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Abstract

In this thesis, we study the mechanical properties of biopolymer networks. We
discuss which of these properties can be described by continuum approaches and
which features, on the contrary, require consideration of the discrete nature or the
topology of the network. For this purpose, we combine theoretical modeling with
extensive numerical simulations.

In Chapter 2] we study the elasticity of disordered networks of rigid filaments
connected by flexible crosslinks that are modeled as wormlike chains. Under the
assumption of affine deformations in the limit of infinite crosslink density, we show
analytically that the nonlinear elastic regime in 1- and 2-dimensional networks is
characterized by power-law scaling of the elastic modulus with the stress. In contrast,
3-dimensional networks show an exponential dependence of the modulus on stress.
Independent of dimensionality, if the crosslink density is finite, we show that the
only persistent scaling exponent is that of the single wormlike chain. Our theoretical
considerations are accompanied by extensive quasistatic simulations of 3-dimensional
networks, which are in agreement with the analytical theory, and show additional
features like prestress and the formation of force chains.

In Chapter [3, we study the distribution of forces in random spring networks
on the unit circle by applying a combination of probabilistic theory and numerical
computations. Using graph theory, we find that taking into account network topology
is crucial to correctly capture force distributions in mechanical equilibrium. In
particular, we show that application of a mean field approach results in significant

deviations from the correct solution, especially for sparsely connected networks.
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1. Introduction

Polymeric materials are ubiquitous in our daily life: From rubber bands that we
appreciate for their temporarily well behaved elasticity, to ourselves, who carry around
a variety of slender molecules building up network structures like the cytoskeleton,
which provides cell integrity, and the extracellular matrix, which fills the space in
between the cells [1]. Biopolymer networks are usually highly dynamic and facilitate
functions like cell division, cell motility or the transport of nutrients [1]. Furthermore,
biopolymer networks possess exceptional mechanical properties, partly due to their
composite nature, but also simply because they form disordered three-dimensional
(3D) materials out of elongated one-dimensional (1D) molecules. It is our aim to
gain a detailed understanding of the fundamental principles behind their material
properties.

In this introduction, we first present what is known about the mechanical prop-
erties of individual biopolymers and then turn to network assemblies. We survey
experimental studies on the elasticity of biopolymer networks and discuss some of

the prominent modeling approaches in the field.

1.1. Biopolymers

Generally speaking, a polymer is a stringlike chain composed of similar subunits
called monomers (see Fig. [1.1]); usually, these subunits are of molecular size. Syn-
thetic polymers can be found in daily materials like plastic (e.g., polystyrene or
polyethylene), glue, ete. [2]. A well-known example for a biopolymer, i.e., a polymer
produced by a living organism, is DNA, the carrier of our genetic code. It is composed
of two polymer strands, with covalently bound monomeric units called nucleotides.
Together they form the helically shaped double-stranded DNA. The fact that the
genetic code is stored on these large macromolecules makes it robust (see [3] for an

in-depth discussion).
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Figure 1.1.: Paperclip model showing Figure 1.2.: Fibroblast cells with nuclei col-
how “polymers” are composed of indi- ored in green, microtubules in yellow, and
vidual “monomers”—here, paper clips. actin filaments in purple. Figure taken from
Figure taken from [4]. Reprinted by [3].

permission from Macmillan Publishers

Ltd: Nature, copyright (2007)

Another example are proteins; these are polymers consisting of a set of molecules
called amino acids. The sequence of amino acids (the so-called primary structure)
largely determines the properties of the protein and is encoded in the DNA. Many
fold into characteristic shapes (secondary and tertiary structure), which are essential

for their specific functioning, e.g., as an enzyme.

The major components that are involved when it comes to cell mechanics are
polymers called cytoskeletal filaments. The cell’s so-called cytoskeleton consists of
essentially three different types: actin filaments, microtubules, and intermediate
filaments, forming a highly entangled and crosslinked network (see Fig. [1.2]). Each
of them consists of proteins as monomeric subunits and in vivo they are highly
dynamic structures, since their constituting elements are not covalently bound (in
contrast to DNA). This possibility of polymerization and depolymerization (addition
and removal of monomers) enables the cytoskeletal filaments to fascilitate dynamic

processes like cell division and cell movement .

Within the context of this thesis we focus on the mechanical properties of polymeric
materials. It has been shown that continuum elasticity can be applied to capture the
mechanics of single polymer chains ﬂ§|, , due to the fact that their length is usually
much greater than the diameter of a single monomer. We therefore describe the

polymer chain as a thin elastic rod, which, most generally, posesses three different
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Figure 1.3.: Deformation modes of a thin elastic rod: (a) Bending: Curvature is
measured via the rate of change of the unit tangent vector along the curve dt /ds; it
equals in magnitude the inverse of the radius of curvature 1/R. (b) Stretching: A
rod with intrinsic contour length [y is uniformly stretched by a total amount of Al.
(¢) Twisting: While keeping the rod straight, it is uniformaly twisted about its axis
by a total angle of A¢. Reproduced from .

intrinsic deformation modes, i.e., bending, stretching/compression and twisting, which
contribute to its elastic energy (see Fig. . Microscopically, these deformation
modes correspond to changes in molecular binding angles or distances. Often, one
can neglect the twist contribution, simply because the monomer bonds can rotate
freely or the boundary conditions allow for twist relaxation [8]. Arguing that the
energy contributions of an infinitesimal rod segment are quadratic , we can write

for the total elastic energy of a naturally straight rod with contour length [y:

Ewallr) =5 [

bending stretching

~ B rlo
dt/ds‘2ds+§/ (I¢'(s)] — 1)2ds, (1.1)
0

where r(s) is the coordinate vector of the space curve describing the rod and
t(s) = r'(s)/|r'(s)| is the unit tangent vector; A and B are referred to as the bending
and stretching modulus, respectively. One can further show that A and B are related
via A = (r/4)Ea*, B = nEa?, where E is the material’s Young’s modulus and a is
the radius of the rod [9].

One important observation is the fact that polymers are usually embedded into a
thermal environment and are therefore steadily hit by molecules with kinetic energy

of the order kgT . Relating this thermal energy scale to the elastic energy of the
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Table 1.1.: Length scales concerning the bending elasticity of biopolymers.

Chain type Chain length Persistence length 1/l

lp / nm l, / nm
DNA [10] 10* — 10° ~ 50 102 — 103
Actin filament [11] ~ 10* ~ 103 10!
Microtubule [11]  ~ 10? ~ 10° 1073

rod, it turns out that, e.g., a 90° bend into a quarter circle of radius R costs an energy
XN = TA/(4R) [8]. If we now define the persistence length I, == A/(kgT), then
&N/ (ksT) = 7l,/(4R). This shows that a polymer will randomly bend given that
its contour length [y exceeds its persistence length [, [8]. Table shows empirical
values for the persistence and contour lengths of some important biopolymers. There
is a wide spectrum of stiffnesses possible: A long DNA strand will naturally occur in
a random coil state, whereas a suspended microtubule has a relatively well defined
polymer axis. One usually categorizes into flexible (I,/ly < 1), semifiexible (I,/ly ~ 1)
and stiff (I,/lo > 1) polymers. Note, however, that thermal bending fluctuations, in

general, are significant even on length scales smaller than the persistence length [12].

In Appendices and we discuss the effect of thermally excited bending
fluctuations in the context of statistical physics. In fact, we introduce the freely-
jointed chain (FJC) model (Appendix , which treats the polymer as a collection
of uncorrelated elements with a fixed characteristic length (similar to the paper clip
model shown in Fig. and the wormlike chain (WLC) model [13] (Appendix [A.2)),
which treats the polymer as an inextensible elastic rod (Eq. without the
stretching term). In a nutshell, we demonstrate that polymers possess a so-called
entropic elasticity that acts against externally applied stretching forces. There are
many more possibilities to realize a coiled up polymer configuration (large entropy)
than a stretched out configuration (small entropy). So the force that is needed
to hold the polymer ends at a certain distance reflects the competition between
entropy and energy, which manifests itself in the fact that the system minimizes its
free energy. Our discussion in Appendices and can be summarized in the

following so-called force-extension relation for the WLC model [6]:

ICBT u 1 1
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Figure 1.4.: Experimental force-extension data for DNA fitted by the numerical
solution of the WLC model (solid curve). For comparison, the FJC model (dashed
curve) is shown, with parameters chosen to fit the small extension data. The
interpolation formula Eq. comes very close to the numerical exact solution.
Figure adapted from [14]. Reprinted with permission from AAAS.

where f is the externally applied stretching force and w is the end-to-end distance of
the polymer. Equation is an interpolation formula since there is no analytic
solution to the WLC model known. However, Eq. is asymptotically exact in the
limit of small and large forces and does not differ from the numerical exact solution
to the model by more than 16 % [12]. Equation is taylored to be applied for
flexible polymers (1/l, > 1) because there is no force at zero extension and the
linear spring constant is that of the FJC, i.e., kpjc = 3kpT/(2ll,) = 0f /Ou|u=0o
(see Egs. and (A.26)). Single molecule experiments have shown that Eq.
captures the stretching response of, e.g., DNA [14] very well (see Fig. . Similarly,
one can write interpolation formulas for semiflexble or stiff polymers, which have
the same functional form, but realize a finite rest-length at zero force and have a
different linear spring constant, i.e., ksx = 90A%/(kgT13) (for both see Eq. (A.24)).
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A closed-form expression for the force-extension relation, like Eq. (1.2)), is very
practical for the implementation in the context of numerical simulations, as well as
for analytical theories (see, e.g., [15} |16]). The characteristic features of Eq. are
the linear force response for small extensions and the characteristic divergence of
force as u — Iy, with f(u) ~ (1 —u/ly)~2. Consequently, the elastic response of a
polymer in the WLC model is, in general, nonlinear; it shows pronounced stiffening

under longitudinal load, which can be characterized via the so-called differential

stiffness, kwrc(u) == (0f /Ou)(u), with
kWLC ~ (1—U/l0)73 Nf3/2, asu—>l0. (13)

The scaling relation above is a characteristic feature that is important in the context
of polymer networks as well.

Of course, any real polymer will not resist arbitrarily large forces—at some point
it will rupture and, even before that, stretch along its backbone (energy contribution
from the second term in Eq. ) Models that take into account the enthalpic
stretching contribution can be found in, e.g., |7, |17]. Fig. shows the differential
stiffness of the model presented in [17] together with the asymptotic (large force)
response of the WLC model.

The mechanical properties of individual polymers are crucial for the study of
polymer networks. In particular, it is the nonlinearity in the response to external
stretching that has significant effects on the asymptotic network elasticity and

structure.

1.2. Biopolymer networks

We now turn to collections of biopolymers embedded into an aqueous solution. In the
cell, this solution is called the cytosol and consists of ~ 70 % water [1§]. Depending on
concentration and length, polymer assemblies can form dilute or entangled solutions,
where polymers have no permanent interactions [19]. Adding crosslinking agents
that form, possibly permanent, bonds between filaments gives rise to what we call a
crosslinked polymer network (see Fig. that, together with the solvent, forms a
polymer gel |2|. In the biological context, crosslinkers are usually proteins, which
bind non-covalently to their corresponding biopolymers. They can be either mostly

rigid, i.e., not show significant compliance before rupturing, or flexible, meaning
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Figure 1.5.: Differential stiffness k = df /du of an extensible wormlike chain (based
on Eq. 35 in [17]), normalized by the linear stiffness ko, as a function of force f,
normalized by the critical force f., at which the stiffness has increased by a factor of
three. The black solid line shows the large force scaling, k ~ f3/2, of an inextensible
wormlike chain.
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Figure 1.6.: Sketch of a network of semiflexible polymers connected by rigid pointlike
crosslinks, with average mesh size &.



1. Introduction

that they can contribute significantly to the network compliance. There even exist
so-called molecular motors, which—apart from crosslinking biopolymers—are further
able to actively generate forces under consumption of ATP, the energy currency of
the cell [1].

Depending on the assembly dynamics and the properties of the involved constituents
and their relative concentrations, biopolymer networks show a variety of complex
architectures. We are interested in the mechanical properties of these complex,
usually highly dynamic assemblies. The field of study that deals with the material
properties of soft matter is commonly called rheology. It deals with the viscoelastic
properties of complex materials. The term “viscoelastic” emphasizes the fact that the
mechanical response, of, e.g., a polymer gel, is characterized by a viscous contribution
due to the solvent as well as an elastic part from the polymer network.

A common—and quite general—scheme, which is used to gain understanding about
the collective properties of complex matter, is a combination of experimental studies
and modeling approaches. We first mention some experimental results relevant for
our later discussions followed by an overview of different modeling techniques that

are present in the field.

1.2.1. Experimental studies

There is a variety of techniques that can be applied to quantitatively study the
viscoelastic properties of polymer gels (see, e.g., [20]). Here, we focus on bulk rheology
measurements, where one uses a device called a rheometer (see Fig. [L.7)). The sample
is located in between two plates, where the upper plate can rotate. Thereby, it is
possible to externally apply a shear deformation, which is potentially oscillatory in
nature, with a certain frequency. By measuring the torque on the upper plate one
can then relate shear stress and shear strain as a function of time, giving access to
quantities like the shear modulus, which has a viscous and an elastic part. Here we
focus on the elastic response of the material, i.e., the zero frequency or quasistatic
limit, where all stresses due to the viscous response can relax. The elastic shear
modulus G assumes a linear relation between shear stress o and strain -y, in particular,
o= Gr.

