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�Omnia mea mecum porto."

Marcus Tullius Cicero

Thus far I have accomplished the Object of my Voyage, and that too in full time to return

advantageously agreeable to my Orders. Should I be so unfortunate as to lose many of the

Breadfruit Plants, it may be said, why did I not act against a loss which I might in some degree

expect by not taking other Fruit. In answer to this I refer to my account on the 4th February

where I have shown at a moderate estimation that I got laid in 389 additional Breadfruit Plants

more than was supposed the ship would stow when I left England, and as to the others, considering

them equally essential to the good of our West Indies it laid particularly with me how far I could

be of service in carrying other Valuable Plants.

Wm Bligh

Tahiti, Wednesday, 01.04.1789

Extract from Bounty Logbook [1]



Abstract

I have constructed a full-dimensional potential energy surface (PES) for a H atom interacting

with a Au(111) surface by �tting the analytic form of the E�ective Medium Theory [2] to den-

sity functional theory (DFT) energies. The �t used energies of the H-Au system with the Au

atoms at their relaxed lattice positions as well as con�gurations with the Au atoms displaced

from these positions. The procedure provides an accurate treatment for displacements of Au

atoms and compares well to DFT energies for scattering of H atoms obtained from ab initio

molecular dynamics (AIMD). In adiabatic molecular dynamics simulation, the PES is capable

of reproducing the energy loss behavior of AIMD. The e�ective medium theory also provides

the background electron density which makes it possible to treat the excitation of energetically

low lying electron hole pairs self-consistently in the frame of local density friction approxima-

tion. I have tested various incidence conditions for H scattering from Au(111) and �nd that in

all cases, the energy loss by electron hole pair excitation is by far the most e�cient pathway

and dominates the scattering behavior and in�uences the adsorption mechanism signi�cantly.

Comparison to experiment con�rms that energy loss to electron hole pairs is the dominant en-

ergy dissipation pathway. Molecular dynamics simulations including nonadiabatic e�ects for

multiple incidence conditions are in very good agreement with experiment. Furthermore, the

theory o�ers an explanation for the apparent lack of an isotope e�ect observed experimentally. I

consider the e�ect of changes in the electron density and the inclusion of surface reconstruction

and �nd the results are not much altered. For molecular dynamics simulations and �tting, I

used a self-written program package to which I contributed substantially.
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1. Introduction

The present project's purpose was the construction of a full-dimensional potential energy sur-

face (PES) to describe the interaction of a H atom in interaction with a Au(111) surface and to

develop an understanding of the basic mechanisms of energy transfer and of the adsorption in

H collisions with metal surfaces: in contrast to ab initio molecular dynamics (AIMD) simula-

tions (e.g. [3, 4]) the PES allows simulations on a ps-timescale, while in contrast to other PESs

(e.g. [5, 6]) all degrees of freedom, including those of the surface, are treated. The PES provides

background electron densities, which makes the self-consistent treatment of energy loss to elec-

tron hole pairs (ehp) by means of local density friction approximation possible. All this allows

me to make discoveries on the nature of scattering processes taking place on long time scales,

adsorption mechanisms and energy loss mechanisms that would have otherwise been unfeasible.

To understand the importance of potential energy surfaces, it is illustrative to consider a

comparison to geographical maps: potential energy surfaces could be considered as maps of

an electronically adiabatic state that, instead of the geographic surrounding, yield position-

dependent information on the energetic landscape. While the maps of old o�ered knowledge to

gain save passage or �nd islands again if you were able to determine your position, potential

energy surfaces o�er understanding about chemical transformation. Indeed, many important

discoveries have been made in the �eld of chemical reaction dynamics from the calculation of

the motion of reactants and reagents on the PES. For gas phase reactions, this involves the

discovery of the Polanyi [7] rules that describe the in�uence of the reactant's vibration and

translation on the chemical reactivity based on the landscape of the PES, as well as roaming

reactions with subsequent hydrogen abstraction [8] or the discovery that quantum mechanical

resonances [9] can have an in�uence on the product's behavior after chemical reactions.

The process of map making has always been an arduous one; for potential energy surfaces,

the problems are as manifold: if the use of a PES is extended from gas phase to reactions in-

volving more complex systems such as particles in interaction with surfaces, a huge number of

degrees of freedom needs to be taken into account for not only does the particle need description,

but the motion of the substrate atoms cannot be ignored [10�12]. Furthermore, metals do not

have a bandgap so that the adiabatic approximation might well fail [13, 14], making it neces-

sary to account for the interaction between nuclear and electronic degrees of freedom during

trajectories[15, 16]. Additionally, especially when small particles are involved, the in�uence of
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such quantum e�ects as e.g. tunneling [17] may need to be taken into account: The under-

standing of H atom adsorption or scattering on metal surfaces is perhaps the simplest chemical

surface reaction. But just as charting a harbor with all its currents is di�cult and challenging,

developing an understanding of how the process proceeds [3, 4, 18�20] and applying PESs to this

condensed phase is a complex and challenging undertaking [21�23].

Adsorption of atomic hydrogen has �rst been studied by Langmuir [24] and is important for

many �elds, be it heterogeneous catalysis [25], interstellar hydrogen on dust grains [26], nuclear

fusion in tokamaks or storage of H [27]. Still it is not self-evident how H impinging on the surface

loses its initial energy and thus comes to adsorption. It may either proceed by conversion of

motion normal to the surface motion into parallel momentum and the following energy loss to

phonons due to interactions with the corrugated surface structure or subsurface penetration [21,

23]. But this energy transfer is increasingly more ine�cient the heavier the surface atoms are

relative to the mass of the impinging atoms. Thus, the H atom needs to undergo many collisions

before it may stick to the surface, suggesting long interaction time on the order of ps. It may also

involve energy loss to electron hole pair excitation, describing a failure of the Born-Oppenheimer

Approximation (BOA). Already in 1979 Nørskov and Lundqvist [18] suggested that the excitation

of ehp in a H atom-metal interaction is conceivable at higher speeds of the H atom and might

be of considerable importance due to the ine�cient energy loss to phonons. Because of the

continuum of electronic states at a metal surface, the Born-Oppenheimer Approximation should

already appear suspicious [15]. A very promising system to determine the importance and role

of ehp excitation for H on metal is therefore H on Au; the Au atoms are so heavy that purely

adiabatic energy loss to them is very ine�cient which should make it easier to detect energy loss

to ehp.

To determine which of these two mechanisms is dominant, both of them need to be modeled

theoretically. This modeling not only involves the treatment of a large number of degrees of

freedom over a long time scale but also the inclusion of nonadiabatic e�ects, both of them in a self-

consistent manner. In this respect, ab initio molecular dynamics [28, 29] might open up a feasible

route: it has already been used to describe interaction of H with Au(111) [3, 4] and H with Pd [19]

where the electron densities and forces were calculated on-the-�y with density functional theory

(DFT) on the level of the generalized gradient approximation (GGA). Furthermore, Blanco-

Rey [19] et al. showed that it allows the calculation of low-lying ehp excitation by means of local

density friction approximation on-the-�y (LDFA) [30, 31]. While this makes it possible to treat

both e�ects on a trajectory, the computational cost of AIMD weighs heavy: for the calculation

of already a minor number of trajectories (∼ 1000), the interaction time of H with the surface is

limited to time scales much below 1 ps and no more than ∼ 20 atoms. This allows the simulation

of direct scattering. But it is to be expected that adsorption and scattering after absorption

needs longer timescales [3, 23]; the modeling of the Au(111) surface reconstruction [32�35] for

2



scattering simulations appears also unfeasible with AIMD. Propagating classical trajectories on

a previously constructed PES has the advantage of making trajectory calculations many orders

of magnitude faster than employing AIMD and would also allow for much larger cell sizes and

longer simulation times. But, as signi�ed previously, the construction of a multidimensional

PES is far from elementary. Additionally, a PES, being in its nature adiabatic, provides no

information on electronic transitions.

In this work, I not only show the construction of a multidimensional potential energy surface

based on the analytic form of the e�ective medium theory (EMT) [2, 21, 23, 36�38] for H on

Au(111), but I also show how electronically nonadiabatic e�ects can be included on the level of

LDFA. I have �tted the EMT expression to ab initio energies of H and Au atoms where the H

atom positions are varied in and above the Au(111) surface while the Au atoms are frozen to

their relaxed fcc positions, providing information dependent on the H atom position. The input

data set further included such energies taken from a single AIMD trajectory where all atoms

move, sampling the con�guration space in regions relevant for the Au atom motion during a

trajectory. Compared with numerical potentials, the EMT analytic equations have been built

to reproduce the physical behavior of metal surfaces [2], which makes it possible to describe

the potential energy at positions away from the relaxed Au lattice position without requiring a

large input data set. The �tting root-mean-square (rms) error for the energy (∼ 150meV) is on

the order of the deviation found between di�erent GGA-functionals for the surface adsorption

sites [39] and smaller than the systematic error of GGA-DFT [40]. Furthermore, EMT provides

the background electron density for all positions taken up by the H atom and therefore allows

the implementation of LDFA in form of the Langevin equation in a self-consistent manner [22].

I used this potential energy surface to perform molecular dynamics (MD) simulations with

a self-written program package to which I contributed substantially that includes the �tting

program, the MD-procedure and an implementation of the analytic expressions for the forces of

the EMT. I found that, if the energy loss to electron hole pairs is accounted for, it is a much

more e�cient pathway than the energy loss to phonons. Furthermore, ehp excitation governs not

only the dynamics of scattering but also those of sticking, adsorption and absorption behavior.

Mechanisms for sticking behavior can be derived. I studied the scattering behavior of H from

Au(111) for a number of di�erent incidence conditions, including di�erent surface temperatures,

incidence energies, incidence angles and surface structures.

The simulation of the 22 ×
√

3 reconstruction pattern of the Au(111) surface shows that it

is stable up to at least 700K, energetically favorable compared to adatoms on the surface, but

not compared to the unreconstructed surface as has been observed in DFT simulations [41�43].

The present PES reproduced experimentally observed geometrical properties of the reconstruc-

tion [32].

Comparison to experiment shows that the prediction for energy loss made with the inclusion

3



of energy loss to ehp is capable of explaining the experimentally observed energy loss behavior,

and good agreement between theory and experiment is achieved [44]. Furthermore, I was able

to rationalize the apparent lack of an isotope e�ect that has been observed experimentally.

4



2. Theoretical Methods

2.1. The Born-Oppenheimer Approximation

Most of the discussion here follows along the lines of Tully [45] and Tannor [46], supplemented

by [47, 48]. The time-independent nonrelativistic Schrödinger Equation in full space of the

electron and nuclear coordinates is:

ĤΨ(r,R) = EΨ(r,R), (2.1)

where Ψ(r,R) is the wavefunction in full coordinate space of nuclei and electrons, Ĥ is the

Hamilton-operator :

Ĥ = −
∑
I

h̄2∇2
N,I

2MI
+
∑
I<J

ZIZJe
2

|RI −RJ |
−
∑
i

h̄2∇2
e,i

2me
+
∑
i<j

e2

|ri − rj |
−
∑
i,J

ZJe
2

|ri −RJ |
(2.2)

Ĥ = T̂N + Ĥe, Ĥe = V̂N + T̂e + V̂e + V̂N,e (2.3)

h̄ is Planck's constant divided by 2π. R and r refer to the positions of the nuclei and electrons

respectively, and M and me to their masses. The capital indices are associated with the nuclei

and the lower case indices with the electrons. ZI denotes the nuclear charge of the nucleus I

and e the elementary charge. The terms in Eq. (2.3) correspond to the kinetic energy operator

T̂N, the electronic Hamiltonian Ĥe, the potential energy operator V̂N of the nuclei, the kinetic

energy operator T̂e and the potential energy operator V̂e of the electrons, and the potential

energy operator of the interaction between electrons and nuclei V̂N,e.

The total electron-nuclear wavefunction can be expanded in terms of electronic basis functions:

Ψ(r,R) =

∞∑
n=0

ψn(r;R)χn(R) (2.4)

The sum runs over all electronic states (but for the unbound electronic states it should really

be an integral). χn(R) is the nuclear wave function that corresponds to the motion of the

nuclei along the potential energy surface of the electronic state n [45]. ψn(r;R) represents the

eigenfunction of the electronic state n

Ĥeψn(r;R) = Enψn(r;R) (2.5)
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which depends only parametrically on the positions of the nuclei. E(R) is the energy eigenvalue

of the electronic Hamiltonian Eq. (2.3) for a state n. Substitution of Eq. (2.4) into Eq. (??),

multiplying from the left with ψm(r;R) and integrating over coordinates of the electrons results

in the expression for the nuclear wavefunction:

∑
n

Ĥm,n(R)χn(R) = − h̄2

2MI

∑
n

{
(T̂N + En(R))δm,n + 2T̂ (1)

m,n(R) + T̂ (2)
m,n(R)

}
χn(R)

= Emχm(R) (2.6)

where

T (1)
m,n = 〈ψm|∇Nψn〉 (2.7)

T (2)
m,n =

〈
ψm|∇2

Nψn
〉

(2.8)

The angle braket 〈 ... 〉 correspond to integration over all electronic coordinates.

The o�-diagonal elements of T (1)
m,n and T (2)

m,n describe the nonadiabatic interactions that pro-

mote transitions between the electronic PESs. T (1)
m,n is the dominant of the two. Because T (1)

m,n is

anti-Hermitian (that is T (1)
m,n = −T (1)∗

n,m ), choosing the electronic wavefunctions to be real-valued

will result in the disappearance of its diagonal elements. If seen from the perspective of the

electrons, the nuclei are approximately stationary (the higher their mass, the more stationary

they would appear). The dynamics of electrons and nuclei can be separated to both nuclear

and electron di�erential operators when electrons and nuclei have similar momenta, for then

electrons move much faster (on much smaller timescales) than the nuclei, which is a result of

the large mass di�erence between them. T
(1)
m,n o�-diagonal contributions are proportional to

the mass ratio of electrons and nuclei (∝ 4
√

me/MI [49]) and so small that they can usually be

neglected. T (1)
m,n however enters Eq. (2.6), so if the velocities of the nuclei are large, this term

can lead to signi�cant contributions. Eq. (2.8) can also be regarded as a very small contribution

due to the di�erence of electron and nuclear masses. The neglect of the terms associated with

Eq. (2.7) and (2.8) gives rise to the Born Oppenheimer Approximations:

Ĥ(R)χn(R) = (T̂N + En(R))χn(R) = Enχ(R) (2.9)

Failure of the Born-Oppenheimer Approximation

To say that the BOA is universally applicable would be folly; from Eq. (2.6) it is clear that it

will fail if Eq.(2.7) or (2.8) become too large. Such cases could be imagined to be that the

velocity of the nuclei is so high that the second last term T̂
(1)
m,n on the right hand side of Eq. (2.6)

has a signi�cant contribution, for example in high energy collision. Another potential cause for

breakdown of the BOA would be that the separation between electronic states of a system is

not large enough: if they are too close, only a small shift of the nuclear positions would cause
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a signi�cant change to the electronic eigenstate; or that indeed electronic energy levels come to

cross one another, for example during electron transfer [50].

The adiabatic representation retains the ordering of energy levels. That means that, when

electronic energy levels cross, the adiabatic representation depicts them as an avoided crossing

of a state of higher and lower energy and the electronic wavefunction changes its character

drastically in the region of the avoided crossing. If, for example, a gas-phase diatomic molecule

dissociates, before the dissociation, the adiabatic ground state will correspond to that of a

covalent bond, while after the dissociation, the ground state will describe something entirely

di�erent, e.g. two separate atoms. The terms involving Eq. (2.7) can then be quite large due to

the sudden change in the nature of the ground state wavefunction [46, 51].

In general, the adiabatic approximation becomes suspicious when the PESs of any electronic

states come within a few tenths of an electron volt [45]. Massey [52] introduced a criterion that

enables estimating whether nonadiabatic e�ects might play a role in a collision between two

particles. This criterion depends on the energy separation ∆E between the initial state A and a

possible excited state B, as well as the relative velocity of the colliding particles; the larger the

energy separation and the lower the relative velocity, the more likely the adiabatic approximation

will hold.

On metal surfaces, electronic states are not well separated but form a continuum. If the

electrons of the particle interact with those of the metal, then energy transfer between the

molecule and the surface could occur via excitation and deexcitation of electron hole pairs.

Over the years there have been numerous experimental demonstrations of for the failure of the

BOA when particles interact with metal surfaces, perhaps starting with Thompson's observation

in 1905 of negative particle emission in the wake of gas adsorption on alkali metal surfaces [53]. A

prominent example of the BOA failing when a molecule approaches the surface is the scattering

of nitric oxide o� metal surfaces [14, 50, 51]. When NO is scattered o� metal surfaces, the

vibrational excitation probability shows an Arrhenius dependence on the surface temperature,

as well as a dependence on the incidence energy without, however, showing a kinetic energy

threshold to vibrational excitation. The combination of both are a strong indication that the

energy necessary for the vibrational excitation can be taken from the metal surface, which

was further supported by the observation that vibrational excited NO was also deexcited when

scattering o� metal surfaces [14]. The large mismatch between frequencies of the vibrational

modes of NO and those of the phonons disquali�es interaction with phonons as an e�ective

energy dissipation channel. The deexcitation of NO can be pictured using the vibrational auto-

detachment mechanism [51]: when the vibration of a highly-excited NO is close to its outer

turning point, an electron transfers from the metal to the NO. At the inner turning point of

the ionic NO−-vibration, the presence of an electron on the molecule is highly unfavorable

energetically, the potential energy of the electron on the molecule greatly exceeds the Fermi
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level. It is then possible for the electron to hop back to the metal into an occupied state

high above the Fermi-level, leaving a deexcited NO molecule [14, 50]. For scattering of highly

vibrationally-excited NO from low work function metals, electron emission can be observed [13].

Interactions between electronic states of a molecule and a metal surface have been studied

by comparing the lifetimes of vibrational modes of adsorbates on metal surfaces to those of

adsorbates on insulator surfaces. The relaxation of carbon monoxide vibrations on copper sur-

faces, for example, has been observed to be on the ps-timescale [54], whereas CO adsorbed on

NaCl(100) exhibits a lifetime of ms [51, 55]. The molecular vibrations of CO couple only weakly

and ine�ectively to phonons since the frequencies of the modes are much higher than those of

the phonon modes and thus far out of resonance. For CO on metal surfaces, the relaxation is

dominated by charge transfer between the metal and the resonant antibonding 2π∗ orbital of

the CO; the tail of this orbital dips into the Fermi-level of the metal so that the resonant state

is periodically �lling and emptying as the molecule vibrates on the surface [56, 57].

One further example of the BOA breakdown in atom-surface reactions involves the detection

of chemicurrents in recombining reactions following the Langmuir-Hinshelwood mechanism when

H atoms impinge on Au metal-insulator-metal structure. Here, excess energy from the reaction

is dissipated into ehp excitation [58, 59].

2.2. Potential Energy Surfaces

Using Eq. (2.5), given a �xed position of the nuclei, it is possible to calculate the energy of a

system. It allows one to gain information on how a system develops over time. In molecular

dynamics (MD) simulations, the classical equations of motion are solved numerically in a step-

by-step manner (which is only valid if the particle positions varies smoothly with time) where

the positions, velocities and accelerations the atoms in the system are predicted after a discrete

time step δt. Then, the forces and hence the accelerations at t + δt are calculated from the

new positions, the predicted positions (velocities and accelerations) corrected by making use of

the new accelerations and so on. Most importantly for this purpose is that the forces need to

be calculated in each time step [60, 61]. There are at least two ways to set about solving this

problem. In the �rst, rather straight forward way named ab initio molecular dynamics [28, 29],

one can evaluate Eq. (2.5) and determine the forces from it �on the �y�, meaning in every single

time step of a trajectory. Accounting for changes in the nature of bonds will not provide any

problems but those intrinsic to the chosen theoretical method and AIMD only requires such

preparations that in any case are necessary to perform the electronic structure calculations.

On the other hand, full electronic structure calculations are usually very expensive in terms of

computational cost and calculating a single trajectory might include several hundreds of steps

(see e.g. Kroes et al. [3]). The simulation times and system sizes accessible with AIMD are
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therefore limited: the computational workload for calculating a structure scales roughly with

N3 [62] with increasing system size N ; if 10M is the number of molecular dynamic steps (i.e.

electronic structure calculations) per trajectory and 10n is the number of trajectories that one

roughly needs to average over di�erent initial conditions, then approximately 10M+n electronic

structure calculations are required in total [63].

The other approach for molecular dynamic simulations is to map out the potential energy

surface of the electronic state n under consideration by calculating the potential energy as a

function of the nuclear positions. By interpolating between the calculated points with analytic

functions, one obtains an analytic potential energy surface, and a mathematical model of the

energy landscape. That means that one replaces the solution of Eq. (2.5) with a simpli�ed

energy expression based either on physical considerations and reasonable approximations, or

very �exible mathematical functions without physical meaning [64]. The major disadvantage of

analytic PESs is that calculating the input data set from electronic structure calculations may

take much time, therefore, mathematical models that require few input points to describe large

parts of the potential energy landscape would be preferable. Furthermore, for an analytic PES,

the input data set needs to be �tted to the mathematical model which may also prove rather

cumbersome, especially if the mathematical model contains many parameters. Such an analytic

PES describes one system only, e.g. hydrogen in interaction with gold, and would need to be

constructed anew for very similar problems, e.g. hydrogen on palladium. To make an analytic

PES consequently advantageous in comparison to the AIMD approach, not only does calculating

the data set that goes into the built up of a PES and performing the �tting has to take less time

and e�ort than calculate a set of AIMD trajectories for a given problem. But the evaluation

of the analytic equation for the PES have to require a minimal computational e�ort compared

to the electronic structure calculations that AIMD needs to evaluate Eq. (2.5) on the �y [47].

If successful, solving the equations of motion using PESs can be several thousand times faster

than AIMD calculations (as shall be seen below), therefore making it possible to go to much

larger system sizes, time scales and number of trajectories. However, computation time is not

the only crucial test for PESs: for in the area of the PES that a trajectory would probe, to be

reliable, the analytic PES has to provide results that are of the same order of accuracy as the

electronic structure methods on which the PES is based upon [5, 65].

Building an accurate analytic PES includes careful weighing between the accuracy of the PES

and the computational e�ort. That encompasses also the question if it is necessary to include all

degrees of freedom or whether it is su�cient to treat just those that contribute majorly to the

process under consideration. For example, if a diatomic molecule scatters non-reactively from

the surface, do we need to consider the motion of the surface atoms and that of the molecule

or is it su�cient to deal with a six-dimensional potential energy surface that encompasses all

degrees of freedom of the molecule, but includes none of the surface [6]?
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Perhaps the most di�cult choice in building a PES is the choice of its mathematical descrip-

tion. In interactions of mono- or diatomic particles at metal surfaces, the choice of mathematical

model is usually between �tting the potential energies and the corresponding nuclear coordinates

with �exible mathematical functions of machine-learning origin like Neural Networks [64, 65],

the corrugation reducing procedure (CRP) [66] and modi�ed Shepard method (MS) [67, 68], or

functions that enforce some of the physical properties of the system like London-Eyring-Polanyi-

Sato potential [69, 70] or the many body expansions like e.g. E�ective Medium Theory [23, 38]

or the embedded atom method (EAM) [71, 72]. The following section shall therefore give a short

overview over these choices for potentials, starting with the �exible mathematical functions.

When treating single atoms scattering adiabatically from a metal surface, interaction with

phonon motion would be the only way for a particle to lose its energy upon impact. Fortunately,

most modern methods allow the treatment of surface degrees of freedom. For single atoms in

interaction with metal surfaces, many body potentials have been used [73�75], e.g. to study the

self-di�usion of Cu [73], the corrugation reducing procedure was employed [76�78] and Morse-

type potentials can be used to study gas-surface interactions e.g. [69].

Neural Network potentials are built up of non-linear �exible mathematical functions without

physical meaning that do not make any assumptions about the functional form of the under-

lying problem or make any approximations. They are a very general �tting tool that can, in

principle, represent any real-valued function and can �t the input data set up to very high accu-

racy [64, 79, 80]. As any other expression for a PES, they provide upon input of atomic position

the corresponding potential energy and they are �tted to the result of electronic structure calcu-

lations of one method [64]. They were �rst used to create low-dimensional PESs of molecules in

interaction with surfaces by Blank et al. for CO on Ni(111) [81] as a proof of principle, and by

Lorenz et al. with ab initio energy values as input data set in 2004 [80] for a hydrogen molecule

on a Pd(100) surface.

Due to their great �exibility they can incorporate the change of bond type (or even disso-

ciation) and are not limited by the type of interaction while capable of treating all degrees of

freedom in small systems. On the other hand, they become very costly for larger system sizes,

their evaluation is notably slower than classical force �elds and, due to their lack of physical

basis, extrapolating to areas outside the region of the training set can lead to very large errors.

Their construction is far from e�ortless and needs a large number of training points from elec-

tronic structure calculations [64]. For example, the �tting of a global, full-dimensional potential

energy surface for copper that included di�erent cluster sizes, surface structures and defects,

Artrith et al. [82] were able to obtain a root-mean-square error of below 10 meV but had to

employ an elaborate correction to make the Neural Network PES independent of the number

of atoms used in a given simulation. Even though they used an additional e�cient procedure

aimed at reducing the number of electronic structure calculations, they needed about 38000
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DFT-reference calculations as input for the construction of the PES, plus another 3800 as inde-

pendent testing set. If the Neural Networks are chosen too large, over�tting might occur so that

structures from the training set are well represented, but the energy for atomic con�gurations

in between training points can deviate signi�cantly [82].

The Modi�ed Shepard Interpolation Scheme developed by Collins et al. [67, 68] is a

local expansion around geometries where the energy and other properties have explicitly been

calculated. This means that in this method, only the region is mapped out that is expected to

contribute to trajectories during MD calculations. It is therefore not a method suited to obtain

a global potential energy surface but rather one that is specialized on getting good results for

reaction dynamics. Its greatest advantage is that in this respect, it needs fewer input points

than a global PES and is capable of describing polyatomic adsorbates, reactive and nonreactive

collisions, physisorption and chemisorption and reaction at surfaces. It has not yet been possible

to include the e�ects of surface motion directly [83]. The potential energy at any given point is

obtained as a weighted average second-order Taylor series for and from each data point of the

con�guration space (or just from those in the vicinity). Since the functions have no prede�ned

symmetry, the symmetry needs to be included explicitly. The PES is built by starting with

a few points in a region that is deemed important for the process that is considered. Then,

classical trajectories are run on the PES and compared to an observable like e.g. dissociation

probability. If the PES does not give results for this observable within a certain tolerance, points

from ab initio electronic structure calculations are added into the regions that are important

for the accurate determination of the potential until the observable is converged [84]. For a 6-D

potential of H2 interacting with Cu(111), the MS does poorly for regions that are not considered

relevant for dynamics, but does well for barrier heights [5].

Busnengo et al. [66] introduced the Corrugation Reducing Procedure in 2000 for diatomic

molecules in interaction with surfaces. It is an interpolation method that reduces the corruga-

tion of the strongly repulsive part of the PES by subtracting the atom-surface potentials from

the total energy and �tting the less corrugated residual PES with suitable analytic functions.

The interpolation function can e.g. consist of cubic spline interpolation over Fourier series over

trigonometric functions. This method provides a highly accurate PES [5, 66, 79]. For exam-

ple, constructing a potential for H2 at Cu(111), the accuracy for reproducing data that was

not included into the �t lies around 30 meV, reproducing also the orientation of the molecule

predicted by the GGA-DFT input calculations [5]. It, too, has a frozen surface approach and

can be improved by increasing the input data set of ab initio calculations to which the CRP is

�tted, and has been used together with neural networks [85]. Extending it beyond the frozen

surface approach is almost unfeasible [5, 84], however, but other methods can be coupled with it

to include energy dissipation to phonons, e.g. via the surface oscillator model in which the entire

surface can move upon interaction with the impinging particle [6] or by describing the particle-
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surface interaction with the CRP-procedure and treating the motion of the surface-atoms in a

pair-wise fashion [77].

It allows the inclusion of zero-point energy [86�88] and has been used to describe single

atoms in interaction with metal surfaces [89, 90], but mostly used to built 6-D PES to de-

scribe H2 interacting with usually frozen metal surfaces (H2/Pd(111) [87, 88], H2/W(100) and

H2/W(110) [91], H2/Pd(110) [92], H2/Ni(110) [93], H2/Pt(211) [94], H2/Pd(100) [95], activated

systems H2/Ni(100) and H2/Ni(111) [93], H2/Cu(100) [96], H2/Cu/Ru(0001) and

H2/Pd/Ru(0001) [86], H2/NiAl(110) [90], H2/Cu(110) [97] and H2/Ru(0001) [98]).

The London-Eyring-Polanyi-Sato (LEPS) potentials are based on physical considerations and

use Morse-potential-like formulations. They were developed for tri-atomic interactions in gas

phase [69, 99]. In 1975 McCreedy and Wolken introduced the treatment of gas-surface inter-

action for LEPS for the interaction between H2 and W(001) [70] which includes the surface

periodicity, but lacks �exibility [79]. Here, again, the motion of the surface atoms is not taken

into account but the surface is instead modeled as a rigid background potential that is periodic

in the plane of the surface. The energy exchange between surface and particle can indirectly

be taken into account, e.g. in form of generalized Langevin oscillators [100]. The problem is

divided into two body fragments whose interaction is assumed to be describable via Morse

potentials [70]. LEPS potentials have been extensively used to describe dissociative molecular

adsorption and Eley-Rideal recombination [101] and have been extended to include a depen-

dence of the Morse parameters on the in-plane positions of the particle to reproduce the surface

periodicity (PLEPS). They have been extended further to be able to treat more complex en-

ergy landscapes by including functions without physical meaningfulness. In general, the LEPS

formulation and its modi�cations require little input data, relying on 300 to 500 input values

but is limited in its accuracy [101, 102], and can describe one and two-atomic adsorbates but

have primarily been used to describe the interaction of diatomic molecules with surfaces [103].

It appears to be impossible to treat interactions with this potential where particles enter the

surface.

In non-reactive dynamics, Potential Energy functions or force �elds make it possible to

describe the energy or forces from an arrangement of the position of the atoms that compose the

problem. Classical force �elds are usually built up as sums over many simpler potential energy

expressions that mimic the problem [104]. The great advantage of force �elds is that they allow

all atoms to move: they are mainly made of pair potentials without any symmetry assumption

which allows the treatment of disordered and complex surface structures. Force �elds can not

only be used to describe the approach of atoms or molecules to each other or surfaces, but are

also capable of describing reactions (e.g. formation and dissociation of hydrocarbons [105] or

silicon bond breaking [106]). The assumption behind these so called bond-order based potential

force �elds is that the strength of a chemical bond depends on its environment as suggested
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by Linus Pauling's bond order theory which allows the treatment of more complex molecules in

interaction with surfaces. For example, in the Reactive Force Field approach the energy resulting

from the bond between the atoms is described as a sum of pair potentials between all atoms of

the surface. Although Reactive Force Fields supply full-dimensional potential energy surfaces,

the description of the modi�cation of the electronic structure when bonds are formed or broken

is di�cult and limits the application of reactive force �elds [101]. They can have large parameter

sets, e.g. 77 parameters and a rather large database of input electronic structure energies (104)

in the case of CH4 on Pt(111) and Ni(111) and are applicable for a precisely de�ned region of

conditions. Its parameters are usually not physically meaningful [107].

Another method for the description of potential energy function, and going beyond the pair-

wise potential form employed in many force �eld potentials, are the many-body expansion

formulations. In this respect, the embedded atom method (EAM [71, 72, 108]) and the e�ec-

tive medium theory (EMT [2, 36�38]), both developed to describe metal systems in interaction

with one another and metal systems in interaction with hydrogen atoms, have been applied to

construct a number of potential energy surfaces. The EMT shall be dealt with in greater detail

in section 2.4, having been used to construct the potential energy surface discussed in this thesis.

The great advantages about many-body potentials like EAM or the closely related EMT is that

these methods have been developed to describe a certain type of system as a density functional

theory of their own, in case of the EMT, �rst chemisorption of single atoms (e.g. hydrogen) to

a host [36, 37] and later the ground state properties of fcc-transition metal surfaces with and

without interaction with hydrogen, solids and phonon-spectra [2, 38, 101]. This means that they

already include most of the physical properties of the system, allow motion of surface and adsor-

bate atoms and have a very small number of parameters (only seven per atomic species in case

of the EMT theory, which, with a hydrogen atom interacting with a gold surface, amounts to

fourteen parameters in total). All this results in �ts only needing a very small number of elec-

tronic structure calculations (below 103) to produce accurate PESs. Having analytic equations,

they make the solution of Newton's equations of motion straight forward, and being developed

as density functional theory methods also provide self-consistently background electron densities

which can be used to account for nonadiabatic e�ects in terms of electronic friction [22]. Fur-

thermore, these potentials are not limited in the temperature range they can describe accurately

(as long as the surface stays solid) and, the forces being easily computable, allow the treatment

of large unit cells which make it possible to deal with the e�ects of ad-atoms on surfaces, steps

and, even more interestingly, complex reconstruction patterns like the Au(111) (herringbone-)

surface reconstruction. On the downside, using these methods limits the systems that can be

treated: going beyond metal surfaces is impossible and treating less metal-like atoms or even

molecules may prove di�cult, although attempts to treat diatomic molecules and excited states

with EAM have been made (EDIM method) [109].
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2.3. Density Functional Theory

The information for this section were taken from Ref. [62, 110, 111].

To obtain the energy E0 of the ground state and the ground state wavefunction ψ0(r;R),

one needs to solve the electronic Schrödinger equation Eq. (2.5). Unfortunately, for many body

systems, this is not feasible. The standard quantum chemistry approach to such a problem is to

apply the variational principle which states that the energy of any trial wavefunction will be an

upper bound of the true ground state energy of the system〈
ψk|Ĥe|ψk

〉
〈ψk|ψk〉

≥ E0. (2.10)

and equality will only be reached when ψk = ψ0. The denominator on the l.h.s of Eq. (2.10) will

be 1 when the electronic wave functions are normalized. This means that, the lower the energy

value obtained with an electronic guess wave function, the closer this wave function will be to

the ground state electronic wave function, therefore o�ering a tool to judge how good a guess

wave function is.

Methods to evaluate the wave function depend on which approximations are made to the

Hamiltonian to make it calculable. The only information that is needed for the construction of

the electronic Hamiltonian for a given system is the number of electrons Ne of this system and

the potential VN,e which in turn is determined by the nuclear charge Z and the positions of the

nuclei. With these information, the ground state wave function can, in principle, be calculated

and the energy of the system can be determined. The number of electrons is in direct relation

to the electron density n(r) of the system where r de�nes the position from where the electron

density is taken:

Ne =

∫
drn(r) (2.11)

Furthermore, the density has also cusps at the nuclei position, therefore, the positions of the

nuclei are derivable from the electron density. Additionally, the density at the position of the

nuclei contain information about the nuclear charge. This means that the electron density in

fact contains all information one needs to construct the electronic Hamiltonian for a system.

Instead of calculating the energy of a system from the wave function, which depends on the

positions of all the electrons in the system (and their spin), the electron density could be used

which depends only on three coordinates.

All density functional theory starts with the Hohenberg-Kohn theorem which states that the

ground state of a given system has only one speci�c electron density associated with it. This

ground state electron density n0(r) uniquely de�nes the system's Hamiltonian and with that

makes it possible to calculate any observable of the system. Secondly, the energy of the ground

state also has variational property with respect to the electron density. This means that the
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electron density can be used in lieu of the wave function to calculate a system's energy. The

ground state energy of a system can therefore be expressed as a functional

E0[n0] = Te[n0] + Vee[n0] + VN,e[n0] = F [n0] + V [n0]. (2.12)

Te and Vee are universal functionals, they can be combined to the Hohnberg-Kohn functional F

that, if it were known, would be a universal key to all imaginable systems. VN,e where I have

dropped the indices on the right hand side of Eq. (2.12) is an external potential that varies for

di�erent systems.

The electrostatic interaction energy Vee between the electrons can be split up into the Hartree

energy VH whose functional form is known and a nonclassical contribution Encl to the electron-

electron interaction that contains a self-interaction correction (the interaction of the electron

density with itself in the Hartree energy), exchange and Coulomb correlation:

Vee[n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
+ Encl[n] = VH[n] + Encl[n] (2.13)

In 1965, Kohn and Sham [112] suggested an approach to treat the universal functional F that

avoids the shortcomings in treatment of the kinetic energy functional of direct methods such as

the Thomas-Fermi-method. In the Kohn-Sham approach, a part of the kinetic energy functional

is treated in terms of single-particle orbitals (i.e., one-electron functions) φ(r) of a noninteracting

system. This allows to treat a large part of the kinetic energy functional exactly. For it, the

kinetic energy functional is decomposed into a part Ts[n] (s for single-particle) that represents the

kinetic energy of individual, noninteracting particles and the remainder Tc[n] (c for correlation).

T [n] = − h̄2

2me

Ne∑
i

〈
φi(r)|∇2

i |φi(r)
〉

+ Tc[n] = Ts[n] + Tc[n] (2.14)

Tc and Encl are combined into the exchange correlation functional Exc so that the total energy

expression assumes the following form:

E[n] = Ts[n] + VH[n] + Exc[n] + V [n] (2.15)

The single particle orbitals are chosen such that they reproduce the density of the original

system:

n(r) =

Ne∑
i

〈φi|φi〉 (2.16)

To obtain the ground state energy of the system, the variation principle can be applied:

0 =
δE[n]

δn(r)
=
δTs[n]

δn(r)
+
δVH[n]

δn(r)
+
δVN,e[n]

δn(r)
+
δExc[n]

δn(r)
=
δTs[n]

δn(r)
+ vH(r) + vN,e(r) + vxc(r) (2.17)
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If Eq. (2.17) is compared with a system of noninteracting particles moving in an external potential

vs(r) it becomes clear that one can treat the entire problem as a pretend-noninteracting single-

particle problem where the potentials contributing to Eq. (2.17) can be seen as making up the

external noninteracting-particle potential:

vs(r) = vH(r) + vN,e(r) + vxc(r) (2.18)

Eq. (2.16) and Eq. (2.18) are the Kohn-Sham equations. The Kohn-Sham orbitals φi can be

obtained by solving the one-electron Schrödinger equation[
− h̄

2∇2

2me
+ vs(r)

]
φi = εiφi(r). (2.19)

These orbitals de�ne the noninteracting system which, according to Eq. (2.16) has the same

density as the real system. Up until this point, the scheme is exact in so far that, if all func-

tionals that make up vs(r) were known, one could calculate the exact energy of the system.

Unfortunately, vxc is unknown and needs to be approximated.

An early approximation to the exchange-correlation functional was made with the local density

approximation (LDA) that treats the exchange-correlation energy as that of a locally homoge-

neous electron gas

ELDA
xc [n] =

∫
drn(r)εLDA

xc (n(r)) . (2.20)

The per volume exchange of a homogeneous electron gas is known exactly and the correlation

energy of a homogeneous liquid can be calculated with Quantum Monte Carlo [113] and interpo-

lated. The LDA approximation has proven itself to be quite accurate, due mostly to systematic

error cancellations: the exchange is overestimated while the correlation is underestimated. It

provides reasonable geometries and vibrational frequencies but greatly overestimates atomiza-

tion energies [114] and fails to predict chemical bond energies within chemical accuracy (energy

errors of the order of 0.0434 eV). An improvement to it is the generalized gradient approximation

that treats not only the local density n(r) but also its gradient in general functions:

EGGA
xc [n] =

∫
drn(r)εGGA

xc (n(r),∇n(r)) (2.21)

The general functions can either be parametrized to test sets of selected molecules or using exact

constrains (e.g. the Perdew-Burke-Ernzerhof- (PBE) [115], Perdew-Wang-`91- (PW91) [116, 117]

or revised PBE (RPBE) functionals [118]). The GGA functionals do not provide chemical accu-

racy but provide reliable results for covalent, ionic, metallic and to some extend hydrogen bond

interactions.

LDA and GGA are the �rst two rungs of the so-called Jacob's ladder of DFT [114] which

reaches from Hartree calculation that do not treat exchange correlation e�ects to chemical

accuracy with accurate treatment of exchange correlation e�ects. Further rungs (that is, further
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improvement) on this ladder include the treatment of Kohn-Sham kinetic energy densities or

second derivatives of the density in the meta-GGAs. Hybrid functionals follow that mix Hartree-

Fock exchange into the DFT exchange functional. Spin can also be dealt with in DFT by

including individual functionals for the α and β spin densities.

While the electron density should, in theory, contain information about all states of the

system, calculating any but the ground state in DFT is not easy, for the variation principle

does not apply to excited states. On the level of GGA, the description of non-local interactions

such as van-der-Waals fails (although on higher levels of DFT progress has been made in that

direction [119]), same as an accurate description of dative bonds cannot be achieved. Hydrogen

bonds are often predicted to be too short.

SRP-Functional

Commonly used DFT GGA-functionals for gas phase particles in interaction with metal surfaces

are the PBE [115], PW91 [116, 117] or RPBE functionals [118]). However, PW91 overestimates

binding energies while RPBE underestimates them [39]. If functionals both over- and underes-

timate experimental properties, to obtain chemical accuracy for a system, the speci�c reaction

parameter (SRP) DFT approach introduced by Chuang et al. [120] can be taken. This has been

done by Diaz et al. [121] for reactive scattering of H2 from Cu(111). The version used in this

work consists of a mixture of the PBE- and RPBE-functionals [12]:

ESRP
xc = xERPBE

xc + (1− x)EPBE
xc (2.22)

with a weighting factor of x = 0.48. The resulting functional will be referred to as `SRP48'.

