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Abstract

In this dissertation I investigate the structure and thermodynamics of alkylthiol (thiol)
surfactants on the surface of liquid mercury (Hg) by means of the large-scale Molec-
ular Dynamics (MD) techniques. Simulations in the canonical as well as in the con-
stant temperature—constant stress ensembles are employed in order to comprehensively
study these systems at various conditions. Mercury is treated atomistically, whereas
the alkylthiol surfactants are modeled within the united-atom formalism, in which alkyl
and methyl groups are represented as separate superatoms. The most of results on the
self-assembly are presented for octadecanethiol and dodecanethiol systems on liquid
mercury. Special care is devoted to the choice of an appropriate model for the modeling
of the surface of liquid mercury, because of its unique properties, such as strong surface
layering and very high surface tension as for a liquid at room temperatures

I start by analyzing the latest most successful models of liquid mercury in their abi-
lity to reproduce the above properties of liquid mercury surface. For this purpose I use
classical MD simulations in the canonical and isothermal-isobaric ensembles as well as
Monte Carlo techniques as an auxiliary tool. Specifically, atomistic models of liquid
mercury such as (i) the density-independent Raabe model, (ii) the density-independent
double-exponent model, (iii) the ad-hoc density-dependent double-exponent model, and
(iv) two modifications of the embedded-atom models, were compared with each other.
Additionally, the liquid-state theory is used to rationalize the phase behavior of these
models. Based on the detailed evaluation of the above models I propose an opti-
mized density-independent force field for liquid mercury, which yields the description
of the surface of liquid mercury, which is comparable to the generally more accurate
embedded-atom models. At the same time my optimized force field for liquid Hg allows
to gain substantial savings in computational time in comparison to the these models.

In the following, I investigate the surface coverage-driven self-assembly of alkylth-

iols on liquid mercury by the MD simulations in the canonical ensemble. Two co-



existence regions are found, namely, (i) the coexistence of the agglomerated alkylthiols
laying flat (laying-down) with their tails on mercury with the patches of the bare Hg
surface, and (ii) the coexistence of the laying-down thiols with the highly-ordered crys-
talline islands of the standing-up alkylthiols. It is shown that the crystalline phase is not
formed immediately as the full coverage of the laying-down molecules is achieved (as
one would expect from the microscopic picture), but rather the monolayer of the oversat-
urated laying-down molecules continues to exist up to a specific threshold value of the
surface coverage. This finding perfectly agrees with the general predictions of the con-
densation/evaporation theory for finite systems. The deviations of the surface tension
from a plateau level in the coexistence region between the laying-down and crystalline
alkylthiol phases can be well explained by the corrections due to the line tension of the
boundary between the two phases derived in the simplest approximation to this theory.
The structure of the crystalline thiolate islands on liquid mercury is characterized in
detail and the oblique packing of the alkylthiol headgroups is found.

Finally, the influence of such factors as temperature, surfactant morphology, alkylth-
iol tail length, lateral pressure and the alkylthiol packings in the crystalline phase higher
than that found at coexistence of the crystalline islands with the laying-down phase is
investigated. The MD simulations of the temperature and morphology effects are per-
formed in the canonical ensemble for the crystalline alkylthiol islands at coexistence
with the respective laying-down phases. The temperature, at which the crystalline is-
land of alkylthiols on liquid mercury "melts", is estimated. By comparing different types
of alkylthiol binding to Hg atoms it is found that the crystalline phase of alkylthiols, in
which a single surfactant is attached to a single mercury atom, features a higher level
of disorder compared to the respective phases of alkylthiol, when two surfactants can
bind to the same mercury atom. To study the effects of different tail lengths, lateral
pressure and alkyl thiol packing on the crystalline phases MD simulations in the con-
stant temperature—constant stress ensemble are utilized. This approach allows to avoid
the effect of the finite boundaries of the crystalline thiolate islands and to obtain "pu-
rified" estimates of their structure. The simulation of the alkylthiols of various lengths
reveal no substantial differences. The simulations under lateral compression indicate
that the crystalline alkylthiol monolayers on liquid Hg are more stable upon increase of
the lateral pressure compared to Langmuir monolayers on water. My simulations also
point out that thiol monolayers undergo a tilting transition upon increase of the lateral

packing in the crystalline phases of the standing-up thiols.
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1 Introduction

1.1 Self-assembly in nature and science

According to John A. Pelesko, "self-assembly refers to the spontaneous formation of or-
ganized structures through a stochastic process that involves pre-existing components,
is reversible, and can be controlled by proper design of the components, the environ-
ment, and the driving force" [1]. This is probably one of the most general definitions
of the self-assembly. Self-assembly processes are ubiquitous in nature and one can find
results of their action on all length and interaction scales, e.g. in the form of seashells or
spiral galaxies. Numerous illustrations of self-assembly are also present in abundance
in various solutions (micellization), colloids, molecular bilayers, liquid crystals, emul-
sions, as well as in all sorts of biological systems [2]. The scope of this work is devoted

to the molecular self-assembly at interfaces.

The classical example of self-assembled structures at interfaces are Langmuir mono-
layers of amphiphilic molecules at the interface of water. An example of such a mono-
layer is depicted in Fig. [I.T|for the case of palmitic acid (15(CH,)COOH) on water [3].
A molecule constituting such a monolayer consists of a polar hydrophilic headgroup and
of a hydrophobic, often neutral, tail. The hydrophilic headgroup is anchored on water
via electrostatic interactions, whereas the hydrophobic tails stay tilted at ~ 5°-29° [3] to
the surface normal on water and interact via the Van der Waals forces among themselves.
This intermolecular interaction between the tails is responsible for the long-range order
in the Langmuir films. As a rule the long-range order in a Langmuir self-assembled
film increases as the surfactant surface coverage, o, (or its inverse, the area per surfac-
tant) increases (decreases). During this process the monolayer undergoes various phase

transitions ranging from a dilute gas phase via low-ordered liquid phase up to highly-
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Figure 1.1: A snapshot from a molecular simulation illustrating the Langmuir mono-
layer of palmitic acid (15(CH,)COOH) on water for an area per molecule of 22 A? and
a surface pressure of 5.6 mN/m at T = 300 K. Color code: alkyl tails (green); polar
COOH group, (red); water (blue). Adapted with permission from [W. Lin, A. J. Clark,
F. Paesani, Langmuir, 31, 2147 (2015)]. Copyright (2016) American Chemical Society.

ordered condensed amphiphile phases [4]. One can see the signatures of these phase
transformations as plateau regions in a surface pressure—area per molecule (or, alterna-
tively, in the surface tension—surface coverage) isotherm, which is sketched in Fig. [I.2]
[4]. In this context the surface pressure, IT = }y — ¥, means the difference between the
surface tension of the bare water, }, and of the water surface with a given number of the
surfactants on it, y. Usually the surface tension at a given value of ¢ is obtained from
tensiometry experiments by measuring the force acting on a suspended plate, which
should be completely wetted by the material from the trough (see e.g. [4} 5]). The
surfactant surface coverage in such experiments is typically controlled by adjusting the
area available to the monolayer via appropriately setting the side barriers in a Lang-
muir trough (Fig.[1.2]top). Langmuir monolayers at the interfaces with water have been
known to mankind over centuries and been a subject of ongoing research (e.g. [3]]) since
the end of the 18-#h century on. A comprehensive review of these systems is given by
Kaganer er al. [4].

Another prominent example of organic self-assembled monolayers (SAMs) are alkyl-
thiol (or simply thiol) films on gold (Au) [6-9]. In this case a special ordering of the
tails, as well as of the headgroups is epitaxially reinforced by the underlying crys-

tal structure. The headgroups, typically sulfur (S), of the constituent molecules are
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Figure 1.2: A schematic view of a Langmuir trough (top) and a general isotherm of
Langmuir monolayer (bottom). Horizontal plateaus in the isotherm correspond to phase
coexistence regions at first-order transitions. Reprinted figure with permission from [V.
M. Kaganer, H. Mohwald, P. Dutta, Rev. Mod. Phys., 71, 779 (2015).] Copyright
(2016) by the American Physical Society.

bound to the Au substrate via covalent bonds. Less frequently selen is used as a head-
group [7,10]. Alkythiol SAMs on other crystalline substrates such as graphene, gallium
arsenide, silver, zinc selenide, copper, germanium etc. have been also experimentally
studied [6} [11H16]. Alkylthiol SAMs on gold gained enormous attention from experi-
mental physicists (see e.g. Refs. [6H9, [17-25]). The alkylthiol SAMs allow to modify
surface properties of solid materials in a controlled way, since the thiol endgroups can
be easily exchanged [6]. This finds numerous applications in nano- and biotechnology,
e.g. for creation of biocompatible surfaces, (bio)sensors, corrosion and wear protec-
tion, nanopatterning, controlling of such macroscopic properties as wetting, adhesion,
friction etc. [6-8), 26]. Seminal experimental observations were described by Nuzzo et
al.[23] and Poirier et al. [25]. The former proposed the (\/§ X \/§) R30° packing of
the sulfur headgroups that is commensurate with the underlying Au (111) surface [23]],
which is schematically depicted in Fig. E The notation (\/§ X \/§) R30° denotes the
hexagonal arrangement of the sulfur headgroups, which is rotated by 30° relatively to

the underlying Au (111) surface and has the nearest-neighbor distance of d,,/3 with
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Figure 1.3: Schematic view of the typical (\/§ X \/§) R30° packing of sulfur head-
groups (black) on Au (111) surface (yellow). The sulfur headgroups are arranged in a
hexagonal manner with the nearest-neighbor distance of d,, V/3, where dg, = 2.88 A is
the nearest-neighbor distance of the hexagonal structure of the gold atoms in the sub-
strate. The unit cell of the sulfur groups is rotated by 30° with respect to the underlying
Au (111) surface. Adapted with permission from [L. Ramin, A. Jabbarzadeh, Langmuir,
28, 4102 (2012)]. Copyright (2016) American Chemical Society.

d,, being the lattice spacing of Au. Poirier et al. gave the first description of the self-
assembly mechanism on Au (111) [25]. In the case of other crystalline substrates the
order of the thiol SAMs has been also found to be commensurate with the one of the

underlying crystal lattice [6]].

SAMs are usually created by a molecular deposition of thiols from a gas or a liquid
phase onto a substrate [6-9, 27]]. This process usually involves multiple stages, which
are sketched in Fig.[I.4] Here, unlike the Langmuir monolayers, the alkyl tails do not
experience strong repulsive interaction with the substrate and adsorb initially onto the
metal surface with their tails laying flat on it (Fig. [I.4p). This stage typically lasts
2—15 min. In the following molecules in such conformations will be called laying-
down molecules. The layer of the laying-down thiols is subsequently completed as the

surfactant surface coverage, o, grows (Fig. [[.4b). When o exceeds the value of the
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Figure 1.4: Schematic view of the alkylthiol self-assembly on the surface of liquid mer-
cury. This chart illustrates general stages of alkylthiol self-assembly on metal surfaces.



full coverage of the laying-down conformations, the backbones of thiols reorient and
the nucleation of the standing-up phase is observed (Fig.[T.4), where thiols stand tilted
at a sharp angle to the surface normal. This is followed by several protracted stages
of the self-assembly, which are often associated with the increase of ordering within
the monolayer of the tilted molecules. The final stages of the self-assembly can last
from a couple of hours to several days and result in thiol SAMs that feature long-range
crystalline order (Fig. [[.4d). The tilt angle of the SAMs on crystalline substrates is
typically 30° [6].

Computer simulation studies of the self-assembled alkylthiol monolayers on metals
[28-46]] focus on the SAMs on crystalline surfaces (mostly Au) as well. Moreover, in
the vast majority of the simulations only the structure of the densely packed monolayers
of thiols standing tilted to the surface normal (i.e. at the final stage of the self-assembly)
was probed. Apart from several simplified model systems [47-49]], no investigation of
molecular self-assembly as a function of the number of alkylthiol surfactants on metallic

(liquid) surfaces has been attempted.

Figure 1.5: Potential structure of a dense self-assembled monolayer of alkylthiol sur-
factants on the surface of liquid mercury at room temperature. Color code: alkyl tails,
green; sulfur headgroups, yellow; bulk mercury, red; mercury atoms with thiols ad-
sorbed onto them (bound mercury), purple.



1.2 Self-assembly on liquid mercury

Fig. [[.5]illustrates a potential structure of a dense self-assembled monolayer of alkyl-
thiol surfactants on the surface of liquid mercury at room temperature. The reader can
see that the alkyl tails (green) are tilted to the surface normal at a sharp angle. Further-
more, all the molecules display a collective azimuthal tilt direction. The sulfur head-
groups (yellow) feature a highly ordered two-dimensional (2D) arrangement, as well
as the mercury atoms covalently bound to the sulfurs (purple) do. In the following the
latter type of atoms will be called the bound mercury. The whole SAM structure sits on
a very dense and strongly stratified, but yet liquid, surface of mercury (red). In Chap. [
we will see that it is in fact much more intuitive and easier to analyze the unit cell of
the bound mercury atoms, than the one of the sulfurs, which will in any case follow the
bound mercury.

The seamless, liquid, yet, at the same time, very dense surface of liquid mercury
(Hg) makes it possible to create thiol SAMs, which are free of the characteristics of
underlying crystal substrates and accompanying defects providing a number of benefits
over traditional crystalline materials. These exceptional properties of liquid Hg make
it especially suitable for investigations of charge transfer through organic films, where
liquid mercury is typically used in the form of a drop-electrode by being placed on top
of the SAM that is preadsorbed on another crystalline electrode [50]. This architecture
of a metal- or semiconductor-molecule-metal junction does not deteriorate the structure
of the SAM [51]]. One could also cover a Hg droplet electrode with an organic layer
prior to putting it into contact with the other SAM on the crystalline electrode. Such a
technique is applied in order to inhibit the amalgamation of the crystalline electrode by
mercury [52]. All these features serve for the wide usage of thiol SAMs in the rapidly
expanding field of organic electronics [S0-55].

At the same time very little is known about the properties of the alkylthiol SAMs on
liquid mercury. An original and simple idea on how to study the effect of a microscopic
thiol self-assembly on a liquid metal was recently proposed by our colleagues, Boris
Haimov and Boaz Pokroy, from the Technion (Haifa, Israel) [27]. This idea links the
microscopic molecular self-assembly on the liquid Hg surface with such macroscopic
quantity as surface tension, 7y, and is based on the observation that the adsorption of

thiols onto a sessile droplet of liquid Hg results in a pronounced decrease of its sur-
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face tension. If one knows the local pressure difference, AP, at the surface of the Hg
droplet in the gravity field and its principal curvature radii, R; and Ry, it is straight-
forward to calculate y by using the Young-Laplace equation, AP = y(1/R; + 1/R3),
where AP = gzAp and Ap being the change of the density across the droplet surface, g
is the gravitational constant and z is the height of the chosen point at the surface of the
Hg droplet, and R; and R; are calculated from the shape of the Hg droplet via image
recognition techniques [27]]. The particular advantages of this method, which is known
as the optical tensiometry, are that it allows to track the effect of the thiol adsorption
from a solution (say ethanol) onto a liquid mercury droplet in real time and that it does
not rely on contact angle measurements that involve the tension of the liquid and va-
por with the supporting substrate. Using this methodology it was shown that thiols of
longer tail lengths reduce the surface tension of a mercury droplet in ethanol faster than
the ones with shorter tails [27]. At first glance this might seem counterintuitive, since
longer molecules are expected to diffuse slower. My explanation of this observation
invokes a quite simple argument. One has to distinguish between the rate of adsorp-
tion, ks = do /dt, and the rate of reduction of the surface tension, ky = —dy(o)/dt.
Here y, o and t stand for the surface tension of the Hg droplet, surface coverage of
surfactants on the droplet and time, respectively. In the initial stage of adsorption the
adsorbed molecules resemble a dilute two-dimensional (2D) gas of molecules laying
flat with their tails on Hg, and the reduction of the surface tension is proportional to the
number of adsorbed molecules, ky = k;,Tks, where k;, is the Boltzmann constant. In the
experimentally relevant regime, however, lateral interactions between the molecules on
the Hg surface become important, and the surface tension at a particular value of 6 may

be captured by the Volmer isotherm [S06]

kT o
1 - athG,

Y="% (1.1)
which links the equilibrium value of surface tension with the respective value of the sur-
factant surface coverage, o. In the above equation 7y is the value of the surface tension
for a surfactant-free surface, and a,;, may be interpreted as the excluded area per thiol
and plays essentially the role of the second-order virial coefficient. By differentiating

the Volmer isotherm with respect to time one obtains the following expression for the



rate of reduction of the surface tension

k, T

ky=—2
Y (1_ath6)2

ke. (1.2)

The adsorption rate, ks, depends on the self-diffusion coefficient, D, of the molecule in

solution like

AN  CoAl CoV2DAt
= g = ~Y D 1.
~ ~ VD, (13)

ko= un~ N
where AN is the number of molecules that adsorb on the surface of area A in time At,
Cy is the concentration of the molecules in solution, Al is the diffusion length of the
molecules perpendicular to the Hg surface. a,;, scales like the number of monomers
(alkyl groups) n,,, and the self-diffusion coefficient, D, scales like 1/n,, or like 1/,/n,,
in the Rouse or Zimm model (see e.g. [S7]]), respectively. Taking this into account and
by inserting Eq. into Eq. we obtain in the least favorable case (Rouse diffusion)

kyT
ky ~ =22+ 2k Tacyormy (1.4)

where a, = ag,/ny, is the surface area per monomer. The above relation provides an
order-of-magnitude estimate of how fast the surface tension is reduced by the molecules
having different number of monomers (i.e. having different length), and it explains why
the rate of reduction of the surface tension increases with the increase of length of the

adsorbate molecules, although the diffusive transport becomes slower.

In the adsorption experiments the surface tension, ¥, is measured as a function of
adsorption time (see e.g. Fig. [I.6). The optical tensiometry results have also revealed
multiple temporal regimes of adsorption of thiols on liquid mercury, namely, a very
rapid decrease of the surface tension during the first 2-3 min of adsorption is followed
by a much slower subsequent decline of y [27]. This yields evidence, though indirect,
of complex structural transformations within the thiol SAM. In order to interpret these
findings and to understand the underlying adsorption mechanism one can relate the evo-
lution of ¢ with time through various kinetic models of adsorption (see below) and
then, assuming that the corresponding equilibrium values of y at the respective o (¢) are
given by the Volmer isotherm (Eq.[I.1)), try to find out which of the kinetic models most

appropriately describes the experimental data. Similar approaches are routinely used in
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Figure 1.6: Fit of the experimental curve of the surface tension [27] as a function of
time with the Volmer equation (Eq. [I.T)) under the usage of various adsorption models
(Eqgs.[I.5HL.7). The plot is shown for the adsorption of dodecanethiols on the liquid mer-
cury droplet in ethanol. The concentration of dodecanethiols in ethanol and temperature
were 1 mM and 303 K, respectively.

the studies of Langmuir monolayer [4]. According to the Langmuir model of adsorption

the time dependence of o is given by [S8]
() = O (1 —e*’“>, (1.5)

where 0;,,, 1S some maximally attainable value of o and k is the rate of adsorption.
This model corresponds to a single-stage adsorption process, when a molecule reaching
the surface at the rate k becomes immediately adsorbed once it touches the surface.
One can perform fitting of the experimental y(¢) by the expression obtained by inserting
o (t) given by the Langmuir model (Eq. into the Volmer isotherm (Eq. . The
resulting fit of the experimental data [27] for the case of dodecanethiol is shown in
Fig. and the obtained fitting parameters are k;T G;,4x = 0.036 eV/Az, A1, Omax =
—1.45, k= 0.023 s—!, which yields 1/Gyq = 0.73 A% and a;, = —1.05 A2 for T =
303 K (temperature in the experiment [27]]).

9



In the case of the diffusive transport of the molecules to the substrate the diffusion-

limited Langmuir model describes the change of ¢ with time [38]
() = Gar <1 —e—M). (1.6)

Likewise, by inserting Eq.[I.6]into Eq.[I.T]and performing the fitting of the experimental
¥(t), one obtains kyT Gpax = 0.0021 eV/AZ, a,Gpax = 0.853, k =0.529 s~ 1/2, 1/ G =
12.23 A2, and ay;, = 10.432 A2, The respective fit is shown in Fig. In this case
the diffusion coefficient, D, of dodecanethiols in ethanol equals to 4.1 cm?/s, which
compares well with typical diffusion constants for thiol systems [27]. This estimate was
obtained by using D = 1227:6”21” /(4Cp) [59] with Cy = 1 mM being the concentration of
dodecanethiol in ethanol as used in the experiments [27]].

Finally, in a more complex scenario when a molecule can first be adsorbed into a
precursor state, from which it can either desorb back into the solution or be irreversibly

adsorbed onto the surface, the kinetics is described by the rate-limited model [ 58]

K1
0 (t) = Omax Kk ) (1.7)

where k' = (1 + kg )k and kg accounts for the adsorption into the precursor state. Sim-
ilarly, by inserting Eq. [I.7]into Eq. [I.T] and carrying out the fitting of the experimental
data one obtains kT 6,4, = 0.0068 eV/AZ, A Omax = 0.53, kg = —0.81, k' =0.023 s~ !,
and 1/06yq = 3.82 A2, a,, =2.04 AZ. The respective fit is shown in Fig.

The usage of any of the above adsorption models fits well the experimental data
(Fig. , but the physically meaningful (1/0;,4x > 10 A?) fitting parameters were ob-
tained only in the case of the diffusion-limited adsorption model (see also [27]) indicat-
ing that the adsorption of thiols onto the Hg droplet in ethanol occurs through a diffusive
transport of thiols towards the surface with a subsequent chemical adsorption onto it.
This behavior contrasts to the case of thiol adsorption onto gold, where the rate-limited
model (Eq. was describing the adsorption process better [38]. My analysis of the
optical tensiometry results have been presented alongside the experiments in Ref. [27].

The above adsorption experiments and the respective fits give, of course, only an
idea of the self-assembly on liquid mercury for the initial stages and provide no struc-

tural data. But what happens at the later stages of the self-assembly, when the thiol sur-
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(a) (b)

Figure 1.7: Schematic view of possible chemical binding patterns of an alkylthiol sur-
factant onto the surface of liquid mercury. (a) A surfactant complex created by two
alkylthiol molecules and a single Hg atom (R—-S-Hg—S-R), in which each thiol is at-
tached to a single Hg atom via a covalent bond between its sulfur headgroup and one
of the surface Hg atoms. The angle between the resulting subsequent S—-Hg and Hg—
S bonds (S—Hg—S bond) is ~ 180°. (b) A surfactant complex without S—Hg—S bond
(Hg—-S—R). Here a single thiol surfactant is covalently bonded to one of the surface Hg
atoms. Color code: methyl group (CH3), dark green; alkyl group (CH,), green; sulfur
headgroup (S), yellow; a mercury atom incorporated withing the S-Hg—S bond, also
denoted as the bound mercury (Hg*), purple; bulk mercury (Hg), red. This figure also
illustrates the united-atom approach for molecular simulations, where CH3 and CH,
groups are modeled as single "super" atoms, which are described by some effective in-
teractions chosen such that to maximally realistic reproduce the properties of the real
substances (see e.g. the OPLS potentials [60])

face coverage is high and more complex structures are formed? What are the possible
thiol phases on liquid Hg and the respective conformational transformations that may
cause the long relaxation times seen in the adsorption experiments? Are there, against
common believe, defects in the structure of SAMs on the surface of liquid mercury?
What is the structure of those phases and defects? Are the thiols already chemisorbed
in the low coverage regime, when they lay flat with their tails on the Hg surface? Which
scenario is more realistic: Two thiol molecules form a surfactant complex bound by a
single surface Hg atom (Fig.[I.7h) or a single thiol molecule attaches to a single surface
Hg atom (Fig.[I.7p)? Finally, what are the packings of the headgroups and alkyl tails?

