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Abstract

Poplar (Populus) varieties that are planted in short rotation coppice are supposed to 

show high biomass production,  the ability to  propagate via stem cuttings but also 

drought  tolerance  because  drought  is  a  very  important  abiotic  stressor  that  can 

negatively  influence  the  plants'  growth,  vitality  and  productivity.  For  polyploid 

varieties of various species as crop species (Triticum), herbaceous species (Lonicera, 

Spathiphyllum, Nicotiana) as well as in tree species (Betula) higher tolerance towards 

stresses as, for example, drought was reported.  Hybrid aspen Populus tremula (L.) x 

P. tremuloides (Michx.) that belong to the section Populus exhibit economically viable 

increase  on  soils  where  other  tree  species  fail  but  miss  the  propagation  via  stem 

cuttings.  Poplar species of the sections  Tacamahaca and Aigeiros  as,  for example, 

P. nigra (L.) and P. trichocarpa (Torr. & Gray) x P. deltoides (Bartram ex Marsh) can 

be  propagated  via  stem  cuttings.  To  overcome  crossing  incompatibilties  somatic 

hybridization was applied to  P. tremula x  P. tremuloides ('Münden 2') as one fusion 

partner and  P. x canescens (INRA clone No. 717 1-B4),  P. nigra or  P. trichocarpa x 

P. deltoides (B19) as the second fusion partner. According to the leaf morphology and 

microsatellite analysis the obtained fusion lines were assigned to the original clone 

P. tremula x P. tremuloides ('Münden 2') and showed a tetraploid set of chromosomes.

In this  dissertation,  the main aim was to  investigate  the drought  responses of  the 

tetraploid  hybrid aspen lines in comparison to the diploid original line  P. tremula x 

P. tremuloides ('Münden  2').  Therefore,  the  following  questions  were  addressed. 

(i) Do the tetraploid hybrid aspen lines perform better under drought than the diploid 

original line regarding e.g. the water consumption and the leaf vitality? (ii) Do the 

tetraploid  hybrid  aspen  lines  distinguish  from  the  diploid  original  line  in 

morphological traits as stomatal morphology, height, stem biomass and leaf area? (iii) 

Is  the  better  drought  performance  in  the  tetraploid  hybrid  aspen  lines  due  to  the 

increased ploidy level, i.e. do the tetraploid hybrid aspen lines show better drought 

performance as higher survival rates, a delay in leaf wilting and higher relative leaf 

water  content  than the diploid “fusion” lines? (iv)  Do the tetraploid hybrid aspen 

show early physiological changes in the relative leaf water content, the carbohydrate 

concentration and the stomatal conductance? (v) Are there any genetic modifications 
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apart  from the  tetraploidy  like  duplications  or  deletions  that  might  influence  the 

drought performance? 

In a first experiment, four hybrid aspen lines were obtained. Two of them showed 

lower water consumption relative to height and three delayed leaf wilting compared to 

the  diploid  original  line.  Furthermore,  the  tetraploid  hybrid  aspen  lines  exhibited 

lower stomatal density, increased stomatal length, comparable or lower height, stem 

biomass and total leaf area and enhanced leaf mass per area when compared to the 

diploid  original  line.  In  a  second  experiment,  four  diploid  “fusion”  lines  and 

16 tetraploid fusion lines were screened for their drought performance. The tetraploid 

fusion  lines  showed  enhanced  survival  rates  over  the  diploid  lines  but  exhibited 

decreased height. With regard to height 11 tetraploid fusion lines exhibited delayed 

total leaf wilting while none of the four diploid ”fusion” lines showed a delay in total 

leaf wilting with regard to the height when compared to the diploid original line. In a 

third experiment, two lines were selected from the second experiment that showed a 

delay in total leaf wilting with regard to height but comparable height growth to the 

diploid  original  line.  Here,  physiological  traits  like  the  water  consumption  and 

physiological responses like the relative leaf water content, the stomatal conductance 

and  the  carbohydrate  content  were  investigated  in  a  time  course.  A lower  water 

consumption was observed in both tetraploid fusion lines in comparison to the diploid 

original  line  resulting  in  lower  drought  stress  of  the  tetraploid  fusion  lines.  The 

finding of lower water consumption in the tetraploid fusion lines was consistent with 

the increased soil moisture levels compared to the diploid original line. On the other 

hand,  a  lower  water  consumption  would  be  in  accordance  with  a  lower  stomatal 

conductance  that  was  not  observed in  general  for  the  tetraploid  fusion  lines.  The 

tetraploid fusion lines were able to maintain the stomatal conductance relative to the 

control  at  relative soil  moisture levels  where the diploid original  line had already 

closed  their  stomata.  This  finding  supports  a  higher  drought  tolerance  for  the 

tetraploid fusion lines.

Genetic modifications such as duplications and deletions were detected using copy 

number variation analysis. Whole genome sequencing was applied to three tetraploid 

fusion lines and the diploid original line. The three tetraploid fusion lines exhibited 

growth comparable  to  that  of  the  diploid  original  line  but  also  delayed  total  leaf 
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wilting with regard to height. The copy number variation analysis revealed only three 

segments that were altered in all tetraploid fusion lines compared to the diploid line. 

Genes  that  were  putatively  encoded  by  these  segments  were  not  annotated.  One 

tetraploid fusion line showed a high number of 90 segments that were increased in 

this line but neither in the diploid original nor in the other two sequenced tetraploid 

fusion lines. Although this line showed better drought performance than the diploid 

original line the water consumption, the leaf vitality and the stomatal conductance did 

not  differ  from the other  tested tetraploid fusion line (experiment 3).  This finding 

indicates that the drought response is rather due to the tetraploidy than to other genetic 

modifications. Nevertheless, a functional characterization of the three segments that 

were altered in all tetraploid fusion lines in comparison to the diploid line is useful 

and  should  be  conducted  in  furture  studies  as  drought-relevant  genes  might  be 

affected. The relevance to drought of these putative genes could be tested by exposing 

knock-out mutants to dry conditions.

Finally, it should be noted that the heterofusion frequency was very low with a few 

hybrids dying already in the in vitro stage. The fusion products originated from a joint 

project with several hundred fusion lines that were genetically characterized and only 

a  few  revealed  as  heterofusions.  The  heterofusion  frequencies  in  other  species 

(Cyclamen,  Brassicaceae, Fabaceae, Poaceae, Solanaceae) is low as well. Since in 

this dissertation homofusion lines were investigated only, the propagation via stem 

cuttings was not investigated but I focused on drought responses of the tetraploid 

hybrid aspen lines.

In conclusion, morphological changes and higher drought tolerance were observed in 

the hybrid aspen lines with increased ploidy level. This renders them to be planted on 

sites  where water is  a limiting factor and high failure of plants  due to drought  is 

expected.
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Zusammenfassung

Pappelsorten (Populus) für den Anbau in Kurzumtriebsplantagen sollten neben einer 

hohen  Biomasseproduktion  und  der  Vermehrbarkeit  über  Steckhölzer  auch 

Trockentoleranz aufweisen.  Trockenheit  stellt  einen wichtigen abiotischen Stressor 

dar,  der  das  Wachstum  der  Pflanze,  ihre  Vitalität  und  ihre  Produktivität  negativ 

beeinflussen  kann.  Polyploide  Sorten  von  Getreidepflanzen  (Triticum),  krautigen 

Pflanzen  (Lonicera,  Spathiphyllum und  Nicotiana) aber  auch  Baumarten  (Betula) 

zeigen eine höhere Toleranz gegenüber Stress, wie z.B. Trockenstress, im Vergleich zu 

Sorten  mit  niedrigerem  Ploidiegrad.  Hybridaspen  Populus tremula (L.) x 

P. tremuloides  (Michx.)  der  Sektion  Populus  können  auch  auf  Grenzertragsböden 

ökonomische  Zuwächse  verzeichnen,  auf  denen  andere  Baumarten  ausfallen.  Den 

Hybridaspen  fehlt  allerdings  die  Vermehrbarkeit  über  Steckhölzer.  Anderen 

Pappelarten der Sektionen Tacamahaca und Aigeiros wie beispielsweise P. nigra (L.) 

and  P. trichocarpa (Torr.  & Gray) x  P. deltoides  (Bartram ex  Marsh)  zeigen  diese 

entscheidende  Eigenschaft.  Da  Kreuzungen  zwischen  den  Sektionen  Populus  und 

Tacamahaca oder Aigeiros auf natürlichem Weg schwierig sind, wurde die Methode 

der  somatischen  Hybridisierung  eingesetzt.  Der  Klon  P. tremula x  P. tremuloides 

('Münden 2') wurden als ein Fusionspartner und einer der Klone P. x canescens (INRA 

clone  No.  717 1-B4),  P. nigra oder  P. trichocarpa x  P. deltoides (B19)  als  zweiter 

Fusionspartner in Hybridisierungsexperimenten verwendet.  Blattmorphologisch und 

durch  Mikrosatellitenanalysen  konnten  die  erhaltenen  Fusionsprodukte  dem 

Ausgangsklon  P. tremula x  P. tremuloides ('Münden 2')  zugeordnet  werden,  wiesen 

dabei aber einen tetraploiden Chromosomensatz auf.

In  der  vorliegenden  Dissertation  war  das  zentrale  Ziel,  Trockenstressreaktionen 

tetraploider  Hybridaspenlinien  (HAL)  im  Vergleich  zur  diploiden  Ausgangslinie 

P. tremula x P. tremuloides ('Münden 2') zu untersuchen. Dazu wurden die folgenden 

Fragen aufgestellt. (i) Sind die tetraploiden HAL dem diploiden Ausgangsklon unter 

Trockenheit überlegen z.B. hinsichtlich des Wasserverbrauchs und des Verwelkungs- 

und Vertrocknungszeitpunktes  der  Blätter?  (ii)  Unterscheiden sich  die  tetraploiden 

HAL  von  dem  diploiden  Ausgangklon  in  morphologischen  Ausprägungen  wie 

beispielsweise  der  Stomatamorphologie,  der  Höhe,  der  Biomasse  und  der 
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Gesamtblattfläche? (iii) Ist die höhere Trockentoleranz der tetraploiden HAL durch 

den  erhöhten  Ploidiegrad  verursacht?  (iv)  Zeigen  die  tetraploiden  HAL  unter 

Trockenstress  früh  physiologische  Veränderungen  im  Kohlenhydratgehalt,  dem 

relativen Blattwassergehalt und der stomatären Leitfähigkeit? (v) Gibt es genetische 

Modifikationen  abgesehen  von  der  Tetraploidie  wie  z.B.  Duplikationen  und 

Deletionen, die eventuell Einfluss auf das Trockensressverhalten haben könnten?

In  einem ersten  Experiment  wurden  vier  tetraploide  HAL untersucht.  Zwei  HAL 

zeigten einen geringeren Wasserverbrauch und drei HAL eine spätere Verwelkung als 

der  diploide  Ausgangsklon.  Außerdem  entwickelten  die  tetraploiden  HAL  eine 

geringere  Stomatadichte,  größere  Stomata  und  eine  vergleichbare  oder  geringere 

Höhe, Biomasse und Gesamtblattfläche im Vergleich zum diploiden Ausgangsklon.

Das zweite Experiment wurde mit vier diploiden und 16 weiteren tetraploiden HAL 

durchgeführt.  Auch  die  diploiden  Linien  stammten  aus  Protoplastenfusions-

experimenten. Die tetraploiden HAL wiesen im Mittel eine höhere Überlebensrate als 

die  diploiden  HAL  auf,  entwickelten  aber  durchdschnittlich  ein  geringeres 

Höhenwachstum. Unter Berücksichtigung der Höhe verwelkten 11 tetraploide, aber 

keine diploide HAL später als der diploide Ausgangsklon.

In  einem  dritten  Experiment  wurden  zwei  Linien  aus  dem  zweiten  Experiment 

ausgewählt,  die vergleichbares Höhenwachstum zeigten, aber später verwelkten als 

der  diploide  Ausgangklon.  Es  wurden  physiologische  Merkmale  wie  der 

Wasserverbrauch  und  der  Verwelkungszeitpunkt  der  Blätter  beobachtet  und  der 

relative Blattwassergehalt, die stomatäre Leitfähigkeit und der Kohlenhydratgehalt in 

einer Zeitreihe untersucht. Geringerer Wasserverbrauch im Vergleich zum diploiden 

Ausgangsklon konnte in beiden tetraploiden HAL gezeigt werden. Diese Beobachtung 

deckt sich mit dem höheren relativen Bodenwassergehalt  der tetraploiden HAL im 

Vergleich  zum  diploiden  Ausgangsklon.  Insgesamt  spricht  das  für  geringeren 

Trockenstress in den tetraploiden HAL. Auf der anderen Seite sollte ein geringerer 

Wasserverbrauch auch eine geringere stomatäre Leitfähigkeit nach sich ziehen. Dies 

war  in  den  tetraploiden  HAL nicht  durchgehend  der  Fall.  Relativ  zur  Kontrolle 

konnten  die  tetraploiden  Linien  aber  eine  höhere  stomatäre  Leitfähigkeit  bei 

Bodenwassergehalten aufrechterhalten, bei denen die diploide Ausgangslinie bereits 

ihre Stomata geschlossen hatte. Dies weist ebenfalls auf eine höhere Trockentoleranz 
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der tetraploiden HAL hin.

Genetische Modifikationen wie beispielsweise Duplikationen und Deletionen wurden 

mit  Hilfe  von  “copy  number  variation”(“Kopienzahlvariation”)-Analysen  an  drei 

tetraploiden HAL und der diploiden Ausgangslinie durchgeführt. Die drei tetraploiden 

Linien  zeigten  vergleichbares  Höhenwachstum,  aber  spätere  Verwelkung  als  die 

diploide  Ausgangslinie.  Bei  dieser  Analyse  konnten  nur  drei  Segmente  detektiert 

werden,  die  bei  allen  drei  tetraploiden  HAL  im  Vergleich  zum  diploiden 

Ausgangsklon  verändert  vorlagen.  Die  putativen  Gene  der  detektierten  Segmente 

wiesen keine Annotation auf. Eine der drei tetraploiden HAL zeigte eine hohe Anzahl 

von 90 Segmenten, die hier aber weder in dem diploiden Ausgangsklon noch in den 

beiden anderen  tetraploiden  Linien  erhöht  vorlagen.  Diese  Linie  zeigte  zwar  eine 

höhere  Trockentoleranz  als  der  diploide  Ausgangsklon,  aber  nicht  gegenüber  der 

anderen  untersuchten  tetraploiden  HAL (Experiment 3).  Beide  tetraploiden  HAL 

waren  bezüglich  des  Wasserverbrauchs,  des  Verwelkungszeitpunktes  und  der 

stomatären Leitfähigkeit ähnlich. Dies lässt vermuten, dass die Trockentoleranz durch 

die  Tetraploidie  und  nicht  durch  weitere  genetische  Modifikationen  bedingt  ist. 

Trotzdem ist eine weiterführende funktionelle Untersuchung der drei Segmente, die in 

allen  tetraploiden  HAL  verändert  auftraten,  sinnvoll,  da  auch  hier  ein 

trockenrelevantes Gen verändert sein könnte. Um eine Relevanz der putativen Gene 

bezüglich  Trockenheit  zu  testen,  könnte  zukünftig  das  Verhalten  von  Knock-out-

Mutanten,  denen  die  entsprechende  Sequenz  fehlt,  unter  Trockenstress  untersucht 

werden.

Abschließend  ist  zu  bemerken,  dass  neben  den  hier  untersuchten  HAL mehrere 

hundert Fusionsprodukte in einem Verbundprojekt genetisch charakterisiert wurden. 

Die Heterofusionsfrequenz war äußerst gering und die Hybriden waren bereits in der 

in vitro Phase nicht überlebensfähig. Geringe Heterofusionsfrequenz wurde beteits in 

anderen  Arten  beobachtet  (Cyclamen,  Brassicaceae,  Fabaceae,  Poaceae,  

Solanaceae).  Da in  dieser  Dissertation  nur  Homofusionslinien  verwendet  wurden, 

wurde die Vermehrbarkeit über Steckhölzer nicht getestet, sondern der Fokus auf das 

Trockenstressverhalten der tetraploiden Homofusionslinien gelegt.

Zusammenfassend  zeigen  die  Ergebnisse,  dass  veränderte  morphologische 

Ausprägungen und eine höhere Trockentoleranz in den HAL mit erhöhten Ploidiegrad 
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auftraten. Dies prädestiniert die tetraploiden Linien für Standorte, an denen Wasser als 

limitierender Faktor auftritt und hohe Ausfallraten durch Dürre erwartet werden.
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1 Introduction

1 Introduction

1.1 Drought as an environmental threat for plants

Plants in their natural habitat are exposed to variations in environmental conditions. 

As  they  are  sessile  they  have  to  cope  with  climate.  When  these  conditions  are 

favorable,  plants grow well.  But  when environmental  conditions deteriorate it  can 

result in stress. A stressor is defined as any external factor that negatively influences 

plant growth, productivity, reproductive capacity or survival  (Rhodes and Nadolska-

Orczyk, 2001). Abiotic stressors such as the availability of light, nutrients and water 

play  an  important  role  in  the  plant  development  (Baumeister  and  Ernst,  1978; 

Fankhauser and Chory, 1997; Orcutt and Nilsen, 2000; Farooq et al., 2009). Drought 

represents an important abiotic stressor that diminishes the plant's vitality and thus 

threatens its  survival  (Araus et  al.,  2002; Flexas et  al.,  2004; Farooq et  al.,  2009; 

Fischer and Polle, 2010).

Plants can cope with drought either by stress avoidance or stress tolerance.  Stress 

avoidance is referred to as the plants ability to minimize the adverse effect,  i.e.  a 

reduction of the water loss and the maintenance of the water uptake  (Farooq et al., 

2009; Puijalon et al., 2011). A drought avoidance mechanism that occurs early in the 

response to drought is stomatal closure to diminish transpiration (Pareek et al., 2010). 

Regulation of stomatal opening can be induced by signaling molecules and stimuli 

like,  for  instance,  turgor  loss  and subsequent  absisic  acid  synthesis  and low light 

(Farquhar and Sharkey, 1982; Gilroy et al., 1990). Stomata serve as a gate for uptake 

of  gases  like carbon dioxide (CO2)  that  is  the central  compound for carbohydrate 

production  in  photosynthesis  but  in  turn  water  molecules  get  lost  (Farquhar  and 

Sharkey, 1982; Gilroy et al., 1990). Therefore, stomatal regulation is a key point for 

controlling  water  loss  and  CO2 uptake  (Farquhar  and  Sharkey,  1982).  Stomatal 

closure, the subsequent increased stomatal resistance and resistances inside the leaf as 

the lower internal mesophyll conductance lead to a low CO2  concentration inside the 

chloroplast (Flexas et al., 2004; Rennenberg et al., 2006). The decreased ratio between 
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CO2 and oxygen in the chloroplast promotes the oxygenation reaction of the ribulose-

1,5-bisphosphate carboxylase/ oxygenase (Rubisco) at the expense of carboxylation 

(Rennenberg et al.,  2006). The ribulose-1,5-bisphosphate regeneration declines and 

the Rubisco protein decreases resulting in a reduced photosynthesis rate (Flexas et al., 

2004). Heat can cause lower mesophyll conductance as well and it remains difficult to 

differentiate  between heat  and drought  as  a  triggering  factor  for  lower  mesophyll 

conductance as they usually occur simultaneously (Rennenberg et al., 2006). When 

drought proceeds a further drought avoidance mechanism is the shedding of leaves as 

this  reduces the plant's  transpiration surface  (Gaur et  al.,  2008; Fischer and Polle, 

2010). Leaf shedding in response to drought has  for example  been investigated in 

Populus (Fischer and Polle, 2010). Changes in leaf morphology such as smaller leaves 

and a decreased total leaf area have been supposed as drought avoidance mechanism 

for Cicer as well (Gaur et al., 2008).

Stress tolerance is defined as the capacity to endure unfavorable conditions (Puijalon 

et al., 2011). Osmotic adjustment by carbohydrates, organic acids and inorganic ions 

or changes in tissue elasticity can enhance a plant´s drought tolerance  (Touchette et 

al., 2009). For instance, the increase of nonstructural carbohydrates such as glucose, 

fructose and sucrose have been investigated in Betula, as well as in Populus and these 

solutes were supposed to function in osmoprotection (Peuke et al., 2002; Shi et al., 

2002; Danielsen and Polle, 2014). In Populus, osmotic adjustment was mainly due to 

malic  acid,  potassium ions,  sucrose and glucose  (Tschaplinski  and Tuskan,  1994). 

Apart from the adjustment of osmolytes also a high baseline concentration of solutes 

was assumed to be favorable for drought tolerance (Tschaplinski and Tuskan, 1994). 

Cattivelli et al. (2008) reported that osmotic adjustment plays a role in minimizing 

yield  loss  when  drought  occurs.  Therefore,  analysis  of  osmotic  adjustment  under 

different drought conditions has been suggested as an effective selection criterion for 

drought tolerant genotypes (Cattivelli et al., 2008).

Apart from the metabolic reactions that occur in response to dry conditions distinct 

morphological and physiological characteristics have been associated with plants of 

xeric habitats. These traits are favorable under drought as the water loss is minimized. 
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For example, a smaller leaf area, increased leaf thickness and leaf mass per area are 

related to dry habitat plants (Kubiske and Abrams, 1992; Abrams et al., 1994; Gaur et 

al., 2008). With an increased leaf mass per area the surface-volume ratio is decreased 

and  this  may  result  in  a  reduced  transpiration.  Abrams  et  al.  (1994)  studied 

17 temperate tree species from sites contrasting in humidity and found that in plants 

of  xeric  habitats  the  stomatal  length  and  the  net  photosynthesis  rate  is  increased 

compared to that from wet and wet-mesic sites. The comparison of a drought-tolerant 

with  a  drought-susceptible  black poplar  clone  also showed characteristics  that  are 

associated to dry conditions like smaller and thicker leaves, enhanced stomatal size, 

reduced stomatal density and low plant height (Regier et al., 2009). These traits that 

emerged from evolutionary processes seem to be advantageous under dry conditions 

probably as a result of minimized transpiration.

1.2 Genome duplication and copy number variation in plants

Genome  duplication  (polyploidization)  has  naturally  occurred  in  the  evolution  of 

several plant species including crops like Gossypium hirsutum, Triticum aestivum, and 

Oryza sativa but also in tree species such as  Populus (Finnegan, 2002; Blanc and 

Wolfe,  2004;  Rausher,  2007).  Duplicated genes typically  show a diversification in 

functions  or  subfunctionalization  (Adams  and  Wendel,  2005).  Gene  expression 

silencing of polyploid genes can thereby be organ-specific and was observed to occur 

even reciprocally  in  different  organs,  i.e.  leaving one  homeolog silenced in  some 

organs and the other silenced in other organs resulting in subfunctionalization (Adams 

et  al.,  2003).  Several  studies  revealed  that  gene  doubling  can  also  influence  the 

transcription levels by epigenetic alterations in the cytosine methylation or silencing 

of the ribosomal RNA leading to variations of morphology and phenotype (Finnegan, 

2002; Liu and Wendel, 2003; Adams and Wendel, 2005).

Copy number variations (CNVs) are defined as DNA segments larger than 1 kb that 

are present in compared genomes but show variations in the copy number (Freeman et 

al., 2006; Springer et al., 2009). CNVs can occur in different functional regions of the 
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DNA as for instance in stop codons, in exons and promoters, within an intron or in 

intergenic regions (Conrad et al., 2010). If CNVs appear in regulatory regions such as 

stop codons or promoters it is assumed that this can have impact on the gene dosage 

by disrupting coding sequences and long-range gene regulation  (Kleinjan and van 

Heyningen, 2005; Conrad et al., 2010). Increased copy numbers can correlate both 

positively and negatively with the gene expression; for example if a transcriptional 

repressor  is  deleted  the  gene  expression  of  the  target  gene  might  be  positively 

influenced  (Lee et al., 2006; McCarroll et al., 2006). But CNVs do not necessarily 

result in high genomic disorders and can have no apparent influence on the phenotype 

as well  (Clancy, 2008; Freeman, 2006). CNVs can be due to  homologous and non-

homologous recombination  after double strand breaks and errors during replication 

(Conrad  et  al.,  2010).  Double  strand  breaks  can  arise  during  tissue  culturing  for 

example and CNV has been related to stress adaptation (Kaeppler and Phillips, 1993; 

Svitashev and Somers, 2001; Oh et al., 2012). If CNV occur in drought-relevant genes 

with a subsequent increase in gene expression this can cause higher drought tolerance 

(Xu  et  al.,  1996;  Kleinjan  and  van  Heyningen,  2005).  For  example,  in  Zea, the 

increased expression of HVA1 a barley group3 LEA (late embryogenesis abundant) 

protein led to higher drought tolerance (Xu et al., 1996).

1.3 Polyploidy and its effects on stress tolerance in plants

Several  studies  have  shown  enhanced  stress  tolerance  for  polyploid  varieties  in 

different species (Xiong et al., 2006; Li et al., 2009; van Laere et al., 2010; Deng et 

al.,  2012).  For instance,  octaploid tobacco plants showed increased survival  times 

over their  tetraploid counterparts when exposed to stresses like cold,  shade,  water 

logging, nutrient deficiency and drought (Deng et al., 2012). Decreased susceptibility 

of polyploid varieties to drought was detected in crop species (Triticum), herbaceous 

species (Lonicera, Spathiphyllum, Nicotiana) as well as in tree species (Betula) (Li et 

al., 1996; Xiong et al., 2006; Li et al., 2009; van Laere et al., 2010; Deng et al., 2012). 

Polyploidy  can  induce  morphological  changes  in  leaf  characteristics  that  are 
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associated with drought tolerance like an increased leaf thickness, a smaller total leaf 

area and an enhanced leaf mass per area (Kubiske and Abrams, 1992; Li et al., 2009). 

For  instance,  greater  stomatal  length  and  reductions  in  stomatal  density,  that  are 

characteristics  of  plants  in  xeric  habitats,  were  observed  in  polyploid  Betula and 

Spathiphyllum (Abrams et al., 1994; Li et al., 1996; Regier et al., 2009; van Laere et 

al., 2010). Polyploidy can also influence the metabolic performance resulting in an 

induction  of  superoxide  dismutase  and  catalase  and  consequently  decreased 

accumulation  of  reactive  oxygen  species  (ROS)  (Deng  et  al.,  2012).  Deng  et  al. 

(2012) observed less growth, but  increased concentrations of the ROS scavenging 

metabolites and soluble sugars in the octaploid compared to the tetraploid tobacco 

varieties.  Therefore,  they  assumed  that  the  octaploid  varieties  invest  more  in 

antioxidants  and  thus  secondary  metabolism than  the  plants  with  reduced  ploidy 

(Deng et  al.,  2012). In  Lonicera,  the soil  water potential,  the pre-dawn leaf water 

potential,  the transpiration rate and the stomatal conductance were less affected in 

drought-treated tetraploid variants compared to their diploid relatives (Li et al., 2009). 