Although the SRP48 has been optimized for H2 on Cu(111), I expect it to perform similarly well

for H with Au(111), since PW91 (whose energetic behavior PBE [115] was designed to mimic)

performs already quite well for H2 with Au clusters but could be improved by a mixing with

RPBE [122].

2.4. EMT

The discussion in this section is mostly taken from the description of deriving e�ective medium

theory in [38] and its formulation for two species [2, 22]. The e�ective medium theory incor-

porates many-body contributions to the total energy expression but requires about the same

computational e�ort as pairwise potentials and provides the background electron density for

any given atomic positions which can be readily extracted and used for the estimation of nona-

diabatic e�ects. Its functional form is rather simple which allows the analytic calculation of the

potential's derivatives with respect to the atomic positions or parameters of the potential which

speeds up the calculation of the forces and �tting of the potential.
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The EMT was developed to describe the energy of an atom by embedding it into a homoge-

neous electron gas [36, 37] and later extended to describe fcc transition metal surfaces [38] and

H in interaction with them [2]. EMT contains many-body contributions to the energy and in the

form used in this thesis is capable of describing macroscopic properties such as the bulk mod-

ulus, the cohesive energy and the elastic constants. The total energy of a system is described

by a reference system, which is a perfect fcc crystal and acts as an e�ective medium, which is

corrected for the di�erence between real and reference system.

The basic idea behind e�ective medium theory is to describe the binding energy of an atom in

a system by the energy it takes to embed said atom in a host of surrounding atoms. Primarily,

EMT is a form of density functional theory where the approximation is made that the energy

only depends on the local density. The binding energy of an atom is described by the embedding

energy ∆Ehom(n̄) of embedding the atom in a homogeneous electron gas of the density n̄. To

calculate the embedding energy, �rst the background electron density n̄ has to be de�ned.

This is done by the atomic sphere approximation (ASA) where one presumes that a perfect,

monoatomic solid can be divided into its neutral Wigner-Seitz (WS) cells. The WS cell can then

be approximated by a perfect sphere whose radius si around the atom i is chosen such that the

volume of the sphere equals that of a WS cell in the bulk and that the sphere remains neutral

in charge. This approximation is especially viable for close-packed crystals where the WS-cell

forms a complex polyhedron that almost approaches sphere-shape. The background electron

density inside the sphere si is then regarded as the sum over the change in electron density ∆nj

(induced electron densities) inside the si due to embedding the neighboring atom j. To make it

homogeneous, the electron density from the `density tails' of the neighboring atoms are averaged

over the sphere si.

n̄i =

〈∑
j 6=i

∆nj

〉
si

(2.23)

With this approximation, and treating the Hartree potentials that describe the electrostatic

potentials similarly, the potential v that contains the exchange correlation and electrostatic

contributions can be written as such a one that belongs to a homogeneous electron gas for each

WS cell. The embedding energy ∆E[n, v] can then be written as

∆E[n, v] =
∑
i

εi(n̄i) +
∑
i

∆ET,i + ∆Ecorr
tail + ∆Ecorr

AS (2.24)

The �rst term in Eq. (2.24) is the cohesive energy function. The second term describes the

di�erence between the studied system and the reference system for the one electron energy sum

of the kinetic energy contribution and can be neglected for simple atoms. It is the remainder

of the di�erence between a cell without an atom embedded into it and a cell with an atom

embedded into which are otherwise collected in ∆Ecorr
tail . Because the charge inside si must be

zero, all electron density tails sticking in from the neighboring spheres must cancel out with those
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sticking out of the sphere. This leads to a complex cancellation of terms within ∆Ecorr
tail making

it negligible. The last term in Eq. (2.24) is a correction for the atomic sphere approximation

that describes the errors from replacing the WS cells by spheres, namely that the spheres might

overlap or not cover all space. ∆Ecorr
AS can be assumed to be just composed of its electrostatic

contribution, since these are the most dominating contributions. It is composed of the di�erence

between a system where the electron density n̄i is calculated from the neutral sphere radius and

one where the electron density n̄fcc
i is calculated from all the surrounding density tails. Both

contain a correction that accounts for the di�erence between the reference system (a perfect fcc

crystal) and the real system. ∆Ecorr
AS can then be expressed as

∆Ecorr,es
AS ≈

∑
i

αi

n̄i −∑
i6=j

∆n̄fcc
j (rij)

 , (2.25)

where αi are the di�erences in the Hartree potentials. The neighbor distance rij in a perfect fcc

crystal with spheres of the radius s0 (neutral sphere radius) can be written as

rij = βsfcc =

3

√
16π
3√
2
s0. (2.26)

The electron density tail ∆n̄ of the neutral sphere with the radius s can be expressed in an

exponential form:

∆n̄(s, r) = ∆n0 e(η1+η3)s−η2r (2.27)

If only the twelve nearest neighbors of the perfect fcc crystal are considered where the spheres

are assumed to be space �lling and summation only happens due to the density tail contributions

into s, the distance r in Eq. (2.25) can be replaced by βsi (see Eq. (2.26)) and the background

electron density can be calculated as

n̄WS(si) =
∑
i 6=j

∆n̄(si, rij) = 12 ∆n̄(si, βsi). (2.28)

If Eq. (2.28) is combined with Eq. (2.27), si can be calculated.

si = − 1

βη2 − η3
ln

 1

12

∑
j 6=i

e−η2rij+η3sj

 (2.29)

Then, the background electron density n̄i can be calculated as being due only to its twelve

nearest neighbors:

n̄(si) = 12 ∆n0 e−ηsi = n0 e−η(si−s0) (2.30)

where η = βη2 − η1 − η3 and n0 = 12 ∆n0 e−ηs0 . s0 is the neutral sphere radius of a perfect

fcc crystal where all the atoms stay at their perfect lattice positions and thereby makes up for
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the di�erence between the real and the reference system. The atomic sphere correction then

becomes:

∆Ecorr
AS ≈

∑
i

αi

n̄i −∆n0

∑
i6=j

e−η2rij−η1sj−η3sj

 (2.31)

The di�erence between the �rst and the second term in square brackets is that for the density

n̄i the assumption is made that all spheres are space �lling and thus, the entire crystal can be

described in terms of the radius s while the second term includes the neighboring distance rij
instead of describing the background electron density just in terms of s, thereby accounting for

regions that might be wrongly represented by s.

The dependence of the induced density on the background electron density can be neglected

to avoid the self-consistency problem associated with it which results in η3 = 0. With this, the

background electron density n̄i can be calculated as:

n̄i = n0

∑
j 6=i

e−(βη2−η1)(si−s0), (2.32)

This background electron density now serves as the connection between the real system (where

the atoms are not necessarily on their perfect fcc positions) and the reference system (perfect

fcc crystal). According to [2], η1 = 0.945Å−1 is a typical value for metals and will be employed

here.

If the atomic sphere correction is expressed in terms of two pairwise interactions in the refer-

ence V (ref)
i (n̄i) and the real systems Vij(rij), a one-electron correction appears that can, however,

be neglected [123]. The total energy for a system consisting of N atoms can be written as:

E =

N∑
i=1

εi(n̄i) +

N∑
i=1

V (ref)
i (n̄i) +

N∑
j>i

Vij(rij)

 . (2.33)

To treat the interaction between two di�erent kinds of atoms (hydrogen and gold), it is necessary

to use the EMT formulation for two di�erent species of atoms which will be labeled a and b

where a distinction between the two species is necessary. i and j will further serve to enumerate

the atoms. The cohesive energy function εia can be described by:

εia = E0,a [1 + λa (sia − s0,a)] e−λa(sia−s0,a) − E0,a, (2.34)

Here, E0,a is the cohesive energy of the species a. Eq. (2.29) shows how to calculate the neutral

sphere radius sia for the atom ia of the species a for nearest neighbors. If the presence of a

second species is included, the expressions changes to

sia = s0,a −
1

βη2,a
ln

[
σ

(a)
ia

+ χabσ
(b)
ia

12

]
. (2.35)
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Here,

χab =
n0,be−η1,bs0,b

n0,ae−η1,as0,a
, (2.36)

and σia contains the exponential form ansatz made to describe the change in background electron

density in Eq. (2.27). σ(a)
ia
, same as the sum in Eq. (2.29) contains the contributions to the neutral

sphere radius sia due to the interaction with all other atoms of the species a. σ(b)
ia

is made up

from the contributions to the neutral sphere radius of the atom ia due to all atoms of the species

b summed over their number. Both contributions are calculated in the same fashion:

σ
(b)
ia

= γ−1
1,a

Nb∑
jb=1

e−η2,b(riajb−βs0,b)θiajb . (2.37)

The pairwise potential Vij(rij) from Eq. 2.33 is calculated in a similar manner to Eq. 2.37:

Vaa = −V0,a

γ2,a

∑
ia<ja

e−
κa
β

(riaja−βs0,a)θiaja (2.38)

Vab = −χa,b
V0,a

γ2,a

∑
ia,jb

e−
κb
β

(riajb−βs0,b)θiajb . (2.39)

The reference energy contribution is calculated similarly:

V (ref)
a = −12V0,a

Na∑
ia=1

e−κia (sia−s0,a). (2.40)

Including more than nearest neighbor interactions into the energy calculations makes it nec-

essary to include a cut-o� function to allow the treatment of �nite slabs during MD-simulations.

A smooth cut-o� function

θij =
[
1 + eα(rij−rc)

]−1
(2.41)

is used with the fall-o� parameter α = ln 10000/(rr − rc) in such a manner that contributions

up to the next-next-nearest neighbor distance for the fcc lattice rc = βs0,a

√
3 are included, and

rr =
4rc√
3 + 2

. (2.42)

The normalization coe�cients γ

γ1,a =
3∑

m=1

x(a)
m e−η2,aβs0,a(

√
m−1) (2.43)

γ2,a =
3∑

m=1

x(a)
m e−κas0,a(

√
m−1) (2.44)

are chosen to ensure that E = 0 for the perfect fcc bulk structure, with

x(a)
m =

bm
12

[
1 + eαβs0,a(

√
m−
√

3)
]−1

. (2.45)
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Each species in the EMT theory is characterized by seven parameters: n0, ε0, s0, λ, η2, V0

and κ. Some of the parameters can be related directly to experimental data: ε0 is the cohesive

energy, s0 is proportional to the lattice constant of the bulk via the nearest neighbor distance

(Eq. (2.26)) and λ2 to the bulk modulus

B = − ε0λ
2

12πs0
, (2.46)

and the shear modulus can be calculated from η2, V0, κ [23]

C44 =
3V0κδ

8πs0
(2.47)

with

δ = βη2 − κ. (2.48)

The other two elastic constants C11 and C12 can be calculated as follows:

C11 =
3V0δκ− ε0λ

2

12πs0
(2.49)

C12 =
3V0(κ− βη2)κ− 2ε0λ

2

24πs0
. (2.50)

The formulae Eq.(2.46)�(2.50) have been derived considering only nearest neighbor contribu-

tions. It is possible to extend them to more than nearest neighbor contributions, however re-

sulting in much more complex formulations. The treatment not going beyond nearest neighbors

leads to the relations between the elastic constants

C11 − C12 = 2C44, (2.51)

which is only true for isotropic crystals (i.e. crystals whose properties and structure are in all

directions the same) and has not been found to be ful�lled by gold [124]. The relation between

C11 and C22 with the bulk modulus is found for all cubic crystals [125] to be

C11 + 2C12 = 3B. (2.52)

Jacobsen et al. [2] obtained the parameters of the EMT for several metals from experimental

properties and from a self-consistent calculation of an atom embedded in a homogeneous electron

gas.

In the past, EMT in the form employed here has been used to describe alloys such as Ni-

Au [126] and cluster in Ni-Au alloys [127] which made it necessary to re�t of some of the EMT pa-

rameters to reproduce physical properties of the system like the heat of solvation. For the study

of Cu-Mg bulk metallic glasses, Bailey et al. [128, 129] obtained a new EMT-parameterization

based on properties of the pure elements and intermetallic compounds from both experiment and

DFT calculations. Usually, however, the parametrizations of EMT given by Jacobsen et al. [2]
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were kept, often in combination with other theoretical methods like Monte Carlo Simulations:

Investigations involved the stability of surface structures [130], Pd-islands on Au(111) [131] and

island decay mechanisms on Au(111) [132]. EMT was used to describe deformations in fcc-

metal surfaces [133], by Vegge et al. (e.g. [134�138]) and Rasmussen [139] for properties of screw

dislocations in copper, mechanical properties of metallic nanojunctions and contacts and their

breaking [140, 141], deformation of nanocrystalline Cu [142�144] or cracks in fcc-metals [145],

deformation of thin Cu �lms and bulk Cu [146, 147]. The formation and migration energy

of vacancies was calculated for Ni and Cu [148, 149] and nanoparticles [150, 151]. To put it

short, EMT has been used to investigate a broad range of properties of metal systems. If the

EMT-parameters were changed, they were usually �tted to reproduce single physical proper-

ties important for the considerations and were taken both from experiment or calculated with

DFT [127, 129, 139, 152].

Opposite to this approach, Strömquist et al. [23] considered the scattering of H from Cu(111)

and �tted the parameters for the H atom to total energy points from DFT calculations with the

PW91 functional of H in interaction with Cu(111). They found that the surface atoms do not

have time to respond to the motion of the H atom and little di�erence between MD-simulations

done at 0K and 500K. Furthermore, they observed that an H atom that only interacts with the

phonons of a system has to undergo multiple collisions to lose enough energy to stick to the metal

surface, the energy transfer being rather ine�ective, producing hot H atoms. They propose that

for H in interaction with Cu, the energy loss to electron hole pairs cannot be neglected, seeing

as the energy loss to phonons is so very ine�cient. Following this approach, we [21, 22, 44] have

described the interaction of H on Au(111).

2.5. Local Density Friction Approximation

The local density friction approximation (LDFA) is a way to incorporate nonadiabatic e�ects

acting on a particle during molecular dynamics simulations. It is valid if only low lying electron

hole pairs are excited and the shape of the potential energy surfaces of these excited states

does not deviate from that of the ground state. It treats the electronic degrees of freedom as a

thermal bath through which the ionic cores move. The idea behind LDFA is that the motion

of the electrons is much faster than that of the ionic cores but when the ions move through the

electronic bath, then, the electrons do not necessarily adjust instantaneously to the motion of

the nuclei and some electron hole pairs might be excited or deexcited. This leads to a damping

of the ionic motion. As the ions move slowly, only low lying ehps need to be considered so

that the entire process is nearly adiabatic. As long as the motions of the nuclei are considered

classically, the total e�ect can be described by an extra friction force term and a stochastic term
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being added to Newton's equations of motion and thereby forming the Langevin equation [30]:

mHr̈H = −∇HE(r)−mHηṙH + Fst(t) (2.53)

Here, mH is the mass of the H atom, rH is its position, ∇H = ∂
∂rH

, E(r) is the total energy

depending on the positions of all of the atoms, η is the friction tensor and Fst(t) is the stochastic

force and is related to the friction coe�cient through the dissipation-�uctuation theorem [30, 60]〈
Fst(t)Fst(t′)

〉
= 2mHkBTηδ(t− t′), (2.54)

where kB is the Boltzmann constant and δ is the Dirac delta function. In the Langevin equations,

the stochastic force has the role of accounting for the fact that a particle undergoing Brown-

ian motion does not come to a halt after it has dissipated its energy, but will be in thermal

equilibrium with the surrounding and thus have an energy corresponding to the thermal one.

The friction coe�cient η can be calculated in two di�erent ways. The full-dimensional friction

matrix can be calculated from transition rates between occupied and unoccupied electronic

states and has F 2 tensor elements where F are the degrees of freedom of the system under

consideration [153].

A simpler manner [153�155] is to calculate the friction coe�cient for a proton (or other heavier

ions) travelling through a homogeneous electron gas. The stopping power the particle experi-

ences can be calculated from the phase shift of the initial and scattered wave function of a free

electron from the spherically symmetric potential of the proton. In turn, the stopping power

can be related classically to a friction coe�cient [30, 156]. This friction coe�cient, from the

use of a homogeneous electron gas and a spherically symmetric potential in the calculations

of the phase shift, is a scalar that depends on the density of the homogeneous electron gas.

Puska and Nieminen [156] have calculated the density dependent phase shifts for a proton in

a homogeneous electron gas and their results from DFT-LDA calculations are in good agree-

ment with the electronic contributions for the stopping power found experimentally. To get the

background electron density dependent friction coe�cient, a polynomial was used to interpolate

their data [22]:

h̄η(n̄) =


12∑
i=1

cin̄
i, if n̄ ≤ 0.36Å−3

d1 − e−d2n̄ · 10−3 meV, if n̄ > 0.36Å−3
(2.55)

The coe�cient for the polynomial are given in Tab. 2.1.

2.5.1. Recent Applications of LDFA

To explain the linewidth broadening of H2-molecules vibrational modes on (jellium) metal sur-

faces, Hellsing and Persson [157] calculated the damping rate of a vibrating atom in a homoge-

neous electron gas and found that ehp in a metal substrate form an e�ective channel for energy
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Table 2.1.: Coe�cients from the interpolation formula in Eq. (2.55) used to calculate the position de-

pendent friction coe�cient for Langevin dynamics (Reproduced and corrected from [22]).

c1 0.0802484 meV·Å3 c2 −1.12851meV·Å6

c3 9.28508 meV·Å9 c4 2.10064meV·Å12

c5 −843.419 meV·Å15 c6 8853.54meV·Å18

c7 −48902.3meV·Å21 c8 167410.meV·Å24

c9 −367098. meV·Å27 c10 503476.meV·Å30

c11 −394260.meV·Å33 c12 134763.meV·Å36

d1 0.0047131meV d2 4.41305Å3

dissipation of excited substrates. To describe the electronic contribution to the dissipation of

translational energy of an atom in a metal, the damping rate can be directly related to the fric-

tion coe�cient [158] used in the Langevin equations via the stopping power of atoms [30, 156].

In the low velocity regime, meaning, low velocity in comparison to the velocity of the elec-

trons, this stopping power (or the related damping rate) can be calculated from the phase shifts

at the Fermi energy for scattering electrons from spherical potentials. These potentials can

be calculated with DFT, assuming them to be static (i.e. not dependent on electron �uctua-

tions) and used to calculate the energy loss of atoms in homogeneous electron gasses [155, 156].

Head-Gordon and Tully [16] provided the explicit molecular-orbital expression for the electronic

friction and extended the LDFA approach for a friction coe�cient to outside the Markov limit,

leading to a friction coe�cient with memory.

The Alducin group [31] started using the LDFA for the description of N2 on W(110) and

H2 on Cu(110) and since then used it to describe N2 from W(110) and N from Ag(111) [159].

Recently [19], they implemented nonadiabatic energy loss by including a friction force calculated

with LDFA into AIMD calculations (AIMDEF). To determine the friction coe�cient in this

approach, they take the electron density of the undistorted surface. With it, they described hot

H atom energy loss on Pd(100) and �nd large contributions to the energy loss from electron

hole pair excitations. Furthermore, they described the life-time of H on Pb �lms [20] and have

now extended their theory to include the interaction with the electron density of the moving

atoms [160].

The Kroes group [3, 4] combined LDFA with AIMD in a post-facto fashion (AIMDEFp) to

calculate the energy loss of H scattering from Au(111). That is, the energy loss to electron hole

pairs was calculated after the AIMD trajectories had already been calculated. For this, they

used the positions r(t) and velocities v(t) that had been recorded during the trajectory and a

25



position dependent friction coe�cient η(r(t)):

∆Ena =

∫ tend

t=0

η(r(t))v(t)2dt. (2.56)

They obtained the electron density from a metal slab with the atoms �xed at their equilibrium

positions and calculated the friction coe�cient according to Juaristi et al. [31]. Using this post-

facto approach, they expect the energy losses to ehp to be by ∼ 20% larger than the energy loss

obtained if the Langevin equations using LDFA are applied during an AIMD trajectory. They

observed for H atoms scattering from Au that the nonadiabatic average energy loss to electron

hole pairs is the dominant energy dissipation channel and found that the nonadiabatic energy

loss they calculated appears to be consistent with the calculations Trial et al. [161] for H and D

on Cu(111) who used time-dependent DFT to obtain the friction coe�cient instead of a friction

coe�cient obtained from static DFT.

Rittmeyer at al. [162] have suggested an improvement of LDFA for molecules that allows the

treatment of the molecule including intramolecular contributions to embedding density that are

accounted for by a charge partitioning scheme.

LDFA has been used to study multiple other system. Vibrational damping of adsorbate

modes on metal surface can be reasonably well described using LDFA [162] and has been used to

describe e.g. H2 and D2 on Ru(0001) [163, 164], dissipative dynamics of H on Pb-�lms [20] and

vibrational quenching in associative adsorption of N2 from Ru(0001) [165]. Additionally, LDFA

has been used to describe nonadiabatic e�ects on atoms and molecules at surfaces e.g. H in and

on Ni [17, 166], Eley-Rideal reactions for H2 and N2 on W or the di�usion of H on Ni [167] and

H in Pd [30, 74], also in good agreement with experimental observations.

The electronic friction approach has proven useful to describe processes in the weakly non-

adiabatic limit such as vibrational relaxations, inelastic molecule surface scattering or hot-

electron mediated femtosecond laser induced reactions [163] as well as vibrational damping of

adsorbate modes on metal surfaces [162] and hot-atom mediated femtochemistry [153]. But in

the usage of LDFA described above, the friction coe�cient is assumed to be isotropic (and there-

fore derivable from a homogeneous electron gas). This assumption is taken because it simpli�es

calculations not only regarding the shape of the tensor, but also, because the calculation for

a phase-shift for anything else but a homogeneous electron gas would require to replace the

approximation of a symmetric spherical potential by a more complicated potential which would

not allow to describe the phase shift as simply as presented by Echenique et al. [155]. An alter-

native would be the calculation of the friction coe�cient from the transition probability, but this

would require the calculation of electronic excitation energies between occupied and unoccupied

orbitals which cannot be done using theories such as EAM or EMT. Given the high dimensional

shape for the friction tensor, it is very cost-intensive to calculate the tensor and in the past, if

the friction coe�cient was treated as a tensor, it has usually only been calculated for reduced
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dimensions as e.g. for the description of CO on metal surfaces [168�171] CN or N2 on Pt(111) or

Ru(0001) [168, 172]. Calculating the position dependence of the friction coe�cient can be done

with time-dependent DFT [173] as has been done for H and D on Cu(111) [161, 173, 174]. To

account for quantum mechanical e�ects, a wave package approach can be used or open-system

density matrix theory [153].

The implementation of LDFA with the homogeneous electron gas approximation into the

EMT has perhaps an advantage over methods such as AIMD, because EMT already provides

the background electron density, that is, not only the electron density of the surface atoms but

also the perturbation in that electron density due to the presence of the H atom.

2.6. The H/Au-system

Bulk and Surface Properties

The primitive unit cell is the smallest building block from which a crystal lattice can be built

by translational displacement. To classify crystals, a unit cell is chosen that is slightly larger

and chosen such that its sides have the shortest lengths and the angles of its vectors are as close

to perpendicular as possible. The lengths of the sides in three dimensions are denotes as a, b

and c, its three lattice vectors as a, b and c and the angles between the vectors as α, β and

γ. Depending on the length of the sides and the angle between them, fourteen distinct space

lattices can be identi�ed in three dimensions, the so-called Bravais lattices. A cut through a

crystal gives rise to a surface with a structure depending on the direction of the cut. This surface

is de�ned by the crystal plane along which the cut happens and described by the Miller indices

h, k and l, as are directions on the surface. Every plane will intersect a, b or c at a certain

distance. If the reciprocal of the smallest intersection distance is taken and multiplied with such

a factor that leads to three integers, the Miller indices have been obtained. Negative indices are

denoted by a bar. If only the a lattice vector would be cut by a plane, a (100) plane would be

obtained, if all are cut, a (111) [175]. Directions on the surface are denoted in the same manner

by the Miller indices, only replacing the parentheses with brackets to distinguish direction from

plane.

For the description of e.g. electronic band structure and phonons the �rst Brillouin zone

is important. It can be built by connecting an origin reciprocal lattice point with each of its

neighboring reciprocal lattice points. At the midpoint of the connecting lines, perpendicular

lines are drawn and the smallest area that contains the origin and is enclosed by the lines is the

Brillouin zone. The center of the Brillouin zone is denoted by Γ and its equivalent in real space

is the Wigner-Seitz cell. The reciprocal lattice is related to the real space via the basis vectors
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of the real space [176]:

a∗ ≡ 2π

V
(b× c), b∗ ≡ 2π

V
(c× a), c∗ ≡ 2π

V
(a× b) (2.57)

2.6.1. Fcc-metals and Gold

Gold has a face-centered cubic (fcc) unit cell and a lattice constant of 4.08Å [177]. An fcc

crystal has ABC-stacking which means that the atoms of the �rst layer are stacked below every

second of the hollow sites of the �rst layer and those of the third layer below the other half of

the hollow sites, so that only in every third layer the structure repeats itself (see Fig. 2.1(a)).

On an fcc(111)-surface, this leads to two types of hollow sites; one, the hexagonal close-packed

(hcp)-hollow site, where an atom is directly in the layer below and another, the face-centered

cubic fcc-hollow site, where the next Au atom is to be found two layers below. Further distinct

surface sites on the Au(111)-surface are the top site, marking the top of a Au atom and the

bridge-site, the point where two neighboring atoms meet in the surface layer. Below the surface,

there are also two distinct sites available. One is located directly below a Au atom: it would be

e.g. in the �rst subsurface layer, directly under a surface atom. It is the tetrahedral under top

(TUT) site. The second is located one layer further away, that is, the hollow formed in e.g. the

second subsurface layer below the top atom due to the ABC-stacking. This hollow site is called

octahedral site (oct.).

Au surface structure

DFT-GGA-functionals are known to overestimate the lattice constant, especially for heavier

elements [178]. RPBE and the SRP-functional give the highest value with a0 ≈ 4.22Å [178]

and a0 = 4.20 [4], PW91 [41, 179] and PBE [43, 180] both range around a0 = 4.18Å. Several

distinct surface directions can be identi�ed, most importantly for the present work the [101̄]-

direction that connects a-top-sites of Au atoms via bridge sites (Fig. 2.1(b)) and the [112̄]-

direction, orthogonal to the [101̄]-direction that connects a-top-sites via the hollow sites. To

describe the incidence H-atom beam and for scattering, I de�ne two angles: the polar angle θ is

the angle to the surface normal. The azimuth angle φ is the angle with the [11̄0]-direction where

φ = 0◦ corresponds to the [11̄0]-direction. The Au(111)-surface reconstructs to form domains of
√

3× 22 [32, 33] (
√

3× 23 [34, 35]) reconstructions along the [110]-direction (discommensuration

lines). This means that two-and-twenty (23) Au atoms contract in such a manner that on

the space normally inhabited by these atoms, 23 (24) Au atoms are placed. Fig. 2.2 gives

an impression of how the surface looks and the relation of the surface directions to it. The

discommensuration lines in turn form the secondary herringbone structure that can be observed

on wide terraces and has a periodicity of about 30 nm [181].
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Figure 2.1.: (a) Surface sites and stacking of an fcc-surface. Au atoms in the surface layer (A) are

indicated in light grey, in the �rst subsurface layer (B) in dark grey and in the second

subsurface layer in black (C). (b) shows a larger view of the (111)-surface with its C3-

symmetry, two surface directions and the azimuth angle φ.

Surface reconstruction is driven by excess surface stress, meaning that the atoms at the surface

have, compared to the bulk atoms, unsatis�ed dangling bonds. This tensile stress can be satis�ed

by moving the atoms closer together as happens in the reconstruction. Although why some fcc

(111) surfaces reconstruct and others do not is still a matter of discussion, much as by which

energetic mechanisms the reconstruction is lifted by adding other atoms to the surface [180].

While in theoretical simulations, only the
√

3 × 22/23 supercell itself appears to have been
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Figure 2.2.: The discommensuration lines of the reconstructed Au(111)-surface is shown from a side-

view of a six-layered slab where the discommensuration lines show as waves in the surface

layer (left) and from an on-top view including the surface directions and angle φ (right).
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studied (and thus not the entire herringbone), Au(111) reconstruction is not solely made of the

secondary herringbone patterns, but shows elbow structures [43] or u-structures [32]. Repain et

al. [181] found that the
√

3×22 reconstruction structure is closely associated with step structure

where the direction of the step dictates the direction of the discommensuration lines. The

reconstruction pattern is stable up to ∼ 865K and at higher temperatures a partially disordered

phase with hexagonal symmetry forms [182]. Furthermore, Hoss et al. [183] observed surface pre-

melting: the surface itself is observed to lose its ordered structure entirely at 1070K, creating a

thin quasi-liquid layer. They furthermore observe the lifting of reconstruction at 950± 50K.

The formation of the reconstruction has been attempted to be explained by one- and two-

dimensional Frenkel-Kontorova models [179, 184�186] or attempts made to reproduce the stable

discommensuration lines with embedded atom like methods [187, 188], the latter with little

success. One of the problems in simulation is the large supercell needed to describe surface re-

construction which makes ab initio simulations using DFT almost forbiddingly expensive. There

are only few studies in DFT for the discommensuration lines using various functionals (PBE [43],

PBE with van-der-Waals corrections [43], PW91 [41, 42]), all of which predict the discommensu-

ration lines to be stable and can reproduce the experimentally observed structure. Furthermore,

they show that the reconstruction in�uences adsorption behavior [43]. Torres et al. [42] investi-

gated discommensuration of di�erent periodicity
√

3×p2 and found p = 22 and p = 23 to be the

most stable pattern, again more stable than the unreconstructed surface. Recently, the electronic

structure [189] and reconstruction at stepped surfaces in a mixture of DFT and EAM-type cal-

culations [190] have been studied. Additionally, tight-binding simulations have been done with

large supercells (∼ 50000 atoms) to investigate the structure of the herringbone reconstruction,

giving the correct ratio of 22 to 23 surface atoms, reproducing the correct geometrical behavior

during MD simulations but proving to be only a local and not a global minimum [191].

2.6.2. Hydrogen in Interaction with Metals

While the �eld itself is active, hydrogen atoms in interaction with Au have so far seen little

investigation. The study of H atoms on metals has mostly focused on determining the extend

of adsorption site, vibrational frequencies of the adsorbate and electron hole excitation and

di�usion.

Dissociative adsorption of H2 on Au is strongly activated. The adsorption of H on Au �lms

was studied using temperature programmed desorption (TPD) [192�195] and the activation en-

ergy of desorption of 0.5 � 0.6 eV and the sticking probability at 78K has been determined.

Experimentally, considerable evidence for the interaction with electron hole pairs has been ob-

served for H in interaction with coinage metals. For example, chemicurrents were measured

when a polycrystalline Au covered metal-insolator-metal structure was exposed to a hydrogen

atom �ux, and were caused by a Langmuir-Hinshelwood recombination reaction. Here, a clear
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isotope e�ect was observed, as well as subsurface hydrogen species [58, 59, 196]. Further reaction

induced chemicurrents were observed using Ag/p-Si Schottky diodes for H and D chemisorption

on Ag and on Cu(111) [197�200]. They are in good agreement with calculations of chemicur-

rents for H impacting on Cu(111) using electronic friction and make predictions for H impacting

on Ag(111) [201]. Kovacs et al. [202] measured the emission current occasioned by kinetically

induced electron emission in the collision of H and D atoms with Au, Cu and Ag �lms. Parallel

vibrations of H and D on Cu(111) were detected by infrared re�ection spectroscopy and found

that the atoms absorb in the threefold hollow sites and the life-time of the vibration explained

by electron hole pair damping [203]. Ishikawa et al. [67] measured the di�usion of H in Au around

room temperature and found that it obeys the Arrhenius law also considering the data measured

by Eichenauer et al. at 800-1200K [204].

The description of H in interaction with jellium hosts was already an active �eld of study forty

years ago [205]. Later, using EMT, Nørskov et al. described H in interaction with metal systems

to obtain qualitative information about chemisorption energies, interstitial hydrogen, hydrogen

di�usion and hydrogen molecule formation [206].

Ferrin et al. [207] considered the adsorption of H to metals with PW91 and found that H

on Au(111) is most stably adsorbed to the surface (−2.18 eV) in the fcc- and hcp-surface site.

Absorption into the bulk is less favorable within its preferred TUT (−1.45�−1.55 eV) absorp-

tion site. These �ndings are in agreement with the simulations of Greeley et al. [39] who also

found a (slight) preference for the fcc-adsorption site (−2.22 eV (PW91) and −2.07 eV (RPBE))

and for the TUT subsurface site (−1.47 eV (PW91) and −1.36 eV (RPBE)). The gas-phase H2

molecule is energetically more favorable than an adsorbed H at the Au(111) surface. They also

studied di�usion pathways of the H-atoms. In my master thesis [208], using the SRP-functional,

I found a similar preference for surface adsorption at the fcc- and hcp-sites. Kroes and cowork-

ers [3, 4] studied the scattering of H from Au(111) electronically adiabatically using AIMD and

nonadiabatically using AIMDEFp.

A large �eld of study is H in interaction with Cu. Strömquist et al. [23] considered elec-

tronically adiabatic H on Cu(111) in detail by means of �tting ab initio energies with the

EMT and suggested that the energy dissipation to ehp could make out a large pathway in

the overall energy loss. They furthermore calculated sticking probabilities, �nding that with

a slab relaxed to the presence of the H atom, absorption is not activated, that energy loss to

phonons is ine�ective and that the corrugation of the surface is important for scattering results.

For the same system, the three-fold hollow adsorption site has been determined using DFT

with GGA-functionals [39, 207, 209�212], LDA [213, 214] and EMT [23, 213]. Experimentally,

the adsorption site has been suggested to be the threefold hollow site [203, 215], the bridge

site [216] (although later reinterpreted to threefold hollow [203, 213, 215]) and preferential sub-

surface absorption [217, 218]. Subsurface absorption has been studied in a number of DFT
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simulations [39, 207, 211] and was always found to be less favorable than surface adsorption.

Experimentally, it was also suggested to be coverage [215] and temperature [219] dependent.

The coverage dependence could not be reproduced theoretically [211, 220]. Barriers for di�usion

were also considered in multiple theoretical calculations [207, 209, 211, 220].

Shalashilin et al. considered hot atom motion of H on Cu(111) using a static surface PES

with dissipation to phonons mimicked by a friction and a stochastic force [221].

Further recent studies of H in interaction with surface involve H scattering from graphene [222]

and hot H atoms on Pd(100) [19, 160] as well as H vibrations on Pb(111) [20].

2.7. Fitting Procedure

The following section has to a large extend already been published [21, 22].

2.7.1. The DFT ab initio input data set

To construct a potential energy surface with analytic form, in the �rst step, an input data set

needs to be assembled that samples the con�guration space. For the EMT �t, the input data

consisted of two data sets: the �rst one sampled the dependence of the energy on the positions

of the surface atoms. This one consisted of 200 points taken from a non-penetrating double-

bounce AIMD trajectory of an H-atom colliding with 5 eV with a Au(111) surface thermalized

to a temperature of 120K (provided by Geert-Jan Kroes [3, 4]).

The second data set used a grid in con�guration space with 520 H atom positions. Here, Au

atoms were �xed to the coordinates of the relaxed fcc surface. This grid probed ten symmetry

sites on the Au(111) surface (Fig. 2.3) in steps of 0.2Å above the surface to 5Å below the surface.

The symmetry sites include the top-site (1) and the two hollow sites on the surface, hcp (7) and

fcc hollow site (10, see Fig. 2.3 and Tab. 2.2).

The ab initio energies for the individual H-atom positions I obtained with the Vienna ab

initio simulation (VASP) 5.2 package package [223�226]. To match the AIMD calculations, I

used ultrasoft pseudo potentials and the SRP48-GGA functional suggested by Díaz et al. [5] (see

section 2.3) in adaption for VASP [12]. I had already calculated a data set for a 3× 3× 4 super

cell during my master thesis [208], but recalculated the data set using a 2 × 2 × 4 super cell to

match the 2 × 2 × 4 cell of the AIMD. For this, I used 20 × 20 × 1 gamma-centered k-point-

mesh, a Fermi level smearing of 0.1 eV and an energy cut-o� of 300 eV (see attachment) and did

spin-polarized calculation. As a reference energy, which I subtracted for all ab initio points, I

took the energy of the undisturbed system of the gold surface with all Au atoms in their relaxed

positions and an H atom 6Å above this surface where it does not interact with the surface. All

potential energy values given subsequently are given relative to the reference energy. Further
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Figure 2.3.: The sampling sites for the generation of the input data set to the EMT �t. The yellow

spheres represent the positions of the Au atoms for the �rst three layers of the Au(111)

surface. The blue sphere marks the Au atom below an hcp and the orange atom below an

fcc-site. The black points mark the ten sampling sites.

Table 2.2.: The x and y coordinates of the sampling sites and their names. Numbers according to

Fig. 2.3. a = a0√
2
with a0 the lattice constant and a the nearest-neighbor distance.

* Sites named according to [209].

** Self administered names and table reproduced from [208].

Site x coordinate y coordinate Abbreviation Site

1 0 0 top top site

2 a
6 0 tso∗∗ between ott and top site

3 a
3 0 ott∗∗ one third between top sites

4 a
2 0 bri∗∗ bridge site

5 a
4

√
3

12 a fht∗ between hcp hollow and top

6 5
12a

√
3

12 a hho∗∗ between ott and hcp hollow site

7 a
2

√
3
6 a hcp hexagonal cubic package hollow

8 a
4 −

√
3

12 a hht∗ between fcc hollow and top

9 5
12a −

√
3

12 a fho∗∗ between fcc hollow and ott

10 a
2 −

√
3
6 a fcc face centred cubic hollow
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details on the calculations are speci�ed in the attachment to this thesis, including the input �les

for VASP.

For the �t, I excluded all con�guration/energy pairs that had a higher potential energy than

20 eV, reducing the entire data set from 760 constituents to 720 constituents.

2.7.2. The Fit

For the �t, I used the MD_tian program, a package that has been written in the course of the

last three years in our group, written by myself, Dr. Alexander Kandratsenka and Prof. Dr.

Daniel Auerbach (see also attachmentB). It contains the �tting procedure and MD-simulation

procedure, including an implementation of the analytic equations for the EMT forces. To deter-

mine the values of the 14 EMT parameters, I used a Levenberg-Marquardt [227, 228] damped

least squares procedure which minimizes the rms deviation of the energy values given by DFT

and the EMT PES. Asides from the input data derived from ab initio DFT, I used two further

information for the selection of an optimal �t: the values of bulk-properties of gold and the

H-Au binding energy (see Tab. 3.3). Disregarding these constrains results in parameters that do

not give reasonable values for the bulk properties of Au and the H-Au binding energy. To defeat

this di�culty, I constrained some of the parameters. For Au, I �xed ε0 to reproduce the cohe-

sive energy, s0 to reproduce the lattice constant obtained from DFT, and λ to give the correct

bulk modulus. For hydrogen, I �xed ε0 and s0 to the values recommended by Strömquist [23].

Additionally, I ensured that the EMT-based PES would reproduce the experimentally known

H-Au gasphase diatomic bond energy [229] and con�rmed that the Au slab was stable to up to

1000K. For the �t, I used the parameters suggested by Jacobsen [2] and Strömquist [23] as initial

guesses.

2.8. MD simulations

I performed adiabatic and nonadiabatic MD simulations for H in interaction with Au(111)

with propagation times of 120 fs or 1 ps and a time step of 0.1 fs using the MD_tian program.

This package has been developed over the last years in our research group and was written by

Dr. Alexander Kandratsenka, Prof. Dr. Daniel J. Auerbach and myself. It encompasses the

�tting procedure and MD-simulation procedure, including an implementation of the analytic

expressions for the EMT forces (see attachmentB).

The Au slab was equilibrated over 5 ps by assigning velocities from the Maxwell-Boltzmann

distribution corresponding to a given temperature to the Au atoms. After that, the simulation

was continued for another 100 ps and the Au atom con�gurations and velocities sampled every

100 fs. Each trajectory randomly assumes one of these 1000 con�gurations and velocities at

the start of the trajectory to make sure that I sampled a wide variety of Au con�gurations for

34



each temperature. For a 6 × 6 × 6 slab the atoms of the lowest three levels were �xed to their

ideal lattice positions to simulate the bulk structure and keep the slab stationary during the

simulations, and for a 6× 6× 4 slab only the atoms of the lowest layers were �xed to their ideal

lattice positions.

