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Abstract

Smoothing splines is a well stablished method in non-parametric statistics, although

the selection of the smoothness degree of the regression function is rarely addressed

and, instead, a two times differentiable function, i.e. cubic smoothing spline, is as-

sumed. For a general regression function there is no known method that can identify

the smoothness degree under the presence of correlated errors. This apparent disre-

gard in the literature can be justified because the condition number of the solution

increases with the smoothness degree of the function, turning the estimation unsta-

ble. In this thesis we introduce an exact expression for the Demmler-Reinsch basis

constructed as the solution of an ordinary differential equation, so that the estimation

can be carried out for an arbitrary smoothness degree, and under the presence of

correlated errors, without affecting the condition number of the solution. We provide

asymptotic properties of the proposed estimators and conduct simulation experiments

to study their finite sample properties. We expect this new approach to have a direct

impact on related methods that use smoothing splines as a building block. In this

direction, we present extensions of the method to signal extraction and functional

principal component analysis. The empirical relevance to our findings in these areas

of statistics is shown in applications for agricultural economics and biophysics. R

packages of the implementation of the developed methods are also provided.
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1. Introduction

Smoothing splines can be seen as the solution of a variational calculus problem where

the aim is to obtain an approximation of the data that is accurate and yet smooth.

The origins of the idea can be tracked to Whittaker [1923], Schoenberg [1964] and

Reinsch [1967] who built the foundations of a general class of regularisation problems

that are today a prominent research area in mathematical statistics. More specifically,

the idea can be presented as the following (constrained) minimisation problem:

min
f∈Cq [x1,xn]

∫ xn

x1

{f (q)(x)}2dx :
n∑
i=1

{
Yi − f(xi)

δYi

}2

< S, (1.1)

where (xi, Yi) are ordered data pairs such that x1 < x2 < · · · < xn, C2[x1, xn] is

the space of functions that have q continuous derivatives in [x1, xn], S is a redundant

parameter and δYi’s are assumed to be known quantities. The original problem pre-

sented in (1.1) has an historical appeal, but it is mostly studied in its unconstrained

form, where the trade-off between precision and smoothness of the solution is con-

trolled by the Lagrangian parameter (see Definition 6). After Reinsch [1967], a vast

part of the development of smoothing splines was due to Demmler and Reinsch [1975],

Wahba [1978], Speckman [1985], among others. Moreover, spline methods in general

have gained popularity not only due to the development of its theoretical properties

portrayed in the publication of seminal monographs [cf. de Boor, 1997, Eubank, 1988,

Wahba, 1990, Schumaker, 2007], but also due to the availability of growingly amounts

1



1. Introduction

of data and software packages that facilitated the application of new statistical meth-

ods, as illustrated in modern text books in non-parametric applied statistics [cf. Hastie

and Tibshirani, 1990, Ruppert et al., 2003, Wood, 2006].

This thesis provides results of an smoothing spline estimator for a regression func-

tion of unknown smoothness degree, and under the presence of correlated errors. We

present the subject by introducing some basic definitions; known asymptotic prop-

erties of the smoothing splines estimators; and some open problems that situate our

work in the literature and motivate the objectives of the thesis.

1.1. Smoothing Splines

Splines are piecewise polynomials that join at points called knots. Throughout this

dissertation we make the assumption that function f has support in [0, 1], with knots

located in an equidistant grid τ = {τj : τj = j/(n − 1), j = 0, 1, . . . , n − 1}. The

smoothest polynomial spline space is given in the following definition

Definition 1. The smoothest space of polynomial splines of degree p with knots placed

at τ is defined as

S(p; τ) := {s : ∃s1, . . . , sn−1 ∈ Pp : s(x) = si(x) for x ∈ [τi−1, τi], i = 1, . . . , n− 1

and s
(j)
i (τi) = s

(j)
i+1(τi), j = 0, . . . , p− 1, i = 1, . . . , n− 2

}
,

where Pp denote an element of the polynomial space of degree p.

A particular class of polynomial spline space is the natural spline space, which arises

as the solution of the variational problem posted by Reinsch (1.1).

2



1. Introduction

Definition 2. The space of natural splines of degree 2q− 1 with knots τ is defined as

NS(2q − 1; τ) := {s ∈ S(2q − 1; τ) : s|[0,τ1], s|[τn−3,1] ∈ Pq−1},

where s|[0,τ1] and s|[τn−3,1] denote that the evaluation of function s(·) is restricted to

the domains [0, τ1] and [τn−3, 1] respectively.

Hence a natural spline is 2q−2 times continuously differentiable piecewise polynomial

of degree 2q − 1 on [τ1, τn − 2] and q − 1 on the intervals [0, τ1] and [τn−3, 1]. We

introduce next the space that will use more intensively throughout this dissertation.

Definition 3. A Sobolev space of degree β is defined as

Wβ(M) :=

{
f : f ∈ Cbβc−1[0, 1], ‖f (β)‖2 =

∞∑
i=1

θ2
β,iν

β/bβc
β,i < M2

}
(1.2)

An orthonormal basis of the space in Definition 3 is the Demmler-Reinsch basis.

Definition 4. A Demmler-Reinsch Basis of degree β is an orthonormal basis {ψi(x)}∞i=1

of Wq(M) determined by

∫ 1

0

ψβ,i(x)ψβ,j(x)dx = δi,j = ν−1
β,i

∫ 1

0

ψ
(β)
β,i (x)ψ

(β)
β,j (x)dx. (1.3)

Hence, f ∈ Wq(M) can be represented as f =
∑∞

i=1 θβ,iψβ,i for θβ,i =
∫ 1

0
f(x)ψβ,i(x)dx,

and ‖f (β)‖2 =
∑∞

i=1 θ
2
β,iνβ,i < M2. Using Definitions 4 and 3 we can now re-state the

definition of the Demmler-Reinsch basis for the natural spline case in Definition 2.

Definition 5. A Demmler-Reinsch basis of the natural spline space NS(2q − 1, τ) is

defined by

1

n

n∑
i=1

φq,i(xk)φq,j(xk) = δi,j = η−1
q,i

∫ 1

0

φ
(q)
q,i (x)φ

(q)
q,j(x)dx. (1.4)

3



1. Introduction

As mentioned before the solution of the smoothing splines problem is an object in

Wq[0, 1]. Next we provide a formal definition of the problem.

Definition 6. A smoothing spline estimator is the solution of the following minimi-

sation problem

min
f∈Wq [0,1]

[
1

n

n∑
i,j=1

{Yi − f(xi)} r−1
i,j {Yj − f(xj)}+ λ

∫ 1

0

{
f (q)(x)

}2
dx

]
, (1.5)

where λ ∈ R+, q ∈ N, data pairs (xi, Yi) follow Yi = f(xi) + εi, and {εi}ni=1 is an

homoscedastic stationary process with correlation matrix R of elements Cor(εi, εj) =

ri,j. In matrix notation, the solution of (1.5) for an arbitrary basis Cq of Wq[0, 1] can

be written as

f̂λ,q,R = Cq

(
CT
qR

−1Cq + λnDq

)−1
CT
qR

−1Y (1.6)

= Sλ,q,RY ,

where Dq is a penalty matrix that depends on q and Sλ,q,R is referred as the smoother

matrix.

Equation (1.6) has two clear extreme situations. Namely if λ = 0, it reduces to an

interpolation problem, and if λ → ∞ it turns into the estimation of a polynomial of

degree q − 1. To reduce the computational complexity of the solution in (1.6), the

convenience of using an orthonormal basis obvious. The following two examples show

its use for the independence case.

Example 1. Given Definition 5 and its solution given in (1.6) for Cor(εi, εj) = δi,j,

the smoothing spline estimator can be written explicitly in terms of the Demmler-

4



1. Introduction

Reinsch basis as

f̂(x) =
1

n

n∑
l=1

n∑
i=1

φq,i(xl)φq,i(x)

1 + λnηq,i
Yl =

n∑
i=1

wiφq,i(x)

1 + λnηq,i
, (1.7)

where we have used Dq = diag{ηq,i} and wi = n−1
∑n

l=1 φq,i(xl)Yl.

In the next example we present a different approach to solve the penalised regression

problem that consists in representing it as a linear mixed model (LMM) problem [cf.

Ruppert et al., 2003, Wood, 2006].

Example 2. Given Definition 5 and its solution (1.6) for Cor(εi, εj) = δi,j and ma-

trices X = {φq,1(x), . . . , φq,q(x)} and Z = {η−1/2
q,q+1φq,q+1(x), . . . , η

−1/2
q,n φq,n(x)}, it can

be shown that the solution of the smoothing splines problem in (1.6) is equivalent to

the solution of the following LMM problem

Y = Xβ +Zu+ ε, u ∼ N{0, σ2
uIn−q}, ε ∼ N (0, σ2In), (1.8)

for β ∈ Rq, u ∈ Rn−q and u independent of ε. The smoothing parameter correspond-

ing to this representation is given by λ = σ2/(nσ2
u). Solving (1.8) instead of (1.5) is

advantageous because all parameters are estimated in a single step by the maximisation

of a likelihood function.

From the previous examples it can be seen that the use of the Demmler-Reinsch basis

reduces the computational complexity of the solution from O(n3) to O(n2) in both

cases. The general case where R is an arbibtrary Toeplitz positive definite matrix is

studied in detail in Chapter 3.
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1. Introduction

1.2. Asymptotic Properties

Here we summarise some asymptotic results of smoothing splines following Schwartz

[2012]. For a more detailed review on the integrated mean squared error, the average

mean squared error, optimal rates of convergence or local properties of smoothing

spline estimators, the reader is referred to Rice and Rosenblatt [1981], Wahba [1990],

Craven and Wahba [1978], Speckman [1985] and Nychka [1995].

Definition 7. A positive sequence {aN}∞ is called an optimal rate of convergence of

estimators on class of functions F with respect to a norm ‖ · ‖ if ∃ c1, c2 > 0 such that

lim infn→∞ inf
f̂∈F̂n,f

supE
[
‖f̂n − f‖2

]
a−2
n ≥ c1

lim supn→∞ inf
f̂∈F̂n,f

supE
[
‖f̂n − f‖2

]
a−2
n ≤ c2

where F̂n,f denotes a class of estimators of f based on a random sample of size n.

Theorem 1. Speckman [1985]

Let Yi,f = f(xi) + εi, i = 1, . . . , N, f ∈ F , where {εi}ni=1 is an i.i.d. sequence of

random variables with variance σ2 > 0. In Definition 7 consider F = Wq[0, 1] and

denote F̂f,n as all linear estimators on F . Then the optimal rate of convergence of an

estimator on F with respect to norm ‖f‖n,2 = n−1{
∑n

i=1 f(xi)
2}1/2 is O

(
n−q/(2q+1)

)
.

Moreover, the global goodness of estimator f̂ can be measured by the integrated

squared mean error

IMSE(f̂) := E‖f̂ − f‖2
2 = E

∫ 1

0

{
f̂(x)− f(x)

}2

dx (1.9)

=

∫ 1

0

{
Ef̂(x)− f(x)

}2

dx+

∫ 1

0

E
{
f̂(x)− Ef̂(x)

}2

dx,

6



1. Introduction

or its discrete version, i.e. the average mean squared error

AMSE(f̂) :=
1

n

n∑
i=1

{
f̂(x)− f(x)

}2

dx (1.10)

=
n∑
i=1

{
f̂(x)− f(x)

}2

+
1

n

n∑
i=1

E
{
f̂(x)− Ef̂(x)

}2

.

As n → ∞, and given certain assumptions on the regularity of the design points,

expressions (1.9) and (1.10) are asymptotically equivalent. Estimator f̂ is asymp-

totically optimal on F with respect to the norm ‖ · ‖2 if its IMSE (AMSE) has the

same order of magnitude as the corresponding squared optimal rate of convergence

of estimators on F . From Theorem 1 if Wq[0, 1] = F , asymptotically optimal linear

estimators have IMSE (AMSE) of order O
(
n−2q/(2q+1)

)
.

