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CHAPTER 1

Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging modality that is extensively used in

routine clinic. MR signals originate from the oscillations of hydrogen nuclei excited by a radio-

frequency (RF) wave in the presence of a strong and static magnetic field. As human bodies

contain a large number of hydrogen atoms, MRI provides excellent image contrasts among soft

tissues. When compared to X-ray computed tomography (CT) and positron emission tomography

(PET), MRI needs neither ionizing radiations nor radioactive tracers. Moreover, MRI offers various

indispensable imaging methods, e.g. functional imaging that utilizes blood-oxygen-level dependent

(BOLD) contrast, phase-contrast flow quantification, and susceptibility-weighted imaging.

Technically, MRI acquires data in Fourier domain in a point-by-point manner, which is time

consuming and thus problematic when imaging uncooperative patients (e.g. pediatric) and physio-

logical movements (e.g. beating heart and speaking processes). Hence, tremendous endeavors have

been made over the past decades to accelerate MRI. One of the successful techniques is parallel

imaging, which uses spatially-varying receiver coils placed around the imaged object to simultane-

ously receive MR signals. The received multi-coil data contains complementary information about

the imaged object and thus allows for sub-Nyquist sampling, typically known as undersampling.

Other successful techniques are fast imaging pulse sequences, i.e., echo-planar imaging and non-

Cartesian sampling schemes. The former enables large reductions of the measuring time while

retaining the amount of data sampled, as it acquires multiple echoes with different spatial encod-

ings per RF excitation. The latter, especially the radial sampling scheme, has been of great interest

due to its low sensitivity to motion and resistance to undersampling.

Specifically, advances in parallel imaging as a nonlinear inverse (NLINV) problem enables joint

estimations of both the object image and the coil sensitivity maps, which is superior in supplying

more accurate coil sensitivities and better images when compared to parallel imaging techniques

that pre-calibrate coil sensitivity maps. The application of NLINV to highly undersampled radial

fast low angle shot (FLASH) acquisitions has achieved real-time MRI at millisecond resolution to

1



2 Chapter 1. Introduction

resolve physiological processes without the need of physiological triggering and data sorting. The

radial sampling scheme initially proposed for real-time MRI, however, is limited to one full echo

acquisition per RF excitation. Therefore, two essential variants of the radial sampling scheme,

namely asymmetric echo and multi-echo techniques are developed in this thesis.

Asymmetric echo, also known as partial Fourier imaging, refers to the sampling of an incomplete

echo. Thus, asymmetric echoes shorten the echo time, which is of great importance in studies

where long echo times would lead to image artifacts (e.g. signal loss). In particular, real-time

phase-contrast flow MRI requires at least two measurements with different velocity encodings, so

shorter echo times can potentially speed up acquisitions. Moreover, asymmetric echoes allow for

the addition of flow-compensation gradients to further reduce intra-voxel phase dispersion.

The conventional multi-echo radial FLASH utilizes bipolar readout gradients with the same am-

plitude and duration to sample echoes in a fly-back-and-forth manner. This strategy is inefficient

with respect to k-space coverage and temporal resolution. Therefore, in this thesis, a multi-echo

multi-spoke (MEMS) radial FLASH sequence, i.e., capable of acquiring multiple echoes with dif-

ferent spatial encodings per RF excitation, is developed for the purposes of faster k-space sampling

and better temporal and/or spatial resolution. This sequence, most importantly, can advance var-

ious applications of real-time MRI, e.g., dynamic quantitative T ∗2 mapping, water-fat separation,

functional imaging, and quantitative susceptibility mapping.

Further, a model-based image reconstruction, especially for real-time phase-contrast flow MRI, is

developed in this thesis as well. Model-based image reconstruction emerges as a novel reconstruction

technique that estimates maps of interest in MR signal models directly from the acquired data. In

phase-contrast flow MRI, two reconstruction steps are typically involved. First, the measurements

with different velocity encodings are treated as independent streams and reconstructed separately

via parallel imaging. Second, the phase-difference calculation between the reconstructed images

is used to obtain phase-contrast (e.g. velocity) maps. The second step, however, induces severe

random phase noise in no or low MR signal areas (e.g. air and lung), which can hamper the lumen

definition, especially in the case of highly undersampled acquisitions. To ameliorate the situation,

a novel model-based reconstruction technique, which directly reconstructs the phase-contrast map

from the measured datasets based on a proper signal modeling and hence ensures zero phase in the

areas without MR signals, is proposed.



CHAPTER 2

Magnetic Resonance Imaging

The scope of this chapter includes: 1) physical principles of nulcear magnetic resonance (NMR)

and magnetic resonance imaging (MRI); 2) k-space (spatial-frequency-domain) sampling trajecto-

ries and requirements; 3) two important imaging sequences, gradient echo and spin echo; 4) the

fundamental image reconstruction algorithm for arbitrary trajectories; and 5) the parallel imaging

technique and MRI system. For detailed explanations, please refer to the books by Haacke et al. [1],

Lauterbur et al. [2], Bernstein et al. [3], and Nishimura [4].

2.1. Nuclear Magnetic Resonance

Both Felix Bloch and Edward Mills Purcell discovered the phenomenon of NMR in 1946 [5, 6],

thereby awarded the 1952 Nobel Prize for Physics. The NMR experiment is composed of three

fundamental elements: nuclear spin, magnetic field, and resonance.

Firstly, the atomic nucleus, consisting of protons and neutrons, carries an intrinsic angular

momentum called spin. Spins of those nuclei with even numbers of protons and neutrons sum up

as zero. In contrast, the nuclei, which contain odd numbers of protons and/or neutrons, i.e., 1H,

13C, and 31P , have residual spins. Among these nuclei with spins, hydrogen (1H) has been used

in MRI most frequently because biological tissues such as water and fat contain many hydrogen

atoms. One property of these nuclei is that the spin angular momentum (~S) creates a magnetic

moment (~µ),

~µ = γ~S (2.1)

where γ is the gyromagnetic ratio. In the absence of any external magnetic field, the nuclear spins

act as cylindrical bar magnets with random directions and thus an ensemble (e.g. one voxel) of

spins yields a null net magnetization.

Secondly, in the presence of a static magnetic field ~B0, the 1H spins are split into two energy

states – parallel and anti-parallel to ~B0 (corresponding to the lower and higher energy state, re-

3



4 Chapter 2. Magnetic Resonance Imaging

spectively), known as Zeeman splitting. According to the Boltzmann relationship, more spins are

aligned parallel than those anti-parallel to ~B0 in the thermodynamic equilibrium, resulting in an

equilibrium net magnetization ( ~M0)

~M0 = ρ
γ2h̄2

4kbT
~B0 (2.2)

with ρ the proton density (PD) of the spin ensemble, h̄ the Planck constant divided by 2π, kB the

Boltzmann constant, and T the temperature. Here, ~M0 is in the direction parallel to ~B0, defined

as the longitudinal (z) direction, orthogonal to which is the transversal (x-y) plane. Moreover,

~M0 precesses about the z axis with a characteristic angular frequency, known as the Larmor

frequency

ω0 = γ · | ~B0| . (2.3)

Thirdly, to generate the NMR phenomenon, a radio-frequency (RF) pulse ( ~B1) with the Larmor

frequency is applied in the x-y plane to excite the spins, altering the magnetic filed as following

~B(t) = ~B0 + ~B1(t) =


0

0

| ~B0|

+


| ~B1(t)| · sin(ωt)

| ~B1(t)| · cos(ωt)

0

 . (2.4)

The RF excitation flips ~M0 towards the x-y plane by a flip angle (α),

α =

∫ tRF

0
γ ~B1(t)dt (2.5)

with tRF the RF-pulse duration. For the convenience of illustration, the flip angle used in Figure 2.1

is 90°. Immediately after the RF excitation, the spin system starts to precess till reaching the

equilibrium state again. During this process, antennas (i.e., receiver coils) are used to receive

signals from the precessing magnetization in the x-y plane. The precession in NMR can be

characterized by two intrinsic relaxations, described by the Bloch equation [6]

d

dt
~M = γ ~M × ~B +


−Mx/T2

−My/T2

(M0,z −Mz)/T1

 (2.6)

where T1 is the spin-lattice relaxation time describing the magnetization recovery in the z

direction, and T2 is the spin-spin relaxation time describing the magnetization decay in the

x-y plane. T1 time constant characterizes the energy exchange between the spin system and the

surrounding chemical environment, while both energy exchange with the environment and the

dephasing effect of spins are encountered in T2 time constant, which, as a result, is smaller than

T1. As spins within the ensemble may exist in different microscopic chemical environments, they

precess with different Larmor frequencies, resulting in spin dephasing.
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Figure 2.1 Illustration of a pulsed NMR experiment on a net magnetization ~M : equilibrium,

excitation, and precession in the presence of a static magnetic field ~B0.

On the other hand, Mx and My in Equation (2.6) are the magnetization components in the x

and y axis, respectively. They are usually written as one single vector, ~M⊥(t) = Mx(t) + iMy(t).

Moreover, ~B(t) = ~B0 after the RF excitation. Therefore, Equation (2.6) with regarding to ~M⊥(t)

and ~Mz(t) can be given as

dM⊥(t)

dt
= −M⊥(t)

T2
(2.7)

⇒M⊥(t) = M⊥(0) · e−t/T2 , (2.8)

and

dMz(t)

dt
= −Mz(t)−M0,z(t)

T1
(2.9)

⇒Mz(t) = M0,z + [Mz(0)−M0,z] · e−t/T1 . (2.10)

Here, M⊥(0) and Mz(0) are the transversal and longitudinal magnetization immediately after the

RF excitation, respectively. M0,z is the z component of ~M0. Noteworthy, both time constants vary

among biological tissues, rendering different signal intensities in MRI.

2.2. Spatial Encoding

Once the flipped magnetization starts to precess towards its thermodynamic equilibrium, receiver

coils detect an electromotive force (EMF) because they are swept by the magnetized nuclear spins

and hence create time-varying currents, which eventually become a meaningful image of the sample.

As derived in [1],

y(t) = − d

dt

∫
V

~M(~r, t) · ~Bcoil(~r)d
3r

∝ ω0

∫
V

~M⊥(~r, t)c(~r)e−iω0td3r (2.11)

where V denotes the excited volume, and the first term (ω0) reveals that the Larmor oscillations

in the x-y plane cause the dominant signal in the receiver coil c(~r). Signals from Equation (2.11),
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Figure 2.2 Slice selection: (Left) The application of a truncated sinc RF pulse and slice selection

gradient in time domain. (Right) The relation between the selected slice and Larmor

frequency.

however, cannot distinguish the excited spatially-varying samples. Thus, magnetic-field gradients

are used for the purpose of 2D or 3D imaging.

First of all, the slice selection gradient (e.g. Gz as shown in Figure 2.2) is applied during the

RF excitation pulse,

γ ~B = γ ~B0 + γ ~G · ~r =


0

0

ω0

+ γ ·


Gx

Gy

Gz

 ·


x

y

z

 (2.12)

where ~r represents the spatial coordinate of ~M and the altered Larmor frequency (ωz = ω0 +γGzz)

linearly changes over the longitudinal direction. In principle, an arbitrarily-oriented slice can be

selected by appropriately projecting Gz onto Gx, Gy, and Gz via a 3× 3 rotation matrix. On the

other hand, in order to select a rectangle-shape slice, which corresponds to a rectangular RF pulse

in the spatial frequency domain, the applied RF pulse in the time domain must be a sinc function,

as the Fourier transform of a rectangle is a sinc, which is ideally infinite but not applicable in

practice. A practical solution is to use the truncated-sinc RF pulse.

Second, two frequency encoding gradients (Gx and Gy here) are used to encode signals

from every voxel within the selected slice. Similar to Equation (2.12), the spatial frequency on the

selected slice becomes

w⊥ = γGx · x+ γGy · y (2.13)

which can be inserted into Equation (2.11) and yields

y(t) ∝ ω0

∫
V
M⊥(~r, tRF) · c(~r) · e−i[ω0+γx

∫ t
0 Gx(τ)dτ+γy

∫ t
0 Gy(τ)dτ ]td3r (2.14)

where M⊥(~r, tRF) denotes the transversal magnetization immediately after the RF excitation, while

the first (ω0) and the RF phase (e−iω0t) term is technically removed by retaining the envelope of
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Figure 2.3 Free induction decay. The oscillating solid line represents the received signal, whose

envelop (gray) is the T ∗2 exponential decay curve.

the detected signal and using a low-pass filter, respectively. Therefore, the spatial-frequency MR

signal encoding, known as the k-space sampling, can be simplified as

y(t) =

∫
V
M⊥(~r) · c(~r) · e−i2π·~k(t)·~rd~r (2.15)

where

~k(t) :=
γ

2π

∫ t

0

~G(τ)dτ (2.16)

denoting the k-space sampling trajectory, and Mxy(~r, tRF) is equivalent to PD. It can be seen that

the received signal in k-space is the Fourier transform of the dot product between PD and the coil

sensitivity map.

2.3. Imaging Sequences

To begin with, it is important to introduce the free induction decay (FID), the received NMR

signal immediately after the RF excitation, as shown in Figure 2.3. The envelope of the FID can

be approximated by an exponential function with an effective spin-spin relaxation time (T ∗2 ),

1

T ∗2
=

1

T2
+ γ ·∆B0 (2.17)

where ∆B0 is the local magnetic field inhomogeneity. Thereby, T ∗2 is even shorter than T2.

2.3.1. Gradient Echo

A typical spoiled gradient echo sequence for 2D imaging is shown in Figure 2.4, where one repe-

tition block encodes one echo in k-space. Here, the application of the prephasing gradient adds a

spatially-dependent phase term to nuclear spins, which accelerates the FID signal decay because

this gradient perturbs the static magnetic field ~B0, produces spatially-varying field inhomogeneities,

and leads to faster spin dephasing. The dephased spins, however, can be rephased by a gradient
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Figure 2.4 Spoiled gradient echo sequence diagram. For the simplicity of explanation, the imaging

slice is the transversal plane. Thus, the z gradient is used for slice selection, while the x

and y gradients are used for readout and phase-encoding gradient, respectively. Phase-

encoding gradients effectively separate every readout line along the ky direction.

with reversed polarity, namely the readout gradient, during which the analog-to-digital converter

(ADC) is switched on to readout signals. When the area of the readout gradient is equal to that of

the prephasing gradient, the signal of the central k-space point (kx = 0) is reached. This time point

is named as the echo time (TE). The sequence block represents one repetition, whose duration is

defined as the repetition time (TR).

A specific example of gradient echo sequences is FLASH, invented by Frahm et al. in 1985 [7].

FLASH is a fast imaging technique that reduces MRI measuring times to about hundreds of mil-

liseconds per image due to its extremely short TE and TR. Moreover, the equilibrium magnetization

is only slightly flipped towards the transversal plane by a low flip angle (e.g. 15°).

2.3.2. Spin Echo

Spin echo was discovered by Hahn in 1950 [8]. A well-known variant of spin echo sequences that has

been widely used in clinics is the rapid acquisition with relaxation enhancement (RARE) sequence,

invented by Hennig et al. in 1986 [9]. As depicted in Figure 2.5, a 90° RF excitation pulse is applied
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Figure 2.5 Spin echo sequence diagram. Spin dephasing is compensated by a 180° RF pulse that

flips all spins along the y axis (assuming that spins are flipped to the x axis by a 90°

RF excitation pulse), and thus all spins refocus again on the x axis at the echo time.

to flip the equilibrium magnetization to the x axis, then a 180° RF pulse is applied at time TE/2

to flip the dephased spins along the y axis, and after the same time period TE/2 spins will be

completely rephased again. In this process, the dephasing effect caused by local magnetic field

inhomogeneities is compensated by the 180° pulse. Thus, the signals of spin echoes are weighted by

T2, instead of T ∗2 in gradient echoes. In general, spin echo sequences produce T2-weighted images,

in contrast to T1-weighted images from FLASH with relatively shorter TE and TR.

2.4. k-Space Sampling Trajectories

Figure 2.6 depicts four most popular k-space sampling trajectories. According to Equation (2.16),

the spoiled gradient echo sequence in Figure 2.4 results in the Cartesian sampling trajectory as

shown in Figure 2.6a, where every sample is located on the Cartesian grid. Thus, a fully-sampled

Cartesian dataset mainly requires the fast Fourier transform (FFT). Moreover, it is insensitive to

gradient delay errors, in which case all echoes in Cartesian sampling have identical phase shifts

because the same readout gradient is used for every echo.
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(a) Cartesian (b) Radial

(c) Spiral (d) Random

Figure 2.6 Schematic illustration of four most popular k-space sampling trajectories. The dashed

lines in (a) represent the the trajectories generated by the predephasing and the phase-

encoding gradients. The solid lines represent the readout echoes. The intersections of

blue lines represent the 2D Cartesian grid.

The radial sampling trajectory, as shown in Figure 2.6b, has been the very first trajectory

proposed for MRI by Lauterbur in 1973 [10], but requires more precise gradient switching because

gradient delay errors induce inconsistent phase shifts among echoes. According to Equation (2.16),

radial sampling can be accomplished with the following readout gradients,

Gx = Gmax · cos(θ)

Gy = Gmax · sin(θ)
(2.18)

where Gmax is the maximal gradient amplitude, and θ is the angle of one radial echo (spoke).

As shown in Figure 2.6c, the spiral sampling trajectory [11] can be implemented via

~k(t) = a · θ(t) · eiθ(t) with θ(t) =
t√

α+ (1− α) · t
, (2.19)

and

~G(t) =
2π

γ

d

dt
~k(t) . (2.20)
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Figure 2.7 Discretization of an image and k-space signal. The image is related to its k-space

signal by a Fourier transform.

Its characteristics were reviewed by Block et al. in 2005 [12]. When compared to other k-space

sampling trajectories, spiral sampling has longer readouts, which are prone to field-inhomogeneity-

induced phase errors.

