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CPI ..................................................................................................................................... Carbon Preference Index 

DOC ............................................................................................................................... Dissolved Organic Carbon 

EH  ..................................................................................................................................................... Redox Potential 

EOC ............................................................................................................................. Extractable Organic Carbon 

FA ............................................................................................................................................................ Fatty Acids 

O2  .................................................................................................................................................................. Oxygen 

OM ................................................................................................................................................... Organic Matter 

pO2 ...................................................................................................................................... Oxygen Partial Pressure 

SOC ..........................................................................................................................................Soil Organic Carbon 

SP  ................................................................................................................................................. Subsoil Properties 

TLE ..............................................................................................................................Total Lipid Extract Contents 

TOC ....................................................................................................................................... Total Organic Carbon 

TP  ................................................................................................................................................ Topsoil Properties 
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Summary 

Microbial hotspots, defined by increased abundance and activity of microorganisms make up 

only a small percentage of the total soil volume but most microbially-mediated 

biogeochemical processes that are relevant for element-cycling take place there. Microbial 

hotspots are characterized by much higher process rates like increased organic matter (OM) 

turnover and nutrient mobilization compared to bulk soil. The higher availability of easily 

decomposable substrate compared to bulk soil increases microbial abundance and activity. 

Processes that lead to increased substrate availability like rhizodeposition, root litter 

deposition, the input of nutrient rich material by soil fauna and the leaching of organics from 

topsoil OM create microbial hotspots like the rhizosphere or biopores in soil. Especially in 

nutrient-poor subsoil, microbial hotspots are important for improving nutrient availability to 

plants.  

This thesis aims at 1) separating microbial hotspots based on molecular proxies; 2) assessing 

the ability of taprooted precrops that are known to deeply grow into soil in creating and 

maintaining microbial hotspots in subsoil; 3) determining the microbial utilization of root 

carbon (C) along a depth gradient down to 105 cm; and 4) determining the lateral extent of 

microbial hotspots in top- and subsoil based on the distribution and turnover of root-derived C 

and gradients of pH, oxygen (O2) and redoxpotential from the root surface towards bulk soil. 

In a field experiment alfalfa (Medicago sativa L.) was cultivated on a Haplic Luvisol for two 

years. Drilosphere, rhizosphere and bulk soil were sampled in 15 cm intervals down to 105 

cm depth from three replicate alfalfa plots, to differentiate microbial hotspots in soil based on 

molecular proxies. Free extractable fatty acid contents of the samples were determined after 

purification of fatty acids from the total lipid extract by solid phase extraction. Separation 

between drilosphere, rhizosphere and bulk soil OM was performed by linear discriminant 

analysis. Additionally, three replicate plots of alfalfa and chicory (Cichorium intybus L.) were 

in situ pulse labeled with 
13

CO2 after 110 days of growth, to determine C input along a depth 

gradient. Tracing of 
13

C in plant and soil C pools enabled the determination of C input into 

soil and C uptake by microorganisms down to 105 cm depth. In an experiment under 

controlled conditions, alfalfa was grown in three-compartment pots on either top- or subsoil to 

determine the lateral extent of microbial hotspots. Nylon gauze avoided either roots or roots 

and arbuscular mycorrhizal hyphae to penetrate into the rhizosphere compartment. After 

14
CO2 pulse labeling, the dynamic and distribution of root derived-C by diffusion alone or by 
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a combination of diffusion, root hair and hyphal transport was determined by quantifying 
14

C 

incorporation in dissolved (DOC) and total organic carbon (TOC) in the rhizosphere. The 

activity of extracellular enzymes was determined in the rhizosphere to assess differences in 

microbial decompostition between top- and subsoil. By use of a microsensor and miniaturized 

platinum electrodes, O2 and redoxpotential gradients within the top- and subsoil rhizosphere 

at differing matric potential ranges were quantified. 

The relative contents of dicarboxylic fatty acids differed in reverse order between drilosphere, 

rhizosphere and bulk soil OM and these differences were not affected by soil depth. Depth 

independency and differences between drilosphere, rhizosphere and bulk soil OM indicated 

the suitability of the relative contents of unsaturated and dicarboxylic fatty acids for the 

separation of microbial hotspot OM. Linear discriminant analysis enabled the separation of 

drilosphere, rhizosphere and bulk soil OM based on a linear combination of the relative 

contents of unsaturated and dicarboxylic acids. The results of the classical molecular proxy 

analysis reflect the complexity of hotspot-forming processes leading to OM with various 

source materials transfomed intensively by the microbial community. To assess these 

processes of hotspot formation, the ability of taprooted precrops in creating and maintaining 

microbial hotspots in subsoil during their first vegetation period was investigated. C input by 

root biomass and rhizodeposition was quantified and the microbial response down to 105 cm 

soil depth was determined. The results showed that the ability of alfalfa to create and maintain 

microbial hotspots in subsoil is higher compared to chicory due to 1) higher overall growth 

rates and 2) higher investment of C into root growth and rhizodepostition in subsoil  by alfalfa 

that exceeded that of chicory 8 times. The easily available C released by alfalfa roots enabled 

microbial growth and accelerated turnover of microbial biomass C, suggesting higher nutrient 

cycling rates and thus availability for plant uptake. Crops that reuse former root channels of 

alfalfa in subsoil can profit from improved nutrient supply. In contrast, the main part of 

chicory root biomass and rhizodeposition were found in topsoil suggesting that chicory is not 

recommendable as precrop to enhance nutrient supply from the subsoil, at least not in the first 

year after sowing. To assess the relevance of microbial hotspots, their spatial extend and the 

gradients with which the enhanced process rates decrease towards bulk soil have to be 

determined. The experiment under controlled conditions demonstrated that the exudation in 

topsoil was higher than in subsoil but the gradients of 
14

C-labeled root exudates in DOC from 

the root surface towards bulk soil were steeper in topsoil. Additionally, higher enzyme 

activities in the topsoil rhizosphere indicated faster microbial decomposition of the root 
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exudates compared to the subsoil rhizosphere. Although it was expected that higher microbial 

decomposition would lower the exudate diffusion into topsoil compared to subsoil, the 

determined distances were equal. Therefore, higher microbial decomposition and higher root 

exudation into the topsoil rhizosphere were equaled by lower microbial decomposition and 

lower root exudation and therefore led to a similar rhizosphere extent in top- and subsoil. 
14

C-

labeled root exudates were found in 28 mm distance from the root surface in DOC and 20 mm 

distance from the root surface in TOC. The O2 concentration decreased towards the root 

surface but was not affected by top- and subsoil properties but by the matric potential. A 

matric potential below -200 hPa enabled O2 supply towards the root and facilitated aerobic 

respiration. A rhizosphere effect on the O2 concentration was found up to 20 mm distance to 

the root surface. Changes in redoxpotential resulted of changing O2 concentrations up to 2 mm 

distance from the root surface. The redoxpotential reached moderately reducing values in the 

rhizosphere only under prolonged water saturated conditions.  

This dissertation demonstrated that the lateral extend of microbial hotspots like the 

rhizosphere exceeded estimations of previous studies. It could be shown that microbial 

hotspots play a crucial role for the enhancement of C and nutrient cycling in soils. This 

suggests that the cultivation of deep rooting precrops that allocate C into subsoil, as for 

example alfalfa, increases nutrient availability from subsoils in agroecosystems. 
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Zusammenfassung 

Mikrobielle Hotspots zeichnen sich durch erhöhte mikrobielle Biomasse und Aktivität im 

Vergleich zum Gesamtboden aus. Sie umfassen nur einen sehr kleinen Teil des 

Bodenvolumens, indem jedoch die meisten für Stoffkreisläufe relevanten mikrobiellen 

biogeochemischen Prozesse ablaufen. In mikrobielle Hotspots sind Prozessraten erhöht, wie 

beispielsweise verkürzte Umsatzzeiten der organischen Substanz und eine erhöhte 

Nährstoffmobilisierung im Vergleich zum Gesamtboden. Eine verbesserte Verfügbarkeit von 

niedermolekularen organischen Substanzen im Vergleich zum Gesamtboden stimuliert das 

Wachstum und die Aktivität von Bodenmikroorganismen. Mikrobielle Hotspots entstehen in 

Bodenkompartimenten, die durch Rhizodeposition, den Eintrag von Wurzelstreu, den Eintrag 

von nährstoffreichem Material von der Bodenfauna und die Auswaschung von organischen 

Verbindungen aus dem Oberboden einen erhöhten Substrateintrag aufweisen. Im Boden 

stellen die Rhizosphäre sowie Bioporen wichtige mikrobielle Hotspots dar. Speziell im 

nährstoffarmen Unterboden sind mikrobielle Hotspots wichtig, da die Nährstoffe in den 

Hotspots im Vergleich zum Gesamtboden für Pflanzen besser verfügbar sind.  

Im Rahmen dieser Dissertation wurden 1) mikrobielle Hotspots anhand molekularer Proxies 

unterschieden; und 2) das Potential von Vorfrüchten mit Pfahlwurzelsystem zur Ausbildung 

und Aufrechterhaltung von mikrobiellen Hotspots im Unterboden untersucht; darüber hinaus 

wurde 3) die mikrobielle Umsetzung des wurzelbürtigen Kohlenstoffs entlag eines 

Teifengradienten bis in 105 cm Tiefe bestimmt; und 4) die räumliche Ausdehnung der 

mikrobiellen Hotspots im Ober- und Unterboden anhand der Verteilung und anhand des 

Umsatzes von wurzelbürtigem Kohlenstoff, sowie anhand von sich ausbildenden pH, 

Sauerstoff- und Redoxpotentialgradienten von der Wurzeloberfläche in den Gesamtboden 

bestimmt. 

Im Rahmen eines Feldexperimentes wurde Luzerne (Medicago sativa L.) zwei Jahre lang auf 

einem Haplic Luvisol angebaut. Drilsophäre, Rhizosphäre und der Gesamtboden wurden in 15 

cm Intervallen bis in eine Tiefe von 105 cm beprobt, um mikrobielle Hotspots anhand von 

molekularen Proxies zur unterscheiden. Die Proben wurden auf ihre Gehalte an freien 

extrahierbaren Fettsäuren untersucht. Dafür wurden aus dem Gesamtlipidextrakt die 

Fettsäuren durch Festphasenextraktion abgetrennt. Die Differenzierung des organischen 

Materials aus der Drilosphäre, der Rhizosphäre und dem Gesamtboden wurde mittels einer 

linearen Diskriminanzanalyse durchgeführt. Desweiteren wurde auf der Versuchsfläche neben 
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Luzerne auch Wegwarte (Cichorium intybus L.) angebaut. Um den Kohlenstoffeintrag von 

Luzerne und Wegwarte in den Boden entlag eines Tiefengradientens zu vergleichen, wurden 

je drei Luzerne und drei Wegwarteparzellen nach 110 Tage Wachstum in situ mittels 
13

CO2 

pulsmarkiert. Die Verteilung des assimilierten 
13

C in Spross, Wurzeln und 

Bodenkohlenstoffpools sowie die Bestimmungen der jeweiligen Kohlenstoffpoolgrößen 

ermöglichte es, den Kohlenstoffeintrag bis in eine Bodentiefe von 105 cm zu quantifizieren. 

In einer Laborstudie wurde die räumliche Ausdehnung mikrobieller Hotspots untersucht. Zu 

diesem Zweck wurde Luzerne in T-förmigen Gefäßen mit drei Kompartimenten zwei Monate 

lang kultiviert. Die Gefäße waren entweder mit Ober- oder Unterboden gefüllt. Die Wurzeln 

konnten nur im mittleren Teil der Gefäße wachsen, da eine Nylongaze sie daran hinderte in 

die seitlichen Rhizosphärenkompartimente vorzudringen. Unterschiedliche Maschenweiten 

der Gaze verhinderten entweder nur das Wurzelwachstum oder sowohl das Wurzelwachstum 

als auch das Eindringen der Hyphen von arbuskulären Mykorrhizapilzen in die 

Rhizosphärenkompartimente. Die Dynamik und Verteilung von wurzelbürtigem Kohlenstoff 

in der Rhizosphäre, wurde durch die Markierung der Luzerne mit 
14

CO2 und anschließende 

Messung der 
14

C-Aktivität im gelösten organischen Kohlenstoff und im gesamten organischen 

Kohlenstoff ermittelt. Um Unterschiede im mikrobiellen Abbau der abgegebenen Substanzen 

in der Ober- und Unterbodenrhizosphäre zu bestimmen, wurden die Aktivitäten 

extrazellulärer Enzyme gemessen. Zur Messung von Sauerstoff- und 

Redoxpotentialgradienten bei unterschiedlichem Matrixpotenzial in der Ober- und 

Unterbodenrhizosphäre wurden ein Sauerstoffmikrosensor und Platinelektroden verwendet. 

Während die relativen Gehalte an ungesättigten Fettsäuren von Drilosphäre, über Rhizosphäre 

bis zum Gesamtboden abnahmen, verhielten sich die Dicarbonfettsäuren genau umgekehrt. 

Da diese Unterschiede unabhängig von der Bodentiefe waren, konnten diese Proxies zur 

Unterscheidung der Herkunft des organischen Materials verwendet werden. Mittels einer 

linearen Diskriminanzanalyse konnte so das organsiche Material mikrobieller Hotspots von 

dem des Gesamtbodens durch eine lineare Kombination der relativen Gehalte an ungesättigten 

Fettsäuren und Dicarbonsäuren unterschieden werden. Die unterschiedlichen Quellen des 

organischen Materials und dessen intensive mikrobielle Überformung veranschaulichen die 

Komplexität der Prozessse, die zur Entstehung von mikrobiellen Hotspots beitragen. Um 

diese Prozesse zu untersuchen, wurde das Potential von Vorfrüchten mit Pfahlwurzelsystem 

zur Ausbildung und Aufrechterhaltung mikrobieller Hotspots im Unterboden analysiert. Dafür 

wurde der Kohlenstoffeintrag über die Wurzelbiomasse und durch Rhizodeposition sowie die 
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mikrobielle Aufnahme bis in eine Tiefe von 105 cm quantifiziert. Die Ergebnisse zeigten, 

dass die Ausbildung mikrobieller Hotspots im Unterboden während der ersten 

Vegetationsperiode durch Luzerne stärker ist als durch Wegwarte. Die Gründe hierfür waren: 

1) Ein höherer Biomassezuwachs von Luzerne und 2) eine 8 fach höherere Verlagerung des 

assimilierten Kohlenstoffs in das Wurzelwachstum sowie in Rhizodeposite im Unterboden 

durch Luzerne. Unter Luzerne wurde durch den erhöhten Eintrag von leichtverfügbarem 

Kohlenstoff das mikrobielle Wachstum und der Umsatz an mikrobiellem C im Unterboden 

erhöht. Dies weist auf höhere Nährstoffumsatzraten und damit auf deren höhere 

Pflanzenverfügbarkeit hin. Das könnte zu einer verbesserten Nährstoffversorgung der 

Hauptfrüchte beitragen, wenn deren Wurzeln durch die ehemaligen Luzernewurzelporen im 

Unterboden wachsen. Im Gegensatz zur Luzerne bildete die Wegwarte den größten Teil ihrer 

Wurzelbiomasse im Oberboden aus wohin sie auch den größten Teil ihrer Rhizodeposite 

exsudierte. Aus diesem Grund ist die Wegwarte zumindest in der ersten Vegetationsperiode 

nicht als Vorfrucht zu empfehlen, um die Nährstoffverfügbarkeit im Unterboden zu 

verbessern.  

Um die Relevanz von mikrobiellen Hotspots für Nährstoffkreisläufe besser zu verstehen, ist 

es notwendig die Ausdehnung des Bodenvolumens mit erhöhten Prozessraten und die 

Gradienten mit denen diese Prozessraten zum Gesamtboden hin abnehmen zu untersuchen. 

Dies ermöglichte das oben beschriebene Experiment, bei dem Luzerne in den 

kompartimentierten Wachstumsgefäßen angezogen wurde. Hierbei zeigte sich, dass die 

Wurzelexsudation in die Oberbodenrhizosphäre verglichen mit der Exsudation in die 

Unterbodenrhizosphäre deutlich höher war. Allerdings waren die Gradienten der 
14

C 

markierten Wurzelexsudate im gelösten organischen Kohlenstoff von der Wurzeloberfläche in 

Richtung Gesamtboden steiler als im Unterboden. Da zusätzlich zu dem erhöhten Eintrag und 

den steileren Gradienten auch die Enzymaktivitäten im Oberboden höher waren, kann von 

einem erhöhtem mikrobiellem Abbau der Wurzelexsudate im Vergleich zur 

Unterbodenrhizosphäre ausgegeangen werden. Obwohl erwartet wurde, dass erhöhter 

mikrobieller Abbau zu einer geringeren diffusiven Ausdehnung der Wurzelexsudate in der 

Oberbodenrhizosphäre führen würde, war dies nicht der Fall. Sowohl in der Oberboden- als 

auch in der Unterbodenrhizosphäre wurde 
14

C aus Exsudaten bis in eine Entfernung von 28 

mm im DOC und 20 mm im TOC zur Wurzeloberfläche nachgewiesen. Die 

Sauerstoffkonzentration nahm in Richtung zur Wurzeloberfläche ab, wobei der Gradient in 

Ober- und Unterbodenrhizosphäre identisch war. Ein Rhizosphäreneffekt auf die 
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Sauerstoffkonzentration konnte bis in 20 mm Entfernung zur Wurzeloberfläche gemessen 

werden. Das Matrixpotenzial war ausschlaggebend für die diffusive Nachlieferung von 

Sauerstoff, und damit für die Aufrechterhaltung der aeroben Respiration in der Rhizosphäre. 

Bei einem Matrixpotenzial von -200 hPa oder weniger fand keine Hemmung der 

Respirationsprozesse durch mangelnde O2 Nachlieferung zur Wurzeloberfläche statt. Die auf 

der Sauerstoffkonzentration beruhenden Veränderungen des Redoxpotentials konnten bis in 

eine Entfernung von 2 mm zur Wurzeloberfläche erfasst werden. Nur unter ständiger 

Wassersättigung wurden in der Rhizosphäre schwach reduzierende Bedingungen erreicht. 

Im Rahmen dieses Dissertation konnte gezeigt werden, dass mikrobielle Hotspots im Boden 

eine größere laterale Ausdehnung erreichen als bislang angenommen. Darüber hinaus konnte 

gezeigt werden, dass diese Hotspots eine Schlüsselfunktion bei der Erhöhung von 

Kohlenstoff- und Nährstoffumsätzen besitzen. Daher empfiehlt sich der Anbau von 

tiefwurzelnden Vorfrüchten mit ausgeprägter C-Verlagerung in den Unterboden, wie 

beispielsweise Luzerne, um die Nährstoffverfügbarkeit aus dem Unterboden in 

Agrarökosystemen zu verbessern. 
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1.1 Introduction 

Microbial hotspots in soil are defined as microsites with increased process rates compared to 

bulk soil as for example increased organic matter (OM) turnover and nutrient mobilization 

(Cheng 2009; Kuzyakov 2010; Kuzyakov and Blagodatskaya 2015). These hotspots make up 

only a small percentage of the total soil volume, but represent the place where most 

microbial-mediated biogeochemical processes relevant for element-cycling take place 

(Kuzyakov and Blagodatskaya 2015). Higher microbial abundance and activity in microbial 

hotspots are caused by increased availability of easily decomposable organic carbon (C) used 

as substrate (De Nobili et al. 2001; Kuzyakov 2002). The C and energy sources for microbial 

growth are derived from shoot and root detritus, soil fauna and microbial necromass, 

rhizodeoposits and C allocated to preferential flow pathways by leaching. As these sources 

are distributed inhomogenously throughout the pedon, the resulting hotspots also show a 

heterogenous distribution (Beare et al. 1995; Kuzyakov and Blagodatskaya 2015). Besides the 

detritussphere and aggregate surfaces, the rhizosphere and biopores are the most important 

microbial hotspots in soil (Kuzyakov and Blagodatskaya 2015).  

The rhizosphere is defined as the soil volume affected by root activity (Darrah 1993; 

Hinsinger et al. 2005; Gregory 2006). Plant roots growing through soil affect soil properties in 

their direct vicinity. Water and nutrient uptake, root respiration and rhizodeposition modify 

microbial abundance and actitiy, physical, chemical and biochemical conditions and processes 

in the soil surrounding the root compared to bulk soil (Hinsinger et al. 2005; Gregory 2006). 

Due to root growth and differing potential of root zones for water and nutrient uptake or for 

rhizodeposition (Luster et al. 2009), the rhizosphere and its properties are temporarily and 

spatially dynamic (Watt et al. 2006). 

In plant nutrition, the rhizosphere plays a crucial role, as it displays the area in soil where 

plants acquire nutrients (Darrah 1993). The availability of these nutrients is affected by 

rhizodeposition (Dakora and Phillips 2002; Dilkes et al. 2004), which is defined as the release 

of volatile, soluble and particulate substances from the root into the soil (Uren 2007; Wichern 

et al. 2008). The amount of released rhizodeposits, which comprise a wide range of organic 

compounds, depends on plant species, plant developmental stage and environmental 

conditions (Rovira 1956; Pinton et al. 2007). Disregarding the process of exudation, released 

organic compounds can be divided into high molecular weight organic substances comprising 

mucilage, lysates, exoenzymes and low molecular weight organic substances comprising 
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sugars, amino acids, organic acids lipids and phenols (Kraffczyk et al. 1984; Marschner 1995; 

Wichern et al. 2008; Fischer et al. 2010). Low molecular weight concentrations in the 

rhizosphere exceed the concentrations in bulk soil by one order of magnitude (Strobel 2001; 

van Hees et al. 2002; Fischer et al. 2007; Fischer et al. 2010). 

The released compounds have different functions in affecting plant nutrient acquisition 

(Dakora and Phillips 2002). Rhizodeposits directly affect nutrient availability (Paterson 2003) 

through root induced pH changes (Marschner et al. 1986; Dakora and Phillips 2002; Jones 

1998; Gahoonia and Nielsen 1991; Marschner and Römheld 1983; Kirk 1999), the exudation 

of phytosiderophores improving Fe, Zn, Cu and Mn availability (Treeby et al. 1989; 

Marschner et al. 1986; Cakmak et al. 1998), the exudation of phenolics improving the 

solubility of Fe and P (Dakora and Phillips 2002) or the exudation of extracellular enzymes 

hydrolizing organic N and P (Tarafdar and Jungk 1987). Indirect effects of rhizodeposits on 

nutrient mobilization are related to the attraction of microorganisms by chemoattractants such 

as flavonoids, aromatic acids, amino acids and dicarboxylic acids (Dakora and Phillips 2002). 

The increased availability of substrate stimulates microbial growth and activity, causing the 

accumulation of microorganisms in the rhizosphere (Lynch and Whipps 1990; Jones et al. 

2009). The abundance of microorganisms in the rhizosphere is between twice up to more than 

1000 times as high compared to bulk soil (Rouatt 1959; Westover et al. 1997).  

Microbial nutrient mobilization by decomposition of soil organic matter (SOM) and 

mobilization of nutrients from clay minerals and sesquioxides increases nutrient availability 

for plants, due to favourable living conditions for microorganisms in the rhizosphere 

(Kuzyakov 2002; Paterson 2003; Blagodatskaya et al. 2007).  

Plants invest a high amount of photosynthetically fixed C into rhizodeposition, indicating the 

importance of the interactions with microbes including nutrient mobilization for their 

nutrition. Up to 50% of photosynthetically C fixed by grasses or cereals is allocated 

belowground, whereof approximately 50% is invested into root growth and 30% is 

rhizodeposited (Kuzyakov and Domanski 2000; Kuzyakov 2002; Johnson et al. 2006). 

Further microbial hotspots in soil are biopores. Biopores develop when roots are being 

decomposed leaving a pore with increased OM content compared to bulk soil. Besides ancient 

root channels, the burrowing activity of the soil fauna, especially the activity of earthworms 

create stable biopores (Tiunov and Scheu 1999; Kautz et al. 2013a). The effect of earthworm 

activity on soil properties depends on earthworm species and ecological categories (Brown et 
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al. 2000). Anecic earthworms (e.g. Lumbricus terrestris) produce burrows that extent from the 

soil surface deep into the soil. They feed on particulate OM mixed with soil particles and 

transport surface litter into deeper soil (Brown et al. 2000). Nutrient-rich material is found in 

the burrow walls due to coatings of mucus and egested nutrient-rich material. The material of 

the burrow wall is enriched in soil flora and fauna compared to bulk soil (Brown et al. 2000). 

Therefore, earthworms increase the OM content in the environment through their activity. The 

soil that is affected by earthworms is called drilosphere that can be defined as the 2 mm thick 

soil layer surrounding the earthworm burrow (Bouché 1975)(Figure 1.1-1d). Due to the 

enrichment in substrate and the subsequentially increased microbial activity and turnover of 

SOM compared to bulk soil, the drilosphere soil is an important microbial hotspot in soil. 

The conditions in root- and earthworm derived biopores are of special interest in nutrient poor 

subsoil horizons. With increasing soil depth, SOM content, nutrient availability, rooting 

density, microbial biomass and mycorrhizal infection decrease (Jobbagy and Jackson 2001; 

Fierer et al. 2003; Salomé et al. 2010). SOM in subsoil originates from bioturbation, root 

litter, rhizodeposition and leaching of organics from topsoil OM (Rumpel and Kögel-Knabner 

2011; Kaiser and Kalbitz 2012). Its distribution is more heterogeneous compared to topsoil 

due to a lower amount of roots, which grow more isolated from each other, lower bioturbation 

and preferential flow pathways (Rumpel and Kögel-Knabner 2011). Thus, in subsoil, biopores 

represent hotspots in subsoil with increased SOM content and microbial activity (Tiunov and 

Scheu 1999; Bundt et al. 2001). Compared to the very low OM contents in subsoil, microbial 

hotspots represent locally restricted microenvironments with extremely high C availability. 

Mineralisation of SOM by microorganisms can release nutrients into the soil that then become 

available for plants. Higher substrate availability in subsoil biopores enables increased OM 

turnover and microbial nutrient mobilization in biopores compared to bulk soil (Cheng 2009; 

Kuzyakov 2010). Thus, biopores in subsoil can provide increased nutrient availability for 

    

Figure 1.1-1: Taproot of chicory growing (a) through bulk soil in 75 cm depth creating a pore when beeing 

decomposed and; (b) in a preexisting biopore in 60-70 cm depth. Earthworm creating burrows (c). The 2 mm 

thick layer that surrounds and earthworm burrow is defined here as drilosphere soil (Bouché 1975)(d).  

(a) (b) (c) 

(d) 
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plants. 

Besides of the availability, the accessibility of subsoil resources is improved by biopores 

(Kautz et al. 2013a). Once a biopore is present, it can be reused by plant roots to easily grow 

into subsoil. Roots growing in biopores benefit from lower mechanical impedance, higher 

oxygen (O2) availability and increased nutrient content in pore walls compared to bulk soil 

(Böhm and Köppke 1977; Stewart et al. 1999; Watt et al. 2006). Another benefical effect 

results of the root's contact to other living or dead roots inside a pore and the already existing 

microbial community (Watt et al. 2006). Next to being re-used by roots growing in the subsoil 

without physical impedance, biopores might become colonized by soil fauna. Therefore, the 

OM in biopores can originate from different sources. In addition to root- and soil fauna-

derived OM, the enhanced microbial activity leads to a high contribution of microbial bio- 

and necromass to the OM in biopores. 

In arable subsoil the development of biopore systems is influenced by soil properties, the root 

system of a crop and the associated activity of the soil fauna (Kautz et al. 2013a). Crops that 

build a taproot (allorhizous root system), in contrast to crops that have a fibrous root system 

(homorhizous root system), are known to increase biopore abundance in subsoil (McCallum 

et al. 2004). As biopores can improve nutrient availability for plants, the use of taprooted 

precrops in a cropping sequence positively affects the growth of the subsequent crops. 