Since functions {φq,i(x)}∞i=1 build a complete orthonormal system in Wq[0, 1] under

the L2 inner product, one can write

f(x) =
∞∑
l=1

flφq,l(x), with fl =

∫ 1

0

f(x)φq,l(x)dx and
∞∑
l=1

f 2
l ηq,l <∞,

and hence, the IMSE of smoothing splines can be written as

IMSE(f̂) =

[
∞∑

i=q+1

λ2η2
q,if

2
i

(1 + ληq,i)2
+

1

n

∑ σ2

(1 + ληq,i)2
+
qσ2

n

]
1 + o(1). (1.11)

The global asymptotic error of smoothing splines can then be obtained by looking at

the terms in (1.11). The last two summands correspond to the variance and, given

that ηq,i = {(i−q)π}2q [cf. Speckman, 1985], are O(n−1λ−1/2q). Regarding the bias, its

rate depends on the decay of fi. Results presented in Utreras [1980] show that the bias

of a function f ∈ Wq[0, 1] decay at different rates depending on the natural boundary

conditions. Namely it has been shown that the integrated squared bias has three

different bound according to the following cases: i) if all boundary conditions hold

O(λ2); ii) if the j-th boundary condition do not hold O(λ(2j+1)/2q); and iii) if none

7



1. Introduction

of the boundary conditions hold O(λ). The global asymptotic error for smoothing

splines then vary accordingly to each case. The bounds for the integrated squared

bias can then be used to estimate the optimal smoothing parameter λ in each of the

cases to obtain the asymptotically optimal IMSE. If all the boundary conditions hold,

we obtain

IMSE(f̂) = O(λ2) +O(n−1λ−1/q),

with optimal λ � n−q/(2q+1) leading to IMSE(f̂) = O(n−2q/(2q+1)). Similarly, if the

j-th boundary condition does not hold

IMSE(f̂) = O(λ(2j+1)/q) +O(n−1λ−1/q),

with optimal λ � n−q/(2j+2) providing IMSE(f̂) = O(n−(2j+1)/(2j+2)). Lastly, if no

boundary conditions hold [cf. Craven and Wahba, 1978, Cox, 1983] one obtains

IMSE(f̂) = O(λ) +O(n−1λ−1/2q),

with λ � n−2q/(1+2q) and hence IMSE(f̂) = O(n−2q/(1+2q)).

1.3. Open Problems and Objectives of the Thesis

Smoothing splines are a prominent area in mathematical statistics and there are plenty

of theoretical results available in the literature, however some open problems remain

and are of interest. In this dissertation we investigate the estimation of the degree q

for certain f ∈ Wq[0, 1] under the presence of correlated errors. The importance of

the selection of the degree of the Sobolev space q was explicitly mentioned in Reinsch

[1967], but to our knowledge no attempts have been done for its study except for the

recent works by Krivobokova [2013] and Serra and Krivobokova [2016]. Moreover, even

if the true value of q > 3 is known in advance, the estimation procedure via numerical

implementations of the Demmler-Reinsch basis [cf. Ruppert et al., 2003] is known

8



1. Introduction

to be unstable. This situation has lead presumably to the nowadays standard cubic

spline assumption, i.e. q = 2. In this thesis we present solutions to the aforementioned

problems and study the following aspects of smoothing splines:

1. Computational stability. It is easy to see that the condition number of the solu-

tion (1.5) for an arbitrary Cq increases exponentially with q via Dq. This phe-

nomenon has been documented in Wand and Ormerod [2008] for the O’Sullivan

[1986] type penalisation. In this dissertation we consider an exact expression for

the Demmler-Reinsch basis, where the eigenvectors and eigenvalues are assigned

to the columns of Cq, and the elements of the diagonal matrix Dq respectively,

so that computational stability is no longer an issue. In Chapter 2 we present

our first contribution, which is an exact expression for the Demmler-Reinsch

basis as the solution of certain ordinary differential equation.

2. Computational complexity. As shown in examples 1 and 2, the computational

cost of the smoothing spline problem in the independence case can be consider-

ably reduced if the Demmler-Reinsch basis is used. In Chapter 3 we show that

this fact extends naturally to the correlated errors case. Moreover, in Chapter

4 we show that the computational efficiency is of crucial interest not only when

large amounts of data are considered, but also when the basic model is used as

a building block for more involved settings (see point 4 in this list).

3. Correlated Errors. Serra and Krivobokova [2016] introduced the idea of estimat-

ing q together with the smoothing parameter λ for the independence case. An

extension of this work to the case where the correlation in the error term decays

exponentially is presented in Chapter 3. In the same Chapter comparative sim-

ulation studies are presented to study the performance of our method in finite

samples.

4. Extensions. The results presented in Chapter 3 are extended to models where

empirical Bayes smoothing splines are used as a building block. Namely, in

Chapter 4 we present extensions to additive models and functional data analysis.

9



1. Introduction

These are new results and are presented in Chapters 3 and 4. Chapter 5 shows

practical applications of this extensions.

This thesis is organised as follows. In Chapter 2 the Demmler-Reinsch basis is re-

visited as the solution of an ordinary differential equation and an exact expression

is provided. Chapter 3 uses the results in chapter 2 and builds a general empirical

Bayes smoothing splines model where the degree of the smoothness of the regression

function, the structure of the error’s correlation, and the smoothing parameter are un-

known. Chapter 4 extends the results in Chapter 3 to additive models and functional

data analysis. In Chapter 5 applications in agricultural economics and biophysics are

presented to illustrate the use of the method. Chapter 6 provides a summarised de-

scription of the R software developed to implement the ideas presented in chapters 3

and 4. Chapter 7 closes the document with a summary and an outlook.

10



2. Demmler-Reinsch Basis

The smoothing splines problem can be solved under different bases, e.g. truncated

polynomials, B-Splines, Thin-plate Splines, etc. The main advantage of the Demmler-

Reinsch basis over the other alternatives is its orthonormality. Numerical approxima-

tions of this basis are available in the literature, see [cf. Ruppert et al., 2003, Wood,

2006], however it is well known that such approximations become numerically un-

stable, or even computationally infeasible, as the smoothness degree q in Wq[0, 1]

increases. In this dissertation we study estimators of f ∈ Wq[0, 1] without assuming

any prior knowledge of the degree of the space, and hence it is of crucial importance

to have a precise representation of the Demmler-Reinsch basis that allows for a com-

putationally stable and efficient solution of the smoothing splines problem. In this

chapter we present an exact expression of this basis as the solution of certain ordinary

differential equation.

2.1. Ordinary Differential Equation

In this section the Demmler-Reinsch basis for Wq[0, 1] is redefined as the solution

of an ordinary differential equation. Consider the approximation error of a function

f ∈ Wq[0, 1] by the expansion of some arbitrary orthonormal basis {ϕq,i}ni=1 as

DN(ψ) := sup
f∈Wq [0,1]

1

n

n∑
1=1

{
f(xi)−

N∑
j=1

〈f, ϕq,j〉ϕq,j(xi)

}2

,

11



2. Demmler-Reinsch Basis

where we have used the L-2 inner product. The quantity dN := infϕq DN(ϕq), is often

called Kolmogorov’s diameter. Remarkably, by some simple algebra one can show that

dN = DN(φq) = ηq,N+1. Meaning that the Demmler-Reinsch basis is the ensemble of

diagonals in the Sobolev’s ellipsoid [cf. Tikhomirov, 1986] for details.

Theorem 2. Cao [2008]. If an orthonormal basis in Wq[0, 1] with eigenfunctions

{ϕq,1(x), . . . } and corresponding eigenvalues νq,1 . . . solves the following ordinary dif-

ferential equation

(−1)qϕ
(2q)
q,i (x)− νiϕq,i(x) = 0 s.t. ϕ

(l)
q,i(0) = ϕ

(l)
q,i(1) = 0, (2.1)

for l = q, q + 1, . . . , 2q − 1 then it follows that

〈ϕ(q)
q,j , ϕ

(q)
q,i 〉 = ηq,iδj,i.

Proof. We begin by noting that any f ∈ Wq[0, 1] can be represented as the sum of

two orthogonal functions, one of which is a polynomial. Namely

f(x) = P q−1
f (x) + {Ag(x)− Πq−1Ag(x)},

where the first term is the projection of f(x) onto a polynomial space of degree q− 1,

i.e. given the projection operator Πm−1 one can write

P q−1
f (x) = Πm−1f(x) =

q−1∑
i=0

〈f, ψi〉ψi(x),

for orthogonal polynomials {ψi, . . . , ψm−1}, whose elements are defined recursively, as

e.g. in Favard [1935]. For the second term define an operator A such that

Ag =
1

(q − 1)!

∫ 1

0

(x− t)q−1
+ g(x)dt, ‖g‖ < 1,

and note that Ag itself contains polynomials, which justifies the form of the second

12



2. Demmler-Reinsch Basis

term in (2.1). Kolmogorov’s diameter is hence given by

dN = inf
{φ}⊥{ψ}

sup ‖(Ag − Πq−1Ag)− [Ag − Πq−1Ag]
φq
N ‖

2,

where [f ]
φq
N =

∑N
k=1〈f, φq,k〉φq,k(x). Moreover it is easy to see that for all k = 1, . . . , n,

it holds that

dNφq,k = A∗Aφq,k − A∗Πq−1Aφq,k,

so that taking the 2q-th derivative we obtain dNφ
(2q)
q,i = (−1)qφq,i, and hence the

ordinary differential equation (with no boundary conditions) follows

(−1)qφ
(2q)
q,i (x) = ηq,iφq,i(x).

The boundary conditions are obtained directly from the evaluation of φ
(l)
q,i(x) at the

borders for l = q, q+1, . . . , 2q−1. The previous ODE with respective border conditions

fulfil

〈φ(q)
q,j , φ

(q)
q,i 〉 = (−1)m〈φq,j, φ(2q)

q,i 〉

(−1)m
∫ 1

0

φq,j(x)φ
(2q)
q,i (x)dx = ηq,i〈φq,j, φq,i〉,

where integration by parts was used q times.

The importance of Theorem 2 is evident since it implies that obtaining a general so-

lution for such ordinary differential equation, given the boundary conditions, leads

to an explicit expression for the Demmler-Reinsch basis. Hereafter we consider the

following definition

Definition 8. A Demmler-Reinsch basis in Wq[0, 1] is an orthonormal basis with

eigenfunctions {φq,i(x)}ni=1 and eigenvalues {ηq,i}ni=1, where {φq,i(x)}qi=1 corresponds to

an orthonormal polynomial basis of degree q−1 such that {φq,j(x)}qj=1 ⊥ {φq,i(x)}ni=q+1.

13



2. Demmler-Reinsch Basis

The corresponding eigenvalues fulfil: 0 = ηq,1 = · · · = ηq,q < ηq,q+1 · · · < ηq,n, and the

eigenfunctions {φq,i(x)}ni=q+1 can be obtained as the solution of the ordinary differential

equation

(−1)qφ
(2q)
q,i (x)− ηq,iφq,i(x) = 0, (2.2)

with boundary conditions

φq,i(x)(l)(0) = φ
(l)
q,i(1) = 0, l = q, q + 1, . . . , 2q − 1 i = q + 1, . . . , n. (2.3)

The solution of the 2q-order homogeneous linear equation (2.2) with conditions (2.3)

has been studied in e.g. Polyanin and Zaitsev [2003]. In particular the characteristic

polynomial P (ω) = ω2q− (−1)qηq,i = 0 has only complex conjugate roots if q ∈ 2N−1

and a mixture of complex conjugate and real roots if q ∈ 2N. Under this setting the

eigenvectors can be written as

φq,i(x) =
∑

λj∈S(q)

αq,j,i exp(−λjµq,ix) +
∑

λj∈S(q)

βq,j,i exp(λjµq,ix) (2.4)

+γq,i cos(µq,ix) + δq,i sin(µq,ix),

for µq,i = η
1/2q
q,i and S(q) := ∪j

{
(−1)j/2q, (−1)j/2q

}
such that 0 ≤ j ≤ q − 2 and

j ∈ 2N−1 if q is odd and j ∈ 2N otherwise so that #{S(q)} = q−1. The solution for

r = {αq,1,i, . . . , αq,q−1,i, βq,1,i, . . . , βq,q−1,i, γq,i, δq,i}T can then be obtained by utilising

the boundary conditions (2.3), which reduces the problem to solve the 2q × 2q linear

system M q,i · ri = 0 together with the computation of the eigenvalues. The following

example illustrates the problem.

Example 3. For q = 2 the solution is given by

φ2,i(x) = α2,1 exp(−µ2,ix) + β2,1 exp(µ2,ix) + γ2,1 cos(µ2,ix) + δ2,1 sin(µ2,ix),

14



2. Demmler-Reinsch Basis

and we are interested in finding the null-space of
−1 −1 1 0

1 e2µ2,i −eµ2,i cos(µ2,i) −eµ2,i sin(µ2,i)

1 −1 0 1

−1 e2µ2,i eµ2,i sin(µ2,i) −eµ2,i cos(µ2,i)

 (2.5)

Since by definition M 2,i is not full rank, µ2,i can be computed as the implicit solution

µ̃2,i : |M 2,i| = 0, so that ri solves M 2,i|µ2,i=µ̃2,i ·ri = 0 and is such that ‖φ2,i(x)‖2 = 1.

In the next section we propose a method to circumvent the aforementioned procedure

and obtain a direct formula for the Demmler-Reinsch basis.

2.2. A General Demmler-Reinsch Basis

In the first subsection we will show a general form to approximate the eigenvalues of

a Demmler-Reinsch basis of an arbitrary degree. In the second subsection we use this

results to present an expression for the eigenvectors.