As well, the net photosynthesis rate was less susceptible to drought in the tetraploid 

plants in comparison to the diploid suggesting higher CO2 assimilation per unit leaf 

area in the tetraploid plants under dry conditions (Li et al., 2009). 

Moreover,  endopolyploidization  is  a  response  to  drought.  For  example, 

endoreduplication has been observed in drought-exposed Arabidopsis leaf mesophyll 

cells  resulting in less sensitivity  of the final  leaf  area to  drought  (Cookson et  al., 

2006).  Furthermore,  under  drought  GTL1, a  trihelix  transcription  factor,  is  down-

regulated  in  Arabidopsis (Kaplan-Levy  et  al.,  2012).  This  leads  to  increased 

endopolyploidy and a subsequent decrease in the stomatal number (Kaplan-Levy et 

al.,  2012).  These effects  are  assumed to maintain the leaf  area for  photosynthesis 

while reducing the transpiration due to fewer stomata (Kaplan-Levy et al., 2012). The 

systematic endoreduplication in drought-adapted species implies an advantage of this 

mechanism for growth under dry conditions (Scholes and Paige, 2015) and indicates a 

benefit for polyploid-related morphological traits as increased cell size under drought.
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1.4 Characterization of Populus tremula (L.) x P. tremuloides 

(Michx.)

The species Populus includes six sections, i.e. Abaso, Aigeiros, Leucoides, Populus, 

Tacamahaca and Turanga (Eckenwalder, 1996). The classification on the section and 

species level is controversially discussed, but according to Eckenwalder (1996) the 

genus  comprises  29  species.  Populus tremula (L.) x P. tremuloides (Michx.) is  a 

hybrid between the quaking aspen that naturally occurs in North America and the 

European aspen that is distributed over Europe and Asia (Romme et al., 2005; Tamm, 

1994). Both species are classified in the section Populus and easily hybridize with 

each  other  (Eckenwalder,  1996).  P. tremula (L.)  and  P. tremuloides (Michx.)  are 

regarded as pioneer colonizing tree species both with a wide ecological distribution 

(Geburek, 1994; Tamm, 1994). The natural occurrence of P. tremuloides ranges from 

atlantic to continental and aspen grow in regions with temperatures down to -60 °C, 

an  annual  precipitation  of  180 mm and a vegetation  period  of  80  days  (Geburek, 

1994).  P. tremuloides also  appear  in  humid  areas  with  about  1000 mm  annual 

precipitation  (Geburek,  1994) indicating a wide amplitude of  this  species  towards 

water availability. As well, the occurrences of  P tremula ranges from steppes, semi-

deserts to swamps and show no specific demands for the climate, the temperature and 

precipitation  (Tamm, 1994). Both aspen species grow on soils of different fertility 

even on stony bedrocks and the pH value of the soil can range between acidic and 

alkaline  (Geburek, 1994; Tamm, 1994). Although the growth is enhanced on fertile 

sites, aspen show economically viable increase on sites where other tree species fail 

(Mohrdiek,  1977).  Drought  tolerance  for  hybrid  aspen  is  assumed  although  the 

literature is limited  (Pakull et al., 2009). But the natural distribution of the parental 

species  indicates  high  tolerance  towards  different  humidity  conditions.  A decisive 

characteristic of pioneer species is fast juvenile growth (Dalling and Hubbell, 2002). 

Both  P. tremula and  P. tremuloides show this specific trait that is important in short 

rotation  coppice  (SRC)  for  biomass  production  (Geburek,  1994;  Tamm,  1994; 

Schirmer, 2009). Hybrids of these two species (P. tremula x P. tremuloides) exhibit 

enhanced  growth  probably  due  to  a  heterosis  effect  (Yu  et  al.,  2001). A further 
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important trait for poplar cultivated in SRC is the propagation via stem cuttings as this 

considerably reduces  the investment  costs  (Stanturf  et  al.,  2001).  Aspen miss  this 

decisive trait as they propagate vegetatively via root suckers (Geburek, 1994; Tamm, 

1994). 

1.5 Somatic hybridization of hybrid aspen

Somatic  hybridization  or  protoplast  fusion  has  been  used  since  the  1970s  as  a 

breeding method to combine plants of different species. Somatic hybrids contain the 

genetic material of both parental species including the cytoplasmatic material with 

mitochondria and chloroplasts  (Landgren and Glimelius, 1990). For the chloroplast 

genome, uniparental inheritance is mainly observed, but co-existence was also found 

in some lines (Liu et al., 2005). Instead, for the mitochondrial genome recombination 

and  rearrangements  appeared  (Liu  et  al.,  2005).  In  conventional  breeding  the 

mitochondria and chloroplasts are primarily of uniparental inheritance (Birky, 1995). 

Besides,  polyploidy can occur  in  the offspring when the chromosome sets  of two 

protoplasts merge (Grosser et al., 2000). As the protoplast fusion suspension contains 

a variable number of cells of both parental species and the somatic hybridization is 

not directed, heterofusion but also homofusion can occur  (Fig. 1.1). Apart from the 

addition of two complete diploid chromosome sets also aneuploid fusion products can 

be generated (Fig. 1.1). It has been observed in fusion hybrids that one nucleus or 

chromosomes of one fusion partner were predominant while only a few chromosomes 

of the second fusion partner occurred that were eliminated over time (Binding and 

Nehls, 1978; Prange et al., 2012).

Hybrid  aspen  show  enhanced  growth  compared  to  the  parental  species  and 

economically reasonable increase in biomass on poor soils (Mohrdiek, 1977; Yu et al., 

2001) but they propagate vegetatively via root suckers. Poplar species of the sections 

Tacamahaca and Aigeros,  as for example,  P. nigra (L.)  and  P. trichocarpa (Torr.  & 

Gray) x P. deltoides (Bartram ex Marsh) can be propagated via stem cuttings (Stanturf 

et al., 2001). But the hybridization of  P. tremula x P. tremuloides with  P. nigra and 
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P. trichocarpa x  P. deltoides is difficult under natural conditions  (Willing and Pryor, 

1976; Liesebach et al., 2010). To combine the traits of both the hybrid aspen on the 

one  hand and the  black  poplar  (P. nigra) and  the  balsam poplar  (P. trichocarpa x 

P. deltoides) on the other hand the method of somatic hybridization was used. This 

can be an auspicious approach as favorable traits can be joined in one plant.

Figure 1.1: Scheme of protoplast fusion possibilities (x symbolizes the chromosome set, 2 x: 
diploid;  4 x:  tetraploid,  1: tetraploid  heterofusion,  2:  aneuploid  heterofusion  missing 
chromosomes of one fusion partner, 3: tetraploid homofusion, 4: aneuploid homofusion).

1.6 Energy demand and biomass production

The  world  primary  energy  demand  is  increasing  (Berndes  et  al.,  2003;  Asif  and 

Muneer, 2007; Doman et al., 2014). In 2008, about 11 % of this demand was met by 

renewable sources such as hydropower, biomass, biofuels, wind, geothermal and solar 

energy  (IPCC, 2011).  Biomass  from bioenergy plants  is  expected to  have a  good 

potential to meet the increasing demand for global primary energy (Weih, 2004; Karp 

and Shield, 2008; Weih et al., 2014). Compared to fossil fuels, biomass contributes 

only marginally to the emission of greenhouse gases  (Weih, 2004). The greenhouse 

gases reached their highest levels in history during the past decade and are the main 
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1.6 Energy demand and biomass production

drivers of climate change (IPCC, 2014). Biomass is therefore considered to contribute 

substantially to the alleviation of climate change challenge  (Weih, 2004; Karp and 

Shield, 2008). The establishment of SRC is one possibility of generating biomass for 

energy  purposes.  SRC refers  to  plantations  of  fast  growing  trees  and  shrubs  for 

biomass production with high initial growth and a rotation time of 3 to 5 years (Karp 

and Shield, 2008). The plantations of SRC show high biomass production and carbon 

dioxide fixation; the subsequent use of wood chips has low carbon abatement costs 

(BMEL, 2007). In 2012, SRC covered an area of 5 000 to 6 000 ha in Germany, i.e. 

only 0.0003 % of the managed agricultural land (von Wühlisch, 2012; BMEL, 2014).

It has been suggested that conflicts in land use for food or biomass production can be 

diminished  by establishing  SRC on marginal  sites,  that  are  affected  by  pollution, 

salinization or low water and mineral supply (Kuzovkina and Quigley, 2005; Karp and 

Shield,  2008;  Polle  et  al.,  2013).  Therefore,  species and varieties with high stress 

tolerance are required (Karp and Shield, 2008; Weih et al., 2014). However, biomass 

yield highly depends on the availability of water and drought tolerance can also be 

achieved at the expense of biomass (Araus et al., 2002; Bogeat-Triboulot et al., 2006; 

Cattivelli et al., 2008). Poplars are needed that combine enhanced drought tolerance 

and good biomass production. As drought periods are likely to increase with climate 

change  (Regier et  al.,  2009) drought tolerance and the maintenance of growth are 

important breeding objectives (McKendry, 2002; Cattivelli et al., 2008).

Protoplast fusion of poplar species that exhibit good growth on soils with poor water 

and nutrient  supply  as  P. tremula x  P. tremuloides with  poplar  species  that  can  be 

propagated via stem cuttings as P. nigra or P. trichocarpa x P. deltoides seems to be a 

promising approach. The enhanced ploidy level that can occur in the protoplast fusion 

products  may  also  positively  influence  the  performance  of  the  plants  exposed  to 

stress, e.g. drought (Li et al., 2009; van Laere et al., 2010; Deng et al., 2012).
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1.7 Objectives

In this dissertation the objective was to investigate the drought response of tetraploid 

hybrid  aspen  that  were  generated  by  protoplast  fusion  between  P. tremula x 

P. tremuloides ('Münden 2')  as one fusion partner  and either  P. x canescens (INRA 

clone No.  717 1-B4), P. nigra or  P. trichocarpa x  P. deltoides (B19) as  the second 

fusion partner.

The following questions were addressed:

i. Do the tetraploid hybrid aspen lines perform better under drought than the 

diploid  original  line,  e.g.  concerning  the  water  consumption  and  the  leaf 

vitality?

ii. Do the tetraploid hybrid aspen lines distinguish from the diploid original line 

in morphological traits like stomatal morphology, height, stem biomass and 

leaf area?

iii. Is the better drought performance in the tetraploid hybrid aspen lines due to 

the increased ploidy level, i.e. do the tetraploid hybrid aspen lines show better 

drought performance such as higher survival rates, a delay in leaf wilting and 

higher relative leaf water content than the diploid “fusion” lines?

iv. Do  the  tetraploid  hybrid  aspen  show  early  physiological  changes  in  the 

relative leaf water content,  the carbohydrate concentration and the stomatal 

conductance?

v. Are  there  any  genetic  modifications  apart  from  the  tetraploidy  like 

duplications or deletions that might influence the drought performance?

For  this  purpose  greenhouse  experiments  were  conducted.  In  experiment  1,  four 

hybrid  aspen  lines  of  protoplast  fusion  experiments  between  P. tremula x 

P. tremuloides ('Münden 2') and P. nigra and P. trichocarpa x P. deltoides (B19) were 

characterized for morphological traits and their drought performance. The results of 

this experiment that are reported in this thesis have been published (Hennig et al.,  

2015, appendix 7.3).
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A screening of 20 hybrid aspen lines from protoplast  fusion experiments between 

P. tremula x  P. tremuloides ('Münden  2')  and  P. x canescens (INRA  clone  No. 

717 1-B4) and P. nigra  for drought tolerance was conducted in experiment 2. Four 

“fusion” lines that originated from protoplast fusion experiments but showed a diploid 

set of chromosomes were included to investigate the influence of the ploidy level on 

the drought  performance.  In experiment  3,  two tetraploid hybrid aspen lines  were 

selected that showed a significant delay in total leaf wilting with respect to height 

compared  to  the  diploid  original  line.  The  analysis  of  drought  performance  was 

extended and detailed time courses of particular physiological traits were investigated. 

A copy number variation analysis was conducted to detect genetic modifications such 

as  duplications  or  deletions  that  might  play  a  role  in  the  enhanced  drought 

performance of the tetraploid hybrid aspen lines. For this purpose, the whole genome 

of the tetraploid hybrid aspen lines of experiment 3 and one further hybrid aspen line 

were sequenced along with  the  diploid original  line.  The selected  lines  showed a 

delayed leaf wilting with respect to height compared to the diploid original line.

11
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2 Material and methods

2.1 Plant material

Five-year-old trees of P. tremula x P. tremuloides ('Münden 2'), twenty-year-old trees 

of P. nigra and twenty five-year-old trees of P. trichocarpa x P. deltoides (B19) were 

used for establishing in vitro cultures. Terminal and axillary winter buds of one-year-

old shoots were harvested and processed after a protocol modified according to Ahuja 

(1984). Buds were washed in tap water and sterilized in 70 % ethanol (Carl Roth 

GmbH & Co. KG, Karlsruhe, Germany) with 0.1 % L-ascorbic acid (Sigma Aldrich 

Laborchemikalien  GmbH,  Hannover,  Germany)  for  20  seconds  and  in  sodium 

hypochlorite (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) (supplemented with 

2 drops  of  Tween 20 (Carl  Roth  GmbH & Co.  KG,  Karlsruhe,  Germany)  for  20 

minutes.  Material  was then  washed three  times for  five  minutes  in  sterilized  tap 

water. After shoot development plantlets were subcultured every four weeks on MS-

Medium  (Murashige  and  Skoog,  1962) supplemented  with  0.2  ppm 

6-benzylaminopurine  (Fluka  Chemie  GmbH,  Steinheim,  Germany),  2 %  sucrose 

(Carl  Roth GmbH & Co.  KG, Karlsruhe,  Germany) and 2.9 g/l  Gelrite (Duchefa 

Biochemie, Haarlem, Netherlands).  In vitro culture of  P. x canescens (INRA clone 

No. 717 1-B4) was not obtained via buds but provided as  in vitro  cultures by the 

Company  Phytowelt  GreenTechnologies  GmbH,  Cologne,  Germany.  Protoplast 

fusion of the in vitro poplar clones was established according to modified protocols 

of  Guo  and  Deng  (1998),  Sasamoto  et  al.  (2006) by  the  company  Phytowelt 

GreenTechnologies GmbH as described previously (Lührs et al., 2010; Efremova et 

al.,  2013).  Protoplast  fusion  experiments  were  conducted  between  P. tremula x 

P. tremuloides ('Münden 2') as one fusion partner and  P. x canescens (INRA clone 

No.  717 1-B4),  P. nigra  or  P. trichocarpa x  P. deltoides  (B19)  as  second  fusion 

partner. Shoot cultures from fusion products were regenerated as separate lines. The 

lines  were  micropropagated  and  rooted  ex  vitro by  directly  transferring  them to 

substrate  (nursery  substrate  (N: 250 mg/l  P: 140 mg/l,  K: 250 mg/l),  Kleeschulte 
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2.1 Plant material

Erden GmbH, Rüthen, Germany) under a foil tunnel equipped with a fog system. 

Plantlets  were  hardened  by  reducing  air  humidity  gradually  during  four  weeks. 

Rooted  plans  were transferred  into  1.3-liter  pots  (substrate  composition  as  above 

blended with one gram long-term fertilizer Osmocote Exact lo start  8-9 M (1 g/l, 

N:P:K = 15:8:10 + 3 MgO), The Scotts Company LLC, Heerlen, Netherlands per liter 

soil)  and  cultured  in  the  greenhouse.  For  hibernation  temperature  was  decreased 

according to ambient conditions but did not drop below 5 °C. Plants of all  tested 

fusion lines (Tab. 2.1) were watered to field capacity until the experiments started. 

All experiments were carried out in a greenhouse.

Table 2.1: Fusion partners of the plant material used for the experiments (P1: P. x canescens 
(INRA clone No. 717 1-B4), P3: P. tremula x  P. tremuloides  ('Münden 2'), P7:  P. nigra, P9: 
P. trichocarpa x P. deltoides (B19)).

Line Fusion partner 1 Fusion partner 2

Experiment 1

27-01 Diploid original clone P3

27-09

P3 P927-10

27-11

27-12 P3 P7

Experiment 2

18-03 Diploid original clone P3

14-01

P3 P7

14-02

14-03

14-04

14-05

14-06

14-07

14-08

P1 P314-09

14-10

18-04 P3 P7
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Line Fusion partner 1 Fusion partner 2

18-05

P3 P7

18-06

18-07

18-08

18-09

18-10

18-11
P1 P3

18-12

18-13 P3 P7

Experiment 3

18-03 Diploid original clone P3

14-04
P3 P7

14-07

Whole genome 
sequencing

18-03 Diploid original clone P3

14-03

P3 P714-04

14-07

2.2 Genetic characterization

2.2.1 Ploidy level

The relative DNA content was analyzed for all tested lines by flow cytometry from 

leaves of in vitro cultures (Plant Cytometry Services, Netherlands).

2.2.2 DNA extraction

The protocol of Dumolin et al. (1995) was used for total DNA isolation from leaves 

of  in vitro cultures.  Differing from the protocol the pellet  was dissolved in  75 µl 

1 x TE RNase A (100 mg/ml, Quiagen, Hilden, Germany).
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2.2.3 Nuclear simple sequence repeats analysis

Nuclear simple sequence repeats (nSSR) analyses were conducted for all tested lines. 

Additionally,  the  other  diploid  original  lines  that  were  used  for  protoplast  fusion 

analyes  were  included  as  references  in  the  nSSR analyses,  i.e.  P. nigra (P7)  and 

P. trichocarpa x  P. deltoides (clone  B19;  P9).  Eleven  primers  (ORPM0023, 

ORPM1031,  ORPM1249,  ORPM1261,  PMGC0433,  PMGC2163,  WPMS05, 

WPMS09,  WPMS12,  WPMS14,  GCPM2768)  were selected  that  were  located  on 

nine linkage groups (http://web.ornl.gov/sci/ipgc/ssr_resource. htm; van der Schoot et 

al., 2000; Smulders et al., 2001; Tuskan et al., 2004). Polymerase chain reaction was 

performed as described by Eusemann et al. (2009), van der Schoot et al. (2000) and 

Smulders et al. (2001). nSSR fragment length analysis was carried out using a LI-

COR  sequencer  (4300  DNA  analyzer,  LI-COR  Biosciences,  Bad  Homburg, 

Germany). For genotype analysis the software Saga v3.0 (LI-COR Biosciences, Bad 

Homburg, Germany) was used.

2.2.4 Whole genome sequencing and annotation

Sequencing

Whole genome sequencing was applied to three fusion lines and the diploid original 

clone  (Tab. 2.1)  by the  DNA Microarray and Deep-Sequencing Facility Göttingen. 

Genomic DNA was sonicated by using the DNA Shearing for Bioruptor®NGS to 350 

bp fragments.  Library preparation for DNA-Seq was performed using the TruSeq 

DNA Sample  Prepv2  Kit  renamed  TruSeq  DNA LT  SamplePrep  Kit  (Illumina, 

Catalog IDs:**FC-121-2001, FC-121-2002) starting from 1000 ng of genomic DNA. 

The barcodes used for sample preparation were index 5, 6, 15 and 7 according to the 

indications given by the protocol. Accurate library quantitation of DNA libraries was 

performed by using the QuantiFluor™dsDNA System (Promega). The size range of 

final cDNA libraries was determined applying the DNA 1000 chip on the Bioanalyzer 

2100 from Agilent (470 bp). DNA libraries were amplified and sequenced by using 
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the cBot and HiSeq 2000 from Illumina (PE, 2×100 bp, 20 Gb/sample ca. 100 million 

reads  per  sample).  Sequence  images  were  transformed  with  Illumina  software 

BaseCaller  to  bcl  files,  which  were  demultiplexed  to  fastq  files  with  CASAVA 

(version  1.8.2).  Quality  check  was  done  via  FastQC  (version  0.10.1,  Babraham 

Bioinformatics).

Mapping, detecting copy number variation and annotation

The  mapping,  the  detection  of  copy  number  variations  and  the  annotation  was 

conducted  by  the  Core  Facility  Medical  Biometry  and  Statistical  Bioinformatics 

(Department of Medical Statistics, University of Göttingen). Minimal read length was 

set at 25 bp and low quality bases with a phred score lower 20 were removed to 

ensure a sufficient quality of the sequences with high precision in mapping. Reads 

were aligned to the reference sequence of  P. tremula x  P. tremuloides consisting of 

290 142 contigs of 200 to 128 000 bp length allowing a mismatch rate of 3 %. The 

contigs  were  provided  by  Nathaniel  Street  (Umeå Plant  Science  Centre,  Umeå, 

Sweden). The rate of uniquely mapped reads was between 67 % and 69 %. To avoid 

redundancies, reads that mapped in more than one contig were removed. The number 

of contigs was reduced to 110 000 by filtering for a number of at least 50 reads on a 

given contig in all  samples.  Coverage was summarized over a sliding window of 

650 bp, having 100 reads in median in each window. GC bias was corrected using the 

rectification of loess fit depending on the copy number ratio to the GC content and 

data  were  normalized  for  library  size.  To  identify  segments  with  copy  number 

variations  (CNVs)  a  pairwise  comparison  of  four  samples  was  performed.  After 

filtering for a minimum sum of 30 reads for both samples per window, the coverage 

of reads was summed up per each sliding window. Results were filtered for contigs 

with a log ratio more than │log 2(1.5)│, that is a minimum 1.5-fold difference in 

coverage  between  the  analyzed  samples.  For  enabling  functional  analysis  the 

sequences were mapped to the reference genome of P. trichocarpa (Nisqually-1) for 

genome genome alignment using the program MuSIC (Tsai et al., 2004). Thereby, the 

POPTR identifications numbers were obtained.  In the following functional analysis 

16



2.2 Genetic characterization

the POPTR numbers were used for input in the “Keyword search” tool of Phytozome 

(http://phytozome.jgi.doe.gov;  Goodstein et  al.,  2012). To gain further information 

whether the identified genes were related to drought and growth, in silico expression 

analysis was conducted in POPGENIE (“exImage” tool; http://popgenie.org/eximage; 

Sjödin et al., 2009). Here, the expression in  P. tremula  tissue, in  young expanding 

leaves that were sampled in the field and in leaves after three days drought exposure 

in  the  greenhouse  were  chosen.  The  electronic  fluorescent  pictographic  (eFP) 

browser displayed the expression in the specific tissue in relation to the expression 

over all analyzed tissues.

2.3 Experimental design

2.3.1 Experiment 1

Four lines from protoplast fusion and the original diploid hybrid aspen ('Münden 2') 

were used in  a greenhouse experiment  (Tab.  2.1).  Ten plants of  each clone were 

randomly chosen as control and ten as treatment plants. Two plants each of four lines, 

still planted in three-liter pots, were placed into one box (eight plants) according to a 

scheme applying  maximal  space  to  the  plants  of  one  line  (Fig. 2.1).  The  plants´ 

positions were changed in each box in order to let all lines pass all positions of the 

boxes (four different distributions, one was repeated).

Figure 2.1:  Scheme of the plants distribution in the box for experiment 1 (eight plants per 
box planted in three-liter pots, two plants of one line (symbolized by the same letter) were 
placed at maximal space).
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During the experiment the boxes were rotated daily to avoid positional effects. No 

artificial  light  was  supplemented.  Temperature  and  relative  air  humidity  during 

experimental time ranged from 16 °C to 37 °C / 37 % to 60 % (day) and from 11 °C 

to 15 °C / 80 % to 99 % (night), respectively. Because of data logger failure inside the 

greenhouse during eight days (day 11 to day 19), hourly data of existing data pairs for 

inner  and  outer  temperature  were  used  to  generate  a  linear  regression  model 

(Equation 1) with the outer temperature (x1) as predictor variable.

y=β0+x1 β1+ε Equation 1

The modeled and measured temperatures showed a quite high correlation (R2 = 0.92, 

Fig. 2.2 A). The relative humidity was modeled using a generalized linear regression 

approach  as  the  target  variable  ranged  between  0  and  100 %.  Therefore,  a  logit 

function  was  applied  (Equation 2)  with  the  predicted  temperature  inside  the 

greenhouse (x1) and the hour of the day (x2) as predictor variables.

ŷ=
exp( β0+β1 x1+β2 x2)

1+exp ( β0+β1 x1+ β2 x2 )

Equation 2

For  more  flexibility  of  the  model  Equation 2  was  extended  by  flexible  splines 

according to Wood (2011). The predicted values of the relative humidity were highly 

correlated  with  the  measured  values  (R2 =  0.79, Fig.  2.2 B). The  vapor  pressure 

deficit (vpd) was determined using the predicted temperature and relative humidity 

data with the Clausius-Clapeyron relationship according to Hartmann (1994).

All plants were watered twice up to saturation before starting the experiment. Then, 

control  plants  were  watered  daily  to  field  capacity  and  treatment  plants  were 

gradually dried to the respective soil moisture target levels. After culturing the plants 

at  this  level  for  one  week,  treatment  plants  were  not  watered  anymore  but  still 

investigated. The experiment ended at day 56, when all plants were harvested for 
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biomass analysis.

The leaf morphology of in vitro plants was investigated (2.4.1). The stomatal length, 

density  and  the  stomatal  area  index  were  analyzed  before  starting  the  drought 

treatments (2.4.1). During the whole experiment the relative soil moisture and the leaf 

vitality were investigated for control and treatment plants (2.4.4). Water consumption 

was  measured  within  one  week  during  the  10 vol.-% period  (2.4.4).  The  relative 

height increment, the stomatal conductance and the carbohydrate concentration were 

investigated for control and treatment plants after the 10 vol.-% soil moisture period 

(2.4.2, 2.4.5, 2.4.6). At the end of the experiment the stem biomass, the leaf mass per 

area and the total leaf area per plant were analyzed using control plants (2.4.2, 2.4.3). 

The relative stem increment was investigated for control and treatment plants after the 

experiment (2.4.2).

Figure 2.2:  Time courses  of  (A)  temperature  and  (B) relative  humidity of  experiment  1 
(black: measured data, red: modeled data).
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2.3.2 Experiment 2

Twenty hybrid aspen fusion lines and the original clone  P. tremula x  P. tremuloides 

('Münden 2') were investigated in this experiment (Tab. 2.1). Plants were transferred 

to soil in April 2012, planted into 1.3-liter pots in May 2012 (substrate composition 

as mentioned in section 1 with long-term fertilizer (1 g/l, Osmocote Exact Standard 

5-6  M  (1 g/l,  N:P:K = 15:9:12  +  2 MgO),  The  Scotts  Company  LLC,  Heerlen, 

Netherlands) and cultured in the greenhouse until the experiment started. Four plants 

were randomly chosen as control and 12 as treatment plants with the exception of line 

18-05, 18-08, 18-09 and 18-12. For these lines the following numbers were used: 

18-05:  3  control,  8  treatment  plants,  18-08:  2  control,  5  treatment  plants,  18-09: 

3 control, 9 treatment and 18-12: 2 control, 8 treatment plants. Three plants of each 

line (5 lines),  still  planted in 1.3-liter  pots,  were placed into one box (15 plants) 

according to a scheme applying maximal space to the plants of one line (Fig. 2.3). 