Nutrient uptake from arable subsoil can especially be relevant for plant nutrition, under 

nutrient-poor topsoils and during drought periods (Kautz et al. 2013a; Marschner 1995).  
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1.2 Objectives 

Microbial hotspots drive nutrient cycling in soil and therefore affect nutrient availability for 

crops. Especially in subsoil, the rhizosphere and biopores are an important microhabitate for 

microorganisms, as their conditions highly contrast bulk soil. Taprooted precrops in contrast 

to crops with fibrous root system are known to form roots that deeply penetrate into the soil 

and therefore increase biopore abundance in subsoil. 

This thesis targets to assess the ability of two taprooted precrops alfalfa (Medicago sativa L.) 

and chicory (Cichorium intybus L.) to create microbial hotspots in top- and subsoil. 

Therefore, the following objectives were aimed at: 

(1) Quantification of C input by root biomass and rhizodeposition into top- and subsoil within 

the first growing season of these precrops and 

 

Figure 1.2-1: Schematic overview of the individual aims of the studies conducted  within this thesis 
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(2) Determination of microbial biomass and microbial utilization of root-derived C along the 

depth gradient down to 105 cm depth (Figure 1.2-1, Study 1). 

(3) Characterization of the molecular pattern of free fatty acids to identify molecular proxies 

for differentiation of root- versus earthworm-derived biopores along the depth gradient down 

to 105 cm (Figure 1.2-1, Study 2). 

In addition to biopore characterization along depth gradients, the lateral extension of biopores 

should be investigated exemplarily at a rhizosphere in this dissertation. Therefore, the 

processes occuring during the formation of the root-derived biopore along a lateral gradient of 

increasing distance to the root were investigated with the following aims:  

(4) Quantification of C input, microbial utilization and turnover with increasing distance to 

the root (Figure 1.2-1, Study 3). 

(5) Determination of the effect of arbuscular mycorrhiza on the extension of the rhizosphere 

(Figure 1.2-1, Study 3). 

(6) Assessment of oxygen- and redox-gradients along the lateral gradient starting at the root 

surface (Figure 1.2-1, Study 4). 
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1.3 Material and Methods 

1.3.1 Field site description 

To gain more insight into subsoil processes in arable soils the DFG-research group 1320 

"Crop Sequences and the Nutrient Acquisition from the Subsoil" was founded. The objective 

was to determine the importance of biological macropores for nutrient accession and 

acquisition from the subsoil by different crops. Subsoil is defined here as the rootable part 

(unconsolidated mineral soil) of the soil beneath the plowed or formerly plowed topsoil 

horizon, where soil structure persists due to the absence of plowing (Kautz et al. 2013a). To 

clarify this questions a field trial was established in Klein-Altendorf near the city of Bonn 

(Germany; 50°37’21’’ N, 6°59’29’’ E). Precrops with differing root systems (taproot vs. 

fibrous root system) and cultivation time (1, 2 and 3 years) were cultivated. The climate can 

be described as maritime temperate (Cfb Köppen climate classification) with a mean annual 

precipitation of 625 mm and a mean annual temperature of 9.6 °C (Gaiser et al. 2012). 

The soil at the experimental site developed from loess (silt loam) and was classified as Haplic 

Luvisol (Hypereutric, Siltic) (WRB, IUSS-ISRIC-FAO 2006; Gaiser et al. 2012; Kautz et al. 

2013b). The soil is characterized by a silt loam to silty clay loam texture, pH values ≥ 6.5 

(CaCl2) and a high base saturation throughout the whole soil profile, a maximum bulk density 

of 1.52 g cm
-3

 in the Bt2 and Bt3 horizon and a calcium carbonate rich C horizon > 127 cm  

(Table 1.3-1). The plowing layer (Ap horizon) with a thickness of 30 cm was followed by an 

eluvial E/B horizon down to 45 cm. The E/B horizon was underlain by the diagnostic illuvial 

argic subsurface horizons that had a texture of 1) silty clay loam with 27% clay in the fine 

Table 1.3-1: Soil properties of the reference soil profile at the field trial of the DFG research group FOR 

1320 in Klein Altendorf (Athmann et al. 2013; Kautz et al. 2014).  

Depth Horizon Texture Bulk density pH CaCO3 SOC Ntot CEC 

(cm) (WRB) S (%) U (%) T (%) WRB g cm
-3

 CaCl2 H2O g kg
-1

 g kg
-1

 g kg
-1

 

cmolc 

kg
-1

 

0-27 Ap 8 77 15 SiL 1.29 6.5 7.9 < 1 10.0 1.02 12.01 

27-41 E/B 5 74 20 SiL 1.32 6.9 7.8 < 1 4.6 0.55 11.91 

41-75 Bt1 4 69 27 SiCL 1.42 6.9 8.1 < 1 4.5 0.51 15.68 

75-87 Bt2 4 65 30 SiCL 1.52 6.9 7.7 < 1 3.9 0.5 18.48 

87-115 Bt3 5 70 25 SiL 1.52 7.1 7.2 < 1 2.5 0.34 15.49 

115-127 Bw 5 72 23 SiL 1.46 7.3 8.2 < 1 2.6 0.34 14.35 

127-140+ C 8 75 13 SiL 1.47 7.4 8.3 127 n.d. > 0  

Soil organic carbon (SOC), Total Nitrogen (Ntot), Cation exchange capacity (CEC) 
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earth fraction (Bt1); 2) silty clay loam with 30% clay in the fine earth fraction (Bt2) and; 3) 

silt loam with 25% clay in the fine earth fraction (Bt3). The ratio of clay in the argic to the 

overlying coarser E/B horizon was ≥ 1.2 indicating the illuvial clay accumuation. 

At the field site 60 m
2
 plots were planted with the forage precrops alfalfa (Medicago sativa 

L.) and chicory (Cichorium intybus L.) with allorhizous root system and tall fescue (Festuca 

arundinacea Schreb) with homorhizous root system (Gaiser et al. 2012; Kautz et al. 2013b). 

The cultivation time of the precrops was one, two or three years followed by the cultivation of 

the main crops. Precrops were cut and chopped with a mulcher (3 - 4 times per year) (Gaiser 

et al. 2012). All experiments presented in this thesis were conducted before the cultivation of 

the main crops. C fluxes between plant and soil C pools and the comparison of C input into 

subsoil between alfalfa and chicory were determined within the first year of cultivation 

without cutting and chopping within the 150 days of growth (see Study 1). To differentiate the 

OM between rhizosphere, drilosphere and bulk soil based on free extractable fatty acids three 

replicate plots that were cultivated for two years with alfalfa were sampled (see Study 2).The 

homogenized topsoil (sampled from 0-30 cm, Ap horizon) or subsoil (45-75 cm, Bt horizon) 

used in the laboratory experiment to determine 1) the spatial distribution and turnover of root-

derived C in alfalfa rhizosphere depending on top- and subsoil properties and mycorrhization 

(see Study 3) and; 2) the oxygen and redox potential gradients in the rhizosphere of alfalfa 

(see Study 4) was taken from three replicate plots of alfalfa cultivated in the second year.  
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1.3.2 Experimental setup and realization of study 1 

C input into top- and subsoil by root biomass and rhizodeposition and its uptake by 

microorganisms was studied by in situ 
13

CO2 pulse labeling and C pool measurements. Alfalfa 

and chicory were labeled with 
13

C after 110 days of growth. 
13

C was traced in above- and 

belowground biomass, CO2 efflux (only 1 day after labeling), rhizosphere and bulk soil and in 

microbial biomass 1 and 40 days after labeling. C pool sizes and 
13

C signature were 

determined in 15 cm intervals from the soil surface down to 105 cm depth (Figure 1.3-2). A 

summary of the material and methods used to realize the experiment is given in Table 1.3-2. 

Table 1.3-2: Summary of the material and methods used in study 1 

Aims Methods and analyzes 

Partitioning of photosynthetically fixed C 

between plant, soil, and microbial biomass 

C pools and soil respiration (Figure 1.3-1). 

In situ 
13

CO2 pulse labeling of alfalfa and 

chicory (Riederer et al. 2015; Hafner et al. 

2012). 


13

C signature of plant biomass, rhizosphere 

and bulk soil, microbial biomass 1 and 40 

days after labeling. 

 

Samples were measured by the isotope ratio 

mass spectrometer (Thermo Fischer, Bremen, 

Germany) coupled with and elemental 

analyzer (Eurovector, Milan, Italy) via a 

ConFlo III interface (Thermo-Fischer, 

Bremen, Germany) at the Centre for Stable 

Isotope Research and Analysis, University of 

Göttingen. 

Soil respiration and the amount of recent 

assimilates invested into root respiration 

and used for rhizomicrobial respiration 

(
13

C signature of SrCO3)  1 day after the 

labeling. 

Static alkali absorption method (Lundegardh 

1921; Kirita 1971; Singh and Gupta 1977) was 

used to determine soil respiration. 

The amount of recent assimilates recovered in 

soil respiration was determined by adding 

SrCl2 to NaOH to precipitate SrCO3. The 

extracts were freeze dried and 
13

C signature 

was determined in SrCO3. 

Determination of microbial biomass carbon Chloroform-fumigation-extraction method 

modified after Brookes et al. (1985) and 

Vance et al. (1987). Extractable organic 

carbon in the fumigated and non-fumigated 

samples was measured by catalytic oxidation 

(Multi N/C 2100 S, Analytik Jena, Germany). 


13

C of microbial biomass C K2SO4 extracts were freeze dried. Dried 

extracts were weighed into tin capsules (> 15 

µg C per capsule) for 
13

C analysis.  
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Figure 1.3-1: Partitioning of photosynthetically fixed C ( 13C) between plant and soil C pools and respired as 

CO2. The partitioning of 13C was determined between shoot-, root-,and microbial biomass, rhizosphere and bulk 

soil and CO2 efflux (lila bordered boxes) 1 and 40 days after labeling to determine the incorporation of 

assimilated C at the time of the labeling into the mentioned C pools.  

 

 

   

Figure 1.3-2: Chambers that were used for simultaneous in situ 13CO2 pulse labeling of three replicate 1 m2 

plots of chicory (a). Alfalfa plot after the pulse labeling with two closed chambers for determining total soil 

respiration and the contribution of recently assimlated C (b). 15 cm soil cores taken subsequently from the 

soil surface down to 105 cm depth (c).  
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1.3.3 Experimental setup and realization of study 2 

Drilosphere, rhizosphere and bulk soil was sampled from three replicate plots that were 

cultivated for two years with alfalfa at the filed site in Klein Altendorf. After the preparation 

of a profile wall biopores and roots were search within four depth intervals down to 105 cm 

depth using a spatula. The 2 mm soil layer surrounding an earthworm burrow was sampled as 

drilosphere soil using micro spoons (Figure 1.3-3 a). Rhizosphere soil was sampled by 

extracting roots growing directly attached to the soil not in a preexisting pore and then 

carefully remove rhizosphere soil by brushes (Figure 1.3-3 b). Bulk soil was sampled away 

from visible pores or roots.To differentiate the OM between rhizosphere, drilosphere and bulk 

soil the free extractable fatty acid content was determined. Separation was conducted by 

linear discriminant analysis. A summary of the material and methods used to realize the 

experiment is given in Table 1.3-3. 

 

Table 1.3-3: Summary of the material and methods used in study 2 

Aims Methods and analyzes 

Sampling drilosphere, rhizosphere and bulk 

soil in: 

0 - 30 cm (Ap) 

30 - 45 cm (E/B) 

45 - 75 cm (Bt1) 

75 - 105 cm (Bt2 and Bt3) depth 

Samples were taken from profile walls at 

three replicate alfalfa plots in four depth 

intervals 

Bulk soil: was sampled away from visible 

biopores 

Drilosphere soil: 2 mm thick soil layer 

surrounding earthworm burrows was 

sampled with a micro spoon. Mainly vertical 

oriented pores were sampled as drilosphere, 

if coatings and earthworm feaces were 

present but no roots. 

Rhizosphere soil: Soil remaining at the root 

after shaking (max. 2 mm) was removed 

from the roots with fine brushes. For 

sampling rhizosphere soil only roots growing 

through soil not in preexisting pores were 

used.  

Roots: after removing rhizosphere soil root 

samples remained. 

During sampling, samples were cooled and 

frozen thereafter. 
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Determining free extractable fatty acids in 

soil and root samples 

Samples were freeze dried, crushed or ball 

milled (root samples) (Retsch MM 200). 

Lipid extracts were obtained by soxhlet 

extraction, (DCM/MeOH) 93:7 (v:v) 

followed by solid phase extraction on KOH 

coated SiO2 columns to separate fatty acids 

(Wiesenberg et al. 2010) after methylation 

using BF3/MeOH 

GC-FID measurement of free extractable 

fatty acids for quantification 

Agilent 7890 GC with flame ionization 

detector 

(30 m DB5 columns (0.32 mm inner 

diameter and 0.25 µm film thickness)) 

GC-MS measurment of free extractable fatty 

acids for compound identification 

Hewlett Packard 5890 GC Series II (30 m 

DB5 columns (0.32 mm inner diameter and 

0.25 µm film thickness)) coupled to Hewlett 

Packard 5871 mass spectrometer 

Determination of organic carbon content Analytik Jena N/C analyzer equipped with an 

oven for solid samples 

Separation between drilosphere, rhizosphere 

and bulk soil organic matter  

Linear discriminant analysis was conducted 

using unsaturated and dicarboxylic acid 

contents as predicting variables and the soil 

compartment was used as categorical 

variable. 

       

Figure 1.3-3: Illustration of the biopores sampled as drilsophere soil (a) and the roots not growing in a 

preexisting pore that were used to sample rhizosphere soil (b). Biopores where both roots and earthworms 

contributed to the OM were not sampled (c).  

(a) (b) (c) 
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1.3.4 Experimental setup and realization of study 3 

Alfalfa plants were grown for two months in three-compartment pots filled with either 

homogenized topsoil (sampled from 0-30 cm, Ap horizon) or subsoil (45-75 cm, Bt horizon) 

of a Haplic Luvisol (WRB IUSS-ISRIC-FAO 2006) (Figure 1.3-4 a and Figure 2.3-1). Alfalfa 

roots grew in the root compartment but were hindered to grow into the rhizosphere 

compartment by nylon gauze (Figure 1.3-4 c and Figure 1.3-4 d). Two months after sowing, 

alfalfa plants were pulse labeled with 
14

CO2. The distribution and dynamic of root-derived C 

in dissolved and total organic carbon in the rhizosphere of alfalfa was determined by tracing 

14
C in the soil solution and soil slices after cutting the rhizosphere compartments (Figure 

1.3-4 b). A summary of the material and methods used to realize the experiment is given in 

Table 1.3-4. 

  

  

  

Figure 1.3-4: Alfalfa plants growing in the three-compartment pots used as experimental design in study 2 

(a). After the 14CO2 pulse labeling of alfalfa soil solution was sampled using micro suction cups (PI 

Ceramic, Lederhose, Germany) (Göttlein et al. 1996) (b). Alfalfa roots that covered the nylon gauze (c) and 

the surface of the associated rhizosphere compartment (d).  

(a) (b) 

(c) (d) 
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Table 1.3-4: Summary of the material and methods used in study 3 

Aims Methods and analyzes 

Determine the distribution and dynamic of 

root-derived C in alfalfa rhizosphere by (1) 

diffusion or (2) diffusion, root hair and 

hyphal transport 

14
CO2 pulse labeling of alfalfa grown in three 

compartment pots (Cheng et al. 1993; Gocke 

et al. 2011). 

Nylon gauze with a mesh size of (1) 1 µm or 

(2) 30 µm was used to separate the root 

compartment from the rhizosphere 

compartment 

Determine the distribution and dynamic of 

root exudates and C released by arbuscular 

mycorhhizal fungi in dissolved organic C.  

 

Soil solution sampling in 3, 6, 9, 13, 19 and 

28 mm distance from the root surface by 

micro suction cups (PI Ceramic, Lederhose, 

Germany) (Göttlein et al. 1996). 

Measuring
 14

C activity in the soil solution by 

Liquid Scintillation Counting (LS 6500 

Multi-154 Purpose Scintillation Counter, 217 

Beckman, USA). 

Determine the distribution and dynamic of 

root exudates and C released by arbuscular 

mycorhhizal fungi in total organic C.  

Rhizosphere compartments were cut into 

slices at distances of 2, 4, 6, 8, 10, 12, 14, 16, 

and 20 mm 

Soil was homogenized and combusted. 

Evolving CO2 was trapped in NaOH. 
14

C 

activity was measured in NaOH by Liquid 

Scintillation Counting (LS 6500 Multi-154 

Purpose Scintillation Counter, 217 Beckman, 

USA) 

Determine the colonization of alfalfa roots by 

arbuscular mycorrhizal fungi  

Staining of arbuscular mycorrhizal fungi 

structures in root tissue by the ink and 

vinegar method (Vierheilig et al. 1998). 

Determine the proportion of alfalfa root 

length colonized (McGonigle et al. 1990) 

Determine the activity of leucin-amino-

peptidase (EC 3.4.11.1), ß-glucosidase (EC 

3.2.1.21) and ß-N-acetylglucosaminidase 

(EC 3.2.1.52) 

A microplate fluorimetric enzyme assay 

based on methylumbelliferone substrates was 

used (Marx et al. 2001; German et al. 2011; 

Merz 2011). 
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1.3.5 Experimental setup and 

realization of study 4 

Alfalfa was grown in three-compartment pots for 

two month (Figure 1.3-5). The experimental 

setup was comparable to study 3. A summary of 

the material and methods used to realize the 

experiment is given in Table 1.3-5. 

 

 

 

 

 

 

 

Table 1.3-5: Summary of the material and methods used in study 4 

Aims Methods and analyzes 

Determine the redoxpotential (EH) and the 

spatial distribution of oxygen (O2) from bulk 

soil towards the root surface of alfalfa at four 

different matric potential ranges. 

The O2 concentration was measured by an O2 

Clark-type microsensor (100 µm diameter 

tip, Unisense A/S, Aarhus, Denmark) 

The EH was measured by miniaturized 

platinum electrodes (100 µm diameter tip, 

Unisense A/S, Aarhus, Denmark). 

The microsensors were inserted into the 

rhizosphere compartment  and pushed gently 

from bulk soil towards the root surface (0.5 

mm steps, compartment length 4 cm) (Figure 

1.3-5 and Figure 2.4-1). 

Determine the dynamic of the O2 

concentration and the EH at the root surface 

The microsensors were inserted up to the 

root surface where O2 and EH were measured 

for 20 hours under different conditions. 

Monitoring of the matric potential was 

monitored by a ceramic minitensiometer 

installed in the lateral pot at 10 mm distance 

from the root surface. 

Ceramic mini tensiometers that were 

installed in the rhizosphere compartment at a 

distance of 10 mm from the root surface. 

 

Figure 1.3-5: Realization of the oxygen and 

redoxpotential measurement in the 

rhizosphere of alfalfa.  
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pH gradients The rhizosphere compartment was sliced 

parallel to the root surface in 2, 4, 7, 10, 15, 

20, 25, 30, 40 mm 

pH was measured for every soil slice in 

0.01 M CaCl2-solution 

Texture of top- and subsoil Wet sieving and precipitation (USDA 2011) 

Estimation of the air-filled porosity Sand, silt and clay contents were used to 

estimate the van Genuchten water retention 

parameters by pedotransferfunctions (Schaap 

et al. 2001; van Genuchten 1980). These 

were used to estimate the volumetric water 

content at each matric potential.  

Air-filled porosity: difference between total 

porosity and the corresponding water 

contents 

Determine the O2 consumption in top- and 

subsoil rhizosphere compartments 

Calculating: 

the O2 relative diffusion coefficient (Moldrup 

et al. 1997). 

the O2 concentration (Gliński and 

Stępniewski 1985) 

the O2 consumption rate per unit soil           

(g m
-3 

s
-1

) (Gliński and Stępniewski 1985) 
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1.4 Results 

Objectives and main results of the 4 studies are summarized in Table 1.4-1.  

 

Table 1.4-1: Overview of the objectives and main results of the studies conducted  

Objectives Main results 

Study 1: 

Carbon input and partitioning in subsoil by chicory and alfalfa 

 Estimation and comparison of C input into 

top- and subsoil by root biomass and by 

rhizodeposition between two common 

taprooted precrops alfalfa (Medicago sativa 

L.) and chicory (Cichorium intybus L.) 

during the first vegetation period   

 Determination of the partitioning of 

photosynthetically fixed C between plant 

and soil C pools and the uptake by 

microorganisms down to a depth of 105 cm. 

 

 Alfalfa showed a higher growth during the 

experiment than chicory 

 Alfalfa root biomass was more 

homogeneously distributed throughout the 

soil profile, whereas the main part of 

chicory root biomass was found in topsoil 

 C input by alfalfa into topsoil, containing 

root and rhizodeposited C, was 1.6 times 

(3940 kg C ha
-1

) and into subsoil 8 times 

higher (3820 kg C ha
-1

) compared to 

chicory 

 Especially C input into subsoil was 

higher under alfalfa 

 the recovery of assimilated C in microbial 

biomass differed slightly between top- and 

subsoil 

 subsoil microorganisms incorporated 

a higher portion of released C due to 

substrate scarcity  

 topsoil microorganisms incorporated 

less as higher substrate availability 

caused higher mineralization 

 

 Higher C input and microbial growth 

in subsoil can improve physico-

chemical and biological properties 

under alfalfa cultivation and therefore 

enhance root growth and consequently 

the water and nutrient uptake from 

subsoil compared to chicory 
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Study 2 

Molecular differentiation between root- and earthworm-derived biopores in soil based 

on free extractable fatty acids 

 Differentiation of rhizosphere, drilosphere 

and bulk soil OM based on free fatty acids 

 Identification of the source of OM in 

biopores based on molecular proxies  

 

 The relative amounts of unsaturated FA and 

dicarboxylic acids differed in reverse order 

between bulk soil, rhizosphere and 

drilosphere OM but did not change with 

depth 

 Therefore, a linear combination of the 

relative content of unsaturated fatty acids 

and dicarboxylic acids separated OM 

between the rhizosphere, drilosphere and 

bulk soil (Linear discriminant analysis). 

 A universal application of the linear 

combination of relative contents of 

unsaturated FA and dicarboxylic acids to 

categorize OM of unknown origin into bulk 

soil, rhizosphere and drilosphere OM 

requests the evaluation of the discriminant 

model based on samples from other sites 

and ecosystems as well as a validation 

using biopore OM produced under 

controlled conditions 

 The source identification of OM in biopores 

failed using classical molecular proxies 

 Organic carbon content was highest in 

drilosphere, intermediate in rhizosphere and 

lowest in bulk soil in every soil depth 

Study 3 

Spatial distribution and turnover of root-derived carbon in alfalfa rhizosphere 

depending on top- and subsoil properties and mycorrhization 

 Effect of top- and subsoil properties on the 

extent to which root exudates diffuse from 

the root surface of alfalfa towards the soil 

 Effect of arbuscular mycorrhizal fungal 

hyphae on root-derived C distribution in 

alfalfa rhizosphere 

 

 

 Extent of exudate diffusion in the 

rhizosphere with topsoil properties was 

equal to the rhizosphere with subsoil 

properties 

 Exudates extended up to 28 mm in DOC 

and 20 mm in TOC from the root surface 

into soil 

 Despite the generally low concentrations of 

root exudates in the soil, the high tracer 

amount (
14

C) used in this study enabled the 

detection of root exudates at larger 

distances than previously reported 
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 Higher root exudation into the rhizosphere 

but steeper gradients of 
14

C in DOC and 

higher activity of extracellular enzymes 

indicated increased microbial 

decomposition of root exudates under 

topsoil compared to subsoil properties 

 Higher root exudation into the 

rhizosphere with topsoil properties 

but higher microbial decomposition 

resulted in equal exudate extent 

compared to lower exudation into the 

rhizosphere with subsoil properties 

and lower microbial decomposition 

 No effect of arbuscular mycorrhizal fungal 

hyphae on root-derived C distribution in the 

rhizosphere was found 

 colonization of roots by arbuscular 

mycorrhizal fungi was low and thus a 

low arbuscular mycorrhizal fungi 

hyphae biomass can be assumed to 

account for the lack of the effect of 

mycorrhiza  on rhizosphere extension 

Study 4 

Oxygen and redox potential gradients in the rhizosphere of alfalfa grown on a loamy soil 

 Determination of spatial O2 distribution in 

the rhizosphere as a function of root and 

rhizomicrobial respiration and matric 

potential 

 Estimation of the required air-filled porosity 

to sustain aerobic conditions in the 

rhizosphere 

 Physicochemical extension of the 

rhizosphere should be determined based on 

its Eh and pH gradients 

 O2 concentration decreased towards the root 

surface. Rhizosphere effect was determined 

up to 20 mm for O2 and up to 2 mm for Eh 

 O2 concentration decreased from bulk soil 

to the root surface due to root and 

rhizomicrobial respiration but O2 gradients 

were equal in the rhizosphere with topsoil 

compared to subsoil properies 

 matric potential was the main 

parameter affecting O2 supply to 

sustain aerobic respiration 

 O2 supply from bulk soil up to the 

root surface was not limited below      

-200 hPa 

 9 - 12 % air-filled porosity was 

sufficient to transport O2 for 

rhizosphere aerobic respiration at 

more saturated conditions O2 

consumption rates decreased 
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1.5 Conclusions 

Microbial hotspots represent the soil volume where process rates are increased compared to 

bulk soil. Therefore, microbial hotspots drive nutrient cycling in soil and affect nutrient 

availability for crops.  

Due to their high relevance a direct identification and characterization of microbial hotspots 

would be desirable, but often they cannot be well identified morphologically. Therefore, 

molecular apporaches, which enable not only the quantification of microbial hotspots versus 

bulk soil volume but also the differentiation of single hotspots would be favorable. In this 

dissertation a classical biomarker class, the fatty acids, were investigated in microbial 

hotspots. It could be demonstrated that classical molecular proxies like the average chain 

length or the carbon preference index did not reveal a clear differentiation of microbial 

hotspots, because complex processes during the formation of microbial hotspots lead to an 

overprinting of the fatty acid fingerpring of the original C source by various transformations 

that finally form the hotspot OM. However, using multivariate statistical approaches, a linear 

discriminant model, enabled a siginificant differentiation of distinct microbial hotspot OM 

with unsaturated fatty acids and dicarboxylic acids being most important. However, to finally 

categorize OM of unknown origin into drilosphere, rhizosphere and bulk soil OM  requires 

the evaluation of the linear discriminant model based on various soils from other sites and 

ecosystems. To understand the molecular pattern underlying the separation power of linear 

discrimant functions request a validation using biopore OM produced under controlled 

conditions. 

This complexity in biopore OM sources and transformation demonstrates the complex 

interactions of processes occurring in microbial hotspots such as biopores. This process 

complexity can even be observed if only a single type of a microbial hotspot, e.g. the 

rhizosphere, is investigated along depth gradients or between different plant species. The 

investigation of rhizosphere properties along a depth gradient demonstrated that the ability of 

individual plant species to maintain microbial hotspots is strongly deviating. The comparison 

between taprooted plants, alfalfa and chicory, clearly suggests that the ability to form 

microbial hotspots is related to growth and especially to belowground C allocation. The 

investment of recent C into belowground biomass growth and rhizodepostition by alfalfa 

exceeded that of chicory 8 times. The continuous C investment into subsoil not just stimulates 

microbial growth and accelerated turnover of microbial biomass C but also maintained 
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microbial decomposition functions in subsoil due to the input of more substantial C sources. 

This was not found in chicory subsoil as the main part of root biomass and the investment of 

recent C into root growth and rhizodeposition were focused in topsoil.  

Besides of net growth also the shape of the root system strongly affects the hotspot 

distribution in soil. Deeper rooting of plants and the subsequent increase in subsoil plant 

biomass strongly reduced the generally decreasing gradient in microbial biomass with depth. 

To evaluate whether this increase in hotspot abundance and biopore formation in deep subsoil 

by precrops will lead to an increased nutrition from subsoil-mobilized nutrients requires 

further experiments with controlled crop sequencing and multiple-isotope labeling approaches 

for tracing input and re-mobilization of subsoil OM. 

