by qPCR. 
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Fig. 3.28 Expression of putative P. x canescens BRC1 ortholog candidate genes in dormant and growing 

buds. Expression levels of the candidate genes Potri.008G115800 (A), Potri.010G130200 (B), 

Potri.012G059900 (C), Potri.015G050500 (D) and Potri.017G112000 (E) relative to the reference 

gene UBQ were determined in dormant, slightly swollen, swollen and growing buds of 

P. x canescens wild type plants. n= 4-10. Error bars indicate standard deviation. Asterisks indicate 

significant differences compared to dormant buds according to Student’s t-test. One, two and 

three asterisks indicate p<0.05, p<0.01 and p<0.001, respectively. 

 

Expression levels of the candidate genes Potri.008G115800, Potri.015G050500 and 

Potri.017G112000 were not significantly changed in swollen or growing axillary buds 

compared to dormant buds (Fig. 3.28 A, D and E). Therefore, these genes do not show the 

expected reduction of transcript levels when the buds grow out. However, two candidate 

genes exhibited this expected regulation. Potri.010G130200 already had significantly 

reduced transcript levels in only slightly swollen buds compared to dormant buds (Fig. 

3.28 B). The transcript levels were found to decrease further when the bud grew out. The 

regulation was gradual from dormant over slightly swollen and swollen to growing buds, 
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with the latter exhibiting the lowest expression. For Potri.012G059900, also a significant 

reduction of transcript levels was observed in swollen and growing compared to dormant 

axillary buds (Fig. 3.28 C). However, the trend was not as obvious as for 

Potri.010G130200. 

Summarized, two candidate genes showed the expected regulation: Potri.010G130200 

and Potri.012G059900. The first appears to be a rather close ortholog of AtBRC2, while 

the latter appears to be closer related to AtBRC1 based on the phylogenetic analysis (Fig. 

3.27). 

 

 

3.8.3 Expression of poplar BRC1 candidate genes in different WT tissues 

 

Beside of a rather high expression level in dormant axillary buds and a down-regulation in 

growing buds, expression of a functional poplar BRC1 ortholog was expected to be low or 

undetectable in other tissues, as it was observed in in situ hybridization, qPCR and 

promoter-GUS fusion experiments in maize (Hubbard et al., 2002), rice (Takeda et al., 

2003), Arabidopsis (Aguilar-Martínez et al., 2007; Finlayson, 2007) and pea (Braun et al., 

2012). Therefore, expression of the candidate genes was tested in different tissues of 

greenhouse-grown P. x canescens wild type plants. Since Potri.017G112000 could not be 

clearly assigned during the phylogenetic analysis (Fig. 3.27) and did not show any 

regulation in outgrowing buds (Fig. 3.28), this gene was excluded from further analysis. 
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Fig. 3.29 Expression of poplar BRC1 ortholog candidate genes in different tissues. Expression was 

monitored in leaves, roots, axillary buds, wood, bark and developing xylem of 3.5 months old, 

greenhouse-grown P. x canescens wild type plants. Expression was determined relative to the 

reference gene UBQ. n=4. Error bars indicate standard deviation.  

 

Potri.010G130200 exhibited the expected expression pattern during previous analysis of 

dormant and outgrowing axillary buds (Fig. 3.28 B). Also in the different tissues tested 

here, this gene showed the typical expression pattern of a BRC1 ortholog: transcripts 

were well-detectable in dormant axillary buds, while no or only minor expression was 

found in all other tested tissues (Fig. 3.29). The other candidate gene showing the 

expected reduction of transcript levels in outgrowing buds, Potri.012G059900 (Fig. 

3.28 C), exhibited the highest expression in dormant axillary buds. However, low to 

moderate transcript levels were also detectable in other tissues. Potri.008G115800 was 

only moderately expressed in dormant axillary buds. While almost no transcripts of this 

gene were detected in roots, wood, bark and developing xylem, there also was moderate 

expression in leaves. For Potri.015G050500, expression was generally low to moderate, 

but not specific to any tissue. 
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3.8.4 Expression of poplar BRC1 candidate genes in amiMAX4-1+2 lines 

 

The expression analysis in various tissues of wild type P. x canescens plants resulted in the 

identification of two poplar candidate genes showing the expression pattern which was 

expected for a functional BRC1 ortholog (see chapter 3.8.2 and 3.8.3; p. 98f). Based on 

the phylogenetic analysis (chapter 3.8.1, p. 96ff), Potri.010G130200, the best candidate 

identified in the expression analysis, can be regarded as an ortholog of AtBRC2. 

Potri.012G059900, which was also a promising candidate, appears to be more closely 

related to AtBRC1 (Fig. 3.27). 

Another important feature of a functional BRC1 ortholog is an induction of expression by 

strigolactones. In SL pathway (max/rms) mutants of Arabidopsis and pea, BRC1 levels 

were, therefore, found to be reduced. In contrast, BRC2 expression was not altered in 

Arabidopsis max mutants (Aguilar-Martínez et al., 2007; Braun et al., 2012). The same 

regulation was expected for functional poplar BRC1 and BRC2 orthologs in the putatively 

SL-deficient amiMAX4-1+2 knockdown lines generated in this project. Therefore, 

expression of the most promising candidate genes Potri.010G130200 and 

Potri.012G059900 was monitored in dormant buds of representative amiMAX4-1+2 lines 

relative to the wild type. 

The results are described in chapter 3.6.1.2 (p. 76ff), where the identified BRC-like genes 

were used as marker genes for SL-deficiency. As expected for a BRC2 ortholog, expression 

of Potri.010G130200 was not altered in the tested amiMAX4-1+2 lines (Fig. 3.16 B and 

Appendix Fig. 7.18 B; p. 163), arguing against a regulation of this gene by SLs. However, 

transcript levels of Potri.012G059900 were significantly reduced in all tested lines 

compared to the wild type (Fig. 3.16 A and Appendix Fig. 7.18 A; p. 163), as anticipated 

for a functional poplar BRC1 ortholog. 

 

 

3.8.5 Expression of poplar BRC1 and BRC2 during winter dormancy 

 

In contrast to annual and herbaceous species such as Arabidopsis and pea, which were 

frequently used in previous studies to investigate the role of BRC1 in bud outgrowth 

regulation, poplar is a perennial, woody species. Instead of only seeds, the whole plant 

survives the cold winters found in temperate climates. The adaptation strategy involves 

growth cessation during autumn, when even the shoot apical meristems form dormant 

buds. This results in an additional type of dormant buds. Along with the axillary buds, they 



Results 
 

103 
 

enter a deep state of dormancy (winter dormancy or endodormancy), i.e. there also is an 

additional stage of dormancy which is not found in annual plants. The different stages of 

dormancy are discussed in chapter 1.3.4 (p. 22ff). 

Winter dormancy in poplar as a model system therefore offered the opportunity to study 

expression of BRC1 in more detail compared to frequently investigated species. Also the 

identified putative poplar BRC2 ortholog was included in the expression analysis. Dormant 

axillary and apical buds were harvested from approx. 3 years old, outdoor-grown 

P. x canescens wild type trees during endodormancy in winter (27.01.2014) and during 

bud break in spring. For the latter, swollen buds (outer layers already breaking, turning 

green, 01.04.2014) and outgrown buds (leaves starting to unfold, 06.04.2014) were 

sampled. In addition and as a reference sample for paradormant (dormancy during 

growth period) buds from the same trees, axillary buds were sampled 08.09.2014. 

Decapitation was done to release buds from apical dominance and thus to induce bud 

outgrowth for obtaining additional reference samples. However, this was not successful. 

The time point was at the end of the growing season and the buds may have already 

entered an ecodormant state. 

Photographs of representative buds at the different time points of harvesting are shown 

in Fig. 3.30. 

 

 
Fig. 3.30 Photographs of representative P. x canescens buds at the different harvesting time points. 

Endodormant apical (left) and axillary buds (right) were harvested during winter (A). The 

corresponding swollen (B) and growing buds (C) were sampled in spring. During the growing 

season, also paradormant axillary buds were sampled (D). 

 

All collected samples were used for expression analysis of the poplar BRC1 and BRC2 

ortholog candidate genes Potri.012G059900 and Potri.010G130200 and the results are 

shown in Fig. 3.31. 
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Fig. 3.31 Expression of putative poplar BRC1 and BRC2 orthologs in axillary and apical buds at different 

developmental stages. Expression of PcBRC1 (Potri.012G059900; A) and PcBRC2 

(Potri.010G130200; B) was monitored in dormant and growing axillary (blue) as well as apical 

buds (red) from approx. 3 years old, outdoor-grown P. x canescens wild type plants. Buds were 

sampled at different time points: during winter dormancy, bud break in spring and during the 

growth period. Note: dormant apical buds do not exist during the growth period, but only during 

winter dormancy.  Expression levels were normalized against the reference gene UBQ. n=4-5. 

Error bars indicate standard deviation.  

 

Unexpectedly, Potri.012G059900 (PcBRC1) transcript levels were low in axillary and apical 

buds sampled during winter and then increased in swollen buds in spring (Fig. 3.31 A). In 

growing buds of both types, there was a further increase in expression by trend. The 

highest relative expression level was observed in para- or ecodormant buds sampled 

during the growing season. The expression level reached approximately half of the level 

found in paradormant axillary buds of greenhouse-grown plants (Fig. 3.28 C). 

Similar to Potri.012G059900, transcript levels of Potri.010G130200 (BcBRC2) were 

increased in swollen axillary and apical buds compared to the corresponding bud types 

during winter dormancy (Fig. 3.31 B). The expression level then dropped slightly in 

growing buds of both types. Expression was also highest in dormant axillary buds during 

the growing season (para- or ecodormant), almost reaching the same expression level 

relative to UBQ as it was observed in paradormant axillary buds of greenhouse-grown 

wild type plants (Fig. 3.28 B). 

With respect to the different bud types, there were no major differences. Overall, 

expression levels and patterns of both genes in apical buds were very similar to the 

patterns found in axillary buds, as described above. This indicates that there is no 

differential expression.  
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4 Discussion 

 

For an investigation of the significance of strigolactones in the model tree poplar, 

candidate genes involved in SL biosynthesis (MAX4) and SL signaling (MAX2) were 

selected based on studies in other species. The corresponding poplar orthologs were 

identified and their expression was investigated in different tissues of P. x canescens wild 

type plants. To analyze their role in poplar, loss of function lines (amiRNA mediated gene 

silencing) were generated and phenotyped for several SL-related traits. The results are 

discussed in the following chapters, starting from the identification of the candidate 

genes, followed by a confirmation of knockdown efficiency and a discussion of the 

observed architectural phenotypes. Lines, in which both poplar MAX4 orthologs were 

knocked down (amiMAX4-1+2), showed robust SL deficiency phenotypes. Additional 

experiments were done with these lines for characterization of SL-related traits. These 

include complementation of the phenotypes by grafting, expression analysis of SL-related 

marker genes, an investigation of possible crosstalk with the JA pathway and GR24-

treatment experiments. 