2.2.1. Eigenvalues

In general for q ∈ N and corresponding sequences {µq,i}ni=q+1 the procedure depicted

in example 3 must be followed n− q times. However our problem has a structure that

can be further exploited. Consider first the problem of computing the eigenvalues as

the roots of the determinant for linear systems M q,i, with q small , i.e. q = 1, . . . , 4.

Here we present the results

15



2. Demmler-Reinsch Basis

|M 1,i| = − sin (µ1,i)

|M 2,i| = −4e2µ2,i (cos (µ2,i) cosh (µ2,i)− 1)

|M 3,i| = 6iµ12
3,i sin

(µ3,i

2

) [
2 cos

(µ3,i

2

){
− cos (µ3,i) + cosh

(√
3µ3,i

)
+ 4
}
−

8 cosh

(
1

2

√
3µ3,i

)]
|M 4,i| = −64µ22

4,i

[
cos
(√

2µ4,i

)
+ cosh

(√
2µ4,i

)
+ 2
√

2 sinh (µ4,i)×{
2 cos

(
µ4,i√

2

)
sinh

(
µ4,i√

2

)
− cos (µ4,i) sinh

(√
2µ4,i

)}
−

4 cosh

(
µ4,i√

2

){√
2 sin

(
µ4,i√

2

)
sin (µ4,i) + 2 cos

(
µ4,i√

2

)
cos (µ4,i)

}
+

cosh (µ4,i)
{

2
√

2 sin (µ4,i) sin
(√

2µ4,i

)
+ 3 cos (µ4,i) cos

(√
2µ4,i

)
−

8 cos

(
µ4,i√

2

)
cosh

(
µ4,i√

2

)
+ cos (µ4,i)

(
3 cosh

(√
2µ4,i

)
+ 2
)}

+ 6

]
.

As it can be seen the determinant functions (and consequently their roots) get more

involved as q increases. In fact the computational complexity of the determinant for

a matrix M q,i of size 2q× 2q using the LU decomposition or the Turing factorisation

takes O(q6), see. e.g Golub and van Loan [1996] and Corless and Jeffrey [1997] for

details on the symbolic matrix case. We proceed by showing the estimation of µq,i for

these cases, provide a formula for i → n and compare it with numerical approxima-

tions.

For the case q = 1 we obtain the trivial solution µ1,i = (i − 1)π, while for the case

q = 2 one is already constrained to solutions as i → n. Namely since cosh (µ2,i) 6= 0

for all µ2,i > 0 and 1/ cosh (µ2,i)→ 0 as i→ n, it is clear that µ2,i = (i− 3/2)π. For

the last case it is obvious that if µ3,i/π ∈ 2N the roots read (i − 2)π and it can be

easily shown that the same solution can be extended to µ3,i/π ∈ 2N − 1 as i → n.

Similar arguments follow for the case q = 4, where the following roots are found
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2. Demmler-Reinsch Basis

µ4,i = (i− 5/2)π. Given the previous results we conjecture

lim
i→n

ηq,i =

{(
i− q + 1

2

)
π

}2q

, i = q + 1, . . . , n. (2.6)

The comparison of the implementation of (2.6) and numerical approximations via

Newton search algorithms is presented in Table (2.1). As it can be seen the ap-

proximation is accurate up to the fourth decimal before the first 10 eigenvalues are

computed. We do not report the results for q = 1 since the result is exact and no

numerical approximations are required. The comparisons for q = {6, 7, 8, 9, 10} were

also performed reporting results in the same direction. The approximation formula

(2.6) is compatible with Theorem 2.2 given in Speckman [1985], where it is shown

that

ηq,i = {(i− q)π}2q{1 + o(1)}, ηq,1 = · · · = ηq,q = 0, i = q + 1, . . . , n,

where the o(1) term is uniform over i = o(n2/(2q+1)) as n→∞. In this subsection we

give a more precise expression of the eigenvalues.

Theorem 3. The eigenvalues of a Demmler-Reinsch basis can be approximated by

lim
n→∞

ηq,i =

{(
i− q + 1

2

)
π

}2q

, (2.7)

for q = 1, . . . , 6, and i = q + 1, . . . , n.

Proof. Proceed by contradiction and take µq,i = (i− (q+ 1)/2)π+ ε, for an arbitrarily

small ε ∈ R. A straightforward Taylor expansion for the determinants around this

point has the form

|M q,i| = mq(ε) +

q∑
i=1

ωi

{
µq,i −

(
i− q + 1

2

)
π − ε

}
+O(ε3),

for continuous functions mq(·), ωi ∈ R and where the first two terms of the expansion

17



2. Demmler-Reinsch Basis

Table 2.1.: Roots in Determinant Functions∗

q = 2 q = 3

i Roots
(num. approx.)

Roots
(Thm. 3)

Roots
(num. approx.)

Roots
(Thm. 3)

3 4.73004 4.71239 – –
4 7.8532 7.85398 9.42706 9.42478
5 10.9956 10.9956 12.5664 12.5664
6 14.1372 14.1372 15.708 15.708
7 17.2788 17.2788 18.8496 18.8496
8 20.4204 20.4204 21.9911 21.9911
9 23.5619 23.5619 25.1327 25.1327

10 26.7035 26.7035 28.2743 28.2743
11 29.8451 29.8451 31.4159 31.4159
12 32.9867 32.9867 34.5575 34.5575
13 36.1283 36.1283 37.6991 37.6991
14 39.2699 39.2699 40.8407 40.8407
15 42.4115 42.4115 43.9823 43.9823
16 45.5531 45.5531 47.1239 47.1239
17 48.6947 48.6947 50.2655 50.2655

q = 4 q = 5

i Roots
(num. approx.)

Roots
(Thm. 3)

Roots
(num. approx.)

Roots
(Thm. 3)

5 10.9958 10.9956 – –
6 14.1377 14.1372 12.5578 12.5664
7 17.2788 17.2788 15.7077 15.708
8 20.4204 20.4204 18.8497 18.8496
9 23.5619 23.5619 21.9912 21.9911

10 26.7035 26.7035 25.1327 25.1327
11 29.8451 29.8451 28.2743 28.2743
12 32.9867 32.9867 31.4159 31.4159
13 36.1283 36.1283 34.5575 34.5575
14 39.2699 39.2699 37.6991 37.6991
15 42.4115 42.4115 40.8407 40.8407
16 45.5531 45.5531 43.9823 43.9823
17 48.6947 48.6947 47.1239 47.1239
18 51.8363 51.8363 50.2655 50.2655
19 54.9779 54.9779 53.4071 53.4071

∗ The bolded rows highlight the cases i where the methods differ.
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2. Demmler-Reinsch Basis

are used. Since mq(ε) = 0 only when ε = 0, the result follows.

Remark 1. In the context of periodic smoothing splines the resulting eigenvalues of

the periodic Demmler-Reinsch basis should be normalised [cf. Schwartz, 2012] where

the regression and penalised splines cases are also explored. This normalisation ap-

plies directly to the Fourier coefficients in the discrete approximation of the peri-

odic Demmler-Reinsch basis following the theory of attenuation factors presented in

Gautschi [1971], where it is shown that such factors arise whenever the approximation

process that maps the (2π periodic) data into a periodic basis is linear and invariant

under translation. Given certain conditions Gutknecht [1987] shows that it is possible

to obtain attenuation factors for arbitrary data by utilising a combination of the trans-

lates of periodically extender box splines. In this chapter we considered a non-periodic

basis and to our knowledge attenuation factors for these type of bases are not available

in the literature.

2.2.2. Eigenvectors

Given the convergence of the roots of the determinant functions in (2.6), the conver-

gence of the null-space of systems M q,i(x) follows and the Demmler-Reinsch basis

problem is solved up to a normalisation constant.

Theorem 4. Given eigenvalues ηq,i as in Theorem 3, the corresponding eigenfunctions

{φq,i(x)}ni=q+1 of the Demmler-Reinsch basis are given by

φq,i(x) =
√

2

 ∑
λj∈S(q)

rj
{
e−λjµq,ix + (−1)i+1e−λjµq,i(1−x)

}
(2.8)

+ cos

{
µq,ix+

(
q − 1

4

)
π

})
, i = q + 1, . . . , n, (2.9)

where µq,i = η
1/2q
q,i and S(q) := ∪j

{
(−1)j/2q, (−1)j/2q

}
such that 0 ≤ j ≤ q − 2 and

j ∈ 2N− 1 if q is odd and j ∈ 2N otherwise.
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2. Demmler-Reinsch Basis

Proof. We write the solution for i → n, where the approximation of the eigenval-

ues as (2.6) holds, which implies that the coefficients in given in (2.4) for the so-

lution of the ODE (2.2) can be written as quantities independent of i. From the

boundary conditions (2.3) it follows immediately that γq = δq and hence βq,j =

αq,j(−1)i+1 exp{−λjµq,i}, from which the condition ‖φq,i(t)‖ = 1 and basic trigono-

metric formulae lead to the result.

2.3. Comparison with Numerical Approximations

In this section we compare the exact expressions for the eigenvalues and eigenvectors

for the Demmler-Reinsch basis provided in Section 2.2, with a commonly used numer-

ical approximation. Specifically we set Cq in (1.6) to be a B-spline basis of degree

2q − 1 with the natural conditions at the borders and a penalisation matrix of the

O’Sullivan [1986] type constructed from the Schumaker [2007] implementation. We

then express the numerical approximation of the Demmler-Reinsch basis following the

(standard) algorithm presented in Ruppert et al. [2003].

As mentioned in Section 1.3, the numerical instability of formulation (1.6) under

the O’Sullivan [1986] type penalisation can be a severe problem. To circumvent this

difficulty numerical approximations of the Demmler-Reinsch basis have been proposed

and are available in the literature. The standard algorithm first computes the so-called

Reinsch form of the smoother matrix by setting Cq = UΣV T in (1.6) to obtain

Sλ,q,I = (I + λnK)−1 for

K = UΣ−1V TDqV Σ−1UT . (2.10)

The spectral decompositionK = Φ̃q diag(η̃q,i)Φ̃
T
q then retrieves the numerical approx-

imations of the eigenvectors and eigenvalues of the Demmler-Reinsch basis, so that
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2. Demmler-Reinsch Basis

the regression function can be estimated with (1.7) plugging in the corresponding

numerical approximations.

Figure (2.1) shows a panel with a comparison between the eigenvectors when com-

puted numerically and by expression (2.8) for a grid of n = 60 equidistant points,

revealing that the numerical approximation is unstable already for q ≥ 3 (see third

and fourth rows in the panel). Specifically, the deterioration of the eigenvectors φq,i(t)

is noticeable at the borders of the unit interval and becomes more severe as q in-

creases. Moreover such features become prominent as the sample size increases, to

the point where the computation of the eigenfunctions is simply infeasible, which is

clearly a problem induced by (2.10), i.e. in the spectral decomposition of Cq and the

computation of Dq.

Other alternatives for the construction of the penalisation matrix are the Wand and

Ormerod [2008] approach, where an exact matrix algebraic expression is derived for

splines of arbitrary order, or the direct difference penalty suggested by Eilers and Marx

[1996]. In the former case the authors consider the general setting where the number

of knots are less than or equal to the sample size, however we found instability issues

in the penalisation matrix itself as q increase and as the number of knots approach the

sample size, i.e. for smoothing splines. On the other hand, the Eilers and Marx [1996]

so-called difference penalty have the nice property that is stable for an arbitrary

q. Nonetheless, as pointed out by Wand and Ormerod [2008], its smoothers can

have erratic extrapolation behaviour due to the differences between the exact integral

penalty and its discrete approximation.

Figure (2.2) highlights the differences of the eigenvalues under the two proposed meth-

ods for the same grid of n = 60 equidistant points. It is interesting to note that

even though the attenuation factors for periodic smoothing splines presented in e.g.

Schwartz [2012] are not directly applicable to our results, as explained in Remark

1, Figure (2.2) suggests that a correction of this form is remarkably accurate when

making the comparison between the eigenvalues obtained directly from the ODE and
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Figure 2.1.: Demmler-Reinsch Eigenfunctions. The continuous grey lines show the
DR basis using the numerical approximation described in section 2.3.
The black dashed lines correspond to the DR basis derived from the ODE
presented in section 2.1. In both cases a sample size of n = 60 was
considered. The solutions for larger values of q are not reported because
the numerical approximation becomes too unstable.
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the numerical approximation presented in Ruppert et al. [2003]. For completeness,

here we present the attenuation factors for a periodic spline of degree 2q−1 that were

used to produce Figure (2.2). These are factors of the form

τi =
sinc(πi/N)2q

Q2q−2(i/N)
, with Q2q−2(z) :=

∞∑
l=−∞

sinc{π(z + l)}2q,

where Q(·) are the so-called Q-polynomials of Schwartz [2012]. The interested reader

can refer to Gautschi [1971] and references therein, where the general theory of atten-

uation factors is presented.
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Figure 2.2.: Demmler-Reinsch Eigenvalues. The continuous grey lines show the DR
basis using the numerical approximation described in section 2.3. The
black dashed lines correspond to the DR basis derived from the ODE
presented in section 2.1 when attenuation factors are considered. The
solid black line shows the case when attenuation factors are omitted. In
all cases a sample size of n = 60 was considered. The solutions for larger
values of q are not reported because the numerical approximation becomes
too unstable.
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3. Smoothing Splines with Correlated

Errors

In this chapter we consider a likelihood based method for estimating the unknown

function f ∈ Wq[0, 1], its smoothness class q, smoothing parameter λ, noise level

σ2, and correlation matrix of the noise R. The approach consists of endowing the

regression function (given σ2 and R) with a so-called partially informative Gaussian

prior [cf. Speckman and Sun, 2003]. The specific prior depends on λ, q and σ2 but is

constant over R. Under this prior, the data can be seen as a realisation of a linear

mixed model (LMM) whose mean has as best linear unbiased predictor (BLUP) a

smoothing spline with smoothing parameter λ and order q. The estimation of q, λ, σ2

and R is then performed by the maximisation of the restricted profile log-likelihood

function. Such maximisers are in fact empirical Bayes estimates for these parameters.