To understand the relevance and role of microbial hotspots for nutrient cycling it is crucial to 

understand the extend of the soil volume with increased process rates and to know the 

gradients with which the process rates decrease towards bulk soil. Therefore, this dissertation 

aimed not only at describing depth-related changes in hotspot properties but also their lateral 

extend in top- and subsoil. The diffusion distance of root exudates was equal in top- and 

subsoil rhizosphere although it was expected that root exudates will be decomposed faster 

under topsoil properties due to higher microbial activity resulting in lower exudate extent. 

Concluding, the spatial distribution and therefore the soil volume affected by root exudates is 

equal in top- and subsoil as higher root exudation into topsoil rhizosphere is compensated by 

higher microbial decomposition. Root exudates were found at a distance of 28 mm (DO
14

C) 

and 20 mm (TO
14

C) from the root surface and therefore exceeded previously reported 

distances. Higher 
14

C activity used for labeling compared with previous studies enabled the 

detection of low exudate concentrations at longer distances from the root surface. 

The maintenance of microbial aerobic respiration and the related process rates depend on O2 

supply towards the root surface. Within this thesis it was shown that the rhizosphere effect on 

O2 gradients was independent from microbial activity. Soil water content clearly governed O2 

supply for sustaining aerobic respiration. No limitation in O2 supply towards the root surface 

was found below a matric potential of -200 hPa. 

Although it is known that arbuscular mycorrhizal symbioses extends the soil volume affected 

by root activity the experimental setup failed in determining this effect, presumably due to a 

lack in mycorrhization. To determine the effect of the extent of the rhizosphere into the 

mycorrhizosphere, experiments based on inoculation of the plants with arbuscular 
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mycorrhizal fungi and the measurement of root-derived C in external hyphae extracted from 

soil are required. Generally, the parameters of the lateral gradients determined by T-pot model 

systems would be desirable to measure in different soil depth directly at distinct functional 

root parts at roots growing through soil to finally assess hotspot extend and dynamic under 

field conditions.  

Finally, this dissertation demonstrated the complexity in hotspot processes and dynamics: An 

intensification of studies is needed to assess C and nutrient inputs, its microbially-mediated 

transformation dynamics and the resulting nutrient mobilization. This is especially important 

as these processes strongly depend on biotic factors like plant root properties and abiotic 

factors like water potential. To finally assess and predict the role of such hotspots for soil 

process modelling, more detailed investigations on their spatial distribution, their extend, their 

lifespan and their C and nutrient dynamic are required. 
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Abstract 

Background and Aims: Input of organic matter into soil creates microbial hotspots. Due to the 

low organic matter content in subsoil, microbial hotspots can improve nutrient availability to 

plants. Therefore, carbon (C) input of root biomass and rhizodeposition and the microbial 

utilization of root C by alfalfa and chicory, both deep-rooting taprooted preceding crops, was 

determined. 

Methods: Three replicate plots of alfalfa and chicory grown on a Haplic Luvisol were 
13

CO2 

pulse labeled after 110 days of growth. 
13

C was traced in plant biomass, rhizosphere, bulk soil 

and in microbial biomass after 1 and 40 days. C stocks and 
13

C signature were quantified in 

15 cm intervals down to 105 cm depth. 

Results: Alfalfa plant biomass was higher and root biomass was more homogeneously 

distributed between top- (0 - 30 cm) and subsoil (30 - 105 cm) compared to chicory. C input 

into subsoil by alfalfa, including roots and rhizodeposited C, was 8 times higher (3820 kg C 

ha
-1

) into subsoil compared to chicory after 150 days of growth. Microbial biomass in subsoil 

increased with alfalfa but decreased with chicory. 

Conclusions: Despite their general ability to build biopores, taprooted preceding crops differ 

in creating microbial hotspots in subsoil. Higher C input and microbial growth in subsoil 

under alfalfa cultivation can improve physico-chemical and biological properties, and so 

enhance root growth and consequently the water and nutrient uptake from subsoil compared 

to chicory. 

 

 

 

 

 

 

Keywords: Microbial hotspots, Plant-soil-microorganism interactions, Rhizosphere, Subsoil, 

C input, 
13

CO2 pulse labeling  
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2.1.1 Introduction 

Crops with a taproot system form vertical stable macropores extending from topsoil into 

subsoil (Mitchell et al. 1995; McCallum et al. 2004). These biopores can be used by 

subsequent crops to easily grow into the subsoil, due to lower mechanical impedance, higher 

oxygen and water availability, and higher soil organic matter (SOM) content compared to 

bulk soil (Böhm and Köpke 1977; Stewart et al. 1999; Rasse and Smucker 1998). The 

increased SOM in biopores compared to bulk soil mainly results from rhizodeposition, root 

litter and leaching of organics from topsoil SOM (Kaiser and Kalbitz 2012; Kautz et al. 

2013). Higher resource availability enables increased organic matter turnover and microbial 

nutrient mobilization in biopores compared to bulk soil due to higher microbial activity and 

abundance (Cheng 2009; Kuzyakov 2010). Decreasing SOM content and nutrient availability 

with increasing soil depth make biopore conditions especially relevant for nutrient acquisition 

from subsoil. Nutrient uptake from arable subsoil, i.e. the soil below the plough layer, can be 

relevant for plant nutrition (Marschner 1995). It is especially important under dry or nutrient-

poor topsoil conditions and during drought periods (Fleige et al. 1983; Kuhlmann and 

Baumgärtel 1991). Therefore, crop sequences using taproot preceding crops can enhance the 

exploration of subsoil resources for the subsequent crops. In turn, better knowledge of biopore 

characteristics and input of SOC into arable subsoil is needed. 

Rhizodeposits translocated by plant roots into the soil are of ecological importance as they 

affect nutrient availability for plant growth (Dakora and Phillips 2002; Dilkes et al. 2004). 

Rhizodeposits are one of the preferred substrates for microorganisms (Blagodatskaya et al. 

2009), which are responsible for most biochemical reactions that mobilize nutrients from 

SOM. More heterogeneous distribution (Rumpel and Kögel-Knabner 2011) and lower content 

of SOM in subsoil (Salomé et al. 2010) strengthen the contrast between the rhizosphere and 

bulk soil. Therefore, the importance of rhizodeposits for microbial nutrient mobilization is 

assumed to be higher in subsoil compared to topsoil (Kautz et al. 2013). Knowledge of the 

amounts of organic substances added by plant roots into the soil and especially into subsoil is 

crucial for evaluating mobilization of nutrients. Nearly all previous studies estimated carbon 

(C) input within the top 30 cm of the soil (Kuzyakov and Domanski 2000; Amos and Walters, 

D. T. 2006). Despite various studies on root depth distribution (Böhm 1979; Jackson et al. 

1996), C input by rhizodeposition into deeper soil horizons remains largely unconsidered. 
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To determine the input of photosynthetically fixed C into soil by roots, both root biomass and 

rhizodeposition need to be considered (Johnson et al. 2006; Pausch et al. 2013). Up to 50% of 

photosynthetically fixed C by grasses including cereals is allocated belowground, whereof 

approximately 50% is invested into root growth and 30% is rhizodeposited (Kuzyakov and 

Domanski 2000; Kuzyakov 2002; Johnson et al. 2006). However, there are few studies that 

include rhizodeposition of agricultural crops to assess C input into soil, especially into 

subsoil. 

The aims of our study were (1) to estimate the amount of photosynthetically fixed C invested 

in building up root biomass and released into soil by rhizodeposition down to 105 cm depth 

and; (2) to compare C input into top- and subsoil between two common taprooted preceding 

crops chicory (Cichorium intybus L.) and alfalfa (Medicago sativa L.). Root biomass of 

alfalfa and chicory plants was determined down to 105 cm depth, 110 and 150 days after 

sowing. The partitioning of recently assimilated C between plant and soil C pools was 

determined by in situ 
13

CO2 pulse labeling of alfalfa and chicory plants. Pulse labeling 

enabled the amount of photosynthetically fixed C invested into root biomass and 

rhizodeposition to be compared between alfalfa and chicory.  
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2.1.2 Material and Methods 

2.1.2.1 Site description 

The agricultural field site is located at the Klein Altendorf experimental station of the 

University of Bonn (50°37‘21‘‘N, 06°59‘29‘‘E). The climate is maritime temperate (Cfb 

Köppen climate classification) with a mean annual precipitation of 625 mm and a mean 

annual temperature of 9.6 °C (Gaiser et al. 2012). 

The soil at the experimental site developed from loess and is classified as loamy Haplic 

Luvisol WRB (IUSS-ISRIC-FAO 2006) having an Ap horizon of 30 cm, followed by an E/B 

horizon down to 45 cm. Accumulation of clay was found from 45 cm down to 95 cm (Gaiser 

et al. 2012).  

Alfalfa (Medicago sativa L.) and chicory (Cichorium intybus L.) were sown on the 15
th

 of 

April 2011 with a seeding density of 25 kg ha
-1

 (alfalfa) and 5 kg ha
-1

 (cichory) (Gaiser et al. 

2012). The plots for alfalfa and chicory were 60 m
2
 each. Neither the alfalfa nor the chicory 

plots were fertilized before or during the experiment.  

2.1.2.2 13
CO2 pulse labeling 

The 
13

CO2 pulse labeling of chicory and alfalfa was performed after 110 days of growth, on 

the 1
st
 of August 2011 (alfalfa) and on the 2

nd
 of August 2011 (chicory) (Riederer et al. 2015; 

Hafner et al. 2012). Three replicate plots (1 m
2
 each) of chicory and alfalfa were pulse 

labeled. The 
13

CO2 pulses for each crop replicate were applied simultaneously. The chambers 

were 1 m long, 1 m wide and 0.5 m high. 100 ml of the labeling solution containing 15 g 

sodium carbonate (Na2
13

CO2) enriched with 
13

C to 99 atom% was placed inside the chamber. 

After closing the chamber, 80 ml of 5 M sulphuric acid (H2SO4) was injected into the labeling 

solution from the outside, using a syringe. A 12-volt fan ensured a uniform distribution of 

13
CO2 inside the chamber. The temperature inside the chamber was measured during labeling. 

The CO2 concentration inside the chamber was monitored by a CO2 sensor (GM 70, Vaisala, 

Helsinki, Finland). Plants assimilated the label for 5 h before the chamber was removed. 
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2.1.2.3 Sampling and sample preparation 

Samples were taken 1 and 40 days after labeling, which corresponded to 110 and 150 days of 

plant growth, respectively. The partitioning of assimilated C was determined as 
13

C in shoots, 

roots, rhizosphere, bulk soil and microbial biomass. Alfalfa and chicory shoots were sampled 

by cutting 2 plants directly at the soil surface at each of the three replicate plots. The shoot 

samples of each plot were combined thereafter. To sample soil and roots a root auger with a 

diameter of 84 mm was used. Soil cores with a length of 15 cm were taken successively from 

the soil surface down to 105 cm depth. At each replicate plot, soil cores were sampled: 1) 

exactly at the place where the shoot was cut (including the main root biomass of the taproot 

crops) after 1 and 40 days and; 2) between rows (after 40 days). Roots were manually 

removed from the soil cores and carefully shaken to separate bulk soil from rhizosphere soil. 

Roots and the attached rhizosphere soil were put into a beaker containing deionized water. To 

improve separation, the beaker was put into an ultrasonic bath for five minutes (35 kHz, 

320W, 3L). After removing the roots and rhizosphere soil, the bulk soil was sieved to 2 mm. 

Shoots, roots, rhizosphere and bulk soil were freeze dried, weighed and ball milled (ball mill, 

Retsch MM2). Before the bulk soil was freeze dried, gravimetric water content was 

determined for each soil depth in three replicates and soil for the determination of microbial 

biomass (see below) was removed. Soil respiration and the amount of recent assimilates 

recovered in soil respiration 1 day after labeling was determined by the static alkali absorption 

method (Lundegardh 1921; Kirita 1971; Singh and Gupta 1977). SrCl2 was added to the 

NaOH to precipitate SrCO3. The extracts were freeze dried and 
13

C signature was 

determined in SrCO3. 

2.1.2.4 Reference samples 

To determine 
13

C assimilation during the 
13

CO2 pulse labeling period two replicate samples of 

shoot, root, rhizosphere and bulk soil samples down to 50 cm depth were taken directly after 

removing the labeling chamber from all three replicate plots of alfalfa and chicory, 

respectively. Sampling and sample preparation was done according to the procedure described 

above. The sum of the 
13

C recovered directly after removing the chamber was used as a 

reference for the samplings after 1 and 40 days. 
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2.1.2.5 Microbial biomass carbon 

Microbial biomass C (Cmic) was determined by the chloroform fumigation-extraction method 

modified after Brookes et al. (1985) and Vance et al. (1987), in each case using 10 g of fresh 

bulk soil (sieved to < 2 mm) from every depth interval. Samples were fumigated in a 

chloroform atmosphere for one week. For the extraction of the fumigated and non-fumigated 

samples, 30 ml of 0.05 M K2SO4 was used. Extractable organic carbon (EOC) was measured 

by catalytic oxidation (Multi N/C 2100 S, Analytik Jena, Germany). The difference in EOC 

between fumigated and non-fumigated samples was divided by the kEC (0.45) value, defining 

the extractable part of microbial biomass C, after Jörgensen (1996), to estimate total Cmic.  

To measure the 
13

C signature of Cmic, the K2SO4 extracts of both fumigated and non-

fumigated samples were freeze dried. Dried extracts were weighed into tin capsules (> 15 µg 

C per capsule) for 
13

C analysis.  

2.1.2.6 Natural abundance samples 

To determine the natural abundance of 
13

C in shoots, roots, rhizosphere, bulk soil and 

microbial biomass down to 105 cm depth, these C pools were sampled once before the 
13

CO2 

pulse labeling. For the natural abundance samples the same sampling and sample preparation 

was performed as for the enriched samples described before. 

2.1.2.7 C stock calculation 

To compare the above- and belowground C stocks in top- and subsoil between alfalfa and 

chicory, C stocks (kg C ha
-1

) of shoots, roots, rhizosphere, bulk soil and microbial biomass 

were calculated. Shoot C stocks were calculated by the following equation: 

          
 

 
      (1) 

where P is the number of plants on a plot (1 m
2
), S (g) is the dry weight that was divided by 2 

because the dry weight was measured on two plants and C (%) is the C content of the shoots. 

C stocks of roots, rhizosphere, bulk soil and microbial biomass were calculated for each soil 

layer using the following equations: 
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          (2) 

             
  

 
          (3) 

                     (4) 

                  (5) 

where R is the dry weight of root biomass (g), V (cm
3
) is the volume of the root auger, z (cm) 

is the length of the soil core, C (%) is the C content, ρ (g cm
-3

) is the bulk density and Cmic 

(mg g
-1

) is the microbial biomass C content. 

The planting of alfalfa and chicory in rows results in differing C stocks between the rows and 

the interrows. The ratio of plant-covered to interrrow C stocks in every soil depth determined 

after 150 days was used to calculate interrow C stocks after 110 days of growth. To calculate 

total C stocks, the plot area was divided into (1) the area covered with plants and (2) the 

interrow area. The area covered with plants was calculated by multiplying the diameter of the 

root auger by the number of plants per plot, giving 52%. Total C stocks were calculated as 

area-weighted averages of plant-covered and interrow C stocks.  

2.1.2.8 13
C analysis and stable isotope calculations 

he
13

C signature and C content of shoots, roots, rhizosphere soil and bulk soil and the 
13

C 

signature of EOC of the fumigated and non-fumigated samples (
13

C signature of Cmic) and of 

natural abundance control samples were determined with an isotope ratio mass spectrometer 

(Thermo Fischer, Bremen, Germany) coupled with an elemental analyzer (Eurovector, Milan, 

Italy) via a ConFlo III interface (Thermo-Fischer, Bremen, Germany) at the Centre for Stable 

Isotope Research and Analysis, University of Göttingen.  

The 
13

C excess in a C pool (% of total C atoms) caused by the 
13

CO2 pulse labeling was 

determined as 
13

C excess compared to the natural abundance samples  

   
                  

                  
          (6) 

The 
13

C excess in a C pool was used to estimate the amount of 
13

C (g 
13

C m
-2

) that was 

incorporated into that pool (g C m
-2

). 
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       (7) 

The sum of the 
13

C recovered in shoots, roots, rhizosphere and bulk soil of the reference 

samples (
13

Cref) was used as 100% of 
13

C assimilated by plants. To calculate the percentage of 

13
C recovery in a C pool (

13
Crec) at time t (1 and 40 days) after labeling, the 

13
C amount was 

related to the reference 
13

C amount (
13

Cref). 

   
       

   
          

   
   

     (8) 

According to C stock calculations, total 
13

C recoveries in C pools were calculated as area-

weighted averages of plant-covered and interrow 
13

C recoveries. 

2.1.2.9 Estimation of net rhizodeposition 

To estimate net rhizodeposition netCE (kg C ha
-1

) into top- and subsoil, the ratio between C 

released into soil and C retained in root biomass was calculated. The sum of 
13

C recovered in 

rhizosphere soil 
13

CRS and in bulk soil 
13

CBU was divided by the 
13

C recovered in roots. This 

ratio was calculated for topsoil (0 - 30 cm) and for subsoil (30 - 105 cm) 1 day after labeling. 

The topsoil ratio was multiplied by the measured root C stocks Croot (kg C ha
-1

) 110 or 150 

days after sowing in 0 - 15 cm and 15 - 30 cm depth. The subsoil ratio was multiplied by the 

measured root C stocks Croot (kg C ha
-1

) in every sampling interval from 30 - 105 cm depth. 

       
    

      
    

   
    

       (9) 

2.1.2.10 Statistics 

All results are presented as means of 3 field replicates ± standard error of the mean (SEM). 

Only the significant differences between crops or between depths are described in the text. 

We tested if root C stocks, rhizosphere C stocks, microbial biomass C, or the distribution of 

13
C between roots, rhizosphere and microbial biomass differed between the soil depths or 

between the preceding crops and if there were interactions between these effects. The test was 

a 2x7 factorial analysis of variance (ANOVA) (2 cultivars x 7 soil depths) at a significance 
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level of p<0.05, using R version 3.0.2 (R Core Team 2013). Normal distribution of the 

residuals was tested using the Shapiro-Wilk normality test. Levene's test was conducted to test 

for homogeneity of variances using the R package car (Fox and Weisberg 2011). The 2x7 

ANOVA was calculated using log-transformed data. The residuals of the ANOVA model for 

all variables were then normally distributed and homoscedasticity was improved. 

Kruskal-Wallis ANOVA was conducted to test for significant differences in shoot C stock, 

top- and subsoil root, rhizosphere and microbial biomass C stock between alfalfa and chicory 

(p<0.05) and between the sampling times (p<0.05). Kruskal-Wallis ANOVA was also applied 

to test for significant differences in 
13

C recovery in shoots, top- and subsoil roots, rhizosphere 

soil and microbial biomass between alfalfa and chicory (p<0.05) and between the sampling 

times (p<0.05).  
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2.1.3 Results 

2.1.3.1 Above- and belowground carbon stocks 

Alfalfa and chicory shoot C stocks were equal 110 days after sowing (Table 2.1-1). The 

increase in aboveground biomass of alfalfa during the following 40 days was higher than of 

chicory, resulting in the alfalfa shoot C stock being more than twice that of chicory after 150 

days of growth. 

The average alfalfa root C stock from 0 to 105 cm depth was lower than the chicory root C 

Table 2.1-1: Above- and belowground C stocks (kg C ha -1) 110 and 150 days after sowing of alfalfa and 

chicory. Belowground C stocks are presented for topsoil (0 - 30 cm) and subsoil (30 - 105 cm).  

C pool C stock (kg C ha-1) e 

 Alfalfa 110 d   Chicory 110 d   Alfalfa 150 d   Chicory 150 d   

Shoot 528.4 ± 32.9 a f * g 468.1 ± 4.3 a * 1961.3 ± 194.9 a ** 817.8 ± 126.0 b ** 

Soil respiration 204.8 ± 22.6 a  93.3 ± 8.3 b            

(kg C ha-1d-1) e                     

0 - 30 cm                     

Root 662.6 ± 66.3 a * 1902.9 ± 350.6 b  2640.9 ± 814.9 a ** 2238.3 ± 436.7 a  

Rhizosphere 64.8 ± 17.9 a  301.1 ± 221.2 a  81.9 ± 19.6 a  116.2 ± 36.3 a  

Microbial biomass 92.5 ± 15.3 a  101.6 ± 13.2 a  76.0 ± 6.4 a  80.5 ± 5.4 a  

Bulk soil 36,975.6 ± 2005.8   47,275.9 ± 2873.8             

30 - 105 cm                     

Root 109.1 ± 44.1 a * 67.3 ± 7.4 a * 662.9 ± 40.2 a ** 211.1 ± 48.9 b ** 

Rhizosphere 27.3 ± 3.8 a  56.5 ± 35.6 a  36.8 ± 1.7 a  29.6 ± 5.4 a  

Microbial biomass 81.6 ± 9.6 a  128.7 ± 12.5 a * 114.5 ± 16.5 a  76.0 ± 2.9 b ** 

Bulk soil 56,718.0 ± 337.0   57,016.7 ± 1397.6             

e
 Values are given as means and standard errors of the mean. 

f
 Different letters indicate significant differences between alfalfa and chicory 1 day after  

labeling or 40 days after labeling (Kruskal-Wallis test; p < 0.05). 

g
 Asterisks indicate significant differences between 110 and  150 days after sowing for alfalfa 

or chicory (Kruskal-Wallis test; p < 0.05). 
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stock at the beginning of the observation period, but higher at the end. (Figure 2.1-1 a, Table 

2.1-1). The increase in alfalfa root biomass resulted in equal C amounts being stored in alfalfa 

topsoil roots and three times more C being stored in alfalfa subsoil roots compared to chicory 

after 150 days (Table 2.1-1). Root C stock was highest in the upper 15 cm and decreased with 

soil depth at both observation dates (Figure 2.1-1 a, Table 2.1-1). 
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Microbial biomass decreased throughout the entire profile with depth and was higher under 

chicory than under alfalfa after 110 days (Figure 2.1-1 c). In contrast, the microbial biomass C 

stock was higher under alfalfa compared to that under chicory after 150 days (Table 2.1-1). In 

topsoil, microbial biomass was equal between the chicory and alfalfa cultivation and between 

the beginning and end of the observation period (Table 2.1-1). In subsoil, however, microbial 

 

Figure 2.1-1: Root, rhizosphere and microbial biomass C stocks under alfalfa and chicory, measured in 15 cm 

intervals down to 105 cm soil depth 110 and 150 days after sowing. Error bars represent standard errors of the 

mean (n=3). 
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biomass decreased under chicory from day 110 to day 150, resulting in lower microbial 

biomass under chicory than under alfalfa.  

In summary, the increase in alfalfa above- and belowground plant biomass over 40 days 

resulted in higher plant C stocks than for chicory. The main differences were found in subsoil 

root C stocks and microbial biomass. 

2.1.3.2 Isotopic signature after 
13

CO2 labeling and of natural abundance samples 

The isotopic signature of roots, rhizosphere soil and microbial biomass indicated strong 
13

C 

enrichment after the 
13

CO2 pulse labeling of alfalfa and chicory plants (Figure 2.1-2 a-c). The 

13
C enrichment was found for roots, rhizosphere soil and microbial biomass in every depth 

down to 105 cm, 1 day and 40 days after labeling. This 
13

C enrichment allowed the recently 

assimilated C to be partitioned between shoots, roots, rhizosphere soil and microbial biomass. 

Bulk soil was excluded from the calculations, due to the low 
13

C enrichment relative to the 

natural abundance reference samples (Figure 2.1-2 d). 

The 
13

C values of roots, rhizosphere soil and microbial biomass under chicory tended to 

decrease with depth 1 and 40 days after labeling (Figure 2.1-2 a-c). In contrast, 
13

C values of 

roots, rhizosphere soil and microbial biomass under alfalfa increased with depth. Increasing 

13
C enrichment with soil depth indicated that the percentage of recently assimilated C in total 

C present was higher under alfalfa. 
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Figure 2.1-2:  13C enrichment (atom%13C) and the corresponding isotopic signature 13C (‰) of roots, 

rhizosphere, bulk soil and microbial biomass down to 105 cm depth. Values are given for the natural 

abundance control samples (white triangles) and for the samples taken at the 1st and 40th day after the in situ  
13CO2 pulse labeling of chicory and alfalfa. Error bars represent standard errors of the mean (n=3).  
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2.1.3.3 Budget of assimilated 
13

C 

The recovery of 
13

C in the reference samples amounted to 69 ± 5 % and 76 ± 13 % of the 

applied 
13

C in the alfalfa and chicory plots, respectively. 

13
C recovery in shoots of alfalfa was higher compared to chicory one day after labeling (Table 

2.1-2). However, chicory allocated half of the assimilated C belowground, compared to only 

one third allocated by alfalfa. At the end of the 40-day chase period, 29% and 22% of 

assimilated 
13

C was incorporated into shoots of alfalfa and chicory, respectively. Equal 
13

C 

amounts incorporated into shoots, but lower 
13

C incorporation into alfalfa belowground C 

pools indicated that 
13

C losses by shoot and soil respiration within the chase period were 

higher under alfalfa (Table 2.1-2). 

Table 2.1-2: Partitioning of assimilated 13C between C pools, 1 and 40 days after the labeling.  

C pool 
13

C recovery (% of assimilated 
13

C) 
e
 

 Alfalfa 1 d  Chicory 1 d  Alfalfa 40 d  Chicory 40 d  

Shoot 66.9 ± 2.3 a 
f 

* 
g 

38.1 ± 5.5 b * 29.4 ± 3.9 a ** 21.5 ± 2.6 a ** 

Soil respiration 11.6 ± 1.1 a  5.9 ± 1.6 b            

0 - 30 cm                     

Root 6.0 ± 0.6 a * 28.2 ± 4.0 b  18.0 ± 5.8 a ** 28.0 ± 12.7 a  

Rhizosphere 0.15 ± 0.05 a  0.7 ± 0.2 b  0.1 ± 0.01 a  0.2 ± 0.1 a  

Microbial biomass 0.45 ± 0.08 a  1.25 ± 0.3 b  0.49 ± 0.05 a  0.89 ± 0.25 a  

30 - 105 cm                     

Root 0.9 ± 0.6 a * 0.5 ± 0.2 a * 4.1 ± 0.6 a ** 1.2 ± 0.1 b ** 

Rhizosphere 0.07 ± 0.03 a  0.05 ± 0.02 a  0.07 ± 0.003 a  0.03 ± 0.004 b  

Microbial biomass 0.26     0.69 ± 0.11   0.52 ± 0.15 a  0.59 ± 0.15 a  

e
 Values are given as means and standard errors of the mean. 

f
 Different letters indicate significant differences between alfalfa and chicory 1 day after  

labeling or 40 days after labeling (Kruskal-Wallis test; p < 0.05). 

g
 Asterisks indicate significant differences between 1 and 40 days after labeling for alfalfa or 

chicory (Kruskal-Wallis test; p < 0.05). 
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In topsoil, five times less 
13

C was recovered in alfalfa roots compared to chicory after one day 

(Table 2.1-2, Table 2.1-5 supplementary material). Despite an increase of 
13

C in alfalfa topsoil 

roots during the chase period, total 
13

C incorporation remained lower after 40 days. Similar to 

roots, the 
13

C recoveries in topsoil rhizosphere soil and microbial biomass were lower under 

alfalfa than those of chicory. 

At the end of the chase period, 4.1% of assimilated 
13

C was incorporated into alfalfa subsoil 

roots. In contrast, only 1.2% was incorporated into chicory subsoil roots (Table 2.1-2, Table 

2.1-6 supplementary material). A higher incorporation of assimilated 
13

C into alfalfa subsoil 

roots was found at every soil depth after 40 days (Figure 2.1-3, Table 2.1-6 supplementary 

material). Despite the higher recovery in alfalfa subsoil roots, the incorporation of 
13

C into the 

microbial biomass remained lower. 