However, we have already noticed that single biopolymers have a nonlinear force-
extension relation; hence we expect biopolymer networks to stiffen under strain, too.
There exist several experimental techniques that are able to capture this nonlinear

elastic response. Here we present a few, which are all based on bulk rheometry: (i)
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Figure 1.7.: Bulk rheology: A polymer network (shown in green) is sheared between
two plates of a rheometer. The upper plate usually rotates in an oscillatory fashion.

LAOS (large amplitude oscillatory shear) experiments take into account higher order
contributions to the shear stress via a Fourier decomposition of the oscillatory signals
[21H23]; (ii) Strain ramp measurements increase the applied shear strain at a small
rate (without oscillating) and measure the (possibly nonlinear) increase in stress
, ; (iii) The prestress method applies a constant stress o in order to bring the
network into a nonlinear regime. Then a small oscillatory stress is superimposed,
which, ideally, results in an elastic response that is now linear and can be analyzed
by the usual procedure [24} [26131].

Figure [1.8| shows an example of an experimental result for the nonlinear elastic
response of biopolymer networks obtained by prestress measurements. The shown
quantity is the differential elastic modulus, K' := dog/d7y, which is equal to the
conventional elastic shear modulus given that the stress-strain relationship is linear.
One can clearly see, that the networks show pronounced stiffening behavior, i.e., K’
increases drastically with the applied prestress oy. This is not surprising since we
already saw in Section that individual biopolymers stiffen under extensional load.
Since Fig. is double-logarithmic, it reveals the characteristic scaling properties of
the modulus with stress. In particular, there is a regime with K’ ~ 08’/ 2, which is the

same scaling as has been observed for the differential stiffness of single biopolymers
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Figure 1.8.: Differential elastic modulus K’ as a function of shear stress oq for
actin networks irreversibly crosslinked with the noncompliant crosslinker scruin. The
symbols correspond to different actin concentrations and crosslink densities. The
dashed line indicates power law scaling K’ ~ 03/ 2, Adapted from [31]. Reprinted
with permission from AAAS.
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(see Eq. ) This observation suggests that one can explain the network’s elasticity
with the help of the individual polymer response.

At this point, modeling comes into play. Experimentally, one can relate stress and
strain in order to obtain bulk properties like the shear modulus. These measurements,
however, correspond to averages, i.e., measure the average shear stress over the whole
sample—or, equivalently, the amount of elastic energy that is introduced due to the
shear deformation. Bulk elastic measurements do not determine how stresses are
distributed within the network locally, e.g., which filaments carry most of the energy

and in which deformation mode.

1.2.2. Modeling strategies

One important task of a model is to capture prominent features of experimentally
observed phenomena based on simplifying assumptions about the system under
consideration. Ideally, a simple model is equipped with a few parameters allowing
for a comprehensive understanding of the physics in different regimes. A model
that is as close to reality as possible may potentially be able to capture most of the
experimentally observed features. However, it can be difficult to grasp the physical
mechanisms that underly a certain observation. In particular, very complex models
often lack an analytical approach and are potentially more challenging in terms of
simulations. Note further that the fact that a specific model is able to reproduce a
certain experimental observation does not prove that it describes the correct physics.
It must be internally consistent and should provide further predictions that can be
tested in experiment, in order to provide more evidence for its applicability.

Here, we want to distinguish between two classes of models for polymer networks
that follow different simplification approaches: (i) Continuum models, which often
define a so-called elementary or unit cell and then derive a continuum formulation
of the problem, and (ii) Network models, which take into account the connectivity,
i.e., topology, of the particular polymer network.

For reviews on state of the art modeling techniques for polymer networks see, for

example, |12, |32].

Continuum models

Continuum models usually take into account the force-extension relation of the

individual polymers but not the network topology, i.e., the mechanical coupling

11
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between the crosslinked polymer strands in the network. Instead of solving for force
balance at each node in the network, one assumes that one can treat the individual
fibers or fractions of the network on a certain length scale, e.g., the network’s mesh
size (see Fig. , as independent of each other.

Storm et al., for example, average over all possible filament orientations while
assuming that every filament deforms affinely [33], i.e., follows the externally applied
simple shear deformation. Under these assumptions, this so-called affine model allows
for the calculation of the elastic energy in the network as a function of deformation
and hence the bulk elastic properties, like the shear modulus.

Other approaches define a unit or elementary cell (see, e.g., [34,|35]), which consists
of several polymer chains; this cell is then repeated in order to form the effective
network. Based on the deformation modes assigned to the unit cell elements one can
use homogenization techniques to derive an expression for a continuous strain energy
density. With this at hand, one has access to the elastic response of this effective
material under various deformations and geometries via the framework of continuum
mechanics.

We have seen that continuum models do not take into account network topology.
Moreover, they may assume that the network deforms affinely or treat the network
as homogeneous above a certain length scale. Although these models do capture
essential bulk elastic properties of various types of polymer networks [15] 16, 34],
they lack the capability of describing long range correlations between filaments or
stress localization along paths at large deformations—especially when the nonlinear
response (see Eq. ) of the filaments comes into play.

Network models

Network models take into consideration the network structure explicitly. A crosslinked
network is represented as a collection of nodes that are connected via polymer
segments (see, e.g., Fig. . One assigns an elastic energy based on the degrees of
freedom, i.e., the node positions. The elastic properties can be probed by application
of quasistatic deformations. One starts with a system in force balance (energy
minimum), applies a small deformation (e.g., simple shear), so that the node forces are
imbalanced, and minimizes the energy via an appropriate algorithm. By continuing
this procedure one gains access to the system’s elastic energy as a function of applied
deformation—so the bulk elastic response of the network—as well as local properties

like node displacements or forces in individual polymer segments.

12
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Figure 1.9.: Example of a 2D wormlike chain network model, with the tensional
forces color coded and highlighted via line thickness. Periodic boundary conditions
are applied.

One can differentiate between various network models by looking at which defor-
mation modes of the individual filaments are taken into account. A commonly used
framework includes bending as well as stretching degrees of freedom, with quadratic
energy terms, i.e., without the nonlinear response to stretching for large deformations.
The initial network for 2-dimensional (2D) simulations is often constructed as a
(disordered) mikado network (see Fig.[1.7), meaning that one starts with a certain
number of filaments of a given length and crosslinks at the intersection sites. One
can then study which deformation modes (bending or stretching) are excited upon
the application of, e.g., a simple shear deformation—depending on crosslink density
or filament length . Others have extended this approach to 3-dimensional
(3D), mostly lattice-based, systems (see, e.g., [40]), or further took into account the
full nonlinear force-extension relation of the polymer segments , leading to
strongly heterogenous elastic properties . Moreover, composite systems consisting
of polymers of varying stiffnesses have been introduced , .

13



1. Introduction

1.3. Outline of the thesis

This thesis is divided into two parts, which deal with different types of polymer
networks. In both, we perform full network simulations as well as analytical modeling.

Chapter [2] deals with composite networks of rigid rods connected by flexible
crosslinks, for which we take into account the full nonlinear force-extension relation.
We perform quasistatic simulations in order to characterize the bulk elastic properties
as well as the pronounced heterogeneous force distributions within these networks.
Additionally, we develop a single filament model, which is based on affine deformations.

In Chapter [3, we analyze random spring networks on the unit circle. We develop
a simulation framework that guarantees conservation of network topology when
simulating on periodic structures, e.g., when periodic boundary conditions are applied.
Furthermore, we provide an analytical theory that provides force distributions in
these networks by taking into account the entire network topology. It is based on

probability theory and graph theoretical considerations.

14



2. Networks with rigid filaments and

compliant crosslinks

This chapter contains the results from the publication:

e K. M. Heidemann, A. Sharma, F. Rehfeldt, C. F. Schmidt & M. Wardetzky.
Elasticity of 3D networks with rigid filaments and compliant crosslinks. Soft
Matter 11, 343-354 (2015)

We give a short summary of the key findings obtained within the corresponding

study, before presenting the full article.

2.1. Key results

In this study, we consider composite networks composed of rigid rods connected by
flexible crosslinks. In particular, the rods are considered to be perfectly rigid, i.e., do
not carry any elastic energy, and the crosslinks are modeled via the nonlinear force-
extension relation of a flexible wormlike chain (see Eq. (1.2))). In this model system,
the elastic response is due to the crosslinks, whereas the rods act as scaffolding agents.
We carry out 3D simulations (see Fig. and characterize the network response
under quasistatic simple shear deformations. Moreover, we develop an affine theory
that considers a single representative rod—decorated with crosslinks—and averages
over all possible rod orientations in order to obtain the total elastic energy in the
system (see Fig. for a schematic comparison of the two approaches).

By combining these two modeling strategies, we are in the comfortable situation
of having access to the entire modeling spectrum discussed in Section [I.2.2} On the
one hand, a full network model that considers the actual topology of the network and
therefore accounts for the discrete and disordered nature of the polymer network, as
well as the correlations between the filaments during deformation. On the other hand,

a simplified continuum model that allows for an analytical treatment of the problem

15



2. Networks with rigid filaments and compliant crosslinks

Figure 2.1.: Snapshot of the 3D simulation in the undeformed state. Rigid rods
are shown in green, crosslinks have been omitted, but are shown in the (zoomed in)
schematic as blue (nonlinear) springs. We further apply periodic boundary conditions
in all spatial dimensions.

16
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\\‘\\\

1Ly

5000

Figure 2.2.: (a) Affine theory: The network is represented by a single rigid rod
(green) with flexible crosslinks (blue). (b) Simulations: The network topology is
explicitly taken into account by connecting a collection of rigid rods (green) via
flexible crosslinks (blue springs). Note that we apply periodic boundary conditions.

and thereby enables us to get further understanding of some of the fundamental
mechanisms that might determine the elastic response of the model system under
consideration. We can compare both approaches and thereby check which predictions
from the analytical theory can indeed be observed in the network simulations—and,
likewise, identify network phenomena that cannot be captured by the continuum

model.

In the context of the affine theory, we first consider the continuum limit, which
assumes a continuous distribution of crosslinks along a single rod, as well as a
continuous distribution of rod orientations in the system. Note further, that there
must be a mazimum strain 4 because the crosslinks have finite contour length and
do not rupture, i.e., respond with an infinite force at finite extension (see Eq. )
We can derive analytical expressions for the total elastic energy in the large strain
limit, ¥ — 74. In Table 2.1 we summarize the analytical results. First of all, we
notice that the divergence of stress o with strain v becomes weaker with an increase
in dimensionality of the system. This is rationalized by the fact that an increased
amount of orientational averaging—as happens for higher dimensions—Ileads to
smaller fractions of crosslinks that are close to maximum extension and therefore
dominate the stiffening of the network. However, the dependence of the differential
modulus K on stress ¢ becomes stronger; surprisingly, we find ezponential stiffening

of the modulus with stress in three dimensions.
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2. Networks with rigid filaments and compliant crosslinks

Table 2.1.: Asymptotic scaling behavior of the bulk elastic quantities—shear stress
o and differential elastic shear modulus K—as the shear strain v approaches its
maximum value 74. The scaling behavior depends on the dimensionality (Dim.) of
the system.

=

(7) K(o)

(1-1/v)* K~o°
(1-1/7)7%? K~o?
~(1=1/ya)" K~e”

Dim. o(y)
ID o~(1—1/y)7" K
2D o~ (1—1/v)"? K
3D o~ —log(l—1/y4) K

e 2

Taking into account the discrete nature of the network, i.e., noticing that there
is only a finite number of crosslinks per rod as well as a finite number of rod
orientations present in the network, we find numerically (replacing integrals by finite
sums) that the only asymptotic scaling behavior is that of the single wormlike chain
(K ~ 03/?)—independent of the dimensionality of the system (see Fig. . Still,
the stronger dependence of the modulus on stress can be observed for intermediate
stresses (see Fig. and Fig. for more details). There is an intuitive explanation
for the breaking down of the continuum theory: Due to the divergence of the crosslink
force-extension relation any calculation of the energy via integration, i.e., orientational
averaging and integrating along the backbone of the rod (see Section , will
eventually fail since individual rods/crosslinks contribute an arbitrarily larger amount
of energy than others. Therefore, the integrals do not represent the true elastic

energy of any finite system for large deformations.