A second focus was the transcription factor BRC1 as a SL-regulated component of bud 

outgrowth regulation. The identification of putative functional poplar BRC1 orthologs is 

discussed. The expression pattern of poplar BRC1 candidate gene was monitored in 

different tissues, especially in buds. Tree-specific aspects of dormancy were addressed. 

Expression of poplar BRC1 was also investigated in putatively SL-deficient amiMAX4-1+2 

lines, which were expected to have reduced transcript levels.   

 

 

4.1 Identification of poplar MAX orthologs and sequencing    

 

For each of the two SL pathway candidate genes, MAX4 and MAX2, two orthologs were 

identified in poplar (MAX4-1 and MAX4-2; MAX2-1 and MAX2-2). The presence of two 

paralogs (genes resulting from a duplication event within a given species) is common for 

many genes in poplar. It can be explained by a duplication event, in which almost the 

entire genome was doubled. The duplication was estimated to have occurred 8-13 million 

years ago (Tuskan et al., 2006), which is very recent on an evolutionary scale, especially 

for organisms with long generation times such as trees. Thus, a high degree of 

conservation among the paralogs was expected. Indeed, cloning and sequencing of the 

genes revealed high sequence identity (see alignments in Appendix Fig. 7.3 and Fig. 7.4, p. 



Discussion 
 

106 
 

152). Such conservation made redundancy effects likely and was the reason for the design 

of amiRNA constructs which targeted both paralogs simultaneously. Recently, a 

characterization of the poplar SL pathway genes was published (Czarnecki et al., 2014). 

This study confirmed the correct identification of poplar MAX genes in this work. It 

showed that both copies could complement the corresponding Arabidopsis mutant 

branching phenotypes, which is a strong indication for functional redundancy. Yet, it does 

not prove redundancy directly, as Arabidopsis is a heterologous system. 

Complementation was only partial and not equally effective for the two paralogs 

(Czarnecki et al., 2014), which may be interpreted as a hint for a somewhat different 

function. Furthermore, expression patterns of the two paralogs in poplar were not found 

to be identical (see chapter 3.3, p. 59f; and discussion below) and pointed to a 

diversification, since spatiotemporal expression patterns play an important role for the 

gene function. Additionally, although the paralogs are highly similar on the sequence 

level, even minor differences, e.g. changes leading to alterations at binding sites for 

interaction partners or substrates, can have a large impact on the function of the encoded 

proteins. To resolve such possible diversification, individual knockdowns of the poplar 

paralogs were attempted, too. 

 

 

4.2 Expression pattern of MAX genes in wild type poplar  

 

Expression of the identified poplar MAX genes was monitored in P. x canescens wild type 

plants (see chapter 3.3.2, p. 61f).  

Transcript levels of the poplar MAX4 orthologs were found to be extremely low in young, 

in vitro grown plants. The highest expression was observed for MAX4-1 in roots (Fig. 3.3, 

p. 61), which matches the eFP browser data (Fig. 3.2, p. 60). Transcripts of both genes 

were also detectable in stems, while no expression was found in leaves (Fig. 3.3, p. 61). 

This overall pattern was expected, since MAX4 in other species is known to be expressed 

at low levels, and expression occurs predominantly in root tips and nodal areas of the 

stem (Arite et al., 2007; Liang et al., 2010; Snowden et al., 2005; Sorefan et al., 2003). 

Accordingly, no or only basal MAX4 expression was found in developing xylem, leaves, 

axillary buds and bark, when the expression pattern was investigated in 4.5 months old 

greenhouse-grown plants (Fig. 3.4, p. 62). Interestingly, in these plants, only minor 

amounts of MAX4 transcripts were detectable in the roots. In contrast, transcripts were 

readily detectable in the stem (wood, no bark). It is unclear why expression shifted from 
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the root to the stem as the major site of MAX4 expression in plants grown under 

greenhouse conditions compared to in vitro grown plants. Such a tissue-specific shift of 

MAX4 expression depending on the growth conditions and/or plant age has not been 

tested or reported for other species. Nonetheless, it is known that the stem as a site for 

SL biosynthesis is sufficient, and the root is not required. This was shown by grafting 

experiments in Arabidopsis, pea and petunia, in which wild type scions were grafted onto 

MAX mutant rootstocks, still exhibiting WT-like architecture (Foo et al., 2001; Napoli, 

1996; Sorefan et al., 2003). In petunia, even a small wild type interstock stem fragment 

was sufficient to rescue the mutant phenotype of a max4 scion grafted onto a max4 

rootstock (Foo et al., 2001). Also in this work, grafting studies using amiMAX4-1+2 lines 

showed the same outcome (see chapter 3.6.2 (p. 79ff); and discussion below). Thus, it 

appears that the root is not required for biosynthesis of SLs acting in the stem.     

Expression profiling was done for the poplar MAX2 orthologs as well (chapter 3.3.2, 

p. 61f). MAX2 is known to be an important component of SL signaling. Thus, it was 

expected to be expressed in tissues where SLs are perceived. SLs are discussed to be 

involved in the regulation of auxin transport in the PATS in xylem parenchyma cells 

(canalization model), and there may also be a local mode of action within the buds 

(second messenger model) (see chapter 1.3.2.3, p. 11ff). Thus, a pattern of broad 

expression can be expected. Indeed, MAX2 expression was previously reported to occur 

in almost all tested plant organs of Arabidopsis, pea, petunia and rice, particularly in the 

vasculature of various tissues (Drummond et al., 2011; Ishikawa et al., 2005; Johnson et 

al., 2006; Stirnberg et al., 2007). This was also implied in poplar (P. balsamifera) by 

microarray (eFP browser) data (Fig. 3.2, p. 60) and confirmed in this work by qPCR in 

P. x canescens (Fig. 3.5, p. 63). Thus, the expression pattern matched published data and 

points to a role for MAX2 in poplar, similar to the function described in other species. 

 

 

4.3 Target gene expression analysis and phenotyping: amiMAX4 lines 

 

4.3.1 Target gene expression analysis in amiMAX4 lines 

 

Individual knockdowns (amiMAX4-1 and amiMAX4-2 lines) were carried out to resolve a 

potential diversification of gene functions, while simultaneous knockdowns of both 

poplar orthologs (amiMAX4-1+2 lines) were done to overcome likely redundancy effects. 

A successful knockdown was expected to reduce the transcript levels of the target genes. 
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Since MAX4 is involved in SL biosynthesis, silencing would most likely result in SL 

deficiency, in turn leading to alterations in architectural phenotypes. For the investigation 

of knockdown efficiency, plants had to be grown under greenhouse-conditions to obtain 

wood samples. Samples from other tissues or younger plants were not suited, because 

MAX4 was only sufficiently expressed in this tissue type in wild type plants (Fig. 3.4, 

p. 62). At the time point of sampling, plants were tall and old enough to exhibit typical 

phenotypes. Thus, architectural phenotyping was done before expression analysis. Based 

on the obtained data, expression analysis was only performed for several representative 

amiMAX4-1+2 lines. Individual MAX4 knockdown lines (amiMAX4-1 and amiMAX4-2) did 

not exhibit architectural phenotypes and were excluded from expression analysis.  

As expected for lines showing typical SL-deficiency phenotypes (see discussion below), all 

tested amiMAX4-1+2 lines exhibited a significant down-regulation of both target genes 

(Fig. 3.6, p. 65). Thus, the knockdown was successful.  

 

 

4.3.2 Architectural phenotyping of amiMAX4 lines 

 

While amiMAX4-1+2 double knockdown lines exhibited strong changes in architectural 

traits, there were no significant differences between single knockdown lines (amiMAX4-1 

and amiMAX4-2) and the P. x canescens wild type (chapter 3.5.2, p. 65ff). Thus, the 

discussion of architectural phenotypes in the following paragraphs focuses on the 

amiMAX4-1+2 lines. 

 

 

4.3.2.1 Shoot architecture of amiMAX4 lines 

 

MAX4 is involved in SL biosynthesis. Loss of function mutations and RNAi-mediated 

silencing led to typical SL-deficiency phenotypes in Arabidopsis, pea, petunia, rice, tomato 

and kiwifruit. The most prominent phenotype is highly increased shoot branching (Arite et 

al., 2007; Kohlen et al., 2012; Ledger et al., 2010; Snowden et al., 2005; Sorefan et al., 

2003).  

The absence of this phenotype in poplar MAX4 single knockdown lines (see chapter 3.5.2, 

p. 65ff) may be explained by the high degree of conservation between both poplar MAX4 

orthologs (see alignment in Appendix Fig. 7.3, p. 152), making redundancy likely. This is 

supported by the finding that both can at least partially complement the Arabidopsis 

max4 mutant phenotypes (Czarnecki et al., 2014). Loss of function of one copy could then 
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be masked by the activity of the other paralog. Such a redundancy effect may be 

enhanced by the negative feedback control mechanism present in the SL pathway, acting 

on MAX4 (Mashiguchi et al., 2009). Via release from negative feedback, knockdown of 

one MAX4 paralog may induce compensatory upregulation of the other, functionally 

redundant gene. Another explanation for the absence of a phenotype in the MAX4-1 and 

MAX4-2 lines would be unsuccessful knockdown of the target genes by the amiRNA 

constructs. This cannot be ruled out, as expression analysis of the target genes was not 

done in individual knockdown lines.  

In contrast to the MAX4 single knockdown lines, amiMAX4-1+2 double knockdown lines  

revealed a robust increased branching phenotype in almost all tested lines, which was 

reproducible and stable under different conditions. This is remarkable, since it is the first 

direct implication for a regulation of branching processes by SLs in trees in a way similar 

to the mechanisms observed in other species. Thus, it underlines the high degree of 

conservation of fundamental control mechanisms.  

For an in-depth characterization, other architectural phenotypes were investigated in the 

amiMAX4 lines. Compared to the wild type, the plant height was reduced in 

amiMAX4-1+2 lines, which is a common phenotype of SL-deficient mutants (Arite et al., 

2007; Snowden et al., 2005; Sorefan et al., 2003). The reduced plant height is a 

consequence of a reduced internode length, while the number of nodes is not changed in 

most amiMAX4-1+2 lines (Fig. 3.9 and Fig. 3.10, p. 68). The reduced internode length also 

is a typical sign of SL deficiency: SLs were reported to stimulate internode elongation by 

controlling cell division, leading to a reduced internode length in SL-deficient pea and 

petunia mutants (de Saint Germain et al., 2013; Snowden et al., 2005). Interestingly, such 

a reduction was not observed in kiwifruit MAX4 knockdown lines (Ledger et al., 2010). 