The positions of the plants were changed in every box that way that all lines passed 

all positions of the box (five different distributions).

Figure 2.3: Scheme of the plants distribution in the box for experiment 2 (15 plants per box 
planted in 1.3-liter pots, three plants of one line (symbolized by the same letter) were placed 
at maximal space).

The plants were watered daily until the experiment started. Additionally, the plants 

were watered twice to saturation right before starting the experiment. Subsequently, 

the control plants were watered daily to field capacity, for the treatment plants the 

water was withheld. No artificial light was supplied. To avoid positional effects all 

boxes were rotated daily. The experiment started on June, 28th 2012 and lasted for 35 

days.  Initial  height  was  measured  for  control  and  treatment  plants  (2.4.2).  Leaf 
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vitality was investigated daily for treatment plants and once every week for control 

plants (2.4.4).  At day 7,  19 and 26 the relative water content  of the leaves  were 

determined  (2.4.5).  The  survival  rate  was  investigated  following  the  experiment 

(2.4.7).

2.3.3 Experiment 3

Two  hybrid  aspen  fusion  lines  and  the  diploid  clone  P. tremula x  P. tremuloides 

('Münden 2') were analyzed in this drought stress experiment (Tab. 2.1). Plants of in  

vitro cultures were planted into soil in April 2013 and transferred to 1.3-liter pots 

(substrate and long-term fertilizer see section 2.1). On July 17th 2013, the plants were 

re-potted in three-liter pots (substrate composition see section 2.1) with long-term 

fertilizer (1 g/l, Osmocote Exact Standard 5-6 M (1 g/l, N:P:K = 15:9:12 + 2 MgO), 

The Scotts Company LLC, Heerlen, Netherlands). Until the start of the experiment 

on September 16th 2013, the plants were watered to pot capacity and cultivated in the 

greenhouse.

Twenty plants of each line were randomly chosen as control and twenty as treatment 

plants. Two plants of each line, still planted in three-liter pots, were placed into one 

box (six plants) applying maximal space between the plants of one line (Fig. 2.4). 

The positions of the plants were changed in every box that way all lines passed all 

positions of the box (three different distributions, one was repeated four times, two 

were repeated three times).

Figure 2.4: Scheme of the plants distribution in the box for experiment 3 (six plants per box 
planted in three-liter pots, two plants of one line (symbolized by the same letter) were placed 
at maximal space).
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No artificial light was supplied. All plants were watered twice up to saturation before 

the experiment started. The control plants were subsequently watered daily to field 

capacity. The treatment plants were gradually dried to 25, 18, 12 and 5 vol.-% relative 

soil moisture and kept at the respective soil moistures for three days until stomatal 

conductance and relative leaf water content were measured. Uniform drying of the 

plants of one line was ensured by the procedure described in section 2.4.4. When the 

target levels were reached, the stomatal conductances of all  control and treatment 

plants were measured (Tab. 2.2, 2.4.5). Afterwards, plant material was harvested for 

analysis of the relative water content and the carbohydrate concentration (Tab. 2.2, 

sections 2.4.5, 2.4.6). The time points when the soil target levels were reached were 

staggered (Tab. 2.2). Initial height was measured for all plants (2.4.2). Relative soil 

moisture was recorded daily from the beginning of the experiment to day 29. Leaf 

vitality was investigated daily for treatment plants from the start of the experiment 

until  day  38,  then  every  fourth  day  (2.4.4).  For  control  plants  leaf  vitality  was 

investigated  weekly  (2.4.4).  Water  consumption  were  analyzed  over  the  whole 

experiment (2.4.4).  At the end of the experiment  the osmolality  was analyzed for 

control and treatment plants (2.4.6).

Table  2.2: Time  points  when  the  respective  soil  moistures  were  reached  and  stomatal  
conductance and relative leaf water content were measured for experiment 3 (d: day after the 
beginning of the experiment,  start:  beginning of the respective soil  moisture level,  meas: 
measurement  of  stomatal  conductance  and  harvest  for  relative  leaf  water  content  and 
biochemical analyses).

Line Relative soil moisture [vol.-%]

25 18 12 5

Start / meas Start / meas Start / meas Start / meas

18-03 d5 / d8 d9 / d12 d13 / d16 d17 / d20

14-04 d9 / d12 d13 / d17 d17 / d20 d25 / d28

14-07 d8 / d11 d12 / d16 d16 / d19 d25 / d28
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2.4 Investigated parameters

2.4.1 Leaf and stomata morphology

Leaf morphology of in vitro plants of the fusion lines were compared to the original 

diploid clones phenotypically.

The  stomatal  density  and  stomatal  size  were  analyzed  by  leaf  impressions  from 

abaxial and adaxial leaf surfaces that were taken near the middle vein and near the 

bases of the leaves. Impressions were taken on the fifth fully expanded leaf of five 

plants per line before starting the experiment using clear nail polish. The stomatal 

density was determined by counting the stomata on three randomly chosen sections 

(0.303 mm  x  0.303 mm)  of  every  preparation  using  a  microscope  (400  X 

magnification, Zeiss Axio Observer Z1, Zeiss, Oberkochen, Germany). Subsequently, 

the number of stomata per square millimeter was calculated.  For determining the 

stomatal size, the length of three guard cells was measured in each section (Fig. 2.5). 

The stomatal area index (SAI) was calculated as a mean of stomatal size of three 

stomata  of  each leaf  section  on abaxial  surface  and multiplied  with  the  stomatal 

density of this section (Ashton and Berlyn, 1994).

Figure 2.5: Microscopy image of a stomata to  illustrate the measurement of the stomatal 
length (measurements were taken of the inner part of the guard cell).

2.4.2 Height, stem biomass, relative height and stem biomass increment

The  height  of  all  plants  was  measured  for  control  and  treatment  plants  at  the 

beginning of all experiments (H_0). To determine the relative height in experiment 1 
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and  3,  all  control  and  treatment  plants  were  additionally  measured  (H_1).  In 

experiment 1 the plants were measured after culturing at 10 vol.-% soil moisture for 

seven days and in experiment 3 at the end of the 5 vol.-% period. The relative height 

increment was calculated by dividing the increment (H_1 - H_0) by the initial height 

(H_0). As the period until the target soil moisture levels were reached differed among 

the tested lines, the height increment was divided by the number of cultured days, i.e.  

for the lines 27-01, 27-09. 27-10, 27-11 and 27-12 as follows: 13, 54, 18, 22, 15 

(experiment 1) and for 18-03, 14-04, 14-07 following: 21, 29, 29 (experiment 3).

At the end of experiment 1, all plants were separated into stem and root segments and 

dried at 103 °C for five days for stem biomass analysis. Dry weight of the stems 

(DW_end)  was  measured  without  the  roots  and leaves  for  control  and  treatment 

plants. Relative stem increment was calculated as follows: First, a model between the 

final stem dry mass (DW_end) and the final height (H_end) was calculated using a 

logarithmic  function  (log(DW_end)  =  H_end  +  (H_end)²)  Then,  the  model  was 

applied to the initial height (H_0) estimating initial stem biomass (DW_0). Finally, 

the stem increment was calculated (DW_end – DW_0), divided by the initial stem 

biomass (DW_0) and then normalized to the number of days between the start of the 

experiment and the end of the 10 vol.-% period.

2.4.3 Total leaf area and leaf mass per area

For determining the total leaf area and the leaf mass per area all leaves of six control 

plants from each line were harvested, weighed (Sartorius Basic BA 210, Sartorius 

Weighing  Technology  GmbH,  Göttingen,  Germany)  and  scanned  with  a  standard 

scanner at the end of the experiment. Leaf area was calculated from the scans using 

the program Histo Version 1.0.1.2. (Datinf, Tübingen, Germany)
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2.4.4 Relative soil moisture, water consumption and leaf vitality

The relative soil moisture was measured daily for the treatment plants and once a 

week for control plants using a soil moisture sensor (TRIME PICO32; Imko GmbH, 

Ettlingen, Germany). For experiment 1 the plants were dried until the 10 vol.-% soil 

moisture  was  reached  and  kept  at  the  10 vol.-%-level  for  one  week.  To  enable 

uniform drying of the plants within one line the volumetric soil water content was 

measured daily. Two measurements were performed per each pot and the mean soil 

moisture per line was calculated for all plants per line. Plants, whose soil moisture 

dropped below the average level of their line were watered according to a standard 

curve to reach the mean volumetric soil moisture level. This procedure ensured that 

all plants of one line reached the 10 vol.-% soil moisture target level at the same time 

point. The 10 vol.-% periods for the different lines were staggered and first occurred 

in the diploid line at day six after starting the experiment and appeared last for fusion 

line 27-09 at day 47. The recorded water volumes were summed up per plant over the 

one-week period at the 10 vol.-% level.

For experiment 3 the water volume was determined using the same procedure as in 

experiment 1.The plants  were watered until  the  final  target  level  of  5 vol.-% and 

afterwards the irrigation was stopped. To determine the water consumption the water 

volumes that were applied until the 5 vol.-% target level was reached were used. A 

mean water consumption per plant was calculated as the number of irrigation days 

differed for the analyzed lines.

The wilting and the desiccation of the leaves were determined as indicators of plant 

vitality daily for treatment plants daily and weekly for control plants.  A leaf was 

regarded as wilted, when its blade was in a parallel position to the shoot, i.e. the angle 

between the shoot and the leaf blade was 0° - 10°. Leaves that showed an angle of 

more than 10° were considered as not wilted. Both parameters were classified into 

five categories (0 %, 25 %, 50 %, 75 %, 100 %) according to Table 2.3.

For experiment 2,  the day of total  leaf wilting and partly and total  drying of the 
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leaves  were determined as  the day after  the last  irrigation event  (DAI) when the 

thresholds 100 % leaf wilting and 25 % / 100 % leaf desiccation occurred.

Table 2.3: Classification of leaf vitality.

Scale
Leaf wilting / desiccation

Percentage of wilted / desiccated leaves [%]

0 0

1 25

2 50

3 75

4 100

2.4.5 Relative leaf water content and stomatal conductance

Relative leaf water content (RWC) was analyzed according to  Smart and Bingham 

(1974) on six plants of each line. Six leaves of the upper third of the shoot of six 

plants were used for analysis paying attention to harvest leaves of the same order for 

each line and harvest. In experiment 1, the leaves were harvested at the days 7, 19 

and 26 and in experiment 3 at the relative target soil moistures when 25, 18, 12 and 

5 vol.-% were reached and furthermore one week after the 5 vol.-% level. Leaves 

were  directly  weighed  (Sartorius  Basic  BA 210,  Sartorius  Weighing  Technology 

GmbH,  Göttingen,  Germany).  Material  was  harvested  at  midday  (12 h  –  13 h). 

Stomatal conductance was measured between 8.30 h and 11.30 h on the eighth fully 

expanded leaf of all treatment and control plants with a porometer (AP4, Delta-T 

Devices,  Cambridge,  UK) at  the respective soil  water contents,  i.e.  the 10 vol.-% 

level for experiment 1, and for experiment 3 the 25, 18, 12 and 5 vol.-% levels and 

additionally at the beginning of the experiment when the relative soil moisture was 

30 vol.-%.
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2.4 Investigated parameters

2.4.6 Biochemical analyses

For analysis of the carbohydrate concentration leaf samples were taken from the upper 

fourth  fully  expanded leaf  of  five  plants  of  the  control  and treatment  group.  For 

experiment 1, leaves were harvested at the end of the 10 vol.-% soil moisture period 

and for experiment 3 at the relative soil moistures of 25 , 18, 12 and 5 vol.-% and 

additionally  one  week  after  the  5 vol.-%  soil  moisture  target  level  was  reached. 

Sampling  was  conducted  during  the  morning  (10 h  to  12 h).  The  material  was 

immediately stored at -20 °C until further preparation. For total soluble carbohydrates 

the  protocol  of  Yemm and Willis  (1954) was  modified  as  follows:  Samples  were 

extracted  in  50 % ethanol,  incubated  with  anthrone  for  10 minutes  at  98 °C  and 

afterwards immediately cooled down in iced water. Absorbance was then measured at 

620 nm against a blank that included pure methanol instead of the methanol-extracted 

sample. Osmolality was analyzed at six control and six treatment plants per line using 

the seventh fully expanded leaf according to the protocol of Wild et al. (1996).

2.4.7 Survival rate

The survival rate was investigated in experiment 2. The water was withheld from the 

treatment  plants  during  the  whole  experiment.  Afte  the  experiment  the  treatment 

plants were irrigated daily and observed for six month. Plants that re-sprouted were 

considered  as  plants  that  survived.  The  survival  rate  per  line  was  calculated  as: 

Survival rate = number of plants that survived / number of treatment plants.

2.5 Statistical analyses

All data were analyzed using the statistical software R  (R Core Team, 2013). The 

parameters height, stem biomass, total leaf area, leaf mass per area, stomatal length 

and density and the stomatal area index were analyzed by an one-way analysis of 

variance (ANOVA). A post hoc test (TukeyHSD) was used for determining significant 

differences between the genotypes. The hypothesis H0 describing that no differences 
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2 Material and methods

between  the  genotypes  exist  was  rejected  if  p < 0.05.  For  the  survival  rate  the 

differences between the ploidy levels were analyzed using an exact F-Test. Two-way 

ANOVA with  independent  factors  genotype  and  treatment  was  conducted  to  test 

genotype, treatment and interaction effects on carbohydrate concentration, osmolality, 

relative height increment and relative stem increment. For stomatal conductance the 

factor light was tested in addition. Here, also a TukeyHSD test was used to determine 

differences between the lines and treatments. The dataset of control and treatment 

plants were analyzed together when shown in one graph otherwise they were analyzed 

separately. Relative soil moisture and leaf vitality were analyzed using a Wilcoxon 

signed-rank test. A pairwise comparison was conducted for the genotypes. Differences 

between the genotypes for all applied tests were considered to be significant when 

p < 0.05. For the water consumption and the day when total leaf wilting and partly / 

total drying of the leaves occurred the linear models according to Equation 3 and 4 

were tested.

y=β0+x1 β1+ε Equation 3

y=β0+x1 β1+x2 β2+ε Equation 4

where x1 indicates the genotype and x2 the stem height. When significant differences 

between the models were found the one with the lowest residual sums of squares were 

applied. For testing if a model with enhanced parameters is equal to a model with 

reduced parameters (H0) the test statistic was calculated by Equation 5.

F=

1
p−k

(SSreduced−SS full)

1
n−p−1

SS full

Equation 5

with p number of parameter of the full model, k numbers of parameters of the reduced 

model and n number of observations. Equation 4 fitted the data better than Equation 3. 

Differences among the genotypes were detected using Equation 4 by estimating the 
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2.5 Statistical analyses

shift of the intercepts from a reference. Afterwards, this shift was tested for being 

equal to zero (H0) using the exact F-Test. H0 was rejected if p < 0.05. Each genotype 

served  as  reference  using  the  function  “lm”.  Thereby,  all  treatments  were  tested 

against each other.t
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3 Results

3 Results

3.1 Morphological and drought stress characterization of the diploid 

original line and tetraploid fusion lines of hybrid aspen

3.1.1 Morphological characterization of hybrid aspen lines

Four hybrid aspen lines that were obtained after three protoplast fusion experiments 

between  P. tremula x  P. tremuloides and  P. trichocarpa x  P. deltoides and  one 

protoplast fusion experiment between  P. tremula x  P. tremuloides and  P. nigra were 

investigated in comparison to the original diploid clone of P. tremula x P. tremuloides.

In the tested putative heterofusion lines no DNA from  P. nigra or  P. trichocarpa x 

P. deltoides was detected by nSSR analysis using 11 nSSR markers that were located 

on nine linkage groups (Tab. 3.1). This result suggested that only DNA of P. tremula x 

P. tremuloides was present. To get further insight into the genetic composition of the 

hybrid  aspen lines  flow cytometry  was conducted.  According to  this  analysis,  the 

hybrid aspen lines showed a tetraploid set of chromosomes (Tab. 3.1). These analyses, 

therefore, support that homofusion lines of hybrid aspen (P. tremula x P. tremuloides) 

were obtained, but no heterofusion lines with other poplar genotypes. This finding 

was  also  supported  by  the  leaf  morphology  of  the  fusion  lines  that  exhibited  a 

P. tremula x  P. tremuloides phenotype that could be assigned to the original hybrid 

aspen (Fig. 3.1). In the following text, the putative hybrid aspen clones that originated 

from the protoplast fusion experiments are therefore named fusion lines. The original 

diploid P. tremula x P. tremuloides clone is referred to as the diploid line.

30



3.1 Morphological and drought stress characterization of the diploid original line and tetraploid fusion
lines of hybrid aspen

Table  3.1: Genetic  characterization  of  the  diploid  original  plants  (P3:  P. tremula x 
P. tremuloides ('Münden 2'),  P7:  P.nigra,  P9:  P. trichocarpa x  P. deltoides (B19))  and 
tetraploid hybrid aspen lines. In vitro leaves of four-week-old plantlets were used for ploidy 
and nSSR analyses.  Ploidy analyses were not  performed for P7 and P9.  For homocygote  
alleles only one fragment length is listed, if  heterocygosity occurred all  detected fragment 
lengths are shown (0: microsatellite does not exist in this organism, -1: failure).

27-01 P7 P9 27-09 27-10 27-11 27-12

Plant material
Original 

line P3

Original 

line P7

Original 

line P9

Fusion line 

P3 x P9

Fusion line 

P3 x P9

Fusion line 

P3 x P9

Fusion line 

P3 x P7

Ploidy level 2n - - 4n 4n 4n 4n

nSSR marker

GCPM2768 189 181 181,195 189 189 189 189

ORPM0023 167,177 173 189,199 167,177 167,177 167,177 167,177

ORPM1031 -1 -1 132 116,132 116,132 116,132 116,132

ORPM1249 95 103 105 95 95 95 95

ORPM1261 134,138 122 110,132 134, 138 134, 138 134,138 134, 138

PMGC0433 182,190 196 208,216 182,190 182,190 182,190 182,190

PMGC2163 191,203 223 187,205 191,203 191,203 191,203 191,203

WPMS05 272,302 280,300 278 272,302 272,302 272,302 272,302

WPMS09 0 257,263 233,283 0 0 0 0

WPMS12 159,165 161 153,167 159,165 159,165 159,165 159,165

WPMS14 208,229 -1 238253 208,229 208,229 208,229 208,229

Figure  3.1: Leaf  morphology  of  in  vitro leaves  of  the  diploid  original  clones  (A) P3: 
P. tremula x P. tremuloides ('Münden 2'), (B) P7: P. nigra, (C) P9: P. trichocarpa x P. deltoides 
(B19) and the fusion lines (D) 27-09, (E) 27-10, (F) 27-11, (G) 27-12. The white scale bar at 
the bottom of the pictures measures 1 cm in length. Plantlets were subcultured for four weeks.
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3 Results

Table 3.2: Morphological characterization of diploid and tetraploid hybrid aspen lines under 
optimal water supply. Stem height was measured at the beginning of the experiment and after  
nine month in soil, other parameters were measured at the end of the experiment. Data are  
means (± SE, n = 10 plants (stem height and stem biomass), n = 6 plants (total leaf area and 
leaf mass per area), superscripted letters indicate differences between the lines (Tukey HSD 
test, p < 0.05), P3: P. tremula x P. tremuloides, P7: P.nigra, P9: P. trichocarpa x P. deltoides).

Line
Fusion 
partner

Leaf 
morphology

Stem height
[m * 10-2]

Stem biomass
[g plant-1]

Total leaf area
[m² * 10-2plant-1]

Leaf mass per area
[g m-2 * 10]

27-01 - P3 105.1 ± 17.6 c 17.5 ± 8.3 b 30.4 ± 7.7 bc 1.38 ± 0.15 a

27-09 P3 x P9 P3 39.6 ± 17.3 a 1.9 ± 1.2 a 6.5 ± 1.7 a 2.26 ± 1.98 c

27-10 P3 x P9 P3 80.3 ± 16.7b 16.3 ± 10.0 b 23.9 ± 12.7 bc 1.59 ± 0.23 b

27-11 P3 x P9 P3 49.8± 11.8 a 4.9 ± 3.5 a 15.4 ± 7.8 ab 1.53 ± 0.26 ab

27-12 P3 x P7 P3 92.8 ± 18.4bc 22.1 ± 7.3 b 34.2 ± 6.0 c 1.69 ± 0.21 b

For basic characterization of the fusion lines height at the beginning of the experiment 

after  nine  month  of  soil  culture  and total  leaf  area,  leaf  mass  per  area  and stem 

biomass production at the end of the experiment were compared to the diploid line 

under optimal water supply (Tab. 3.2). Plants heights were lower for the fusion lines 

27-09, 27-10 and 27-11 than for the diploid line. Stem biomass of the fusion lines 

27-09 and 27-11 was reduced. Furthermore, for the fusion line 27-09 the total leaf 

area was decreased compared to the diploid line. The leaf mass per area was increased 

in the fusion lines except for 27-11 suggesting enhanced leaf thickness for the fusion 

lines.

Microscopy of the leaf impressions that were taken of the abaxial leaf surface before 

starting the experiment revealed that the stomatal lengths were higher but the stomatal 

densities  were  reduced  for  all  fusion  lines  in  comparison  to  the  diploid  line 

(Fig. 3.2 A, B, D).  Among the fusion lines stomatal lengths and densities differed. 

Fusion line 27-11, which showed the lowest stomatal density on lower leaf surface, 

exhibited stomata on the leaf adaxial surface. But the stomatal density on the adaxial 

leaf surface was only 10 stomata mm-2 compared to 75 stomata mm-2 on the abaxial 

leaf side, thus was significantly lower. None of the other lines, including the diploid 

line,  developed stomata  on the  adaxial  leaf  surface.  The stomatal  area  index was 

reduced for the fusion lines 27-11 and 27-12 compared to the diploid line (Fig. 3.2 C).
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3.1 Morphological and drought stress characterization of the diploid original line and tetraploid fusion
lines of hybrid aspen

Figure 3.2: (A) Stomatal length (n = 45 stomata per line),  (B) stomatal density (n = 15 leaf 
sections per line and leaf side, grey box: adaxial side (ad), white boxes: abaxial site (ab)) and 
(C)  stomatal  area  index (SAI,  mean stomatal  length of  three stomata  of  one leaf  section 
multiplied by the stomatal density of this leaf section, n = 15 leaf sections per line on abaxial 
leaf surface), (D) microscopy images of the stomata (left: diploid line 27-01, right: tetraploid 
fusion  line  27-11,  400 x  magnification.  Boxplot  definition:  Outer  transversal  bars  of  the 
boxplots include 95 % of the data, 50 % of the data are defined by the boxes themselves, the 
median is shown by the highlighted line within the box. Outliers are represented by open 
circles. Different letters at the top of the boxes indicate significant differences between the  
lines (Tukey HSD test, p < 0.05), adaxial leaf side is specified by capitals, abaxial site by 
lowercase letters).
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3 Results

3.1.2 Drought stress characterization of hybrid aspen lines

Interactions between the genotype and the drought treatment occurred in the relative 

height and stem increment only (Tab. 3.3). All other parameters showed no interaction 

effects. The parameter light, that was additionally tested for interaction on stomatal 

conductance had no effect on the target variable (Tab. 3.3).

Table 3.3: Significance of the parameters genotype (G), treatment (T) and light (L) and their 
interaction effects on the target variables stomatal conductance, carbohydrate concentration, 
relative  height  and  stem  increment  (p <  0.05:  *,  p <  0.01:  **,  p <  0.001:  ***,  ns:  not 
significant, - : not analyzed).

Parameter G T L G:T G:L L:T

Stomatal 
conductance

ns ** ns ns ns ns

Carbohydrate 
concentration

*** *** - ns - -

Relative height 
increment

*** *** - *** - -

Relative stem 
increment

*** *** - * - -

Relative soil moisture

After stopping irrigation the mean relative soil moisture of the diploid line decreased 

significantly lower to a value of 0.5 vol.-% whereas the mean soil moisture of the 

fusion lines did not drop below 2 vol.-% (Fig. 3.3 F). Instead, at the beginning of the 

experiment the relative soil moisture of the diploid line was about 30 vol.-% and thus 

much lower than that of all fusion lines that started at a relative soil moisture of about 

40 vol.-% (Fig. 3.3 A - F). 
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3.1 Morphological and drought stress characterization of the diploid original line and tetraploid fusion
lines of hybrid aspen

Figure 3.3: Time curves of the relative soil moistures of (A) 27-01, (B) 27-09, (C) 27-10, (D) 
27-11, (E) 27-12, (F) plot of the means of all lines (A – E: plot of the means ± SE, F: means; 
n = 10 plants, data of the respective plot are in bolder colors, others are visualized in light  
colors,  black  /  grey:  diploid  line,  blue:  fusion  lines.  Different  letters  indicate  significant  
differences between the lines: 27-01a, 27-09e, 27-10c, 27-11d, 27-12b  (Wilcoxon signed-rank 
test, p < 0.05); plot of the means: n = 10 plants, black: 27-01, light blue: 27-09, blue: 27-10, 
cyan: 27-11, dark blue: 27-12).

Water consumption

The plants were exposed to drought by gradually drying until the soil moisture levels 

of 10 vol.-% were reached (Fig. 3.4 A). Each line attained the target soil moisture at a 

different time point and was kept at this level for a period of seven days (Fig. 3.4 A). 

Subsequently,  the  lines  were  not  watered  anymore.  The  water  consumption  was 

determined  during  the  seven-day  period  at  the 10 vol.-% soil  moisture  level.  The 

diploid consumed more water than the fusion lines (Fig. 3.4 B). This was not only 

observed for fusion lines that were smaller than the diploid line, but was also detected 

for the fusion lines 27-10 and 27-12 when height was respected (Tab. 3.2, Fig. 3.4 B, 

Fig. 3.5).
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3 Results

Figure 3.4: (A), Scheme of the drought periods,  (B) cumulative water volumes applied to 
each line,  (C) vapor pressure deficit (vpd) over the 10 vol.-% relative soil moisture period 
(grey bar: drying period until the 10 vol.-% soil moisture level was reached for all plants of 
one line,  black bar:  10 vol.-% soil  moisture period;  27-01:  circles,  27-10:  squares,  27-11: 
crosses, 27-12: crossed squares. Boxplots are defined as explained in Fig. 1.2, different letters 
at the top of the boxes indicate significant differences between the lines (TukeyHSD test,  
p < 0.05)).
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3.1 Morphological and drought stress characterization of the diploid original line and tetraploid fusion
lines of hybrid aspen

A further factor that may influence the water consumption is a variation in the vpd. 

