
 

Oxidative stress pathways in the pathogenesis of renal fibrosis: 

Multiple cellular stress proteins as regulative molecules and 

therapeutic targets 

 

 
 

 

 

 

Dissertation 

for the award of the degree 

"Doctor rerum naturalium" (Dr.rer.nat.) 

of the Georg-August-Universität Göttingen 

 

within the doctoral program Biology and Psychology 

of the Georg-August University School of Science (GAUSS) 

 

 

Submitted by 

Marwa Eltoweissy 

From Alexandria, Egypt 

 

Göttingen, 2015 

 



 

 

Thesis Committee: 

       Prof. Dr. Ernst A. Wimmer  
       Head of the Developmental Biology Department,  
       Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, 
       Georg-August-University Göttingen. 
 
       Prof. Dr. med. Uwe Groß 
       Head of the Medical Microbiology Department,  
       Medical Microbiology Institute, University Medical Center Göttingen. 
 

Members of the Examination Board: 

      Reviewer: Prof. Dr. Ernst A. Wimmer  
      Head of the Developmental Biology Department,  
      Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, 
      Georg-August University Göttingen. 
 
     Second Reviewer: Prof. Dr. med. Uwe Groß 
     Head of the Medical Microbiology Department,  
     Medical Microbiology Institute, University Medical Center Göttingen. 
 

Further members of the Examination Board: 
 
     Prof. Dr. med. Heidi Hahn 
     Head of the Tumor Genetics Department, 
     Human genetics Institute, University Medical Center Göttingen. 
 
     Prof. Dr. Rolf Daniel 
     Head of the Genomic and Applied Microbiology Department, 
     Microbiology and Genetics Institute, Georg-August University Göttingen. 
 
     PD Dr. Michael Hoppert  
     General Microbiology Department, 
     Microbiology and Genetics Institute, Georg-August University Göttingen. 
 
     PD Dr. Roland Dosch 
     Developmental Biochemistry Department,  
     Developmental Biochemistry Institute, University Medical Center Göttingen. 
 
 
     Date of the oral examination: 13.02.2015 
 

  



 

 

 

DECLARATION 

I hereby declare that the Ph.D. thesis entitled 

 “Oxidative stress pathways in the pathogenesis of renal fibrosis: Multiple cellular stress 

proteins as regulative molecules and therapeutic targets.” has been written independently, 

with no other sources than quoted, and no portion of the work referred to in the thesis has 

been submitted in support of an application for another degree. 

Marwa Eltoweissy 

 

  



 

 

 

 

 

 

 

 

 

Dedicated to my beloved husband and children,  

whose love, faith in me, and wishes for my success 

had helped me in my path. 



v 
 

Table of Contents 

 

 

List of Abbreviations……………………………………………………………………………………………………………………………i 

List of Tables………………………………………………………………………………………………………………………………………ix 

List of Figures………………………………………………………………………………………………………………………………………x 

1. General Introduction……………………………………………………………………………………………………………………..1 

 1.1  Chronic kidney disease (CKD)……………………………….……………………………………..…………………………2 

 1.2  Oxidative stress (OS)………………………………………………………………………………………………………………3

 1.2.1 Reactive oxygen species (ROS)...........................................................................................4 

1.3  OS in promoting CKD……………………………………………………………………..………………………………………5 

1.4  OS triggering factors...................................................................................................................6 

 1.4.1  Hydrogen peroxide (H2O2) .............................................................................................6 

1.4.2  Angiotensin II (ANG II) and platelet derived growth factor (PDGF)……………………..........7 

1.4.2.1 Mechanism of action of ANG II……………………………………………………………………8 

1.5 Antioxidant systems…………………………………………………………………………………………………………….10 

1.6  OS biomarkers……………………………………………………………………………………………………………………..11 

1.6.1 Protein DJ-1 (PARK7)…………………………….………………………….…….......................................11 

  1.7  Objectives….….……………………………………………………………………..……………………...………….............15     

2.  Proteomics analysis identifies PARK7 as an important player for renal cell resistance and survival 

under oxidativestress...................................................................................................................... 17 

3.  Protein DJ-1 and its anti-oxidative stress function play an important role in renal cells mediated 

response to profibrotic agents…………………………………………………………………………………………………….30 

 3.1 Abstract……………………………………………………………………………………………………..………………………….31 

 3.2 Introduction................................................................................................................................32 

3.3 Material and Methods................................................................................................................34 

3.3.1 Cell line and culture procedure……………………………………………………………………………………34 

3.3.2 FCS-free cell culture and cytokine treatment experiments.............................................35 

3.3.3 Protein extraction and precipitation...............................................................................36 

3.3.4 MTT cell viability assay………………………………………………………………………………………..……..36 



vi 
 

3.3.5 Two-dimensional gel electrophoresis (2-DE)...................................................................37 

3.3.6 Gel staining………………………………………………………………………………………………………...…...…37 

               3.3.7 In-gel digestion and mass spectrometry analysis of protein spots………………….…….......38 

3.3.8 Western blot analysis………………………………………………………………………………………………….39 

3.3.9 Immunohistochemical and immunofluorescence analyses of kidney sections……….…...40 

3.3.10 Plasmids and cellular transfection………………………………………………………………………….….41 

3.3.11 Protein immunoprecipitation………………………………………………………………………………….…42 

3.3.11.1 For WT-DJ-1 (Myc tag protein)……………………………………………………………..….….42 

3.3.11.2 For E18Q-DJ-1 and E18D-DJ-1 (6xHis tag proteins)………………………………………42 

3.3.12 Bioinformatics……………………………………………………………………………………….………………….43 

3.3.13 STRING analysis………………………………………………………………………………………….…………..…43 

3.3.14 Statistical analysis……………………………………………………………………………………………..…..….43 

3.4 Results……………………………………………………………………………………………………………….…………..……… 44 

3.4.1 Profibrotic cytokines affect renal cell viability through induction of OS.........................44 

3.4.2 Mapping of renal cell proteome alteration upon cytokine treatment………………………...45 

3.4.3 Ontogenic classification of the proteins involved in cell response to profibrotic 

cytokinetreatment........................................................................................................60 

3.4.4 Immunoblotting validation of protein expression alteration………………………………….……64 

3.4.5 Analysis of OS protein expression alteration in animal model of fibrosis: Involvement of 

DJ-1 in renal fibrosis......................................................................................................65 

3.4.6 Immunohistochemical and immunofluorescence staining..............................................66 

3.4.7 Over expression of DJ-1 and its mutant forms and their effect on renal cell viability…..69 

3.4.8 Immunoprecipitation and identification of the DJ-1 interaction partners......................73 

3.5  Discussion……………………………………………………………………………………………………………………….……..80 

4. General Discussion……………………………………………………………………………………………………….………..…… 90 

5. Summary……………………………………………………………………………………………………………………………..……….96 

Bibliography……………………………………………………………………………………………………………………………………..99 

Acknowledgements…………………………………………………………………………………………………………………….....123 

Curriculum Vitae…………………………………………………………………………………………………………………………….125 



vii 
 

List of Abbreviations 

 

 

~: Approximately 

%: Percent  

°C: Degree Celsius 

>: Greater than 

≥: Greater than or equal 

<: Less than 

≤: Less than or equal 

2-DE: Two dimensional gel electrophoresis 

2-Cys Prx: 2-cysteine peroxiredoxins 

AGE: Advanced glycoxidation end product 

ANG II: Angiotensin II 

AT1R: ANG II type-1 receptor  

AT2R: ANG II type-2 receptor  

Å: Angstrom 

ACN: Acetonitrile 

ACTB: β-actin 

ANOVA:  Analysis of variance 

ANXA1: Annexin A1 

ANXA2: Annexin A2 

ANXA5: Annexin A5 

ACTA2: Actin, aortic smooth muscle 

bFGF: basic fibroblast growth factor 

BSA: Bovine serum albumin 



viii 
 

Bis-Tris: [Bis(2-hydroxyethyl)-amino-tris(hydroxymethyl)-methane] 

CKD: Chronic kidney disease 

Cu-Zn-SOD: Copper-zinc superoxide dismutase 

C106, Cys106: Cysteine 106 

Cys106-SO2
-: Cysteine sulfinic acid 

Cys106-SO-: Cysteine sulfenic acid 

Cys46: Cysteine 46 

Cys53: Cysteine 53 

Col4a3: Collagen alpha-3(IV) chain 

cm: Centimeter 

cm2: Square centimeter  

CO2: Carbon dioxide 

CHAPS: 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate 

c-myc: a regulator gene that codes for a transcription factor 

COL1A1: Collagen alpha-1(I) chain 

COL4A1: Collagen alpha-1(IV) chain 

CPI: Isoelectric point 

CFL1: Cofilin-1 

DNA: Deoxyribonucleic acid 

DMEM: Dulbecco's modified Eagle's medium 

DTT: Dithiothreitol 

Da: Dalton 

DAPI: 3,3-diaminobenzidine 

DAVID: Database for Annotation Visualization and Integrated Discovery 

DAVID IDs: DAVID identifiers 

http://en.wikipedia.org/wiki/C-myc
http://en.wikipedia.org/wiki/Regulator_gene
http://en.wikipedia.org/wiki/Genetic_code
http://en.wikipedia.org/wiki/Transcription_factor


ix 
 

DES: Desmin 

DHR-123: Dihydrorhodamine-123 

DMSO: Dimethyl sulfoxide 

ESRD: End-stage renal disease 

ECM: Extracellular matrix 

E18Q: Glutamine side chain 

E18D: Aspartic acid side chain 

EMT: Epithelial mesenchymal trans differentiation 

ER: Endoplasmic reticulum 

ENO1: Alpha-enolase 

e.g.: Example 

ESI-MS: Electrospray ionization mass spectrometry 

E18: Glutamic acid side chain or carboxylic acid side chain 

ECL: Enhanced chemiluminescence 

FCS: Fetal calf serum 

FN1: Fibronectin 1 

GRF: Glomerular filtration rate 

Glu18: Glutamic acid side chain or carboxylic acid side chain 

g: Gravitational (unit of centrifugation) 

GRP78: 78 kDa glucose-regulated protein 

G-418: Geneticin 

GO: Gene Ontology 

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase 

GDIA1: Rho GDP-dissociation inhibitor 1 

GDIA2: Rho GDP-dissociation inhibitor 2 



x 
 

GAT: Sodium- and chloride-dependent GABA transporter 

H2O2: Hydrogen peroxide 

His-126: Histidine 126 

h: Hour 

HCl: Hydrochloric acid 

HSPA5: 78 kDa glucose-regulated protein  

HSPA9: 75 kDa glucose-regulated protein 

HRP: Horse radish peroxidase 

His tag: a polyhistidine-tag 

HE: Hematoxylin and eosin 

HSP90B1: Endoplasmin 

HSP: Heat shock proteins 

HYOU1: Hypoxia up-regulated protein 1 

IGF: Insulin-like growth factor 

IEF: Iso-electric focusing 

IPG: Immobilized pH gradient 

IgG: Immunoglobulin-G 

IP: Immunoprecipitation 

K/DOQI: The Kidney Disease Outcomes Quality Initiative  

kDa: Kilo Dalton 

kV: kilovolt 

K130: Lysine 130 

KRT: Keratin-like protein 

LDH: Lactate dehydrogenase 



xi 
 

Mn-SOD: Manganese superoxide dismutase 

MS/MS: Tandem mass spectrometry 

ml: Milliliter 

min: Minute 

M: Molarity 

mM: Millimolar 

mg/ml, mg ml-1: Milligram per milliliter 

mol/L: Mole per liter 

Myc tag: a polypeptide protein tag derived from the c-myc gene product  

Mol. wt.: Molecular weight 

MS: Mass spectrometry 

Max-Prob: Maximum probability 

Min Count: Minimum count 

MTT: [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] 

NAD(P)H: Nicotinamide adenine dinucleotide phosphate 

NF-kappaB, NFKB: Nuclear factor-kappa B 

mRNA: messenger ribonucleic acid 

ng/µl, ng µl-1: Nanogram per microliter  

nM: Nanomole 

Nrf2: Nuclear erythroid 2 related factor 

N, nr: Number 

Ni-NTA: Nitrilotriacetic acid 

OS: Oxidative stress 

O2-: Superoxide anion 

Opti-MEM: Reduced serum media 

http://en.wikipedia.org/wiki/Protein_tag
http://en.wikipedia.org/wiki/C-myc
https://www.google.de/search?q=mass%20spectrometry&start=0&spell=1&biw=1334&bih=572


xii 
 

OH-: Hydroxyl radical 

PDGF: Platelet derived growth factor 

PARK7: Protein DJ-1 

PD: Parkinson’s disease 

PKM2: Pyruvate kinase 

pI: Isoelectric point 

pKa: Acid dissociation constant 

PRDXs: Peroxiredoxins 

PRDX1: Peroxiredoxin-1 

PRDX2: Peroxiredoxin-2 

PRDX5: Peroxiredoxin-5 

PRDX6: Peroxirodoxin-6 

PBS: Phosphate buffered saline 

PAGE: Polyacrylamide gel electrophoresis 

pH: preponderance of Hydrogen ions 

PMF: Peptide mass fingerprint 

PMSF: phenylmethanesulfonylfluoride or phenylmethylsulfonyl fluoride 

ppm: parts-per-million 

PQ2+: Paraquat 

P: probability 

Q-TOF: Electrospray ionization time of flight  

RAS: Renin-angiotensin system 

ROS: Reactive oxygen species 

RNA: Ribonucleic acid 

rpm: rotation per minute 



xiii 
 

SODs: Superoxide dismutases 

SOD1: Copper-zinc superoxide dismutase 

SOD2: Manganese superoxide dismutase 

siRNA: small interfering RNA  

SD: Standard deviation 

SDS: Sodium dodecyl sulfate 

STD: Standard 

sec: Second 

STRING: Search Tool for the Retrieval of Interacting Genes/proteins 

Seq. Cov.: Sequence coverage 

SV40: Simian vacuolating virus 40 

STIP1: Stress-induced-phosphoprotein 1 

TGFß1: Transforming growth factor beta 1 

TNFα: Tumor necrosis growth factor alpha 

TNFR1: TNF-αreceptor 1 

TNFR2: TNF-αreceptor 2 

Tris: Trihydroxymethyl aminomethane 

TFA: Trifluoroacetic acid 

TBST: Tris boric acid-tween 

TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand 

µg: Microgram  

µl: Microliter  

µM: Micromole 

UV: Ultraviolet 

UBC: Ubiquitin  



xiv 
 

VCAM-1: Vascular cell adhesion molecule 1 

V: Volt 

VCL: Vinculin 

VIM: Vimentin 

WT: Wild type 

WB: Western blot 

wk: Week 

w/v: weight/volume 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

 

 

List of Tables 

 

 

Table 3.1: Proteins differently expressed in the ANG II treated TK-173 cell line. .................................. 48 

 

Table 3.2: Proteins differently expressed in the PDGF treated TK-173 cell line .................................... 51 

 

Table 3.3: Proteins differently expressed in the ANG II treated HK-2 cell line ...................................... 54 

 

Table 3.4: Proteins differently expressed in the PDGF treated HK-2 cell line ........................................ 57 

 

Table 3.5: Immunoprecipitation of the WT-DJ-1 transfected cell lysates .............................................. 76 

 

Table 3.6: Immunoprecipitation of the mutant E18Q-DJ-1 transfected cell lysates .............................. 76 

 

Table 3.7: Immunoprecipitation of the mutant E18D-DJ-1 transfected cell lysates .............................. 76 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

List of Figures 

 

 

Figure 1.1: Classification ofchronic kidney disease…………………………………………………………………………....3 

Figure 1.2: Different sources of hydrogen peroxide……………………………………………………………………………7 

Figure 1.3: Angiotensin II: Role in renal injury ........................................................................................ 9 

Figure 1.4: Structure of the wild type DJ-1............................................................................................ 12 

Figure 1.5: Structural effects of wild type DJ-1 designed mutations……………………….…………………………14 

 

 

Figure 3.1: MTT cell viability assay… ..................................................................................................... 44 

Figure 3.2: 2-D reference maps of proteins extracted from TK-173 and HK-2 cells ............................. 46 

Figure 3.3: Gene Ontology (GO) classification of differently regulated proteins in TK-173 and  

………..HK-2cell lines by DAVID Bioinformatics .............................................................................. 60 

Figure 3.4: GO annotations for biological processes and molecular functions ..................................... 61 

Figure 3.5: Western blot analysis of expression changes of OS marker proteins under OS induced      

………...by the different cytokines (PDGF, ANG II and TGFß1). ...................................................... 64 

Figure 3.6: Western blot analysis of OS and fibrotic markers in whole kidney lysates of WT and 

………..different stages of Col4a3 knockout mice as a fibrosis model ........................................... 66 

Figure 3.7: Immunohistochemical staining of DJ-1 and PRDX6 as OS markers. .................................... 67 

Figure 3.8: Immunofluorescence staining of DJ-1 and PRDX6 as OS markers. ..................................... 68 

Figure 3.9: Western blot analysis of DJ-1 for TK-173 and HK-2 cells before and after transfection…...70 

Figure 3.10: Viability test for transfected TK-173 and HK-2 cells and after transfection combined        

………….with H2O2, ANG II or PDGF treatment……………………………………………………………………………72 

Figure 3.11: Immunoprecipitation (IP) and protein identification in transfected TK-173 and HK-2         

………….cells. ................................................................................................................................... 74 

Figure 3.12: Comparison between immunoprecipitated proteins as potential interaction partners of                                                          

………………….  different forms of DJ-1....................................................................................................78 

Figure 3.13: STRING 9.05: Functional protein association networks…………………………………………….……79 

 

 

 

Figure 4.1: Simplified schematic diagram for protein DJ-1 pathways……………………………………………...94 



   1 
 

 

1.  General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General Introduction 

 

 

2 
 

1.1 Chronic kidney disease (CKD) 

One of the key functions of the kidneys is to filter waste products that build up in the blood. 