The bulk elasticity results of our 3D network simulations are in good agreement with
the affine theory. We observe the asymptotic power law scaling of the modulus with
stress with an exponent 3/2 and a stronger dependence on stress in the intermediate-
stress regime (see Fig. [2.3). However, our results are in stark contrast to a study
by Broedersz et al. |44, 45|, which inspired the assumptions in our model system,
but considers an additional effective medium that is coupled to the single rod (like
two springs in series). Their model results in a linear scaling K ~ ¢ independent
of the dimensionality of the system. We argue that this result is inconsistent with
the model itself since it suggests that one can apply arbitrarily large strains without
a divergence in stress (o ~ e”). This, however, contradicts the model assumption
that crosslinks and rods have a finite length, i.e., have a diverging force-extension

relation.
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Figure 2.3.: Differential modulus K = do/dy as a function of shear stress o,
rescaled by the linear elastic modulus Gy := K|,y and critical stress o, := o(7.),
respectively, where 7. is defined via K(v.) = 3Gy. The effective medium (“EM
Theory”) result is that of Broedersz et al. [44], |45]. The other three theoretical results
(“1D/2D/3D Theory”) correspond to a numerical evaluation of our affine theory for
a finite crosslink density (number of crosslinks per rod) of 60. The simulation result
has been obtained for a system of 3000 rods with crosslink density 60.
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2. Networks with rigid filaments and compliant crosslinks

Lastly, we consider an aspect that can only be captured by our network simulations
that take into account network topology explicitly. We have already noticed that the
asymptotic network response is dominated by individual WLC crosslinks. However,
we did not consider the distribution of forces within the network, which we can access
in our simulations. A striking feature is the emergence of, what is commonly called,
force chains |42 46-48]. Any network will eventually develop a system spanning
stretched out path of rods and crosslinks that carries an exceedingly large fraction of
the system’s total energy and therefore dominates the elastic response (see Fig. [2.4)).
The nonlinear crosslink force-extension relation leads to more and more energy being
accumulated; at the same time, the remaining part of the network cannot reduce
the amount of stretch in the force chain, since additional undulations in the path
would only further increase its length. The fact that the transition to K ~ o3/
scaling happens at smaller stresses in the 3D simulations than in the 3D affine theory
(see Fig. can be partly attributed to the emergence of force chains, since such a
stretched out path leads to single WLC scaling at, possibly, smaller stresses than in
the affine theory, which does not consider network topology, i.e., force chains.

Localization of large forces in individual chains can be particularly crucial when it
comes to network remodeling. Presumably, crosslinks within the force chains rupture
or unbind first and thereby might give rise to large rearrangements. It would thus be
interesting to analyze the plastic response of nonlinear polymer networks in a future

study.
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Figure 2.4.: Emergence of a force chain: 3D simulation with the 20 most stretched
crosslinks and the corresponding filaments highlighted in color, at increasing shear
strain (from left to right). The schematics on the top visualize Lees-Edwards boundary
conditions [49], which are used for shearing with periodic boundary conditions.
Furthermore, the shear stress is mapped for one plane, showing that it is eventually
dominated by the force chain.
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2. Networks with rigid filaments and compliant crosslinks

2.2. Publication

Abstract
Disordered filamentous networks with compliant crosslinks exhibit a low linear elastic
shear modulus at small strains, but stiffen dramatically at high strains. Experiments
have shown that the elastic modulus can increase by up to three orders of magnitude
while the networks withstand relatively large stresses without rupturing. Here, we
perform an analytical and numerical study on model networks in three dimensions.
Our model consists of a collection of randomly oriented rigid filaments connected by
flexible crosslinks that are modeled as wormlike chains. Due to zero probability of
filament intersection in three dimensions, our model networks are by construction
prestressed in terms of initial tension in the crosslinks. We demonstrate how the
linear elastic modulus can be related to the prestress in these networks. Under the
assumption of affine deformations in the limit of infinite crosslink density, we show
analytically that the nonlinear elastic regime in 1- and 2-dimensional networks is
characterized by power-law scaling of the elastic modulus with the stress. In contrast,
3-dimensional networks show an exponential dependence of the modulus on stress.
Independent of dimensionality, if the crosslink density is finite, we show that the
only persistent scaling exponent is that of the single wormlike chain. We further
show that there is no qualitative change in the stiffening behavior of filamentous
networks even if the filaments are bending-compliant. Consequently, unlike suggested
in prior work, the model system studied here cannot provide an explanation for the
experimentally observed linear scaling of the modulus with the stress in filamentous

networks.

2.2.1. Introduction

The mechanical properties of biological cells are governed by the cytoskeleton, a
viscoelastic composite consisting of three main types of linear protein polymers: actin,
microtubules, and intermediate filaments. These filamentous polymers are crosslinked
by various binding proteins and constitute a dynamic complex network that maintains
the structural integrity of the cell with the capacity for dynamic reorganization needed
for active processes. Many in vitro studies have focused on reconstituted networks
with rigid crosslinks |[1H12]. In the cytoskeleton, however, many of the crosslinks
are themselves extended and highly compliant proteins. Such flexible crosslinks can

strongly affect the macroscopic network elasticity [13-21]. Indeed, experimental
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studies show that composite networks can have a linear modulus as low as ~ 1Pa,
while being able to stiffen by up to a factor of 1000 |11} |14].

Here we analyze 3-dimensional (3D) composite networks theoretically, and we
offer physical simulations thereof. Our networks are composed of randomly oriented
rigid filaments that are connected by highly flexible crosslinks, each of which is
modeled as a wormlike chain (WLC) [22| 23], which has been shown to accurately
describe flexible crosslinkers, such as filamin [24, [25]. In our approach we assume
that the filaments are much more rigid than the crosslinks, meaning that the network

elasticity is dominated by the entropic stretching resistance of the crosslinks.

In our theoretical analysis we adopt the widely employed assumption of affine
deformations |16} (19, 26]. Under this premise, the network is assumed to deform
affinely on the length scale of the filaments, which in turn is assumed to be much
longer than the contour length of the crosslinks. Using a single filament description in
the limit of a continuous distribution of crosslinks along the filament, we obtain the
asymptotic scaling behavior of the elastic modulus with the stress in the nonlinear
regime. We show that in 1-dimensional (1D) networks, the elastic modulus scales
with the second power of the stress, whereas it scales with the third power in 2-
dimensional (2D) networks. Remarkably, there is no power law scaling in 3D—in fact,
the elastic modulus of a 3D composite network increases exponentially with the stress.
Numerical evaluation of the affine theory at finite crosslink densities—as opposed to
a continuous distribution of crosslinks—shows that (i) the only asymptotic scaling
is that of the modulus scaling with an exponent 3/2 with the stress and that (ii)
the dependence on dimensionality of the system is limited to an intermediate-stress
regime. These findings are in agreement with our extensive physical simulations of

3D composite networks. For all cases, the elastic modulus diverges at a finite strain.

Our theoretical analysis is inspired by the mean-field model proposed by Broedersz
et al. [16, 26]. In sharp contrast to our theoretical analysis and to the results of
our physical simulations, however, these authors predict linear scaling of the elastic
modulus with applied stress. In particular, for any finite strain, the elastic modulus
remains finite in their model. While this linear scaling of the elastic modulus is in
accordance with what has been observed experimentally [13, [20, [21], we here argue
that this model does not adequately capture the elastic response of networks with
rigid filaments and permanent (i.e., non rupturing or rebinding) crosslinks of finite

length.
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2. Networks with rigid filaments and compliant crosslinks

In Ref. [19], the authors ruled out that the experimentally observed approximate
linear scaling of the modulus with the stress might be due to enthalpic (linear)
stretching compliance of the crosslinks or filaments. Here, we complement their
analysis by physical simulations that take into account bending of filaments. Our
results empirically show that the inclusion of bending rigidity does not impact the
nonlinear stiffening behavior of composite networks either. We therefore conclude
that the theoretical explanation for the linear scaling of the modulus with stress in
experiments remains an challenging open problem.

By physical simulations, we also study the role of prestress. We show that in
contrast to 1D and 2D networks, 3D networks experience an initial tension due to
non-intersecting filaments resulting in initially stretched crosslinks, and are therefore
prestressed. The modulus in the linear deformation regime is then governed by this
prestress; indeed, it is higher than the modulus expected from the affine theory.
Our simulations additionally indicate that if the network is allowed to relax initial
tension by unbinding and rebinding of crosslinks, the impact of prestress on the
elastic modulus in the linear regime becomes insignificant, although the prestress
does not relax all the way to zero.

The remainder of the article is organized as follows. First, we present the affine the-
ory of composite networks in Section [2.2.2] Under the assumption that deformations
of the network are affine on the length scale of the filaments, we derive expressions for
the stress and modulus in 1D, 2D, and 3D. We then present our physical simulation
model and describe our network generation procedure in Section We expand
on the implications of our 3D simulation procedure in Section [2.2.4} in particular,
we explain the emergence of prestress. We then discuss the results of our simulations
in the linear deformation regime in Section [2.2.5| and indicate which results from
the affine theory are still valid. Finally, we analyze the simulation results in the

nonlinear regime in Section [2.2.6]

2.2.2. Theory

In this section we analytically derive the stress and modulus of a composite network
under the assumption of affine deformations on the length scale of the filaments. We
consider a collection of N rigid filaments of length L that are permanently connected
by nN/2 flexible crosslinks of contour length [y, where n is referred to as the crosslink

density, i.e., the number of crosslinks per filament. The filaments are assumed to be
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perfectly rigid, i.e., they neither bend nor stretch, and the crosslinks are modeled via
the WLC interpolation formula [23]

kBT 1 1 u
ﬂMOzlp<M1 : —4+%>, (2.1)

where kpT' is the thermal energy, [, the persistence length and u > 0 the end-to-end
distance of the crosslink. Assuming [y > [, this force-extension relation implements
a crosslink rest-length of zero and shows a characteristic stiffening with divergence
of force as u — ly. Equation can be integrated to yield the energyﬂ (up to a

constant)

Emo:@T< bo —%—“+ﬁ>. (2.2)

b \4(1—2) 4 4 2

Imposing affine deformations on the filament level fully determines the deformation
field u on the subfilament level. In the following analysis, we consider a single
representative filament subject to an extensional strain of the surrounding medium

that it is embedded in and crosslinked to.

1D network calculation

We start with a one-dimensional system, i.e., 1D extensional strain €, and advance in
dimensionality by converting an applied shear strain v to the orientation dependent
extensional strain €(v) felt by the filament.

In the rest frame of the filament, the end-to-end distance of a crosslink at distance
x from the center of the filament is given by |u(x,e)| = |ex| (see Fig. 2.5 (a)). For
notational convenience, we consider positive € only. Under the assumption that the
crosslink density is high enough that one can consider the associated distribution as

uniformly continuous, the total energy of a filament in 1D is given by

Ein(e) =27 [ Y ptex) du (2.3)

Substituting Eq. (2.2]) into Eq. (2.3)), this expression can be integrated analytically
(see Section [2.2.9)).

2More precisely, it is a free energy, which includes both, energetic (bending) and entropic terms
for the crosslinks (not for the filaments).
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2. Networks with rigid filaments and compliant crosslinks

Figure 2.5.: Sketch of the assumptions of the affine theory: (a) 1D: A filament
(green) of length L is connected to its surrounding through n crosslinks (blue) that
have zero extension at zero strain. The surrounding of the filament is subject to
a uniform extensional strain e = AL/L. Since the filament itself is assumed to be
perfectly rigid, all deformation goes into the crosslinks (drawn in y-direction for
better visualization). The deformation of a crosslink at distance x from the center
of the filament is given by u = ex (deformation field depicted by the horizontal
gray arrows). (b) For a 2D system, the extensional strain on a filament at angle ¢
with the axis in shear direction is given by € ~ (y/2) sin 26, for a small shear strain
v = Ax/h = tan 9.

26



2.2. Publication

Following the described approach for the linear regime of the WLC force-extension
relation, i.e., for u < [y, the linear modulus may be extracted as Gaf = %, where
E/V is the energy per unit volume V' in the network and € is a small strain [27].
For a 1D system this yields Gaf = % pnkq L, with kg = %IZBTZ being the linear spring
constant of a crosslink and p := NL/V the total length of filaments per unit volume.
The same holds for the modulus in 2D and 3D, but with different numerical prefactors:
1/96 and 1/192, respectively [16] 19, 26].

Next we show that one can extract a functional relation between nonlinear modulus
and stress in the nonlinear regime, based on simple asymptotic scaling analysis. It
follows from above that there is a strain €4 := ly/(L/2) at which the outer most
crosslink (at x = L/2) reaches maximum extension. For € — ¢4 the energy diverges

as
div 1 €
€ €d
with ‘~" defined via £ ~ f < E/f — const. The upper index ‘div’ always indicates
that we are only taking into account the diverging part of the 1D filament energy.
We express stress and differential elastic modulus via ¢ = +4€ and K = 4 L

V de V de? >
respectively, in order to obtain o;p ~ 1/(1 — €/eq), and Kip ~ 1/(1 — €/eq)?. We

arrive at the asymptotic scaling relation
KlD ~ (UID)Q . (25)

This scaling relation between modulus and stress in 1D has also been derived in

previous work [19]. Next we consider scaling relations in 2D and 3D.

2D network calculation

We perform similar calculations as in 1D, while taking into account that the exten-
sional strain €, which results from a shear strain v on a 2D system, depends on the
orientation of the filament under consideration. In the small-strain limit one thus

obtains

|e(7.0)] = [(7/2) sin 26] (2.6)

where 6 € [0,7] is the angle between the filament and the shear direction (see Fig.[2.5(b)).
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2. Networks with rigid filaments and compliant crosslinks
Substituting this expression into Eq. (2.4 and averaging over all orientations leads

to

7/2 —In(1 — 3E sin 20)

d
(7/2) sin 260 ’

di
(E)o() ~ [ (27)
where we assume v > 0 for notational convenience; the upper integration limit is
reduced to 7/2 because |sin 26| is 7/2-periodic. Note that we do not take into
account a redistribution of filament orientations under the shear transformation.
This approach, as well as the small-strain approximation for €(,0), are justified if

L > ly, since then the strain 4 := 4ly/L at which the integrand diverges is small.