The reported experimental data on the structure and self-assembly of thiol SAMs on
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Hg is quite scarce and partially contradictive. The first Grazing Incidence Diffraction
(GID) X-Ray measurements on this systems by the group of Deutsch et al. did not find
evidence of ordered SAMs on Hg [61]. In the next work [62] the same group using
GID techniques predicted an oblique unit cell for the sulfur headgroups with one sulfur
per unit cell and the base vectors of very similar lengths; and the results of the previ-
ous GID measurements [61] were attributed to the beam damage of the sample [62]].
As we shall see in Chap. [5] such a unit cell may in principle exist under the condi-
tion that a single thiol surfactant is attached to a one surface mercury atom (Fig. [I.7p).
Nevertheless, such scenario seems to be unlikely, because in the prevailing majority of
mercuro-organic compounds mercury has a valence of two [63]]. In the following publi-
cations Deutsch et al. conjectured a rectangular non-centered unit cell with two sulfurs
per unit cell [64,165]] indicating that two thiols were attached to a single surface Hg atom
(Fig. [I.7p). The results of the preceding measurements [62], where a single sulfur per
unit cell was proposed, one should probably also ascribe to the effects due to a beam
damage. It should be noted that an interpretation of the X-Ray data as an oblique unit
cell with two sulfurs could not be excluded [65]]. Despite this, the quantitative charac-
teristics of the unit cell have been only estimated under the conjecture of a rectangular
packing for a single system of octadecanethiols (SC18) at 7' = 299 K. Accordingly,
the lengths of the base vectors of the unit cell were 5.52 and 8.42 A yielding the thiol
surface coverage of 4.3 nm~2 for the dense SAM of thiols [64] 65]]. In addition, ten-
siometry measurements on thiol SAMs on liquid Hg indicated coexistence regions of
single molecular layers laying parallel to the mercury surface and of standing molecules
tilted with respect to the surface normal [64]. Low density 2D gas phase of thiols on
liquid Hg was deduced from the fits by the Volmer isotherm of the data for the thiol sur-
face coverage lower than the one of the first completely filled layer of laying molecules
[64]]. Fourier-transformed infrared spectroscopy results have also confirmed an increas-
ing ordering in the alkylthiol SAMs on liquid Hg with the increase in the thiol surface
coverage [52], but no interpretation of this data in terms of the molecular packing and

respective unit cells has been given.

For the sake of completeness, it should be also mentioned that phase coexistence
regions were found for alcohols [66]], fatty acid [67], as well as for normal alkanes on the
surface of liquid mercury [5]. In the case of alcohols such phases as single, double, triple

and quadruple layers of the molecules parallel to the Hg surface as well as a monolayer
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of molecules standing upright have been detected [66]. This is probably the most rich
phase behavior seen on liquid Hg so far. Fatty acids have a phase diagram similar
to that of alcohols with the main difference that no triple or quadruple multilayers of
molecules laying flat on the Hg surface were seen [67]. Finally, normal alkanes exhibit
phases of single, double and triple layers of molecules laying on the Hg surface prior to

the formation of the respective alkane bulk phases [3].

1.3 Outline

In the present work I make the first step towards understanding the self-assembly of
alkylthiols on liquid mercury by large-scale molecular simulations. There has been no
previous endeavor to model these systems using modern simulation techniques. The
development of computer simulations of organic self-assembled monolayers on liquid
mercury appears to be crucial in order to answer the above questions, and to achieve
an understanding of the SAM structure and thermodynamics on Hg, as well as to facili-
tate the future advancement in the areas of application briefly discussed in the previous
section. In my thesis I mainly focus on the investigation of the alkylthiol conformation
on liquid mercury as a function of the molecular surface coverage. On the way to this
final goal one has first to decide to which extent the features of the substrate are impor-
tant. A naive choice would be to model the liquid mercury as a flat surface as is done,
for instance, in some simulations of Langmuir monolayers on water [68, |69] or thiol
SAMs on gold [34, 138, 45, 46]. Such choice would inevitably erase all the details of
the chemical binding of thiols to mercury. Unfortunately, one cannot also simply hold
the positions of the mercury atoms fixed in the simulation (as in the majority of cases
for SAMs on Au), since this will completely neglect all the SAM relaxations permitted
by the liquid nature of mercury at room temperature. This is why my computational
model allows to the atoms in the substrate, i.e. the Hg atoms, to move according to the
dynamic equations of motion. As the reader shall see in Chap. ] the number of Hg
atoms that one has to simulate in this case appears to be exceedingly large, ~ 3 x 10°,
compared to several thousands of Au atoms, which were allowed to move in a few com-
puter studies of SAMs on Au [32, 37, 142, 43]. This is necessary in order to account
for the pronounced surface layering of liquid mercury (as explained in Chap. [3)). There-

fore, I devote special attention in my thesis to the computationally efficient simulation
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of the surface of liquid mercury. In the next chapter I will introduce the foundations and
principles of the simulation techniques used herein. Then in Chap. [3] the most success-
ful models of liquid mercury suitable for the intended large-scale simulations will be
evaluated with respect to their ability to simulate the surface of liquid mercury at room
temperatures. Based on the results of this evaluation I will propose an optimized force
field for liquid mercury. Afterwards, in Chap. [4] the alkylthiol molecular conformation
for various surface coverages will be simulated and analyzed on the example of octa-
(SC18) and dodecanethiols (SC12). Following, in Chap. [5] the influence of such factors
as temperature, molecular morphology, chain length, and lateral pressure on the thiol
SAMs on liquid mercury will be studied. In the end I will finish with final remarks and

conclusions.
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2 Methods

In this chapter the techniques used to simulate and rationalize the obtained results for
the bare surface of liquid mercury as well as for the alkylthiol SAMs on it are discussed.
In the beginning, in Sec. [2.1] classical Molecular Dynamics methods for the simulations
in various statistical ensembles are covered, since they are used through out the thesis
as the main tool for the relaxation of the SAMs on Hg towards equilibrium and studying
their respective equilibrium structural and thermodynamic properties. In Sec. [2.2] the
Metropolis Monte Carlo method is explained, which is used in Chap. [3| to support the
Molecular Dynamics results for some of the investigated models of liquid mercury.
Finally, in Sec. [2.3]the liquid-state theory is described, which appears to be especially
convenient for understanding the equation of state of the atomistic models of liquid

mercury with density-dependent interactions.

2.1 Molecular Dynamics

2.1.1 Velocity-Verlet integrator

The essence of classical Molecular Dynamics (MD) simulation techniques consists in a
numerical solution of the classical Hamiltonian equations of motion for N particles that
represent a system under investigation (see e.g. [70]). When the system is subjected to

no constraints, these equations result in the system of 6N coupled equations

L (2.1a)
api  m;
oH
b — — 20 _F, 2.1b
p o, (2.1b)
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where the dot over a symbol means a time derivative, m; is the mass of the i-th parti-
cle, H= ny:l Ipi|?/2m; + U, ({r;}) is the classical Hamiltonian of the system with U,
being the total potential energy of the system, and r; and p; are three dimensional (3D)
position and momentum of the i-th particle, respectively. Finally, F; = —dU,,/dr; in
Eq. is the total force on the i-th particle. The set of all particle coordinates and
momenta {r;,p;} = r,p constitutes the total phase space of such Hamiltonian system.
The divergence of the 6N-dimensional velocity field, {¥;,p;}, generated by the Hamil-
tonian equations (Eqgs. at a time instance ¢ is called phase-space compressibility of

our system (see e.g. [71])

X (OF; O
k(r,p) = —+ ) (2.2)
(x.) ; (31’1' Jp;

It is a characteristic trait of all Hamiltonian systems that x(r,p) = 0, as one can be
easily convinced by direct calculation. This has the immediate consequence that the
Lioville’s theorem for a Hamiltonian system is satisfied, namely, that the phase-space

volume element

dI' = | | dridp; (2.3)

N
il

l
stays constant along the phase-space trajectories [/1]. The stability of any numerical
scheme for the integration of the equations of motion is closely related to the ability of

such a scheme to fulfill the above requirement of the Lioville’s theorem [71].

The most widely used (due to its numerical stability) discretized solution to the

Hamiltonian equations is known as the velocity-Verlet integrator (see e.g. [[71])

pi(?) F;(t)

ri(t+At) =ri(t) + —2Ar + Ar?, (2.4a)
i 2m;
F;(¢t)+F;(t + At
pi(t+Ar) =pi(t) + it + 2’( i )At, (2.4b)

where the first equation is simply the second-order Taylor expansion of r;(z + At), and

the second equation is also obtained from the respective second-order Taylor expansion

pi(t + Ar) = p;(t) + Fi(t)Ar + Fiz(t) AP, (2.5)
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where F;(t) = (F;(t + At) — F;(t)) /At was used.

Alternatively, one can obtain the velocity-Verlet solution as a result of the direct

action of the classical propagation operator, exp il , on a state in the phase space [[71]

<r’> — il <r°> , (2.6)
P: Po

where the index 0 denotes an initial state of the system at 7y = 0 and the operator iLt

represents the classical Liouville operator defined as [71]]

o)

il = Fi——+D; (2.7)
Z < P op: ap;

Eq.[2.6]is just a formal consequence of the rewriting of the equation of motion (Egs.[2.1)

through the Liouville operator as [71]]

I ~[r
() :iL< ) 8
p p

The form of the solution of the equations of motion (not only Hamiltonian ones) given
by Eq. is a very powerful tool, which opens the doors for the effective development
and implementation of numerical integration schemes for systems with a Liouville op-
erator of virtually any complexity [71, [/2]]. The key ingredient of any of such schemes
is the factorization of complex propagators by applying the Trotter expansion (see e.g.
[71, [72]). In our case the Liouville operator (Eq. is straightforward to decompose
into two contributions [[71]]

il =ily +il,, (2.9)

where the subpropagators il; and i, do not commute and are given by

. Y0 Yp o )

L, =Vl _yPo_PI

iLy = i;r, I ; O = mar (2.10a)

N A )

il =Y pim—= =F——. (2.10b)
’ ,;p Ipi ,:Zi 'Ip; op

Now by applying the Trotter expansion we obtain up to the terms of the order of Az
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[71]
LA _ ilatt[2 jiliAt ilaAt/ 2 (2.11)

where At is the time-step of the numerical integration procedure. Such symmetric fac-
torization of the total propagator ensures that the resulting factorized operator retains
the measure-preserving property discussed in the previous section [71]. Now following
the lines of Ref. [[72] we act subsequently with our factorized propagator (Eq. on
some initial state of the phase space at time 79 = 0

ol /2l yilat/2 (X0} ibate/2 iiar ([ TO ) (2.12)
Po PA: /2

where the action of the right most propagator on the initial state has left the coordinates

intact and advanced the momenta from time 0 to At /2 as

At

Par/2 =P0+F07- (2.13)

. 7 r
Next, the action of ¢L14" on the state ( 0

PA: /2
o , Where
PA:/2

- r
Finally, the last action of el2A/2 op Al yields
Pa:/2

) results in another intermediate state

Py = 1o+ AP (2.14)
m

rAt) b .
y taking the momenta

Par
from r = At /2 to t = Ar with the help of

At

Par = Par2 T Far - (2.15)

By inserting Eq. [2.13]into Eqgs. 2.14 and [2.15| we recover the first and second velocity-
Verlet equations (Egs. [2.4), respectively. In the above derivations the action of an expo-
nential operator 9/ 0x

for a < 1 yields

is determined by simply expanding it into Taylor series, which

2 0
e’orx = <1+a—>x:x—|—a. (2.16)
ox
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Additionally, it should be noted that the action of %%/ on f (x) returns the function
f(x+a) [71]. Here x is any variable belonging to the phase space, i.e. either r or p,
and f is the function defined over the whole phase space r, p or over its subsets r and p
separately. As an example of such function may serve the total potential energy of the
system Uy, (r) or the force on a particular particle. Basically we see that the integration
of the equations of motion is reduced to the sequential application of a set of translation
operators, whose the most general form is given by Eq. [2.16] on the phase space of
the system under investigation. This methodology was introduced by Martyna and his
colleagues and is known as the direct translation technique [71, [73]. This technique
makes it especially convenient to implement the numerical integration of the equations
of motion in the computer code as a set of linear operations carrying out subsequent

shifts of r and p in order to advance the system from time ¢ to 7 4 Az.

Giving Eqgs. [2.4] one can generate temporal particle trajectories in the phase space
and, assuming the studied system is ergodic, calculate various observables through the
time averaging of the instant values along the trajectories. Ergodicity implies that aver-
ages in a respective statistical ensemble are equivalent to temporal averages in a molec-

ular simulation [74]].

Quite often it is possible to represent the interaction between atoms via pair interac-
tions as a sum over all atom pairs in the simulation box. In order to mimic a behavior
of an infinite system in a computer simulation one applies periodic boundary condi-
tions (see e.g [[70]), according to which the simulation box is periodically repeated in
all dimensions. In this case for the calculation of the pair forces one only takes those
periodic images of the particles that correspond to the shortest pair distances. This is
called the minimal image convention [/0]. Usually, to accelerate the force computation,
one introduces a so-called cut-off radius, r., and considers for the force calculations
only those pairs of atoms, which lie within r.. The cut-off radius is chosen large enough
such that U(r.) is close to zero in order to minimize the effect of the interaction trunca-
tion. Alternatively, for liquid systems the long-range corrections for the intermolecular
distances larger than r. can be estimated analytically if the pair correlation function
at these distances is approximately unity [[70]. Further time savings are achieved with
the help of the Verlet neighbor lists, according to which each particle has a list of its
neighbors within r,. 4+ Ad [[70], where Ad is the so-called skin length. According to this

procedure one does not have to loop over all particles in the simulation box to determine
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whether or not they lie within 7., and the total force on a chosen particle is computed
only from the pair contributions of neighboring particles that belong to the neighbor list.
Typically the amount of particles and, thus, respective pair interactions, contained in the
neighbor list (i.e. within a sphere of radius r. + Ad) is much smaller compared to the
total number of all atom pairs, ~ N2, in the whole simulation box. In the course of a
simulation the neighbor lists are typically updated when a mean-squared displacement
of at least one particle in the simulation box exceeds the skin length, Ad. Sometimes it
1s more practical to use linked lists and a cell-structured simulation box instead of the
Verlet neighbor list [70]. In this case to each cell of the simulation box a linked list is

assigned that contains all the particles belonging to the respective cell.

2.1.2 Velocity rescaling

The sampling of the equations of motion according to Eqs. [2.4] naturally produces par-
ticle trajectories in a microcanonical ensemble (NVE). In the majority of experiments
though the temperature is held constant. The easiest way to fix the temperature would
be to use a velocity rescaling.

The equipartition theorem (see e.g. Ref. [73]) allows to write the average kinetic

energy of the system as

i=1

N 2
m;vi 3
) = ZNk,T 2.17
< > > Nk T, (2.17)

where v;j is the velocity of particle 7, kj, is the Boltzmann constant and 7 is the current
temperature of the system. Now let us assume that the velocities are rescaled every

time-step, At, by a factor, A7, in order to yield a target temperature, Ty,

¢

In this case it is straight forward to see that

Ar = \/? (2.19)

Such rescaling allows to fix the temperature at a desired value, but at the same time it

M=

2 2

{(Arvp)? 3 3
M> = SNKAFT = SNkyTo. (2.18)

completely eliminates temperature fluctuations. Therefore, the mean values calculated
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with the help of the velocity rescaling will correspond to the canonical ensemble (NVT)
[76]] but the distributions and dynamics will be, of course, wrong. In order to allow for
temperature fluctuation the LAMMPS package for large-scale MD simulations gives
an opportunity to perform the velocity rescaling in given time intervals, d;, larger than
the time-step [77]. This would correspond to the stochastic collisions of the simulated
particles with imaginary thermostat particles at the average frequency of 1/d;. Such
frequency for a given system should be chosen in such a way that the particle positions
and velocities fluctuate accordingly to the canonical ensemble [/6]. Additionally, one
can perform the rescaling of velocities only if the current temperature falls beyond some
pre-set temperature window around 7. The dynamics in such simulations will still not

correspond to the true one for the NVT ensemble.

2.1.3 Berendsen thermo- and barostats

According to the Berendsen thermostat [78] the temperature is relaxed to the target one,

Tp, such that the change of the temperature at every time-step is given by

dT_T()—T
dt_ T ’

(2.20)

where 77 controls the rate of the temperature relaxation, which nominally corresponds
to the velocity rescaling at every time-step by a factor of [7§]

1/2
AT:{IJrg(E—l)] . (2.21)
T T

For the pressure relaxation to the target value, Py, Berendsen has shown that the

change in pressure for an isotropic system for a single time-step

dP Py—P
dt N Tp

(2.22)

technically corresponds to the simultaneous rescaling of the particle coordinates and

system extents by the factor of [[78]]

1/3
Ap = [1 - %(PO - P)] , (2.23)
p
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where 7p steers the relaxation of pressure to the desired one, Py, and fr = —(dV /dP)/V
is the isothermal compressibility of the investigated system and V is the volume of the

system. The microscopic pressure, P, is calculated according to (see e.g. [/0])

P

_ Nka n Zivzl I‘iFi

2.24
Vv 3V (2:24)

where the 1st and 2nd terms are the ideal gas and virial contributions, respectively. In
both cases of thermo- and barostatting according to the Berendsen procedure the fluctu-
ations of 7" and P are completely absent. Implying that despite the average values of the
physical quantities of interest would correspond to the NVT and/or NPT ensembles, the
fluctuations and dynamics will not. An extension of this method for the triclinic systems

with simulation boxes of any shape is also possible [[78]].

2.1.4 Extended-phase-space approach for simulations in canonical

(NVT) and constant stress (P)-temperature (NPT) ensembles

We just saw that the usage of the Berendsen thermo- and barostats for the MD simu-
lations in the NVT or NPT ensembles literally kills the temporal fluctuations of 7" and
P. An extended-phase-space (or simply extended-variable) approach allows to carry out
Molecular Dynamics simulations in the true NVT, NPT and/or NPT (P is the stress
tensor) and preserves the true distribution functions and dynamics (see e.g. [/9]). For
this purpose equations of motion for additional unphysical variables, ¥, and their re-
spective momenta, ¥, as well as for the conventional physical variables, r and p, are
formulated and solved side by side. These unphysical degrees of freedom and the way
they are coupled to the physical ones are chosen very carefully such that the distri-
bution of the physical variables r and p corresponds to a desired statistical ensemble,
after the unphysical variables have been integrated out [71-73) |[80-82]. The total phase
space of an extended system is then defined as a direct product of the phase space of the
physical degrees of freedom {r, p} with the phase space of unphysical ones, {x, x }. Ex-
tended systems are generally referred to as non-Hamiltonian ones. The reader can find
a good introduction into the dynamics of the non-Hamiltonian systems in Refs. [[71,72]].
Here I merely note that, as a rule, for the non-Hamiltonian systems k(r,p) # 0 and the

phase-space volume element dI" (Eq. [2.3) is no longer preserved. Instead, the invariant
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measure is a properly normalized volume element defined through the overall number

of all degrees of freedom of the extended system as [[71} [72]]
dl ey = VdetGdydydrl, (2.25)

where G is the metric tensor of the extended system, which is usually time-dependent.

For a Hamiltonian system detG = 1.

The derivation of the computer simulation schemes for the non-Hamiltonian dy-
namics of extended systems is most conveniently done by using the formalism of the
Liouville operator introduced in Sec. [2.1.1] which is readily extended for the case of

extended-variable systems by defining the generalized Liouville operator as [[71]]

N
ii:izzl (f,-a%er,-a%) +Z%+Z%- (2.26)
A generalized propagator of an extended system is defined through the generalized Li-
ouville operator (Eq. exactly as it has been previously done for the Hamiltonian
system. The choice of a particular Trotter factorization scheme for the generalized prop-
agator for the numerical integration of the equations of motion depends, of course, on
a specific problem. In the case of NVT ensemble one typically couples a chain of ad-
ditional thermostat variables to the momenta of physical particles. This is known as
the Nosé-Hoover—chain method and was originally proposed by Martyna et al. [80].
For the isotropic barostatting (NPT ensemble) one couples the isotropic fluctuations of
the volume to both real particles positions and momenta and then a Nosé-Hoover chain
thermostat to both, real particles and volume fluctuations [81]. For a better tempera-
ture control a separate Nosé-Hoover chain thermostat can be assigned separately to the
particles degrees of freedom and volume fluctuations. The equations of motion for the
NVT and NPT ensembles are presented in Refs. [80] and [71, 81], respectively. The
equations of motion for the case when the dimensions and shape of the simulation box
at a fixed temperature may adjust to the very general conditions imposed by the external
stress tensor, P, (NPT ensemble) are given by Shinoda et al. [82]. Generally speaking,
no explicit discretization of the respective equations of motion is needed, because, as
discussed above, the numerical integration can be realized by the means of the direct

translation technique [71, [73]]. For some relatively simple cases, such as simulations in
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NVT and NPT ensembles, explicit integrators have been derived in the literature [[71].
An explicit algorithm also exists for the case of the semi-isotropic NPT ensemble [81]],
i.e. when the diagonal components of the pressure tensor may be fixed independently
and all off-diagonal elements are set to zero. The MD simulations in this thesis for
the true NVT and NPT ensembles (as described in this section) were performed in the
LAMMPS package [77]], which uses the very general form of the equations of motion
given by Shinoda et al. [82] and follows the prescriptions for the numerical integration
from Ref. [[71]].

2.1.5 Multiple time-step scheme

The multiple time-step MD method, the reversible reference system propagator algo-
rithm, has been developed by Tuckerman and co-workers and is generally known under
the alias rRESPA [71} 73, 83]]. This methodology allows for the time reversible inte-
gration of the equations of motion for systems with molecular interactions that have
various characteristic time scales. Below I am going to introduce the main idea behind
the rRESPA techniques using a simple example following the lines of Ref. [71]. Mul-
tiple time-step algorithms may be most naturally obtained from the Liouville operator
formalism described in Sec. Assume for a moment that the Liouville operator has

three contributions

il = ily +ily+ils, (2.27)
where
R d
i, =22 (2.28a)
mor
Y a
ily = Fragi=—, (2.28b)
Jp
Y 8
lL3 = Fslow_7 (2.28C)
Jp

where Fy,i and Fyo, are rapidly and slowly varying forces, respectively. The propaga-

tor for such Liouville operator is then written as [[71]

elLAl‘ — elLlAleleAlelL3At — elL3Al‘/ZelLlAl‘eleAl‘elL:;Al‘/Z7 (229)
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where in the last step the Trotter expansion (see Eq. was used. Now by applying
again the Trotter expansion for the product of subpropagators eiL1At il At e arrive at
the final expression for the factorized propagator for the case of two time-steps, Ar and
At /n, [71]

S .0 .0 . .2 n .s
elLAI — elL3Al‘/2 eleAt/ZnelLlAl‘/neleAt/zni| elL3Al‘/2. (230)

The operator in the square brackets advances the system in time with the time-step Az /n
n times accordingly to the fast varying force Fy,g, whereas the system is propagated only
twice per time-step At for the slow motions according to Fjoy . Such approach appears
to be indispensable for reaching larger simulation times, and, thus, better statistics, in
the simulations of basically all molecular systems, because typically chemical bonds in
molecules fluctuate much faster compared to the slow characteristic motion due to Van

der Waals intermolecular forces.