The 
13

C budget indicated that the allocation of assimilated C to belowground C pools was 

faster in chicory than in alfalfa. Despite the higher 
13

C incorporation into belowground C 

pools under chicory, more than twice as much 
13

C was incorporated into subsoil C pools 

under alfalfa. 
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Figure 2.1-3: 13C recovery in root biomass, rhizosphere soil and microbial biomass in top- and subsoil of the 

alfalfa and chicory plots, 1 and 40 days after the 13CO2 pulse labeling. Topsoil and subsoil are separated by 

horizontal lines. Note much higher resolution of the x-axis for the subsoil (a, b). Error bars represent standard 

errors of the mean (n=3).  
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2.1.3.4 Differences in C stocks and assimilate partitioning between top- and subsoil 

Root C stocks in topsoil were 8 times higher for alfalfa and 28 times higher for chicory than 

in subsoil 110 days after sowing (Table 2.1-3). Over the 40-day observation period, the ratio 

of root C stock in topsoil to root C stock in subsoil decreased. At the end of the observation 

period, the alfalfa root C stock in topsoil was only 4 times higher than in subsoil, whereas for 

chicory plants it was still 12.5 times higher than in subsoil. The 
13

C recovery in topsoil roots 

of chicory was 67 times higher than in subsoil roots, indicating that chicory plants allocated 

and incorporated more assimilated C into topsoil roots compared to alfalfa plants (Table 

2.1-3). Smallest differences between top- and subsoil were found for microbial biomass C 

stocks and microbial biomass 
13

C recoveries under both plants. Microbial biomass C stocks 

under alfalfa were even higher in subsoil compared to topsoil 150 days after sowing.  

2.1.3.5 Estimation of rhizodeposition 

To estimate net rhizodeposition down to 105 cm depth, we assumed that 
13

C recovered in 

rhizosphere and bulk soil reflects assimilated C released into soil. Our estimation therefore 

excludes the amount of assimilated C that was respired by roots or microorganisms during the 

first day. The ratio of 
13

C released into soil to 
13

C recovered in roots was smaller in topsoil 

(0.5 and 0.1 for alfalfa and chicory, respectively) than in subsoil (4.8 and 1.2 for alfalfa and 

Table 2.1-3: Topsoil (0 - 30 cm) to subsoil (30 - 105 cm) root, rhizosphere and microbial biomass C stock 

ratio and 13C recovery ratio for alfalfa and chicory plots.  

 C pool Ratio Topsoil/Subsoil 
e 

 
 Alfalfa 1d Chicory 1d Alfalfa 40d Chicory 40d 

13
C recovery Root 17.6 ± 7.2 67.4 ± 25.1 4.2 ± 0.7 25.6 ± 11.8 

 Rhizosphere 3.3 ± 1.4 15.7 ± 5.4 1.4 ± 0.1 7.9 ± 3.0 

 Microbial biomass 1.7 ±  1.9 ± 0.5 1.1 ± 0.3 1.5 ± 0.3 

C stock Root 7.8 ± 2.5 28.2 ± 4.0 3.9 ± 1.1 12.5 ± 4.1 

 Rhizosphere 2.6 ± 1.0 4.7 ± 0.7 2.3 ± 0.6 4.2 ± 1.4 

 Microbial biomass 1.4 ±  0.8 ± 0.1 0.7 ± 0.1 1.1 ± 0.1 

e
 Values are given as means and standard errors of the mean. 
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chicory, respectively). To estimate the amount of assimilated C released into soil, we assumed 

that the ratio of 
13

C released into soil and 
13

C recovered in roots is constant over time. This 

ratio, determined 110 days after sowing, was multiplied with the root C stock at 110 and 150 

days. We estimated that alfalfa released 325 kg C ha
-1

 into topsoil and 521 kg C ha
-1

 into 

subsoil during 110 days of growth (Figure 2.1-4 b). The higher alfalfa root biomass 150 days 

after sowing resulted in 1294 kg C ha
-1

 released into topsoil and 3166 kg C ha
-1

 into subsoil 

(Figure 2.1-4 ab). Chicory rhizodeposition was lower. We estimated 203 kg C ha
-1

 and 82 kg 

C ha
-1 

into top- and subsoil, respectively, during 110 days of growth, and 239 kg C ha
-1 

and 

256 kg C ha
-1 

into top- and subsoil, respectively, during 150 days of growth. 

  

 

Figure 2.1-4: Estimation of alfalfa and chicory net rhizodeposition from 0 - 105 cm depth in 15 cm intervals, 

110 and 150 days after sowing (b). The numbers of the filled (110 days) and dashed (150 days) boxes 

represent the sum of rhizodeposited-C (kg C ha-1) into top- or subsoil. Root C stock 110 and 150 days after 

sowing (a) was multiplied by the ratio of recent C ( 13C) recovered in soil to recent C recovered in roots, 

calculated for top- and subsoil separately.  
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2.1.4 Discussion 

2.1.4.1 C input into top- and subsoil by alfalfa and chicory 

The comparison of C input into top- and subsoil between alfalfa and chicory revealed higher 

C input, including roots and net rhizodeposition, under alfalfa during 150 days of growth. The 

partitioning of photosynthetically fixed C revealed that alfalfa invested more into building up 

subsoil roots compared to chicory (Table 2.1-2). As a consequence, alfalfa root biomass was 

more evenly distributed between top- and subsoil compared to chicory (Table 2.1-3). Root 

distribution is affected by plant species, period of growth and environmental factors (Lamba 

et al. 1949), causing varying distribution of root biomass throughout the soil profile. Previous 

studies of alfalfa root distribution reported a fast development of deeply penetrating taproots, 

which agrees with the increase in alfalfa subsoil root C stock in the current study (Upchurch 

and Lovvorn 1951; Bell 2005). Chicory, however, incorporated 26 times more assimilated C 

into topsoil roots than subsoil roots (Table 2.1-3). The higher investment into topsoil root 

biomass found in the current study is related to the developmental stage, as chicory was 

reported to develop a deep root system after 2 years of growth (Perkons et al. 2014).  

In addition to root biomass, C released into soil needs to be determined in order to estimate 

total C input into soil (Johnson et al. 2006; Pausch et al. 2013). However, the quantification of 

rhizodeposition is difficult, as rhizodeposits are easy to decompose (Johnson et al. 2006; 

Pausch et al. 2013). To estimate rhizodeposition at the field scale, Pausch et al. (2013) 

determined the ratio of rhizodeposited C to root C in a lab study, which was then applied to 

root C determined in the field. To estimate net rhizodeposition in the current study, we 

determined the rhizodeposited-C-to-root-C ratio in top- and subsoil. C lost by soil respiration 

was excluded from our calculation due to experimental difficulties in determining in situ 

respiration down to 105 cm depth. Therefore, the actual ratio of rhizodeposited C to root C 

would be higher. Net rhizodeposition of alfalfa was estimated to be 1290 kg C ha
-1

 and 3160 

kg C ha
-1

 into top- and subsoil, respectively, during 150 days of growth, and therefore much 

higher than of chicory. Rhizodeposition increases the activity of microorganisms in the 

rhizosphere (De Nobili et al. 2001). This, in turn, increases organic matter turnover and 

nutrient mineralization (Cheng 2009). The requirement of nutrients, i.e. P and micronutrients, 

for N2 fixation of alfalfa (O’Hara 2001) and the higher increase in above- and belowground 

plant biomass of alfalfa than chicory resulted in higher investment of recent C into soil (Table 

2.1-1, Table 2.1-2 and Figure 2.1-4). Moreover, N2 fixation from the atmosphere leads to a 
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higher C demand by rhizosphere microorganisms (Vance and Heichel 1991; Herridge et al. 

2008) under legumes compared to non-leguminous herbs. This is another reason why alfalfa 

allocated more C into the soil than chicory. In conclusion, total C input including root 

biomass and net rhizodeposition was estimated to be 3940 kg C ha
-1

 into topsoil and 3830 kg 

C ha
-1

 into subsoil by alfalfa and only 2480 kg C ha
-1

 into topsoil and 470 kg C ha
-1

 into 

subsoil by chicory within 150 days of growth.  

The estimation of net rhizodeposition into subsoil could be improved by a series of 
13

CO2 

pulse labelings accompanied by root biomass determination throughout the vegetation period. 

It has been shown that C input into soil as root biomass and exudation depends on the 

developmental stage of the crop (Swinnen et al. 1994; Kuzyakov et al. 1999; Kuzyakov et al. 

2001). A series of 
13

CO2 pulse labelings throughout the vegetation period of alfalfa and 

chicory would account for changes in the partitioning of recently assimilated C between root 

biomass and soil depending on depth and developmental stage of the plants. Furthermore, the 

time necessary for plant roots to explore deeper soil would be considered. 

2.1.4.2 The response of microorganisms to C input into subsoil 

Microbial biomass in subsoil is limited in energy due to a lower supply of fresh C (Fontaine et 

al. 2007) than in topsoil. Easily available C that is released into soil via rhizodeposition 

stimulates microbial activity (De Nobili et al. 2001). Especially in subsoil, rhizodeposits are 

important for microorganisms due to the usually scarce substrate supply. The amount of 

released C taken up by microorganisms in subsoil was similar to that in topsoil under alfalfa 

and chicory. Although C input into roots and C released into soil strongly decreased with 

depth, the uptake of C by microorganisms was only slightly affected (Figure 2.1-3). This 

suggests that in subsoil, microorganisms used a higher proportion of the substrate supplied by 

rhizodeposition, as a result of C limitation. In contrast, continuous input of plant litter ensures 

substrate availability for microorganisms in topsoil. Sufficient substrate availability caused 

higher mineralization of rhizodeposits, resulting in similar uptake of released C into topsoil 

compared to subsoil microbial biomass. 

During the observation period, the microbial biomass in subsoil increased under alfalfa but 

decreased under chicory (Table 2.1-1, Figure 2.1-1 c). However, the absolute incorporation of 

released 
13

C into microbial biomass under chicory was higher after 40 days (Figure 2.1-3 c). 

The increase in alfalfa root biomass and associated rhizodeposition indicates a  continuous 
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supply of substrate for microorganisms, enabling their growth (De Nobili et al. 2001). This 

suggest that the higher and sustained availability of easily available C under alfalfa caused an 

accelerated turnover of microbial biomass C (Dorodnikov et al. 2009; Blagodatskaya et al. 

2011). In contrast, an insufficient substrate supply under chicory could not even maintain 

microbial biomass. In conclusion, accelerated turnover of microbial C resulted in lower total 

13
C incorporation into the microbial biomass in subsoil under alfalfa compared to chicory.  

Furthermore, lower 
13

C incorporation into the subsoil microbial biomass under alfalfa plants 

could have been affected by root distribution. Alfalfa taproots can branch up to the fifth order, 

whereas chicory taproots can branch up to the fourth order (Kutschera et al. 2009). The 

increase in alfalfa root biomass and lateral root development could have caused a more 

dispersed root distribution, leading to rhizodeposition of 
13

C throughout a larger volume of 

subsoil. Due to the low levels of microbial biomass in the subsoil, a greater proportion of the 

rhizodeposited C of the alfalfa roots did not come into contact with the microbial biomass and 

was therefore not incorporated. 

2.1.4.3 Relevance of carbon input into subsoil 

Generally, SOM content and microbial biomass decrease exponentially with soil depth (Fierer 

et al. 2003; Castellazzi et al. 2004). The SOC stock of the chicory and alfalfa plots decreased 

exponentially down the entire soil profile (data not shown) but we found a slower decrease of 

microbial biomass that followed a linear rather than exponential decline (Figure 2.1-1). We 

think that the distribution of the microbial biomass was a function of the root distribution over 

the soil profile. In particular, the exploration of the subsoil by alfalfa taproots and the release 

of easily available C enabled microbial growth and the development of microbial hotspots 

(Kuzyakov and Blagodatskaya 2015; Spohn and Kuzyakov 2014). The input of a diversity of 

organic compounds, including both low and high molecular weight organic substances 

maintains a broad capability in microbial decomposition functions (De Nobili et al. 2001). 

This biochemical ability to decompose various substrates also enables decomposition of 

various SOM compounds and thus the opportunity to access immobilized nutrients.  
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2.1.5 Conclusions 

C input into soil, including root biomass and net rhizodeposition, by two taprooted preceding 

crops, alfalfa and chicory, was determined over 150 days of growth down to 105 cm depth. C 

input into the topsoil (0 - 30 cm) by alfalfa was 1.6 times higher (3940 kg C ha
-1

) than by 

chicory (2480 kg C ha
-1

) and C input into subsoil (30 - 105 cm depth) by alfalfa was 8.2 times 

higher (3830 kg C ha
-1

) than by chicory (470 kg C ha
-1

). The higher C input into soil resulted 

from a larger increase in alfalfa above- and belowground biomass during the vegetation 

period. Especially the C input into subsoil was higher under alfalfa. The root system of alfalfa 

was more equally distributed between top- and subsoil, whereas the main part of chicory root 

biomass was found in the topsoil. The in situ 
13

CO2 pulse labeling of alfalfa and chicory 

plants enabled the determination of assimilated C partitioning between above- and 

belowground C pools down to 105 cm depth. In accordance with the increase in subsoil root 

biomass of alfalfa, the labeling revealed higher incorporation of assimilated C into subsoil 

roots. Tracing of 
13

C in roots and soil enabled the estimation of net rhizodeposition into top 

and subsoil down to 105 cm. Net rhizodeposition of alfalfa was 5 times higher into topsoil 

and 12 times higher into subsoil compared to chicory. To account for the variability of root 

biomass and rhizodeposition during the vegetation period and at different soil depths, several 

pulse labelings would enable a more precise estimation of C input. 

Although C allocation to roots and rhizodeposition decreased strongly from top- to subsoil, 

the uptake by microorganisms was similar in top- and subsoil. Our results suggest that subsoil 

microorganisms incorporated a higher proportion of released C due to scarce substrate supply, 

whereas in the topsoil, sufficient substrate availability caused higher mineralization of 

released C to CO2. Because alfalfa invested more C into building up subsoil root biomass and 

into rhizodeposition during the observation period, microbial turnover was accelerated. 

Therefore, total 
13

C incorporation by microorganisms was lower in subsoil under alfalfa than 

under chicory. 
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Table 2.1-4: Results of the 2x7 analysis of variance showing the main and interaction effects of the factors 

crop and soil depth on the dependent variables root C stock and microbial biomass C stock 110 and 150 days  

after sowing. Degrees of freedom (df), F-values (F) and the significance level (p) are shown for crop, soil 

depth (depth) and the interaction between the factor levels of crop and soil depth (crop:depth)  

factor 
log(root C stock) 

110 d 

log(root C stock) 

150 d 

log(microbial C stock) 

110 d 

log(microbial C stock) 

150 d 

 df F p df F p df F p df F p 

crop 1 0.74 n.s. 1 26.17 *** 1 6.08 * 1 9.56 ** 

depth 6 21.21 *** 6 39.12 *** 6 4.22 ** 6 19.52 *** 

crop:depth 6 0.41 n.s. 6 1.72 n.s. 6 1.79 n.s. 6 1.97 n.s. 

Residuals 25   28   24   28   

         

* p < 0.05  

** p < 0.01  

*** p < 0.001  
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Table 2.1-5: Results of the 2x2 analysis of variance showing the main and interaction effects of the factors 

crop and soil depth on the dependent variables 13C recovery in roots, rhizosphere and microbial biomass 1 and 

40 days after 13CO2 pulse labeling in topsoil. Degrees of freedom (df), F -values (F) and the significance level 

(p) are shown for crop, soil depth (depth) and the interaction between the factor l evels of crop and soil depth 

(crop:depth). 

factor 
log(root 13C) 

1 d 

log(root 13C) 

40 d 

log(rhizosphere 13C) 

1 d 

log(rhizosphere 13C) 

40 d 

 df F p df F p df F p df F p 

crop 1 66.04 *** 1 0.26 n.s. 1 12.40 ** 1 2.61 n.s. 

depth 1 71.83 *** 1 2.29 n.s. 1 20.70 ** 1 2.70 n.s. 

crop:depth 1 6.14 * 1 0.09 n.s. 1 0.07 n.s. 1 0.53 n.s. 

Residuals 8   8   8   8   

 
log(microbial 13C) 

1 d 

log(microbial 13C) 

40 d 
      

 df F p df F p       

crop 1 0.01 n.s. 1 7.38 *       

depth 1 2.72 n.s. 1 16.22 **       

crop:depth 1 0.21 n.s. 1 6.44 *       

Residuals 8   8         

         

* p < 0.05  

     

** p < 0.01  

     

*** p < 0.001  
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Table 2.1-6: Results of the 2x5 analysis of variance showing the main and interaction effects of the factors 

crop and soil depth on the dependent variables 13C recovery in roots, rhizosphere and microbial biomass 1 and 

40 days after 13CO2 pulse labeling in subsoil. Degrees of freedom (df), F -values (F) and the significance level 

(p) are shown for crop, soil depth (depth) and the interaction between the factor levels of crop and soil depth 

(crop:depth). 

factor 
log(root 13C) 

1 d 

log(root 13C) 

40 d 

log(rhizosphere 13C) 

1 d 

log(rhizosphere 13C) 

40 d 

 df F p df F p df F p df F p 

crop 1 0.04 n.s. 1 24.26 *** 1 0.66 n.s. 1 33.07 *** 

depth 4 2.70 n.s. 4 1.78 n.s. 4 1.59 n.s. 4 1.53 n.s. 

crop:depth 4 0.06 n.s. 4 0.80 n.s. 4 1.75 n.s. 4 2.28 n.s. 

Residuals 17   20   16   20   

 
log(microbial 13C) 

1 d 

log(microbial 13C) 

40 d 
      

 df F p df F p       

crop 1 19.66 *** 1 0.24 n.s.       

depth 4 3.70 * 4 2.65 n.s.       

crop:depth 3 0.76 n.s. 4 1.22 n.s.       

Residuals 14   19         

         

* p < 0.05  

     

** p < 0.01  

     

*** p < 0.001  
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Abstract 

Soil organic matter stabilization has been of rising interest with special emphasis to the 

identification of relevant processes and their locations within soil. Recently, biopores 

including root- and earthworm-derived ones were identified as channels by which organic 

matter can enter subsoil horizons and might be subsequentially stabilized. It is currently under 

debate, to which extent biopores of various origins contribute to carbon sequestration. 

However, to assess the origin and stability of organic matter in biopores, the identification of 

their sources is mandatory, which is difficult if the source biomass is not determined in the 

respective biopores.  

The aims of this study were to test the suitability of free extractable fatty acids 1) to 

differentiate between rhizosphere, drilosphere and bulk soil organic matter, and 2) to identify 

the source of organic matter in biopores. For this purpose, top- and subsoil horizons of a 

temperate agricultural soil were sampled for bulk soil, free of visible root remains, 

rhizosphere and drilosphere samples and analysed for molecular marker composition in the 

fraction of free extractable fatty acids. Rhizosphere and drilosphere samples were enriched in 

organic C and lipids compared to bulk soil. Frequently used molecular proxies like the 

average chain length (ACL) and the carbon preference index of free extractable fatty acids 

were weak criteria to identify sources of biopore organic matter. ACL values suggested 

vertical translocation of organic matter into subsoil horizons especially in the mainly 

vertically oriented earthworm-derived biopores. The relative contribution of dicarboxylic 

acids and unsaturated fatty acids to total fatty acids allowed differing between rhizosphere, 

drilosphere and bulk soil organic matter. 10-20% dicarboxylic acids and > 10% unsaturated 

fatty acids were diagnostic for rhizosphere organic matter and < 10% dicarboxylic acids and > 

10% unsaturated fatty acids indicated drilosphere organic matter, compared to bulk soils with 

> 15% dicarboxylic acids and < 10% unsaturated fatty acids. Discriminant analysis confirmed 

that the organic matter in the rhizosphere, drilosphere and bulk soil can be differentiated by a 

linear combination of relative contents of unsaturated fatty acids and dicarboxylic acids. This 

differentiation was depth independent as the relative differences in unsaturated fatty acid and 

dicarboxylic acid contents between bulk soil, rhizosphere and drilosphere OM did not change 

down to 105 cm soil depth. Concluding, this study highlights the potential to use free 

extractable fatty acids to differentiate between bulk soil, rhizosphere and drilosphere OM.  

Keywords: Roots; earthworms; biomarkers; rhizosphere, drilosphere, organic matter  
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2.2.1 Introduction 

Carbon (C) sequestration and preservation in soil became of rising interest during the past 

decades (Marschner et al., 2008; Schmidt et al., 2011) to cope with increasing atmospheric 

CO2 concentration (Solomon et al., 2007). One of the strategies highlighted was to 

incorporate more C into the subsoil via deep rooting plants (Kell, 2012; Smith et al., 2007). 

This was supported by the findings that in general, radiocarbon ages of soil organic matter 

(OM) increase with depth (Bol et al., 1996) and root C is characterized by a slower turnover 

than aboveground litter C (Mendez-Millan et al., 2010b). This is in agreement with findings 

that roots contribute larger amounts to soil C than aboveground litter (Rasse et al., 2005). 

Furthermore, the significance of C stored in subsoils was frequently underestimated in former 

studies. Meanwhile, The proportion of C stored in subsoils (below 40 cm depth) was 

determined to account for at least 40% of the total C in the whole soil column (Rumpel and 

Kögel-Knabner, 2010). However, the incorporation and stabilisation mechanisms of freshly 

incorporated root C into the subsoil still remain largely unknown (Rumpel and Kögel-

Knabner, 2010). Roots enter the subsoil by forming new pores or using already existing pore 

networks (Kautz et al., 2013). This mechanism strongly depends on the texture and density of 

the subsoil. Apart from physical swelling and shrinking processes, macropores are produces 

by burrowing soil animals and plant roots (Kautz et al., 2013). Such biopores are used by 

plants for rooting to access water and nutrients in subsoils. Biopores can be preserved for 

thousands of years in deep subsoils of several m depth below the present soil surface and thus 

provide a long-term opportunity for plant roots to access deeper soil horizons (Gocke et al., 

2014a). However, little is known about the formation of biopores and their persistence in soils 

and subsoil horizons. In addition to roots, also earthworms and other burrowing soil animals 

produce biopores and thus contribute to the pore network in soils. Currently, the sources of 

OM in biopores can be accessed and differentiated only 1) morphologically in unaltered 

biopores, 2) if living roots or burrowing soil animals are present or 3) if remains like e.g. 

earthworm faeces or root remains are found if the source organism itself could not be 

determined. This becomes more difficult, if biopores are of higher age and the connection to 

their specific biogenic source cannot be determined or if biopores are of mixed origin, i.e. 

produced by burrowing soil animals or tap roots and reused by other roots afterwards. To 

understand the C dynamics in biopores, the source determination of organic matter therein is 

mandatory. 
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In addition to root- and soil organism-derived organic matter, microorganisms are a source of 

OM and contribute to OM transformation in biopores and bulk soil. The contribution to soil 

OM (SOM) in biopores differs spatially between the mentioned sources. The contribution of 

burrowing animals to SOM is restricted to the pore wall, only (Brown et al., 2000; Tiunov and 

Scheu, 1999). In opposite, rhizodeposition and mycorrhiza also contribute to SOM distant to 

the pore wall in bulk soil (Jones et al., 2009; Sauer et al., 2006). Therefore, the spatial 

extension of microbial activity in drilosphere and rhizosphere differs (Lambers et al., 2009).  

Molecular proxies deriving from compound classes like lipids have been frequently used for 

source apportionment of organic matter in soils and sediments (Harwood and Russell, 1984; 

Hedges and Oades, 1997). Free extractable fatty acids (FA) and bound FA like phospholipid 

fatty acids (PLFA) have been used to differentiate sources of organic matter in soil, because 

the composition of these lipid fractions differs between plants, soil animals and 

microorganisms (Hansen and Czochanska, 1975; Harwood and Russell, 1984). While PLFA 

are sensitive to degradation and are characterized by fast turnover in soil, FA are 

characterized by a slower turnover (Marschner et al., 2008) and thus a larger potential to 

unravel different sources of organic matter in subsoils after millennia (Gocke et al., 2014b). 

The differing FA composition of various biological tissues is related to specific metabolic 

processes that cause the respective composition of saturated, unsaturated, straight chain, 

cyclic, branched, mono- and dicarboxylic acids. While the assessment of various groups of 

microorganisms can be accessed by the composition of saturated, unsaturated and branched 

short-chain FA (typically consisting of < 19 C atoms), plant-derived organic matter consists 

of saturated and unsaturated C16 and C18 FA as well as long-chain FA (> 19 C atoms) 

(Harwood and Russell, 1984). Furthermore, suberin as main component of root tissues 

(Kolattukudy, 1981) contributes large amounts of dicarboxylic acids (Mendez-Millan et al., 

2010a). Due to their ubiquitous presence in living organisms, potential diagnostic character to 

differ between source organisms and potential of being preserved after the lifetime of the 

respective source organism, FA were assumed to allow a differentiation of biopores in soil 

produced by roots and earthworms. To evaluate the potential use of FA for the molecular 

differentiation of OM in bulk soil, rhizosphere and drilosphere, we tested biopores of known 

origin from an agricultural site for their FA composition using molecular proxies like average 

chain length (ACL), carbon preference index (CPI), the relative contribution of dicarboxylic 

and unsaturated FA, followed by statistical evaluation of the significance of the results.  
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2.2.2 Material and Methods 

2.2.2.1 Sampling  

Three plots that were cultivated for two years with alfalfa (Medicago sativa L.) were selected 

as field replicates from the field trial in Klein-Altendorf near the city of Bonn (Germany; 

50°37’21’’ N, 6°59’29’’ E). Alfalfa has a taproot system and is well known for deep rooting 

up to 9 m depth (Carlson, 1925) and formation of biopores. The soil was described as Haplic 

Luvisol (Gaiser et al., 2012; WRB, 2007). A profile wall was prepared and sampled down to 

105 cm depth at each of the three replicate alfalfa plots. Soil horizons were sampled according 

to depth intervals identified in a standard profile on one edge of the field trial with properties 

previously described in detail (Kautz et al., 2014). The sampling depths were 0-30 cm (Ap), 

30-45 cm (E/B), 45-75 cm (Bt1) and 75-105 cm (Bt2 and Bt3). Thus, only the top layer is 

representing the topsoil, whereas all other depth intervals are corresponding to subsoil 

horizons. In the figures, the values are shown in the middle of the corresponding depth 

increment. Bulk soil was sampled from each depth interval distant to visible biopores at the 

profile wall. To assess biopores, soil was scratched off the profile wall by using a spatula until 

a biopore could be identified. A pore was determined as drilosphere, if wall coatings or 

earthworm faeces were found but no roots. Soil was scratched off at a 2 mm thick soil layer 

surrounding the earthworm burrow by help of a micro spoon, but faeces were not collected as 

they are not part of the biopore wall. The orientation of the earthworm burrows that were 

sampled was mainly vertical as horizontal burrows were not excavated in large quantities 

(Figure 2.2-1). Rhizosphere was defined as the soil remaining attached to the root until a 

distance of approximately 2 mm after root removal from the profile wall and shaking at the 

air. Only roots that were directly attached to the soil and therefore not visibly growing in a 

preexisting pore were used to sample rhizosphere soil (Figure 2.2-1). Rhizosphere soil was 

carefully removed from the roots using fine brushes. From each depth interval root samples 

were also obtained. Despite biopores are highly abundant in soils with numbers of several 

hundred m
-2

, their abundance typically decreases with soil depth (Gocke et al., 2014a). 

Therefore, not all types of biopores could be detected in all soil profiles and depth intervals.   

Bulk soil, rhizosphere and drilosphere soil and roots were cooled during sampling and frozen 

directly after sampling. Before further analyses, all samples were freeze-dried and crushed 

with pestle and mortar afterwards. Plant roots were milled in a ball mill (Retsch MM 200). 
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2.2.2.2 Organic carbon and free extractable fatty acid analysis 

All soil samples were decarbonated using 3 M HCl and washed until neutral pH before 

measurement of Corg with an Analytik Jena N/C analyzer equipped with an oven 

(Feststoffmodul) for solid samples.  