Like poplar, kiwifruit is a woody perennial species. The presence of the phenotype in the 

poplar amiMAX4-1+2 lines indicates conservation of this function in woody perennials, 

which may be lost specifically in kiwifruit. 

Summarized, shoot architectural phenotyping revealed typical SL-deficiency related 

symptoms in poplar amiMAX4-1+2 lines. Thus, there are strong hints that the knockdown 

of both MAX4 orthologs indeed led to reduced SL levels.  
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4.3.2.2 Biomass traits of amiMAX4 lines 

 

During phenotyping, also biomass traits of poplar amiMAX4 lines were investigated. 

Although SL-deficient plants are frequently described to have a reduced height compared 

to wild type plants, there are no reports addressing the biomass. The branches may 

compensate for the reduction of primary shoot growth. In this work, the biomass was 

determined separately for stems, leaves and roots of amiMAX lines and compared to the 

P. x canescens wild type (see chapter 3.5.2.2, p. 70ff). However, no major differences 

were observed in amiMAX4 lines compared to the P. x canescens wild type. Although 

there were some significant differences in few lines with respect to the root and leaf dry 

weight, this was not consistent. Also for the total biomass, no significant differences were 

observed in any of the tested lines (Fig. 3.13, p. 71). Thus, a reduction of growth in the 

primary shoot is entirely compensated by biomass of the branches and appears to result 

from resource allocation to this part of the plant. Although pea SL pathway mutants with 

manually removed axillary buds were reported to still be shorter than wild type plants, 

suggesting that the reduced internode length is independent of increased branching, such 

a redistribution of resources is discussed to play a role: when buds were removed, 

increased leaf growth and stem thickening was observed in wild type and SL mutant 

plants (de Saint Germain et al., 2013). Thus, SL deficiency triggers increased branching, 

but resource allocation is an SL-independent process. 

Summarized, SL-deficiency appears not to influence total biomass, but only the biomass 

distribution within the plant appears to be changed as a secondary effect. 

 

 

4.3.2.3 Root architecture of amiMAX4 lines: adventitious rooting 

 

In addition to their role in shoot architecture, SLs were reported to have profound effects 

on the root architecture. In this work, adventitious rooting was addressed. SLs appear to 

have an inhibitory effect on this developmental process: while GR24 treatment inhibited 

adventitious rooting, Arabidopsis and pea SL pathway mutants were reported to produce 

increased numbers of adventitious roots (Rasmussen et al., 2012).  

The putatively SL-deficient poplar amiMAX4-1+2 lines generated in this project showed 

increased numbers of roots growing from stem cuttings, too (Fig. 3.14, p. 73). This 

provides further evidence for the anticipated SL-deficiency in these lines. Additionally, it 

underlines the role of SLs in adventitious root formation in trees, in which such a function 

has not been studied yet. Also in kiwifruit, which is the only woody perennial for which 
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putatively SL-deficient lines (MAX4 knockdown) were generated, adventitious rooting was 

not addressed (Ledger et al., 2010). 

Taken together, the findings strongly suggest that the role of SLs in adventitious root 

formation is conserved in trees, and provides further evidence for SL deficiency in the 

generated amiMAX4-1+2 lines. 

 

 

4.4 Detailed characterization of amiMAX4-1+2 lines 

 

Since the generated poplar amiMAX4-1+2 lines exhibited typical phenotypes of SL-

deficient plants, they were characterized in detail. Direct quantification of SLs to prove SL-

deficiency was not feasible (see explanation in chapter 3.6.1, p. 74f). Although this may 

become feasible in the future, in this project, further indirect proof was collected instead 

in addition to the typical architectural phenotypes described above. For this purpose, the 

expression of SL-responsive marker genes was monitored and the shoot architectural 

phenotypes were complemented by grafting. Furthermore, exogenous treatment with 

synthetic SL (GR24) was done in wild type and amiMAX4-1+2 stem segments to test its 

effect on poplar; and buds of amiMAX4-1+2 plants were treated with GR24 in another 

complementation approach. 

Since the experiments provide strong support for the anticipated SL deficiency in the 

generated lines, a recently suggested crosstalk of the SL pathway with jasmonic acid (JA) 

was investigated. Furthermore, an anticipated influence of SL deficiency on the time point 

of bud break after winter dormancy was studied.  

 

 

4.4.1 Expression of SL-regulated marker genes in amiMAX4-1+2 lines 

 

The expression of known SL-responsive genes was employed as an indicator for SL-

deficiency in the amiMAX4-1+2 lines. MAX3 was chosen since it is negatively feedback-

regulated by SLs in Arabidopsis and pea, along with other SL biosynthesis genes (Hayward 

et al., 2009; Johnson et al., 2006; Mashiguchi et al., 2009; de Saint Germain et al., 2013). 

In contrast, BRC1 is positively regulated by SLs (Aguilar-Martínez et al., 2007; Braun et al., 

2012). 
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4.4.1.1 MAX3 expression in amiMAX4-1+2 lines  

 

In Arabidopsis max and pea rms SL biosynthesis and signaling loss of function mutants, a 

moderate (2 to 10-fold) increase in MAX3/RMS5 expression was reported. This is due to 

release of MAX3/RMS5 from negative feedback in these plants (Hayward et al., 2009; 

Johnson et al., 2006; Mashiguchi et al., 2009; de Saint Germain et al., 2013; Waters et al., 

2012a). Thus, the poplar MAX3 ortholog Potri.014G056800 (identified by sequence 

comparison, also reported in Czarnecki et al. (2014)) appeared to be a suitable marker for 

SL deficiency. However, regulation could not be clearly shown in stem samples of the 

tested representative poplar amiMAX4-1+2 lines. Although transcript levels were 

increased by trend compared to the P. x canescens wild type, this was only significant in 

one line. The increase was approx. 2-fold in this line (Fig. 3.15, p. 76), but it was not 

reproducible in a repetition of the experiment.  

There are several possible explanations for the failure to show MAX3 feedback regulation 

in poplar. The variation among the biological replicates was high, potentially obscuring a 

rather subtle effect. In the above-mentioned studies, the regulation was sometimes 

observed to be only 2-fold, even in full loss-of-function mutants, which are either SL-

deficient or have defects in SL signaling. Although the tested poplar lines show typical SL-

deficiency phenotypes, expression analysis of the target genes (MAX4-1 and MAX4-2) 

revealed residual transcript levels (Fig. 3.6, p. 65). Thus, it is likely that the plants are not 

fully SL-deficient and rather have reduced SL levels. This may not be sufficient to cause 

release of the SL biosynthesis genes, including MAX3, from negative feedback. An 

alternative explanation would be the absence of negative feedback regulation of MAX3 in 

poplar. Although the SL pathway appears to be generally conserved among species, rice 

D17 (HTD1, MAX3 ortholog) transcript levels were not increased in SL pathway mutant 

lines compared to the wild type (Arite et al., 2007). Thus, there seems to be no negative 

feedback regulation of this gene in rice, and this may be the case in poplar as well.  

However, the finding that D17 is not regulated in rice does not generally connote absence 

of negative feedback in the SL pathway in this species. Negative feedback rather may 

target other genes in SL biosynthesis. Interestingly, D10 (MAX4 ortholog) transcript levels 

were found to be increased in SL pathway mutants (Arite et al., 2007). Thus, rice is an 

example for a species in which the MAX3 ortholog is not subject to negative feedback, 

while the MAX4 ortholog is regulated. Further studies showed that MAX4 orthologs are 

also regulated in other species in addition to MAX3: MAX4/RMS1/DAD1 transcript levels 

were increased in Arabidopsis, pea and petunia SL pathway mutants (Hayward et al., 
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2009; Johnson et al., 2006; Mashiguchi et al., 2009; Snowden et al., 2005; Waters et al., 

2012a). This regulation may also be present in poplar, but it could not be tested since 

MAX4 was the knockdown target.  

 

 

4.4.1.2 BRC1 expression in amiMAX4-1+2 lines 

 

Transcript levels of the bud outgrowth regulating transcription factor BRC1 were reported 

to be significantly reduced in Arabidopsis and pea SL pathway mutants, including SL-

deficient max4/rms1 lines (Aguilar-Martínez et al., 2007; Braun et al., 2012). Thus, poplar 

BRC1 orthologs appeared to be suited marker genes for SL-deficiency in the 

amiMAX4-1+2 lines. Since poplar BRC1 has not been described yet, candidate genes for 

functional orthologs were identified (see chapter 3.8, p. 95ff; and discussion chapter 4.6, 

p. 122ff). A down-regulation of transcript levels of these genes in amiMAX4-1+2 

knockdown lines compared to the P. x canescens wild type was expected. Indeed, 

expression of the gene Potri.012G059900 was significantly reduced in axillary buds of the 

tested representative amiMAX4-1+2 lines (Fig. 3.16, p. 78). Therefore, this finding 

provides further proof for SL-deficiency in these lines. 

 

 

4.4.2 Complementation of amiMAX4-1+2 phenotype: grafting 

 

The shoot architectural phenotypes of SL-deficient mutants can be complemented by 

grafting of a mutant scion onto a wild type rootstock, as shown in Arabidopsis, pea and 

petunia (Foo et al., 2001; Napoli, 1996; Sorefan et al., 2003). In this work, this was 

successfully done for representative amiMAX4-1+2 lines as well. While self-grafted 

control plants exhibited the typical SL-deficiency phenotypes (increased shoot branching 

as well as reduced plant height and internode length), the phenotypes were rescued 

when the transgenic scions were grafted onto a wild type rootstock (Fig. 3.17, p. 80). This 

indicates that a mobile, graft-transmittable signal can complement the phenotype, 

providing further evidence for SL-deficiency in the poplar knockdown lines generated in 

this project.  