2.2 Monte Carlo simulation

In contrast to the Molecular Dynamics discussed above, one does not normally simu-
late a propagation of a system in a physical space-time in a typical Monte Carlo (MC)
simulation, but rather generates a stochastic sequence of molecular configurations ac-
cording to the chosen statistical ensemble and computes the observables as ensemble
averages over these configurations. A very nice and comprehensible account of Monte
Carlo simulations is given by Landau and Binder in Ref. [84] as well as in the book of
Frenkel and Smit [[74]]. It should be also mentioned that an extension of the traditional
Monte Carlo approach, a so-called kinetic Monte Carlo [85]], also exists that enables the
simulation of temporal evolution. This method allows to simulate physical times that in
principle may be much larger compared to the ones from the MD method (depending on
the application), but strictly speaking such temporal evolution is not deterministic and,
thus, lacks of the time reversibility. In this section we limit ourselves with the classical
Monte Carlo method.

For a classical system the probability of the n-th microscopic state with some par-

ticular choice of {r;, p;} is given by [74]

o B(EX p7/2m)+U({ri}))
NN1Q ’

P, = (2.31)
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where £ 1s the Planck constant, Q is the partition function
0= JTIY., dridpieP(EX P2/ @m)+U({r))
N h3N N!

3N
B 2m7[]/2 fH{V:I driefﬁ(U(ri))
N B h3NN!

12\ N
:<2’"g > z, (2.32)

where Z = [TV, drie BUT) /(B3NN1). Giving the above expression the probability of
the n-th microscopic state {r;, p;} takes on the following form
efﬁUn

P, = = (2.33)

where U, = U ({r;}) is the potential energy corresponding to the n-th microscopic state.
To generate a stochastic sequence of states giving the above probability is basically
unrealistic, because Z is quite often unknown or computationally very difficult to be
calculated (one has to calculate a 3N-dimensional configurational integral for that). So,
instead, one generates the sequence of states of the system as a Markov chain using
the transition probability W, |, for the transition from the state n-1 to the state n. A
defining property of the Markov chain is that W,,_;|, depends only on the preceding
state. An encyclopedic overview of the Markov chains is given in the handbook of
stochastic methods by Gardiner [86]. In the equilibrium the exact choice of W,,_y, is
dictated by the detailed balance condition [74]]

Pn*IWn—1|n - Pan‘n_l, (234)

meaning that the conditional probability of being in the state n if the preceding state was
n — 1 equals to the conditional probability of being in the state n — 1 if the preceding
state was n. It follows from Eq.[2.34]

b

Wi = P
.

Wy = POy, . (2.35)
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By choosing
W,_ |, = min (l,e*ﬁ(Un*Un71)> (2.36)

the detailed balance condition (Eq. will be fulfilled. The above choice of W,,_y),
also means that the state of lower energy is always accepted. Such sampling scheme
is called the Metropolis Monte Carlo method and was introduced for the first time by
Metropolis et al. for the computation of the equation of state of the 2D hard spheres
[87]]. The usage of the cut-off radius, periodic boundary conditions and neighbor lists
is readily incorporated into the Monte Carlo scheme [70, 84, 88]]. For the Monte Carlo
simulations performed in this thesis (see Chap. 3) I have created my own C++ object-

orient source code.

2.3 Liquid-state theory

In the contemporary times numerical simulation techniques, such as Molecular Dy-
namics and/or Monte Carlo methods discussed above, are the main tools to study the
molecular-scale structure and properties of materials. Nevertheless, it is always nice
to have a simple theory, which can help to interpret the results of a molecular simula-
tion. In this section I describe the classical liquid-state theory that is later employed to
rationalize the equation of state of various models for the atomistic simulation of lig-
uid mercury. This approach has been also presented in one of my recent publication
[89]]. The liquid-state theory is based on the routinely used Weeks-Chandler-Andersen
(WCA) decomposition of the pair potential U (r) into the reference repulsive part U,(r)

and purely attractive interaction U,(r) as [90, 91]]

U(r) =U(r)+Uy,(r), (2.37)
where
U(r)—=U(rpy if r < rpin,
U(r) = (1) = U {rini) e (2.38)
0 otherwise,
and

U(rmi if r < rpin,
Ud(r) = inin) - (2.39)
U(r) otherwise,
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with r,,;, being the minimum of the pair potential U(r), and r is the distance between
two atoms. The free energy of the system will consist then out of the ideal gas contri-
bution, F;;, and two contributions F;, and F, due to the repulsive and attractive parts of
the pair potential, respectively,

gF = Fy+F+F,, (2:40)

where 8 = 1/(k,T), and the prefactor in front of F is chosen out of convenience. The

ideal gas contribution is given by (see e.g. Ref. [75]])

A3
Fy=pinP=T, (2.41)
e

2
where At = % is the de-Broglie wavelength, m is the mass of an atom, and 7 is the
reduced Plank constant, and p is the number density. The free energy of the reference
repulsive system is obtained from the Carnahan-Starling equation of state [92] and reads

as [93]]

4n —3n?
F=p—+—"L (2.42)
T (1-n)?
with 1 being the packing fraction defined as
d3
- ””6 , (2.43)

where d is the effective hard-sphere (HS) diameter of an atom and is given by [94]

d— /0 "y <1 _ e—ﬁUrU)) . (2.44)

Finally, the free energy of the purely attractive part of the pair potential is obtained
from the Barker-Henderson perturbation theory [94], according to which the attraction
is treated as the perturbation to the reference repulsive system. The first non-vanishing
contribution due to the attraction to the free energy is given by [91,94]

_ P

2 Te 3
F=2 /O BrBULNgns(r), (2.45)
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where gj,s(r) is the HS pair correlation function [95]].

Giving Eq. [2.40] one can now estimate the free energy for a desired thermodynamic
state characterized by a given pair of p and 7 values. In order to calculate the coexis-
tence density the free energy versus density curve, F(p), is constructed and a double-

tangent construction [96] is used as illustrated in the following chapter.
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3 Simulation of the surface of liquid

mercury

Mercury is the only known metallic element, which is liquid at room temperatures and
has a very high density of ~13550 kg/m? [07]]. This is approximately 13.5 times larger
than that of water. Moreover, unlike conventional liquids, the surface of liquid mer-
cury at room temperature features a strong surface layering at the boundary to a less
denser substance [98] and an extremely high surface tension, i.e. ¥~ 0.487 N/m for the
mercury/air interface [99]. For comparison the surface tension of water at the interface
with air only amounts to ~ 0.07 N/m [99]]. Chemically mercury is a very inert element,
meaning that it is hard to oxidize [63]. Additionally, at the temperature of liquid helium
mercury becomes superconducting [[100]. The metallic nature of mercury appears only
in the clusters of more than 100 atoms [101]]. Most of the peculiar properties of liquid
mercury are attributed to relativistic effects [63, 101} [102], according to which the 6s
electrons move at velocities comparable to the speed of light under the influence of the
high positive charge of the Hg ion core, and, respectively, their masses are magnified
leading to the shrinkage of the 6s electron orbital compared to the other elements of the

same group (e.g. zinc or cadmium) [63]].

Due to its unique properties mercury is widely used in organic electronics in the
form of a drop-electrode, which can be easily manipulated at room temperature (see
e. g. Ref. [50]). Moreover, liquid mercury can be used to produce highly conduct-
ing nanowires [103H106]. On the other hand, mercury is used as a main constituent or
produced as a byproduct in energy production [107]], fluorescent bulbs [108]], gold min-
ing [[109] etc. Because of the high toxicity of mercury [109-111] the reduction of the

mercury emission into the environment is one of the main issues related to the usage of
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mercury. For this purpose various organic systems were designed for the localization of
mercury [112H114]. Intriguing structures have been recently discovered by irradiating
alkylthiol monolayers on the surface of liquid mercury with high frequency sonic waves
[L15]. These experiments revealed the formation of sheet-like monocrystallites consist-
ing of a mercury backbone with thiol molecules symmetrically attached to it from two
sides. Evidence for a possible existence of such structures has been also seen before
[62]. The exact mechanism of formation and structure of such aggregates is not yet

completely understood.

A thermodynamically robust framework for the large-scale simulation of mercury al-
lowing us to predict its behavior for these applications would facilitate further progress
in these areas. Substantial efforts over the last decades have been directed into this
direction [101, [116-129]. In this chapter I investigate the surface tension and density
profiles of the surface of liquid mercury at the room temperature, 7 = 293 K, by means
of classical MD techniques. With this perspective atomistic models such as the DI
double-exponent potential [121},[130] and its empirical density-dependent (DD) modifi-
cation [[126]], as well as the Raabe potential [120] and recently proposed embedded-atom
models (EAMs) for liquid Hg [131-133]] are evaluated in detail. The results, which I
obtained in the current chapter, have been recently published in my joint paper together
with D. Bedrov and M. Miiller [89], and, the outline and discussions of this chapter
follow closely this paper. First, I cover various models of liquid mercury for atomistic
simulations available in the literature. Afterwards I present the respective results for
the surface tension and density profiles. As Louis has pointed out, an ad-hoc inclu-
sion of a density-dependent coefficients into a density-independent pair potential may
cause undesirable and at first sight non-obvious artifacts [[134]. This is why I investi-
gate with special care the effect of the density dependence of the mercury interactions
on the liquid-vapor coexistence of liquid mercury. The simulation results on the phase
behavior of liquid mercury are in good agreement with the semi-analytic calculations
from the classical liquid-state theory. Moreover, complementary Monte Carlo simula-
tions support my conclusions for the DI and DD models. As the reader shall see, the
EAM models yield values of the surface tension that are the closest to the experimental
one. On the contrary, the DI model results in the lowest value of the surface tension, but
at the same time it is the most computationally efficient and thermodynamically robust

model among the studied ones in this work. Thus, the question is posed if it is possible
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to choose a parameter set for the DI model that would improve the agreement of the
surface tension with experiment while preserving the experimental coexistence density
of the liquid mercury with its vapor. In the end of this chapter I answer this question
positively and present a corresponding optimization procedure, which can be applied at

any desired temperature.

3.1 Models of liquid mercury in the literature and the

need for a new model

3.1.1 Lennard-Jones model

The simplest model for liquid mercury is a Lennard-Jones liquid, in which each inter-

action center represents a single Hg atom. In the Lennard-Jones (LJ) potential

U(r) = 4¢ l(?)lz— (?)6} 3.1)

0p and € denote characteristic length and energy scales, which one has to determine in
order to relate the model to experimental values of the coexistence density and surface
tension of liquid mercury. Since the surface tension of liquid mercury at the room
temperature is extremely large, this thermodynamic state is close to the triple point
of the LJ fluid. At this point the vapor, liquid and crystal phases coexist with each
other and the liquid-vapor surface tension, 7, is the highest. In the LJ model the triple
point occurs at the values of the reduced temperature, 7, density, p*, and liquid-vapor
surface tension, y*, of 0.7, 0.8 [135[136]], and 1.137 [137], respectively. These reduced

dimensionless quantities are connected with the conventional ones by [135H137]]

T* =kpT /€ (3.2a)
p*=poy (3.2b)
Y =705 /e (3.2¢)

Let us assume that the LJ system has the same triple point as the liquid Hg at 7 =235 K
and p = 13.69 g/cm? in order to recover € and op. This yields £ ~ 0.66713 kcal/mol,
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0o ~ 2.695896 A and, consequently, the LJ prediction for the maximal value of liquid-
vapor surface tension of ~ 0.07 N/m. We see that such value is considerably smaller
than the experimental one, ~ 0.5 N/m, at the room temperature. This estimation of
the surface tension of liquid mercury from the LJ model unambiguously discloses the
inadequacy of the LJ description of the surface of the liquid mercury and demonstrates
a clear need for a more advanced model, which can simultaneously reproduce the liquid

density and surface tension of liquid mercury at room temperatures.

3.1.2 Density-independent double-exponent model

Early pair potentials for the interactions in the bulk of liquid mercury derived from the
experimental structure factors demonstrated that the pair interaction of liquid mercury
was strongly dependent on the thermodynamic state (defined by temperature and den-
sity) of mercury bulk systems [[117, [118]]. In order to take this into account in a more
systematic way a previously proposed double-exponent potential for liquid metals [[130]
was made state-dependent by adjusting the interaction strength, Ay, in a wide temper-
ature rage in order to mimic the liquid part of the mercury phase diagram [121]]. The

resulting potential is given by [121]]
U(r) = Age %" — A (T)e PR (3.3)

where the values of the parameters at T = 293 K are Ay = 1901990.928 x 10° kcal/mol,
Ay =0.971 kcal/mol a = 12.48 A=, b =0.44 A2 and Ry = 3.56 A [121]]. The first
term describes the Born-Meyer repulsion and the second term in Eq. [3.3] determines
the attractive part of the potential, which has the minimum at Ry. The parameter b
is the inverse squared range of the attractive interaction. Despite being successful in
describing Hg bulk systems, this model failed to reproduce a strongly stratified surface

of liquid mercury [122].

3.1.3 Density-dependent double-exponent model

A decent agreement with the experimental density profiles has been obtained in the
self-consistent quantum Monte Carlo [123}124] and in the ab initio Molecular Dynam-

ics [125] simulations. In each of these approaches the computation of the interatomic
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interactions involves regular recalculations of the respective electronic densities via the
Kohn-Sham equation [[138]] to guarantee that effective density-dependent potentials used
to move mercury ions correspond to their actual configuration. Such computer simula-
tion schemes will, though, impose a tremendous computational penalty on the intended
large-scale simulations of SAM on liquid Hg limiting them in time and number of par-
ticles. As an alternative the DI model (Eq. [3.3] ) was ad-hoc modified in attempt to
capture the metal-nonmetal transition (as the local density of liquid Hg falls approach-

ing the surface) by making the coefficient A| density-dependent (DD) [126]
Av=fifi A+ [ (=) + Q=P flAY (0= f) (1=£)AaT", G

where AYM = 0.971 kcal/mol, AY?Y = 1.942 kcal/mol, f; = f(p(r;)) is a function of the
local density p(r;) at the position of i-th atom, and is given by f(p) = 1 if the density
is larger than a threshold value 11000 kg/m? and it vanishes for p < 8000 kg/m>, and is
chosen to be a smooth function in between. Thus only if the local density at the position
of a particle is in the intermediate density interval between 8000 and 11000 kg/m> does
the density dependence of the potential matter. I have tested polynomials of 1st, 2nd,
3rd and 5th order to represent f(p), and found that the functional form of f(p) does not
influence the phase behavior. In my MD simulations I use the 3rd order polynomial for
f(p) in order to ensure the continuity of the forces. In the approach from Ref. [126] the
form of the density profiles was biased by a pre-determined reference density profile,
which is not quite physical and limits the simulations to a few simple geometries (planar
and spherical). Therefore, for the calculation of the local density, p(rj), at the position
of i-th particle, rj, I adopted a standard weighting function method [[139], which ensures
that the calculation of the local density is independent of geometry. According to this

method the local density may be calculated as

p(ri) =) w(ri)), (3.5)
JFi
with
W(rij) :Anorm(rizj_rg>27 (3.6)
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and rjj = 4/ (r;j—rj)? being the distance between atoms i and j. The normalization

factor A, | define by the condition

4n / “drrw(r) =1, 3.7)
0

where r=r;jand rc =9 A is the cut-off radius of the pair potential. Having a geometry-
independent force field for liquid Hg is very important for the simulation of the systems,
which are relevant for applications. For example, this is important for the systems with
a varying shape of Hg droplets (see e.g. Ref [31]). Ref. [126] gives no estimate for
the coefficient A‘I/V, and, instead, it is said therein that its value does not influence the

result much. Therefore, in order to obtain consistent results in the limit of low and high
densities, I have chosen AYV to be equal to AIIVIM .
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Figure 3.1: Comparison of the LJ, DI and Raabe pair potentials for liquid mercury. The

LJ potential is plotted for the parameters derived in Sec.[3.1.1at T = 235 K. The DI and
Raabe potentials are plotted for 7 = 293 K.
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3.1.4 Raabe model

The Raabe model is another pair potential model evaluated in the following. It is given
by [120]

o).

9
U(r) =2 Y a2j(Arr) ™ — agor™ % exp Por+ ;s

j=3

(3.8)

The first two terms in the above equation represent the Schwerdtfeger et al. potential,
which takes into account relativistic and spin-orbit effects [101]. The set of parameters
from Ref. [101] designated therein as "cc-ULB+SO" is used for the first term. Param-
eters for the second term are given in Ref. [101]] as well. The last term in Eq. [3.8]is
an empirical temperature-dependent long-range correction proposed by Raabe et al.,
which allows to reproduce the experimental phase diagram of mercury for a wide range
of temperatures starting from ~400 K [120]. The properties of this model for the sur-
face of liquid Hg at room temperatures have not been reported in the previous works.
Fig. [3.1] offers a comparison of the density independent pair potential for liquid mer-
cury discussed so far. Namely the above figure compares the LJ (Eq.[3.1), DI (Eq.[3.3)
and Raabe pair potentials with each other. The reader can see that the LJ potential ap-
pears to have a much shorter range of the attractive interaction compared to the DI and
Raabe models. On the contrary the Raabe model has the largest attractive range and
much stronger "attraction strength" compared to the LJ and DI models. Because of the
extended range of attraction of the Raabe model I used the cut-off radius, r., of 11 A
for this model. As is clear from Fig. [3.1] the double-exponent DI potential has a sub-
stantially extended attraction well, which, as will become apparent later, is crucial for
the correct phase behavior of mercury at low temperatures (7 < 400 K). According to
my simulations the Raabe model results in the crystallized bulk of mercury already at
T = 293 K. Obviously, the too strong attraction strength and long-ranged interaction
(compared to the DI model) promote the Hg crystallization in this model. Giving this, I

discard the Raabe model in the following discussion.

3.1.5 Embedded-atom models

The embedded-atom method (EAM) was initially developed in the beginning of 1980’s

by Daw and Baskes for the investigation of the hydrogen behavior in and its influence
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on the ground-state properties of Nickel (Ni) and Palladium (Pd) [140, [141]]. Later
on this method was applied to the transition metals by Foiles and colleagues [142+-
144]]. Only very recently, in 2006, this method was extended and used for the atomistic
simulation of the bulk of liquid mercury by Belashchenko [133]]. In 2013 Belashchenko
proposed an embedded-atom model for the case of a strongly compressed bulk of liquid
mercury [131,[132]]. Below I am going to present both of Belashchenko’s EAM models,
which I designate in the following as EAM2006 and EAM2013 models, respectively.
Generally, a potential energy per atom i at the position rj consists of two contributions,
an embedded density-dependent energy and a sum of pairwise interactions of the i-th
atom with its neighbors, and it has the following form (see e.g. Ref. [133])

Ui = Uem(par(r5)) + Y U (rij), (3.9)

J#i
where U,,, is the embedding energy due to the many-body electronic interactions, p
is an effective (dimensionless) electron density at position r;, and U (r) is the pair inter-
action between the Hg ions. The form of Eq. 3.9 is dictated by the density-functional
theory [141]. Thus, the EAM methodology represents a generic framework for the treat-

ment of many-body effects due to underlying electron structure of metals in atomistic
simulations. For the EAM2013 model U,,, is given by [131}132]

Uem = a1+ ¢1(Pa — Po)*, with py < par < ps, (3.10a)
Uem = ai +bi(par — pi—1) + ci(Par — pi—1)* with p; < pay < pic1, i=2,...,7,
(3.10b)
Pai Pai g
Uem = [ag +bs(par — p7) + cs(par — p1)°] IZE - (E) ] , with pg; < p7, (3.10c)
Uem = a9 +bo(Par — Ps) + co(pPar — ps)™, with pg < par < po, (3.10d)
Uem =ai10+ b1o(Par — Po) + c10(Par — Po)", with pg; > po, (3.10e)

where a; = —2.0292147, ay = —1.8096637345, a3 = —1.69697, as = —1.3531480,
as = —1.188998, ag = —0.884708, a; = —0.132113456, ag = —1.2932, ag = —1.3034,
ajo = 60.5636636 kcal/mol; b, = —3.991865, bz = 1.1745827, by = —8.051217, bs =
4.4036127, bg = —13.09772987, by = —5.71708987, bg = 19.3770861, bg = 7.2579369,
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biop = 60.65324613 kcal/mol; c; = 18.144842, ¢, = —32.2903, c3 = 46.129, ¢4 =
—69.1935, ¢5 = 125.00959, cg = —46.129, c7 = —73.8064, cg = 92.258, c9g =22.6032,
c10 = 5.304835 kcal/mol; m = 1.7, n =3, as well as pg =1, p; = 0.89, p» = 0.81,
p3 =071, py =0.62, ps =0.55, pg =0.47, p7 =03, ps = 1.2, pg =2.8; and 1 eV =
23.0645 kcal/mol was used to transfer original units [131] to kcal/mol.

And for the EAM2006 model U,,, takes the next form [133]]

Upn = a1 + a2 (Pai — Po)* + a3 (par — po)*, with pg; > 0.8py, (3.11a)
Uem =a4~/Pai + aspar, with pgp < 0.8po, (3.11b)

where a; = —3.7549, a, = 1.415, a3 =31.4369, ay = —2.5710459 and a5 = —1.31755956
kcal/mol, as well as pg = 1 [133]]. The effective density p,; is determined by

par(ri) = Y w(rij), (3.12)
J#i
with
W(r) = prexp[—par], (3.13)

where for EAM2013 and EAM2006 p; = 4.8019 [[131] and 4.7986 [133]], respectively;
in both cases p, = 1.3095 A [131}[133]]. The effective pair potential U (r) at T = 293 K
for both models for 2.55 < r <8.35 A is tabulated in Ref. [133]], and for 0 < r < 2.55 A
is defined as [[131]]

U(r) = (3.906111462 — 146.32856864(2.55 — r) 4+ 87.645 [exp(1.96(2.55 —r)) — 1]),
(3.14)
where the units of energy are kcal/mol. At the cut-off radius r. = 8.35 A the pair

potential is set to zero. The minimum of U (r) is —1.423 kcal/mol at ry;;, = 3.18 A.

Finally, in order to calculate the free energy of the EAM models according to the
liquid-state theory discussed in Sec. [2.3] the contribution due to the embedded energy,
Uem(pai), has to be added to the free energy represented by Eq. This contribution
is given simply by

Fom = BPUen((par)), (3.15)

where the bulk average effective dimensionless density (p,;) is calculated from the num-
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ber density of Hg ions, p, as [[133]
(pa) =47p [ g(r) () dr (3.16)

In my calculations I approximate g(r) with the one for the hard spheres, which appears
to be a very good approximation in this case, because the so-computed value of (py;)
deviates only by 0.7% from the corresponding value obtained by using the experimental
g(r) [145] for T =293 K.

3.1.6 Simulation details

Molecular Dynamics

The LAMMPS package [77] is used to carry out MD simulations of the mercury film.
It was extended by three C++ modules in order to implement the double-exponent DI
and DD potentials, as well as the Raabe potential. The film of liquid mercury was
prepared by first initializing N = 2 x 10> Hg atoms on a simple cubic lattice with
Ly =Ly =24.56 A and L, = 80.673 A. Such bulk system was equilibrated for 8 ns.
Second, the empty space above and below the Hg film along the z-axis was added, so
that the film would not feel the presence of walls if they were placed at both ends of the
system along the z-axis. Afterwards the film is equilibrated for another 2 ns. Since, in
the current study, I am not interested in the dynamics, a simple temperature rescaling
every 100th step is used to hold the temperature at 293 K. A time step of 1 fs is used
throughout this chapter, and periodic boundary conditions are applied in all directions.
The measurements are taken every 10 fs during the total simulation time of 16 ns for all

models.