Renal failure determines that waste products are not removed completely or sufficiently. This 

can occur quickly (acute kidney injury) often as the result of ischemia, toxins or mechanical 

trauma (1). More often, however, the development of renal failure is gradual and insidious, 

with resultant chronic kidney disease (CKD) (1). CKD is a common and serious problem that 

adversely affects human health, limits longevity, and increases costs to health-care systems 

worldwide (1). It is often many years before noticeable loss of renal function occurs. People 

with CKD have a high risk of death from stroke or heart attack (2). 

CKD is characterized by a progressive decline in the glomerular filtration rate (GFR); the 

diagnosis is made on the basis of a reduced GFR for a minimum of 3 months (3). The Kidney 

Disease Outcomes Quality Initiative of the National Kidney Foundation K/DOQI (4) has 

proposed a classification scheme for CKD that has been widely adopted (Fig. 1.1). Stage 4 

CKD denotes a severe decline in the GFR. Patients with stage 3-4 CKD are at risk for 

progression of kidney disease and development of end-stage renal disease (ESRD) (5, 6). 

Moreover, these patients appear to be at even greater risk for the development of 

cardiovascular disease and associated morbidity and mortality (2, 5, 7). Dialysis or 

transplantation is then necessary, with loss of quality of life, decreased individual life 

expectancy and increased costs to healthcare systems (1). 
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Figure 1.1: Classification of chronic kidney disease 

National Kidney Foundation. K/DOQI, 2002 (4). Clinical practice guidelines for chronic kidney disease: 

Evaluation, classification, and stratification.  

CKD has increasing incidence and prevalence in developed and developing nations. The 

kidneys show the greatest age-associated chronic pathology compared with brain, liver, and 

heart (8), and one in six adults over 25 years of age has some degree of CKD (9), with 

incidence increasing with age.  

The structural characteristics of CKD include increased tubular atrophy, interstitial fibrosis, 

glomerulosclerosis, renal vasculopathy, peritubular capillary rarefaction, reduced renal 

regenerative capability, and inflammation (10, 11). These characteristics may be caused, at least 

inpart, by the gradual loss of renal energy through development of mitochondrial dysfunction 

and resultant increasing oxidative stress (OS) (1). OS is prevalent in CKD patients and is 

considered to be an important pathogenic mechanism (1, 12, 13). 

1.2 Oxidative stress (OS) 

Oxygen is the primary oxidant in metabolic reactions designed to obtain energy from the 

oxidation of a variety of organic molecules. OS results from the metabolic reactions that use 

oxygen, and it has been defined as a disturbance in the equilibrium status of pro-oxidant/anti-

oxidant systems in intact cells (13). During these processes, small amounts of partially 
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reduced reactive oxygen forms are produced as an unavoidable by-product of mitochondrial 

respiration. Some of these forms are free radicals referred to as reactive oxygen species (ROS) 

(13). In addition, other extracellular factors such as hormones, growth factors, and 

proinflammatory cytokines also affect the production of OS (13-19). Further, systemic 

diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; 

antibiotics, chemotherapeutics, radiocontrast agents; and environmental toxins, occupational 

chemicals, radiation, smoking, as well as alcohol consumption also induce OS (13). 

OS has been identified and proven to be the root cause of more than 70 chronic degenerative 

diseases such as heart disease, cancer, stroke, diabetes, Alzheimer’s dementia, Parkinson’s 

disease, macular degeneration and other serious ailments, according to Dr Ray D. Strand, an 

expert in nutritional medicine (20). In the kidney, OS has been reported to play a critical role 

in the pathology of acute renal failure (21) and as a common pathway to chronic 

tubulointerstitial injury (22). The collective information on the role of oxidants that is derived 

from models of glomerular disease as well as progressive renal failure is impressive (6, 21-

25). 

    1.2.1 Reactive oxygen species (ROS) 

In physiological conditions, ROS produced in the course of normal conditions are completely 

inactivated by intact pro-oxidant/anti-oxidant processes that continuously generate and 

detoxify oxidants during normal aerobic metabolism (26-28). This means that normally there 

is a balance between pro-oxidant (or oxidant) and antioxidant defense systems. An imbalance 

between free radical-generating and radical scavenging systems in intact cells has been 

associated with the cell injury seen in numerous pathologic conditions ultimately leading to 

cellular damage in severe OS (26-28). The effects of these reactive species are wide-ranging, 
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but three reactions are particularly relevant to cell injury: lipid peroxidation of membranes, 

oxidative modification of proteins, and oxidative damage to DNA (29). 

Exacerbated production of ROS and/or depletion of antioxidant defense system results from a 

myriad of different oxidative challenges that influence downstream cellular signaling thus 

inducing cellular damage or fibrogenic responses through stress-sensitive pathways and, in 

the kidney, promote renal cell fibrosis and senescence, decrease regenerative ability of cells, 

affect expression of inflammatory and extracellular matrix (ECM) genes and transduce cell 

migration and apoptosis. These factors have a stochastic deleterious effect on kidney function 

(30-34). 

The exact sources of ROS generated in biological systems under different disease states are 

always elusive as they are also a part of physiological processes. The principal intracellular 

sources of ROS include the mitochondrial electron transport system (cytochrome c oxidase 

enzyme), peroxisomes, 5′-lipoxygenase, and NAD(P)H oxidase enzymes (35, 36) whereas, 

commonly described exogenous factors involved in the generation of ROS are represented by 

inflammatory cytokines, chemotherapeutic drugs, and toxins (36). 

1.3 OS in promoting CKD 

OS is a constant feature and major mediator of CKD progression. Oxidants may contribute to 

progressive renal disease by virtue of their renal haemodynamic actions, by impairing 

glomerular selective properties, by inducing inordinate or aberrant growth responses, by 

inducing loss of cellular phenotype and apoptosis, and by promoting acute and chronic 

inflammatory responses and certain adhesion molecules and proinflammatory mediators (37). 

Traditional risk factors such as hypertension, diabetes, obesity, metabolic syndrome (38), as 

well as acute kidney injury (39), can damage the kidney directly or by enhancing intrarenal 

atherogenesis. Evidence indicates that increased OS may mediate most of the effects of risk 
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factors on the kidney (38). Metabolic factors such as elevated free fatty acids, high glucose 

levels or advanced glycoxidation end products (AGEs) induce ROS in vascular cells, leading 

to ongoing AGE formation and to gene induction of proinflammatory cytokines. Vice versa, 

numerous cytokines found elevated in obesity and diabetes may also induce OS thus a 

ʻcirculus vitiosusʼ may be initiated and accelerated (40). Because all factors involved form a 

highly interwoven network of interactions, the blockade of ROS or AGE formation at 

different sites may interrupt the vicious cycle. Reduction in renal OS by dietary or 

pharmacological approaches provides an appealing target for therapies directed towards the 

retardation of progressive renal injury. Most important to clinical practice, a number of drugs 

commonly used in the treatment of diabetes, hypertension, or cardiovascular disease, such as 

angiotensin-converting enzyme inhibitors, AT1 receptor blockers, 3-hydroxy-3-methyl-

glutaryl-CoA reductase inhibitors (statins), and thiazolidindiones have shown promising 

preventive intracellular antioxidant activity in addition to their primary pharmacological 

actions (40). 

1.4 OS triggering factors 

    1.4.1 Hydrogen peroxide (H2O2) 

 A reactive oxygen metabolite formed by the spontaneous or catalytic dismutation of 

superoxide anions (O2-), produced by the partial reduction of oxygen during aerobic 

respiration and following the exposure of cells to a variety of physical, chemical, and 

biological agents (Fig. 1.2). The ROS that are generated by mitochondrial respiration, 

including H2O2, are potent inducers of oxidative damage (1). Moreover, various stimuli 

including cytokines and growth factors generate H2O2 in target cells by stimulating the 

activation of NAD(P)H oxidases (41, 42). H2O2 has been implicated in the pathogenesis of 
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renal injury (29). H2O2-induced renal cell damage and tissue necrosis is associated with lipid 

peroxidation in renal cell membranes (1, 43, 44).  

 

 

 

 

 

 

 

Figure 1.2: Different sources of hydrogen peroxide 

Hydrogen peroxide can be produced extracellularly by the immunoglobulin G-catalyzed oxidation of water, by 

receptor/ligand interactions, and by phagocytic immune cells. Superoxide anions (O2-), which are produced by 

the partial reduction of oxygen by cytochrome c oxidase in mitochondria, by membrane associated NAD(P)H 

oxidase, or by 5′-lipoxygenasein the cytoplasm, are rapidly converted to H2O2 by the action of cytoplasmic and 

mitochondrial superoxide dismutase enzymes. Growth factors, cytokines, and integrins stimulate the activation 

of NAD(P)H oxidase and/or 5′-lipoxygenase. H2O2 can diffuse across membranes as indicated by the finer 

arrows. Adapted from reference 45. 

    1.4.2 Angiotensin II (ANG II) and platelet derived growth factor (PDGF) 

Angiotensin II is considered the major physiological active component of the renin-

angiotensin system (RAS). Originally, ANG II was identified as a vasoconstrictor and potent 

stimulus of aldosterone release from the suprarenal gland (46, 47), yet intensive research over 

the past two decades has provided convincing evidence for its active role as a true renal 

growth factor and proinflammatory cytokine, participating in various steps of the 

inflammatory response by a host of fibrotic pathways including, the upregulation of 

profibrotic cytokines, inflammation, modulation of renal cell proliferation and tubular 

epithelial hypertrophy, and ECM biosynthesis and degradation thereby contributing in 
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progression of renal fibrosis (34,48-55). Beyond this, ANG II also incites OS in renal system, 

by direct induction of ROS generation (34, 56-61), (Fig.1.3). 

        1.4.2.1 Mechanism of action of ANG II  

All the components of RAS, including substrate angiotensinogen, enzymes involved in the 

synthesis and degradation of angiotensins, as well as receptors for angiotensins are present in 

the kidney (62). ANG II binds to two high-affinity receptors, the ANG II type-1 receptor 

(AT1R) and the ANG II type-2 receptor (AT2R). Signaling through the AT1R results in 

vasoconstriction, stimulation of growth, and activation of fibroblasts and myocytes. Signaling 

through the AT2R receptor results in vasodilatation and anti-proliferative responses (63). In 

addition, ANG II binds to its AT1R activating NAD(P)H oxidase, which in turn increases 

ROS generation in several tissues (64, 65) (Fig. 1.3). The NAD(P)H oxidase is a multi-

subunit enzyme and is one of the enzymatic sources of superoxide production (64).  

The angiotensinogen gene, which provides the precursor for ANG II production, is stimulated 

by NF-KB activation (65-67). Interestingly NF-KB is activated by ANG II in the kidney (68) 

through both AT1 and AT2 receptors (69). This provides an autocrine reinforcing loop that up-

regulates ANG II production. Further, nuclear extracts obtained from the cortex of kidneys 

with ureteral obstruction contained proteins that bind to an NF-KB-like sequence contained in 

the rat TNF-α gene promoter (69). TNF-α itself stimulates NF-KB activation (67), which again 

creates an autocrine reinforcing loop for enhanced TNF-α formation (Fig. 1.3). Because the 

NF-KB family of transcription factors have many potential combinations, it is possible that 

different NF-KB isotypes are activated by ANG II at different phases of the progression of 

renal disease. Transcription factors of the NF-KB family can influence directly or indirectly 

cellular events leading to tissue fibrosis (Fig. 1.3). ANG II stimulates NF-KB activation 

leading to increased TNF-α synthesis, which in turn can activate further NF-KB. Resident 
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renal cells (glomerular mesangial cells and tubular epithelial cells) are also sources of TNF-α 

production in renal injury (70, 71). Two TNF-α receptors have been described: one with a 

molecular weight of 55 kD (TNFR1) and the other with a molecular weight of 75 kD 

(TNFR2) (72). Binding of TNF-α to its receptors activates a number of signal transduction 

pathways that result in the expression of a variety of transcription factors, cytokines, growth 

factors, receptors, cell adhesion molecules, mediators of inflammatory processes, acute phase 

proteins, and major histocompatibility complex proteins (72, 73) (Fig. 1.3). Moreover, 

increasing levels of ANG II may up-regulate the expression of several other proliferative 

factors including PDGF, TGFß1, VCAM-1, bFGF, and IGF. Most of these compounds have a 

major role in matrix protein overproduction thereby promoting cell growth and fibrosis (74) 

(Fig. 1.3). PDGF stimulates synthesis of fibronectin and type III collagen (75, 76). Also, 

stimulates TGFß mRNA and its protein in rat kidney fibroblasts, mouse macrophages and 

human renal proximal tubular cells (75-77). 

 

 

 

 

 

 

 

 

 

Figure 1.3: Angiotensin II: Role in renal injury 

(A): Angiotensin II binds to its receptor (AT1R) activating the cystolic subunits of NAD(P)H oxidase, which in 

turn increases ROS generation. (B): Increasing levels of ANG II up-regulate the expression of a large array of 
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cytokines, including PDGF. Most of these compounds participate in stimulating intracellular ROS formation and 

promote cell growth and fibrosis. Modified from references 62 and 64. 

1.5 Antioxidant systems 

In addition to non-enzymatic antioxidants such as vitamins C and E, carotenoids and 

flavonoids, cells contain a portfolio of antioxidant enzymes whose activities are directed at 

reducing oxidants. These enzymes can be distinguished by their catalytic mechanisms, 

cellular localization, and regulation. The major antioxidant enzymes involved in the catalytic 

breakdown of superoxide and/or peroxide anion radicals are superoxide dismutase (Cu-Zn-

SOD and Mn-SOD), catalase, glutathione peroxidase, and thioredoxin peroxidase 

(peroxiredoxins) (1, 78-81). They are highly efficient enzymes performing their catalytic 

reduction by dismutation (superoxide dismutase) or by utilizing: a heme prosthetic group 

(catalase), a cyclic oxidation/reduction of catalytic cysteine or seleno-cysteine residues 

(glutathione peroxidases), or an oxidation of catalytic cysteine residues (thioredoxin 

peroxidases). Peroxiredoxins have been subdivided into classes based on protein similarities 

and the mechanism of reduction of the oxidized protein (for a review see 82). For example, 

the typical 2-cysteine peroxiredoxins (2-Cys Prx) contain two highly conserved cysteine 

residues, which are both involved in the thioredoxin-coupled catalytic reduction of H2O2. 