From studies in other species, it is known that also a wild type scion grafted onto a 

mutant rootstock exhibits a WT-like phenotype. This indicates that the root as site of SL 

production is not required for normal shoot architecture, and local biosynthesis in the 

shoot is sufficient (see references above). As shown in Fig. 3.17 (p.80), also P. x canescens 
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wild type scions, grafted onto an amiMAX4-1+2 rootstocks, had a WT-like phenotype. This 

indicates that also in poplar, local SL biosynthesis in the shoot is sufficient for normal 

plant architecture. This is supported by expression analysis in wild type P. x canescens 

plants grown under greenhouse conditions, revealing that MAX4 expression was 

extremely low and hardly detectable in roots (chapter 4.2, p. 106ff). However, this 

appears to be contradicting regarding the successful complementation of the 

amiMAX4-1+2 shoot architectural phenotypes by a wild type rootstock. In this 

experiment, the complementing substance (SL) must be rootstock-derived. This apparent 

ambiguity may be explained by the fact that the rootstock, for technical reasons, also 

contained the basal part of the stem (approx. 5 cm, see photograph Fig. 2.2, p. 55). SL 

production in this tissue is likely to be sufficient, since small interstock stem pieces, 

inserted into the shoot of pea and petunia SL biosynthesis mutant plants by grafting, 

were shown to mediate full complementation of architectural phenotypes (Foo et al., 

2001; Napoli, 1996). This was also tested in this work. Although the replicate number was 

too low for statistical analysis, the experiments indicate that amiMAX4-1+2 plants bearing 

an approx. 1 cm short wild type interstock fragment exhibited the same shoot 

architecture as self-grafted wild type control plants (Appendix Fig. 7.19, p. 164). Thus, the 

basal stem fragment of the rootstock can be regarded as sufficient for full 

complementation of the architectural phenotype of the scion, even though the poplar 

MAX4 genes are not significantly expressed in the roots. 

 

 

4.4.3 GR24 treatment of wild type and amiMAX4-1+2 plants 

 

In addition to providing endogenous SLs from wild type tissues by grafting, another 

possibility to complement the phenotype of SL-deficient plants is exogenous application 

of SLs, such as the synthetic SL analog GR24. Since the use of GR24 was not reported for 

poplar yet, the effect of this substance on in vitro grown P. x canescens wild type and 

amiMAX4-1+2 stem cuttings was tested in one- and two-node-assays. In an attempt to 

complement the enhanced bud outgrowth phenotype of amiMAX4-1+2 lines, GR24 was 

applied directly to axillary buds of intact plants grown in a climate chamber. 
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4.4.3.1 GR24 treatment of wild type and amiMAX4-1+2 stem cuttings 

 

To test whether the synthetic SL analog GR24 is functional in poplar and effective in 

inhibiting bud outgrowth, its effect on in vitro grown stem cuttings was monitored. For 

this purpose, the hormone was applied basally via the growth medium, from which it can 

be taken up. Such uptake of bud outgrowth modifying substances (e.g. cytokinin) into 

stem cuttings has already been proven in Arabidopsis (Chatfield et al., 2000) and GR24 

treatment assays were successfully used in Arabidopsis, chrysanthemum and willow 

(Crawford et al., 2010; Liang et al., 2010; Ward et al., 2013). In accordance with the data 

reported in these studies, also treatment of poplar wild type stem cuttings bearing one 

bud (one-node-assay) with 5 µM GR24 did not inhibit bud outgrowth (Fig. 3.18, p. 83; and 

Appendix Fig. 7.20, p. 165). This finding appears odd since GR24 is an inhibitor of bud 

outgrowth, but may be explained by the auxin transport canalization model. According to 

the model, SLs act by inhibiting auxin transport, reducing the sink capacity of the stem. 

This in turn impedes the establishment of an initial auxin export from the buds as a 

prerequisite for outgrowth. To be effective, the proposed mechanism requires a 

competing auxin source in addition to the bud itself, which is not present in one-node 

stem segments. Thus, there is no competition, which could be enhanced by GR24 

modulating auxin transport. Accordingly, providing auxin apically is expected to enable 

GR24 to inhibit bud outgrowth in a one-node-assay. Indeed, this was shown in 

Arabidopsis, chrysanthemum and willow (Crawford et al., 2010; Liang et al., 2010; Ward 

et al., 2013).  

Although the discussed explanation of the absence of an inhibitory effect of basally 

supplied GR24 in one-node-assays using the auxin canalization model is appealing, it 

should be noted that it is questioned in a recent publication (Brewer et al., 2015). In pea, 

very similar findings were made with an experimental setup similar to the one used in the 

publications mentioned above (“split plate assay”, first described in Chatfield et al., 2000): 

basal GR24 was only effective in inhibiting bud outgrowth in a one-node-assay if auxin 

was supplied apically. However, an effect of basal GR24 alone without apical auxin was 

observed in a slightly different experimental setup (“open tube assay”) (Brewer et al., 

2015). Both assays are principally very similar and the authors do not provide an 

explanation for this contradictive finding. Therefore, it remains to be elucidated which 

conditions caused the contrasting results and whether different mechanisms are active. 

In addition to apical auxin supply in one-node-assays, also a second bud was expected to 

be sufficient as a competing auxin source, suppressing outgrowth of the other bud. 
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Modulation of auxin fluxes by basally supplied GR24 could then directly take effect 

without any further auxin treatment. Indeed, this was confirmed in two-node-assays in 

Arabidopsis, chrysanthemum and willow (Crawford et al., 2010; Liang et al., 2010; Ward 

et al., 2013). To test the effect of GR24 on bud outgrowth in poplar stem segments 

bearing two nodes, corresponding cuttings were made from in vitro grown plants treated 

in the same way as done in the one-node-assay. As expected, GR24 significantly inhibited 

bud outgrowth in the two-node-assay (Fig. 3.19, p. 84). This proves that GR24 is 

functional and can be perceived as a SL in poplar. Furthermore, the experiment shows 

that also in this species, in an experimental setup which differs slightly from the standard 

“split plate assay”, an additional auxin source than a given individual bud itself is required 

for the inhibitory effect of GR24 on bud outgrowth. A second bud is sufficient for this 

purpose. Interestingly, the competing auxin source apparently needs to be apical relative 

to the inhibited bud in poplar. This is suggested by the finding that only the lower bud 

was inhibited by GR24, while outgrowth of the upper bud was not significantly changed 

(Fig. 3.19, p. 84). This observation was also made in chrysanthemum and willow (Liang et 

al., 2010; Ward et al., 2013). Since poplar and willow are closely related members of the 

Salicaceae family, a similar mode of action in poplar can be expected. Notably, there 

appear to be differences between more distantly related species. In Arabidopsis, also the 

upper bud was reported to be affected, indicating that also a basal auxin source can 

inhibit outgrowth of a more apical bud (Crawford et al., 2010; Prusinkiewicz et al., 2009). 

In the two-node-assay carried out in this work, representative amiMAX4-1+2 lines were 

included in addition to the P. x canescens wild type. The knockdown lines exhibit 

enhanced bud outgrowth compared to the wild type in intact plants (see chapter 3.5.2.1, 

p. 66ff), which may also be seen in stem cuttings. If this was the case, GR24 was expected 

to complement this phenotype, i.e. provide direct proof for SL-deficiency in the 

amiMAX4-1+2 lines. However, no significant differences were observed in the bud 

outgrowth rates of wild type and amiMAX4-1+2 cuttings within a given treatment (mock 

or GR24). This may be explained by the fact that stem cuttings lack an active apex (i.e. 

they are decapitated), which appears to immediately release both buds from dormancy. 

Therefore, the enhanced bud outgrowth phenotype of the amiMAX4-1+2 lines cannot be 

seen in this experimental setup. Since amiMAX4-1+2 lines are impaired in SL biosynthesis, 

but not SL signaling, they exhibit a WT-like reaction to GR24 treatment. 

Summarized, GR24 was shown to be a functional SL in poplar, suppressing branching as 

reported for other species. However, with the assay used here, complementation of the 

branching phenotype of the amiMAX4-1+2 lines could not be shown. For this purpose, a 
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different assay is required, in which a difference between the wild type and the 

knockdown lines can be seen in the mock control. 

 

 

4.4.3.2 GR24 treatment of buds in wild type and amiMAX4-1+2 plants 

 

In the previous experiment, GR24 was shown to be a functional SL in poplar. To test 

whether the increased branching phenotype of the amiMAX4-1+2 lines generated in this 

work can be complemented by GR24, buds of intact plants were treated. These plants 

possess an active apex as a major auxin source. Therefore, GR24 is expected to be active 

in suppressing bud outgrowth, similar to two-node assays or one-node assays with 

apically supplied auxin. In pea and Arabidopsis, direct external application of GR24 onto 

axillary buds of SL-deficient plants has already been shown to complement their 

increased branching phenotype (Gomez-Roldan et al., 2008). A similar rescue of the 

phenotype in the poplar amiMAX4-1+2 lines would directly confirm SL deficiency as the 

reason for increased bud outgrowth. 

For this experiment, the plants were grown in a climate chamber to a size of up to 50 cm. 

P. x canescens wild type plants did not produce branches under these conditions. 

Therefore, an inhibitory effect of GR24 treatment could not be observed. In contrast, the 

amiMAX4-1+2 plants exhibited a high degree of bud outgrowth in the mock-treated 

control (Fig. 3.20, p. 86), which is the typical phenotype observed in these lines without 

treatment. However, GR24 application unexpectedly did not reduce the bud outgrowth 

rate, i.e. the increased branching phenotype was not complemented. The reason for this 

failure is unclear, but may be technical. For example, the amount of GR24 supplied to the 

buds may not be sufficient. However, this is unlikely, since 6 µl of a 5 µM GR24 solution 

were applied three times in total over the course of 10-11 days in this experiment. In 

contrast, a single application of only 10 µl 100 nM GR24 was effective in suppressing bud 

outgrowth in the pea rms1 (MAX4 ortholog) mutant (Gomez-Roldan et al., 2008). Thus, 

the absolute amount of applied GR24 was 90-fold (30-fold amount applied three times) 

higher in this work and should have been sufficient in suppressing or at least delaying bud 

outgrowth. Another possibility would be that the solution did not penetrate poplar buds 

sufficiently. In this work, the treatment solution was composed in the same way as a 

solution which was successfully used in pea (Gomez-Roldan et al. (2008) and C. Beveridge, 

personal communication). However, the permeability of poplar buds may be different. 

Thus, the solution should be optimized for poplar bud treatments. As an alternative to 
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local application of the solution onto axillary buds, GR24 may also be directly fed to the 

vascular system of the main stem, using a method which was successfully applied in pea 

(Dun et al., 2012; Gomez-Roldan et al., 2008). 