The last one is the random sampling trajectory, as shown in Figure 2.6d. It receives recent

interest because it meets the prerequisite of applying compressed sensing [13] to MRI image recon-

struction – incoherent sampling [14]. Whereas this scheme is inefficient in 2D trajectories, it can

be successfully implemented in combination with 3D sampling schemes, where Gz is also used as a

readout gradient and sampled by random (kx, ky) tuples.

2.5. Sampling Requirements

As shown in Figure 2.7, the continuous k-space signal can be discretized via a Dirac comb function

u(k) with the sampling distance (∆k)

ỹ(k) = y(k) · u(k) (2.21)

= ∆k

∞∑
p=−∞

y(p∆k) · δ(k − p∆k) (2.22)

where the inverse Fourier transform of u(k) is

U(r) =

∫
∆k · δ(k − p∆k) · ei2π·k·rdk (2.23)

=

∞∑
p=−∞

∆k · ei2π·p∆k·r (2.24)

which only has non-zero values when r = q/∆k, with q ∈ [−∞,∞], and hence is again a Dirac

comb function

U(r) = δ(r − q

∆k
) . (2.25)
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Following Equation (2.21), the corresponding discrete image is

ρ̃(r) = F−1{y(k) · u(k)} (2.26)

= ρ(r) ∗ U(r) (2.27)

= ρ(r) ∗ δ(r − q

∆k
) (2.28)

with ∗ the convolution. It can be seen that ρ̃(r) is an infinite and periodic function with the period

rT = 1/∆k := FOV (2.29)

where the field-of-view (FOV), i.e., the selected image plane (e.g. in mm2), consists of only one

period of ρ̃(r). Moreover, the discrete ρ(r) is composed of thousands of image elements (pixels),

whose size (∆r), typically defined as the spatial resolution, is given as

∆r =
FOV

N
=

1

∆k ·N
=

1

2kmax
(2.30)

with N the number of samples per echo and kmax the maximal k-space sampling position.

Alternatively, according to Equation (2.16), ∆k can also be written as

∆kx =
γ

2π
Gx∆tx and ∆ky =

γ

2π
Gy∆ty (2.31)

where ∆tx and ∆ty is the sampling interval (dwell time) along the Gx and Gy direction, respec-

tively. Equation (2.31) indicates how much time is required to encode one k-space sample, so the

sampling rate is 1/∆k, which, according to the Nyquist-Shannon sampling theorem, has to satisfy

the following condition in order to avoid the image aliasing artifact,

∆k =
2kmax

N
≤ 1

FOV
. (2.32)

Here, the reduction of ∆kx along the readout direction does not increase the measuring time but

enlarges the aliasing-free area.

Further, ∆k in Equation (2.31) is determined by two factors: the gradient strength and the

dwell time. For fixed ∆k and kmax, a reduced gradient strength prolongs the dwell time and also

the total readout duration, yielding a higher signal-to-noise ratio (SNR). The reciprocal of ∆t is

represented by the receiver bandwidth (BW). Therefore, the higher the bandwidth, the faster the

sampling rate, and the lower the SNR [15].

2.6. Gridding & FFT Image Reconstruction

In the case of Cartesian sampling, an inverse FFT can be directly applied to the sampled k-space

data to obtain an image. For non-Cartesian sampling trajectories (e.g. radial and spiral), however,
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the sampled k-space data are not necessarily located on the Cartesian grid. As a result, the

image reconstruction of k-space data from non-Cartesian sampling requires the non-uniform FFT

(NUFFT) [16], known as the gridding algorithm in MRI [17–20], to interpolate the data onto the

Cartesian grid prior to the uniform inverse FFT. In principle, the gridding algorithm includes the

following steps

1. Density compensation. As the sampling density in non-Cartesian trajectories may not be

equally distributed in k-space, so a density compensation function (DCF) is required to

properly weight every k-space data;

2. Convolution. The density-compensated data is convolved with a window function (e.g. the

Kaiser-Bessel function) with a finite width to interpolate every sample onto its neighboring

Cartesian grid, whose minimal sampling distance (∆kmin) of the Cartesian grid can be smaller

than that (∆k) of the non-Cartesian sampling trajectory. The ratio between them is denoted

as the over-gridding ratio o = ∆k/∆kmin, which is helpful in reducing image aliasing artifacts;

3. Roll-off correction. Note that the convolution in k-space in the previous step is equivalent to a

dot product between the object and the inverse FFT of the window in image domain. Thus, a

reconstructed image is obtained by a 2D inverse FFT of the gridded data and then divided by

the inverse Fourier transform of the window function. Finally, the image is cropped according

to the over-gridding ratio.

2.7. Parallel Imaging

One main problem in MRI is the imaging speed. Even with the Cartesian FLASH sequence, about

one second is required to obtain one image. This temporal resolution is not fast enough for the

study of fast physiological motions, e.g. beating heart. To speed up MRI, data undersampling is a

feasible approach, but undersampled k-space results in aliased images. To overcome this problem,

parallel imaging has been of great interest ever since the development of phased-array coils [21],

which are usually placed around the subject in order to simultaneously receive k-space data.

As shown in Figure 2.8, the coils are more sensitive to signals near to their locations. The

spatially-varying sensitivities of the coils are named the coil sensitivity map, in correspondence

to which even the aliased coil images due to the two-fold undersampling exhibit brighter intensities

in respective regions. This is a direct indication that parallel imaging with multiple receiver coils

creates redundant information which can be used to estimate an un-aliased image and hence eventu-

ally accelerates data acquisition. The forward operation in parallel imaging can be mathematically
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Figure 2.8 Schematic illustration of parallel imaging. The forward model can be understood as

the 2D FFT (F) of the dot product between the image ρ and every coil sensitivity

map evaluated on the sampling pattern. In case of undersampling (as depicted in the

sampling pattern, two-fold undersampling is used here), the direct FFT gives aliased

coil images. Inverse problem is to estimate an un-aliased image and/or coil sensitivity

maps given the undersampled multi-coil data and the sampling pattern.

denoted as

F : x 7→


PF{ρ · c1}

...

PF{ρ · cN}

 (2.33)

where ρ is the image, cn is the nth coil sensitivity map, F is the 2D FFT, and P is the sampling

pattern. On the contrary, the task of the inverse problem posed by parallel imaging is to estimate

an un-aliased image and/or a set of coil sensitivity maps via the undersampled multi-coil data and

the sampling pattern.

There exists three generic reconstruction techniques for parallel imaging, sensitivity encoding

(SENSE) [22, 23], simultaneously acquisition of spatial harmonics (SMASH) [24], and generalized

autocalibrating partially parallel acquisitions (GRAPPA) [25], all of which have been commercial-

ized and used in routine clinic.

The generalized SENSE treats parallel imaging as a linear inverse problem which intends to

optimize the following cost function

Φ(x) = argmin
x

N∑
n=1

‖yn − F (ρ · cn)‖22 + α ‖ρ‖22 with x = ρ . (2.34)

Prior to solving this function, the coil sensitivity maps need to be calculated via either a calibration
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scan or the auto-calibration signal (ACS). ACS is usually accomplished by fully sampling the

low-spatial-frequency region while the rest of k-space remains undersampled according to the user-

defined reduction factor R. Non-Cartesian trajectories such as spiral and radial, however, offer

inherent self-calibrating signals due to their densely sampled center [26]. With coil sensitivity

maps, the above function can be solved by conjugate gradient (CG) method and thus this method

is dubbed as CG-SENSE. Moreover, due to the ill-condition of the inverse problem, Tikhonov

regularization that penalizes the L2 norm of the estimate image is used.

Recent progress in compressed sensing [13] has enabled the application of L1-norm regulariza-

tions into SENSE-type iterative image reconstructions. L1-norm regularizations are preferable for

estimating sparse images, which are achievable via incoherent sampling and sparsifying transforms

(e.g. wavelet). As a result, L1-norm regularizations produce fewer coefficients with non-zero values

due to the stronger penalties on small-value coefficients compared to L2-norm regularizations.

One important variant of SENSE is k-t SENSE [27], proposed by Tsao et al. in 2003 for dynamic

imaging with high frame rates. Here, k and t refer to the phase-encoding index and acquisition

time, respectively. With 1D FFT on k and t respectively, the data in x-f space can be obtained.

k-t SENSE consists of two reconstruction steps. The first step is named the training stage, where

a dataset in the low spatial frequency region is acquired and then a signal covariance matrix in x-f

space is determined. This matrix is considered to be consistent and is thereby used in the second

step (acquisition stage) to reconstruct undersampled data.

In contrast, both SMASH and GRAPPA are based on the assumption that a k-space data

point is highly correlated with its neighbors, so the missing data can be a linear combination of

neighboring signals with appropriate weights. The weights are determined by fitting undersampled

k-space data to the ACS. Afterwards, both the undersampled data used in the fitting and the

weights are utilized to composite the missing data. GRAPPA-type image reconstructions result in

uncombined coil images, which can be combined via either sum of squares [21] or phase-preserving

coil combination algorithms [28].

2.8. MRI System

As shown in Figure 2.9, the studies presented in this thesis were conducted at a commercial scanner

(MAGNETOM Prisma, Siemens Healthcare1, Erlangen, Germany) with a superconducting magnet

of field strength | ~B0| = 3 Tesla (T) and two built-in body coils for RF excitation and signal receiving.

Moreover, the gradient system has a maximal gradient strength of 80 mT m−1. For the gradient

switching, the raster time can be as fast as 10 µs, and the maximal slew rate is 200 T m−1 s−1. In

1www.healthcare.siemens.com

www.healthcare.siemens.com
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Figure 2.9 (Left) MRI system and (right) receiver coils. (Top right) 64-channel head coil and

(bottom right) 18-element thorax coil.

addition, the receiver coils used are the 64-channel head coil, the 18-element thorax coil, and the

32-channel spine coil.



CHAPTER 3

Real-Time MRI: State of the Art

Real-time MRI refers to high-speed MRI acquisitions at millisecond resolution. Initially, spiral

sampling was proposed for real-time cardiac MRI [29] and further developed in HeartVista�1. For

accelerated MRI acquisitions, spiral sampling usually has long readouts, which are prone to off-

resonance-induced image artifacts (e.g. see Section 2.4). Therefore, this chapter focuses on the

real-time MRI technique developed in Biomedizinische NMR Forschungs GmbH2. Essentially, this

technique comprises highly undersampled radial FLASH acquisitions without any physiological

triggering and the nonlinear inverse image reconstruction that accurately estimates both the object

image and the coil sensitivity maps.

3.1. Undersampled Radial FLASH

Radial sampling has regained great interest in the last decade. First, it is less sensitive to motion-

induced ghost artifacts as commonly seen in Cartesian sampling, because the center of k-space is

measured by every spoke. However, rapid motions may cause streaking artifacts in radial sampling.

Second, radial sampling is resistant to spatial distortion in case of undersampling. Undersampling

induces radial streaks as well, which, however, has been proven incoherent and hence can be better

suppressed than coherent artifacts (e.g. the aliasing or fold-in artifact in Cartesian undersampling).

Third, as radial sampling contains two readout gradients (see Equation (2.18)) rather than one

readout and one phase-encoding gradient, it is feasible to employ oversampling along the readout

directions, which effectively enlarges the circular-supported FOV and hence reduces aliasing arti-

facts without additional measuring times. Due to these favorable properties, undersampled radial

FLASH was proposed by Zhang et al. in 2010 [30] for real-time MRI.

Based on radial sampling, three types of sequences have been implemented for real-time MRI:

spoiled and refocused radial FLASH, and balanced steady-state free precession (bSSFP). Beside

1https://www.heartvista.com/
2http://www.biomednmr.mpg.de/
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Figure 3.1 Undersampled radial FLASH sequences. (a) RF-spoiled radial FLASH for T1-weighted

imaging. (b) Refocused radial FLASH for T1/T2-weighted imaging. (c) Undersampled

radial sampling (3 spokes per frame) with 5 sequential turns.

the standard RF-spoiling, spoiled radial FLASH (see Figure 3.1a) requires no additional rewinder

gradients on the readout axes as their gradient areas vary from TR to TR interval. The resulting

image contrast in spoiled radial FLASH with short TE and TR and low flip angle (e.g. 8°) is T1-

weighted. This sequence has been applied primarily to phase-contrast flow velocity quantification,

real-time speech imaging, and cardiovascular magnetic resonance (CMR) imaging. On the contrary,

refocused radial FLASH (see Figure 3.1b) renders T2/T1-weighted image contrast and hence has

been intensively used for the diagnosis of temporomandibular joint (TMJ) dysfunctions. To achieve

steady state, furthermore, refocused radial FLASH does not spoil the transverse magnetization,

but requires it to be consistent among TR intervals, and thus rewinder gradient is employed on

both the two readout gradients. Another conventional and appealing CMR imaging sequence is

bSSFP, which offers T2/T1-weighted image contrast as well. bSSFP requires zero gradient area on

all gradient axes, so it has an additional rewinder gradient on the slice selection gradient when

compared to refocused radial FLASH. Nevertheless, bSSFP provides excellent contrast between

myocardium (heart muscle) and flowing blood as myocardium has a lower T2/T1 ratio compared to
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blood. The application of bSSFP to real-time CMR imaging at 1.5 T with an achievable temporal

resolution of 40 ms has been developed by Voit et al. in 2013 [31]. One drawback of bSSFP, however,

is that it is prone to banding artifacts due to the off-resonance phase modulation.

As shown in Figure 3.1c, one image frame (turn) comprises a certain number of spokes (e.g.NS =

3), which are uniformly distributed in k-space and sequentially rotated between successive turns.

Moreover, the radial sampling pattern is repeated every NT turns (e.g. NT = 5). In the current

implementation of real-time MRI sequences, both NS and NT are limited to odd integers as a

consequence of the total radial angle coverage set to be 2π. The angle increment between two

successive spokes (∆θspoke) and that between two successive turns (∆θturn) can be given as

∆θspoke = 2π/NS (3.1)

and

∆θturn = 2π/(NS ·NT ) , (3.2)

respectively. Therefore, the angle of the sth spoke in the mth frame is

θ(s,m) = [(m− 1) mod NT ] ·∆θturn + (s− 1) ·∆θspoke . (3.3)

3.2. Parallel Imaging as Nonlinear Inverse Problem

Prior to the nonlinear inversion (NLINV) reconstruction for parallel imaging [32–35], joint sen-

sitivity encoding (JSENSE) [36] had been proposed by Ying et al. in 2007 to “jointly” estimate

image content and coil sensitivity maps. However, JSENSE updates the estimate image and coil

sensitivity maps in an alternative manner – the image is estimated via CG-SENSE with the current

estimate coil sensitivity maps fixed, and then coil sensitivity maps are estimated via the CG-type

method with the current estimate image fixed. In short, this method separates a nonlinear inverse

problem into two linear inverse problems and solve them alternatively. NLINV is the first algo-

rithm that jointly estimates image content and coil sensitivity maps via the iteratively regularized

Gauss-Newton method (IRGNM) [37, 38].

Algorithm

Following Equation (2.33), the system equation in parallel imaging can be written as

y = F (x) with x =


ρ

c1

...

cN

 (3.4)
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with both the image (ρ) and coil sensitivity maps being the unknown (x). Here, it is convenient to

denote the forward operation on the nth coil as Fn(x) = PF{ρ · cn}.

Equation (3.4) represents a nonlinear system because when assuming x1 = (ρ1, c1)T and

x2 = (ρ2, c2)T , a linear system satisfies F (x1) + F (x2) = F (x1 + x2), but

F (x1) + F (x2) = PF{ρ1 · c1}+ PF{ρ2 · c2}

= PF{ρ1 · c1 + ρ2 · c2} ,

which is not equal to

F (x1 + x2) = F

ρ1 + ρ2

c1 + c2


= PF{(ρ1 + ρ2) · (c1 + c2)} .

To solve this nonlinear problem, IRGNM firstly linearizes it as y = DF (xn)dx+F (xn), where xn is

the estimate from nth Newton step and DF (xn) is the Frechét derivative. Thus, the cost function

in Equation (2.34) becomes

Φ(dx) = argmin
dx

‖DF (xn)dx− [y − F (xn)]‖22 + αn ‖W (xn + dx− x0)‖22 (3.5)

with αn being the Tikhonov regularization parameter, x0 the initial guess, which is initialized

by the estimate from the preceding frame damped by a dampening factor p (0 ≤ p ≤ 1). To

counteract the ill-condition of this inverse problem, the unknown x is subject to a transformation

by the preconditioning matrix W ,

x̂ =


ρ

ĉ1

...

ĉN

 =



I (
1 + s

∥∥∥~k∥∥∥2

2

)−l
F

. . . (
1 + s

∥∥∥~k∥∥∥2

2

)−l
F




ρ

c1

...

cN

 (3.6)

with ~k being 2D Cartesian grid, s = 440, and l = 16. This transformation ensures the spatial

smoothness of coil sensitivity maps, as the signal from high spatial frequency region is strongly

penalized. With this preconditioning, the cost function can be solved via conjugate gradient method

with Tikhonov regularization. The optimized dx is then used to update xn+1: xn+1 = xn + dx.

Beside the forward operator F (x), the solution of Equation (3.5) requires DF (x) and its adjoint

DFH(x). A fast forward computation of DF (x) can be derived via the Jacobian matrix

DF (x)


dρ

dc1

...

dcN

 =



∂
∂ρF1(x) ∂

∂c1
F1(x) · · · ∂

∂cN
F1(x)

∂
∂ρF2(x) ∂

∂c1
F2(x) · · · ∂

∂cN
F2(x)

...
...

. . .
...