Although the periods when the plants experienced 10 vol.-% soil moisture occurred at 

different  time  points,  vpd  levels  did  not  differ  except  for  the  fusion  line  27-09 

(Fig. 3.4 C).  Here,  the vpd was lower compared to  all  other lines.  Relative to the 

height this line consumed as much water as the diploid line and even more than the 

fusion  lines  27-10  and  27-12  (Fig. 3.5)  that  experienced  higher  vpd.  Therefore, 

variation  in  vpd among the  lines  was  not  the  reason for  differences  in  the  water 

consumption. The linear regression analysis showed that the fusion lines 27-10 and 

27-12 consumed significantly less water with regard to height than the diploid line 

(Fig. 3.5).

Figure 3.5: Water consumption per plant for seven days at the 10 vol.-% soil moisture level 
dependent  on  their  height  (27-01:  circles,  27-10:  squares,  27-11:  crosses,  27-12:  crossed 
squares, n = 10 plants, data and the regression line of the respective plot are in black, others 
are visualized in grey; groups with different letters indicate significant differences between  
the lines (exact F-Test, p < 0.05): 27-01a, 27-09a, 27-10b, 27-11ab, 27-12b).
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3 Results

Leaf vitality

Leaf  wilting  and  desiccation  were  determined  as  indicators  for  plant  vitality 

(Fig. 3.6 A, B). The wilting process of the diploid plants occurred more rapidly with a 

steeper increment than in the fusion lines. Average leaf wilting of about 85 % already 

appeared at the third day after the final irrigation of the diploid line. Similarly strong 

wilting occurred in the fusion line 27-12 at day nine after the last watering, whereas 

this threshold was not observed for the fusion lines 27-10 and 27-11 during the whole 

experiment. Instead, desiccation of leaves was first visible in two fusion lines. The 

lines 27-10 and 27-12 showed a proportional leaf wilting of about 25 % and 50 %, 

respectively,  already  at  the  end  of  the  10 vol.-% soil  moisture  phase.  Early  leaf 

desiccation  might  have  had  an  influence  on  leaf  wilting  because  leaf  desiccation 

reduces the transpiration surface.

Figure 3.6: Time course of (A) leaf wilting, (B) desiccation of leaves (data are normalized to 
the last irrigation event and are means  ± SE, n = 10 plants. 27-01: circles, 27-10: squares, 
27-11:  crosses,  27-12:  crossed  squares.  Different  letters  indicate  significant  differences 
between the lines: wilting: 27-01a, 27-10c, 27-11d, 27-12b, desiccation: 27-01a, 27-10a, 27-11c, 
27-12b (Wilcoxon signed-rank test, p < 0.05)).

Maximum desiccation of 100 % was reached for the diploid and the fusion line 27-12 

twenty days after last irrigation whereas this event did not occur for the fusion lines 

27-10 and 27-11.  This analysis  could not  be conducted for the fusion line 27-09, 
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3.1 Morphological and drought stress characterization of the diploid original line and tetraploid fusion
lines of hybrid aspen

which was the smallest  line with the lowest leaf  area (Tab. 3.2) and  consequently 

consumed  little  water.  Therefore,  this  line  reached  the  target  date  for  stopping 

irrigation (i.e. after seven days at 10 vol.-% soil moisture) only two days before the 

end of the whole experimental time period, when leaves of other lines were already 

wilted.

Stomatal conductance and carbohydrate concentrations

Under  well-watered  conditions,  no differences  were observed among the  stomatal 

conductance of the diploid line and the fusion lines (Fig. 3.7 A). 

Figure  3.7: Stomatal  conductance  (A) watered  plants,  (B) drought-exposed  plants  and 
(C) carbohydrate  concentration  at  the  end  of  the  10 vol.-% soil  moisture  level  (stomatal 
conductance:  n =  10 plants,  carbohydrate  concentration:  n =  6 plants,  light  grey:  control 
plants,  dark  grey:  drought-exposed  plants,  boxplots  are  defined  as  explained  in  Fig.  3.2, 
different  letters  at  the  top  of  the  boxes  indicate  significant  differences  between the lines 
(TukeyHSD test, p < 0.05), adaxial leaf side is specified by capitals, abaxial site by lowercase 
letters).
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All  tested lines  responded  to  dry  conditions  with  a  reduction  in  the  stomatal 

conductance (Fig. 3.7 A, B) whereas this did not differ among the drought-exposed 

lines  (Fig. 3.7 B).  Here,  stomatal  conductance  was  not  correlated  with  stomatal 

density (Fig. 3.2 B, Fig.3.7 A, B). All fusion lines increased their foliar carbohydrate 

concentrations in response to drought (Fig. 3.7 C). In the diploid line, the increase was 

not  significant  (Fig. 3.7 C).  Overall,  the  carbohydrate  concentrations  of  the  fusion 

lines were similar to that of the diploid line (Fig. 3.7 C).

Biomass production

Among the fusion lines the relative height increment was reduced under drought in 

the lines 27-10, 27-11 and 27-12, but not in the line 27-09. This line probably suffered 

only  from mild  drought  because this  fusion  line  was smaller  than  the  other  lines 

(Fig. 3.8 A). Instead, the diploid line experienced severe drought stress but showed no 

reduction in relative height increment (Fig. 3.8 A). 

Figure 3.8: (A) Relative height increment (data are normalized to the number of cultured 
(≡ irrigated) days), (B) Relative stem increment (stem without the leaves, data are normalized 
to the number of irrigated days; watered plants: light grey, drought-exposed plants: dark grey, 
n = 10 plants. Boxplots are defined as explained in Fig. 3.2, different letters at the top of the  
boxes indicate significant differences between the lines (TukeyHSD test, p < 0.05)).
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3.1 Morphological and drought stress characterization of the diploid original line and tetraploid fusion
lines of hybrid aspen

Under optimally watered  conditions  the relative height  growth of  the  fusion  lines 

27-10, 27-11 and 27-12 was equivalent to that of the diploid line, while that of the 

fusion line 27-09 was significantly lower (Fig. 3.8 A).

Dry matter of the stem is an important parameter for biomass production in short 

rotation coppice. The shoot dry matter was analyzed without the leaves. The relative 

stem increment was not decreased in the fusion lines but enhanced for the fusion line 

27-12 compared to the diploid line under optimally watered conditions (Fig. 3.8 B). 

Under the drought treatment, relative shoot increment was equivalent to the diploid 

line in  all  fusion lines  except  for  the fusion  line 27-11 that  showed an increased 

relative shoot increment (Fig. 3.8 B).
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3 Results

3.2 Drought  performance  of  20  hybrid  aspen  fusion  lines  and 

detailed drought responses of selected tetraploid hybrid aspen 

lines

3.2.1 Screening of hybrid aspen lines of different ploidy level for drought 

performance and morphological traits

Morphological characterization of 20 hybrid aspen fusion lines

Twenty protoplast fusion lines  were tested  including fourteen fusion lines that were 

obtained by protoplast  fusion experiments  between  P. tremula x P. tremuloides and 

P. nigra and six fusion lines between  P. tremula x P. tremuloides and  P. x canescens 

(Tab. 4.1).

For the basic characterization of the fusion lines the leaf morphology was analyzed 

phenotypically  and  for  genetic  characterization  flow  cytometry  and  microsatellite 

analysis using 11 nSSR primers were conducted. The leaf morphology of all fusion 

lines showed a P. tremula x P. tremuloides phenotype and was assigned to the original 

hybrid aspen (Tab. 4.1).  According to the nSSR markers  only DNA of  the hybrid 

aspen and no DNA of the other fusion partners was detected (Tab. 4.1). Four fusion 

lines  (14-08,  18-04,  18-07,  18-11)  of  20  revealed  a  diploid  set  of  chromosomes 

according to the flow cytometry analysis (Tab. 4.1). Two of these fusion lines were 

out  of  protoplast  fusion  experiments  between  P. x canescens and  P. tremula x 

P. tremuloides and two of a fusion experiment  between  P. tremula x P. tremuloides 

and P. nigra (Tab. 4.1). All other fusion lines were tetraploid (Tab. 4.1). As the diploid 

"fusion"  lines  probably  did  not  experience  protoplast  fusion  they  are  named 

diploid “fusion”  lines  in  the  following  text.  The  protoplast  fusion  lines  with  a 

tetraploid  set  of  chromosomes  are  called  tetraploid  fusion  lines  and  the  original 

diploid clone 18-03 is referred to as diploid original line. In the following graphics the 

diploid original and the diploid “fusion” lines are visualized in grey colors and the 

tetraploid fusion lines in blue.
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Table 4.1: Morphological and genetic characterization of diploid “fusion” and tetraploid fusion lines of hybrid aspen (for all analyses in vitro material was used, 
plants were subcultured for four weeks, when leaf morphology was determined; diploid original line: 18-03, diploid “fusion” lines: 14-08, 18-04, 18-07, 18-11, other 
fusion lines are tetraploid, “-”: ploidy analysis not performed.  For homocygote alleles only one fragment length is listed, if heterocygosity occurred all detected 
fragment  lengths  are  shown (0: microsatellite  does  not  exist  in  this  organism,  -1:  failure).  P1:  P.  x canescens (INRA clone No.  717 1-B4),  P3:  P. tremula x 
P. tremuloides ('Münden2'), P7: P.nigra, P9: P. trichocarpa x P. deltoides (B19)). 

Line Fusion partners
Leaf 

morphology
Ploidy 
level

nSSR marker

GCPM2768 ORPM0023 ORPM1031 ORPM1249 ORPM1261 PMGC0433 PMGC2163 WPMS05 WPMS09 WPMS12 WPMS14

18-03 Original line P3 P3 2n 189 167, 177 -1 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

P7 Original line P7 P7 - 181 173 -1 103 122 196 223 280, 300 257, 263 161 -1

P9 Original line P9 P9 - 181,195 189, 199 132 105 110,1 32 208, 216 187, 205 278 233, 283 153, 167 238, 253

14-01 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-02 P3 x P7 P3 4n 189 167, 177 -1 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-03 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-04 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-05 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-06 P3 x P7 P3 4n 189 167, 177 -1 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-07 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-08 P1 x P3 P3 2n 189 167, 177 116, 132 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-09 P1 x P3 P3 4n 189 167, 177 116, 132 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

14-10 P1 x P3 P3 4n 189 167, 177 -1 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-04 P3 x P7 P3 2n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-05 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-06 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-07 P3 x P7 P3 2n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-08 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-09 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-10 P3 x P7 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-11 P1 x P3 P3 2n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-12 P1 x P3 P3 4n 189 167, 177 116, 130 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229

18-13 P1 x P3 P3 4n 189 167, 177 116, 132 95 134, 138 182, 190 191, 203 272, 302 0 159, 165 208, 229
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The height was measured after the plants were cultivated for 12 weeks in soil. The 

mean height was calculated for the diploid “fusion” lines and the tetraploid fusion 

lines (Fig. 4.1). The tetraploid fusion lines exhibited reduced height growth (43 cm) 

while the diploid “fusion” lines showed increased height (58 cm) compared to the 

diploid original line (49 cm) (Fig. 4.1). But significant height reduction in comparison 

to  the diploid original  line 18-03 was only detected in  two tetraploid fusion lines 

(18-10,  18-13) (Fig. 4.1).  Instead,  in  the diploid “fusion” lines height  growth was 

increased compared to the diploid original clone 18-03 but significant higher only in 

the fusion line 14-08 (Fig. 4.1).

Figure 4.1: Height and overall mean height for the diploid and tetraploid fusion lines (plants 
were measured at the beginning of the experiment after 12 weeks in soil; diploid lines: grey  
boxes (18-03: diploid original line, 14-08, 18-04, 18-07, 18-11: diploid “fusion” lines), blue 
boxes: tetraploid fusion lines, n = 20 plants; dotted lines: median of the lines (black: diploid, 
blue: tetraploid, n = 20 plants). Boxplots are defined as explained in Fig. 3.2. Different letters 
at  the  top  of  the  boxes  indicate  significant  differences  between  the  lines  (Tukey-Test, 
p < 0.05)).
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3.2 Drought performance of 20 hybrid aspen fusion lines and detailed drought responses of selected
tetraploid hybrid aspen lines

Drought performance of 20 hybrid aspen fusion lines

Survival rate

After the water had been withheld for 35 days the survival rate was investigated as 

plants that sprouted after re-irrigation. The survival rate of the tetraploid fusion lines 

was higher compared to the diploid lines (Fig. 4.2).

Figure 4.2:  Survival rate after re-irrigation when water was withheld for 35 days (observed 
after  six month,  18-03:  diploid original  line,  14-08,  18-04,  18-07,  18-11:  diploid "fusion" 
lines; others are tetraploid fusion lines, n = 12 plants except for the lines 18-05: 8, 18-08: 5, 
18-09: 9, 18-12: 8 plants. Different letters indicate significant differences between the ploidy 
levels:  diploid original  linea,  diploid "fusion" linesa,  tetraploid fusion linesb (exact  F-Test, 
p < 0.05)).

Relative leaf water content (RWC)

For analysis of the drought performance the leaf RWC was measured at the days 7, 19 

and 26. Here, a decrease was detected for the diploid "fusion" lines and the diploid 

original line at DAI (day after irrigation) 19 (Fig. 4.3 A, B). At this time point only 

one tetraploid fusion line (14-09) showed a lower RWC than the diploid original line 
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(Fig. 4.3 A).  At  day  26  without  irrigation  the  RWC of  the  tetraploid  fusion  lines 

14-01, 14-07, 14-09 and 18-06 was more decreased than that of the diploid original 

line 18-03 (Fig. 4.3 A, B).  The remaining tetraploid fusion lines in contrast  to the 

diploid original line, showed a higher RWC (Fig. 4.3 A, B). All diploid "fusion" lines 

had a decreased RWC in comparison to the diploid original line at DAI 26 (Fig. 4.3 A, 

B). Overall, the lower RWCs of the diploid lines indicate a higher drought stress for 

the diploid plants compared to the tetraploid fusion lines.

Figure 4.3: Relative water content at day 7, 19 and 26 after irrigation (A) line numbers 14, 
(B) line numbers 18 (black: diploid original line: 18-03, gray: diploid "fusion" lines: 14-08, 
18-04, 18-07, 18-11; blue: tetraploid fusion lines; DAI = day after irrigation; to obtain a better 
overview of the data they were separated into two graphs according to their line identification 
numbers).
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3.2 Drought performance of 20 hybrid aspen fusion lines and detailed drought responses of selected
tetraploid hybrid aspen lines

Leaf wilting with regard to height

The  DAI  when  total  leaf  wilting  was  observed  highly  correlated  with  the  plants' 

height  (R² = 0.69,  Fig. 4.4).  Therefore,  a  linear  regression  model  was  applied  to 

analyze the mean DAI when 100 % of the leaves were wilted with respect to height 

and compared to the diploid original line (Fig. 4.5). 

Figure 4.4:  Scatterplot of the height at the beginning of the experiment and the DAI (day 
after last irrigation) when 100 % leaf wilting occurred (n = 221 plants, R ²= 0.69).

Neither the diploid nor the tetraploid fusion lines wilted earlier with regard to height 

than the diploid original line (Fig. 4.5). For the tetraploid fusion lines only and not for 

the diploid "fusion" lines leaf wilting was significantly delayed (Fig. 4.5). Here, the 

tetraploid fusion lines 14-03, 14-04, 14-05, 14-06, 14-07, 14-10, 18-05, 18-08, 18-10, 

18-12 and 18-13 wilted later  considering the height  than  the  diploid original  line 

(Fig. 4.5). As the diploid "fusion" lines showed no delay of the DAI when total leaf 

wilting appeared, this might be influenced by the tetraploidy. The tetraploid fusion 

lines 14-03, 14-04 and 14-07 showed both comparable height growth to the diploid 

original line and a delay in total leaf wilting with regard to the diploid original line 

(Fig. 4.1, Fig. 4.5).
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Figure 4.5: Linear regression model of the day after irrigation (DAI) when total leaf wilting 
occurred and the height of the plants (lines were drawn in the data range only where “height”  
and “DAI” data were available; the number of the respective hybrid aspen line is written at  
the top of each sub-plot,  each line is plotted together with the diploid original line 18-03 
(black line) as reference, diploid "fusion" lines: 14-08, 18-04, 18-07, 18-11 (grey lines); other 
lines:  tetraploid  fusion  lines  (blue  lines);  lines  that  differed  significantly  (exact  F-Test, 
p < 0.05) from 18-03 are visualized in lines, others are in dashed lines).
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3.2 Drought performance of 20 hybrid aspen fusion lines and detailed drought responses of selected
tetraploid hybrid aspen lines

Leaf vitality loss

The leaf vitality loss was analyzed as the DAI when 100 % of the leaves were wilted 

as  well  as  25 %  and  100 % of  the  leaves  were  desiccated.  The  mean  DAI  was 

analyzed over all plants per line. These analyses revealed that some lines first showed 

a leaf wilting of 100 % and afterwards the foliage began to dry (Fig. 4.6). 

Figure  4.6: DAI  (day  after  irrigation)  when  100 %  leaf  wilting  (green  dot),  25 %  leaf 
desiccation (orange dot) and 100 % leaf desiccation (red cross) occurred (diploid original line: 
18-03, diploid "fusion" lines: 14-08, 18-04, 18-07, 18-11; other lines are tetraploid fusion 
lines; dotted line: lines above this line first reached the 25 % leaf desiccation and then the 
100 % leaf wilting point, lines below: first the 100 % leaf wilting point and afterwards the 
25 % leaf desiccation occurred).

For example, in the diploid original line 18-03 and in all diploid "fusion" lines the 

100 % leaf wilting occurred before the 25 % leaf desiccation (Fig 4.6). Also for the 

tetraploid fusion lines 14-02, 14-07, 14-09, 18-06 and 18-09 total leaf wilting was 

investigated before partly drying of the leaves (Fig. 4.6).  These lines  and also the 

diploid "fusion" lines showed no significant delay in the DAI when total leaf wilting 

occurred with respect to height except for 14-07 (Fig 4.5) and all showed low survival 

rates (Fig. 4.2). The tetraploid fusion lines 14-01, 14-03, 14-04, 14-05, 14-06, 14-10, 
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18-05,  18-08,  18-10,  18-12 and  18-13  first  dried  only  a  part  of  their  leaves  and 

afterwards  the  100 %  leaf  wilting  occurred  (Fig 4.6).  These  lines  showed  high 

survival rates (Fig. 4.2) and a delayed total leaf wilting with respect to height except 

for the tetraploid fusion line 14-01 (Fig. 4.5). These results suggest that drying of a 

part of the foliage delays total leaf wilting and enhances the survival rate.

The observed leaf vitality data were underpinned by the analyses of the leaf RWC that 

were measured at the days 7, 19 and 26. The correlation analysis of the leaf vitality 

data and the RWC data was conducted as follows. First, the mean DAI when 100 % of 

the leaves were wilted as well as 25 % and 100 % were desiccated were calculated for 

each  line.  Then,  the  correlation  between  the  DAI  and  the  respective  RWC were 

determined for the days  7,  19 and 26 using pearson's  correlation.  Afterwards,  the 

coefficients of determination were calculated (Tab. 4.2). The DAI for the analyzed 

leaf vitality parameters showed high coefficients of determinations values with the 

leaf RWC values at  the days 19 and 26 and not at  day 7 (Tab 4.2). These results 

strengthen the leaf vitality analysis.

Table 4.2: Coefficient  of  determination between the DAI (day after  irrigation) when leaf 
vitality  loss  occurred  (100 % leaf  wilting and 25 % and 100 % leaf  desiccation)  and the 
relative  leaf  water  content  (RWC) at  the  days  7,  19 and 26  (means of  leaf  RWC at  the  
respective day and means of the day when the respective event occurred were calculated per 
line, then the data were calculated for pearson´s correlation and subsequently the data were  
squared).

Leaf vitality RWC (d7) RWC (d19) RWC (d26)

DAI 100 % leaf wilting 0.008 0.819 0.672

DAI 25 % of the leaves 
desiccated

0.012 0.817 0.687

DAI 100 % of the leaves 
desiccated

0.002 0.729 0.694
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3.2 Drought performance of 20 hybrid aspen fusion lines and detailed drought responses of selected
tetraploid hybrid aspen lines

3.2.2 Detailed drought responses of selected tetraploid hybrid aspen lines

The tetraploid fusion lines 14-04 and 14-07 showed a significant delay of the DAI 

when total leaf wilting occurred with respect to height in the previous greenhouse 

experiment (Fig. 4.5). Furthermore, they exhibited comparable height growth to the 

diploid  original  line  (Fig. 4.1,  Fig. 4.5). Therefore,  these  lines  were  selected  for 

detailed characterization of their drought response and analyzed in comparison to the 

diploid original line 18-03. The plants were gradually dried to the target soil moistures 

of 25, 18, 12 and 5 vol.-% and following the irrigation was terminated. The stomatal 

conductance, the relative leaf water content and the carbohydrate concentrations were 

investigated at the target soil moisture levels to gain insight into early physiological 

drought responses.

Morphological characterization of selected tetraploid hybrid aspen fusion lines

Height

For a basic characterization the height of the plants was measured after the plants 

were grown 22 weeks in soil. The well-watered control plants and the plants selected 

for the drought treatment did not differ in height growth at the start of the experiment 

(Fig. 5.1). Furthermore, the different tested lines did not differ in their height before 

the start of the experiment (Fig. 5.1).
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Figure  5.1: Initial  height  before  starting  the  experiment  after  22  weeks  in  soil  (diploid 
original line: 18-03, tetraploid fusion lines: 14-04 and 14-07:, light grey: plants for the control 
group,  dark grey:  plants for the drought treatment;  n = 20 plants.  Boxplots are defined as 
explained in Fig. 3.2. Different letters at the top of the boxes indicate significant differences  
between the lines (Tukey-Test, p < 0.05)).

Stomata morphology

The  stomatal  length  and  density  were  measured  before  drought  was  applied.  No 

stomatas were detected on the adaxial side neither in the diploid original line nor in 

the  tetraploid  fusion lines  (Fig. 5.2 B).  Increased  stomatal  length  and  decreased 

stomatal density were detected for the tetraploid fusion lines in comparison to the 

diploid original line 18-03 (Fig. 5.2 A, B). The tetraploid fusion line 14-07 showed an 

increased  stomatal  length  compared  to  the  fusion  line  14-04  while  the  stomatal 

density was decreased but not significantly (Fig. 5.2 A). Larger stomata and lower 

stomatal density has also been observed in other tetraploid hybrid aspen (Hennig et al, 

2015). The stomatal area index was not significantly altered in the tetraploid fusion 

lines compared to the diploid original line (Fig. 5.2 C).
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3.2 Drought performance of 20 hybrid aspen fusion lines and detailed drought responses of selected
tetraploid hybrid aspen lines

Figure  5.2:  (A) Stomatal  length  on  the  abaxial  leaf  side  (n =  45 stomata  per  line),  (B) 
stomatal density on adaxial and abaxial leaf side (n = 15 leaf sections per line and leaf side) 
and (C) stomatal area index (SAI, mean stomatal length of three stomata of one leaf section 
multiplied by the stomatal density of this leaf section, n = 15 leaf sections per line on abaxial 
leaf surface, ad: adaxial leaf site, ab: abaxial leaf side, diploid original line: 18-03, other lines 
are tetraploid fusion lines). Boxplot definition: Boxes are defined as explained in Fig. 3.2. 
Different  letters  at  the  top of the boxes indicate significant  differences  between the lines 
(Tukey HSD test, p < 0.05), adaxial leaf side is specified by capitals, abaxial site by lowercase 
letters).
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Drought responses of selected tetraploid hybrid aspen fusion lines

Interaction  effects  between the  genotype  and the  treatment  were observed for  the 

parameters  relative  height  increment  and stomatal  conductance  in  this  experiment 

(Tab. 5.1). No additional interactions were investigated.

Table 5.1:  Significance of the parameters genotype (G), treatment (T), light (L) and their 
interaction effects on the target variables stomatal conductance, carbohydrate concentration, 
relative  height  and  stem  increment  (p <  0.05:  *,  p <  0.01:  **,  p <  0.001:  ***,  ns:  not 
significant, - : not analyzed).

Parameter G T L G:T G:L L:T

Relative leaf water 
content

ns ns - ns - -

Carbohydrate 
concentration

*** *** - ns - -

Stomatal 
conductance

*** *** * *** ns ns

Osmolality ns *** - ns - -

Relative height 
increment

* * - * - -

Relative soil moisture

For investigating the gradually drying of the soil and thus the stress level applied to 

the plants the relative soil moisture was measured regularly. Within the experiment the 

relative soil moisture declined and thus the drought stress increased in all tested lines 

(Fig. 5.3). But the relative soil moistures over the whole experiment were higher in 

the tetraploid fusion lines compared to the diploid original line (Fig. 5.3). The soil 

moisture target level of 25, 18, 12 and 5 vol.-% occurred later in the tetraploid fusion 

lines compared to the diploid original line (Tab. 5.2).
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3.2 Drought performance of 20 hybrid aspen fusion lines and detailed drought responses of selected
tetraploid hybrid aspen lines

Table 5.2: Day after starting the experiment when the target soil moisture levels were reached 
(d: day, diploid original line: 18-03, other lines are tetraploid).

Line Relative soil moisture [vol.-%]

25 18 12 5

18-03 d5 d9 d13 d17

14-04 d9 d13 d17 d25

14-07 d8 d12 d16 d25

Figure 5.3: Time course of the relative soil moisture (measurements were taken daily except 
for days 1, 3, 5 and 24; grey boxes: diploid original line 18-03, blue boxes: tetraploid fusion 
lines: light-blue: 14-04, blue: 14-07, n = 20 plants). Boxplots are defined as explained in Fig. 
3.2. Significant differences between the lines: 18-03a, 14-04b, 14-07b (Wilcoxon signed-rank 
test, p < 0.05)).
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Water consumption

Figure 5.4: (A) Cumulative plot of added water volume during the whole experiment (n = 
20 plants;  black:  diploid line,  blue:  tetraploid fusion lines,  light-blue:  14-04,  blue:  14-07. 
Different letters indicate significant differences between the lines (Wilcoxon signed-rank test, 
p < 0.05): 18-03a, 14-04b, 14-07b), (B) water consumption over the whole experiment relative 
to the initial height (n = 20 plants, data are means of all listed water volumes; regression lines 
are drawn in the respective area, where data were available; black: diploid line; blue: fusion 
lines, light-blue: 14-04, blue: 14-07. Different letters indicate significant differences between 
the lines (exact F-Test, p < 0.05): 18-03b, 14-03a, 14-07a).
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3.2 Drought performance of 20 hybrid aspen fusion lines and detailed drought responses of selected
tetraploid hybrid aspen lines

The water consumption was analyzed as mean water consumption per plant and day 

during the whole experiment. The tetraploid fusion lines consumed significantly less 

water in comparison to the diploid original line (Fig. 5.4 A). This was observed both 

with regard to the whole experiment and to the height of the plants for both tetraploid 

fusion lines (Fig. 5.4 A, B). A lower water consumption has been observed for two 

other tetraploid hybrid aspen in comparison to the diploid original line and was also 

reported in section 3.1.2 (as published in Hennig et al., 2015).