Monte Carlo Simulation

To validate the MD simulations with the double-exponent DI and DD models I have
carried out MC simulations using the Metropolis algorithm with the Verlet neighbor
list as described in Chap. 2] The maximal local displacement for each atom along any
axis was 0.15 A so that the acceptance ratio was approximately 56% and 73% for the
double-exponent DI and DD models, respectively. Initially, the Hg film is equilibrated

for 3 x 10* MC sweeps, where each of the 2 x 10> atoms was attempted to move once
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in 1 MC sweep. Following, the density profiles were averaged over 1.045 x 10° and
5.35 x 10° sweeps for the double-exponent DI and DD models, respectively.

3.1.7 Results

Density profiles and surface tension

Fig. [3.2] shows the density profiles for the DI, DD, EAM2013 and EAM2006 models
of liquid mercury at 7 = 293 K as obtained from my simulations. One can see that
the DI model produces weak surface density oscillations (as seen previously at different
temperatures [[122]) but, at the same time, it yields the correct experimental bulk coex-
istence density, Pcoex, Of 13550 kg/m3 [145], whereas the DD model yields the wrong
coexistence density of around 10060 kg/m? with somewhat stronger surface density os-
cillations. As expected, the density profiles from the MD and MC simulation overlay
perfectly for the DI and DD models, respectively. Both, the EAM2013 and EAM2006
models, give values of pcyex Of 13250 and 13180 kg/m3, respectively. These values are
both very close to the above mentioned experimental value of p.yer. The corresponding
density profiles of both EAM models posses strongly oscillating features (Fig. [3.2).

The surface tension, 7y, was calculated with the help of the Kirkwood-Buff rela-
tion [[146, 147]] in the course of the MD simulations as

1
v=3 [dz(pa=po), (3.17)

where p, = p.; and p; = (pxx + pyy)/2 are normal and tangential (w.r.t. the liquid Hg
film’s surface) stresses given by the diagonal elements of the stress tensor p,y, pyy, and
Pzz- Since there are two surfaces (on the top and bottom of the Hg film), there is the fac-
tor of 1/2 in front of Eq. For the on-the-fly numeric calculation of y I have used the
discretization scheme of Eq. described in Ref. [135]. My simulations yielded the
values of Y= 0.18, 0.23, 0.306 and 0.31 N/m for the DI, DD, EAM2013 and EAM2006
models, respectively. One sees that the EAM models give the closest agreement with the
experiment value of the surface tension of the bare surface of liquid mercury. Despite
of the lowest value of y from the DI model, it represents a potential interest (because
of its thermodynamic robustness and computational efficiency) to optimize this model

in order to achieve a better agreement with experiments. I am going to explore this
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Figure 3.2: Density profiles for the studied atomistic models of the liquid mercury at
T =293 K.

possibility in the next section (Sec. [3.2)).

Free energy

In order to deepen our physical understanding of the influence of the density depen-
dence of the studied mercury models on the phase behavior I employ the liquid-state
theory (LST) [90, 92| [04] explained in Sec. 2.3] I start by discussing the Helmholtz
free energies (Eq. [2.40) for the DI and DD models, which are shown in Fig. [3.3] The
striking distinction of the DI model compared to the DD one is that the DI model fea-
tures a single region of negative curvature of F(p). This curvature region corresponds
to the spinodal region inside the liquid-vapor miscibility gap. The DD model, on the
contrary, reveals two regions of negative curvature divided by the metastable region in
the density range from 8000 kg/m> to 11000 kg/m>. Precisely here is the DD model
density-dependent in contrast to the DI model (recall Eq. [3.4)). In the following we are
going to convince ourselves that such behavior of the free energy of liquid mercury from
the DD model dramatically alters the overall phase behavior. As mentioned above, if

two thermodynamic states coexist with each other, one can determine their respective
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Figure 3.3: Free energy for the DI (dark blue solid line) and DD (red dashed line)
models. Straight lines present the double tangents to the free energy of the DI (blue
dashed line) and DD (dark red double short dashed line) models.

densities from the double tangent construction to the free energy versus density curve
(see e.g. Ref. [96]]), because both coexisting phases must have the same pressure and
chemical potential values. This means basically that the points, at which the double
tangent contacts the free energy curve, define two systems (and the densities thereof),

which can coexist with each other.

As one can infer from Fig. [3.3] the coexistence density pcoex Of liquid mercury with
its vapor is 12320 kg/m? and 9560 kg/m?> for the DI and DD models, respectively. Of
course, my LST results are very approximate by virtue of the simple approximations
invoked by the LST approach. Nevertheless, they allow to gain a clear understanding
of what happens when one inserts a density dependence in the DI pair potential on an
ad-hoc basis. Namely, the additional dip in the free energy for the DD model with its
minimum in the vicinity of 10000 kg/m? inhibits the coexistence of liquid mercury at a
higher density of 13550 kg/m? with its vapor. As a result we observe two coexistence
regions. The first coexistence region corresponds to the coexistence of a Hg vapor with

the low-density liquid of about 9560 kg/m>. And the second coexistence region cor-
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Figure 3.4: Free energy for the embedded-atom models of mercury.

responds to the spurious liquid-liquid phase coexistence between liquids of density of
about 10000 kg/m? and 15000 kg/m>. T expect that in the simulations the latter mis-
cibility gap may be preempted by the coexistence of liquid mercury and its crystalline

phase. The above LST results rationalize my MD simulations of the DI and DD models.

On the contrary, as Fig. [3.4] shows, the LST free energy curves for the EAM2013
and EAM2006 models have no spurious features that might dramatically alter the phase
behavior. It should be noted that the free energy for the EAM2013 model reveals some
regions of positive curvature for p < 13000 kg/m>. This indicates a number of possible
metastable coexistence regions at low densities (Fig. [3.4). But as the MD simulations
indicate, these possible coexistences at lower densities are preempted by the liquid-
vapor coexistence at the density of liquid mercury of about 13000 kg/m>. Therefore,
the form of U,,, of the EAM2013 model does not change the thermodynamics of phase
coexistence nor I see a peculiar density profile of the mercury film. The free energy
of the EAM models without the contributions of the respective embedded energies is
shown in Fig. [3.4] for the comparison as well. From the double-tangent construction I
obtain Peeex = 12800 kg/m? for the EAM2006 model. Taking into account the simplicity
of the LST approximations, the agreement of the LST predictions with the results of the
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atomistic MD simulations appears to be very good. The effective hard sphere diameter
(Eq. i for both EAM models equals to 2.96 A and is independent of density.

3.2 Optimized model for liquid mercury

3.2.1 Derivation

As discussed in my previous article [89], it is possible to optimize the DI model, which
will allow to obtain higher surface tension, 7, and preserve the experimental value of
Pcoex Of liquid mercury. This is achieved by increasing the strength of the pair inter-
action, Ay, as is seen in the inset in Fig. [3.5] Simultaneously one has to change the
parameter b in order to preserve the coexistence density of the liquid phase. In this
way we decrease the range of the attractive part of the pair interaction as shown in
Figs. 3.5/ and [3.6] As is discussed by Frenkel et al. [88], the range of the attractive
interaction determines the stability of a liquid phase. As we shall see, a shorter range
of attractive interactions and its stronger strength tend to shift the liquid-crystal phase
boundary towards a lower density value for a given temperature. This is why there is
a limit on how much one can decrease the range of attraction and increase its strength
before crystallization sets in.

From Fig. one can see that the increase of A; and b corresponds to the increase
of the hard core diameter d (see Eq. of mercury. This in turn corresponds to the
increase of the packing fraction 1) (Eq.[2.43)). My best values for the optimized DI (ODI)
parameters are A} = 2.233335535 kcal/mol and » = 0.891 A2, This yields 1 = 0.643,
which is slightly below 0.65 for the random closest packing of hard spheres [148]]. If
one increases A any further at 7 = 293 K, the system would be inevitably driven into
the crystalline phase.

The packing fraction 1 for the ODI as well as for the LJ model in the liquid phase
is higher than that of hard spheres at the liquid-solid transition. Using Eq. [2.44] find
d = 1.070y for the LJ fluid phase at the triple point. This yields the packing fraction
n = 0.51. For the hard-sphere fluid at the liquid-solid transition n = 0.494 [148]].

The values of surface tension 7y for the ODI (purple solid line in Fig. [3.6) and inter-
mediate (red dashed line in Fig. sets of the optimized parameters are around 0.27

N/m and 0.21 N/m, respectively. These values are still smaller than the experimental
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Figure 3.5: The squared inverse attractive range b (left y-axis, dark blue squares), the
hard core radius d (right y-axis, dark red pentagons) and the surface tension Y (inset) are
presented as functions of the strength of interaction, A;. Density in the middle of the
Hg film differs from the experimental one by about 0.1% for each pair of (A1, b) values.
Values of d and 7y at given A correspond to the respective value of b. Lines connecting
the data points serve as guides to eyes.

value but, nevertheless, larger than the y value for the original DI model. In order to
increase Y further one would have to add an additional long-range term to the DI pair
potential. This would allow to keep the range of attraction large enough in order to

prevent the crystallization of the system.

The density profiles obtained from the simulations with the DI, intermediate, and
the ODI models are represented in Fig. In all the cases the densities of liquid Hg
at the coexistence with its vapor agree very well with the experimental bulk density
of 13550 kg/m> for liquid Hg at T = 293 K [145] deviating from it only by around
0.1%. The ODI model shows much stronger surface oscillations at the liquid-vapor
interface compared to the DI model (Fig. [3.7). This suggests that the higher values
of y imply stronger layering at the mercury surface. Though the 1st outer peak in the
density profile of the ODI model is smaller than the 2nd one (as opposed to experiment

[98])), it should not be significant for the construction of coarse-grained models from my
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Figure 3.6: Comparison of the density-independent model with different values of A;
and b parameters, that yield the same bulk density.

atomistic ODI force field, because the large-scale properties such as contact angle of a
drop are mainly determined by the interfacial tension. Moreover, the surface tension of
the ODI model is comparable (very close) to the EAM models (see the previous section

for the comparison).

Finally, I note that when no external fields are applied the local position of the Hg

surface is influenced mainly by capillary waves with the mean square amplitude [149]
ke T

a, = mln(L/l), (3.18)

where L is the lateral size of the system, / is the size of the mercury atom (i.e. a short

wavelength cut-off of the capillary wave spectrum). I use the hard sphere diameter, d, of

mercury as a measure for /. Giving Eq. [2.44] d is readily estimated for the ODI model

and equals to 3.12 A. I use this value of d together with ¥ = 0.27 N/m, 7 = 293 K and

L =124.56 A in the Eq. in order to obtain a2, = 0.49 A. This means that the local

shape of the Hg film deviates on average by about +0.7 A from the planar geometry.

On the atomistic scale this is an insignificantly small deviation, because it is noticeably
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smaller than the diameter of a mercury atom. Hence, I anticipate that the influence of
the capillary waves on the interface profiles and surface tension for the lateral system

sizes (used in this chapter) is also insignificant.
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Figure 3.7: Density profiles of the density-independent double exponent model (Eq.
for various sets of A| and b parameters that yield the same bulk density of 13550 kg/m?.

3.2.2 Validation

Temperature behavior

To compliment the discussion of the ODI potential I have calculated the p — T phase di-
agrams of mercury from the MD simulations and from the double-tangent construction
to the LST free energy curves. The results are depicted in Fig.[3.8] The calculated phase
diagrams of liquid Hg basically serve two purposes. First, I study the temperature be-
havior of the ODI model in order to understand, up to what temperature the ODI model
provides a satisfactory description of the mercury phase diagram, so that one does not
have to re-optimize parameters A; and b. Second, these results help us to better es-
timate the limitations of the LST approach compared to the MD simulations. As one

sees from Fig. [3.8] the vapor branches of both phase diagrams perfectly coincide with
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Figure 3.8: Comparison of the p — T phase diagrams of mercury obtained by my MD
simulations of the ODI model (green stars) and by the double tangent construction to
the LST free energy curves (red squares). Experimental values of the density of liquid
mercury at relevant temperatures are also shown (purple crosses) [[145].

each other. We also see that the LST matches quite well the MD liquid branch starting
from about 1200 K. My MD simulations yield at 7 = 523 K the bulk density of liquid
mercury of 12.4 g/cm? at the coexistence with its vapor, which differs just by 4.5% from
the experimental one at the same temperature [145]. As the temperature increases the
deviation from the experimentally observed coexistence densities will grow. Despite
this, I note that such high temperatures (> 523 K) lie above the typical applicability
temperature range for the organo-metallic surfaces, since at such temperatures mercury
features coexistence of a vapor phase of a non-negligible density with a liquid phase.
Moreover, at T = 373 K a thiol monolayer on a crystalline surface would become very
distorted [150]. Furthermore, we will see in one of the following chapters that a well
ordered crystalline phase of octadecanethiol molecules becomes completely destroyed
already at T = 350 K. Giving these results as well as the ones for the surface tension, one
can conclude that the ODI model describes the surface of liquid Hg quite satisfactory
in the range of temperatures of practical interest. In principle, the above optimization

procedure can be applied at any desired temperature in order to improve the precision.
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Bulk properties

In order to finalize the discussion of the ODI model I have also evaluated bulk properties
of liquid Hg. For this purpose a cubic bulk systems with side length of 36.6351 A and
N =2 x 10° Hg atoms was used. Such bulk properties of the liquid mercury as the
specific heat at constant volume, Cy, and constant pressure, Cp, were evaluated. These

quantities are defined as follows (see e.g. [[75]])

Cy =(dU /dT)y, (3.19a)
Cp =(dU /dT)p. (3.19b)

In order to compute Cy and Cp the simulations were performed at temperatures of 290.5,
293, 295.5 and 298 K. For the calculation of Cp and of the heat of evaporation (see
below) the pressure was held constant at 0 atm by using the Berendsen barostat [[78]]
with the pressure damping parameter of 1 ps. Following, the system total energy, U, is
differentiated with respect to temperature by using a four-point finite difference formula
for the 1st derivative in order to obtain the final values of Cy and Cp for T = 293 K.
My simulations yield 22.67 and 29.86 J/(mol K) for Cy and Cp, respectively. Giving the
available experimental data for 7 = 293 K and P = 1 atm [[151] we can see that the ODI
result for Cy is slightly below the experimental value of 24.137 J/(mol K), whence the
ODI result for Cp is slightly above the experimental value of 27.9 J/(mol K).
In addition, I have computed the heat of evaporation, AH, (see e.g. [[152])

AH = AU, +RT, (3.20)

where AU, is the change of the system’s potential energy per mole upon evaporation
at constant pressure and R is the gas constant. I obtain AU,,; = 62.22 kJ/mol, which,
finally, yields AH = 64.66 kJ/mol. This value of AU, lies within 4.9% of the experi-
mental one of 61.64 kJ/mol [[151]].

I consider the ODI estimates of the bulk properties of liquid Hg to be quite satis-
factory, especially giving that the ODI model was devised primarily with an intention
to obtain a computationally efficient force field for the liquid mercury that produces a
strongly oscillating Hg surface of high tension in order to serve as a support in simula-

tions of organic molecular monolayers.
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3.3 Discussions and conclusions

In the present chapter a number of previously proposed force fields for the molecular
simulation of liquid mercury has been evaluated in the ability to model a strongly oscil-
lating density profile of a liquid mercury surface and its high tension. It is found that
the embedded-atom models yield the best agreement with the experiment value of the
surface tension as well as strongly stratified density profiles at room temperature. On
the contrary, the density-independent double-exponent model produced a too low sur-
face tension and weakly oscillating density profile for the liquid mercury surface at the
desired temperature. Nevertheless, this model is thermodynamically robust, because it
is capable of producing the right coexistence densities of liquid mercury, and, generally
speaking, is much more computationally efficient compared to any density-dependent
model including the embedded-atom ones. This is why this density-independent model
is optimized to improve the agreement of the surface tension value with experiment and
to yield the highly oscillating density profile of liquid Hg at room temperature. The
so obtained value of the surface tension is comparable with ones from the simulations
with the embedded-atom models. The optimization procedure is highlighted in detail
and may be repeated for any desired temperature. Additionally, it is shown that the op-
timized parameters of the density-independent model yield a quite satisfactory descrip-
tion of the surface of liquid mercury for the temperature region of practical interest (i.e.
up to 500-600 K). One way to improve further the characteristics of liquid mercury in
a computer simulation is to try to re-parametrize the embedded-atom models according
to the recently obtained experimental data on the equation of state of the liquid mercury
[153]]. Another possibility consists in adopting the modified embedded-atom method,
where a non-uniform atomic distribution near to the surface might be explicitly taken
into account [[154]. As an alternative to this, for the derivation of a new force field for
liquid mercury one could try a newly developed scheme for the systematic modification
of the embedded-atom models, which allows for an implicit account of anisotropy of
density distributions [155]. It has been also shown that the semi-analytic liquid-state
theory is an easy and immediate tool for a qualitative scan of coexistence behavior of
density-dependent force fields for molecular simulations. In the next chapter the opti-
mized density-independent model will be now applied for the large-scale simulation of

the alkylthiol self-assembly on the surface of liquid mercury.
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4 Molecular coverage induced self-
assembly of thiols on liquid mer-

cury

After developing the force field for the effective numerical simulation of the bare surface
of liquid mercury in the previous chapter one is now fully equipped to make the next
step. In this chapter the phase behavior of thiols as a function of the surface coverage
will be investigated in detail. The experimentally observed coexistence of the molecules
in the laying-down conformations with the crystalline phases of standing thiols has been
attained in the simulations presented below. The structure in the crystalline thiol phases
is carefully analyzed. In order to adequately capture the effect of the surface coverage
one has to simulate extremely large systems, which drastically increases computational
costs. This is why a smart way of initializing the surfactant systems is crucial in order
to reduce equilibration times. In the beginning of this chapter the molecular model and
the force fields, which were used in the current study, are introduced. Special attention
is devoted to the equilibration procedure. Following, I proceed with the description
of the obtained results. The simulations presented in the current chapter allow for the
first time to directly access the molecular-scale structure of the self-assembled alkylthiol
monolayers on the surface of liquid mercury and to understand factors that influence it.
Most of the results on the equilibrium structure of the thiol SAMs from this chapter the

reader can also find in my recent publication [156].

51



4.1 Simulation details

4.1.1 Force fields

In order to simulate an alkylthiol monolayer on a liquid mercury surface I have uti-
lized a united atom (UA) representation of the alkyl (CH,) and methyl (CH3) groups, in
which hydrogens (H) are not explicitly treated and CH, and CH3 groups are modeled
as single particles, which allows to considerably save computational time and simulate
systems of more realistic sizes. Mercury and sulfur (S) atoms are treated atomistically.
Fig.[1.7|shows a sketch of such molecular model. A linear chain of alkyl groups together
with sulfur head- and methyl endgroups comprises a single alkylthiol molecule. From
valance considerations I have chosen to model an ideal situation when two alkylthiol
molecules are chemisorbed onto a single mercury atom. There have been also exper-
imental evidences in favor of this choice [64]]. Thus, a single surfactant molecule is
represented by the complex of two thiols bound to one Hg atom (R-S—-Hg—S—-R) as
shown in Fig.[I.7p. As previously discussed the mercury atom that has chemical bonds
connecting it to a thiol molecule will be dubbed a bound mercury and designated as

Hg*, whereas bulk mercury atoms shall be denoted simply as Hg.

The total energy of such molecular system consists of bonded and non-bonded con-
tributions
Utot = Uponded + Unon—bonded- “4.1)

The bonded part describes all intramolecular interactions due to elastic bonds, Upy,a,

and bends, Up,,q, as well as due to torsional degrees of freedom, Usosion,

Ub()nded = Ub()nd + Ubend + Usorsion- (42)

The bond energy, Upy,q, 1S given by the sum over all covalent bonds in the system

Ny Ny—1
Ubona = Z Z Ur(rmi)a (4.3)

m=1 i=1

where N and N, are the total number of surfactant molecules and atoms per molecule,

respectively. In the above equation r,,; is the length of the i-th bond belonging to the
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m-th surfactant molecule. The elastic bond stretching is given by harmonic springs
Uy(r) = Kr(r—r0)>. (44)
The respective spring constants and equilibrium bond distances are given in Tab. 4.1}

Bond type | K, (kcal/(mol A2%)) | Ref. | ro (A) | Ref.

CH, 3-CHj, || 95.899 [057] | 1.53 | [157]
CH,-S 222.0 B3] | 1.82 | 39]
S—Hg 222.0 2.305 | [158]

Table 4.1: Parameters for the bond energy (Eq. for various bond types.

Figure 4.1: A segment of a surfactant chain depicting adjacent atoms i, j, k and /. The
bonds between the adjacent atoms are modeled as harmonic springs (Eq. #.4). The
degrees of freedom associated with a bend angle, y, formed by two neighboring bonds
are also described via harmonic springs (Eq. .6). The angle ¢ defines the torsional
rotation around the bond between atoms j and k. The respective torsional degrees of
freedom are modeled by a multiharmonic potential (Eq. @)

The bending energy is given by the sum of the contributions of all the molecular angles

in the system
Ny Ny—2

Upend = Y, Y., Uy(Wmi), (4.5)

m=1 i=1
where y,,; is the i-th angle of the m-th molecule defined as an angle between two bonds

formed by three adjacent atoms of the same molecule (see Fig.[4.T). Analogical to the
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Bend angle | Ky (kcal/(mol rad?)) | Ref. || o (Deg) | Ref.

CH, 3—CH,-CH, | 62.100128125 [159] || 114.4° [159]
S—-CH,-CH, 62.5 114.4° [46]

CH,-S-Hg 47.1 [158] || 101.1° [158]]
S-Hg-S 26.0 [158] || 178.6° [158]]

Table 4.2: Parameters for the bending energy (Eq. for various types of molecular
angles.

elastic bond energy, the bending energy, Uy, is modeled by harmonic springs

Uy = Ky (¥ — w0)?, (4.6)

where the values of Ky and y for various molecular angles are given in Tab. #.2] The
torsional energy is defined as a sum of the contribution from all torsion angles in the

system
Ny' No—4

Utorsion = Z Z U¢(¢mi), (47)

m=1 i=1

where ¢,,; is the i-th torsional angle of the m-th molecule. A torsional angle describes
the rotation of a molecular backbone around a given bond vector, r, ;11 = I; — Iy,
between two adjacent atoms, n and n+ 1, of the same molecule (see Fig. 4.1). Such
angle is then defined as an angle between two planes, each built by the pair of vectors
(Cpnt15 Yny1042) and (Xp_1 4, Ty n41), Tespectively. Typically, if one takes into account
all bond vectors in the molecule, the number of torsion angles in a simple chain molecule
is N, — 3. In our case, the S—Hg—S angle is very close to 180° and, consequently, it is
difficult to define separate rotations around two adjacent S—Hg bonds [158]. This is
why, instead of these two rotations, I use a single one around S—-Hg-S segment in my
simulations similar to Ref. [158]. Hence, the second summation in Eq. goes up to
N, —4. I choose a single torsion contribution to Eq. to be of a multiharmonic type
(see e.g. Refs. [[77,1156L 159, [160]]), which has a very flexible functional form

5
Up(9) =Y Aicos’™ ' 9, (4.8)
i=1

the values of the respective parameters A; for various torsion types are given in Tab.[4.3]
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Torsion type | A; (kcal/mol) | Ref.