∂
∂ρFN (x) ∂

∂c1
FN (x) · · · ∂

∂cN
FN (x)




dρ

dc1

...

dcN





3.2. Parallel Imaging as Nonlinear Inverse Problem 21

=


PFc1 PFρ 0 · · · 0

PFc2 0 PFρ · · · 0
...

...
...

. . .
...

PFcN 0 0 · · · PFρ




dρ

dc1

...

dcN



=


PF{c1 · dρ+ ρ · dc1}

...

PF{cN · dρ+ ρ · dcN}

 . (3.7)

DFH(x) can then be exploited by taking the conjugate transpose of DF (x)

DFH(x)


dy1

...

dyN

 =



c∗1F−1PH c∗2F−1PH · · · c∗NF−1PH

ρ∗F−1PH 0 · · · 0

0 ρ∗F−1PH · · · 0
...

...
. . .

...

0 0 · · · ρ∗F−1PH




dy1

...

dyN



=



∑N
n=1 c

∗
n · F−1PHdyn

ρ∗ · F−1PHdy1

...

ρ∗ · F−1PHdyN

 . (3.8)

With these two operators, the update rule of dx can be derived from Equation (3.5)

dx = [DF (xn)HDF (xn) + αnI]−1{DF (xn)H [y − F (xn)] + αn(x0 − xn)} (3.9)

For the reconstruction of serial images via real-time MRI acquisitions, the algorithm is initialized

with ρ = 1 and cn = 0 for the first frame, while the following frames are initialized with the estimate

from the preceding frame, which effectively acts as temporal regularizations. The incorporation

of the temporal regularization into NLINV enforces temporal correlations among successive image

frames. The regularization parameter decays along Newton steps according to αn = α0 · 2−n and

α0 = 1.

As the iterative NLINV image reconstruction technique is of heavy computational load and

time consuming, it has been implemented on multiple graphics processing units (GPUs) and fully

integrated into the reconstruction pipeline of the MRI system [39].

Preprocessing

Before NLINV image reconstructions, the acquired multi-channel k-space data is firstly corrected

for gradient delays [40], then compressed to 10 virtual channels via principle component analysis,

and finally gridded onto 2D Cartesian grids without density compensation and normalized to 100
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in the L2 norm. On the other hand, the sampling pattern P (refer to Equation (2.33)) is the

projection onto the measured k-space positions.

Postprocessing

A temporal median filter with a window size equivalent to the number of turns can be applied to

the reconstructed images. Furthermore, a modified version of the non-local means denoising [41]

algorithm has been developed and integrated into the online reconstruction pipeline by Klosowski

et al. [42].

3.3. Real-Time Phase-Contrast Flow MRI

3.3.1. Physical Principles

Real-time phase-contrast flow MRI has been an important technique as it provides quantitative

information for the evaluation of cardiovascular diseases. Phase-contrast flow MRI is based on the

discovery by Hahn in 1960 [43] which states that velocities of flowing spins can be encoded into the

phase via a bipolar gradient, under which the temporal evolution of phases can be mathematically

expressed as

φ(t) = γ

∫ T

0
G(t)x(t)dt

= γ

∫ T

0
G(t)(x0 + v0t+

1

2
a0t

2 + · · · )dt (Taylor Series)

= γx0

∫ T

0
G(t)dt+ γv0

∫ T

0
G(t)tdt+ · · · (3.10)

the first two integrals of which represent the phase for the static spins at location x0 without

macroscopic movements and the flowing spins with a constant moving velocity v0, respectively.

According to this equation, both spins have zero phase by the end of the flow-compensation (also

named velocity-compensation) gradient (GFC) with the waveform 12̄1, as depicted in the left part

of Figure 3.2. With the velocity-encoding (also named flow-encoding) gradient (GVENC) with the

waveform 11̄, however, the static spins still result in zero phase and the flowing spins with constant

velocity have a net phase,

φv(2τ) = γv0

∫ 2τ

0
G(t)tdt

= γG0v0

(∫ τ

0
tdt−

∫ 2τ

τ
tdt

)
= −γG0τ

2v0 (3.11)

which indicates that the velocity is linearly proportional to the accumulated net phase, as depicted

in right part of Figure 3.2. Therefore, the velocity-encoding (VENC) range, determined by the
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Figure 3.2 Schematic illustrations of flow compensation and velocity encoding. (Left) Flow-

compensation (FC) gradient with the waveform 12̄1 results in zero phase for both

the static spin and the spin with constant velocity. (Right) Velocity-encoding (VENC)

gradient with the waveform 11̄ results in zero phase for the static spin but net phase

for the spin with constant velocity.

velocity-encoding gradient amplitude (G0) and duration (τ) has to be larger than the velocity

to be measured (v). Otherwise, the image area with exceeded velocities incurs velocity aliasing

artifacts, appearing as random phase values. However, VENC can not be arbitrarily large because

the SNR of the measured phase is constrained by the VENC [44]

SNRφv ∝ SNRMag ·
|v|

VENC
(3.12)

with SNRMag being the SNR of the measured magnitude image. Thus, imaging protocols may

require several measurements until the peak velocity is free of aliasing.

MR image phase, however, can have various sources, e.g. the off-resonance-induced phase mod-

ulation. Therefore, to remove unwanted phases, at least two measurements with different velocity

encodings are needed to obtain quantitative velocities. This can be implemented in two manners.

The first approach is typically named two-sided velocity encoding [45], where the first measurement

consists of a bipolar (e.g. positive and negative) velocity-encoding gradient and the second one uses

a velocity-encoding gradient with signs reversed. As a result, the phase difference between the two-

sided measurements is ∆φ = 2γG0τ
2v0. The second approach is named one-sided velocity encoding
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[45], where the first measurement employs the flow-compensation gradient to zero phases caused

by motions and the second one uses the bipolar velocity-encoding gradient, and hence the phase

difference between the one-sided measurements is ∆φ = −γG0τ
2v0. In principle, flow-encoding

gradients can be applied in any direction to encode multi-dimensional velocities.

3.3.2. Image Reconstructions

In the current implementation of the real-time phase-contrast flow MRI sequence, only through-

plane velocities are encoded via the one-sided velocity encoding, consisting of one flow-compensation

and one flow-encoding acquisition. The two datasets are treated as two independent streams and

separately reconstructed by NLINV except that they share the same channel compression matrix

in the preprocessing process. The reconstructed image and coil sensitivity maps are combined to

remove unwanted phase contributions from coils,

ρj,l =
ρl · cj,l√∑
j cj,l · c∗j,l

with j ∈ [1, N ], l ∈ [1, 2] (3.13)

with j and l being the index of coils and acquisitions respectively, and ∗ the complex conjugate.

Thus, the complex phase-contrast map can be calculated via

ρ̂PC =
∑
j

ρj,0 · ρ∗j,1 (3.14)

ρPC =
ρ̂PC√
|ρ̂PC|

. (3.15)

For quantitative flow evaluations, the complex phase-contrast maps are imported into CAIPI

prototype software (Fraunhofer MEVIS3, Bremen, Germany), where two subsets of images are

available, one anatomical magnitude image and one phase-difference (e.g. velocity) map. To begin

with, a region-of-interest (ROI) in a certain magnitude image frame is manually selected, i.e., the

ascending aorta lumen, which is then propagated through the entire image series. The propagation

is able to capture the moving lumen. If not properly captured, manual corrections can be done

afterwards. With the lumen determined from every phase-contrast map, CAIPI then calculates

a list of flow parameters, e.g. peak velocity, flow per heartbeat, flow volume, and regurgitation

fraction.

3http://www.mevis.fraunhofer.de/

http://www.mevis.fraunhofer.de/


CHAPTER 4

Numerical Simulations

Numerical simulation has been an important tool in MRI because unexpected errors due to sys-

tem imperfections (e.g. eddy currents, noise, and field inhomogeneities) and uncooperative patients

(e.g. through-plane motions) can be excluded. Moreover, it creates an ideal imaging environment

that fosters understanding the characteristics of different k-space sampling trajectories and eval-

uating reconstruction methods. Therefore, a simulation framework based on analytical Fourier

transformation is built for the studies of various radial sampling schemes, e.g. asymmetric-echo

and multi-echo radial FLASH.

4.1. Fundamentals

In principle, the MR signal in k-space is the continuous Fourier transform of the scanned object

ρ(~r), which can be written as

y(t) =

∫
~r
ρ(~r) · e−i2π·~k(t)·~rd~r (4.1)

One typical MR simulation was based on rasterized phantoms, and the MR signal was obtained

via discrete Fourier transform (DFT). This approach, however, is time consuming as every k-space

signal requires an execution of DFT over all image pixels. Nevertheless, it leads to the inverse-crime

problem, as the same discrete model of the imaging system is used for both simulation and image

reconstruction. Moreover, the MR signal from a rasterized phantom can not represent the aliasing

artifact from truncated k-space. Therefore, it is more reliable and preferable to use analytical

phantoms with three important features.

First of all, the analytical Fourier transform of phantoms constructed by superimposed ellipses

and rectangles (e.g. Shepp-Logan phantom [46, 47]) can be derived as

Acirc(kx, ky) = a · b ·
J1(
√

(a · kx)2 + (b · ky)2)√
(a · kx)2 + (b · ky)2

(4.2)

and

Arect(kx, ky) = 2π · a · b · sinc(a · kx) · sinc(b · ky) (4.3)

25
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respectively [20]. Here, J1(x) is the first-order Bessel function of its first kind, a and b represent

either the short and long axes of an ellipse, or the length and width of a rectangle. On the other

hand, due to the linearity of Fourier transform, superimpositions in image domain are equivalent

to those in k-space. Therefore, the analytical Fourier transform of any phantom with superimposed

ellipses and/or rectangles can be calculated given the sampling k-space trajectory, which is given

as

y(~k) =
∑
m

Im ·Am(~k) (4.4)

with m being the index for ellipses and rectangles in the phantom, and Im and Am the corresponding

proton density and analytical Fourier transform, respectively.

Secondly, the inclusion of multiple spatially-varying receiver coils cj(~x) to mimic parallel imag-

ing, which extends the MR signal in Equation (4.1) to

yj(t) =

∫
~r
cj(~r) · ρ(~r) · e−i2π·~k(t)·~rd~r . (4.5)

With sinusoidal or polynomial fitting of the complex coil sensitivity map simulated from Biot-Savart

law, the fitting coefficients can be integrated into the analytical Fourier transform of phantoms.

Mathematical description of the integration procedure is given in Chapter A.

Thirdly, the inclusion of relaxation effects (e.g. T ∗2 signal decay and off-resonance phase modula-

tion in multi-echo FLASH) into the MR signal model, which is further extended from Equation (4.5)

to

yj,l(t) =

∫
~r
cj(~r) · ρ(~r) · e−[R∗

2(~r)+i2π·∆f(~r)]·TEl · e−i2π·~k(t)·~rd~r (4.6)

where R∗2 is the reciprocal of the T ∗2 relaxation time, ∆f is the off-resonance frequency map, and

TEl is the echo time of the lth echo. The relaxation effects can be included by assuming T ∗2 and

∆f values in every shape (ellipse or rectangle) to be constant, so that the MR signal in accordance

to Equation (4.4) is (ignoring the coil sensitivities for simplicity)

yl(~k) =
∑
m

Im · e−zm·TEl ·Am(~k) (4.7)

with zm = R∗2 + i2π · ∆f . One drawback of this method is that off-resonances are constant

within a shape and hence discrete in a phantom, which does not reflect the fact that off-resonance

frequency maps are usually smooth and slowly-varying in space, similar to coil sensitivity maps.

This drawback, however, can be overcome using approximation methods as for coils.

Using the analytical phantom with the above features, a numerical simulation framework was

developed in MATLAB (Mathworks, Natick, MA, IUSA) for studying the characteristics of different

radial sampling schemes.
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4.2. In-Plane Motion Simulations

To study motion artifacts in real-time MRI, to mimic the experimental motion phantom [48], and to

test motion-correction algorithms (e.g. application of k-space energy spectrum analysis to motion

correction in PROPELLER MRI [49, 50]), this simulation framework is capable of adding in-plane

motions (e.g. translation and rotation) to every acquired k-space spoke.

The principle of motion simulation is that the geometries of all shapes contained in a phantom

(i.e., the center, the major and minor semi-axes of a ellipse) are consistent during the acquisition of

a spoke, and thus the k-space signal of this spoke can be calculated by analytical Fourier transform

given the known geometries. The geometries can then be changed for the acquisition of the next

spoke. Taking in-plane rotation as an example, the centers of the two tubes are updated every

spoke by rotating the tubes around the center of the imaging slice according to the user-defined

rotation angle per spoke. Note that the rotation angle can be converted to the rotation speed

(cm s−1) as used in the experimental motion phantom,

v = φ · d/T (4.8)

where φ is the rotation angle per frame, d the distance from the center of the tube to that of the

rotation, and T the acquisition time for one image. Therefore, the rotation angle of 5.7° per frame

in Figure 4.1 corresponds to half-position shift and 15 cm s−1 for the outer tube. As the distance

to the image center from the outer tube is twice as long as the inner one, the outer tube rotates

twice as fast and hence it suffers from more severe blurring.

Furthermore, to prove the temporal acuity of NLINV without the temporal median filter, Fig-

ure 4.2 compares it with the conventional Gridding & FFT reconstruction [17, 19]. Firstly, as

shown in the static phantom images, NLINV can greatly suppress streaking artifacts due to under-

sampling as it iteratively estimates the optimal image that matches best with the acquired k-space

data, while Tikhonov regularization on the image penalizes unwanted signals from high-spatial-

frequency area, i.e., noise and streaks. Secondly, the rotation angle per frame 5.7°, 11.4°, and 17.1°

corresponds to the rotation speed of 15 cm s−1, 30 cm s−1 and 45 cm s−1 for the outer tube, respec-

tively. The resulting images from Gridding & FFT reconstruction are degraded by heavier spatial

discontinuity along with higher rotation speed, while images from NLINV show blurring artifacts

because NLINV for serial images relies on the temporal regularization, which could be explored to

find an optimum for rapid-motion imaging, i.e. 45 cm s−1. The optimization of the regularization

parameters, however, is beyond the scope of this chapter.

In short, these simulation results match the findings from real-time MRI on the experimental

motion phantom [51].
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Figure 4.1 Eight consecutive images (from the 43rd to 50th frame) with an in-plane rotation of

5.7o per frame in the clockwise direction, base resolution 200, FOV 20 cm2, 17 spokes

per frame (33 ms temporal resolution), 5 interleaves, 360° total view angle, and 10

analytical coils. The images were reconstructed by NLINV without the temporal

median filter.

Figure 4.2 Comparisons of (top) Gridding & FFT and (bottom) NLINV reconstructions under

different rotation speeds: (1st column) stationary, (2nd column) 5.7° per frame, (3rd

column) 11.4° per frame, and (4th column) 17.1° per frame. The other acquisition

parameters are identical to those in Figure 4.1.



CHAPTER 5

Asymmetric Radial Gradient Echoes

Asymmetric-echo radial sampling is an interesting sampling scheme because it shortens the echo

time and thus reduces off-resonance effects. In contrast to the k-space line (echo)-reduction under-

sampling scheme, it samples an incomplete echo, which poses a different reconstruction problem on

how to estimate the missing portion of the echo. Therefore, this chapter studies the characteristics

of asymmetric radial gradient echoes and associated image reconstruction methods. Moreover, the

application of this sampling scheme to real-time phase-contrast flow MRI is investigated. Here,

asymmetric echoes allow for the integration of motion-compensation gradients while maintaining

or even improving temporal resolution. Consequently, flow MRI with motion compensation and

short TE reduces signal loss due to intra-voxel phase dispersion and turbulence [52].

5.1. Undersampled Radial FLASH with Asymmetric Echoes

For asymmetric echo data sampling, also known as partial echo in partial Fourier imaging [3],

every k-space readout line is only partially collected before reaching the center of k-space. This

is achieved by reducing the moment of the corresponding pre-dephasing gradient, as shown in the

sequence diagram (left part of Figure 5.1). Therefore, it shortens the readout gradient before the

echo center and reduces the TE and TR, while the readout period after the echo center remains the

same as for symmetric echo. Here, an asymmetry metric (in %) is quantified as 100×A/(2B) with

A and B the durations of the acquisition window before and after the echo center, respectively.

With this definition, 50 % asymmetry corresponds to a symmetric echo, while 0 % represents a

half-echo acquisition. The k-space trajectory depicted in the right part of Figure 5.1 demonstrates

the extreme azimuthal undersampling with only seven spokes per image and 20 % asymmetry.

As has been demonstrated in [3], the first row of Figure 5.2 shows that the artifact-free area of

the simulated point spread functions (PSFs) reconstructed via direct Gridding & FFT decreases

along the number of symmetric spokes acquired, but the central lobe is not distorted or folded-in

as is commonly seen in undersampled Cartesian sampling. Furthermore, the streaks are much

29
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better spatially resolved and more severe with less number of spokes. On the other hand, when the

number of spokes is kept at 125 and the asymmetry is reduced from 40 % to 30 % and 20 % (see the

second row of Figure 5.2), a bright ring surrounding the central white lobe emerges and eventually

reduces the artifact-free area. This may result in blurring and Gibbs ringing artifacts due to the

lack of high spatial-frequency data.