For MD simulations of H in interaction with Au(111), I have classi�ed the outcomes into four

classes: (1) scattered if the H atom at the end of the propagation time is further away than

5Å from the surface, (2) adsorbed if the H atom is above the �rst layer of Au atoms of the

slab but closer than 3Å, (3) absorbed if the H atom remains within the slab and (4) transmitted

if the H atom has passed through the slab at the end of the propagation time, that is, �nds

itself below the Au atoms of the bottom layer of the slab. H atoms belonging to the last case

are estimated to continue deeper into the bulk and to make no contribution to the scattered H

atoms. If the H atom �nds itself inside the slab, I class its position according to the layer it �nds

itself in. For this, I use the perfect fcc structure. In the perfect fcc-structure, the Au atoms of

the surface are centered at z = 0Å; any H atom that �nds itself above z = 0Å (and below 3Å) I

consider as being on the surface. Likewise, any H atom that �nds itself between z = 0Å and the

atoms of the �rst subsurface layer centered at z = −a0/
√

3 I consider as being absorbed in the

�rst subsurface interlayer space (sublayer), &c. I am conscious that this division is only a rough

one, especially when the Au atoms �nd themselves in thermal motion or the slab relaxes from

its perfect fcc-structure. However, any other classi�cation would be vastly more complicated. I

therefore chose a very simple model to classify the position in z-coordinate of the H atoms, it

being easily reproducible and readily understood.

Furthermore, I classi�ed the trajectories of scattered H atoms into how many collision the H

atoms experience with the surface. This I did by monitoring the embedding electronic density

of a H atom in each step. If it underwent a maximum between the present and the two previous

steps and an background electron density > 0.25Å−3, I consider the H atom to have experienced

a bounce, for the closer an H atom approaches an Au atom, the higher the electron density it

will experience, peaking at the closest point to an Au atom. I discriminate between three types

of bounce events: one (single-bounce events), two (double-bounce events) or more (multibounce

events) collisions with a surface atom. Of course, as any classi�cation based on a threshold, the

classi�cation given here is not entirely accurate, but I expect it to be reasonable enough.

In each section of chapter 3.3, I show three tables containing information about scattering

and sticking probabilities as well as the peak and mean energy loss of the total and di�erential

energy loss distributions (ELDs) belonging to di�erent scattering conditions. For the di�erential

energy loss distributions, I give a lesser number of signi�cant �gures to account for the fact that

these distributions usually have a low signal-to-noise ratio which makes it di�cult to assign

the peak position. Wherever the peak position for a di�erential energy loss distribution at a

speci�c scattering angle is given, it should therefore be treated with caution. Here, `total energy
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loss distribution' is to be understood as that energy loss distribution that is obtained when

the contribution of all scattering trajectories is considered. In contrast, `di�erential energy loss

distribution' refers to the ELD that is obtained when only trajectories are considered in which

the H atoms leave the surface under speci�c scattering angles. This nomenclature has been

chosen analogous to total and di�erential cross section. If ELD is mentioned without preceding

adjective (outside chapter 4), the description applies to both di�erential and total energy loss

distribution.

All energy loss distributions shown here are of the scattering �ux. To construct them, unless

otherwise noted, I took a binning interval of 10meV. To obtain the di�erential energy loss

distributions for di�erent scattering angles, I selected all the trajectories where the H atoms

scattered within 5◦ to the vector along the selected scattering direction. By that I mean that for

observing scattering for θout = 45◦ along the [101̄]-direction, I de�ned a vector pointing in this

direction and selected all trajectories where the H atom had a scattering velocity vector within

5◦ as contributing to this di�erential energy loss distribution. This scheme can be imagined

as a disk of respective radius that is part of the spherical surface centered at the coordinate

origin, thereby mimicking the hole of a detector that scans for scattering H atoms at a constant

distance to the surface. I adopted this scheme to obtain di�erential energy loss distributions for

individual scattering angles that were constructed in a manner that follows the experimental

procedure as closely as I could devise.

For the total angular distributions, where double counting would have a serious in�uence on

the shape of the distribution, I got the better of this drawback by employing a di�erent selection

scheme: I created a grid in θout and φout, ranging from θout = 0◦ to θout = 90◦ with ∆θout = 10◦

and from φout = 0◦ to φout = 90◦ with ∆φout = 10◦ and binned the returning trajectories with

this grid according to their exit angle. I corrected the number of counts in each interval by a

factor of 1/sin(θout) to account for the shrinking of the binning surface with shrinking polar

angle.

Furthermore, I constructed angular distributions selected after their azimuth angle, that is,

not overall angular distribution but such along certain surface direction. To circumvent the

problem of shrinking binning intervals or double-counting, I employed the following scheme:

a cross section of a sphere that corresponds to the desired azimuth angle is created. The H

atoms that scatter within 90 ± 3◦ to the vector normal to that cross section are considered as

contributing to the in-plane angular distribution.

The adiabatic energy loss can be estimated by means of the Baule limit which can be repre-

sented in terms of the projectile-surface mass ratio µ = m/M :

∆Ead =
4µ

(1 + µ)2
Einc (2.58)

The simulated annealing for the investigations of the surface reconstruction of Au(111) was
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performed using the Langevin Dynamics as a thermostat. A higher friction coe�cient of η ≈
3 · 10−3 fs−1 was assumed. This makes the annealing simulations more e�ective and decreases

the simulation time.
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3. Results

Some of the results presented here have already been published prior to this date and some

formulations and �gures may therefore coincide [22, 44].

3.1. DFT-Calculations

As mentioned in section 2.7.1, the input data set for the �t consists of two contributions: a three

dimensional grid where the H atom samples position above and within the relaxed Au(111)
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Figure 3.1.: Dependence of the potential energy on z-distance of the H atom from the surface for four

symmetry sites (top, bridge, hcp hollow and fcc hollow). The results of ab initio calcu-

lations with ultrasoft pseudopotential (US-PP) PW91 (orange square), US-PP-PBE (red

circle), US-PP-RPBE (green diamond) and US-PP-SRP48 (black cross) functionals are

shown together with the EMT-�t (solid line). Figure reproduced with slight modi�cation

from [22].
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surface and 200 points obtained from an AIMD trajectory. I had already performed calculations

on a three dimensional grid (3D-grid) for a 3 × 3 × 4-slab during my master thesis [208], but

to be consistent with the slab used for the calculation of the AIMD-trajectories, I recalculated

the energy on the three dimensional grid using a 2 × 2 × 4-slab. To get an impression of how

large the error in energy due to the choice of the GGA-functional is, I used the PW91, PBE and

RPBE functionals with ultrasoft pseudopotentials (see Fig. 3.1) and compared the interaction

of the H atom with a relaxed Au surface. The choice of the functional can in�uence the energy

near local minima by up to 0.4 eV and at the repulsive walls by up to 2 eV. The deepest minima

of −2.0 eV are those at the two hollow sites at 0.8Å above the surface (lower panels in Fig. 3.1);

the adsorption minimum at the top site is −1.8 eV deep and 1.6Å above the surface. At all

three adsorption sites the deviation in energy values between the functionals is 0.2 eV. The

depth of the adsorption wells at the hollow sites is in agreement with the energy values of −2.0�

−2.2 eV calculated by the Mavrikakis group [39, 207], with the RPBE and PW91 functional,

respectively, using the DACAPO-code. Inside the surface, the deepest absorption minima are

within the tetrahedral under top (TUT) and octahedral sites of −1.2 eV with a di�erence between

the functionals of 0.1 eV. While the Mavrikakis group [39, 207] predicts a preference of the TUT

site and deeper absorption minima, I could not observe any marked di�erence in absorption

energy for octahedral or TUT site.

Observe the structure the DFT calculations predict for the octahedral site (see Fig 3.1, upper

left panel z < −1.2Å): between the Au atoms of the �rst and fourth layer, the potential energy

landscape is almost completely �at. The deepest point of potential energy is not in the middle of

the octahedral site (z ≈ −3.6Å), but slightly removed to its edges (z ≈ −3.2Å and z ≈ −4.0Å).

All functionals reproduce this behavior.

VASP allows a choice between pseudopotential methods and projector augmented wave (PAW)

methods for the treatment of the core electrons during the calculations [230]. In order to check

how their choice a�ects the energy values, I compared the results of PW91 and RPBE calculations

using ultrasoft pseudopotentials (US-PP) with ones using PAW[231] (Fig. 3.2). It is interesting

to note that the di�erence in potential energy between PAW-PBE and PAW-PW91 for the

adsorption sites on the surface are about half as large (≈ 40meV) as for US-PP-PBE and US-

PP-PW91 (≈ 80meV). The di�erences at the repulsive walls remain large. In addition, the �at

structure observed with the ultra-soft pseudo potentials becomes less �at tending more towards

a minimum in the middle of the octahedral site when the PAWs are used (see inset in Fig. 3.2).

This structure is most likely due to the electronic structure of the Au atoms providing an almost

uniform electron density within the octahedral site. It appears unlikely that it could be caused

by the hydrogen atom being too far away from the Au atoms in the middle of the octahedral

site, thereby making it (slightly) unfavorable compared to its surrounding, for then, a H atom

in a Ag surface should show the same behavior, the lattice constant of Ag almost equaling that
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Figure 3.2.: Dependence of the potential energy on z-distance of the H atom from the surface for top site

(left) and the fcc hollow site (right). The inset shows an enlargement of the octahedral site.

The results of ab initio calculations with PAW-PW91 (purple square) [231], and PAW-PBE

(dark green diamond) [231], US-PP-PBE (red circle) and US-PP-PW91 (orange squares)

are compared. EMT-�t (black solid line) is also shown.

of Au. This is not the case: calculations of the octahedral sites of Pd [232], Ag and Pt(111)

surfaces [233] show a clear minimum structure in the middle of the octahedral sites (see Fig. 3.3).

The �at structure of the octahedral sites therefore appears to be a speci�c characteristic of Au.

3.2. Fit

Using the �tting procedure outlined in section 2.7.2, I �tted the EMT analytic function for the

energy of the system to ab initio energy values derived at the level of DFT-GGA. With this �t,

bulk properties of Au and the Au-H bond energy are also reproduced, resulting in the EMT-

JAWK potential energy surface [22]. EMT-JAWK is not the only PES that can result from

the �tting procedure. A comparison to other PES will be given in section 3.2.2. The �rst two

lines of Table 3.1 show the resulting EMT potential parameters. With them, the rms error to

the input data set of the �t is 0.15 eV as compared to 0.2 eV of previous attempts of �tting

with EMT-JS [23]: the energy errors associated with the choice of the DFT functional are larger

than the rms �tting error of the EMT-JAWK. Fig. 3.1 shows a comparison of four representative

symmetry sites that demonstrates the quality of the �t to the DFT-data calculated on the three

dimensional grid. The agreement with DFT is best when the H atom is close to a gold atom:

the repulsive walls are �tted almost perfectly. The largest deviations occur for the octahedral

sites and the fcc surface hollow site. In these sites, the �t deviates by up to ≈ 0.5 eV. Although

the �at structure predicted by DFT (see section 3.1) for the octahedral site can be reproduced
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Figure 3.3.: Dependence of the potential energy on the position of the H atom in the surface for the

octahedral site. The results of ab initio calculations for Au (US-PP SRP48-GGA, empty

yellow) and Pd [232] (PAW-PBE, green crosses) [233], for Pt (PAW-PBE, red squares) [233]

and for Ag (PAW-PBE, grey diamonds) [233] are shown. The z-distance is given in units

of lattice constant a0.

Table 3.1.: Parametrization for the H-Au interaction potential and electron densities of the EMT-JAWK

potential of this work (see [22]) and for the EMT-JS of Strömquist [23] and Jacobsen [2].

η2 (Å−1
) n0 (Å−3

) ε0 (eV) λ (Å−1
) V0 (eV) κ (Å−1

) s0 (Å)

EMT-JAWK

Au 3.197 0.042 -3.8 [2] 4.182 0.348 3.249 1.642

H 4.761 0.203 -2.371 [23] 7.549 0.234 8.747 0.680 [23]

EMT-JS

Au [23] 3.163 0.0474 -3.8 4.123 2.321 5.429 1.588

H [2] 5.425 0.182 -2.371 7.727 0.427 8.863 0.680

by some parametrization of EMT, this leads to large deviations of the bulk properties of Au

from the experimental values or predicting the energy of the H-Au bond to be more favorable

than the adsorption to the Au-surface. This di�culty is illustrated in Fig. 3.4 where the �t's

rms error is shown in relation to the H-Au binding energy (a) and the Au shear modulus (b):

the �t with the lowest rms error is not necessarily the best one; it is necessary to pick a �t that

reproduces the physical properties of the system satisfactorily while at the same time having a

low rms error.
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Figure 3.4.: rms error of the �t vs (a) H-Au bond energy ζ and (b) shear modulus for 1350 parametriza-

tions (black points). The EMT-JAWK is indicated by a red point.

In Fig. 3.5(a), the H-Au potential energy is shown as a function of the time during the double-

bounce AIMD-trajectory (red circles), of which 200 points were used as input data for the

�t, in comparison to the potential energy obtained with the EMT-JAWK (solid) for the same

con�gurations. The panels (b)�(f) of Fig. 3.5 show the H-Au interaction energy as a function of

time for con�gurations visited by eleven other AIMD trajectories (blue crosses) which were not

used in the EMT �tting. For a testing set to judge the quality of the �t, I used the entire set

of AIMD trajectories (that is, twelve AIMD trajectories not included into the �t and the one

that was included in the �t. I did not excluded the AIMD trajectory used in the �t from the

testing set to obtain a testing set that was the same for all �ts, because for di�erent �ts, I used

di�erent AIMD trajectories as input). The corresponding potential energy obtained for the same

con�gurations with EMT-JAWK are shown with solid lines. Panels (b)�(e) are results of single-

bounce surface scattering trajectories, (f)-(j) of multibounce trajectories. For the trajectories in

panels (k) and (l), the H atom penetrated below the surface and had not scattered back when the

AIMD trajectories terminated after 120 fs propagation time. The rms deviation to the testing

set is 0.16 eV and involves almost 9000 comparisons: a large volume of con�guration space not

sampled in the input data set of the �t is reproduced most satisfactorily.

To furthermore test how the �t compares to AIMD, I did electronically adiabatic MD sim-

ulations for the same incidence conditions as used by Kroes and coworkers [3, 4] for AIMD

simulations of H scattering from Au(111) with an incidence energy of Einc = 5.0 eV and an

angle to the surface normal of θinc = 60◦ along the [101̄]-direction with a 6 × 6 × 64 slab. The

slab was thermalized to 120K and the propagation time was 120 fs with a time step of 0.1 fs.

The comparison of the total energy loss distributions from both calculations in Fig. 3.6 shows

that the EMT-MD calculations capture the features of the AIMD calculations, giving rise to a
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Figure 3.5.: Hydrogen-gold interaction energy pro�le along AIMD trajectories. Atom con�gurations

and corresponding energy values from the AIMD trajectory (◦) shown in panel (a) were

used as an input for the �tting procedure. The respective data from other AIMD trajecto-

ries (×) shown in panels (b)�(l) were used as a testing set to check the quality of the EMT

�t (solid lines). The EMT-JAWK �tting function is capable of reproducing the the ab ini-

tio energy even for the con�gurations sampling the collision events which are qualitatively

di�erent from that in panel (a). With slight modi�cations reproduced from [22].

very similar peak structure at low energy losses and fall-o� at higher energy losses. Scattering

behavior can also be obtained. To calculate the probabilities, the number of those trajectories

that undergo the process of interest are divided by the total number of trajectories (N = 900).

Tab. 3.2 demonstrates that very good agreement is obtained for the 120 fs simulations for all

event probabilities (for details on classi�cation of events, see Sec. 2.8). What little di�erence
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Figure 3.6.: Total energy loss distribution from adiabatic AIMD simulations [3, 4] (dashed line) and

from adiabatic EMT-JAWK MD simulations (solid black line). Incidence conditions:

Einc = 5.0 eV, θinc = 60◦ along the [101̄]-direction, 900 trajectories, 120 fs propagation

time. The Au slab was equilibrated to 120K. The binning interval was ∆E = 25meV.

there is can perhaps be attributed to the larger slab size (6 × 6 × 64 vs. 2 × 2 × 4) that is

required for the EMT simulations compared to the AIMD simulations. Furthermore, for AIMD,

simulations going far beyond a trajectory duration of 120 fs or the calculation of a higher number

of trajectories are, due to the large computational e�ort, almost unfeasible. Using EMT, the

900 trajectories presented here could be calculated in ∼ 150 minutes on a single core. An exten-

sion of simulation time to 1 ps with EMT (Tab. 3.2) shows that the percentage of penetrating

scattering trajectories is lower than the upper bound estimations of 35% and 42% for AIMD.

Given the above comparison, it can be regarded as a good estimate of what AIMD might give

for 1 ps simulations, if the trajectories where the H atom passes through the slab are deemed to

have no contribution to the total energy loss distribution.

From the analytic form of the EMT potential, the background electron density can be easily

extracted and used to carry out nonadiabatic MD simulations on the level of LDFA [22]. The

background electron density obtained at any position of the hydrogen atom is the electron

density due to all surrounding Au atoms plus the disturbance caused by the presence of the H

atom. In the DFT-calculations the electron density is not clearly separable, thus, the electron

density used to be calculated as the electron density of the Au atoms without the H atom. In
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Table 3.2.: Outcomes (in %) resulting from H atom collision with a Au(111) surface for adiabatic simu-

lations for MD simulations with EMT-JAWK and AIMD [3, 4]. The incidence conditions are

Einc = 5.0 eV, θinc = 60◦ along the [101̄] surface direction, with a relaxed surface structure,

number of simulated trajectories: 900. The simulations were propagated for 120 fs.

Scattering with penetration without penetration transmission

EMT 74.9 18.2 56.7 6.89

AIMD 72.3± 1.5 14.0± 1.2 58.3±1.6 7.3± 0.9

EMT 1ps 87.8 26.1 61.8 10.6

simulations using LDFA, the electron density of EAM [30] and DFT [31] have both been used to

obtain a friction coe�cient.

The comparison between the H atom background electron density from EMT (black crosses)

with the ab initio electron density (red solid) in Fig. 3.7 shows that the background electron

density from EMT compares well to the ab initio density although being by a factor of ≈ 1.5

higher inside the surface around the minima. In section 3.3.7 I explore the how electron density

in�uences the scattering dynamics.
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Figure 3.7.: The electron density as a function of the distance from the Au-surface extracted from

the calculation with DFT (red solid) and the H atom background electron density from

EMT-JAWK (black crosses) for a relaxed Au slab. The comparison is shown for the four

symmetry sites. With slight modi�cations reproduced from [22].
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Table 3.3.: Values of various physical properties for bulk Au calculated with the EMT-JAWK compared

to the literature values. ζ is the energy of the H-Au bond. Reproduced from [22].

Fit Lit.

a0(Å) 4.20 4.08 [177]

C11 (GPa) 195.8 201.6 [125]

C12 (GPa) 160.1 169.7 [125]

C44 (GPa) 35.94 45.4 [125]

Bulk modulus (GPa) 172 173 [234]

ζ (eV) 3.2 3.0 [229]

Tstable (K) 1000 1337 [235]

Tab. 3.3 shows that our EMT-JAWK reproduces physical properties of gold such as the shear

modulus (C44), the other elastic constants (C11 and C12) and the bulk modulus satisfactorily. A

complete reproduction of the force constants is however not possible as the relation between C11,

C12 and C44 given by Eq. (2.51) is only true for isotropic crystals and not ful�lled by Au [124].

I obtained the temperature at which the slab becomes unstable by equilibrating the slab at

successively higher temperatures in steps of 50K for 20 ps using a 6 × 6 × 6 cell, and took the

highest temperature at which the slab did not disintegrate as Tstable = 1000K. This temperature

might, on �rst glance, appear much too low, but experiment shows that the topmost layers of

the surface disorder at ≈ 1070K, leaving no clear surface structure at higher temperatures [183].

The EMT-JAWK reproduces the hydrogen bond energy ζ within 0.2 eV and the deviation of the

lattice constant results from taking the lattice constant from the DFT input data [21] for the

self-consistency of the �tting.

3.2.1. Comparison to earlier EMT parametrizations

Strömquist et al. [23] and Jacobsen et al. [2] published previously the EMT parametrization for

Au and H (see Tab. 3.1, EMT-JS). Jacobsen et al. obtained the parameters for Au by relying

on experimentally measured properties of Au such as bulk modulus, elastic moduli and lattice

constant [2]. As mentioned in section 3.2, the lattice constant for Au derived with DFT-GGA

functionals does not agree with the experimentally observed lattice constant of Au; for the

following comparison I therefore modi�ed Jacobsen's value of s0,Au from 1.588Å to 1.642Å to

achieve an agreement with the lattice constant from the ab initio calculations. This modi�ed

Jacobsen-Strömquist parameterization (EMT-mJS) does not reproduce the 3D-grid having an

rms error 1130meV to it, and an rms error of 939meV to the points taken from the AIMD

calculations. In Fig. 3.8 a comparison between the EMT-JAWK (black solid) and EMT-mJS

(purple solid) to the ab initio input data set for four symmetry sites is shown. It shows that
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Figure 3.8.: Dependence of the H-Au interaction energy on z-distance of the H atom from the surface

for four symmetry sites (top, bridge, hcp hollow and fcc hollow). The results of ab initio

GGA-SRP48 calculations (black cross) are compared to the EMT-JAWK (black solid line)

and the EMT-mJS given by the parametrization of Stroemquist [23] and Jacobsen [2] with

a modi�ed s0,Au in agreement with the lattice constant of the ab initio calculations (purple

solid line).

the EMT-mJS parametrization is signi�cantly far o� from the ab initio values. The minima are

deeper and broader than the adsorption minima of EMT-JAWK, but the background electron

density obtained with EMT-mJS is very similar to the background electron density corresponding

to EMT-JAWK (see Fig. 3.9). To test if the EMT-mJS does indeed lead to much di�erent

dynamic behavior than the EMT-JAWK, I did molecular dynamics simulations both with and

without the inclusion of electron hole pair excitation. The incidence conditions for all simulations

were: Einc = 3.33 eV, θinc = 45◦ along the [101̄] surface direction, T = 300K with a 6 × 6 × 6

slab and 105 trajectories. As can be seen from Tab. 3.4, the scattering behavior resulting from

both �ts di�ers considerably; in accordance with the deep ad- and absorption minima for the

EMT-mJS, the scattering probability for both adiabatic and nonadiabatic MD-simulations is

much lower than for EMT-JAWK as is the adsorption probability. Transmission through the

surface is more likely with the EMT-mJS than with EMT-JAWK and the absorption into the

surface is much higher than for EMT-JAWK if energy loss to electron hole pairs is included into

the MD-simulations. In total, the dynamical behavior of the EMT-mJS is much di�erent from

that of EMT-JAWK, as is further emphasized by comparison of the total energy loss distribution

48



0.0

0.5

top bridge

-6 -4 -2 0 2 4 6
z (Å)

0.0

0.5D
en

si
ty

(Å
-

3 )

hcp

-6 -4 -2 0 2 4 6

fcc

Figure 3.9.: Electron density extracted from DFT calculation with a relaxed Au slab (red solid) and

the H atom background electron density from EMT-JAWK (black crosses) and from EMT-

mJS (purple solid). The comparison is shown as a function of the H atom z coordinate for

four symmetry sites.

Table 3.4.: Various outcomes (in %) resulting from H atom collision with a Au(111) surface for nonadi-

abatic and adiabatic (values in parenthesis) MD-simulations using EMT-JAWK and EMT-

mJS. The incidence conditions are Einc = 3.33 eV, θinc = 45◦ along the [101̄] surface direc-

tion, T = 300K and a 6× 6× 6 slab (105 trajectories).

Scattering Surface Subsurface Transmission

adsorption absorption

EMT-JAWK 55 (82) 23 (4) 22 (6) 0 (8)

EMT-mJS 32 (77) 8 (0) 58 (2) 2 (21)

for both PESs when accounting for electron hole pair excitation (Fig. 3.10): the total energy loss

distribution resulting from the EMT-mJS (purple) shows a much more pronounced �rst peak

and a very di�erently shaped tail than the total ELD of EMT-JAWK, although the position of

the energy loss peak is not much a�ected by the choice of the parametrization. This can be

attributed to the fact that the energy loss to electron hole pairs prevails over the adiabatic one,

since the energy loss to ehp is governed by the background electron density, the lack of di�erence

between EMT-JAWK and EMT-mJS in the position of the �rst peak is comprehensible.
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3.2.2. Comparison of di�erent �ts

As already mentioned in section 3.2, obtaining a parametrization that has both a low rms error

value and �ts the constraints is far from trivial. To obtain parametrizations that �t the con-

straints better than the EMT-JAWK presented here, I tried several strategies. I tested how the

�t depended on the input data set belonging to the 3D-grid; �rst I checked if the number of

symmetry sites included redundant sites which did not appear to be the case as the �t does not

improve with exclusion of the symmetry sites but tends to worsen. Second, I tested how the �t

depended on excluding the minima in potential energy from the 3D-grid input data set. I did

this because I noticed during previous �ts that the better the minima are represented, the lower

is the shear modulus and the higher is the H-Au bond energy. Indeed, the more points with a

low potential energy were excluded, the better the representation of physical properties of the

Au became. Surprisingly, the rms error to all AIMD trajectories did not worsen but remained

around 160meV. However, if only the potential energy walls around the atom cores were �tted,

the shear modulus became too high and the H-Au bond too weak. Increasing the energy cut-o�

to include higher values in potential energy up to 25 eV compared to 20 eV for the �t resulting

in the EMT-JAWK parametrization also improved the representation of the physical properties
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Figure 3.10.: Total energy loss distribution of nonadiabatic MD-simulations using EMT-JAWK (black)

and EMT-mJS (purple).
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Figure 3.11.: Background electron density for four high symmetry sites as a function of the H atom

distance to the Au surface z for the �ts 894 (purple), 921 (red) and EMT-JAWK (thick,

black), and the electron density obtained from DFT (thick, grey).

of Au and the H-Au bond energy, most likely by virtue of reducing the weight on the points

representing the structure of the minima.

There are two further constraints which I would suggest for future �tting processes. First,

Jacobsen et al. [2] write in their description of the EMT that only δmetal/ηmetal � 1 is the

acceptable range for δmetal. Furthermore, the background electron density that results from the

�t should be monitored to avoid too high or too low values. While the �rst case is most likely

caused by a too low s0,H, I was not able to establish a straightforward relation between the

parameters that could explain very large background electron densities, since the relation of the

parameters that give rise to the background electron density is rather complex (see Eq. (2.30).

Although the electron density that can be obtained with DFT-GGA functionals di�ers from the

background electron density obtained from EMT by not including the feedback caused by the

presence of the H atom, it still can be used as an indication of whether the background electron

density obtained from a �t is reasonable: if the background electron density is (i) much higher

in the space between the Au atoms or (ii) much lower around the atom cores than the electron

density from DFT calculations, the �t should be discarded. As shown in the two examples

presented below, case (i) leads to almost complete sticking to the surface. Case (ii) leads to

unphysical behavior: the H atom may not see an increase in electron density upon approaching

the Au atoms.
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Table 3.5.: Values of various physical properties for bulk Au calculated with the di�erent �ts compared

to the literature values. ζ is the energy of the H-Au bond.

Fit 894 Fit 921 Fit 1138 Fit 1226 Fit 1288 Lit.

rms error to

AIMD (meV) 170 160 150 160 160

C11 (GPa) 205.0 198.8 200.0 201.8 202.4 201.6 [125]

C12 (GPa) 162.0 158.6 158.0 157.1 156.8 169.7 [125]

C44 (GPa) 43.05 40.21 42.1 44.75 45.6 45.4 [125]

Bulk modulus (GPa) 172 172 172 172 172 173 [234]

ζ (eV) 2.8 2.9 3.0 3.1 3.1 3.0 [229]

Tstable (K) 1250 1150 1100 1150 1050 1337 [235]

While trying to optimize the �tting procedure, I obtained a large number of �ts of which

several ful�l the physical constraints I have chosen for EMT-JAWK. Here, I give a comparison

between �ve di�erent �ts that all have an rms error below 185meV and otherwise ful�l the

physical constraints described in the previous section. I identify the parametrizations by their

�t number and chose �ts 894 and 921 (see Tab. 3.5) to point out that for both of them the physical

constraints appear to be met, but the background electron density takes too large or too low

values (see Fig. 3.11, purple and red, respectively); for both �t 894 and �t 921 δmetal/ηmetal > 1,

too.

I obtained several other EMT parametrizations (Tab 3.5, �ts 1138, 1226 and 1288) displaying

low rms errors, good agreement with the elastic moduli and ζ (see Tab. 3.5). I consider all three

of them as examples for potential candidates for a PES that reproduce the bulk properties of Au

better than EMT-JAWK and could be used if the EMT-JAWK should turn out unsatisfactory

in future. The di�erence between the last three �ts is in their respective input data sets: for

�t 1138, I used a single bounce trajectory as input data set from the AIMD trajectories. For

�t 1226, I allowed the inclusion of all points in the input data set that had a potential energy

below 25 eV instead of 20 eV as a maximal energy cut-o�, and for �t 1288 I excluded the 240

points with the lowest potential energy values of the 3D-grid input data. The values of the

parameters to the �ts are listed in Tab. 3.6.

To test how the di�erent parametrizations in�uence the H atom scattering I performed elec-

tronically adiabatic and nonadiabatic molecular dynamics simulations. The incidence conditions

for all simulations were: Einc = 3.33 eV, θinc = 45◦ along the [101̄] surface direction, T = 300K

and 6 × 6 × 6 slab (105 trajectories). Tab. 3.7 shows a comparison of the various outcomes of

the simulations for the di�erent �ts. For the electronically adiabatic case (given in parenthesis),

all �ts display much the same results. For the nonadiabatic case, the di�erences between EMT-
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JAWK, �t 1138, 1226 and 1288 are almost negligible, whereas for �t 894, all H atoms stick to

the surface and �t 921 brings many more H atoms to adsorb to the surface than to subsurface

regions.

A comparison of the total energy loss distributions shows great similarity for the electronically

adiabatic case (Fig. 3.12(a)). In the electronically nonadiabatic case, �t 894 does not appear as,

according to Tab. 3.7, no H atoms scatter if interaction with electron hole pairs is included. The

Table 3.6.: Fit Parameters de�ning H-Au EMT PESs.

η2 (Å−1
) n0 (Å−3

) ε0 (eV) λ (Å−1
) V0 (eV) κ (Å−1

) s0 (Å)

Fit 894

Au 3.485 0.064 -3.8 [2] 4.233 0.378 2.7531 1.642

H 5.404 0.408 -2.371 [23] 8.036 0.244 9.752 0.674

Fit 921

Au 3.308 0.061 -3.8 [2] 4.182 0.391 2.629 1.642

H 1.235 0.184 -2.371 [23] 1.741 0.335 3.287 0.480

Fit 1138

Au 3.200 0.047 -3.8 [2] 4.182 0.460 3.630 1.642

H 4.320 0.181 -2.371 [23] 7.133 0.229 7.588 0.680 [23]

Fit 1226

Au 3.096 0.051 -3.8 [2] 4.182 1.114 4.898 1.642

H 4.692 0.167 -2.371 [23] 7.855 0.359 8.322 0.680 [23]

Fit 1288

Au 3.101 0.051 -3.8 [2] 4.182 1.193 4.948 1.642

H 4.787 0.167 -2.371 [23] 7.940 0.364 8.496 0.680 [23]
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Figure 3.12.: Total energy loss distribution for (a) adiabatic and (b) nonadiabatic scattering for the

�ts 894 (purple), 921 (red), 1138 (blue), 1226 (dark green) and 1288 (dark yellow) and

EMT-JAWK (black, dashed).
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Table 3.7.: Various outcomes (in %) resulting from H atom collision with a Au(111) surface for nonadia-

batic and adiabatic (in parenthesis) simulations using various �ts. The incidence conditions

are Einc = 3.33 eV, θinc = 45◦ along the [101̄] surface direction, T = 300K, a 6× 6× 6 slab

and number of trajectories 105.

Surface Subsurface

conditions Scattering adsorption absorption Transmission

EMT-JAWK 55 (82) 23 (4) 22 (6) 0 (8)

Fit 894 0 (82) 93 (4) 6 (6) 0 (9)

Fit 921 57 (82) 32 (6) 10 (4) 1 (7)

Fit 1138 54 (81) 23 (4) 23 (7) 0 (8)

Fit 1226 52 (80) 22 (4) 25 (7) 0 (8)

Fit 1288 52 (80) 22 (4) 26 (8) 1 (8)

reason for this behavior becomes evident from Fig. 3.11: the background electron density for

�t 894 (purple) is so high that the friction coe�cient in Eq. (2.53) becomes so large that the H

atoms lose much of their initial energy and stick to the surface.

The total energy loss distribution in case of �t 921 (Fig 3.12(b), red) is shifted to higher

energy values compared to the other �ts. In view of the much lower background electron density

(Fig. 3.11, red), this is surprising, but it might be caused by di�erent scattering due to the

H atoms being able to come closer to the Au atoms which is made possible by the less steep

rise in electron density close to the Au atoms. However, as the repulsive interaction with the

atomic cores should be caused by electron-electron repulsion between the electron of the H atom

and those of the Au atom, the lack of increasing electron density upon getting closer to an Au

atom is clearly wrong. This failing can most likely be attributed to the too low value of the

s0,H-parameter (see Tab. 3.6).

For the �ts 1138, 1226, 1288 and the one resulting in EMT-JAWK the total energy loss

distributions for both the adiabatic (Fig. 3.12(a)) and nonadiabatic (Fig. 3.12(b)) case agree

well, as do their respective electron densities (Fig 3.13). The scattering probabilities show only

very small di�erences. The percentage of single bounces in all scattering trajectories is also very

similar, lying between 25− 26%, as is that of the double-bounces (34− 36%) and multibounces

(39− 43%). The percentage of penetrating trajectories varies between 20− 24%.

A comparison of the di�erential energy loss distributions for all four �ts in specular scattering

angle (see Fig. 3.14) shows that all �ts give rise to the same DELD. It appears therefore that the

translational energy loss for the adiabatic and nonadiabatic case as well as the sticking behaviour

is not much in�uenced by the choice of the parameter set if all constraints are met (including

the additional ones mentioned in this section).
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Figure 3.13.: Background electron densities for four high symmetry sites as a function of the H atom

distance to the Au-surface for the �ts 1138 (blue), 1226 (dark green), 1288 (dark yellow)

and �t 1 (black, thick).
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Figure 3.14.: Di�erential energy loss distribution for �ts EMT-JAWK (black), 1138 (blue), 1126 (dark

green) and 1188 (dark yellow) for specular scattering extracted from 106 simulated tra-

jectories.

55



3.3. MD Simulation of H scattering from Au(111) with Various

Conditions

One of the purposes of performing MD simulations of H scattering from Au(111) is to identify

scattering conditions that are particularly remarkable in their scattering mechanism. These scat-

tering conditions can then be investigated in the experiment and the results from the experiment

compared to the results from the MD simulations and explained by them. I use MD simulations

to predict scattering conditions that are particularly interesting to investigate experimentally.

I have sampled the behavior of scattering of H from Au(111) in the temperature range from 0

to 700K, under θinc = 0◦ to 60◦ along the [101̄] and [112̄] surface directions, with a reconstructed

and relaxed surface and a surface with an ad-atoms and six or four layers for the adiabatic and

nonadiabatic case.

To compare di�erent conditions during molecular dynamics simulations to one another, I have

chosen the MD-simulation of Einc = 3.33 eV, θinc = 45◦ along the [101̄] surface direction at 300K

with a relaxed surface structure and 6 × 6 × 6 cell and 106 trajectories as reference incidence

conditions. By this I mean that when I studied the behavior with e.g. varying temperature,

I kept all the other conditions as described in the previous sentence. The simulation time has

been 1 ps, enough time to decide the outcome of a trajectory, and time step was 0.1 fs.

3.3.1. Detailed analysis of scattering outcomes

All simulations in this section refer to the following incidence conditions: Einc = 3.33 eV, θinc =

45◦ along the [101̄] surface direction, T = 300K with a relaxed surface and 6×6×6 slab, number

of simulated trajectories: 106 for a simulation time of 1 ps. Tab. 3.8 shows the probabilities for

H scattering from Au(111). The electronically adiabatic results show high scattering and low

absorption probability: the probability for adsorption to the surface and absorption into the

slab is only slightly higher than the probability for transmission through the 6-layered slab. In

contrast, if electron hole pair e�ects are included, the probability of absorption is enhanced by

a factor of 3.5, and that to the surface almost by a factor of six compared to the electronically

adiabatic case; transmission through the slab is also much less likely. In short, the inclusion of

Table 3.8.: Various outcomes (in %) resulting from H atom collision with a Au(111) surface for nona-

diabatic and adiabatic simulations.

Surface Subsurface

Conditions Scattering Adsorption Absorption Transmission

nonadiabatic 55 23 21 1

adiabatic 82 4 6 8
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Table 3.9.: Pathways (in %) of sticking trajectories for nonadiabatic and adiabatic (in parenthesis)

simulations resolved according to deepest penetration and �nal position of H atom. Roman

numerals denote the sub-surface layer.

Deepest penetration

�nal surf I II III IV V >V Total

surf 10 (0) 29 (1) 10 (6) 1 (8) 0 (3) 0 (2) 0 (0) 51 (20)

I 6 (0) 5 (2) 1 (3) 0 (2) 0 (1) 0 (0) 12 (8)

II 14 (2) 8 (8) 1 (4) 0 (2) 0 (0) 23 (16)

III 8 (5) 1 (2) 0 (1) 0 (0) 9 (8)

IV 3 (1) 0 (0) 0 (0) 3 (1)

V 1 (0) 0 (0) 1 (0)

>V 1 (45) 1 (45)

electron hole pair excitation causes many more H atoms to stick to the Au-surface.

When considering the dynamics of how the sticking H atoms end up after 1 ps in their re-

spective position, the di�erence between electronically adiabatic and nonadiabtic simulations

become even more evident (see Tab. 3.9): in the adiabatic case, it is most favorable to pass deep

into or through the six-layered slab; adsorption only occurs for 20% of all non-scattered atoms

at the end of the simulation time and of these, most penetrated the slab until the third sublayer

before they resurfaced. In contrast, for the nonadiabatic simulations, it is most likely for a H

atom to end up at the surface. Atoms that populate the surface are most likely to do so by

subsurfacing to the �rst sublayer and then resurfacing again; however, 1/5th of the atoms that

end up populating the surface lost all their energy upon collision with the surface itself without

penetrating into the surface. Although in both the adiabatic and nonadiabatic case the second

sublayer is the second most populated region for the not-scattered H atoms, the way by which

the atoms came to rest here di�ers for both cases again considerably. For the adiabatic case,

the highest contribution was made by coming back from deeper penetration sites whereas in the

nonadiabatic case, most of the atoms trapped in the second sublayer came directly to rest here

and comparatively few emerged from deeper regions: the mechanism by which H atoms come to

stick on and within the Au-surface is fundamentally di�erent in the adiabatic and nonadiabatic

case.

For the scattering trajectories, a similar disparity in behavior can be observed (Tab. 3.10).

Although in both adiabatic and nonadiabatic scattering, least H atoms scatter back after only one

collision with a surface atom (single-bounce events), and the greatest number of H atoms after

more than two collisions (multibounce events), the frequencies of the events are very di�erent;

if electron hole pair excitation is included, more than 50% of all scattered H atoms experience
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Table 3.10.: Outcomes (%) of scattering for various scattering events resulting from H atom collision

with a Au(111) surface for nonadiabatic and adiabatic simulations. The �Surface�-column

refers to trajectories wherein H atoms scattered from the surface. The Roman numerals

refer to the lowest subsurface to which penetration occurred.

bounce events penetrating bounces

single double multi surface I II III >III

nonadiabatic 23 34 43 82 17 1 0 0

adiabatic 17 25 59 64 23 8 3 2

one or two bounces, while in the electronically adiabatic case only 40% do. Additionally, in the

electronically adiabatic case many more H atoms (over 1/3rd) penetrate into the surface and up

to the lowest sublayers before they resurface and scatter, in the nonadiabatic case less than 20%

penetrate the surface and penetrate no deeper than the second sublayer if they scatter. This

behavior is not surprising as the only way H atoms can lose energy in adiabatic interactions

is through highly ine�ective collision with the Au atoms. It is therefore to be expected that

more H atoms going through multiple bounce events will scatter back for electronically adiabatic

calculations, also including many more that penetrated the slab as it would need them a large

number of bounces to lose enough energy to stay within the surface.

The large di�erence between electronically adiabatic and nonadiabatic simulations is under-

scored when considering the energy loss behavior: The total energy loss distribution for the

electronically adiabatic case is much narrower and the most probable energy loss much smaller

than that for the nonadiabatic case (Fig. 3.15(a), inset): the mean energy a hydrogen atom loses

in the electronically adiabatically case is a factor of three smaller than when the interaction to

electron hole pairs is included (Tab. 3.11). For the adiabatic case, the most probable energy loss

is very close to that resulting from a collinear collision between two hard spheres with masses

of H and Au: 0.06 eV, 1.65% whereas the Baule limit (Eq. (2.58)) for the energy loss is 0.07 eV

Table 3.11.: Energy loss in % of incidence energy for various outcomes resulting from H atom colli-

sion with a Au(111) surface for nonadiabatic and adiabatic simulations. The mean and

maximum energy loss are shown for the total ELD and for scattering along θout = 45◦

φout = 60◦ ([101̄]). The reduced accuracy for the scattering angle re�ects the lower signal-

to-noise ratio of the di�erential ELD.