CH, 3—CH,-CH,—-CH; A1 =2.007115885082 [159]
equivalent to the OPLS Ar = —4.0122147580025 [159]
force field for alkanes A3 =0.271014895158 [159]
(e.g. compare with Ref. [60]) || A4 = 6.2894890532754 [159]
A5 =0.0 [159]
S—-CH,-CH,-CH, A1 =2.007115885082 [39]
Ay = —4.0122147580025 [39]
A3z =0.271014895158 [39]
A4 = 6.2894890532754 [39]
A5 =0.0 [39]
CH,;-CH,-S-Hg A1 =0.5099999990 [158]]
fit by Eq. of the Ay = —0.5700000000 [158]]
respective torsional A3 =0.3000000110 [[158]]
energy from Ref. [158]] A4 = 1.0800000000 [158]]
As = —0.0000000108194621 | [158]
CH,-S-S—CH; A; = —0.0889828674
symmetrized version of Ay = —0.0405435305
the respective potential Az =0.8999657630
from Ref. [[158] A4 = 0.00000000489717245
As = —0.0000000807474767

Table 4.3: Parameters for the torsion energy (Eq. for various types of torsion angles.

The non-bonded interaction describes intermolecular interactions, such as Van der

Waals and metallic (for bulk Hg) interactions, and is given by

Unon—bonded = Y Unig—tg+ Y Ung—tg + Y Ung-s+ Y Ung—cr, + Y Ung—ch,
+ Z Us_s+ Z Ung —Hgr + Z Uch,—cH, + Z UcH;—cH,
+ Z Ung—s+ Z Ung—cH, + Z Ung+—cHs
+Y Us—cu, + Y Us—cu; + Y Ucti,—cH. (4.9)

where the summations run over all possible atom pairs of respective atom species.

For the pair interaction of the bulk mercury atoms, Uy, g, 1 use the optimized
density-independent double-exponent force field derived in the previous section and

also described in my paper [89)]. Below I give its functional form once again for the
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Type | Ao (kcal/mol) | a (1/A) | Ay (keal/mol) | b (1/A%) | Ry | Ref.
Hg-Hg [ 190.1990928E13 [ 12.48 [ 2233335535 [ 0.891 [ 3.56 | [89]
Hg-CHa 3 || 190.1990928E13 | 12.48 | 0.5 2.0 3.56 | [156]

Table 4.4: Parameters for the Hg-Hg and Hg—CH) 3 interactions that follow the func-
tional form of Eq. [4.10}

sake of completeness
U(r) = Agexp(—ar) — Ay exp(—b(r — Ro)?). (4.10)

The Uygcn, and Uy, cH, interactions follow the same functional form as Eq. @ and
were parametrized to yield an experimental adsorption energy of 5.4 kJ/mol per alkyl
group on liquid mercury [156]. The values of respective parameters from Eq. 4.10] for
Hg-Hg and Hg—CH, 3 are summarized in Tab. 4.4}

Since there is no available experimental data on thiol adsorption energies on liquid
mercury, the interaction of bound and bulk Hg atoms among themselves, Ugg_gg+, as
well as the interaction of the sulfur headgroup with the bulk mercury, Uy, s, are free
parameters of the model. These interactions are important for the magnitude of the
adsorption energies, but should be of lesser importance for the lateral packing of the
surfactants on the surface of liquid mercury. For the current study it is important to
fulfill the condition of the chemisorption of thiols on liquid Hg surface, namely, when
a thiol molecule is chemisorbed, it is unlikely to leave the surface of liquid mercury.
This condition is easily satisfied by choosing the Uy, _pg+ interaction equal to the bulk
mercury interaction, Uy, p,. The interaction of bound Hg atoms with themselves,
Ung —Hg+, should not be as strong as of the bulk mercury, because the bound mercury
is no longer metallic. This is why for the sake of simplicity this interaction as well as
all respective cross-interactions (involving Hg*) and the Up,_g interaction are chosen
to be the same as the Hg—CH, 3 interaction.

The non-bonded interactions between thiol components, Us_s, Ucn,—cH, and Ucy,—cH;»
are modeled via the Lennard-Jones potential

Uy = 4¢ {(%) v (ﬁﬂ . @.11)

7
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The values of € and oy for various interaction types are given in Tab.

Fig. #.2] shows the described above non-bonded potential used in my simulations.
We see that the double-exponent potentials (Upg—gg and UHg—CH273) have a considerably
shorter range compared to LJ-like models. For this type of interactions I use the cut-off
radius, r., of 9 A. For the LJ interactions reis setto 15 A. The short-ranged interaction

of alkyl and methyl groups with the bulk mercury is very important in order to capture

right phase behavior of alkanes on the surface of liquid mercury [156]].

Type | & (keal/mol) | 6y (A) | Ref.
CH,-CH, 0.091014 3.93 [159]
CH3;-CH3 0.212631 3.91 [159]
S-S 0.39743 4.25 [46]]
cross-interactions | &; = \/€i€j; | 0o;; = (00; +00,;)/2 | [70]

Table 4.5: Lennard-Jones parameters for non-bonded thiol-thiol interactions.
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Figure 4.3: Schematic depiction of the simulation box.

4.1.2 Setup of molecular systems and equilibration: Preliminary

insights into the self-assembly of thiols on liquid Hg

The setup and equilibration of the molecular systems under investigation are highly non-
trivial tasks and require a separate attention. This is why I am going to discuss herein
these procedures in detail. I use a slab geometry, in which the mercury film is located
in the middle of the slab and an equal amount of thiols is placed on each side of the Hg
film. A schematic view of the simulation box is shown in Fig.[4.3] The thickness of the
film is about 8 nm, which ensures that the two surfaces of liquid mercury are separated
by a sufficient amount of the bulk of liquid mercury. As in Chap. [3] the LAMMPS
package [[77] is used for my MD simulations. In order to accelerate the simulations I
apply the reversible multi-time-scale Molecular Dynamics method [83]], where the time
steps for the non-bonded and bonded interactions were 2 and 0.5 fs, respectively. The
temperature is controlled by the Nosé—Hoover chain thermostat [80] of the length of
ten coupled thermostats. After equilibration the sampling for the analysis is done every

2 ps.
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(b) (d)

Figure 4.4: Example of the initial setup of octadecanethiols (SC18) on liquid Hg. Top (a) and side (b)
views for 6 = 1.1156 nm~2. Top (c) and side (d) views for ¢ = 4.3 nm~2, apart from the thiols standing
upright this system (c, d) corresponds to the experimental packing in dense thiol SAMs on Hg [64]]. The
S—Hg-S bonds are rotated by 45° with respect to the y-axis. The shown systems correspond to the system
cross-section of 9.936 x 10.104 = 100.39 nm?. Color code: bulk Hg (red); bound Hg* (purple), sulfur
(yellow), alkyl tails (green). 59



As the first simple choice, I have distributed the surfactant molecules (R—S—Hg—S-
R) with their alkyl tails standing untilted in all-trans conformations on the sites of a
simple square lattice as shown in Fig. 4.4] After such initialization (for low values of
o) the alkyl tails fall down and spread across the Hg surface within the first 0.2-0.5 ns.
For a given thiol surface coverage, o, the lattice spacings in x- and y-directions were
chosen such that the molecules were uniformly spaced along the x- and y-axes. The
thiol surface coverage is defined as the number of thiol molecules per one side of the

Hg film, N, divided by the total surface cross-section, A, as follows

N,
o = Non

, (4.12)
ASC

where N;;, = 2N, and N,, is, consequently, the number of surfactants per one side of the
Hg film. Finally, A = L,Ly, where L, and Ly are the lateral extensions of the simulation
box in x- and y-directions. Prior to placing surfactants onto the Hg surface the liquid Hg
film was pre-equilibrated for 8 ns. In the following I designate this way of initializing
the systems as the U-initialization. Periodic boundary conditions are applied in all
directions. Sufficient amount of empty space was added above and below the Hg film
in order to insure that the molecules on the top and bottom sides of the Hg film do not

influence each other.

As discussed above, experiments indicate a transition between laying-down and
standing-up thiols as the surface coverage increases above the full coverage of the
laying-down conformations [64]. As the first attempt to investigate this effect, I study
the SC18 self-assembly for a wide range of the surface coverage values and total system
cross-section, A, of 9.936 x 10.104 =~ 100.39 nm?2. Tab. gives a brief overview
of equilibration, 7,4, and sampling, #;, times as well as of the final surfactant configu-
rations obtained after the total simulation time, f;,; = f.4 + f;, was reached. From this
table one can see that it is extremely difficult (i.e. takes a lot of computational time)
to obtain standing-up thiol conformations for the intermediate range of ¢ values above

the full coverage, ~ 0.8 nm~2, of the laying-down thiols up to ¢ ~ 1.59 nm2.

In
the following I will call this region of o values the oversaturated one. For example,
for 0 = 1.1156 nm~2 no standing molecular conformations were observed after the
total simulation time of 238 ns was reached, although the surface coverage is clearly

above the complete monolayer of the laying-down SC18 molecules (see Fig. [4.5a)). For
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o ” / ” = 3

(a) Aes = 100.39 nm?, 238 ns.  (b) Ags = 225.9 nm?, 218 ns.  (¢) Aes = 903.5 nm?, 128 ns.

Figure 4.5: Example of the finite-size effects on the structure of the SC18 SAM at
indicated times. Snapshots from MD simulations for ¢ ~ 1.1156 nm~2 and different
system cross-sections A;. Color code same as in Fig@

o = 1.27498 nm~? an island of standing thiols was formed only on one side of the
Hg film after 279.5 ns. For ¢ = 1.43436 nm~2 I have carried out two simulation runs
each of 278.2 and 339.95 ns long, respectively. In the first run I observed the forma-
tion of crystalline islands of thiols from both sides of the Hg film after 133.2 ns. In
the second run I was not able to obtain the islands on both sides of the film even after
339.95 ns. For 6 = 1.59373 nm~2 I have performed also two separate simulation runs
and this time in both cases I was able to obtain crystalline thiol islands on both sides
of the Hg film. Although the times, after which the islands were formed on the both
sides, were substantially different in this two runs and comprised 225.936 and 120 ns,
respectively. All this indicates that the formation of crystalline islands in the oversat-
urated region is a protracted spontaneous process that heavily depends on the lateral
system sizes. Upwards from this value of o I was able to resolve crystalline standing
phases of octadecanethiols with the equilibration times generally lesser than the ones in

the oversaturated region.

At this point I have to clarify what is meant by #., for various ranges of o. For o
values lower than that of the full coverage of laying down thiols, 7., is the time, at which
both, the system total energy and surface tension, level off and start to fluctuate around
their mean values. Thus, I consider that such a system has reached the thermodynamic
equilibrium for the simulated temperature. If a molecular system is in the oversaturated

region of ¢ values and has not developed crystalline thiol phases from both sides of the
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Hg film during the whole simulation time, #,,, I consider 7., to have the same meaning as
above. Although, in this case, such an "equilibrium state" is not the true thermodynamic
equilibrium state at the given temperature and surface coverage, and only represents a
steady state of an oversaturated layer of laying-down molecules, which is simply a re-
sult of finite-size effects. Now, if the system in the oversaturated region has developed
a crystalline island only on one side of the film, I consider such system to be not equili-
brated and will discard such systems for the following analysis. Finally, if a system has
developed a crystalline island on each side of the Hg film, it will be equilibrated, when
again both, its surface tension and total energy, start to fluctuate around their mean val-
ues. I should also note that for various system sizes the size of the oversaturated region
varies (compare SC18 structures for o ~ 1.1156 nm 2 and different A, in Fig. . In
fact, we will see that for larger system cross-sections the oversaturated region shrinks.

Tab. [A.2] gives an overview of studied dodecanethiol (SC12) systems for the cross-
section of 9.936 x 10.104 = 100.39 nm?. Here the full coverage of laying-down thiols is
attained at about & = 1.1156 nm~2. Starting from this value of ¢ and up to ~ 2.07 nm 2
the systems stayed in oversaturated states of laying-down thiols with some strongly
disordered patches of semi standing molecules during the total simulation time. Giving
such large finite-size effects, this systems will be omitted in the further treatment.

To reduce the discussed above finite-size effects the octadecanethiol (SCI18) sys-
tems of larger cross-section, Agg, of 14.904 x 15.156 ~ 225.9 nm? have been set up
(see Tab.[A.3). The width of the Hg film was left approximately unaltered (~ 8 nm).
For this system cross-section the oversaturated region is slightly shorter (compared
to smaller systems) and goes from the full coverage of laying-down thiols up to ¢ ~
1.1156 nm~2. The respective oversaturated SC18 system at ¢ = 1.1156 nm~2 is still
not able to develop a crystalline phase of the standing-up thiols (see Fig. 4.5b). In
order to reduce the finite-size effects even further, I have set up two SC18 systems
for Ay = 29.808 x 30.312 ~ 903.5 nm? and thiol surface coverages of 1.1156 and
1.43879 nm 2, respectively. Only at such huge system cross-section (as for an atomistic
computer simulation) I was able for the first time to resolve a SC18 crystalline island
for 6 = 1.1156 nm~2 as is shown in Fig. Unfortunately, at the same time, I have
run here into several problems simultaneously.

On one hand, the equilibration times remain very large. For ¢ = 1.43879 nm >

the islands of standing-up thiols on both sides of the Hg film are observed only after
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(a) Metastable spiral island. (b) Grain boundary. (c) Grain boundary.

Figure 4.6: Possible defects of SAMs on liquid Hg. (a) Ay = 100.39 nm?, ¢ =
2.07185 nm~2 and #,,; = 294.92 ns; (b) A, = 225.9 nm?, ¢ = 2.07185 nm 2 and
tior = 203.75 ns; (¢) Ags = 903.5 nm?2, 6 = 1.43879 nm 2 and #,,; = 123.85 ns; Color
code same as in Fig.[{.4]

teq = 100 ns. And for 6 =1.1156 nm 2 and #,,;, = 128.45 ns the system has developed
a crystalline thiol island only on one side of the Hg film. On the other hand, the U-
initialized systems develop various multiple defects in SAMs (see Fig. [4.6)), relaxation

times of which are basically unreachable on the typical time scales of my simulations.

In order to overcome these obstacles I have adopted an advanced initialization proce-
dure for the systems with the largest simulated cross-section, A, of 903.5 nm?. For the
systems with the values of thiol surface coverage ¢ > 1.1156 nm~? crystalline islands
of standing-up thiols with a given number of thiol molecules were pre-initialized on the
surface of liquid mercury. Such islands were surrounded by a "sea" of pre-equilibrated
laying-down octadecanethiols as illustrated in Fig. [£.7). To achieve a desired surface
coverage a specific number of molecules of the number of the laying-down ones are
removed from the system and on their place the island of standing-up thiols is inserted.
Afterwards, such molecular configuration is reflected onto the opposite side of the Hg
film. In the following I will call such initialization procedure the P-initialization. The
number of thiols in the crystalline islands was approximately estimated where possi-
ble from the previous simulations of the systems, which had the same cross-section
and surface coverage values and were initialized with the help of the U-initialization
procedure. For the other systems the percentage of standing molecules was determined

from the simulations of the systems with smaller cross-sections and similar values of the

63



¢ (b) Side view. About 5 A are initially left be-
¢ tween the thiol SAM and the surface of Hg in
¢ order to avoid possible unphysical overlaps be-
¢ tween the atoms of the SAM and of the Hg sur-
¢ face.

(a) Top view.

Figure 4.7: Example of the initial setup of the SC18 monolayer for ¢ = 1.61144 nm >
with a crystalline island of the standing-up thiols. The system cross-section is
903.5 nm?. The arrangement of thiols in the island and the color code are identical

to Figs. and[4.4d,

thiol surface coverage. I have presumed an experimentally proposed rectangular unit-
cell [64] with two thiols per cell and the lengths of the base vectors of 5.52 and 8.42 A
for the molecular arrangement in the islands. The alkyl tails in the thiol islands were set
in the all-trans conformations and left untilted in order to bias the system lesser and to
allow it to relax into the state with an equilibrium tilt angle itself. The initial structure of
in such a way obtained thiol islands is identical to the one shown in Figs. and[4.4d|
In the system with o = 2.10948 nm~2 a stripe of standing molecules spanning through
the periodic boundary was initialized using the procedure described above. It takes at
most 20 ns to equilibrate the systems that were set up by the P-initialization procedure.
The rest of the octadecanethiol systems at lower surface coverage (¢ < 1.1156 nm~2)
were set up via the U-initialization. All octadecanethiol systems with the cross-section
of A,y = 29.808 x 30.312 =~ 903.5 nm? are listed in Tab.

Since it was impossible to resolve dodecane (SC12) crystalline islands for the sys-
tems of smaller cross-section, I have pre-set up SC12 systems with the crystalline island

by simply trimming (7-initialization) octadecanethiols in the respective equilibrated
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SC18 systems (o = 1.43879 and 1.61144 nm~2) to the needed length. In such a way
prepared SC12 systems needed considerably longer equilibration times (see Tab. [A.5)
than the respective SC18 systems initialized by the P-initialization. This is explained by
the fact that thus obtained crystalline islands of dodecanethiols were too large and had to
partially melt away. This is why I have pre-set up the SC12 system for o = 2.00545 by
applying the P-initialization. The respective number of the dodecanethiols in the crys-
talline island has been simply taken to be approximately 50% larger than the one in the
equilibrated SC12 system with ¢ = 1.61144 nm~2. This allowed to equilibrate the sys-
tem in 22 ns. Low-coverage SC12 systems were initialized by using the U-initialization
procedure. In general, all high-coverage SC12 systems with A.; = 903.5 nm? required
longer sampling times because of strong shape oscillations of the crystalline islands.
Details on the dodecanethiol systems for A, = 903.5 nm? used in my simulations are
presented in Tab.[A.5] In the following analysis I use mostly SC18 and SC12 surfactant
systems with the largest simulated cross-section area of 903.5 nm?. Finally, the largest
simulated system (SC18 surfactants at ¢ = 2.10948 and A.s = 903.5nm2) contained in
total 360004 particles.

4.1.3 Computational efficiency of LAMMPS

Fig.[.8|shows the LAMMPS speedup as a function of a number of CPUs for the systems
with the cross-section, A, of 903.5 nm? and various number of surfactants per side of
the Hg film, N,,. The dynamical reassignment of the particles to the computational cores
is used in order to optimize the load balance. This is why the respective plots of the
speedup are not ideally monotonous. The data was obtained on the system Cray XC40
with the CPU architecture Intel Xeon Haswell (12 cores with 2 CPUs each, CPU model
E5-2680v3, CPU clock 2.5 GHz). The scaling behavior of LAMMPS for all values of
Ny, is approximately the same, as is seen from Fig.[4.8] Additionally, it is clear from the
figure that the LAMMPS scalability starts to substantially depart from the ideal one at
#CPUs = 196. This is why I have used 196 CPUs for the simulations of all the systems
with A.s = 903.5 nm?. A typical simulation of about 6 ns for such systems sizes on 200
cores takes 12 hours. For the values of A s equal to 100.39 and 225.9 nm? a similar
scalability analysis has been done, based on which it has been decided to carry out the

simulations on 60 and 100 #CPUs, respectively.
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Figure 4.8: LAMMPS speedup normalized to 96 cores as a function of a number of
CPUs. The data is presented for the systems with the cross-section of 903.5 nm? and var-
ious number of surfactants per side of the Hg film, N,,. Hardware: Intel Xeon Haswell
(12 cores with 2 CPUs each, CPU model E5-2680v3, CPU clock 2.5 GHz); system:
Cray XC40.

4.2 Coexistence of various alkylthiol phases on mercury

4.2.1 Laying-down vs. standing-up phases

Let us now take a first glance at the phase behavior of thiols on liquid mercury de-
pending on their surface coverage, o. I start first by looking at the octadecanethiol
(SC18) conformations, which are shown in Fig. @ One sees that at low surface cover-
age (0 < 0.83 nm~2) thiols prefer to aggregate into clusters of laying-down molecules.
There are some correlations in the orientation of molecular axes (up to 5—6 thiols) of
the laying-down molecules, but, generally, the structure of these laying-down agglom-
erates is random. The agglomerates of laying-down octadecanethiols will grow until
the full coverage of the laying-down conformations at ¢ ~ 0.8 nm~2 (see Tab.
is reached. Generally, as ¢ increases above the full coverage, some octadecanethiol
molecules stand up with their alkyl tails tilted at a sharp angle to the surface normal and

begin to form crystalline clusters. Nevertheless, due to finite size effects oversaturated
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(a) 0 = 0.26562 nm 2

(c) 6 =1.1156 nm—?

(e) 0 =1.61144 nm—2

(b) 6 =0.83671 nm—?

(d) 6 = 1.43879 nm 2

(f) 0 = 2.10948 nm 2

Figure 4.9: Various phases of octadecanethiols on liquid Hg as a function of surface
coverage, 0. Aqs = 29.808 x 30.312 ~ 903.5 nm?, t;,; = 107 ns.
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(a) 0 = 0.53124 nm 2 (b) 6 = 0.83671 nm 2

(c) o =1.43849 nm—2 (d) 0 =1.61144 nm

(e) o =2.00545 nm—2

Figure 4.10: Various phases of dodecanethiols on liquid Hg as a function of surface
coverage, 6. A.s = 29.808 x 30.312 =~ 903.5 nm?.
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Figure 4.11: Ratio of standing alkylthiols for various values of thiol surface coverage.

monolayers of laying-down octadecanethiols exist until the number of surfactants will
suffice to build up a bulky standing island. Fig. depicts one of such oversaturated
states for 6 = 0.83671 nm~2. We will see later that such slightly oversaturated layer
results in the value of the surface tension, ¥ below the coexistence plateau in the y—c
isotherm. Figs. #.9c—f demonstrate the coexistence between the monolayers of laying-
down and standing-up SC18 thiols for a wide range of values of the surface coverage.
As is clearly seen from the snapshots the size and form of the islands of standing-up thi-
ols depend on ©. It is also interesting to note that the molecules are not tilted uniformly
across the whole islands, but rather gradually increase their tilt starting at a given side of
the island, where the thiols from the first row have their alkyl] tails laying flat on the Hg
surface. In turn, the tails of the second molecular row lay on top of the molecules from
the previous row and so forth. For large enough islands the effect of the nonuniform tilt-
ing vanishes for most of the molecules (see Fig.[#.9¢). The dodecanethiol (SC12) phase
behavior with respect to the increase of o is similar to the one of the SC18 systems
(Fig. .10). Here the full coverage of the monolayer of the laying-down dodecanethiols
corresponds to ¢ ~ 1.1156 nm~? (see Tab. . At higher dodecanethiol coverages
I observe stable regions of coexistence between laying-down and standing-up dode-
canethiols as well (Figs. [4.10c—e). Unlike from the SC18 islands, the SC12 ones have
very blurred boundaries (compare e.g. Figs #.10c.d to Figs #.9d.e). One also notices
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from the snapshots that on such boundaries the concentration of liquid-like thiols is
higher than in the monolayer of laying-down dodecanethiols. This finding correlates
with the previous observation that the shape of SC12 islands was strongly fluctuating
during the simulations, thus, causing longer sampling times. Finally, Fig. f.11] gives a
comparison of the amount of standing thiols in the octadecanethiol and dodecanethiol
crystalline islands. One sees that for lower values of o (1.43849 nm~2), the number
of thiols in the SC18 island is about 30% larger than in the SC12 ones, but, as ¢ goes

above 2 nm~2, this difference drops down to about 20%.