Another appealing feature of asymmetric echo is that it keeps the same spatial resolution as sym-

metric echo. It is well known that the spatial resolution is inversely proportional to the maximum

gradient areas in two readout directions, which are equivalent to kx,max and ky,max, respectively

[4]. As the radially-supported FOV in k-space for asymmetric echo is the same as that for sym-

metric echo, the spatial resolution retains for asymmetric-echo sampling. As shown in Figure 5.3,

where simulated asymmetric k-space data was generated from a symmetric measurement (i.e. 50 %

asymmetry) for a standard multi-purpose phantom of the vendor. Respective FLASH acquisition

parameters were: TR/TE = 2.48/1.62 ms, flip angle 8°, 212 mm FOV, 0.83 mm in-plane resolution,

8 mm slice thickness, 15 spokes and 5 sequential-interleaving turns. Simulated gradient-echo data

with 40 %, 30 %, and 20 % asymmetry were obtained by cropping a respective number of data sam-

ples from the leading parts of corresponding symmetric spokes. True asymmetric measurements of

the resolution phantom for 40 %, 30 %, and 20 % asymmetry used similar experimental parameters

as the symmetric measurement except for the shortest possible repetition and echo times: TR/TE

(40 %) = 2.31/1.45 ms, TR/TE (30 %) = 2.14/1.28 ms, and TR/TE (20 %) = 1.99/1.13 ms. The

spatial resolution of all images in Figure 5.3 is well maintained, although increasing asymmetry

leads to fewer samples in the outer (e.g. high spatial frequency) regions of k-space. This is clearly

demonstrated by the well-resolved first three rows of water-filled holes in Figure 5.3 with diameters

ranging from 2.5 mm to 2.0 mm and 1.5 mm.

Furthermore, the reduction of TE in asymmetric-echo sampling reduces the sensitivity to off-

resonance effect. This property is advantageous in imaging tissues with small T ∗2 (e.g. lung imaging)

and slices with strong susceptibilities (e.g. air-tissue interface).

5.2. Image Reconstructions

Partial Fourier imaging exploits the conjugate complex symmetry of the full k-space of a real

image with zero phase. It is, therefore, widely used to accelerate the acquisition of radiofrequency-

refocused spin-echo images. For most gradient-echo images, however, the real-image assumption

is violated due to system imperfections and off-resonance contributions from various biological

and technical sources, which render the image complex. Previous proposals to deal with complex

datasets are synchronous homodyne detection [53], the projection onto convex sets (POCS) method
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Figure 5.1 Real-time radial FLASH with asymmetric gradient echoes. Left: The sequence dia-

gram represents one repetition cycle for the acquisition of one asymmetric echo. Right:

Corresponding k-space trajectory with seven spokes with 20 % asymmetry and 2π ra-

dial angle coverage. The blue lines represent a 2D Cartesian grid.

Figure 5.2 Simulated PSFs via Gridding & FFT reconstruction with 2π radial angle coverage,

256 total readout samples. The PSF in the first row was acquired with (left) 125,

(center) 65, and (right) 35 symmetric spokes, while the second row was acquired with

125 spokes and (left) 40 %, (center) 30 %, and (right) 20 % asymmetry. The central

white lobe of the PSFs indicates the reconstructed point. The artifact-free area is the

solid black region around the central lobe.
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Figure 5.3 Image reconstructions of a resolution phantom using symmetric gradient echoes (50 %)

as well as gradient echoes with 40 %, 30 %, and 20 % asymmetry. For asymmetric

cases the top panels refer to simulated data obtained by retrospective cropping of

data samples of complete spokes, while the bottom panels represent true asymmetric

acquisitions with shortest TR and TE. The size of the water-filled holes (and gaps

between) in the first three rows are 2.5 mm, 2.0 mm, and 1.5 mm respectively.

[54], and phase-constrained parallel imaging [55, 56]. These approaches assume a certain smooth-

ness of the image phase to justify the calculation of a low-resolution phase map from only the central

(i.e. symmetrically covered) k-space region, which is then used to estimate the missing data. More

advanced image reconstruction technique, e.g. NLINV, can directly apply a real-constraint onto

the estimated proton density without the pre-calibration of a smooth phase map from the central

k-space [57]. This real-constrained NLINV, however, totally relies on the conjugate complex sym-

metry and hence precludes the imaginary part of the estimate proton density, which is insufficient

in the cases where phase information is required, e.g., phase-contrast flow imaging and quantitative

susceptibility mapping. This study, therefore, exploited the general applicability of NLINV to di-

rectly reconstruct complex images and coil sensitivity maps from undersampled asymmetric radial

gradient-echo acquisitions.

5.3. Application to Real-Time Phase-Contrast Flow MRI

The implementation of real-time phase-contrast flow MRI is especially challenging because it

requires at least two acquisitions with different velocity-encoding gradients that prolong echo

times and repetition times. Additional timing problems arise for the incorporation of velocity-
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compensating gradient waveforms in multiple dimensions. Therefore, this work extends earlier

attempts to real-time phase-contrast flow MRI using spiral trajectories [58, 59] as well as our own

recent approaches [60, 61] by evaluating the use of asymmetric echoes for radial FLASH sequences

with phase-sensitive NLINV reconstruction. The technique advances proposals of asymmetric radial

trajectories for ECG-synchronized cine MRI [62, 63] to highly undersampled acquisitions suitable

for real-time MRI as high temporal resolution. In general, shorter gradient-echo times may be used

to reduce the sensitivity to magnetic field inhomogeneities, to acquire more data, to enhance the

temporal resolution or to ameliorate the time penalty of motion-compensating gradient waveforms.

In short, the purpose of this work was to explore asymmetric radial gradient echoes for real-time

phase-contrast flow MRI to allow for velocity compensation in both slice and read directions and

thereby reduce the sensitivity of complex blood flow and respective phase errors as commonly

observed in patients with cardiovascular disease.

5.3.1. Methods

Figure 5.4 shows a phase-contrast flow MRI sequence with asymmetric-echo radial FLASH. The

sequence diagrams represent two repetitions without and with velocity-encoding gradient, corre-

sponding to the one-sided velocity-encoding scheme. The two TR intervals represent the same

spoke from sequential image acquisition (flow-compensated acquisition first and then flow-encoded

acquisition, and these two acquisitions encode the same spokes in k-space). The diagrams correctly

display the used gradient waveforms (i.e., durations and strengths) for 30 % asymmetry and VENC

= 150 cm s−1 (for other parameters see Table 5.1).

Five young volunteers without known illness and one patient with combined aortic valve insuf-

ficiency and stenosis were recruited for real-time phase-contrast flow evaluations of the ascending

aorta. Written informed consent, according to the recommendations of the local ethics committee,

was obtained from all subjects before MRI studies, which were performed at 3 T using a state-of-

the-art MRI system with 80 mT m−1 gradients (Magnetom Prisma, Siemens Healthcare, Erlangen,

Germany). While phantom studies used the standard 64-channel head coil, human cardiac blood

flow was measured by combining an 18-element thorax coil with 32 elements of the spine coil.

For real-time phase-contrast flow MRI with velocity compensation in slice and read directions

the outcome of the sequence optimization and reconstruction process led to multiple acquisition

protocols. Two relevant examples for a small and large FOV are summarized in Table 5.1. In com-

parison to echo and repetition times of TR/TE = 2.86/1.93 ms previously reported for symmetric-

echo acquisitions without in-plane velocity compensation and a measuring time of 40 ms [61], the

current values of TR/TE = 2.38/1.59 ms (FOV = 192 mm) and TR/TE = 2.55/1.70 ms (FOV =

320 mm) offer even faster acquisitions with total measuring times of 33.3 ms and 35.7 ms, respec-
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Figure 5.4 Real-time velocity-encoded radial FLASH with velocity compensation and asymmetric

gradient echoes. The sequence diagrams represent corresponding repetition cycles:

(Left) Acquisition with velocity-compensated gradients with the waveform 12̄1 on all

axes and overlap the slice selection gradient and the two prephasing read gradients,

respectively. (Right) Acquisition with velocity-encoded gradient on the slice selection

axis to encode through-plane velocities, and with velocity-compensated gradients on

the two read axes to spoil transversal motions.

tively. While these numbers refer to a minimum VENC of 150 cm s−1, the latter implementation

would be prolonged to 40 ms when using 75 cm s−1.

Blood flow was measured in the ascending aorta at the level of the right pulmonary artery.

Typically, real-time flow MRI acquisitions of human subjects were performed during free breath-

ing at 35.7 ms resolution and for a period of 12.5 s yielding 350 magnitude images and phase-

contrast maps. For comparison, free-breathing ECG-synchronized cine phase-contrast flow MRI

with Cartesian encoding and retrospective sorting (standard sequence of the vendor) was performed

at 1.54 mm× 1.54 mm in-plane resolution and 6 mm section thickness. This conventional technique

also used velocity compensation for all imaging gradients. Other experimental parameters: TR =

20.00 ms, TE = 2.73 ms, flip angle = 20°, 3 averages, 30 cardiac phases, FOV = 220 mm2 × 320 mm2,

matrix resolution 144× 208.

Before NLINV reconstruction, the datasets from multiple coils are first corrected for gradient

delay errors [64] and then compressed to 10 virtual channels with coefficients calculated by principal

component analysis to reduce the amount of computational load for image reconstruction. After

NLINV, quantitative analyses of phase-contrast flow MRI images and evaluations of respective flow

parameters were obtained with the use of CAIPI prototype software (Franhofer MEVIS, Bremen,

Germany), especially modified for the automated analysis of real-time MRI acquisitions (typically
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Table 5.1 Exemplary acquisition parameters for real-time phase-contrast flow MRI

Field of view (mm2) 192× 192 320× 320

Image matrix size 136× 136 212× 212

In-plane resolution (mm2) 1.4× 1.4 1.5× 1.5

Section thickness (mm) 6 6

Asymmetry 20 % 30 %

Minimum VENC (cm s−1) 150 150

Velocity compensation Slice & 2× Read Slice & 2× Read

Repetition time (ms) 2.38 2.55

Echo time (ms) 1.59 1.70

Bandwidth (Hz pixel−1) 1360 1180

Flip angle (°) 10 10

Spokes per frame 7 7

Time per frame (ms) 16.66 17.85

Time per phase-contrast map (ms) 33.32 35.70

Temporal resolution (fps) 30 28

10 cardiac cycles).

5.3.2. Results

Phantom Studies

Figure 5.5 summarizes the results of a real-time phase-contrast flow MRI study of a phantom where

the left and right panels refer to perpendicular image orientations. All magnitude images and

corresponding phase-contrast maps represent selected single frames from real-time phase-contrast

flow MRI movies at 33.3 ms resolution with velocity compensation (top) in slice direction and

(bottom) in slice and read directions (experimental details in Table 5.1). The rapid water flow

in the inner tubing (in reverse direction to slower flow in the outer tubing) is characterized by

turbulence. With velocity compensation in slice direction only and symmetric echo acquisitions the

magnitude images suffer from substantial signal void due to extensive intravoxel phase dispersion,

while the corresponding phase-contrast maps exhibit multiple phase wraps due to unwanted phase

contributions from in-plane flow components. In contrast, the velocity-compensated flow MRI

acquisitions in all directions with 20 % asymmetry, result in magnitude images with fully recovered

signal intensities, while the phase-contrast maps are no longer contaminated by phase wraps, but
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instead reveal phase values that exclusively represent the desired through-plane flow components.

This is particularly well seen in the lower-right phase-contrast map where the flow direction in the

arch of the inner tube changes its direction by 180° (i.e., from dark to bright intensities).

Human Studies

To assess the robustness and accuracy of the real-time flow MRI technique with full velocity com-

pensation, Table 5.2 summarizes the result of a study of five healthy subjects and a patient with

combined aortic valve insufficiency and stenosis. These data were acquired with experimental pa-

rameters as given for the 320 mm FOV in Table 5.1. The quantitative evaluations in Table 5.2

compare peak flow velocities, flow per heartbeat, flow volumes and regurgitation fractions for real-

time flow MRI with velocity compensation in the slice direction only, with velocity compensation in

slice and read directions and conventional ECG-synchronized cine flow MRI with velocity compen-

sation. The results for real-time MRI represent mean values ± standard deviation for 10 consecutive

heartbeats.

For the patient a meaningful evaluation of the real-time flow MRI data without in-plane velocity

compensation was impossible because of significant turbulence. In close analogy to the phantom

results shown in Figure 5.5, the poor performance of the old method and the corrected behavior

of the proposed method are demonstrated in Figure 5.6. The left and right panels refer to two

positions along the aorta, i.e., at the level of the pulmonary artery and close to the aortic valve,

respectively. With velocity compensation in slice direction only, the magnitude images exhibit a

complete signal void in the aorta, while the corresponding phase-contrast maps suffer from multiple

phase wraps. In contrast, the magnitude images from fully compensated acquisitions with 30 %

asymmetry maintain the full (inflow) MRI signal and in the phase-contrast maps re-establish phase

profiles that represent the true through-plane velocities without phase wraps. These velocity profiles

are pathologically distorted compared with the observation of almost laminar flow with parabolic

velocity distribution in healthy subjects, e.g. see Joseph et al. [60].

5.3.3. Discussion

The proposed method for reconstructing highly undersampled asymmetric radial MRI data relies

on NLINV [33–35] with a suitable gradient delay correction. The results obtained for a resolution

phantom not only confirm the reliability of the estimated gradient delays for highly undersam-

pled asymmetric echoes, but also demonstrate the achievable image quality and spatial resolution.

Only for 20 % asymmetry the row of 1.5 mm holes in Figure 5.3 exhibits a slight blurring. This

phenomenon reflects the relatively higher fraction of low k-space values in an asymmetric versus a

symmetric radial dataset, which for a given weight of the NLINV regularization yields a correspond-
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Figure 5.5 Real-time phase-contrast MRI (33.3 ms temporal resolution, FOV = 192 mm) of

through-plane flow in a phantom with complex flow in the inner small tube. The

panels represent selected magnitude images and corresponding phase-contrast maps in

a coronal (left) and transverse (right) view at the arch of the inner tube. The images

were obtained with velocity-compensating gradient waveforms (top) in slice direction

only using symmetric radial gradient echoes and (bottom) in slice and read directions

using gradient echoes with 20 % asymmetry.

Figure 5.6 Real-time phase-contrast MRI of aortic blood flow (35.7 ms temporal resolution, FOV

= 320 mm) for a patient with combined aortic valve insufficiency and stenosis. The

panels represent selected magnitude images and corresponding phase-contrast maps

of the ascending aorta at the level of the pulmonary artery (left) and close to the

aortic valve (right). The images were obtained with velocity-compensating gradient

waveforms in slice direction only using symmetric radial gradient echoes (top) and in

slice and read directions using gradient echoes with 30 % asymmetry (bottom).
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ing overestimation of low spatial frequencies. In principle, the effect may, therefore, be reduced

by decreasing the regularization weight which may be accomplished by increasing the number of

iterative Gauss-Newton steps used for NLINV reconstruction.

In human studies, complex flow in the ascending aorta with respective multi-dimensional phase

contributions is a frequent phenomenon in patients with cardiovascular disease, but not in healthy

subjects [60, 61]. Nevertheless, a comparison of real-time acquisitions without and with compensa-

tion of in-plane phase components reveals approximately 10-20 % lower peak flow velocities for later

method (see Table 5.2). Because velocities directly represent phase information, this observation

indicates the successful removal of some false positive phase contributions by the proposed method

even in healthy volunteers. In the absence of a gold standard a comparison of these results with

those obtained by cine flow MRI are less instructive in view of phase information in real-time acqui-

sitions and the combination of phase information for multiple cardiac cycles in a cine acquisition.

However, despite these problems, the flow results obtained for the proposed real-time flow MRI

method and the conventional cine MRI method are in general agreement including values for the

patient with aortic valve dysfunction.

In conclusion, the development of asymmetric echoes for highly undersampled radial FLASH

sequences offers significant technical advances for real-time phase-contrast flow MRI, where the

incorporation of velocity compensation in slice and read directions without compromising temporal

resolution sets the basis for quantitatively accurate studies. The proposed method now warrants

further clinical validation and extensive applications.

5.4. Summary

Asymmetric radial gradient echo sampling has been successfully implemented on the MRI scan-

ner, and the simulated and experimental results reveal a usable degree of up to 20 % asymmetry.

The application of asymmetric echo to real-time phase-contrast flow MRI enables the addition of

velocity-compensated gradients without contaminating the temporal resolution. Short echo time

and velocity compensation are beneficial in flow velocity measurements as they can decrease phase

dispersion and spoil accelerated spins. In addition, asymmetric echo sampling with or without mo-

tion compensation can be potentially applied to other applications, i.e., speech studies and cardiac

imaging, for the gain of acquisition speed. However, the image reconstruction for asymmetric-echo

sampled data is limited to the phase-sensitive NLINV method. The integration of advanced phase

constraints into NLINV for extreme asymmetric echo (e.g. asymmetry < 20 %) could further reduce

echo time, probably recover the missing portion of the asymmetric echo, and eventually improve

temporal resolutions of real-time MRI. To implement phase-constrained methods, an appropri-
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ate regularization on the phase is most likely required, but the extraction of the phase information

from the MR signal model in parallel imaging is complicated and thus requires better mathematical

treatments in IRGNM.
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Table 5.2 Quantitative flow evaluations in the ascending aorta of healthy volunteers and a patient

with valve insufficiency1

Subject MRI
Peak Velocity Flow per Flow Volume Regurgitation

(cm s−1) Heartbeat (mL) (L min−1) Fraction (%)

No.1

RT-Slice2 132± 7 91± 4 5.5± 0.2 2± 1

RT-All3 120± 3 95± 6 5.4± 0.4 2± 1

Cine 140 116 7.1 1

No.2

RT-Slice 129± 9 131± 6 7.7± 0.5 1± 1

RT-All 112± 9 123± 6 6.9± 0.3 1± 1

Cine 126 133 7.9 1

No.3

RT-Slice 76± 4 57± 4 4.0± 0.2 2± 1

RT-All 69± 4 55± 1 3.6± 0.2 2± 1

Cine 76 65 4.3 1

No.4

RT-Slice 122± 19 126± 10 8.9± 3.1 2± 1

RT-All 113± 6 121± 3 7.5± 0.2 2± 1

Cine 117 111 7.4 2

No.5

RT-Slice 120± 8 89± 2 5.1± 0.2 5± 1

RT-All 100± 6 91± 4 5.3± 0.2 5± 1

Cine 107 102 6.1 4

Patient
RT-All 260± 15 49± 7 2.7± 0.5 58± 5

Cine 253 50 2.6 64

1 Results represent mean values ± standard deviation for 10 consecutive heartbeats.

2 RT-Slice, real-time flow MRI with velocity compensation in slice direction only.

3 RT-All, real-time flow MRI with velocity compensation in slice and read directions.



CHAPTER 6

Model-based Reconstruction

for Real-Time Phase-Contrast Flow MRI

A novel mathematical model of phase-contrast flow MRI is developed based on the assumption

that the flow-compensated and flow-encoded images have the same magnitude, but only differ in

phases. This assumption is especially true in real-time phase-contrast flow MRI at high temporal

resolutions and in conditions where laminar flows are measured. The unknowns (magnitude image,

phase-contrast map, and one set of coil sensitivity maps) in this model can be jointly estimated by

IRGNM. This method avoids the phase-difference calculation and directly applies regularizations

on the phase-difference map, which substantially reduces random phase noise.