It should be noted that, unexpectedly, GR24 treatment appeared to enhance bud 

outgrowth slightly compared to mock treatment. Although this effect was not significant, 

it was highly consistent at different time points and in the two different lines used for this 

experiment (Fig. 3.20, p. 86). If this effect is genuine, it would argue against insufficient 

penetration of the buds by the GR24 solution. Interestingly, SLs are discussed to be able 

to enhance bud outgrowth, depending on the SL concentration and the auxin transport 

status in the plant. For instance, GR24 was shown to promote bud outgrowth in 

Arabidopsis tir3 mutants (reduced auxin transport) when supplied at certain 

concentrations. However, this effect was not reported in Arabidopsis wild type and max 

mutant plants (Shinohara et al., 2013). Thus, the apparent promoting effect of GR24 in 

amiMAX4-1+2 poplar lines upon direct treatment of buds observed here, cannot be 

explained by these findings. Increased bud outgrowth upon application of GR24 to buds 

of intact SL-deficient plants would also contradict the observations made in Arabidopsis 

and pea (Gomez-Roldan et al., 2008). It would imply differential regulation in poplar, 

which is unlikely. Hence, the non-significant trend observed here may be simply a 

technical artifact.    
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4.4.4 Spring bud break in amiMAX4-1+2 lines 

 

Strigolactones are well-known for their role in suppressing bud outgrowth, i.e. 

consolidating dormancy. There are different states of dormancy, as described in chapter 

1.3.4 (p. 22ff). So far, only the role of SLs in enhancing the paradormant state of buds 

during the growing season was studied, since routinely used branching model plants 

belong to annual species. These plants do not survive winter, and therefore lack winter 

dormancy (endodormancy). It was conceivable that SLs also stabilize endodormancy or 

ecodormancy, and bud break in spring appeared to be a suitable occasion to study this 

possible role. For this analysis, SL-deficient plants are required. So far, MAX4 knockdown 

kiwifruit lines were the only reported putatively SL-deficient temperate perennial plants, 

but bud break in spring was not studied (Ledger et al., 2010). Thus, spring bud break was 

investigated in the poplar amiMAX4-1+2 lines generated in this project. Representative 

lines and the P. x canescens wild type were grown under outdoor conditions and the bud 

elongation during bud break after the first winter was measured (Fig. 3.21, p. 87). It was 

expected that SL-deficient plants would exhibit earlier bud break, leading to more 

elongated buds.  

Indeed, buds of the amiMAX4-1+2 line T14 #4A were significantly more elongated at a 

defined time point compared to the wild type, supporting the hypothesis. However, this 

phenotype was not reproducible. In the second representative amiMAX4-1+2 line 

T22 #5A, no difference was observed. Hence, even though the experiment provides a hint 

for a role of SLs in consolidating ecodormancy, a conclusion cannot be drawn. A repetition 

of the experiment, including more lines, would be required.    

 

 

4.4.5 Analysis of possible JA-crosstalk in amiMAX4-1+2 lines 

 

Pathogens have a tremendous impact on plants, and the JA-pathway counteracts a wide 

range of herbivorous and necrotrophic pests and pathogens (Campos et al., 2014; 

Pieterse et al., 2012). Recently, crosstalk between strigolactones (SLs) and the jasmonic 

acid (JA) pathway was reported, based on infection studies using SL-deficient tomato 

lines. The plants exhibited reduced JA-levels as well as reduced JA-marker gene 

expression and were more susceptible to the tested necrotrophic fungal pathogens 

Alternaria alternata and Botrytis cinerea (Torres-Vera et al., 2014). An interference of SLs 

with the JA pathway appears to be another critical role for SLs as phytohormones 

regulating various aspects in plant development.  
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Since other functions of SLs, most notably their role in controlling branching, are highly 

conserved among plant species, SL-JA crosstalk was expected to be present in poplar as 

well. A strongly JA-responsive marker gene was identified in poplar and its expression was 

monitored in representative amiMAX4-1+2 lines compared to the P. x canescens wild 

type. As discussed in the previous chapters, there is well-founded evidence for SL-

deficiency in these lines. Based on the published data (Torres-Vera et al., 2014), a 

reduction of JA-levels in the SL-deficient plants was expected, which should be observable 

by marker gene expression analysis. However, such regulation was not found (Fig. 3.22, p. 

89). Thus, the reported crosstalk could not be confirmed in poplar.  

This is in line with observations of amiMAX4-1+2 lines grown under outdoor conditions. 

Under these conditions, the plants were highly challenged by numerous pathogens, such 

as Chrysomela sp. leaf beetles. An impaired JA-response due to SL deficiency would be 

expected to result in increased infestation of amiMAX4-1+2 plants with such pathogens 

compared to the wild type. However, although it was not quantified, there were no 

indications of higher susceptibility.  

Thus, the artificial conditions (infection and monitoring of disease symptoms at detached 

leaves) used by Torres-Vera et al. (2014) may have led to artificial results, or the mode of 

regulation is not conserved in poplar. 
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4.5 Target gene expression analysis and phenotyping: amiMAX2 lines 

 

As discussed for MAX4, also the SL-signaling gene MAX2 was a target gene in this work. 

The corresponding loss of function mutants in many herbaceous species, including 

Arabidopsis, pea, petunia and rice, are characterized by increased branching (Drummond 

et al., 2011; Ishikawa et al., 2005; Johnson et al., 2006; Stirnberg et al., 2002). There are 

two MAX2 orthologs in poplar, designated MAX2-1 and MAX2-2 in this work and also 

identified by Czarnecki et al. (2014) as MAX2b and MAX2a, respectively. Individual 

knockdowns (amiMAX2-1 and amiMAX2-2 lines), as well as simultaneous knockdowns of 

both orthologs (amiMAX2-1+2 lines), were intended. Since increased branching was 

expected in the knockdown lines, architectural phenotyping was done. 

 

 

4.5.1 Target gene expression analysis in amiMAX2 lines 

 

To investigate knockdown efficiency, expression of both MAX2 orthologs was monitored 

in the generated transgenic amiMAX2 lines. Upon knockdown of an individual ortholog, a 

reduction of its transcript level was expected, while expression of the second ortholog 

should not be changed. However, this was not the case. In contrast, MAX2-1 expression 

appeared to be increased in amiMAX2-1 lines relative to the P. x canescens wild type. 

Interestingly, also MAX2-2 expression was increased (Fig. 3.23, p. 91). The reason for this 

up-regulation is unclear. The amiRNA construct may not be functional and the MAX2-1 

target mRNA may not be degraded. However, this should not lead to increased 

expression, especially for the non-targeted gene MAX2-2. The only conceivable theory 

would be that MAX2-1 expression normally is under negative control of unknown factors. 

An initial reduction of transcript levels by the amiRNA may lead to release from this 

negative control. This release may over-compensate a low level of amiRNA-mediated 

degradation, leading to increased net transcript levels. MAX2-1 and MAX2-2 may be 

redundant and under the same negative control, which would explain increased MAX2-2 

transcript levels, although this gene was not targeted. At least redundancy is very likely, 

since both poplar MAX2 orthologs were already successfully used to complement the 

Arabidopsis max2 mutant phenotype partially (Czarnecki et al., 2014). 

When MAX2-2 levels were assayed in amiMAX2-2 lines, a reduction was observed relative 

to the wild type (Fig. 3.24, p. 92). Thus, silencing was successful in the case MAX2-2. 
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Notably, MAX2-1 expression was increased in these lines, which may be explained by 

redundancy and a compensatory up-regulation of MAX2-1 upon silencing of MAX2-2.  

In amiMAX2-1+2 lines, similar expression patterns were found as in amiMAX2-2 lines. 

Although both orthologs were targeted, only the MAX2-2 knockdown was successful and 

the transcript levels were reduced. In contrast, MAX2-1 expression was increased (Fig. 

3.25, p. 91). The amiRNA construct apparently did successfully target MAX2-2, but not 

MAX2-1. As discussed above, both genes may be redundant and MAX2-1 may be up-

regulated to compensate for reduced MAX2-2 levels. 

 

  

4.5.2 Architectural phenotyping of amiMAX2 lines 

 

As described above, MAX2 knockdowns were only partially successful. Nevertheless, 

several lines of the three genotypes (single and double knockdowns) were grown under 

greenhouse-conditions for architectural phenotyping. Although there appears to be 

redundancy among the orthologs, there still may be a certain degree of specialization and 

diversification, which was expected to possibly result in visible phenotypes. However, no 

phenotypes were observed: the recorded architectural parameters did not significantly 

differ between amiMAX2 and P. x canescens wild type plants (Fig. 3.26, p. 94). Only the 

amiMAX2-1+2 line T15 #28A exhibited significantly reduced growth in all measured traits. 

However, all other lines of the same genotype did not exhibit this defect, and the 

branching level of this line was WT-like. Since increased branching was expected as a 

typical phenotype of plants impaired in SL-signaling, the reduced growth phenotype 

appears to be coincidental and may be the result of a random gene knockout at the 

insertion locus of the T-DNA.        

Taken together, an interruption of SL signaling by knockdowns of the poplar MAX2 

orthologs was not successful, making further analysis of SL signaling in the generated lines 

impossible. Other amiRNA constructs should be designed for successful simultaneous 

targeting of MAX2-1 and MAX2-2, which most likely would result in SL-insensitive poplar 

lines. 
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4.6 Identification and characterization of poplar BRANCHED1 orthologs 

 

For an investigation of the role of BRC1 in poplar as a woody perennial species, three 

genes were identified as likely poplar BRC1 orthologs. However, a clear assignment was 

not possible (Fig. 3.27, p. 97). Only two genes (Potri.015G050500 and Potri.012G059900) 

unambiguously clustered together and likely result from the whole genome duplication in 

poplar (Tuskan et al., 2006), i.e. they are paralogs. A third gene, Potri.017G112000, was 

similar to BRC1, but it was distinct to Potri.015G050500 and Potri.012G059900 and there 

appears to be no paralog of this gene.  

In addition to BRC1, another closely related TCP gene, BRC2, was described to play a 

minor role in branching regulation in Arabidopsis (Aguilar-Martínez et al., 2007). Due to 

this function, it was conceivable that a poplar ortholog of BRC2 may also play a role in 

branching regulation, and it could have evolved even a major role. Thus, BRC2 was 

considered as well, and two poplar orthologs (most likely being paralogs), 

Potri.008G115800 and Potri.010G130200, were clearly identified (Fig. 3.27, p. 97).  

In total, five poplar BRC1/BRC2 candidate genes were found (Tab. 3.3, p. 98). The 

identification of a gene showing characteristics of a functional BRC1 ortholog is discussed 

in the following paragraphs. 