We propose a fully non-parametric method to estimate all model parameters by an

iterative procedure consisting of two loops. In the inner loop σ2, R and λ are esti-

mated iteratively given q until convergence of λ is achieved. The outer loop repeats

the previous iteration for different values of q = 1, 2, . . . and selects the value that

maximises the restricted profiled log-likelihood (given known values for λ, σ2 and R)

for each q. We provide convergence properties of the estimators and shown that con-

sistent estimates for λ, σ2, and R, given certain q, can already be obtained after the

first iteration. The finite sample properties of the method are studied in a Monte

Carlo simulation study.
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3. Smoothing Splines with Correlated Errors

3.1. Statistical Model

We aim to solve the smoothing spline problem stated in Definition 6 under gaussianity.

Namely, for given data pairs (xi, Yi) following

Yi = f(xi) + εi,

where {εi}ni=1 is an homoscedastic stationary process with correlation matrix R of

elements Cor(εi, εj) = ri,j. The estimation of f(·) can be written as a the optimisation

problem presented in (1.5), that is

min
f∈Wq [0,1]

[
1

n

n∑
i,j=1

{Yi − f(xi)} r−1
i,j {Yj − f(xj)}+ λ

∫ 1

0

{
f (q)(x)

}2
dx

]
,

where λ ∈ R+, q ∈ N. As stated in Chapter 1, the solution (1.6) can be written as

f̂λ,q,R = Sλ,q,RY where

Sλ,q,R = Cq(Cq
TR−1Cq + λnDq)

−1Cq
TR−1, (3.1)

is the natural smoother matrix. In a similar fashion we define a naive smoother matrix

S∗
λ,q,R = R1/2Cq(Cq

TCq + λnDq)
−1Cq

TR−1/2 (3.2)

= R1/2S
λ,q,IR

−1/2,

so that the interpretation of the latter is clear. The smoother first pre-whitens the data

by pre-multiplying with the inverse of the square root of the correlation matrix, then

applies the smoother for independent data, to finally undo the initial transformation.

Moreover for Cq
∗ = R1/2Cq, it holds that

S∗ = Cq
∗(Cq

∗TR−1Cq
∗ + λnDq)

−1Cq
∗TR−1,
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3. Smoothing Splines with Correlated Errors

meaning that the naive smoother is also a natural smoother for the same penalty

matrix, but a different choice of design matrix Cq (a choice which depends on the

correlation matrix R). The two smoothers only coincide when R = I, which means

that if the data are correlated, the same choice of λ and q for the two smoothers leads to

different estimates. Reciprocally, given an estimate f̂ = Sλ,q,RY one could ask if there

exists λ∗ such that f̂
∗

= S∗λ∗,q,RY = f̂ . This is indeed the case so that (3.1) and (3.2)

are simply two different parameterisations (in terms of λ) of the same estimator. The

smoother matrix (3.1) is more natural when studying the asymptotic behaviour of

our estimators for λ and q, while the smoother matrix (3.2) is more appropriate for

the numeric implementation. Namely, using the Demmler-Reinsch basis (3.2) can be

re-written as

S∗
λ,q,R = R1/2Φq diag

{
(1 + λnηq,i)

−1
}

Φq
TR−1/2, (3.3)

where the computational complexity of the solution lies on the estimation of R.

3.2. Estimators

We aim to estimate the regression function f ∈ Wq[0, 1] via estimators for λ, q, σ2

and R. However, there is a natural interdependence between λ, q, σ2 and R so that

these estimates cannot be attained directly. In particular, the estimation of f requires

a reasonable estimate of R and, conversely, the estimation of R needs a good estimate

of f (and σ2), which creates a vicious circle. In this section we present estimators for

σ2, R, λ, and q that can be interpreted as empirical Bayes estimators retrieved from

an iterative maximisation procedure of the resulting marginal likelihood function.
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3. Smoothing Splines with Correlated Errors

3.2.1. Empirical Bayes Function

Consider the case where the design matrix Cq is the Demmler-Reinsch basis. As

presented in Example 2, in this case it is easy to see thatX(x) = {φq,1(x), . . . , φq,q(x)}

and Z = {η−1/2
q,q+1φq,q+1(x), . . . , η

−1/2
q,n φq,n(x)} are the design matrices corresponding to

the LMM representation of the smoothing splines problem. To estimate σ2, R, and

the spline parameters λ and q we use the empirical Bayes method by endowing f with

a prior and estimating the remaining model parameters from the respective marginal

likelihood

f ∼Xβ +Zu, where u ∼ N (0, σ2
uIn−q), (3.4)

for β ∈ Rq, u ∈ Rn−q and u independent of ε. This is a partially informative Gaussian

prior whose density is given by

π(f |σ2, λ, q) ∝
∣∣∣∣R−1(S−1 − I)

σ2

∣∣∣∣1/2
+

exp
{
− 1

2σ2
fTR−1(S−1 − I)f

}
, (3.5)

where | · |+ denotes the product of the non-zero eigenvalues of the argument, and it

should be noted that the prior does not depend on R. This follows directly from the

identity S−1
R − I = R(S−1

I − I). Moreover under (3.4), Y is a realisation from the

following LMM

Y = Xβ +Zu+ ε, u ∼ N (0, σ2
uIn−q), ε ∼ N (0, σ2R) (3.6)

where the best linear unbiased predictor θ̂ = (β̂
T
, ûT )T of θ is known explicitly.

Namely given V = R+ZZT/(λn), it holds that

β̂ = (XTV −1X)−1XTV −1Y , and

û = (ZTR−1Z + λnIn−q)
−1ZTR−1(Y −Xβ̂). (3.7)

In particular f̂ = SY = Xβ̂ +Zû, that is, the solution coincides with the posterior

mean corresponding to the prior (3.4). Now consider the estimation of σ2 from the
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3. Smoothing Splines with Correlated Errors

relation between the log-likelihood `LMM = `LMM(σ2, λ, q,R) and the restricted log-

likelihood `RES = `RES(β̂, σ2, λ, q,R) of model (3.6), that is

`RES = `LMM −
1

2
log |XT (σ2V )−1X|

= −n
2

log(σ2) +
1

2
log |R−1(I − S)|+ −

1

2σ2
Y TR−1(I − S)Y ,

(3.8)

where it is clear that the maximum with respect to σ2 (given λ, q and R) can be

obtained explicitly as

σ̂2 = σ̂2

λ,q,R = Y TR−1(I − S)Y /n, (3.9)

which can be plugged into into (3.8) to obtain the restricted profile log-likelihood

`(λ, q,R) = −n
2

log
(
σ̂2
)

+
1

2
log |R−1(I − S)|+, (3.10)

so that the estimates of λ, q and R are maximisers of this restricted profile log-

likelihood.

As mentioned before, for computational purposes it is convenient to write the re-

stricted log-likelihood in (3.8) in terms of the naive estimator. Denote by Y ∗ =

R−1/2Y the pre-whitened data and let `RES(σ2, λ, q, I;Y ∗) represent the respective

restricted log-likelihood (with the dependence on the data made explicit) of the pre-

whitened model Y ∗ = f ∗ + ε∗, with ε∗ = R−1/2ε ∼ N (0, σ2In). Straightforward

matrix manipulations show that

`RES(σ2, λ, q, I;Y ∗) = `∗RES(σ2, λ, q,R;Y ) +
1

2
log |R|,

where `∗RES(σ2, λ, q,R;Y ) is exactly `RES(σ2, λ, q,R;Y ) from (3.8) with the natural

smoother S replaced with the naive smoother S∗. Likewise,

−2`(λ, q, I;Y ∗) = −2`∗(λ, q,R;Y )− log |R|.
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3. Smoothing Splines with Correlated Errors

We conclude that if for each q and R, λ̂
q,R and λ̂∗

q,R maximise `(λ, q,R;Y ) and

`(λ, q, I;Y ∗) respectively, then f̂
λ̂q ,q,R and f̂

∗
λ̂∗q ,q,R coincide. The values of λ̂

q,R

and λ̂∗
q,R will however be different, but can be related. Similarly, the corresponding

estimator for σ2 is the estimator σ̂2 with S replaced with S∗, that is

σ̂∗2 = σ̂∗2
λ,q,R = Y ∗T (I − SI )Y ∗/n = Y TR−1(I − S∗)Y /n.

For fixed q and R the estimators σ̂2
λ and σ̂∗2λ are different, but they coincide when

λ is set to the maximisers λ̂
q,R and λ̂∗

q,R, respectively. In practice, maximising

`(λ, q,R;Y ) or `(λ, q, I;Y ∗) directly to obtain estimates for λ, q, and R is not prac-

tical, so in the next subsections we define estimating equations that can be solved for

this purpose.

3.2.2. Smoothing Parameter

Let γ represent λ, q, or some parameter of R. The restricted profile log-likelihood

`(λ, q,R) satisfies

−2σ̂2∂`(λ, q,R)

∂γ
= Y T ∂

∂γ

{
R−1(I − S)

}
Y − σ̂2 tr

[
(I − S)−R

∂

∂γ

{
R−1(I − S)

}]
,

(3.11)

where it is straight forward to verify that

∂

∂γ

{
R−1(I − S)

}
= −R−1

{∂R
∂γ
R−1(I − S) +

∂S

∂γ

}
.

For the case γ = λ, and using ∂S/∂λ = −(I − S)S/λ, the estimating equation for λ

(up to an scaling factor) follows

Tλ(λ, q,R) = Y TR−1(I − S)SY − σ̂2 tr(S), (3.12)
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3. Smoothing Splines with Correlated Errors

with σ̂2 as defined in (3.9). Given q and R, the solution λ̂
q,R of Tλ(λ, q,R) = 0

provides the desired result. Criterium (3.12) is convenient to derive asymptotics but

it might be difficult to evaluate numerically. Instead λ can be obtain from `(λ, q, I;Y ∗)

to estimate it as the solution of Tλ(λ, q, I;Y ∗) = 0. To reduce computational cost one

can take advantage of the Demmler-Reinsch basis so that the estimating equation can

be further simplified to

Tλ(λ, q, I;Y ∗) =
n∑

i=q+1

W 2
i λnηq,i

(1 + λnηq,i)2
− σ̂2

n∑
i=q+1

1

1 + λnηq,i
, for

σ̂2 =
1

n

n∑
i=q+1

W 2
i ληq,i

1 + λnηq,i
, (3.13)

and W = ΦTY ∗, which is the expression that we will use hereafter.

3.2.3. Correlation Matrix

Consider γ a parameter ofR only, and assume the dependence ofR on γ, is sufficiently

smooth. Using the definition of the natural smoother S and

∂S

∂γ
= −S∂R

∂γ
R−1(I−S), whence

∂

∂γ

{
R−1(I−S)

}
= −R−1(I−S)

∂R

∂γ
R−1(I−S),

the estimating equation (3.11) for a parameter γ of R follows

Tγ(λ, q,R) = Y TR−1(I − S)
∂R

∂γ
R−1(I − S)Y − σ̂2 tr

{∂R
∂γ
R−1(I − S)

}
, (3.14)

which can be further simplified. Note that since R is symmetric Toeplitz and hence

fully specified by its first row: (1, rT ) = (1, r1, . . . , rn−1). If we defineDk to be the n×n

upper-shift matrix, i.e., the matrix whose entries are Dk,i,j = δk,j−i, i, j = 1, . . . , n,

k = 1, . . . , n− 1, then we can express

R = I +
n−1∑
i=k

rk
(
DK +DT

k

)
, so that

∂R

∂rk
= DK +DT

k , k = 1, . . . , n− 1.
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3. Smoothing Splines with Correlated Errors

Moreover, given R−1(I−S) = (I−S)TR−1, tr
{
DkR

−1(I−S)
}

= tr
(
DkR

−1
)
{1 +

o(1)} and using λn → ∞, one can re-write the estimating equations for elements

rk, k = 1, . . . , n− 1 of R as

Tr,k(λ, q, r) = Y T (I − S)TR−1DkR
−1(I − S)Y − σ̂2 tr

(
DkR

−1
)

= vTR−1DkR
−1v − σ̂2 tr

(
DkR

−1
)

= tr
{
R−2

(
Dkvv

T − σ̂2DkR
)}
,

where we set v = (I − S)Y and we have taken advantage of the resulting quadratic

form to write it as a trace. Moreover if we assume the noise to be short range de-

pendent, ‖R − ρI‖op → 0 as n → ∞ for some ρ 6= 0. Meaning that solving for rk in

Tr,k(λ, q, r) = 0 is asymptotically equivalent to solving tr
(
Dkvv

T
)

= σ̂2 tr
(
DkR

)
.