6.1. Introduction

Based on the physical relationship between a gradient-induced phase shift and the velocity of

spins in a corresponding NMR [43] or MRI experiment [65] as well as initiated by early seminal

applications [66–68], there is nowadays extensive clinical use of velocity-encoded phase-contrast

techniques for quantitative MRI studies of blood flow. For relevant reviews see [69, 70]. More

recently, technical advances in real-time MRI [35], which rely on regularized NLINV reconstructions

of highly undersampled radial gradient-echo acquisitions [33, 34, 39, 51], have been extended to

cardiovascular applications [71, 31, 72] and, in particular, to phase-contrast flow MRI [60, 61, 64].

These and other accelerated flow MRI studies [73, 74] combine parallel imaging with a phase-

difference computation [3] of two complex images with complementary velocity encodings, i.e., a

flow-compensated and a flow-encoded acquisition. As a consequence, phase-difference maps present

with extensive phase noise in areas of low or no MRI signal (e.g. air). Although tolerable in many

cases, the presence of strong noise may complicate the definition of the true vessel lumen and

therefore affect quantitative flow analyses, hamper the assessment of flow in small vessels or, in

case of radial undersampling, enhance residual streaking artifacts.

41
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On the other hand, model-based approaches in MRI are a well-introduced concept for a variety of

post-processing problems, i.e., image segmentation. However, less attention has been paid to model-

based reconstructions, despite the fact that respective techniques have previously been detailed in

an excellent review [75]. While selected proposals deal with accelerated T2 mapping [76–78], fat-

water imaging [79], inhomogeneity-corrected T ∗2 mapping [80], quantitative susceptibility mapping

[81] and reconstructions of the diffusion tensor [82], preliminary attempts have also been made to

use constrained reconstruction techniques for accelerated phase-contrast flow MRI [83, 84]. For

example, Kwak et al. [83] reconstructed flow-compensated and flow-encoded images by regularizing

the sparsity of the complex-difference image [3]. Alternatively, Sun et al. [84] recently used the

complex difference of the acquired raw data in k-space directly as part of a signal model. However,

prior to the final calculation of the desired phase-contrast (i.e., velocity) map, both approaches still

require the initial reconstruction of either the flow-compensated and flow-encoded image, or the

flow-compensated and complex-difference image, and therefore do not offer a direct reconstruction

of a phase-contrast velocity map.

In contrast, the present work proposes a model-based reconstruction technique for phase-

contrast flow MRI that jointly computes a complex image, a phase-contrast map, and a set of

coil sensitivities from every pair of flow-compensated and flow-encoded datasets. In particular, this

initial description of a novel technique focuses on real-time flow MRI applications where respective

datasets represent extremely undersampled gradient-echo acquisitions [64] that allow for monitor-

ing blood flow at very high temporal resolution. Real-time phase-contrast flow MRI thus refers

to high-speed MRI acquisitions at millisecond resolution as opposed to ECG-synchronized MRI

acquisitions which extend over multiple cardiac cycles. The formulation of the nonlinear inverse

reconstruction problem for the proposed signal model leads to an iterative solution which directly

offers a quantitatively accurate phase-contrast map with improved spatial accuracy and much re-

duced phase noise. At this stage, however, and in contrast to a previous real-time phase-contrast

flow MRI technique [64], the numerical solution has been developed offline for retrospective analysis.

6.2. Algorithm

6.2.1. Phase-Contrast Flow MRI as Nonlinear Inverse Problem

Assuming the same magnitude image and the same coil sensitivities for each pair (l = 1, 2) of

flow-compensated and flow-encoded datasets, the phase-contrast flow MRI signal can be written as

yj,l(t) =

∫
~r
ρ(~r) · ez(~r)·Sl · cj(~r) · e−i2π

~kl(t)~xd~r with j ∈ [1, N ], l ∈ [1, 2] (6.1)
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where ρ is the complex image shared by the flow-compensated and the flow-encoding acquisitions, z

denotes a complex map which contains the phase differences ∆φ in its imaginary part, while the real

part is constrained to zero, cj is the sensitivity map of the jth coil, and ~kl is the k-space sampling

trajectory of the lth acquisition. The indices S1 = 0 and S2 = 1 represent the flow-compensated

and the flow-encoded acquisition, respectively. The unknowns (ρ, z, and cj) in this nonlinear

signal model can be solved by IRGNM [37, 38] as previously introduced for NLINV [33–35], which

estimates the minimum of the cost function

‖y − F (x)‖22 with x =



ρ

z

c1

...

cN


(6.2)

x the unknowns and y the measured k-space data. According to Equation (6.2), the forward

operator F is

F : x 7→



P1F{ρ · ez·0 · c1}
...

P1F{ρ · ez·0 · cN}

P2F{ρ · ez·1 · c1}
...

P2F{ρ · ez·1 · cN}


(6.3)

with F the discrete Fourier transform and Pl the orthogonal projection onto the lth trajectory.

In this study, the forward operation on the jth coil of the lth acquisition is denoted as: Fj,l(x) =

PlF{ρ · ez·Sl · cj}.

Due to the nonlinearity of this forward operator, the iteratively regularized Gauss-Newton

method [37, 38] firstly linearizes the model around the estimate xn from the nth Newton step,

which yields

F (xn + dx) ≈ F (xn) +DF (xn)dx (6.4)

with DF (x) the Frechét derivative. Thus, the cost function in Equation (6.2) becomes

Φ(dx) = ‖[y − F (xn)]−DF (xn)dx‖22 , (6.5)

which can be solved with use of the conjugate gradient method. By add Tikhonov regularization

similar to [33, 34], the cost function of linearized model is

‖DF (xn)dx− [y − F (xn)]‖22 + αn ‖xn + dx− p · x0‖22 (6.6)
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with p the damping factor, αn the Tikhonov regularization parameter which decays in every Newton

step, and x0 the initial guess. To solve this problem, two further operators are needed. The first

operator is the Frechét derivative of the forward operator DF (x), which can be calculated by

applying the Jacobian matrix and the linear property of the Fourier transform to F . Take Fj,l(x)

as an example,

DFj,l(x)



dρ

dz

dc1

...

dcN


= PlF{ez·Sl · (cj · dρ+ Sl · ρ · cj · dz + ρ · dcj)} (6.7)

= dyj,l (6.8)

where the product of DF (x) and dx maps dx to dy. The second operator is the adjoint of the

Frechét derivative DFH(x), which can be derived using the unitary property of F ,

DFH(x)



dy1,1

...

dyN,1

dy1,2

...

dyN,2


=



∑N
j=1 c

∗
j ·
{∑2

l=1(ez·Sl)∗ · F−1{PHl dyj,l}
}

=
(∑N

j=1 c
∗
j ·
{∑2

l=1 Sl · (ez·Sl)∗ · ρ∗ · F−1{PHl dyj,l}
})

∑2
l=1(ez·Sl)∗ · ρ∗ · F−1{PHl dy1,l}

...∑2
l=1(ez·Sl)∗ · ρ∗ · F−1{PHl dyN,l}


(6.9)

where ∗ denotes the point-wise complex conjugation and = is the imaginary part of dz. The

imaginary constraint is necessary due to the assumption that the flow-compensated and the flow-

encoded datasets only differ in their phases. With the two operators derived above, the solution to

Equation (6.6) is

dx = [DF (xn)HDF (xn) + αnI]−1{DF (xn)H [y − F (xn)] + αn(x0 − xn)} (6.10)

6.2.2. Scaling

When using first derivatives in a model-based iterative reconstruction of multiple parameters, the

relative scaling of parameters should be considered to balance the L2 norm among all partial

derivatives. A proper scaling accelerates the iterative optimization process, while maintaining

quantitative accuracy, i.e., see [76–78]. For the proposed model-based reconstruction of phase-

contrast flow MRI data as proposed here, scaling was accomplished by introducing the scaled index

Ŝl: Ŝl = s · Sl, so that the estimated phase-difference map implicitly becomes

ẑ = z/s (6.11)
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with s being a scalar. From Equation (6.9) the following property can be derived using ẑ ·Ŝl = z ·Sl,

dẑ ∝ Ŝl (6.12)

Although s may be heuristically selected [76], this work employs an automatic scaling mechanism

which takes advantage of Equation (6.12) to derive the scaling. It is accomplished by exploiting

the complex-difference image [3]

|ρ1 − ρ2| = M ·
√

2[1− cos(∆φ)] (6.13)

where M = |ρ1| = |ρ2|. It can then be proven to hold for relatively small phase-differences∥∥∥√2 · [1− cos(∆φ)]
∥∥∥

2
≈ ‖∆φ‖2 (6.14)

When normalizing ρ1 and ρ2 by ‖M‖2 and taking the L2 norm of both sides, Equation (6.13), i.e.

the relation between the norm of the complex-difference and that of the phase-difference image,

can be reformulated using Equation (6.14)

‖(ρ1 − ρ2)/ ‖M‖2‖2 ∝ ‖∆φ‖2 (6.15)

The norm of the complex-difference in image space is equivalent to that in k-space, so the left-

hand side of Equation (6.15) can be estimated from the gridded multi-channel k-space data of the

flow-compensated and flow-encoded acquisitions y1 and y2, respectively,

s =
0.5 · (‖y1‖2 + ‖y2‖2)

‖y1 − y2‖2
≈ 1

‖∆φ‖2
(6.16)

where the scalar s directly quantifies the intensity ratio between the magnitude image and phase-

difference map and 1 indicates the norm of the normalized magnitude image. The scaling mechanism

via the scalar s not only balances the derivatives, but also ensures proper balance between the data

consistency term and the regularization term in Equation (6.6) because the regularization on z is

explicitly controlled by s (see Equation (6.11)).

Because real-time phase-contrast flow MRI is a dynamic process, serial phase-difference maps

(as well as complex-difference images) may lead to different scaling values as determined by Equa-

tion (6.16). This variation is shown in Figure 6.1 for experimental data of the human aorta (gray

line). While s can be as large as 10 in case of very low phase-difference values, i.e. in the absence of

flow, such large values should be avoided as they decrease the regularization strength and accumu-

late noise in the final estimate. Therefore, the following steps are taken to dynamically determine

the effective scaling. Starting with a value of 5, s is calculated from Equation (6.16) for each frame

and continuously updated by any lower scaling. For studies of human blood flow this typically

means that s decreases until the real-time flow MRI acquisition reaches the first systole (compare

Figure 6.1, black line), so that quantitative analyses of real-time flow MRI studies may eliminate

the first cardiac cycle.
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Figure 6.1 The scaling values s for real-time phase-contrast flow MRI (35.7 ms resolution) of the

aorta of a healthy subject: Gray line = according to Equation (6.16)), black line =

used for serial model-based reconstructions.

6.2.3. Regularization

As shown in Equation (6.6), Tikhonov regularization is used for the solution of the linear problem

with αn a tunable regularization parameter, which starts with 1 and decreases in each Newton step

by a factor of 2. In this study, αn is identical among all parameters. In addition, the model-based

image reconstruction adopts the L2-norm regularization on the high spatial frequencies of the coil

sensitivity maps as used for NLINV [35, 33, 34, 60, 61, 64], and employs a temporal regularization

of the current set of model parameters (i.e., maps) with the respective maps of the immediately

preceding pair of datasets damped by 0.7. The reconstruction on the very first maps is initialized

using ρ = 1, z = 0, and cj = 0, and 7 Newton steps are used in this work.

The radial sampling pattern has a circular field-of-view, and thus encodes no information in the

corners of k-space. As a result, high spatial-frequency signal, which usually appears as checkerboard
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artifacts in image domain, has the freedom to accumulate during model-based iterative reconstruc-

tion. Therefore, a k-space filter [23] is added to the gridded sampling pattern P to penalize signals

in the undefined corners of k-space.

6.2.4. Pre- and Post-Processing

In general, the datasets from multiple receiver coils are first corrected for gradient delay errors [64],

and then compressed to 10 virtual coils by a principle component analysis. This latter process must

be identical for both the flow-compensated and flow-encoded datasets. Finally, the data and the

sampling trajectories are interpolated onto Cartesian grids without density compensation. After

solving the nonlinear inverse problem, the resulting complex phase-contrast map is given by

ρPC = |ρ| · ei·s·=(ẑ) . (6.17)

6.3. Methods

6.3.1. Numerical Flow Phantom

To ensure the quantitative accuracy of the proposed reconstruction method, a numerical flow

phantom was built with superimposed ellipses, whose analytical Fourier transform is known and

can be evaluated at given k-space trajectories. Moreover, 10 receiver coils were simulated based on

the Biot-Savart law and sinusoidal fitting [85]. To mimic phase-contrast flow MRI, the simulation

included one flow-compensated and one flow-encoded acquisition with the same magnitude signal

strengths. The simulated ellipses had zero phase in the flow-compensated acquisition, while phase

values of 150°, −100°, and −15° were added to the three ellipses in the flow-encoded acquisition

to represent different velocities and directions. The simulations were performed for datasets with

45, 15, 7 and 5 radial spokes (symmetric echoes, base resolution 170 pixels) each covering a view

angle of 360°. Serial datasets employed interleaved spokes in 5 successive acquisitions similar to

experimental conditions. Complex white Gaussian noise with a standard deviation of 0.1 was

added to the data, so that the signal-to-noise ratio decreased with the number of spokes. While

model-based image reconstructions of numerical phantoms which are based on analytical Fourier

transform usually suffer from aliasing artifacts, these may be suppressed by decreasing the Tikhonov

regularization parameter or by adjusting the sampling pattern [77]. Here, a damping factor of 1

for the z map was only used for reconstructions of the numerical flow phantom.

6.3.2. Real-Time Phase-Contrast Flow MRI

This work presents real-time flow MRI data of the ascending (and descending) aorta obtained at 3 T

(Magnetom Prisma, Siemens Healthcare, Erlangen, Germany). The analyses include 5 volunteers
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without known illness and two patients with combined aortic valve insufficiency and partial stenosis

previously studied with “conventional” real-time flow MRI [64] as well as new experimental data

from 5 additional healthy subjects. All subjects gave written informed consent prior to MRI in

compliance with the regulations established by the local ethics committee.

Real-time phase-contrast flow MRI was based on extremely undersampled radial FLASH MRI

(5 or 7 spokes per image) with asymmetric gradient echoes [64] using two sequential acquisi-

tions of a dataset with velocity-compensated gradients in all gradient axes and with velocity-

encoding of through-plane flow, respectively. While studies of the experimental flow phantom

(VENC = 200 cm s−1) employed the 64-channel head coil, blood flow in the human aorta (VENC =

200 to 400 cm s−1) was studied during free breathing by combining an 18-element thorax coil with

32 elements of the spine coil. Acquisitions (TR/TE = 2.38/1.59 ms, flip angle 10°) of the previously

described flow phantom [64] were performed at 1.4 mm in-plane resolution (192 mm field-of-view,

6 mm slice thickness) and 33.32 ms temporal resolution (7 spokes for the flow-encoded and flow-

compensated image, respectively). All in vivo measurements (TE = 1.70 ms, flip angle 10°) had

1.5 mm in-plane resolution, 320 mm field-of-view, 6 mm slice thickness, and 35.7 ms (2× 7 spokes,

TR = 2.55 ms) or 25.6 ms temporal resolution (2× 5 spokes, TR = 2.56 ms) corresponding to 28

or 39 frames per second (fps), respectively. For both NLINV and model-based reconstructions the

serial magnitude images were subject to a temporal median filter, whereas no temporal filter was

applied to phase-contrast maps.

Online reconstruction and display of real-time NLINV images was achieved by a parallelized

version of the NLINV algorithm [39] and a bypass computer (sysGen/TYAN Octuple-GPU, Sysgen,

Bremen, Germany) equipped with two processors (CPU, SandyBridge E5-2650, Intel, Santa Clara,

CA) and 8 graphics processing units (TITAN, NVIDIA, Santa Clara, CA). The system was fully

integrated into the reconstruction pipeline of the commercial MRI system. Depending on image

matrix (i.e., resolution and/or FOV) the current reconstruction speed ranges from 6 to 14 fps (i.e.,

magnitude images and phase-contrast maps). At this stage, the model-based reconstruction was

implemented on a single graphics processing unit (GeForce GTX 580, NVIDIA, Santa Clara, CA)

and performed offline after data acquisitions. Typically, the current implementation takes about

4.5 s per frame.