Leaf vitality loss

The leaf vitality was determined as percentage of wilted and desiccated leaves. Total 

leaf wilting occurred in 70 % of the plants in the diploid line and in about 40 % of the 

plants in the tetraploid fusion line 14-04 (Tab. 5.3). In the tetraploid fusion line 14-07 

only 17 % showed total leaf wilting at the end of the experiment (Tab. 5.3).

Table 5.3: Leaf vitality decline (day (d) when the respective observation occurred in 50 % of 
the plants; data are normalized to the last irrigation event; W 25: 25 % leaf wilting, W 100: 
100 % leaf  wilting,  D 25:  25 %  leaf  desiccation,  D 100:  100 % leaf  desiccation;  diploid 
original line: 18-03, other lines are tetraploid fusion lines).

Line W 25 W 100 D 25 Percentage at day 53

W 100 D 100

18-03 d 5 d 10 d 13 77 % 70 %

14-03 d 7 - d 12 43 % 43 %

14-07 d 9 - d 13 17 % 8 %

The time points when leaf wilting started was similar between the diploid original line 

and the tetraploid fusion lines (Tab. 5.3, Fig. 5.5 A). But the rise of the leaf wilting 

was much steeper in the diploid original line with 50 % of the plants showing total 

leaf wilting 10 days after the last watering (Fig. 5.5 A). Total leaf wilting in 50 % of 

the plants was not observed in the tetraploid fusion lines indicating that most of the 
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tetraploid  fusion  lines  maintained  some of  their  leaves  turgescent  over  the  whole 

experiment.  Furthermore,  in the diploid original line all  leaves were wilted before 

25 % of leaves were dried (Tab. 5.3). In contrast, in the tetraploid fusion lines 25 % 

leaf  drying  occurred  before  total  wilting  (Tab. 5.3,  Fig 5.5 A,  B).  This  was  also 

observed in other tetraploid fusion lines studied in section 3.1.2 (Fig. 3.6). 

Figure 5.5: Time curves of (A) leaf wilting and (B) leaf desiccation (data are normalized to 
the day of last irrigation (DAI: day after irrigation); grey boxes: diploid original line, blue 
boxes: tetraploid fusion lines, light-blue: 14-04, blue: 14-07; number of plants as follows: 
18-03: 13, 14-04: 14, 14-07:12 plants. Boxplots are defined as explained in Fig. 3.2. Different 
letters  indicate  significant  differences  between  the  lines  (Wilcoxon  signed-rank  test 
(p < 0.05)): leaf wilting: 18-03c, 14-04b, 14-07a,, leaf desiccation: 18-03c, 14-04b, 14-07a).
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tetraploid hybrid aspen lines

Moreover,  total  drying was  not  reached in  50 % of  the  plants  at  DAI 24 in  both 

tetraploid fusion lines whereas this occurred at DAI 16 in the diploid original line 

(Fig. 5.5 B). The fact that both total leaf wilting and total  leaf desiccation did not 

occur in the tetraploid fusion lines implies lower drought stress for theses lines.

Relative leaf water content (RWC)

To detect early changes in the physiological response the relative leaf water content 

(RWC),  the  leaf  carbohydrate  concentrations  and  the  stomatal  conductance  were 

measured at the target soil moisture levels of 25, 18, 12, and 5 vol.-% and one week 

after  the  5 vol.-% level  was  reached.  Significant  decreases  in  leaf  RWC between 

control and drought-exposed plants were observed for all lines in the 5 vol.-% level 

and one week after this target level occurred (Fig. 5.6 D, E). 

Figure 5.6: Time course of the relative leaf water content (RWC) at the relative soil moisture 
target  levels  of  the  treatment  group  (A) 25 vol.-%,  (B) 18 vol.-%,  (C) 12 vol.-%, 
(D) 5 vol.-%,  (E) one week after  the 5 vol.-% was reached (the measurements were taken 
simultaneously for the control and treatment plants when the target levels were reached for 
the treatment plants, the relative soil moisture of the control plants was stable over the whole  
experiment  at  about  30 %;  light  grey:  control  plants,  dark  grey:  drought-exposed  plants, 
diploid original line 18-03, other lines are tetraploid fusion lines, n = 20 plants). Boxplots are 
defined as explained in Fig. 3.2. Different letters at the top of the boxes indicate  significant 
differences between the lines (Tukey-Test, p < 0.05)).
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The  leaf  RWC  of  both  tetraploid  fusion  lines  were  similar  to  the  diploid  line 

(Fig. 5.6 A-E).  No  line  showed  a  reduction  in  RWC at  relative  soil  moistures  of 

12 vol.-% or higher indicating that effects on RWC occur in an advanced stage of the 

drought treatment when stress is severe.

Carbohydrate concentration and osmolality

The  carbohydrate  concentrations  both  in  the  control  and  treatment  plants  were 

significantly higher in the tetraploid fusion lines compared to the diploid line except 

for the 18 vol.-% soil moisture level (Fig. 5.7 A-E). The carbohydrate concentration 

increased  relative  to  the  control  in  the  tetraploid  fusion  line  14-04  under  severe 

drought stress when the soil moisture level was 5 vol.% and one week after this level 

was reached (Fig. 5.7 D, E).

Figure 5.7: Time course of the carbohydrate concentration at the relative soil moisture target  
levels  of  the  treatment  group  (A) 25 vol.-%,  (B) 18 vol.-%,  (C) 12 vol.-%,  (D) 5 vol.-%, 
(E) one week after the 5 vol.-% was reached (the measurements were taken simultaneously 
for the control and treatment plants when the target levels were reached for the treatment 
plants, the relative soil moisture of the control plants was stable over the whole experiment at  
about 30 %; light grey: control plants, dark grey: drought-exposed plants, diploid original line 
18-03, other lines are tetraploid fusion lines, n = 20 plants). Boxplots are defined as explained 
in Fig. 3.2. Different letters at the top of the boxes indicate significant differences between the 
lines (Tukey-Test, p < 0.05)).
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tetraploid hybrid aspen lines

In contrast to line 14-04, the carbohydrate concentrations of the diploid original line 

and the tetraploid fusion line 14-07 were not significantly enhanced compared to the 

control at the 5 vol.-% and one week after this target level was reached (Fig. 5.7 D, 

E). 

The osmolality was investigated one week after the 5 vol.-% soil moisture level was 

reached. In the treatment plants of the tetraploid fusion line 14-07 the osmolality was 

increased compared to the diploid original line and the tetraploid fusion line 14-04 

(Fig. 5.8). In the control plants the osmolality was similar in all tested lines (Fig5.8).

Figure 5.8: Osmolality  observed one week after  the  5 vol.-% level  was reached (diploid 
original  line  18-03,  other  lines  are  tetraploid  fusion lines,  n = 6  plants,  light  grey  boxes: 
watered plants, dark grey boxes: drought-treated plants. Boxplots are defined as explained in 
Fig. 3.2. Different letters at the top of the boxes indicate significant differences between the 
lines (Tukey-Test, p < 0.05)).

Stomatal conductance

Early stomatal closure occurred in the diploid original line but not in the tetraploid 

fusion lines (Fig. 5.9 D). Relative to the control the stomatal conductance was reduced 

in  the  diploid  line  at  12 vol.-%  relative  soil  moisture  level  (Fig. 5.9 D).  In  the 

tetraploid fusion lines the stomatal conductance relative to the control group was not 

reduced  at  a  relative  soil  moisture  level  of  12 vol.-%  indicating  higher  drought 

61



3 Results

tolerance of the tetraploid fusion lines. The stomatal conductance of the tetraploid 

plants both in the control and treatment was lower compared to the diploid original 

line in the 18 vol.-%, 12 vol.-% and 5 vol.-% soil moisture levels (Fig. 5.9 C-E). 

Figure 5.9: Time course of the stomatal conductance at the relative soil moisture target levels 
of  the  treatment  group  (A) 30 vol.-%,  (B) 25 vol.-%,  (C) 18 vol.-%,  (D) 12 vol.-%, 
(E) 5 vol.-% (the  measurements  were  taken  simultaneously  for  the  control  and  treatment 
plants when the target levels were reached for the treatment plants, the relative soil moisture  
of the control plants was stable over the whole experiment at about 30 %; light grey: control 
plants,  dark  grey:  drought-exposed  plants,  diploid  original  line  18-03,  other  lines  are 
tetraploid fusion lines, n = 20 plants). Boxplots are defined as explained in Fig. 3.2. Different 
letters at the top of the boxes indicate significant differences between the lines (Tukey-Test, 
p < 0.05)).
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Relative height increment

The tetraploid fusion line 14-07 exhibited an increased height increment under control 

conditions while the diploid original line and the tetraploid fusion line 14-04 did not 

significantly distinguish from the drought treatment in the relative height increment 

(Fig. 5.10).

Figure  5.10: Relative  height  increment  measured  at  the  end  of  the  experiment  (diploid 
original line: 18-03, tetraploid fusion lines: 14-04 and 14-07, n = 20 plants, light grey boxes: 
watered  plants,  dark  grey  boxes:  drought-treated  plants;  the  relative  height  increment  is  
normalized to the number of cultivated days. Boxplots are defined as explained in Fig. 3.2.  
Different  letters  at  the  top of the boxes indicate significant  differences  between the lines 
(Tukey-Test, p < 0.05)).
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3 Results

3.3 Whole genome sequencing of selected hybrid aspen fusion lines

To gain insight into the genetic composition of the tetraploid fusion lines differing in 

plant performance whole genome sequencing of the diploid original line 18-03 and 

the  tetraploid  fusion  lines  14-03,  14-04  and  14-07  was  conducted.  Copy  number 

variations (CNVs) were used to detect chromosome modifications such as deletions 

and duplication of sequences. CNVs are DNA segments of one kilobase or larger that 

occur  in  a  variable  copy  number  in  comparative  groups  (Freeman,  2006).  These 

structural  sequence variations  can be caused by homologous and non-homologous 

repair after double-strand breaks or errors during replication (Conrad et al., 2010).

3.3.1 Overview of detected copy number variations

DNA segments were detected as CNVs at a threshold of 1.5-fold change in one line. 

In all pairwise comparisons of the tetraploid fusion lines among each other and with 

the diploid original line line 14-07 had the highest number of segments with CNVs 

(Fig. 6.1). 

Figure 6.1: Pairwise  comparison of  the  segments  with increased copy number  variations 
(threshold: 1.5-fold increase; pairs that were compared with each other are marked with a  
black line below the line identification numbers; grey: diploid original line 18-03, other lines 
are tetraploid fusion lines: dark blue: 14-03, light-blue: 14-04, blue: 14-07).
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3.3 Whole genome sequencing of selected hybrid aspen fusion lines

In comparison to the diploid original line 100 segments were increased and compared to the  

other tetraploid fusion lines 14-03 and 14-04 86 and 231 segments were increased in 14-07, 

respectively (Fig. 6.1). For the tetraploid fusion lines 14-03 and 14-04 only small numbers of 

segments  with  CNVs were  detected  indicating  only  slight  modifications  in  their  genome 

(Fig. 6.1).

3.3.2 Copy number variations altered with regard to the diploid original 

line

In  the  following  analyses  the  segments  that  revealed  CNVs  were  separated  into 

increased and decreased segments in the tetraploid fusion lines in comparison to the 

diploid original line.

Distribution  of  the  altered  segments  with  copy  number  variation  over  the 

genome

The  increased  segments  were  evenly  distributed  over  the  genome  (Fig. 6.2 A-C). 

Instead, the decreased segments in the tetraploid fusion line 14-03 were clustered at 

one end of chromosome 11 (Fig. 6.2 D).  The decreased segments in the tetraploid 

fusion  lines  14-04  and  14-07  were  evenly  distributed  over  the  genome  as  well 

(Fig. 6.2 E, F).
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3 Results

Figure 6.2: Chromosome diagrams of altered segments with copy number variations (CNVs) 
compared  to  the  diploid original  line  18-03,  A-C:  increased  segments  with  CNVs in the 
tetraploid fusion lines: (A) 14-03, (B) 14-04, (C) 14-07, D-E: decreased segments with CNVs 
in  the  tetraploid  fusion  lines:  (D) 14-03,  (E) 14-04,  (F) 14-07  (segments  with  CNVs  are 
marked as red lines, chromosome numbers are written above the schematic chromosomes; 
“chromosome diagram” tool of POPGENIE, http://popgenie.org/chromosome-diagram).
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3.3 Whole genome sequencing of selected hybrid aspen fusion lines

Overlap of the altered segments with copy number variations in the tetraploid 

fusion lines 

Two  DNA  segments  with  CNVs  were  increased  in  all  tetraploid  fusion  lines 

(Fig. 6.3 A). The tetraploid fusion lines 14-03 and 14-07 revealed the highest overlap 

of seven further increased segments with CNVs (Fig. 6.3 A). The tetraploid fusion 

line 14-07 had the highest number with 90 segments that were uniquely increased 

compared to the diploid original line (Fig. 6.3). In the tetraploid fusion lines 14-03 

and 14-04 the number of segments with uniquely enhanced CNVs was low with nine 

and three detected CNVs (Fig. 6.3).  One segment with CNV was decreased in all 

tetraploid fusion lines compared to the diploid original line (Fig. 6.3 B). One further 

segment was decreased in the tetraploid fusion lines 14-03 and 14-04 (Fig. 6.3 B). The 

number of segments that were reduced in one of the tetraploid fusion lines uniquely 

compared to the diploid original line was between 8 in line 14-04 and ten in line 

14-03 (Fig. 6.3 B). In contrast to the 90 detected segments that were increased in line 

14-07  compared  to  the  diploid  original  line,  the  number  of  reduced  segments 

compared to  the diploid original  line was similar  the  other  tetraploid fusion lines 

(Fig. 6.3 B).

Figure  6.3:  Venn  diagram  of  segments  with  copy  number  variations  (CNVs)  that  were 
changed in comparison to the diploid original line 18-03, (A) increased segments with CNVs, 
(B) decreased segments with CNVs in the tetraploid fusion lines (threshold: 1.5-fold change).
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3 Results

Functional analysis of the segments showing copy number variations

Functional information on the segments showing CNVs was obtained via Phytozome 

using the POPTR numbers (http://phytozome.jgi.doe.gov, Goodstein et al., 2012). To 

find out whether the genes were related to drought or growth  in silico expression 

analysis in young expanding leaves and in leaves after three days drought exposure 

was conducted in POPGENIE (“exImage” tool; http://popgenie.org/eximage,  Sjödin 

et al., 2009).  The putative function and the expression of the genes encoded by the 

segments that were altered in at least two tetraploid fusion lines are listed in Table 6.1.

Out  of  the  segments  with  increased  CNVs 10 showed a  minimal  1.5-fold  change 

compared to the diploid original clone in at least two tetraploid fusion lines (Tab. 6.1). 

For two of them an annotation of the genes encoded by these DNA segments was 

available. POPTR_0008s02410 contains ankyrin repeats that mediate protein-protein 

interactions  (Tab.  6.1,  Goodstein  et  al.,  2012).  This  gene  sequence  was increased 

twice  and  1.7-fold  in  the  tetraploid  fusion  lines  14-03  and  14-07,  respectively 

(Tab. 6.1).  The  expression  of  POPTR_0008s02410  is  highly  increased  in  young 

expanding leaves and enhanced in leaves after three days drought exposure (Tab. 6.1, 

Sjödin et al., 2009). A further gene, POPTR_0010s01460, was enhanced 1.7-fold in 

the tetraploid fusion lines 14-03 and 14-07 compared to the diploid line 18-03. The 

expression of this gene is highly increased under drought but not enhanced in young 

expanding leaves (Tab. 6.1,  Sjödin et al.,  2009). The gene was annotated as being 

involved  in  starch  and  sucrose  metabolism  by  pectate  degradation  fueling  the 

ascorbate  metabolism  (Tab.  6.1,  Goodstein  et  al.,  2012;  Kanehisa  et  al.,  2014). 

Another gene located in a region with CNV was POPTR_0014s17450. Its expression 

is strongly decreased under drought, but in young expanding leaves this gene is up-

regulated (Tab. 6.1, Sjödin et al., 2009). This segment was enhanced in all tetraploid 

fusion lines (Tab. 6.1). The increase was approximately 1.7-fold in 14-04 and 14-07 

and almost 2.8-fold in 14-03 (Tab. 6.1). No annotation was available for this gene. 

One further segment with increased CNVs in all tetraploid fusion lines was located on 

contig 36108 (Tab. 6.1). This segment was increased 1.6-fold in the tetraploid fusion 
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3.3 Whole genome sequencing of selected hybrid aspen fusion lines

lines 14-03 and 14-07 and 1.8-fold in the tetraploid fusion line 14-04. For the putative 

gene no annotation was available as well.

For the decreased segments with CNVs no annotation was obtained as well (Tab. 6.1). 

One segment showed a CNV in all tetraploid fusion lines and was located on contig 

57081 (Tab. 6.1). It occurred 2.7-fold less frequently in line 14-03 and was 1.8-fold 

decreased  in  the  lines  14-04  and  14-07  compared  with  the  diploid  original  line 

(Tab. 6.1).
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Table 6.1: Segments with copy number variations with (at least 1.5-fold change) in at least two tetraploid fusion lines compared to the diploid line 18 -03 (Chr = 
Chromosome, description was accessed using the data bases of Phytozome (http://phytozome.jgi.doe.gov, Goodstein et al., 2012), the Kyoto Encyclopedia of Genes 
and  Genomes  (KEGG,  www.genome.jp/kegg/,  Kanehisa  et  al.,  2014),  gene  expression  was  accessed  via  the  “exImage”  tool  of  POPGENIE 
(http://popgenie.org/eximage, Sjödin et al., 2009). The electronic fluorescent pictographic (eFP) browser displayed the expression in the specific tissue in relation to  
the expression over all analyzed P. tremula tissues: “+ +” very high expression (red), “+” high expression (orange), “=” average expression (yellow), light blue:“-” 
low expression, deep blue: “- -” very low expression, “.” no information available).

POPTR-Number Contig
Length 

[bp]

Fold change (log 2)compared to 

the diploid line 18-03
Chr Description Expression

14-03 14-04 14-07

Young expanding 

leaves

Leaves exposed 

to drought 

(3 days)

Increased DNA segments in the tetraploid fusion lines

POPTR_0003s00760 20999 11050 0.8109 -0.2537 1.0602 3 . . .

POPTR_0005s22360 330 5200 0.9593 0.0919 1.1816 5 . . .

POPTR_0006s00220 48082 7150 0.9296 0.4150 0.8382 6 . . .

POPTR_0008s02410 21901 5200 0.0298 1.0785 0.7827 8 Ankyrin repeat, protein-protein interaction + + +

POPTR_0010s01460 22926 4550 0.8568 0.0335 0.7946 10
Starch and sucrose metabolism, galacturan 1,4-alpha-
galacturonidase [EC:3.2.1.67], carbohydrate metabolic 
process, pentose and glucuronate interconversions

= + +

POPTR_0014s17450 58031 11050 1.4703 0.7413 0.7742 14 . + - -

POPTR_0017s07180 83568 7800 1.2976 NA 0.9737 17 . . .

. 36108 5200 0.6813 0.8744 0.6515 . . . .

. 47265 4550 0.9288 NA 0.6108 . . . .

. 66163 5200 0.7226 NA 1.2252 . . . .

Decreased DNA segments in the tetraploid fusion lines

. 57081 5200 -1.4332 -0.8961 -0.8311 . . . .

. 91256 5850 -0.7924 -0.9735 -0.1846 . . . .
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4 Discussion

4.1 Morphological and drought stress characterization of the diploid 

original line and tetraploid fusion lines of hybrid aspen

4.1.1 Morphological characterization of hybrid aspen lines

nSSR analysis did not reveal the presence of DNA of  P. nigra or P. trichocarpa x 

P. deltoides in any fusion line. Because all fusion lines were tetraploid, my results 

suggest that homofusions of two P. tremula x P. tremuloides protoplasts occurred.

Polyploidy often induces morphological and phenotypic variation  (Liu and Wendel, 

2003). A reduction in height growth, as observed here for some fusion lines, has been 

reported in other polyploid plants before (Weiss and Porter, 1948; Sharma and Datta, 

1957; Riddle and Birchler, 2008; Deng et al., 2012). Because poplars of dry habitats 

were smaller than those of wet habitats  (Regier et al., 2009; Yang and Miao, 2010), 

the observed height reduction with lower total leaf area in the tetraploid than in the 

diploid line might be advantageous for drought threatened habitats. It was shown here 

that these fusion lines also consumed less water than the diploid line.

The  stomatal  density  is  correlated  with  the  maximum  stomatal  conductance  in 

Mediterranean herbs,  shrubs  and woody species  (Galmés et  al.,  2007).  Decreased 

stomata  density  as  observed in  the  fusion  lines  might  therefore  lead  to  enhanced 

drought tolerance as the stomatal conductance is reduced. However, in the fusion lines 

stomata lengths were enhanced. This modification of the stomatal apparatus has also 

been observed in other tetraploid species like Spathiphyllum, Platanus or Betula (Li et 

al., 1996; Liu et al., 2007; van Laere et al., 2010). Hodgson et al. (2010) detected that 

stomatal  length  is  positively  correlated  with  genome  size  within  the  eudicots, 
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Poaceae and  other  monocots  without  providing  a  causal  link.  The  correlation  of 

stomatal  length  with  habitat  humidity  is  discussed  controversially  (Abrams et  al., 

1994; Hodgson et al., 2010). For example, Hodgson et al. (2010) stated that stomatal 

length is correlated with habitats of high humidity. Abrams et al. (1994), in contrast, 

reported increasing stomatal size from wet-mesic to mesic and xeric sites in deciduous 

tree species.  Regier et al. (2009) observed that the stomatal length was increased in 

one P. nigra genotype under water limited conditions while abaxial stomatal density 

was reduced. In drought tolerant tomato cultivars stomatal density was decreased, but 

stomatal  size  increased  compared  to  drought  sensitive  genotypes  (Kulkarni  and 

Deshpande, 2006). These stomatal traits that have also occurred in the fusion lines and 

might  be the reason for  lower water  consumption as  observed here.  Furthermore, 

Ashton and Berlyn (1994) observed a reduction in the SAI from wet to xeric habitats 

in  Quercus species and suggested this parameter to predict drought tolerance. More, 

recently QTLs for this trait have been identified and were also linked with drought 

tolerance  (Gailing  et  al.,  2008).  Here,  SAI  was  reduced  in  two  fusion  lines 

(Fig. 3.2 C) only one out of these lines consumed significantly less water related to 

height  indicating  that  SAI  might  be  a  relevant  parameter  associated  with  water 

consumption. However, the links between this trait and DNA dosage remain obscure.

4.1.2 Drought stress characterization of hybrid aspen lines

Water consumption and leaf vitality

Polyploid plants often possess superior characteristics in comparison to their diploid 

counterparts  with  regard  to  morphological  and  physiological  changes  and  their 

tolerance to environmental stresses (Xiong et al., 2006). In this study, all fusion lines 

consumed  less  water  relative  to  height  than  the  diploid  line.  Reduced  water 

consumption was significant for the fusion lines 27-10 and 27-12, which both showed 

a total leaf area similar to the diploid line. Furthermore, there were other cases where 
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severe height and leaf area reductions decreased the water consumption of the fusion 

lines.  The altered  stomatal  morphology (decreased  stomatal  density  and increased 

stomatal size) and the increased leaf mass per area (a low surface to volume ratio) that 

is linked to dry habitats  (Poorter et al.,  2009) in the fusion lines 27-10 and 27-12 

might have reduced the transpiration and thereby enabled the plants to use water more 

efficiently.

The leaf wilting was more severe for the diploid line than for the fusion lines, but two 

of the fusion lines showed early leaf desiccation which increased to about 50 % at the 

end of the drought. In the genus Populus, leaf shedding occurs to avoid desiccation of 

the remaining tissue (Fischer and Polle, 2010).  Blake and Tschaplinski (1992) noted 

that  leaf  shedding and the related reduction  of  the transpiration surface led to  an 

increase of the water potential in the remaining tissue. In analogy to this, our finding 

suggests that the early-wilting fusion lines were better adapted to drought than the 

diploid line because they reduced the transpiration surface rapidly by desiccating a 

part of the leaves and thereby might have been able to delay wilting of the remaining 

foliage.

Stomatal conductance and carbohydrate concentration

The  positive  correlation  between  stomatal  density  and  stomatal  conductance  as 

described for herbs and trees in literature (Abrams et al., 1994; Galmés et al., 2007) 

was  not  found  here.  Despite  the  variation  in  stomatal  morphology,  significant 

differences in the stomatal conductance between the different ploidy levels were not 

discovered under well-watered conditions. In polyploid  Betula and  Lonicera  plants, 

stomatal conductance was less affected by drought compared to the diploid variants 

(Li et al., 1996, 2009), whereas the poplar fusion lines in our study exhibited the same 

response to drought as the diploid line.

Carbohydrates  play  important  roles  for  osmotic  adjustment  of  poplar  tissues  to 

drought  stress  (Danielsen  and  Polle,  2014).  Notably,  in  the  fusion  lines  the 

carbohydrate concentrations were more strongly increased under drought conditions 

than in the diploid line (Fig. 3.7 C). For instance,  Deng et al. (2012) also observed 
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enhanced carbohydrate levels and increased survival of octaploid tobacco compared 

to its tetraploid variant under stress conditions. Accumulation of carbohydrates leads 

to osmotic adjustment by decreasing the osmotic potential in the cell and contributes 

to  the  stress  tolerance  (Touchette  et  al.,  2009).  Carbohydrates  also  function  in 

osmoprotection  by  stabilizing  proteins  and  membranes  (Crowe et  al.,  1992).  The 

stronger increase in carbohydrate concentration in the fusion lines might have enabled 

them to cope with dry conditions better than the diploid line because of improved 

osmotic adjustment and cellular protection.