The balance between pro- and antioxidant molecules determines the OS profile. A cell is able 

to overcome small perturbations and regain its original state. The formation and detoxification 

of ROS is tightly controlled by a homeostatic mechanism that entails a cellular protective 

response aiming at neutralizing the damage effect (29, 83). The previously mentioned 

antioxidant enzymes are examples of key players in that task. 

To measure the delicate balance that exists between OS and the system in place has given rise 

to several tools for adequate detection and quantification (29). Emphasis is now being placed 
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on biomarkers of OS, which are objectively measured and evaluated as indicators of normal 

biological processes or pathologic responses to therapeutic intervention.  

The localization and effects of OS, as well as information regarding the nature of the OS, may 

be gleaned from the analysis of discrete biomarkers of OS damage. 

 

1.6 OS biomarkers 

    1.6.1 Protein DJ-1 (PARK7) 

Protein DJ-1 is also known as the neuroprotective or Parkinson’s disease-related protein. 

Genetic mutations that eliminate the expression of the putative neuroprotective protein DJ-1 

are known to cause the familial Parkinsonʼs disease (PD) the most common 

neurodegenerative disorder (84-94). An accumulating body of evidence pinpointed the 

important role of DJ-1 in PD (84-94).The mechanisms by which loss of DJ-1 function 

promotes PD have been most associated with management of ROS and the oxidative damage 

(for review see 95-99). Recently, we highlighted in our laboratory, the powerful role of 

protein DJ-1 for renal cell resistance and survival under OS triggered by H2O2 (Chapter 2) and 

by ANG II and PDGF (Chapter 3). 

    DJ-1structure 

DJ-1 is a 20 kDa small protein with a sequence length of 189 amino acids. Ubiquitously 

expressed but found at higher levels in the testis, brain and kidney. Located predominantly in 

the cytoplasm and to a lesser extent in the nucleus and mitochondrion (89). Crystallization 

studies showed that wild type (WT) DJ-1 protein exists as dimers in solution (100) (Fig. 

1.4A). The structure of each monomer is represented in Figure 1.4B. 
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        (A)                                                                              (B) 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Structure of the wild type DJ-1 

(A): A ribbon representation of dimeric DJ-1 is shown with the molecular two fold axis perpendicular to the 

plane of the page, with one monomer in brown and other in green. The oxidation prone cysteine (C106) and the 

interacting glutamic acid (E18) are represented in each monomer. (B): Structure of the DJ-1 monomer consisting 

of an α/β-fold with 11 ß-strands (blue) and 8 α-helices (yellow), loops (magenta), and the different side chain 

residues (Cys106, His126, E18, and K130). C: carboxy terminus, N: amino terminus. Adapted from references 

100 and 101. 

 

    DJ-1 functions 

Elucidating the function and regulation of DJ-1 has been an active field of study for over a 

decade. Human DJ-1 has been primarily reported as an oncogene (102, 103). Later several 

diverse cellular roles have been ascribed to protein DJ-1: modulates transcription (104, 105) 

and androgen-receptor signaling (106), controls fertility (107, 108), acts as a protein 

chaperone (109, 110) and as a protease (111), required for correct mitochondrial morphology 

and function (112-114), required for autophagy of dysfunctional mitochondria (115), alters 

dopamine receptor signaling (116), suppresses apoptosis via interaction with kinases (117, 

118), upregulates glutathione synthesis or heat shock proteins (119, 120), and of prime 

interest its role as an OS sensor (121-128). The function of DJ-1 protein appears to be 

multifaceted, the current view is that DJ-1 is a multifunctional OS response protein that 
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defends cells against ROS and mitochondrial damage, although the details of its biochemical 

function remain obscure. 

    DJ-1 mutations 

Numerous reports, including our own, utilizing in vitro and in vivo models in both 

mammalian and Drosophila systems support the idea that DJ-1 plays a protective role under 

pathological conditions where OS predominates (101, 121, 123, 124, 126, 128-134). With a 

shift of pI from 6.2 to 5.8 (135, 136), Mitsumoto et al., (2001) (135) have suggested that DJ-1 

may be directly oxidized by free radicals, because the pI shift after oxidation is consistent 

with formation of cysteine sulfinic acid (Cys106-SO2
-) (135). Hence, formation of Cys106-

SO2
- has been recognized as an important reversible posttranslational modification of proteins 

(101, 126, 129, 137-142). If the pI shift of DJ-1 represents a formation of cysteine sulfinic 

acid, then mutating these cysteine residues will block oxidation. Cysteine106 (Cys106) has 

been identified as the prime candidate for this modification (88, 100, 101, 107, 126, 129, 143-

148). Phylogenetic analysis has also underscored the significance of Cys106, as human DJ-1 

contains three cysteine residues (Cys46, Cys53, and Cys106) of which Cys106 is by far the 

best conserved (149, 150). Many studies have since shown that Cys106 is required for DJ-1 to 

confer cellular protection against OS (101, 126, 129, 133, 141, 148, 151-155). Moreover, 

Cys106 has a low thiol pKa value of ~5 and therefore exists almost exclusively as highly 

reactive thiolate anion at physiological pH (156). Bond length analysis using atomic 

resolution X-ray crystallography demonstrates that a neighboring protonated carboxylic acid 

sidechain residue (Glu18), also known as E18, donates a hydrogen bond to Cys106 and 

facilitates ionization of the thiol, thereby depressing its pKa value and  stabilizing the Cys106-

SO2
- (156). Replacement of Cys106 with other amino acids in DJ-1 resulted in a loss of 

protective activity against oxidative stressors in a number of systems (101, 126, 129, 133, 
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146, 154, 156). Whereas modifying the environment around the sidechain of Cys106 could 

decouple the oxidation propensity and pKa of Cys106 without changing the cysteine residue 

itself. In 2009, Blackinton et al., (101) designed several Glu18 mutations (E18N, E18D, 

E18Q) that altered the oxidative propensity of Cys106 (Fig. 1.5) and characterized the effect 

of Glu18 mutations on cytoprotective activity of Cys106. Results demonstrated that the 

formation of Cys106-SO2
- is indeed critical for DJ-1 to regulate its ability to protect neuronal 

cells against OS and mitochondrial damage. In contrast, the oxidatively impaired E18D 

mutant where Cys106 was oxidized to the easily reduced sulfenic acid (Cys106-SO-) behaved 

as an inactive mutant and failed to protect cells. 

The influence of WT-DJ-1 mutation by superseding the glutamic acid E18 sidechain residue 

with an E18Q mutant possessing a glutamine sidechain or an E18D owning an aspartic acid 

substitution on the oxidative manner of DJ-1 in renal fibroblasic and epithelial cells is 

discussed in Chapter 3. 

 

(A)                                              (B)                                                (C) 
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Figure 1.5: Structural effects of wild type DJ-1 designed mutations  

(A): Views of the stable Cys106 sulfinic acid oxidized form of DJ-1 (Cys106-SO2
-). The region around Cys106 

from the crystal structure of Cys106-SO2
- DJ-1 is superimposed over the structure of reduced Cys106-SO2

- DJ-1. 

Stabilizing hydrogen bonds between the Cys106-SO2
- and surrounding residues are shown in dashed lines, with 

the key interaction between E18 and Cys106-SO2
- labeled. (B): A superposition of oxidized E18Q (darker 

model) and WT- DJ-1 (lighter model) shows that the key stabilizing hydrogen bond between residue E18 and 

Cys106-SO2
- is lengthened in E18Q-DJ-1, weakening this interaction. In E18Q-DJ-1, Cys106 is oxidized to the 

Cys106-SO2
-. (C): A superposition of residues of Cys106 in E18D-DJ-1 (darker model) and the corresponding 

region in oxidized WT-DJ-1 (lighter model). The E18D substitution results in structural perturbations at Cys106 

that stabilize the Cys106-SO- oxidation product and hinder further oxidation.Cys106 is oxidized to the easily 

reduced Cys106-SO- oxidation product in this variant. Distances given in Å. Adapted from references 101 and 

126. 

 

1.7 Objectives 

OS is one of the major motifs in our substantial renal fibrosis project, where we are 

endeavoring to understand potential molecular mechanisms associated with the pathogenesis 

of renal disease. In this regard, the use of proteomic-based strategy was undertaken in the 

present study to screen out and identify novel molecular biomarkers of OS in renal cell line 

models exposed to different OS incites. A comprehensive comparison of proteome derived 

from control renal cells and H2O2 treated cells (Chapter 2), or cytokines (ANG II and PDGF) 

treated cells (Chapter 3) are represented. 

The distinctive observation for the involvement of protein DJ-1 (PARK7) in OS pathway by 

acquiring a pI shift, in addition to its high expression in cells treated with H2O2 (Chapter 2), 

prompted us to define in depth its physiological functional importance in renal cells 

challenging OS. For this our work further focused on the following aims:  
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i) To explore the renal cell proteome alteration that accompanied the cellular 

adaptation to OS and identify potential key proteins in renal cell resistance to OS. 

ii) To investigate and document PARK7 vital role in renal cells’ resistance and 

adaptation under conditions of OS by, utilizing small interfering RNA (siRNA) 

targeting PARK7 and examining the impact on cell response to OS by employing 

various assays. These are addressed in Chapter 2. 

iii)  To explore the role of protein DJ-1 (PARK7) in the profibrotic cytokines triggered 

renal fibrosis. Furthermore to investigate the effect of DJ-1 expression regulation 

on cell progression towards renal fibrosis. 

iv) To sought DJ-1 in renal fibrosis using fibrosis animal model. 

v) To exploit wild type DJ-1 and designed mutations to define the role of DJ-1 in 

balancing OS in renal fibrosis. 

vi) To characterize potential mechanism(s) of DJ-1 action by identifying its 

interaction partners. These are addressed in Chapter 3. 
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2. PROTEOMICS ANALYSIS IDENTIFIES PARK7 AS 

AN IMPORTANT PLAYER FOR RENAL CELL 

RESISTANCE AND SURVIVAL UNDER 

OXIDATIVE STRESS 

 

 

In this part of the work we performed a thorough comparison of proteome derived from 

control renal cells and H2O2 treated cells to explore the renal cell proteome alteration that 

resulted as a consequence to the cellular adaptation to OS. Potential key proteins in renal cell 

resistance to OS were identified, characterized and verified. In another set of experiments 

using DHR-123 agent, we confirmed the accumulation of ROS derivatives under OS 

conditions. We further investigated and documented PARK7 vital role in renal cells’ 

resistance and adaptation under conditions of OS by utilizing small interfering RNA (siRNA) 

targeting PARK7 and testing the impact on cell response to OS by morphological 

examinations and by employing the MTT viability assay. 
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3.  PROTEIN DJ-1 AND ITS ANTI-OXIDATIVE 

STRESS FUNCTION PLAY AN IMPORTANT 

ROLE IN RENAL CELLS MEDIATED RESPONSE 

TO PROFIBROTIC AGENTS 

 

 
In this part of the work we conducted an extensive comparison of proteome derived from 

control renal cells and cytokines (ANG II and PDGF) treated cells to explore the role of 

profibrotic cytokines on DJ-1 expression regulation on cell progression towards renal fibrosis. 

Further, we investigated DJ-1 in renal fibrosis using fibrosis animal model. In an attempt to 

destine and specify DJ-1 physiological functional importance in balancing OS in renal fibrosis 

we profited wild type DJ-1 (PARK7) and designed mutations to identify DJ-1 interacting 

partner proteins in renal cells using affinity purification and mass spectrometry thereby 

characterizing potential mechanisms of its action. 
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3.1 Abstract 

In the pathogenesis of renal fibrosis, oxidative stress (OS) enhances the production of reactive 

oxygen species (ROS) leading to sustained cell growth, inflammation, excessive tissue 

remodelling and accumulation, which results in the development and acceleration of renal 

damage. In our previous work (128) we established protein DJ-1 (PARK7) as an important 

ROS scavenger and key player in renal cell response to OS. In the present study we 

investigated the impact of profibrogenic agonists on DJ-1 and shed light on the role of this 

protein in renal fibrosis. 

 Treatment of renal fibroblasts and epithelial cells with the profibrogenic agonist ANG II or 

PDGF resulted in a significant up-regulation of DJ-1 expression parallel to an increase in the 

expression of fibrosis markers. Monitoring of DJ-1 expression in kidney extract and tissue 

sections from renal fibrosis mice model (Col4a3-deficient) revealed a disease grad dependent 

regulation of the protein. Overexpression of DJ-1 prompted cell resistance to OS in both 

fibroblasts and epithelial cells. Furthermore overexpression of DJ-1 mutant for glutamic acid 

18 (E18), involved in ROS scavenging, in which glutamic acid 18 (E18) is mutated to either 

aspartic acid (D) or glutamine (Q) resulted in a significant increase in cell death under OS in 

case of E18D mutation. Whereas the E18Q mutation did not impact significantly the cell 

response to OS, revealing the importance of the acidic group for protein DJ-1 as ROS 

scavenging more than the nature of amino acid itself. Affinity precipitation of interaction 

partners of DJ-1 and its mutants revealed both: a consistent proteomic cascade that has 

substantial physiological and pathological properties in collaboration with protein DJ-1 and, 

an important role of Annexin A1 and A5 in the mechanism of action of DJ-1 in anti-oxidative 

stress response. In addition, provided evidence for DJ-1 diverse functions; as an oxidative 
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sensor, a chaperone and/or its role at the transcriptional and posttranscriptional levels. 

Consequently, our results support the view that cellular adaptation to OS is accompanied by 

modulation of coordinated cellular and molecular events, suggest a direct correlation of 

fibrosis progression and expression of OS proteins, emphasize the current evidence for how 

the oxidative modification may regulate DJ-1’s protective function, and implicate a multistep 

pathway for the paramount protein DJ-1. 

3.2 Introduction 

Renal fibrosis is considered the final convergent pathway for progressive kidney diseases due 

to a wide range of pathophysiologically distinct processes (157). Fibrosis progression 

involves interstitial hyper cellularity, matrix accumulation and atrophy of epithelial structures, 

resulting in loss of normal function and ultimately organ failure (158-160). Although multiple 

cell types are capable of producing extracellular matrix (ECM), there is common agreement 

that renal interstitial fibroblasts are the cell type most responsible for matrix accumulation and 

consequent structural deformation associated with fibrosis (161, 162). Tubular epithelial cells 

are also observed to have the capacity to acquire a mesenchymal cell phenotype (i.e, 

epithelial-to mesenchymal trans differentiation, EMT) in the injured kidney (163). 

The pathogenesis of renal fibrosis has been depicted as a continuum of three overlapping 

phases (164). The induction phase, where cellular stimuli trigger a pro-inflammatory response 

involving the production of a large array of profibrogenic cytokines and growth factors. A 

secondary phase manifested by the localized accumulation of cytokines promoting the 

activation and recruitment of matrix producing cells from different sources to secrete 

biological active products and increase the synthesis and expression of ECM proteins. The 



Protein DJ-1 and its anti-oxidative stress function play an important role in renal cells mediated 

response to profibrotic agents. 

 

 

33 
 

third phase is an ongoing synthesis and accumulation of matrix despite resolution of the 

primary stimulus (164). 