Hence

(n− k)σ̂2rk = vTDkv (3.15)

gives an explicit (approximate) solution for each rk. Unfortunately the resulting es-

timate R̂ is not necessarily a positive matrix, and it is not consistent for the true

correlation matrix in operator norm. A common approach to solve this problems is

to tapper the estimate. Define the estimators r̂k = r̂k,λ,q,σ̂2 for rk

r̂k =
(Y − f̂)TDk(Y − f̂)

(n− k) σ̂2
=

1

σ̂2

n−k∑
i=1

(Yi − f̂i)(Yi+k − f̂i+k)
(n− k)

, k = 1, . . . , n− 1,

(3.16)

and define the following tapered estimator of R

R̂ = R̂λ,q,σ̂2,dn = I +
dn∑
k=1

r̂kwk
(
Dk +DT

k

)
, (3.17)

where dn ≤ n− 1 is any non-decreasing sequence of positive integers, and wk = wk,n

are appropriate weights chosen to ensure that the estimate is positive definite. For
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3. Smoothing Splines with Correlated Errors

the selection of dn and wk the interested reader can refer to Xiao and Wu [2012].

There are many alternatives in the literature to characterise the error’s correlation,

which allow for a direct estimation of the correlation matrix without assuming any

prior estimation of the regression function [cf. Hart, 1991, Hall and Van Keilegom,

2003] for an AR(p) parametric approach and Herrmann et al. [1992] for a non-

parametric approach that handles a broader variety of correlation structures. In

principle, any method that delivers a consistent estimator for R could be used. How-

ever representation (3.17) is less restrictive since it only assumes exponential decay in

the autocorrelation function of a short range dependent error process and, hence, is

prefered.

3.2.4. Smoothness Class

The interdependence between the estimators for λ andR does not affect the estimation

of q, hence λ and R can be estimated for each value of q ∈ {1, . . . , blog(n)c} under

consideration. In fact once consistent estimates for the correlation matrix of the noise

are available, the problem of estimating q under correlation R can be reduced to

the problem of estimating q in a model with R = I, which was studied in Serra

and Krivobokova [2016]. Here, we apply this approach to the pre-whitened data

Y ∗ = R̂
−1/2

Y , where R̂ is a consistent estimator of R. Once again making use of the

Demmler-Reinsch basis one can write S
λ,q,I = Φ diag

{
(1 + λnηq,i)

−1
}
ΦT , and since

∂(nηq,i)/∂q = nηq,i log(nηq,i)/q, whence

∂S
λ,q,I
∂q

= −1

q
ΦDλ,qΦ

T , with Dλ,q = diag

{
λnηq,1 log(nηq,1)(

1 + λnηq,1
)2 , . . . ,

λnηq,1 log(nηq,n)(
1 + λnηq,n

)2

}
,
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3. Smoothing Splines with Correlated Errors

it follows that up to a scaling factor

Tq(λ, q, I;Y ∗) = Y ∗TΦDλ,qΦ
TY ∗ − σ̂∗2I

n∑
i=q+1

log(nηq,i)

1 + λnηq,i

= YT (R̂R−1)−1/2ΦDλ,qΦ
T (R̂R−1)−1/2Y − σ̂∗2I

n∑
i=q+1

log(nηq,i)

1 + λnηq,i

= Tq(λ, q, I;Y){1 + oP (1)},

where Y = R−1/2Y and the last equality holding if R̂ is consistent for R in operator

norm, and R has eigenvalues bounded away from zero and infinity. If R is the true

correlation matrix of the noise, then the coordinates of Y are independent. The

conclusion is that the naive criterium Tq(λ, q, I;Y ∗) is asymptotically equivalent to

Tq(λ, q, I;Y) which is of the form proposed in Serra and Krivobokova [2016], that is

Tq(λ, q, I;Y ∗) =
n∑

i=q+1

W 2
i λnηq,i log(nηq,i)

(1 + λnηq,i)2
− σ̂2

n∑
i=q+1

log(nηq,i)

1 + λnηq,i

σ̂2 =
1

n

n∑
i=q+1

W 2
i ληq,i

1 + λnηq,i
(3.18)

where W = ΦTY ∗. An estimator of q is obtained by solving Tq(λ̂
∗
q, q, I;Y ∗) = 0,

q ∈ {1, . . . , blog(n)c}, where λ̂∗q is the naive estimator that solves Tλ(λ, q, I;Y ∗) = 0.

3.3. Asymptotic Properties1

We now describe the behaviour of the estimators from the Section 3.2. Henceforth

let P, (resp. E, V) represent probability (resp. expectation, variance) with respect to

N (f , σ2R), where f ∈ L2, σ2 > 0, R are the true values of the parameters of interest

which determine the distribution of the data.

The first theorem describes the behaviour of the smoothing parameter when the cor-

1This section corresponds to the work of Dr. Paulo Serra developed in a joint project at the Institute
of Mathematical Stochastics at Göttingen University.
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3. Smoothing Splines with Correlated Errors

relation in the noise is ignored, i.e., when we set R = I.

Theorem 5 (Consistency of preliminary estimate of λ). Let f ∈ Wβ(M) and assume

that ‖f (β)‖2 > 0. Assume that the first row of R is absolutely summable. Assume

in addition that the eigenvalues of R are bounded away from zero and bounded away

from infinity, and denote by τ the spectral density at zero of the noise process. Denote

by λ̂
q,I the solution to ETλ(λ, q, I) = 0, λ > 0. Then λ̂

q,I is consistent for the

oracle λ
q,I , in that λ̂

q,I/λq,I → 1, in P-probability, as n → ∞. Furthermore, if

max(1, τ)/2 < q ≤ max{β > max(1, τ)/2 : f ∈ Wβ(M)}, then

λ
q,I =

[
n‖f (q)‖2

σ2
{
τκq(0, 2)− (τ − 1)κq(0, 1)

}{1 + o(1)}
]− 2q

2q+1

, (3.19)

and, if f ∈ Wβ, β > 1/2, and q > max(β, τ/2), then

λ
q,I ≥

[
n‖f (β)‖2

σ2
{
τκq(0, 2)− (τ − 1)κq(0, 1)

}{1 + o(1)}
]− 2q

2β+1

. (3.20)

Proof. Note that Y = R−1/2Y ∼ N (R−1/2f , σ2I) so that if L is a symmetric matrix,

then E
(
YTLY

)
= fTR−1/2LR−1/2f + σ2 tr(L). Denote by τ the spectral density of

R at 0.

First note that for fixed λ, q, R,

E
(
σ̂2
)

=
1

n

[
fTR−1(I − S)f + σ2 tr

{
RR−1(I − S)

}]
, (3.21)

so that by (A.7) and (A.11), for fixed λ and q, E
(
σ̂2

I

)
= σ2{1 + o(1)}, uniformly over

R.

Similar computations show that for each λ, q, R,

ETλ(λ, q,R) =
1

n

[
fTR−1(I − S)Sf + σ2 tr

{
RR−1(I − S)S

}
− Eσ̂2

{
tr(S)

}]
,
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so that in particular, for R = I,

ETλ(λ, q, I) =
1

n

[
fT (I − SI )SIf − σ

2 tr
{
RS2

I − (R− I)SI
}
{1 + o(1)}

]
.

To ensure that a solution to the estimating equation ETλ(λ, q, I) = 0 exists, the trace

above must be positive. By (A.7),

tr
{
RS2

I − (R− I)SI
}

=
{
τκq(0, 2)− (τ − 1)κq(0, 1)

}
λ−1/(2q){1 + o(1)},

which is positive if, and only if, τ < 2q. We conclude that if τ < 2q, then the solution

to the estimating equation when f ∈ Wq, R = I, and τ < 2q, is

λ
q,I =

[
n‖f (q)‖2

σ2
{
τκq(0, 2)− (τ − 1)κq(0, 1)

}{1 + o(1)}
]− 2q

2q+1

, (3.22)

and if f ∈ Wβ, q > max(β, τ/2), then

λ
q,I ≥

[
n‖f (β)‖2

σ2
{
τκq(0, 2)− (τ − 1)κq(0, 1)

}{1 + o(1)}
]− 2q

2β+1

. (3.23)

To show that λ̂
q,I is consistent for these oracles, it suffices to show that for each q,

Tλ(λ, q, I)−ETλ(λ, q, I) converges uniformly over λ to 0, in probability. Since we will

need this to hold in greater generality, we write

Tλ(λ, q,R) =
1

n
YTLY − 1

n
YTL′Y tr(S)

n
,

where Y = ΦT
qR−1/2Y ∼ N (Y , σ2I), for Y = ΦT

qR−1/2f (which is in `2 since R has

eigenvalues bounded away from 0) and the symmetric matrices L and L′ are

L = ΦT
qR1/2R−1(I − S)SR1/2Φq, L′ = ΦT

qR1/2R−1(I − S)R1/2Φq.

Define the collection Λn of all λ such that λ = o(1), and λn → ∞. We can write
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supλ∈Λn |Tλ(λ, q,R)−ETλ(λ, q,R)| as the sum of two terms, one involving L, and one

involving L′. We treat these separately.

Consider the term involving L (the term involving L′ is controlled in the same way).

If the smallest eigenvalue of R is at least δ, then the eigenvalues of L (and L′) are at

most τ/δ, where τ is the largest eigenvalue of R. By the Cauchy-Schwarz inequality,

and the triangle inequality,

1

n

∣∣YTLY − E
(
YTLY

)∣∣ =
1

n

∣∣(Y − y)TL(Y − y) + 2(Y − y)TLz − σ2 tr(L)
∣∣

≤ 1

n
(Y − y)TL(Y − y) +

2

n

√
yTLz (Y − y)TL(Y − y) +

σ2

n
tr(L)

≤ τ

nδ
(Y − y)T (Y − y) + 2τ

√
zTz

n

1

nδ2
(Y − y)T (Y − y) +

σ2

n
tr(L),

almost surely. If nδ2 → ∞ then it suffices to control (Y − y)T (Y − y)/(nδ2), which

does not depend on λ, and tr(L)/n, which is deterministic. By (A.7),

σ2

n
tr(L) =

σ2

n
tr
{
RR−1(I − S)S

}
=
σ2τ

nδ
(δλ)−1/(2q)κq(1, 1){1 + o(1)},

which goes to zero if δ ≥ O{n−(2q−1)/(2q+1)}. By Markov’s inequality, since the coor-

dinates of Y are independent, for any ε > 0,

P
(∣∣ 1

nδ2
(Y−y)T (Y−y)

∣∣ > ε
∣∣∣ q,R) ≤ 1

ε2n2δ4
E
(∣∣(Y−y)T (Y−y)

∣∣2 ∣∣∣ q,R) ≤ 2σ2 + 4yty/n

ε2nδ4
,

which goes to 0 as long as nδ4 → ∞. (Note that if the eigenvalues of R are at least

τ , then yTy ≤ f tf/τ = n‖f‖2/τ{1 + o(1)}.) Conclude that

sup
λ∈Λn

∣∣YTLY − E
(
YTLY

)∣∣/n p→ 0 as n→∞,

as long as δ � max(n−1/4, n−(2q−1)/(2q+1)). In particular we conclude that λ̂
q,I/λq,I →

1, in probability as long as δ � max(n−1/4, n−(2q−1)/(2q+1)).
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3. Smoothing Splines with Correlated Errors

If R = I then τ = 1 in which case the constant in the denominator becomes κq(0, 2)

and one just recuperates the oracles for the i.i.d. noise setting. For details see Serra

and Krivobokova [2016].

Note also the lower bound on q based on the spectral density of the noise process. If

the constraint does not hold then the criterium for λ will be asymptotically positive.

This implies that the likelihood decreases with λ, such that approximate solutions to

the estimating equation for λ will under-smooth the data.