 

 

4.6.1 Expression of poplar BRC1 candidate genes in wild type plants 

 

Expression analysis of the five identified poplar BRC1-like candidate genes was performed 

with the aim to identify a functional poplar BRC1 ortholog. For a functional ortholog, high 

expression was expected in dormant axillary buds. In contrast, transcript levels were 

expected to be reduced in outgrowing buds, as it was reported for Arabidopsis BRC1 

(Finlayson, 2007). Indeed, two candidate genes fulfilled these criteria in poplar bud 

samples: Potri.012G059900 and Potri.010G130200 (Fig. 3.28, p. 99). According to the 

sequence analysis, Potri.012G059900 is a putative BRC1 ortholog, while 

Potri.010G130200 is closely related to Arabidopsis BRC2. As noted above, both genes 

have one highly similar paralog each (Potri.015G050500 and Potri.008G115800, 

respectively) (Fig. 3.27, p. 97). However, the paralogs were not significantly regulated in 

outgrowing buds (Fig. 3.28, p. 99).  This indicates that only one of the two closely related 

copies appears to have retained the typical expression pattern. After the presumed gene 

duplication, the other copy may have lost its original function and may either be non-
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functional or have attained a different, unknown role. Potri.017G112000, which appeared 

to be a third BRC1 ortholog, also exhibited no regulation (Fig. 3.28, p. 99). 

In addition to dormant and outgrowing buds, expression of the candidate genes was 

monitored in different tissues of P. x canescens wild type plants. Potri.017G112000 was 

omitted from this analysis, since it could not be clearly assigned based on sequence 

analysis and it was not regulated in growing compared to dormant axillary buds. 

Expression of a functional poplar BRC1 ortholog was expected to be largely specific to 

axillary buds, based on expression data published for Arabidopsis and other herbaceous 

species (Aguilar-Martínez et al., 2007; Braun et al., 2012; Finlayson, 2007; Hubbard et al., 

2002; Takeda et al., 2003). Indeed, the putative BRC1 ortholog Potri.012G059900 was 

highly expressed in dormant axillary buds in this experiment as well. Although moderate 

expression was observed in other tissues than buds, this corresponds to the typical 

expression pattern in Arabidopsis, in which Northern Blot and qPCR data revealed low 

BRC1 levels in various tissues (Aguilar-Martínez et al., 2007; Finlayson, 2007). In contrast, 

the Potri.012G059900 paralog Potri.015G050500 can be ruled out as functional poplar 

BRC1. In addition to the absence of down-regulation in growing compared to dormant 

axillary buds, expression of this gene was not tissue-specific. It was found to be highly 

expressed in leaves, roots and bark (Fig. 3.29, p. 101). 

In addition to Potri.012G059900, the close BRC2 ortholog Potri.010G130200 also 

exhibited the expected expression. Transcript levels were specifically found in axillary 

buds, but not in other tissues. In contrast, its paralog Potri.008G115800 was expressed in 

leaves, too (Fig. 3.29, p. 101). This indicates that also for these two paralogs, only one 

appears to fulfil the anticipated function in bud outgrowth regulation. 

Taking the expression data in different tissues and dormant/growing buds together, 

Potri.012G059900 appeared to be a promising candidate for a functional poplar BRC1 

ortholog, while Potri.010G130200 appears to be a functional BRC2 ortholog. Both may 

regulate bud outgrowth in poplar. In the following discussion, Potri.012G059900 will be 

called PcBRC1 (P. x canescens BRANCHED1), while Potri.010G130200 is designated 

PcBRC2.   
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4.6.2 Expression of poplar BRC1 candidate genes in amiMAX4-1+2 lines 

 

A significant feature of Arabidopsis BRC1 and its pea and petunia orthologs is its positive 

regulation by SLs. Correspondingly, BRC1 transcript levels were found to be reduced in SL 

pathway mutants (Aguilar-Martínez et al., 2007; Braun et al., 2012; Drummond et al., 

2015) and expression was increased after GR24 treatment (Braun et al., 2012). Therefore, 

reduced expression was expected for poplar BRC1 in axillary buds of the putatively SL-

deficient amiMAX4-1+2 lines generated in this project. Indeed, transcript levels of PcBRC1 

were significantly lower in the tested representative lines relative to the wild type (Fig. 

3.16, p. 78). This corroborates that PcBRC1 is a functional poplar ortholog. Furthermore, 

the obtained data provide additional proof for SL-deficiency in the amiMAX4-1+2 lines, as 

discussed in chapter 4.4.1.2 (p. 113ff). Poplar BRC1 appears to be regulated by SLs, which 

highlights the high degree of conservation of the SL pathway and its downstream targets 

in trees. 

In contrast to BRC1, Arabidopsis BRC2 transcript levels were reported to be unchanged in 

max SL pathway mutants, arguing against a regulation of this gene by SLs (Aguilar-

Martínez et al., 2007). This observation was also made in this work for poplar BRC2, which 

was not found to be differentially expressed in wild type and amiMAX4-1+2 plants (Fig. 

3.16, p. 78).  However, the exact function of PcBRC2 is not clear. Although it appears to be 

non-responsive to the SL level, its highly bud-specific expression and down-regulation in 

outgrowing buds suggest an involvement in bud outgrowth regulation as well. Potentially, 

it integrates signals from different pathways. This idea is supported by observations made 

in other species. In Arabidopsis, BRC1 and BRC2 both are regulated in dependence of the 

planting density (Aguilar-Martínez et al., 2007) and play a role in the branching response 

upon changes in the light R:FR ratio (Finlayson et al., 2010). A diversification was also 

found in petunia, which possesses three BRC1-like genes (PhTCP1 – PhTCP3). PhTCP1 and 

PhTCP2 are closely related to AtBRC2. While PhTCP3 and to a lower extent PhTCP1 appear 

to be regulated by SLs, PhTCP2 is not regulated in the SL-signaling mutant dad2. 

Nevertheless, expression of all three genes, including PhTCP2, is R:FR responsive 

(Drummond et al., 2015).  

Summarized, there appears to be a possible diversification of BRC1-like gene function at 

least in some species. Regulation by SLs appears to be rather specific to BRC1, while other 

pathways, most notably R:FR signaling, seem to regulate BRC2 as well. Thus, also poplar 

BRC2 may be important for suppression of bud outgrowth, but it possibly is regulated by 

other factors than SLs. In addition to the light conditions, another factor may be cytokinin, 
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which is known to negatively regulate BRC1 in Arabidopsis buds (Braun et al., 2012; Dun 

et al., 2012) and may also regulate BRC2 in poplar. In terms of bud outgrowth 

suppression, the combined expression of PcBRC1 and PcBRC2 may be required to keep 

the bud in a dormant state. Different factors would simultaneously act on the pool of 

PcBRC1 and PcBRC2 transcripts. There may be a certain threshold, which needs to be 

exceeded for stable maintenance of dormancy. Once the combined PcBRC1 and PcBRC2 

transcript level drops below the threshold, bud outgrowth may be triggered. This simple 

model (illustrated in Fig. 4.1) would explain how different factors, which differentially act 

on the BRC genes, may be integrated in the decision whether a bud stays dormant or 

grows into a branch. This model also implies that either a very strong individual stimulus, 

or a combination of weak inputs, could trigger bud outgrowth.  

To test whether poplar BRC1 and BRC2 respond to branching-regulating factors other 

than SLs, expression of both genes should be monitored at different growth conditions, 

e.g. a modification of planting density or altered light quality. Furthermore, single and 

double knockdown lines could be generated for detailed analysis of the influence of 

PcBRC1 and PcBRC2 on tree architecture.   
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Fig. 4.1 Tentative model for the action of poplar BRC1 and BRC2 in bud outgrowth regulation. Multiple 

factors may influence the combined pool of PcBRC1 (green) and PcBRC2 (blue) transcripts. 

Strigolactones (SL), synthesized via the action of PcMAX4-1/PcMAX4-2 and other enzymes, 

positively regulate PcBRC1, but not PcBRC2. Hypothetical other modes of regulation, indicated by 

dashed lines, may modify transcription of one or both genes, too. Based on findings in other 

species, shading and a low R:FR ratio are expected to positively regulate BRC gene expression, 

while cytokinin (CK) most likely has a negative effect. Additional factors may also play a role. There 

may be a certain threshold for the PcBRC1/PcBRC2 transcript pool, which has to be exceeded for 

consolidation of bud dormancy. If the transcript level drops below this hypothetical threshold, 

inhibition of bud outgrowth would be abolished and a branch could be formed. 
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4.6.3 Expression of poplar BRC1 and BRC2 during winter dormancy 

 

As discussed above, poplar BRC1 and BRC2 orthologs were identified in this project. Since 

the role of these genes has not been addressed in woody perennial species yet, a possible 

involvement of poplar BRC1-like genes in tree-specific aspects of bud dormancy 

(discussed in chapter 1.3.4, p. 22ff) was investigated.  

To test a possible role during endodormancy (winter dormancy), buds were sampled in 

winter and during bud break (swollen and growing buds) in spring and expression of 

PcBRC1 and PcBRC2 was investigated. However, the obtained data does not support a 

role for these genes during endodormancy. Their transcript levels were extremely low in 

dormant buds sampled in winter, while expression was increased in swollen and growing 

buds in spring (Fig. 3.31, p. 104). If they played a role as a suppressor of bud outgrowth 

during winter, the opposite pattern would be expected: high expression during winter 

and low expression in growing buds in spring. As a control, expression in paradormant 

axillary buds was monitored during the growing season and found to be highly increased 

compared to the other time points (Fig. 3.31, p. 104), which corresponds to the role of 

BRC1-like genes in maintaining dormancy during the vegetative period. Thus, the function 

of both genes appears to be limited to controlling paradormancy, as discussed above. 

During endodormancy, other unknown mechanisms may suppress bud outgrowth, 

making high BRC1 levels dispensable. For instance, it is discussed that a simple isolation of 

the meristem from growth-inducing substances (e.g. gibberellins) may be sufficient to 

maintain dormancy (Rohde and Bhalerao, 2007).  

Since dormant apical buds are a specific feature of temperate perennial plants, they were 

sampled at the same time points in addition to axillary buds. Expression of PcBRC1 and 

PcBRC2 was monitored to investigate a possible differential regulation between both bud 

types. However, no obvious differences were found at any given sampling time point (Fig. 

3.31, p. 104). Hence, there appears to be no differential regulation with respect to 

BRC1/BRC2. 
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4.7 Economic significance of the SL pathway in poplar 

 

In this work, the significance of the SL pathway and its downstream target BRC1 in the 

regulation of bud outgrowth in trees was addressed. The pathway appears to be 

conserved in woody perennial species, and putatively SL-deficient poplar lines with 

increased branching phenotypes were obtained. These lines are a valuable resource for 

studying various aspects of SLs in trees, since no mutants are available. In addition, poplar 

with modified tree architecture may be advantageous for commercial use on short 

rotation coppices.  