4.2.2 Density profiles

A more quantitative description of the phase transformations in the alkylthiol SAMs on
the surface of liquid mercury offers the analysis of the respective density profiles. The
processes of filling in the 1st monolayer of laying-down octadecanethiols as well as of
the formation of the standing crystalline thiol islands are clearly mirrored in the density
profiles perpendicular to the Hg film surface (Fig. for SC18 systems). One sees
that in the low-coverage regime (¢ < 0.8367 nm~?) the density profiles for the SC18
systems are characterized by single sulfur and alkyl peaks, that are spatially very close
to each other. The alkyl peak grows in the amplitude up to the point when the full cover-
age of the monolayer of laying-down octadecanethiols is reached, after attaining which
the Ist peak varies only slightly and the density profile starts to develop a shoulder into
the empty space above the Hg film. At the same time the sulfur peak starts to depart
more in the opposite direction as ¢ grows. This is explained by the observation that the
sulfur peak consists of two contributions, namely, from the sulfurs in the laying-down
and standing-up thiol conformations, respectively. And the sulfurs in the monolayer of
the standing molecules are tucked deeper into the bulk of mercury, as is also noticeable
in the side view of the SC18 system for ¢ = 2.10948 nm~? (Fig. . As the number
of standing octadecanethiols grows the contribution from the sulfurs in the standing-up
islands increases and the peak’s maximum shifts towards the mercury bulk. Similar
effect is also responsible for the slight changes in the height of the Ist alkyl peak in
the systems with crystalline islands. The density profiles for the dodecanethiols feature
behavior similar to the octadecanethiols discussed above, with the only slight difference

that the alkyl shoulders (due to the standing-up molecules) have regions (next to the 1st
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peak) of somewhat increased intensities (compared to the rest of the profile). Such be-

havior of the SC12 density profiles is contributed to the blurred liquid-like boundary of

the crystalline islands in the SC12 systems. The density profiles for the pure crystalline

phases will be presented in the next chapter.
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Figure 4.12: Density profiles of octadecanethiol (a) and dodecanethiol (b) surfactants on
the surface of liquid Hg for various values of molecular surface coverage, o. Solid and
dash—dot lines stand for the alkyl tails and sulfur density profiles, respectively. Proba-
bility distributions of finding specific amount of carbon atoms in a surface element with
the cross-section of 1 x 1 nm? for various surface coverages, 0, of octadecanethiol (c)
and dodecanethiol (d) self-assembled monolayers on the surface of liquid mercury.
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4.2.3 Surface density distributions

Another alternative way of characterizing the coexistence of various thiol phases on lig-
uid mercury is by calculating the probabilities of finding a particular number of alkyl
groups (or simply carbon atoms) in a surface element with a cross-section of approx-
imately 1 x 1 nm?. This surface element should not be to large, otherwise one would
wipe away all local surface density fluctuations. On the other hand it should not be
unphysically small. An extreme limiting cross-section for such sample surface element
would be 77:6&12 ~ 0.5 nm?, where OcH, = 3.93 A is the radius of the Lennard-Jones
hard-core shell of the alkyl groups. The respective probability distributions for the oc-
tadecanethiol and dodecanethiol systems are demonstrated in Figs. 4.12¢| and {.12d]
We see that in both cases for the low-coverage regime these distributions are charac-

terized by two peaks at 0 and 10 carbons/nm?, which is an indicator of the coexis-
tence of the monolayer of laying-down molecules with a bare surface of liquid mercury.
For the molecular coverages close to the full filling of a monolayer of laying-down
molecules one obtains only one single peak, as is nicely seen for octadecanethiols at
o =0.8367 nm~? (Fig. . Since at this value of ¢ the corresponding dodecanethiol
system is below the full coverage (see Tab.[A.2), two peaks at 0 and ~ 10 carbons are
still observed for this system. For the surfactant systems with crystalline thiol islands
the peak at O vanishes and, instead, the second peak at higher carbon numbers arises.
In the case of ¢ = 1.6114 nm~2, this peak attains its maximum at around 75 and 49.5
carbons for SC18 and SC12 thiol systems, respectively. This yields the thiol (sulfur)
surface density of approximately 4.17 and 4.13 thiols per 1 nm? in the dense islands
of octadecanethiols and dodecanethiols, respectively. Similarly, the surface coverage
of the octadecanethiols in the laying-down conformations at the coexistence with the

islands of the standing molecules is estimated to be about 0.806 nm 2.

4.2.4 Surface tension—surface coverage (Y — &) isotherms

From the thermodynamic point of view two coexisting phases of matter at the same
temperature coexist at equal values of pressure and chemical potential. Meaning that
for the two observed types of phase coexistence, namely, of laying-down thiols with
bare Hg surface and of laying-down with standing-up thiols, one should observe respec-

tive plateaus in the pressure versus thiol surface coverage values, o, for each coexis-
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Figure 4.13: Normalized surface tension, Y/}, for various values of octadecanethiol
surface coverage, o, and system cross-section, A.s. % = 286.4 mN/m is the surface
tension of the bare surface of liquid mercury of the ODI model for A.; = 903.5 nm?
and T = 293 K. The red solid line is the fit by Eq. of y(o) obtained from the MD
simulations for A.; = 903.5 nm?. The dashed lines are the guides for the eyes.

tence region. This requirement intuitively translates into the condition of the respective
plateaus in the surface tension, 7y, versus ¢ measurements at constant temperature, i.e.
in the ¥ — o isotherm. This is also straight forward to see giving the Kirkwood—Buff
formula for the surface tension (Eq. [3.17)), which I am going to use in order to explore
if it is possible to resolve the ¥ — ¢ isotherms for the thiol self-assembled monolayers
within the atomistic/UA approach employed in the current work. It appears that this
ability is heavily influenced by the finite-size effects, which I am going to discuss in
detail in the following. Fig. [4.13|shows the Y — o isotherms for octadecanethiol sys-
tems and various system cross-sections, A.s. In this figure one can clearly distinguish
two plateau regions, one for o smaller than the one of the full coverage of completely
filled monolayer of laying-down octadecanethiols at ¢ ~ 0.8 nm~2, and another plateau
region at higher values of o, at which the coexistence of laying-down and standing-
up phases is observed (see Tabs. [A.1] [A.3] and [A.4] as well as Fig.[4.9). The values of

surface tension are computed only for the systems, which do not have crystalline thiol
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subphases spanning across the boundaries, because in this case the calculation of y via
the virial (i.e. pressure in the Kirkwood-Buff relation) is impossible and the meaning
of the surface tension itself changes. In Fig. .13 one sees also that the very last value
of yat ¢ = 2.07185 nm 2 for A.; = 100.39 nm? overshoots the general level of the 2nd
plateau. As we recall, at these values of ¢ and A, a metastable spiral island of standing
thiols on one side of the Hg film was observed (Fig. 4.6a)). Apparently to stabilize such
structure the system requires higher lateral pressure (in the modulo sense) compared to
the systems on the plateau. The two plateau regions in Fig. are separated by the
oversaturated region, where the surface tension drops notably below the second plateau.
As discussed above (see Sec. d.1.2)) this oversaturated region strongly depends on the
size of the system cross-section, A, and corresponds to the oversaturated layers of the
laying-down octadecanethiols. One can also clearly see this in my ¥ — ¢ isotherms. The
oversaturated region of ¢ values shrinks closer to the left, i.e. closer to the value at the
full coverage of the laying-down monolayer. Let us take a closer look at the systems for
o = 1.1156 nm~2, which represents a vivid example of the finite-size effects in the over-
saturated region. At this surface coverage octadecanethiols are not able to form a crys-
talline island and reside in an oversaturated layer of laying-down molecules for the A
values of 100.39 and 225.9 nm? (see Figs. and as well as Tabs. and .
This results in the values of y considerably lower compared to the respective plateaus
(Fig. . But for Ay = 903.5 nm~2 the number of surfactants at ¢ = 1.1156 nm ™2
suffices to form crystalline islands of the standing-up molecules, and, consequently, its
¥ value falls onto the second plateau together with the other surface tension values at
higher coverages, which correspond to larger sizes of the thiol crystalline islands. I as-
cribe small deviations in the surface tension from the "horizontal" level in the plateau
in the o region from 1.1156 to 1.6114 nm~2 to the contributions due to the line ten-
sion, 7, on the boundary between laying-down and standing-up phases. Typical line
tension values for the alkyl-based systems range from 10~!2 to 10~° J/m [161] [162].
Thus for the island of standing-up thiols with the diameter, d, of approximately 10 nm
at 0 = 1.1156 nm 2 (As = 903.5 nm?), the maximal line tension contribution to the
surface energy is dT ~ 3.14- 10717 J. For these system sizes and surface coverage one
has y = 0.275 J/m? and, therefore, the respective contribution to the surface energy is
YAcs = 24.85-10717 J. Comparing the contributions due to ¥ and 7 to the surface en-

ergy with each other, one finds that for the maximal line tension contribution one has
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mdt /YA ~ 12.6%. The minimal possible contribution due to 7T to the surface energy

will be accordingly three orders of magnitude lower.

In order to understand better the effect of the finite boundary between the island of
standing thiols and laying-down ones on the measured surface tension let us consider
a simple model of a 2D gas in the (N,A., T) ensemble. According to the condensa-
tion/evaporation theory of finite systems [[163]], the gas will exist as a homogeneous
system up to some specific value of the 2D density, ¢*, after which it will be more
favorable for the system to exist in an inhomogeneous state with the gas in coexistence
with a condensated phase. It is possible to show that 6* is (i) system size-dependent
and (ii) 0™ > 00, Where 0Oy, is the coexistence density of the less denser phase (gas)
with the condensated phase of density op;. In the homogeneous phase the free energy
cost due to the increase of the (2D) density above Oy is given by compression

F%mzzgg{c——qkf, (4.13)

T
where k7 is the 2D compressibility. On the other hand, if the excess amount of the gas
(above 0gy) is used to create a noncompressible condensated phase the free energy cost

is given by the line tension of the boundary between laying-down and standing thiols
Fipp =27TR, (4.14)

where 7 is the line tension and R is the radius of the condensated phase. If to assume
that the boundary between the two coexisting phases is sharp and the shape of the more
denser phase is oval, one can obtain the radius of the condensated phase from a standard
level rule opg(Acs — TR?) + 6, mR*> = N as

R = /(N = Gogdey)  (mAGY), 4.15)

where N is the total number of particles and Acy = 0p; — Opg. 0" is identified from the

condition Fj,,,, = Fj,;;, and equals to

1672k204 \ 1/°
T%> . (4.16)

o' = o _—
0g+ ( ACSAGO
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The above relation implies that the less denser system in a finite box will not imme-
diately phase separate as ¢ reaches the value of oy, but will rather stay in a homoge-
neous, though oversaturated (¢ > 0y,), state till 6* is reached. The oversaturated region
shrinks with the system size, because ¢* decreases with the increase of A.;. This ef-
fect I also observe in my simulations. The lateral pressure, P>p, for the inhomogeneous

system is given by
aFinh . TO—Og\/E 1

0Acs  VAAGH A/ — Oog

This relation gives a rough correction due to the finite 2D boundary between the conden-

Pp=— 4.17)

sated and less denser phase to the surface tension of the reference bulk system. Giving
this, one can represent the surface tension, 7, in the region where the less denser (laying-

down thiols) and condensated phases (standing-up thiols) coexist as

y T00g\/ T 1
pl \V4 AcsAGO A/ o — GOg ’

where ¥, is the constant level of the surface pressure at the coexistence. By fitting
Eq. to the surface tension values of the SC18 systems and A.; = 903.5 nm? in the

coexistence range one obtains

¥(o) = (4.18)

Ypr = 0.278505 N/m, (4.19a)

TOpg /T
V ACSAGO

The respective fit follows perfectly the results obtained from the MD simulations (see

= 0.00212309 x 10~? N/nm?. (4.19b)

Fig. [.13). In the previous section the surface coverage of the laying-down, oo, =
0.806 nm 2, and standing-up SC18 thiols, oy = 4.17 nm 2, at the coexistence were
identified. By using these values and Eq. one can estimate the line tension
7 = 8.2 x 107! N between the laying-down thiols and the islands of the standig-up

molecules.

To finalize the discussion of ¥ — ¢ isotherms let us now take a look at the respective
isotherm for the SC12 systems and A.; = 903.5 nm~2, which is depicted in Fig.
As is evident from the figure, my initialization and simulation procedures yield a very

nice double-plateau pattern for these systems as well. The study of the oversaturated
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Figure 4.14: Normalized surface tension, y/7y, for various values of dodecanethiol sur-
face coverage, . Y is the surface tension of the bare surface of liquid mercury. Dashed
line is the guide for the eyes.

region for the SC12 systems is omitted, because it was discussed (and the accompany-
ing finite-size effects) in detail on the example of SC18 surfactants. For two simulated
values of the dodecanethiol coverage at the partial filling of the laying-down monolayer
(0 = 0.53124 and 0.83671 nm2) the plateau at the surface tension level of the bare
Hg film is observed. I expect this plateau to continue up to ¢ = 1.1156 nm~2, at which
dodecanethiols reach the full coverage of the laying-down molecules (Tab. [A.2)). Sub-
sequently, for higher values of Yy the surface tension comes down to the 2nd plateau,
which corresponds to the coexistence of crystalline SC12 islands with the monolayer of

the laying-down molecules.

4.3 Structure in the islands of standing-up thiols

4.3.1 Molecular orientations

After discussing the thermodynamic aspects of the thiol self-assembly on the surface
of liquid mercury let us now take a detailed view on the structure of the crystalline
islands of the standing thiol molecules. A sketch of a thiol molecules in the standing-up

configuration on liquid Hg surface is shown in Fig. 4.T5] The tilt angle, 6, is defined
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as the angle between the z-axis and vector connecting the sulfur headgroup with the
CHj3 endgroup of the same thiol (i.e. thiol molecular axis). I chose the x-axis to point
along the S—Hg—S bond of the R—S—Hg—R-S molecule under consideration. Then the
azimuthal tilt direction angle, ¢, is defined as the angle between the x-axis and the
projection of the thiol molecular axis onto the xy-plane. Further, three vectors Rpp1,
Rz and R;,,3 are defined as the vectors pointing from the bound Hg atom of the chosen
R-S-Hg-R-S molecule to the 1st, 2nd and 3rd nearest bound Hg atoms. Consequently,
I define three angles ;, o and o3 as the angles between the x-axis and vectors Ryp1,

Run2, Runs, respectively. The probability distribution of the tilt angles is given by

1 [N 180° l
P(0)=— 25(9 —6) ), with 6, = arccos | , (4.20)
th \J m k|

where I is the molecular axis vector of the k-th thiol and /i, is its projection onto the

z-axis, and it is treated ( ) as average over molecular configurations. Additionally, the

(a) (b)

sulfur headgroup
bound mercury
alkyl tail y

Figure 4.15: (a) Schematic view of an alkylthiol molecule in the standing phase on
liquid Hg; x-axis is aligned along the S—-Hg—S bond of a selected molecule; Rpn1, Rpn2
and Ry,3 are 2D vectors connecting the selected bound Hg atom with its 1st , 2nd and
3rd nearest neighbors, respectively; o, & and oz (not shown) are the angles between
the x-axis and Ryn1, Run2 and Ry,3 vectors, respectively. The tilt angle 0 is defined
as an angle between the molecular axis (the vector connecting S and CH3 groups of
the same thiol) and its projection onto the z-axis. The azimuthal tilt direction angle ¢
is defined as an angle between the projection of the molecular axis onto the xy-plane
and the x-axis. (b) The xy-projection of the thiol molecule. The correct aspect ratio is
preserved.
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surfactant conformations on top and bottom sides of the Hg film are treated as indepen-
dent ones, thus, the total number of the molecular configurations used for the averaging
equals two times the number of time steps. The distributions of the tilt angles for the
dodecanethiol and octadecanethiol systems for o = 1.6114 nm~ 2 and As = 903.5 nm?
are represented in Fig. The observed tilt angles range from 35° to 39° for dode-
canethiols and octadecanethiols, respectively. The broad peaks at 90° in the distributions
of the tilt angles are due to the laying-down molecules. The broadness of these peaks is
caused by the surface corrugations due to the capillary waves, the amplitude of which
may reach several Angstroms for such system cross-section and room temperature, as

well as by occasional folding of the laying-down molecules over each other.

To proceed with the further analysis the following criteria is introduced. A R—-S—Hg—
R-S molecule will be considered to be a standing one, if the tilt angle of its both thiol
tails is lesser than 45°. Then N’/ is defined as the total number of standing molecules
(R—-S—Hg-S-R) for an instant molecular configuration, i.e. N,ifl varies with time. Now
to check the mutual azimuthal tilt orientation of thiols the distribution of the mutual
azimuthal tilt direction of the two thiols belonging to the same R—S—Hg—S—R complex
is calculated as

1N 180° I, -

P(w) = <N},§l ;S(w—wm)>, with @, = TarccosM 4.21)
where I, and I, are the xy-projections of the molecular axes of two thiols of the same
R-S-Hg—S—R molecule. Additionally, the mutual orientation of the S—-Hg—S bonds for
the surfactants lying within 10 A (corresponds to three coordination spheres of bound

Hg atoms) from each other is calculated as

NNIO[ m n>m, |hm||hn|
rm,,<10A

Ntsl lel
m . 180° hy,-h
P(& < Z Z O0(&E—&un) > , with &, = — - arceos R (4.22)

where hy, is the two-dimensional (2D) vector of the S—Hg—S bond belonging to the m-th
R-S-Hg-S-R molecule, r,,, is the distance (in the xy-plane) between the m-th and n-th
bound Hg atoms, and NN, 1s the total number of bound Hg atom pairs that lie within

the sphere of the radius of 10 A for a given instant molecular configuration. The P(w)
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Figure 4.16: Molecular orientations in the islands of standing octadecanethiol (SC18)
and dodecanethiol (SC12) molecules. 6 = 1.6114 nm~2 and A.; = 903.5 nm?. (a) Dis-
tribution of the tilt angles, P(0) (Eq.[4.20); (b) distribution of the mutual azimuthal tilt
direction of the thiols of the same R-S—-Hg—S-R surfactant complex, P(®) (Eq. ;
(c) distribution of the mutual orientation of the S—Hg—S bonds of the neighboring sur-
factants, P(&) (Eq. ; (d) distribution of the azimuthal tilt directions relative to the

S—Hg-S bonds, P(¢) (Eq.4.23).

and P(&) distributions (for both, SC18 and SC12 molecules) are shown in Fig.
and[.16] respectively. From these distributions one can see that in the SC18 as well as
SC12 islands of the standing thiols are tilted in the same direction and the S-Hg—S bonds
of the neighboring surfactants are aligned. From broader peaks of the SC12 systems one
can infer that the SC12 islands possess larger degree of orientational disorder. In order
to find out the azimuthal tilt direction of thiols relative to the S—-Hg—S bonds, I compute

the respective distribution

80° I;

isl
1 N, 2 . 1 Ix hpy
P(op) = <2Nl.sl Z Z o(p— qom,-)> , with @,,; = —, arccos ‘lixZ’Tm\’ (4.23)

m m =1
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where I;  is the xy-projection of the molecular axis of the i-th thiol belonging to the
m-th R-S—Hg-S-R surfactant. The P(¢) distribution is shown in Fig. This
distribution reveals that the thiols tilt direction creates an angle of ~ 75° and 81 — 83°
with the S—Hg—S bonds in the case of SC18 and SC12 systems. The pronounced tail of
the P(¢) distribution of the SC12 systems confirms the above suggestion of the larger
degree of orientational disorder for these systems.

4.3.2 Packing of the headgroups

In order to study the packing of the headgroups I first compute the 2D radial pair distri-

bution function of the bound mercury atoms, g(r), as

R2 Nzﬁil N;l;gl
g(r)= <¢ Z Z 5(r—rmn)> , (4.24)

2rArNpairs 5 o,
Frn<Rmax

where r,;, s the distance in the xy-plane between two bound Hg atom belonging to the
m-th and n-th surfactant molecules, R, = 30 A is the maximum distance, within which
g(r) is calculated, 6r =0.01 A is the bin size used to calculate the g(r), and Npgirs is the
total number of bound Hg atoms, the distance between which does not exceed Ry, for a
given molecular configuration. Here I assume that, despite of the finite extensions of the
standing-up thiol islands, thus calculated g(r) gives a correct estimate of the 1st, 2nd and
3rd coordination spheres. Moreover, we will see in the next chapter that the locations of
these coordination spheres for the bound Hg in the thiol islands agrees very well with
the perfectly periodic systems of standing-up thiols. Fig. demonstrates the radial
distribution functions for the octadecanethiol and dodecanethiol systems. One can see
that for these systems the headgroups pack virtually identical. The distance to the 1st,
2nd and 3rd nearest neighbors equals to 5.82, 8.2, 9.4 A and 5.82, 8.28, 9.32 A for the
SC18 and SC12 molecules, respectively. The distances to the 1st and 2nd neighbors give
the lengths of the base vectors of the respective headgroup unit cell and the distance to
the 3rd nearest neighbors corresponds to the length of the shortest diagonal of the unit
cell. The i-th coordination sphere is defined to lie in the interval (R;_1,R;], where Ry =0,
Ri=7.1,R,=8.8and R3 =10 A in both cases of SC18 and SC12 thiols. Subsequently,
the angular distributions, P(o;), of the neighboring bound Hg atoms in the 1st, 2nd and
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Figure 4.17: Radial distribution function of bound Hg atoms for octadecanethiol and
dodecanethiol molecules in the standing-up phases. ¢ = 1.6114 nm~2 and A, =
903.5 nm?.

3rd coordination spheres was calculated as

(e}

Nul lel
m m . 180 hm'rmn
Ploy) =( — ooy — ¢ th o4y, = —— —_
(o) < Y )Y mn)>7W1 = areeos
Ri—1<rmn<R;

(4.25)
where i = 1,2, 3, and NN; is the total number of pairs of the bound Hg atoms with
distances corresponding to the i-th coordination sphere for the particular surfactant con-
figuration. This allowed us to determine the relative locations of the bound Hg atoms in
the unit cell and, consequently, the angle between the the base vectors, which is simply
a1 + op. The angular distributions for the 1st, 2nd and 3rd nearest neighbors are show
in Figs. 4.18a] [4.18b] and [4.18c|, respectively. One sees that these distributions peak at
almost the same positions for the SC18 and SC12 systems, yielding the angle between
the base vectors of 97.22° and 97.58° for the SC18 and SC12 thiol islands, respectively.
This results in the unit cell area of 47.3498 A2 for octadecanethiols, which, giving
two thiols per unit cell, yields the SC18 surface coverage of 4.22 nm~2. Fig.

demonstrates the zoomed in structure of the headgroups in the island of standing SC18

molecules with the outlined resulting unit cell. More pure, free of boundary effects,
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Figure 4.18: Angular distributions of the bound Hg atoms in the 1st (a), 2nd (b) and
3rd (c) coordination spheres (Eq: [#.25)). Zoomed view of the headgroup packing in the
high-density crystalline thiol islands (d). 0 =1.6114 nm~2 and As = 903.5 nm?

results for the structure of the thiol crystalline phases on liquid Hg will be obtained
in the next chapter, where I utilize the Molecular Dynamics simulations in the con-
stant temperature-stress tensor ensemble in order to study ideally periodic crystalline

systems.

4.4 Discussions and conclusions

In this chapter I have studied the self-assembly of alkylthiols, namely of octa— and do-
decanethiols, on the surface of liquid mercury at 7 = 293 K. The observed coexistence
of laying-down molecules with the crystalline islands of standing-up thiols is consistent
with the available experimental data [62) [64] 65]. The molecules in the laying-down
conformations exhibit some small patches of approximately 7-10 thiols with aligned
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molecular axes. These patches of laying-down molecules are randomly oriented and,
generally, unlike from the similar systems on gold [6], no long-range ordering of those
domains is observed. Furthermore, the "aggregated" 2D phase of laying-down thiols in
the low-coverage regime (rather than the 2D gas phase conjectured from simple fits to
the experiments) was found in the Molecular Dynamics simulations presented in this

section.