Differentiating Eq. (2.7]) with respect to v and neglecting the weaker (logarith-
mically) diverging part of the integrand leads to an expression for the stress, as

Y — Ya-

(o) ~ [ — ( f§ — 28)
_ T arccos(1 — v/7q) ' (2.9)
1= (v/7a)?

The divergence of the stress is of the form oyp ~ 1/(1 — (v/74))*? and hence
Kop ~ 1/(1—~/74)%?. Therefore, the asymptotic scaling behavior for the differential

modulus in two dimensions is given by
Kop ~ (09p)* . (2.10)

Note the difference of the scaling relations to the ones in the 1D scenario. Stress
shows a weaker divergence with strain than in 1D but a stronger dependence on the
differential modulus. Integration of the diverging part of the stress further shows
that the energy at maximum strain is finite—in contrast to the 1D setting, where the
energy diverges at the critical strain. This is an effect introduced by orientational

averaging only.
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3D network calculation

For a 3D network, the extensional strain on a filament in the small-strain limit is

given by

€(1.0.0)] = |(+/2) sin 26 cos g . (2.11)

in the usual spherical coordinates. In direct analogy to the 2D case (see Eq. (2.9))),

the averaged stress close to vq = 4ly/L can be written as

w/27/2
sin 0 dpdf
(spos() ~ [ [ —5 , (2.12)
00 1—(%)81112(9COS¢

with v > 0; the upper integration limit for the ¢ integration is reduced to 7/2
because |cos ¢| is m-periodic and symmetric about 7/2 on [0,7]. If we carry out
the ¢ integral and expand the integrand around # = 7/4, in order to integrate
over 6 (see Section for details), we obtain o3p ~ —In(1 — v/vq) and hence
K ~1/(1 —~/74).Consequently, K does not scale with o as a power law; instead,

one obtains
KgD ~ 973D y (213)

with a real constant c¢. The absence of asymptotic power law scaling sets 3D networks
apart from 1D and 2D networks. In 3D, we observe the weakest (logarithmic)
divergence of stress with strain. Integrating the diverging part of the stress shows

that the energy again remains finite for v — 4.

Finite crosslink density. By considering the limit of infinite crosslink density, we
have derived theoretical scaling relations for strain stiffening by integrating along
a filament’s backbone (see Eq. (2.3)). For any real system, however, the crosslink
density is finite and Eq. turns into a sum

n

E =) Eu(ex;) , (2.14)

i=1

where {x;} are the crosslink binding sites along the filament. Fig. shows numerical
results for the behavior of the corresponding differential modulus K for finite n,

obtained by numerical evaluation of Eq. (2.14]) and proper orientational averaging.
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Note that the asymptotic scaling behavior of K in the limit of infinite crosslink density
influences a finite network’s behavior in the intermediate-stress regime (see inset
of Fig. ; however, near the critical strain, the differential modulus scales as
K ~ %2 ie., like the response of a single WLC. Furthermore, for 1D and 2D
systems the theoretical scaling exponents in the limit of infinite crosslink densities
can (in the intermediate regime) indeed be approached by increasing n. In contrast,
as shown above, in 3D the theoretically derived scaling of K is exponential in o.
Such an exponential increase is quantified by an (in principle) indefinitely increasing
maximal slope with increasing n in the In K versus In o plots; e.g., for n = 60 the
maximal slope is 3.49, for n = 3000 it is 5.82. However, for any finite n, eventually

3/2 resulting from the single WLC

there is always a universal scaling of K ~ ¢
force-extension relation, independent of the dimensionality of the system. Indeed,
for any given n, the integral representation Eq. becomes invalid close to v = 4
due to the divergence of the WLC energy.

The numerical results in Fig. have been obtained without the small-strain
approximation for the extension of the filaments. However, redistribution of the
filament orientations under shear has not been taken into account in Fig.
Calculations including this effect show that it may both decrease and increase the
maximum intermediate slope in the In K versus In o plot and shift the peak to larger
stress values depending on the maximum strain v4. In any case, the asymptotic
scaling regime remains unchanged.

In the next section we introduce the simulation framework that we use to study
3D networks consisting of many filaments and crosslinks, relaxing the assumption of

afine deformations.

2.2.3. Simulation model

We perform quasistatic simulations of 3D networks that consist of N rigid filaments
of length L, permanently crosslinked by a collection of nN/2 crosslinks of length [.
All lengths are measured in units of the side length of the cubic periodic simulation
box. A typical set of parameters is N = 3000, L = 0.3, n = 60, [p = 0.03.

Each filament is modeled as perfectly rigid, implying that its configuration can
be described by its two endpoints only, which are constraint to stay at distance L.
The flexible crosslinks are modeled as a central force acting between the two binding
sites. In particular, we use the WLC interpolation formula (Eq. (2.1))) and the
corresponding energy (Eq. ) In all data that is presented, forces are measured in
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Figure 2.6.: Differential modulus K as a function of shear stress ¢ in the affine
limit, with finite number of crosslinks (n = 60), rescaled by the linear elastic modulus
Gy := K| =0 and critical stress o, := o(7.), respectively, where 7, is defined via
K(v.) = 3Gy. Straight line indicates power law scaling K ~ ¢®/2. Inset shows local
slope dIn K /dIn o; dotted lines indicate power law scaling with exponents from affine
theory {2,3} and single WLC scaling {3/2}. Independent of dimensionality, the
asymptotic large stress scaling is K ~ ¢%2. In an intermediate-stress regime, the
theoretical values for infinite crosslink densities are approached.
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units of (kgT)/l,. There are no additional degrees of freedom introduced through the
crosslinks, since their configuration is represented via the endpoints of the filaments,
in terms of barycentric coordinates.

In order to generate an initial network configuration we proceed as follows. We
generate N randomly distributed filaments by first randomly choosing their centers
of mass in our simulation box and by then picking a random orientation for each
filament. For crosslinking we apply the following iterative procedure. We randomly
choose two points on distinct filaments and insert a crosslink if the corresponding
point-to-point distance is shorter than a certain threshold aly. Here v € [0,1) serves
as a parameter to vary the initially allowed crosslink lengths in the system. This
procedure is repeated until the desired number of crosslinks is reached; see Fig.
for an illustration of the final configuration. Since we perform quasistatic simulations,
the system must be at static equilibrium at all times. As practically all crosslinks
will be stretched beyond their rest-length after the initial network generation, we
minimize the energy (of the crosslinks) before subjecting the simulation box to any
deformationf] For energy minimization we use the freely available external library
IPOPT [28], which requires the gradient and the Hessian of the system’s energy
function. It might happen during the optimization process, that individual crosslinks
reach extensions u larger than their contour length [y. Acceptance of these solutions
is prohibited by setting the energy to infinity (10'%) for u > Iy in Eq. (2.2)); without
this modification it would become negative in that regime. The length constraints
for the filaments are realized via Lagrange multipliers.

In order to extract elastic properties of the network we perform quasistatic shearing
by applying an affine incremental shear strain 6y to the network, with subsequent
rescaling of filaments to length L (see Fig. . We apply Lees-Edwards shearing
periodic boundary conditions [29]. The magnitude of ¢~ is determined by calculating
the maximum affine shear that leaves all crosslinks below their contour length. Due
to the rescaling of filament lengths, a nonaffine deformation component is introduced.
This nonaffinity may lead to crosslinks being overstretched after all. In this case,
we iteratively halve the shear strain until the length of all crosslinks remains below
their contour length. After each shear increment, the energy is minimized. We apply
a fixed upper bound of 1% strain on §v in order to stay reasonably close to the
previous solution. This increases numerical efficiency and accelerates convergence

because it allows us to use a warm-start procedure that reuses Lagrange multipliers

3We do neither take into account fluctuations of the filaments nor excluded-volume effects.
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Figure 2.7.: Example of an initially generated network that has not been relaxed
into static equilibrium yet. Rigid filaments are shown in green, flexible crosslinks
in blue. Short crosslink or filament fragments correspond to filaments/crosslinks
that cross the periodic boundaries of the simulation box. For the sake of visual
appearance, the network is much sparser than the systems that are studied in the

remainder of this article, and the ratio of filament to crosslink length is much smaller,
N =300,n=10, L =0.3, 1l =0.1, a = 0.9.
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from one minimization as initial guesses for the next one. Moreover, the application
of small shear steps reduces the likelihood of discontinuously jumping between local
energy minima.

We stop shearing when the achievable increment in shear strain becomes smaller
than a chosen threshold due to crosslinks that are very close to their maximum
extension. During the entire simulation process, we record network parameters in

the equilibrated states—in particular, the energy E as a function of shear strain ~.

This allows us to extract the shear stress o = %% as well as the differential shear
elastic modulus K = fl—g = %dj—f. Derivatives are taken by first interpolating E(7)

with a cubic spline. We define the linear shear elastic modulus as
G() = K|7:0 . (215)

In the following section we discuss the implications of our specific simulation model,
in particular with respect to network structure, and contrast it with previous studies

that have been carried out mostly in 2D.

2.2.4. Initial tension and prestress

As mentioned in Section [2.2.3] our network generation results in a non-zero initial
energy Fjy at zero strain. Indeed, by randomly placing (zero-diameter) filaments in a
3D container, filaments have zero probability to intersect; thus, crosslinks have finite
initial extension with probability one. This is different from 2D, where randomly
placed filaments mutually intersect with a probability approaching one as their
number increases. Indeed, so-called Mikado models |19} 30-32], where filaments are
crosslinked at their intersection sites only, exhibit no forces at zero strain.

In contrast, the initial stretching of crosslinks in our networks results in an initial
tension before any deformation. For a quantitative analysis we measure a global
variant of this effect by what we call total prestress oy, which measures the normal
stresq)| component orthogonal to the shear planes’] More precisely, we measure the
single sided (e.g., upward) normal component of the force that is acting on a given

shear plane, by summing up the normal components of the forces exerted by each

4Note that our notion of prestress is not to be confused with the constant prestress externally
applied in bulk rheology experiments, which is a shear stress in general.

5 Although we could in principle define total prestress as the normal component of the stress acting
on any plane in our system we prefer to use shear planes as this simplifies the forthcoming
analysis.
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Figure 2.8.: (a) Measuring the total prestress o( by extracting the normal component
of the total force acting on a shear plane. We sum up all the forces acting on one side
of the plane exerted by (i) the crosslinks passing through (here fa and f4) and (ii)
the filaments passing through (here f; + f3)—then we project onto the normal vector
n. (b) A tensegrity structure (here: Snelson’s X [33]) remains in static equilibrium
without application of boundary conditions. The forces acting on any plane add up
to zero, i.e., no plane carries any total prestress although it is under tension locally.

crosslink and filament passing through the given shear plane, see Fig. [2.8| (a). The
normal stress is then given by dividing by the surface area of the shear plane. Note
that oy does not depend on the choice of a particular shear plane; indeed, if the
total stress was changing during vertical movement of a shear plane, then this would

immediately contradict force balance in the system.

Intuitively, one might expect negative normal stresses (pulling down on the upper
face of the simulation box), since crosslinks are contractile. However, since filaments
withstand compression, it is possible to construct systems that exhibit positive
normal stress. This suggests the existence of configurations with zero normal stresﬂ
Indeed, so-called tensegrity structures [34], which are in static equilibrium in the
absence of boundary conditions satisfy this criterion—while still being able to store
arbitrary amounts of energy (see Fig.[2.8/(b)). Empirically, our simulations show that
the random networks generated by the procedure described in Section exhibit
negative initial normal stresses throughout. Their integrity is provided through
the application of periodic boundary conditions. Note in particular, that our setup
enforces conservation of volume of the simulation box. In general, it would be possible

to relax the prestress by letting the volume of the simulation box change. However,

6Note that individual crosslinks are still under tension; however, the total normal force acting on
the shear plane vanishes.
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2. Networks with rigid filaments and compliant crosslinks

we did not follow this approach in the study presented here, in order to ensure that
the filament length remains significantly smaller than the size of the simulation box.
In the following, we relate total prestress to the linear elastic response of our

networks.

2.2.5. Linear regime

In previous work |16, (19, 26], an expression for the linear modulus in 3D was derived
under the assumption of affine deformations and in absence of any initial tension in
the network. Our simulations show that the linear elastic modulus depends on the
initial tension in the network.

One scenario that clearly demonstrates the dependence of the linear modulus
Gy (defined in Eq. (2.17])) on the initial tension is illustrated in Fig. where the
admissible maximum initial crosslink length was varied.