For x ∈ Rn let ‖x‖2 denote xTx. The risk of the smoothing spline estimator is,

by (A.7), (A.9), and (A.10), for all large enough n,

E‖f − SY ‖2/n = E‖Sε‖2/n+ ‖(I − S)f‖2/n = σ2 tr
(
S2R

)
/n+ fT (I − S)2f/n

≤ τ(ρλ)−1/(2q)κq(0, 2)/n+ (ρλ)1∧β
q ‖f (q∧β)‖2{1 + o(1)},

where ρ is the spectral density associated with the entries of R at zero; cf. (A.3). The

risk is therefore affected by the presence of the correlation in the noise and by the

specific candidate R used in the smoother via the respective spectral densities at zero.

Setting R = I and λ = λ̂I results in an spline estimate whose risk is of the order

of the minimax risk for f ∈ Wq∧β. However, by estimating the correlation structure

consistently, the (bound on the) risk can be reduced. The next theorem describes the

behaviour of the estimator R̂
λ,R when R = I, and λ = λ̂I .

Theorem 6 (Consistency of preliminary estimate of R). Assume that the conditions

of the previous theorem hold, and consider the estimator λ̂
q,I . Suppose that the entries

of R satisfy rk = O(k−α), α > 1. Then, if R = I and λ = λ̂
q,I , the estimator

R̂ = R̂
λ,q,R,dn

is consistent for R in operator norm in the sense that,

P

[
ν(R̂−R) ≤ C

{√
dn log(dn)

n
+ d−min(α−1,2)

n + dn n
− min(β,q)

2min(β,q)+1

}]
→ 1, n→∞,

where ν(·) denotes the spectral radius, and C > 0 is some universal constant. The
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3. Smoothing Splines with Correlated Errors

terms in the rate are balanced for dn = O
(
n

min(β,q)/min(α,3)
2min(β,q)+1

)
, resulting in the rate

n−
min(β,q)

2min(β,q)+1
min(α−1,2)
min(α,3) .

Proof. We prove the consistency of the estimator R̂λ at λ = λ̂
q,I . For a square matrix

L let ν(L) represent the spectral radius of L; this is the largest eigenvalue (in absolute

value) of L.

Since f is unknown to us, define r̃k = (Y − f)TDk(Y − f)/{nσ̂2} and note that

ν
(
R̂−R

)
≤ ν

(
R̂− R̃

)
+ ν
(
R̃−R

)
,

where R̃ is R̂ as defined in (3.17) with each r̂k replaced with r̃k. The right-most

term in the previous display converges to zero in probability (at a rate) by Theorem

4 of Xiao and Wu [2012]. If dn → ∞, dn < n − 1, and rk = O(k−α), α > 1,

then the rate is of order
√
dn log(dn)/n + d

−min(α−1,2)
n . The optimal choice for dn

is to take it of order n1/{2 min(α−1,2)+1}, in which in which case one obtains the rate

n−min(α−1,2)/{2 min(α−1,2)+1}; cf. [Xiao and Wu, 2012, p. 475]. The remaining term is

bounded using Gershgorin’s circle Theorem [Horn and Johnson, 1990, Theorem 6.1.1]:

ν
(
R̂− R̃

)
≤ 2

dn∑
k=1

wk|r̂k − r̃k|,

where the differences in the summands above satisfy

nσ̂2(r̂k − r̃k) = εT (Dk +DT
k )(f − f̂) + (f − f̂)TDk(f − f̂).

The two terms in the sum above are oP (n) when we set λ = λ̂
q,I , implying con-

sistency of R̂ in operator norm. Since εTε = OP (n), and (f − f̂λ)T (f − f̂λ) =

OP (n−min(β,q)/{2 min(β,q)+1}) when λ = λ̂∗q, by the Cauchy-Schwarz inequality, we con-

clude that the right-hand-side above is OP (nn−min(β,q)/{2 min(β,q)+1}) and conclude that
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3. Smoothing Splines with Correlated Errors

the rate (in operator norm) of the estimate for the correlation matrix is

√
dn log(dn)/n+ d−min(α−1,2)

n + dn n
−min(β,q)/{2 min(β,q)+1}.

Even without knowledge of α or β, picking dn such that dn →∞ and dn = o(n1/4) will

still lead to a consistent estimator of R. In the following theorem we show that using

any consistent estimator or R improves the estimation of the smoothing parameter

λ, in the sense that the estimate is going to be consistent for the same oracle as if R

were known.

Theorem 7 (Consistency of estimate of λ). Suppose the conditions of Theorem 5

hold. Denote by λ̂
q,

ˆR
the solution to ETλ(λ, q, I; R̂

−1/2
Y ) = 0, λ > 0, where R̂ is

consistent in operator norm for R. Then λ̂
q,

ˆR
is consistent for the oracle λ

q,R, in

that λ̂
q,

ˆR
/λ

q,R → 1, in P-probability, as n→∞. Furthermore, if max(1, τ)/2 < q ≤

max{β > max(1, τ)/2 : f ∈ Wβ(M)}, then

λ
q,R =

1

τ

[
n‖f (q)‖2

σ2τκq(0, 2)
{1 + o(1)}

]− 2q
2q+1

, (3.24)

and, if f ∈ Wβ, β > 1/2, and q > max(β, τ/2), then

λ
q,R ≥

1

τ

[
n‖f (β)‖2

σ2τκq(0, 2)
{1 + o(1)}

]− 2q
2β+1

. (3.25)

Furthermore, for each q, these oracles match the oracles for λ when R is known.

Proof. We now look at the behaviour of λ̂
q,

ˆR
. From the previous section we know that

the eigenvalues of R̂ = R̂
λ̂,q,I ,dn are bounded away from zero in probability if dn is cho-

sen appropriately. We conclude that in probability {Tλ(λ, q,R)−ETλ(λ, q,R)}|
R=

ˆR

converges to 0, uniformly over λ ∈ Λn. It remains to show that ETλ(λ, q,R)|
R=

ˆR
−
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3. Smoothing Splines with Correlated Errors

ETλ(λ, q,R) also converges to zero in probability, uniformly over λ.

First note that since in probability the eigenvalues of R̂ are bounded away from zero

and from infinity, for each f ∈ Wβ,

fTR−1(I − S)f |
R=

ˆR
= OP

{
nλ1∧(β/q)‖f (β∧q)‖2

}
,

which is oP (n) uniformly over λ ∈ Λn. On the other hand,

tr
{
RR̂−1

(I−S)
}

= n{1+o(1)}+tr
{

(R−R̂)R̂
−1

(I−S)
}

= n
[
1+o(1)+OP

{
dnλ

−1/(2q)
}]
.

Conclude that uniformly over λ ∈ Λn, E[σ2|λ, q,R]|
R=

ˆR
= σ2{1 + oP (1)}, as long as

dn = O
{
n(2q−1)/(2q)

}
. This means that if we abbreviate Ŝ = S

λ,
ˆR

and S = S
λ,R,

then n{ETλ(λ, q,R)|
R=

ˆR
− ETλ(λ, q,R)} is (up to smaller order terms)

fT R̂
−1

(I − Ŝ)Ŝf − fTR−1(I − S)Sf + σ2 tr
{
RR̂

−1
(I − Ŝ)Ŝ − Ŝ

}
+ σ2 tr

{
S2
}
.

We bound the difference between the quadratic forms. Using the identity S−1

R − I =

R(S−1

I − I) it follows that S ˆR
− SR = SR(R− R̂)(S−1

I − I)S ˆR
. Then,

fT R̂
−1

(I − Ŝ)Ŝf − fTR−1(I − S)Sf =

= fT (R̂
−1
−R−1)(I − Ŝ)Ŝf − fTR−1(I − Ŝ − S)(S − Ŝ)f .

The previous display is oP (n). The difference between the traces is

σ2 tr
{

(R− R̂)R̂
−1

(I − Ŝ)Ŝ
}

+ σ2 tr
{
S2 − Ŝ

2}
.

The first of these terms is controlled as before and is oP (n), uniformly over λ ∈ Λn, as

long as dn = O
{
n(2q−1)/(2q)

}
; the second term is easily shown to be of the same order

as n ν(R̂−R) = oP (n), for appropriate dn.
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It remains to compute the oracle for λ. We have

ETλ(λ, q,R) =
1

n

[
fTR−1(I − S)Sf − σ2 tr

(
S2
)]
.

Using (A.7), (A.9), and (A.10), conclude that the oracle λ
q,R satisfies the following:

when f ∈ Wq, and q > 1/2, then

λ
q,R =

1

τ

[
n‖f (q)‖2

σ2τκq(0, 2)
{1 + o(1)}

]− 2q
2q+1

, (3.26)

and if f ∈ Wβ, q > β, then

λ
q,R ≥

1

τ

[
n‖f (β)‖2

σ2τκq(0, 2)
{1 + o(1)}

]− 2q
2β+1

. (3.27)

3.4. Implementation

The specific dependence of the restricted profile log-likelihood on λ, R and q makes

it infeasible to find the maximisers directly. However, in section 3.2 we defined esti-

mates for each parameter given the others. This suggests an iterative procedure to

approximate the maximisers of the restricted profile log-likelihood.

3.4.1. Statistical Algorithm

A numerically robust procedure for the estimation of λ, q and R is not obvious. Here

we present the algorithmic implementation for the naive versions of the estimators in

two loops: an inner loop to compute λ̂ = λ̂|q=q̄ and R̂ = R̂|q=q̄ given an element of

Qn = {1, . . . , blog(n)c}, say q̄; and an outer loop where the inner loop is repeated for

each element in Qn.

42



3. Smoothing Splines with Correlated Errors

Inner loop

Consider an element q̄ ∈ Q and proceed as follows

1. Initialisation. Set R(0) = I to compute λ(0) as the solution of Tλ(λ, q̄, I) = 0

and obtain f̂
(0)

(λq̄,R(0) , q̄,R(0)) and e(0) = e(0)(λq̄,R(0) , q̄,R(0)).

2. Iteration. Compute R̂
(l)

= R̂(e(l−1)) for l = 1, . . . , L and de-correlate the data

via Y ∗ = {R(l)}−1/2Y and solve Tλ(λ, q̄, I;Y ∗) = 0 with solution λ(l). Update

λ(l), f̂
(l)

and e(l).

3. Stopping. Repeat the iteration step until convergence in λ(l)(q̄,R(l)) is achieved,

say, at l̃ < L. Collect λ(l̃) and R(l̃). If l̃ = L conclude that no convergence is

achieved for q = q̄.

Outer loop

1. Solve the estimating equation Tq̄ = Tq(λ̂
(l̃), q̄, I; {R̂

(l̃)
}−1/2Y ) for each q ∈ Q in

ascending order.

2. Select the optimal q as q̂ = bq̃c. If λ(l)|q=q̄ does not converge, Tq̄ cannot be

computed. If this occurs, stop and constraint the selection of q to {1, . . . , q̄}.

As argued in subsection 3.2.4, for each q the final estimates for f , σ2, andR will be the

same as if the natural estimators had been used, even though the corresponding value

of the smoothing parameter λ will differ. This means that the asymptotic behaviour

of the natural estimators for f , σ2, and R (which follows from the results in section

3.3) also applies to the naive estimators whose computation we outline in the current

section. If, however, one is interested in the value of the natural smoothing parameter

λ̂q, it can be obtain by solving S∗
λ̂,q,RY = S

λ̂,q,RY .
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3. Smoothing Splines with Correlated Errors

3.4.2. Numerical Simulations

In all settings the Monte Carlo sample is N = 100, the sample size is n = 500, and the

design points are fixed and equidistant t = i/n, i = 1, . . . , n. We consider five mean

functions properly scaled so their range lies in [0, 1]. Namely we use:

f1(x) =
n∑

i=β+1

φβ,i(x) {π(i− (β + 1)/2)}−β−0.1 cos(2i), β = 3

f2(x) = cos(5πx)

f3(x) =
n∑

i=β+1

φβ,i(x) {π(i− (β + 1)/2)}−β−0.1 cos(2i), β = 2

f4(x) = 3ϑ(x, 30, 17) + 2ϑ(x, 3, 11), ϑ(x, p, q) = {Γ(p+ q)/(Γ(p)Γ(q))}xp−1(1− x)q−1

Functions f1(x) and f2(x) where presented in Serra and Krivobokova [2016] for the case

when errors are not correlated. Function f3(x) is in W2[0, 1], that is, it portrays the

particular case where a cubic smoothing spline is, indeed, the correct choice to model

the data. Function f4(x) is introduced here and will be used in subsection 4.1.2 due

to its flexibility under different choices of parameters p and q. Figure (3.1) presents

a graphical depiction of the mean functions, accompanied with the corresponding

simulated data for a noise level of σ = 2−4. The same signal to noise ratio is used for

all simulated dependence structures.

The simulation study aims to evaluate the performance of the algorithm described in

subsection 3.4.1 given different correlation settings varying the dependence strength

and the complexity of its structure. In particular we consider error structures gen-

erated from εi = φ1εi−1 + φ2εi−2 + εi with εi
i.i.d∼ N (0, 1). Figure (3.2) shows the

selected cases inside the parameter space of stationarity that allows us to study dif-

ferent correlation patterns commonly found in practice. The specific behaviour of the

autocorrelation functions for these structures is presented in Figure (3.3).