Angiotensin II (ANG II), the major effector peptide of the renin-aldosterone system (RAS), is 

a prime agent that has been linked to the progression of renal disease by a host of 

mechanisms. Compelling evidence suggest that ANG II is an important mediator of OS that 

stimulates intracellular formation of ROS (22, 165). Over the last decade, many studies 

described the synergistic relationship between ROS and ANG II signaling (166-168). ROS 

induced by ANG II are chief signal intermediates in several signal transduction pathways 

involved in renal pathophysiology (22, 61, 165, 169). ROS oxidize proteins and DNA that 

promote lipid peroxidation leading to an inflammatory cascade protogonized by inflammatory 

cytokines including the platelet derived growth factor (PDGF) (170, 171). Hence, ANG II-

induced ROS are key events of the fibrogenic response through stress-sensitive pathways (22, 

33, 34, 48, 172). Exacerbated production of ROS may also directly incite damage to 

biologically important macromolecules leading to generation of surrogate markers of OS (56). 

Because of the highly reactive nature of ROS, with the potential of deleterious effects on cell 

integrity, ROS must be neutralized by protective enzymes and endogenous antioxidants (34). 

Fortunately, living organisms have developed a number of antioxidant defenses to protect 

against damage from OS. These antioxidants work together in various cell compartments 

scavenging ROS (78, 79). Hence, one scope of the current study is to use proteomic profiling 

methods in an effort to characterize in renal fibroblasts (TK-173) and epithelial cells (HK-2) 

experiencing OS insulted by ANG II or PDGF the expression profiles of the various proteins, 

thereby highlighting novel molecular mediators in renal fibrosis. 
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A recent study from our laboratory (128) demonstrated that protein DJ-1 (PARK7), by 

incorporating as an endogenous antioxidant defense protein, had an added benefit in 

ameliorating the progression of fibrosis in renal cells exposed to higher OS levels.  

DJ-1 is a conserved protein ubiquitously expressed, but found at particularly high levels in the 

testis, brain and kidney (88). It is reported to be involved in diverse cellular processes. 

Initially DJ-1 was cloned as a putative oncogene (103). Later, was found to encode the protein 

involved in male fertility (107, 108, 173), and able to work in transcriptional regulation (104, 

105, 174, 175). The responsiveness of DJ-1 to OS has provided a potential functional link to 

the pathogenesis of Parkinsonʼs disease (PD) (122, 123, 129, 176). Taira et al., 2004 (121) 

indicated that DJ-1 is an antioxidant capable of self-oxidation. In addition, DJ-1 was also 

suggested to serve as a redox sensitive molecular chaperone (109). The exact function of DJ-1 

has been as yet elusive; however, its pivotal role in OS makes it a candidate to integrate 

genetic and environmental components critical for sporadic disease (87). Yet the advantage of 

DJ-1 as a potent nutritional antioxidant protecting renal cells from apoptosis and thereby its 

implication in the pathogenesis of renal fibrosis did not receive much attention. Evidence 

supporting DJ-1ʼs beneficial role in kidney are so far not documented. The present study was 

designed to determine the effect of profibrotic cytokines (ANG II and PDGF) on DJ-1 

expression. Moreover, using collagen (Col4a3) knockout mice as a fibrosis animal model, we 

attempted to investigate DJ-1 in renal fibrosis. To further define the role of DJ-1 expression in 

balancing OS in renal fibrosis, we sought to identify DJ-1 interaction partners in wild-type 

(WT) and mutant DJ-1 and characterize the mechanism of its action. 

3.3 Material and Methods 

    3.3.1 Cell line and culture procedure 
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Human renal fibroblast cell line (TK-173) used in these experiments was derived from a 

normal human kidney. The cells were immortalized by transfection with the plasmid pSV3gpt 

from SV40 and have typical morphological and biochemical properties of renal interstitial 

fibroblasts (177). The TK-173 cell line was routinely maintained as a monolayer culture in 75 

cm2 tissue culture flasks (Falcon) in Dulbecco’s modified Eagle’s medium (DMEM, Gibco), 

supplemented with 10% fetal calf serum (FCS, Gibco), 1% L-glutamine (Sigma) and 1% 

penicillin/streptomycin (Gibco). The second cell line culture consisted of renal epithelial cells 

designated human kidney-2 (HK-2). HK-2 was derived from a normal adult human renal 

cortex (178). Cultured cells were exposed to a recombinant retrovirus containing the HPV 16 

E6/E7 genes. The HK-2 cell line was maintained as a monolayer culture in Quantum 286 

medium for epithelial cells (PAA) with 1% penicillin/streptomycin. Cells were passaged at 

85-90% confluency. Before the start of each experiment, normal growing cells were harvested 

with trypsin (Sigma), and cultured in 7 ml medium at a density of 5x104 cells per flask and 

allowed to attach and grow overnight at 37ºC in a humidified atmosphere with 5% CO2. 

    3.3.2 FCS-free cell culture and cytokine treatment experiments 

TK-173 or HK-2 cells were grown to sub-confluency (~70% confluency) in 75 cm2 culture 

flasks. Medium was removed, and after washing in phosphate buffered saline (PBS, Gibco) 

the cells were incubated for a further 24 h in 10 ml serum free DMEM with regular change of 

medium every 2 h. Purified human ANG II (0.5 µM) (Sigma) or, PDGF (10 nM) (R&D 

Systems), were added to the medium, and the cells were incubated for additional 72 h with the 

two cytokines separately in separate experiments. The medium with the cytokine was changed 

every 24 h to avoid any impact of dead cells on cell proteome. A group with no additives was 

run in parallel serving as the control. Cell extracts were collected, and the proteins were 

processed as described below for further analyses. 



Protein DJ-1 and its anti-oxidative stress function play an important role in renal cells mediated 

response to profibrotic agents. 

 

 

36 
 

    3.3.3 Protein extraction and precipitation 

The protein extraction was performed as described previously (179). Briefly, the cultured 

cells were harvested and washed 3 times with PBS. Subsequently the cells were centrifuged at 

200xg for 10 min, and the pellet was treated with 0.05-0.1 ml lysis buffer containing 9.5 M 

urea, 2% (w/v) CHAPS [(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate] 

(Sigma), 2% (w/v) ampholytes (MERCK), 1% (w/v) DTT (Sigma). After adding the lysis 

buffer, the samples were incubated for 30 min at 4ºC. For removing the cell debris, sample 

centrifugation was carried out at 13,000xg and 4ºC for 45 min. Supernatant was recentrifuged 

at 13,000xg and 4ºC for an additional 45 min to get maximal purity. The resulting samples 

were used immediately or stored at -80ºC until use. To reduce the salt contamination and to 

enrich the proteins, chloroform-methanol precipitation was performed according to Wessel 

and Fluegge (180). For the Western blot analysis of ECM proteins, the reducing agent (DTT) 

was avoided in lysis buffer to keep disulfide bridges intact. Total protein concentration was 

estimated using the Bio-Rad protein assay (Bio-Rad, Hercules, CA, USA) according to 

Bradford (181). BSA (Roche) was used as a standard. 

    3.3.4 MTT cell viability assay 

For the cell viability assay the cell proliferation Kit I (MTT) from Roche was used according 

to the manufacturer’s instructions. To investigate the effect of H2O2 (MERCK) and cytokines 

(ANG II and PDGF) on cell viability and proliferation, 5000-6000 cells were grown in a 96 

well tissue culture plate (Falcon) in control medium (for H2O2) or in FCS-free medium (for 

cytokines). After 24 h the attached cells were treated with H2O2 (200 µM), ANG II (0.5 µM) 

or PDGF (10 nM). MTT test was performed 72 h after incubation according to the 

manufacturer recommendation. For transfection experiments, cells were first transfected with 

the corresponding plasmid, the transfection success was confirmed (see Plasmids and cellular 
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transfection) then moved into the 96 well tissue culture plates for MTT analyses. All 

experiments were performed in triplicate and during each experiment 6 replicate per case 

were carried out. 

    3.3.5 Two-dimensional gel electrophoresis (2-DE)  

2-DE analysis was performed according to Dihazi et al., 2011 (179). Briefly, cell extracts 

from ANG II, PDGF treated cells or control cells were prepared as described above. A total of 

150 μg protein from each experiment was diluted in rehydration buffer [8 M urea, 1% (w/v) 

CHAPS, 0.2% ampholytes  pH 5-8 for 11-cm IPG strips, 15 mM DTT, and a trace of 

bromophenol blue]. The sample was used for the rehydration of the immobilized pH gradient 

(IPG) strips (Bio-Rad). The strips were allowed to rehydrate for 1 h before adding mineral oil 

(Bio-Rad). The passive rehydration was carried out overnight for at least 12 h at room 

temperature in a focusing chamber. Isoelectric focusing with a Protean IEF (Bio-Rad) was 

performed at 20ºC using the following multistep protocol: 500 V for 1 h, 1000 V for 1 h, and 

8000 V for 6 h.  After the first dimension, the individual strips were equilibrated in 6 M urea, 

30% (w/v) glycerol, 2% (w/v) SDS, 0.05 M Tris-HCl pH 8.8, and 15 mM DTT for 20 min. 

An additional incubation in the same buffer, supplemented with iodoacetamide (40 mg/ml), 

was carried out for another 20 min. After equilibration, the IPG strips were loaded on 12% 

SDS-PAGE, and run at 200 V for second dimension separation of proteins.  

    3.3.6 Gel staining  

For image analysis, 2-D gels were fixed in a solution containing 50% methanol and 12% 

acetic acid overnight and fluorescently stained with Flamingo fluorescent gel stain (Bio-Rad) 

for a minimum of 5 h. After staining, gels were scanned at 50 μm resolution on a Fuji 

FLA5100 scanner (Fuji Photo, Kanagawa, Japan). The digitalized images were analyzed; spot 

matching across gels and normalization were performed using Delta2D 3.4 (Decodon, 
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Germany). Delta2D computes a ‘spot quality’ value for every detected spot. This value shows 

how closely a spot represents the ‘ideal’ 3D Gaussian bell shape. Based on the average spot 

volume ratio, spots whose relative expression is changed at least 2-fold between the compared 

samples were considered to be significant. 2-D gels were post-stained with colloidal 

Coomassie blue (Roti-Blue, Carl-Roth, Germany) overnight, and differentially regulated 

proteins were excised and processed for identification.  

    3.3.7 In-gel digestion and mass spectrometry analysis of protein spots 

In-gel digestion and peptide extraction were carried out as described previously (179). 

Coomassie brilliant blue-stained spots were manually excised from the gels and washed with 

distilled water for 15 min. The destaining procedure was carried out by washing the spots 

alternately with 50% acetonitrile (ACN) and 100 mM ammonium bicarbonate 3 times for 5 

min. After dehydrating the spots with ACN for 15 min, they were dried in a vacuum 

centrifuge for approximately 15 min. Thereafter, the gel spots were rehydrated for digestion 

with 40 μl trypsin (10 ng/μl in 100 mM ammonium bicarbonate) and incubated at 37ºC 

overnight. The peptide samples were extracted with different concentrations of ACN and 

trifluoroacetic acid (TFA). Subsequently, the extracted peptides were cocrystallized with the 

matrix (25 diaminobenzoic acid) on a stainless steel target using 1 μl matrix and 5 μl sample. 

An Applied Biosystems Voyager-DE STR time-of-flight (TOF) mass spectrometer, operating 

in delayed reflector mode with an accelerated voltage of 20 kV, was used to generate peptide 

mass fingerprint (PMF) maps. Mass spectra were obtained by averaging 50 individual laser 

shots. All samples were externally calibrated with a peptide mix of des-Arg1-bradykinin 

([M+H]+904.46), angiotensin I ([M+H]+1296.68), Glu1-fibrinopeptide B ([M+H]+1570.67), 

ACTH (1-17) ([M+H]+2093.08), and ACTH (18-39) ([M+H]+2465.19), and the resulting 

mass spectra were internally calibrated with trypsin autolysis products (m/z 842.50 and m/z 
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2211.10). Monoisotopic peptide masses were assigned, and database searches in the Swiss-

Prot primary sequence database, restricted to the taxonomy Homo sapiens, were performed 

using MASCOT Software 2.2 (Matrix Science). Carboxamidomethylation of Cys and 

oxidation of Met were specified as variable modifications. One missed trypsin cleavage was 

allowed. Mass tolerance was set to 50 ppm for PMF searches. The minimal requirement for 

accepting a protein as identified was at least 30% sequence coverage in the PMF. 

Alternatively, tryptic peptides were subjected to mass spectrometric sequencing using a Q-

TOF Ultima Global mass spectrometer (Micromass, Manchester, UK), equipped with a 

nanoflow ESI Z-spray. For that purpose, gel plugs were excised from 2-D gels and digested as 

described previously. After digestion, the supernatant was removed and saved, and the 

additional peptides were extracted with increasing acetonitrile/trifluoroacetic acid solutions 

under sonication. All supernatants were pooled together, dried in a vacuum centrifuge, and re-

dissolved in 0.1% formic acid for injection in the Q-TOF. The mass spectrometric sequencing 

was performed as described previously. Processed data were searched against the MSDB and 

Swissprot databases through the Mascot search engine using a peptide mass tolerance and 

fragment tolerance of 0.5 Da. Protein identifications with at least two peptides sequenced 

were considered significant. 

    3.3.8 Western blot analysis 

Western blot (WB) analysis was performed according to Towbin and colleagues (182, 183). 

The cell extracts (40 µg per lane) were separated on a 12% SDS-gel. Blotting was performed 

on nitrocellulose membranes (Amersham Pharmacia Biotech, Buckinghamshire, UK) at 40 V 

for 24 h in transfer buffer (25 mM Tris-HCl pH 8.4, 192 mM glycine, 0.5% SDS, 20% 

methanol). The membranes were blocked in 5% non-fat dry milk in PBS buffer containing 

0.1% Tween-20 for 2 h at 37ºC. The incubation with the primary antibodies was carried out 
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overnight at 4ºC. Mouse anti-DJ-1 (Sigma), rabbit anti-PRDX6 (Abcam), rabbit anti-SOD1 

(Abnova), rabbit anti-PRDX1 (Abcam) and mouse anti-ACTB (Sigma), were used as primary 

antibodies. Alexa Fluor 647 goat anti-rabbit IgG antibody, or Alexa Fluor 647 goat anti-

mouse IgG antibody were used as secondary antibodies (Molecular Probes). Before imaging, 

the blots were dried in the dark. The blot membranes were scanned at a resolution of 50 μm 

on a Fuji FLA5100 scanner with single laser-emitting excitation light at 635 nm and 670 nm, 

respectively.  

In case of Col4a3 knockout mice, three animals per group were sacrificed at weeks 4.5, 6.5, 

7.5, and 9.5, and as control three WT animals were used. The kidneys from all animals were 

harvested. Aliquots of tissue extracts from three kidneys of different animals (40 μg protein) 

were dissolved in SDS-sample buffer, separated by electrophoresis in an SDS-polyacrylamide 

gel (12%) under reducing conditions, transferred to a nitrocellulose membrane, and blocked 

for 60 min at room temperature with 5% milk-powder in a 0.2 mol/L Tris-HCl buffer, pH 7.6, 

containing 0.1% Tween 20 solution (TBST buffer). Antibodies against mouse DJ-1, rabbit 

PRDX6, rabbit SOD1, rabbit PRDX1, rabbit FN1 (Sigma), mouse VCL (Sigma), and rabbit 

GRP78 (Sigma) as the primary antibodies were diluted in blocking buffer, then added to the 

membrane and allowed to incubate for 60 min. The addition of secondary antibodies, 

membrane scanning, and analysis were performed as described above. 