Increased branching, such as it is observed in the amiMAX4-1+2 lines, leads to higher bark 

content. This may be beneficial for using the plant material as a feedstock for industrial 

and pharmaceutical chemicals (Salmon et al., 2014). Also the total biomass yield, which is 

a critical agronomical trait, could be positively influenced. High bud outgrowth rates may 

result in enhanced re-sprouting from the rootstock after coppicing, as well as better light 

interception as a result of early canopy closure (Broeckx et al., 2012; Ceulemans et al., 

1990; Scarascia-Mugnozza et al., 1989). Increased biomass production relative to the wild 

type could not be detected in the amiMAX4-1+2 lines generated in this project (Fig. 3.13, 

p. 71). However, only young, greenhouse-grown plants were used for the measurements. 

At this developmental stage, the branches were just being formed and did not have 

sufficient time to develop to make a major contribution to biomass production. In 

contrast, trees on plantations are grown for several years and the branches may have a 

significant impact, especially those formed in the first growing season. Thus, biomass 

production should be tested in a field trial, also considering different planting densities. In 

addition to increased branching, the amiMAX4-1+2 lines exhibited other phenotypes such 

as increased adventitious rooting. Short rotation coppices are established using stem 

cuttings, and proper adventitious rooting is critical for this form of vegetative 

propagation. Therefore, this appears to be a beneficial phenotype. 

In contrast, there are also undesired traits in SL-deficient plants. If the biomass is 

processed as a fuel for energy production, which currently is the predominant application 

of poplar grown on short rotation coppices, the elevated bark content in highly branching 

lines is disadvantageous due to increased pollutant emissions (Salmon et al., 2014). For 

this application, a reduction of branching should be pursued using different approaches. 

Also the reduced plant height and reduced internode elongation in SL-deficient plants are 

rather undesired traits. However, it may be possible to eliminate such traits, since there 

are many different SLs and they may function in different processes. Using synthetic SLs, 
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such specificity was already shown. For example, the SL analog compound “23” was 

reported to have an extremely low inducing effect on germination of seeds of the 

parasitic weed Orobanche ramosa compared to GR24 (10.000 times lower). In contrast, it 

was shown to have an even stronger inhibitory effect on pea bud outgrowth than GR24. 

Combined, this implies that compound “23” has a highly specific mode of action in 

controlling bud outgrowth compared to GR24, showing that different SLs can specifically 

control different processes. Furthermore, there are hints that structurally different SLs 

also have differential activity on hyphal branching of arbuscular mycorrhiza fungi. Thus, 

hyphal branching, parasitic weed germination, as well as bud outgrowth suppression, are 

discussed to possibly rely on different perception systems (Boyer et al., 2012). It is 

conceivable that there are also specialized SLs for the control of endogenous processes in 

the plant other than shoot branching, such as internode elongation or root branching. 

Once the complex biosynthesis steps leading to the large variety of SLs are elucidated, 

specific steps may be modified in order to produce the desired phenotypes, while 

avoiding less favorable traits. Therefore, modifications in the SL pathway appear to be a 

promising target for improving the tree architecture for commercial purposes.   
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5 Outlook 

 

In this work, the roles of the phytohormone striolactone and the transcription factor 

BRC1 during bud outgrowth regulation were addressed in the model tree Populus. Based 

on the material and results generated in this work, further research may be carried out to 

discover additional aspects of branching regulation in trees. Promising perspectives are 

outlined in the following sections.  

 

 

5.1 Confirmation of SL deficiency in amiMAX4-1+2 lines 

 

Direct quantification of SLs to confirm deficiency in the poplar amiMAX4-1+2 lines was 

not feasible, as discussed above. As an alternative, bioassays could be performed. They 

make use of arbuscular mycorrhiza fungi such as Gigaspora gigantea and root parasitic 

weeds like Orobanche ramosa as biosensors for SLs (Buee et al., 2000; Matusova et al., 

2005). In addition to direct measurements and bioassays, another possibility to prove SL 

deficiency could be complementation of the observed phenotypes by delivery of GR24 via 

the vascular system, using a vascular feeding method which was successfully applied in 

pea by Gomez-Roldan et al. (2008) and Dun et al. (2012). Furthermore, a hydroponics 

system may be established, such as described by Boyer et al. (2012).  

 

 

5.2 Further phenotyping of amiMAX4-1+2 lines 

 

In addition to an effect on adventitious rooting (Rasmussen et al., 2012) which was 

quantified and confirmed in representative poplar amiMAX4-1+2 lines in this work, SLs 

were reported to influence other aspects of root architecture (Kapulnik et al., 2010; 

Ruyter-Spira et al., 2011). Thus, a detailed analysis of the root system may be done in 

poplar amiMAX4-1+2 lines to study the significance of SLs in shaping the root architecture 

of trees.  

Another phenotype found in SL-deficient Arabidopsis and pea mutants was reduced 

cambial activity, leading to reduced secondary growth. In contrast, secondary growth was 

increased by GR24 treatment in Arabidopsis and Eucalyptus (E. globulus). Based on this 

data, the regulation of cambium activity by SLs is discussed to be conserved among 
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species, including trees (Agusti et al., 2011). Therefore, cambial activity and wood 

anatomy may be investigated in the poplar amiMAX4-1+2 lines, too.   

 

 

5.3 Auxin transport in amiMAX4-1+2 lines 

 

SLs are well-known for their effect on auxin fluxes. They promote removal of PIN auxin 

efflux carriers from the plasma membrane, leading to an inhibition of auxin transport. 

While GR24 treatment dampened auxin transport in Arabidopsis, SL pathway mutants 

showed increased auxin flux rates (Bennett et al., 2006; Crawford et al., 2010). Thus, 

auxin transport may be studied in poplar amiMAX4-1+2 lines to investigate whether this 

effect is conserved in trees.  

 

 

5.4 Mycorrhiza status of amiMAX4-1+2 lines 

 

A further interesting trait to investigate in the putatively SL-deficient poplar lines 

generated in this work is their mycorrhiza status. Most land plants establish mycorrhiza as 

an important symbiotic relationship with fungi, improving the nutrient and water supply 

of the plant. There are different types of mycorrhiza, most notably endomycorrhiza 

(including arbuscular mycorrhiza, AM) and ectomycorrhiza (EM) (Kadereit et al., 2014). 

For the establishment of AM, SLs are known to be an important factor (Akiyama et al., 

2005; Buee et al., 2000). However, a role for SLs in establishment of EM could not be 

shown yet. GR24 treatment did not have an effect on hyphal branching of four different 

EM fungi (Steinkellner et al., 2007). Nonetheless, there may be other important pathways 

regulated by SLs. In the AM fungus Rhizophagus irregularis, short-chain chitin oligomers 

are synthesized and discussed to be signals involved in the communication with the host 

plants. Interestingly, their synthesis is significantly increased upon GR24 treatment 

(Genre et al., 2013), and such an effect may also be found in EM fungi. Additionally, EM 

fungi may react to other SLs than AM fungi, i.e. sensing tree-specific SLs. Therefore, 

treatment with tree-specific SLs, yet to be identified, may induce a response in EM fungi 

species. 

Another possibility to investigate an influence of SLs is to directly assess the mycorrhiza 

status of SL-deficient plants relative to the wild type. However, frequently studied SL-

deficient model species are not colonized by EM fungi, hindering the investigation of a 
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conceivable involvement of SLs in EM interactions in the past. As suggested by Garcia et 

al. (2015), “generation of ccd7 and ccd8 knockout or knockdown tree lines should allow a 

direct investigation of this hypothesis”. With the poplar amiMAX4-1+2 lines generated in 

this project, such ccd8 knockdown trees now are available.  

 

 

5.5 Further characterization of poplar BRC1 and BRC2 

 

In this work, poplar BRC1 and BRC2 orthologs were identified. The apparent regulation of 

PcBRC1 by SLs (chapter 3.8.4, p. 102ff) suggests that this component of bud outgrowth 

regulation is conserved in trees. To confirm their function, both poplar BRC genes could 

be used in an experiment to complement the corresponding Arabidopsis mutant 

phenotype, similar to the experiments reported for the poplar MAX genes (Czarnecki et 

al., 2014). Furthermore, knockdowns could be performed in poplar. The availability of 

loss-of-function lines would facilitate comprehensive testing of the hypotheses for the 

mode of action of poplar BRC1 and BRC2, summarized in the model shown in Fig. 4.1 

(p. 127).  

PcBRC2 expression was found in axillary buds while transcripts were hardly detectable in 

any other of the tested tissues (chapter 3.8.3, p. 100ff), suggesting that activity of the 

PcBRC2 promoter is highly bud-specific. This may be further tested with a promoter-

reporter fusion (such as proPcBRC2:GUS) and the promoter may be used as a tool for bud-

specific gene expression (e.g. IPT and CKX genes to manipulate cytokinin levels) to further 

analyze mechanisms in bud outgrowth regulation. Furthermore, it may also be useful for 

biotechnological approaches to specifically modify bud outgrowth without causing 

pleiotropic effects.   
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7 Appendix 

 
Fig. 7.1 Vector map of the binary Gateway vector pK7WG2. The vector was used as destination vector for 

cloning of the amiRNA constructs via an LR reaction. The T-DNA (flanked by left and right border 

sequences, LB and RB) contains the Gateway cassette (CmR-ccdB) flanked by attR sites, to be 

replaced with the gene of interest. Expression is driven by the CaMV 35S promoter (p35S) and 

terminated by the CaMV 35S terminator (T35S). A kanamycin resistance cassette for plant selection 

(Kan), including a separate promoter and terminator together with the NPTII kanamycin resistance 

gene, is also present on the T-DNA. For selection of bacteria, a spectinomycine resistance gene 

(Sm/SpR) is present on the vector backbone.  
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Fig. 7.2 Example for an amiRNA construct. The construct is flanked by attL sites for Gateway cloning as 

well as restriction sites for optional restriction-ligation cloning, as indicated. The amiRNA sequence 

is based on the natural P. trichocarpa microRNA408 sequence. The amiRNA and amiRNA* regions, 

which define the amiRNA target, were designed according to Tab. 2.6. The given example shows 

the sequence of amiMAX4-1+2.  
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Fig. 7.3 Sequence alignment of Arabidopsis MAX4 and its poplar orthologs PtMAX4-1 and PtMAX4-2. 

Black background indicates similarity in all three sequences. The alignment was done using the 

Geneious 7.1.7 software. Sequences are noted in 5’-3’ orientation. 

 

 
Fig. 7.4 Sequence alignment of Arabidopsis MAX2 and its poplar orthologs PtMAX2-1 and PtMAX2-2. 