Biomass production

Although the initial height was reduced for the fusion lines 27-09, 27-10 and 27-11 

the  relative  height  increment  of  the  fusion  lines  27-10,  27-11  and  27-12  was 

equivalent  to  that  of  the  diploid  line  under  well-watered  conditions  indicating  no 

growth constraints (Fig. 3.8 A). Height growth of Populus is sensitive to drought at an 

early stage  (Bogeat-Triboulot et  al.,  2006).  McDowell  et  al.  (2008) suggested that 

plants  under  drought  conditions  suffer  mainly  from carbon  starvation  because  of 

stomatal closure. Consequently, growth is reduced. In the context of the present study, 

this theory implies that the fusion lines 27-10, 27-11 and 27-12 closed their stomata to 

reduce water loss, as a consequence their height increment decreased. Additionally, 

they avoided further increase in stress because they reduced the area of growing tissue 

that had to be supplied with water. This can also be a part of the stress avoidance 

response.  Eventually,  these  measures  may  have  led  to  reduced  water  demand, 

apparent as the lower water consumption of the fusion lines. In contrast, the diploid 

line did not respond to drought by early diminishment of height growth and thus, did 

not  save  resources.  These  suggestions  are  in  line  with  the  resource  requirement 

hypothesis  pertaining  that  polyploid  plants  grow  slower  and  therefore,  have  a 

decreased resource demand compared to their diploid counterparts (Deng et al., 2012). 

In practical terms, it is obvious that in plantations for woody biomass production, 

genotypes are needed that represent a compromise of biomass production and drought 

tolerance.  In SRC stem biomass production is the most important parameter to be 
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optimized because the woody parts are used for energy production (Karp and Shield, 

2008; Polle et al., 2013). In our study, an enhancement in the relative shoot increment 

was detected for the fusion line 27-11 under drought and for 27-12 under control 

conditions, respectively compared to the diploid line.  Because two of these fusion 

lines also showed total biomass production similar to that of the diploid line, the new 

genotypes appear to be reasonable alternatives for plantation in dry areas.

4.1.3 Conclusion

Overall,  the  tetraploid  lines  that  were  generated  by  protoplast  fusion  varied 

significantly  in  morphological  characteristics  such  as  height,  total  leaf  area  and 

stomatal  characteristics  as  well  as  in  physiological  traits  such  as  carbohydrate 

production under drought and water consumption. The phenotypic diversity might be 

due to mutations in the chromosomes caused during the protoplast  fusion process 

(Prange et al., 2012). This diversity renders the fusion lines predestined for breeding. 

Moreover, it was shown that the fusion lines 27-10 and 27-12 desiccated a part of 

their foliage at an early stage of drought and were more water saving than the diploid 

line. All fusion lines showed a higher increase in carbohydrate concentration and a 

decrease in relative height increment when suffered from severe drought suggesting 

better drought adaptation by stress tolerance and avoidance mechanisms. Adaptability 

to low water supply is favorable for the SRC plantation, because it is expected that 

biomass plantations will be established on marginal sites with low water and mineral 

supply  to  avoid  competition  with  agricultural  land  (von  Wühlisch,  2012). 

Furthermore, a decrease in soil moisture of 5 % up to 12 % in the upper 10 cm deep 

soil is predicted for large parts of Europe in the long term (year 2080-2099)  (Dai, 

2012). Thus, it is likely that even production on currently moist sites will have to cope 

with  water  limitations  in  the  future.  Eventually,  a  sufficient  supply  of  water  is  a 

decisive factor that determines the success of establishing SRC plantations  (Helbig 

and Müller, 2009). Therefore, the fusion lines represent interesting candidates for the 

cultivation on SRC.
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4.2 Drought performance of diploid “fusion” and tetraploid fusion 

lines and detailed drought responses of selected tetraploid fusion 

lines

4.2.1 Morphological characterization of diploid “fusion” and tetraploid 

fusion lines of hybrid aspen

Genetic composition of the hybrid aspen lines

Because our initial study revealed only homofusion lines (Hennig et al., 2015), further 

20 protoplast  fusion  lines  were  created.  The  finding  that  16  of  them were  again 

homofusion  lines  and  4  diploid  lines  suggests  that  heterofusion  plants  were  less 

vigorous than homofusion plants. The protoplast fusion lines originated from a joint 

project with several hundred fusion lines that were generated between different poplar 

species. The number of successful interspecific hybridization was low and none of the 

hybrids  were  viable  because  all  died  already  in  the  in  vitro culture  stage.  In 

interspecific hybrids chromosome and also mitochondrial DNA rearrangements were 

observed  (Kao, 1977; Binding and Nehls, 1978; Kemble et al., 1986; Prange et al., 

2012). This can be due to abnormalities during mitosis such as, for instance, adhering 

of  chromosomes,  fragmented  or  deformed  chromosomes  or  elimination  of  alleles 

(Binding and Nehls, 1978; Prange et al., 2012). It has been observed in fusion hybrids 

that one nucleus or chromosomes of one fusion partner was predominant while only a 

few chromosomes of the second fusion partner occurred that were eliminated over 

time (Binding and Nehls, 1978; Prange et al., 2012). Chromosome rearrangement and 

elimination may have resulted in slower cell division and thus less growth or even 

death in the heterofusion lines.

Heterofusion  frequencies  vary  widely  between  1 to  20 %  in  other  plant  species 

depending on the species combination, cell types and fusion conditions  (Waara and 

Glimelius,  1995).  For example,  in cyclamen the highest frequency of interspecific 
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hybrids was about 5 % (Prange et al., 2012) and in Brassicaceae, Fabaceae, Poaceae,  

and Solanaceae the percentage of hybrids obtained by protoplast fusion was referred 

to be usually less than 10 % (Waara and Glimelius, 1995). Brewer et al. (1999) stated 

that somatic hybridization of species with divergent genetic background that show 

incompatibilities in sexual reproduction may result in low viability of the obtained 

hybrids.  The  poplar  species  used  in  this  study  were  also  associated  to  different 

sections of the genus Populus and the success of sexual hybridization between theses 

sections were low (Willing and Pryor, 1976; Liesebach et al., 2010). However, these 

incompatibilities might be only one reason for a low heterofusion frequency as also 

between  hybrid  aspen  and  grey  poplar  that  belong  to  the  same  section  any 

heterofusions were obtained.

Height of the hybrid aspen lines

Lower  height  growth  in  the  tetraploid  fusion  lines  compared  to  both  the  diploid 

original and fusion lines  indicate a negative effect of tetraploidy on height growth. 

Growth reduction was also observed in other tetraploid hybrid aspen from protoplast 

fusion experiments  (Hennig et al., 2015) as well as in  other polyploid plants (Weiss 

and Porter, 1948; Sharma and Datta, 1957; Riddle and Birchler, 2008; Deng et al., 

2012). Scholes and Paige (2015) reported that the genome size is positively correlated 

with the duration of the mitotic cell cycle that leads to effects in the cellular growth 

and development. A decreased cell division rate can explain the overall lower heights 

observed in the tetraploid plants.

Increased height growth as observed in the diploid "fusion" lines compared to the 

diploid original line (Fig. 4.1) might be caused by rejuvenations effects that occurred 

during the protoplast stage. The diploid “fusion” lines that originated from protoplast 

fusion were exposed to the protoplast stage whereas the diploid original line did not 

experience  this  phase.  The protoplast  step  is  accompanied  by dedifferentiation  of 

specialized cells and can lead to epigenetic modifications as, for instance, a reduction 

in  heterochromatin that  is  supposed to  contribute to  rejuvenation of  the plant  cell 

(Tessadori et al., 2007).
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4.2.2 Drought responses of the diploid “fusion” and the tetraploid fusion 

lines

Survival rate of the hybrid aspen lines

The  tetraploid  fusion  lines  were  generally  smaller  than  the  diploid  lines  and  the 

survival rates were increased compared to the diploid original line and the diploid 

“fusion” lines (Fig. 4.2). This may have been expected because irrigation was stopped 

and  therefore  the  small  plants  were  exposed  to  mild  stress.  Here,  the  dilemma 

between yield and drought tolerance is evident. Growth depends on the availability of 

water and drought tolerance can also be achieved at the expense of biomass (Araus et 

al., 2002; Bogeat-Triboulot et al., 2006; Cattivelli et al., 2008). It seems more sensible 

from the economical point of view to plant varieties that exhibit decreased growth but 

instead  survive  dry  periods  because,  in  total,  this  will  result  in  a  higher  biomass 

production. However, genotypes showing both reasonable height growth and drought 

tolerance are required for SRC plantations that are supposed to be on marginal sites 

with low water. Comparable height growth to the diploid original line but delayed leaf 

wilting with regard to height and therefore higher drought tolerance was observed in 

the  tetraploid  fusion  lines  14-03,  14-04  and  14-07  (Fig. 4.5).  These  lines  were 

analyzed for genetic modifications apart from tetraploidy as discussed in section 4.3.

The delay of total leaf wilting observed in 11 tetraploid fusion lines while this was not 

observed  in  the  diploid  “fusion”  lines  suggests  higher  drought  tolerance  for  the 

tetraploid  plants.  In  many  species,  polyploidization  has  been  assumed  to  be 

advantageous under stress conditions and was associated to plants in extreme habitats 

(Ehrendorfer, 1980; Tal, 1980; Li et al., 2009; Deng et al., 2012). Polyploidization can 

change  the  gene  expression  by  increased  variation  in  dosage-regulation,  altered 

regulatory interactions and rapid epigenetic effect  (Osborn et al., 2003).  Guo et al. 

(1996) reported an increased  gene expression per  cell  in  varieties  with increasing 

ploidy  level  in  Zea.  For  genes  showing  allele-dosage  effects  like,  for  example, 
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quantitative  traits  polyploidy can enhance the  variation in  intermediate  expression 

(Osborn et al., 2003). Apart from the gene modifications as an altered gene expression 

or epigenetic gene silencing one substantial effect of polyploidizaiton was the altered 

stomatal apparatus that might have contributed to the delay in total leaf wilting.

Stomatal morphology and water consumption

The tetraploid fusion lines 14-04 and 14-07 showed a decreased stomatal density and 

an increased stomatal length (Fig. 5.2). This modification has also been observed in 

tetraploid hybrid aspen lines (see section 4.1, as published in Hennig et al., 2015) and 

furthermore in other tetraploid species like Spathiphyllum,  Platanus or  Betula (Li et 

al.,  1996;  Liu  et  al.,  2007,  van  Laere  et  al.,  2010) and  lead  to  decreases  in  the 

transpiration surface. In Quercus, a reduction of the SAI was found from wet to xeric 

habitats (Ashton and Berlyn, 1994). Therefore, Ashton and Berlyn (1994) stated that 

this  parameter  might  predict  drought  tolerance.  In  the  tetraploid  fusion  lines  this 

parameter  was  not  decreased  compared  to  the  diploid  line  (Fig. 5.2 C).  In  other 

tetraploid hybrid aspen lines this parameter was only significantly decreased in one 

fusion  line  that  consumed  less  water  (Hennig  et  al.,  2015).  Therefore,  SAI  is 

unsuitable to predict drought tolerance in tetraploid hybrid aspen plants.

The  link  between  stomatal  length  and  density  and  habitat  humidity  is  discussed 

controversially. Hodgson et al. (2010) suggested that large stomata are found in plants 

of high humidity habitats. In contrast, Abrams et al. (1994) detected in deciduous tree 

species an increasing stomatal size from wet-mesic to mesic and xeric sites. In one 

P. nigra genotype the stomatal length was increased when water was limited whereas 

abaxial stomatal density was reduced (Regier et al., 2009) indicating an advantage of 

less but increased stomata under drought exposure. Furthermore, in tomato cultivars 

low stomatal  density and increased size was related to drought  tolerant genotypes 

(Kulkarni and Deshpande, 2006). According to the literature  (Abrams et al.,  1994; 

Kulkarni and Deshpande, 2006; Regier et al., 2009) higher stomatal length and lower 

stomatal  density  that  were found in  the tetraploid lines  are  advantageous in  xeric 

habitats. 
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The duplication of the chromosome set also led to a decreased water consumption in 

the tetraploid fusion lines (Fig. 5.4).  This was observed for two out of four other 

hybrid aspen lines as described in section 3.1.2 as well (also published in Hennig et 

al., 2015). Therefore, tetraploidy itself did not lead to decreased water consumption 

with  regard  to  height  in  general.  But  in  total,  four  out  of  six  tested  lines  had  a 

decreased water  consumption relative to  the height  when compared to  the diploid 

original line indicating that tetraploid fusion lines are more water saving. The lower 

water consumption might be due to the altered stomatal apparatus in the tetraploid 

fusion lines  (Fig. 5.2)  that  was also observed in  the other  tetraploid  hybrid aspen 

(section 3.1.2, published in Hennig et al., 2015). In Arabidopsis, transgenic expression 

activation of a homoedomain-START transcription factor resulted in lower stomatal 

density and increased size, lower water loss rates, increased photosynthetic rate, lower 

transpiration and thus higher water use efficiencies (Yu et al., 2008)

Leaf wilting and desiccation

During drought exposure the leaves of the diploid original line first wilted all and then 

started to desiccate.  Instead, in most of the tetraploid fusion lines, first a part of the 

leaves was dried while total leaf wilting was delayed (Fig. 4.6, Tab. 5.3, Fig 5.5 A, B). 

It has been described for two tetraploid hybrid aspen lines as well that drying of a part 

of the leaves occurred earlier than in the diploid original line resulting in delayed leaf 

wilting (section 3.1.2, published in  Hennig et al., 2015). This mechanism decreases 

the transpiration surface by reducing the leaf area and is a way of drought avoidance 

(Gaur  et  al.,  2008).  In  analogy  to  this,  leaf  shedding  and  subsequent  delayed 

desiccation has been detected in poplar (Fischer and Polle, 2010). By maintaining the 

turgor  in  the  remaining  leaves  and  the  functionality  of  the  leaves,  i.e.  the 

photosynthesis can be kept up. This is in accordance with the stomatal conductance 

that  was  maintained  even  under  high  drought  stress  in  the  tetraploid  fusion  line. 

Additionally,  the  photosynthesis  can  be  resumed  immediately  when  drought 

disappears. It seems unlikely that a simple duplication of the chromosome set results 

in a different leaf wilting strategy. It is more likely that the tetraploid hybrid aspen 
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suffered from milder drought stress that was due to lower water consumption and 

partly due to lower height. Therefore, the tetraploid fusion lines had time to adapt 

physiologically to the drought stress by desiccating leaves and thereby reducing the 

transpiration surface and further decreasing the stress.

Stomatal conductance and biochemical analyses

The stomatal conductance under control conditions was not decreased in the tetraploid 

fusion lines (Fig. 5.9). A decrease of the stomatal conductance was also not found in 

other tetraploid hybrid aspen lines (section 3.1.2, published in  Hennig et al., 2015). 

But  we  have shown  that  the  tetraploid  fusion  lines  maintained  the  stomatal 

conductance under water limiting conditions while the diploid original line showed 

already  strong  decreases  (Fig. 5.9).  In  tetraploid  plants  of  Lonicera, the  stomatal 

conductance  was  also  less  reduced  under  drought  exposure  in  comparison  to  the 

diploid plants (Li et al., 2009). These findings suggest higher drought tolerance for the 

tetraploid varieties.

In the control plants of the tetraploid fusion line 14-07 an increase in the relative 

height increment was observed while the stomatal conductance decreased (Fig. 5.9, 

Fig. 5.10). This seems to be contrary as higher photosynthetic rates are usually linked 

with higher stomatal conductance (Ainsworth and Rogers, 2007; Hull-Sanders et al., 

2009).  Farquhar  and  Sharkey  (1982) found  out  that  the  stomatal  limitation  only 

slightly influences the photosynthetic rate. They reported that the photosynthetic rate 

more  strongly  depends  on  the  regeneration  capacity  of  ribulose-1,5-  bisphosphate 

(Farquhar and Sharkey, 1982).

High concentrations of carbohydrates along with an active adjustment under drought 

stress determine the drought tolerance of a plant  (Tschaplinski and Tuskan, 1994). 

Carbohydrates  play  a  role  in  osmotic  adjustment  by  increasing  the  cell's  osmotic 

potential  but  also  as  osmoprotectors  by  preventing  proteins  and membranes  from 

damage by stabilization (Crowe et al., 1992; Deng et al., 2012; Danielsen and Polle, 
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2014).  Therefore,  the increased carbohydrate  concentration in  the tetraploid plants 

might have increased their drought tolerance.

The concentration of carbohydrates can only partly explain the increased osmolality 

in  the  tetraploid  fusion  line  14-07  as  the  carbohydrate  concentration  was  not 

significantly higher under drought (Fig. 5.7, Fig. 5.8). Except for carbohydrates also 

ions,  amino  acids,  polyols  and  polyamines  and  their  derivates  act  as  osmolytes 

(Yancey, 2005; Danielsen and Polle, 2014). In P. tremula for example, the polyamine 

spermine was increased under high salt concentrations (Jouve et al., 2004). Ha et al. 

(1998) supposed spermine to protect DNA from damage by scavenging free radicals. 

The increased osmolality in the tetraploid fusion line 14-07 under drought exposure 

might  have  led  to  enhanced  drought  tolerance.  This  line  exhibited  serious  leaf 

desiccation later than the diploid line and slightly later than the tetraploid fusion line 

14-04 (Fig. 5.5 B).

Relative height increment

The high carbohydrate concentrations might also indicate higher photosynthetic rate 

of  the  tetraploid  fusion  lines.  Actually,  high  carbohydrate  rates  are  assumed  to 

decrease the photosynthesis by feedback regulation  (Ewart, 1896; Paul and Pellny, 

2003). The crucial link dissolving this discrepancy might be the phloem. About 50 % 

to 80 % of the assimilates are exported form the leaves for example in maize (Kalt-

Torres et al.,  1987). The phloem is thought to play a key role for “managing” the 

export of the assimilates from photosynthetic active leaves (source) and the import 

into  non-photosynthetic  tissues  (sink)  (Ainsworth  and  Bush,  2011).  Ransom-

Hodgkins et al.  (2003) described that  the capacity of phloem loading was directly 

proportional  to the number of  sucrose symporters  at  the plasma membrane of the 

sieve elements in  Beta. Thereby, the activity of these sucrose symporters is highly 

dynamically regulated by transcriptional and posttranslational processes  (Vaughn et 

al., 2002). The increased relative height increment that was observed in the tetraploid 

fusion line 14-07 might be due to genome modifications (section 4.3).
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4.2.3 Conclusion

The tetraploid fusion lines showed lower water consumption compared to the diploid 

original  line  and  were  able  to  maintain  the  stomatal  conductance  relative  to  the 

control at lower relative soil moistures. This suggests higher drought tolerance for the 

tetraploid fusion lines in comparison to the diploid original line. Therefore, somatic 

hybridization  for  generating  drought-tolerant  poplar  varieties  for  dry  sites  is  a 

promising approach. Especially, as higher stress tolerance of polyploid varieties is not 

only  limited  to  drought.  In  octaploid  tobacco  plants  increased  survival  times 

compared to the tetraploid relatives were reported when the plants were exposed to 

cold and particularly increased under nutrient deficiency (Deng et al., 2012). Since the 

plantation of SRC on marginal sites also refers to soils that are affected by pollution,  

salinization or low nutrient supply (Kuzovkina and Quigley, 2005; Karp and Shield, 

2008;  Polle  et  al.,  2013) the  tetraploid  fusion  lines  represent  interesting  poplar 

varieties  that  may  cope  with  these  stress  conditions  but  show  economical  viable 

growth. This seems to be of increasing relevance to avoid land use conflicts between 

biomass and food production as the energy and food demand continues to rise (Karp 

and Richter, 2011). 
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4.3 Whole genome sequencing of selected tetraploid hybrid aspen 

fusion lines

Whole  genome sequencing  was  conducted  with  the  tetraploid  fusion  lines  14-03, 

14-04  and  14-07  along  with  the  diploid  original  line  18-03  to  reveal  genome 

modifications apart from the tetraploidy in the protoplast fusion lines. CNVs can be 

used to detect genome modifications as duplications or deletions.

4.3.1 Basic characterization of the detected copy number variations

Altered  DNA segments  with  CNVs  were  detected  in  the  tetraploid  fusion  lines 

compared  to  the  diploid  original line  (Fig. 6.1).  The  number  of  identified  DNA 

segments showing CNVs varied among the tetraploid fusion lines (Fig. 6.1). While in 

the tetraploid fusion line 14-07 100 segments were increased when compared to the 

diploid  line,  in  the  tetraploid  fusion  lines  14-03  and  14-04  only  18  and  6  DNA 

segments  were  duplicated,  respectively,  compared  to  the  diploid  original  line 

(Fig. 6.3 A).  This  suggests that genetic  variation among the tetraploid fusion lines 

appeared. But for more reliability of the data set technical and biological replicates are 

necessary. CNVs are supposed to occur due to double strand breaks in the DNA and 

subsequent  homologous  and  non-homologous  recombination  or by  errors  during 

replication as well  (Conrad et  al.,  2010).  Double strand breaks were associated to 

tissue  culturing  apart  from  genome  modifications  as  single-gene  mutation, 

transposable element activation and a distinct DNA methylation pattern (Kaeppler and 

Phillips,  1993;  Svitashev  and  Somers,  2001).  The  passing  of  tissue  culture  with 

several subcultures including many replication cycles might be one reason for the 

differing numbers of altered DNA segments among the tetraploid fusion lines.

In most of the cases the segments with altered CNVs compared to the diploid line 

18-03 were evenly spread over the genome of the tetraploid fusion lines indicating a 

random distribution (Fig. 6.2). Freeman et al. (2006) described in a review that CNVs 
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occur  more  frequently  than  expected  by  chance  in  regions  that  already  show 

segmental duplications. Furthermore, CNVs are often related to repeat-rich regions as 

for  example  telomeres,  centromeres  and  heterochromatin  (Giglio  et  al.  ,2001).  In 

contrast  to  the altered segments in  the other  tetraploid fusion lines,  the decreased 

segments  in  line  14-03  were  clustered.  They  accumulated  at  the  end  of 

chromosome 11 (Fig. 6.2 D) suggesting a deletion of a large DNA segment. 

4.3.2 Possible phenotypic influence due to copy number variations

Only  for  two  out  of  the  12  altered  segments  the  encoded  gene  annotation  was 

available.  In the  in  silico analysis  the association to  “growth” and “drought” was 

limited  to  three  altered  segments  (Tab. 6.1).  Therefore,  the  functional  analysis 

remained unspecific. For further functional characterization of the detected segments 

knock-out mutants missing the respective DNA segments could be generated in future 

studies. Subsequently exposing the mutants to drought could reveal the relevance of 

the DNA segments under drought. This could be enlarged by quantitative expression 

analysis under dry conditions.

CNVs can occur in different functional regions of the DNA as for example in stop 

codons, in exons and promoters, within an intron or in intergenic regions (Conrad et 

al., 2010). When CNVs appear in regulatory regions as stop codons or promoters it is 

assumed that this can have impact on the gene dosage by disrupting coding sequences 

and long-range gene regulation  (Kleinjan and van Heyningen, 2005; Conrad et al., 

2010). Increased copy numbers can correlate both positively and negatively with the 

gene  expression.  For  example,  if  a  transcriptional  repressor  is  deleted  the  gene 

expression  of  the  target  gene  might  be  positively  influenced  (Lee  et  al.,  2006; 

McCarroll et al., 2006). Stranger et al. (2007) described that about 50 % of the CNV 

effects are due to disruption of coding sequences or alteration of regulatory and other 

functional regions that play a role in gene expression (Stranger et al., 2007). But apart 

from changes in the gene sequence that might cause loss of gene function or altered 

gene dosage also posttranslational modifications can have impact on the phenotypic 
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variation.  For  further  characterization  of  the  altered  DNA segments  expression 

analysis could be conducted to detect if the segments are located in a coding sequence 

or not. The response of knock out mutants under drought could be investigated to 

determine the drought relevance of the putatively encoded genes.

Apart  from the  putative  function  the  overlap  of  segments  with  CNVs  that  were 

changed  in  all  tetraploid  fusion  lines  was  low  (Fig. 6.3 A,  B).  This  reduces  the 

possibility that many important genes were altered together in all tetraploid fusion 

lines and leads to the assumption that the enhanced drought performance (significant 

delay in total leaf wilting with regard to height compared to the diploid line 18-03, 

Fig. 4.5) is due to the polyploidy but not caused by the altered segments with CNVs. 

This is underpinned by two facts. (i) The tetraploid fusion line 14-07 exhibited a high 

number of 90 uniquely increased segments with CNVs (Fig. 6.3 A) showed higher 

drought tolerance compared to the diploid original line but similar drought tolerance 

as  the  other  tested  tetraploid  fusion  line  14-04.  The  water  consumption,  the  leaf 

wilting and desiccation and the stomatal conductance relative to the control in the 

tetraploid fusion line 14-07 was nearly the same as in the tetraploid fusion line 14-04 

(Fig. 5.4 B, 5.5 A, 5.9). And, (ii) none of the four diploid “fusion” lines in section 

3.2.1  exhibited  a  delayed leaf  wilting  with  regard  to  height  in  comparison to  the 

diploid original line 18-03. Both findings imply that the tetraploidy is the reason for 

the  enhanced  drought  tolerance.  Nevertheless,  functionally  caracterizing  the  three 

segments that were altered in all tetraploid fusion lines in comparison to the diploid 

line is useful as drought-relevant genes might be affected. The relevance to drought of 

these putative genes could be tested using knock-out mutants that are exposed to dry 

conditions.

4.3.3 Limitations of the present copy number variation analysis

For the presented CNV analysis it should be noted that due to a missing reference 

genome  for  P. tremula x  P. tremuloides or  closely  related  species  about  300 000 

contigs with 200 to 128 000 bp length were used. The problems and limitations using 
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these contigs were (i) no order, (ii) different length and therefore small contigs were 

removed as a minimum of 50 reads had to map within a contig, (iii) no alignment 

resulting in sequence overlaps that represented redundancies (iv) window approach 

(counting of reads within a frame of 650 bp) neglected segments at the end of a contig 

reducing the sequence length that could be investigated (v) no genome-wide CNV 

analysis but restriction to one contig (vi) the window approach neglected intron-exon 

regions of the putative encoding genes.