The thiol packing in the crystalline islands is the following. The bound mercury and
sulfur headgroups build up an oblique 2D lattice with one bound Hg* and two S atoms
per unit cell. The magnitude of the base vectors and the resulting thiol surface coverage
in the islands are very close to those for the rectangular unit cell proposed in the X-Ray
experiments [64]. As was discussed in the introduction the possibility of the oblique
packing of the headgroups has been also mentioned in the experiments [65]. The angle
between the base vectors of the oblique lattice obtained in the simulations differs only
by ~ 7° from the rectangular unit cell. It may be difficult to distinguish such small
deviations from the rectangular unit cell in the X-Ray spectra of the thiol SAMs on
liquid mercury. Additional data on the headgroup packing from other experimental
techniques is needed to clear this point. The obtained collective tilt angles of 35° and
39° for SC18 and SC12 thiols generally overestimate the tilt angle of 27° extracted
from the X-Ray data [64]]. Possible reasons for this deviation are the following: (i)
the structure of the obtained in the simulations crystalline islands due to the finite sizes
does not fully correspond to the macroscopic systems studied in the experiments; (ii) in
the experiments the Hg surface was assumed to be flat (i.e. no capillary waves) for the
estimation of the tilt angles; (iii) the thiol monolayer was assumed to have no defects
in the experiments. We have seen in Sec. 4.1.2] that various long-living defects (such
as spiral thiol islands and grain boundaries between the patches of standing-up thiols
with different collective tilt directions) can emerge in the simulations. Persistent spiral
islands of surfactant molecules have been also previously seen in the simulations of the
self-assembly on the surfaces of gold [34] and water [68 69].

If a mercury droplet with a thiol SAM covering it is mechanically compressed too
strongly, it will expand its surface area, which will then become accessible to the thiol
monolayer. In such case the monolayer can drastically change its phase behavior and
transform into a laying-down phase, which will, in turn, uncover the patches of the bare

Hg surface. Such situation would be critical for organic electronics applications and
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lead to a short circuit, since the properties of a metal-SAM-metal junctions are tuned by
mechanically varying the shape of the mercury drop-electrode [S1]].

My simulation model, with thiols being chemisorbed in the laying-down as well as
in the standing-up conformations, has allowed me to recover experimentally observed
coexistence of the crystalline islands of the standing-up thiols with their laying-down
counterparts, whereas on Au the laying-down conformations are generally referred to
the physisorbed surfactants [6]. This may suggest that the initial stage of the thiol ad-
sorption onto liquid Hg, the physisorption, does not last very long or is absent at all and
the chemisorption happens much faster compared to the adsorption onto gold. In turn,
this may be explained by assuming that an appropriate mutual orientation of the elec-
tronic orbitals of mercury and sulfur atoms is more probable to be achieved than of gold
and sulfur atoms due to the high mobility of liquid mercury. This assumption is strongly
supported by the optical tensiometry results discussed in the introduction, where a two-
stage adsorption model involving physi- and chemisorption of thiols was not able to
to explain the observations from the experiments, and, instead, the simpler one-stage
diffusion-limited Langmuir adsorption model was more attractive for the elucidation of

the mechanism of the thiol adsorption onto mercury [27].
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5 In-depth study of densely packed

alkylthiol phases on liquid mercury

In the previous chapter the self-assembly of the alkylthiol monolayers on liquid Hg with
growing surface coverage of thiols was characterized. We saw the emergence of highly
ordered and densely packed islands of thiols standing tilted to the surface normal after
the layer of the laying-down molecules was completely filled. Here I would like to
focus on the resulting crystalline phases of alkylthiols on the surface of liquid mercury,
since these phases are used in the majority of applications [S0]]. In the next section the
simulation details are presented. Subsequently, the effect of temperature on the structure
of the monolayer is studied. The temperature, at which the ordered thiol SAM loses its
crystalline structure, is estimated. Next, the effect of the absence of the S—Hg—S bond
on the structure of the monolayer at 7 = 293 K is demonstrated. Afterwards, the effects
of the length of the alkylthiol molecules and of the lateral compression of the SAM
are explored. In order to finalize the discussion, the influence of the interaction strength
between the bound mercury atoms (free parameter of my model) is analyzed. Physically
the increase of this parameter yields higher lateral molecular packings within the SAM
of thiols. This enables me to gain insights into the respective transformations in the
monolayer upon the rise of the molecular coverage above the one of ~ 4.22 nm~2 inside
the crystalline octadecanethiol island. The results are discussed in detail and compared

with the literature where possible.
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5.1 Simulation details

In this chapter MD simulations in the ensemble with constant stress tensor and tem-
perature (NPT) are performed in order to study the structure of the dense crystalline
alkylthiol SAMs in addition to the simulations in the NVT ensemble from the previ-
ous chapter for the surfactants with the S—-Hg—S bond (see Fig.[[.7p). For the study of
temperature effects the octadecanethiol (SC18) SAM on Hg is chosen as a representa-
tive example. The equilibrated SC18 system at T = 293 K for 6 = 1.6114 nm~? and
Acs = 903.5 nm? was the initial configuration for the simulations at higher temperatures.
First, the system for 7 = 310 K has been prepared by increasing the temperature step-
wise from 293 K to 310 K during 4 ns of the simulation time. Afterwards the system
was let to evolve at 310 K and no drift of the total energy was observed. Likewise, the
system at 7' = 330 K was prepared by taking the equilibrium configuration at 7 = 310 K
and subsequently increasing the temperature from 310 K to 330 K in the course of 4 ns
of the simulation time. Then, in order to reach equilibrium the system required another
20 ns of simulation time at 7 = 330 K. In analogy to this, for 7 = 350 K I have started
with the equilibrium configuration obtained for 7 = 330 K and step-by-step increased
the temperature to 350 K in 4 ns. After this, one could still see partially melted crys-
talline islands of octadecanethiols on both sides of the Hg film. But after another 24 ns
of simulations both islands were completely destroyed and no ordered thiol structures
on mercury were observed. In all the cases (apart from 7 = 350 K) the total simulation
time was taken to be 107 ns and the measurements were performed every 10 ps as in the
previous chapter. The force fields are given in Sec.|4.1.1

The system of choice for the study of the molecular morphology effects is again
the SC18 SAM at T = 293 K for 6 = 1.6114 nm~2 and A,y = 903.5 nm? (1156 thiol
molecules per side of the Hg film), but in this case the surfactants do not have the S—
Hg-S bond, i.e. only a single thiol is attached to a single mercury atom (see Fig.[I.7b).
Such a surfactant complex will be called a single-tailed surfactant in the following. A
surfactant with the S—Hg—S bond will be called a double-tailed surfactant. The number
of the bulk mercury atoms is taken such that the total number of all mercury atoms
corresponds to the respective system with the double-tailed surfactants. This system
was initialized with a preset crystalline island of upright surfactants in analogy to the

way described in Sec. #.1.2] It took around 4 ns to equilibrate the system, which is
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considerably faster than in the respective simulations with the double-tailed surfactants.
The short relaxation times are simply explained by the shorter overall length of the
single-tailed surfactants compared to the double-tailed ones. The total simulation time
and sampling interval were also 107 ns and 10 ps, respectively.

The simulation of the crystalline SAMs of the standing-up thiols of various chain
lengths were performed in the NPT ensemble (described in Chap. [2) at the full cover-
age of the standing-up thiols (~ 4.22 nm~?2) that form S—Hg—S bonds with mercury (see
Fig.[I.7p). The total number of alkylthiol molecules per side of the Hg film was 432
for all the simulations in the NPT ensemble. The lateral pressure was fixed at -273 atm
(coexistence pressure of the laying-down and standing-up SC18 phases) in the x- and
y-direction independently. The negative lateral pressure simply means that it acts to-
wards the center of the SAM from each side. The off-diagonal elements of the pressure
tensor, P, were set to zero independently as well. The normal stress component was
left unconstrained fluctuating around zero, since there was an empty space above and
below the film. The simulation box had a slab geometry with the Hg film in the mid-
dle of it (Fig. 4.3). An equal number of surfactants (with S-Hg—S bonds) was placed
from both sides of the Hg film according to the rectangular packing (two alkylthiols per
unit cell) just as described in Sec. The equilibration time in this case was 8.4 ns.
The total simulation time was at least 230 ns and the sampling was done every 20 ps.
The compression simulations were performed for the SC18 systems. The starting point
for the simulations at higher lateral pressure (in the modulo sense) is the equilibrated
configuration for the lateral pressure P = —273 atm obtained from the simulation of the
SC18 SAM (with S—-Hg-S bond) at the full coverage of the standing-up thiols described
above in the previous passage. Starting from this configuration the lateral pressure in
x- and y-directions was stepwise decreased to —285 atm during the course of 8 ns of
simulations, after which the SAM at —285 atm was evolved another 60 ns to reach an
equilibrium. Likewise, the equilibrium systems at lower values of the lateral pressure
(stronger compression) were obtained from the equilibrated preceding states. The total
simulation time and sampling interval were 207 ns and 20 ps, respectively.

The systems for the simulations at various strength of the Hg*—Hg* interaction were
set up and simulated in analogy to the simulations of the chain length effects.

For all the system simulated in this chapter periodic boundary conditions were ap-

plied in all the directions and the time-steps were taken the same as in the previous
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chapter.

()T =293K (b)T =310K

(c)T =330K (dT=350K

Figure 5.1: Snapshots of the crystalline island of octadecanethiol at various tempera-

tures for 6 = 1.6114 nm 2.

5.2 Temperature effects

Fig. [5.1] demonstrates the system snapshots at various temperatures. One sees that the

crystalline island of standing thiols stays quite stable over the temperature range be-
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tween 293 and 330 K. It only slightly shrinks such that at 7 = 330 K there is 47% of
molecules in the standing-up conformations compared to 51% at the room temperature.
Additionally, one sees that the island at 330 K has a less pronounced boundary and
much more disturbed collective thiol orientations compared to the one at 293 K. From
the distribution of the tilt angle at different temperatures (Fig.[5.2) one can clearly see
that the average tilt angle (the angle between the z-axis and molecular axis) decreases
as the temperature grows. At 7 = 330 K the average tilt angle is about 37° compared
to 39° for 293 K. The height of the peaks of the tilt angle distribution decreases with
temperature as well, indicating the increase in the rotational disorder. The azimuthal tilt
direction angle (relatively to the S—Hg—S bond) also increases towards 90° upon the rise
in temperature (Fig. [5.2b). The lower 1st and 2nd peaks of the 2D radial distribution
function of the bound mercury atoms at higher temperatures indicate a slight increase
in the translational disorder, but, apart from this, the packing of the headgroups is not
considerably influenced in the temperature region between 293 and 330 K (Fig. [5.3a).
This observation is also confirmed by the angular distributions of the nearest neighbors
(Figs. [5.3b}{5.3d). In all the cases the positions of the peak maxima remain approxi-

mately the same, but the peak heights drop down as the temperature rises.

0.02 0.005
0.018 {T=293K —&5— 0.0045 { T=293K —H—
0.016 T=310K P 0.004 T=310K
016 11-330K —%— ¢ 004 1 7-330 K —%—
0.014 0.0035
& &
£ o002 = 0.003
2 =2
S 0.01 8 0.0025
E 0.008 E 0.002
0.006 0.0015
0.004 0.001
0.002 0.0005
0 0
40 50 60 70 80 90
6 (Deg) ¢ (Deg)
(a) (b)

Figure 5.2: Distribution of the tilt (a) and azimuthal tilt direction (b) angles for the
crystalline island of octadecanethiols at various temperatures.
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Figure 5.3: Temperature influence on the packing of the headgroups. Radial distribution
function of Hg* atoms (a); and angular distributions of the 1st (b), 2nd(c) and 3rd (d)
nearest neighbors.

5.3 Influence of molecular morphology: case of the sur-
factants without S—-Hg—S bond

In the previous sections we have seen that various thiol phases (such as the monolayer of
the laying-down thiols as well as crystalline islands of standing-up thiols) may emerge
and coexist on the surface of liquid mercury as the function of thiol surface coverage. As
a single surfactant unit I chose a molecular complex consisting of two thiol tails attached
via chemical bonds to a single mercury atom as shown in Fig. [I.7p. (double-tailed
surfactant). Yet another, maybe somewhat less realistic scenario would be a surfactant
with a single thiol molecule attached to a mercury atom as shown in Fig. [I.7p (single-
tailed surfactant). Below such a scenario is evaluated in detail.

Fig.[5.4] shows the comparison of the molecular conformations for the systems with

double- and single-tailed surfactants. As one can see, the system with a single thiol
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(a) (b)

Figure 5.4: Comparison of molecular conformations for the case of double-tailed (a)
and single-tailed (b) surfactants. 0 = 1.6114 nm =2, A, = 903.5 nm?2, T =293 K.

molecule per bound mercury atom features a stable island of standing-up thiols as well.
The shape of this island is, however, much more extended along the direction of the
collective tilt angle of the single-tailed surfactants. The comparison of the tilt angle
distributions for both systems is depicted in Fig.[5.5] The tilt angle distribution of the
single-tailed surfactants has a peak at about 45.4°, which is noticeably larger compared
to 39° for the system that has two thiols per surfactant. A low peak height in the tilt
angle distribution of the single-tailed surfactants also indicates a lager degree of ori-
entational disorder in the single-tailed system compared to the double-tailed one. The
packing of the bound mercury atoms in the island of the standing-up single-tailed surfac-
tant molecules is also strongly disturbed compared to the double-tailed systems (com-
pare Figs. [5.6al and #.18d). This is also confirmed by the respective radial distribution
function, which is rather reminiscent of some liquid order (Fig. [5.6b) compared to the

pronounced crystalline ordering in the system with the double-tailed surfactants (recall
Figs. [#.17 and [4.18d). The first peak of the radial distribution of the bound Hg* atoms

has a much lower amplitude compared to the second one, but the peak itself is very

sharp. This might be an indicator of a short range order due to long-living pairs of mer-
cury atoms, in which the atoms have a strong mutual correlation. Indeed, such dimers of

the bound Hg* atoms the reader can clearly distinguish in the respective snapshot in the
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Figure 5.5: Comparison of the tilt angle distributions for the systems with single- and
double-tailed surfactants. ¢ = 1.6114 nm ™2, Ay = 903.5 nm?, T = 293 K.

laying-down as well as in the standing-up conformations (Fig. [5.6a). In order to draw
a direct comparison of the headgroup packing of the single-tailed surfactants with the
packing of the double-tailed ones it is useful to analyze the distribution of sulfurs, since
there is an equal number of these species in both systems. From the snapshot of the
sulfurs in the single-tailed system (Fig. one can clearly see that the sulfurs reveal a
higher degree of translational ordering compared to the bound mercury in these system.
Nevertheless, there is also a lot of grain boundaries between the ordered patches of sul-
furs. The arrangement of the sulfur atoms in the ordered patches corresponds clearly to a
2D oblique lattice, which is very close to a hexagonal one. The position of the first peak
in the radial distribution function of the sulfurs in the single-tailed surfactants coincides
very well with the position of the second peak for the systems with the double-tailed
surfactants (Fig. [5.7b). The sharp first peak in the radial distribution function of the
sulfurs in the double-tailed surfactants is due to the S—-Hg—S bond. Generally, the peaks
of the radial distribution of sulfurs in the singled-tailed molecules are less pronounced
compared to the double-tailed systems, indicating that the elimination of the S—Hg—S

bond allows for larger fluctuations in the positions of the sulfur headgroups.
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Figure 5.6: Snapshot of the bound mercury atoms (a) and the respective radial distri-
bution function (b) for the system with single-tailed surfactants. ¢ = 1.6114 nm~2,
Aes =903.5nm?, T =293 K
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Figure 5.7: (a) Snapshot of sulfur headgroups for the system, in which a surfactant
molecule consists of a single thiol attached to a single mercury atom. (b) Comparison
of the sulfur radial distribution functions for the systems with single- and double-tailed
surfactants. ¢ = 1.6114 nm~2, A,y = 903.5 nm?, T = 293 K.
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Figure 5.8: Various packing characteristics of dodecanethiol (SC12), tetradecanethiol
(SC14), octadecanethiol (SC18) and hexacosanethiol (SC26) SAMs on Hg.
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5.4 Chain length effects

In this section the dense self-assembled monolayer of dodecanethiol (SC12), tetrade-
canethiol (SC14), octadecanethiol (SC18) and hexacosanethiol (SC26) are studied by
the simulations in the NPT ensemble. Fig. shows distributions of the tilt angles for
the thiols of various tail lengths, where one can see that the tilt angle slightly increases
from 36.5° to 38° as the alkyl chain length growth from 12 to 26 carbons per tail. The
tilt angle for SC18 thiols is 37.4° accordingly. The collective azimuthal tilt direction
of thiols decreases from 75° to 70° as the tail length growth (Fig. [5.8b). The distri-
bution of the terminal CH,—CH,—CH;—CH3 torsional angles (for SC18) shows that in
addition to the large peak at 180° there is also a small, but very clear, peak at ~ 63°.
The peak at 180° corresponds to the situation of neighboring bonds lying in the same
plane and the peak at ~ 63° is an indicator that there is a number of gauche defects
present in the alkylthiol conformations. The distribution of the gauche defects along
the SC18 backbone, shown in Fig. [5.8d, supports this finding. For the calculation of
this distribution all torsional angles between 30° and 100° were counted as gauche de-
fects. The first torsional angle, S-CH,—CH,—CH,, possesses on average the largest
number of the gauche defects, most probably stemming from the mismatch between
the planes, in which the torsions CH,—S—S—CH, and S—-CH,—CH,—CH, lie. This mis-
match arises as consequence of the collective tilt angle. Then along the SC18 backbone
the portion of the gauche conformations substantially decreases and rises again as one
approaches the opposite end of the molecular chain. Such behavior is consistent with
the generally higher amount of gauche defects at the ends of the alkyl chains [164].
It is also not difficult to estimate the influence of the gauche defects on the tilt angle,
0, by computing 6 exactly as was done in the experiments [64]], according to which
0 = 180° arccos(dsap /I;n) /™ with dsap being the width of the thiol SAM as obtained
from the measurements and /;, is the length of the thiol molecule assuming it is in the all-
trans conformation. According to the united-atom approach used in my thesis the length
of the SC18 in all-trans conformation is dsH + 17dC|| =234 A, where dsH —1.53 A and
dc| = 1.286 A are the projections of the S-C and C-C bonds on the molecular axis.
Now the average SC18 SAM thickness obtained from the simulation is 18.32 A. This
yields & = 180° arccos(18.32/23.4) /wr = 38.5°. This is approximately 1° larger than

the respective MD value, where the influence of the gauche defects was naturally taken
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Figure 5.9: Angular distributions of the Ist (a), 2nd (b) and 3rd (c) nearest neighbors
of the Hg* atoms, and the distribution of the angle between the base vectors of the
respective unit cell (d) for the monolayers of thiols of different tail lengths.

into account.

Fig. demonstrates typical density profiles developed by the molecules of various
lengths. Slight oscillations are due to the fact that the monolayers are crystalline. The
typical density in the middle of the thiol SAM reaches about 1000 kg/m?, which is
higher compared to the typical liquid phases of alkanes (e.g. 777 kg/m> for C18). The
2D pair distribution function of the bound mercury atoms is given in Fig. [5.8ff From
the figure one can a distinguish a small decrease in the second nearest neighbor distance
with the increase in the tail length. This and the decrease in the angle between the
unit cell base vectors of bound mercury (see below) amounts to a slight increase in the
thiol surface coverage from 4.23 to 4.29 nm~2 for SC12 and SC26 SAMs, respectively.
A similar slight increase in the molecular packing upon the increase of the molecular

length was also observed for partially fluorinated alkylthiol monolayers on gold [163]].
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One sees only very small changes in the angular distributions of the 1st, 2nd and 3rd
nearest neighbors for the bound mercury (Figs. [5.94] [5.9b] [5.9¢). This is why in order
to capture the change of the unit cell upon increase in the chain length with a finer

resolution the distributions of the angle, ¢, between the base vectors is computed from
the simulation box sizes, which fluctuate as the time proceeds in the simulations in the
NPT ensemble. Fig. shows these distributions. One can clearly see that the angle
o decreases from about 97.3° to 96.3° as the chain length grows from SC12 to SC26,

respectively.

5.5 Pressure effects

In this section the response of the SC18 SAM on liquid mercury upon uniform lateral
compression is analyzed. Fig.[5.10a)shows the 2D radial distribution function for bound
mercury atoms. We can see that upon uniform lateral compression the peaks of the
Ist and 2nd (less pronounced) nearest neighbors tends to shift to larger distances, but
the peak for the 3rd nearest neighbors seems to stay in place. This happens due to the
change of the angle, o, between the base vectors of the bound mercury unit cell. It is
seen from Fig. [5.10b| that this angle increases upon the compression. The respective dis-
tributions become lower and wider indicating the thiol SAM becomes more disordered
as the lateral pressure growth. Since the 3rd nearest neighbor (3NN) peak in the radial
distribution is not changing with pressure, one can conclude that the change of o pro-
ceeds through the shifts of bound mercury atoms along the 3NN direction. The highest
lateral pressure, at which I managed to obtain the stable SC18 SAM, was —310 atm (the
minus sign means that the pressure is applied in the direction of the center of the SAM
from all the lateral sides of the simulation box). The pressure of —310 atm would cor-
respond to the surface tension of about 628 mN/m, which is more than 50% higher than
the surface tension of mercury/air interface in the present computational model. Upon
further increase in the lateral pressure the SC18 SAM becomes destabilized and even-
tually collapses, in the simulations this leads to the decrease of o until the simulation
box becomes unstable and is destroyed. In contrast, Langmuir monolayers on water/oil
interface typically collapse when the interfacial surface tension reaches the value of the
water/oil interface without surfactants [166]. Such high stability of the SAM of SC18

surfactants on liquid mercury, compared to Langmuir films on water, is probably due
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to the chemisorption of thiol onto mercury and due to the high surface tension of the

surface of liquid mercury itself.
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Figure 5.10: Pair distribution function (a) and the distribution of the angle between the
base vectors of the unit cell of the bound mercury for various values of lateral pressure
for the SC18 SAM.