Quantitative analyses of phase-contrast flow MRI data were obtained with the use of CAIPI

prototype software (Fraunhofer MEVIS, Bremen, Germany), especially modified for the automated

analysis of real-time MRI data, i.e., vessel or myocardial segmentation throughout the entire time

series without the need for manual corrections [86].
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6.4. Results

6.4.1. Validation Studies

In order to assess the quantitative reliability of the model-based phase-contrast flow MRI tech-

nique, the mathematical approach was validated with the use of a numerical flow phantom pro-

viding ground truth in the presence of noise. Figure 6.2 compares the results obtained for NLINV

reconstructions with subsequent calculation of a phase-difference map and direct model-based re-

constructions for simulations with a decreasing number of spokes per image. For high degrees of

undersampling, the model-based phase-contrast maps present with visibly better signal-to-noise

ratio and sharper “vessel” definition. The quantitative analyses in Table 6.1 confirm the excellent

accuracy of phase (i.e., velocity) values obtained by the proposed model-based reconstruction –

even for acquisitions with only 7 or 5 spokes per image. Most importantly, this not only applies to

mean values, but also to the standard deviations which for highly undersampled acquisitions are

much smaller than for NLINV-based reconstructions.

Similarly, Figure 6.3 shows the results for an experimental phantom providing constant flow

at two different velocities (i.e., depending on tube diameter) and two opposing flow directions

(forward vs backward flow). Again, the most apparent feature is the almost noise-less appearance

of the model-based phase-contrast map which benefits from the a priori knowledge of zero phase

for all pixels without flow or no MRI signal. In contrast, all “conventional” flow MRI techniques,

which rely on the phase-difference calculation of two independent complex images with differential

flow encodings, yield arbitrary phase values (and corresponding phase differences) in zero-signal

pixels as well as some tissue-dependent phase in pixels with stationary signal. In relation to this

advantageous zero-phase property, which is effective as an additional constraint, the model-based

reconstruction reduces the strength of residual streakings extending from the high-flow tubes in

the phase-contrast maps shown in Figure 6.3.

Most importantly, however, model-based phase-contrast maps yield a spatially much more ac-

curate definition of the flow signal (i.e., vessel lumen) than obtainable by conventional NLINV

reconstructions. In fact, the spatial information of the model-based phase-contrast map in Fig-

ure 6.3 precisely matches the magnitude image information, whereas flow areas in NLINV phase-

contrast maps are larger compared to both the true lumen sizes. These qualitative observations are

confirmed by quantitative analyses summarized in Table 6.2. In contrast to NLINV, model-based

reconstructions not only yield almost identical flow areas in magnitude images and phase-contrast

maps, but are also in close agreement with estimates of tube sizes as obtained by high-resolution

MRI. Nevertheless, flow evaluations reveal good agreement between both flow MRI methods with

respect to peak velocity as a direct (though focal) result of the phase-contrast determination, while
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flow volumes tend to be slightly larger than a determination by a flow meter.

Figure 6.2 (Left) NLINV and (right) model-based reconstructions of magnitude images and phase-

contrast maps for a numerical flow phantom (complex white Gaussian noise, standard

deviation 0.1) and constant flow in three ellipses corresponding to phase values of 150°,

−100°, and −10°. The results were obtained for simulated acquisitions with 45, 15,

7 and 5 spokes. The Gibbs ringing artifact around the 150° ellipse in phase-contrast

maps stems from the numerical design of the phantom (plug flow pattern). It is less

visible in NLINV reconstructions because of the phase noise for zero-flow pixels.
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Table 6.1 Quantitative flow evaluations for a numerical flow phantom

Spokes per image True Phase Difference NLINV1 Model-based2

45

150 150.0± 1.7 150.1± 1.4

−100 −100.0± 1.4 −100.2± 1.0

−15 −15.0± 1.3 −15.1± 0.6

15

150 150.0± 5.5 149.8± 2.5

−100 −100.0± 5.2 −100.2± 2.3

−15 −15.0± 4.4 −15.0± 1.6

7

150 146.4± 36.0 149.6± 5.7

−100 −100.8± 12.0 −102.7± 5.3

−15 −15.6± 10.6 −15.5± 3.1

5

150 131.7± 73.8 150.6± 8.8

−100 −101.6± 18.6 −103.8± 6.5

−15 −15.4± 14.5 −15.9± 3.7

Results represent mean values ± standard deviations.

1 NLINV reconstructions with subsequent calculation of a phase-different map.

2 Direct model-based reconstruction of phase-contrast map.
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Figure 6.3 (Left) NLINV and (right) model-based reconstructions of (top) magnitude images and

phase-contrast maps as well as (bottom) velocity profiles (along indicated reference

lines) for an experimental flow phantom with constant (bidirectional) flow (tubes No.1

to No.4 from left to right, compare Table 6.2). The results were obtained for real-time

phase-contrast flow MRI at 33.3 ms resolution and VENC = 200 cm s−1. Residual

streaking artifacts in the NLINV phase-contrast map are reduced in the model-based

reconstruction which further improves the spatial definition of all tubes (compare Ta-

ble 6.2).
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Table 6.2 Quantitative evaluations of an experimental flow phantom

Tube1 Method

Magnitude Phase-Contrast Peak Flow

Image2 Map Velocity Volume3

(mm2) (mm2) (cm s−1) (L min−1)

No.1
NLINV 255 360 55 6.5

Model-based 239 243 63 6.8

No.2
NLINV 76 131 −189 −7.3

Model-based 71 75 −180 −6.5

No.3
NLINV 78 139 181 6.9

Model-based 73 75 185 6.9

No.4
NLINV 255 302 −52 −7.0

Model-based 235 233 −58 −6.8

1 Tube No.1 to No.4 are shown in Figure 6.3.

2 Estimated tube sizes from high-resolution MRI are about 250 mm2 (No.1, No.4) and

70 mm2 (No.2, No.3).

3 The flow volume as determined by a flow meter was 6.3 L min−1.
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6.4.2. Human Studies

Qualitative comparisons of NLINV and model-based phase-contrast MRI are depicted in Figure 6.4

for a normal subject and in Figure 6.5 for a patient with aortic valve insufficiency and partial steno-

sis, respectively. In line with results for the experimental flow phantom, the systolic phase-contrast

maps obtained by the model-based reconstruction yield a much better spatial definition in regions

with non-zero flow (i.e., vessels). Here, this particularly applies to the descending aorta whose

phase-difference presentation is in close agreement with the vessel lumen in the magnitude image.

In quantitative terms the analysis of peak systolic frames from 10 consecutive heartbeats of the

subject shown in Figure 6.4 revealed (445± 16) mm2 ((781± 20) mm2) for the lumen of the descend-

ing (ascending) aorta in model-based phase-contrast maps vs (569± 41) mm2 ((880± 18) mm2) for

NLINV reconstructions.

In addition, the implicit a priori knowledge of zero phase in pixels without flowing spins precludes

the iterative optimization process to generate residual streaking artifacts in areas around vessels

with maximum systolic flow, i.e. for signals with high temporal and spatial frequencies that are most

severely affected by k-space undersampling. Quantitative results for both NLINV and model-based

reconstructions are summarized in Table 6.3 for 5 subjects and 2 patients studied previously [64]

and found to be in general agreement. In comparison to [64] all analyses were performed with an

extended gradient-delay correction (unpublished results) and evaluated with an updated software

package for automatic vessel segmentation (CAIPI Prototype Software). In more detail, while peak

velocities obtained by NLINV and model-based reconstruction reveal excellent agreement, stroke

volumes (and cardiac output) which rely on integrated velocities over space and time are slightly

lower for model-based reconstructions. This observation reflects the sharper (i.e., smaller) definition

of the vessel lumen and must not be considered a flaw but an advantage.

The spatiotemporal improvement achievable by model-based phase-contrast flow MRI may be

invested into even faster acquisitions. As already suggested by the numerical simulations presented

in Figure 6.2 and Table 6.1, Figure 6.6 advances NLINV and model-based phase-contrast flow

acquisitions from 7 spokes per image and 35.7 ms total acquisition time to 5 spokes and 25.6 ms

resolution. At peak systole the findings of excellent vessel definition with almost no phase noise

and residual streakings confirm the expectations from numerical and experimental validations. To-

gether, these findings clearly support the notion that the use of 5 spokes represents an extreme

but feasible approach to real-time flow MRI at high temporal resolution. This is further confirmed

by the quantitative evaluations in Table 6.4 summarizing peak velocities and flow rates for 5 addi-

tional subjects and acquisitions with 7 and 5 spokes. Regardless of possible intrasubject variability

in repetitive measurements, mean peak velocities and flow volumes (10 heartbeats) in both the

ascending and descending aorta differ by less than 4 % when comparing 35.7 ms acquisitions (7
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spokes) with 25.6 ms acquisitions (5 spokes).

Figure 6.4 (Left) NLINV and (right) model-based reconstructions of (top) systolic magnitude

images and phase-contrast maps (magnified views) as well as (bottom) velocity profiles

(along indicated reference lines) for real-time phase-contrast MRI of aortic blood flow

in a healthy volunteer at 35.7 ms resolution and VENC = 200 cm s−1.
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Figure 6.5 (Left) NLINV and (right) model-based reconstructions of systolic magnitude images

and phase-contrast maps (magnified views) for real-time phase-contrast MRI of a

patient with aortic valve insufficiency and partial stenosis at 35.7 ms resolution and

VENC = 400 cm s−1.
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Table 6.3 Quantitative flow evaluations of the ascending aorta of healthy volunteers and patients

with valve insufficiency (data from Ref. [64]). The results represent mean values ±

standard deviation for 10 consecutive heartbeats at 35.7 ms resolution.

Subject Method

Peak Flow per Flow Regurgitation

Velocity Heartbeat Volume Fraction

(cm s−1) (mL) (L min−1) (%)

No.1
NLINV 120± 3 99± 4 5.7± 0.4 2± 1

Model-based 121± 4 91± 5 5.2± 0.4 1± 1

No.2
NLINV 114± 8 124± 6 6.9± 0.3 1± 1

Model-based 114± 7 112± 5 6.3± 0.2 1± 1

No.3
NLINV 69± 3 61± 3 4.0± 0.2 2± 1

Model-based 76± 4 62± 2 4.1± 0.2 1± 1

No.4
NLINV 112± 5 131± 4 8.1± 0.3 2± 1

Model-based 111± 4 123± 4 7.6± 0.3 2± 1

No.5
NLINV 100± 5 107± 3 6.2± 0.1 3± 1

Model-based 109± 5 97± 3 5.6± 0.1 4± 1

Pat.1
NLINV 264± 14 56± 6 3.0± 0.3 55± 3

Model-based 216± 11 51± 4 2.8± 0.2 57± 2

Pat.2
NLINV 222± 12 82± 5 5.3± 0.3 18± 2

Model-based 219± 6 71± 6 4.6± 0.4 23± 3
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Figure 6.6 (Left) NLINV and (right) model-based reconstructions of systolic magnitude images

and phase-contrast maps (magnified views) for real-time phase-contrast MRI of aortic

blood flow (VENC = 200 cm s-1) in a healthy volunteer using (top) 7 spokes per frame

at 35.7 ms resolution and (bottom) 5 spokes at 25.6 ms resolution. Note the improved

delineation of the superior vena cava (upper arrow) and the small azygos vein (lower

arrow) in model-based phase-contrast maps.
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Table 6.4 Quantitative flow evaluations of model-based reconstructions in the ascending and de-

scending aorta of healthy volunteers. The results represent mean values ± standard

deviation for 10 consecutive heartbeats at 35.7 ms and 25.6 ms resolution, respectively.

The bottom row presents percent differences of mean values for acquisitions at 35.7 ms

and 25.6 ms resolution.

Ascending Aorta Descending Aorta

Subject

Spokes Peak Flow per Peak Flow per

per Velocity Heartbeat Velocity Heartbeat

Image (cm s−1) (mL) (cm s−1) (mL)

No.6
7 88± 4 96± 9 99± 5 58± 5

5 89± 4 100± 4 103± 5 70± 3

No.7
7 127± 6 107± 6 128± 5 81± 4

5 116± 6 94± 5 120± 6 68± 4

No.8
7 83± 7 77± 7 104± 4 52± 4

5 84± 10 76± 7 104± 6 55± 4

No.9
7 114± 3 106± 4 119± 3 60± 3

5 115± 2 103± 5 115± 3 60± 4

No.10
7 96± 4 81± 3 100± 5 54± 3

5 96± 3 75± 4 100± 3 54± 3

Diff. (%) 7 vs 5 −1± 4 −4± 6 −1± 4 2± 13



60 Chapter 6. Model-based Phase-Contrast Flow MRI

6.5. Discussion

This work demonstrates the successful development of a model-based reconstruction technique for

real-time phase-contrast flow MRI and its application to the assessment of cardiovascular blood

flow. When compared to a previous flow MRI method based on NLINV reconstructions of two

independent flow-compensated and flow-encoded images [64], the flow results are quantitatively

accurate, while the images and maps present with improved spatial acuity and reduced residual

streaking artifacts. Most importantly, the desired phase-difference maps reveal much reduced phase

noise when compared to phase-difference maps of two complex images with arbitrary phases, in

particular in areas of low or no MRI signal. As a consequence, the proposed method offers much

better access to small vessels such as for example the azygos vein (see Figure 6.6). On the other

hand, the improved image quality and vessel definition of the model-based phase-contrast method

allows for the use of only 5 spokes per image which pushes flow MRI to a temporal resolution of

25.6 ms or a rate of 39 phase-contrast maps per second. Similar degrees of radial undersampling

(i.e., 5 spokes per image) have already successfully been applied for real-time MRI studies of high-

speed tongue movements in elite horn players [87] and experimentally been demonstrated to provide

excellent temporal fidelity for a rapid motion phantom [51] when eliminating any temporal filter

as done here for the velocity-encoded phase-contrast maps.

At this time, the most relevant limitation of the proposed method is the need for a time-

consuming offline calculation. Although conventional NLINV reconstructions are available online

for immediate control [64], the nonlinear inverse problem posed by the phase-contrast flow MRI

signal model requires new efforts for parallelization, GPU programming and implementation on the

existing bypass server to the host computer of our MRI system. Nevertheless, such work will be

mandatory to provide an online version for extended clinical trials. Another future option might

be a comparative investigation of other model-based flow MRI methods and their applicability to

highly undersampled MRI data. However, such studies are outside the scope of the present work,

which offers multiple validations of the proposed model-based reconstruction for real-time flow

MRI comprising numerical simulations, an experimental phantom, normal subjects and patients

with previous ECG-synchronized flow MRI data [64].

An advantageous extension of the current model-based reconstruction may arise from the fact

that the method is applicable to arbitrary trajectories in k-space, and in particular, to different

spatial encodings (i.e., sets of spokes) for the flow-encoded and flow-compensated dataset. So far,

most if not all phase-contrast MRI acquisition techniques including the one used here, employ

the same lines in k-space when comparing phase differences between flow-compensated and flow-

encoded acquisitions. However, the use of complementary sets of radial spokes, e.g. in two sequential
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acquisitions, offers at least two advantages: First, it promises to increase the spatial resolution (and

computational robustness) of respective model-based reconstructions. This can be seen from the

adjoint operator in Equation (6.9), where the summation of indices l for dρ and dz accumulates

all available spatial samples. Secondly, the use of different encodings in k-space, eventually in

combination with two similar but sign-inverted bipolar flow-encoding gradients, will allow for a

sliding-window approach where model-based reconstructions are shifted by just one dataset (here

7 or 5 spokes) rather than two datasets and thereby improve the effective temporal resolution by

a factor of two (here to about 18 or 13 ms). Along the same idea, it seems reasonable to extend

the model-based concept from one-dimensional (i.e., through-plane) flow to the analysis of phase-

contrast MRI studies with three-dimensional velocity encodings.

In conclusion, the present work introduces a novel model-based reconstruction technique for

velocity-encoded phase-contrast flow MRI which simultaneously estimates a proton density map,

a phase-contrast map and a set of coil sensitivity profiles from each pair of flow-encoded and flow-

compensated datasets. The solution to the resulting nonlinear inverse problem is accomplished with

the use of IRGNM. When based on highly undersampled radial FLASH acquisitions, real-time

applications benefit from reduced noise and improved spatial accuracy of the computed phase-

contrast maps which therefore allow for a temporal resolution of 25.6 ms per flow map.





CHAPTER 7

Multi-Echo Radial FLASH

7.1. Introduction

Multi-gradient-echo sequences contain two intrinsic properties. First, they acquire multiple echoes

after one RF excitation, which substantially shortens imaging time when echoes are differently

encoded. Note that one TR interval in these sequences is also named one echo-train. Second, they

elongate TE and TR, resulting in T ∗2 -weighted image contrast and off-resonance phase modulations

among echoes. T ∗2 signal decay is a direct indication of the blood-oxygen-level dependent (BOLD)

contrast primarily used in functional MRI (fMRI), discovered by Ogawa et al. in 1990 [88]. Nowa-

days, the most frequently used sequence for fMRI is echo-planar imaging (EPI) [89] proposed by

Peter Mansfield, who was awarded the 2003 Nobel Prize in Physiology or Medicine, shared with

Paul Lauterbur. On the other hand, off-resonance phase modulations represent tissue susceptibil-

ity differences. Their quantification has been the key to susceptibility-weighted imaging [90] and

water-fat separation [79].

Multi-gradient-echo is usually combined with Cartesian sampling, which, however, results in im-

ages with severe spatial distortion due to off-resonance phase modulation. Although several meth-

ods have been proposed for off-resonance estimation and correction (e.g. see [91–96, 80, 97, 98]),

research endeavors have also been made toward combining multi-echo gradient-echo sequences and

radial sampling. Silva et al. [99] proposed radial EPI that acquires all designated spokes with only

one RF excitation, and revealed via a water-oil phantom that off-resonance phase modulation in

rEPI results in blurring and radial streaks but no spatial distortion. Rasche et al. [100] developed

radial multi-gradient-echo MRI using about 100 spokes per image and maximally 4 echoes (cor-

responding to about 150 ms temporal resolution) for various in-vivo studies, i.e., swallowing, joint

motion, and cardiac fluoroscopy. Larson et al. [101] achieved a temporal resolution of 45 ms with an

echo-train length (ETL) of 3 and a factor of 2 view-sharing scheme for real-time cardiac imaging via

steady-state projection imaging with dynamic echo-train readout (SPIDER). Here, one echo-train

63
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consists of one partial first echo, one full second echo, and one partial third echo. Theilmann et

al. [102, 103] studied four view-ordering schemes in radial fast spin-echo imaging and subsequently

developed a radial gradient and spin-echo (GRASE) technique. On the other hand, rEPI with

stack-of-stars for 3D imaging was proposed by Bhat et al. [104] for contrast-enhanced whole-heart

coronary angiography, and true 3D radial multi-echo sequences have also been proposed (e.g. see

[105–107]). Furthermore, radial multi-echo sequences was applied to quantitative T ∗2 mapping by

Winkelmann et al. [108]. Note that all these imaging techniques used either gridding & FFT or

parallel imaging as linear inversion for image reconstruction.