Black background indicates similarity in all three sequences. The alignment was done using the 

Geneious 7.1.7 software. Sequences are noted in 5’-3’ orientation. 
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Fig. 7.5 DNA sequence alignment of P. trichocarpa (Pt) and P. x canescens (Pc) sequences of MAX4-1. The 

Pc sequence was obtained from a genomic clone. It was manually spliced and aligned with the Pt 

CDS to show only the relevant part of the gene. The 5’ part of PcMAX4-1 is missing since a full-

length clone could not be obtained. Alignment was done using the Geneious 7.1.7 software. 

Sequences are noted in 5’-3’ orientation. Red background indicates sequence differences. 

 

 
Fig. 7.6 DNA sequence alignment of P. trichocarpa (Pt) and P. x canescens (Pc) sequences of MAX4-2. The 

Pc sequence was obtained from a genomic clone. It was manually spliced and aligned with the Pt 

CDS to show only the relevant part of the gene. The 5’ part of PcMAX4-2 is missing since a full-

length clone could not be obtained. Alignment was done using the Geneious 7.1.7 software. 

Sequences are noted in 5’-3’ orientation. Red background indicates sequence differences. 
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Fig. 7.7 DNA sequence alignment of P. trichocarpa (Pt) and P. x canescens (Pc) sequences of MAX2-1. 

Alignment was done using the Geneious 7.1.7 software. Sequences are noted in 5’-3’ orientation. 

Red background indicates sequence differences. 

 

 

 
Fig. 7.8 DNA sequence alignment of P. trichocarpa (Pt) and P. x canescens (Pc) sequences of MAX2-2. 

Alignment was done using the Geneious 7.1.7 software. Sequences are noted in 5’-3’ orientation. 

Red background indicates sequence differences. 
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Tab. 7.1 Overview about the transgenic MAX4 and MAX2 knockdown lines generated in this work. The 

amiRNA constructs were designed to target the two orthologs of each gene individually as well as 

simultaneously. The number of lines is given as the number of positive lines tested by PCR plus 

the number of lines positive in PCR, but containing residual Agrobacterium, e.g. “13+4”. The 

latter therefore cannot be fully confirmed by PCR to be transgenic. A detailed list of all lines is 

given. Lines containing residual Agrobacterium are underlined. Lines grown and phenotyped 

under greenhouse-conditions are marked bold.   

Construct Target(s) Number of independent transgenic lines and line abbreviations 

amiMAX4-1 MAX4-1 13+4 
T16#1A; T16#2A; T16#4A; T16#6B; T16#8A; T16#9A; T16#11A; 
T16#14A; T16#16A; T16#17A; T16#18A; T16#23A; T16#28A; T16#30A; 
T16#31A; T16#34A; T16#37A 

amiMAX4-2 MAX4-2 14+1 
T18#1B; T18#4A; T18#5A; T18#8A; T18#9A; T18#10A; T18#11A; 
T18#13A; T18#15A; T18#16A; T18#18A; T18#19B; T18#20A; T18#21A; 
T18#24A 

amiMAX4-1+2 
MAX4-1 
MAX4-2 

14+2 
T14#1A; T14#4A; T14#5B; T14#6A; T14#7A; T14#8A; T22#2A; T22#3A; 
T22#5A; T22#7C; T22#8A; T22#9A; T22#10A; T22#13A; T22#15A; 
T22#17A 

amiMAX2-1 MAX2-1 14+4 
T19#1A; T19#2A; T19#3A; T19#4A; T19#5B; T19#6A; T19#10B; T19#13A; 
T19#14A; T19#16A; T19#20A; T19#21A; T19#22A; T19#23A; T19#24B; 
T19#28A; T19#34A; T19#36A 

amiMAX2-2 MAX2-2 14+4 
T20#1A; T20#3B; T20#4A; T20#5A; T20#6A; T20#7A; T20#8A; T20#10B; 
T20#11A; T20#13A; T20#14C; T20#15A; T20#16A; T20#21A; T20#22A; 
T20#23A; T20#24A ; T20#32A 

amiMAX2-1+2 
MAX2-1 
MAX2-2 

12+0 T8#A; T8#B; T15#1A; T15#10A; T15#11A; T15#15A; T15#16A; T15#17A; 
T15#21A; T15#23A; T15#25A; T15#28A 

  

 

 

 
Fig. 7.9 Expression analysis of MAX4-1 (A) and MAX4-2 (B) in representative amiMAX4-1+2 lines. 

Repetition of analysis. Expression levels were analyzed in the P. x canescens wild type and three 

representative amiMAX4-1+2 double knockdown lines. Expression was normalized against the 

reference gene EF1. n= 3-5. Error bars indicate standard deviation. Asterisks indicate significant 

differences compared to the wild type (P. x can) according to Student’s t-test. One and two 

asterisks indicate p<0.05 and p<0.01, respectively. 
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Fig. 7.10  Architectural traits of additional amiMAX4 lines. The number of branches (A), the plant height 

(B), the number of nodes (C), the average internode length (D) and the stem base diameter (E) of 

additional amiMAX4 lines were measured in greenhouse-grown plants. n= 4-10. Error bars 

indicate standard deviation. Asterisks indicate significant differences compared to the wild type 

(P. x can) according to Student’s t-test. One, two and three asterisks indicate p<0.05, p<0.01 and 

p<0.001, respectively. 
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Fig. 7.11 Architectural traits of amiMAX4 lines. Repetition of phenotyping for representative lines. The 

number of branches (A), the plant height (B), the number of nodes (C), the average internode 

length (D) and the stem base diameter (E) of selected amiMAX4 lines were determined in 3.5 

months old greenhouse-grown plants. n= 5, except for T22 #2A where n=3. Error bars indicate 

standard deviation. Asterisks indicate significant differences compared to the wild type (P. x can) 

according to Student’s t-test. One, two and three asterisks indicate p<0.05, p<0.01 and p<0.001, 

respectively. 
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Fig. 7.12 Architectural traits of representative amiMAX4 lines, grown in growth chamber conditions 

(replicate 1/2). The number of branches (A), the plant height (B), the number of nodes (C) and 

the average internode length (D) were determined. n= 3-6. Error bars indicate standard 

deviation. Asterisks indicate significant differences compared to the wild type (P. x can) according 

to Student’s t-test. One, two and three asterisks indicate p<0.05, p<0.01 and p<0.001, 

respectively. 
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Fig. 7.13 Architectural traits of representative amiMAX4 lines, grown in a growth chamber conditions 

(replicate 2/2). The number of branches (A), the plant height (B), the number of nodes (C) and 

the average internode length (D) were determined. n= 4-5. Error bars indicate standard 

deviation. Asterisks indicate significant differences compared to the wild type (P. x can) according 

to Student’s t-test. One, two and three asterisks indicate p<0.05, p<0.01 and p<0.001, 

respectively. 
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Fig. 7.14 Architectural traits of representative amiMAX4 lines grown under outdoor conditions. The 

number of branches (A), the plant height (B), the number of nodes (C), the average internode 

length (D) and the stem base diameter (E) were determined after the first growing season. 

n= 4-8. Error bars indicate standard deviation. Asterisks indicate significant differences compared 

to the wild type (P. x can) according to Student’s t-test. One and two asterisks indicate p<0.05 

and p<0.01, respectively. 
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Fig. 7.15 Biomass parameters of amiMAX4 lines: repetition of phenotyping for selected lines. The total 

dry biomass of the plants (A), as well as the separate dry weights of the stem (including branches) 

(B), the roots (C) and the leaves (including leaves from the branches) (D), were determined. n= 5. 

Error bars indicate standard deviation. Asterisks indicate significant differences compared to the 

wild type (P. x can) according to Student’s t-test. One and two asterisks indicate p<0.05 and 

p<0.01, respectively. 
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Fig. 7.16 Adventitious rooting in representative amiMAX4-1+2 lines. Repetition of phenotyping. The 

number of adventitious roots was counted for in vitro grown cuttings of the representative 

amiMAX4-1+2 lines T14 #4A and T22 #5A as well as the P. x canescens wild type. Cuttings were 7 

weeks old. n=8. Error bars indicate standard deviation. Asterisks indicate significant differences 

compared to the wild type according to Student’s t-test with p<0.05. 

 

 

 
Fig. 7.17 Expression analysis of MAX3 in representative amiMAX4-1+2 lines. Repetition of analysis. 

Expression levels were analyzed in the P. x canescens wild type and three representative 

MAX4-1+2 double knockdown lines. Expression was normalized against the reference gene EF1. 

n= 3-5, except for T22 #5A where n=2. Error bars indicate standard deviation. A Student’s t-test 

did not reveal any significant differences between amiMAX4-1+2 lines and the wild type.  
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Fig. 7.18 Expression of putative P. x canescens BRC1 (A) and BRC2 (B) orthologs in dormant axillary buds 

of greenhouse-grown plants. Repetition of analysis. Expression was determined in the wild type 

(P. x can) and two representative amiMAX4-1+2 double knockdown lines. Expression was 

normalized against the reference gene UBQ. n= 3-4. Error bars indicate standard deviation. 

Asterisks indicate significant differences compared to the wild type according to Student’s t-test 

with p<0.05.  

 

 



Appendix 
 

164 
 

 
Fig. 7.19  Architectural traits of interstock-grafted poplar plants. For grafting, the P. x canescens wild 

type as well as the representative amiMAX4-1+2 line T14 #4A were used. The upper label 

indicates the genotype of the scion, the middle label shows the genotype of the interstock and 

the lower label specifies the genotype of the rootstock. The genotypes are also highlighted by 

the coloring of the bars. The number of branches (A), the plant height (B), the number of nodes 

(C) and the average internode length (D) were determined for greenhouse-grown plants. 

n= 2-4. Error bars indicate standard deviation. A Student’s t-test did not reveal any significant 

differences between all grafting combinations. 
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Fig. 7.20 Bud outgrowth of P. x canescens stem cuttings after 5 µM GR24 treatment. Repetition of 

experiment. The time point from preparation of the cuttings until outgrowth of their bud was 

recorded on medium containing no (0 µM) or 5 µM GR24. n=24-29. Error bars indicate standard 

deviation. A Student’s t-test did not result in any significant difference between mock- and GR24-

treated cuttings. 

 

 

 
Fig. 7.21 Relative expression of the SA-marker genes PtrWRKY60 (Potri.018G019700) (A) and PtrWRKY89 

(Potri.006G109100) (B). Expression levels were analyzed in the P. x canescens wild type and the 

representative amiMAX4-1+2 lines T14 #4A and T22 #5A. Expression was normalized against the 

reference gene UBQ. n= 3-4. Error bars indicate standard deviation. A Student’s t-test did not 

result in any significant differences between the amiMAX4-1+2 lines compared to the wild type.  
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