    3.3.9 Immunohistochemical and immunofluorescence analyses of kidney 

……….. sections 

Immunostaining of deparaffinized and rehydrated sections was performed to monitor the 

expression of DJ-1 and PRDX6 proteins. Following antigen retrieval pretreatment in 0.01 M 

citric acid using a standard steamer for 25 min, endogenous peroxidase was inactivated with 

3% H2O2 in PBS for 10 min at room temperature in the dark. Sections were blocked with 10% 

goat serum in PBS for 1 h and incubated with either anti-DJ-1 or anti-PRDX6 primary 
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antibody overnight at 4ºC. Primary antibodies were detected with HRP labeled secondary 

antibody for 1 h at room temperature (GE Healthcare). For negative controls tissue sections 

were incubated only with the secondary antibody. The detection reaction was developed with 

3,3-diaminobenzidine (Sigma) for 10 min at room temperature in the dark. Nuclei were 

counterstained with hematoxylin before examination. All tissue sections were dehydrated in 

graded alcohols and xylene and embedded in mounting solution Entellan (Merck). 

Similar primary antibodies were also detected with fluorescence Alexa 555-conjugated goat 

anti-rabbit or Alexa 488-conjugated goat anti-mouse secondary antibody (Invitrogen) as 

recommended. Slides were rinsed and mounted with Vectashield 4,6-diamidino-2-

phenylindole (DAPI) (Vector Laboratories) for visualization of nuclei. 

    3.3.10 Plasmids and cellular transfection  

Construction of DJ-1 expression vectors (wild type and mutants) has been provided by 

Addgene (https://www.addgene.org/mission/) and purchased as ready plasmids: pGW1-Myc-

DJ-1-WT (Myc tag protein), pDEST40-DJ-1-E18Q and pDEST40-DJ-1-E18D (6xHis tag 

proteins). All constructs were amplified in E-coli and verified by sequencing. The transfection 

was performed using transfection reagent Lipofectamine 2000TM (Invitrogen) according to 

manufacturersʼ standard protocol. In brief, 2 µg of plasmids and 8 µl of Lipofectamine 

2000TM were added to 100 µl OptiMEM (Gibco). The mixture was gently mixed, incubated at 

room temperature for 20 min, and then added drop-wise to cells (TK-173 or HK-2) cultured to 

approximately 70% confluence. After 24 h, transfection media were changed with normal 

culture media supplemented with 0.5 mg/ml G-418 (Invitrogen) as a selection factor for stable 

transfection. Cells were maintained in the selection medium for 14 days to achieve stable 

transfection and assessed for protein expression by WB. 

 

https://www.addgene.org/mission/
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    3.3.11 Protein immunoprecipitation 

         3.3.11.1 For WT-DJ-1 (Myc tag protein) 

To identify the potential interaction partners of DJ-1 WT, immunoprecipitation using anti-DJ-

1 coupled to G-protein agarose matrix was performed. The cell lysates were harvested from 

transfected and control cells as described above. To remove potential backgrounds, the 

protein samples were adjusted to 1 ml with PBS buffer and 50 µl G-agarose matrix (Roche) 

were added to each sample. The mixture was incubated for 3 h at room temperature under 

agitation then centrifuged at 12,000xg for 30 sec. The supernatants were removed to new 

tubes and 5 µl anti-DJ-1 antibody were added to each sample. The immunoreaction was 

carried out overnight at 4ºC under agitation. 50 µl protein G-agarose matrix were added to 

each sample. The mixture was incubated at 4ºC under rotary agitation for 4 h. The samples 

were centrifuged and the supernatant removed. The G-agarose matrix was washed three times 

with PBS buffer. The protein elution was performed by incubating the samples in 30 µl of 

2xloading buffer at 95ºC for 5 min. Subsequently the samples were centrifuged to remove the 

G-protein agarose, and the supernatant was used to run SDS-PAGE and identify the binding 

proteins. 

         3.3.11.2 For E18Q-DJ-1 and E18D-DJ-1 (6xHis tag proteins) 

For the identification of the potential interaction partners of DJ-1 mutants E18Q and E18D, 

His-tag affinity purification was carried-out. The QIA express Ni-NTA Fast Start Kit 

(Qiagen) was used and the protein purification was performed according to the provider 

protocols. Briefly, cells were harvested from transfected and control cells as previously 

described. Each cell pellet was re-suspended in one ml of the prepared native lysis buffer 

(Supplied native lysis buffer was supplemented with lysozyme and benzonase nuclease by 

dissolving the contents of the lysozyme vial in 600 µl of native lysis buffer. For use, 100 µl of 



Protein DJ-1 and its anti-oxidative stress function play an important role in renal cells mediated 

response to profibrotic agents. 

 

 

43 
 

the lysozyme solution were added to a 10 ml aliquot of native buffer). The suspensions were 

incubated for 30 min on ice with 2-3 gentle swirling then centrifuged at 14,000xg for 30 min 

at 4ºC. Each sample was allowed to flow in a Fast Start column then washed 2 times each 

with 500 µl native wash buffer. Bound 6xHis-tagged proteins and their potential interaction 

partners were then eluted twice using 100 µl native elution buffer for each elution. 5 µl 

4xSDS-PAGE sample buffer were added to 20 µl of the last elution sample fraction. SDS-

PAGE protein separation and in-gel digestion mass spectrometric analysis of the samples 

were carried out as described above.   

    3.3.12 Bioinformatics  

The classification of the identified proteins according to their main known/postulated 

functions was carried out using DAVID bioinformatics (http://david.abcc.ncifcrf.gov/).This 

classification together with the official gene symbol was used to investigate and categorize the 

gene ontology (GO)-annotations (subcellular location and molecular function). 

    3.3.13 STRING analysis 

The types of evidence for the association of the immunoprecipitated proteins suggesting their 

different functional links were quantitatively integrated using STRING 9.05 database 

(functional protein-protein interaction networks) (http://string-db.org). 

    3.3.14 Statistical analysis 

All blots were quantified using the ImageJ software. For comparison between two measures 

(in the same group) the paired t-test was used. The unpaired t-test (for comparing two groups) 

or one-way ANOVA (comparing three or more groups) were used. Graphpad prism software 

package was used for graphical presentation. Results are expressed as the average (mean±SD) 

of three or more independent experiments. Differences were considered statistically 

significant when p<0.05. 

http://david.abcc.ncifcrf.gov/
file:///E:/STRING%209.05%20database%20(functional%20protein-protein%20interaction%20networks)%20protein-protein%20interaction%20networks)
file:///E:/STRING%209.05%20database%20(functional%20protein-protein%20interaction%20networks)%20protein-protein%20interaction%20networks)
http://string-db.org/
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3.4 Results 

    3.4.1 Profibrotic cytokines affect renal cell viability through induction of OS 

ANG II has systemic and local effects favoring cell proliferation. In addition, ANG II can 

induce the expression of different growth factors, which in turn participate in stimulating 

intracellular ROS formation and contribute to the pathogenesis of renal fibrosis. We attempted 

to investigate the response of cells stimulated with ANG II or PDGF using MTT cell viability 

assay. After several trials for different ANG II and PDGF concentrations used in literature, a 

concentration of 0.5 µM for ANG II and 10 nM for PDGF were found to impact the cell 

proliferation and induce OS without significant effect on cellular apoptosis in TK-173 and 

HK-2 cell models (Fig. 3.1A, B). For this reason, the concentrations mentioned were chosen 

for our further studies. The viability assay revealed that after 72 h incubation with ANG II or 

PDGF, both cell types showed significant increase (P<0.05) in cell growth compared to the 

control (Fig. 3.1A). When comparing both profibrogenic agonists, treatment with PDGF 

seems to accelerate the cell proliferation more than ANG II, which may indicate that OS 

induced by ANG II is more intense than that in case of PDGF. 

 

 

 

 

 

Figure 3.1: MTT cell viability assay 
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(A): 5000 TK-173 or HK-2 cells/well were cultured in 96 well cell culture plates, incubated with H2O2, ANG II 

or PDGF stress for 72 h. For ANG II and PDGF treated cells, cells were deprived from FCS in the medium 24 h 

before treatment. The cell viability was measured and plotted in the form of bar diagrams with the cell treatment 

on x-axis and cell viability on y-axis. Results are represented as a mean of 12 readings ±SD. (B): Fluorescence 

microscopy comparing DHR-123 stained control and treated (ANG II and PDGF) TK173 and HK-2 cells. Cells 

were stained with DHR-123 for 30 min and visualized using specific filter sets for phase contrast and rhodamine. 

The obtained images were merged to observe cell morphology. Scale bar = 100 µm. The fluorescence expression 

quantification is presented as grouped bar chart under each experimental condition. Results are given as the 

means ±SD. Statistical significance was assumed for p-values <0.05: *P<0.05, **P<0.01, ***P < 0.001 with 

respect to their corresponding control.  

In confirmation to our previous study (128), the H2O2 at a concentration of 200 µM 

significantly inhibited cell viability in both treated cell groups 72 h after stimulation. The 

quantitative and statistical evaluation results are presented in Figure 3.1A comparing the 

actual response of TK-173 cells and HK-2 cells to their representative control group. H2O2 is 

an OS inducible that confers cellular OS in vivo, as we reported previously (128). 

    3.4.2 Mapping of renal cell proteome alteration upon cytokine treatment 

Although much has been learned about the molecular mechanisms underlying the pathways 

by which cytokines activate renal fibrogenesis, an integrated proteomics pattern identifying 

the altered proteins remains elusive.  

One scope of this study is to characterize key specific proteins showing alteration in their 

expression in cytokine treated cells (TK-173 and HK-2) compared to control ones. For this 

purpose, proteomic analysis was performed. 2-D protein maps from cell lysate of the different 

treated groups are presented in Figure 3.2 (A, B). All identified proteins that showed 

difference in expression under the distinct experimental conditions are numbered and 
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indicated in Figure 3.2 (A, B) and are listed in Tables 3.1 and 3.2 for TK-173 cells and Tables 

3.3 and 3.4 for HK-2 cells. 

(A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2B continued 
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(B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: 2-D reference maps of proteins extracted from TK-173 and HK-2 cells 

150 μg proteins were loaded on an 11-cm IPG strip with a linear pH gradient pI 5-8 for IEF; 12% SDS-

polyacrylamide gels were used for the SDS-PAGE. Proteins were stained with Flamingo fluorescent gel stain. 

Identified spots were assigned a number corresponding to that in their table. (A): For TK-173 cells and (B): For 

HK-2 cells. (a): 2-D map under ANG II treatment and (b): 2-D map under PDGF treatment. 
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    3.4.3 Ontogenic classification of the proteins involved in cell response to 

……      profibrotic cytokine treatment 

To gain more information on the biological mechanisms of the identified proteins, which are 

associated with cytokine treatment we used DAVID bioinformatics 

(http://david.abcc.ncifcrf.gov/). Each identified protein was assigned to cellular components, 

functional categories and biological process based on the Gene Ontology (GO) annotation 

system. Under all experimental conditions, the highest percentage of the identified proteins 

was found located in the intracellular part of the cell (Fig. 3.3A, B). Interestingly, GO 

assignment to molecular function illustrated that a large part of the regulated proteins were 

involved in stress response (Fig. 4A, B). Moreover the percent of stress responsive proteins in 

TK-173 cells was 35.9% for ANG II treated cells and 34.5% for PDGF treated cells. 

However, a lower percentage was obtained in HK-2 cells: 26.4% in cells exposed to ANG II 

and 26.5% in cells subjected to PDGF treatment (Fig. 4C). Our findings indicate that although 

the number of the differently regulated identified proteins was almost equal in TK-173 and 

HK-2 cell samples (Tables 3.1-3.4), the percent of stress responsive proteins was higher in the 

fibroblastic TK-173 cells compared to the epithelial HK-2 cells under both cytokine 

treatments.  

(A) 

 

 

 

 

http://david.abcc.ncifcrf.gov/
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(B) 

 

 

  

 

 

 

Figure 3.3: Gene Ontology (GO) classification of differently regulated proteins in TK-  

…………….173 and HK-2 cell lines by DAVID bioinformatics  

The list of genes to be analysed was uploaded into Gene list Manager window and Homo sapiens was chosen as 

background. The gene list was then submitted to DAVID conversion tool. Based on the corresponding DAVID 

gene IDs and threshold adjustment (Max-Prob≤0.1 and Min Count≥2) in Chart Option section, functional 

annotations associated with each gene were displayed in a chart. GO analyses of subcellular location are 

represented as pie charts showing the different categories.Values in figures presented the ratio distribution of 

proteins found in that respective category. (A): TK-173 cells and (B): HK-2 cells.  (a): ANG II treated cells and 

(b): PDGF treated cells. 
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Figure 3.4: GO annotations for biological processes and molecular function  

Assignment of identified proteins into groups using DAVID bioinformatics database resource. The list of genes 

to be analysed was uploaded into Gene list Manager window and Homo sapiens was chosen as background. The 

gene list was then submitted to DAVID conversion tool. Based on the corresponding DAVID gene IDs and 

threshold adjustment (Max-Prob≤0.1 and Min Count≥2) in Chart Option section, functional annotations 

associated with each gene were displayed in a chart. GO analysis of molecular function was chosen. (A): Pie 

charts of the biological processes in which the identified proteins from both treatments and in both cell types are 

involved. Most of the proteins are involved in metabolic and cellular processes. A large part of the identified 

proteins were found to be involved in immunity defense and stress response. (B): Pie charts of the classification 
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of the molecular function of the identified proteins. The classification revealed an activation of OS response 

pathways and alteration in the expression of proteins involved in anti-oxidative response. Moreover stress 

proteins, e.g. heat shock proteins and cytoskeletal proteins, were also regulated. (C): Percent stress responsive 

protein under each treatment is represented as a bar chart. 

Among the stress proteins which were regulated as response to ANG II or PDGF treatment in 

both cells, protein DJ-1 was significantly upregulated in both cell types and under both 

treatments.  In our former study, we established protein DJ-1 as OS responsive protein in 

renal cells (128). The present study confirmed the role of DJ-1 as a pivotal protein in the OS 

response in kidney cells. DJ-1 is a molecule that occupies an important role in cellular biology 

and is reported to be involved in diverse cellular processes. The fact that DJ-1 promotes cell 

survival by protecting neural cells (121, 129), and recently renal cells (128) from OS; and that 

knockout of the DJ-1 gene enhances cytotoxicity mediated by H2O2 (128, 184) had enthused 

our group to further explore the potential role of DJ-1 in kidney fibrosis. Interestingly, the 2-

DE experimental results clearly implicate protein DJ-1 as an OS marker protein in renal cells. 

Figure 3.2 depicts the over expression of DJ-1 in fibroblastic (Fig. 3.2A) as well as epithelial 

cells (Fig. 3.2B) agonizing OS triggered through treatment with profibrotic cytokines (ANG II 

and PDGF). However, no shift in the protein pI value that resulted in the formation of a more 

acidic isoform was observed as a result of stress induced by the profibrotic agents as we 

previously demonstrated in similar cells subjected to the OS inducer H2O2 (128) or in human 

endothelial cells exposed to paraquat (PQ2+), which generates ROS within cells (135) thereby 

suggesting different pathways for DJ-1 action in restraint to the stress stimulating agent. 
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    3.4.4 Immunoblotting validation of protein expression alteration 

To validate the data obtained from 2-DE experiments, we confirmed using WB, the 

involvement of DJ-1 in renal response to cytokine triggered OS. In addition, other first line 

defense key proteins against OS namely PRDX6, SOD1, and PRDX1 could also be 

confirmed. Overall results represented in Figure 3.5 show apparent marked increase in all OS 

marker proteins tested after 72 h of cell culture with PDGF, ANG II, or TGFß1. Statistical 

evaluation of the experimental results obtained in Figure 3.5A elucidates high significance 

reaching (P<0.001) under most conditions in particular for DJ-1 protein (Fig. 3.5B). 

 

 

 

 

 

 

 

 

 

Figure 3.5: Western blot analysis of expression changes of OS marker proteins under 

…………….OS induced by the different cytokines (PDGF, ANG II and TGFß1) 

The cell extracts from TK-173 and HK-2 (Control, PDGF, ANG II and TGFß1 72 h treated cells) were used. 