For a more quantitative analysis we have designed a method that allows us to
change initial tension for a network with a fixed set of simulation parameters. We
first randomly generate a network as described above and let it relax into static
equilibrium. We then remove a given amount (5 %) of the most-stretched crosslinks in
the system. Then we reconnect those crosslinks randomly again, and let the network
relax. This procedure is repeated N, times. Thereby, we successively decrease the
system’s initial tension, and therefore also its total energy, see inset of Fig. [2.10] Not
only does the total energy decrease, we also observe a change in the distribution
of forces (see Fig. . As long as one performs the crosslink binding-unbinding
procedure over a small enough fraction of crosslinks, the network remains nearly
isotropic.

It is apparent from the inset of Fig. that the linear elastic modulus is reduced
by increasing the number of relaxation steps, as expected. Fig. [2.11] also shows the
dependence of linear modulus Gy on the total prestress g, which has been introduced
in Section [2.2.4f We varied o via the above described procedure, and measured
Gy with the shearing protocol described in Section [2.2.3] After a certain number of
relaxation steps the empirical value for Gy equals the value GaT expected from affine
theory (see Section . Relaxing initial tension further, we reach moduli even
below G, This is possible because the network can rearrange nonaffinely, thereby
softening its response. Over a certain range of total prestresses, we observe linear
scaling of Gy with 0p, a phenomenon, which has been discussed in other contexts

before (see for example Ref. [35]). We explain the linear regime as follows. For
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Figure 2.9.: Differential elastic modulus K as a function of strain ~ for different
levels of initial tension. The initial tension in the network is varied by changing the
initially admissible maximal crosslink length aly. The linear modulus Gy = K|,—
increases with the initial tension in the network (initial tension increases with «). It
is also evident that the divergence of K occurs at a strain 4 that decreases with
increasing .. Here: N = 3000, n = 60, L = 0.3, [, = 0.03.
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Figure 2.10.: Distribution of forces in crosslinks for a system without or with
No1 = 100 relaxation steps. The relaxation procedure cuts the large force tail of the
initial distribution and establishes a sharper peak at small forces. The inset shows
the total energy F in the system, normalized by the initial energy Fjy, as a function
of number of relaxation steps Ng.
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Figure 2.11.: Linear elastic modulus Gy normalized by the affine prediction G4 as
a function of total prestress oy normalized by the total prestress o immediately after
initial network generation. The total prestress is reduced via the procedure described
in Section [2.2.5 For small total prestress, G exhibits superlinear dependence on oy.
Up to o9 = o, we observe linear scaling Gy o 0y, as predicted by the model. The
straight line is drawn as a guide to the eye, representing linear scaling. Parameters:
N = 3000, n =60, L =0.3, [ = 0.06, « = 0.5. The inset shows differential elastic
modulus K versus shear strain « for systems with varying number of relaxation steps
Nya € {0,50,100,150}. Gg goes down with increasing N, . Parameters: N = 3000,
n =60, L =0.3, lp =0.03, « =0.5.
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Figure 2.12.: The initial network carries a total prestress oy. After a small shear
~v = tan ¢ has been applied it exhibits a shear stress og and normal stress oy, with
tan p = og/oN.

small strains the normal component oy of the stress acting on shear planes is close
in magnitude to the total prestress oy, i.e., o ~ 0p. For small strains given by
shear angles ¥ ~ 0, total forces acting on the shear planes make an angle ¢ with
the direction normal to the shear planes (see Fig. [2.12). Our simulations show that
tan ¢ o tan ¢ and that the constant of proportionality remains unchanged in the

linear scaling regime. Therefore, shear satisfies

'y:taunf}ocE : (2.16)
0o

where og is the component of the stress acting on shear planes in the shear direction,
see Fig. 2.12] Hence, the linear elastic shear modulus Gy defined via og = Gy
is proportional to the total prestress oy via Eq. . However, for very small
total prestresses, i.e., after many relaxation steps, the modulus shows a steeper than
linear dependence on oy. Indeed, in this regime the aforementioned constant of
proportionality becomes larger. This effect might be attributed to the fact that for
small o, tensegrity type elements (see Fig. (b)), which do not contribute to the

total prestress but carry energy, contribute significantly to the measured shear stress,

thereby increasing ¢ (see Fig. [2.12]).

Furthermore, affine theory predicts linear scaling of the modulus Gy with crosslink
density n. Fig. shows that this linear scaling is indeed reproduced in our
simulations, independent of the prestress. Moreover, by changing the prestress via
our relaxation procedure it is possible to reach comparable slopes to what is predicted
by the affine theory.
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Figure 2.13.: Linear elastic modulus G versus crosslink density n for systems
with different number of relaxation steps: Ny = 0 (diamonds) and N, = 50
(squares). Solid line indicates values expected from affine theory: Ga% = pnkyL/192.
Parameters: N = 3000, L = 0.3, [, = 0.06, a = 0.5.
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The next section deals with the nonlinear elastic response of the simulated networks,

and relates it to the theoretical results that were derived in Section 2.2.2]

2.2.6. Nonlinear regime
Critical strain

The networks that we study are inherently nonlinear because crosslinks are WLCs
with finite length [y (see Eq. (2.1))), resulting in pronounced strain stiffening at a
critical strain .. Stress diverges at a higher strain 74. In our simulations, we define
the critical strain 7. to be the strain where K/Gy =~ 3. In the affine theory, v4 and 7.
scale linearly with the ratio of crosslink to filament length ly/L. In our simulations,
we cannot conclusively report on this dependence because the accessible ranges for [
and L are quite limited. On the one hand, there exists an upper limit for L (therefore
also for Iy, since ly/L < 1 should hold) to be significantly smaller than the simulation
box. On the other hand, L and [y are bounded from below due to computational
limitations—this is because we need to increase the number of filaments in order to
keep networks homogenous.

For ranges that are accessible to our simulations, we obtain the following results.
If we fix [y, then we observe linear scaling . o< 1/L for systems where no relaxation
procedure has been applied (see Fig. (a)). Relaxed systems, however, sometimes
show a less than linear dependence. This effect might be due to anisotropies induced

by the relaxation procedure. If we fix L, then the dependence of v, on [ is slightly
less than linear (see Fig. (b)).

Differential modulus

It remains to discuss the dependence of the differential modulus on stress, the affine
theory of which has been derived in Section [2.2.2] For finite crosslink densities,

the only persistent scaling behavior is K ~ ¢3/2

, as v approaches yg3—due to the
fact that eventually single WLC response dominates. In an intermediate regime,
above the critical stress 0. = o(7.), we observe slopes (dIn K/dIno) > 3/2. The
majority of the simulations shows intermediate slopes around 2 or slightly above,
mostly independent of simulation parameters, but there are also realizations that
show maximum slopes up to 3.5 (see Fig. . These higher slopes and the final

2

scaling K ~ ¢%/? are in accordance with the predictions of affine theory. Indeed, a

slope of 3.5 is the maximum slope predicted by the affine theory when using the
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Figure 2.14.: (a) Critical strain +,. versus inverse filament length 1/L for Ny =0
and N, = 50. Other parameters: N = 5000, n = 60, [y = 0.04, o = 0.7. We observe
linear scaling . o< 1/L for N, = 0; systems in which relaxation has been applied
show deviations from this behavior (see N, = 50 here). (b) Critical strain . versus
crosslink contour length [y for a system with N = 3000, n = 50, L = 0.3, o = 0.5.

same crosslink density as in the simulation (Fig. . There are, however, differences
between theory and simulation in terms of slope profiles since various assumption
are made by the theory that do not hold in the simulations: A randomly generated
network does not have a uniform crosslink density along the filaments, these systems
are prestressed, and there is no perfect isotropy. Moreover, the networks do not

deform perfectly affinely.

Nonaffinity

In order to study to what extent simulation results deviate from affine theory,
apart from prestress, nonuniform crosslink density, and anisotropy, we analyze the
nonaffinity of the network deformation under shear. For a single filament, we define

its differential nonaffinity with respect to the center of mass by

|67 ag — o7]|?

) 2.17
TEIE (2.17)
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Figure 2.15.: Differential modulus as a function of shear stress, rescaled by linear
modulus and critical stress o. = o(7.), respectively. Parameters: N = 3000, n = 60,
L =03,y =0.06, « = 0.5, with (N,q = 150) and without (N,q = 0) relaxation.
Inset shows the local slope dIn(K)/dIn(c) from the main plot. For large stresses, we
observe power law scaling K ~ ¢%? (solid straight line). For intermediate stresses
we recover slopes in the range of those derived from affine theory.
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Figure 2.16.: Differential nonaffinity 6I" as a function of scaled shear strain /7.
for a system with N = 3000, n = 60, L = 0.3, [p = 0.06, a = 0.05.
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where dr,¢ and dr are the 3D coordinates of a filament’s center of mass after applying
an incremental shear strain 0+ without and with relaxation, respectively.

We let 01" denote the average of the differential nonaffinities over all filaments.
Affine approximations imply 6I' = 0. Fig.[2.16/shows that center of mass deformations
are mostly affine for small strains. However, the differential nonaffinity increases
starting at a strain around 7. and eventually diverges as v — 4. This can be
understood, since the networks are strain stiffening, such that small incremental
strain can induce large increase in the forces of individual crosslinks, thereby inducing
large local rearrangements during energy minimization.

While increasing shear strain, there are force chains [36-38] developing in the
network, which carry most of the tension, and which cannot reduce their strain due
to the fact that they span the entire system (see inset of Fig. . We quantify
this effect by considering tension profiles along filaments. The tension 7 at position
x along a filament is given via 7(x) = 3,55 fa(ui), where {x;} are the crosslink
binding sites and {u;} their extensions (u; = ex; in affine theory). Fig. shows
tension profiles averaged over all filaments for both, theoretical and simulated systems
at various strains. In the simulations there is non-zero tension at zero strain due to
prestress. With increasing v, the simulations resemble the profiles expected from
affine theory. However, when approaching the maximum strain 74, the emergence of
selective paths (force chains) that carry most of the tension becomes evident. The
highly stretched crosslinks dominate the averaged tension profiles and therefore lead
to jumps in the tension curves at the respective binding sites along the filament

(green solid curve in Fig. [2.17)).

Bending

Thus far we have restricted our theory and simulations to rigid filaments that can
neither bend nor stretch. In Ref. [19], the authors considered finite stretching
compliance of filaments, while bending compliance was assumed to be zero. They
report that finite stretching stiffness does not impact the nonlinear stiffening regime
of a composite network apart from the expected convergence (to some constant value)
of the modulus at high strains. Here we complement this analysis by considering
filaments that have finite bending but no stretching compliance. We performed
simulations on a 2D network because of the relative computational ease compared to
the 3D case. In addition to the energy stored in the crosslinks, we consider bending

energy of the form Ej, = k6%/(2l,,), where k is the bending rigidity, ¢ is the angle
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Figure 2.17.: Average tension 7 as a function of position = along the filament
for various strain values. Tension 7 is normalized by its maximum absolute value
To- Dashed curves correspond to theoretical results for n = 60 at v = 7. (blue),
v =~ 7q (green). Solid curves show simulation data, with N = 3000, n = 60, L = 0.3,
lo = 0.06, a = 0.5. Inset shows a snapshot of the same system at maximum strain
~va =~ 0.6 where only the 15 most stretched crosslinks and the corresponding filaments
are shown. They form singular paths that span the whole system, thereby preventing
further stress reduction via nonaffine rearrangements in these finite systems.

\_/

Figure 2.18.: Sketch of the local bending geometry of a filament (green) with
crosslinks attached (blue). The local bending energy is given by Fj, = x6?/(2l,,),
with x being the bending rigidity and l,, = (I; + l2)/2.
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through which the filaments bend locally, and l,, = (I; +12)/2 is the average distance
between two adjacent pairs of crosslinks. We show the results in Fig. The range
of bending rigidity was chosen such that the linear modulus was still determined by
the soft stretching modes of the crosslinks, so that bending did not impact the linear
regime. As can be seen from these plots, bending compliance does not impact the
nonlinear stiffening regime either—since bending modes are geometrically prohibited
for large strains.

Thus, in isolation, neither bending nor stretching compliance of filaments impacts
the nonlinear stiffening regime of composite networks. These findings suggest that
the theoretical models at present cannot explain the K ~ ¢ scaling observed in

experiments.

2.2.7. Conclusions

We have studied the elastic properties of composite crosslinked filamentous networks
in 3D analytically and numerically. We modeled such networks as a collection of

rigid filaments connected by WLC crosslinks.

Based on the affine theory introduced in Ref. [19] we derived asymptotic power
law scaling exponents for the differential elastic modulus with stress, in the limit
of infinite crosslink density. In this case, the scaling exponents depend on the
dimensionality of the system. In particular, we showed that 3D systems no longer
exhibit a power law. Furthermore, we showed that for finite crosslink densities, the
only persistent regime (over several orders of magnitude of stress) is the 02 scaling,
as it is derived from the single WLC force-extension relation Eq. . This is in
sharp contrast with the model proposed in Ref. |16} 26|, where linear scaling was
suggested, independent of the dimensionality of the system. This model implies
finite stress at any strain and therefore does not apply to composite networks of
rigid filaments with flexible crosslinks of finite length.