5.6 Effects of surface coverage in the dense SAM and
influence of the interaction strength between bound

mercury atoms

Let us recall the force field model described in the beginning of Chap. @ One of the
unfixed interactions there was the lateral interaction between the bound mercury atoms.
For simplicity and since bound mercury is no longer metallic, and, consequently, it
cannot interact as strong as the bulk mercury with itself, the interaction for the bound
mercury was taken to be the same as for the alkyl tails with the bulk mercury. As a
reminder, this interaction was of the double-exponent form given by Eq. .10 with the
parameters A; = 0.5 kcal/mol and b = 2.0 A2, A; was the interaction strength and b
controlled the attraction range. In this section the strength of the interaction between
the bound mercury atoms is varied in order to better understand the influence of this pa-
rameter on the thiol SAMs on liquid mercury. Physically this will also allow to acquire

insights into the possible structural transformations within the SAM for various surface
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Figure 5.11: Distributions of the angle between the base vectors of the bound mercury
unit cell (a), tilt angle (b) and azimuthal tilt direction (c) for o = 5.244, 5.208, 5.18, and
4.324 nm~2, which correspond to A} = 2.233335535, 1.45, 1.228 and 1.139 kcal/mol.

coverages, o, of alkylthiols in the regime of a very dense molecular packing. The sim-
ulations were performed for the SC18 molecules and the parameter b was fixed at the
value of 0.891 A~2 as in the case of the bulk mercury. The parameter A; took the values
of 2.233335535, 1.45, 1.228 and 1.139 kcal/mol, which yielded 5.244, 5.208, 5.18, and
4.324 nm~2 for the equilibrium SC18 surface coverage as obtained from the simulations
as (Ny, /Acs), respectively. Here, as before, Ny, is the number of thiols per side of the Hg
film and A, is the cross-section of the simulation slab at a given time instance. The up-
per boundary for the parameter A (as well as the value of b) is taken from the optimized
density-independent (ODI) force field for the simulation of the surface of liquid mer-
cury derived in Chap. [3] The values of A below the lower boundary of 1.139 kcal/mol
do not virtually influence the structure of the monolayer according to my simulations.
For the surface coverage, o, in the range between 5.244 and 5.18 nm~2 the length of
the base vectors remain basically unaltered (4.5 and 8.2 A as obtained from the 1st and
2nd peaks of the Hg* pair distribution function) and the angle, &, between the base vec-
tors of the oblique unit cell changes very slowly from about 90.9° to 91.8°, and as the
surface coverage decreases further the angle o changes to 96.5° (Fig. [5.1Ta). Similar
behavior is also found in the distributions of the tilt angle, 8, and the azimuthal tilt di-
rection given by the angle ¢ (the angle between the S—Hg—S bond and the xy-projection
of the molecular weight, recall Fig. . For ¢ between 5.244 and 5.18 nm™? the tilt
angle varies very mildly from 15.1° to 16.9°, following which it changes up to 36.6° for
o = 4.324 nm~? (Fig. . Likewise, the average azimuthal tilt direction changes
first slowly from 36.6° to 46.4° as ¢ drops from 5.244 to 5.18 nm~2, and afterwards
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it takes on the value of 108° for 6 = 4.324 nm~2 (Fig. [5.11c). The tilt directions for
0 = 5.244 nm~? is close to the 2nd nearest neighbor direction o = 30° and the last
azimuthal angle for ¢ = 4.324 nm~2 is close to one of the equivalent 1st nearest neigh-
bor (INN) directions given by the angle o as determined from the respective angular
distributions of the nearest neighbors. The 1st INN direction is at about ; = 60° and
the 2nd is located at o; = & — 60° (two Hg* atoms in the 1st coordination shell If one
decreases the interaction strength between the bound mercury atoms, A, further (and
respectively the thiol lateral packing) the system spontaneously undergoes a transition
to the state with a higher tilt angle as is shown in Fig.[5.12|for A} = 1.1502 kcal/mol.
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Figure 5.12: Time evolution of the tilt angle for A; = 1.1502 kcal/mol. One can see
that the system spontaneously "jumps" into a state with a higher tilt angle 6 = 36°
after staying about 50 ns in the state with 6 = 16°, in which the surface coverage of
the system corresponded to 5.172 nm~2. Such abrupt transformation from one state to
another is an indicator of a first-order phase transition.

It is also interesting to mention that at the higher packing of the dense SAM of stand-
ing thiols the amount of gauche conformations in the vicinity of the sulfur headgroups
substantially decreases (Fig:[5.13), such that, for example, the percentage of the gauche
defects in the first torsional angle (S—CH>,—CH»>—CH,) drops from 10.3% down to 3.7%
as o rises from 4.324 to 5.244 nm 2. Finally, I have to note that the results obtained in
this section for A; = 1.139 kcal/mol and b = 0.891 A~2 are qualitatively and quantita-
tively very similar to the ones for A; = 0.5 kcal/mol and b = 2.0 A2 used through out

! The 2nd Hg* atom should be actually located at ¢y = 7+ 60°, but all ot > 7 are reflected to the upper
hemisphere (a; < 7), since the arccos used in the calculations (recall Eq. is defined in [0, zr]. This
means that the 2nd 1NN neighbor will be shown as the peak at oy = & —60° (rather than at &} = 7w+ 60°)
in the respective angular distribution.

101



12 >

§ 5.244 nm'2 ool
® 10 4 4.324 nm
@

) 8 1

=

<

= 6

2

T tee

@ y

S 24

]

]

&

6 8 10 12 14 16
#Torsional angle

Figure 5.13: Percentage of gauche defects along the backbone of SC18 thiol at the sur-
face coverage of 5.244 and 4.324 nm™—2, which correspond to the strength of interaction,
A1 between bound mercury atoms of 2.233335535 and 1.139 kcal/mol, respectively.

the thesis for the Hg*—Hg" interaction. This basically means that the structure of thiol
SAMs on Hg is not subjected to substantial changes for the bound mercury interaction
parameters A; € [0.5,1.139] kcal/mol and b € [0.891,2.0] A=2 .

5.7 Conclusions and Discussions

The focus of this chapter was devoted to the dense crystalline SAM of octadecanethi-
ols on the surface of liquid mercury. More precisely, the influence of such factors as
temperature, molecular morphology, alkyl tail length and lateral pressure, as well as the
strength of the Hg*—Hg" interaction on the SAM structure was investigated. It is found
that the monolayer preserves well its crystalline structure up to 7 = 330 K. Afterwards,
at 7 = 350 K the crystal structure in the monolayer melts away and it transforms into an
amorphous film with the sulfur headgroups staying at the surface of mercury. For com-
parison, alkylthiol SAMs on Au preserve a crystalline order (though quite disturbed)
at least up to 7 = 373 K [150]. Most probably the lack of the long-range order in
the mercury substrate promotes the degradation of the crystalline order in the SAM on
Hg at lower temperatures compared to Au. Moreover, the simulation with an alternative
molecular architecture (when one thiol is attached only to a one Hg atom) reveals higher
disorder in such systems and too large tilt angles compared to the case when a one Hg

can chemically bound to two thiol molecules. The simulation in the NPT ensemble of
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the crystalline thiol monolayers periodic in all lateral directions allows to avoid the ef-
fect of finite boundaries, which was present for the crystalline islands of the standing-up
thiols in the previous chapter. No qualitatively different structural transformations are
found for the studied lengths (from 12 to 26 carbons) of the alky] tails. The stable SC18
monolayer are obtained up to the value of the lateral pressure of —310 atm. Upon lat-
eral compression the monolayer relaxes via shearing of the headgroups along the 3NN
direction by a finite displacement, which coincides with the collective direction of the
S—Hg-S bond. Shearing relaxation as the response to the lateral pressure is a well-know
mechanism of relaxation in the case of lipid monolayers on a water/oil interface [167]].
As shown above, changing the strength of the Hg*—Hg™* interaction appears to be a con-
venient way of a fine control of the thiol surface coverage within a crystalline densely
packed monolayer of thiols on Hg in a computer simulation. Using this approach it is
demonstrated that upon increase in the SC18 surface packing one should expect a weak
first order transition in the azimuthal tilt from approximately the 1NN direction to the
2NN direction. This transition involves complex changes in the tilt angle as well as in
the unit cell of the headgroups. A similar first order transition from tilted to non-tilted
thiols on liquid mercury upon the increase in the surface coverage was also proposed
previously [65]. Finally, the tilt angle 8 = 37.4° obtained in this chapter for the periodic
crystalline SAM of SC18 thiols is smaller than 39° obtained for the respective crys-
talline island in Chap. |4 but it is still larger than 27° obtained by X-Ray experiments
[64]. As discussed in the introduction, sharp tilt angles (< 30°) of the amphiphile sur-
factants on water may be explained by the strong hydrophobic interaction of the tails
with water. On the other hand, sharp (~ 30°) tilt angles on gold can be rationalized by
the strong directional chemical binding of the sulfur headgroups to "frozen" Au atoms,
whereas on the surface of liquid Hg the bound mercury is highly mobile. In addition,
thiols have an attractive interaction with the mercury substrate. Consequently, there is
no straightforward reason to anticipate that the tilt angle of thiols on liquid Hg should
be similar to the ones of thiols on gold or of amphiphiles on water. More structural data
on the alkylthiol SAMs on Hg by other experimental techniques is required in order to
clarify the value of the tilt angle and whether the headgroup packing is rectangular or

rather (weakly) oblique.
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6 Final remarks and outlook

Today self-assembled alkylthiol monolayers on liquid metals are routinely used in or-
ganic electronics to study charge transport through hybrid metal-SAM-metal or semi-
conductor-SAM-metal junctions [50]. The properties of such junctions are tailored by
varying the form of the mercury drop-electrode with a grafted SAM on it [S1]. This in-
evitably leads to structural transformations within the SAM, meaning that the junction
properties are closely related to the underlying structure of the SAM. The molecular-
level understanding of the factors that define these structural transformations is crucial

for a better design of the metal-SAM-metal junctions.

Despite of the popularity of the alkylthiol SAMs on liquid metals in organic elec-
tronics the knowledge of the molecular structure of these systems is limited and chiefly
originates from X-Ray studies [61, 162, |64, |65]] yielding not always consistent reports.
The structure and resulting properties of a thiol SAM may strongly depend on the way
the SAM is prepared and external conditions [6-9]. Therefore, more experimental data
obtained by other experimental techniques under different conditions is vitally needed
in order to gain more complete picture of the molecular-scale self-assembly on liquid
metal substrates. The optical tensiometry experiments [27] (covered in detail in Chap.[I))
provide useful insights into the kinetics of the alkylthiol SAM formation on liquid mer-

cury, but supply no microscopic structural data.

As alternative to experiments, in this work I undertake a different approach, namely,
a large-scale molecular simulation, in order to investigate the alkylthiol self-assembly
on liquid mercury. Because of the high complexity of the systems under considera-
tion and a multitude of intricate intermolecular interactions, no computational study of
these systems has been previously performed. Specifically, simulation studies face the

following significant challenges:
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liquid mercury, though "merely" used as a substrate in the simulations, has to be
treated fully atomistically and allowed to evolve according to dynamic equation
of motion in a molecular simulation in order to ensure that the SAM relaxation on
liquid mercury includes the molecular features of the thiol binding to mercury, as

well as the liquid nature of the substrate;

the lack of experimental data, such as adsorption energies of alkylthiols on liquid
mercury, which would allow to parametrize the interaction between thiols and the

Hg substrate;

parametrization of the above interactions using ab-initio techniques is highly non-
trivial, since it requires the sampling of the interaction of an alkylthiol molecule
with a cluster of at least 100 Hg atoms in order to take into account the metallic

nature of mercur Y;

no appropriate force field for liquid mercury exists, which is suitable even for the

large-scale simulations of the bare surface of liquid mercury;

extremely long relaxation timesE] of thiol SAMs on liquid Hg (recall Sec. ,
which are basically unattainable for standard molecular simulations;

severe finite-size effects, because of which one has to simulate exceedingly large
systems (as for an atomistic or semi-atomistic computer simulation) in order to

be able to accurately localize regions of phase coexistence.

State-of-the-art Molecular Dynamics (MD) simulation techniques are used through-

out the dissertation for the simulations of the thiol self-assembly on liquid mercury,

because this method is able to give an accurate information on the molecularscale. In

Chap. [3| a method for computationally efficient simulation of a bare surface of liquid

mercury at room temperatures is derived. For this purpose the latest and most success-

ful atomistic force fields of liquid mercury are investigated and compared. Namely, the

following atomistic models of liquid Hg are used: (i) the Raabe model [119, [120] and

(i1) the density-independent (DI) double-exponent model [121, [122], as well as such

simulation times attained in the present thesis reach ~0.1-0.4 us, whereas the experimental time
scales of SAM formation reach out to several hours and more.
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models as (iii) the density-dependent (DD) double exponent model [126], and two re-
cent embedded-atom models, (iv) the EAM2013 [131]] and (v) EAM2006 [133]] models.
Characteristic features of the Hg surface at room temperatures are its extremely dense,
but liquid, structure and a high surface tension. With this perspective the Raabe and
the DD models are discarded from the treatment, because the former model yields a
crystallized mercury film at the room temperature, and using the free-energy arguments
I show that the latter model results in the wrong phase behavior of liquid Hg at room
temperatures caused by the unphysical density-dependence of one of the coefficients.
The analogical analysis of the other three models (DI, EAM2013 and EAM2006) has
not revealed such spurious effects. The DI model yields the correct behavior of liquid
mercury but a too low surface tension, whereas the EAM models agree much better
with experimental data. Since the EAM models are generally more computationally
demanding (because of the density dependence) compared to the DI model, the latter
model was optimized in order to improve the agreement with the experimental value.
Consequently the optimized density-independent (ODI) force field is used in Chaps. {4
and [5] for the simulations of alkylthiol SAMs on liquid Hg. The optimization procedure
of the DI model is outlined in detail in Sec.[3.2] Moreover, it is also shown in Sec. [3.2]
that the ODI force field yields a quite good description for the bulk of mercury at the

temperature region of practical interest.

In Chap. [ the self-assembly of alkylthiols as the function of their surface coverage
on liquid Hg is investigated. In Sec. d.1.1| the molecular model of the thiol surfactants
on liquid mercury is formulated step-by-step. Substantial time savings are achieved by
using (i) highly parallelized large-scale MD simulations [77], (ii) multiple time-step al-
gorithm outlined in Chap.[2] and due to (iii) the usage of the united-atom representation
of the surfactants (recall Fig.[I.7). Two coexistence regions are observed in my simu-
lations, namely, (i) the coexistence of a 2D phase of the laying-down thiols with a very
dilute 2D gas (basically bare Hg surface) on liquid mercury, and (ii) the coexistence of
the laying-down molecules with islands of the standing-up thiols featuring long-range
order. These findings are consistent with available experimental data [64,65]. My MD
simulations reveal, that the 2D conformations of the laying-down molecules represent
liquid aggregates of the laying-down molecules growing up to the full coverage of the
laying-down thiols rather than a 2D gas of laying-down thiols suggested previously
[64, 65]. It is shown that the thiol headgroups pack into a 2D weakly oblique lattice
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with the angle, o ~ 97°, between the base vectors and having two alkylthiol molecules
per unit cell. The dimensions of the obtained unit cell are very close to the experimental
ones for 7 =299 K [64], with a slight difference that ¢ = 90° was suggested therein
[64].

In Chap. [5|the influence of such factors as temperature, molecular morphology, sur-
factant chain length, lateral compression and of elevated surfactant surface coverage in
the dense crystalline phase on the thiol SAMs on liquid mercury is analyzed. It is found
that the crystalline island of octadecanethiols (obtained in Chap. d]at T = 293 K) loses
its long-range order and "melts" already at 7 = 350 K. The simulation of the alkylth-
10l SAM with "single-tailed surfactants" (i.e. without the S—Hg—S bond as shown in
Fig. [I.7b) also yields a crystalline phase of standing-up thiols, which is characterized
by larger degree of disorder and higher tilt angles compared to the thiol surfactants
with the S—-Hg—S bond. Giving this and the fact that in the majority of organomercuric
compounds mercury has a valency of two, I consider such surfactant architecture rather
unrealistic. Simulations with constant stress allowed to obtain structural characteristics
of the dense thiol SAMs on liquid mercury at high surface coverage, which were free
of the effects due to the finite size of the crystalline phases in the simulation. The ob-
served structures featured no significant differences with the variation of the tail length
as well as the structure of the finite thiolate islands from Chap.d] The lateral compres-
sion simulations indicated that upon the increase of the magnitude of the lateral pressure
the degree of disorder grows and the monolayer is destabilized by the shift of the head-
groups along the third-nearest-neighbor direction. Finally, the simulations at higher
thiol surface coverage (compared to the one in the islands of the standing-up thiols)
display a first-order tilting transition characterized by a sharp decrease of the collective
tilt angle with the increase in the surfactant surface coverage. The results obtained in
Chap. [5| were compared with experiments where possible.

The present work sets the ground for future theoretical studies of the self-assembly
of organic films on liquid metals, which provide a very rich and intricate phase behavior.
As was briefly mentioned in Chap. |1} in organic electronics hybrid metal-SAM-metal
junctions typically consist of one crystalline and one liquid metal electrode opposed to
each other [50]. Different packings of thiol SAMs on mercury and on gold electrodes
can, in principle, result in defects at the interfaces, where two SAMs from the oppos-

ing electrodes are brought into contact. Since the SAM on the liquid metal electrode is
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laterally much more mobile compared to the one on the crystalline electrode, one could
intuitively expect that the SAM on liquid mercury could rearrange itself in order to min-
imize the interfacial free energy, and in such a way adopt the structure of the SAM on
the opposite electrode. This possibility may depend, for instance, on the length defer-
ence of thiols on the opposing SAMs. An extension of the simulations presented in the
current dissertation to model, for example, Au-SAM-Hg junctions will help to elucidate
what happens on a molecular level with both SAMs on Au and Hg. Alternatively, it
is interesting to model the response of the Hg-SAM-Au junction under external stress
conditions, because the junction properties are typically adjusted by pressing the mer-
cury drop-electrode against the opposite one. Apart from mercury, another liquid metals
(e.g. alloys of gallium and indium) are used to produce drop-electrodes [50], and the
simulations of SAMs on different liquid metal substrates represents an interesting and
challenging extension of the modelling approach presented in my dissertation. More-
over the extension of the current work to bioorganic surfactants, which were intensively
studied on crystalline supports [[168]], is an appealing task as well. Finally, the force field
and simulation strategies developed here can help to understand the formation mecha-
nism and structure of the sheet-like monocrystalites of alkylthiols attached to a mercury

backbone found in the sonication experiments [115].
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A Lists of systems simulated in Chap.@

Ny ‘ o (nm~?) ‘ teq (DS) ‘ ts (ns) ‘ Final configuration

27 | 0.53788 25.676 | 89.504 | PF of 1st LD thiol layer

40 | 0.79687 3.018 | 91.982 | near FF of 1st LD layer

56 | 1.1156 35.928 | 202.072 | oversaturated 1st LD layer,
distinct standing thiols,

no clear SU thiol island formation
64 | 1.27498 | 279.500 0.000 | top: oversaturated 1st LD layer,
bottom: crystalline (cr.) SU island
72 | 1.43436 133.200 | 145.800 | cr. SU islands from both sides

72 | 1.43436 | 339.950 0.000 | top: oversaturated 1st LD layer,
bottom: cr. SU thiol island

80 1.59373 225.936 | 118.514 | cr. SU islands from both sides,
traces of ordered arrangement

of headgroups in cr. SU islands
80 | 1.59373 120.000 | 134.900 | cr. SU islands from both sides

90 | 1.79295 100.000 | 103.300 | cr. SU islands from both sides

104 | 2.07185 120.000 | 174.920 | top: metastable spiral SU island
bottom: cr. SU island

144 | 2.86872 40.000 | 82.000 | cr. stripes of SU thiols from both sides

Table A.1: Octadecanethiol (SC18) systems for the overall system cross-section of
9.936 x 10.104 = 100.39 nm?. Ny = 31852. Notations: Ny, is the number of surfactant
molecules per side of the Hg film, overall number of surfactants (R—S—-Hg—S—-R), N,ﬂf’ , 18
2N,,; the number of thiol molecules, Ny, per side of the Hg film is 2N,,; 0 = Ny, /(LiLy)
is the thiol surface coverage; 7, is the equilibration time, 7, is the sampling time, and
the total simulation time is #;o; = t.4 +t;; PF and FF stand for the "partial" and "full"
coverage, respectively; LD and SU mean the "laying-down" and "standing-up" thiol
conformations, respectively.
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N ‘ o (nm~?) ‘ feg (S) ‘ ts (ns) ‘ Final configuration

27 | 0.53788 0.400 | 105.600 | PF of 1st laying-down (LD) thiol layer
40 | 0.79687 0.302 | 109.698 | PF of Ist LD thiol layer

56 | 1.1156 0.800 | 107.200 | FF of 1st LD thiol layer

72 1.43436 0.542 | 258.358 | oversaturated 1st LD layer,

couple of standing upright (SU) thiols,
no clear island formation,

80 | 1.5937 1.800 | 307.250 | small strongly disordered patches

of standing thiols,

no crystalline (cr.) SU thiol islands
104 | 2.07185 5.000 | 363.000 | strongly disordered patches of SU thiols,
no cr. SU thiol islands

144 | 2.86872 | 118.000 | 172.150 | cr. stripes of SU thiols from both sides

Table A.2: Dodecanethiol (SC12) systems for the overall system cross-section of
9.936 x 10.104 = 100.39 nm?. Ny, = 31852. Notations follow the ones in Tab.

Np ‘ o (nm~?) ‘ teg (0S) ‘ ty (ns) ‘ Final configuration

90 | 0.79687 3.00 | 29.30 | slightly oversaturated FF of 1st LD layer
126 | 1.1156 12.20 | 205.90 | oversaturated 1st LD layer

162 | 1.43436 104.00 | 97.59 | cr. SU islands from both sides

182 | 1.61144 128.00 | 95.70 | cr. SU islands from both sides

234 | 2.07185 124.00 | 79.75 | top: cr. SU island, bottom: cr. SU stripe
spanning through system boundaries,

grain boundary in cr. SU thiol stripe between
domains of different collective tilt angles

Table A.3: Octadecanethiol (SC18) systems for the overall system cross-section of
14.904 x 15.156 = 225.9 nm?. Ny, = 73456. Notations follow the ones in Tab.
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Ny | 0 (m™?) | oy (ns) | £, (ns) | Initial | Final

config. | configurations

504 | 1.1156 128.45 0.000 U top: oversaturated 1st LD layer,
bottom: cr. SU island

650 | 1.43879 100.00 | 23.850 U top: grain boundary between two
merged islands (cryst. and spiral),
bottom: two "frozen" separate
islands (one cryst. and one spiral)

01]0.0 1.00 6.214 equilibrated bare Hg surface

120 | 0.26562 2.40 | 104.600 PF of 1st LD thiol layer

240 | 0.53124 4.00 | 103.000 PF of 1st LD thiol layer

378 | 0.83671 4.00 | 103.000 slightly oversaturated 1st LD layer
504 | 1.1156 20.00 | 87.000 cr. SU islands from both sides

cr. SU islands from both sides
cr. SU islands from both sides
cr. SU thiol stripes from both sides

650 | 1.43879 18.00 | 89.000
728 | 1.61144 14.66 | 92.340
953 | 2.10948 16.00 | 91.000

av]lav]lav]iiavieni NaniNan

Table A.4: Octadecanethiol (SC18) systems for the overall system cross-section of
29.808 x 30.312 = 903.5 nm?. Ny, = 285670. U stands for initial configuration of
surfactant molecules placed with their alkyl tails upright on simple square lattice with
lattice spacings L,/N, and L,/N, in x- and y-directions, respectively. N, and Ny are
the numbers of the surfactant molecules in x- and y-directions, respectively. N, and
Ny were chosen such that the initial coverage of surfactants was maximally uniform.
P stands for initially preset crystalline islands of standing-up thiols with their tails up-
right. We observed ordering of the headgroups for all P—initialized systems, whereas
for the U—initialization the headgroup ordering was not found in none of the cases. An
experimentally proposed orthogonal unit cell with unit vector lengths of 5.52 and 8.42
A [64]] was used for the crystalline structure in the preset islands. Such a preset island
was surrounded by a pre-equilibrated single layer of laying-down thiols. In the case of
Ny, = 953 the stripes of standing-up surfactants (with the structure identical to the one
in the islands) were initially preset from both sides of liquid Hg. The rest of notations
follow the ones in Tab. [A.T}
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N, | o (nm_z) teq (ns) | tg(ns) | Initial | Final

config. | configurations

PF of 1st LD thiol layer

PF of 1st LD thiol layer

cr. SU islands from both sides
cr. SU islands from both sides
cr. SU islands from both sides

240 | 0.53124 20.00 | 70.92
378 | 0.83671 10.00 | 80.44
650 | 1.43879 66.00 | 381.76
728 | 1.61144 54.00 | 260.56
906 | 2.00545 22.00 | 233.98

a1 clc

Table A.5: Dodecanethiol (SC12) systems for the overall system cross-section of
29.808 x 30.312 =903.5 nm?. Ny =285670. T stands for the initial surfactant configu-
rations obtained by simply trimming the longer molecules (SC18) in the respective equi-
librated conformations. The rest of the notations follow the ones in Tabs. @ and @
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