Total θout = 45◦ φout = 60◦

conditions Mean Peak Mean Peak

nonadiabtic 39.2 14.0 37 15

adiabatic 13.1 1.65 11 1.4
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Figure 3.15.: Total energy loss distribution divided into total (black), single bounce (red), double-

bounce (blue) and multibounce (green) events. Panel (a) depicts the electronically adia-

batic case and panel (b) the nonadiabatic case. The inset in panel (a) shows a comparison

between the total energy loss distribution for the adiabatic (dashed line) and nonadiabatic

(solid black line)case.

or, 2.00%). In the nonadiabatic case, the most probable energy loss is a factor of eight higher

energy values.

For the nonadiabatic case, it becomes evident from the total ELD in Fig. 3.15(b) that smallest

energy losses are occasioned by single-bounce events. The peak of the total energy loss distribu-

tion is mainly due to single-bounce collisions with the surface and the fastest part of the H atom

experiencing double-bounce collisions. The double-bounce collisions and multibounce collisions

give rise to a shoulder around 1 eV energy loss and the long tail of the total ELD to high energy

losses is mostly constituted from multibounce events.

The adiabatic total ELD (Fig. 3.15(a)) does not exhibit as distinct features as the nonadiabtic

total ELD, although here, too, the high-energy-loss tail stems from multibounce collision with

the surface. Single- and double-bounce collision pro�les overlap much more strongly than in the
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nonadiabatic case: the in�uence of electronic excitation on the translational energy loss of an

H atom is prodigious, the inelasticity increases dramatically with the inclusion of electron hole

pair excitation, broadening the entire total energy loss distribution as well as the contribution

of the individual bounce events.

Experimentally, the sticking probabilities of H to Au(111) have, to my knowledge, not yet

been measured. It furthermore appears experimentally di�cult to access the total energy loss

distribution; much more feasible is the production of di�erential (angular resolved) energy loss

distributions. In a comparison with experiment, it would be good if conditions could be identi�ed

where speci�c scattering energy loss mechanisms could be discerned such as scattering after the

collision with one or two surface atoms or scattering after resurfacing.

Figure 3.16 shows the di�erential energy loss distributions of specular scattering for the elec-

tronically adiabatic (left) and nonadiabatic (right) cases. In both cases, the shape of the di�er-

ential energy loss distribution is again much di�erent, in a manner as has already been observed

for the total energy loss distribution. The total angular distributions in the insets show the

scattering intensity dependent on the scattering angle. Both in adiabatic and nonadiabatic case,

the area of highest scattering probability is in forward scattering direction; but the direction of

specular scattering (black circle) is already shifted from the region of maximum scattering inten-

sity. The region of highest scattering intensity �nds itself at angles closer to the surface normal.

Little intensity is to be seen in back-scattering direction. The shift of the highest scattering

intensity from specular angle towards the surface normal is probably caused by the fact that the

H atoms do not impact on a �at surface but a corrugated surface with protrusions above the

surface atoms; that there is less scattering in backwards direction is most likely a result of the

fact that the incidence energy of the H atoms is so high that, if they impact close to the a-top

site, they are re�ected into forward direction. If they impinge lower on the atom, they might

be re�ected backwards, but presumably at such low angles that they either experience further

collisions (which may again �ing them forward) or get trapped at the surface.

It is however evident for both cases that under specular scattering (Fig. 3.16(a)), the di�er-

ential energy loss distribution resulting from di�erent bounce events overlap to a very large

degree, making it impossible to resolve them individually: in the adiabatic case, the single- and

double-bounce events peak at the same energy loss values and show almost a complete overlap,

apart from a somewhat broader tail to higher energy losses for the double-bounce events. En-

ergy losses due to multibounce events start to become important at marginally higher energy

losses, but also the di�erential energy loss distribution for the multibounce events peaks at val-

ues where there is still a considerable contribution due to single- or double-bounce events. Very

high energy losses are made up almost exclusively of multibounce events.

In the nonadiabatic case (Fig. 3.16(b)), the separation between the di�erential energy loss

distributions due to di�erent bounce events is clearer; the di�erential energy loss distributions
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Figure 3.16.: Di�erential energy loss distribution for specular scattering (θout = 45◦, φout = 60◦),

divided into total (black), single-bounce (blue), double-bounce (red) and multibounce

(green) events for the electronically adiabatic (left) and nonadiabatic (right) case. The

insets show the total angular distribution. The polar scattering angle is denoted by the

distance from the center of the plots starting with θout = 0◦ in the middle to θout = 90◦

at the outermost rim. φout is indicated explicitly. Red denotes > 92% in scattering

intensity and every contour denotes a drop by 1/12 in intensity so that purple marks the

regions of lowest intensity. The black circle indicates the specular angle.

of all three events peak at di�erent energy losses (single-bounce: ∼ 0.4 eV, double-bounce:

∼ 0.8 eV, multibounce: ∼1.9 eV) and there is little overlap between the single- and the multi-

bounce di�erential energy loss distributions. However, both di�erential energy loss distributions

for single- and multibounce are much overlapping with the one resulting from double-bounce

events. Under the exit angles of specular scattering, the separation in energy loss of di�erent

collision events (that is, di�erent energy loss mechanism due to the number of bounces) is im-

possible. In the following sections, I will therefore consider the di�erent collision mechanisms in

detail and try to identify conditions under which a separation of the di�erent energy loss mech-

anisms might be a�ected or under which contributions due to di�erent energy loss mechanisms

are particularly strong. In this, I will focus on the analysis of the results from the nonadiabatic

simulations, for, as will be shown in section 4, they reproduce the experimental energy loss be-

havior which simulations without electron hole pair excitation do not. I will therefore only give

the most general overview over the behavior to be expected from adiabatic scattering.

Single-Bounce Events

The simplest energy loss mechanism for scattering with a surface that can be imagined is a single

collision with an Au atom with subsequent scattering of the H atom from the surface.

Figure 3.17 shows the angular distribution for single bounce events (right) and the impact sites

within the primitive cell (left). For both adiabatic and nonadiabtic simulations, the behavior is

very similar with regards to the impact site which is close to the a-top site. The impact sites
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appear to display the direction of the incidence beam (which goes along the [101̄]-direction, that

is to say along the dashed line from φ = −120◦ to φ = 60◦ in the angular distribution plots).

Furthermore, the impact sites barely extend behind the middle of the primitive cell as if the

incident atoms undergoing single-bounce collisions only hit the ascent side of Au atoms (the

side of the Au atoms directed towards the beam). In scattering, there are two major maxima

both adiabatic and nonadiabatic simulations have roughly in common, one where scattering in

azimuthal direction is along the forward scattering direction at φout ≈ 60◦ and in polar direction

between θout ≈ 20�50◦, the other at φout ≈ 85◦ and θout ≈ 20�40◦, for the adiabatic case and

θout ≈ 15�30◦ for the nonadiabatic case. In the nonadiabatic simulation, there is an additional

other small maximum extending from the surface normal along ≈ 115◦ to θout ≈ 25◦. For

both the adiabatic and the nonadiabatic case, there is an additional a weak maximum in back-

scattering direction at φout ≈ 120◦. The six-fold symmetry of the surface is hinted at in very

two very weak features at φout ≈ −55 and φout ≈ 170.

To see how single-bounce events in�uence the structure of the di�erential energy loss distri-

bution, and if conditions can be identi�ed where features in the di�erential energy loss distribu-

tion due to single-bounce events may be experimentally distinguishable from the other bounce

events, I have investigated the di�erential energy loss distribution at the maxima in intensity of

the angular distribution for single bounce events at θout = 25◦ and φout = 90◦ (Fig. 3.18(a)), at

θout = 15◦ and φout = 115◦ (Fig. 3.18(b)) and at θout = 35◦ and φout = 60◦ (Fig. 3.18(c)). The

�rst and second of these exiting angles also correspond to cuttings of the region of maximum

intensity of the angular distribution (see Fig. 3.14).
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Figure 3.17.: Left: Impact sites within the primitive cell for electronically adiabatic (top, dark red)

and nonadiabatic (bottom) case for H atoms undergoing a single bounce. Right: angular

distribution for single bounce events in scattering collisions for electronically adiabatic

(left) and nonadiabatic (right) simulations. For details see caption of Fig. 3.16.
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The single-bounce events can furthermore be separated by the amount of energy lost into two

di�erent categories. Firstly, H atoms that lose little energy (below 0.5 eV) and scatter very close

to the top site mostly into forward direction (see insets in Fig. 3.18(b) and (c)). Their maxima

in scattering intensity are identical to those of the total angular distribution for single-bounce

events as can be seen if the total angular distribution for single-bounce events (Fig. 3.18(a),

right inset) and the angular distribution of scattering for Eloss < 0.5 eV (see Fig. 3.18(b)�(c)) are

compared.

Secondly, single-bounce events that exhibit higher energy losses (above 0.5 eV). In this case, the

maxima in forward scattering disappear and the back-scattering peak become more pronounced

(Fig. 3.18(d)-(f), right inset) and the sideways back-scattering peaks at φout = −55◦ and φout =

175◦ become clearer. The impact sites for these collisions also show a very distinct positioning:

they are much more shifted from the a-top site and gathered towards the bridge sites which

corresponds roughly with the direction under which the H atoms return. Interestingly, this

return direction is not directly align with the hollow sites, but by ∼ 5◦ shifted from the exact

direction where the neighboring Au atoms lie. The slightly broader angle of scattering is most

likely due to the fact that, if the H atoms were scattered exactly towards the Au atoms, they

would experience another bounce. It allows the scattered H atom to �y along the groove created

by the hollow sites and in this manner escape another collision before they can leave the surface;

if they were scattered by a larger angle into the direction of a hollow site, the (see Fig 2.1(b))

scattering would soon bring them into collision with a neighboring Au atom. Flying along the

groove of the hollow sites also allows the H atoms to escape the surface at a rather low polar

scattering angle, but by that increasing the time they spend inside the background electron

density and thereby increasing their energy loss, explaining why the maxima in intensity caused

by these processes become much more evident when low-energy scattering is excluded. The

intensity of these scattering events is by roughly a factor of two smaller than the intensity of

scattering in forward direction leading to very noisy di�erential energy loss distributions.

Unfortunately, the di�erential energy loss distributions of the single-bounce events in forward

scattering direction are severely overlapped by the di�erential energy loss distributions of the

double-bounce-events. The di�erential energy loss distributions of the single-bounce events

in forward scattering direction are narrow and have a high intensity compared to the rest of

the di�erential energy loss distribution (see Fig. 3.18 and Fig. 3.19 (a), dark yellow, blue and

purple). The di�erential energy loss distributions in back-scattering direction contain weak

single-bounce contributions compared to the contributions from the other bounce events and

the di�erential energy loss distribution of single-bounces overlaps even stronger with that of the

other bounce events. Furthermore, they are much broader than the single-bounce components in

forward scattering direction (compare green, black and red for scattering in backward direction

with dark yellow, blue and purple in Fig. 3.19 (a)): A clear separation of the single-bounce
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Figure 3.19.: Di�erential energy loss distribution for exit angles θout = 25◦, φout = 90◦ (dark yellow),

θout = 15◦, φout = 115◦ (blue), θout = 35◦, φout = 60◦ (purple), θout = 65◦, φout = −120◦

(green), θout = 65◦, φout = −55◦ (black), θout = 65◦, φout = 175◦ (red): (a) single-bounce

and (b) total.

di�erential energy loss distribution from the other bounce events appears impossible under the

present conditions. However, as a lowering of the temperature causes the surface to be less

corrugated, it appears possible that at lower temperatures a clearer separation of the bounce

events could be e�ected, at least for the di�erential energy loss distribution of forward scattering

(see Section 3.3.2).

On the other hand, the overall form of the di�erential energy loss distributions in forward

scattering direction (see also Fig. 3.19 (b), dark yellow, blue and purple) di�ers from those in

backward scattering direction, due to the decline of the intensity of the single-bounce events

di�erential energy loss distribution and the rise of that of the double-bounce events. Even

thought the di�erential energy loss distributions are noisy and peak positions therefore di�cult

to assign, the peaks of the di�erential ELD for backscattering appear to be shifted by ∼ 100meV

compared to those for forward scattering. This shift in energy loss and perhaps the di�erence in

shape could conceivably be observable experimentally and explained with the �ndings presented

here.

Double-bounces Events

The second distinct energy loss mechanism for scattering from a surface that can be imagined

as a double collision with two Au atoms and subsequent scattering of the H atom from the

surface. The left insets in Figure 3.20 show the �rst impact sites of double-bounce trajectories,

which for the adiabatic and nonadiabatic case are similar notwithstanding that the maximum

of intensity in the nonadiabatic case extends from closer to the surface normal and appears less

sharply de�ned than in the adiabatic case. In comparison to the �rst impact site of single-bounce

trajectories (Fig. 3.17) the �rst impact site for double-bounce events is more shifted from the
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Figure 3.20.: Di�erential energy loss distribution for the maximum in intensity of double-bounce scat-

tering events for electronically adiabatic ((a), θout = 40, φout = 60) and nonadiabatic

((b), θout = 35, φout = 60) case. The left inset shows the �rst impact site within the

primitive cell for 400 trajectories respectively, the right inset the total angular distribu-

tion for double-bounce events in scattering collisions where the black circle marks the

scattering conditions whose di�erential energy loss distribution is shown.

a-top site towards the hollow and bridge sites. Di�erently from the collision that lead to single-

bounce events, the �rst impact sites leading to double-bounce events appear to be distributed

around the middle of the atom, not solely arranged in the rough direction of the incidence beam.

The beam-averted incidence sites of the Au atoms (the far side of the primitive cell) are closer

toward the a-top site than the ones on the site facing the H atom beam.

The maximum in intensity in scattering as can be seen in the total angular distribution for the

adiabatic (Fig. 3.20(a), right inset) and nonadiabatic (ig. 3.20(b), inset, red area) case is as for

the case of single-bounce scattering along the forward scattering direction. The area of highest

scattering intensity spans from θout ≈ 20�55◦ and φout ≈ 25�95◦ and therefore occupies a very

similar area as the maximum in scattering intensity of the single-bounce events. Scattering in

backwards direction is weaker than for the single-bounce case. In the adiabatic case, the area of

highest intensity is between θout ≈ 30�55◦ and φout ≈ 45�75◦ and there is very little scattering

in the backwards direction.

Both di�erential energy loss distributions for the maximum in scattering intensity for elec-

tronically adiabatic and nonadiabatic case (Fig. 3.20) show much overlap of the di�erent bounce

events. The shape of the di�erential energy loss distribution caused by adiabatic scattering and

by nonadiabatic scattering di�ers again signi�cantly, although due to H atoms hitting similar

impact sites.

The double-bounces for scattering including electron hole pair excitation can be further clas-

si�ed after the distance in which their second bounce happened (Fig. 3.21): from a histogram of

the inter-bounce distances, it can be concluded that 58% of the double-bounces occur with the

nearest neighbor Au atoms with no preference to scattering direction (black, Fig 3.21), 8% occur
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with the next nearest neighbor Au atoms (blue); these collisions occur by �ying over the hollow

sites between two neighboring Au atoms forward and backwards along the [21̄1̄], [112̄] and [12̄1]-

directions. According to these directions, one would expect to see a C6 symmetry in the angular

distribution (Fig. 3.21(a), second inset), but most of these collisions appear to lead to nearly

specular scattering (θout = 45◦, φout = 55◦), it may safely be assumed, caused by the direction

taken up after the second bounce. 1% of the double-bounces occurs with the next-next nearest

neighbors; the number of these events is presumably this low because most of the H atoms that

scatter into the direction of the next-next nearest neighbors collide with the nearest neighbors

(green, see Fig. 3.21). No angular distribution is presented for it, the probability for these events

being so low that not enough H atoms are scattered for an angular distribution. 16% of all

double-bounces �y as far as the 3rd nearest neighbors. As can be seen from Fig 3.21(a) (red),

these double-bounces occur into all directions with an emphasis of scattering in the forward

direction and closer to the surface normal. The rest of the double-bounce events (17%) happen

with Au atoms even further away (up to 218Å) and also show a preference of scattering with a

θout closer to the surface normal and into forward direction.

The total energy loss distributions resulting from the double-bounce events with di�erent

inter-bounce distance is shown in Fig 3.21(c). Predictably, those double-bounce events that �y

longer distances lead to higher energy losses. If the maximum in an angular distribution is

mostly due to one such distribution, it could be expected that they lead to a signi�cant change

in the shape in the di�erential energy loss distribution that might be observed in experiment.

To test this, I therefore extracted di�erential energy loss distributions (Fig. 3.22(a)�(d)) for

such exit angles under which the distance-resolved double-bounce events appeared to exhibit

maxima in intensity (Fig. 3.21(a), black circles in insets). While the shape of the di�erential

energy loss distribution of the double-bounce events changes for the chosen exit conditions (see

Fig. 3.22(e)), this does not e�ect the shape of the total di�erential energy loss distribution

greatly (Fig. 3.22(f)). It seems that the shape of the di�erential energy loss distribution is more

in�uenced by the ratio of intensity of the di�erential energy loss distributions of the single-

bounce events to the double-bounce events to the multibounce events. This means that while

the double-bounce events show an astounding variety in the distance they cover between the �rst

and second bounce, the discrimination between these bounce behaviors in experiment appears

impossible: scattering with inter-bounce distances that take preferential directions on the surface

is so weak or directed into similar directions as preferred by single-bounce events that it makes

no impact on the complete di�erential energy loss distributions.

Figure 3.23 shows the double-bounce events resolved after the traveling distance for the adi-

abatic case. While the percentage of atoms colliding with the neighboring atoms (58%), the

next neighboring atoms (8%), the next-next (< 1 %) are the same as in the nonadiabatic case,

a much lower number of 12% collides with the 3×next-nearest neighbors, and the number of
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Figure 3.21.: Analysis of double-bounce trajectories with respect to their second impact site for the

electronically nonadiabatic case. (a) A histogram of the distance traveled between the

bounces. The colors mark the collisions with di�erent neighboring Au atoms: black:

nearest neighbor, blue next-nearest neighbor, green: next-next-nearest neighbor, red:

3×next-nearest neighbor, purple: all other neighbors. The inset in (a) is the angular

distribution from left to right for the events marked black, blue, red and purple. The black

circle in it marks the scattering region from which the di�erential energy loss distribution

in Fig 3.22(a)�(d) were drawn. (b) Vectors connecting the �rst and the second bounce site.

The number of arrows is not representative for the frequency of the events. The in�uence

of the surface structure on the distance between the bounce sites is clearly visible. (c)

shows the nonadiabatic total energy loss spectrum for the double-bounce events with the

contribution separated after di�erent inter-bounce distance.
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Figure 3.22.: ((a)-(d)) Di�erential energy loss distributions for exit angles (a) θout = 15◦, φout = −135◦,

(b) θout = 50◦, φout = 60◦, (c) θout = 25◦, φout = 35◦, (d) θout = 15◦, φout = 55◦

according to the maxima in intensity of the angular distributions in Fig. 3.21(a). The

di�erential energy loss distributions are subdivided into: total (black), single-bounce

(blue), double-bounce (red) and multibounces (green). (e) The di�erential energy loss

distribution for double-bounce events (red curves (a)�(d)) according to the color code

applied in Fig. 3.21. (f) The complete di�erential energy loss distribution (black curves

in (a)�(d)) according to the color code applied in Fig. 3.21. The distributions are shifted

by 0.6 eV to one another and the dashed grey lines mark the zero point in energy loss for

each of them.

far-distant collisions is increased to 22%. Also, the scattering pattern changes slightly if the

intensity distribution of the adiabatic case (insets in Fig. 3.23) are compared with those of the

69



0 2 4 6 8 10 12 14
0

2000

4000

6000

8000

10000

12000

Interbounce Distance (Å)

C
ou

nt
s

-180

-150

-120
-90

-60

-30

0

30

60
90

120

150

-180

-150

-120
-90

-60

-30

0

30

60
90

120

150

-180

-150

-120
-90

-60

-30

0

30

60
90

120

150

-180

-150

-120
-90

-60

-30

0

30

60
90

120

150

Figure 3.23.: Histogram of the distance traveled between the bounces for adiabatic double-bounce

trajectories. The colors mark the collisions with di�erent neighboring Au atoms: near-

est neighbor (black), next-nearest neighbor (blue), next-next-nearest neighbor (green),

3×next-nearest neighbor (red), all other neighbors (purple). The insets are the angular

distribution from left to right for the events marked black, blue, red and purple.

nonadiabatic case (insets in Fig. 3.21 (a)): while the angular distribution are similar for the scat-

tering event with the nearest and next-nearest neighbors, they di�er signi�cantly for scattering

events with the 3×next-nearest neighbors (third insets), showing a clear directional preference

for forward scattering in the adiabatic case and a lesser preference in the nonadiabatic case. This

could be explained with the observation that a signi�cantly larger percentage of trajectories in

the nonadiabatic case fall into this category than in the adiabatic case which in turn could be

due to the background electronic density in�uencing the scattered atoms in such a manner that

they are brought to collide with closer atoms by being slowed down or that atoms that �y too

far lose too much of their energy to leave the surface. The farthest distance H atoms �y in the

adiabatic case is over 200Å, in the nonadiabatic case less than 160Å.

Again, it becomes evident that the dynamics in the electronically adiabatic and nonadiabatic

case di�er signi�cantly.
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Figure 3.24.: (a) Total energy loss distribution of all scattering trajectories for the adiabatic (dashed,

gray) and nonadiabatic (black) case, and for the scattering trajectories that penetrate the

surface for the electronically adiabatic case (dashed, orange) and the nonadiabatic case

(orange) with their respective �rst impact sites within the primitive cell (insets, orange:

all bounce events (400 trajectories), blue: single-bounce trajectories (all trajectories),

dark-red: double-bounce (100 trajectories)). The di�erential energy loss distribution at

θout = 0.0◦, corresponding to the maximum of intensity exhibited in the total angular

distribution of penetrating, scattering trajectories in (b) adiabatic and in (c) nonadiabatic

cases. The di�erential energy loss distribution of the penetrating (orange) events are

shown.

Scattering after Penetration of the Surface Layer

The last signi�cant mechanism that can be imagined involves H atoms that penetrate the surface

(that is, pass below 0.0Å) and scatter then. The question is raised if they behave di�erently

causing remarkable features which could be observed experimentally. Figure 3.24(a) shows the

total energy loss distribution for the scattering trajectories that penetrate the surface. In the

electronically adiabatic case, these trajectories make out most of the tail of the total energy loss

distribution (compare black and orange dashed curve) and form a very broad distribution that is
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much wider than that for the non-penetratively scattered atoms. This behavior is in agreement

with the observations of Kroes and coworkers [3, 4] on the behavior of penetrating trajectories

for H on Au(111) but di�erent incidence conditions (Einc = 5.0 eV, θin = 15◦, φin = 90◦ and

θin = 60◦, φin = 60◦). In the nonadiabatice case, the penetrating trajectories account for some of

the high energy losses, they do not account for all of them (solid black and orange lines). Indeed,

the contribution of penetrating trajectories peaks at about Eloss ≈ 2 eV and drops again towards

very high energy losses. The total angular distributions (inset Fig. 3.24(b) and (c)) show that the

highest intensity for penetrating trajectories is to be expected close to the surface normal. The

broadness of the angular distribution of penetrative (and overall) scattering is in agreement with

the observations of Kroes and coworkers [3, 4], although they observed no preferential scattering

along the surface normal for gold. This is most likely due to the low number of trajectories in

their simulations using AIMD, rather than the di�erent incidence conditions or methods. The

di�erential energy loss distributions for normal exit angle for the adiabatic and nonadiabatic

case are shown in 3.24(b) and 3.24(c), respectively. The di�erence between the adiabatic and

nonadiabatic energy loss distributions are grave as remarked previously, even with respect to the

penetrating trajectories: in the adiabatic case, the penetrating trajectories (orange) shape the

entire tail of the energy loss distribution and completely account for its form. In the nonadiabatic

case, the penetrating trajectories make a contribution to the tail, but do not modify it in any

manner that could be expected to be observed experimentally. Furthermore, I was unable to

identify any scattering condition where penetrating trajectories do not contribute, neither for

the adiabatic, nor for the nonadiabatic case.

As can be seen from the insets in Fig. 3.24(a) (points marked in blue), there are H atoms

undergoing penetrating and single-bounce events which hit the surface precisely at the hcp-

hollow sites. Both for the adiabatic and nonadiabatic case, their contribution is far below 1% of

the penetrating trajectories (0.1% in the nonadiabatic and 0.03% in the adiabatic case). They

penetrate no deeper than the �rst subsurface layer, but have no clear preference of scattering

direction. Double-bounce trajectories make up 2% and 3% of the penetrating trajectories in

the electronically adiabatic and nonadiabatic case, respectively. They enter the surface by the

hollow and bridge sites (Fig. 3.24(a), inset, dark read) and preferably return close to the surface

normal. The low probability of both the penetrating single and double-bounce events makes

their experimental detection very implausible.

Further investigations

Having not been able to �nd a clear separation between the bounce events by analysis of scat-

tering behavior, I tried to identify scattering directions where the greatest separation between

bounce events in energy loss could be observed. For that, I determined the nonadiabatic dif-

ferential energy loss distribution in steps of 5◦ in θout and φout and noted the highest energy
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Figure 3.25.: (a) Di�erential energy loss distribution (black) with the farthest separation between dou-

ble (red) and single bounce (blue) events at θout = 15◦ and φout = −35◦ (green: multi-

bounce events). (b) Comparison between energy distribution of farthest separation be-

tween di�erential energy loss distribution of single and double-bounce (black), strongest

single bounce (yellow, θout = 35◦ and φout = 10◦) and strongest double-bounce (purple,

θout = 75◦ and φout = −25◦) contributions.

loss exhibited by the di�erential energy loss distribution of the single-bounce events and the

lowest of the double-bounces; if single- and double-bounce di�erential energy loss distribution

did not overlap, the di�erence between those two would have been smaller than zero. The lowest

overlap between the di�erential energy loss distributions of double- and single-bounce is at the

exit angles θout = 15◦ and φout = −35◦, however, they still overlap over a region of 0.53 eV

(Fig. 3.25, (a) and (b), black). Therefore, I decided to �nd di�erential energy loss distribu-

tions under such exit angles where the di�erential energy loss distribution of the single-bounce

events peaks the highest compared to the maximum of the di�erential energy loss distributions

caused by double-bounce events (yellow, Fig. 3.25(b)) or where double-bounce events have a very

signi�cant contribution (purple, Fig. 3.25(b)).

All three selected conditions have di�erently shaped di�erential energy loss distributions.

While the di�erence between the di�erential energy loss distribution of the lowest overlap and

that of the most intense single-bounce contribution (black and yellow) are only very slight in

that the �rst is somewhat �atter than the second, the di�erential energy loss distribution of the

most intense double-bounce contribution (purple) is considerably broader than the other two,

its shape much rounder and its peak appears to be shifted to higher energy losses. It remains

to hope that such a di�erence could also be resolved experimentally. Furthermore, a lowering

of the surface temperature should diminish the broadening of the peaks of the di�erent bounce

events due to a less corrugated surface at lower temperatures and thereby perhaps making it

possible to separate bounces for (a). This in�uence shall be reviewed in section 3.3.2.
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Angular Distribution

Another distribution that can conceivably be compared to experiment is the angular distribution

in θout at �xed azimuthal angles φout. Figure 3.26 shows a comparison of the electronically

adiabatic (blue) and nonadiabatic (black) angular distribution along the [101̄]-direction. Both of

them assume roughly a cosine shape, but the angular distribution of the electronically adiabatic

case peaks at θout ≈ 20◦ while that of the nonadiabatic case peaks over a wide area between

θout ≈ 5−−30◦.

I have compared the azimuthal angular distribution along the [101̄] (φout = 60◦ or φout =

−120◦), [112̄] (φout = 90◦ or φout = −90◦), [011̄] (φout = 120◦ or φout = −60◦), [11̄0] (φout = 0◦ or

φout = −180◦), [12̄1] (φout = −30◦ or φout = 150◦) and [21̄1̄] (φout = 30◦ or φout = −150◦) surface

directions. For this, I de�ne scattering between the azimuth angles φout = −30◦ and φout = 150◦

via φout = 60◦ as forward scattering and scattering between the azimuth angles φout = 150◦ and

φout = −30◦ via φout = −120◦ as backward scattering. In the angular distributions along the

surface directions, negative θ = θout denote backward scattering and positive forward scattering.

Figure 3.27 shows that the angular distributions in incidence direction assume a broad, cosine

shaped form that peaks very close to the surface normal. For scattering along [12̄1] (orange),

it is peaked at θout ≈ −15�5◦ to the surface normal, for scattering along [112̄] (red), [011̄]

(green), [11̄0] (black) and [21̄1̄] (purple) the angular distributions peak at θout = 5�15◦. The

angular distribution for scattering along [101̄] is the broadest of the angular distributions and

maintains a strong signal in θout ≈ 5 − −30◦ which is consistent with the intensity displayed

in the total angular distribution (Fig. 3.16). Although peaked at slightly di�erent polar angles,

-1.0 -0.5 0.0 0.5 1.0
r sin(θ)

75°

60°

45°

30°
15°0°-15°
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Figure 3.26.: Angular distribution along [101̄]-direction for the electronically adiabatic (blue) nonadi-

abatic (black) case along [101̄]. Negative θout denote scattering with φout = 120◦.
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the angular distributions along the [011̄]- (green) and [11̄0]-direction (black) show very similar

shapes, as do those along [112̄] (red) and [21̄1̄] (purple), according to the symmetry of the surface.

This symmetry is most likely also due to the low percentage of penetrating trajectories in the

scattering distribution. Due to the di�erence in subsurface structure in e.g. [011̄]- and [11̄0]-

direction caused by the ABC-stacking, the penetrating trajectories have been observed to lead

to di�erences in φout = 60◦ ±∆φout with the same ∆φout for adiabatic simulations with higher

incidence energies, both conditions which exhibit a higher fraction of penetratively scattering

trajectories [3]. As to be expected, the strong intensity observed for forward scattering in [101̄]-

direction diminishes the further φout deviates from 60◦, i.e., the more it tends towards backward

scattering. The scattering along the [12̄1]-direction (orange) is almost centered around the

surface normal; it marks the border between scattering into the forward and backward direction.

I studied the di�erential energy loss distribution dependent on the polar angle (Fig. 3.28)

and azimuth angle (Fig. 3.29) in steps of θout = 15◦. Due to the noise is in the di�erential

ELDs, especially for backward scattering, only very general trends can be extracted. It appears

that, the closer to the incidence direction in forward scattering, the di�erential ELDs peak at

the same energy losses, no matter θout. For athwart and backward scattering, for θout ≥ 45◦,

the peak and rising edge of the distribution move to slightly higher energy losses with growing

polar scattering angle and the peak becomes less pronounced than for forward scattering. For

backward scattering with growing θ, the peak diminishes in favor of the shoulder, indicating

a decrease of the single-bounce contributions in favor of the more-bounce contributions to the

di�erential energy loss distribution. Furthermore, for forward scattering, the mean energy loss

drops slightly towards higher polar scattering angles. This trend becomes less with sideways

scattering until the mean energy loss remains almost constant. For backwards scattering, due

to low signal to noise level, no clear trend can be extracted (see Tab. 3.12). That the trend is

only seen for forward scattering is perhaps not surprising, as most of the single-bounce events

happen in forward direction and single bounce events that do not dive deep into the electron

density can be expected to retain most information on the incidence condition. In this case,

they retain a little more of their normal energy than of their parallel energy.

Summary

In summary, the inclusion of electron hole pair excitation leads to very di�erent energy loss,

sticking and scattering behavior than the electronically adiabatic case, indeed both have almost

nothing in common. They di�er exceedingly in energy loss behavior, the energy loss mechanisms

(as can be seen by the di�erent ratios of bounces to one another), the sticking behavior and the

mechanisms by which sticking occasioned: adiabatic and nonadiabatic scattering behavior are

fundamentally di�erent.
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Figure 3.27.: Azimuthal angular distribution for the electronically nonadiabatic case along (a) [101̄]

(blue), [112̄] (red) and [21̄1̄]- (purple), (b) [011̄] (green), [12̄1] (orange) and [11̄0] (black)

surface directions. Dashed gray corresponds to a cosine-distribution peaked at 0◦. All

curves were normalized to their respective maxima in intensity. The positive values of

θout correspond to forward scattering, the negative ones backward scattering. The inset

shows chosen scattering directions marked on the total angular distribution. A cosine

distribution, centered at θout = 0◦ is given as a reference in dashed gray.

In the nonadiabatic case, the di�erential energy loss distribution due to forward scattering is

peaked at low energy losses, a peak that corresponds to the peak of the di�erential energy loss

distribution of the single-bounce events. Double-bounce events and multibounce events make

up the (slight) shoulder and tail of the distribution and grow in importance the closer φout gets

to backscattering. The in�uence of θout is small: for backscattering for larger θout, the peak of

the di�erential energy loss distribution shifts to slightly higher energy losses. The mean energy
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Figure 3.28.: Smoothed di�erential energy loss distribution for di�erent exit polar angles (black: 0◦,

purple: 15◦, blue: 30◦, green: 45◦, orange: 60◦, red: 75◦) for six exemplary exit azimuthal

angles: φout = 0◦ and φout = −180◦, φout = 60◦ and φout = −120◦ and φout = 150◦ and

φout = −30◦. The gray dashed line marks the position of the peak in the total angular

distribution.

loss drops with rising θout for forward scattering.

By analysis of the trajectories, I could �nd single-bounce as well as double-bounce collisions

where the �rst impact was close to the a-top site. I was also able to show that di�erent single-

bounce events occurring further away from the top site yield slightly di�erently shaped di�er-

ential energy loss distribution than those occurring very close to the a-top sites (see Tab. 3.12).
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Table 3.12.: Mean energy loss (in % of incidence energy) for nonadiabatic simulations dependent on

θout for di�erent surface directions. Positive θout correspond to forward scattering and

negative θout to backward scattering.

θout(
◦) [101̄] [112̄] [011̄] [12̄1]

-60 39 42 40 41

-45 40 41 41 40

-30 42 41 41 40

-15 40 41 41 40

0 39 39 39 39

15 39 39 39 40

30 37 38 39 40

45 37 37 39 40

60 35 37 39 40

Although the di�erential energy loss distributions of the di�erent scattering events overlap

very much, the shape of the complete di�erential energy loss distribution changes with di�erent

scattering directions. A lowering of temperature may make it possible to distinguish between the

di�erent scattering events and shall be discussed in section 3.3.2. For this, especially forward

scattering appears to be promising as the peak due to the single-bounce events appears to

be narrower here and might therefore be more clearly separated from the di�erential energy

loss distributions of the other events. Due to this reason, I consider the following exit angles

as especially promising: θout = 35◦, φout = 10◦ (strongest single bounce peak), θout = 15◦,

φout = −35◦ (largest separation between double and single bounce), and possibly scattering
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Figure 3.29.: Smoothed di�erential energy loss distribution for di�erent azimuthal angles φout (black:

60◦, purple: 0◦, blue: 120◦, green: −60◦, orange: −180◦, red: −120◦) for di�erent two

exemplary polar angles: θout = 15◦ and φout = 45◦. The gray dashed line marks the

position of the peak in the total angular distribution.
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along the surface normal, θout = 25◦, φout = 35◦ and θout = 50◦, φout = 65◦.

The maximum in scattering intensity is along the incidence direction in forward direction, but

is shifted closer to normal than the incidence beam.

It will be further interesting to investigate what becomes of the backwards scattering peaks

if the incidence energy is changed: with a lowering of the incidence energy, it could be expected

that more H atoms are scattered backwards (or take to sticking); a �atter incidence angle should

also lead to more backwards scattering, whereas one closer to the surface normal will perhaps

move the maximum in scattering intensity even further towards the surface normal.

3.3.2. The In�uence of Temperature on the Energy Loss Distribution

In the nonadiabatic case, the fact that the peak of the energy loss distribution is almost entirely

formed by the single-bounce events and the shoulder stems almost solely from the double-bounce

events makes it appear likely that a lowering in temperature could result in a clear separation

of these two events. This could then be veri�ed with experimental studies and used to predict

interesting exit conditions in experiment. I therefore analyze in this section the in�uence of

temperature on the energy loss distribution. I have sampled the behavior of scattering and ad-

sorption with temperature for 0, 40, 120, 300, 500 and 700K. The scattering probabilities, ratio

of bounce events and energy losses are presented in Tab. 3.13� 3.15. While the probabilities di�er

signi�cantly for the electronically adiabatic and nonadiabatic calculations (as already described

in Section 3.3.1), the change of probabilities for both cases due to the change in temperature

is almost identical: Both for the electronically adiabatic and nonadiabatic case, the probabil-

ity of scattering (Tab. 3.13) increases slightly with rising temperature while the probability of

adsorption at the surface decreases. Absorption and transmission probability stay constant for

the electronically adiabatic case. If excitation of ehp is included, the adsorption probability to

the surface decreases with rising temperature, more signi�cantly than for the adiabatic case and

in favor of a larger subsurface adsorption. The �ndings for the electronically adiabatic case are

in correspondence with the observations of Strömquist et al. [23] for H scattering from Cu(111)

that absorption probabilities at high incidence energies and sticking probabilities do not show

much variation with temperature.

The number of multibounce same as the probability of penetration decreases slightly with

rising temperature (Tab. 3.14). In correlation with the slight decrease of multibounce events,

the mean energy loss decreases with rising temperature, however, the peak of the energy loss

distributions shift with increasing temperature to higher energy loss values, indicating an increase

in high-energy single-bounce events (Tab 3.15).

The total energy loss distribution for the di�erent temperatures in the electronically nonadi-

abatic case (Fig. 3.30 (a)) illustrates that for temperatures below 300K, several peaks become

discernible. While they are only barely visible for 120K (green), they are almost separated at
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Table 3.13.: Outcomes (in %) resulting from H atom collision with a Au(111) surface for nonadiabatic

and adiabatic (in parenthesis) simulations for various temperature values. The incidence

conditions are Einc = 3.33 eV, θinc = 45◦ along the [101̄] surface direction, with a relaxed

surface structure and 6× 6× 6 slab, number of simulated trajectories: 106.

Scattering Surface Subsurface Transmission

Temperature Adsorption Absorption

0 K 54 (80) 26 (5) 20 (6) 1 (9)

40 K 54 (80) 26 (5) 20 (6) 1 (8)

120 K 54 (81) 25 (5) 20 (6) 1 (8)

300 K 55 (82) 23 (4) 21 (6) 1 (8)

500 K 56 (82) 21 (3) 23 (6) 1 (8)

700 K 56 (83) 19 (3) 24 (6) 1 (9)

40K (blue) and completely separated at 0K (purple). The total energy loss distribution for

the electronically adiabatic case (dashed lines, Figure 3.30(b)�(d)) broadens with rising tem-

perature, but no clear separation between peaks is observable even at 0K. Figure 3.30(b)�(d)

clari�es that the peaks appearing in the electronically nonadiabatic case are due to energy losses

occasioned by di�erent bounce events: the �rst peak is solely caused by single-bounce events

(blue). But even at 0K (b), there is a small single-bounce contribution to the second peak of

the total ELD that otherwise mostly consists of double-bounce events. The second peak, at 0K,

is completely separated from the rest of the distribution which contains contributions due to

Table 3.14.: Outcomes (%) of scattering for scattering events resulting from H atom collision with

a Au(111) surface for nonadiabatic and adiabatic (in parenthesis) simulations for various

temperature values. The �Surface�-column refers to trajectories wherein H atoms scattered

from 1st layer of the surface. The Roman numerals refer to the lowest subsurface to which

penetration occurred. The incidence conditions are Einc = 3.33 eV, θinc = 45◦ along the

[101̄] surface direction and 6× 6× 6 cell, number of simulated trajectories: 106.

bounce events penetrating bounces

Temperature single double multi surface I II III >III

0K 23 (16) 32 (24) 45 (60) 81 (62) 18 (25) 1 (8) 0 (3) 0 (2)

40K 23 (16) 32 (24) 45 (60) 81 (62) 19 (25) 1 (8) 0 (3) 0 (2)

120K 23 (16) 33 (24) 44 (60) 81 (63) 18 (24) 1 (8) 0 (3) 0 (2)

300K 23 (17) 34 (25) 43 (59) 82 (64) 17 (23) 1 (8) 0 (3) 0 (2)

500K 24 (17) 34 (25) 42 (58) 83 (65) 16 (21) 1 (8) 0 (3) 0 (2)

700K 25 (18) 34 (25) 41 (57) 84 (65) 16 (21) 1 (8) 0 (3) 0 (3)

80



Table 3.15.: Energy loss in % of incidence energy for various outcomes resulting from H atom collision

with a Au(111) surface for nonadiabatic and adiabatic simulations for various temperature

values. The mean and maximum energy loss are shown for the total ELD and for scattering

along θout = 45◦ φout = 60◦ ([101̄]) for 106 trajectories. The reduced accuracy of the

di�erential energy loss distributions re�ects the lower signal to noise ratio of the di�erential

ELD.

Total θout = 45◦ φout = 60◦

Temperature Mean Peak Mean Peak

0 K 40.4 (13.9) 12.8 (1.35) 37 (8.2) 33 (0.75)

40K 40.4 (13.8) 13.4 (1.35) 37 (9.9) 13 (1.1)

120K 40.0 (13.5) 13.1 (1.65) 37 (10) 13 (1.4)

300K 39.22 (13.1) 14.0 (1.65) 37 (10) 14 (0.75)

500K 38.4 (12.8) 17.9 (1.65) 36 (11) 15 (1.4)

700K 37.7 (12.6) 16.7 (2.25) 35 (11) 14 (1.4)

double- and multibounce events and does not separate into individual peaks anymore. The clear

separation into three contributions has ceased at 40K (Fig. 3.30 (c)) and the low energy region

of the total ELD of the double-bounces begins to overlap with the high energy loss region of the

single bounce events, a process that increases with rising temperature.