Depending on sample availability 0.8-10 g root or soil material was available for lipid 

analyses. Lipid extraction was performed via Soxhlet extractors at room temperature using a 

solvent mixture of DCM/MeOH (93:7; v:v) (Wiesenberg et al., 2010). After extraction, the 

lipid extract yield was obtained gravimetrically after solvent evaporation until dryness under 

atmospheric conditions in pre-weighed sample vials. Separation of FA was performed on 

KOH-coated SiO2 columns (Wiesenberg et al., 2010). In brief, samples were re-dissolved in 

DCM and transferred to the columns. Neutral lipids were eluted with DCM and not further 

analyzed as it was assumed that alkanes as largely abundant compounds in aboveground plant 

tissues but commonly not in roots did not show significant changes in biopore walls compared 

to bulk soil. Afterwards, FA were flushed from the columns using DCM/formic acid (99:1; 

v:v). FA fractions were dried and weighed. If available, 1-2 mg FA were re-dissolved in DCM 

and 50 µL deuteriated (D39) eicosanoic acid was added as internal standard. Quantification of 

 

Figure 2.2-1: Illustration of the drilosphere (a) and rhizosphere soil (b) that was sampled for the fatty acid 

analyses. A 2 mm thick soil layer surrounding the earthworm burrow was defined as drilosphere, when 

coatings or faeces were found at the pore wall but no roots. Rhizosphere was defined as the soil remaining at 

the root after shaking up to a distance of 2 mm. Only soil attached to a root that was not growing in a 

preexisting pore was defined as rhizosphere soil. 
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FA was done on an Agilent 7890 GC equipped with flame ionization detector after 

methylation using BF3/MeOH. Compound identification was performed on a Hewlett Packard 

5890 GC Series II coupled to Hewlett Packard 5871 mass spectrometer. Both GC were 

equipped with 30 m DB5 columns (0.32 mm inner diameter and 0.25 µm film thickness; 

J&W) by comparison to spectral libraries (W8/N08) and comparison to standards. Splitless 

injection was performed at 40°C and isothermal conditions were kept for 2 min. Temperature 

was ramped at 5°C min
-1 

until 140°C, followed by 2°C min
-1

 until 210°C and 3°C min
-1

 until 

300°C. The final temperature was kept constant for 20 min. 
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2.2.2.3 Molecular proxies 

The average chain length (ACL) of FA serves as a measure of the source and/or degradation 

of FA (Harwood and Russell, 1984) in soils and was calculated as follows (Wiesenberg et al., 

2012): 

               (1) 

with a as the relative amount of individual FA with A carbon atoms and n as the sum of all 

FA. Low ACL values (< 18) typically indicate the microbial source of FA as microorganisms 

are dominated by FA with 16 and 18 carbon atoms in the alkyl chain and contain almost no 

FA with more than 19 carbon atoms (Harwood and Russell, 1984). Values > 18 are related to 

exclusive plant origin due to the large abundance of FA with > 18 carbon atoms, which is 

especially relevant for aboveground plant biomass. However, as in roots FA with 20 or more 

carbon atoms could be almost absent, the plant-derived ACL value could also range between 

17-18. Degradation of plant biomass leads to an increase of the ACL value as preferentially 

short-chain FA are degraded.  

In addition to the ACL, the carbon preference index (CPI) has been frequently used as 

measure for source apportionment and degradation in soils and sediments (Naraoka and 

Ishiwatari, 2000; Wiesenberg et al., 2012; Xie et al., 2003), which was calculated as follows: 

      
 
                         
                         

 
                         
                         

 

 
 

(2) 

with Cx as the relative amounts of n-FA with x carbon atoms. Plant wax-derived FA are 

characterized by long-chain (> 18) FA with a predominance of even over odd carbon 

numbered homologues (Harwood and Russell, 1984). In contrast, microbial biomass is 

characterized by almost equal values of odd and even numbered homologues, if the latter are 

present. Consequently, incorporation of microorganism-derived FA and degradation leads to a 

decrease in CPI values in soils and sediments. Therefore, especially the CPI of long-chain FA 

(n-C20-30) has been proven to be of diagnostic character of C sources (Naraoka and Ishiwatari, 

2000; Wiesenberg et al., 2012). 

The relative contribution of unsaturated FA to total FA can provide insight into the 

contribution of plant- and microorganism-derived FA, which contain unsaturated compounds 
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(Harwood and Russell, 1984), whereas degradation of OM leads to a decrease in these 

compounds and a selective enrichment of saturated FA.  

Dicarboxylic acids are regarded as molecular markers of root-derived FA in soils as they are 

part of the suberin macromolecule (Kolattukudy, 1981). However, due to their presence in 

macromolecules, cleavage of bindings is typically required during sample preparation to 

release and investigate dicarboxylic acids (Mendez-Millan et al., 2010a). In free lipid extracts 

obtained after extraction with low polar solvents, dicarboxylic acids have been scarcely 

described and therefore, their potential diagnostic character has not been identified. Hence, 

the relative contribution of dicarboxylic acids to total FA was used for the first time in the 

current study to identify their diagnostic potential.  

The relative content (Crel) of unsaturated FA and dicarboxylic acids was calculated as the ratio 

of total unsaturated FA (∑ unsaturated FA) or dicarboxylic acids (∑ dicarboxylic acids) to 

total FA (∑ FA) 

      
               

   
     (3) 

2.2.2.4 Statistical evaluation 

In the figures and tables all results are presented as means of the three replicate plots and 

standard errors of the means. A factorial analysis of variance (ANOVA) was conducted to test 

if Corg, total lipid extract contents (TLE), ACL, as well as the relative amounts of unsaturated 

FA and dicarboxylic acids, representing the dependent variables, were significantly different 

between the soil compartments and the depth intervals and if there were interactions between 

these. If there was no interaction effect, a posthoc Tukey HSD test was conducted. It was a 

3x4 factorial design using soil compartment (3 levels) and depth interval (4 levels) as factors. 

Normal distribution of the residuals was tested using the Shapiro-Wilk normality test. 

Levene's test was conducted to test for homogeneity of variances using the R package car 

(Fox and Weisberg, 2011). The residuals of the ANOVA model for Corg and CPI were not 

normally distributed. Therefore, the 3x4 factorial ANOVA was calculated using log 

transformed Corg and CPI data that revealed a normal distribution of the residuals and 

improved homoscedasticity. 

A linear discriminant analysis was conducted to test whether FA can be used to separate 

drilosphere, rhizosphere and bulk soil OM. Unsaturated and dicarboxylic acid contents were 
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used as predicting variables and the soil compartment was used as categorical variable. To 

conduct linear discriminant analysis the R package MASS was used (Venables and Ripley, 

2002). Unsaturated and dicarboxylic acids that were found in less than 10% of all samples 

were excluded from the analysis to eliminate co-linearity among variables. To assess 

multivariate normality within the groups, a QQ plot was used. One-way ANOVA followed by 

a Tukey HSD post-hoc test was conducted to test if the discriminant scores of the linear 

discriminant function 1 and the linear discriminant function 2 differ significantly between the 

soil compartments. ANOVA and linear discriminant analysis were calculated using R version 

3.0.2 (R Core Team, 2013). 
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2.2.3 Results 

2.2.3.1 Organic carbon and total lipid extract contents 

The average organic carbon (Corg) content differed significantly between the soil 

compartments. It was highest in drilosphere, intermediate in rhizosphere and lowest in bulk 

soil (Figure 2.2-2 a, Table 2.2-1). Corg of all soil compartments was highest in the uppermost 

soil horizon and decreased significantly with increasing soil depth (Table 2.2-1). Interaction 

effects were absent, meaning that in every soil depth the Corg content was highest in 

drilosphere, intermediate in rhizosphere and lowest in bulk soil. The distribution of Corg with 

depth was described using a power function in bulk soil (47 x 
-0.57

), rhizosphere soil (49 x 
-0.49

) 

and drilosphere soil (42 x 
-0.40

) (Figure 2.2-2 a). The total lipid extract contents normalized to 

Corg (TLECorg) did neither differ between bulk soil, rhizosphere and drilosphere OM nor were 

affected by soil depth (Figure 2.2-2 b) (Table 2.2-1). TLECorg of roots was three orders of 

magnitude higher than that of soil compartments, but did not change with depth (Figure 2.2-2 

b). 

2.2.3.2 Free extractable fatty acid molecular proxies 

The fatty acid distribution patterns of all soil samples including bulk soil, rhizosphere and 

drilosphere in general seemed to be similar, but differed from root samples. A range from 

 

Figure 2.2-2: Organic carbon content (a) and total lipid extract contents normalized to C org (b) (± SEM) in 

bulk soil, rhizosphere and drilosphere. A power function (C org) or linear regression (total lipid extract 

contents normalized to Corg) using the least squares fitting method was used to describe its distribution with 

depth. * Asterisk indicate significant differences of Corg between the soil compartments in particular soil 

depths (3x4 ANOVA followed by TukeyHSD post-hoc test, p<0.05).  
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C12:0 to C34:0 saturated FA could be determined in the whole sample set. Dicarboxylic acids 

appeared in the sample set between C9:0 and C24:0. Branched FA were observed between C12 

and C24 and unsaturated FA between C16:1 and C24:1. A clear even over odd predominance was 

observed for all types of FA in the whole sample set. The most abundant FA was C18:1  for 

root samples and C16:0 for all other samples. The most abundant long-chain FA was C22:0 in 

almost every sample. In some samples also C24:0 and C20:0 were similar in abundance 

compared to C22:0 or even slightly enriched. Differences in the distribution pattern of FA 

between soil compartments and with soil depth were evaluated using various molecular 

proxies. 

The ACL of the bulk soil FA was identical in both upper soil horizons (Figure 2.2-3 a). Below 

these, the ACL value dropped below 18 and remained constant down to 90 cm depth. Similar 

trends were observed for rhizosphere and drilosphere samples. Thus, the ACL did not differ 

between the soil compartments and between the depth intervals (Table 2.2-1). Significantly 

lower values compared to most soil samples were observed for roots (17.3-17.8), which 

tended to increase with depth. 

The CPI of the bulk soil FA ranged between 4 and 5 and did not significantly vary with soil 

depth or between soil compartments (Figure 2.2-3 b, Table 2.2-1). The CPI of the drilosphere 

FA was slightly higher compared to bulk soil maximizing at 5.3 ± 0.5 at a depth of 45-75 cm. 

Table 2.2-1: Results of the 3x4 analysis of variance showing the main and interaction effects of the factors 

soil compartment and soil depth on the dependent variables organic carbon content (C org), total lipid extract 

contents normalized to Corg (TLECorg), the average chain length (ACL) and the relative amount of unsaturated 

FA and diacids. Degrees of freedom (df), F-values (F) and the significance level (p) are shown for soil 

compartment (compartment), soil depth (depth) and the interac tion between the factor levels of soil 

compartment and soil depth (compartment:depth).  

factor log(Corg) TLECorg ACL log(CPI) unsaturated FA Diacids 

 df F p df F p df F p df F p df F p df F P 

compartment 2 31.48 *** 2 1.20 n.s. 2 0.17 n.s. 2 2.36 n.s. 2 15.14 *** 2 2.04 n.s. 

depth 3 50.17 *** 3 0.56 n.s. 3 1.50 n.s. 3 0.09 n.s. 3 1.72 n.s. 3 0.33 n.s. 

compartment:depth 6 2.03 n.s. 6 1.02 n.s. 6 0.20 n.s. 6 0.69 n.s. 6 1.69 n.s. 6 0.28 n.s. 

Residuals 24   23   21   20   21   21   

                   

* p < 0.05 

** p < 0.01 

*** p < 0.001 
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The rhizosphere FA were characterized by CPI below 4 in the depth interval of 0-45 cm and 

increased up to 5.7 ± 1.3 in 75-105 cm depth. The CPI of roots were lower compared to 

rhizosphere and drilosphere FA and ranged between 3.2 and 3.4 from top- to subsoil except 

for an increase in depth interval 45-75 cm (4.8).  

The average relative contribution of dicarboxylic acids to total FA was highest in bulk soil, 

intermediate in rhizosphere and lowest in drilosphere, but did not differ significantly between 

the soil compartments (Figure 2.2-4 a). With increasing soil depth the proportions of 

dicarboxylic acids did not change significantly (Figure 2.2-4 a, Table 2.2-1). The contribution 

of dicarboxylic acids in roots were significantly lower compared to most soil compartments, 

 

Figure 2.2-3: a) Average chain length (ACL) and b) carbon preference index of long-chain fatty acids (CPI) (± 

SEM). 

 

Figure 2.2-4: Relative contribution of a) unsaturated and b) dicarboxylic acids to total free fatty acids (FA) (± 

SEM). * Asterisk indicate significant differences of the relative unsaturated fatty acid contents between the 

soil compartments in particular soil depths (3x4 ANOVA followed by TukeyHSD post-hoc test, p<0.05). 
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but did not change with depth. 

The average contribution of unsaturated FA to total FA differed significantly between the soil 

compartments (Figure 2.2-4 b, Table 2.2-1). Highest contents of unsaturated FA were found 

in drilosphere, intermediate in rhizosphere and lowest in bulk soil. The relative amounts of 

unsaturated FA decreased from 12.9 % in the topsoil to less than 6 % in the subsoil horizons 

in bulk soil. The relative amounts of unsaturated FA in rhizosphere and drilosphere were in 

general identical to bulk soil in the topsoil. Nevertheless, their relative amount was 

significantly higher in drilosphere compared to bulk soil at 45-75 cm depth. Significantly 

higher amounts of unsaturated FA were observed for root samples compared to the soil 

compartments. The contribution of unsaturated FA to total FA in roots was highest in the 

depth interval between 30 cm and 75 cm (63 ± 1.5 % and 65 %, respectively) and lowest in 

the topsoil (52 ± 4%).  

2.2.3.3 Separation of drilosphere, rhizosphere and bulk soil organic matter using linear 

discriminant analysis 

Discriminant function analysis was conducted to test if bulk soil, rhizosphere and drilosphere 

OM differ significantly on a linear combination of the measured relative di- and unsaturated 

FA contents (Figure 2.2-5). To separate between the 3 soil compartments, 2 linear 

discriminant functions were calculated. For every function an Eigenvalue was calculated that 

represents a relative measure on the separating power of a discriminant function (Table 2.2-2). 

It represents the ratio of the discriminant score variance between the soil compartments to the 

discriminant score variance within the soil compartments. The Eigenvalue for function 1 

(11.8) was higher compared to function 2 (8.0) indicating that function 1 was more effective 

in separating between the soil compartments compared to function 2 (Table 2.2-2). 68.6 % of 

Table 2.2-2: Eigenvalue of each linear discriminant function and the percentage of between -group variance 

explained by the first and second linear discriminant function  

Function Eigenvalue Explained between-group variance 

(%) 

1 11.8 68.6 

2 8.0 31.4 
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the total variance was explained by function 1 compared to 31.4 % that confirmed the higher 

importance of function 1 in separating between the soil compartments (Table 2.2-2). 

However, function 2 improved the discrimination between bulk soil and the other two soil 

compartments (Figure 2.2-5). Wilks' Lambda is used to determine if the mean discriminant 

scores differ between the soil compartments, as it is defined as the ratio of variance within the 

soil compartments to the total variance. The lower Wilk's Lambda the higher are the 

differences between the mean discriminant scores for bulk soil, rhizosphere and drilosphere 

OM. Wilks' Lambda was low, if both functions were considered and if only function 2 was 

considered (Table 2.2-3). The corresponding overall Chi-square test was significant. This 

indicates that the mean discriminant scores that result, if both linear discriminant functions are 

considered, differ between the soil compartments (Table 2.2-3). As the Chi-square test for the 

second function was significant too, both functions have to be used to separate between the 

soil compartments (Table 2.2-3). The mean discriminant scores of function 1 differed 

significantly between all soil compartments (Table 2.2-4 supplementary material). The mean 

scores obtained by function 2 significantly differed between bulk soil and the other 2 soil 

compartments. Therefore, the hypothesis that a linear combination of relative di- and 

unsaturated fatty acids content can separate bulk soil, rhizosphere and drilosphere OM was 

confirmed. 

For the linear discriminant analysis, relative di- and unsaturated FA measured in every depth 

of the soil profile were used. The discriminant scores of the two linear discriminant functions 

were calculated for every depth interval indicating that the linear combinations of the 

dicarboxylic and unsaturated FA were depth independent (Figure 2.2-6). 

Table 2.2-3: Wilks' Lambda and Chi square significance test for all linear discriminant functions and for the 

linear discriminant function 2. Degrees of freedom (df) and significance level (p) are shown.  

Function Wilks' Lambda Chi-square d.f. p value 

1 and 2 0.019 83.78 38 0.0003 

2 0.190 34.83 18 0.01 
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Figure 2.2-5: Scatterplot of the discriminant scores for the soil compartments obtained by the linear 

discriminant function 1 (LD1) and 2 (LD2). The mean values of the discriminant scores for every soil 

compartment (Centroids) are shown.  

 

Figure 2.2-6: Discriminant scores (± SEM) for bulk soil, rhizosphere and drilosphere obtained by the linear 

discriminant function 1 (a) and 2 (b) for the soil depth intervals.  
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2.2.4 Discussion 

2.2.4.1 Differences of organic carbon and total lipid extract contents in drilosphere, 

rhizosphere and bulk soil 

The Corg and TLE content of bulk soil determined for the site Klein-Altendorf (Figure 2.2-2) 

were in the range of agricultural soils of temperate climate (Wiesenberg et al., 2006) and 

confirmed previously observed Corg values for that site (Gaiser et al., 2012). The decrease of 

Corg and TLE contents with increasing soil depth is common and was also described before 

(Wiesenberg et al., 2006).  

The Corg and TLE contents changes with increasing soil depth was significantly higher in the 

rhizosphere and even higher in drilosphere compared to bulk soil. This can be attributed to an 

input of organic matter at the pore wall with a higher spatial variability due to root- and 

earthworm-derived organic matter. The enrichment of the drilosphere in Corg by 20% 

compared to bulk soil indicated the input of earthworm-derived OM into the burrow. The 

enrichment in OM in the rhizosphere originates from the input of root litter, rhizodeposits and 

their stimulation of microbial growth (Jones 2009). Consequently, the enrichment of Corg in 

the drilosphere and rhizosphere compared to bulk soil is related to the incorporation of 

organic matter released by the producer of the biopore. This is confirmed for TLE contents by 

the very high TLE contents observed for roots in the current study. Thus, even if no 

macroscopic root remains were observed, root- and rhizodeposit-derived lipids must have 

contributed to the enriched Corg and TLE contents in rhizosphere samples compared to bulk 

soil. Further, microorganisms feeding on this freshly incorporated organic matter in pore 

walls likely contribute to this enrichment in bulk organic matter and also likely to higher TLE 

contents (Uksa et al., 2014). An enrichment of Corg in earthworm casts has been previously 

reported (Marhan et al., 2007). However, as the material from the pore wall has not processed 

the earthworm gut like the casts, it remains unclear whether the stabilization of organic matter 

is similar in casts and the drilosphere. Our results point at least to a short-term enrichment of 

organic matter in the pore wall and potentially also stabilization in the long-term, which needs 

to be investigated in further studies.  

Despite significant differences in Corg contents between drilosphere, rhizosphere and bulk soil, 

Corg content is not a diagnostic criteria to reliably distinguish between drilosphere, rhizosphere 

and bulk soil OM, due to the high spatial variability of Corg contents between field replicates 
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and integrating among various compound classes (Marschner et al., 2008). Similar to Corg, 

also the TLE contents could not be used for a clear differentiation between pores of different 

origin, although they were slightly higher in drilosphere and rhizosphere compared to bulk 

soil OM. As soil lipids can derive from several sources like microorganisms, plants, fungi, 

insects and others, a low specificity of the TLE contents could be expected. Thus both, Corg 

and TLE contents indicated an increased incorporation of OM into rhizosphere and 

drilosphere compared to bulk soil. A higher specificity can be expected from molecular 

proxies, which specifically point to the characteristic chemical composition of their organic 

sources.  

2.2.4.2 Source assessment of biopores via molecular proxies 

ACL and CPI values have been frequently applied in biogeochemical studies for source 

apportionment and degradation of organic matter. The ACL values are related to the specific 

sources of organic matter differentiated by chain length and together with the CPI values can 

give insight into the degradation of organic matter.  

The high ACL values (> 18.5) down to 45 cm indicated the contribution of fresh aboveground 

biomass to FA as aboveground plant tissues are typically enriched in long-chain FA (> 19 

carbons) (Harwood and Russell, 1984) due to the transport and formation of long-chain fatty 

acids in plant cuticles (Post-Beittenmiller, 1996). In contrast to these, the investigated alfalfa 

roots were always <18 and thus characterized by the lowest ACL values in the sample set. 

These low values compared to aboveground biomass are typical for roots (Wiesenberg et al., 

2012) as the lipid biosynthesis is different in roots and leaves, presumably leading to lower 

amounts of elongated FA in roots compared to leaves. As roots and bulk soil showed identical 

values below 45 cm depth, the source of FA in bulk soil in this depth can be attributed mainly 

to root origin. Further, microorganisms like bacteria and fungi could be other sources of FA 

than only roots at the large depth as they are also characterized by ACL values around 17. 

Rhizosphere ACL values did not differ significantly from bulk soil, and did not show 

considerable influence of roots compared to bulk soil. Thus, the microorganism related 

overprint in the rhizosphere, leading to selective degradation of short chain FA and thus 

selective enrichment of longer chain homologues might have caused these unexpected results. 

However, as the results are not significantly different, these tendencies should not be 

overinterpreted. The ACL values of drilosphere samples revealed the lowest changes with soil 

depth compared to other soil samples, which likely indicated the translocation of OM from 



Discussion    Study 2 

83 

topsoil towards greater depth within the biopores by earthworms, which is already a well 

known feature of vertical earthworm burrows (Lee, 1985).  

The CPI values of bulk soil samples ranged between 4 and 5, which is common in soil 

samples (Matsumoto et al., 2007; Wiesenberg et al., 2012). As all root, drilosphere and 

rhizosphere samples also had CPI values between 3 and 6, and thus did not differ significantly 

from bulk soil, no conclusion could be made related to specific origin of FA in the different 

samples. Hence, these established molecular proxies have little potential to allow for a 

differentiation between different samples, which can be related to the ubiquitous 

microorganisms that prevail in bulk soil, drilosphere and rhizosphere.  

2.2.4.3 Source assessment of biopores via the portions of dicarboxylic acids and 

unsaturated FA 

Especially dicarboxylic acids and unsaturated FA have been described to predominantly 

derive in soils from specific sources (Harwood and Russell, 1984; Kolattukudy, 1981; 

Mendez-Millan et al., 2012). Unsaturated FA are related to plant biomass that has not been 

strongly degraded, but can be also of bacterial, insect or other origin. However, as a major 

part of FA in soils are degradation products, they are less specific in terms of location of side 

chains and double bonds within the molecule than phospholipid fatty acids, that allow tracing 

of living microbial and plant biomass (Frostegard and Baath, 1996). Dicarboxylic acids in 

soils have been determined to be mainly attributed to root-derived origin, as the suberin 

polymer present in roots and not in aboveground tissues contains large amounts of 

dicarboxylic acids (Kolattukudy, 1981).  

Roots revealed a strong enrichment of unsaturated FA compared to saturated and dicarboxylic 

acids (Figure 2.2-4), which can be explained by the typical enrichment of mono- and poly-

unsaturated FA in plant tissues as main components of cell membranes (Ohlrogge and 

Browse, 1995). The highest portions of unsaturated FA in bulk soil OM were determined in 

topsoil (0-30 cm), whereas in all other depth intervals less than 10 % unsaturated FA were 

determined in bulk soil OM (Figure 2.2-4 b). The relative enrichment of unsaturated FA in the 

topsoil compared to subsoil layers can be related to the continuous input of fresh biomass via 

litterfall, root biomass and microorganism-derived organic matter. In subsoil horizons, the 

input of fresh biomass is distributed more heterogeneously. Therefore, the degradation of bulk 

soil OM that affects itself the composition of FA is stronger in subsoil compared to topsoil. 
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As biopores are known to incorporate fresh biomass into subsoils (Kautz et al., 2013) the 

relative content of unsaturated FA should be higher in biopores, due to lower degradation of 

the freshly incorporated OM. Drilosphere and rhizosphere samples revealed similar portions 

of unsaturated FA like bulk soil OM in the topsoil. In subsoil horizons the portions of 

unsaturated FA were always higher than those of the bulk soil. However, as the relative 

portions of unsaturated FA remained always below 20 %, the contribution of fresh, 

undegraded microorganism- or plant-derived organic matter can be assumed to be relatively 

low in the different pore walls. This is supported by the very high values of unsaturated FA in 

roots (> 50%). Thus, degradation of OM in biopores leads to a significant alteration of the FA 

composition and not a preservation of the plant-derived FA signal in terms of unsaturated FA. 

The largest portions of dicarboxylic acids were observed in bulk soil, followed by 

rhizosphere, and drilosphere. Surprisingly, the dicarboxylic acids were very low in root 

samples although they were frequently described to be biomarkers for root-derived organic 

matter (Mendez-Millan et al., 2010a). In living root biomass the dicarboxylic acids occur as 

part of the polymer suberin, but only extractable monomers were investigated in the current 

study and not bound lipids and their monomers. This different sample preparation, which 

leaves the bound lipids not extracted, can explain why the alfalfa roots do not reveal 

considerable amounts of dicarboxylic acids. During degradation of suberin, dicarboxylic acids 

can then be released as monomers into the soil. They can be assumed to be intermediate 

degradation products until further degradation of the functional groups, which could explain 

the large abundance (> 20 %) of dicarboxylic acids in bulk soil. The increase of the portion of 

dicarboxylic acids below 45 cm indicated stronger contribution of root-derived organic 

matter, which was already determined based on bound dicarboxylic acids, elsewhere 

(Mendez-Millan et al., 2012). It could be possible that the rhizosphere samples contained a 

considerable portion of bound dicarboxylic acids, which was not investigated in the current 

study.  

The formation of drilosphere biopores by earthworms could not be proven by the chosen FA 

proxies. In principle, various FA proxies should enable the differentiation of biopores of 

known origin, whereas ultimately a significant differentiation of different sources of OM in 

biopores in soil was difficult. A limitation could arise, if the organic matter in biopores is 

strongly degraded, which makes a comparison to the bulk soil difficult. For future 

applications the implication of biopores of known origin and the bulk soils is always 
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recommended. Furthermore, the analyses of bound lipids might support the identification of 

root-derived biopores amongst other sources. 

2.2.4.4 Separation of drilosphere, rhizosphere and bulk soil OM using linear discriminant 

analysis 

The proportions of unsaturated and dicarboxylic FA differed between drilosphere, rhizosphere 

and bulk soil OM. Therefore, a combination of unsaturated FA and dicarboxylic acids was 

assumed to improve the separation of OM between these soil compartments. A linear 

discriminant analysis that was applied to the FA fingerprint of drilosphere, rhizosphere and 

bulk soil OM revealed a clear separation of the soil compartments. 

The separation of bulk soil, rhizosphere and drilosphere OM by the linear combination of 

relative contents of unsaturated FA and dicarboxylic acids was not affected by soil depth 

(Figure 2.2-6). Despite differences in the relative contents of unsaturated FA increased with 

depth, they were lowest in bulk soil, intermediate in rhizosphere and highest in drilosphere in 

every soil depth (Figure 2.2-4). The same applied to the relative contents of dicarboxylic 

acids, but the soil compartments differed in reverse order. The lack of a depth effect enabled 

the utilization of the relative contents of unsaturated and dicarboxylic FA of every soil depth 

for the discriminant analysis. This indicated depth independency of these FA proxies for OM 

separation.  