4.3.4 Conclusion

Several segments showing CNVs could be detected by whole genome sequencing in 

the  tetraploid  fusion  lines.  For  a  more  reliable  data  set  technical  and  biological 

replications should be conducted. Only three segments were altered in all tetraploid 

fusion lines in comparison to the diploid line. The low number of CNVs reduces the 

probability that many important drought-relevant genes were altered by CNVs in all 

tetraploid fusion lines. This indicates that the tetraploidy rather than the CNVs were 

the  reason  of  enhanced  drought  performance  in  the  tetraploid  fusion  lines.  This 

assumption is underpinned by the investigations that the tetraploid fusion line 14-07 

revealed the highest number of uniquely increased segments but showed only slight 

physiological  effect  in  comparison to  the  tetraploid  fusion  line  14-04,  e.g.  a  low 

increase  in  height,  a  similar  water  consumption.  Moreover,  none  of  the  diploid 

“fusion” lines in section 3.2.1 exhibited a delayed leaf wilting with respect to height 

in  comparison to  the diploid original  line.  Nevertheless,  to  investigate  if  drought-

relevant  were  affected  by  the  copy  number  variations  the  response  of  knock-out 

mutants under drought could be investigated.
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5 Overall conclusion

In this  dissertation,  the drought  performance of poplar  protoplast  fusion lines was 

characterized. The poplar lines that were obtained by somatic hybridization between 

P. tremula x P. tremuloides as one fusion partner and either P. nigra, P. trichocarpa x 

P. deltoides or  P. x. canescens as  second  fusion  partner  were  homofusion  lines  of 

P. tremula x P. tremuloides.

All tested protoplast fusion lines could be assigned to the hybrid aspen according to 

their leaf morphology and most of them were tetraploid homofusion lines. Therefore, 

they  were  characterized  in  comparison  to  the  diploid  original  line  P. tremula x 

P. tremuloides ('Münden 2'). In the tetraploid fusion lines the relative soil moisture 

was significantly higher than in the diploid original line throughout all experiments 

(Fig. 7.1).  The  higher  relative  soil  moistures  suggest  that  the  tetraploid  plants 

absorbed less water from the soil than the diploid plants. This assumption is supported 

by the decreased  water  consumption (Fig. 7.1)  that  was observed for  most  of  the 

tetraploid fusion lines. The altered stomatal apparatus in the tetraploid lines exhibiting 

lower stomatal density while increasing length of the stomata (Fig. 7.1) might be one 

reason  for  the  lower  water  consumption.  Lower  stomatal  density  and  increased 

stomatal length has been observed in poplars of dry habitats  (Regier et al.,  2009). 

Furthermore, the higher leaf mass per area and smaller total leaf areas (Fig. 7.1) might 

also have contributed to the lower water consumption of the tetraploid fusion lines. A 

higher leaf mass per area was associated to plants of xeric habitats  (Abrams et al., 

1994). With a decreased total leaf area and an increased leaf mass per area (Fig, 7.1) 

the  transpiration  might  be  lower  because  the  surface-to-volume  ratio  is  reduced. 

Thicker leaves are typical for xeric habitat plants and were also observed in a drought-

tolerant P. nigra clone indicating to be advantageous under dry conditions because of 

lower  transpiration  (Regier  et  al.,  2009).  Reduced  transpiration  would  be  in 

accordance  with  a  low  stomatal  conductance.  In  general,  a  lower  stomatal 

conductance was not observed in the tetraploid fusion lines compared to the diploid 

original  line  (Fig. 7.1).  The  tetraploid  plants  were  able  to  maintain  the  stomatal 
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conductance  relative  to  the  control  group  at  lower  relative  soil  moisture  levels 

compared to the diploid original line indicating higher drought tolerance. 

Figure 7.1:  Trends of investigated parameters ([Carbh.]:Carbohydrate concentration. Lower 
height, leaf area, stomatal density and water consumption were observed along with increased 
leaf mass per area, survival rate, DAI (day after irrigation) when total leaf wilting occurred,  
stomatal length, relative soil moisture, carbohydrate concentration and ploidy. The tetraploid 
plants that exhibited these traits showed enhanced vitality under drought stress while in the  
diploid  plants  a  trend  to  opposite  morphological  and  physiological  characteristics  was 
observed that resulted in lower vitality under dry conditions).
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The higher carbohydrate concentration that were found in the tetraploid fusion lines 

(Fig. 7.1) under control conditions may also have been advantageous when drought 

occurred as carbohydrates can function as osmolytes and osmoprotectors  (Teixeira 

and Pereira, 2007; Danielsen and Polle, 2014). 

Additionally, the height that tended to be lower in the tetraploid fusion lines than in 

the  diploid  line  (Fig. 7.1)  might  have  contributed  to  a  lower  stress  level  in  the 

tetraploid fusion lines. Lower height has been observed in polyploid varieties of many 

species (Weiss and Porter, 1948; Sharma and Datta, 1957; Riddle and Birchler, 2008; 

Deng et al., 2012) and might be caused by lower cell division rates that occurred in 

several polyploid plant species (Scholes and Paige, 2015).

To give  an  overview of  morphological  traits  and the  drought  performance  of  the 

investigated fusion lines they are ranked in Table 7.1 together with the diploid original 

line. Within the first experiment, the tetraploid fusion line 27-12 is the line with the 

highest biomass production and lowest water consumption per height (Tab. 7.1) and is 

therefore  an  interesting  candidate  for  SRC  on  dry  sites.  Within  the  screening 

experiment,  the most drought-tolerant  fusion lines  were the tetraploid fusion lines 

14-05, 14-04 and 18-10 that showed the highest survival rates. Here, 14-04 exhibited 

average height growth in addtition whereas the lines 14-05 and 18-10 were very low 

(Tab. 7.1). The highest biomass production in experiment 2 was found in the diploid 

“fusion”  lines  14-08,  18-07  and  18-11  but  these  lines  showed  low survival  rates 

(Tab. 7.1).  Furthermore,  in  the  tetraploid  fusion  line  14-06  a  high  survival  was 

observed along with  average  height  growth (Tab. 7.1).  Thus,  the  tetraploid  fusion 

lines 14-04 and 14-06 seem to be reasonable lines for planting in biomass production 

on dry sites.

In summary, a majority of the tetraploid hybrid aspen lines exhibited higher drought 

tolerance in the greenhouse experiments. These findings suggest that the tetraploid 

hybrid aspen are superior on dry sites where failures are expected due to extreme 

weather conditions as droughts. The viability of these findings should be tested in 

field trials on dry sites. The better drought performance of the tetraploid fusion lines 

may be at the expense of growth in some lines. Of course, high biomass production is 
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one of the most important traits in short rotation coppice. Therefore, the plantation of 

drought-tolerant lines with decreased biomass productions should be recommended 

on soils where water is a limiting factor. Producing tetraploid varieties using somatic 

hybridization is  a promising approach as polyploid varieties  might be more stress 

tolerant, not only with regard to drought but also considering nutrient deficiency and 

cold hardiness (Deng et al., 2012).
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Table 7.1: Ranking of the hybrid aspen lines with regard to the investigated parameters (27-01 and 18-03:  diploid original  clone  P. tremula x P.  tremuloides 
('Münden 2'), diploid “fusion” lines: 14-08, 18-04, 18-07, 18-11, other lines are tetraploid fusion lines. The hybrid aspen lines are ranked separated by the different  
experiments: 27-lines: experiment 1; 14-lines and 18-lines: experiment 2; 18-03, 14-04, 14-07: experiment 3. The lines are ranked according to their median, NA: no 
data available, - : not analyzed. RWC: relative leaf water content, DAI: Day after irrigation, rel. sm: relative soil moisture.)
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27-01 1 2 2 5 - - - - 4 - 4 4 2 4 5 5 4 - - -

27-09 5 5 5 1 - - - - NA - NA 5 5 5 4 4 5 - - -

27-10 3 3 3 3 - - - - 2 - 2 3 3 2 3 2 3 - - -

27-11 4 4 4 4 - - - - 1 - 1 1 2 3 1 3 2 - - -

27-12 2 1 1 2 - - - - 3 - 3 2 1 1 2 1 1 - - -

14-01 14 - - - 12 16 14 - 12 16 12 - - - - - - - - -

14-02 9 - - - 13 14 8 - 16 15 17 - - - - - - - - -

14-03 12 - - - 8 8 7 - 7 6 10 - - - - - - - - -

14-04 10 - - - 2 7 10 3 10 2 7 3 3 - - 2 - 1 3 1

14-05 17 - - - 1 1 5 - 2 1 4 - - - - - - - - -

14-06 11 - - - 7 10 12 - 11 3 11 - - - - - - - - -

14-07 4 - - - 15 13 16 1 15 9 14 1 2 - - 1 - 2 1 2

14-08 1 - - - 19 21 20 - 21 20 21 - - - - - - - - -

14-09 5 - - - 14 20 15 - 13 12 13 - - - - - - - - -

14-10 13 - - - 4 11 6 - 8 4 3 - - - - - - - - -

18-03 8 - - - 17 19 13 2 17 19 16 2 1 - - 3 - 3 2 3

18-04 6 - - - 19 18 19 - 18 18 18 - - - - - - - - -

18-05 18 - - - 8 3 1 - 4 7 2 - - - - - - - - -

18-06 7 - - - 15 9 17 - 14 14 15 - - - - - - - - -

18-07 2 - - - 17 15 18 - 19 17 19 - - - - - - - - -

18-08 15 - - - 6 2 2 - 1 5 1 - - - - - - - - -

18-09 20 - - - 11 5 3 - 9 13 8 - - - - - - - - -

18-10 21 - - - 3 12 11 - 3 8 5 - - - - - - - - -

18-11 3 - - - 18 17 21 - 20 21 20 - - - - - - - - -

18-12 16 - - - 8 4 4 - 6 10 9 - - - - - - - - -

18-13 19 - - - 4 6 9 - 5 11 6 - - - - - - - - -
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Woody crops such as poplars (Populus) can contribute to meet the increasing energy

demand of a growing human population and can therefore enhance the security of energy

supply. Using energy from biomass increases ecological sustainability as biomass is

considered to play a pivotal role in abating climate change. Because areas for establishing

poplar plantations are often confined to marginal sites drought tolerance is one important

trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old

plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were

generated by protoplast fusion and their diploid counterpart for water consumption

and drought stress responses in a greenhouse experiment. The fusion lines showed

equivalent or decreased height growth, stem biomass and total leaf area compared to the

diploid line. The relative height increment of the fusion lines was not reduced compared

to the diploid line when the plants were exposed to drought. The fusion lines were

distinguished from the diploid counterpart by stomatal characteristics such as increased

size and lower density. The changes in the stomatal apparatus did not affect the stomatal

conductance. When exposed to drought the carbohydrate concentrations increased

more strongly in the fusion lines than in the diploid line. Two fusion lines consumed

significantly less water with regard to height growth, producing equivalent or increased

relative stem biomass under drought compared to their diploid relative. Therefore, these

tetraploid fusion lines are interesting candidates for short rotation biomass plantation on

dry sites.

Keywords: polyploidy, Populus, abiotic stress, short rotation coppice, stomatal morphology, carbohydrate

concentration

Introduction

The world primary energy demand is increasing (Berndes et al., 2003; Asif and Muneer, 2007;
Doman et al., 2014). About 11% of this demand was met by renewable sources as hydropower,
biomass, biofuels, wind, geothermal and solar energy in 2008 (Chum et al., 2011). Biomass from
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bioenergy plants is expected to have a good potential to meet
the increasing demand for global primary energy (Weih, 2004;
Karp and Shield, 2008; Weih et al., 2014). Compared to fossil
fuels, biomass contributes only marginally to the emission of
greenhouse gasses (Weih, 2004), which reached their highest
levels in history during the past decade and are main drivers of
climate change (IPCC, 2014). Biomass is therefore considered
to contribute substantially to the alleviation of climate change
challenge (Weih, 2004; Karp and Shield, 2008). The establishment
of short rotation coppice (SRC) is one possibility of generating
biomass for energy purposes. SRC refers to plantations of fast
growing trees and shrubs for biomass production with high
initial growth and a rotation time of 3–5 years (Karp and Shield,
2008). The plantations of SRC show high biomass production
and carbon dioxide fixation, subsequent use of wood chips has
low carbon abatement costs (BMEL, 2007). In 2012, SRC covered
an area of 5000–6000 ha in Germany, i.e., only 0.0003% of the
managed agricultural land (von Wühlisch, 2012; BMEL, 2014)
indicating a high potential to increase the area of SRC-cultivated
land.

It has been suggested that conflicts in land use for food or
biomass production can be diminished by establishing SRC on
marginal sites, that are affected by pollution, salinization or
low water and mineral supply (Kuzovkina and Quigley, 2005;
Karp and Shield, 2008; Polle et al., 2013). Therefore, species
and varieties with high drought tolerance are required (Karp
and Shield, 2008; Weih et al., 2014). Some species of the genus
Populus can meet the objective of low water demand, i.e.,
Populus tremula (L.). Their growth is more tolerant to drought
than that of silver birch, Scots pine or Norway spruce (Jarvis
and Jarvis, 1963). Both P. tremula and P. tremuloides (Michx.)
are naturally occurring in areas with dry continental climate
(Jarvis and Jarvis, 1963; Viereck et al., 1986). Thus, it can be
assumed that hybrid aspen (P. tremula × P. tremuloides) are
also drought tolerant. However, biomass yield highly depends
on the availability of water and drought tolerance can also
be achieved at the expense of biomass (Araus et al., 2002;
Bogeat-Triboulot et al., 2006; Cattivelli et al., 2008). Poplars are
needed that combine enhanced drought tolerance and reasonable
biomass production. As drought periods are likely to increase
with climate change (Regier et al., 2009) drought tolerance and
the maintenance of growth are important breeding objectives
(McKendry, 2002; Cattivelli et al., 2008). Another important trait
for poplar cultivated in SRC is the propagation via stem cuttings
as this considerably reduces the investment costs (Stanturf et al.,
2001). Poplar species of the section Tacamahaca and Aigeros, for
example, P. nigra and P. trichocarpa × P. deltoides show this
specific trait in contrast to species of the section Populus (Stanturf
et al., 2001). To combine the drought tolerance of P. tremula ×

P. tremuloides and the ability of propagation via stem cuttings
of the species P. nigra and P. trichocarpa × P. deltoides somatic
hybridization via protoplast fusion appears to be a promising
approach.

Genome duplication (polyploidization) has naturally occurred
in the evolution of several plant species including crops like
Gossypium hirsutum, Triticum aestivum, and Oryza sativa but
also in tree species such as Populus (Finnegan, 2002; Blanc and

Wolfe, 2004; Rausher, 2007). Duplicated genes typically show
a diversification in functions or subfunctionalization (Adams
and Wendel, 2005). Several studies revealed that gene doubling
influenced transcription levels by epigenetic alterations in the
cytosine methylation or silencing of the ribosomal RNA resulting
in a variation of morphology and phenotype (Finnegan, 2002;
Liu and Wendel, 2003; Adams and Wendel, 2005). Silencing of
polyploid genes can be organ-specific and was observed to occur
even reciprocally (Adams et al., 2003).

Octaploid tobacco plants showed increased survival times
over their tetraploid counterparts when exposed to stresses like
cold, shade, water logging, nutrient deficiency and drought (Deng
et al., 2012). Decreased susceptibility of polyploid varieties to
drought was detected in crop species (Triticum), herbaceous
species (Lonicera, Spathiphyllum, Nicotiana) as well as in tree
species (Betula) (Li et al., 1996, 2009; Xiong et al., 2006; van
Laere et al., 2010; Deng et al., 2012). Polyploidy can induce
morphological changes in leaf characteristics that are associated
with drought tolerance like an increased leaf thickness, a smaller
total leaf area and an enhanced leaf mass per area (Kubiske and
Abrams, 1992; Li et al., 2009). For instance, greater stomatal
length and reductions in stomatal density, that are characteristics
of plants in xeric habitats, were observed in polyploid Betula and
Spathiphyllum (Abrams et al., 1994; Li et al., 1996; van Laere et al.,
2010). Polyploidy can also influence the metabolic performance
resulting in an induction of superoxide dismutase and catalase
and consequently decreased accumulation of reactive oxygen
species (ROS) (Deng et al., 2012). In Lonicera, photosynthesis,
pre-dawn leaf water potential and stomatal conductance were less
affected in drought-treated tetraploid variants compared to their
diploid relatives (Li et al., 2009).

Plants cope with stresses like drought either by stress
avoidance or stress tolerance where stress avoidance is referred to
as the plants ability to minimize the adverse effect and tolerance
as the capacity to endure unfavorable conditions (Puijalon et al.,
2011). For example, osmotic adjustment with inorganic ions,
carbohydrates and organic acids or changes in tissue elasticity
can enhance plant’s drought tolerance (Touchette et al., 2009).
Osmotic adjustment plays a role in minimizing yield loss when
drought occurs (Cattivelli et al., 2008). Therefore, analysis of
osmotic adjustment under different drought conditions has
been suggested as an effective selection criterion for drought
tolerant genotypes (Cattivelli et al., 2008). Drought avoidance
occurs when plants reduce their transpiration surface by leaf
shedding for example (Gaur et al., 2008; Fischer and Polle,
2010). When facing water limiting conditions both drought
tolerance and avoidance mechanisms are often combined to
enhance physiological adjustments in plants (Touchette et al.,
2009).

Because of the importance of poplars as bioenergy crops,
the overarching goal of this study was to test polyploid
species obtained by protoplast fusion for their performance
under drought Here, diploid plant material of hybrid aspen
(P. tremula × P. tremuloides), black poplar (P. nigra L.) and
cottonwood hybrids (P. trichocarpa Torr. and Gray× P. deltoides
Bartram ex Marsh.) were used to generate polyploid lines
by protoplast fusion. We obtained four tetraploid lines of P.
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tremula × P. tremuloides and compared them to their diploid
counterpart. To examine the suitability of the diploid and
protoplast fusion lines for cultivation on dry sites, we investigated
(i) morphological and physiological effects of polyploidization,
(ii) water consumption, and (iii) drought stress performance in a
greenhouse experiment.

Materials and Methods

Plant Material
Five-year-old trees of P. tremula× P. tremuloides (“Münden 2”),
20-old trees of P. nigra and 25-year-old trees of P. trichocarpa ×
P. deltoides were used for establishing in vitro cultures. Terminal
and axillary winter buds of 1-year-old shoots were harvested and
processed after a protocol modified according to Ahuja (1984).
Buds were washed in tap water and sterilized in 70% ethanol
(Carl Roth GmbH and Co. KG, Karlsruhe, Germany) with
0.1% L-ascorbic acid (Sigma Aldrich Laborchemikalien GmbH,
Hannover, Germany) for 20 s and in sodium hypochlorite (Carl
Roth GmbH and Co. KG, Karlsruhe, Germany) (supplemented
with 2 drops of Tween 20 (Carl Roth GmbH and Co. KG,
Karlsruhe, Germany) for 20min. Material was then washed
three times for 5min in sterilized tap water. After shoot
development plantlets were subcultured every 4 weeks on MS-
Medium (Murashige and Skoog, 1962) supplemented with 0.2
ppm 6-benzylaminopurine (Fluka Chemie GmbH, Steinheim,
Germany), 2% sucrose (Carl Roth GmbH and Co. KG, Karlsruhe,
Germany) and 2.9 g/L Gelrite (Duchefa Biochemie, Haarlem,
Netherlands). Protoplast fusion of the in vitro poplar clones
was established according to modified protocols of Sasamoto
et al. (2006) and Guo and Deng (1998) by the company
Phytowelt GreenTechnologies GmbH as described previously
(Lührs et al., 2010, 2012; Efremova et al., 2013). Shoot cultures
from fusion products were regenerated as separate lines. Three
lines of three protoplast fusion experiments between P. tremula
× P. tremuloides (“Münden 2”) and P. trichocarpa × P. deltoides
(B19) and one line out of one protoplast fusion between P.
tremula × P. tremuloides (“Münden 2”) and P. nigra were used.
The lines were micropropagated and rooted ex vitro by directly
transferring them to substrate (nursery substrate (N: 250mg/L
P: 140mg/L, K: 250 mg/L), Kleeschulte Erden GmbH, Rüthen,
Germany) under a foil tunnel equipped with a fog system.
Plantlets were hardened by reducing air humidity gradually
during 4 weeks. Rooted plants were transferred into 1.3-L pots on
October 2012 (substrate composition as above blended with one
gram long-term fertilizer Osmocote Exact lo start 8–9M (1 g/L,
N:P:K = 15:8:10 + 3 MgO), The Scotts Company LLC, Heerlen,
Netherlands per liter soil) and cultured in the greenhouse. For
hibernation temperature was decreased according to ambient
conditions but did not drop below 5◦C. In April 2013, plants
were transferred to three-liter pots (substrate composition above)
with long-term fertilizer (1 g/L, Osmocote Exact Standard
5–6M (1 g/L, N:P:K = 15:9:12 + 2 MgO), The Scotts
Company LLC, Heerlen, Netherlands). Plants were cultured in
the greenhouse and watered to pot capacity until the start of the
drought treatment on July 11th, 2013, when the plants were 9
month old.

Experimental Design
Four lines from protoplast fusion and the original diploid hybrid
aspen (“Münden 2”) were used in a greenhouse experiment.
Ten plants of each clone were randomly chosen as control and
ten as treatment plants. Two plants each of four lines, still
planted in three-liter pots, were placed into one box (eight plants)
according to a scheme applying maximal space to the plants
of one line. The plants’ positions were changed in each box
in order to let all lines pass all positions of the boxes (four
different distributions, one was repeated). In total, 12 lines (240
plants) were tested, but we focus in this analysis on the four
fusion lines of the phenotype P. tremula× P. tremuloides. During
the experiment the boxes were rotated daily to avoid position
effects. No artificial light was supplemented. Temperature and
relative air humidity during experimental time ranged from 16◦C
to 37◦C/37% to 60% (day) and from 11◦C to 15◦C/80% to
99% (night), respectively (Figures 1A,B). Because of data logger
failure inside the greenhouse during 8 days (day 11 to day 19),
we used hourly data of existing data pairs for inner and outer
temperature to generate a linear regression model (Equation 1)
with the outer temperature (x1) as predictor variable.

y = β0 + x1 β1 + ε (1)

The modeled and measured temperatures showed a high
correlation (R2 = 0.92, Figure 1A). The relative humidity was
modeled using a generalized linear regression approach as the
target variable ranged between 0 and 100%. Therefore, a logit
functionwas applied (Equation 2) with the predicted temperature
inside the greenhouse (x1) and the hour of the day (x2) as
predictor variables.

ŷ =
exp(β0 + β1x1 + β2x2)

1+ exp (β0 + β1x1 + β2x2)
(2)

For more flexibility of the model (Equation 2) was extended
by flexible splines according to Wood (2011). The predicted

FIGURE 1 | Time course of (A) the temperature and (B) the relative

humidity. (Black, measured data; red, modeled data).
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values of the relative humidity were highly correlated with the
measured values (R2 = 0.79, Figure 1B). The vapor pressure
deficit (vpd) was determined using the predicted temperature and
relative humidity data with the Clausius-Clapeyron relationship
according to Hartmann (1994).

All plants were watered twice up to saturation before starting
the experiment. Then, control plants were watered daily to pot
capacity and treatment plants were gradually dried until a soil
water content of 10 vol.-% was reached and kept at the 10 vol.-
%-level for 1 week. To enable uniform drying of plants within
one line volumetric soil water content was measured daily using
a soil moisture sensor (TRIME PICO32; Imko GmbH, Ettlingen,
Germany). Two measurements were performed per pot and the
mean soil moisture per line was calculated for all plants per
line. Plants, whose soil moisture dropped below the average level
of their line were watered to reach the mean volumetric soil
moisture level. This procedure ensured that all plants of one line
reached the 10 vol.-% soil moisture target level at the same time
point. The 10 vol.-% periods for the different lines were staggered
and first occurred in the diploid line at day six after starting the
experiment and appeared last for fusion line 27-09 at day 47
(Figure 4A). After culturing the plants at this level for 1 week,
treatment plants were not watered anymore but still investigated.
The experiment ended at day 56, when all plants were harvested
for biomass analysis.

Morphology and Basic Characterization
Leaf and Stomatal Morphology
Leaf morphology of in vitro plants of the fusion lines and the
original diploid clones were compared and the fusion lines
were associated to one of the original clones phenotypically.
The stomatal density and stomatal size were analyzed by leaf
impressions from abaxial and adaxial leaf surfaces. Impressions
were taken on the fifth fully expanded leaf of five plants per
line before starting the experiment using clear nail polish. The
stomatal density was determined by counting the stomata on
three randomly chosen sections (0.303mm ∗ 0.303mm) of every
preparation using a microscope (400 X magnification, Zeiss
Axio Observer Z1, Zeiss, Oberkochen, Germany). Subsequently,
the number of stomata per square millimeter was calculated.
For determining the stomatal size, length of three guard cells
was measured in each section. The stomatal area index (SAI)
was calculated as a mean of stomatal size of three stomata
of each leaf section on abaxial surface and multiplied with
the stomatal density of this section (Ashton and Berlyn,
1994).

Height and Stem Biomass
The height of all plants was measured at the beginning of the
experiment (H_d0). For basic characterization height growth
is shown for the data of the control group before starting the
experiment (H_d0).At the end of the experiment all plants were
separated into stem and root segments and dried at 103◦C for 5
days. Dry weight of the stem (DW_end) was determined without
the leaves. Stem biomass is displayed for the data of the control
group.

Total Leaf Area and Leaf Mass Per Area
For determining total leaf area and calculating a ratio between
leaf mass and total leaf area all leaves of six control plants
from each line were harvested, weighed (Sartorius Basic BA 210,
Sartorius Weighing Technology GmbH, Göttingen, Germany)
and scanned with a standard scanner at the end of the
experiment. Leaf area was calculated from the scans using the
program Histo Version 1.0.1.2. (Datinf, Tübingen, Germany).

Genetic Analyses
Ploidy Level
Relative DNA content was analyzed by flow cytometry
from leaves of in vitro cultures (Plant Cytometry Services,
Netherlands).

DNA Extraction
The protocol of Dumolin et al. (1995) was used for total DNA
isolation from leaves of in vitro cultures. Differing from the
protocol the pellet was eluted in 75µl 1× TE Rnase.

nSSR Analysis
Eleven primers (ORPM0023, ORPM1031, ORPM1249,
ORPM1261, PMGC0433, PMGC2163, WPMS05, WPMS09,
WPMS12, WPMS14, GCPM2768) that were located on
nine linkage groups were selected for analysis of nuclear
simple sequence repeats (nSSR; web.ornl.gov/sci/ipgc/
ssr_resources.htm; van der Schoot et al., 2000; Smulders
et al., 2001; Tuskan et al., 2004). Polymerase chain reaction was
performed as described by van der Schoot et al. (2000), Smulders
et al. (2001), Eusemann et al. (2009). nSSR fragment length
analysis was carried out using a LI-COR sequencer (4300 DNA
analyzer, LI-COR Biosciences, Bad Homburg, Germany). For
genotype analysis the software Saga v3.0 (LI-COR Biosciences,
Bad Homburg, Germany) was used.

Drought-Related Parameters
Water Consumption and Plant Vitality
All water volumes that were added to the treatment plants within
the 10 vol.-% soil moisture level for the 7 day period were
recorded. The wilting and the desiccation of the leaves were
determined for plant vitality analysis for treatment and control
plants. A leaf was regarded as wilted, when its blade was in a
parallel position to the shoot, i.e., the angle between shoot and
leaf blade was 0◦–10◦. Leaves that showed an angle of more than
10◦ were considered as not wilted. Desiccation was observed as
the percentage of dried leaves. Both parameters were observed
daily during the drought period for all plants and were classified
into five categories (0, 25, 50, 75, 100%) according to Table 1.
Then, a mean was calculated for each line and normalized to the
last irrigation event.