We further developed a simulation framework that allows us to measure the elastic
response of random filamentous networks with WLC crosslinks. One important
property of these 3D networks is that, by construction, they are prestressed due to
initial extensions of the crosslinks. In addition to geometrical constraints, active
elements such as motors can induce prestress as well [39]. We showed that the
prestress in a network can dominate the linear response and might therefore be a

feature that is worthwhile analyzing in experimental systems.
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Figure 2.19.: (a) Differential modulus K as a function of shear stress o, rescaled
by linear modulus G and critical stress . = o(7,.), respectively, for various bending
rigidities . Solid straight line indicates power law scaling K ~ ¢%2. (b) Differential
modulus K as a function of shear strain v, rescaled by linear modulus Gy and
critical strain ., respectively. Parameters: N = 800, L = 1, [ = 0.1, system-size
L,=1L,=6.

49



2. Networks with rigid filaments and compliant crosslinks

Regarding nonlinear response, we observed divergence of stress (and differential
modulus) at finite strain. Close to this strain we measured a power law scaling of
the differential modulus with stress, with an exponent 3/2, just as expected for a
single WLC. In an intermediate-stress regime we observed local exponents that span
the entire range of theoretically derived values for systems of differing dimensionality.
The fact that our simulation results do not always resemble the predictions of
a 3D affine theory, in this intermediate regime, may be attributed to nonaffine
deformations. Extracting the exact set of assumptions—such as uniform crosslink
density, isotropy, or zero prestress—that are responsible for these discrepancies is
left for future investigation.

Experiments (see, e.g., |13 20, 21]) have shown that in the nonlinear regime
the differential modulus scales approximately linearly with the shear stress. We
did not find such a regime in our simulations—neither when working with rigid
filaments nor when incorporating finite bending stiffness (or enthalpic stretching
as done in Ref. [19]). Therefore, we argue that none of the currently available
theories can adequately explain the linear scaling of the differential modulus observed
experimentally. It could possibly be that the WLC model does not accurately
describe the elastic response of a single crosslink throughout the whole experimentally
accessible regime. We speculate, however, that the linear scaling might be due to

thermal fluctuations of the filaments, which have not been considered so far.
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2.2.9. Appendix: Derivation of scaling relations for the shear

modulus
1D network

The integral Eq. (2.3)) for the total energy of a single filament can be solved to give

Ep(e) =2+ |-+ —— —— — 2 In <1 — ;i)] : (2.18)
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The divergence of the energy for € — €4 = 2ly/L stems from the term ~ % In (1 — é),
which is therefore the only one that we need to consider for the asymptotic scaling
analysis in 2D and 3D.

3D network

To approximate the solution of the integral in Eq. (2.12]) we first carry out the ¢

integration analytically and obtain

14(7/7a) sin 26

< > ( ) /2 arctan 1—(v/~a) sin20
03D)0,6\7Y N/
0 \/1 — (v/74)?sin? 20 (2.19)
X sin 6 df .

The integral diverges for 7 = 74 due to a pole at § = 7/4. We can approximately

1 1+(v/~v4) sin 20
1=(7/7a) 5in 20

around the pole. Since we are interested in the regime close to the divergence of the

consider tan~ x sin @ as a constant because it takes finite values

integrand, we expand sin” 26 up to second order in v := @ — /4. We arrive at

7/4 dv
. 2.20
/—w/4 V1= (3/7a)2(1 — 402) o

Approximation errors close to the boundary of the interval of integration that are
made by expanding sin? 20 are negligible, regarding the asymptotics, because the
integrand diverges right at the center of the interval. Now we define p:=1— /74
and drop all terms of higher than first order in u, since we are interested in the

behavior close to v = vq. With n? := 412 and 6 := 2u, we obtain

w/2

i . (2.21)
/2 /n?(1—=6)+6
This can be integrated, with the diverging part being
w/2
~1n (2@2(1 52+ 6(1—0)+2(1 — 5)n) , (2.22)
—7/2
~ —Ind, (2.23)
~ (1l = 7/7a) (2.24)

which is what has been proposed in Section [2.2.2]
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3. Random spring networks on the

unit circle

This chapter contains the manuscript:

e K. M. Heidemann, A. O. Sageman-Furnas, A. Sharma, F. Rehfeldt, C. F.
Schmidt & M. Wardetzky. Random spring networks on the unit circle (in

preparation)

We give a short summary of the key findings obtained within the corresponding

study, before presenting the full manuscript.

3.1. Key results

In this study, we tackle the challenge of deriving an analytical theory for a network
modeling approach that takes into account the full topology of a highly connected
spring network (see Section . This is in contrast to our approach in Chapter
where we combine network simulations with an analytical continuum theory that
neglects network connectivity. Instead of focusing on bulk elastic properties, we here
aim at results concerning the force distribution within the network.

Compared to the 3D composite networks of rods and nonlinear springs with
periodic boundary conditions studied in Chapter [2] we consider a simplified system.
We construct linear spring networks on the unit circle. Each network consists of N
randomly positioned nodes that are randomly connected by linear springs with rest
length zero, so that each node carries, on average, z springs—where z is referred to
as the average degree (see Fig. . The signed spring lengths are measured along
the circular arc between two nodes.

We formulate the problem of finding the network configuration in mechanical
equilibrium given a particular network topology (a graph with N nodes and average

degree z), and initial spring lengths I. This is equivalent to minimizing the energy
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[
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Figure 3.1.: Spring network generation on the unit circle: (a) Put N nodes randomly
on the circle. Then connect random node pairs with linear springs along the shortest

connecting circular arc (initial length [). (b) Put more and more springs (here
represented by straight lines), until each node is on average connected to z springs.

of the network. Importantly, there are additional constraints that guarantee that
the network remains on the circle; in particular, they prevent contraction of cycles
that wind around the circle (see Fig. , and Fig. for a 2D visualization of
contractibility). Otherwise, the entire network would collapse onto a single point.
The resulting optimization problem is quadratic and therefore admits a unique explicit
solution for the final spring lengths I* (see Eq. (3.3)).

Instead of only looking at the relaxation of a particular network, we also consider
ensembles, where we fix node number N and average degree z but not the initial
spring lengths I or the full graph representation of the network. By using graph
theoretical considerations, we can derive the variance 0%, of the expected length
changes Al = I* — 1 upon relaxation. Surprisingly, it solely depends on N and z
(see Table . At this point, we would like to stress that a mean field calculation,
that only considers the springs directly attached to a node (see Fig. for a
schematic comparison of the mean field and graph theoretical approach), would lead
to a different result for the variance 0%,;. In particular, both show the same leading
order term, but differ significantly for small z (see Table . Hence, the inclusion
of the entire network structure is essential for capturing the final length distribution

in the network.

o6



3.1. Key results

Figure 3.2.: Tllustration of contractible (a) and noncontractible (b) loops/cycles—
here, on the torus instead of the circle.

Table 3.1.: Variance of the distribution of spring length changes 0%, for the graph

theoretical approach compared to a mean field approach. ¢? corresponds to the

l
variance of the initial length distribution.

graph theory mean field

ca (%)t 2(1+Y)e

Figure 3.3.: (a) Mean field approach: Node displacements are assumed to be
determined by the initial force foqe acting on a node—given by the sum of spring
lengths {Z_J}Jzzl that are attached to it. The remaining springs in the network are
not taken into account. (b) Graph theoretical approach: Changes in spring lengths
depend on the entire network, i.e., the gr]\z[xp/gl associated with the network, together

with the set of initial spring lengths {l_j}j:1 .
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3. Random spring networks on the unit circle

Finally, we consider the full final spring length distribution p;«(l) in the case
2 < z < N. We derive a closed-form expression that is in excellent agreement with

numerical simulations.
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Abstract
We study the distribution of forces in random spring networks on the unit circle
using a combination of probabilistic theory and numerical computation. An initially
generated network with internal forces relaxes into mechanical equilibrium. Using
graph theory, we derive mean and variance of the final length distribution, which
depend on topological parameters like node number and average degree of the
network, but not on the explicit graph representation. We show that an estimate
for the expected distribution can be obtained analytically. We demonstrate the
accuracy of our approach by comparing with numerics. Our analytical approach is

straightforwardly generalized to higher spatial dimensions.

3.2.1. Introduction

Disordered filamentous networks are ubiquitous in nature. They are found at the
intracellular level as in the cytoskeleton of animal cells and at the extracellular level
in tissues. Under loading, these networks determine the mechanical response by
generating elastic forces on a macroscopic scale. Due to the filamentous nature of
these networks, the strain field, and hence the force distribution within the network,
can be highly inhomogeneous [1, 2]. Large local stresses can also result due to
contractile forces within a network, for instance due to molecular motors [3-5] or
platelets in blood clot [6, [7]. The broad distribution of forces makes a network
susceptible to internal rearrangements as local stresses can result in filaments getting
disconnected from each other due to unbinding of crosslinking proteins [5] |8, |9
or undergoing local rupture [10]. The loss of local connectivity due to stresses is
manifested as gradual loss of stiffness.

Quantitative analysis of the force distribution within a random disordered network
has primarily relied on computational modeling of such networks [1]. This is due to
the fact that the network deformation is highly nonaffine on the microscopic scale
[11H13] making an analytical treatment of the deformation field difficult. Even under
no loading conditions, a network can be internally stressed [14] resulting in a broad
distribution of forces.

In this study, we attempt a very general, statistical and analytical analysis of force
distributions in random disordered networks. Our model system is a random spring

network, which has been widely used in previous studies to model the elastic behavior
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Figure 3.4.: (a) Small example network embedded on the circle. (b) Graph represen-
tation of the network in (a). The edge/spring orientations are depicted via the black
arrows. The network contains two independent (fundamental) cycles: {ly,l5,l3,l4} and
{lg,l5,ls}. After choosing arbitrary walking directions for both cycles (grey arrows),
we can construct the linear constraints that fix cycle contractibility (see Eq. (3.2))
— here: I; + 13+ 13— Iy = 1 (winds clockwise around circle) and Iy + I5 + lg = 0
(contractible).

of biological networks. We consider random spring networks with internal forces
such that the network, in its initial configuration, is not in mechanical equilibrium.
Using a statistical and analytical approach we describe the force distribution in a
random spring network once it attains mechanical equilibrium. We also perform
numerical simulations and show that our analytics are in very good agreement with

the numerics.

3.2.2. Model and simulations

We define a one-dimensional circular spring network to be a collection of nodes on a
circle connected by linear angular springs with rest length zero (see Fig. .

We construct an initial network configuration as follows: (i) Draw N node positions
uniformly on the circle. (ii) Draw Nz/2 node pairs randomly and connect them via
springs. We choose as degrees of freedom the signed spring lengths in units of the
circle’s circumference (positive sign means that nodes are connected clockwise and
vice versa). Initially, we always connect via the shortest distance along the circle.

The network can be readily encoded within a graph representation—the springs being
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the directed edges of the graph, with lengths as edge weights. We either connect
nodes randomly, i.e., create a random graph with average degree z or set up a reqular

graph with constant degree z.

The task is to find a mathematical description for the problem of minimizing the

total elastic energy of such a network, i.e., to find

1" := arg min 1lTl : (3.1)
1 2
where 1 € RV#/2 is the vector of all spring lengths. However, the network being
embedded onto the circle imposes additional boundary conditions. Fach cycle in the
graph may either be contractible or not, meaning that it winds around the circle
at least once (see Fig. . In order to fix the cycle contractibility of the network
we first determine the m = N(z2/2 — 1) 4+ 1 fundamental cyclesﬂ of the undirected
version of the graph. Then we walk along every fundamental cycle according to a
chosen orientation and sum up the initial lengths of the springs that are part of it.
We need to take the negative spring length if we walk against the edge direction
of the directed graph. For each cycle the summation results in an integer number
(winding number), where 0 corresponds to a contractible cycle, —1 to a cycle, which
has been walked counterclockwise, and 1 clockwise, etc. (see Fig. for an example).

This allows us to set up a system of linear equations:
Cl=g=ClI. (3.2)

We call g € Z™ the vector of winding numbers. It is determined by the vector of
initial spring lengths 1 and the signed cycle matriz C € Z™*N*/2. The entries Cij
are 1 or —1 if spring j is part of the ith fundamental cycle and 0 otherwise (see
explanation above).

Together, Egs. and define a quadratic programming problem with unique

analytic solution
I*=c’cch-'ci=Pi, (3.3)

which can be explicitly computed via, e.g., the optimization library IPOPT [15].

LA fundamental cycle is defined as a cycle that occurs when adding a single edge to a spanning
tree of the graph. There are N — 1 edges in the spanning tree, so Nz/2 — (N — 1) edges can be
added. Hence, there are N(z/2 — 1) + 1 fundamental cycles.
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Figure 3.5.: Comparison between the expected final spring length distribution
Eq. (3.21]) (solid red curve) and simulations (grey histogram) for individual random
regular spring networks with N = 1000 nodes and degree z = {3,4,6,16}.

3.2.3. Probabilistic theory

Instead of solving a specific realization of a network via Eq. , which requires
knowledge of the entire graph (encoded in C), we here establish a probabilistic
theory that relates the expected final distribution of spring lengths to essentially two
topological parameters: (i) number of nodes N, and (ii) degree z (see Fig. for a

comparison of the two approaches).