The conventional multi-echo radial FLASH utilizes bipolar readout gradients with the same

amplitude to sample echoes in a fly-back-and-forth manner, which, however, is not efficient enough

with respect to k-space coverage and temporal resolution. Therefore, this thesis developed a multi-

echo multi-spoke (MEMS) radial FLASH sequence, which acquires multiple echoes with different

spatial encodings per RF excitation and connects two successive echoes with blip gradients. For im-

age reconstructions of multi-echo radial FLASH data, a multi-echo NLINV which jointly estimates

all echo images and one set of coil sensitivity maps is proposed and compared with the standard

NLINV. Moreover, a simple off-resonance estimation and correction method based on the pixel-

wise fitting of reconstructed echo images and the conjugate phase reconstruction is implemented

to alleviate off-resonance effects. Preliminary results on the human brain and heart demonstrate

that the proposed sequence can probably be applied to real-time MRI with improved temporal

and spatial resolutions and lead to quantitative mapping of T ∗2 relaxation times and off-resonance

frequencies in real time.

7.2. Theory

7.2.1. Multi-Echo Radial FLASH Sequences

In principle, multi-echo radial FLASH sequences can be divided into two categories depending

on the k-space coverage of one echo-train. If only one spoke is sampled back-and-forth via bipolar

readout gradients with the same magnitude and duration but altered polarity, this type of sequence

is named multi-echo single-spoke (MESS), as shown in the top of Figure 7.1. All echoes within

one echo-train have identical spokes but are weighted with T ∗2 and off-resonance according to their

respective echo times, and one image can be formed by the spokes acquired at the same echo. As

a result, MESS renders a total of L echo images with L being the number of echoes per frame

measurement. Here, L can be any integer, usually between 1 and 32. MESS has been applied

to real-time MRI applications [109], i.e., water-fat separation and myocardial T ∗2 mapping. On

the contrary, if spokes with different spatial orientations are sampled in one echo-train, this type
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Figure 7.1 Multi-echo radial FLASH sequences. (Top) Multi-echo single-spoke (MESS), where

multiple echoes are sampled on one single spoke via bipolar readout gradients with the

same magnitude and duration but altered polarity. (Bottom) Multi-echo multi-spoke

(MEMS), where multiple echoes per RF excitation are sampled on spokes with rotated

spatial orientations and concatenated by blip gradients.
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Figure 7.2 Illustration of the calculation of a blip gradient. (Red line) The jth echo with the angle

α and gradient moment Mj from the k-space center. (Green line) The (j + 1)th echo

with the angle β and gradient moment Mj+1 to the k-space center. (Cyan line) The

blip gradient with the angle γ and gradient moment Mb.

of sequence is named multi-echo multi-spoke (MEMS), as shown in the bottom of Figure 7.1.

When compared to MESS, MEMS can speed up the acquisition by a factor of L if both of them

sample the same total number of spokes per frame. Moreover, MEMS is more flexible in image

formation. An image can be simply formed using all sampled spokes regardless of their echo index,

similar to the image from EPI. Alternatively, L echo images can be formed as well by splitting all

spokes into L subsets according to the echo index. In MEMS, the total number of spokes per frame

must be divisible by L. In both sequences, the echo spacing (ESP) is defined as the the echo time

difference between two successive echoes.

To implement MEMS, blip gradients on both readout axes have to be appropriately prepared. As

illustrated in Figure 7.2, Mj and Mj+1 represent the gradient moment from the jth echo center and

to the (j+1)th echo center, respectively. In the current sequence implementation, Mj = Mj+1 = M .

Moreover, the jth and (j + 1)th echo has an angle of α and β, respectively. Similarly, Mb is the

gradient moment of the blip connecting the end of jth echo and the beginning of (j + 1)th echo,

and γ is the angle of the blip. Thus, the following property holds

~Mb = ~Mj+1 − ~Mj (7.1)

⇒Mb(x) = M · (cosβ − cosα) (7.2)

⇒Mb(y) = M · (sinβ − sinα) (7.3)

where Mb =
√
M2

b(x) +M2
b(y). Consequently, the duration of Mb depends on the angle increment

between two successive echoes and the gradient moments of Mj and Mj+1.

There exist two common view-ordering schemes in MEMS, linear and interleaving, which cor-



7.2. Theory 67

Figure 7.3 Schematic illustration of view-ordering schemes in MEMS, where one frame consists

of 9 spokes, 3 shots (e.g. excitations), and 3 echoes per shot. (Top) Linear. (Bottom)

Interleaving. The index k.l denotes the lth echo in the kth shot.
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respond to sequential and star in [102], respectively. Both schemes are depicted in Figure 7.3. In

linear view-ordering scheme, both echo trains and echoes after one excitation are sampled sequen-

tially, while even echoes are reversed to achieve the shortest blip gradient. Thus, the spoke index

s corresponding to the lth echo in the kth shot is

s = (k − 1) · L+ l (7.4)

which can then be inserted into Equation (3.3) to calculate the angle of any echo. As shown

in the top of Figure 7.3, all spokes with the same echo index in linear view-ordering scheme are

uniformly distributed in k-space and thus can be combined to an echo image. On the other hand,

in interleaving view-ordering scheme, as shown in the bottom of Figure 7.3, every echo train

uniformly covers the k-space and interleaves with each other. Therefore, all spokes with the same

echo index only cover partial k-space, which leads to non-uniformly distributed streaking artifacts

when combined as one echo image. Instead, all echoes in one shot can be combined to one image

with uniform k-space coverage. Here, the spoke index s corresponding to the lth echo in the kth

shot is

s = (l − 1) ·K + k (7.5)

with K being the total number of excitations per frame.

The view-ordering scheme of turns in MEMS can be the same as that discussed in Chapter 3,

which, however, results in partial k-space coverage when summing spokes from all turns up. For

linear view-ordering scheme, this can be overcome by adjusting the angle increment between two

successive turns to ∆θturn = 2π/(K ·NT ).

7.2.2. Image Reconstruction

The signal model in multi-gradient-echo imaging can be written as

yj,l(t) =

∫
~r
ρ(~r) · e−z(~r)·TEl · cj(~r) · e−i2π·

~kl(t)·~rd~r with j ∈ [1, N ], l ∈ [1, L] (7.6)

where z(~x) = R∗2(~x) + i · 2π · ∆f(~x) with the relaxation rate R∗2(~x), the reciprocal of T ∗2 (~x), and

the off-resonance frequency map ∆f(~x). As an extension from Equation (2.33), therefore, the

corresponding forward signal model of the lth echo acquired via the jth coil is denoted as

Fj,l(x) = PlF{ρ · e−z·TEl · cj} (7.7)

= PlF{ρl · cj} (7.8)

with ρ being the proton density and ρl being the lth echo image. It indicates two possibilities of

image reconstruction for multi-gradient-echo imaging. The first one is to directly reconstruct the

proton density ρ and the z map from the acquired multi-echo multi-coil data based on the forward
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model in Equation (7.7), which requires a complicated model-based reconstruction technique, while

the second one, as shown in Equation (7.8), reconstructs L echo images, accomplished by an

extended version of the standard NLINV [33–35]. The extended NLINV for multi-echo data assumes

that all echoes acquired in one image frame shares one set of coil sensitivity maps, so the cost

function associated with the forward operator in Equation (7.8) is

‖y − F (x)‖22 + α ‖W (x)‖22 with x =



ρ1

...

ρL

c1

...

cN


. (7.9)

To minimize this cost function, both the Frechét derivative of the forward operator DF (x) and

the adjoint of the Frechét derivative DFH(x) are needed, which can be derived according to the

forward operator in Equation (7.7),

DFj,l(x)



dρ1

...

dρL

dc1

...

dcN


= PlF{cj · dρl + ρl · dcj)} (7.10)

= dyj,l (7.11)

and

DFH(x)


dy1,1

...

dyN,L

 =



∑N
j=1 c

∗
j · F−1{PH1 dyj,1}

...∑N
j=1 c

∗
j · F−1{PHL dyj,L}∑L

l=1 ρ
∗
l · F−1{PHl dy1,l}

...∑L
l=1 ρ

∗
l · F−1{PHl dyN,l}


(7.12)

=



dρ1

...

dρL

dc1

...

dcN


. (7.13)
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This multi-echo NLINV (dubbed as meNLINV) reconstruction fits perfectly into the MESS

sampling scheme, comprising L echo images acquired by spokes with the same orientations in ev-

ery image frame, because the assumption of a common set of coil sensitivity maps ensures the

linearity of off-resonance phase evolution along echo images. meNLINV is applicable to MEMS as

well. In MEMS, however, one image can also be reconstructed via the standard NLINV when all

spokes acquired in one frame are combined together, regardless of their respective echo numbers.

Noteworthy, the L echo images in MEMS can be combined as one single image after the meN-

LINV reconstruction. The simplest combination is to sum all these echo images up, resulting in

a somewhat off-resonance “average” image. A better combination with off-resonance correction is

introduced as following.

7.2.3. Off-Resonance Estimation and Correction

As shown in Equations (7.7) and (7.8), the signal model along echo images is ρl = ρ·e−(R∗
2+i·2π·∆f)·TEl .

Given the reconstructed echo images ρl, quantitative parameter maps ρ, R∗2, and ∆f can be ob-

tained via a pixel-wise fitting. Thus, a combined image with off-resonance correction (ORC) can

be obtained via conjugate phase reconstruction,

ρcomb =
L∑
l=1

ρl · e+i·2π·∆f ·TEl . (7.14)

The quality of the combined image depends on the quality of the estimated off-resonance frequency

map, which can potentially be improved by regularized field map estimation (e.g. see [93, 95]) or

even a model-based reconstruction (e.g. see [96, 80]) based on the signal model in Equation (7.7).

7.3. Methods

7.3.1. Multi-Echo Radial FLASH Data Acquisition

Five young healthy volunteers were recruited for multi-echo radial FLASH studies. Written in-

formed consent, according to the recommendations of the local ethics committee, was obtained

from all volunteers before experiments.

This work presents phantom and in-vivo studies conducted at 3 T (MAGNETOM Prisma,

Siemens Healthcare, Erlangen, Germany). The 64-channel head coil is used for the phantom and

brain studies, while human cardiac imaging is measured by combining 32-element thorax coil with

18 elements of the spine coil. All studies employ 5 sequential turns.
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Phantom

A standard multi-purpose resolution phantom from the vendor is used to validate both MESS and

MEMS sequences with acquisition parameters: RF spoiling, 8° flip angle, 232 mm FOV, 1.81 mm

in-plane resolution, 6 mm slice thickness, 128 base resolution, 45 excitations per image frame and

9 echoes acquired after each excitation. This yields 45 spokes per echo image and 9 echo images

per frame in MESS, but a total of 405 spokes per frame in MEMS. Linear view-ordering scheme

is used in MEMS. 1.15 ms TE1, 0.97 ms ESP, and 9.45 ms and 9.63 ms TR in MESS and MEMS,

respectively.

Brain

MEMS radial FLASH with linear view-ordering scheme on the human brain is studied to demon-

strate its applicability in T ∗2 -weighted imaging with acquisition parameters: RF spoiling, 8° flip

angle, 224 mm FOV, 1.0 mm in-plane resolution, 224 base resolution, 4 mm slice thickness, 2.22 ms

TE1, 2.74 ms ESP, 42.5 ms TR, 25 excitations per image frame and 15 echoes acquired after each

excitation. Therefore, in total 375 spokes are sampled for one image frame and every echo comprises

25 spokes. The over-gridding ratio is set to 1 due to large numbers of samples per spoke.

Cardiac

To apply MEMS radial FLASH with linear view-ordering scheme into real-time cardiac imaging,

the data acquisition must be fast enough to capture cardiac motions. Hence, 3 echoes are ac-

quired per RF excitation, and the number of spokes per frame vary from 33 to 27, 21, and 15,

leading to temporal resolutions of 49 ms, 40 ms, 33 ms, and 24 ms with the corresponding echo

times and repetition time TE1/TE2/TE3/TR = 1.22/2.45/3.69/4.43 ms, 1.22/2.49/3.77/4.56 ms,

1.22/2.53/3.85/4.64 ms, and 1.22/2.57/3.95/4.74 ms, respectively. The other acquisition parame-

ters are RF spoiling, 8° flip angle, 256 mm FOV, 1.6 mm in-plane resolution, 4 mm slice thickness,

and 160 base resolution.

7.3.2. Image Reconstruction

As discussed in Section 2.6, Gridding & FFT in combination with square root of sum of squares

of all coils is used as the basic reconstruction method for validation. Moreover, three types of

NLINV are available for multi-echo data (see Section 7.2.2): standard NLINV, meNLINV with a

subsequent summation of all echo images, and meNLINV with a subsequent summation of all echo

images corrected for off-resonance effects. The development of the advanced model-based image

reconstruction for multi-echo data, however, is beyond the scope of this thesis.
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Figure 7.4 Multi-echo images reconstructed by Gridding & FFT. The acquisition parameters were

described in Section 7.3. The first row represents the 1st, 5th, and 9th echo image, and

the complex sum of all echoes from left to right from data acquired by MESS, while

the second row represents the corresponding images from MEMS.

The Gridding & FFT algorithm used the Gridding functions developed in C by Hargreaves1,

while the standard NLINV and meNLINV are implemented on a single graphics processing unit

(GeForce GTX 580, NVIDIA, Santa Clara, CA) by Uecker. The off-resonance estimation relies on

the pixel-wise fitting is implemented via the nlinfit function in MATLAB. All reconstructions are

performed offline after data acquisitions. Due to reduced spokes in the echo image reconstructions

of cardiac data, 7 Newton steps are employed, while all other studies use 6 Newton steps. The

reconstruction on the very first maps is initialized with ρl = 1, and cj = 0, and the standard

temporal regularization with a damping factor of 0.9 is used. Parameter for the preconditioning

matrix are the same as described in Section 3.2. Temporal median filter and denoising filter are

not used after image reconstruction in this study.

7.4. Results

7.4.1. Validation Studies

As shown in Figure 7.4, both MESS and MEMS acquisitions yield similar echo images reconstructed

by the Gridding & FFT reconstruction, which directly validates the appropriate switching of gradi-

ents in MEMS. Moreover, TE increases along echoes, and so do the T ∗2 weighting and off-resonance

1http://mrsrl.stanford.edu/~brian/gridding/

http://mrsrl.stanford.edu/~brian/gridding/
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phase modulation. This not only matches the signal model in Equation (7.7), but also can be seen in

the displayed echo images, where the signal intensity of the five small tubes substantially decreases

and the sizes of the black air bubbles on top of every tube enlarges from the 1st to 9th echo. On

the other hand, as all echo images from MESS are acquired by spokes with the same orientations,

the summation of all echo images gives no benefit. However, the spoke orientation differs among

echoes in MEMS, and thus the summation of all echo images contains L-fold number of spokes,

thereby improving the SNR and reducing streaking artifacts caused by radial undersampling.

7.4.2. Human Studies

Brain

Similar to MESS, MEMS radial FLASH with linear view-ordering scheme can also be reconstructed

by meNLINV, yielding L echo images and one set of coil sensitivities for each frame. Figure 7.5

shows three representative echo images (the 1st, 6th, and 11th echo). With relatively short TE and

long TR, the 1st echo image exhibits PD-weighted image contrasts. As TE increases, the white

matter becomes grayer and the overall intensity drops, indicating heavier T ∗2 weighting. Moreover,

signal void emerges and enlarges along echoes in the frontal brain area because of air-induced off-

resonance effects. This can be clearly seen in the phase images, where off-resonance frequencies

linearly increase with echo time. Quantitative analysis is given in the bottom panel of Figure 7.5,

containing both the normalized magnitude and the phase evolution along echoes in the marked

pixel, representing the T ∗2 signal decay and off-resonance phase modulation, respectively. Again,

the signal change in these curves matches the multi-echo signal model in Equation (7.7).

Further, the results shown in Figure 7.5 confirm the rationale of the meNLINV reconstruction

method, which assumes that all echoes acquired in one frame share one set of coil sensitivity maps.

This assumption ensures the linearity of the phase evolution induced by off-resonance along echoes.

On the other hand, in the single-echo NLINV that reconstructs echoes independently, coil sensitivity

maps have to be either combined with the echo image after reconstruction in order to exclude the

possibility that phases caused by off-resonance may partially remain in coils, or kept fixed among

echoes where coils are estimated from the first echo. Therefore, meNLINV can also be applied

to phase-contrast flow MRI data, and phase-contrast maps can be directly calculated between the

reconstructed images without the need of adding coils back as in Equation (3.13).

With all the reconstructed echo images and echo times, the pixel-wise fitting procedure described

in Section 7.2.3 yields three quantitative maps (the proton density ρ, the relaxation rate R∗2, and

the off-resonance frequency ∆f), as shown in Figure 7.6. Afterwards, off-resonance correction can

be performed to obtain a pure T ∗2 -weighted image, as shown in the right of Figure 7.7. Even

though signal void appears in multi-echo radial sampling methods, the spatial information of the
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Figure 7.5 Multi-echo brain images reconstructed by meNLINV. The acquisition parameters were

described in Section 7.3. The image panels represent (top) magnitudes and (middle)

phases of the (left) 1st, (center) 6th, and (right) 11th echo. (Bottom) The curve panels

represent (left) normalized magnitude and (right) phase evolution along echoes in the

marked pixel on the phase map of the 1st echo.