(A): Blots were probed with antibodies against the appropriate protein. ACTB was kept as control. (B): Bar 

charts representing the quantification of the blots. Results are given as the means ±SD from three independent 

experiments. *P<0.05, **P<0.01, ***P<0.001with respect to their corresponding control. 
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    3.4.5 Analysis of OS protein expression alteration in animal model of 

……….fibrosis: Involvement of DJ-1 in renal fibrosis 

We further attempted to investigate the role of DJ-1 in renal fibrosis. For this purpose, we 

utilized the Col4a3 knock-out mice tissue as a fibrosis animal model (www.jax.org) 

predisposed to develop CKD. The Col4a3 deficient mice have a normal phenotype until 4 

weeks of age. Abnormal renal glomerulus basement membrane morphology and irregular 

thickening and splitting of the glomerular basement membrane can be seen only by electron 

microscopy at 4 weeks of age (185). Occasionally minor glomerular lesions can be observed 

at 6 weeks of age by light microscopy. At 10 weeks of age, mice demonstrate 

glomerulosclerosis associated with inflammatory cell infiltration, interstitial fibrosis, and 

tubular atrophy (185).  

In the present work, we applied whole kidney lysate of wild type (WT) animals and that of 

different stages of Col4a3 knock-out mice for WB analysis. Figure 3.6A demonstrates blots 

reflecting and comparing the response of OS markers (DJ-1, PRDX6, SOD1, and PRDX1), 

fibrosis markers (FN1, and VCL), and the ER-stress marker protein GRP78 at the distinct 

stages. Bar diagrams representing the quantification of the blots (Fig. 3.6B) apparently 

illustrate a parallel increase in response of OS markers with the increase of the fibrotic stage. 

However, significance was only attained at the 7.5 week except for SOD1 where 6.5 week 

showed P<0.05 significance. Fibrosis marker proteins and ER-stress marker protein displayed 

no discrepancy from their corresponding control WT during the primary stages. At 7.5 week 

an abrupt raise that sustained in the 9.5 week was evinced (Fig. 3.6B). 

 

 

http://www.jax.org/
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Figure 3.6: Western blot analysis of OS and fibrotic markers in whole kidney lysates of   

…………… WT and different stages of Col4a3 knockout mice as a fibrosis model 

(A): Blots were probed with antibodies against the appropriate proteins. ACTB was kept as control. (B): Bar 

diagrams representing the quantification of the blot. Results are given as the means ±SD from three independent 

experiments. *P<0.05, **P<0.01, ***P<0.001 with respect to the WT. wk: week. 

    3.4.6 Immunohistochemical and immunofluorescence staining 

To further validate and characterize DJ-1 role in renal OS and subsequent fibrosis, we sought 

to determine the expression status of the protein in different parts of the Col4a3 knock-out 

mice kidneys using immunohistochemical and immunofluorescence staining. Figure 3.7 (A, 

B) shows immunohistochemical staining images of the glomerular and tubulointerstitial areas 

from WT and representative sections from each group (4.5 wk, 6.5 wk, 7.5 wk, and 9.5 wk) 

respectively stained with DJ-1 (upper panel) and PRDX6 (lower panel). PRDX6 staining was 

employed for resembling aspects to that of DJ-1. The images reveal progressive increase in 
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both DJ-1 and PRDX6 expression concomitant with the progression of renal fibrosis as 

evidenced by HE stained tissue from the same used animals (Fig. 3.7C). In parallel to 

interstitial fibrosis at 9.5 week, apparent expression of both proteins was noted (Fig. 7B). 

(A) 

 

 

 

 

 (B) 

 

 

 

(C) 

  

 

 

Figure 3.7: Immunohistochemical staining of DJ-1 and PRDX6 as OS markers 

(A): Representative images of glomerular and tubulointerstitial areas from WT and different stages of Col4a3 

knockout mice kidneys stained with DJ-1 (upper panel) and PRDX6 (lower panel). Magnification (x20). The 
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immunohistochemical staining of the kidney tissue from these stages showed clear expression of DJ-1 in 

proximal tubule of the Col4A3 mice compared to WT. The DJ-1 expression became more prominent at 7.5 wk 

and 9.5 wk especially in the proximal tubule. At 9.5 wk the DJ-1 expression showed even interstitial staining 

indicating an increase in the number of interstitial fibroblasts. A similar staining behavior was observed for 

PRDX6. (B): Higher magnification of the previous images (A) showing the localization of proteins 

(Magnification x40). (C): HE staining of kidney from Col4a3 mice presenting the different stages of fibrosis. 

The tissue show a normal kidney structure without any sign of injury at the 4.5 wk of age, the tubulointerstitium 

shows intact structure with no pathological manifestation. At 7.5 wk the first signs of tubulointerstitial fibrosis 

emerged and became more prominent in tissue from animals at the 9.5 wk. 

 In concert with the immunohistochemical staining results, immunofluorescence staining of 

the analogous tissues using similar antibodies for DJ-1 and PRDX6 localization detection, 

exhibited a comparable staining pattern with strong expression of the proteins in tubular part 

especially in proximal tubule and less in the glomerulus (Fig. 3.8). A gradual rise in protein 

expression was concurrent with OS augmentation. At 9.5 wk the DJ-1 expression became 

more prominent and showed even interstitial staining indicating an increase in the number of 

interstitial fibroblasts. 

 

 

 

 

 

 

 

Figure 3.8: Immunofluorescence staining of DJ-1 and PRDX6 as OS markers 
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Representative images of glomerular and tubulointerstitial areas from WT and different stages of Col4a3 

knockout mice kidneys stained with DJ-1 (upper panel) and PRDX6 (lower panel). Magnification (x20). Marked 

increase in the expression of both proteins was observed with the increase of the fibrotic stage. 

Thus, tissue staining confirmed WB results and reinforced the crucial role of DJ-1 in OS and 

its prominence as an endogenous antioxidant defense protein in the kidney. 

For figuring, strewing, and supporting purposes, other OS marker and fibrotic marker proteins 

were examined in parallel to protein DJ-1 in the various experiments. 

    3.4.7 Over expression of DJ-1 and its mutant forms and their effect on renal 

……      cell viability 

In light of the imminent importance to understand the role of DJ-1 and elucidate its high 

expression as an endogenous antioxidant defense protein in renal cells during OS; we 

transfected our experimental cell models (TK-173 and HK-2) with WT-DJ-1 and mutant 

vectors (pGW1-Myc-DJ-1-WT, pDEST40-DJ-1-E18Q, and pDEST40-DJ-1-E18D) in a series 

of separate experiments. Transfected cells were then subjected for MTT test to investigate the 

impact of transfection on cell survival under untreated and treated (H2O2, ANG II, or PDGF) 

conditions. 

DJ-1 in humans is a homodimeric protein of 189 amino acids. Crystallization structural 

analysis of the purified protein DJ-1 has led to the identification of three cysteine residues at 

amino acids numbers 46, 53, and 106 (Cys46, Cys53, and Cys106) and the first speculation 

that Cys106 is the most sensitive one to OS (148). The conserved Cys106 is both functionally 

essential and target of oxidation. Consequently, the oxidative modification of Cys106 has 

been proposed to allow DJ-1 to act as a sensor of cellular redox homeostasis and to participate 

in signaling cytoprotective pathways in the cell (126). Furthermore, atomic resolution X-ray 

crystallography and UV spectroscopy showed that C106 thiolate accepts a hydrogen bond 
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from a protonated glutamic acid sidechain (E18) that is required to maximally stabilize the 

C106 thiolate (156). Hence, we investigated the impact of E18 mutation on oxidative behavior 

of DJ-1 by utilizing DJ-1 mutants: E18Q possessing a glutamine side chain substitution and 

E18D having an aspartic acid substitution. Cells (TK-173 and HK-2) were transfected with 

plasmids expressing E18-C106 (WT), E18Q-C106 (mutant 1), and E18D-C106 (mutant 2) 

separately. Over-expression was confirmed by immunoblotting. Figure 3.9 (A) reveals the 

efficiency of the DJ-1 transfection analyzed by immunoblotting. Quantification of blots 

indicated significant increase in DJ-1 expression in all transfected cells compared to non-

transfected control (Fig. 3.9B). 

 

 

 

 

 

 

Figure 3.9: Western blot analysis of DJ-1 for TK-173 and HK-2 cells before and after 

…………… transfection 

(A): Western blot analysis of TK-173 and HK-2 cell lysates before and after transfection with wild type WT-DJ-

1, and mutants E18Q-DJ-1 and E18D-DJ-1 plasmids. Over expression of DJ-1 antibody compared to control 

cells indicates successful transfection. ACTB antibody was loaded as control. (B): Bar charts representing the 

quantification of the blots. Results are given as the means ±SD from three independent experiments. *P<0.05, 

**P<0.01 with respect to their corresponding control. 

To assess whether the over expression of DJ-1 affects the cell survival under OS conditions, 

the cell viability assay was carried out with cells transfected with plasmids coding for WT and 
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mutants. The OS conditions were generated by treating the cells as described in material and 

methods section. Interestingly, over expressing the DJ-1 mutant E18D-DJ-1 markedly 

suppressed the growth in both used cell lines. The effect was more pronounced in case of the 

fibroblasts cell line TK-173 cells (Fig. 3.10A, B). Subsequent treatment with H2O2, ANG II, 

or PDGF did not add significant changes to the effect of the E18D-DJ-1 plasmid transfection. 

Significant (P<0.05) additional suppression was attained only in HK-2 cells under H2O2 

treatment (Fig. 3.10B). In contrast, the viability of the cells transfected with either WT-DJ-1 

or E18Q-DJ-1 was not significantly altered compared to the control cells in both cell lines 

(Fig. 3.10A, B) indicating that under normal cell conditions, DJ-1 augmentation is 

dispensable for cell survival. In case of ANG II and PDGF treatment the overexpression of 

WT-DJ-1 or E18Q-DJ-1 did not affect significantly the cell reaction to cytokines application 

(Fig. 3.10A, B). One explanation of this unexpected result could be that ROS in low level 

stimulated the cell proliferation but were dispensable for maintaining this impact. 

Accordingly, the scavenging effect that might had resulted from the overexpression of DJ-1 

did not affect the cells’ proliferation. The negative effect of H2O2 on cell proliferation could 

be slightly restored through overexpression of WT-DJ-1 or E18Q-DJ-1 (Fig. 3.1, Fig. 3.10 A, 

B). It seems that the overexpression level of the proteins was not sufficient enough to 

scavenge the produced ROS. 
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(A)                                                   (B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Cell Viability test for transfected TK-173 and HK-2 cells and after 

transfrction    transfection combined with H2O2, ANG II or PDGF treatment 

Cells were transfected with the required plasmid according to manufacturer’s standard protocol then moved into 

the 96 well tissue culture plates. 5000 control (untransfected) or transfected (WT-DJ-1, E18Q-DJ-1, or E18D-

DJ-1) TK-173 or HK-2 cells/well were cultured in 96 well cell culture plates. Groups of each experimental 
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cellular status were then incubated with H2O2 (200 µM), ANG II (0.5 µM) or PDGF (10 nM) for 72 h. For ANG 

II and PDGF treated cells, cells were deprived from FCS in the medium 24 h before treatment. The cell viability 

was measured and plotted in the form of bar diagrams with the cell treatment on x-axis and cell viability on y- 

axis. (A): TK-173 cells and (B): HK-2 cells. Results are represented as a mean of 12 readings ±SD. Statistical 

analysis was performed using Graphpad Prism 4 software and the paired t-test for comparison between two 

measures in the same group and the unpaired t-test for comparing two groups. Statistical significance was 

assumed for p-values <0.05. *P<0.05, **P<0.01. Significance shown by an arrow indicates the comparison 

between the control untransfected cells (TK-173 or HK-2) and the untreated E18D-DJ-1 TK-173 or HK-2. 

Otherwise significance was calculated for each separate untreated and treated condition. 

 

    3.4.8 Immunoprecipitation and identification of the DJ-1 interaction    

………   partners 

To identify potential interaction partners of DJ-1 and to shed light on its mechanism of action 

in renal cells, immunoprecipitation and mass spectrometry analyses were combined. For this 

purpose, cell lysates from TK-173 or HK-2 cells expressing an empty vector (control), a Myc 

tag WT or a 6xHis-tagged mutant (E18Q or E18D) were used to overexpress the target forms 

of DJ-1(Figure 3.11A). The proteins and their potential interaction partners were then purified 

either with protein G agarose for the WT DJ-1 or with Ni-NTA metal-affinity 

chromatography for the His-tagged proteins following the protocol described in material and 

methods section. After repeated PBS wash and protein elution, the proteins were precipitated 

and resolved on SDS-PAGE gels. The potential interaction partners in all three cases were 

identified by mass spectrometry and illustrated on Figure 3.11A, B and Tables (3.5-3.7). 
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 Figure 3.11: Immunoprecipitation (IP) and protein identification in transfected TK-

……………….173 and HK-2 cells 

(A): IP and protein identification in control (empty vector) and transfected TK-173 and HK-2 cells. 

Protein-protein interaction for (a): WT-DJ-1 using G-protein agarose matrix and antibody against DJ-1, (b): 

Protein-protein interaction for mutant E18Q-DJ-1, and (c): mutant E18D-DJ-1 E18D-DJ-1 (6xHis tag proteins) 

using QIA express Ni-NTA Fast Start assay. DJ-1 was immunoprecipitated with its interaction partners. The 

resulting proteins were separated using SDS-PAGE and identified using tryptic digestion and mass spectrometry. 

M= marker, 1 and 2= TK-173 cells, 3 and 4= HK-2 cells. T= transfected, C= control empty vector.  
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(a) 

 

 

 

 

 

 

 

 

(b)                                                                          (c) 

 

 

 

 

 

 

 

 

(B): IP and protein identification in transfected TK-173 and HK-2 cells (a): Protein-protein interaction for 

WT-DJ-1 (b): mutant E18Q-DJ-1, and (c): mutant E18D-DJ- The empmty control was skipped. Under each 

case, DJ-1 was immunoprecipitated with its interaction partners. The resulting proteins were separated using 

SDS-PAGE and identified using tryptic digestion and mass spectrometry. All identified proteins are listed in 

Tables (3.5-3.7). 
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To investigate the impact of alteration of C106 thiolate stability on interaction partners of DJ-

1, comparative analyses were performed with the immunoprecipitated proteins from the three 

cases (WT, E18Q, E18D) (Fig. 3.12). A coordinated proteomic cascade that has fundamental 

physiological and pathological properties was detected to cooperate with protein DJ-1. Six 

prime proteins, namely PRDX1, PRDX6, ANXA2, ACTB, HSPA5, and HSP90B1 were 

identified in all transfected cell groups. Peroxiredoxins (PRDX) are a ubiquitous family of 

antioxidant enzymes that are involved in redox regulation of the cell as well as in the 

protection against oxidative injury (82, 186). Regarding annexins (ANXA), several 

subfamilies have been identified based on structural and functional differences (187). ANXA2 

being a pleiotropic protein is generally implicated in diverse processes, depending on its 

cellular localization. It plays a main role in the regulation of cellular growth and signal 

transduction pathways (188). Recently, ANXA2 has been identified as novel cellular redox 

regulatory protein (189). Heat shock proteins (HSP) are a class of proteins entangled in the 

folding and unfolding of other proteins. Production of high levels of HSP is triggered by 

exposure to various kinds of environmental stress conditions (190). Their up regulation is 

described as part of the stress response. Actins (ACTB) are highly conserved proteins that are 

concerned in cell motility, structure, and integrity (191). Moreover, GAPDH, ENO1, and 

PKM2 proteins were also noticed to be shared between WT-DJ-1 and E18Q-DJ-1 transfected 

cells. It is noteworthy mentioning, that GAPDH beside its classical glycolytic function and its 

involvement in many metabolic functions, has been implicated in a diverse non-metabolic 

processes including transcription activation and initiation of apoptosis (192-194). Fukuhara et 

al., 2001 (194), stated that GAPDH acts as a reversible metabolic switch under OS. In case of 

ENO1 protein, is generally known to play a part in growth control and hypoxia tolerance 

(195). PKM2 is a glycolytic enzyme involved in a variety of pathways and protein-protein 
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interactions (196). The precipitation of more annexins namely ANXA1 and ANXA5 and the 

heat shock protein HSP90AA1 may provide an additional clue to the cellular recovery 

response to stress under both transfection states. 