Stomatal Conductance and Carbohydrate

Concentration
The stomatal conductance was determined after 7 days exposure
to 10 vol.-% soil moisture with a porometer (AP4, Delta-T
Devices, Cambridge, Great Britain) on the eighth fully expanded
leaf of control and treatment plants in the morning between
8:30 h and 11:30 h. That was on the following days of the

Frontiers in Plant Science | www.frontiersin.org 4 May 2015 | Volume 6 | Article 330

https://web.ornl.gov/sci/ipgc/ssr_resources.htm
web.ornl.gov/sci/ipgc/ssr_resources.htm
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Hennig et al. Poplar protoplast fusion lines

TABLE 1 | Classification of vitality.

Scale Wilting percentage of wilted

leaves [%]

Desiccation percentage of

dried leaves [%]

0 0 0

1 25 25

2 50 50

3 75 75

4 100 100

experiment: 27-01: day 13, 27-09, day 54, 27-10: day 18, 27-11:
day 15, 27-12: day 15. For analysis of carbohydrate concentration
leaf samples were taken from the upper fourth fully expanded leaf
in five repetitions for control and treatment plants. Sampling was
conducted after 7 days of exposure to 10 vol.-% soil moisture level
during the morning (10–12 h). The material was immediately
stored at −20◦C until further preparation. For total soluble
carbohydrates the protocol of Yemm and Willis (1954) was
modified as follows: Samples were extracted in 50% ethanol,
incubated with anthrone for 10min at 98◦C and afterwards
immediately cooled down in iced water. Absorbance was then
measured at 620 nm against a blank that included pure methanol
instead of the methanol-extracted sample.

Relative Height and Stem Increment
The height of all plants was measured for control and treatment
plants after culturing at 10 vol.-% soil moisture (H_10%) for 7
days and final height was observed at the end of the experiment
(H_end). Relative height increment was calculated by dividing
height increment (H_10% - H_d0) by initial height (H_d0). As
the period until the 10 vol.-% soil moisture level was reached
differed for the tested lines, the height increment was divided
by the number of cultured (≡ days when plants were irrigated)
days, i.e., for the lines 27-01, 27-09. 27-10, 27-11, and 27-
12 as follows: 13, 54, 18, 22, 15. Relative stem increment was
calculated for control and treatment plants as follows: First,
a model between final stem dry mass (DW_end) and final
height (H_end) was calculated using a logarithmic function.
Then, the model was applied to initial height (H_d0) estimating
initial stem biomass (DW_d0). Finally, the stem increment
was calculated (DW_end—DW_d0), divided by the initial stem
biomass (DW_d0) and then normalized to the number of days
when plants were irrigated.

Statistical Analysis
All data were analyzed using the statistical software R (R Core
Team, 2013). The parameters height, stem biomass, total leaf
area, leaf mass per area, stomatal length and density, the stomatal
area index and the vpd during the 10 vol.-% soil moisture periods
were analyzed by an One-Way analysis of variance (ANOVA,
Supplementary Table 1). The hypothesis H0 describing that no
differences between the genotypes exist was rejected if p <

0.05. A post-hoc test (TukeyHSD) was used for determining
significant differences between the genotypes (Supplementary
Table 2). Two-Way ANOVA with independent factors genotype
and treatment was conducted to test genotype, treatment and

interaction effects on carbohydrate concentration, relative height
increment and relative stem increment (Supplementary Table 1).
For stomatal conductance the factor light was tested in addition
(Supplementary Table 1). Using a post-hoc test (TukeyHSD)
the dataset of control and treatment were analyzed together
for determining significant differences for the parameters
carbohydrate concentration, relative height and stem increment
(Supplementary Table 2). For stomatal conductance the control
and treatment were analyzed separately (Supplementary Table 2).
Leaf wilting and desiccation was analyzed using a Wilcoxon
signed-rank test. Here, a pairwise comparison was conducted
for the genotypes (Supplementary Table 3). Differences between
the lines were considered to be significant when p < 0.05. For
determining the water consumption at 10 vol.-% soil moisture we
calculated the sum of added water volumes per plant and week.
The linear models according to Equations (3) and (4) were tested.

y = β0 + x1β1 + ε (3)

y = β0 + x1β1 + x2β2 + ε (4)

where x1 indicates the genotype and x2 the stem height.
When significant differences between the models were found

the one with the lowest residual sums of squares was applied. For
testing if a model with enhanced parameters is equal to a model
with reduced parameters (H0) the test statistic is calculated by
Equation (5):

F =

1
p−k

(SSreduced − SSfull)

1
n−p−1SSfull

(5)

with p number of parameter of the full model, k number
of parameters of the reduced model and n number of
observations. Equation (4) fitted the data better than Equation
(3) (Supplementary Table 4). Differences among the genotypes
were detected using Equation (4) by estimating the shift of the
intercepts from a reference. Afterwards, this shift was tested for
being equal to zero (H0) using the exact F-Test. H0 was rejected if
p < 0.05. Each genotype served as reference using the R function
“lm.” Thereby, all treatments were tested against each other.

Results

Morphological and Genetic Characterization
We investigated four hybrid aspen lines that were obtained after
three protoplast fusion experiments between P. tremula × P.
tremuloides and P. trichocarpa × P. deltoides and one protoplast
fusion experiment between P. tremula × P. tremuloides and P.
nigra in comparison to the original diploid clone of P. tremula×
P. tremuloides.

In the tested putative heterofusion lines no DNA from P.
nigra or P. trichocarpa × P. deltoides was detected by nSSR
analysis using 11 nSSR markers that were located on nine
linkage groups (Table 2). This result suggested that only DNA
of P. tremula × P. tremuloides was present. To get further
insight into the genetic composition of the hybrid aspen lines
flow cytometry was conducted. According to this analysis, the
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TABLE 2 | Morphological and genetic characterization of the diploid and the tetraploid hybrid aspen lines under optimal water supply (stem height was

measured at the beginning of the experiment after 9 month in soil, other parameters were measured at the end of the experiment.

Line Fusion Leaf Stem Stem Total leaf Leaf mass Ploidy nSSR

partners morphology height [m * 10−2] biomass [g plant−1] area [m2 * 10−2 plant−1] per area [g m−2 * 10] level

27-01 – P3 105.1± 17.6c 17.5± 8.3b 30.4± 7.7b,c 1.38± 0.15a 2n P3

27-09 P3 × P9 P3 39.6± 17.3a 1.9± 1.2a 6.5± 1.7a 2.26± 1.98c 4n P3

27-10 P3 × P9 P3 80.3± 16.7b 16.3± 10.0b 23.9± 12.7b,c 1.59± 0.23b 4n P3

27-11 P3 × P9 P3 49.8± 11.8a 4.9± 3.5a 15.4± 7.8a,b 1.53± 0.26a,b 4n P3

27-12 P3 × P7 P3 92.8± 18.4b,c 22.1± 7.3b 34.2± 6.0c 1.69± 0.21b 4n P3

For analyzing ploidy level and nSSR in vitro material was used. Data are means ± SE, n = 10 plants (stem height and stem biomass), n = 6 plants (total leaf area and leaf mass per

area), superscripted letters indicate differences between the lines (Tukey HSD test, p < 0.05), P3: P. tremula × P. tremuloides, P7: P.nigra, P9: P. trichocarpa × P. deltoides).

FIGURE 2 | Leaf morphology of in vitro leaves of the diploid original

clones (A) P. tremula × P. tremuloides (27-01), (B) P. nigra, (C) P.

trichocarpa × P. deltoides and the fusion lines (D) 27-09, (E) 27-10, (F)

27-11, (G) 27-12. (The white scale bar at the bottom of the pictures measures

1 cm in length. Plants were subcultured for 4 weeks).

hybrid aspen lines showed a tetraploid set of chromosomes
(Table 2). Our analyses, therefore, support that homofusion lines
of hybrid aspen (P. tremula × P. tremuloides) were obtained,
but no heterofusion lines with other poplar genotypes. This
finding was also supported by the leaf morphology of the fusion
lines that exhibited the P. tremula × P. tremuloides phenotype
(Figure 2). In the following text, the putative hybrid aspen
clones that originated from the protoplast fusion experiments are
therefore named fusion lines. The original diploid P. tremula ×

P. tremuloides clone is referred to as the diploid line.
For basic characterization of the fusion lines height at the

beginning of the experiment after 9 month of soil culture and
total leaf area, leaf mass per area and stem biomass production
at the end of the experiment were compared to the diploid
line under optimal water supply (Table 2). Plants heights were

lower for the fusion lines 27-09, 27-10, and 27-11 than for the
diploid line. Stem biomass of the fusion lines 27-09 and 27-11 was
reduced. Furthermore, for the fusion line 27-09 the total leaf area
was decreased compared to the diploid line. The leaf mass per
area was increased in the fusion lines except for 27-11 suggesting
enhanced leaf thickness for the fusion lines.

Microscopy of leaf impressions that were taken of the abaxial
leaf surface before starting the experiment revealed that the
stomatal lengths were higher but the stomatal densities were
reduced for all fusion lines in comparison to the diploid line
(Figures 3A,B). Among the fusion lines stomatal lengths and
densities differed. Fusion line 27-11, which showed the lowest
stomatal density on lower leaf surface, exhibited stomata on the
leaf adaxial surface. But the stomatal density on the adaxial leaf
surface was only 10 stomata mm−2 compared to 75 stomata
mm−2 on the abaxial leaf side, thus was significantly lower. None
of the other lines, including the diploid line, developed stomata
on the adaxial leaf surface. The stomatal area index was reduced
for the fusion lines 27-11 and 27-12 compared to the diploid line
(Figure 3C).

Performance of the Diploid and the Fusion Lines
Under Drought
Water Consumption and Leaf Vitality
The plants were exposed to drought by gradually drying until soil
moisture levels of 10 vol-% were reached (Figure 4A). Each line
attained the target soil moisture at a different time point and was
kept at this level for a period of 7 days (Figure 4A). Subsequently,
the lines were not watered anymore. The water consumption
was determined during the 7-day period at the 10 vol.-% soil
moisture level. The diploid consumedmore water than the fusion
lines (Figure 4B). This was not only observed for fusion lines
that were smaller than the diploid line, but was also detected
for the fusion lines 27-10 and 27-12 when height was respected
(Table 2, Figures 4B, 5). A further factor that may influence
water consumption is a variation in the vpd. Although the periods
when the plants experienced 10 vol-% soil moisture occurred
at different time points, vpd levels did not differ except for the
fusion line 27-09 (Figure 4C). Here, the vpd was lower compared
to all other lines. Relative to the height this line consumed as
much water as the diploid line and even more than the fusion
lines 27-10 and 27-12 (Figure 5) that experienced higher vpd.
Therefore, variation in vpd among the lines was not the reason
for differences in the water consumption.
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FIGURE 3 | (A) Stomatal length on abaxial surface, (B) Stomatal density on

adaxial and abaxial surface, and (C) Stomatal area index (SAI) on abaxial

(Continued)

FIGURE 3 | Continued

surface [samples were taken of the upper fifth fully expanded leaf of the diploid

line and the tetraploid fusion lines before starting the experiment, stomatal

length: n = 45 stomata per line, stomatal density: n = 15 leaf sections per line

and leaf side (gray box, adaxial side; white boxes, abaxial side), SAI: mean

stomatal length of three stomata of one leaf section multiplied by stomatal

density of this leaf section, n = 15 leaf sections per line; 27-01: diploid, other

lines: tetraploid. Boxplot definition: Outer transversal bars of the boxplots

include 95% of the data, 50% of the data are defined by the boxes themselves,

the median is shown by the highlighted line within the box. Outliers are

represented by open circles. Different letters at the top of the boxes indicate

significant differences between the lines (TukeyHSD test, p < 0.05). Capitals

are used for the adaxial side, lowercase letters for the abaxial side].

The linear regression analysis showed that the fusion lines 27-
10 and 27-12 consumed significantly less water with regard to
height than the diploid line (Figure 5).

Leaf wilting and desiccation were determined as indicators for
plant vitality (Figures 6A,B). The wilting process of the diploid
plants occurredmore rapidly with a steeper increment than in the
fusion lines. Average leaf wilting of about 85% already appeared at
the third day after the final irrigation of the diploid line. Similarly
strong wilting occurred in the fusion line 27-12 at day nine after
the last watering, whereas this threshold was not observed for
the fusion lines 27-10 and 27-11 during the whole experiment.
Instead, desiccation of leaves was first visible in two fusion lines.
The lines 27-10 and 27-12 showed a proportional leaf wilting
of about 25 and 50%, respectively, already at the end of the 10
vol.-% soil moisture phase. Early leaf desiccation might have
had an influence on leaf wilting because leaf desiccation reduces
the transpiration surface. Maximum desiccation of 100% was
reached for the diploid and the fusion line 27-12 20 days after last
irrigation whereas this event did not occur for the fusion lines 27-
10 and 27-11. This analysis could not be conducted for the fusion
line 27-09, which was the smallest line with the lowest leaf area
(Table 2) and consequently consumed little water. Therefore, this
line reached the target date for stopping irrigation (i.e., after 7
days at 10 vol.-% soil moisture) only 2 days before the end of the
whole experimental time period, when leaves of other lines were
already 100% wilted.

Stomatal Conductance and Carbohydrate

Concentration
Under well-watered conditions, no differences were observed
among the stomatal conductance of the diploid line and
the fusion lines (Figure 7A). All tested lines responded to
dry conditions with a reduction in the stomatal conductance
(Figures 7A,B) whereas this did not differ among the drought-
exposed lines (Figure 7B). Here, stomatal conductance was not
correlated with stomatal density (Figures 3B, 7A,B).

All fusion lines increased their foliar carbohydrate
concentrations in response to drought (Figure 8). In the
diploid line, the increase was not significant (Figure 8). Overall,
the carbohydrate concentrations of the fusion lines were similar
to that of the diploid line (Figure 8). Genotype and treatment
interactions were not found for the parameters carbohydrate
concentration and stomatal conductance (Table 3).
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FIGURE 4 | (A) Scheme of the drought periods, (B) cumulative water

volumes applied to each line, (C) vapor pressure deficit during the 10 vol.-%

levels [gray line: drying period until the 10 vol.-% soil moisture level was

reached for all plants of one line, black line: 10 vol.-% soil moisture period;

27-01: circles, 27-10: squares, 27-11: crosses, 27-12: crossed squares.

Boxplots are defined as explained in Figure 3. Different letters at the top of

the boxes indicate significant differences between the lines (TukeyHSD test,

p < 0.05)].

Biomass Production
Among the fusion lines the relative height increment was
reduced under drought in the lines 27-10, 27-11, and 27-12,
but not in the line 27-09. This line probably suffered only from
mild drought because this fusion line was smaller than the
other lines (Figure 9A). Instead, the diploid line experienced

severe drought stress but showed no reduction in relative height
increment (Figure 9A). Under optimally watered conditions
the relative height growth of the fusion lines 27-10, 27-11, and
27-12 was equivalent to that of the diploid line, while that of
the fusion line 27-09 was significantly lower (Figure 9A).
Interactions between the genotype and the treatment
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FIGURE 5 | Water consumption for 7 days at 10 vol.-% soil moisture

level depending on height. [n = 10 plants, data and the regression line of

the respective plot are in black, others are visualized in gray; groups with

different letters indicate significant differences between the lines (exact F-Test,

p < 0.05): 27-01a, 27-09a, 27-10b, 27-11ab, 27-12b (Supplementary

Table 5)].

were detected for both relative height and stem increment
(Table 3).

Dry matter of the stem is an important parameter for biomass
production in short rotation coppice. We analyzed the shoot
dry matter without the leaves. The relative stem increment was
not decreased in the fusion lines but enhanced for the fusion
line 27-12 compared to the diploid line under optimally watered
conditions (Figure 9B). Under the drought treatment, relative
shoot increment was equivalent to the diploid line in all fusion
lines except for the fusion line 27-11 that showed an increased
relative shoot increment (Figure 9B).

Discussion

Morphological and Genetic Characterization
nSSR analysis did not reveal the presence of DNA of P. nigra or
P. trichocarpa× P. deltoides in any fusion line. Because all fusion
lines were tetraploid, our results suggest that homofusions of two
P. tremula× P. tremuloides protoplasts occurred.

Polyploidy often induces morphological and phenotypic
variation (Liu and Wendel, 2003). A reduction in height growth,
as observed here for some fusion lines, has been reported in
other polyploid plants before (Porter and Weiss, 1948; Sharma
and Datta, 1957; Riddle and Birchler, 2008; Deng et al., 2012).
Because poplars of dry habitats were smaller than those of wet
habitats (Regier et al., 2009; Yang and Miao, 2010), the observed
height reduction with lower total leaf area in the tetraploid
than in the diploid line might be advantageous for drought

FIGURE 6 | Time course of (A) leaf wilting, (B) desiccation of leaves.

(Data are normalized to last irrigation event and are means ± standard errors,

n = 10 plants. 27-01: circles, 27-10: squares, 27-11: crosses, 27-12: crossed

squares).

threatened habitats. We have shown here that these fusion lines
also consumed less water than the diploid line.

The stomatal density is correlated with themaximum stomatal
conductance in Mediterranean herbs, shrubs and woody species
(Galmés et al., 2007). Decreased stomata density as observed
in the fusion lines might therefore lead to enhanced drought
tolerance as the stomatal conductance is reduced. However, in the
fusion lines stomata lengths were enhanced. This modification of
the stomatal apparatus has also been observed in other tetraploid
species like Spathiphyllum (van Laere et al., 2010), Platanus (Liu
et al., 2007) or Betula (Li et al., 1996). Hodgson et al. (2010)
detected that stomatal length is positively correlated with genome
size within the eudicots, Poaceae and other monocots without
providing a causal link. The correlation of stomatal length with
habitat humidity is discussed controversially (Abrams et al.,
1994; Hodgson et al., 2010). For example, Hodgson et al.
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FIGURE 7 | Stomatal conductance at the end of 10 vol.-% soil moisture

level (A) watered plants, (B) drought-exposed plants. [n = 10 plants.

Boxplots are defined as explained in Figure 3. Different letters at the top of the

boxes indicate significant differences between the lines (TukeyHSD test,

p < 0.05)].

(2010) stated that stomatal length is correlated with habitats
of high humidity. Abrams et al. (1994), in contrast, reported
increasing stomatal size from wet-mesic to mesic and xeric sites
in deciduous tree species. Regier et al. (2009) observed that the
stomatal length was increased in one P. nigra genotype under
water limited conditions while abaxial stomatal density was
reduced. In drought tolerant tomato cultivars stomatal density
was decreased, but stomatal size increased compared to drought
sensitive genotypes (Kulkarni and Deshpande, 2006). These
stomatal traits that have also occurred in the fusion lines might
be the reason for lower water consumption as observed here.
Furthermore, Ashton and Berlyn (1994) observed a reduction
in the SAI from wet to xeric habitats in Quercus species and
suggested this parameter to predict drought tolerance. More,
recently QTLs for this trait have been identified and were also
linked with drought tolerance (Gailing et al., 2008). Here, SAI
was reduced in two fusion lines (Figure 3C) only one out of
these lines consumed significantly less water related to height

FIGURE 8 | Carbohydrate concentration at the end of 10 vol.-% soil

moisture level. [Watered plants: light gray, drought-exposed plants: dark

gray, n = 6 plants. Boxplots are defined as explained in Figure 3. Different

letters at the top of the boxes indicate significant differences between the lines

(TukeyHSD test, p < 0.05)].

TABLE 3 | Significance of the parameters genotype (G), treatment (T), light

(L) and their interaction effects on the stomatal conductance, the

carbohydrate concentration, the relative height and stem increment

(*p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant; –, not analyzed).

Parameter G T L G:T G:L L:T

Stomatal conductance ns ** ns ns ns ns

Carbohydrate concentration *** *** – ns – –

Relative height increment *** *** – *** – –

Relative stem increment *** *** – * – –

indicating that SAI might be a relevant parameter associated with
water consumption. However, the links between this trait and
DNA dosage remain obscure.

Performance of the Diploid Line and the Fusion
Lines Under Drought
Water Consumption and Leaf Vitality
Polyploid plants often possess superior characteristics in
comparison to their diploid counterparts with regard to
morphological and physiological changes and their tolerance to
environmental stresses (Xiong et al., 2006). In this study, we
observed that all fusion lines consumed less water relative to
height than the diploid line. Reduced water consumption was
significant for the fusion lines 27-10 and 27-12, which both
showed a total leaf area similar to the diploid line. Furthermore,
there were other cases where severe height and leaf area
reductions decreased water consumption of the fusion lines. The
altered stomatal morphology (decreased stomatal density and
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FIGURE 9 | (A) Relative height increment, (B) Relative stem increment [stem

without leaves, relative stem increment data are normalized to the number of

days when plants were irrigated, data of the relative height increment are

normalized to the number of cultured days (≡ days when plants were

irrigated); watered plants: light gray, drought-exposed plants: dark gray, n = 10

plants. Boxplots are defined as explained in Figure 3. Different letters at the

top of the boxes indicate significant differences between the lines (TukeyHSD

test, p < 0.05)].

increased stomatal size) and the increased leaf mass per area
(a low surface to volume ratio) that is linked to dry habitats
(Poorter et al., 2009) in the fusion lines 27-10 and 27-12 might
have reduced the transpiration and thereby enabled the plants to
use water more efficiently.

The leaf wilting was more severe for the diploid line than
for the fusion lines, but two of the fusion lines showed early

leaf desiccation which increased to about 50% at the end of the
drought. In the genus Populus, leaf shedding occurs to avoid
desiccation of the remaining tissue (Fischer and Polle, 2010).
Blake and Tschaplinski (1992) noted that leaf shedding and the
related reduction of the transpiration surface led to an increase
of the water potential in the remaining tissue. In analogy to this,
our finding suggests that the early-wilting fusion lines were better
adapted to drought than the diploid line because they reduced
the transpiration surface rapidly by desiccating a part of the
leaves and thereby might have been able to delay wilting of the
remaining foliage.

Stomatal Conductance and Carbohydrate

Concentration
The positive correlation between stomatal density and stomatal
conductance as described for herbs and trees in literature
(Abrams et al., 1994; Galmés et al., 2007) was not found
here. Despite the variation in stomatal morphology, significant
differences in the stomatal conductance between the different
ploidy levels were not discovered under well-watered conditions.
In polyploid Betula and Lonicera plants, stomatal conductance
was less affected by drought compared to the diploid variants (Li
et al., 1996, 2009), whereas the poplar fusion lines in our study
exhibited the same response to drought as the diploid line.

Carbohydrates play important roles for osmotic adjustment
of poplar tissues to drought stress (Danielsen and Polle, 2014).
Notably, in the fusion lines the carbohydrate concentrations were
more strongly increased under drought conditions than in the
diploid line (Figure 8). For instance, Deng et al. (2012) also
observed enhanced carbohydrate levels and increased survival of
octaploid tobacco compared to its tetraploid variant under stress
conditions. Accumulation of carbohydrates leads to osmotic
adjustment by decreasing the osmotic potential in the cell and
contributes to the stress tolerance (Touchette et al., 2009).
Carbohydrates also function in osmoprotection by stabilizing
proteins and membranes (Crowe et al., 1992). The stronger
increase in carbohydrate concentration in the fusion lines might
have enabled them to cope with dry conditions better than the
diploid line because of improved osmotic adjustment and cellular
protection.

Biomass Production
Although the initial height was reduced for the fusion lines 27-09,
27-10, and 27-11 (Table 2) the relative height increment of the
fusion lines 27-10, 27-11, and 27-12 was equivalent to that of the
diploid line under well-watered conditions indicating no growth
constraints (Figure 9A). Height growth of Populus is sensitive
to drought at an early stage (Bogeat-Triboulot et al., 2006).
McDowell et al. (2008) suggested that plants under drought
conditions suffer mainly from carbon starvation because of
stomatal closure. Consequently, growth is reduced. In the context
of the present study, this theory implies that the fusion lines 27-
10, 27-11, and 27-12 closed their stomata to reduce water loss,
as a consequence their height increment decreased. Additionally,
they avoided further increase in stress because they reduced the
area of growing tissue that had to be supplied with water. This can
also be a part of the stress avoidance response. Eventually, these
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measures may have led to reduced water demand, apparent as
the lower water consumption of the fusion lines. In contrast, the
diploid line did not respond to drought by early diminishment of
height growth and thus, did not save resources. These suggestions
are in line with the resource requirement hypothesis pertaining
that polyploid plants grow slower and therefore, have a decreased
resource demand compared to their diploid counterparts (Deng
et al., 2012). In practical terms, it is obvious that in plantations for
woody biomass production, genotypes are needed that represent
a compromise of biomass production and drought tolerance.

In SRC stem biomass production is the most important
parameter to be optimized because the woody parts are used for
energy production (Karp and Shield, 2008; Polle et al., 2013). In
our study, an enhancement in the relative shoot increment was
detected for the fusion line 27-11 under drought and for 27-12
under control conditions, respectively compared to the diploid
line. Because two of these fusion lines also showed total biomass
production similar to that of the diploid line, the new genotypes
appear to be reasonable alternatives for plantation in dry areas.

Conclusion

Overall, the tetraploid lines that were generated by protoplast
fusion varied significantly in morphological characteristics such
as height, total leaf area and stomatal characteristics as well as
in physiological traits such as carbohydrate production under
drought and water consumption. The phenotypic diversity might
be due to mutations in the chromosomes caused during the
protoplast fusion process (Prange et al., 2012). This diversity
renders the fusion lines predestined for breeding. Moreover, we
could show that the fusion lines 27-10 and 27-12 desiccated a
part of their foliage at an early stage of drought and were more
water saving than the diploid line. All fusion lines showed a
higher increase in carbohydrate concentration and a decrease
in relative height increment when suffered from severe drought
suggesting better drought adaptation by stress tolerance and
avoidance mechanisms. Adaptability to low water supply is
favorable for the SRC plantation, because it is expected that
biomass plantations will be established onmarginal sites with low

water and mineral supply to avoid competition with agricultural
land (von Wühlisch, 2012). Furthermore, a decrease in soil
moisture of 5% up to 12% in the upper 10 cm deep soil is
predicted for large parts of Europe in the long term (year 2080–
2099) (Dai, 2012). Thus, it is likely that even production on
currently moist sites will have to cope with water limitations in
the future. Eventually, a sufficient supply of water is a decisive
factor that determines the success of establishing SRC plantations
(Helbig and Müller, 2009). Therefore, the fusion lines represent
interesting candidates for the cultivation on SRC.
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