The back-tracing of the separation to specific processes could determine, if the combination 

of unsaturated and dicarboxylic FA yields appropriate molecular markers to differentiate 

between bulk soil, rhizosphere and drilosphere OM. The effective separation between 

rhizosphere and drilosphere OM by function 1 is assumed to result from the higher 

dicarboxylic acid content in the rhizosphere and the lower content of unsaturated FA in the 

rhizosphere compared to the drilosphere. In arable soil, dicarboxylic acids can trace root-

derived organic matter (Mendez-Millan et al., 2010b). Dicarboxylic acids are constituents of 

suberin that mainly occurs in roots in herbaceous plants (Kolattukudy, 1981; Mendez-Millan 

et al., 2010b). Degradation of suberin releases dicarboxylic acids into soil. Therefore, higher 

dicarboxylic acid contents in the rhizosphere compared to the drilosphere could have been 

caused by the higher amount of root litter in the rhizosphere (Figure 2.2-4). In contrast to 

dicarboxylic acids, the relative amount of unsaturated FA was lower in the rhizosphere 

compared to the drilosphere (Figure 2.2-4). It was shown that the relative contribution of 
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unsaturated compounds to plant biomass was much higher than to soil organic matter 

(Mendez-Millan et al., 2010b; Nierop et al., 2003). Due to the double bond, unsaturated 

compounds are preferentially degraded in soil compared to saturated compounds (Mendez-

Millan et al., 2010b; Nierop et al., 2003). Organic material that passed the gut of an 

earthworm was shown to be already partially stabilized (Marhan et al., 2007). Consequently, 

the higher relative amount of unsaturated FA in drilosphere was assumed to result from a 

higher input of fresh OM and an increased protection against microbial degradation compared 

to the rhizosphere. The improved separation of bulk soil OM from rhizosphere and 

drilosphere OM due to linear discriminant function 2 is assumed to reflect the longer 

degradation process that reduced the relative unsaturated FA content and increased the 

content of more recalcitrant dicarboxylic acids (Mendez-Millan et al., 2010b). 
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2.2.5 Conclusions 

Currently, the identification of potential places of carbon allocation in soils is one of the 

major tasks in soil organic matter research. As biopores were identified as one potential 

pathway to sequester carbon in subsoil horizons, the source apportionment and fate of biopore 

carbon might be a key to improve our understanding on carbon cycling and carbon 

sequestration in subsoils. Thus, the aim of the current study was to determine the carbon 

concentrations in walls of biopores of known origin, i.e. earthworm- or root-derived to trace 

carbon incorporation via pore systems and another aim was to identify the potential of FA as 

biomarkers for source apportionment of organic matter in biopores. Carbon significantly 

accumulated in the biopore walls compared with bulk soil in different soil horizons with 

higher values for earthworm- than for root-derived pores. This highlights the potential of pore 

systems to contribute to carbon incorporation especially in carbon-depleted subsoils. 

However, further research is required to determine the long-term fate of this incorporated 

carbon for tracing the sequestration potential. To study pore systems in soils in the long term 

it is also a prerequisite to know the biogenic origin of the carbon in pore walls, which might 

be traced by biomarker approaches. Here, the combination of unsaturated and dicarboxylic 

acids enabled the separation of bulk soil, rhizosphere and drilosphere OM. We could show for 

the first time that the relative amounts of unsaturated FA and dicarboxylic acids differed 

between bulk soil, rhizosphere and drilosphere OM but did not change with depth. Therefore, 

separation of bulk soil, rhizosphere and drilosphere OM in other ecosystems can be possible. 

A universal application of the linear combination of relative contents of unsaturated FA and 

dicarboxylic acids to categorize OM of unknown origin into bulk soil, rhizosphere and 

drilosphere organic matter requests the evaluation of the discriminant model with samples 

from other sites and ecosystems as well as a validation using e.g. biopore OM of different 

origin (including mixed sources) produced under controlled conditions.  
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Table 2.2-4: One-way analysis of variance showing the effect of soil compartment on the discriminant scores 

for the linear discriminant function 1 (LD 1) and the linear discriminant function 2 (LD2). TukeyHSD post -

hoc test was applied to reveal significant differences between each soil compartment. Degrees of freedom 

(df), F-values and significance level (p) are shown for soil compartment.  

factor  Discriminant scores LD 1 Discriminant scores LD 2 

 df F p df F p 

compartment 2 139.30 *** 2 63.79 *** 

Residuals 30   30   

       

Tukey HSD diff  p Diff  p 

BU - DS -2.67  *** -4.49  *** 

BU - RS 4.26  *** -4.01  *** 

RS - DS 6.93  *** 0.48   

* p < 0.05      

** p < 0.01      

*** p < 0.001      
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Abstract 

Aims: This study analyzed the extent to which root exudates diffuse from the root surface 

towards the soil depending on topsoil and subsoil properties and the effect of arbuscular 

mycorrhizal fungal hyphae on root-derived C distribution in the rhizosphere. 

Methods: Alfalfa was grown in three-compartment pots. Nylon gauze prevented either roots 

alone or roots and arbuscular mycorrhizal fungal hyphae from penetrating into the rhizosphere 

compartments. 
14

CO2 pulse labeling enabled the measurement of 
14

C-labeled exudates in 

dissolved (DOC) and total organic carbon (TOC) in the rhizosphere, distributed either by 

diffusion alone or by diffusion, root hair and hyphal transport. 

Results: Root exudation and microbial decomposition of exudates was higher in the 

rhizosphere with topsoil compared to subsoil properties. Exudates extended over 28 mm 

(DOC) and 20 mm (TOC). Different soil properties and mycorrhization, likely caused by the 

low arbuscular mycorrhizal colonization of roots (13 ± 4% (topsoil properties) and 18 ± 5% 

(subsoil properties)), had no effect.  

Conclusions: Higher microbial decomposition compensated for higher root exudation into the 

rhizosphere with topsoil properties, which resulted in equal exudate extent when compared to 

the rhizosphere with subsoil properties. Higher 
14

C activity used for labeling compared with 

previous studies enabled the detection of low exudate concentrations at longer distances from 

the root surface. 

 

 

 

 

 

 

 

 

Keywords: Plant-soil-microorganism interactions; 
14

CO2 pulse labeling; C partitioning; 

subsoil; topsoil; Medicago sativa  
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2.3.1  Introduction 

Soils are characterized by complex physical, chemical and biological properties. Various 

resources such as nutrients or water are heterogeneously distributed in soil, resulting in hot 

spots, i.e. in microsites with increased resource availability (Beare et al. 1995). Higher 

microbial abundance and activity in these hot spots compared to bulk soil increase organic 

matter turnover and nutrient mineralization (Cheng 2009; Kuzyakov 2010). One of these hot 

spots in soil is the rhizosphere, which was first mentioned by Hiltner in 1904, and is defined 

as the soil volume surrounding the root that is affected by root activity (Darrah 1993). 

The soil volume affected by plant roots, i.e. the extent of the rhizosphere, depends on the 

processes and parameters considered (Gregory 2006). Most previous studies have determined 

the extent of various parameters in the rhizosphere of topsoil Ap or Ah horizon (WRB IUSS-

ISRIC-FAO 2006; Kuzyakov et al. 2003; Schenck zu Schweinsberg-Mickan et al. 2012). 

However, the spatial distribution of e.g. rhizodeposits and therefore the soil volume affected 

by rhizodeposition can be assumed to change with increasing soil depth, because of changing 

pedological, environmental, physicochemical (Salomé et al. 2010) and biological features. 

Radial gradients that develop in the vicinity of the root can be used to describe the extent of 

the rhizosphere (Uren 2007). The size of the gradients ranges from less than one millimeter 

for microbial populations up to tens of millimeters for volatile compounds (Gregory 2006). 

Gradients develop due to nutrient uptake, which causes their depletion from bulk soil to root 

surface (Jungk 2002) or due to the release of rhizodeposits from the root into the soil (Sauer et 

al. 2006). Rhizodeposits comprise a wide range of organic compounds (Rovira 1956), which 

can be divided into water-soluble exudates such as e.g. sugars, amino acids and low molecular 

organic acids and water-insoluble components such as decaying fine-roots, root hairs, cell 

walls, sloughed cells and mucilage (Wichern et al. 2008). Root exudates have been reported to 

diffuse up to 12 mm from the root surface (Sauer et al. 2006), indicating that a relatively large 

soil volume is affected. Root exudates are released from the root into the soil due to: 1) 

passive diffusion, which is mainly controlled by concentration differences of individual 

solutes in the cytoplasm and in the soil and the permeability of cell membranes of the solute; 

and 2) possible additional active release due to the opening of membrane pores (Jones et al. 

2004). In turn, this affects the distribution of the respective compound from the root surface 

into bulk soil. Once exuded into the soil, the spatial distribution of the solute depends on the 

diffusivity of the solute in water (Watt et al. 2006), the soil water content (Olesen et al. 2000; 
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Watt et al. 2006), re-uptake by roots (Jones and Darrah 1993), uptake by microorganisms 

(Hill et al. 2008; Fischer et al. 2010) and adsorption to the soil matrix (Jones and Edwards 

1998). 

The properties that affect the distribution of root exudates from the root surface to bulk soil 

change with increasing soil depth. C, N, C/N ratios (Salomé et al. 2010) and nutrient 

availability decrease with soil depth (Jobbagy and Jackson 2001). As an increase in the 

exudation of organic compounds by roots was observed under low N or P supply (Paterson 

and Sim 1999; Neumann and Römheld 1999), the same can be expected in subsoil. Due to a 

decrease in microbial biomass with soil depth (Fierer et al. 2003), the decomposition of the 

released root exudates will be slower. Changes in soil texture and the amount and distribution 

of soil organic matter with depth affect the sorption of root exudates to the solid phase. In 

turn, the distribution of root exudates in the rhizosphere is affected by differences in sorption 

as it reduces their bioavailability and biodegradation (Jones and Edwards 1998). 

Arbuscular mycorrhizal (AM) symbioses are formed between the majorities of land plants and 

AM fungi (Smith and Smith 2011). The symbiosis is based on the exchange of C and 

nutrients between the host plant and the AM fungi (Smith and Smith 2011). AM symbioses 

affect rhizosphere extent by C translocation from the host plant to the AM fungi and 

exudation by external AM fungal hyphae that extend the rhizosphere into the 

mycorrhizosphere (Jones et al. 2004). The extent of the mycorrhizosphere depends on the 

spatial distribution of the AM fungal hyphae. Hyphal density and the spread of external 

hyphae from the root surface into soil differ between AM fungi and depend on the time of 

existing symbiosis (Jakobsen et al. 1992). Moreover, root exudation is changed in quality and 

quantity, as the colonization of roots by AM fungi changes the permeability of root 

membranes (Ratnayaker et al. 1978; Mada and Bagyaraj 1993).  

Generally, soil composition, moisture, temperature, pH, nutrient availability and 

anthropogenic stressors affect the formation and function of AM symbiosis (Entry et al. 

2002). With increasing soil depth, the mentioned soil conditions change, spore abundance 

decreases and AM fungi species composition changes (Oehl et al. 2005).  

We hypothesize that: 1) root exudation into the soil with subsoil properties is higher per unit 

of root mass due to lower nutrient content compared to the soil with topsoil properties; 2) the 

diffusion distance of root exudates is longer in the soil with subsoil properties, because of 

lower microbial biomass content and consequently lower decomposition of root exudates; 3) 
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mycorrhization further extends the rhizosphere due to the transport and exudation of 

assimilated C by AM fungal hyphae; 4) the effect of mycorrhization on rhizosphere extent 

differs between the soil with top- and subsoil properties, because soil properties affect the 

formation and function of AM symbiosis. 

To test these hypotheses, alfalfa was grown in three-compartment pots filled with either 

homogenized top- or subsoil (Figure 2.3-1). Two months old plants were pulse labeled with 

14
CO2 to distinguish root-derived C (

14
C) in dissolved (DOC) and total organic carbon (TOC) 

from all other C sources. Due to the installation of nylon gauze root exudates were distributed 

in the rhizosphere either by diffusion alone (1 µm gauze) or by diffusion, root hair and hyphal 

transport (30 µm gauze). To identify AM symbiosis, the colonization of roots by AM fungi 

was measured.  

 

Figure 2.3-1: T-shaped three-compartment pots, containing a central root compartment and two side 

compartments that represent the rhizosphere of alfalfa. The rhizosphere compartments are separated from the 

root compartment by nylon gauze to prevent either roots alone or roots and arbuscular mycorrhizal (AM) 

fungal hyphae from penetrating into the rhizosphere compartments. One rhizosphere compartment was 

separated by 30 µm gauze from the root compartment to allow AM fungal hyphae and root hairs to penetrate 

into the rhizosphere compartment. The other rhizosphere compartment was separated from the root 

compartment by nylon gauze with a mesh size of 1 µm in order to exclude AM fungal hyphae, roots and root 

hairs. Micro suction cups were installed  at a distance of 3, 6, 9, 13, 19 and 28 mm from the nylon gauze, i.e. 

the root surface.  
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2.3.2  Material and Methods 

2.3.2.1 Experimental setup 

Alfalfa (Medicago sativa) was grown in three-compartment pots (Sauer et al. 2006) (Figure 

2.3-1). The pots consisted of T-shaped tubes with an inner diameter of 83 mm. The three-

compartment pots were filled with either homogenized topsoil (sampled from 0-30 cm, Ap 

horizon) or subsoil (45-75 cm, Bt horizon) of a Haplic Luvisol (WRB IUSS-ISRIC-FAO 

2006) collected from the field trial of the DFG research group 1320 in Klein Altendorf (06° 

59‘ 29‘‘ E, 50°37‘21‘‘ N) (Gaiser et al. 2012) (Table 2.3-1). Both topsoil and subsoil samples 

were taken from three replicate plots of alfalfa cultivated in the second year. Replicate 

samples were combined and sieved to 2 mm for homogenization prior to setting up the three-

Table 2.3-1: Properties of the homogenized soil sampled from top - (Ap) and subsoil (B t) horizon of a Haplic 

Luvisol, including soil organic carbon (SOC) content, C/N ratio and texture, before the cultivation of alfalfa. 

Shoot and root dry weight (DW) of alfalfa grown in top - or subsoil pots two months after sowing are 

presented. Comparison of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) content and 

C/N ratio of the soil solution and average pH between the rhizosphere with top - or subsoil properties two 

months after sowing a. 

  Topsoil Subsoil 

Soil properties          

SOC (g kg
-1

) 9.5  ± 0.1 a
* 

5.1  ± 0.1 b 

C/N  8.8  ± 0.1 a 7.7 ± 0.1 b 

Texture 
b 

Sand (%) 16    12    

Silt (%) 67    59    

Clay (%) 17    29    

Plant biomass two months after sowing         

Shoot  (g DW pot
-1

) 18.1   ± 0.8 a 18.7  ± 0.9 a 

Root  (g DW pot
-1

) 4.4   ± 0.5 a 2.7  ± 0.2 b 

Rhizosphere compartment
 c 

        

DOC (mg C l
-1

)
 

98.1  ± 2.1 a 88.2 ± 1.6 b 

TDN (mg N l
-1

)
 

23.2  ± 3.9 a 4.6 ± 0.1 b 

C/N
 

 11.1  ± 1.5 a 20.0 ± 0.5 b 

pH (H2O)  7.5  ± 0.0 a 7.7 ± 0.0 a 

a
 Values are given as means and standard errors of the means.  

b
 Texture values originate from Uteau Puschmann et al. (Oxygen and redox potential 

gradients in the rhizosphere of alfalfa grown on a loamy soil. Under Review). 

c
 DOC, TDN, C/N ratio and pH values are means of the rhizosphere compartments with top- 

or subsoil properties. 

* Different letters indicate significant differences between top- and subsoil properties (Mann-

Whitney U test; p < 0.05). 
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compartment experiment. 

The side rhizosphere compartments were filled by adding the required amount of soil needed 

to adjust a bulk density of 1.2 g cm
-3

. To avoid heterogeneities related to filling, soil was 

pressed into the rhizosphere compartment by applying pressure once from one side. After 

filling, the nylon gauze was first fixed to the opposite side of the rhizosphere compartment 

using an elastic band and then the rhizosphere compartments were connected to the root 

compartment. The three-compartments were put into a vise, which was built specifically for 

the pots, to fix the connection. The soil was filled into the root compartment after fixing both 

rhizosphere compartments to ensure connectivity. A total of 0.5 g of alfalfa seeds per pot was 

sown directly into the soil of the root compartment. 

The plant roots grew in the root compartment, but could not penetrate into the rhizosphere 

compartments due to nylon gauze (Kuchenbuch and Jungk 1982). Within one pot, two mesh 

sizes were used. As root hairs are approximately 10 µm in diameter (Gahoonia et al. 1997; 

Grierson and Schiefelbein 2002) and the diameter of AM fungal hyphae ranges from 2-20 µm 

(Smith and Smith 2011), one side was covered with 30 µm gauze to allow AM fungal hyphae 

and root hairs to penetrate into the rhizosphere compartment. However, roots were not able to 

penetrate this gauze. The second rhizosphere compartment was divided from the root 

compartment by 1 µm nylon gauze to exclude AM fungal hyphae and root hairs.  

The experiment was conducted under controlled conditions. Water content was daily adjusted 

to 80% of the water holding capacity and was checked gravimetrically. Plants were watered 

from the top of the root compartment. The photoperiod was 14 hours light to 10 hours dark. 

Light intensity was 300 µmol m
-2

s
-1

 and the room temperature was 23°C during light and 

20°C during dark periods. 

To gain insight into changes in C partitioning over time, pots were harvested destructively 

one, three and six days after 
14

C labeling (see below). In total, the experiment consisted of 24 

experimental units (homogenized soil sampled from Ah or Bt horizon, three sampling dates 

and four replicates, each). 

2.3.2.2 14
CO2 pulse labeling 

Two months after sowing, plants were pulse-labeled with 
14

CO2 to trace root exudates in the 

rhizosphere compartments. The pulse-labeling procedure was previously described by e.g. 

Cheng et al. (1993) and Gocke et al. (2011). For the 
14

C pulse labeling, four pots were placed 
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into a sealed transparent acrylic glass chamber (length x width x height; 0.5 x 0.5 x 0.7 m). 

Two replicate pots containing homogenized soil from Ah horizon and two replicate pots 

containing homogenized soil from Bt horizon of the same sampling date were labeled 

simultaneously. The 
14

CO2 pulse was applied by adding 5 M sulfuric acid (H2SO4) to the 

labeling solution containing Na2
14

CO3 diluted in 10 ml of deionized water. Evolving 
14

CO2 

was pumped into the labeling chamber and a 12 V fan enabled the uniform distribution of the 

labeled CO2. The added 
14

C activity of the labeling solution was adjusted to 1.85 MBq per 

three-compartment pot. Before the 
14

CO2 pulse, the chamber was closed and plants 

assimilated the label for three hours. The unassimilated 
14

CO2 in the chamber air prior to 

opening was trapped in 15 ml of 1 M sodium hydroxide solution (NaOH). 

2.3.2.3 Soil solution sampling 

Soil solution was sampled in the rhizosphere compartments at various distances to the gauze, 

i.e. to the root surface, to detect root exudates in the DOC pool (DO
14

C) (Figure 2.3-1). For 

this purpose, micro suction cups (PI Ceramic, Lederhose, Germany) (Göttlein et al. 1996) 

were installed at distances of 3, 6, 9, 13, 19 and 28 mm from the root surface two weeks 

before labeling to minimize disturbance. After the 
14

C labeling, the micro suction cups were 

directly connected to a vacuum collection device using polytetrafluoroethylene (PTFE) tubes 

(Göttlein et al. 1996). The micro suction cups were set to a suction of 400 hPa for 3.5 h and 

soil solution was collected once in 2 ml reaction vials. 

2.3.2.4 Destructive sampling of the three-compartment pots 

After soil solution sampling, the three-compartment pots were carefully opened. Shoots were 

cut at the soil surface. Roots of the root compartment were removed and put into a beaker 

containing deionized water to separate soil from roots. To improve separation, the beaker was 

put into an ultrasonic bath for five minutes. After removing the roots, the soil of the root 

compartment, roots and shoots were dried at 60°C, weighed and ball milled (ball mill, Retsch 

MM2). 

The rhizosphere compartments were cut at room temperature into slices at distances of 2, 4, 6, 

8, 10, 12, 14, 16, and 20 mm from the previous root surface (i.e. the nylon gauze) using a 

microtome. Each obtained soil slice was mixed for homogenization, dried at 60°C and milled 

for the measurement of 
14

C activity in total organic carbon (TOC). 
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2.3.2.5 14
C Analysis 

14
C activity was measured in soil solution from micro suction cups, in TOC of every soil slice 

as well as in shoots, roots and TOC of the root compartment by Liquid Scintillation Counting 

(LS 6500 Multi-154 Purpose Scintillation Counter, 217 Beckman, USA). Before measuring, 

milled plant biomass and soil samples were combusted at 600°C and evolving CO2 was 

trapped in 10 ml of 1M NaOH. An aliquot of 2 ml was transferred to scintillation vials and 

mixed with 4 ml of the scintillation cocktail (Rothiszint eco plus, Carl Roth GmbH & Co. 

KG, Germany). Samples were measured 24 hours after mixing with the scintillation cocktail, 

enabling the decay of chemoluminescence. Soil solution samples were mixed with the 

scintillation cocktail at a ratio of 1:5 and measured directly after collection. 

2.3.2.6 Colonization of roots by arbuscular mycorrhizal fungi 

In order to identify the colonization of roots by AM fungi, AM fungi structures in root tissue 

were first stained using ink and vinegar (Vierheilig et al. 1998). Second, the proportion of root 

length containing arbuscles, the arbuscular colonization, was determined (McGonigle et al. 

1990). 

2.3.2.7 Calculation of 
14

C partitioning 

Measured 
14

C activity of the samples was multiplied by the correspondent pool size (shoot 

and root dry weight, soil dry weight of the root compartment or of the considered soil slice of 

the rhizosphere compartment). The resulting 
14

C activity of the C pools is presented as 

percentage of the total 
14

C activity (the sum of 
14

C activity in plant biomass, soil and DOC) in 

the three-compartment pots harvested after one day. For the pots harvested after one day, total 

14
C activity was calculated for each pot.  

Due to the destructive sampling, the 
14

C activity in a C pool of the pots harvested three or six 

days after labeling was normalized to the average total 
14

C activity of the replicate topsoil and 

subsoil pots after one day.  

The recovered 
14

C in TOC of the soil slices (% of recovered 
14

C) was related to a 1 mm 

distance as the thickness of the soil slices varied in the experimental setup. The recovered 
14

C 

in DOC was related to 1 mL of soil solution and a 1 mm distance, because the soil solution 

volume obtained and the distance between the suction cups was different. The volume for 
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each suction cup was defined as the distance between the middle to the previous adjacent and 

to the next adjacent suction cups. 

2.3.2.8 Spatial distribution of root-derived C in the rhizosphere 

The spatial distribution of root-derived C in the rhizosphere compartments in DOC and TOC 

was described on the basis of 
14

C recovery in DOC (% of recovered 
14

C ml
-1

 mm
-1

) and TOC 

(% of recovered 
14

C mm
-1

). An exponential decay function (one phase decay) or linear 

regression using the least squares fitting method was used to obtain the best fitting result for 

14
C in DOC and TOC. Functions were fitted to the means of 

14
C recovery in TOC of 

associated soil slices and in DOC of associated micro suction cups of the four replicate 

rhizosphere compartments. 

The distance from the root surface (x1/2), at which the 
14

C recovery in DOC and TOC was half 

that of the initial 
14

C recovery at x = 0 cm, was calculated using the obtained rate constants 

(k) after the exponential fitting: 

  
 
 

    

 
 

(1) 

2.3.2.9 Dynamics of root-derived C in DOC and TOC of the rhizosphere 

Changes in 
14

C recovery over the six days lasting chase period in DOC and TOC within the 

whole rhizosphere compartments were used to describe the dynamics of C exuded and 

translocated to the AM fungi. The functions fitted to the distribution of DO
14

C and TO
14

C in 

the rhizosphere compartments were integrated. Limits of integration were 0 to 28 mm for 

DO
14

C and 0 to 20 mm for TO
14

C. The integrals, R, (the areas under the curves) obtained one, 

three, and six days after labeling were compared between the rhizosphere compartments filled 

with either homogenized top- or subsoil. For comparison, the integrals determined one or 

three days after labeling were set to 100%, to calculate the relative changes of the integral 

between the time steps. 

The decrease –R (% d
-1

) or increase rates +R (% d
-1

) of the integral were calculated for the 

periods between one and three and one and six or between three and six days after labeling. 

Changes between the time steps were assumed to decrease or increase exponentially: 
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              (2) 

             (3) 

where, A (t) (%) is the percentage of the integral after three or six days t (d) related to the 

integrals after one or three days A (0) after labeling, respectively. k is the rate constant of the 

exponential decrease (-k) or increase (+k) between the individual time steps. 

2.3.2.10 Statistics 

To determine if the fitted parameters of the exponential model, the rate constant (k) and the y-

intercept (Y0) differ between the rhizosphere with top- or subsoil properties as well as 

between with and without AM fungi, the extra-sum-of-squares F test (p < 0.05) was used. The 

non-parametric Mann–Whitney U test was applied to reveal significant differences of 1) soil 

organic carbon (SOC) content and C/N ratio (n = 5, p < 0.05) between the top- and subsoil 

used for the experiment before the cultivation of alfalfa; 2) root (n = 7, p < 0.05) and shoot 

biomass (n = 12, p < 0.05) between the topsoil and subsoil pots after two months of growth; 

3) DOC and total dissolved nitrogen (TDN) content and C/N ratio (n = 40, p < 0.05) of the 

soil solution of the rhizosphere compartments; and 4) 
14

C allocation in shoots, roots, soil of 

the root compartment and the rhizosphere compartments with 1 µm and 30 µm gauze (n = 4, p 

< 0.05) between topsoil and subsoil pots at one, three and six days after labeling and between 

the time steps. Means and standard errors of the means are presented in the figures and tables. 

Statistical analyses of significant differences were carried out using STATISTICA for 

Windows (version 10.0; StatSoft Inc., Tulsa, OK, USA). Fitting of exponential decay 

functions and comparison of fits as well as the integration of the functions were carried out 

using Graph Pad Prism (version 6; GraphPad Software, Inc., La Jolla, CA, USA). 
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2.3.3 Results 

2.3.3.1 Bulk elemental analyses 

Before the experimental cultivation of alfalfa, SOC content and C/N ratio of the homogenized 

soil sampled from the Ap horizon were significantly higher compared to the homogenized soil 

sampled from the Bt horizon of a Haplic Luvisol (WRB IUSS-ISRIC-FAO 2006) (Table 

2.3-1). The textural differences were mainly expressed by the clay content that was almost 

twice as high in the Bt compared to the Ap horizon (Table 2.3-1). 

After two months of alfalfa growth under controlled conditions, all nylon gauzes were 

completely covered by roots. The average shoot biomass per pot did not differ between the 

topsoil and subsoil pots after two months (Table 2.3-1). However, root biomass was 

significantly lower in the subsoil compared to the topsoil pots. The average DOC and TDN 

contents were significantly higher in the soil solution of the rhizosphere with topsoil 

properties (TP) compared to the rhizosphere with subsoil properties (SP). However, the 

average C/N ratio of dissolved organic matter in the TP rhizosphere was much lower 

compared to the SP rhizosphere (Table 2.3-1). The average pH in the rhizosphere 

compartments did not differ between the top- and subsoil pots. 
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2.3.3.2 14
C partitioning 

The average total 
14

C activity per pot was 1.4 ± 0.1 MBq in topsoil pots and 1.3 ± 0.2 MBq in 

subsoil pots one day after labeling. Comparison of 
14

C recovery in C pools of the root 

compartment (shoots, roots and TOC) did not reveal any significant differences between the 

top- and subsoil pots one, three or six days after labeling (Table 2.3-2). Likewise, total 
14

C 

recovery in TOC did not differ significantly for any sampling dates between the TP and SP 

rhizosphere (Table 2.3-2).  

After six days,
 14

C recovery in shoots in top- and subsoil pots was higher compared to all 

other C pools. In root biomass, only 2.5 ± 0.7 and 2.7 ± 0.2% of 
14

C were recovered after six 

days in top- and subsoil pots, respectively. In TOC of the root compartment, 16.3 ± 0.6% of 

Table 2.3-2: Partitioning of assimilated 14C between shoots, roots and total organic carbon (TOC) in the root 

compartment and TOC and dissolved organic carbon (DOC) in  the rhizosphere compartments one, three and 

six days after 14CO2 pulse labeling of alfalfa plants a. 