We first need to find a formal representation for the distributions of spring lengths.
For a particular realization of any length vector I (can be the initial, I, or final, I*,

etc.), the corresponding cumulative histogram Hy is given via

Nz/2

2
Hy(x) = N > Li<e, (3.4)
i=1

where 14 is the indicator function (one if A is true, zero otherwise). It measures the

number of elements in I with values smaller or equal to . The smooth distribution
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Figure 3.6.: Histograms p;=, p;, and pa; for an ensemble average over 50 simulations
of random networks with NV = 1000 nodes and average degree z = 10. The red solid
line corresponds to the theoretical density p;+ (Eq. (3.21))).

function Fj, which is approached in the limit of many repeated experiments, is given

via the expected value:

9 Nz/2
Fi(z) =E[H(z)] = 7 > Elli<]
Nz ;
9 Nz/2 9 Nz/2
Nz Z (lz = l‘) Nz lz(x) ) (3 5)

i=1 i=1

which is the average over the marginal distribution functions of the individual [;.

This result translates directly into the corresponding probability densities, i.e.,

Nz/2
we) = A = 2 > o). (36)

In order to derive the probability density p;« for the final spring lengths, we look

at the displacements from the initial configuration, i.e., write I* = I + Al, where Al
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are the changes in spring lengths upon relaxation into mechanical equilibrium. The

probability density is then given as

pe(@) = pran(@) = [ praulas — a)da (3.7
. —0o0
= [ p(@) - payile — a) da. (3.8)

leading to the density p;« for the full final spring vector via Eq. (3.6). We assume
all p;, to be identical and having zero mean, i.e., y;, = 0. For the model described

before this is true, in particular,
p;, = U(=0.5,0.5), (3.9)

because the initial node positions are uniformly distributed on the circle. Hence, we

still need to derive the conditional probability density for the spring length changes

Reconsidering Eq. (3.3]), we can write

Al=1"—-1=(P-1)l =8I, (3.10)
Nz/2 3
j=1

The l; are not independent since they are coupled through the cycle constraints (see
Eq. (3.2))). It is therefore challenging to access p ayp directly. Instead, we consider its
2Al|l—. In particular, Eq. (3.11)) implies E(AL|l; = 1) = Sil,
and therefore with Eq. :

moments, i.e., a7 and o

Nz/2 B B
Hanr = Nz 2:1 E(AL|l; =1)
2 Nz/2 B 21_

We make use of our knowledge about the graph’s (directed) cycle matrix C to deter-
mine tr S. First, note that by definition tr S = tr P — Nz /2 (see Eq. (3.10))). The pro-
jector property of P (i.e., P? = P) leads to tr P = dim(Im P) = Nz/2 — dim(ker P),
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because P has eigenvalues 0 and 1 only. Furthermore, ker P = ker C, by definition
(see Eq. (3.3)) and hence tr S = — dim(ker C). Recall that C contains N(z/2—1)+1
linearly independent rows corresponding to a set of fundamental cycles of the graph,
i.e., has full rank and thereby dim(ker C) = Nz/2 — (N(z/2—-1)+1)=N—-1. It
follows that

trS=1-N. (3.13)

Surprisingly, tr S does only depend on the number of nodes in the graph, not on
their degrees. Substituting in Eq. (3.12)) yields:

20 1
Fay = —— (1 - N) : (3.14)

The conditional variance o7, - cannot be expressed simply as a function of N and

2
Alll
z. However, the law of total variance [16] allows for calculation of the expected

variance:

E;[Var(Al|1)] = Var(Al) — Varj[E(AL|1)]. (3.15)

Due to the fact that each cycle constraint involves at least three elements of I we do

have pairwise independence between the l}, allowing us to calculate the variance of

Al; needed for 04, via Eq. (3.11)), exactly:

Nz/2 Nz/2

o, = Y Shot =af Y. S, (3.16)
Jj=1 j=1

where the second equality follows from the fact that all l_j are equally distributed.
Again, we use that P? = P, hence S? = —S, and therefore:

Nz/2
j=1
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From the above and Egs. (3.6) and (3.13) it follows that

Nz/2 Nz/2
o2 2 o2 = _2‘712 Z
AT N i—1 Al Nz = "
202 2 1
=Ly S:(l—) 2 3.18
N2t z N) 7 (3.18)

Using Eq. (3.14)) it further holds that Varg[E(AL|1)] = (2/2(1 — 1/N))? Var(l) and

therefore:
1 2 1
(-3 s (-5)]e (3.19)

A natural question to ask is whether Eq. (3.19) can serve as an appropriate estimate

QAW—. Empirically, we observe that O'QAW— = (aQA”l—)l—, given that N > z (see Fig.[3.7

(c)). Furthermore, if additionally 2 is sufficiently large, we indeed observe that p,;;

I )

2\ _
<“Am>z—

for o

is approximately normally distributed (see Fig. [3.7) (a)):
Payr = N (MAll‘a <02Az|l‘>pl_> , (3.20)

with the expressions for ju5;7 and <02A”l—>pl_ given in Egs. 1) and |D
2 _ 2

Starting from an initial length distribution py with zero mean and variance o7 = o7,
we can use Eqgs. (3.8) and (3.20]) to derive the final length distribution py« in mechanical
equilibrium. We apply this approach to our simulations by choosing p; to be uniform;

it follows that o7 = 1/12. Eventually, we obtain:

pe(@) = [ U=0505)(a) - Njuagp (0h)(x = a) da

:71 I exp |— (x — (- %(1 _ &))G)Q da
vV 27T<02Al\l_> —0.5 2<02Al|l_>

x+(_2a—;»p) (3.21)

=201~ 2/2(1 — /N))] ! [erf ( =

\/2<0Al\f>
o (m—(l—iu—;)m)] |
2<02Al|l_>

In Fig. [3.5] we compare this analytical expression to individual simulated networks.
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Figure 3.7.: Conditional quantities for an ensemble average over 50 simulation of
random regular networks with N' = 1000 nodes and degree z = 10. (a) Histograms
pau for various initial spring lengths /; solid lines are Gaussian fits. (b) Conditional

means fia;7 (solid circles) and theoretical prediction Eq. (3.14) (solid line). (c)
Conditional variance o, over the theoretical value for the average variance Ej[o Al\f]

(see Eq. (3.19)) as a function of I.
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It is straightforward to generalize the approach to higher spatial dimensions d if
the probability distributions p; for the components of the initial spring vectors are
independent. In that case, due to the linear spring forces, the optimization problem
decouples into the spatial components. The probability density for the final spring

vectors then is simply given as the product of the one-dimensional results:
d
pi=(z) = [1 per (2) - (3.22)
k=1

3.2.4. Conclusions

We present a probabilistic theory of length distributions in random spring networks on
the unit circle. In a network with initially unbalanced forces at nodes, we can derive
mean and variance of the expected distribution of length changes upon relaxation
into mechanical equilibrium. Interestingly, the variance does not depend on the
explicit network structure, but only on the number of nodes N and average degree
z. For a certain class of networks (2 < z < N), we derive a closed-form expression
for the expected final length distribution that is in good agreement with numerical
simulations.

Our modeling approach guarantees exact conservation of cycle contractibilities and
therefore provides the appropriate framework for simulations of periodic spring-type
networks. We are not aware of any other study that accounts for this necessary
constraint for the preservation of network structure when using periodic boundary
conditions.

This study represents a significant step in the direction of understanding the
mechanical properties of polymer networks taking into account the entire network
structure as opposed to, e.g., mean field approaches (see, e.g., |17H19]). However, in
order to relate our results to elastic properties, one will need to introduce externally

applied deformations, which have not been considered so far.
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Summary & Discussion

In the course of this thesis, we developed a variety of modeling approaches to gain
a comprehensive understanding of the different facets of the elastic properties of
biopolymer networks. In general, modeling the mechanics of polymer networks is
a formidable task. They are composed of various constituents, which themselves
possess specific elastic properties. Describing the collective response of a network of
interconnected, and therefore correlated, elements is far from trivial. The unifying
scheme in our studies was the discussion of two different modeling paradigms: (i)
continuum models that do not take into account the network structure explicitly but
give access to analytical theory; and (ii) network models that consider the entire

network and thereby take into account the inherent discrete nature of the system.

In Chapter 2] we studied networks of rigid rods connected by flexible crosslinks
modeled as wormlike chains (WLC). We developed a continuum model to describe
the elastic response under the assumption of affine deformations. In the limit of
infinite crosslink density, we could analytically derive asymptotic power law scaling
exponents for the differential elastic modulus as a function of shear stress. We found
that the exponents depend on the dimensionality of the system. However, for any
finite crosslink density, the only asymptotic power law scaling is that of the single
WLC. We showed that this is due to the diverging force-extension relation of the
WLC crosslinker. Our results are in stark contrast to studies by Broedersz et al.
[44, 45|, which predict a linear scaling of the modulus with stress. We argued that
this behavior is inconsistent with the finite contour length of the crosslinks, since
it would imply finite stress at any strain. Moreover, we set up efficient quasistatic
simulations of three-dimensional networks of rigid rods with WLC crosslinkers. The
results are in good agreement with our affine theory. However, we observed that the
transition to the scaling behavior of a single WLC happened at smaller stresses than
in the affine theory. This effect can be partly attributed to a network phenomenon
called force chains. While approaching the maximum strain, system-spanning one-

dimensional paths develop that are stretched out and carry most of the system’s
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energy. Eventually, there is only one path left that dominates the elastic response
of the network and leads to the single WLC scaling of the modulus with stress.
This effect is not captured by the affine theory since it neglects the specific network

connectivity.

In summary, the simulations of networks with rigid rods and flexible WLC crosslinks
lead to the insight that the accepted affine theory [44, |45] for this system had to be
reconsidered. The development of a modified theoretical description |15, |16] showed
that one has to distinguish between the continuum picture and a formulation with
finite crosslink density that is in accordance with the simulations. Lastly, we realized
that network topology plays an important role, when we observed the emergence of
force chains. These can be of particular importance when rupture or unbinding events
are taken into account. It would be interesting to study how stress redistributes
after a force chain rupture event. Furthermore, it is unclear whether it is possible to
determine, just based on the initial undeformed network configuration, which path in
the network will eventually develop into the dominating force chain. Another natural
extension to the model would be the inclusion of network dynamics, possibly in
concatenation with crosslink (un)binding, which would give access to a, potentially,

complex frequency response (see, e.g., [51]).

In Chapter [3, we turned to a simpler model system. Instead of studying networks
of rods and nonlinear springs, we described a network of linear springs on the
unit circle. The network living on the circle is the one-dimensional variant of the
common scheme of periodic boundary conditions. We derived a formulation for
the optimization problem of finding the network configuration in force balance
given a graph representation of the network, with the edge weights being the initial
spring lengths after network generation. In particular, the network’s cycles play an
important role due to the fact that they can either be contractible or not. We are not
aware of any other study that takes into account the necessity of preserving cycle
contractibility during energy minimization. For a particular network realization, the
problem admits an unique analytical solution. However, we aimed at more general,
statistical statements. Using graph theory, we derived the variance of the expected
distribution of spring length changes upon relaxation, while only fixing the number
of nodes N and the average degree z. Surprisingly, the variance does not depend on
the particular graph/network under consideration, but only on N and z. We further
showed that application of a mean field approach, which neglects the graph structure

and considers nodes as independent, leads to deviations from the correct solution,
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especially for sparsely connected networks. For networks with degree 2 < z < N and
initially uniform length distribution, we derived a closed-form expression for the full
expected length distribution in mechanical equilibrium. The theoretical expression is
in good agreement with numerical computations. For linear springs, the approach is
easily generalizable to higher dimensions.

Our study of linear spring networks on the unit circle shows that it is possible to
gain analytical results, and therefore conceptual insight, on mechanical properties
of spring-type networks, even when following a full network approach. We further
quantified to what extent a continuum description, i.e., neglecting network topology,
deviates from these results.

The results on force distributions in spring networks could, potentially, be used for
the study of network failure. The relation between topological network parameters,
like degree of connectivity, and the response to internal forces, might allow for
estimates on the probability of rupture events in a network due to internal stresses.
Notice, that our discussion in Chapter |3| did not study the collective elastic response
of the network under deformation. It remains to show how, if at all, our network
approach can be extended in that direction.

Although linear spring networks on the circle might seem a very tractable problem,
we realized that it admits a wealth of mathematical challenges, in terms of, e.g.,
statistical dependencies between initial spring lengths—spring lengths in cycles must

always sum up to integer values.