With rising temperature, the total ELDs thus become more and more structureless (Fig. 3.30(a),

(e) and (f); at 300K (Fig. 3.30(a), yellow); the last remnant of the peak (mostly) resulting from

the double-bounce events has turned into a shoulder and at 500K (Fig. 3.30(e), orange) and

700K (Fig. 3.30(f), red) any distinct features are washed out: the total energy loss distribution

of the single-bounce events now even distinctly overlaps with that of the multibounce events,

and the peak of the total energy loss distribution has shifted to higher energy losses as already

noted in Tab. 3.15. It is also to be noted that with increasing temperature, a higher number

of H atoms scatter from the surface that have gained energy in the collision. Such events are

probably to be imagined in such a manner that an H atom, upon collision with an Au atom,

matches the atom's movement and by that is propelled further along on its path, gaining energy

from the rising Au atom.

The distribution of scattering intensity also changes with rising temperature (Fig. 3.30(b)�

(f), insets): at 0K (Fig. 3.30(b)), specular scattering is the most intense process, and almost all

scattering happens along the forward direction, with little side-scattering. This pattern dissolves

with rising temperature: the peak in scattering intensity moves more and more towards smaller

polar angles and more side (and back-) scattering becomes apparent (Fig. 3.30(c)�(f)).
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Figure 3.30.: (a) Nonadiabatic total energy loss distribution obtained from nonadiabatic simulations:

resolved into contributions (a) total for 0K (purple), 40K (blue), 120K (green), 300K

(yellow), 500K (orange) and 700K (red), normalized to maximum; and due to single-

(blue), double- (red) and multibounce (green) events at (b) 0K, (c) 40K, (d) 120K, (e)

500K and (f) 700K. The dashed curve corresponds to the electronically adiabatic case

(intensity decreased by 0.25) The insets show the sites of the bounce events reduced into

the primitive cell for 200 trajectories each, a black dot marking the cells middle, and the

total angular distribution for all scattering events at the respective temperatures. The

polar scattering angle is denoted by the distance from the center of the plots starting with

θout = 0◦ in the middle to θout = 90◦ at the outermost rim. φout is indicated explicitly.

Red denotes 92% in scattering intensity and every contour denotes a drop by 1/12 in

intensity so that purple marks the regions of lowest intensity. The black circle indicates

the specular scattering angle.
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At 700K, while the maximum in intensity is along forward scattering direction, the scat-

tering intensity drops almost equally into all azimuthal directions with growing polar angle

(Fig. 3.30(f)). The broadening of the angular distribution with growing temperature is related

to the increasing motion of the surface atoms. At 0K the Au surface is least corrugated which

leads to specular scattering, with rising temperature, more of the Au atoms come out of the

surface; the higher an Au atom is raised above the surface level during the collision with an H

atom, the less likely the H atom is to leave the surface at high polar scattering angles.

The destructurization of the ELD due to the surface motion becomes very clear when the

impact sites of single-, double- or multibounces are regarded: at low temperatures, a very clear

structure is evident where collisions close to the center of the atom lead to single bounce events

(Fig. 3.30(b), inset), the impact sites leading to double-bounce events form a corona around

those leading to single-bounce collisions with bulges pointing in the direction of the bridge-

sites and therefore toward the neighboring atoms. These bulges are caused by double-bounces

having a lower energy loss then Eloss < 0.94 eV, corresponding to the second peak of the total

ELD, and are due to double-bounce events that have their second bounce with the nearest

neighbors. At 0K and 40K, this amounts to 100% of all double-bounce events of the second

peak in the total ELD, genuinely identifying a mechanism by which this peak is caused. At

higher temperatures, as the peak melts together with the other peaks of the total ELD, clear

assignment disappears. The multibounce events are most removed from the a-top-site. The clear

structuring of impact sites and a corresponding bounce event washes out with rising temperature

(�rst insets Fig. 3.30(c)�(f)), giving an indication of the motion of the Au atoms which, with the

EMT-JAWK, can experience mean displacements of 0.22Å at 500K, corresponding to 5.2% of

the lattice constant.

This trend in behavior becomes also clear when the angular distribution for forward scattering

is considered (see Fig. 3.31): the angular distribution for 0K (purple) is very narrow and peaks

indeed very decisively at specular angle (θout = 45◦). For 40K (blue), the angular distribution

becomes a little wider and peaks at θout = 40◦, for 120K (green), it has assumed a very full

shape and peaks at 25◦, the angular distribution of 300K peaks surprisingly much closer to the

surface normal θout = 5◦, (θout = 20◦, yellow) than that for 500K (θout = 30◦, orange), but this

could be owing to the very �at peak the distribution shows at 300K, reaching from ∼ 5◦ to 30◦.

The angular distribution for 700K (red) peaks at θout = 20◦ and is very broad. All distributions

show much more forward than backward scattering.

Fig. 3.32 shows a resolution of the angular distribution along the [101̄]-direction into the

di�erent bounce events. The sharp peak of the distribution is due to double-bounce events (red)

which scatter almost exclusively at θout = 45◦ corresponding to specular angle. The multibounce

(green) distribution shows a much wider distribution of scattering angles that peaks closer to

the surface normal and the single-bounce distribution (blue) shows a preference for forward
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Figure 3.31.: Angular distribution for the electronically nonadiabatic case along [101̄] in degrees of θout

giving the surface direction. The positive angles correspond to forward scattering (φout =

60◦) and the negative ones to backward scattering (φout = −120◦). The dependence of

the angular distribution on temperature is shown: purple: 0K, navy: 40K, dark green:

120K, yellow: 300K, orange: 500K and red: 700K. Black: cosine distribution.
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Figure 3.32.: Azimuthal angular distribution for the electronically nonadiabatic case at 0K along [101̄]

in degrees of θout, 0◦ being the surface normal. The positive angles correspond to forward

scattering (φout = 60◦) and the negative ones to backward scattering (φout = −120◦). The

contribution of di�erent bounce events is shown: total (purple), single- (blue), double-

(red) and multibounce (green). The distributions are normalized to the maximum of the

total angular distribution along [101̄].
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Figure 3.33.: Di�erential energy loss distribution for scattering along specular angles for (a) 0K, (b)

40K, (c) 120K, (d) 300K, (e) 500K, (f) 700K, due to total (black), single bounce (blue),

double-bounce (red) and multibounce (green) scattering events. The inset shows the �rst

impact site reduced into the primitive cell of the H atoms experiencing single- and double-

bounce events and making up the �rst (blue), second peak (light red, all double-bounces

Eloss < 0.94 eV) and rest due to double-bounce events (dark red).

direction, but no speci�c polar angle.

The question of whether the di�erential energy loss distributions due to di�erent bounce

events can be separated from one another by lowering the temperature is answered most satis-

factorily: Fig. 3.33 shows a comparison of scattering along the specular angles for the di�erent

temperatures, resolved into di�erent bounce events. At 0K (Fig. 3.33(a)), the �rst peak of the
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di�erential energy loss distribution is very narrow and sharply de�ned at Eloss ≈ 0.4 eV energy

loss, entirely made up from all the single-bounce events that contribute to this condition. These

single-bounce events were the result of hitting a gold atom almost precisely at the a-top-site

(observe blue points close to the center of primitive cell in Fig. 3.33(a), inset). The second peak

(at Eloss ≈ 0.75 eV) is made up entirely of double-bounce events that are not contaminated

with any single-bounce events; as can be seen from the inset, these double-bounce events have

their �rst impact at the side of the Au atom and exactly in the direction of the neighboring

Au atoms (light red, all double-bounces up to Eloss < 0.94 eV) and indeed, all of these atoms

collide with the next-neighbor atom. All other double-bounce events have a more dispersed �rst

impact site (dark red). The third peak (Eloss ≈ 1.1 eV) consists mostly of these double-bounce

events, but is intermixed with some multibounce events. With increasing temperature, all three

peaks begin to grow together: they do not appear to shift in position, but rather broaden out

(Fig. 3.33(b)�Fig. 3.33(f)).

The distinction between the second and third peak disappears for T < 120K after which

double-bounce events with Eloss < 0.94 cease to form a clear orientational pattern towards

the neighboring Au atoms, although it still remains guessable at 300K (see also Fig. 3.21 (b),

black arrows). At 40K (Fig. 3.33(b)) the separation between the �rst and the second peak

is still very clear. Since the �rst peak can solely be attributed to the di�erential energy loss

distribution of single-bounce events, a separation between single- and double-bounce events is

possible at 40K. A separation between double-bounce and multibounce events is not to be

obtained; while the second peak mostly consists of the di�erential energy loss distribution due

to double-bounce events, at its high energy loss side, it mixes with the low energy side of the

multibounce di�erential energy loss distribution. Still, the clear separation into peaks may also

be visible experimentally.

At 120K (Fig. 3.33(c)), the second and third peak of the di�erential energy loss distribution

merge into one. The �rst peak is now, at its high energy loss side, a mixture of contribu-

tions of the single- and double-bounce di�erential energy loss distribution: a clear assignment

of peaks to either collision event becomes impossible at this temperature under these scattering

angles. The di�erential energy loss distribution of the double-bounce events is now completely

overlaid by that of the multibounce events. A further increase in temperature sees an overlap

between the di�erential energy loss distributions of the single- and multibounce events; at 500K

(Fig. 3.33(e)), the di�erential energy loss distribution of the single-bounce events becomes com-

pletely overlaid by that of the double- and multibounce events which is even more pronounced

at 700K (Fig. 3.33(f)).

For T < 120K specular scattering angle is not the only one under which a separation of

the di�erential energy loss distribution of the single-bounce and double-bounce events in energy

loss can be achieved; indeed such a separation is to be seen at most scattering angles. To
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provide a few scattering angles that might, conceivably, be studied experimentally, Fig. 3.34

shows a selection of such candidates. Fig. 3.34(a) shows the di�erential energy loss distribution

for what was identi�ed in Section 3.3.1 as the condition under which the largest separation

between double- and single-bounce events could be achieved. Here, clearly, a good separation

of the �rst peak from the rest of the distribution, made up only from energy losses due to

single-bounce events, can be achieved. The separation is still not perfect, since the single-

bounce part shows a small contribution beyond the �rst peak which intermixes with that of

the double-bounce events. The same is true for normal scattering (Fig. 3.34(c)), identi�ed in

Section 3.3.1 to be the area where the strongest contribution due to penetrating collisions was

made, as well as for what was identi�ed as the scattering conditions with the most intense

double-bounce contribution (Fig. 3.34(d)). In the latter case, the lacking separation between

double- and single-bounce di�erential energy loss distributions becomes even more pronounced.

For the scattering angles identi�ed in Section 3.3.1 to have the most intense single-bounce peak

(Fig. 3.34(b)), the �rst peak also shows contribution from the double-bounce di�erential energy

loss distribution, due to a small contribution from the double-bounce di�erential energy loss

distribution at Eloss ≈ 0.48 eV. For the three cases (a), (c) and (d), the separation of the �rst

peak from other contributions but single-bounce is so great that it can be regarded as complete;

while it would be desirable to �nd a condition under which full separation of the single-, double-

and multibounce di�erential energy loss distribution could be achieved, this appears to be to little

avail since the separation between double- and multibounce di�erential energy loss distribution

cannot be a�ected: Fig. 3.34(e) shows the scattering angle where the largest separation between

double- (red) and multibounce (green) di�erential energy loss distributions at a reasonable signal-

to noise ratio happened.

The conditions when the �rst peak of the di�erential energy loss distribution made up from

contributions of only single-bounce events can be mostly achieved for all θout for φout between

−175◦ and 150◦; the most complete separation between the single- and double-bounce di�erential

energy loss distribution is to be had at θout ≈ 10◦ for φout between−165 and φout = 135◦, and φout

from −30 to 40◦. To separate the double- and multibounce di�erential energy loss distribution

entirely is impossible, but Fig. 3.35 shows a few �ne examples of exit conditions where the largest

separation between �rst (only single-bounce), second (only double-bounce) and rest (mixture

of double and multibounce contributions) peaks can be achieved. If these conditions could be

proved experimentally and the di�erential energy loss distribution showed similar behavior, a

�ne assignment of peaks could be accomplished.

For 120K, neither a separation of single- and double-bounce contributions nor one of a �rst

peak made up only of single-bounce contributions from the rest of the distribution is possible.

The overlap between the single- and double-bounce di�erential energy loss distribution that can

be seen in Fig. 3.33(d) is on the order of the smallest overlap that can be found; while it is clear
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Figure 3.34.: Di�erential energy loss distribution for T = 40K for di�erent scattering angles: (a)

θout = 15◦, φout = −35◦ (b) θout = 35◦, φout = 10◦ , (c) θout = 0◦, (d) θout = 75◦,

φout = −25◦, (e) θout = 60◦, φout = −35◦, resolved in total (black), single bounce (blue),

double-bounce (red) and multibounce (green) scattering events.

that most of the �rst peak is due to single-bounce scattering events, especially the high-energy

loss side of the peak is also in�uenced by double-bounce collisions and in this case even by a

small contribution due to the multibounce di�erential energy loss distribution.

For a number of scattering angles, the �rst peak of the di�erential energy loss distribution

can be attributed to single-bounce collisions alone while the second peak in a few cases can be

attributed to double-bounce collisions with nearest neighbor atoms in a very few selected cases

88



0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
)

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
)

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
)

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
)

(d)

Figure 3.35.: Di�erential energy loss distribution of exit conditions at T = 40K that are promising

for experimentally probing: (a) θout = 35◦, φout = −120◦, (b) θout = 40◦, φout = 95◦,

(c) θout = 25◦, φout = −30◦, (d) θout = 20◦, φout = 90◦. The �rst peak is entirely

due to single-bounce events (blue), the second one entirely to double-bounce events with

the nearest neighbors (red) and the rest due to multi- (green) and other double-bounce

events. In the inset, the sites of the 200 �rst impact are shown. Here, the double-bounce

events not contributing to the second peak are marked in dark red.

at 40K. Seeing that the separation is not possible at all exiting angles, I believe that raising the

temperature much above 40K will make an assignment of one peak being due to one kind of

collision event already impossible. At 120K, the overlap between the single- and double-bounce

di�erential energy loss distribution is large already for most scattering angles and even at those

where it is comparatively low, an overlap of ∆Eloss ≈ 0.3 eV already exists.

In any case, with the lowering of the temperature, the peaks due to the di�erent bounce events

begin to separate. If the theory presented here predicts the correct thermal behavior, already

a small lowering of temperature should show the emergence of peak structures which, at much

lower temperatures, can be assigned to certain bounce events.
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3.3.3. The In�uence of Incidence Energy

I performed MD simulations with the EMT-JAWK PES for a wide range of incidence energies

from 0.1 eV to 10.0 eV (Tab. 3.16� 3.18). 0.99 � 3.33 eV being incidence energies that have been

accessed experimentally.

In Tab. 3.16 and Fig. 3.36 (a), the dependence of the scattering probability with incidence

energy is shown. The electronically adiabatic and nonadiabatic case show again many di�erences;

the scattering (black) probability is higher for the adiabatic case than for the nonadiabatic

case while the sticking probability (orange) to the surface is lower. For both adiabatic and

nonadiabatic case, the scattering probability (black) rises with increasing incidence energy, very

strongly at low incidence energies and more gradually at larger ones. The scattering probability

levels o� to a constant scattering probability of 80% above 3.0 eV in the adiabatic case and to

∼ 60% above 5.0 eV in the nonadiabatic case. The general similarity notwithstanding, in the

electronically nonadiabatic case, there is barely any re�ection at Einc = 0.1 eV, while in the

electronically adiabatic case, already 14% are re�ected at this incidence energy.

In the same manner, the sticking probability to the surface (orange) sees a much sharper

decrease with rising incidence energy in the adiabatic case than in the nonadiabatic case. The

Table 3.16.: Outcomes (in %) resulting from H atom collision with a Au(111) surface for nonadiabatic

and adiabatic (in parenthesis) simulations. The incidence conditions are θinc = 45◦ along

the [101̄] surface direction, T = 300K with 6×6×6 slab, number of simulated trajectories:

nonadiabatic: 106, adiabatic: 105.

Scattering Surface Subsurface Transmission

Einc (eV) Adsorption Absorption

0.1 1 (14) 88 (59) 11 (27) 0 (0)

0.5 9 (49) 77 (31) 14 (20) 0 (0)

0.77 15 (61) 69 (22) 16 (17) 0 (1)

0.99 20 (66) 63 (18) 17 (16) 0 (1)

1.22 26 (69) 56 (15) 18 (15) 0 (2)

1.92 39 (76) 41 (9) 20 (12) 0 (4)

2.17 43 (77) 37 (8) 20 (11) 0 (5)

2.62 49 (79) 30 (6) 21 (9) 0 (6)

2.76 50 (80) 29 (5) 21 (8) 0 (7)

3.33 55 (81) 23 (4) 21 (7) 1 (8)

5.0 64 (84) 13 (1) 22 (3) 2 (12)

7.0 67 (83) 8 (0) 20 (1) 4 (15)

10.0 70 (81) 6 (0) 18 (0) 6 (19)
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Table 3.17.: Outcomes (%) of scattering for various scattering events resulting from H atom collision

with a Au(111) surface for nonadiabatic and adiabatic (in parenthesis) simulations. The

�Surface�-column refers to trajectories wherein the H atoms scattered from the �rst layer

of the surface. The Roman numerals refer to the lowest subsurface to which penetration

occurred. The incidence conditions are θinc = 45◦ along the [101̄] surface direction, T =

300K with 6× 6× 6 cell, number of simulated trajectories: nonadiabatic: 106, adiabatic:

105.

bounce events penetrating bounces

Einc (eV) single double multi surface I II III >III

0.1 96 (40) 4 (26) 0 (34) 100 (99) 0(1) 0 (0) 0 (0) 0 (0)

0.5 72 (17) 24 (25) 4 (57) 100 (92) 0 (8) 0 (0) 0 (0) 0 (0)

0.77 53 (16) 38 (26) 9 (58) 99 (86) 1 (13) 0 (1) 0 (0) 0 (0)

0.99 43 (16) 42 (27) 14 (57) 98 (83) 2 (16) 0 (1) 0 (0) 0 (0)

1.22 37 (16) 44 (27) 19 (57) 96 (80) 4 (18) 0 (2) 0 (0) 0 (0)

1.92 29 (16) 40 (26) 31 (58) 92 (73) 8 (22) 0 (4) 0 (1) 0 (0)

2.17 27 (16) 39 (26) 34 (58) 90 (71) 10 (23) 0 (5) 0 (1) 0 (0)

2.62 25 (16) 36 (26) 38 (58) 87 (68) 13 (23) 0 (7) 0 (2) 0 (1)

2.76 25 (16) 36 (25) 39 (58) 86 (67) 14 (23) 1 (7) 0 (2) 0 (1)

3.33 23 (17) 34 (25) 43 (59) 82 (64) 17 (23) 1 (8) 0 (3) 0 (2)

5.00 22 (17) 29 (22) 49 (61) 74 (58) 23 (22) 3 (10) 0 (5) 0 (5)

7.00 24 (18) 25 (20) 52 (62) 69 (54) 25 (22) 6 (10) 1 (6) 0 (7)

10.0 28 (19) 21 (18) 51 (63) 66 (50) 26 (23) 7 (11) 2 (7) 0 (8)

greatest apparent di�erence between the two cases is the absorption probability (blue): it drops

continuously in the adiabatic case, while it rises �rst in the nonadiabatic case, and only starts

to drop very gradually above Einc ≈ 5 eV. Inclusion of the transmission probability into the

absorption probability (yellow) shows that this behavior is due to deeper bulk penetration at

higher incidence energies, and that the absorption probability including transmission is inde-

pendent of the incidence energy when Einc > 3.0 eV and almost the same for the adiabatic and

nonadiabatic case. The trends observed for the electronically adiabatic case at low incidence

energies agree with the observations Strömquist at al. [23] made for the adiabatic interaction of

H with Cu(111).

The contributions of the di�erent collision events in the scattering process also di�ers in the

adiabatic and nonadiabatic case (Fig. 3.36 (b)). Similarities are that at low incidence energies,

single-bounces dominate over the other scattering events and at higher incidence energies multi-

bounce events over the others. With rising incidence energy, single-bounce events become even

less frequent, their proportion stays approximately constant when Einc > 2.0 eV in the nonadia-
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Table 3.18.: Energy loss in % of incidence energy for various outcomes resulting from H atom collision

with a Au(111) surface for nonadiabatic and adiabatic simulations for various incidence

energies values. The incidence conditions are θinc = 45◦ along the [101̄] surface direction,

T = 300K with 6 × 6 × 6 cell, number of simulated trajectories: nonadiabatic: 106,

adiabatic: 105. The mean and maximum energy loss are shown for total and di�erential

ELD. The accuracy at specular scattering angles (θout = 45◦ φout = 60◦ ([101̄])) is reduced

due to the lower signal-to-noise ratio of the di�erential ELDs.

Total θout = 45◦ φout = 60◦

Einc (eV) Mean Peak Mean Peak

0.1 18.7 (7.56) 45.0 (5.00) 16 (6.5) 65 (5.0)

0.5 42.1 (18.2) 39.0 (3.00) 40 (14) 35 (1.0)

0.77 42.1 (16.3) 35.7 (1.95) 42 (13) 64 (2.0)

0.99 42.3 (15.2) 27.8 (2.53) 40 (12) 28 (2.5)

1.22 42.3 (14.6) 25.0 (2.87) 38 (12) 23 (0.41)

1.92 41.5 (13.9) 20.6 (1.82) 38 (11) 21 (1.8)

2.17 41.1 (13.6) 17.3 (1.61) 39 (9.6) 18 (2.5)

2.62 40.4 (13.5) 15.8 (2.10) 37 (11) 14 (2.1)

2.76 40.1 (13.4) 15.4 (1.63) 37 (12) 15 (0.54)

3.33 39.2 (13.1) 14.0 (1.65) 37 (11) 14 (0.75)

5.00 36.8 (12.0) 14.1 (1.50) 33 (9.5) 11 (1.1)

7.00 38.0 (10.0) 23.6 (1.50) 35 (8.2) 11 (1.64)

10.0 49.1 (7.68) 46.7 (1.25) 42 (7.1) 25 (1.3)

batic case and Einc > 0.5 eV in the adiabatic case. After rising sharply at low incidence energies

in the nonadiabatic case the probability of double-bounce events drops towards higher incidence

energies in favor of multibounce events. These trends can be rationalized with the relation be-

tween incidence energy and surface geometry. At low incidence energies experiencing more than

one collision will make it di�cult to retain enough energy to escape the surface again (in the

nonadiabatic case more so than in the electronically adiabatic case); single-bounce events are

favored. The higher the incidence energy, the more likely for H atoms to experience higher num-

ber of collisions to escape the surface; the probability of double-bounce events �rst increases and

then drops in favor of the multibounce events. That the probability for single-bounce collision

stays almost constant is most likely due to that at higher incidence energies, some H atoms that

before were pulled into poly-collision events retain so much initial energy that they are �ung

from the surface before they can lose enough energy to undergo a further collision.

The penetration probability rises with increasing incidence energy, because larger incidence

energy allows an atom that penetrates the surface to lose more of its initial energies in interaction

92



●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ● ●
● ● ●● ● ● ●

●

●
●

● ● ●
● ● ● ● ●

●

○

○

○

○
○

○ ○
○○

○
○ ○

○

○

○

○

○
○

○ ○
○○

○
○ ○ ○

○

○
○ ○ ○

○ ○
○○

○
○

○ ○

○

○
○ ○ ○ ○ ○ ○ ○ ○ ○

0 2 4 6 8 10
0

20

40

60

80

100

Einc (eV)

P
ro

ba
bi

lit
y
(%

)

(a)

●

●

●

●

●

● ●
●● ● ● ●

●

●

●

●

● ●
●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●
● ●

● ● ● ● ●

●
●

●●
●

●

●
●

○

○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○○ ○
○

○
○

○

○ ○ ○ ○ ○ ○ ○○ ○
○ ○ ○

○

○

○
○

○

○
○

○○
○

○

○
○

0 2 4 6 8 10
0

20

40

60

80

100

Einc (eV)

P
ro

ba
bi

lit
y
(%

)

(b)

Figure 3.36.: Dependence of outcomes (in %) of MD simulations of H scattering from Au(111) on the

incidence energy. Panel (a) shows scattering (black), adsorption to the surface (orange),

absorption into the surface (blue) and absorption including transmission (yellow). Panel

(b) shows outcomes for events: single- (blue), double- (red), multi- (green) and penetrat-

ing bounces (purple) for the electronically nonadiabatic (solid lines and closed circles)

and adiabiabatic (light dashed lines and open circles) cases.

with subsurface regions and still retain enough energy to scatter back. In the nonadiabatic case

the rise is slower than in the adiabatic case; in the nonadiabatic case, any H atom venturing

below the surface must expect to be so e�ectively slowed down by the friction force of the

surrounding electron density that it needs much energy or very short subsurface penetration to
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Figure 3.37.: (a) Dependence of the energy loss on the incidence energy (in percent of incidence en-

ergy): mean energy loss (black) for all trajectories, energy loss at peak (orange) for all

trajectories, mean energy loss at specular scattering (blue), energy loss at peak of specu-

lar scattering (yellow). Electronically nonadiabatic with closed circles, adiabatic dashed

and with open circles. (b) Angular distribution along the [101̄]-direction of Einc = 0.1

(grey), 0.99 (dark blue), 2.17 (dark green), 2.76 (yellow), 5.0 (orange), 7.0 (red), 10.0 eV

(magenta).

escape this in�uence. Similarly, the larger the incidence energy, the more likely it becomes to

penetrate into the surface and scatter o� successively deeper subsurface layers (Tab. 3.17).

As can be seen from Tab. 3.18 and from Fig. 3.37(a), the mean energy loss for the total case

(black) and for the specular scattering case (blue) rises at low incidence energies to Ēloss ∼ 15 %

in the adiabatic case and Ēloss ∼ 40 % in the nonadiabatic case and then in the adiabatic

case drops gradually for higher incidence energies. In the nonadiabatic case, the mean energy
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Figure 3.38.: Total energy loss distributions for di�erent incidence energies in a 3-D plot. The total

ELD of 0.1 eV is not shown as the signal is too weak.

loss increases again for very high incidence energies. This means that at Einc = 10 eV, the

mean energy loss in the nonadiabatic case is six times larger than the adiabatic mean energy

loss, compared to three times larger at lower incidence energies. That the mean energy loss

at specular angle is lower than that of total ELD is occasioned by the fact that scattering into

forward direction at large θout experiences lower energy losses than into backwards direction (see

Section 3.3.1, e.g. Fig. 3.29 and below).

The relative energy loss at the position of the �rst peak is identical for the total energy loss

distribution (orange, dashed) and that of specular (yellow, dashed) scattering for the adiabatic

case. In the nondiabatic case, the two di�er considerably. At low energy losses, this is due to the

low signal-to-noise ratio (because most of the H atoms stick to the surface and cannot contribute

to the energy loss distribution of the scattering trajectories) which makes it di�cult to identify

the peak position. At high energy losses, the divergence is due to the di�erential energy loss

distribution of specular angles not containing all the events that lead to the formation of the

total energy loss distributions and again a decrease of the signal-to-noise ratio as the maximum

of the scattering distribution shifts from forward towards backwards scattering with Einc > 5 eV

(see Fig. 3.37(b) and inset on Fig. 3.40(l) and (m)). As can be seen from Fig. 3.38(c), the shape

of the total ELD changes with increasing incidence energies; �rst, only a single peak is to be

seen. With the rising percentage of double and multibounces, a shoulder begins to appear next

to the peak at higher energy losses in the total ELD which, towards higher incidence energies,

begins to turn into a peak itself and becomes much stronger than the peak at low energy losses.

Figures 3.39 and 3.40 show the total energy loss distribution for the di�erent incidence energies

resolved into the bounce events. They underscore what Fig. 3.37 and Fig. 3.38 already show, that
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Figure 3.39.: Total energy loss distribution for the incidence energies of 0.5 eV (a), 0.77 eV (b), 0.99 eV

(c), 1.22 eV (d), 1.92 eV (e), 2.17 eV (f). The gray dashed line shows the adiabatic total

ELD, its probability density scaled by 0.25 eV. The insets show the primitive cell with

the 200 �rst impact sites of single- (blue), double- (red) and multiple (green) bounces

and the total angular distribution. The polar scattering angle is denoted by the distance

from the center of the plots starting with θout = 0◦ in the middle to θout = 90◦ at the

outermost rim. φout is indicated explicitly. Red denotes > 92% in scattering intensity

and every contour denotes a drop by 1/12 in intensity so that purple marks the regions

of lowest intensity. The black circle indicates the specular exiting angle. For 0.1 eV the

ELD is not shown, due to the weak signal.
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Figure 3.40.: Total energy loss distribution for incidence energies of 2.62 eV (g), 2.76 eV (h), 3.33 eV (j),

5.0 eV (k), 7.0 eV (l), 10.0 eV (m). The gray dashed line shows the adiabatic total ELD,

its probability density scaled by 0.25 eV. The inset shows the primitive cell and the 200

�rst impact sites of single- (blue), double- (red) and multiple (green) bounce events, and

the energy integrated total angular distribution.

the peak of the total energy loss distribution shifts to consecutively higher energies with rising

incidence energies, that the nascent double- and multibounce total energy loss distributions

push out a shoulder in the total ELD with rising incidence energy that becomes more and more

dominant at high incidence energies, is joined by high-energy single-bounce contributions and

at 10 eV �nally becomes the dominating peak.
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Table 3.19.: Exit angles under which high intensity can be expected for di�erent incidence energies

and the electronically nonadiabatic case. Negative θout denote scattering into the general

backwards direction.

Einc (eV) θout (◦) φout (◦)

0.1 0.0 0.0

0.5 0�30 50�80

0.77 25 75

0.92 0�35 30�90

1.22 0�30 50�85

1.92 0�40 0�120

2.17 0�35 30�90

2.62 0�35 30�105

2.76 0�40 −10�130

5.0 −10�40 0�150

7.0 −20�20 all

−40�40 30�90 and −90�−150

10.0 0�35 −90�−150

At Einc = 0.1 eV (Fig. 3.37(b)), the scattering intensity in [101̄] direction is very narrow with

almost no scattering in backwards direction. This is to be expected as, at very low incidence

energies, a H atom that leaves the surface at a very low angle or in backwards direction will

lose so much energy due to the interaction with the electron hole pairs that it will be unable

to leave the surface. At Einc = 0.5 eV (Fig. 3.39(a)), the maximum in scattering intensity is

already roughly in the [101̄]-direction and θout ≈ 10◦. From Einc = 0.5 eV upwards, the highest

scattering intensity remains in the [101̄]-direction and the shape of the angular distribution in

this direction (Fig. 3.37(b)) broadens. At the same time, sidewards and backwards scattering

increases. At very high incidence energies (> Einc = 5.0 eV), the backwards scattering peak

becomes more intense until at Einc = 7.0 eV (Fig. 3.37(b), red and Fig. 3.39(k)) scattering into

forward and backward direction appears nearly equally intense. At Einc = 10.0 eV ((Fig. 3.39(l))

and Fig. 3.37(b)), magenta), scattering into backwards direction is more intense than into forward

direction.

The second single-bounce peak that appears at Einc > 5.0 eV is caused by H atoms hitting

the surface closer to the hollow sites than those that form the �rst peak of the total ELD.

The single-bounce trajectories with a higher energy loss (Eloss > 1.2 eV for Einc = 7.0 eV and

Eloss > 4.0 eV for Einc = 10.0 eV) scatter without exception into backwards direction while those

with lower energy loss scatter exclusively in forward direction. As to why those scattering into
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backwards direction lose so much more energy as those scattering into forward direction (and

thereby increase the mean energy loss so much compared to the adiabatic case), I expect that

the ones scattering into forward direction `skim' over the Au-atom and are �ung by their large

incidence energy into forward direction, only gracing the atom. In contrast, the high incidence

energy allows atoms that scatter closer to the hollow sites to dive far deeper into the electron

density and thereby lose a great part of their incidence energy.

From the total angular distribution, the best signal for observing scattering with various

incidence energies are shown in Tab. 3.19. For the incidence energies 1.22 eV�5. eV, the maximum

in intensity is around θout = 25◦ and φout = 60◦. The trend in higher incidence energies to scatter

especially backwards makes them hard to observe since the detector would have to be placed

together with the incidence beam. In these cases, the best observation position would be as far as

possible towards backward or along the surface normal. Certainly, it would be most interesting

to do experimental studies at very high incidence energy values so if the predictions made here

for the growing of a new peak can be matched.

3.3.4. The Dependence of Scattering on the Incidence Angles

To see if the incidence angle has any in�uence on the scattering behavior and thus predict

incidence (and corresponding exit) conditions that either show a separation of the di�erential

energy loss distributions due to the di�erent bounce events or other interesting features which

could be investigated experimentally, I have performed MD simulations for the incidences angle

θin = 0◦, 30◦, 45◦ and 60◦ and scattering direction along the [101̄]- and [112̄]-direction.

From Tab. 3.20 it can be seen that the scattering probability increases with the incidence angle,

Table 3.20.: Outcomes (in %) resulting from H atom collision with a Au(111) surface for nonadiabatic

and adiabatic (in parenthesis) simulations for various incidence angles. The incidence

energy is Einc = 3.33 eV, with a relaxed surface and 6 × 6 × 6 slab at 300K, number of

simulated trajectories: 106.

Scattering Surface Subsurface Transmission

θin, φin (◦) Adsorption Absorption

0, 0 53 (79) 22 (4) 25 (7) 1(10)

30, 60 52 (79) 23 (4) 25 (7) 1 (10)

30, 90 52 (79) 23 (4) 24 (7) 1 (10)

45, 60 55 (82) 23 (4) 21 (6) 1 (8)

45, 90 56 (82) 23 (4) 20 (6) 0 (8)

60, 60 64 (87) 21 (3) 15 (5) 0 (6)

60, 90 62 (82) 22 (4) 15 (6) 0 (8)
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Table 3.21.: Outcomes (%) of scattering for scattering events resulting from H atom collision with a

Au(111) surface for nonadiabatic and adiabatic (in parenthesis) simulations for various

incidence energies. The �Surface�-column refers to trajectories wherein the H atoms scat-

tered from 1st layer of the surface. The Roman numerals refer to the lowest subsurface

to which penetration occurred. The incidence conditions are Einc = 3.33 eV, 300K and

6× 6× 6 slab, number of simulated trajectories: 106.

bounce events penetrating bounces

θin, φin (◦) single double multi surface I II III >III

0, 0 23 (16) 30 (22) 47 (63) 72 (54) 25 (28) 3 (12) 0 (3) 0 (2)

30, 60 23 (16) 31 (22) 46 (62) 78 (59) 20 (25) 1 (10) 0 (4) 0 (2)

30, 90 23 (16) 31 (22) 46 (62) 78 (59) 21 (26) 1 (9) 0 (4) 0 (3)

45, 60 23 (17) 34 (25) 43 (59) 82 (64) 17 (23) 1 (8) 0 (3) 0 (2)

45, 90 22 (16) 33 (25) 44 (59) 80 (63) 19 (25) 1 (7) 0 (3) 0 (2)

60, 60 28 (22) 36 (29) 36 (49) 89 (75) 11 (17) 0 (5) 0 (2) 0(1)

60, 90 23 (17) 39 (25) 39 (59) 85 (64) 15 (23) 0 (8) 0 (3) 0 (2)

reaching over 60% at θin = 60◦ in the electronically nonadiabatic case and over 80% at θin = 60◦

in the adiabatic case. This tendency is more evident in nonadiabatic case. The azimuth incidence

direction has no consistent in�uence on scattering probabilities. The adsorption probability to

Table 3.22.: Energy loss in % of incidence energy for various outcomes resulting from H atom collision

with a Au(111) surface for nonadiabatic and adiabatic simulations for various incidence

angles. The incidence conditions are Einc = 3.33 eV, 300K and 6 × 6 × 6 slab, number

of simulated trajectories: 106. The mean and maximum energy loss are shown for the

total ELD and for scattering at θout = 45◦ and the two incidence direction [101̄] (φ=60◦)

and [112̄] (φ=90◦). The reduced accuracy is due to the low signal to noise ratio in the

di�erential ELDs.

Total θout = 45◦ φout = 60◦ θout = 45◦ φout = 90◦

θin, φin (◦) Mean Peak Mean Peak Mean Peak

0, 0 39.1 (14.5) 14.0 (2.25) 39 (15) 14 (2.3) 40 (16) 11 (2.3)

30, 60 39.2 (14.5) 14.6 (1.95) 38 (13) 15 (1.1) 38 (14) 14 (1.1)

30, 90 39.3 (14.5) 14.0 (1.95) 38 (14) 11 (1.7) 38 (13) 17 (1.4)

45, 60 39.2 (13.1) 14.0 (1.65) 37 (11) 14 (0.75) 37 (12) 15 (1.1)

45, 90 39.5 (13.0) 14.3 (1.95) 38 (12) 16 (1.4) 37 (11) 14 (1.4)

60, 60 38.5 (10.0) 16.4 (1.35) 36 (7.8) 14 (0.75) 36 (9.1) 15 (0.75)

60, 90 39.6 (10.8) 26.9 (1.65) 37 (9.7) 13 (1.1) 37 (8.9) 15 (1.1)
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the surface remains also roughly the same for all incidence directions. Seeing that the surface is

only partly populated by direct adsorption and much by resurfacing processes (see Sec. 3.3.1),

this outcome is not surprising. The probability to absorb subsurface decreases with growing

polar incidence angle; at high polar angle, the Au atoms overlap more to the incoming H atoms,

and thus shield the hollow sites, making it di�cult for incoming H atoms to penetrate the

surface (see Tab. 3.21, penetration probability and scattering from subsurface layers); this is

also re�ected in the lowering of the probability to experience multibounce events at high polar

angles.

The mean energy loss (Tab. 3.22) of the scattering trajectories remains constant for the total

energy loss distribution of the nonadiabatic case. In forward scattering direction, the mean

energy loss drops marginally with growing polar incidence angle. That this behavior is not

re�ected in the total ELD is most likely due to the circumstance that, in the nonadiabatic case,

all events not scattering in forward direction have more interaction with the electron density due

to deeper or longer penetration into it which may cancel out much of the information about the

incidence angles, especially seeing how very weak the trend is. No di�erences arise from varying

the azimuth incidence angle.

In the adiabatic case (Tab. 3.22), the mean energy loss drops with growing polar incidence

angle for total and di�erential ELD. This observation agrees with the �ndings of Kroes and

coworkers [3, 4] who, using AIMD and Einc = 5 eV, observed a decrease in energy loss and

penetration probability as well as a increase of scattering probability if comparing scattering

with θin = 15◦ along [112̄] to θin = 60◦ along [101̄].

In the nonadiabatic case, the peak of the total ELD moves to higher energy losses with

growing polar incidence angle and the intensity of the distribution's tail decreases, re�ecting

the lesser number of multibounce events. Fig. 3.41(a) illustrates this behavior: the shoulder

of the total energy loss distribution moves from Eloss ≈ 1.4 eV at low polar incidence angle to

Eloss ≈ 0.9 eV at large polar incidence angle, becoming more and more pronounced in the process

due to a diminishing of the multibounce peak and the increase of the double-bounce peak in its

stead (see Tab. 3.21, Fig. 3.41 and Fig. 3.42(b)�(h)). The double-bounce feature increases more

strongly for the [112̄] then for the [101̄]-direction. The insets in Fig. 3.41 and Fig. 3.42(b)�(h)

show that the main scattering intensity is in all cases along the direction of the incidence beam

and by θ ≈ 20◦ along [112̄] and by θ ≈ 15◦ along [101̄] closer to the surface normal than the

incidence polar angle. In all cases, the scattering in backwards direction is weak. This can also

be seen from the angular distribution in incidence azimuth direction (Fig. 3.43 (e)); only the

angular distribution for normal scattering is symmetric to the surface normal (black) and very

clearly most intense at normal scattering; di�erent from the other angular distributions it is also

narrow. The φ-resolved angular distributions of the other incidence angles behave very similarly

in so far that they all peak close to the surface normal (5 − 30◦) and show more intensity for
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Figure 3.41.: Total energy loss distribution for di�erent incidence angles. (a) for di�erent incidence

angles, the colors correspond those of the total energy loss distribution shown in (b)�(h)

with the contributions from single (blue), double (red) and multibounce events (green);

(b) θin = 0◦ (black), (c) θin = 30◦, φin = 60◦ (dark blue), (d) θin = 30◦, φin = 90◦ (navy).

The light dashed distributions belong to adiabatic simulations, their intensity reduced by

0.2 eV−1, the solid lines to nonadiabatic simulations. The inset shows the �rst impact

site, reduced into the primitive cell, resolved after bounce events with 200 impact sites

per bounce as well as the angular distribution where red marks the highest scattering

(> 0.94) intensity and purple the weakest (< 1/12).

forward scattering than for backward scattering. This behavior is especially strong for large

polar incidence angles and for the [101̄]-incidence direction (green and red).