 Pool Days 

after  

labeling 

Topsoil pot Subsoil pot 

14
C recovery (% of recovered 

14
C) 

Root compartment Shoot 1 80.6 ± 3.2 a
* 

86.0 ± 1.0 a 

 3 49.8 ± 8.1 b 49.1 ± 4.5 b 

 6 53.1 ± 9.9 ab 46.7 ± 6.7 b 

 Root 1  8.6 ± 2.7 a 3.6 ± 1.2 a 

  3 6.2 ± 0.9 a 2.6 ± 0.5 a 

  6 2.5 ± 0.7 a 2.7 ± 0.2 a 

 TOC  1 10.7 ± 0.9 a 10.3 ± 0.9 a 

 3 15.5 ± 1.3 ab 13.6 ± 1.5 ab 

 6 16.3 ± 0.6 b 15.0 ± 0.4 b 

Rhizosphere 

- AM fungal hyphae  

TOC  

 

1 0.07 ± 0.03 a 0.05 ± 0.02 a 

3 0.06 ± 0.03 a 0.06 ± 0.03 a 

6 0.05 ± 0.02 a 0.09 ± 0.05 a 

DOC 1 0.0030     0.0005 ± 0.0001 a 

 3 0.0009     0.0013 ± 0.0005 a 

 6     0.0005 ± 0.0001 a 

Rhizosphere 

+ AM fungal hyphae  

TOC 

 

1 0.06 ± 0.02 a 0.04 ± 0.01 a 

3 0.03 ± 0.01 a 0.06 ± 0.01 a 

6 0.08 ± 0.05 a 0.06 ± 0.02 a 

DOC 

 

1 0.0020    0.0007 ± 0.0001 a 

3 0.0010    0.0016 ± 0.0006 a 

6     0.0005 ± 0.0001 a 

a
 Values are given as means and standard errors of the means. 

*
 Significant differences between the time steps are indicated by different letters (Mann-

Whitney U test, p < 0.05, n = 4). Not any significant differences were found between the 

topsoil and subsoil pots for any sampling date. 
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14
C was recovered in topsoil and 15.0 ± 0.4% in subsoil pots six days after labeling. 

14
C 

recovery was lowest in the C pools of the rhizosphere compartments compared to all other C 

pools after six days (Table 2.3-2). 

In shoots and roots, the 
14

C recovery decreased during the experiment, whereas 
14

C recovery 

in TOC of the root compartment increased (Table 2.3-2). No significant changes of total 
14

C 

recovery in the rhizosphere compartments were determined between the first and the sixth day 

after labeling (Table 2.3-2). 

2.3.3.3 Effect of top- and subsoil properties on spatial distribution of root exudates 

The 
14

C distribution in DOC in all rhizosphere compartments decreased exponentially with 

increasing distance to the root surface (Figure 2.3-2). In the SP rhizosphere, 
14

C-labeled root 

exudates in DOC were lacking at a distance of 28 mm after one and six days, because 
14

C 

recovery was insignificant. However, after three days, the spatial extent of 
14

C-labeled root 

exudates in DOC exceeded the experimental sampling distance, because 
14

C was recovered 

even at a distance of 28 mm (Figure 2.3-2). Likewise, the spatial extent of 
14

C in DOC 

exceeded the experimental sampling distance of 28 mm in the TP rhizosphere one and three 

days after labeling. Therefore, no maximal spatial extent of root exudate C (
14

C) in DOC was 

obtained. DO
14

C gradients from the root surface to bulk soil were compared between the TP 

and SP rhizosphere based on fitted rate constants (k) (Figure 2.3-2). No significant differences 

between the TP and SP rhizosphere were observed. However, after one day DO
14

C gradients 

from the root surface to bulk soil were steeper in the TP compared to SP rhizosphere, whereas 

these gradients were uniform for the TP and SP rhizosphere after three days (Figure 2.3-2). 

14
C recovery in DOC at the root surface (Figure 2.3-2, y-intercept) was three times higher in 

the TP compared to the SP rhizosphere after one day. In contrast, after three days, the 
14

C 

recovery at the root surface was higher in the SP compared to the TP rhizosphere (Figure 

2.3-2). 

TO
14

C distribution in the rhizosphere commonly decreased exponentially with increasing 

distance to the root surface (Figure 2.3-3). Exceptions were the TO
14

C distribution after three 

and six days in the TP rhizosphere with AM fungal hyphae and after six days in the TP 

rhizosphere with and without AM fungal hyphae. TO
14

C distribution in the SP rhizosphere 

without AM fungal hyphae did not decrease exponentially one and three days after labeling; 

hence, a linear regression was used instead. 
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Figure 2.3-2: Spatial distribution and dynamics of exudates ( 14C) in DOC (% of recovered 14C ml-1 mm-1) in 

the rhizosphere with topsoil and subsoil properties. Both the DO 14C distribution in the rhizosphere with (+) 

and without (-) arbuscular mycorrhizal (AM) fungal hyphae are shown. Arrows indicate the distance from the 

root surface at which the 14C recovery is half that of the initial 14C recovery at the distance x = 0 cm. 

Different letters indicate significant differences at p < 0.05 in 14C recovery at the root surface. 

 

Figure 2.3-3: Spatial distribution and dynamics of root-derived C (14C) in TOC (% of recovered 14C mm-1) in 

the rhizosphere with topsoil and subsoil properties. Both the TO14C distribution in the rhizosphere with (+) 

and without (-) arbuscular mycorrhizal (AM) fungal hyphae are shown. Arrows indicate the distance  from the 

root surface at which the 14C recovery is half that of the initial 14C recovery at the distance x = 0 cm.  

Different letters indicate significant differences at p < 0.05 in 14C recovery at the root surface.  
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Within 0–20 mm distance from the root surface, 
14

C recovery in TOC was significant for all 

treatments and time steps (Figure 2.3-3). Consequently, spatial extent of 
14

C-labeled root 

exudates in TOC exceeded 20 mm in TP and SP rhizosphere. TO
14

C gradients (with 

exponential decrease) from the root surface to bulk soil did not differ significantly in rate 

constant (k). The fitted value of 
14

C recovery at the root surface was three times higher in TP 

compared to SP rhizosphere after one day. However, the differences disappeared after three 

days. 

2.3.3.4 Effect of mycorrhization on spatial distribution of root-derived C in the 

rhizosphere 

Roots in all pots were colonized by AM fungi (Table 2.3-3). Arbuscular and hyphal 

colonization of the roots growing in subsoil were higher compared to that of the roots 

growing in topsoil. 18 ± 5% of root length was colonized by arbuscles in the roots growing in 

subsoil and 13 ± 4% in the roots growing in topsoil. 

Comparing the TP rhizosphere containing AM fungal hyphae to that without AM fungal 

hyphae, no significant differences between 
14

C recoveries at the root surface in DOC were 

obtained after one day (Figure 2.3-2). Likewise, 
14

C recovery at the root surface in TOC did 

not differ between the TP rhizosphere with and without AM fungal hyphae (Figure 2.3-3). 

Equal results were obtained for the effect of AM on 
14

C recovery at the root surface in SP 

rhizosphere. Rate constants (k) of DO
14

C and TO
14

C gradients from the root surface into bulk 

soil did not differ in any treatment or sampling time due to the presence of AM fungal 

hyphae. An exception to this general pattern was the distribution of 
14

C in TOC in the TP 

rhizosphere with AM fungal hyphae, which was no longer exponential after three days 

(Figure 2.3-3). 

2.3.3.5 Dynamics of 
14

C in DOC and TOC of the rhizosphere 

Table 2.3-3: Proportion of alfalfa root length colonization by arbuscular mycorrhizal fungi. Arbuscular, 

Vesicular and Hyphal colonization of roots are presented.  

 Arbuscular colonization Vesicular colonization Hyphal colonization 

Topsoil pots 0.13 ± 0.04 0.00 0.30 ±0.08 

Subsoil pots 0.18 ± 0.05 0.01 ±0.004 0.50 ± 0.08 
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The integrals of the DO
14

C and TO
14

C distribution from the root surface into bulk soil were 

used to compare the dynamic of root-derived C between the TP and SP rhizosphere (Table 

2.3-4). Total 
14

C recovery in DOC in both TP rhizosphere compartments was approximately 

four times higher compared to the SP rhizosphere after one day. In contrast, after three days, 

total 
14

C recovery in DOC in both SP rhizosphere compartments was higher compared to the 

TP rhizosphere (Table 2.3-4). From the first to third day, total 
14

C recovery in DOC decreased 

in the TP rhizosphere without AM fungal hyphae by 32.5% d
-1

, whereas an increase of 68.3% 

d
-1 

was observed in the SP rhizosphere without AM fungal hyphae (Table 2.3-4). The decrease 

and increase rates in the rhizosphere were similar with and without AM fungal hyphae. From 

the third to sixth day, a further decrease in total 
14

C recovery in DOC was observed in the SP 

rhizosphere. 

Total 
14

C recovery in TOC was higher in both TP rhizosphere compartments compared to the 

SP rhizosphere with AM fungal hyphae after one day. In contrast, after three days, total 
14

C 

recovery was higher in the SP compared to the TP rhizosphere (Table 2.3-4). Total 
14

C 

recovery in TOC of the TP rhizosphere decreased from the first to the third day by 21.5% d
-1

 

with and 20.8% d
-1 

without AM fungal hyphae. In contrast, in the SP rhizosphere with AM 

fungal hyphae, an increase of 21.4% d
-1

 occurred (Table 2.3-4). 
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Table 2.3-4: Dynamic of root-derived C in DOC and TOC in the rhizosphere of alfalfa.  Percentage change of 

the integral and decrease or increase rate (% d -1) of total 14C recovery in TOC and DOC between: (1) the first 

and third or the first and sixth day after the labeling and; (2) the third and sixth day after the labeling, 

depending on rhizosphere properties are presented.  

 Rhizosphere 

properties 

Days after 

labeling 

Integral
 

Percentage change 

of the integral 

a 
De- (-) or increase 

(+) rate  

    (1) (2) (1) (2) 

  (d) (mm · % of recovered 
14

C mm
-1

) 

(%) (%) (% d
-1

)  (% d
-1

) 

TO
14

C Topsoil properties       

 -AM fungal hyphae 1 0.060 100.0    

  3 0.037 61.7 100.0 -21.5  

  6 0.052 86.7 140.5 -2.8 12.0 

 +AM fungal hyphae 1 0.059 100.0    

  3 0.037 62.7 100.0 -20.8  

  6 0.086 145.8 232.4 7.8 32.5 

 Subsoil properties       

 -AM fungal hyphae 1 0.056 100.0    

  3 0.057 101.8 100.0 0.9  

  6 0.057 101.8 100.0 0.4 0.0 

 +AM fungal hyphae 1 0.038 100.0    

  3 0.056 147.4 100.0 21.4  

  6 0.049 128.9 87.5 5.2 -4.4 

   (mm · % of recovered 
14

C mm
-1

 ml
-1

) 

    

DO
14

C Topsoil properties       

 -AM fungal hyphae 1 0.009 100.0    

  3 0.004 45.6  -32.5  

  6      

 +AM fungal hyphae 1 0.009 100.0    

  3 0.005 55.3  -25.6  

  6      

 Subsoil properties       

 -AM fungal hyphae 1 0.002 100.0    

  3 0.006 283.3 100.0 68.3  

  6 0.002 110.8 39.1 2.1 -26.9 

 +AM fungal hyphae 1 0.004 100.0    

  3 0.006 165.6 100.0 28.7  

  6 0.002 50.0 30.2 -13.0 -32.9 

a
 De- and increase rate of the integrals were calculated based on the assumption of 

exponential de- or increase of root-derived C in the rhizosphere between the time steps. 
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2.3.4 Discussion 

2.3.4.1 Effect of top- and subsoil properties on spatial distribution and turnover of root 

exudates  

The extent to which root exudates diffused from the root surface of alfalfa to bulk soil did not 

depend on top- or subsoil properties in our study, but exceeded previously reported distances. 

14
C-labeled root exudates were found at a distance of 28 mm (DOC) and 20 mm (TOC) from 

the root surface after one, three and six days in both TP and SP rhizosphere (Figure 2.3-2 and 

Figure 2.3-3). Therefore, the extent of root exudates into bulk soil was larger than the 

considered distance in the experiment, which was contrary to previous findings (Kuzyakov et 

al. 2003; Sauer et al. 2006; Schenck zu Schweinsberg-Mickan et al. 2012). The concentration 

of root exudates was found to be highest within 3 mm of the root surface (Kuzyakov et al. 

2003). However, root exudates were detected in previous studies from 6 mm (Schenck zu 

Schweinsberg-Mickan et al. 2012), and 10 mm (Kuzyakov et al. 2003), up to a distance of 12 

mm from the root surface (Sauer et al. 2006). In our experiment, 
14

C input was 1.85 MBq per 

pot and therefore higher compared to the previous studies that used either 0.46 MBq 

(Kuzyakov et al. 2003) or between 0.6 and 1.2 MBq per pot (Sauer et al. 2006). Coinciding 

with higher 
14

C input, the detection of root exudates was not limited by low concentrations at 

larger distances from the root surface compared to previous studies. 

Fischer et al. (2010) showed that microbial uptake and subsequent decomposition 

outcompeted the sorption of low molecular weight organic substances. Therefore, we assume 

that microbial utilization mainly determined the distribution of root exudates and the 

differences in sorption between the TP and SP rhizosphere can be ignored. Likewise, the re-

uptake of root exudates is of minor importance for their distribution under soil conditions 

compared to fast microbial utilization (Biernath et al. 2008). 

Microbial utilization of root exudates was higher in the TP compared to the SP rhizosphere 

after two months of alfalfa growth. The higher amount of exudates at the root surface in the 

TP rhizosphere after one day indicated higher root exudation compared to the SP rhizosphere. 

Steeper gradients of exudates in DOC from the root surface into bulk soil revealed that higher 

exudation was compensated by increased microbial utilization of root exudates in the TP 

rhizosphere (Figure 2.3-2). The increase of root exudates in DOC and TOC in the SP 

rhizosphere in comparison to a decrease in the TP rhizosphere between day one and three 
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(Table 2.3-4) further indicated the higher microbial utilization of root exudates, which could 

be related to a higher microbial biomass in the TP rhizosphere (Marschner and Kalbitz 2003). 

Higher microbial abundance and activity could be expected in the TP rhizosphere, due to the 

higher SOC content in the topsoil Ap horizon compared to the subsoil Bt horizon used in the 

experiment (Fierer et al. 2003; Gaiser et al. 2012) (Table 2.3-1). Significantly higher activities 

of leucin-amino-peptidase, ß-glucosidase and ß-N-acetylglucosaminidase in the TP compared 

to the SP rhizosphere further indicated higher microbial activity in the TP rhizosphere (Figure 

2.3-4 supplementary material). De Nobili et al. (2001) showed that the input of trace amounts 

of low molecular weight organic substances caused an increase in metabolic activity of the 

microbial biomass. This effect was sustained and even more pronounced if a more substantial 

substrate for microbes like cellulose was present (De Nobili et al. 2001). Consequently, 

increased microbial utilization of root exudates in the TP rhizosphere was caused by higher 

substrate availability due to higher SOC content and higher input of root exudates compared 

to the SP rhizosphere.  

Root exudation rates of 
14

C-labeled organic compounds are highest within hours after the 

14
CO2 pulse (Rattray et al. 1995; Dilkes et al. 2004). The utilization of exudates by 

microorganisms is fast in the rhizosphere, as the half-life of glucose in soil solution was 

reported to be several minutes (Hill et al. 2008; Fischer et al. 2010) and a similar half-life was 

obtained for acetate and alanine at concentrations that were relevant for the rhizosphere 

(Fischer et al. 2010). Due to the fast input of 
14

C-labeled root exudates into the rhizosphere 

and their fast microbial utilization, a decrease of root exudates in DOC between day one and 

three should occur, which was true for the TP rhizosphere (Figure 2.3-2, Table 2.3-4). In 

contrast, an increase of root exudates in DOC of the SP rhizosphere between day one and 

three was observed. Lower microbial utilization of root exudates and ongoing root exudation 

could have caused the increase of root exudates in DOC between day one and three, despite 

the expected highest exudation within hours (Rattray et al. 1995; Dilkes et al. 2004). 

The hypothesized higher exudation into the TP rhizosphere was not found. The nylon gauze 

was completely covered by roots in both treatments, but the amount of root exudates in DOC 

at the root surface one day after labeling was significantly lower in the SP rhizosphere (Figure 

2.3-2). Exudate amounts in DOC at the root surface did not reflect total exudation, due to fast 

translocation of recent photosynthates and uptake by microorganisms (Rattray et al. 1995; 

Dilkes et al. 2004; Fischer et al. 2010). However, the lower exudate amount in DOC at the 

root surface in combination with the lower microbial utilization of root exudates (more gentle 
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gradients of 
14

C in DOC), indicated lower root exudation into the SP rhizosphere. In 

conclusion, higher exudation into the TP rhizosphere could have been caused by the higher 

abundance of microbial biomass, because it was observed in other studies that 

microorganisms increase rhizodeposition (Meharg and Killham 1991; Schönwitz and Ziegler 

1994). Consequently, the abundance of microorganisms rather than soil nutrient content 

(Paterson and Sim 1999; Neumann and Römheld 1999) affected root exudation. 

Due to the fast decomposition of root exudates, their concentrations in soil solution are 

generally very low (µmol l
-1

 soil solution) (Fischer et al. 2007; Fischer and Kuzyakov 2010). 

Therefore, fast translocation of photosynthates and fast decomposition of root exudates 

(Dilkes et al. 2004; Hill et al. 2008) resulted in very low 
14

C recovery in DOC one day after 

the 
14

CO2 pulse (Figure 2.3-2). The half-life of root exudates taken-up by microorganisms 

ranges from hours to several days (Kuzyakov and Demin 1998; Rangel-Castro et al. 2005). 

Therefore, 
14

C recovered in TOC of the rhizosphere, partly reflecting 
14

C taken up by 

microorganisms, was 10 times higher compared to DOC in both treatments after one day 

(Figure 2.3-2 and Figure 2.3-3). As the obtained input of root exudates and the microbial 

biomass was higher in the TP rhizosphere, higher 
14

C recovery in TOC resulted after one day 

in the TP compared to the SP rhizosphere. 

2.3.4.2 Effect of mycorrhization on spatial distribution of root-derived C in alfalfa 

rhizosphere 

Our study did not reveal any clear effects of mycorrhization on rhizosphere extent. Against 

initial expectations, the distribution and gradients of root-derived C in the rhizosphere with 

AM fungal hyphae were similar to those without hyphae (Figure 2.3-2 and Figure 2.3-3). 

After two months of alfalfa growth, the proportion of root length colonized by AM fungi was 

low (13 ± 4% and 18 ± 5% in TP and SP rhizosphere, respectively) compared to other studies 

(Table 2.3-3). Inoculation of pure cultures of AM fungi resulted in colonization between 44% 

and 95% of root length (Jakobsen and Rosendahl 1990; Li et al. 1991; Jakobsen et al. 1992). 

Low AM colonization of alfalfa roots could have been caused by several factors. First, 

homogenization of the soil by mixing and sieving destroyed the existing hyphal network. 

Colonization of roots by AM can be caused by spores, infected root fragments and AM fungal 

hyphae, whereas the relative importance of every single inoculum for colonization potential is 

difficult to determine (Smith and Read 2008). However, it was shown that after the 
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destruction of the hyphal network in soil, AM colonization of roots was strongly reduced 

(Merryweather and Fitter 1998; Evans and Miller 1990). Second, two months could have been 

an insufficient period for the establishment of AM, as the colonization of Medicago sativa 

roots by Glomus caledonius increased from 35% after 6 weeks to 78% after 18 weeks of 

growth under low P supply (Nielsen and Jensen 1983). Third, low AM colonization of alfalfa 

roots could have been dependent on the AM fungi involved in the symbiosis. The 

development of root colonization by AM fungi follows a sigmoidal increase with time, but the 

time to reach maximum colonization differs between AM fungi (Sanders et al. 1977). Further 

environmental factors affecting colonization like temperature and light (Smith and Read 

2008) are negligible, as they were comparable to field conditions within the growing season 

of alfalfa. 

Even though AM colonization is not an indicator for the effect of the symbiosis on plant 

growth (Smith and Read 2008), low AM colonization did not affect the extent or the gradients 

of root-derived C from the root surface into bulk soil (Figure 2.3-3). The 
14

C activity in the 

rhizosphere compartment was not determined in the AM fungal hyphae themselves after 

separation from soil, but in the soil slices containing hyphae. Although 0.7–0.8% of 

assimilated C can be incorporated into external hyphae and the total C usage of AM is much 

higher (Jakobsen and Rosendahl 1990; Pearson and Jakobsen 1993; Johnson et al. 2002), no 

effect on 
14

C in TOC was obtained. The developed extraradical mycelium of AM fungi can be 

expected to be small due to low AM colonization. Therefore, 
14

C activity in AM fungal 

hyphae and microorganisms due to hyphal exudation was too low to be detected in TOC. 

The allocation of assimilated C into the extraradical mycelium of AM fungi was shown to be 

fast, as the maximum respiration of 
13

CO2 by AM fungal mycelium was reached 9–14 hours 

after labeling of pasture plants (Johnson et al. 2002). In conclusion, small extraradical 

mycelium of AM fungi associated with fast allocation and turnover of assimilated C in AM 

fungal mycelium (Johnson et al. 2002) could have caused the absence of the effect of 

mycorrhization on the extent of root-derived C in alfalfa rhizosphere. 
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2.3.5 Conclusions 

The extent and turnover of root-derived C from the root surface into soil was assessed in a 

laboratory experiment using three-compartment pots, grown with alfalfa, following 
14

CO2 

pulse labeling. Root exudates extended to a distance longer than 28 mm in DOC and 20 mm 

in TOC in the rhizosphere of alfalfa with topsoil and subsoil properties. The diffusion 

distance of root exudates observed here exceeded previously reported distances due to larger 

amounts of label (
14

C) used in the current study. However, differing properties of the 

homogenized soil sampled from a top- (Ah) and subsoil (Bt) horizon of a Haplic Luvisol did 

not affect the diffusion distance of root exudates. Against initial expectations, root exudation 

per root mass was lower in the rhizosphere with subsoil compared to topsoil properties. Our 

results suggest that the diffusion distance of root exudates is independent from top- and 

subsoil properties, because higher root exudation into the rhizosphere with topsoil properties 

is compensated by the higher microbial utilization of root exudates.  

Effects of mycorrhization on rhizosphere extent of alfalfa were not identified as the recovery 

of root-derived C in DOC and TOC was not affected by AM fungal hyphae. The absence of 

an effect was due to low root colonization by AM fungi, and the consequently expected low 

AM fungal hyphae biomass in the rhizosphere. To determine the effects of mycorrhization on 

the spatial distribution of root-derived C, 
14

C activity needs to be measured in external AM 

fungal hyphae extracted from the soil. 
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Figure 2.3-4: Average activity of leucin-amino-peptidase (EC 3.4.11.1), ß-glucosidase (EC 3.2.1.21) and ß-N-

acetylglucosaminidase (EC 3.2.1.52) in the rhizosphere with top- and subsoil properties containing arbuscular 

mycorrhizal hyphae. Enzyme activities were measured using a microplate fluorimetric enzyme assay based on 

methylumbelliferone (MUB) substrates (Marx et al., 2001; German et al., 2011). Enzyme activities were 

measured in four replicate rhizosphere compartments with top - and subsoil properties, respectively. Therefore, 

the rhizosphere compartments were cut, using a microtome, into slices at a distance of 2, 4, 6, 8, 10, 12, 14, 

16, 20, 24, 30, and 40 mm from the previous root surface . Means and standard errors of the means are 

presented in the figure. To identify significant differences of average enzyme activities between the 

rhizosphere with top- and subsoil properties the non-parametric Kruskal-Wallis ANOVA (n = 48; p < 0.05) 

was applied, as the data was not normally distributed (Kolmogorov-Smirnov-test, p < 0.05). Statistical 

analyses were carried out using STATISTICA for Windows (version 1 0.0; StatSoft Inc., Tulsa, OK, USA). 

Significant differences of enzyme activities between the rhizosphere with top - and subsoil properties are 

indicated by different letters.  

 

 

 

 

 

References 

German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) 

Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil 

Biology and Biochemistry 43: 1387–1397. 

Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of 

enzyme diversity in soils. Soil Biology & Biochemistry 33: 1633–1640.  



 

   

Study 4 

2.4 Oxygen and redox potential gradients in 

the rhizosphere of alfalfa grown on a loamy 

soil 

DANIEL UTEAU*
1
, SILKE HAFNER

2
, SEBASTIAN KOUSO PAGENKEMPER

3
, 

STEPHAN PETH
1
, GUIDO L.B. WIESENBERG

4
, YAKOV KUZYAKOV

2,5,6
, RAINER 

HORN
3 

*
1
Department of Soil Science, University of Kassel. Nordbahnhofstr 1a. D-37213, 

Witzenhausen, Germany. 

2
Department of Soil Science of Temperate Ecosystems, Georg-August-University of 

Göttingen. Büsgenweg 2. D-37077, Göttingen, Germany. 

3
Institute of Plant Nutrition and Soil Science, University of Kiel. Hermann-Rodewald-Str. 2. 

D-24118, Kiel, Germany. 

4
Department of Geography, University of Zurich. Winterthurerstrasse 190. CH-8057 Zurich, 

Switzerland. 

5
Department of Agricultural Soil Science, Georg-August-University of Göttingen. Büsgenweg 

2. D-37077, Göttingen, Germany. 

6
Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia 

 

*corresponding author 

Department of Soil Science, University of Kassel 

Nordbahnhofstr 1a.  

D-37213 Witzenhausen, Germany.  

Tel: +495618041667  Fax: +495618041590 

uteau@uni-kassel.de 

 

Published in Journal of Plant Nutrition and Soil Science 

April 2015, Vol 178, Issue 2, Pages: 278-287 

DOI: 10.1002/jpln.201300624 

The final publication is available at: 

http://onlinelibrary.wiley.com/doi/10.1002/jpln.201300624/abstract 

http://onlinelibrary.wiley.com/doi/10.1002/jpln.201300624/abstract


Abstract    Study 4 

  129 

Abstract 

Oxygen (O2) supply and the related redox potential (EH) are important parameters for 

interactions between roots and microorganisms in the rhizosphere. Rhizosphere extension in 

terms of the spatial distribution of O2 concentration and EH is poorly documented under 

aerobic soil conditions. We investigated how far O2 consumption of roots and 

microorganisms in the rhizosphere is replenished by O2 diffusion as a function of water/air-

filled porosity. Oxygen concentration and EH in the rhizosphere were monitored at a 

millimeter scale by means of electroreductive Clark-type sensors and miniaturized EH 

electrodes under various matric potential ranges. Respiratory activity of roots and 

microorganisms was calculated from O2 profiles and diffusion coefficients. pH profiles were 

determined in thin soil layers sliced near the root surface. 

Gradients of O2 concentration and the extent of anoxic zones depended on the respiratory 

activity near the root surface. Matric potential, reflecting air-filled porosity, was found to be 

the most important factor affecting O2 transport in the rhizosphere. Under water saturated 

conditions and near field capacity up to -200 hPa, O2 transport was limited, causing a decline 

in oxygen partial pressures (pO2) to values between 0 and 3 kPa at the root surface. Aerobic 

respiration increased by a factor of 100 when comparing the saturated with the driest status. 

At an air-filled porosity of 9% to 12%, diffusion of O2 increased considerably. This was 

confirmed by EH around 300 mV under aerated conditions, while EH decreased to 100 mV on 

the root surface under near water saturated conditions. Gradients of pO2 and pH from the root 

surface indicated an extent of the rhizosphere effect of 10-20 mm. In contrast, EH gradients 

were observed from 0 to 2 mm from the root surface. We conclude that the rhizosphere extent 

differs for various parameters (pH, EH, pO2) and is strongly dependent on soil moisture.   