7.4. Results 75

Figure 7.6 Off-resonance estimation with echo images reconstructed by meNLINV. Pixel-wise

fitting yields three quantitative parameter maps: (left) proton density ρ, (center)

relaxation rate R∗2, and (right) off-resonance frequency ∆f .

Figure 7.7 Comparisons of (top) magnitude and (bottom) phase images reconstructed by three

types of NLINV-based methods: (left) standard NLINV that reconstructs all echoes

acquired in one frame once, (center) meNLINV with a subsequent summation of all

echo images, and (right) meNLINV with off-resonance correction.
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Figure 7.8 One diastolic frame from the human heart (short-axis view) acquired by MEMS with

linear view-ordering scheme, 33 spokes per frame with a temporal resolution of 49 ms,

accomplished by 11 excitations and 3 echoes after each excitation (TE1/TE2/TE3/TR

= 1.22/2.45/3.69/4.43 ms). The panels represent (top) magnitude and (bottom) phase

images of the (left) 1st, (center) 2nd, and (right) 3rd echo via meNLINV.

scanned subject is well maintained. Spatial distortion, however, is commonly seen in multi-echo

Cartesian sampling (e.g. EPI). More importantly, when compared to images reconstructed by the

(left) standard NLINV and (center) meNLINV with a subsequent summation of all echo images,

the off-resonance corrected image is mostly not contaminated by signal void due to off-resonance

phase modulation.

Cardiac

Figure 7.8 shows one diastolic frame acquired with 11 excitations and 3 echoes per excitation, which

in total samples 33 spokes per frame via MEMS with linear view-ordering scheme. The myocardium

in the magnitude images exhibits close similarity between echoes, while residual streaking surround-

ing the heart are probably caused by partial k-space coverage of each echo, which could potentially

be improved via a different angle increment between successive turns (e.g. see Section 7.2.1). Off-

resonance is most severe in areas around the middle cardiac vein (indicated by the white arrow),

in general agreement with the findings by Reeder et al. [110].
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Figure 7.9 Rough (left) water and (right) fat image calculated by the addition and subtraction

between the first two echoes in Figure 7.8.

One interesting phenomenon in Figure 7.8 is the appearance of “white” fat signals in both

the chest wall and areas surrounding the heart in the 2nd echo image, induced by the resonant-

frequency difference between the water and fat nuclei. In principle, the difference in resonant

frequencies between between two nuclei is

∆f = NCS ·
γ

2π
·B0 (7.15)

with NCS and B0 being the chemical shift and the main magnetic field strength, respectively.

Given the chemical shift between water and fat of 3.5 ppm [111], the water-fat resonant frequency

difference is

∆fWF = 3.5 ppm · 42.576 MHz T−1 · 3 T

= 447 Hz (7.16)

where “W” and “F” stand for water and fat, respectively. The phase shift between water and fat

in an acquired echo is then given as

∆φWF(TE) = 2π ·∆fWF · TE (7.17)

Therefore, the 1st and 3rd echo can be considered as “opposed-phase” because the relative phase

between water and fat is approximately π and 3π, respectively. On the contrary, the 2nd echo is

“in-phase” with ∆φWF(TE2) ≈ 2π. In principle, one echo (denoted as W − F) can be acquired

at the perfect “opposed-phase” TE, and another (W + F) acquired at the perfect “in-phase” TE,

so the water and fat component can be calculated via the addition and subtraction of these two

echo images, as shown in Figure 7.9. This indicates the potential application of MEMS radial

FLASH into more precise water-fat separation, where, in general, the water-fat signal acquired
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Figure 7.10 Comparisons of NLINV and meNLINV with a subsequent summation of echo images

on the human heart (short-axis view) at diastole. The image columns represent

reconstructed images acquired with 33, 27, 21, and 15 spokes from left to right,

respectively. The other acquisition parameters are given in Section 7.3.

with multi-echo sequences can be written as

ρl =
(
ρW +

X∑
x=1

ρF,x · e−i2π·∆fx·tl
)
· e−i2π·∆fB0·tl . (7.18)

Here, a multi-frequency-peak fat spectrum ∆fx with x ∈ [1, X] is used. ρl is the lth echo image.

ρW and ρF,x are the water and xth-peak fat component, respectively. ∆fB0 is the main magnetic

field inhomogeneity. tl is the lth echo time. With the measured fat spectrum, ρW and ρF,x can be

estimated via the iterative least-square minimization (e.g. see [79, 112]).

Figure 7.10 compares the standard NLINV and meNLINV with a subsequent summation of echo

images (“meNLINV + SUM”) on the human heart (short-axis view) at diastole. All images are

acquired with 3 echoes after each excitation using MEMS with linear view-ordering scheme. Due to

fat-induced off-resonance phase differences among echoes, severe streaking artifacts appear around

the chest wall and the heart in the standard NLINV reconstructed images. With the acquired

number of spokes reduced, the myocardium becomes more blurred and signal loss happens in the

area near to the middle cardiac vein. On the other hand, the “meNLINV + SUM” method can

suppress the streaking artifacts caused by fat, but blurring and signal loss remain with reduced

number of spokes. The blurring effect can probably be reduced by increasing the number of Newton

steps, while signal intensity can be regained via proper off-resonance correction as described in

Section 7.2.3, which, however, is not applicable in the extreme case, i.e., undersampled single-
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shot multi-echo radial FLASH. To overcome this problem, the standard NLINV with k-space off-

resonance correction as a preprocessing step is preferable. Previous proposals dealt with k-space

off-resonance correction requires either special orientations of sampled echoes [100] or navigation

signals [106]. An appropriate k-space off-resonance correction method which can be applied to

multi-echo real-time MRI is still under investigation. An alternative for off-resonance correction

is to develop a model-based reconstruction that jointly estimate the proton density, off-resonance

frequency map, and R∗2 relaxation map.

7.5. Discussion

This work demonstrates the successful development of two types of multi-echo radial FLASH se-

quences, multi-echo single-spoke and multi-echo multi-spoke. Preliminary results including the

resolution phantom, human brain and heart demonstrate potential applicabilities of multi-echo

radial FLASH, which range from anatomical imaging to water-fat separation, and to quantita-

tive off-resonance frequency and R∗2 relaxation mapping. Given the fact that this work only uses

MEMS with linear view-ordering scheme and RF-spoiled radial FLASH, further optimizations of

multi-echo view-ordering schemes, signal contrast, and acquisition parameters are demanded to

move this sequence into routine use. Moreover, two types of reconstruction methods, the standard

NLINV and meNLINV, are available for multi-echo radial sampled data. Optimal parameters for

both methods, however, are still open questions. Nonetheless, even though preprocessing steps

such as gradient delay correction and k-space off-resonance correction are beyond the scope of this

work, they can still be helpful to improve image quality if they could be optimized for multi-echo

data.

Further, this work combines multi-gradient-echo with radial sampling, which is not sensitive to

the pronounced image artifacts in Cartesian EPI, e.g. aliasing and off-resonance-induced spatial

distortion. Off-resonance phase modulation, however, induces streaking and signal loss in multi-

echo radial sampling. Although streakings are tolerable in certain cases (e.g. fewer echoes and

more spokes), an optimized MEMS radial sampling scheme and associated pragmatic off-resonance

correction method are of great importance. Noteworthy, an interesting modification of the current

multi-echo radial FLASH sequence would be to combine the blip and the readout ramp gradient,

which can not only render a smooth transition between two successive echoes, but also shortens

the echo spacing time.

An advantageous extension of the current NLINV reconstruction would be a model-based re-

construction that jointly estimates the proton density, off-resonance frequency, R∗2 relaxation rate,

and a set of coil sensitivity maps. The model-based reconstruction for real-time phase-contrast flow
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MRI in Chapter 6 acts as a meaningful precursor study, which, however, requires a more general

scaling strategy to make it a robust algorithm. When this is achieved, more endeavors could be

made toward a model-based reconstruction for multi-echo radial FLASH. In fact, the model-based

reconstruction discussed in this thesis integrates two types of image reconstruction, parallel imag-

ing and quantitative parameter mapping. Apparently, it offers considerable advantages in terms

of computational steps, but requires more effort on numerical optimization methods. Nonetheless,

whether coils are reasonable to be included in the model or pre-calibrated is still an open question

which could be answered with detailed comparisons.



CHAPTER 8

Summary and Outlook

8.1. Summary

This thesis presents novel methodological developments in two major areas that both extend real-

time MRI techniques and applications which are based on highly undersampled radial FLASH

acquisitions and iterative image reconstruction as a nonlinear inverse (NLINV) problem. The first

new method is the exploration of advanced radial sampling schemes, namely the use of asymmetric

echoes and multi-echo acquisitions, while the second contribution relates to advanced reconstruction

principles, namely model-based reconstruction techniques that directly estimate parameter maps

from raw data.

An asymmetric echo samples only a portion of the full echo and thus shortens the achievable

echo time and repetition time. When applied to real-time phase-contrast flow MRI, its use not only

improves temporal resolution, but also allows for the addition of flow-compensation gradients to

suppress intra-voxel phase dispersion. Short echo times and first-order flow compensation for in-

plane movements have been proven crucial for studies of patients with more complex flow patterns

such as due to aortic valve insufficiency and partial stenosis.

Multi-echo radial sampling schemes offer multiple new opportunities ranging from a further

speed-up of real-time data acquisitions to the reconstruction of quantitative parameter maps for

off-resonance signal contributions and T ∗2 relaxation times. Two types of multi-echo radial FLASH

sequences, i.e. multi-echo single-spoke and multi-echo multi-spoke techniques, were developed and

evaluated with the use of phantom and human studies. When compared to multi-echo single-spoke

radial FLASH, the multi-spoke variant supplies a faster k-space coverage and various view-ordering

schemes and therefore turns out to be promising for improved spatial and/or temporal resolution.

Partly in response to the new radial acquisition modes, the iterative image reconstruction de-

mands new solutions. Thus, the second major part of this thesis was the development of image

reconstruction techniques that advances well beyond the conventional NLINV method for real-time
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MRI. For example, in case of real-time phase-contrast flow MRI, the computation of the desired

phase-contrast (velocity) map requires at least two measurements with different velocity encod-

ings. Conventionally, these measurements are treated as independent streams and reconstructed

separately by NLINV (or Fourier transformation when using classical ECG-synchronized acquisi-

tions). The reconstructed images are then subject to a phase-difference calculation to obtain a

phase-contrast map. For the past 30 years this two-step approach has been the only technical solu-

tion. However, the phase-difference calculation is prone to arbitrary phase noise in no or low MR

signal areas and may even hamper the lumen definition and flow quantification. Therefore, a novel

model-based reconstruction technique was developed which jointly estimates the anatomical image,

the phase-contrast (velocity) map, and a set of coil sensitivity maps. The direct estimation of the

phase-contrast map from the sets of raw data in combination with Tikhonov regularization ensures

zero phase in no or low MR signal areas, which is clearly superior in sharpening vessel lumen and

reducing streaking artifacts, especially for highly undersampled radial FLASH acquisitions. The

technique was compared to the two-step NLINV approach and validated using a numerical phantom

(ground truth), an experimental flow phantom, and measurements of human aortic blood flow.

8.2. Future Work

Model-based Reconstruction

The current version of the advanced model-based reconstruction technique for real-time phase-

contrast flow MRI to a certain degree still depends on the chosen scaling mechanism which is

derived from the definition of the complex-difference image. This may be problematic in two

more extreme situations, namely for very small phase differences (velocities) and in the presence

of velocity aliasing. The former situation may increase the scaling value to such a degree that the

concomitant regularization strength is weakened and noise accumulates in the estimate. On the

other hand, the latter situation, which may be caused by the simultaneous presence of very high

and very low flow, may lead to arbitrarily high phases in velocity-aliased regions and thus decrease

the scaling, which in turn underestimates the resulting velocities. These scaling issues need to be

resolved in order to make the model-based reconstruction technique a robust clinical tool.

As another potential extension, the integration of advanced regularizations, i.e., L1-wavelet

[113] and total (generalized) variation [114], into the model-based reconstruction may turn out to

be advantageous and should be investigated. These non-quadratic regularizations offer better noise

suppression, but require more complicated implementations. On the other hand, a prerequisite of

the L1-norm regularization is that the image to be regularized must be sparse. Fortunately, the

complex-difference map is sparse by itself, requiring no sparsifying transform, so that this favorable
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feature may be exploited in a modified model-based reconstruction technique.

Further, as discussed in Chapter 6, the model-based reconstruction may be implemented with

with different spatial encodings for the flow-compensated and flow-encoded dataset. In principle,

this idea may help to increase the spatial resolution as more lines in k-space are available for image

reconstruction. Moreover, respective reconstruction may effectively double the temporal resolution

when combining such acquisitions with a two-sided flow encoding scheme and a sliding window

which shifts the reconstruction by only one dataset rather than two in all current methods.

Finally, the model-based reconstruction can be greatly accelerated via a multi-GPU implemen-

tation to allow for extensive clinic trials.

Multi-Echo Radial FLASH

The developments described in Chapter 7 primarily focused on multi-echo multi-spoke acquisitions

with linear view ordering for the convenience of image reconstruction. However, other view-ordering

schemes need to be further investigated. Imaging parameters such as flip angle, bandwidth, number

of spokes and echoes, echo spacing, and potential contrasts need to be thoroughly studied as well.

Moreover, because this sequence is compatible with asymmetric echoes, it needs to be evaluated

whether such a combination may further speed up acquisitions, or offers specific applications with

variable echo spacings.

With the implementation of more and more complex gradient switching schemes, it may also

become necessary to develop special gradient delay corrections and k-space off-resonance correc-

tions to maintain or improve image qualities. For multi-echo image reconstructions, the NLINV

variants also require further optimization with regard to the number of Newton steps, temporal

regularization, and initialization. As an ultimate goal, quantitative parametric mapping of T ∗2

relaxation times and off-resonance frequencies should be accomplished by a suitable model-based

reconstruction technique.

Taken together, a successful validation of undersampled multi-echo multi-spoke acquisitions

with respective image reconstructions could certainly advance the general concept of real-time MRI,

not only with respect to temporal resolution but also with respect to novel (dynamic) contrasts

exploiting the T ∗2 -weighted signal decay and off-resonance phase modulation. These factors have

various clinical applications such as the identification of hemorrhage and calcification, access to

tissue oxygenation, susceptibility-weighted imaging, and water-fat separation.





APPENDIX A

Analytical Phantoms with Multiple Receiver Coils

The magnetic field generated at position ~r by the coil with steady current I is given by Biot-Savart

law,

B(~r) =
µ0I

4π

∮
coil

d~u× (~u− ~r)
‖~u− ~r‖3

(A.1)

Therefore, complex coil sensitivity maps can be simulated using Equation (A.1) and the coil geom-

etry. To integrate coil sensitivity maps into analytical Fourier transform, mathematical approxima-

tion of the maps are necessary. Because it is well known that coil sensitivity maps are smooth and

slowly-varying, so polynomial and sinusoidal models [22, 85] are commonly used for approximation.

On the one hand, the sinusoidal model represents the coil sensitivity map with complex expo-

nentials expanding over a range of low spatial frequencies,

c(~r) =
∑
~v

C~v · ei~r·~v (A.2)

where ~v is a set of low spatial frequencies used to constrain the smoothness of the coil sensitivity

map c(~v), ~r the Cartesian grids within the FOV, and C~v the coefficients of the complex exponentials.

Therefore, plugging Equation (A.2) into Equation (4.5) yields

yj(t) =

∫
~r
cj(~r) · ρ(~r) · e−i2π~k(t)~rd~r

=

∫
~r

∑
~v

C~v · ei~r·~v · ρ(~r) · e−i2π~k(t)~rd~r

=
∑
~v

C~v

∫
~r
ρ(~r) · e−i[2π~k(t)−~v]·~rd~r

(A.3)

where the integration part is actually a translation of Equation (4.4), so the analytical form of

Equation (A.3) is

y(~k) =
∑
m

Im
∑
~v

s~v ·Am(2π~k − ~v) (A.4)

On the ohter hand, for the polynomial model, the coil sensitivity map is approximated by a
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polynomial function with a degree D,

c(~r) =
D∑
d=0

∑
|~α|=d

Cd,~α · ~r~α (A.5)

where Cd,~α is the coefficients of polynomials, and ~α a two-element vector representing the dimension

of FOV. Therefore, Equation (4.5) becomes

yj(t) =

∫
~r
cj(~r) · ρ(~r) · e−i2π~k(t)~rd~r

=

∫
~r

D∑
d=0

∑
|~α|=d

Cd,~α · ~r~α · ρ(~r) · e−i2π~k(t)~rd~r

=
D∑
d=0

∑
|~α|=d

Cd,~α

∫
~r
~r~α · ρ(~r) · e−i2π~k(t)~rd~r

(A.6)

where |~α| denotes the sum of all elements in the vector ~α. As derived in [85], this integration is

equivalent to the |~α|-order partial derivatives of the analytical Fourier transform, which can be

calculated via the recursive decomposition.
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DFT Discrete Fourier Transform
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EPI echo-planar imaging
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GPU Graphics Processing Unit
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KESA K-space Energy Spectrum Analysis

MEMS Multi-Echo Multi-Spoke

MESS Multi-Echo Single-Spoke

MRI Magnetic Resonance Imaging

NLINV NonLinear INVersion

NMR Nuclear Magnetic Resonance

NUFFT Non-Uniform Fast Fourier Transform

ORC Off-Resonance Correction
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