While at normal incidence, the H atoms are re�ected at all regions of the primitive cell

(Fig. 3.41(b) inset), the larger the polar angle grows, the more the region in forward direction is

deprived of impacts, emphasizing how the rising hulk of the Au atom at very high polar angles

shields the far side of the Au atoms from impacts (left inset in Fig. 3.41(b) vs those in Fig. 3.42(g)

and (h)). The distribution of the �rst impact site leading to the di�erent bounce events follows

the same pattern as previously remarked (see Sec. 3.3.1 and Sec. 3.3.2).

Figure 3.43(a) and (c) show the di�erential energy loss distribution for specular scattering;

note that, due to the di�erent incidence angles, the specular scattering angles also di�er. At

102



0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Eloss

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
)

-180

-150

-120
-90

-60

-30

0

30

60
90

120

150

(e)

0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Eloss

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
)

-180

-150

-120
-90

-60

-30

0

30

60
90

120

150

(f)

0 1 2 3
0.0

0.2

0.4

0.6

Eloss

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
)

-180

-150

-120
-90

-60

-30

0

30

60
90

120

150

(g)

0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Eloss

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
)

-180

-150

-120
-90

-60

-30

0

30

60
90

120

150

(h)

Figure 3.42.: Total energy loss distribution for di�erent incidence angles with the contributions from

single (blue), double (red) and multibounce events (green); (e) θin = 45◦, φin = 60◦ (Dark

Red), (f) θin = 45◦, φin = 90◦ (purple), (g) θin = 60◦, φin = 60◦ (dark green) (h) θin =

60◦, φin = 90◦ (yellow). The light dashed distributions belong to adiabatic simulations,

their intensity reduced by 0.2 eV−1, the solid lines to nonadiabatic simulations. The inset

shows the �rst impact site, reduced into the primitive cell, resolved after bounce events

with 200 impact sites per bounce as well as the angular distribution where red marks the

highest scattering (> 0.94) intensity and purple the weakest (< 1/12).

specular scattering for normal incidence (Fig. 3.43(a), (c), black), the peak due to multibounce

events is stronger than the �rst peak. The intensity of the multibounce contribution is most

likely due to the fact that many more H atoms penetrate the surface; as seen in Sec. 3.3.1, these

H atoms mainly undergo multibounce events and scatter predominantly normal to the surface.

For the other di�erential ELDs, with growing polar incidence angle, the contribution due to

the multibounce events diminishes slightly and the tail ends of the distributions �atten. As

with the total ELD, with rising polar incidence angle the shoulder increases slightly, but its

contribution is weaker than observed in the total ELD. Furthermore, the peak and rising edge

of the di�erential distribution appear to move very slightly to higher energy losses the higher

θin grows.
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Figure 3.43.: Di�erential energy loss distribution for the incidence conditions: black: θin = 0◦, Dark

Blue: θin = 30◦, φin = 60◦, Navy θin = 30◦, φin = 90◦, Darker Red: θin = 45◦, φin = 60◦,

Purple: θin = 45◦, φin = 90◦, Darker Green: θin = 60◦, φin = 60◦, Yellow: θin = 60◦. (a)

for specular scattering and (b) at θout = 45◦ and φout = 60◦ (c) for specular scattering

(smoothed) and (d) at θout = 45◦ and φout = 60◦ (smoothed). The grey dashed line

indicates the position of the �rst peak for the di�erential energy loss distribution of

normal incidence and scattering, (e) Angular distribution in incidence azimuth direction,

colors as described above. The positive θ denote the scattering angle θout in forward

direction, the negative ones that in backward direction.
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Figure 3.44.: (a)Analysis of double-bounce trajectories with respect to their second incidence site for

θin = 60◦ and φin = 90◦ in a histogram showing the distance traveled between the 1st

and 2nd bounces. The colors mark the collisions with di�erent neighboring Au atoms:

black: nearest neighbor, blue: next-nearest neighbor, green: next-next nearest neighbor,

red: 3×next nearest neighbor, purple: all other neighbors. (b) di�erential energy loss

distribution resolved into total (black), single-bounce (blue), double-bounce (red) and

multibounce (green) events for the exit-angles θout = 55◦ and φin = −90◦.

To compare the predictions made with MD simulations using EMT-JAWK for the scattering

behavior at di�erent incidence angles with experiment, the most promising incidence condition

would be normal incidence as the simulations predict a strong shoulder that towers over the

�rst peak of the di�erential energy loss distribution for specular scattering. However, to observe

this particular scattering condition, the detector would have to be at the same position as the

H atom beam source. Apart from perhaps the small shift of the peak of the di�erential energy

loss distribution to higher energy losses with growing polar incidence angle, the form of the
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di�erential energy loss distributions of the other incidence angles at specular scattering does

not show any distinct di�erences for the incidence conditions I have analyzed (Fig. 3.43). I thus

analyzed the double-bounce events for θin = 60◦, φin = 90◦ as this is the incidence condition that

has given rise to the strongest double-bounce contribution in the total energy loss distribution

compared to the contributions due to other bounce events. It was therefore to be hoped that

I could identify an exit condition where the double-bounce contribution would be particularly

strong, resulting in a di�erential energy loss distribution that shows distinctly di�erent features

than di�erential energy loss distributions for other incidence angles which could be compared to

experiment and seen whether the predictions for these regions would hold true.

The largest contribution to the double-bounce events (62%) for θin = 45◦, φin = 90◦ are

such that collide with the nearest neighbor. This contribution is slightly higher than noted for

θin = 45◦, φin = 60◦ (58%, see section 3.3.1), but in both cases, the H atoms bounce into all

directions after their �rst impact and afterwards also scatter into all directions (see �rst inset

in Fig. 3.44(a)). The collisions with the next-nearest neighbor atoms are much more speci�c in

their scattering direction, but make up only 7% of all double-bounce events. All this makes

the identi�cation of a distinct region that is particularly strong in double-bounce events rather

unlikely. The strongest contribution of double-bounce events over single-bounce events is to

be had in back scattering direction at θout = 55◦ (which again is almost precisely backward

scattering, Fig. 3.44(b)). I could not identify any scattering condition where the second peak

dominates the �rst as clearly as the total ELD suggests.

Fig. 3.43(b), (d) show for an experimentally relevant scattering direction (θout = 45◦, θout =

60◦). While there are di�erences of the di�erential energy loss distributions for the di�erent

incidence conditions, these are not very strong: the peak of the di�erential ELDs remains roughly

at the same energy losses and the overall form of the di�erential energy loss distributions also

does not vary exceedingly (very close scrutiny will allow for a pusillanimously stronger shoulder

Table 3.23.: Exit angles under which high intensity can be expected for di�erent incidence angles for

the electronically nonadiabatic case.

θin, φin (◦) θout (◦) φout (◦)

0, 0 0.0 0.0

30, 60 0�20 60

30, 90 0�25 60�150

45, 60 0�40 25�95

45, 90

60, 60 0�45 0�120

60, 90 0�40 40�140
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at high incidence polar angles). As already pointed out above, a comparison at θout = 45◦,

θout = 60◦ does not only involve comparison of di�erential ELDs arising from di�erent polar

incidence angles, but also from forward (blue, red and green, Fig, 3.23(b) and (d)) and sideways

(dark blue, purple and yellow) scattering. They cannot be distinguished from one another by

the form of their di�erential ELD. As likewise mentioned above, the only quantity that di�ers

slightly is the mean energy loss. It shows a slight decrease with growing polar incidence angle.

Tab 3.23 gives an overview where intense scattering can be expected to be found for the

di�erent incidence conditions.

I therefore expect that upon varying the incidence angle in experiment, no great di�erences

between the di�erential energy loss distributions for di�erent incidence angles will be observed.

3.3.5. The In�uence of Surface Structure on Scattering

One of the drawbacks of studying Au(111) is that it is known to reconstruct, resulting in a large

surface unit cell of
√

3× 22 [32, 33] or
√

3× 23 [34, 35]. So far, for MD calculations on Au(111),

the surface reconstruction appears to have been ignored [3, 4] as the reconstruction requires a

very large unit cell to be simulated. As will be seen in the next chapter (see Chapter 4), the MD-

simulations performed with EMT-JAWK show some discrepancy to the experimental results. To

give an estimate of whether surface reconstruction needs to be included into MD simulations

and if its inclusion improves the comparison to the experimental results, I studied the e�ect of

surface reconstruction on nonadiabatic scattering. For this, I used a 22×6×4 slab and modeled

the discommensuration lines according to the structures given by Wang et al. [41] and Hanke et

al. [43]. Unlike the other calculations presented here, I used a four-layered slab to reduce the

calculation time. To test the in�uence of small faults on the surface, I introduced one Au atom

onto a 6× 6 surface, leading to a coverage of 1/36.

The scattering probability when surface reconstruction is included (Tab. 3.24) is only a little

higher than for the unreconstructed surface. This can be attributed to structure of the recon-

Table 3.24.: Outcomes (in %) resulting from H atom collision with a Au(111) surface for nonadiabatic

and adiabatic (in parenthesis) simulations for di�erent surface structures. The incidence

energy is Einc = 3.33 eV, θin = 45◦ along the [101̄] surface direction at 300K, number of

simulated trajectories: nonadiabatic: 106, adiabatic: 105.

Scattering Surface Subsurface Transmission

structure Adsorption Absorption

relaxed 55 (81) 23 (4) 21 (7) 1 (8)

1 adatom 56 22 22 1

reconst. 59 (80) 15 (2) 23 (5) 0 (13)
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Table 3.25.: Outcomes (%) of scattering for various scattering events resulting from H atom collision

with a Au(111) surface for nonadiabatic and adiabatic (in parenthesis) simulations for

di�erent surface structures. The �Surface�-column refers to trajectories wherein the H

atoms scattered from 1st layer of the surface. The Roman numerals refer to the lowest

subsurface to which penetration occurred. The incidence conditions are Einc = 3.33 eV,

θinc = 45◦ along the [101̄] surface direction and 6×6×6 cell at 300K, number of simulated

trajectories: nonadiabatic: 106, adiabatic: 105.

bounce events penetrating bounces

structure single double multi surface I II III >III

relaxed 23 (17) 34 (25) 43 (59) 82 (64) 17 (23) 1 (8) 0 (3) 0 (2)

1 adatom 22 33 45 83 15 1 0 0

reconst. 24 (19) 37 (29) 39 (52) 88 (74) 11 (17) 1 (7) 0 (3) 0 (0)

structed surface (see Fig. 2.1(c) and (d)) that is closer than the unreconstructed surface, making

it more di�cult for an H atom to go subsurface or to resurface again which agrees well with the

higher percentage of non-penetrating trajectories (Tab. 3.25). The probability to remain at the

surface is lower than for the unreconstructed case, most probably because the way to populate

the surface is to a large part via resurfacing. This is more di�cult if the surface is packed denser

and overlaps subsurface wells in some regions. The absorption and transmission probability is

higher than for the relaxed surface. Although it could be expected that the absorption and

transmission probability should be lower for a reconstructed surface, the higher ratio can be

explained by the previous observation: fewer H atoms might be able to penetrated, but if the

H atoms are hindered from resurfacing again due to the reconstruction on the surface, then

the number of atoms that remain subsurface or are transmitted can well be higher than in the

Table 3.26.: Energy loss in % of incidence energy for various outcomes resulting from H atom collision

with a Au(111) surface for nonadiabatic and adiabatic (in parenthesis) simulations for

di�erent surface structures. The mean and maximum energy loss are shown for the total

and di�erential ELD. Number of simulated trajectories: nonadiabatic: 106, adiabatic: 105.

The accuracy for specular scattering (θout = 45◦ φout = 60◦ ([101̄])) has been reduced to

account for the lower signal-to-noise ratio in the di�erential ELD.

Total θout = 45◦ φout = 60◦

structure Mean Peak Mean Peak

relaxed 35.3 (4.65) 14.0 (1.95) 39 (12) 14 (0.75)

1 adatom 35.6 14.3 39 15

reconst. 32.9 (4.05) 15.2 (2.25) 35 (8.7) 15 (1.1)
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Figure 3.45.: Energy loss distribution for (a) total and (b) specular scattering (θout = 45◦ and φout =

60◦) for the unreconstructed surface (black), the reconstructed surface (dark green) and

the unreconstructed surface with an adatom (dark red). (c) Angular distribution for

scattering along the [101̄]-direction. Negative θout correspond to backward scattering,

positive ones to forward scattering. A cosine distribution is given in navy.

relaxed case. The ratio of the bounce events stays roughly the same, but the peak of the total

energy loss distribution for the reconstructed surface is shifted to higher energy losses and the

shoulder stronger (Fig. 3.45(a), green) while the mean energy loss is slightly lower than for the

unreconstructed surface (see also Tab. 3.26).

Having an adatom on the surface does not change the dynamics much, neither with respect to

re�ection nor with respect to ab- or adsorption (Tab. 3.24) or ratio of bounce events (Tab. 3.25).

The form of the energy loss distribution and its energy losses remain almost the same.

The angular distribution of scattering along the [101̄]-direction is for all three considered

surfaces much the same (Fig. 3.45(c)). They are all equally broad and peak at she same outgoing

angles, showing barely any di�erence amongst one another, although the unreconstructed surface

has a peak at θout ∼ 5◦, the unreconstructed, reconstructed and surface with adatom all show
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Table 3.27.: Outcomes (in %) resulting from H and D atom collisions with a Au(111) surface for

nonadiabatic and adiabatic (in parenthesis) simulations. The incidence conditions are

θinc = 45◦ along the [101̄] surface direction, T = 300K with 6 × 6 × 6 slab, number of

simulated trajectories: 106. For deuterium and hydrogen an incidence energy of 3.27 eV

and 3.33 eV, respectively, was used.

Scattering Surface Subsurface Transmission

Isotope Adsorption Absorption

H 55 (82) 23 (4) 21 (6) 1 (8)

D 58 (74) 21 (8) 20 (13) 1 (5)

a peak at θout ∼ 25◦. The comparison of specular scattering (Fig. 3.45(b)) does not reveal large

di�erences between the surface types: the �rst peak of the di�erential energy loss distributions

is dominant for all surfaces and although the tail of the di�erential energy loss distribution

of specular scattering for the reconstructed surface (green) is a bit more �lled out than for the

unreconstructed surface (black), the increase of a shoulder close to the �rst peak is barely visible.

The addition of an adatom (dark red) to the surface does not result in any remarkable changes

of the di�erential energy loss distribution at specular scattering, either.

It appears therefore that, short of a very severe deviation from the (111) surface structure

(perhaps by changing the crystal facet), the surface structure has little in�uence on the scattering

energy loss distribution.

3.3.6. Isotope e�ect

Hydrogen is a factor of two lighter than deuterium; possessing the same incidence energy, H

therefore has a
√

2 higher impact velocity than D. To study the isotope e�ect, I performed MD

simulations for deuterium and hydrogen with Einc,D = 3.27 eV and Einc,H = 3.33 eV, respectively

which match the incidence energy values that have been used in experiment.

Tab. 3.27 shows the di�erent event probabilities for the calculations that are to be compared to

experiment. Only the adiabatic case shows larger discrepancies: the scattering and transmission

probability of D is lower than for H while the ad- and absorption probability is higher although

the penetrating probability for deuterium (see Tab. 3.21) is lower than for hydrogen. The ratio of

the di�erent bounce events shows a slight preference for multibounce events in case of hydrogen

compared to deuterium. In the nonadiabatic case, the probabilities of scattering, adsorption,

penetration and the ratio between the bounce events (see Tab. 3.27 and Tab. 3.21) do not show

any remarkable di�erence, in accordance with both experiencing the same friction coe�cient

η(r) at a given position r.

Tab. 3.29 shows that the adiabatic mean energy loss of hydrogen compared to deuterium
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Table 3.28.: Outcomes (%) for various scattering events resulting from H and D atom collisions with a

Au(111) surface for nonadiabatic and adiabatic (in parenthesis) simulations. The �Surface�-

column refers to trajectories wherein H atoms scattered from the �rst layer of the surface.

The Roman numerals refer to the lowest subsurface to which penetration occurred. The

incidence conditions are θinc = 45◦ along the [101̄] surface direction, T = 300K with

6 × 6 × 6 cell, number of simulated trajectories: 106. For deuterium and hydrogen an

incidence energy of 3.27 eV and 3.33 eV, respectively, was used.

bounce events penetrating bounces

Isotope single double multi surface I II III >III

H 23 (17) 34 (25) 43 (59) 82 (64) 17 (23) 1 (8) 0 (3) 0 (2)

D 22 (18) 33 (27) 45 (55) 83 (70) 16 (23) 1 (5) 0 (1) 0 (1)

is lower while the inclusion of energy loss to electron hole pair excitation shows the reverse

behavior, i.e. the nonadiabatic mean energy loss for the hydrogen is larger than that of the

D atom. This is also evident from Fig. 3.46(a) and (b). The total energy loss distribution of

deuterium (Fig. 3.46(a)) has a slightly di�erent shape than that of H due to slightly di�erently

shaped total energy loss distributions of the individual bounce events. This di�erence in shape

does not carry into the di�erential energy loss distributions at specular angles (see Fig. 3.46(b)).

Here, the di�erential energy loss distributions of both isotopes show an almost perfect overlap

with one another. The angular distribution along the [101̄]-direction also does not show any

di�erent behavior: both that for D and for H are very broad, almost identically formed, showing

mostly scattering in forward direction and their peak positions agree well (see Fig. 3.46(c)).

To further explore the isotope e�ect, I performed calculations for 1000 trajectories for both

Table 3.29.: Energy loss in % of incidence energy for various outcomes resulting from H and D atom

collisions with a Au(111) surface for nonadiabatic and adiabatic (in parenthesis) simula-

tions. The incidence conditions are θinc = 45◦ along the [101̄] surface direction, T = 300K

with 6× 6× 6 cell, number of simulated trajectories: 106. For deuterium and hydrogen an

incidence energy of 3.27 eV and 3.33 eV, respectively, was used. The mean and maximum

energy loss are shown for the total and di�erential ELD. The reduced accuracy at specular

scattering (θout = 45◦ φout = 60◦ ([101̄])) is due to the lower signal-to-noise ratio in the

di�erential ELDs.

Total θout = 45◦ φout = 60◦

Isotope Mean Peak Mean Peak

H 39.2 (13.1) 14.0 (1.65) 37 (11) 14 (0.75)

D 36.1 (16.7) 12.7 (2.91) 33 (14) 12 (2.6)
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isotopes with the same incidence energy of 3.31 eV for normal incidence at T = 0K for the

electronically adiabatic and nonadiabatic case. To separate the contribution due to the adiabatic

and nonadiabatic energy loss, I also performed an MD simulation at the above conditions where

I keep the Au atoms �xed at their equilibrium positions of the relaxed slab (MDEF-SS). For all

these calculations, I compare the positions of the peaks of the total energy loss distribution due

to the single-bounce events for hydrogen with those of deuterium.

In the electronically adiabatic case, when the energy loss to ehp is switched o�, the total

energy loss distribution due to single-bounce events of hydrogen peaks at 55meV and that of

the deuterium at ∼ 2 times higher energy losses of 105meV (Fig. 3.47, blue), resulting in an

energy di�erence of 50meV. The comparison of the positions of the peaks for H and D for the

MDEF-SS calculations with the solid surface peak at 255meV for the deuterium atom and at
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Figure 3.46.: Energy loss distribution for nonadiabatic scattering of H (black, solid) and D (red, solid)

and the electronically adiabatic scattering results (light, dashed), (a) total, (b) specular

scattering (θout = 45◦, φout = 60◦). (c) Angular distribution of scattering in [101̄]-

direction for H (black) and D (red). θ is the polar angle and negative values correspond

to scattering in backward direction.
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Figure 3.47.: Total energy loss distribution due to single-bounce events for di�erent isotopes (H solid, D

dashed) at Einc = 3.31 eV electronically adiabtic at 0K (blue), electronically nonadiabatic

with frozen surface (red) and nonadiabatic at 0K (black).

∼
√

2 higher energy losses of 355meV for the H atom, resulting in an di�erence in energy loss

to ehp of 100meV (Fig. 3.47, red). It should be noted that the energy loss to electron hole pairs

clearly is much larger than that to phonons for both hydrogen and deuterium.

If the electronically nonadiabatic case with a surface temperature of 0K is considered (that

is, if both adiabatic and nonadiabatic e�ects are considered together), the di�erence in energy

loss amounts to 40meV (Fig. 3.47, black).

The adiabatic energy loss can be estimated by means of the Baule limit which can be repre-

sented in terms of the projectile-surface mass ratio µ = m/M :

∆Ead =
4µ

(1 + µ)2
Einc (3.1)

It follows that for the same incidence energy

∆Ead(D)

∆Ead(H)
=

4µD
(1 + µD)2

Einc :
4µH

(1 + µH)2
Einc ≈

mD

mH
= 2. (3.2)

The nonadiabatic energy loss due to friction is given by the integral

∆Ena =

∫
η(r)v · ds (3.3)

along the entire trajectory. Here, v is the particle's velocity and s the distance along the

trajectory. Assuming the friction coe�cient to be independent on the particle's position, the

ratio of the nonadiabatic energy loss ∆Ena for deuterium and hydrogen can be estimated to be

proportional to their velocities v:

∆Ena(D)

∆Ena(H)
≈ ηvD

ηvH
≈ vD

vH
≈
√

2Einc/mD√
2Einc/mH

=

√
mH

mD
=

1√
2

(3.4)
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One would therefore expect that deuterium should experience a factor of
√

2 lower energy loss

than hydrogen at the same incidence energy. This e�ect is opposite to that for the adiabatic

collisions which becomes clear if Eq. (3.2) is compared to Eq. (3.4).

In conclusion, the isotope e�ect on the energy loss to phonons and to electron hole pair

operates into opposite directions in the simulations, leading to almost a compensation for H and

D whose energy loss behavior is therefore very similar.

3.3.7. The In�uence of Changes in Electron Density

The coupling of electronic degrees of freedom to nuclear ones is taken into account by means of

LDFA (see section 2.5) in this work. The friction coe�cient used in the resulting Langevin equa-

tions is related to the background electron density (Eq. 2.30). In the derivation of this formula

some approximations were employed. Here, I investigated how the electronically nonadiabatic

adsorption dynamics are in�uenced by changes in the background electron density, perhaps of-

fering a possible explanation on the divergences to the experimental results (see chapter,4). I

followed four di�erent approaches:

In the �rst case, I lower the electron background density to electron density from ab initio

simulations (see section 3.2 and Fig. 3.48). To this end, I multiplied the background electron

density the H atom experiences throughout the trajectory by a factor of 2/3. Fig. 3.48 shows

how the reduction of the electron background density of EMT (blue) by a factor of 2/3 (green)

reproduces the electron density from the GGA-DFT calculations (grey) [22] for the top-site.

Fig. 3.49(a), (b) shows the comparison of the ELD resulting from the unmodi�ed background

electron density (black) to the ELDs resulting from the modi�cations of the background electron

density. The consequence of lowing the background electron by 2/3 (green) is that the peak and

shoulder of the (total and di�erential) ELD shift to slightly lower energy losses. The scattering

and adsorption dynamics (see Tab. 3.30, (1)) change slightly towards more scattering and less

adsorption while the percentage of multibounce events increases, in accordance with the slightly

(due to the shift of the �rst peak) longer tail of the ELD (Tab. 3.31, (1)). The shift between

the two ELDs is however not large (Tab. 3.32, (1)), indicating that a small modi�cation to the

electron density is of little consequence.

For the second case, I assume that the background electron density can be described by an

analytic expression given by a logistic equation

n(z) =
0.25

1 + exp [6.0(z − 1.7)]
, (3.5)

where z is the H atom distance normal to the surface. The coe�cients in Eq. (3.5) are chosen such

that the electron density decays at the surface in agreement with the EMT background electron

density. It assumes a constant value within the slab and a constant one outside (Fig. 3.50). The

total energy loss distribution obtained when applying Eq. (3.5) (Fig 3.49(a), red) to calculate
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Figure 3.48.: The EMT background electron density (blue) of an H atom and the one reduced by 2/3

(green) compared to the density of the GGA-DFT calculations (grey) for the top-site.

the background electron density peaks at higher energy loss and its form changes signi�cantly

compared to the total ELD calculated with the unmodi�ed background electron density (black)

in that the shoulder resulting from double-bounce events grows more pronounced and a new

shoulder appears at high energy losses resulting from a large overlap between the total energy

loss distribution of double- and multibounce events. The sticking and ad/absorption behavior

changes slightly towards less scattering and more sticking (Tab. 3.30) and the ratio of bounce

events is more evenly split up (Tab. 3.31). The di�erential energy loss distribution at specular

scattering (Fig 3.49(b), red) is likewise shifted to higher energy losses and shows a slightly fuller

tail. The angular distribution in [101̄]-direction is only insigni�cantly changed; what changes

Table 3.30.: Outcomes (in %) resulting from H atom collision with a Au(111) surface for nonadiabatic

simulations for modi�cations to the background electron density. The incidence conditions

are Einc = 3.33 eV, θinc = 45◦ along the [101̄] surface direction, with a relaxed surface

structure and 6× 6× 6 slab at 300K, number of simulated trajectories: 106.

Scattering Surface Subsurface Transmission

Modi�cation Adsorption Absorption

none 55 23 21 1

(1) 59 20 21 1

(2) 51 27 22 0

(3) 55 23 21 1

(4) 82 4 6 8
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Figure 3.49.: (a) Total energy loss distribution of nonadiabatic calculation for di�erent modi�cations

to the electron density. (b) di�erential energy loss distribution at specular scattering

angle. The dashed line indicates the position of the peak of the di�erential energy loss

distribution resulting from the unmodi�ed EMT electron density (black). (c) Angular

distributions along the [101̄]-direction, negative θ correspond to backwards scattering.

Unmodi�ed background electron density (black), constant density in surface (red), elec-

tron density reduced by factor of 2/3 (green), density increased at repulsive walls (navy)

and electronic friction post facto (yellow).

are to be observed are more likely to be caused by noise than any fundamental di�erence due to

the modi�cation of the background electron density (Fig. 3.49(c), red). It is almost surprising

that such a large modi�cation in electron density does not result in a more signi�cant change in

the ELDs. It is an indication that the region of electron density the H atom moves in or scatters

at sees no great variations and that the H atom does not come close enough to the atom cores

to experience regions of very high electron density.

The latter point is especially emphasized (case 3) when the background electron density is

increased when the H atom comes close to the Au atoms. In this way, while an atom would

116



-6 -4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

z (Å)

D
en

si
ty

(Å
-

3 )

Figure 3.50.: The EMT background electron density (blue) of an H atom and the one given by Eq. (3.5)

(red), for the top-site.

experience higher electron density in a direct collision with the Au atoms, an atom ad- or

absorbed to the surface experiences the same background electron density as directed by the

EMT-parameters. To achieve this modi�cation, the background electron density is multiplied

by a factor w, dependent on the distance rH,Au between H and Au atom (Fig. 3.51):

w(r) =
2

3

1

1 + exp [15.0 (rH,Au − 1.0)]
+ 1 (3.6)

This modi�cation results in no change between in the total ELD (see overlap of black and

Table 3.31.: Outcomes (%) of scattering for scattering events resulting from H atom collision with a

Au(111) surface for nonadiabatic simulations for modi�cations to the background electron

density. The �Surface�-column refers to trajectories wherein H atoms scattered from 1st

layer of the surface. The Roman numerals refer to the lowest subsurface to which pene-

tration occurred. The incidence conditions are Einc = 3.33 eV, θinc = 45◦ along the [101̄]

surface direction, 300K and 6× 6× 6 cell, number of simulated trajectories: 106.

bounce events penetrating bounces

Modi�cation single double multi surface I II III >III

None 23 34 43 82 17 1 0 0

(1) 22 32 46 81 18 1 0 0

(2) 25 35 40 83 16 1 0 0

(3) 23 33 43 81 17 1 0 0

(4) 17 25 59 64 23 8 3 2
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Table 3.32.: Energy loss in % of incidence energy for various outcomes resulting from H atom collision

with a Au(111) surface for nonadiabatic for modi�cations to the background electron

density. The mean and maximum energy loss are shown for total and di�erential ELD

at 300K for 106 trajectories. Due to the low signal-to-noise level, the values at specular

scattering (θout = 45◦ φout = 60◦ ([101̄])) are shown with less signi�cant �gures.

Total θout = 45◦ φout = 60◦

Modi�cation Mean Peak Mean Peak

none 35.3 14.0 37 14

(1) 32.3 13.1 38 13

(2) 37.1 18.2 34 10

(3) 35.3 15.8 37 14

(4) 74.8 14.0 68 13

navy curves in Fig. 3.49(a)), nor in the di�erential energy loss distribution at specular scat-

tering (Fig. 3.49(b)) and very little in the angular distribution for scattering in [101̄]-direction

(Fig. 3.49(c)). This means that regions of high electron density, where a friction coe�cient could

be expected to be of larger impact, are either not sampled during a trajectory or play a very

insigni�cant roll for energy losses.

Posteriori (4) electronic friction post-facto as described by Kroes and coworkers [3, 4] where

the energy loss to electron hole pair is estimated by Eq. (3.4). The velocities, positions and elec-

tron densities are taken from the adiabatic MD simulations. The total energy loss distribution
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Figure 3.51.: The EMT background electron density of an H atom (blue) and the modi�ed one de�ned

by Eq. (3.6) (navy) for the top-site.
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(Fig, 3.49(a), yellow) exhibits some similarities with total ELDs at lowered temperature (e.g.

40K, see section 3.3.2), apart from the fact that the tail of the distribution stretches to very

high energy loss values (above 10 eV) which, given an incidence energy of 3.33 eV appears rather

unphysical. The structure of the ELD has little to do with the structure of the ELD from direct

nonadiabatic simulations at 300K, but both peak in the same region of energy loss. Kroes and

coworkers [3] found that the �rst peak is due to non-penetrative collisions and that the non-

penetrative collision exhibit an eight times higher average energy loss in the nonadiabatic case

compared to the adiabatic case. This is much larger than the factor of three di�erence in mean

energy loss I �nd for the comparison of the total energy loss distribution for the nonadiabatic

and adiabatic case. Accordingly, Kroes and coworkers estimate from comparison with AIMDEF

simulations that the energy transfer to ehp predicted by AIMDEFp should overestimate the

energy transfer from direction inclusion of energy loss to ehp by ∼ 20%. Here, I �nd that the

post-facto approach overestimates the mean energy loss to ehp by a factor of 1.8. From both

the form of the total ELD and the di�erential energy loss distribution at specular scattering, it

is clear that the post facto approach cannot serve to replace the on-the-�y simulation of energy

loss due to electron hole pair excitation.

In summary, I found that large modi�cation of background electron densities have no dramatic

in�uence on the simulation results. These are interesting �ndings for they suggest that the

approach taken by Blanco-Rey et al. [19] during their AIMD simulations including electronic

friction to calculate the friction coe�cient from the electron densities of an undistorted slab is

indeed a reasonable approximation. Furthermore, if only a general impression of the energy loss

to electron hole pairs is needed, the calculation of a friction coe�cient from the local electron

density is not necessary; a well-adjusted constant friction coe�cient will also give reasonable

ideas.

Most of all, however, that such grave changes in the electron density only a�ect the outcome

of the trajectory to a minor extend, makes it seem unlikely that treating the friction coe�cient

as a tensor would lead to much di�erent results.

3.3.8. Conclusion

In conclusion, I investigated di�erent in�uences on the energy loss distribution of H scattering

from Au(111) with and without the inclusion of energy loss to electron hole pair excitation. The

di�erence between the adiabatic and nonadiabatic energy loss distributions is pronounced: while

the adiabatic energy loss distributions are very narrow, peak at very low energy loss (< 3% of

incidence energy) and have a low mean energy loss (< 10% of incidence energy), the energy loss

distributions of nonadiabatic simulations are broad and peak at high energy losses (> 35% of

incidence energy) while exhibiting a large mean energy loss (> 30% of incidence energy). This

makes clear that, if energy loss to electron hole pair is included into the MD simulations, the
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energy loss is dominated by it. This agrees well with the predictions for H at Au(111) of Kroes

and coworkers [3, 4] who estimated the average energy loss to ehp using AIMDEFp and predict

that ehp excitation should be the dominant energy dissipation channel and a much broader

energy loss distribution for the nonadiabatic case. It is also in accordance with the results the

Alducin group [19, 160] obtained with AIMDEF that the energy dissipation to ehp has a large

contribution in the relaxation of hot H on metal surfaces and is about �ve times faster than the

energy dissipation to phonons.

Furthermore, I found the ad- and absorption probabilities of H at Au(111), the dynamics of

scattering and the dynamics by which the ad/absorption sites were reached to be fundamentally

di�erent in the adiabatic and nonadiabatic case. I investigated the energy loss behavior of the

nonadiabatic simulations in detail:

Under most incidence conditions, scattering happens predominantly in forward direction. The

energy loss distributions exhibit a peak at low energy losses mostly due to single-bounce events,

and a shoulder and tail made up by double- and multibounce events. I investigated the depen-

dence of the translational energy loss on di�erent incidence conditions and scattering condition.

I found that under the same incidence conditions, for forward scattering, the mean energy loss

of the di�erential ELDs drops slightly towards higher polar scattering and incidence angles. The

peak of the di�erential ELD for forward scattering remains at the same energy losses. For back-

wards and sidewards scattering, the peak and rising edge shift to higher energy losses and the

peak diminishes in favor of the shoulder with increasing θout. There is no signi�cant change to be

observed in the form of the di�erential ELD for variation of azimuth and polar incidence angle.

The angular distribution in incidence direction is found to be broader toward forward scattering

with large polar incidence angle and for the [101̄]-direction compared to the [112̄]-direction.

Lowering the simulation temperature leads to a separation of peaks due to di�erent bounce

events and at ∼ 40K, some of the peaks can be attributed to distinct bounce events. Changes

in the incidence energy show alike behavior of the energy loss distributions between Einc = 0.99

and 3.33 eV such as almost linear dependence of the peak position and mean energy loss on the

incidence energy. For Einc > 5.0 eV the energy loss distributions change as a new peak arises.

Changes in both surface structure and the background electron density have little in�uence

on the energy loss behavior.

The energy loss distribution resulting from the scattering of deuterium from Au(111) shows

only little di�erences to the one from H scattering, because the isotope e�ect on the energy loss

to phonons and ehp operates into opposite directions in the simulations.

120



3.4. Surface Reconstruction

I have simulated the primary reconstruction pattern of the Au(111) surface consisting of discom-

mensuration lines using EMT-JAWK. For this, I focused on the 22×
√

3 reconstruction, as this

has been the focus of previous DFT simulations [41, 43]. To test for the temperature dependent

stability of the discommensuration lines, I used a number of 22× 6× l slabs (with l = 4 �1 5 and

l = 21) with a 13-Å vacuum distance. In the surface layer, one additional atom per atom line in

the [11̄0] direction was added, resulting in a 23 × 6 surface cell. Using the structure suggested

by Wang et al. [41] as an initial guess, I let the slab undergo simulated annealing of ten cycles

for l < 13, �ve for l = 13 to 15 and four for l = 21, keeping the lowest three layers �xed

to their relaxed lattice positions. The simulated annealing was performed using the extended

Verlet algorithm as a thermostat, each cycle starting at 0K and progressing in ten temperature

intervals to Tmax before progressing to 0K in another ten intervals. Each step was equilibrated

for 5 ps so that one annealing cycle progressed over 100 ps using a propagation step of 1 fs.

Using Tmax = 700 and 800K, I checked the surface structure after the annealing was completed

For Tmax = 700K, the discommensuration lines were stable for all sampled number of layers

l whereas for Tmax = 800K the discommensuration lines were found to decompose into an

unreconstructed surface with an island of six atoms on the surface for l = 13; for l = 4, 8, and

15 the discommensuration lines partially decomposed with three adatoms on the surface. After

another annealing cycle for l = 8, the surface reconstruction had also completely decomposed,

forming an unreconstructed surface with an island on the surface. For l = 4 and l = 15,

the partial decomposition remained stable for another four annealing cycles (400 ps) and the

discommensuration lines could not be obtained again. I therefore conclude that the 22 ×
√

3

surface reconstruction is stable up to at least Tmax = 700K and becomes unstable around

Tmax = 800K. These �ndings are in reasonable agreement with the x-ray di�raction studies of

Huang et al. [182] where they observed that, at ∼ 865K, the reconstruction begins to lose its

long-range order and forms a more isotropic phase.

Fig. 3.52(a) shows the surface corrugation after reconstruction for di�erent numbers of layers,

l, in the form of a height pro�le. With l > 9, the di�erence in height is almost negligible while

for fewer layers, the discommensuration lines are still in�uenced by the fact that slab has only

a limited number of layers. The maximum corrugation height hmax − h0 = 0.12Å for l = 6 and

0.2Å for l = 20. These values, as well as slight di�erences between the depth of the minima,

are in good agreement with the corrugation heights found experimentally by Wöll et al. [236] of

0.15±0.04Å and by Barth et al. [32] of 0.12±0.05Å for the narrower regions and 0.20±0.05Å for

the wider regions. The structural features of the reconstruction were further studied using the

structure of a four-layered slab. Fig. 3.52(b) shows that the atoms of the reconstruction have

the lowest height when they lie directly over the fcc-hollow sites (green) and the second lowest
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Figure 3.52.: Height pro�le of the 22 ×
√

3 discommensuration line along the [11̄0]-direction (a) for 4

(gray), 6 (black), 9 (blue), 12 (green), 15 (yellow) and 21 (red) layers, (b) for surface

atoms (black) in relation to the atoms of the �rst (blue) and second (green) sublayer. (c)

Distance d in x-direction to the closest fcc (green) and hcp (blue) site. (d) displacement

in y-direction of the discommensuration line (black) with respect to ideal fcc lattice y-

coordinate and the atoms of the �rst (blue) and second (green) sublayer. The individual

lines have been shifted in x-direction by multiples of the next-neighbor distance. They

have furthermore been multiplied according to periodic boundary conditions.

when they are directly above the hcp-hollow (blue) sites. Likewise, when the atoms of the �rst

layer are half covering the hollow sites (so over the bridge sites), the largest heights are reached.

This is in excellent agreement with DFT simulations [41�43], which predict that the highest

surface atoms correspond to the greatest mismatch of the surface atoms with the atoms of the

layers below in the bridge regions and that the deepest minimum is that above the fcc-sites.

Hanke et al. [43] furthermore classi�ed the atoms of the discommensuration lines according to

whether they were closer to the fcc or hcp-hollow sites, �nding fcc-regions with a width of 38Å,

and hcp-regions with a width of 28Å, in agreement with the experimental observation that the

fcc-regions are wider than the hcp-regions [32, 43]. In very good agreement with this, I �nd

the fcc-regions (Fig. 3.52(c), green) to be 36Å wide and the hcp-regions with a width of 30Å.

In y-direction, the discommensuration line is bent by ∼ 0.8Å in [112̄]-direction and reaches

its maximum in displacement above an hcp-site (Fig. 3.52(d)), as also described by Torres et
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al. [42]. The displacement of the discommensuration line of ∼ 0.8Å in [112̄]-direction is also in

agreement with the ∼0.9Å displacement observed experimentally [32].

Furthermore, using a six-layered slab, I calculated the energy ∆E required to form the 22×
√

3

(23×
√

3) reconstructed surface according to the way by which Hanke [43], Wang [41] and Torres

et al. [42] proceeded in their DFT simulations:

∆E = Erec − Eunrec − nEAu,bulk (3.7)

Here, Erec is the total potential energy of a reconstructed slab, Eunrec is the total potential

energy of an unreconstructed slab, n is the number of extra atoms in the reconstructed surface

and EAu,bulk is the bulk energy of an Au atom. The bulk energy is chosen because an Au atom

inside the bulk is deemed the most stable Au atom available, making ∆E thus a lower limit of

the actual surface stability. In EMT, EAu,bulk = 0.0 eV. Using Eq. (3.7), I �nd the reconstructed

surface to be less stable than the unreconstructed surface by 0.31 eV (0.25 eV) for a 22 × 1 × 6

(23×1×6) slab. This corresponds to 13meV (10meV) per surface atom that would be required

to build up a reconstructed surface. These results are in disagreement with the DFT simulations

of Wang [41], Hanke [43] and Torres [42] who observed that the reconstruction is energetically

favorable with between −9 and −25meV per surface atom. Because the surface reconstruction

hosts one extra atom per discommensuration line compared to the unreconstructed surface, I

also examined if having an adatom on the surface is more or less favorable than the reconstructed

surface and found that the reconstructed surface is ∆E = −0.57 eV (−0.63 eV) more stable than

the unreconstructed surface with an adatom for a 22× 1× 6 (23× 1× 6) slab. This corresponds

to −25meV (−26meV) per surface atom. It means that, while the formation of the surface

reconstruction might be unfavorable compared to the perfect structure in EMT-JAWK, it is

much more favorable than creating adatoms on the surface. Accordingly, the reconstructed

surface does not expell the additional atom immediately during simulated annealing, but only

does so at higher temperatures when the thermal motion becomes strong enough to push it out.

To see if, due to the large lattice constant of a0 = 4.201Å of the EMT-JAWK, another

reconstruction pattern is more stable, I checked the dependence of the stability of the surface

reconstruction on the size of the reconstruction. For this, I used an underlying b × 6 × 6 slab

where b is the slab size index and was sampled for b = 22 − 44, with one extra atom per

discommensuration line. I performed simulated annealing to a maximum temperature of 700K

with ten annealing cycles, again keeping the three lowest layer �xed. Fig. 3.53 shows that, for

all slab sizes, the surface reconstruction is less stable than the unreconstructed surface. The

closer the surface comes to the unreconstructed structure, the more energetically favorable the

system. However, the inset shows that at the same time, adatoms on the surface are much less

stable than the reconstructed surface.
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Figure 3.53.: Energy of reconstruction ∆E as a function of the slab size index b for the di�erence

between reconstructed and unreconstructed surface (black) and, in the inset, for recon-

structed surface and unreconstructed surface with adatom.