To situate our work in the literature we compare our method with the plug-in estima-

tors by Hall and Van Keilegom [2003] and Herrmann et al. [1992]. In a nutshell, both
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3. Smoothing Splines with Correlated Errors

are kernel regression methods that use difference-based estimators for the autocorre-

lation function, which are later plugged into the kernel regression problem so that the

bandwidth selection takes into account the dependence structure of the error. Addi-

tionally we consider the LMM representation of cubic smoothing splines with AR(p)

errors as, in practice, it is the most common choice of the (unknown) smoothness class

of the regression function.

It is important to note that none of the three alternative methods consider the esti-

mation of parameter q, and hence an additional layer of complexity is added in our

procedure. Another important difference is that the only assumption we make about

the dependence structure of the error is its exponential decay, contrary to the more

restrictive AR(p) assumption of Hall and Van Keilegom [2003] and the cubic smooth-

ing splines cases. For clarity, the simulation study considers different scenarios for

parameters q and R as presented in Table (3.1).

Table 3.1.: Simulated scenarios

R
Unknown known

q
Unknown I II

known III IV

In scenarios I and II we consider all functions, while for scenarios III and IV only

functions f1(x) and f3(x) are studied since the smoothness class for these non-analytic

smooth functions is known by construction. All correlation structures depicted in

Figure (3.2) are used for all scenarios. The results of the simulation study for each

scenario are summarised in one table reporting the average of MSE =
∑M

i=1(f̂(xi) −

f(xi))
2/M and its standard deviation. Table (3.3) presents the assessment of the

empirical Bayes smoothing spline method for scenario I, i.e. when the structure of

the error and the smoothness class of the regression function are unknown, which

is in practice the most common case. As it can be seen, the results of our method

(EBS) have a better performance under all correlation structures and with respect

to methods HVK and HER. In very few cases, however, we observe that the LMM

45



3. Smoothing Splines with Correlated Errors

alternative is the best option. This result is not surprising since LMM uses the correct

AR(p) characterisation of the noise, and EBS computes it non-parametrically. In

fact, in scenario II, where we assume the noise structure is known, the EBS method

performs better under all correlation structures and for all functions besides f3(·), see

Table (3.4). Tables III and IV reveal very similar information for the case when q is

known, and thus the results are placed in appendix B. An interesting expected result

is presented in both, Table (B.1) and Table (B.2), where the superiority of the LMM

method is clear under all correlation settings for function f3(x). This is of course

expected since q = 2 is the true smoothness class of this function, and LMM assumes

cubic smoothing splines.

Table (3.2) presents some statistics for the computation of the smoothness class for

scenario I. We first note that functions f1(x) and f3(x) can be correctly identified,

where the true values of q are 3 and 2 respectively. When the smoothness class of the

functions is very large (or in fact infinite) we expect to underestimate q. In the case

of function f2(x), i.e., the cosine function, we find values of q between 5 and 3; while

for f4(x) we consistently find a values of q between 2 and 3.

Table 3.2.: Simulation Results: Smoothness Class

f1 f2 f3 f4

(φ1, φ2) Mean Mode Mean Mode Mean Mode Mean Mode
(0, 0) 3.00 3 4.76 5 2.01 2 2.88 3

(0.2, 0) 2.85 3 4.22 5 2.09 2 2.59 3
(0.4, 0) 2.67 3 3.69 3 2.30 2 2.21 2
(0.6, 0) 2.94 3 3.24 3 3.46 2 2.58 2

(0.52,−0.3) 3.12 3 4.41 4 2.20 2 2.92 3
(0.3,−0.52) 3.59 3 4.40 4 3.09 2 3.34 3

(0, 0.3) 2.74 3 3.62 3 2.62 2 2.48 2
(0,−0.3) 3.05 3 4.31 5 2.36 2 3.07 3

(0, 0.6) 3.85 3 3.48 3 3.68 3 3.20 2
(0,−0.6) 4.10 3 4.85 5 3.27 2 4.02 3
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Figure 3.1.: Simulation setting. Simulated mean functions as black continuous lines
and simulated data sample (for the independence case) as grey circles.
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3. Smoothing Splines with Correlated Errors
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Figure 3.2.: Simulated error. The area inside the triangle represents the stationarity
space for an AR2 processes. The grey points represent the cases selected
for the simulation study.
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Figure 3.3.: Autocorrelation functions of the AR2(φ1,φ2) processes depicted by the
grey points in Figure (3.2).
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3. Smoothing Splines with Correlated Errors

Table 3.3.: Simulation Results: MSE

(φ1, φ2) (0, 0) (0.2, 0) (0.4, 0) (0.6, 0) (0.52,−0.3) (0.3,−0.52) (0, 0.3) (0,−0.3) (0, 0.6) (0,−0.6)
f1

EBS 0.11 0.18 0.27 0.45 0.14 0.06 0.21 0.08 0.42 0.05
(0.04) (0.07) (0.08) (0.14) (0.06) (0.02) (0.08) (0.04) (0.16) (0.02)

HER 0.29 0.33 0.37 0.49 0.31 0.25 0.34 0.25 0.47 0.25
(0.08) (0.09) (0.10) (0.15) (0.09) (0.04) (0.10) (0.04) (0.16) (0.03)

LMM 0.14 0.20 0.28 0.42 0.17 0.07 0.22 0.08 0.40 0.04
(0.04) (0.07) (0.08) (0.13) (0.06) (0.02) (0.07) (0.02) (0.13) (0.01)

HVK 0.19 0.66 0.78 1.34 0.65 0.59 1.19 0.60 2.08 0.58
(0.06) (0.15) (0.23) (0.34) (0.16) (0.06) (0.21) (0.07) (0.41) (0.06)

f2

EBS 0.11 0.19 0.29 0.48 0.16 0.06 0.24 0.11 0.48 0.04
(0.04) (0.08) (0.09) (0.18) (0.07) (0.02) (0.10) (0.06) (0.17) (0.03)

HER 0.28 0.32 0.39 0.51 0.29 0.23 0.35 0.24 0.50 0.20
(0.08) (0.11) (0.13) (0.19) (0.09) (0.05) (0.14) (0.06) (0.17) (0.04)

LMM 0.19 0.26 0.37 0.57 0.23 0.10 0.31 0.11 0.55 0.06
(0.04) (0.07) (0.09) (0.15) (0.06) (0.03) (0.08) (0.02) (0.13) (0.01)

HVK 0.53 2.97 3.03 4.82 2.95 2.90 5.61 2.91 5.25 2.85
(0.11) (0.30) (0.37) (1.29) (0.41) (0.14) (0.48) (0.17) (1.15) (0.12)

f3

EBS 0.15 0.21 0.29 0.46 0.19 0.11 0.25 0.10 0.48 0.09
(0.04) (0.06) (0.08) (0.21) (0.06) (0.06) (0.07) (0.03) (0.20) (0.05)

HER 0.49 0.53 0.57 0.66 0.51 0.47 0.54 0.47 0.66 0.45
(0.07) (0.09) (0.11) (0.17) (0.07) (0.04) (0.11) (0.05) (0.15) (0.03)

LMM 0.15 0.20 0.28 0.42 0.17 0.08 0.24 0.09 0.39 0.05
(0.04) (0.06) (0.08) (0.12) (0.05) (0.02) (0.07) (0.02) (0.12) (0.01)

HVK 0.16 0.33 0.45 0.62 0.32 0.18 0.52 0.28 0.85 0.14
(0.04) (0.09) (0.15) (0.20) (0.07) (0.05) (0.13) (0.04) (0.26) (0.02)

f4

EBS 0.14 0.23 0.36 0.51 0.18 0.07 0.29 0.09 0.52 0.05
(0.04) (0.08) (0.09) (0.16) (0.07) (0.03) (0.09) (0.04) (0.19) (0.02)

HER 0.47 0.49 0.58 0.71 0.48 0.41 0.54 0.42 0.68 0.40
(0.11) (0.13) (0.17) (0.23) (0.13) (0.08) (0.16) (0.07) (0.21) (0.04)

LMM 0.17 0.24 0.34 0.52 0.20 0.09 0.28 0.10 0.49 0.05
(0.04) (0.07) (0.08) (0.15) (0.06) (0.02) (0.08) (0.02) (0.13) (0.01)

HVK 0.36 0.86 1.37 1.98 1.11 0.79 1.79 0.82 2.44 0.76
(0.10) (0.15) (0.45) (0.35) (0.44) (0.10) (0.28) (0.21) (0.75) (0.05)

‖f − f̂‖2: mean and standard deviations (in parenthesis) are reported. Quantities scaled by 104.
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3. Smoothing Splines with Correlated Errors

Table 3.4.: Simulation Results (Scenario II): MSE

(φ1, φ2) (0, 0) (0.2, 0) (0.4, 0) (0.6, 0) (0.52,−0.3) (0.3,−0.52) (0, 0.3) (0,−0.3) (0, 0.6) (0,−0.6)
f1

EBS 0.11 0.16 0.23 0.39 0.13 0.06 0.18 0.06 0.38 0.03
(0.04) (0.06) (0.08) (0.13) (0.05) (0.02) (0.06) (0.02) (0.12) (0.01)

HER 0.29 0.33 0.37 0.49 0.31 0.26 0.35 0.25 0.47 0.24
(0.08) (0.09) (0.10) (0.15) (0.09) (0.05) (0.10) (0.04) (0.16) (0.03)

LMM 0.14 0.20 0.28 0.42 0.17 0.07 0.22 0.08 0.41 0.04
(0.04) (0.07) (0.08) (0.13) (0.06) (0.02) (0.07) (0.02) (0.12) (0.01)

HVK 0.19 0.66 0.78 1.34 0.66 0.60 1.19 0.60 2.04 0.58
(0.06) (0.15) (0.23) (0.34) (0.16) (0.08) (0.21) (0.08) (0.43) (0.06)

f2

EBS 0.13 0.19 0.27 0.42 1.58 0.64 2.17 0.73 3.86 0.38
(0.04) (0.07) (0.08) (0.13) (0.58) (0.20) (0.73) (0.21) (1.20) (0.11)

HER 0.28 0.32 0.39 0.51 2.91 2.22 3.46 2.46 4.69 0.49
(0.08) (0.11) (0.13) (0.19) (0.88) (0.56) (1.39) (0.56) (1.66) (0.17)

LMM 0.19 0.26 0.37 0.57 2.25 1.00 3.07 1.10 5.37 0.61
(0.04) (0.07) (0.09) (0.15) (0.62) (0.24) (0.82) (0.25) (1.29) (0.13)

HVK 0.53 2.97 3.03 4.83 29.50 28.56 56.02 29.24 49.93 28.89
(0.11) (0.30) (0.37) (1.29) (4.04) (1.70) (4.80) (1.64) (12.24) (1.32)

f3

EBS 0.17 0.23 0.29 0.41 0.20 0.09 0.26 0.10 0.39 0.06
(0.04) (0.06) (0.08) (0.12) (0.05) (0.02) (0.07) (0.02) (0.12) (0.01)

HER 0.49 0.53 0.57 0.66 0.50 0.46 0.55 0.47 0.66 0.46
(0.07) (0.09) (0.11) (0.17) (0.07) (0.04) (0.11) (0.05) (0.14) (0.03)

LMM 0.15 0.20 0.28 0.41 0.17 0.08 0.24 0.09 0.39 0.05
(0.04) (0.06) (0.08) (0.12) (0.05) (0.02) (0.07) (0.02) (0.12) (0.01)

HVK 0.16 0.33 0.45 0.62 0.32 0.18 0.53 0.28 0.85 0.15
(0.04) (0.09) (0.15) (0.20) (0.07) (0.05) (0.13) (0.05) (0.25) (0.02)

f4

EBS 0.13 0.19 0.29 0.45 0.16 0.07 0.23 0.08 0.43 0.04
(0.04) (0.07) (0.08) (0.14) (0.06) (0.02) (0.07) (0.02) (0.13) (0.01)

HER 0.47 0.49 0.58 0.72 0.48 0.42 0.54 0.42 0.70 0.21
(0.11) (0.13) (0.17) (0.23) (0.13) (0.08) (0.16) (0.07) (0.22) (0.03)

LMM 0.17 0.24 0.34 0.52 0.20 0.09 0.28 0.10 0.51 0.06
(0.04) (0.07) (0.08) (0.15) (0.06) (0.02) (0.08) (0.02) (0.13) (0.01)

HVK 0.36 0.86 1.37 1.98 1.11 0.79 1.79 0.81 2.43 0.76
(0.10) (0.15) (0.45) (0.35) (0.44) (0.09) (0.27) (0.18) (0.75) (0.06)

‖f − f̂‖2: mean and standard deviations (in parenthesis) are reported. Quantities scaled by 104.
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3. Smoothing Splines with Correlated Errors

3.5. Digression on Smoothness Classes

In this section a digression on the estimation of the smoothness class of function

f ∈ Wq[0, 1] is presented following Krivobokova [2013]. In this document a different

estimator for q is constructed, where the main idea is to select a value of q such that the

estimating equations for the smoothing parameter under the frequentist framework

λf and Bayesian framework λr|f are equivalent. Namely

R̂q(λ̂) =
1

n

[
Y T (In − Sλ̂,q)S

2
λ̂,q
Y − σ2{tr(S2

λ̂,q
)− q}

]
, (3.28)

is suggested for some λ̂ = λf = λr|f . The asymptotic behaviour of this estimator is

described in the following theorem.