 

 

 

 

 

 

 

 

 

Figure 3.12: Comparison between immunoprecipitated proteins as potential interaction   

……………   partners of different forms of DJ-1 

Diagrammatic presentation showing the number of immunoprecipitated proteins in each experimental set and the 

proteins shared between the different sets.  

Finally, despite more OS marker proteins (PRDX2 and SOD2) were identified as interacting 

partners for E18D-DJ-1 variant (Figs. 3.11C and 3.12), yet transfecting cells with this mutant 

showed severe apoptosis (Fig. 3.10 A,B) indicating that in case of the DJ-1 the amino acid 

E18 and not its negative charge is that important for cell survival under stress conditions. 

Moreover, comparing the number of the supplemental precipitated proteins in cells 

transfected with DJ-1 mutants (Fig. 3.12) reveals that more proteins were co-precipitated with 

DJ-1 protein under E18D-DJ-1 transfection outlining the enhancement of additional cellular 

pathways in response to severe stress condition. 



Protein DJ-1 and its anti-oxidative stress function play an important role in renal cells mediated 

response to profibrotic agents. 

 

 

79 
 

 The present data provide a framework linking DJ-1 to OS and afford insight into the 

interaction between complex mechanisms and multistep pathway by which DJ-1 exerts its 

action. In fact, functional and association networks analyses of the immunoprecipitated 

proteins using STRING: 9.05 (http://string-db.org/), revealed a strong networking of the 

identified proteins, suggesting a functional link between these proteins and their importance in 

the mechanism of action of DJ-1 (Fig. 3.13). STRING quantitatively integrates interaction 

data from four sources: Genomic context, high-throughput experiments, conserved co-

expression, and previous knowledge. 

 

 

 

 

 

 

 

Figure 3.13: STRING 9.05: Functional protein association networks 

Database of known and predicted protein-protein interactions. The interactions include direct (physical) and 

indirect (functional) associations; they are derived from four sources: Genomic context, high-throughput 

experiments, conserved co-expression and previous knowledge. STRING quantitatively integrates interaction 

data from these sources. The evidence view for the immunoprecipitation experimental results suggesting the 

different functional links of (A): WT-DJ-1, (B): E18Q-DJ-1, and (C): E18D-DJ-1. Different line colors 

represent the types of evidence for the association. Medium confidence (0.400). 

(A): WT-DJ-1 

(B): E18Q-DJ-1 

(C): E18D-DJ-1 

http://string-db.org/
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3.5 Discussion 

A number of kidney diseases and their progression to end-stage renal disease are driven, in 

part, by the effects of ANG II. Increasing levels of ANG II may, in turn, up regulate the 

expression of a large number of growth factors including PDGF. Most of these compounds 

promote cell growth and fibrosis (62, 197). Well-documented growth-promoting effect of 

angiotensins in various tissues has been reported (198-203). The ANG II-stimulated blood 

vessel growth has been previously demonstrated in some experimental models (204-206). In 

addition, results of many studies have reported that peptides from the angiotensin family are 

involved in the regulation of cell growth, proliferation, migration, apoptosis, differentiation 

and inflammation (207-209) of many types of cells, including fibroblasts (210), 

cardiomyocytes (211), and renal proximal tubular cells (212). 

Similar to ANG II, PDGF isoforms were also observed to stimulate the replication and 

migration of myofibroblasts in fibrotic processes, including renal fibrosis (213), whereas 

antagonism of PDGF-D isoform prevented renal fibrosis in an experimental model of 

glomerulonephritis (214, 215), and treatment with anti PDGF-C antibody induced fibrosis in 

obstructive nephropathy (216). 

Our results are consistent with and advance the results from Piastowska-Ciesielska et al., 

2013 (217), by demonstrating that ANG II had a significant effect on viability of renal cells 

(TK-173 and HK-2) in a dose and time-dependent manner. A statistically significant 

difference between the control and treated cells with maximal survival response was achieved 

at a concentration 0.5 µM ANG II which was then chosen for further experiments. 

The prevailing interpretations existing for cell proliferation under ANG II treatment are   

either, via mitochondrial metabolic activity (217), through signaling pathways mediated by 
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the AT1 receptor (218, 218), or are often the consequence of ANG II-induced activation of 

many cytoplasmic tyrosine kinase and transactivation of membrane associated growth factor 

receptor kinases (220-222). In mammalian cells, ANG II mediates biological effects through 

binding to two classical angiotensin receptors. Interestingly, ANG II induced cell proliferation 

by activating AT1-receptors, while stimulation of the AT2-receptor inhibited cell growth in 

different cell types (223-225). The effect of ANG II on prostate cancer cells (LNCaP) 

viability was generally similar to the control (226). The lack of ANG II effect in the later 

study (226) was, in part, due to the short incubation time with ANG II (24 h) compared to 

other published studies demonstrating proliferation stimulation of the similar cell type 

cultured in presence of ANG II for 3 days (227) and for 5 days (222). 

Our proteomic analysis of renal cellsʼ response to ANG II and PDGF treatment helmed to the 

identification of a vast number of proteins, which may be directly or indirectly involved in 

cytokines regulated events. The expressions of proteins involved in the metabolic, 

cytoskeletal, inflammatory, biological, cellular homeostasis, and cell proliferation processes 

were significantly altered. Some of the proteins that were positively identified in our study 

were previously shown to be regulated directly or indirectly by growth factors. Disulfide 

isomerase and lactate dehydrogenase have been shown to be up-regulated in vascular smooth 

muscle cells (228, 229) and primary fibroblasts (230) upon exposure to PDGF. PHB, AHSA1, 

and PAK2 were also quantitatively altered in the later study (230). In respect to the abundant 

proinflammatory proteins identified in our study (heat shock proteins, annexins, tubulins, 

redoxins and collagens), previous work also reported that ANG II up-regulated the expression 

of some proinflammatory genes (connective tissue growth factor, collagen and fibronectin) 

through the activation of several intracellular signaling systems (231-233). The elucidation of 

the exact role of each specified protein is of dignified prominence and claims further 
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investigation for inspecting their relevance to renal fibrosis. However, the activation of the 

endogenous antioxidant defense mechanism that was marked by the concomitant up-

regulation of stress responsive proteins was of our central interest. 

Multiple stimuli and agonists, including ANG II and PDGF have been shown to ultimately 

induce OS (61, 234) and increase ROS production (56). ANG II-induced OS and ROS are 

pivotal in several signal transduction pathways and redox-sensitive transcriptional factors 

involved in renal pathphysiology (22,165). Schieffer et al., 2000 (235), demonstrated that 

ANG II played an important role in modulating the expression of the proinflammatory 

molecule (IL-6) through a mechanism that required the production of ROS. In year 2004 and 

later in 2006 a regulatory role of ROS in PDGF and ANG II induced signal transduction was 

further documented (236, 237). Acute ANG II infusion experiments into naïve rats in the 

presence or absence of various free radical scavengers showed that scavengers partly inhibited 

cellular damage (238, 239). ANG II-mediated ROS formation is thus substantial for renal 

growth processes that are part of an adaptive process of surviving nephrons during chronic 

renal injury (240). 

Our prior study (128) has focused on providing evidence for the critical role of protein DJ-1 

during OS acquired by H2O2 in cultured human renal fibroblasts and epithelial cells. In an 

attempt to reveal the effect of profibrotic cytokines on DJ-1 expression in the similar cell 

lines, the present survey additionally displayed that the fibrosis triggering cytokines (ANG II 

and PDGF) treatment, resulted in cellular DJ-1 up-regulation in both tested cell lines despite 

no change in the protein pI value was observed compared to the formerly detected shift under 

H2O2 treated cells, suggesting a crucial biological in vivo significance of DJ-1 as a modulator 

of OS and/or fibrosis possessing discipline functions during renal injury. Moreover, our 
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investigation of DJ-1 expression in renal tissue of mice model for renal fibrosis (Col4a3 

knock-out mice) confirmed the augmentation of the protein with the progression of fibrosis.  

It is worthwhile mentioning that the incubation of the prostatic benign cells (exhibiting low 

basal level of DJ-1 expression) with TNF-related-apoptosis-inducing-ligand/Apo-2L (TRAIL) 

had led to the enhancement of DJ-1 expression associated with the induction of apoptosis. 

While in cancer cell lines expressing relatively high DJ-1 level, rendered cells resistant to 

TRAIL with no further modulation of the polypeptide level, proposing that DJ-1 played a 

differential role between cells expressing a low but inducible level of DJ-1 and those 

expressing a high but constitutive level (241). Similarly, Zhang et al., 2008 (242), also found 

that the basal level of DJ-1 appeared to be inversely correlated with TRAIL-induced apoptosis 

in the investigated thyroid cancer lines. However, no isoelectric focusing phoresis was 

represented in both studies. In 2009, Waak and coworkers (243) demonstrated that after 

activation with the endotoxin lipopolysaccharide (LPS), DJ-1 deficient mouse astrocytes 

showed dramatic overproduction of the inflammatory mediator nitric oxide (NO), proposing 

that loss of DJ-1 may selectively derepress an LPS-activated TLR4-ASK1-p38MAPK 

pathway, leading to an overshoot of iNOS induction and consequently excessive NO 

production. This may contribute significantly to secondary neurodegeneration. Recently, it 

was also demonstrated that Toll-like receptor 4 (TLR4), the main receptor for endotoxin 

(LPS), mutant mice developed less interstititial fibrosis in comparison to WT mice and were 

protected from progressive CKD in a low-dose ANG II infusion +5/6 nephrectomy model, 

suggesting that TLR4 may play an important role in kidney scarring and fibrosis and 

contribute to CKD progression (244). Linking these observations to our cytokine (ANG II and 

PDGF) treated renal cell models and the observed protective role of DJ-1 an exact molecular 

mechanism by which DJ-1 may regulate proinflammatory signaling via TLR4 pathway in 
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renal cells remains to be rigorously proven. To present the precise impact of DJ-1 in renal 

fibrosis remains entirely ambiguous. To our knowledge, our previously published work (128) 

is the sole attempt that has been as yet executed. However, several pieces of information are 

available in literature, which provide clues to possible pathways and allow hypotheses linking 

DJ-1 to renal fibrosis thereby assisting, in collaboration to our results, to accentuate the 

multiple effects of DJ-1. 

It has been reported that DJ-1 functions in multiple pathways that promote cell survival. 

Enormous studies indicated that DJ-1 is an antioxidant that can quench ROS by self-oxidation 

(121, 129, 151). Consistent with this observation, our previous notification that gene deletion 

or down regulation of DJ-1 by small interfering RNA (siRNA) sensitize renal cells to OS 

(128), similarly neuronal cells (245), and to ER stress (245) and enhances cytotoxicity 

mediated by MPTP (184).  

DJ-1 has been modified under OS both in vitro and in vivo by oxidation of the Cys106 residue 

to form cysteine sulfinic acid (Cys106-SO2
-) (109, 126, 146, 154, 245). The formation of 

Cys106-SO2
- has been identified as a key modification required for DJ-1 to exert its protective 

function (101, 129, 133, 141, 148, 153-155, 245). Altering the oxidative propensity of Cys106 

caused the protein to lose its normal protective activity against oxidative stressors in a number 

of systems (100, 142, 246). The substitution of M261 and over-oxidation with H2O2 showed 

an increased propensity to aggregate and decreased secondary structure (142). Likewise, loss 

of protein function caused by the Parkinsonʼs-associated mutation L166P was interpreted due 

to disruption of the C-terminal region and dimerization of the protein (100, 246). Moreover, 

X-ray crystallography analysis suggested that the carboxylic acid sidechain E18 residue forms 

a hydrogen bond with Cys106-SO2
-, which is important for the stabilization of the modified 

residue (101, 126, 129, 156, 247). 
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Like WT protein (101), mutant E18Q-DJ-1 allowed Cys106 to be oxidized to Cys106-SO2
-. In 

contrast, E18D-DJ-1 mutant was oxidized to the easily reduced cysteine sulfenic acid 

(Cys106-SO-) resulting in oxidation impairment of Cys106 (101). Mitochondrial fission assay 

in the later study (101), demonstrated that E18Q could partially substitute for WT-DJ-1, while 

the oxidatively impaired E18D behaved as an inactive mutant and failed to protect cells from 

OS. Examining the role that the specific formation of Cys106-SO2
- has on cellular protective 

function of DJ-1 by mutating E18, our transfection viability assay results clearly emphasizes 

that the oxidative modification of Cys106 to Cys106-SO2
- is a critical determinant for DJ-1 to 

protect renal cells against loss of viability due to H2O2 and cytokines exposure.  

Interestingly, despite E18D was proved to have identical pKa value to E18N (126, 156), 

different oxidative and in vivo protective capabilities were later demonstrated for the two 

mutants (101), denoting that it is the oxidative propensity rather than the nucleophilicity or 

general reactivity of Cys106 that is required for DJ-1 protective activity. 

Based on the viability assay results for transfected cells presented herein and data reported by 

Blackinton et al., 2009 (101), we would suggest that E18D substitution has led to the 

tremendous disruptive effect as a result of the formation of a functionally compromised DJ-1. 

Mutation of Cys106 to alanine, serine or aspartic acid eliminated the ability of DJ-1 to protect 

against OS in several model systems including various types of cultured mammalian cells 

(101, 129, 141, 152). Similarly, L166P mutant abrogated DJ-1 function by destabilizing the 

native homodimer (88, 248, 249), and M261 mutant exhibited reduced protective activity as a 

result of decreased ability to undergo oxidation to the functionally important “2O” form (93, 

101, 110, 126, 129, 142, 250) with deleterious effects on DJ-1 function. 
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Interestingly, knockdown of DJ-1 in the corneal endothelial cells (CEC) resulted in decreased 

translocation of Nrf2 to the nucleus and significant down-regulation of Heme oxygenase 1 

(HO-1). These in vitro data corroborated findings detected in Fuchs endothelial corneal 

dystrophy (FECD) tissue samples where DJ-1 down-regulation was accompanied by 

diminished Nrf2-regulated antioxidant defense (251). Since FECD has been shown to be an 

OS disorder (252) possessing an oxidative modification at Cys106 of DJ-1 occurring during 

OS and rendering DJ-1 inactive (251), authors speculated that the oxidant-antioxidant 

imbalance seen in FECD had led to irreversible oxidative modifications of DJ-1 and its rapid 

degradation, which in turn affected the cytoplasmic stability of Nrf2 and impaired its nuclear 

translocation. DJ-1 down-regulation resulting in attenuated gene expression of Nrf2 and its 

target gene HO-1 leading to increased oxidative damage has been then repeatedly cited in 

CEC (253), in mouse kidneys and proximal tubule cells (254), and in rat heart-derived H9c2 

cells (255). Similarly Sun et al., (256) suggested that the activation of DJ-1/Nrf2 pathway was 

involved in the pathogenesis of diabetic nephropathy in rats. 

Targeting the DJ-1/Nrf2 axis may provide a potential mechanism by which DJ-1 can mediate 

the delayed protection and enhance its antioxidant defense under OS in our renal cell model. 

Given the established apparent oxidation of Cys106, can DJ-1 function be regulated in terms 

of intracellular redox state thus believed as a typical peroxiredoxin-like protein? Published 

data are conflicting. Several studies indicated that Cys106 residue of DJ-1 can undergo 

reversible oxidation in response to OS although the mechanism(s) involved in regenerating 

the non-oxidized isoforms and controlling Cys modification in DJ-1 have yet to be established 

(129, 148, 151). Others illustrated that DJ-1 is a new type of scavenger protein (101, 121). 