In modeling the surface reconstruction, the EMT-JAWK is capable of reproducing the most

important geometrical features that have been described using DFT. However, the reconstruction

in EMT-JAWK is not as energetically favorable as the one found with DFT. But it should

be remembered that Eq. (3.7) provides an upper limit to estimate the stability of the surface

reconstruction. Simulated annealing over at least 400 ps has shown that, up to a temperature

of at least 700K, the reconstruction remains perfectly stable. Furthermore, the approach taken

with Eq. (3.7) appears a little ad hoc as it is unlikely that a Au atom would move up from the bulk

to form the surface reconstruction. It seems much more likely that the surface reconstruction is

formed to avoid forming small islands on the surface or having adatoms. Indeed, if the energy

di�erence between the reconstructed surface and an unreconstructed surface with adatoms is

calculated, the reconstruction proves much more favorable.

Seeing that the discommensuration lines are stable to annealing up to high temperatures

within the EMT-JAWK approach opens the way to further studies dealing with the Au(111)

surface reconstruction: EMT-JAWK allows the simulation of much larger structures than pos-

sible with DFT. In the future, the secondary reconstruction, the herringbone pattern, could be

investigated as well as the reconstruction at step edges and the elbow- and U-shaped patterns

the reconstruction assumes.
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4. Comparison of MD simulations to

Experimental Results

In this chapter I compare the scattering results simulated with EMT-JAWK reported in the

previous sections with results of inelastic scattering of H atoms from a Au(111) surface which

Oliver Bünermann, Yvonne Dorenkamp and Hongyan Jiang measured using the experimental

setup described in our paper [44]. They were able to create a nearly monoenergetic H atom

beam by laser photolysis of hydrogen iodide. Dependent on the photons used for dissociation

and the spin-orbit state (either 2P1/2 or 2P3/2) of HI whose dissociation products are selected

for photolysis, the incidence energy of the H atoms can be varied. After scattering, the H atoms

are detected by Rydberg atom tagging with a detector which can be rotated to detect atoms

scattered in the plane of incidence as a function of the �nal polar angle θout. They detect

H atom time-of-�ight (TOF) which are transformed with a Jacobian to translational energy

distributions [44].

In this chapter, I will concentrate on the comparison of theoretical predictions for energy loss

distributions and the experimental results. I will also present a brief comparison of predicted

and measured angular distributions. Some of the comparisons made here have already been

published (see Ref. [44]). For the sake of clarity, within this chapter, the `di�erential energy loss

distributions' have been abbreviated to `energy loss distribution'. Within this chapter, the term

`energy loss distribution' will therefore always refer to the di�erential energy loss distributions.

4.1. Energy Loss Distributions

All the conditions probed experimentally are listed in Tab. 4.1. In Figs. 4.1, 4.2, 4.3 and 4.4

I show comparisons of energy loss distributions between experiment and MD simulation for

di�erent exit conditions, di�erent incidence conditions, the dependence on the energy loss and

the isotope e�ect, respectively. Conditions listed in Tab 4.1 for which no comparison are shown

exhibit similar behavior.

The energy loss distributions from electronically adiabatic MD simulation all show a most

probable energy loss of < 0.1 eV (Figs. 4.1 and 4.2, blue). The energy loss distributions are

sharply peaked, narrow, with little contribution to the energy loss above 1.0 eV. The measured
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Table 4.1.: Incidence conditions probed experimentally. The surface was kept at a temperature of

300K.

Einc (eV) θin (◦) φin,out (◦) θout (◦)

Hydrogen

3.33 20 [101̄] 20, 60

30 [101̄] 30, 60

45 [101̄] 0, 15, 30, 45, 60

60 [101̄] 0, 60

45 [112̄] 45

2.76 45 [101̄] 45

2.62 45 [101̄] 0, 45

2.17 45 [101̄] 0, 45

1.92 45 [101̄] 0, 45

1.22 45 [101̄] 45

0.99 45 [101̄] 0, 45

Deuterium

3.27 45 [101̄] 45

3.27 45 [112̄] 45

energy loss distributions (black squares) peak around 0.5 eV energy loss and are very broad

having a very wide tail to high energy losses up to the incidence energy (3.33 eV). The mean

energy loss has a linear dependence on the incidence energy (Fig 4.3(c)) for both measured data

(black squares) and electronically adiabatic MD simulations (blue, �lled circles), but both mean

energy loss and slope di�er considerably. From the discrepancy in shape, tail, peak position and

dependence of the mean energy loss on the incidence energy, it is clear that the adiabatic level

of simulation is not suited to describe the experimental results. It should however be pointed

out that the adiabatic simulations predict a decline of energy loss with growing polar incidence

angle for forward scattering, a trend that is also observed experimentally.

If energy loss to electron hole pairs on the level of LDFA is included into the MD simulation

and the resulting energy loss distribution (Figs. 4.1 and 4.2 red) compared to experiment, the

results are very di�erent: the nonadiabatic energy loss distributions peak at Eloss ∼ 0.5 eV, are

very broad in shape and have a long tail that reaches up to complete loss of all translational

incidence energy. They are in good agreement with the experimental data, not only for the

general shape but also for peak and tail description of the translational energy loss distribution.

This agreement holds for all exit conditions (Fig. 4.1) and incidence conditions, no matter the

incidence angle (Fig. 4.2) or the incidence energy (Fig. 4.3). The decline of polar incidence angle
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Figure 4.1.: Energy loss distribution of experiment (black squares) and the electronically adiabatic

(blue) and nonadiabatic (red) distributions from MD simulations for di�erent exit con-

ditions. Incidence conditions: Einc = 3.33 eV, θin = 45◦ along the [101̄]-direction (a)

θout = 0◦ (b) θout = 15◦ (c) θout = 30◦ (d) θout = 60◦.

(polar scattering angle) at �xed scattering angle (�xed incidence angle) leads to a slight decline

in mean energy loss observed both for the measured and nonadiabatically simulated ELDs. The

dependence of the predicted mean energy loss on the incidence energy (Fig. 4.3(c) red, open

circles) is in very good agreement with the measurements (black, squares).

The agreement between ELD measured experimentally and from nonadiabatic simulations

also holds for deuterium (Fig. 4.4).

From these comparisons of experiment and theory, it is clear that H or D atoms colliding with

Au(111) lose most of their translational energy to electron hole pair excitation and that the ehp

excitation can be described on the level of LDFA. This does not mean that energy loss to phonons

can be completely neglected in the simulations; as already shown in section 3.3.2, the reduction

of phonon activity at reduced temperature leads to a strong separation of energy peaks due to

single-, double- and multibounce scattering. The phonons have an important �blurring e�ect�,

however, it is clear from the minor contribution of phonon excitation to the peak positions (also

those of the di�erent bounce events) that the translational energy is dominantly dissipated to

ehp excitation.

127



□□□
□□
□□□□□□
□
□□□□□□□
□
□□□□□
□□
□□□
□□□

□□□□□□□
□□□
□□□□
□□□□□
□
□□
□□□□□
□□
□□
□
□□□

□
□□□

□
□□□□
□□□
□
□□
□
□□
□□□□□□□□□

□□□□□□□□□
□
□□
□□□□
□□□
□
□□
□□□□□□
□□□□□□
□
□□□
□□□□
□□
□□□□□
□
□
□□□□□□
□□
□
□□□
□
□
□□□

□□□□
□□
□□□
□□
□□□□
□□□□□
□
□□□□□
□
□□□
□□
□
□□□□□
□□□
□□
□
□
□
□
□

□□

□□□□
□□□□

□□□
□
□□□
□□□
□
□□□□
□□□
□
□□□□□□□□□□□□

□□□□□□
□□□□
□□□□
□□□
□□
□
□□□□□
□□
□
□□□□□□
□
□□□
□□□□
□
□□□
□
□□
□□
□
□

□
□
□□
□□□
□□
□
□

□
□□□
□
□
□
□□□
□□
□
□□
□□□
□□
□□□□
□
□
□
□
□□□

□□
□□

□□□
□
□
□
□
□
□
□□
□□□□
□□□
□□
□
□□□□□
□□
□□□□

□□
□□
□□
□
□□□
□□□
□□□
□
□□□□
□□□□□

□□□□
□□

□
□
□□
□□
□□□□□
□
□□
□□□□

□□□
□□
□
□
□
□□
□□
□□□
□□□□
□
□□□□□
□
□□□
□

□
□□□□
□□
□
□□
□
□
□□
□
□
□
□□□□□□□□□

□□
□
□
□
□
□□□□
□□□
□□□
□□
□□□□□□

□□□□□□
□
□□□□
□□□
□
□□
□
□□□

□□□□□
□□□
□
□
□□□
□
□
□
□
□□□
□
□
□
□
□□□
□□
□□□□□□□
□□□□
□
□□□
□□□□□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
) ×1/4

(a)

□□
□□
□□
□□
□
□□
□□□□□□□□

□□□□
□□

□□
□□□
□□
□□□□

□□□
□

□□□
□□
□□
□□□□
□
□
□
□
□
□□□
□□□
□□
□□
□
□
□□
□
□□□□
□
□
□□□
□□□□□
□□
□□

□
□□□
□□□□□□□□□□□□

□□□□
□
□

□□
□□
□
□□□
□□□
□

□
□
□□
□
□
□
□□
□
□□
□□
□
□

□□□□

□
□
□□
□
□
□
□□

□
□□□□
□
□
□□
□
□□
□
□□
□□
□□

□□□□□□
□
□
□
□
□
□
□

□□□
□□□□□□□
□
□□
□□
□
□□
□□□□
□□□
□
□□
□
□□
□
□□□□□□□□□□□□

□□□□□
□□
□
□
□□
□
□

□□□□□
□
□
□
□
□
□
□
□
□□□
□□□
□□□
□
□□

□□□□
□
□
□
□
□
□□□□
□□□□
□□□□
□
□
□
□□
□□
□
□
□□
□□□□
□
□
□□
□
□□□
□
□□

□□
□
□
□□
□□

□

□□□

□□
□□

□

□□□

□□

□
□
□□□□
□
□
□□
□□
□□
□
□□

□
□
□
□□
□□
□□

□□□
□

□□
□

□□□
□□□
□□

□
□
□□

□□□□
□
□
□

□□□
□
□□□

□□
□
□□
□□□□
□
□□
□□

□□□

□□
□□

□□
□
□□□□□□
□
□

□

□□□□

□□□□□

□□□
□
□
□
□
□
□□

□□□
□□□
□
□
□
□□□□□□□□□□

□
□
□□□□

□□□
□□
□□
□□
□
□□□
□
□
□□□
□
□

□□□

□□□
□
□□
□
□□□

□□
□
□
□□
□□□□

□
□□□

□□
□
□
□□□
□

□□
□□
□
□
□□
□
□
□
□
□
□
□
□□□
□
□
□□□
□
□□□
□
□
□□
□

□
□□
□

□□□
□□

□□
□
□
□□□□□
□□
□
□□□□
□
□□□□□□□□

□□□□□□□
□□□□□□□□□□□□□□□□□

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

□□□□□□□□□□□□□
□□□□

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
) ×1/4

(b)

□□
□□□□
□
□□
□□□
□□
□
□□
□
□
□□□□□□□
□□□□
□
□□□□
□□□□
□□□□
□□
□
□□□
□□□□□□
□
□□□□
□□
□□□□□□□□

□□□□□□
□□□□□□
□□
□□□□□□□
□
□□
□□
□□□□
□□□□□□□
□□□□□
□□□
□□□□
□
□□
□□
□□□□□
□□□□□□
□

□□□□
□□□□□□□
□
□□
□□
□□□
□□
□□□□□□□□□□□□□□

□
□□
□
□□□

□
□□□
□
□□□□□□
□□
□
□□□□□□
□□□□
□□□
□□□□□□
□□□□□□
□□□□□
□□□
□□□□□□
□□□□□□
□□
□□□□
□□□□□□□
□□□□
□
□□□□
□□
□□□
□□□□□□□
□
□□
□
□□□
□
□□
□□□
□
□
□□□□□□
□□□
□□□
□
□□□□
□□□
□
□□□□□□□
□
□□□□
□□□
□
□□□□□□
□
□□□
□□
□□

□□
□□
□
□
□□□
□
□□□□□□□
□
□
□□□□
□
□□
□□□□□□□□□□□□

□
□
□
□□□□
□□□
□
□□□
□
□□
□□
□□□□□□
□
□
□□
□□□□□□□□

□□□□
□
□□□□□□
□
□
□
□□
□
□
□□
□
□□□□
□□□□□□□□□

□□
□
□□
□□□
□□□□
□□□
□
□□□□□□
□□
□□
□□□
□□□□□
□□□□
□□
□□
□□
□□
□□
□□
□□
□□
□□□□
□□□□
□
□□□□
□□□
□□
□□□□
□□□
□□□□□
□□
□
□□□□
□□□□
□□
□□□□□□□□□□□□□□□□□□□□

□
□□□
□□□□□□□□

□□□□
□□□
□□□□□□□□□

□□□
□
□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
) ×1/4

(c)

□□□□
□□□

□□□□
□□□□□□□□□□

□□□□□□□
□□□□□
□
□
□□
□□□□□
□□□
□□
□
□□□□
□□□□
□□□□□
□□
□□□□
□□□□□□
□□□□
□□
□□□□
□
□□□
□
□□□□□
□
□
□□
□
□□□□
□
□□
□□
□
□□□□
□□□□□□□
□□□□□□□□□□□□□□□□□□

□
□□
□□
□□
□
□□
□□
□□□
□
□□□
□□□□□
□□□
□
□□□
□
□□□
□□
□□□

□
□□
□
□
□
□□
□□
□□
□□□□
□□□□□□
□
□
□
□
□
□□□
□□

□□
□□□
□□
□□□
□
□
□□□□□□□□□

□□□
□□□□
□□□□
□□
□□
□
□
□□
□□
□□□□
□
□
□
□□
□□
□□
□□□
□□□□□□□□

□□□□□□
□□
□□□□

□□□
□

□
□□
□
□□
□□□□□□
□
□

□□
□
□
□
□□
□□□□□
□
□
□□
□

□
□
□
□

□□□□
□□□

□□□□
□□□
□□
□
□
□□
□□

□□□□
□
□□□□
□□□□□□□
□□□□□
□□
□
□□□
□
□□
□
□
□□
□
□
□□□
□
□□□□

□□
□
□□□□
□□□□
□
□
□□

□□
□
□□□□

□□□□
□□□□
□□□□
□□
□
□□
□□□
□
□□
□
□□
□
□□
□
□
□
□□□
□□□□
□□□□
□□□□□□□□□□

□□□□□
□
□□
□
□□
□□□
□
□□□□
□□□□□□□
□
□□□
□
□□
□
□
□
□□
□□
□□□□□□
□
□

□□□□

□□□□

□□
□□□
□
□□□□
□□□□□□

□□□
□

□□
□□
□□□□□□□□□□□□□

□□
□
□□□□□
□□□
□

□□□□
□□
□□
□□
□□□□□□□□□□□□□□□□□□□

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eloss (eV)
P

ro
ba

bi
lit

y
D

en
si

ty
(1
/e

V
) ×1/4

(d)

□□□□□
□□□□□□□
□□□□□
□□□□□□□□□□

□□□□□□
□
□□□□□□□□□□□□

□□
□□□□□□□□□□□□□□

□□□□□□□□□
□□□□□□
□
□□□□
□
□
□□□□□□□□□□□□

□□
□□□
□□
□□
□
□□□□□□□□□□□

□□□□□□□□
□
□□□
□□□
□□
□□□□
□□□□□□□□□

□
□□□□□
□□□
□□□
□□□□
□□□□
□□
□□
□□□□
□□□□
□□
□□□□
□
□
□
□
□□□
□□□□□
□□□□□□
□
□□□□□□□□

□
□□□□□□□□

□□□□□□□
□□
□□
□□□□□□□□□

□□□□□
□□□□□□□
□□
□□
□□□□□□
□□□□
□□
□□□
□□□□□□□
□
□□
□□
□□□□□□□
□
□□
□
□
□
□
□□
□□□□□□□□

□
□□□
□

□□□
□
□□□
□
□□□□
□□
□□□□
□□
□□
□□□□□□□□

□□□
□□□
□□□□
□□
□
□
□□□□□□□
□
□□□□□□□□

□
□
□□
□□□
□

□□□
□
□□□
□□
□□
□□
□□

□□□□

□□□□
□□□□
□
□
□□□□
□□
□□□
□
□□□
□
□□□□□□
□□
□□
□□
□
□
□
□
□□□□
□□□□□□□
□
□□
□
□□□□□□

□
□
□□
□□
□□□□□
□□□
□
□□
□□
□
□
□□□□□□□□□

□
□□□
□□□
□
□
□□□□□□□□

□□
□□□□
□

□□□□□
□□
□
□
□□

□□
□□
□□
□□□
□□□
□□□□□□□
□□□
□
□
□□□
□
□
□□□□
□□□
□
□
□
□
□□□□□□□□

□□□
□
□□□□□□
□□□□□□□□□□□

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
) ×1/4

(e)

□□
□□
□□
□□□□
□□
□□
□
□□
□□□
□
□□□
□□
□□□
□
□□□
□□□□□
□□□□□□
□
□□□□□□□
□
□□□□
□□□
□

□□□□□□□□□□□□□□
□□□
□
□□
□□□□□
□□□
□
□
□□
□
□□
□□

□□□
□□□□□
□
□
□□□
□
□□
□
□□
□□
□
□
□□□
□□□□□□
□□□
□□
□□
□□□□□
□

□
□□□
□
□
□
□□
□
□
□
□□
□
□
□
□□□
□
□
□
□
□□
□□
□□□
□□□□□□
□□
□
□□
□□
□
□
□□□

□
□□□
□
□□
□□□
□□□
□□□
□□□□□□
□□□
□□□
□
□□
□□
□□□□□□

□
□
□□

□
□
□
□
□□
□

□□□□

□
□□□
□
□□□□
□
□□□□
□□□□
□
□□□
□
□□□□
□
□□□
□
□□□
□□□

□
□
□

□□
□
□
□□□□□□□
□□
□□□□□□□

□
□□□□□
□
□
□□
□□□□
□□□□□□□□

□
□□
□
□
□□

□□
□
□
□
□
□□
□□
□□□

□
□□
□

□□
□□

□□□□□
□□□□
□□□
□
□□□
□□□□□
□
□□
□

□
□
□□□□

□□
□□

□□□□□□□□□
□□
□
□□□
□
□
□□
□□
□□
□
□□□□
□□□
□□□□
□
□□

□
□
□□

□
□□□□
□
□□□□
□□□□
□□□
□
□□□□□□
□□

□
□□□□□
□□□
□
□
□□□

□
□
□□
□□□

□
□□
□

□

□□
□

□□
□
□□
□

□□
□□
□
□□□□□

□□□
□

□□
□
□
□

□□□□
□□□□
□
□□□
□
□□□□
□
□
□□□
□
□□□
□
□
□□
□
□□
□□
□
□
□
□
□
□□□
□
□□□□□□□□

□□□
□
□□□□
□□□□□□□□□□

□□□
□□□□
□□□□□□□□□□□□□□□□□□□□□□□

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
) ×1/4

(f)

□□□□
□□□□□
□□□□
□
□□□□
□
□□□

□□□

□
□
□□
□
□

□□□

□

□□□
□
□□□□□□□
□
□□□
□
□□□□□
□□
□□□□
□
□□
□
□
□□
□
□□□
□
□□□□
□□□□□
□□□
□
□□
□
□□□□
□□□□
□□
□□□
□□
□□□
□
□□□□
□□□□
□
□□□
□□
□□□
□
□□□
□
□
□□□
□
□□□
□□□
□□□□□□□□□

□□□□□□
□□
□□□
□□
□
□□
□
□□
□
□
□
□□
□□□□□
□
□□□□□
□□
□□□
□
□
□
□□□□
□□□
□□□□

□□
□
□

□□□□

□
□□□
□

□
□□□

□

□
□□□
□□□□□
□□□□
□
□□□□□
□
□□□

□□□
□□□
□
□

□
□
□
□
□
□□
□
□□
□
□
□
□
□□
□
□
□□

□
□□
□
□□□
□
□
□□□

□□□
□□□
□□
□
□
□□□
□□
□□□
□□
□□
□□
□
□
□
□

□□□□
□
□
□□
□□
□□□□□□□
□
□□
□□
□□□
□
□□□
□

□
□□□
□
□□□□

□
□

□
□

□
□
□□□
□
□□
□□□□

□□
□□
□
□

□
□
□□□
□□
□□□
□
□□
□□□
□□□□□
□
□□□
□□
□□
□

□
□□
□□
□□
□□
□□
□□
□□□□
□
□□□
□□□□□□□
□□

□
□
□□

□□□
□□
□
□
□□
□
□□
□□

□□□□□
□
□□□
□□□□□□
□
□□□□
□

□□
□□
□
□□
□□
□□□□□□□□□

□□□
□
□
□
□
□□□□□□

□□□□
□□□□□
□
□□□
□
□□□
□
□
□□
□□□
□□□□□□
□□□□□□□
□□□
□□□□□
□
□□□□□
□
□
□
□□□
□

□□□

□
□
□□
□
□□
□
□□
□□□□
□□□□
□□□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
) ×1/4

(g)

□
□□□□
□
□□
□□□□□□□□□□□□□□

□□
□□□
□
□□□□□□□□

□□□□□□□
□□
□□□□□□□
□□□□□□□
□□□
□□□□□□□□

□□□□□□
□□□□□□
□
□
□□□□□□□
□□□□□□□□□□

□□□
□□□□□□
□□□□□□□
□□□□□□□
□□□□□□
□□□□□
□□□□□□
□
□□□□
□
□□
□□□□□□
□□
□□□□□□□□□□□□□□□□

□□□□
□□□□□□□
□□□□□□□□

□□
□□□□□□□□□□

□□
□□□
□
□□
□
□□□
□□□□□□□□□□□□□

□□
□□□□□□□□□□□□□□□

□□□
□□□□□
□□□□
□□□
□□□
□
□
□
□□
□□□□□□□□

□□□□□
□□□□□□□
□□□□□□□□□□□

□□□□□□□
□□□□□□□
□□□□□
□□□□□□□
□□□□□□□□□

□□□
□□□□□□□□

□□□□□□□□□□□
□□□□
□□□□□□□□□□□

□□□□□□□
□□□□□□□
□□□
□□□□□
□□□
□
□□□□□□□□□

□□□□□□
□□□□
□□□□□□□□□□□□□□□□□

□□
□□□□□□
□□□□□
□□
□□
□
□
□□□
□
□□□□□□□
□□□□□□□□□

□□□□
□□□□
□□□□□
□□□□□□□□

□□
□□□□
□□□□□
□□□□□□
□□□□□□□□□□□

□□□□
□□□□□□□□□□□□□

□□□□□□□□
□□□□□□□□□□□□

□□□□□□□□□□□□□□□□□□□□□□
□□□
□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eloss (eV)

P
ro

ba
bi

lit
y

D
en

si
ty

(1
/e

V
) ×1/6

(h)

Figure 4.2.: Dependence of Energy loss distribution of experiment (black squares), electronically adi-

abatic (blue) and nonadiabatic (red) MD simulations at Einc = 3.33 eV on di�erent inci-

dence angles (a) θin = 20◦, θout = 20◦ along [101̄] (b) θin = 20◦, θout = 60◦ along [101̄],

(c) θin = 30◦, θout = 30◦ along [101̄] (d) θin = 30◦, θout = 60◦ along [101̄] (e) θin = 45◦,

θout = 45◦ along [101̄], (7) θin = 45◦, θout = 45◦ along [112̄] (h) θin = 60◦, θout = 0◦ along

[101̄] (j) θin = 60◦, θout = 60◦ along [112̄].
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Figure 4.3.: Experimentally measured translational energy distribution (squares) and that from nona-

diabatic MD-simulations (solid lines) for specular scattering for θ = 45◦ and φ = 60◦ (a)

For Einc = 3.33 eV (red), Einc = 2.17 eV (blue), Einc = 0.99 eV (green) (b), Einc = 2.62 eV

(orange), Einc = 1.92 eV (purple), Einc = 1.22 eV (yellow). (c) Mean energy loss of en-

ergy loss distributions plotted against incidence energy from experimental measurements

(black, empty squares) and electronically adiabatic (blue, �lled circles) and nonadiabatic

(red, empty circles) MD-simulations. The solid lines indicate a linear least square �t to

the data. These results have been partly published [44].
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As good as the agreement between the nonadiabatic MD simulations and the measured trans-

lational energy loss distribution is, there are still some systematic deviations. The peak of the

measured energy loss distribution descends continuously into the tail at high energy losses. The

energy loss distribution from the nonadiabatic MD-simulations shows a sharp peak followed by

a dip and a shoulder before it slopes o� into a long tail at high energy losses. The shape of

the ELD at the shoulder changes slightly which leads to slightly better agreement at high polar

scattering and incidence angles. Furthermore, the calculations underestimate the intensity of

the energy loss at low energy losses and the peak is shifted to slightly lower energy losses than

the peak of the measured ELDs at low θin/out. As described in the previous chapter 3.3, the

peak in the ELD from the nonadiabatic MD simulations is mostly due to energy losses result-

ing from single-bounce collision with the surface while the shoulder is caused in large part by

double-bounce collisions overlapping at low energy losses with the ELD of the single-bounce

events and at high energy losses with the energy loss distribution due to multibounce collisions.

Presumably, the MD-simulations either overestimate the percentage of single-bounce events or

underestimate the percentage of double-bounce events (see Fig. 3.16(b)). Possibly, given that

MD-simulations do not entirely reproduce the low energy loss region, the energy loss distribution

of the single-bounce events might also be represented as being too narrow, underestimating the

contribution of high and low energy loss single-bounce events.

For the experimental ELDs, it was found that the fractional energy loss ∆Ēloss/Einc = 0.33±
0.01 is almost independent of the incidence energy [44]. I performed a linear least square �t using

the linear least square procedure provided by the Mathematica package [237] of the mean energy

loss as a function of the incidence energies Einc = 3.33 eV, 2.76 eV, 1.92 eV, 0.99 eV, 2.62 eV,

2.17 eV and 1.22 eV. The contribution of the last three incidence energies is not included in the

publication in Ref. [44]. I obtain a fractional energy loss of 0.39 with an rms-error of 0.11 for

the experimental ELDs, 0.35 ± 0.01 and 0.11 ± 0.01 for the ELDs from the nonadiabatic and

adiabatic MD-simulations (see also Fig. 4.2(c)). The results from the nonadiabatic simulations

are, as expected, in very good agreement with those from the experimental measurements.

From Fig. 3.37(a) it can be seen that, for the region sampled by the experimental measure-

ments, the change in the ratio between mean energy loss and incidence energy is very small. It

would therefore be very interesting to see what happens at higher incidence energies. For one,

to see if the relation between mean energy loss and incidence energy behaves as predicted by the

calculations and secondly, to see if, with higher incidence energies, the energy loss distribution

changes as much as the calculations predict (see Sec. 3.3.3).

The agreement between the nonadiabatic simulations for D scattering o� Au(111) and the

measured energy loss are slightly better than those for H scattering o� Au(111) (see Fig. 4.4).

It is clear that the MD-simulations including low-energy ehp excitation o�ers an explanation

for the apparent lack of isotope e�ect observed experimentally (see section 3.3.6): the doubled
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Figure 4.4.: Experimentally measured energy loss distribution (black squares), electronically adiabatic

(blue) and nonadiabatic (red) MD-simulations for deuterium scattering from Au(111) (a)

specular scattering for θ = 45◦ along [101̄] (b) specular scattering for θ = 45◦ along [112̄],

(c) Energy loss distributions measured experimentally (squares) and from nonadiabatic

MD simulations (solid lines) for deuterium (red) and hydrogen (black).

energy loss of D to phonons compared to H is compensated by a lower energy loss of D compared

to H to ehps.

4.2. Angular Distributions

Fig. 4.5 shows the angular distribution along [101̄] for adiabatic (blue) and nonadiabtic (red)

simulations in comparison to the measured angular distribution. As remarked in section. 3.3.1,

there is little di�erence between the adiabatic and nonadiabatic distribution. The agreement of

both of them with the measured angular distribution is good. The angular distribution measured

experimentally peaks very close to the surface normal at low θin and moving to larger ones at

larger θin. The peak from the simulated energy loss distributions is always almost at the same
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θout. Furthermore, the calculations capture the general shape of the experimentally measured

energy loss distribution, even if they overestimate its wideness. Close to normal incidence,

the angular distribution appears narrower and with larger polar incidence angle slants more

and more towards larger polar scattering angles. As can be seen from the constant di�erence

at high scattering angles between the experimental and simulated angular distribution, the

amount of slanting is very well reproduced by the simulations. Additionally, with growing

polar incidence angle, the angular distribution appears to grow wider, a trend that is also

captured by the simulations. The good agreement with experimental measurements shows that,

while interactions with ehp does not appear to in�uence the angular distribution greatly, the

interaction with phonons does. A comparison to the angular distributions for low temperatures

(see Fig. 3.31) makes evident that a solid surface approach would be hard pressed to describe

the experimental �ndings.
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Figure 4.5.: Angular distribution along the [101̄]-direction of scattering H atoms for experiment (black)

for the electronically adiabatic (blue) and nonadiabatic (red) case. Di�erent polar incidence

angles along the [101̄]-direction are shown (a) θin = 20◦, (b) θin = 30◦, (c) θin = 45◦ (d)

θin = 60◦. Distributions are normalized to maximum and negative polar angle corresponds

to backscattering.
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4.3. Improvement of comparison

Although the agreement between simulation and experiment is reasonably good, the results from

the nonadiabatic MD-simulations do di�er from those of the experiment. This could be owing

to a number of reasons. As described in section 4.1, the number of trajectories experiencing low

energy losses is underestimated in the calculations in comparison to experiment while the peak

of the energy loss distribution is overestimated. This could be due to an underestimate of single-

bounce trajectories with very high and low energy losses, that is, the energy loss distribution of

the single-bounce events might be too sharply represented. Furthermore, it seems plausible that

low energy double-bounce scattering events are likewise underestimated. Possible causes for such

discrepancies could be as follows: (1) That the surface structure is falsely represented. During the

simulations above, surface reconstruction has been neglected. Using a slab in the calculations

that includes surfaces reconstruction comes at cost of considerable increase in computational

e�ort: increasing from a 6 × 6 cell to the 22 × 6 cell would increase the number of atoms per

layer by a factor of nearly four, not to mention the six additional atoms in the �rst layer due

to the surface reconstruction. Even if four layers instead of six are used, the calculation time

still more than doubles. In section 3.3.5, I have already pointed out that the in�uence of surface

reconstruction (or even adatoms on the surface) does not appear to have a great e�ect on the

energy loss distributions. In Fig. 4.6(b), the ELD from nonadiabatic simulations at specular

scattering angles is shown in comparison to the ELD measured experimentally. The inclusion

of surface reconstruction improves the representation of the shoulder, the peak is still slightly

overestimated and the low energy loss events still underestimated. The slight improvement in

shape scarcely merits the large computational e�ort.

(2), From the observation that the energy loss distributions of the bounce events are too

narrow and that, at higher surface temperature, the energy loss distribution of the di�erent

bounce events become broader, the corrugation of the surface at 300K could be larger than

simulated with EMT-JAWK. Increasing the surface temperature to counterbalance a possibly

too low surface corrugation at a simulated temperature leads to a better capturing of the low

energy loss contributions, but the strength of the peak of the energy loss distribution and its

tail are still overestimated while the shoulder is still underestimated (Fig. 4.6 (c)).

(3) The background electron density extracted from the EMT could be faulty. In Sec. 3.3.7,

several di�erent modi�cations to the density were considered and from the results of this section,

it is evident that the deviation between theory and experiment is not solely due to a misrep-

resentation of the background electron density. Lowering the background electron density to

�t that of the ab initio calculations would lead to a better representation of the low energy

losses, but then fail to capture the position of the peak and would not address the issue of the

too weak shoulder. Applying constant density (Fig. 4.6(d), navy) improves the treatment of the
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Figure 4.6.: Energy loss distribution (a) from the experiment (black squares) in comparison with the

electronically nonadiabatic (red) and adiabatic (blue); (b) experiment (black squares)

and nonadiabatic simulations with reconstructed surface (green); (c) experiment (black

squares) and nonadiabatic simulations with relaxed surface at 500K (orange) for spec-

ular scattering at Einc = 3.33 eV and θin = 45◦, φin = 60◦ at 300K. (d) nonadiabatic

simulations (blue) with constant density inside the surface.

shoulder somewhat, but leads to a stronger overestimation of the distribution tail and a worse

representation of the low energy loss region.

(4) Further reasons for the disagreement could be that EMT-JAWK does not include e�ects

such as dispersion or that the theoretical treatment of electron hole pair excitation in the frame of

local density friction approximation is insu�cient or that quantum e�ects play a role. These are

more serious. To address the �rst issue, the EMT functional form would have to changed. With

regards to the treatment of electron hole pair excitation, it appears that the general assumption

made by the use of LDFA, that only energetically low lying electron hole pairs are excited, is

valid. Staying in the frame of LDFA, the theory can still be improved. At the moment, we

are using a scalar for the position dependent friction acting upon the hydrogen atom instead

of a friction matrix. Although section 3.3.7 has shown that slight modi�cations in the density

do not lead to great changes, including a friction tensor would mean that an H atom would

not experience the same background electron density in all directions and might thereby be
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in�uenced in the path it takes through or along the Au-slab. These e�ects can be expected to

be small for scattering atoms, perhaps in�uencing the dynamics of sticking more than those of

scattering. Nonetheless, the inclusion of a friction tensor appears to be worthwhile, if only just

as a prove of principle.

Lastly, H being a rather small particle, quantum e�ects could a�ect its scattering and its

inclusion is under way.

Estimation of zero-point energy e�ects

Following up on the idea that the surface corrugation might be underestimated, I want to esti-

mate how large this e�ect could be and if it would have any in�uence on the temperature pre-

dicted for the separation of peaks due to di�erent bounce events in sec. 3.3.2 at low temperatures.

From a quantum-mechanical point of view for a surface at 0K the square mean deviation
〈
x2
〉

of the surface atoms from their relaxed lattice positions is not zero. For a quantum-mechanical

harmonic oscillator, the mean square displacement can be expressed as [175]

〈
x2
〉

=

(
v +

1

2

)
h̄

mω
. (4.1)

Here, m is the mass and ω is the frequency of the oscillation and v is the quantum number of

the vibrational state. The mean potential energy of the oscillator in the ground state is:

〈V0〉 =
h̄ω

4
(4.2)

In the following, I will study this e�ect qualitatively to get an estimate of how much zero-point

motion might in�uence the displacement of the atoms at di�erent temperatures. I calculate the

relation between
〈
x2
〉
and the temperature for a bath of harmonic oscillators, and. For this,

I replace the `real' system described by the EMT by a reference system of classical harmonic

oscillators. Their mean potential energy can be calculated as

〈V 〉 =
1

2
mω2

〈
x2
〉
. (4.3)

According to the equipartition theorem of classical mechanics, the average energy per degree of

freedom for a thermal bath of harmonic oscillators at the temperature T is

〈V 〉 =
kBT

2
(4.4)

Substituting Eq. (4.3) into Eq. (4.4) yields the classical frequency ω so that it now can be calcu-

lated from the mean square displacement at di�erent temperatures.

ω =

√
kBT

m 〈x2〉
(4.5)
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If the real system indeed behaved like harmonic oscillators, then ω should be constant with vary-

ing temperature. For an estimate of the mean square displacement, I take 1000 con�gurations

of 216 Au atom positions simulated over 10 ps. Tab. 4.2 shows the mean square displacement I

obtain in this manner for several temperatures. I can now presume this frequency to correspond

Table 4.2.: Estimate of zero-point motion.

T (K)
〈
x2
〉
(Å) ω (1012·s−1) Tshift (K)

40 0.075 5.05 19.3

120 0.114 5.73 21.9

300 0.173 5.98 22.8

400 0.189 6.34 24.2

500 0.212 6.32 24.1

600 0.225 6.50 24.8

700 0.240 6.60 25.2

800 0.256 6.61 25.2

to the frequency of the quantum-mechanic oscillator and calculate its
〈
x2
〉
in the ground state

from Eq. (4.3). Substituting this value into Eq. (4.4), I can �nd the temperature Tshift which I

would have to simulate for a bath of harmonic oscillators (or the real system at the given tem-

perature T ) to reproduce the zero-point motion. Looking at Tab. 4.2 this means that to account

for zero-point motion e�ects at 40K, I would have to perform classical simulations at 60K. Or,

rather, the predictions made in section 3.3.2 for 40K would predictions for 20K in experiment.

4.4. Conclusion

From the above considerations it is undoubtedly clear that the adiabatic picture is incapable

of describing the energy loss observed experimentally for an H atom scattering from Au(111):

neither peak position nor overall form agree to any extend with the experimentally measured

di�erential ELD. In comparison, if energy dissipation to ehp is included by means of LDFA, the

agreement between experiment and theory is very good for all sampled conditions, including

di�erent incidence and scattering angles, di�erent incidence energies and a full recovery of the

isotope e�ect. The modeling of the isotope e�ect and the angular distribution along [101̄]-

direction shows that, although energy loss to ehp is by far the dominating energy pathway, the

inclusion of energy loss to phonons must not be neglected.

If the angular distribution along [101̄]-direction is considered, the discrepancy between nonadi-

abatic and adiabatic distribution is very small, but also in good agreement with the experimental

observations.
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The agreement between nonadiabatic simulations and measured distributions is not perfect.

A search for causes unearthed that the disagreement is not caused by a neglect of the 22×
√

3

reconstruction, nor by ignoring the possible e�ects of zero-point motion or a bad guess of the

background electron density. Further investigations need to be made in this direction, especially

towards the inclusion of quantum e�ects or the use of a friction matrix.

The good agreement between nonadiabatic MD-simulations and experimental measurements

make it further likely that simulations done for higher and lower incidence energy are adequate

predictions and that the sticking mechanisms described in section 3.3.1 carry weight. Small

shape changes in shoulder of the di�erential ELD from the nonadiabatic simulations do not

appear to occur to such large extends in the experiment. The lowering of the energy loss

with smaller polar incidence and scattering angles that is observed both experimentally and

in the MD-simulations is only visible in the MD-simulations for forward scattering, not for

side- and backwards scattering. It would therefore be interesting to see if this is also observed

experimentally. Furthermore, it remains to be explored if a lowering of the surface temperature

in experiment leads to a more distinct splitting of the di�erential ELD into peaks and if those

peaks split so decisively at very low surface temperature that that their origin can be explained

by the present simulations.

137





5. Conclusions and Outlook

In summary, I constructed a full-dimensional potential energy surface (PES) for H at Au(111)

that reproduces ab initio DFT calculations with good accuracy and an rms-error of ∼ 160meV.

To obtain the PES, I �tted the analytic form of the e�ective medium theory (EMT) to DFT

energies. To perform the �t, and following MD-simulations, I used the MD_tian-package, a

FORTRAN code which I wrote and contributed to substantially. Constraints for the �t were

derived from the bulk properties of Au and the experimental binding energies of the H-Au

molecule. Depending on how the �t was done, di�erent sets of parameters were obtained,

however, a comparison of di�erent PESs resulting from these parameter sets shows that although

some parameters might di�er to a large extend, once constrains for the �t are chosen properly, all

parameter sets give rise to PESs that produce the same behavior in MD simulations. I denoted

the PES [22] that I used for the simulations presented here with EMT-JAWK.

A comparison to scattering simulations using ab initio molecular dynamics (AIMD) [3, 4] shows

that the adiabatic total energy loss distribution, scattering and event probabilities obtained

with AIMD and EMT-JAWK are in very good agreement with one another. Given the good

agreement, the use of the potential energy surface appears preferable to AIMD due to the large

computational e�ort AIMD requires: the EMT-JAWK allows me to perform simulations over

a wide range of incidence conditions using large simulation cells and long interaction times at

reasonable computational e�ort.

Furthermore, the EMT analytic expressions supply background electron densities which allows

to implement electronic friction self-consistently and thereby to obtain a method to describe the

interaction with electron hole pairs. Changes in the background density are found to be of little

e�ect on the energy loss behavior.

I �nd that the inclusion of nonadiabatic e�ect prodigiously increases the energy loss of scat-

tering H atoms by a factor of three in mean energy loss and more than a factor of ten in the

position of the peak of the total energy loss distribution. This is in agreement with predictions

about the importance of nonadiabatic e�ects made for the energy loss behavior to electron hole

pairs using AIMD with the LDFA applied in a post-facto approach [3, 4] and the predominant

energy loss to ehp observed for H at Pd using the AIMD with the inclusion of friction on-the-

�y [19]. Di�erent from the AIMD approaches, the EMT based approach presented here uses the

background electron densities that is needed for LDFA instead of the electron densities of only
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the bare surface atoms. The background electron density and that of the bare surface atoms

di�er but modi�cation of the electron densities for di�erent MD simulations shows that changes

in the electron densities in�uence the outcome of the simulations only marginally.