 

 

 

 

 

 

Keywords: soil aeration, oxygen diffusion, air-filled porosity, rhizosphere, hotspots  
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2.4.1 Introduction 

One of the most important factors influencing aerobic activity in soil is the availability of 

molecular oxygen (O2). Spatial distribution of O2 in soil depends strongly on the investigated 

scale. At the pedon scale, higher O2 partial pressure (pO2) are found in the topsoil and 

gradually decrease with depth (Gliński and Stępniewski 1985; Stępniewski and Stępniewska 

2009) due to larger diffusion distance to the free atmosphere. At the aggregate scale, pO2 

decreases from the outside perimeter to the aggregate center, which can reach anoxic 

conditions (Sexstone et al. 1985; Zausig et al. 1993). At the rhizosphere scale, O2 distribution 

from the root surface into bulk soil is driven by its consumption due to respiration processes 

and diffusive O2 supply (Gliński and Stępniewski 1985). According to Raynaud (2010), a 

major part of the soil respiratory activity takes place in the rhizosphere, because of higher 

microbial activity compared to the bulk soil (Nunan et al. 2003) and root respiration 

(Kuzyakov 2002).  

The rhizosphere, i.e. the soil surrounding roots, which is influenced by its activity (Darrah 

1993), represents only about 1% of the total soil volume, but has an enormous ecological 

importance (Gregory 2006; Pausch and Kuzyakov 2011). It represents one of the hotspots in 

soil, where turnover of organic matter is increased compared to bulk soil due to higher 

microbial activity (Jones and Hinsinger 2008). To sustain this activity O2 has to be 

sufficiently transported into the rhizosphere (Hinsinger et al. 2009). One of the main 

limitations in studying pO2 and O2 transport in the rhizosphere, are the temporal changes in 

air-filled porosity, microstructure formation and displacement of the root active zone (Flessa 

1994). Concentration and transport of O2 in soil are independently well documented but only 

few studies describe the spatial distribution of O2 in the rhizosphere considering the 

interaction of respiration and transport at different matric potentials (Grabler 1966; Grable 

and Siemer 1968; Gliński and Stępniewski 1985). 

By metabolizing soil organic matter (SOM), aerobic microorganisms transfer electrons to an 

end acceptor, in this case O2. This process plays a fundamental role for the mineralization of 

SOM (Brzezińska et al. 1998; Jones et al. 2004; Allaire et al. 2008). If O2 supply is low (e.g. 

because of high water contents blocking diffusion pathways in the pore network), microbes 

might switch from aerobic to anaerobic respiration. The descending order of alternative 

acceptors is NO3
-
, MnO2, Fe(OH)3, SO4

2-
 and CO2 (Ponnamperuma 1984; Fiedler et al. 2007). 

Under anaerobic conditions, mineralization of SOM decreases, hence nutrient availability for 
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plants (Drew et al. 1988). The redox potential (EH) is therefore an important indicator 

determining the oxidation-reduction state in the soil (Mansfeldt 2004). Several authors have 

proposed critical ranges for EH indicating lack of O2 (e.g. Reddy et al 2000; Sposito 1989). 

Most of them agree that in soils with neutral pH a threshold can be set between 300 and 

400 mV to separate oxic from anoxic conditions. A well known classification of the 

oxidation/reduction status of soils is the one proposed by Zhi-Guang (1985), where levels 

>400 mV represent an oxidizing status (O2 as predominant electron acceptor), 400 to 200 mV 

are weakly reducing (O2, NO3
-
 and MnO2), 200 to -100 mV are moderately reducing 

(Fe(OH)3), and <-100 mV are strongly reducing (SO4
2-

 and CO2).  

Hotspots of microbiological activity occurring in the rhizosphere may have great influence on 

EH. Thus, EH is highly variable in time and space. Furthermore, its variability also depends on 

matric potential changes resulting from precipitation events or ground water table changes 

(Flessa and Fischer 1992; Mansfeldt 2003; Fiedler et al. 2007; Hinsinger et al. 2009). Due to 

the well known triggering effect of O2 on microbial activity and redox processes, gradients of 

EH are expected to occur from root surface into bulk soil as a function of the air-filled 

porosity. Previous studies focused mainly on wetland cultivations or were conducted in sterile 

media (e.g. agar solutions) neglecting the highly variable properties of soils such as complex 

mineralogical composition, gas permeability, poise capacity, and microbial diversity amongst 

others (Fischer et al. 1989). 

We hypothesize that: (1) increased respiratory activity at the root surface results in decreasing 

pO2 from bulk soil to the root surface, (2) the difference in pO2 depends on matric potential, 

as it controls O2 supply from bulk soil to the root surface, (3) EH dynamics in the rhizosphere 

are a function of the mentioned pO2 gradients. To test these hypotheses, pO2 and EH gradients 

from the bulk soil to the root surface of alfalfa (Medicago sativa L.) depending on matric 

potential were measured in a jointed pot experiment. The aim of our study was to determine 

(1) the required air-filled porosity to sustain aerobic conditions in the rhizosphere and (2) the 

extent of the rhizosphere in terms of pO2 and EH.  
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2.4.2 Materials and Methods 

2.4.2.1 Experimental setup 

Alfalfa (Medicago sativa L.) was grown in a three-compartment pot (Figure 2.4-1) in a 

similar setup as used by Hafner et al. (2014). Soil material derived from a Haplic Luvisol 

(IUSS Working Group WRB, 2006) taken from the experimental station Klein Altendorf of the 

University of Bonn (50°37’21’’ N, 6°59’29’’E). Two pots were completely filled with 

homogenized topsoil (0–30 cm, silty loam) and two with subsoil (45–75 cm, silty clay loam) 

at bulk density of 1.2 g cm
-3

. The central compartment contained roots, whereas the roots 

could not penetrate into both rhizosphere compartments (side parts) due to a nylon gauze with 

mesh sizes 1 µm on one side and 30 µm on the other (Kuchenbuch and Jungk 1982). The 

lateral compartments were sealed with plastic caps containing holes with a grid size of 

1 x 1 cm where the O2 and EH microsensors could laterally be inserted. 

Alfalfa was planted at a density of 0.5 g seeds per pot into the root compartment. The 

experiment was conducted under controlled conditions: Water content was daily adjusted to 

80% of the water holding capacity and checked gravimetrically. Plants were watered from the 

top of the root compartment. The photoperiod was 14 hours light to 10 hours dark. Light 

intensity was 300 µmol m
-2

s
-1

 and the room temperature was 23°C during light and 20°C 

during dark periods. Two months after sowing, the whole surface of the nylon gauze was 

 

Figure 2.4-1: Setup of the experimental pots to study oxygen partial pressure and redox potential gradients in the 

rhizosphere of alfalfa. The three-compartment pots consisted of a central root compartment an d two side 

compartments representing the rhizosphere of alfalfa. Nylon gauze prevented roots to penetrate into the 

rhizosphere compartments. The root surface of alfalfa is represented by the nylon gauze, after complete coverage 

by alfalfa roots.  
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covered with alfalfa roots and O2 and EH gradients were determined. 

2.4.2.2 O2 and EH gradients and monitoring 

An O2 Clark-type microsensor (Unisense A/S, Aarhus, Denmark), with 100 µm diameter tip 

protected by a chirurgical needle, was used to determine the O2 concentration. A two point 

calibration was made to convert the mV output of the O2 sensors to the O2 concentration. A 

linear interpolation was used between O2 saturated water (pO2 = 20.95 kPa) and a yeast-agar 

solution (pO2 = 0 kPa). For the EH measurements, miniaturized platinum electrodes (100 µm 

diameter tip, Unisense A/S, Aarhus, Denmark) were used. A two point calibration was made 

with two redox buffer solutions (Mettler Toledo Intl. Inc. Urdorf, Switzerland). No pH 

correction was made for the EH measurements as the pH of the soil (pH = 6.8) was almost 

neutral (Bohn 1969; Mansfeldt 2003).  

Three sets of measurements were made in the rhizosphere of the alfalfa planted pots to asses 

gradients of O2 and EH in space and time. The three sets were conducted sequentially, whereas 

the replication in each set was made in parallel to ensure equal conditions. 

First, O2 gradients from the bulk soil to the root surface were measured. The sensor was 

pushed gently into the lateral pot (from the side) by means of a micromanipulator. 

Measurements were done from the bulk soil in direction to the root surface in 0.5 mm steps 

(10 seconds each step). As the total length of the lateral pot was known (40 mm), inserting the 

microsensor 40 mm was necessary to get to the rooted nylon gauze. Each measurement took 

approximately 15 minutes. Measurements were made within four different matric potential 

ranges (-10 to -30, -50 to -100, -200 to -700 and < -900 hPa). After watering the plants, matric 

potential was monitored by a ceramic minitensiometer installed in the lateral pot at 10 mm 

distance from the root surface. When reaching the desired matric potential range, a pO2 

profile (insertion of the microsensor) was measured.  

Second, gradients of O2 and EH were simultaneously measured inserting microsensors by the 

same procedure described before. Measurements were done at near saturation (matric 

potential range of -10 to -30 hPa) and near field capacity (-100 to -200 hPa) to limit 

respiration in the pots filled with topsoil.  

Third, time series measurements were carried out in the pots filled with topsoil to assess 

temporal variations of O2 concentration and EH at the root surface. Microsensors were placed 

at a distance of 0–1 mm near the root surface and sealed from the outside to prevent O2 
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diffusion along the sensor needle. The pots were watered until saturation after insertion of the 

microsensors to reduce air-filled porosity and to induce anoxic conditions. Levels of pO2 and 

EH were monitored at 1 second resolution for 20 hours. Three conditions were tested:  

(1) Watering 24 hours after dry conditions (< -300 hPa) to simulate a heavy precipitation 

event: The soil was dried by evapotranspiration until a matric potential < -300 hPa was 

reached. After 24 hours, the soil was watered until saturation and the measurement started. 

(2) Watering one hour after dry conditions to simulate drying/wetting cycles: After saturation, 

the soil was dried up to matric potential < -300 hPa by evapotranspiration. After one hour it 

was saturated again and the measurement started. 

(3) Keeping 48 hours wet conditions to simulate longer wet periods where soil remains 

saturated for more days: The saturated condition of step 2 was maintained for two days at 

matric potential ranges of -10 to -30 hPa. Then the soil was fully saturated and the 

measurement started. The stress induced to the plants did not allow further measurements of 

time series on comparable conditions. 

2.4.2.3  pH gradients 

After pO2 and EH measurements were performed, the side compartments were air dried at 

20°C for seven days. The soil was sliced parallel to the root surface at steps 2, 4, 7, 10, 15, 20, 

25, 30, 40 mm from the root surface. The soil slices (e.g. from 0–2, 2–4, 4–7 mm etc.) were 

collected in individual cups and mixed with 0.01 M CaCl2-solution for pH measurement. 

2.4.2.4 Estimation of soil air-filled porosity 

Air filled porosity was estimated from the water retention curve and matric potential 

measurements read from the minitensiometers. The texture of top and subsoil was analyzed 

by the method of wet sieving and precipitation (USDA 2011). Sand, silt and clay contents 

(Table 2.4-1) were used to fit the pedotransfer functions with the ROSETTA program (Schaap 

et al. 2001), which were used to calculate the van Genuchten (1980) soil water retention curve 

parameters (with restriction m=1-n
-1

). The model number 3 was used, which considers 

textural percentages and bulk density as estimators. Although the uncertainty of the used 

pedotransfer functions may be elevated in some cases, our study was conducted with 

homogenized (unstructured) soil, thus the estimated parameters are greatly related to texture 

and bulk density. The calculation of the water retention curve parameters allowed the 
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estimation of the volumetric water content (θ, m
3
 m

-3
) at each matric potential. Air-filled 

porosity (θa, m
3
 m

-3
) was then calculated by the difference between total porosity and the 

corresponding water contents for each matric potential range. 

2.4.2.5 Calculation of O2 diffusivity and uptake 

The O2 relative diffusion coefficient (Ds/Do) was calculated for the four matric potential 

ranges using the empirical equation [1] by (Moldrup et al. 1997): 

  

  
         

  

 
 

    
 

 

(1) 

where Ds and Do are the diffusion coefficients (m
2
 s

-1
) of O2 in soil and in free air, θa (m

3
 m

-3
) 

is the air-filled porosity at a given matric potential, Θ (m
3
 m

-3
) is the total soil porosity  and 

“m” is an empirical parameter set equal to 6 for homogenized repacked soil (Moldrup et al. 

1997). 

Respiratory activity for each matric potential range was calculated by numerical modeling 

using a monolayer profile and constant diffusion coefficient. Assuming a constant O2 

consumption rate q at a distance x from the free atmosphere with a known diffusion 

coefficient in soil D, Gliński and Stępniewski (1985) calculated the O2 concentration C by 

combining Fick’s first law with the accumulated O2 uptake (that is assumed to be steady state) 

using equation 2: 

Table 2.4-1: Texture analysis for topsoil and subsoil and hydraulic parameters estimated by pedotransfer 

functions 

 Depth  

cm 

Sand 

 

Silt 

% 

Clay 

 

Class
a
 θr

a
 

m
3
 m

-3
 

θs
a
 

m
3
 m

-3
 


a n

a 

Topsoil (Ap) 0–30  16 67 17 SiL 0.071 0.460 0.0045 1.712 

Subsoil (Bt) 45–75  12 59 29 SiCL 0.087 0.494 0.0070 1.565 

a
USDA (2011) texture classification. θr, θs,  and n are the van Genuchten (1980) water 

retention parameters. 
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(2) 

where C is the O2 concentration (g m
-3

) at a distance x (m) from a total layer of length L (m), 

C0 (g m
-3

) is the O2 concentration at the upper boundary condition (free atmosphere), q is the 

O2 consumption rate per unit soil (g m
-3

 s
-1

) and D the gas diffusion coefficient of soil at a 

given matric potential (m
2
 s

-1
). Solving for q, as the concentration C and C0 is known, we 

obtain: 

  
        

      
 

(3) 

Consumption of O2 was compared between topsoil and subsoil pots to assess microbial 

activity in relation to the distance to the root surface and the transport of O2 across the profile 

(40 mm). 
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2.4.3 Results 

2.4.3.1 Gradients of O2 from bulk soil to the root surface at different matric potentials 

Generally, pO2 increased with decreasing matric potential, however, differences between top- 

and subsoil were not observed (Figure 2.4-2). Under nearly saturated conditions (-10 to -

30 hPa) the pO2 was very low between 0 to 30 mm distance from the root surface. Under field 

capacity conditions (-50 to -100 hPa) pO2 decreased strongly from bulk soil (13.9 kPa in top- 

and 11.6 kPa in subsoil) up to O2 depletion (1.1 kPa and 1.8 kPa respectively) at the root 

surface. As the soil became dryer than field capacity (matric potential < -200 hPa), the air-

filled porosity was high enough (>9% for top- and 12% for subsoil) to supply the root surface 

with O2. 

The low pO2 for the conditions -10 to -30 and -50 to -70 hPa did not differ significantly, up to 

9.5 (in topsoil) and 13.0 mm (in subsoil) distance to the root surface, respectively (Figure 

2.4-2). Under drier conditions (- 200 to <-900 hPa) the pO2 did not reach levels lower than 10 

kPa but still decreased near to the root surface. At 28 mm for topsoil and 24.5 mm for subsoil, 

under field capacity similar pO2 levels were observed compared to drier conditions. 

Consequently, with respect to pO2, we could define the rhizosphere perimeter between 10 and 

25 mm from the root surface. 

Changes in EH within the rhizosphere showed a strong interaction with the water saturation 

defined as matric potential. Under nearly saturated conditions (-10 to -30 hPa), lower EH 

values were measured close to the root surface (2 mm) compared to the bulk soil, while under 

drier conditions (-100 to -200 hPa) only slight differences in EH were determined (Figure 

2.4-3). Under nearly saturated conditions, the EH values changed from weakly to moderately 

reducing at the root surface according to Zhi-Guang (1985), while under drier conditions the 

levels were classified as weakly reducing. 
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Figure 2.4-2: Oxygen partial pressure gradients from the bulk soil to the surface of alfalfa roots as a function 

of matric potential (Ψm) in top- (a) and subsoil (b). Error bars represent standard error of the mean. Different 

letters represent statistical differences between curves at same dis tance, after ANOVA test followed by Tukey 

HSD at p<0.05. 
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2.4.3.2 Dynamics of pO2 and EH at the root surface 

A time delay of a few hours between changes of O2 concentration and EH occurred after 

saturation of the compartments filled with topsoil (Figure 2.4-4). Starting from matric 

potential < -300 hPa (Figure 2.4-4 a), a short period of 7 hours of low O2 concentrations did 

not have an influence on EH. According to the classification of Zhi-Guang (1985), during the 

 

Figure 2.4-3: Oxygen partial pressure (pO2) and associated redox potential (EH) values in topsoil as affected 

by matric potential. The pO2 is significantly different from 0 to 30 mm. Values of EH show significant 

differences up to 28.5 mm (arrow). Error bars represent standard error of the mean. Statistical differences 

between curves at same distance were tested by ANOVA followed by Tukey HSD at p<0.05, n=15.  

 

Figure 2.4-4: Dynamics of oxygen partial pressure (pO2) and redox potential (EH) at alfalfa root surface in 

topsoil. a: saturation of the soil after one day of dry conditions (< -300 hPa), b: saturation after one hour of 

dry conditions (< -300 hPa), c: after 2 days of wet conditions (-10 to -30 hPa). 
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complete measurement a weakly reducing status was observed (Figure 2.4-4 a). After short 

drying (-300 hPa for 1 hour) and rewetting (-10 hPa), a change in EH was observed. This 

could be due to facultative microorganisms that might have changed to anoxic respiration 

after several hours of O2 lack (Figure 2.4-4 b). Only under prolonged periods of water 

saturated conditions (Figure 2.4-4 c), EH reached moderately reducing values, where 

reduction of other elements as Fe and Mn started. 

2.4.3.3 pH gradients from bulk soil to the root surface 

The pH of the studied bulk soil was neutral with values of 6.5 to 7.2. A gradient could be 

observed near to the root surface where more acidic conditions (down to 5.7) were found. The 

root induced acidification was stronger in the pots filled with subsoil compared to those filled 

with topsoil (Figure 2.4-5).  

 

Figure 2.4-5: pH gradient from the bulk soil to the root surface for top and subsoil. Error bars represent 

standard error of the mean (n=4). 
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2.4.3.4 Consumption of O2 in the rhizosphere as affected by matric potential 

The pO2 decreased linearly from bulk soil in direction to the root surface indicating that the 

O2 decrease was determined by O2 supply and constant O2 consumption (Figure 2.4-2). On 

the contrary, an increase in slope steepness of the linear relation near to the root surface 

indicated increasing O2 consumption due to higher biological activity (Figure 2.4-6). Below 

matric potential of -50 hPa, O2 consumption was relatively even distributed, with a small 

increase near the root surface. Between -50 to -100 hPa, 100 times less O2 was consumed in 

comparison to drier conditions. The air-filled porosity was found to be low (2% to 4% for 

topsoil and subsoil respectively) causing low diffusion of O2 to the root surface. Under nearly 

saturated conditions (matric potential of -10 to -30 hPa) the air-filled porosity was too low to 

deliver enough O2 to the rhizosphere and O2 consumption decreased close to zero (Figure 

2.4-6). 

  

 

Figure 2.4-6: Calculated O2 consumption (mg O2 per m3 soil per second) depending on matric potential (Ψm) 

ranges in top- (black dots) and subsoil (white dots). AFP = Air-filled porosity. 
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2.4.4 Discussion 

2.4.4.1 Distribution of O2 in the rhizosphere 

It is well known that the distribution of O2 depends on a variety of factors. Here we showed 

that, as hypothesized, the distribution of O2 from bulk soil to the root surface is driven by 

rhizosphere respiration. At the same time, our second hypothesis was confirmed, as the ability 

to balance O2 consumption near to the root is mainly controlled by matric potential (Figure 

2.4-2). Biologically-mediated processes of O2 consumption as root and microbial respiration 

also played a fundamental role. To which extent O2 can be transported in the rhizosphere, 

depends on air-filled porosity. Thus, the matric potential is the driving parameter, because it 

controls the presence of water-blocked pores. A direct relation can be established between air-

filled porosity and Fick’s gas diffusion coefficient. Many authors suggest an exponential 

increase of the diffusion with higher air-filled porosity (Buckingham 1904; Millington and 

Quirk 1961; Ball 1981) while others suggest a linear relation (Penman 1940; Anderson et al. 

2000) or combined relations (Deepagoda et al. 2011). Low water content will favor O2 

transport but will be a limiting factor for root water and nutrient uptake and for microbial 

respiration. Balogh et al. (2011) found higher respiration rates under water contents around 

30–40% in a structured silty-clay-loam, which represented field capacity conditions (around -

100 to -200 hPa). Under these conditions our homogenized soil was too saturated (Figure 

2.4-2) to transport enough O2 to the rhizosphere. A balance between air-filled porosity and 

water content should be optimal for plant growth. Our results showed a clear distinction 

beyond the threshold of -200 hPa matric potential, where air-filled porosity reached 9% and 

12% for top- and subsoil, respectively. Over this critical values, enough O2 could be 

transported to the rhizosphere and soil respiration increased exponentially (Figure 2.4-2 and 

Figure 2.4-6). This agrees with the general rule of 10% air-capacity established by Wesseling 

and van Wijk (1957) and confirmed by others (e.g. Grabler 1966; Robinson 1964). Textural 

differences between topsoil and subsoil were not sufficient to influence air-filled porosity, 

making the calculated respiration to be similar for both materials, which might be due to the 

fact that we established the same bulk density for both soil materials.  
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2.4.4.2 Dynamics of EH in dependence of matric potential 

We hypothesized that EH dynamics are a function of root-influenced O2 gradients. Hence, if 

the O2 supply is not sufficient because of a high water saturation, anoxic conditions occur 

resulting in reduced (or almost none) microbial respiration (Hinsinger et al. 2006). In spite of 

its obviousness, most studies on EH in dryland cultivations do not report root effects on its 

spatial variation (Richter et al. 2007). One of the few works describing rhizosphere gradients 

of EH in dryland conditions and in natural soil was introduced by Fischer et al. (1989). They 

determined the root tip as the active part on EH variation, and could observe its influence up to 

3 mm from the root surface. A limitation of this study was the constant water content, fixed at 

-60 hPa throughout the experiment, which resulted in variations inside the aerobic respiration 

range (400 to 800 mV). Other studies report effects of water table fluctuations, temperature 

and SOM. Mansfeldt (2003 and 2004) has found annual fluctuations between -160 and 560 

mV in a Typic Endoaquoll marsh induced by water table fluctuations. These ranges are 

typical for long periods of water saturation followed by dryer conditions during summertime. 

In our study, EH values were also driven by matric potential (Figure 2.4-3) showing weakly 

reducing conditions with matric potential < -200 hPa and moderate reducing conditions when 

nearly saturated. We also found a critical spatial dependence of EH within the first millimeters 

close to the root surface, which is in agreement with the findings of Fischer et al. (1989). 

According to the Nernst equation, low EH in the rhizosphere could be an effect of pH changes:  

59 mV per pH unit (Fiedler et al. 2007). We could observe a significant acidification of 0.5 to 

1 pH unit near the root surface (Figure 2.4-5). However, the effect of up to 1 pH unit on EH is 

negligible. Since the low EH values of 130 to 200 mV were measured together with pO2, we 

state O2 lack (pO2 < 1 kPa) as the primary effect on the rhizosphere EH profile defining 

reducing conditions.  

Saturation after a dry period impacts directly the pO2 but does have little immediate influence 

on EH. This is in accordance to the findings of Ewing et al. (1991) and Reddy and Patrick 

(1975) who reported a shift between a decrease in O2 concentration and changes in EH that 

can be as long as two days in soil samples. In our case of a rapid change between wet and dry 

conditions followed by re-wetting (Figure 2.4-4 b) EH seems to respond faster than the cited 

shifts. This is because our study deals with a more densely colonized environment, where 

changes are much faster than in bulk soil experiments because of the higher microbial 

activity. Thus, the delay in response time of EH following limited O2 availability is reduced to 

a few hours. This process could represent intermittent rain showers in the field, which have a 



Discussion    Study 4 

  144 

great impact on denitrification, as N loss is reported to be greater under wetting/drying cycles 

(Patrick and Gotoh 1974). Although some authors see a benefit in low EH, because Fe
2+

 and 

Mn
2+

 availability increases (Ponnamperuma 1984; Flessa and Fischer 1992; Stępniewski and 

Stępniewska 2009), most authors agree that a decrease in pO2, and consequently in EH, leads 

to a decrease in the nutrient uptake ability of most plants (Drew et al. 1988; Fiedler et al. 

2007) together with other negative effects like lower mineralization of SOM, Fe and S 

phytotoxicity (Pezeshki et al. 1988), loss of mineral N (Stępniewski and Stępniewska 2009), 

or reduced root growth (Ponnamperuma 1984; Fiedler et al. 2007) among others. In our study, 

limiting conditions for aerobic respiration were found only directly at the root surface and 

under nearly saturated conditions, which in the field could represent longer humid periods. 

2.4.4.3  pH gradients from the bulk soil to the root surface 

The greatest differences between topsoil and subsoil were found in the rhizosphere effect on 

pH (Figure 2.4-5). Rhizosphere changes in pH are mostly driven by respiration activity and 

the CO2 produced, especially in the region of the root tip (Flessa and Fischer 1992). The CO2 

concentration in the rhizosphere is known to be about ten to hundred times higher than that of 

the atmosphere (Pausch and Kuzyakov 2012). In addition to water it forms H2CO3, which as 

an acid decreases the pH. Rhizosphere pH levels can be up to 1–2 units below bulk soil pH 

(Hinsinger et al. 2009) which is confirmed by our results. As respiration rates were similarly 

distributed for the topsoil and the subsoil, similar pH gradients with respect to the root surface 

are expected in both materials. Nevertheless, in the subsoil a greater root induced acidification 

was observed, about one pH unit versus 0.5 pH units in the topsoil (Figure 2.4-5). This can be 

explained on the one hand by the higher C content in the pots with topsoil (0.99% versus 

0.52% in the subsoil pots, data not shown). SOM is known to play a key role in the pH 

buffering capacity increasing it considerably in the pedon but also in the millimeter scale, 

which could be observed in the rhizosphere of our experiment. On the other hand the 

availability of soluble minerals is lower in deeper soil horizons, forcing plants to release more 

exudates and to larger distances to assess the nutrients (e.g. Gocke et al. 2014; Kautz et al. 

2013). pH gradients were observed up to 20 mm from the root surface, which is a larger 

distance than reported based on short-term experiments by various authors of about 0.2 to 10 

mm (Fischer et al. 1989; Kuzyakov et al. 2003; Sauer et al. 2006; Hinsinger et al. 2009). Our 

experiment (based on a root mat technique) gives information of the average effect of many 

roots, possibly resulting in an overestimation of processes in contrast to single root 
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measurements. This also explains the high respiration activity up to 20 mm as stated before. 

However, in the long-term, i.e. as a consequence of the whole lifetime of a root, even larger 

distances of rhizosphere effects of 5 cm or even more were described (Gocke et al. 2014). 

This clearly shows the high variability of rhizosphere effects at different distances depending 

on the experimental set-up and a certain need to investigate rhizosphere effects in the long-

term to overcome effects of single experiments. There is also a need to improve our 

understanding on root and rhizosphere related processes, which are especially relevant for 

nutrient uptake and C storage in the subsoil (Rumpel and Kögel-Knabner 2011; Kautz et al. 

2013). 
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2.4.5 Conclusions 

This study dealt with O2 availability and transport in alfalfa rhizosphere. This study confirmed 

our three hypotheses, as O2 and EH dynamics were clearly root driven. We found an extent of 

the rhizosphere for O2 concentration up to 20 mm while the root influence over EH was 

observed only up to about 2 mm. Matric potential played a predominant role in the O2 

transport, with a limiting threshold of -200 hPa below which O2 supply was not limited. 

About 9–12% air-filled porosity was found to be sufficient to transport O2 for rhizosphere 

aerobic respiration activity. Under more saturated conditions, the O2 consumption rates 

decreased about 100 times and moderately reducing conditions were found. Although these 

results were produced under controlled conditions with homogenized soil, the determined 

thresholds allow a better assessment of optimal air-filled porosity in natural environments.  
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