If we now tried to capture the essence of this thesis in a few words, they would
be the following: We attempted to disentangle which mechanical properties of an
inherently discrete material, like a polymer network, can be described by continuum
ideas and which mechanical properties need to be described, on the contrary, by the
topology or finiteness of the number of elements in a material’s composition. Hopefully,
our application of diverse modeling and analysis approaches will be inspiring for
future studies in this field.
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This chapter contains derivations that are part of a master’s thesis:

e K. M. Heidemann. Network elasticity of stiff rods connected by flexible linkers
Master’s Thesis (Georg-August-University Gottingen, 2012)

A.1. The freely-jointed chain

The freely-jointed chain (FJC) model describes a polymer as a noninteracting chain
of N segments of length b with contour length lo = Nb. Its configuration therefore is
defined by the set of bond vectors {ry,rs,...,ry}, with |r;| = b (see Fig. [A1)). The
orientations of distinct segments are statistically independent and random, meaning
that

b, i=j

<I'i> =0 and <I',L' . I'j> = ,
0, i#yJ

(A.1)

(-) denotes an ensemble average from statistical mechanics, meaning that we average
over many copies of a single chain at a given instance of time, or equivalently, a time
average of a single fluctuating Chai We define the end-to-end vector R := SN | r;
and calculate its probability distribution Py(R). We may now take advantage of
the central limit theorem telling us that the probability distribtuion of a sum of
N independent random variables Y = X; + X5 + - - - + Xy, where all X; obey the
same probability distribution with mean X and variance 0%, approaches a Gaussian
distribution for N > 1:

PY) = —2 exp[— ! (Y—Y)ﬂ, (A2)

Lif we assume ergodicity
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IS

Figure A.1.: Arbitrary configuration of a freely-jointed chain with segment length
b, bond vectors r;, and end-to-end vector R.

with mean Y = NX and variance 02 = No%. In our case this means that (R) =
N{r;) = 0 and (R?) = N(r?) = Nb*. Hencef]

3 3/2 3|R‘2
Py(R) = (2an2) P <_ 2Nb2> ‘ (A3)

The average end-to-end distance of a chain with N bonds of length b is given by
V(R?) = V/Nb. The scaling with the square root of the number of segments is

typical for this kind of random walk statistics, e.g., the mean squared displacement

of a diffusing particle scales with the time ¢. For derivations that are not based on
the central limit theorem consult , .

Let us define R := |R|. When having a closer look at Eq. (A.3) it becomes
obvious that the Gaussian approzimation cannot be the whole truth. It predicts

finite probability even for extensions R > ly, so it is valid only for R < [.

As a next step we want to analyze which force is needed to stretch a FJC. In order
to do so, we have to calculate the free energy of a FJC. It is defined via F' = U —T'S,
where T is the temperature of the surrounding reservoir, U is the internal energy of
the chain and S its entropy. There is no internal energy assigned to the FJC but an

entropy given by

S =kpln 2(NR), (A.4)

2To be a little more accurate, one should use (r?) = b* to show that for each cartesian component
the variance is b?/3, as they are all independent. Then apply the central limit theorem to each
of them and finally construct the multivariate Gaussian as a product of the univariates.
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f

—f

Figure A.2.: Freely-jointed chain with two opposing forces (—f,f) holding it at an
end-to-end distance R.

with the number of accessible conformations 2(N,R) for a chain with N segments
and end-to-end vector R. It can be related to the probability distribution Eq. (A.3))
via

Q2(NR)

PyR)= ————"F—. A5
The free energy of a FJC is therefore given as
2
F=U-TS= 3h kgT + const . (A.6)

2Nb?

The constant includes all terms that do not depend on R since we are interested
in changes of the free energy with respect to R rather than in its actual value.

Particularly, we calculate the force that is needed to hold the chain at a given

end-to-end distance (see Fig.|A.2)), this is

_OF  3kgT

f‘@_ Nb2

R. (A7)

Obviously the FJC in the Gaussian approximation behaves like a Hookean spring
with spring constant k¥ = 3kgT/Nb?. It becomes stiffer when the temperature
increases. The chain wants to maximize its entropy but also has to work against
the applied force. For larger temperatures the entropy becomes more dominant due
to the T factor in the free energy and so the effective spring constant increases.
We should emphasize again that the Hookean spring result was derived from the
Gaussian approximation and does only hold for small extensions. Nevertheless there
is the possibility of extending the so-called force-extension relation to extensions
approaching [ = Nb. This is done by calculating the free energy via the partition

function (see [53]). For strong stretching one obtains

Jo o o
kT lo— (R)

(A.8)
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So the force diverges as the extension approaches [y, as expected.

A.2. The wormlike chain

Now we want to go from the coarse-grained, and therefore mathematically simpler,
description of polymers to a more sophisticated model that takes into account
cooperative coupling even on microscopic length scales, by introducing an elastic
bending energy. One could think of additionally introducing stretching and twisting
energies but for our purposes these will not be relevant. In the wormlike chain (WLC)
model the polymer or rod is defined as a two times differentiable space curve r(s)
parametrized by arc length s with contour length ly. The bending energy is defined

via

o|dt

2
A o,
s ds = 5/0 K-ds, (A.9)

Ern((r5)) =5 [

where A is the bending stiffness, t(s) = r'(s) is the unit tangent (arc length
parametrization implies |r'(s)| = |t(s)| = 1) and k = t’ is the curvature vector.
The persistence length is defined as [, := A/(kgT). It is the length over which the
tangent vectors of the rod are decorrelating due to thermal motion, in particular it
holds that (t(s) - t(s')) = exp(—|s — §|/1,,) [19].

Again we are interested in the response of the polymer to an externally applied
force. In this case there is no straight forward way of calculating the free energy
from the partition function due to the unit tangent constraint. Nevertheless there
exists a mean-field approach deriving an expression for the free energy, which clearly
distinguishes between an entropic and an energetic part [54]. We will follow an
approach that has been applied by Marko & Siggia [6] and can be found in [10] in

more detail.

The aim is to find a force-extension relation for the WLC model that is exact in
the limit of large forces and then to extend it by interpolation. As a first step we set
up the Hamiltonian for a WLC that is subject to a constant external force acting
on both ends of the chain. Assume that the force is pointing along the end-to-end
vector R, which will be our z-direction, such that we have f = fX, where f is the
absolute value of the applied force and X is a unit vector in z-direction (see Fig. .
The work that is done by the chain against this force is given by
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Figure A.3.: Schematic of a wormlike chain subject to a constant external force
acting on both of its ends.

Figure A.4.: Decomposition of the unit tangent into components that are paral-
lel/perpendicular to the z-direction.

lo
Weal{x(s)}) = = f%-R = —fx- [ t(s)ds, (A.10)
0
equipping us with the full Hamiltonian for a WLC under external force:
H({r(s)}) = 4 /lo dt(s) 2d5 — fx /lo t(s)ds (A.11)
2 Jo ds 0 ' '

In order to apply our first approximation we decompose the unit tangent vector via
t = (¢, t.), where ¢ and t, are the components of t parallel and perpendicular to
the z-axis (see Fig. |A.4)). Our first assumption is that t; is much smaller than ¢,

meaning that the chain is only weakly bending and therefore t is almost parallel to
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the z-axis. This is certainly true for sufficiently large forces f or stiff polymers. Next

we expand H in a Taylor series in t; up to second order, in particular,

. 1
x-t:tH:,/1—\tL|2z1—§|tL|2, (A.12)

2 2 2

de| Jdty [P |de [P |dby
22— 122 T = Al
ds ds ds ds |’ (A.13)
which leads to the Hamiltonian:
b [ Aldt, [?
Mot = [ (552 + 26 ) ds— o, (A14)
0 2 | ds 2

For getting rid of the derivative we expand t (s) into a Fourier series on the interval

[0,lp] in both spatial components, with the boundary conditions ¢, (0) =t (ly) = 0:

ti(s) = agcos(gs), q:n;, n € N, (A.15)
7 0
with Fourier coefficients a, of t, defined as
2 o
ag = / t) (s)cos(gs) ds. (A.16)
0 /0

The coefficient ay does not contribute because the end-to-end vector points along

the x-axis, there is no Oth perpendicular component.

Substituting t (s) by its Fourier series in Eq. (A.14]) yields

Halfan)) =5 5 (Ad 1)l = 1o (A17
where we have applied Parseval’s theorem (see appendix . Equation (A.17) now
represents a harmonic Hamiltonian in the Fourier coefficients. If we assume that
the chain is in equilibrium at temperature 7" we can apply the equipartition theorem
which states that in thermal equilibrium each degree of freedom, here the Fourier
modes, that contributes quadratically to the system’s Hamiltonian carries on average
energy kgT'/2 (see appendix for derivation). It thus holds that

ZO /{ZBT

(By) = 2 (A + 1) () = d- 2=, (A.13)
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where the factor d is the dimensionality, in our case d = 2 because t; and therefore

a, have two components. If we solve for the Fourier coefficients we get

4kgT

(lag[*) = WAC L) (A.19)

Remember, we are looking for a force-extension relation. Just as for the FJC we
have constant force and have to calculate an average end-to-end distance. This is

given by

lo lo lo 1
(Ry=%- ["0yds= ["eyds~ | (1—2<|m?>) ds (A.20)
0 0 0
1 flo Parseval lO Eq. kBT
—1 —7/ £ [2) ds Py, - 0 2y Bo B19), .
0 20<|L|>S 0 4§<|aq|> 0 gquJrf

(A.21)

The sum in Eq. (A.21)) can be computed, the average deviation from maximum

extension due to thermal fluctuations can be expressed as

lov/F coth (22 — A
lo—<R>:Z bl :k‘BTO - (\/Z>
A+ f 2fVA

q

(A.22)

This is the force-extension relation for the WLC in the weakly bending approximation.
Let us have a look at the limits of large and small forces. For small x it holds that
coth(x) ~ 1/z + x/3 — 23 /45 and such

l—(R)Nk:Tﬁ—k:Tlgf (A.23)
0 TUBT A BT 9042 '
90A2 12
— h = — — kpT-2 ) . A.24
f kBTléélo wihnere 5[0 <R> (lo kB 6A> ( )

The term in brackets in Eq. (A.24)) denotes the average end-to-end distance at zero
force. Obviously there is again a [inear relation between force and deviation from

this end-to-end distance in the small force regime, just as we had seen for the FJC.

Now going to the high force regime we use lim. coth(xz) =1 and get

kTl
T 2AT

_ (ksT)? 5

b= () L ST

(A.25)
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The force diverges with f o< 1/(lp — (R))? as the end-to-end distance approaches the
contour length. This is in contrast to the FJC where we had f o< 1/(lp — (R)). The
reason for this discrepancy are the bending fluctuations on even smallest length scales
that are allowed in the WLC model but not in the FJC, where the effective segment
length b (often called Kuhn length) is the smallest length scale that is involved. It is
related to the persistence length via b = 21, [10].

Another interesting fact is the temperature dependence of the effective spring
constant in the linear regime. For the purely entropic FJC it was directly proportional
to T (see Eq. (A.7)) whereas for the WLC it is inversely proportional to 7', which
might be counter intuitive. An important point is the interplay between the elastic
energy and entropy; for larger 7" the bending fluctuations without an applied force

are larger and therefore one could argue that these are easier to “stretch out”.

The final step consists of finding an adequate description for the force-extension
relation of DNA, which we want to simulate in the end. An important parameter
in this context is the ratio of contour length [y to persistence length [,. Polymers
with ly/l, > 1 are called flexible, ly/l, < 1 means the polymer is stiff and polymers
with ly/l, ~ 1 are said to be semiflexible. Even though in our simulations and the
accompanying experiments the DNA strands are more in the range ~ 1num, still,
for zero force the DNA should remain in a random coil state, meaning that the
weakly bending approximation that we used for the WLC model cannot be applied.

Instead we use the harmonic potential deduced for the FJC model in the Gaussian
approximation, namely Eq. (A.7):

 3kgT

/= 2lol,

(R), (A.26)

where we have applied b = 2[, and Nb = ly. In the regime of large deformations we
choose the WLC formulation, i.e., Eq. (A.25)) with [, = A/(kgT), resulting in the
interpolation formula formulated by Marko and Siggia [6]:

flo _ (R) 1 1

Tl Al —(R)/lp)? 4 (4.27)

which is asymptotically exact (to first order) for small and large extensions and
which has been shown to give a good description of DNA force-extension behavior
(see Fig. [1.4)).
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Lastly we will compute a differential stiffness k(x) for the WLC, with the relative
extension x := (R)/ly. Certainly, it will not be constant since the force-extension
relation is nonlinear. Eq. (A.25)) tells us that
1 df 1

= k(z) = (ke 32 (A.28)

This scaling relation will be useful when it comes to the elasticity of networks built

from wormlike chains.

A.3. Parseval’s theorem

We will check the special case of Parseval’s theorem

/OL (dt:l_s(s)> ds — Z;zq: |aq|2qQ7 (A29)

where t,(s) =) agcos(gs), q= n%,n e N* (A.30)
q

which we applied in (A.17). The following holds:

/OL (dt;is))Q ds = /OL (Z —a,q Sin(qs)>2 ds (A.31)

q

L
-/ <Zzaq1ql sin(q15) - 8,02 sin(q2s)> ds  (A32)
q1 Q2

L
=Y \aq\2q2/0 sin®(gs) ds (A.33)
q

L
=3 > lagl’¢?. O (A.34)
q

A.4. Equipartition theorem

Let us consider a Hamiltonian with a quadratic degree of freedom, namely

H(u) = cu®. (A.35)
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In our case we had u = |a,| and ¢ = %(kacf + f). The average energy is given by

+foo cu? e P’ dy, +foox2 e dx
_ _ 2 kgT
(B) === - — kBTﬁ/ =2 O (A.36)
' +fm6_5cu2du +fooe_x2dl‘ VT 2
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