MD simulations on the EMT-JAWK PES allow full-dimensional treatment involving hundreds

of atoms on a picosecond timescale with millions of trajectories. This ability allows to calculate

a su�ciently large number of trajectories to make predictions for both adsorption probabilities

and angle resolved measurement of inelastic scattering. It allows me to identify scattering

regions where di�erent scattering behavior and at low temperature even mechanisms might

be distinguished experimentally. Notably, it also allows me to predict mechanisms by which

adsorption takes place. I have predicted the energy loss behavior for multiple temperatures and

incidence conditions. A variation in incidence angle as well as detected scattering angle shows

only little in�uence on the position and form of the di�erential energy loss distribution. The

largest variation can be achieved with changes in the surface temperature and incidence energy.

For high incidence energies (Einc > 7.0 eV), I was able to predict a very much di�erently shaped

energy loss distribution than for low incidence energies.

Simulations of the 22×
√

3 reconstruction of the Au(111) surface show that the reconstruction

is stable up to at a temperature of at least ∼ 700K, energetically favorable compared to adatoms

on the surface, but not to the unreconstructed surface as found in DFT simulations [41�43], and

in good agreement with experimental observations [32].

From comparison to experimental results it becomes obvious that the experimentally observed

energy loss is dominated by energy dissipation into electron hole pair excitation. The inclusion

of energy dissipation to phonons is necessary in the description of isotope e�ect and angular

distributions. Comparison of nonadiabatic simulations to experimental results shows very good

agreement with the overall energy loss behavior for di�erent incidence energies, incidence angles

and scattering directions: the theory developed here is capable of describing the overall energy

loss behavior observed experimentally and moreover shows that single H atoms in interaction

with metal surface lose most of their energy to excitation of low lying electron hole pairs. The

lack of an isotope observed experimentally is reproduced by the theory and could be rationalized

by a combination of adiabatic and nonadiabatic e�ects.

Slight deviations between experiment and theory persist. An investigation of the in�uence

of changes in surface structure or electron density shows little or no improvement. Further

investigations of the discrepancy should be the inclusion of semi-classical or quantum mechanical

e�ects for the treatment of the H atom (an estimate of the in�uence of zero-point energy has

shown little in�uence) as well as attempts to treat the friction as a tensor instead of a scalar as

done here.

Further experimental investigation that appear to be promising according to the predictions

made here would be a lowering of surface temperature for which I predict the resolution of
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di�erent peaks in the energy loss distribution that can be attributed to di�erent scattering

mechanisms such as single- or double-bounce scattering. Also, an increase in the experimental

incidence energy would provide a good test to see if the theory is also capable of predicting this

behavior correctly: for Einc > 7.0, the form of the energy loss distribution changes considerably,

including larger nonadiabatic vs adiabatic e�ects at Einc = 10.0 eV. Measurements of sticking

probability would provide another very sensitive test to the theory.

There are interesting future direction for the theory. One involves the energetic behavior in

the DFT-calculations for the octahedral sites. During the construction of the PES, I found that

this behavior is di�erent for Au than for other metals. Here, work is required to determine the

origin of this interesting behavior. A second area of interest is the determination of the melting

temperature. At the moment, it has to be obtained from MD-simulations performed at di�erent

temperatures. It would certainly be advantageous if the melting temperature of the surface

could be related to parameter values of the PES. A large �eld of interest is also the investigation

of the surface reconstruction. The PES (or one �tted speci�cally for Au with no H atom present)

could be used to investigate the properties of the secondary surface reconstruction pattern of

Au(111), the herringbone, especially in view of the large simulation boxes that are possible with

the PES.

There are many more interesting future direction, including the e�ect of a matrix friction

coe�cient, the inclusion of semi-classical e�ects, describing molecules at surfaces by combining

this approach with Lennard-Jones or similar potentials. It would also be interesting to extend the

theory to more than two-component systems so that scattering from alloys or covered surfaces

could be investigated. Yet another interesting topic is that of di�usion. Li and Wahnström [30]

showed that nonadiabatic e�ects have little in�uence on the self-di�usion coe�cient; it will be

most interesting to see if we observe similar behavior.

Finally, an obvious and much needed future direction is the extension of the theory to di�erent

metal surfaces. This work is already under way.
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A. Appendix

A.1. VASP

The Vienna ab initio simulation package (VASP) [223�226] is a simulation environment for elec-

tronic structure calculations. It allows quantum mechanical calculations on the level of Hartree

Fock, DFT and Hybrid functionals including ab initio MD simulations. VASP uses a plane-wave

basis set [238] and allows a choice between pseudopotential methods (e.g. Ref. [239, 240]) and

projector augmented wave [241, 242] methods for the treatment of the core electrons during the

calculations: pseudopotentials avoid treating the chemically inert core electrons by replacing

them with nodeless potentials that regenerate the e�ect of the core electrons on the valence

electrons [230]. VASP supplies ultra-soft pseudopotentials [240] that need less plane waves to

construct, reducing the calculational e�ort. As ultra-soft pseudopotentials were used to calcu-

late the AIMD-trajectories used for the �t, I naturally also assumed them to calculate the 3D

grid for the H-atom. However, the VASP support now discourages the use of pseudopotentials

and recommends to use projector augmented waves which are regarded to be generally more

accurate than the ultra-soft pseudopotentials [238]. The PAW method [241, 242] is based on a

frozen core approximation but reconstructs the exact valence wave function including all nodal

features [230, 238].

VASP uses iterative matrix diagonalisation techniques to determine the electronic ground-

states [238, 243]. I performed the VASP calculations on our own cluster. We have modi�ed the

VASP-code such that the SRP48-functional suggested by Díaz et al. [12, 121] can be used.

For DFT-calculations, I used the SRP48-, RPBE-, PBE- and PW91-GGA-functional with

US-PPs. I used VASP to calculate the electronic density within the Au(111) slab with the SRP-

functional. If not stated otherwise, the information describing the VASP-calculations are taken

from the VASP-manual [238] or the online manual [243].

A.1.1. Input �les

The four mandatory �les to start VASP calculations are the INCAR, POSCAR, POTCAR

and KPOINTS-�les.
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INCAR

The INCAR-�le is the control �le for VASP calculations. Invoked by parameters, it contains

information on all the options that are needed for the current calculations like, e.g. algorithms,

exchange-correlation functionals and convergence as well as output options. The INCAR �les I

used for DFT-calculations are attached in the back of this chapter. The most important param-

eters are:

The GGA-parameter speci�es which GGA-functional should be used to calculate the exchange-

correlation functional.

For metals, the step function used to evaluate the band-structure energy at 0K, converges very

slowly with the number of k-points included, as the occupancies at the Fermi-level jump discon-

tinuously from 1 to 0. To circumvent this problem, partial occupancies are introduced and the

step function is replaced by a smoother functions. ISMEAR o�ers the choice of this function.

For ISMEAR = −1, the step function is replaced by a Fermi-Dirac function whose width is de-

scribed by SIGMA = kBT . The introduction of the smearing leads to a generalized free energy

that needs to be minimized instead of the total energy, but the total energy can be extrapolated

with σ → 0. Errors in the forces introduced by this scheme are expected to be small.

The PREC �ag determines the precision of the VASP calculations by, if not otherwise spec-

i�ed, setting ENCUT and determining the size of the fast fourier transform grid for the calcu-

lations.

ENCUT is the energy cut-o� for the pseudopotentials. It includes plane-waves up to a kinetic

energy of Ecut into the calculation and therefore determines the size of the basis set. It does not

need to be speci�ed, for there is already a default cut-o� in the POTCAR-�le (ENMAX).

The IBRION �ag determines how the �rst and second derivatives of the energy with respect

to the ionic positions are calculated. This allows to perform MD-simulations and the relaxation

of the ionic positions as well as the determination of phonon frequencies and Hessian matrix.

LCHARG: This �ag determines whether or not the charge densities are written out during the

calculations.

ISPIN determines if the calculations are to be done spin-restrictedly or unrestrictedly. If the

H atom is above the surface, then, the spin needs to be considered in the calculations.

The parameter that determines which iterative matrix diagonalisation technique should be used

to calculate the electronic ground state isALGO. The best choices are the residual minimization

method with direct inversion of iterative subspace (RMM-DIIS), the blocked Davidson algorithm

or a mixture of both.
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fcc Au # Comment line to describe the file

4.0 # lattice constant

0.5 0.5 0.0 # cell-vector in x-direction

0.0 0.5 0.5 # cell-vector in y-direction

0.5 0.0 0.5 # cell-vector in z-direction

1 # number of atoms in the cell

cartesian # coordinate system

0 0 0 # position of the atoms

Figure A.1.1.: The POSCAR �le. Example for a 1× 1× 1 cell for a bulk-calculation.

POSCAR

The POSCAR-�le contains the cell-geometry, the number of atoms and atomic species and

their position for the problem under consideration. The �rst line (see Fig.A.1.1) is reserved for

a comment to give information about the calculation the POSCAR �le is used in. The second

line contains the lattice constant and the next three lines contain the cell matrix that contains

the cell vectors in x- (line 3), y- (line 4) and z-direction (line 5). The lattice constant is always

multiplied onto the cell matrix, so for cells in which the lattice constant is just a factor, it should

be written in the second line. Due to the periodic boundary conditions VASP employs when one

moves from calculating bulk-properties to surface properties one needs to separate the periodic

images from one another in one direction to create a surface, usually done in z-direction. The

amount of space by which the slabs are separated is called the vacuum distance.

Line 6 contains the number of atoms in the cell. If there is more than one species in the cell,

the �rst number denotes the number of atoms of the atomic species that comes �rst in the

POTCAR-�le, followed by the number of atoms of the second species and so on. The following

line (line 7) describes in which coordinate system the atomic positions will be given. The choice

here is between Cartesian coordinates and direct coordinates. Direct coordinates give the atomic

positions between 0.0 and 1.0 and can be obtained by multiplying the Cartesian coordinates with

the inverse of the cell matrix. From line 8 on, the positions of all atoms are given. Here, the

atomic species must follow in the same order as speci�ed in line 6. This means if one writes a

POSCAR-�le containing one Au atom and two H atoms and writes in line 6 `1 2', then one has

to write the position of the Au atom �rst, followed by the positions of the two hydrogen atoms.

The POSCAR-�le also determines the cell dimensions for a cell containing a surface. They

are denoted by nx × ny × nz where nx is the number of atoms in x-direction and ny and nz the

number of atoms in y- and z-direction, respectively. So, in the example in Fig.A.1.1, the cell

dimensions are those of a 1 × 1 × 1 cell and a 2 × 2 × 4 cell would have four atoms in at its

surface and four atoms in z-direction, that is four layers.
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K-Points # comment line

0 # place to enter k-points manually

Gammacentered #

26 26 1 # kpoint mesh in x, y, z-direction

0 0 0 # shift of kpoint mesh

Figure A.1.2.: The KPOINTS �le. Example for a simulation with a surface.

POTCAR

The POTCAR-�le contains the pseudopotentials for all the atomic species in the calculation.

It also provides information about the atoms, like their masses, their valences and speci�cs

with regards to the way the pseudopotential were created. Furthermore, they contain a default

energy cut-o� radius which is chosen such that, in a bulk calculation, the error in the cohesive

energy would be less than 10meV. If more than one atomic species appears in the calculations,

the two corresponding POTCAR-�les need to be agglutinated. Care has to be taken here that

the positions given for the individual atomic species in the POSCAR-�le correspond to their

ordering in the POTCAR-�le.

KPOINTS

The KPOINTS-�le gives the mesh in which the Brillouin-zone is sampled. The k-point mesh

can be given either directly (line 2, Fig.A.1.2) by giving speci�c coordinates or automatically

by entering a mesh size (line 4). For the automatic mesh generation, the method that should

be used for the generation needs to be entered in the KPOINTS-�le in line 3. The last line in

the KPOINTS-�le allows to shift the automatically generated mesh.

A.1.2. Output Files

OUTCAR This �le is the main output �le which contains, amongst others, the energy (and the

energy σ → 0) for a calculations, the stress tensor, basis-vectors and the forces. It also contains

information on the ionic and electronic steps of the calculation and convergence information.

What precisely is printed out can be determined using the NWRITE �ag in the INCAR-�le.

CHGCAR This �le contains the lattice vectors and atomic coordinates but most importantly

the total charge densities multiplied by the volume on a �ne grid. It can be used to restart VASP.

For visualization of the charge densities, VASP recommends the usage of the similar CHG-�le.

A.1.3. SRP input �les
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Au(111) 2 x 2 as in AIMD

1.000000

5.946767928 .000000000 .000000000

-2.973383964 5.150052372 .000000000

.000000000 .000000000 20.295320000

16 1

Cartesian

.000000000 .000000000 .000000000

2.973383964 .000000000 .000000000

-1.486691982 2.575026186 .000000000

1.486691982 2.575026186 .000000000

1.486692026 .858342088 -2.464000000

4.460075990 .858342088 -2.464000000

.000000044 3.433368273 -2.464000000

2.973384008 3.433368273 -2.464000000

.000000000 1.716684175 -4.878000000

2.973383964 1.716684175 -4.878000000

-1.486691982 4.291710361 -4.878000000

1.486691982 4.291710361 -4.878000000

.000000000 .000000000 -7.335000000

2.973383964 .000000000 -7.335000000

-1.486691982 2.575026186 -7.335000000

1.486691982 2.575026186 -7.335000000

1.485277794 -.857525534 6.00

Figure A.1.3.: An examplary POSCAR �le for the 3D-grid using the SRP functional.

K-Points

0

Gammacentered

20 20 1

0 0 0

Figure A.1.4.: The KPOINTS �le for the 3D-grid using the SRP functional.

161



ISTART = 0

ICHARG = 2

ALGO=F

NELM = 120

GGA = RP

ISYM = 1

ISPIN = 2

LWAVE = .FALSE.

LCHARG = .FALSE.

AMIX = 0.3

BMIX = 0.0001

AMIX_MAG = 0.3

BMIX_MAG = 0.0001

MAXMIX = 20

PREC = Accurate

SIGMA = 0.1

ISMEAR = -1

EDIFF = 1.0E-4

SYSTEM = H + Au(111) SRP48 vac=13.00 6 layers 2x2

MAGMOM = 17*1.0

ENMAX = 300

LPLANE = .TRUE.

NPAR=2

LSCALU=.FALSE.

NSIM = 4

Figure A.1.5.: The INCAR �le for the SRP 3D-grid calculations.
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A.1.4. PBE input �les

PBE a0 =4.181

1.0

5.91283 0.00000 0.00000

-2.95641 5.12066 0.00000

0.00000 0.00000 20.24170

16 1

Cartesian

0.00000 0.00000 0.000000

2.95642 0.00000 0.000000

-1.4782 2.56033 0.000000

1.4782 2.56033 0.000000

4.43462 0.853444 -2.42654

0.00000 3.41377 -2.42654

2.95642 3.41377 -2.42654

1.4782 0.853444 -2.42654

0.00000 1.70689 -4.81698

2.95642 1.70689 -4.81698

-1.4782 4.26721 -4.81698

1.4782 4.26721 -4.81698

0.00000 0.00000 -7.23088

2.95642 0.00000 -7.23088

-1.4782 2.56033 -7.23088

1.4782 2.56033 -7.23088

0.00000 0.00000 6.00000

Figure A.1.6.: An examplary POSCAR �le for the 3D-grid using the PBE functional.

K-Points

0

Gammacentered

8 8 1

0 0 0

Figure A.1.7.: The KPOINTS �le for the 3D-grid using the PBE functional.
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ISTART = 0

ICHARG = 2

ALGO=F

NELM = 120

GGA = PE

ISYM = 1

ISPIN = 2

LWAVE = .FALSE.

LCHARG = .FALSE.

AMIX = 0.3

BMIX = 0.0001

AMIX_MAG = 0.3

BMIX_MAG = 0.0001

MAXMIX = 20

PREC = Accurate

SIGMA = 0.1

ISMEAR = -1

EDIFF = 1.0E-4

SYSTEM = H + Au(111) PBE vac=13.00 4 layers 2x2

MAGMOM = 17*1.0

ENMAX = 350

Figure A.1.8.: The INCAR �le for the PBE 3D-grid calculations.
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A.1.5. PW91 input �les

Au 4 layer PW91, a0 = 4.178

1.00000000000000

5.90858 0.00000 0.00000

-2.95429 5.11698 0.00000

0.00000 0.00000 20.23651

16 1

Cartesian

0.00000 0.00000 0.00000

2.95430 0.00000 0.00000

-1.47714 2.55849 0.00000

1.47714 2.55849 0.00000

4.43144 0.85283 -2.42854

0.00000 3.41132 -2.42854

2.95430 3.41132 -2.42584

1.47714 0.85283 -2.42854

0.00000 1.70566 -4.81307

2.95430 1.70566 -4.81307

-1.47714 4.26415 -4.81307

1.47714 4.26415 -4.81307

0.00000 0.00000 -7.22537

2.95430 0.00000 -7.22537

-1.47714 2.55489 -7.22537

1.47714 2.55489 -7.22537

1.477146066 -.852830678 6.00

Figure A.1.9.: An examplary POSCAR �le for the 3D-grid using the PW91 functional.

Gold

0

Gammacentered

11 11 1

0 0 0

Figure A.1.10.: The KPOINTS �le for the 3D-grid using the PW91 functional.
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ISTART = 0

ICHARG = 2

ALGO=F

NELM = 120

GGA = 91

ISYM = 1

ISPIN = 2

LWAVE = .FALSE.

LCHARG = .FALSE.

AMIX = 0.3

BMIX = 0.0001

AMIX_MAG = 0.3

BMIX_MAG = 0.0001

MAXMIX = 20

PREC = Accurate

SIGMA = 0.1

ISMEAR = -1

EDIFF = 1.0E-4

SYSTEM = H + Au(111) PW91 vac=13.00 6 layers 2x2

MAGMOM = 17*1.0

ENMAX = 300

LPLANE = .TRUE.

NPAR=2

LSCALU=.FALSE.

NSIM = 4

Figure A.1.11.: The INCAR �le for the PW91 3D-grid calculations.
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A.1.6. RPBE input �les

Au 4 layer RPBE, a0 = 4.225

1.00000000000000

5.97505 0.00000 0.00000

-2.98753 5.17455 0.00000

0.00000 0.00000 20.34608

16 1

Cartesian

0.00000 0.00000 0.00000

2.98753 0.00000 0.00000

-1.49376 2.58727 0.00000

1.49376 2.58727 0.00000

4.48129 0.862425 -2.48508

0.00000 3.44970 -2.48508

2.98753 3.44970 -2.48508

1.49376 0.862425 -2.48508

0.00000 1.72485 -4.90678

2.98753 1.72485 -4.90678

-1.49376 4.31212 -4.90678

1.49376 4.31212 -4.90678

0.00000 0.00000 -7.34608

2.98753 0.00000 -7.34608

-1.49376 2.58727 -7.34608

1.49376 2.58727 -7.34608

0.0 0.0 6.00

Figure A.1.12.: An examplary POSCAR �le for the 3D-grid using the RPBE functional.

K-Points

0

Gammacentered

8 8 1

0 0 0

Figure A.1.13.: The KPOINTS �le for the 3D-grid using the RPBE functional.
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ISTART = 0

ICHARG = 2

ALGO=F

NELM = 120

GGA = RP

ISYM = 1

ISPIN = 2

LWAVE = .FALSE.

LCHARG = .FALSE.

AMIX = 0.3

BMIX = 0.0001

AMIX_MAG = 0.3

BMIX_MAG = 0.0001

MAXMIX = 20

PREC = Accurate

SIGMA = 0.1

ISMEAR = -1

EDIFF = 1.0E-4

SYSTEM = H + Au(111) RPBE vac=13.00 4 layers 2x2

MAGMOM = 17*1.0

ENMAX = 350

Figure A.1.14.: The INCAR �le for the RPBE 3D-grid calculations.
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B. MD_Tian Program

MD_tian is a program for molecular dynamics calculations that Prof. Dr. Dan Auerbach,

Dr. Alexander Kandratsenka and I wrote in FORTRAN to deal with our molecular dynamics

simulations and �tting the EMT to DFT input data. The program's name derives from the

Chinese expression 天下 (Tiānxià), meaning `under one sky', thereby underscoring our aim to

produce a program which includes all subprograms needed for our EMT-related purposes. ` 天'

and ` 下' (symbolized by the underscore) are deliberately wrong way round in the program's

name, because symbols on temples in China were commonly written from right to left. At the

moment, the MDtianxia program calculates forces for the MD-simulations using the e�ective

medium theory, but in future, the program shall be expanded to include also Lennard-Jones

Potentials or other potential forms. The positions of the all species in the system are subjected

to periodic boundary conditions.

The program takes three types of input �les: a �le that determines the geometry that should be

used for the calculations, a �le which includes the EMT parameters for each species used during

the MD calculations and a control �le. The control �le, invoked by di�erent �ags, determines

whether an MD-simulation or a �t is run and with which properties, the number of species and

what kind of input data is used.

B.1. The EMT-parameter �le

Apart for the su�x `.nml' the name of a parameter �le can be chosen arbitrarily. Each chemical

element has its separate parameter �le. So far, we have chosen the following convention for

naming the �les: First, the potential to which the parameters refer, followed by the number of

the �t from which the parameters stem and then, separated by an underscore, the element's

name. So `emt515_Au.nml' contains the parameters for the EMT potential for gold and stems

from the �t No. 515. The �le begins with a short comment line (see Fig.B.1.1). In the following

lines, the name of the element is given followed by the list of the parameters. The order of lines

in the �le is �xed and must not be changed, otherwise the parameters will be wrongly assigned

within the program.
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Slab EMT Parameters # Comment line

Name= Au # name of the species

eta2= 3.29722801 # List of parameters

n0= 0.04184152

E0= -3.80000000

lambda= 4.18153000

V0= 0.34752943

kappa= 3.24943176

s0= 1.64174000

Figure B.1.1.: The parameter �le for MD_tian.

B.2. The Con�guration �les

There are two types of con�guration �les the program can read in. Which type of �le should

be read in is speci�ed with the conf -�ag in the control �le. The conf �ag can be employed as

shown in Tab.B.1. address signi�es the absolute path to the �le of the name `�le'; `POSCAR'

and `�t' both need a POSCAR-�le as input (see Sec.A.1.1). For the options `geo' and `conf', the

program's own binary output mxt_confn.bin-�les (where n can be any number between 99999999

and 00000000) are read in. They contain positions, velocities, accelerations and densities for

all atoms. These �les make it possible to restart an interrupted calculation, e.g. if one wants

to start MD-simulations from an already equilibrated slab. Species that are already treated in

the mxt_confn.bin-�le need not be speci�ed in the control �le; another species may however be

added. That means that if one has equilibrated a metal surface to a certain temperature, one

can read in the information of this equilibration by means of an mxt_confn.bin-�le and add

a particle to it by setting the particle-�ag in the control �le to start MD-simulations. In the

latter case, the pip-�ag needs to be speci�ed in the control-�le to give information on the initial

positions of the particle. Likewise, the temperature only needs to be speci�ed if one wants to

continue simulations at a temperature that deviates from that of the mxt_confn.bin-�le.

If the option `geo' is used, a speci�c mxt_confn.bin-�le of the number n (which con�guration,

Table B.1.: Selection options for con�guration �les, to be inputted into the control �le as shown. address

signi�es the absolute path to the �le of the name `�le'.

conf �t `address/�le' AIMD trajectory No. �t number

conf POSCAR `address/�le'

conf conf `address/�le' number of con�gurations

conf geo `address/�le' which con�guration
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start 1

ntrajs 1

Tsurf 230

step 1

nsteps 50001

wstep 50000 1

lattice Au 196.96657 7 emt515_Au.nml ver -3

pes emt

celldim 2 2 6 none

rep 1 1

conf POSCAR au111_2x2x6.POSCAR

start 1

ntrajs 1

step 1

Tsurf 300

nsteps 200001

wstep 1 200

lattice Au 196.96657 7 emt515_Au.nml ver -3

pes emt

conf mxt "/home/theory/mxt/thermalisation/p515_ver_6x6x6_T300/conf" 1

Figure B.3.1.: The control �les used in MD_tian to create 1000 con�gurations of an equilibrated Au

slab at 300K. Top: Control �le to create a single �le for an equilibrated con�guration,

bottom: control �le to create 1000 further equilibrated con�gurations.

Tab.B.1) is read in. For `conf', an mxt_confn.bin-�le is chosen randomly from a batch of

`number of con�gurations' mxt_confn.bin-�les which makes it possible to start MD trajectory

calculations from a number of di�erent con�gurations for the equilibrated surfaces.

With the option `�t', a �t can be run, which reads in the relaxed atom positions form a

POSCAR-�le and further needs the number of the AIMD-trajectory to which the �t is to be

done, followed by the number of the �t.

B.3. The Control File for MD simulations

Upon execution, the mdtianxia program demands an input �le which is the control �le. It is

usually named `md_tian.inp' but its precise name has no in�uence on the program and it con-

tains all the �ags that are necessary to execute the program. FigureB.3.1 shows the control

�les used to equilibrate a slab and Fig. B.3.2 shows the control �le that uses the con�gurations
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from the slab-equilibration as input to start an MD-simulation. The construction of equilibrated

slab con�gurations that can be used as starting con�gurations works by �rst creating a single

equilibrated con�guration using the control �le in Fig. B.3.1, top, and then, starting from that

con�guration, creating 1000 con�gurations in total which can be randomly sampled at the start

of a trajectory (Fig. B.3.1, bottom). The �ags are:

start is the number of the calculated trajectory.

ntrajs de�nes the number of trajectories that are to be calculated.

Tsurf gives the surface temperature that the slab should have.

step is the step in femtoseconds with which the trajectory is propagated.

nsteps are the number of steps made during the trajectory. So, nsteps·step gives the total

length of the trajectory in fs.

wstep determines the type of the output �le and when it is to be written. It will be explained

in more detail in the following section (Sec. B.3.1).

lattice and projectile speci�es the species of the slab and particle, respectively. At the mo-

ment, the EMT-implementation only o�ers two species in interaction with one another. Both

�ags are followed by the element abbreviation of the species, its atomic mass in atomic mass

units, the number of the parameters, the name of the parameter �le and the propagation algo-

rithm (ver = Verlet, lan = Langevin, pef = Verlet, but saving hypothetical energy loss to ehp

during the calculation, bee=Beeman). For `lattice', the last integer determines how many atoms

are to be kept �xed to their positions during the propagation. A negative number denotes the

number of layers, while a positive number a�xes that number of atoms, starting from the �rst

atom given in the con�guration �le for the slab. For `projectile', the last integer determines the

start 1

ntrajs 1

step 0.1

nsteps 10000

wstep -1 1

Einc 3.33

inclination 45

azimuth 60

pes emt

projectile H 1.0079 7 emt515_H.nml lan 1

conf mxt "/home/theory/mxt/thermalisation/rec_p515_ver_6x6x4_T300/conf" 1000

pip 0 6.0

Figure B.3.2.: The control �le used in MD_tian for a typical MD-simulation.
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number of particles in one periodic image.

pes This �ag will in future o�er the choice between di�erent methods to calculate the forces

and energies. At the moment, only EMT can be used.

celldim gives the dimensions of the slab. First, the number of atoms in x- and y-direction is

given and then the number of layers in z-direction. This option also allows to include ad-atoms

or steps, for which the �ag `none' in line 10 of Fig. B.3.1, top, would have to be replaced by

`atlayer' followed by the number of atoms for each layer, starting from the surface.

rep gives the number of times the slab is to be repeated into x- and y-direction. Although

md_tian treats each problem within periodic boundary conditions, the EMT calculations need

a supercell that includes up to the next-next-nearest neighbor atoms. This makes it necessary to

increase the size of the input cell from usually 2×2 in xy-direction speci�ed in the POSCAR �le

to 6×6. To put it in other words: this option allows the user to input a POSCAR-�le of minimal

extension in xy-direction (2 × 2), but use a much larger slab for the actual MD-simulation. A

larger slab should circumvent the problem of arti�cial phonon-modes impressed upon the surface

by small cells and periodic boundary conditions for longer time-scales.

conf o�ers the choice of the input �le as described in the previous section (Sec. B.2).

Einc de�nes the incidence energy of the projectile in eV.

inclination sets the polar incidence angle θin of the projectile. θin = 0◦ corresponds to normal

incidence, θin = 90◦ to parallel incidence.

azimuth sets the azimuth incidence angle φin of the projectile. φin = 0◦ corresponds to scatter-

ing along the [11̄0]-direction.

pip describes how the particle should start the calculation. pip = 0 determines that only one

particle is to be considered and that its position is to be chosen randomly. It is followed by the

starting distance to the surface. The �ag also allows to read in a speci�c starting position from

the con�guration �le (pip=−1), the speci�c impact site (pip=1), extra �le to read in starting

positions (pip=2) or starting positions determined by site-name (pip=3).

B.3.1. Output �les

The mdtianxia-program o�ers seven di�erent output options which can be controlled with the

�ag wstep in the input �le. The �rst slot for wstep determines which kind of output �le is printed

and the last, where it makes sense, in which step.

wstep(1) = m saves all the information that is necessary to start the trajectory again into

a binary �le of the form mxt_confn.bin (where n can be any number between 99999999 and

00000000) after the mth step and then every wstep(2)th step.

wstep(1) = 0 produces �les of the form mxt_trjn.dat. They contain the time step and the

energies for species along the trajectory and the density, the position and the velocities of the

projectile. If only `lattice' is speci�ed, it can be used to determine the temperature to which the
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slab equilibrates.

wstep(1) = −1 produces �les of the form mxt_�nn.dat which contain the initial conditions

and energies and those at the end of the trajectory as well as the number of bounces and �rst

�ve bounce sites.

wstep(1) = −2 produces �les of the form mxt_confn.xyz which can be read in with visualiza-

tion programs and contain only the positions of the slab and particle atoms.

wstep(1) = −3 produces a POSCAR-�le at the end of the trajectory with the name

mxt_annealn.POSCAR. It also contains information about the energies at the end of the tra-

jectory.

wstep(1) = −4 produces �les of the form mxt_rvn.dat which contain the initial conditions

and energies and those at the saving-time of the trajectory. Here, the positions, velocities and

densities are saved in every wstep(2)th step of the trajectory.

wstep(1) = −5 produces �les of the form mxt_confn.pdb. These �les have the pdb-format

and can be used e.g. with the Visual Molecular Dynamics (VMD) package [244].

B.4. The Propagation

B.4.1. Propagation Algorithms

Propagation is done using either the Langevin or the Verlet algorithm. The program also

o�ers the Refson-Beemann algorithm [245]. The velocity Verlet algorithm was implemented in

the following form [60] where δt is the time step, r is the position, v the velocity and a the

acceleration.

v(t+ 1
2 δt) = v(t) + 1

2 δta(t) (B.1)

r(t+ δt) = r(t) + δtv(t+ 1
2 δt) (B.2)

v(t+ δt) = v(t+ 1
2 δt) + 1

2δ ta(t+ δt) (B.3)

For the Langevin-equation the extended Verlet algorithm was implemented in the following

manner according to Allen and Tildesly [60]:

r(t+ δt) = r(t) + c1 δtv(t) + c2 δt
2 a(t) + δrG (B.4)

v(t+ δt) = c0 v(t) + c1 δta(t) + δvG (B.5)

For η > 0.01Å−3 and T < 0.0001K, the parameters can be calculated from the exact expression.

Otherwise, the Taylor series was used.

c0 = e−η δt ≈ 1− η δt+
1

2
(η δt)2 (B.6)

c1 = (η δt)−1(1− c0) ≈ 1− 1

2
η δt+

1

6
(η δt)2 (B.7)
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c2 = (η δt)−1(1− c1) ≈ 1

2
− 1

6
η δt+

1

24
(η δt)2 (B.8)

and the stochastic integrals with m being the mass of the particle subjected to the Langevin

equations.

δrG =

∫ t+δt

t

dt′

mη
(1− e−η(t+δt−t′))Fst(t′) (B.9)

δvG =

∫ δt+t

t

dt′
e−η(t+δt−t′)

m
Fst(t′) (B.10)

The stochastic force Fst is sampled from a bivariate Gaussian distribution.

B.4.2. Fitting Procedure

The �tting procedure employed a Levenberg-Marquardt [227, 228] damped least squares proce-

dure which minimizes the rms deviation of the energy values given by DFT and the EMT PES.

Since I have used the �tting routine, the Levenberg-Marquardt damped least square procedure

has been replaced with an Trusted Region Nonlinear Least Squares with Linear Bound Con-

strains procedure based on the Levenberg-Marquardt procedure from the Intel MKL libraries

which allows �tting with constrains. Since I have used the �tting procedure, it has been im-

proved using a genetic algorithm [232, 233] whose description, since not relevant for the present

thesis, will be omitted. A control �le for the �t using this routine can be seen in Fig. B.4.1,

also to be used with MD_tian. The �ags in the control �le that have not been mentioned in

SectionB.2 here are:

conf the last two numbers determine which AIMD trajectory is to be used for the �t (in

Fig. B.4.1 that would be trajectory No. 817) and the number of the �t (2000)

trajname this one determines the total number of AIMD trajectories that are available and

is followed by the number of all these trajectories. This allows to calculate the rms-error to a

�exible number of AIMD con�gurations.

�tmix determines the number of points to be taken from the 3D-grid for the �t (Fig. B.4.1, line

8, 700) and from the selected AIMD trajectory (200).

evasp This is the reference energy calculated with VASP. Usually, this is the energy of a particle

6Å above the surface used in the calculations.

3Dgrid gives options for the 3D-grid. The �rst two numbers determine the lowest and highest

energy value of con�gurations allowed in the �t. The second number determines the number

of sites that are to be used in the �t, followed by their identi�cation number as given in sec-

tion 2.7.1.

aimd The �rst two numbers determine again the lowest and highest energy value belonging to

con�gurations that are to be used in the �t. The third number gives the minimal distance of

the particle to a surface atom in Å and the last one excludes distances from the surface above

this number.

175



1 projectile H 1.0079 7 'emt_stroem_H.nml' ver 0

2 lattice Au 196.96657 7 'emt_stroem_Au.nml' ver 0

3 pes emt

4 celldim 2 2 4 x

5 rep 1 1

6 conf fit au111_2x2x4.POSCAR 817 2000

7 trajname 13 005 010 801 814 817 818 820 821 825 831 832 833 858

8 fitmix 700 200

9 evasp -24.995689d0 ! A value for Au 2x2

10 3Dgrid -20.0 20.0 4 7 3 1 10

11 aimd -20.0 20.0 -0.1 3.0

12 fitconst 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

13 maxit 1

Figure B.4.1.: An exemplary control �le for �tting with MD_tian.

�tconst determines which parameters are kept �xed to the values given in the parameter input

�les. The �rst number after the �ag gives the number of parameters that are kept �xed (see

Fig. B.4.1, line 12). The following numbers correspond to the numbers of the parameters. Pa-

rameters 1�7 are the parameters of the particle and 8�14 those of the slab according to the order

of parameters in the EMT parameter �le (1, 8 = η, 2, 9 = n0, 3, 10 = E0, 4, 11 = λ, 5, 12 = V0,

6, 13 = κ,7, 14 = s0).

maxit is the maximal number of iterations.

Strictly speaking, a routine is implemented into the program that allows �tting the electron

densities obtained from the VASP calculations. However, because the electron densities obtained

from EMT and VASP are not the same entities, this routine has been commented out and is at

present not serviceable.

B.4.3. Surface Annealing

To test and describe the stability of the reconstructed surface, I performed simulations with

surface annealing with the MD_tian program. An exemplary control �le I used to steer the

simulated annealing is shown in Fig. B.4.2. The �ags that were not described above are those

that control the annealing procedure.

anneal controls the annealing procedure; the �rst number is the maximal temperature Tmax

that should be reached during annealing (in case of Fig. B.4.2 700K, see line 11) and the second

number is the number of steps tstep for which a temperature should be simulated. The annealing

starts at 2 tstep
nstep · Tmax, then, the surface is heated up in nstep/(2 tstep) intervals to Tmax and then
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goes down again to Tsurf. Each temperature interval is simulated for tstep steps. The simulated

annealing is repeated in ntrajs cycles.

To simulate annealing, the Langevin Dynamics are used as a thermostat. A higher friction

coe�cient of η ≈ 3 ·10−3 fs−1 was assumed. This makes the annealing simulations more e�ective

and decreases the simulation time. I chose the friction coe�cient for the simulated annealing to

assume roughly the magnitude of friction an H atom would experience inside the gold surface.

By probing higher and lower friction coe�cient, I checked that the friction coe�cient used for

the simulated annealing gives the same results for structure and energy values after an annealing

simulation.

B.4.4. In�uence of MD Simulation Conditions on Scattering Results

To make sure that the simulation conditions I have chosen for the MD simulations are not cause

of problems that could be prevented, I performed several tests whose results are presented in

Tab.B.2 and Tab.B.3.

Problems that could be encountered are (1) a too small surface cell in x-, y- direction that could

lead to small oscillations imposed on the surface atoms by the periodic boundary conditions; I

therefore tested if scattering results di�er if I use a 10 × 10 surface cell instead of a 6 × 6 one

and could observe no di�erence either in outcomes of the trajectory (Tab.B.2) or in energy loss

behavior (Tab.B.3). (2) The number of layers could have an in�uence on the scattering results.

I check for di�erences between using a 4- and a 6-layered slab and found it to be of little e�ect.

(3) If the simulations were curtailed too early, some H atoms might still retain enough energy

after the end of the simulation to leave the surface, thereby changing the shape of the energy loss

1 start 1

2 Tsurf 0

3 step 1

4 nsetps 100000

5 wstep 0 1

6 lattice Au 196.96657 7 emt515_Au.nml lan -3

7 pes emt

8 rep 0 1

9 celldim 22 2 6 atlayer 46 44 44 44 44 44

10 conf POSCAR 'rec_au111_22x2x6.POSCAR'

11 anneal 700 500

12 ntrajs 20

Figure B.4.2.: An exemplary control �le for annealing simulations with MD_tian.
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Table B.2.: Outcomes (in %) resulting from H atom collision with a Au(111) surface for nonadiabatic

and adiabatic (in parenthesis) simulations. The incidence conditions are Einc = 3.33 eV,

θinc = 45◦ along the [101̄] surface direction.

Scattering Surface Subsurface Transmission

Conditions Adsorption Absorption

6× 6× 6, 106 traj, 1 ps 55 (82) 23 (4) 21 (6) 1 (8)

6× 6× 6, 106 traj, 10 ps 55 (82) 25 (6) 19 (5) 1 (8)

6× 6× 4, 106 traj, 1 ps 55 (80) 23 (3) 18 (4) 4 (14)

10× 10× 4, 105 traj, 1 ps [55] (80) [23] (3) [18] (4) [4] (14)

Table B.3.: Energy loss in % of incidence energy for various outcomes resulting from H atom colli-

sion with a Au(111) surface for nonadiabatic and adiabatic simulations. The mean and

maximum energy loss are shown for the total and di�erential ELD. The accuracy for spec-

ular scattering (θout = 45◦ φout = 60◦ ([101̄])) has been reduced to account for the lower

signal-to-noise ratio in the di�erential ELD. The incidence conditions are Einc = 3.33 eV,

θinc = 45◦ along the [101̄] surface direction.

Total θout = 45◦ φout = 60◦

Conditions Mean Peak Mean Peak

6× 6× 6, 106 traj, 1 ps 35.3 (4.95) 14.0 (1.65) 33.5 (2.25) 14.9 (1.35)

6× 6× 6, 106 traj, 10 ps 35.3 (4.95) 14.0 (1.65) 33.2 (2.25) 14.9 (1.35)

6× 6× 64, 106 traj, 1 ps 35.3 (4.65) 14.9 (1.65) 31.7 (2.25) 15.2 (1.05)

10× 10× 4, 105 traj, 1 ps 35.3 (4.65) 14.9 (1.95) 31.7 (2.85) 52.7 (1.35)

distributions and the scattering probabilities. I therefore checked that simulations propagated

over 10 ps do not lead to markedly di�erent results. Little di�erences are to be observed, but the

changes are so slight that an increase in calculation time does not appear warranted unless long

term di�usion is to be considered. The deviations in mean and peak energy loss for specular

scattering for calculations with 105 trajectories are due to the low signal-to-noise ratio.

The simulation conditions I chose are therefore very well suited to perform MD simulations.

B.4.5. Disintegration Temperature

I estimated the temperature at which the slab becomes unstable by equilibrating the slab at

successively higher temperatures in steps of 50K for 20 ps using a 6 × 6 × 6 cell, and took the

highest temperature at which the slab did not disintegrate as Tstable. Whether or not the slab

had disintegrated, I �rst at all check visually by looking at the structure of the slab throughout

the trajectory and especially in the last step: if one of the atoms left its surface site, either
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by going into the gasphase or moving on top of the other surface atoms and thereby leaving a

vacancy, I considered the slab as above its temperature of stability. I have not been able to link

the melting temperature to other surface properties nor did I �nd a relation to the parameters

of the �t. Since discerning the disintegration temperature visually is not very precise, I tested

the disintegration temperature in large steps of 50K and, if in doubt, always chose the lower

temperature. This means that the disintegration temperatures Tstable given in this thesis are a

lower limit: the surface will de�nitely be stable up to this temperature, but it may also still be

stable for ≈ 50K above it.
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