Wilson, 2011 (126) invoked that DJ-1 oxidized at Cys106 is not reverted to the thiol and 

accumulates as the oxidized isoforms. Turnover of the oxidized isoforms and new synthesis of 
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the reduced protein would be, therefore, required for the clearance of the oxidized DJ-1 (110). 

However, this is a convincing observation clarifying the provided evidence that DJ-1 

functions as a cytoplasmic redox-molecular chaperone of alpha-synuclein (109, 110, 119, 

257). The oxidation of Cys106 was obviously critical for the ability of DJ-1 to translocate to 

the mitochondria (129), inhibit mitochondrial fragmentation (101, 258, 259) or suppress 

alpha-synuclein fibrillation (110). Consequently, DJ-1 is not a ROS detoxifying enzyme like 

the peroxiredoxins, glutaredoxins or catalase, the true catalysts competent of multiple 

turnovers and massive ROS detoxification. Yet DJ-1 was observed to elevate glutathione 

levels (119, 257) by increasing the transcription and enzymatic activity of glutamate cysteine 

ligase, the rate limiting enzyme of glutathione synthesis (119). 

Our immunoprecipitation data provide further clues for DJ-1 suggested chaperone activity and 

its cytosolic RNA-binding activity. Under all experimental conditions, proteomic approach 

targeting DJ-1 interacting partner proteins, revealed the co-precipitation of heat shock 

proteins HSPA5 and HSP90AB1, additionally HSP90AA1 in WT and E18Q experiments, the 

premium chaperones assisting to refold misfolded proteins and suppress their aggregation in 

the presence of OS and other stress conditions. Consistent with our observation, previous 

reports manifested that OS enhanced the interaction between DJ-1 and the heat shock protein 

70 (Hsp70) (260). DJ-1 was also shown to be protective in cooperation with Hsp70 against 

alpha-synuclein toxicity in cultured human and rat cell models (120, 257), and to act in an 

Hsp70-dependent manner in cultured human dopaminergic cells (119). 

In light of the earlier report characterizing DJ-1 as a regulatory subunit of a 400 kDa RNA-

binding protein complex (173), coupled with the co-purification of glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), possessing functional links to apoptosis (192-194), with 
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these complexes, together with the co-precipitation of GAPDH with DJ-1 in WT and E18Q 

but not E18D in the current work immunoprecipitation experiments, provide insight and 

distinctly expand DJ-1 function at the transcriptional level by influencing stress response gene 

expression. This observation may also explain and clarify the drastic negative effect of E18D 

substitution on cell viability. Interestingly, the yeast genes encoding DJ-1 and GAPDH 

homologs were induced during cell stress together with chaperones, antioxidants and other 

stress response proteins (261). 

An explicit role of annexins in DJ-1 multiple pathways, to our knowledge, has never as yet 

been explored. However, extracellular annexins have been linked to inflammation and 

apoptosis (262). Generally, annexins function as scaffolding proteins to anchor other proteins 

to the cell membrane (263). ANXA1 has been implicated in apoptotic mechanisms by 

promoting the removal of cells that have undergone apoptosis (188, 264). Recently, ANXA2 

has been identified as a novel cellular redox regulatory protein that played a significant role in 

cells undergoing OS induced by H2O2 via the reaction of its cysteine residue with H2O2 

resulting in the oxidation of this residue and the conversion of H2O2 to H2O (189). Over 

expression of ANXA2 as an OS sensitive protein in cells treated with H2O2 in our previous 

work (128), and in fibroblastic cells treated with OS prompting factors ANG II and PDGF in 

the present study, supports the later observation. Further, the co-expression of ANXA2 as a 

partner protein to the WT-DJ-1 and both mutants emphasizes that ANXA2 is unique among 

the annexins that possesses redox sensitive cysteine as previously stated (189). Yet the 

possible interacting mechanism with DJ-1 warrants extra investigations.  
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Referring and counseling to the functional protein association networks procured via STRING 

database, a variety of predicted protein-protein interactions through disparate enzymatic 

pathways could be speculated. 

Moreover, the remarkable and apparent precipitation of key players OS marker proteins 

(PRDX2 and SOD1) with DJ-1 in experiments for E18D mutant, clearly interprets the 

extreme stress condition challenged by cells as a result of E18D substitution. 

Our data strengthens previous determinations for DJ-1 diverse pathways and indicate that DJ-

1 is part of a concerted and complex cellular response to OS. Although much work remains to 

be done to clarify the relationship between DJ-1 and renal dysfunction, yet results reported 

here lay the ground work relevant to develop better strategies for defining the precise activity 

of DJ-1 that is responsible for cellular protection against OS in renal cells. 

Dividing the cellular response to stress inducing agents into three major steps, a protective 

response, a repair response, and a signaling and activation response, a spectacular switching 

action for the 20 kDa multifunctional protein DJ-1 according to the exact need of the cell, 

could be estimated. A dual function may also be proposed. 
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Oxidative stress (OS) has been implicated in human disease by a growing body of facts. The 

kidney is a highly vulnerable organ to damage caused by OS and large number of literature 

has been concerned with the link between OS and renal diseases. OS is known to desperately 

affect the survival and proliferation of renal cells through biomolecular pathways resulting in 

impairment of kidney function and final progression of renal tubulointerstitial fibrosis. Hence, 

renal fibrosis is a state of chronic deterioration of oxidative mechanism due to enhanced 

reactive oxygen species (ROS) release. Over production of ROS has been implicated as a 

driving force, which evokes a cascade of oxidative damage that can eventually result in renal 

failure. To understand the molecular basis in renal fibrosis with respect to regulation and 

expression of stress responsive proteins, we aimed to explore the effect of H2O2, and the 

profibrotic cytokines (ANG II and PDGF) as promoters of OS. In our study, human renal 

fibroblasts (TK-173) were used as they are believed to be the primary effector cells with 

respect to renal fibrogenesis process responsible for the synthesis and deposition of ECM 

components. Human renal epithelial cells (HK-2) were additionally investigated for 

comparison purposes. Our proteomic approach; 2-DE combined with mass spectrometry 

analysis has made possible the identification of OS associated proteins, among these, markers 

of the OS pathway were highly regulated in treated cells. DAVID database resource for 

assignment of the proteins according to their molecular function, showed that the percent 

stress responsive proteins was more in the fibroblastic TK-173 compared to the epithelial HK-

2 cells under treatments. The up-regulation of the over viewed proteins could be interpreted as 

one of the major cellular recovery response after oxidative damage. The information obtained, 

in the present study, has far revealed relatively comprehensive view in protein expression, 

facilitating the determination of novel OS biomarkers for early disease detection and new 

targets for therapeutic intervention. Among the regulated proteins of the OS pathway, protein 
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DJ-1 (PARK7) was found to acquire a pI shift in addition to its high expression under H2O2 

treatment. An important clue to a possible role in OS, as relevant from accumulating studies 

strongly suggesting the expression of PARK7 in cellular defensive response to OS and has 

been repeatedly cited to possess a pI shift in neurodegenerative diseases linked to OS. 

However, it is worthwhile mentioning that the absence of PARK7 pI shift under fibrosis 

triggering cytokines (ANG II or PDGF) treatment, surmise a crucial biological in vivo 

significance of PARK7 as a modulator of OS and/or fibrosis possessing discipline functions 

during renal injury. Knockdown of PARK7 using siRNA led to significant reduction in renal 

cell viability that was further enhanced under H2O2 treatment. MTT cell viability assay 

together with microscopic morphological investigation elucidated that suppression of 

endogenous PARK7 protein simultaneously with OS induction resulted in massive cell death 

and increase in apoptosis compared to controls. Therefore, we have put forward, for the first 

time, a specific and novel hypothesis for the vital role of PARK7 in OS resistance in renal 

cells, a protein originally discovered as an oncogene, and was later found to be responsible for 

the early onset of Parkinson’s disease. Based on this finding we sought to intensively 

investigate the expression and the role of PARK7 in balancing OS in renal fibrosis. Western 

blot (WB) analysis for lysates of H2O2 or cytokine treated cells showed the upregulation of all 

stress and fibrotic marker proteins tested including PARK7. Moreover, investigation of 

PARK7 in Col4a3 knockout mice, as a fibrosis animal model, revealed the parallel increase of 

PARK7 with the progression of fibrosis as evident by WB analysis for tissue lysate samples 

and documented by immunofluorescence and immunohistochemical staining of the tissues at 

successive stages of fibrosis. Consequently, PARK7 (DJ-1) confers protection against OS and 

enhances cell survival when challenged with OS and/or pro-apoptotic stimuli. Although the 

mechanisms by which DJ-1 accomplishes this are not fully understood, a promising 
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observation that may connect the established role for DJ-1 in OS response to possible 

biochemical functions of the protein is that a conserved cysteine residue (Cys106) is both 

critical for DJ-1 function and very sensitive to oxidative modification. WT-DJ-1 is modified 

under OS both in vitro and in vivo by oxidation of Cys106 to form a Cys-SO2
-. Cys106 

interacts with a neighboring protonated E18 residue, required for stabilizing the Cys106-SO2
- 

form of DJ-1. To study this important post translational modification, we have tested this 

approach by characterizing the effect of E18 mutations on the cytoprotective activity of 

Cys106 using designed E18 mutations (E18Q and E18D). Comparing cell viability for both 

cell line models of transfected WT-DJ-1(E18) to either DJ-1 mutation forms (E18Q or E18D) 

under naïve or OS condition, our results emphasized and provided additional evidence that the 

formation of Cys106-SO2
- is advantageous for optimal DJ-1 protective function.  

In an effort to characterize DJ-1 mechanism(s) of action, our immunoprecipitation data 

identified possible interacting protein partners supporting and strengthening pre-existing 

postulated determinations for DJ-1 potential pathways (summarized in Fig. 4.1). Summing up, 

beyond DJ-1 role as an oxidative sensor or ROS scavenger by self-oxidation, the co-

precipitation of heat shock proteins, the premium chaperones assisting to refold misfolded 

proteins and suppress their aggregation in the presence of OS, provides clues for DJ-1 

suggested chaperone activity. Moreover, the co-purification of GAPDH, possessing functional 

links to apoptosis, with DJ-1 in WT and E18Q but not E18D insights into DJ-1 function at the 

transcriptional level and its cystolic RNA-binding activity and elucidates the drastic negative 

effect of E18D substitution on cell viability. 
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Figure 4.1: Simplified schematic diagram for protein DJ-1 pathways 

1: DJ-1 itself senses oxidative signals (ROS) via oxidation of the Cys106 residue into sulfinic acid (self-

oxidation).  2: DJ-1 has a chaperone activity by interacting with heat shock proteins (HSP) which helps refolding 

misfolded proteins induced by oxidative and other cell-stress conditions. 3: DJ-1 influences the expression of 

genes for the stress response at transcriptional and post-transcriptional levels by interacting with cytosolic RNA-

binding protein complexes. 4: The latter complexes may also be associated with GAPDH, a protein with 

functional links to apoptosis. Modified from reference 87. 

 

Yet, it is tempting to speculate and investigate the apparent role of  annexins in co-operation 

with DJ-1, being linked to inflammation and involved in apoptotic mechanisms; the over 

expression of ANXA2, in particular, as an OS sensitive protein in the diverse OS experiments, 

its purification as a DJ-1 partner protein, in addition to the recently published finding (189) 

establishing ANXA2 as a novel cellular redox regulatory protein emphasize that ANXA2 is 

unique among other annexins as a redox sensitive protein, a function unmasked in the context 

of OS. On the other hand, answers to the copious debates concerning DJ-1ʼs multiple roles at 

the nuclear and mitochondrial levels (Fig. 4.1) necessitate supplementary efforts to provide 

conceptual support for determining the contribution of protein DJ-1 in renal dysfunction that 
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may yield therapeutic profile and efficacy. The aforementioned points are designed for our 

future work extending our OS project. However, the present data provide a framework linking 

DJ-1 biological actions and generating new sights into the interaction between the complex 

mechanisms of oxidative damage in renal fibrosis. Moreover, implicate a multistep pathway 

for protein DJ-1 each afforded according to the cellular requirement. 

It is worth mentioning that the cellular redox system is complex with significant cross talk 

between various proteins and often several proteins compensate for each other’s function in a 

relatively efficient way under various pathological conditions. 
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5. SUMMARY 
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It is well established that oxidative stress (OS) is an important cause of cell damage associated 

with the initiation and progression of many diseases including renal diseases. Consequently, 

all living organisms have developed efficient antioxidant defense systems to cope with these 

oxidative conditions and limit OS by detoxifying reactive oxygen species (ROS) in aerobic 

metabolism under normal physiological conditions. These systems are composed of 

antioxidant enzymes and repair proteins. An excess production of ROS may overwhelm the 

antioxidant defense system and cause oxidative damage to various cellular constituents 

including DNA, RNA, proteins, and lipids. A functional proteomics approach used at a wide 

scale in the present study has explored global changes and provided new molecular targets 

linking profibrotic cytokines (ANG II and PDGF) and H2O2-induced OS to cellular 

dysfunction by recognizing changes of protein expression profiles. A number of OS protein 

biomarkers have been compiled from our in vitro study using human renal cell cultures 

(TK173 and HK-2). The regulation of the identified proteins has been interpreted as one of 

the major cellular recovery responses after oxidative damage. The mass spectrometry results 

were documented by Western Blot (WB) analysis of treated cell lysates for a number of OS 

biomarkers.  

With a shift in the pI value in addition to its over expression as a result of oxidation, I 

provided the first evidence for the incorporation of protein DJ-1 (PARK7) as an endogenous 

antioxidant defense protein in renal cells. The knock down of PARK7 in renal cells using 

siRNA dramatically inhibited cell viability as manifested by the morphological changes and 

MTT viability assay and showed high cellular apoptosis after OS induction. Further, WB 

analysis for whole kidney lysates of wild type (WT) and different stages of fibrosis from 

Col4a3 knockout mice as a fibrosis model revealed a parallel increase in response of PARK7 

with the increase of the fibrotic stage. Moreover, immunohistochemical staining and 
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immunofluorescence staining images of the glomerular and tubulointerstitial areas from 

similar fibrosis successive stages of Col4a3 knockout mice kidneys stained with PARK7 

further documented WB results. 

How may have PARK7 (DJ-1) a benefit in ameliorating the progression of renal fibrosis? I 

aimed to elucidate the molecular mechanisms of PARK7 action to define the role of PARK7 

in balancing OS in renal fibrosis by transfecting cells with plasmids of the WT-DJ-1 and 2 

different mutants. I then identified DJ-1 interaction partners in the different transfected cell 

lysates using affinity purification combined with mass spectrometry. Mutants were chosen 

according to crystallization structural analysis of the purified protein DJ-1 consolidating 

cysteine residue (Cys106) to be the most sensitive to OS and the key modification required for 

DJ-1 to exert its protective function by acting as a sensor of cellular redox homeostasis. 

Results obtained strengthened and emphasized previous reports by displaying that the 

oxidative modification of Cys106 to Cys106-SO2
- is a critical determinant for DJ-1 to protect 

cells against loss of viability. Besides DJ-1 function as ROS scavenger by self-oxidation, my 

immunoprecipitation data provided the following clues: i) DJ-1 seems to have a role at the 

transcriptional and post-transcriptional levels via interacting with cystolic RNA-binding 

protein complexes and, ii) DJ-1 might have a chaperone activity assisting to refold misfolded 

proteins induced by oxidative and other cell-stress conditions. Finally, the strong networking 

of the identified proteins that were detected to cooperate with protein DJ-1 using STRING 

functional protein association networks analysis manifested DJ-1 as a multifunctional protein 

and a vital candidate of a concerted and complex cellular response to OS.   
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