Theorem 8. Estimator R̂q(λ̂) converges to

Rq(λ) =
1

n

[
fT (In − Sλ,q)S2

λ,qf − σ2{tr(S3
λ,q)− q}

]
via

λ
1/(4q)
r|f (R̂q(λ̂r)−Rq(λr|f ))

D→ N
(

0,
σ4

384c(ρ)

[
C1(q) +

C2(q)

5

])
, (3.29)

where

C1(q) =
(2q − 1)(8q2 + 4q − 1)2

(2q + 1)q5sinc{π/(2q)}

C2(q) =
(2q + 1)(2q − 1)(4q − 1)(6q − 1)

q5sinc{π/(2q)}
.

Proof. The proof follows from Lemma 3 in Krivobokova [2013] and uses (A.6). Here

it is organised in three steps.

Step 1: convergence of Rq(λ̂r)
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3. Smoothing Splines with Correlated Errors

From the aforementioned results it holds that

(λ̂r − λr|f )
D→ N

(
0, λ

2+1/(2q)
r|f

2c(ρ)sinc{π/(2q)}q
12q2 − 3

)
as n→∞. (3.30)

To apply the delta method for function nRq(λ) we need to show that ∂{nRq(λ)}/∂λ

exists and that it is different than zero when evaluated at λr|f . Namely

∂{nRq(λ)}
∂λ

=
1

λ

[
3fT (In − Sλ,q)S3

λ,qf − 2fT (In − Sλ,q)S2
λ,qf + 3σ2tr{(In − Sλ,q)S

3
λ,q}
]

whose existence is obvious. Furthermore it can be shown that

∂{nRq(λ)}
∂λ

∣∣∣∣
λ=λr|f

=
σ2

λr|f

[
(tr{S2

λr|f ,q
} − q) + 3tr{(In − Sλr|f ,q)S

3
λr|f ,q
}
]
,

=
σ2λ

−1−1/(2q)
r|f

16c(ρ)

[
(2q − 1)(8q2 + 4q − 1)

q3sinc{π/(2q)}

]
{1 + o(1)},

where in the last step we made use of (A.6). The delta method can be then applied

using (3.30) and obtain

λ
1/(4q)
r|f (Rq(λ̂r)−Rq(λr|f ))

D→ N
(

0,
σ4

384c(ρ)
C1(q)

)
, (3.31)

with

C1(q) =
(2q − 1)(8q2 + 4q − 1)2

(2q + 1)q5sinc{π/(2q)}
,

which decreases with q.

Step 2: convergence of R̂q(λr|f )
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3. Smoothing Splines with Correlated Errors

For R̂q(λ) defined as in (3.28), under some fixed λ and the assumption of Gaussian

errors, it is easy to verify that

E{nR̂q(λ)} = fT (In − Sλ,q)S2
λ,qf − σ2{tr(S3

λ,q)− q},

var{nR̂q(λ)} = 2σ2[2fT (In − Sλ,q)2S4
λ,qf + σ2{tr(In − Sλ,q)2S4

λ,q)}].

Moreover,

E{nR̂q(λr|f )} =
σ2λ

−1/(2q)
r|f

8c(ρ)

[
(2q − 1)

q2sinc{π/(2q)}

]
{1 + o(1)},

var{nR̂q(λr|f )} =
σ4λ

−1/(2q)
r|f

1920c(ρ)

[
(2q + 1)(2q − 1)(4q − 1)(6q − 1)

q5sinc{π/(2q)}

]
{1 + o(1)},

where we have once again made use of (A.6). To apply the central limit theorem

(CLT), consider the Demmler-Reinsch basis, i.e. Sλ,q = Φq diag{(1 + λnηq,i)
−1}ΦT

q ,

so that tr(Slλ,q) =
∑n

i=q+1(1 + λnηq,i)
−l. Hence we can define

n[R̂q(λr|f )− ER̂q(λr|f )] =
n∑

i=q+1

(d2
i − b2

i − σ2)
λr|fnηq,i

(1 + λr|fnηq,i)3
+ op(1) =:

n∑
i=q+1

ξi,

where {ξi, i = q + 1, . . . , n} is a sequence of independent (but non-identically dis-

tributed) random variables with E(ξi) = o(1) and s2
n =

∑n
i=q+1 var(ξi) = 2σ4tr{(In −

Sλr|f ,q)
2S4

λr|f ,q
}{1 + o(1)} = constλ

−1/(2q)
r|f . Moreover it can be shown that var(ξi) =

o(1), for which there must exist some constant B bounding E(ξ2
i ). Then for a finite

E(ξ4
i ), we can write

1

s4
n

n∑
i=q+1

E(ξ4
i ) <

1

s4
n

B
n∑

i=q+1

E(ξ2
i ) =

B

s2
n

,

which converges to 0 as n→ 0, fulfilling the Lyapunov condition. Hence we apply the

CLT to obtain

λ
1/(4q)
r|f (R̂q(λr|f )−Rq(λr|f ))

D→ N
(

0,
σ4

1920c(ρ)
C2(q)

)
, (3.32)
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with

C2(q) =
(2q + 1)(2q − 1)(4q − 1)(6q − 1)

q5sinc{π/(2q)}
,

which decreases with q.

Step 3: convergence of R̂q(λ̂r)

One can evaluate (3.28) at random λ̂r to obtain

R̂q(λ̂r) =
1

n
[Y T (In − Sλ̂r)S

2
λ̂r
Y − σ2{tr(S2

λ̂r
)− q}], (3.33)

such that

E{nR̂q(λ̂r)} = E[E[nR̂q(λ̂r)|λ̂r = λ̂r·]] = E[nRq(λ̂r·)],

var{nR̂q(λ̂r)} = E[var[nR̂q(λ̂r)|λ̂r = λ̂r·]] + var[E[nR̂q(λ̂r)|λ̂r = λ̂r·]]

= E[var[nR̂q(λ̂r·)]] + var[nRq(λ̂r·)].

Using (3.31) it is clear that

E[nRq(λ̂r·)]→ nRq(λr|f ) and var[nRq(λ̂r·)]→
σ4λ

−1/(2q)
r|f C1(q)

384c(ρ)

as n→∞. Furthermore applying the delta method on var[nR̂q(λ̂r·)] and using (3.32),

it can be shown that

E[var[nR̂q(λ̂r·)]]→ var[nR̂q(λr|f )] =
σ4λ

−1/(2q)
r|f C2(q)

1920c(ρ)
.
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Hence, to make use of the CLT we build random variables

n[R̂q(λ̂r)− ER̂q(λ̂r)] =
n∑

i=q+1

{[
d2
i

λ̂rnηq,i

(1 + λ̂rnηq,i)3

]
−
[
b2
i

λr|fnηq,i
(1 + λr|fnηq,i)3

]

−

[
σ2

(
1

(1 + λ̂rnηq,i)2
− 1

(1 + λr|fnηq,i)3

)]}
+ op(1)

=:
k+n∑
i=q+1

ξi,

where {ξi, i = q + 1, . . . , n} is a sequence of independent (but non-identically dis-

tributed) random variables with E(ξi) = o(1) and s2
n = constλ

−1/(2q)
r|f . Using similar

arguments as the ones given in the previous step is then easy to find a bound

1

s4
n

n∑
i=q+1

E(ξ4
i ) <

1

s4
n

B
n∑

i=q+1

E(ξ2
i ) =

B

s2
n

,

which goes to 0 as n→∞ for some B bounding E(ξ2
i ) and E(ξ4

i ) <∞. The application

of the CLT then leads to the result

λ
1/(4q)
r|f (R̂q(λ̂r)−Rq(λr|f ))

D→ N
(

0,
σ4

384c(ρ)

[
C1(q) +

C2(q)

5

])
, (3.34)

with C1(q) and C2(q) as in (3.31) and (3.32) respectively.

Since the estimator R̂q(λ̂r|f ) can be seen as another criteria to estimate the smoothness

class of the function f ∈ Wq[0, 1], it is only natural to compare it with the estimating

equation Tq(λ, q, I) presented in Chapter 3. For clarity here we re-write (a properly

scaled version of) the estimators

R̂q(λr|f ) =
n∑
i=1

{
W 2
i λr|fnηq,i − σ̂2(1 + λr|fnηq,i)

(1 + λr|fnηq,i)3

}
+ σ̂2q

Tq(λ) =
n∑
i=1

{
W 2
i λnηq,i − σ̂2(1 + λnηq,i)

(1 + λnηq,i)3

}
log(nηq,i)(1 + λnηq,i),

where the difference in the selection of the smoothing parameters is made explicit.
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To compare the estimators denote λr|f = αλ for α ∈ R+ and consider σ2 → 0.

Straightforward manipulations show that both solutions are equivalent for α > 1,

i.e. λr|f < λ, which is expected since it is known that smoothing splines under the

frequentist framework (i.e. for λf = λr|f ) undersmooths the estimation. A more

detailed comparison between the two proposed estimators of the smoothness class is

outside the scope of this thesis.
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with Correlated Errors

In this chapter we extend the model presented in Chapter 3 using additive models

and functional data. In Section 4.1 we present the general formulation of additive

models under our framework and further explore its use as a tool for signal decompo-

sition, i.e. decoupling a signal in trend, seasonal and error components. Section 4.2

presents the use of the empirical Bayes smoothing splines when the collected data are

curves (as opposite to points) and their co-movement is studied by functional principal

components.

4.1. Signal Decomposition Analysis

Identification and understanding of different components of a time series is of great

importance in the applied sciences, and there are many methods available to cope

with the problem. In economics the decoupling of trend and seasonal components in

macroeconomic signals like GDP is of great interest to identify the so-called economic

cycle. Likewise, in electrical engineering signal processing demands the use of tools to

discriminate between the frequency information of signals for the study of electronic

circuits. A similar situation takes place in the life and atmospheric sciences, where

the interest lies in investigating the smooth trajectory of certain variables that are

considered to be functional in nature, e.g. growth or temperature data [cf. Ramsay
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and Silverman, 1997, Ferraty and Vieu, 2006], so the distinction between signal and

noise is a crucial matter.

Alexandrov et al. [2012] and Pollock [2006] provide a detailed discussion on the history

of the time series decomposition problem, as well as on the advantages and disadvan-

tages of various tools. In general, these methods form two main clusters: the so-called

model-based approach and non-parametric techniques. Probably the most common

tool in applied sciences is the model-based approach that requires the specification

of time series either by an ARIMA or by a structured time series model. The for-

mer has been popularised thanks to the automatic software implementations given

in TRAMO-SEATS [cf. Maravall and Caporello, 2004] and X-12-ARIMA [cf. Dagum,

1978, Findley et al., 1998], delivered by Banco de España and the Bureau of Cen-

sus in the US respectively. The development of methods for structural time series

models is more recent. In this case, the representation of the problem in state-space

form [cf. Harvey, 1989, West and Harrison, 1997, Young et al., 1999, Godolphin, 2001,

Zivot and Wang, 2006] has acquired great reputation since it allows to take advan-

tage of the seminal Kalman [1960] filter as implemented, for example, in Koopman’s

STAMP package [cf. Mendelssohn, 2011]. In contrast to the model-based approach,

non-parametric methods do not require any a priori specifications and are popular be-

cause of their simplicity. Among the most cited alternatives are the filters proposed by

Henderson [1916], Butterworth [1930], Cleveland et al. [1990], Hodrick and Prescott

[1997], Baxter and King [1999], and Christiano and Fitzegarld [2003]. As discussed

by Kauermann et al. [2011], the main challenge of all non-parametric methods is the

selection of a data driven smoothing parameter.

The method presented in subsection 4.1.2 contributes to the signal decomposition

literature and can be considered a member of the non-parametric cluster, with the

difference that not only the smoothing parameter is data driven, but also the selec-

tion of the smoothness class is consider and non-parametric errors are allowed. To

present the topic we first introduce a general additive model framework for empirical
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4. Extensions of Smoothing Splines with Correlated Errors

Bayes smoothing splines and take signal decomposition as an specific application un-

der this setting. We propose an estimation algorithm and show simulation exercises

to illustrate the performance of the method.

4.1.1. Additive Models

Consider the following extension of the smoothing splines model as presented in defi-

nition 6. Namely in an additive model we aim to solve

min
f1∈Wq1 [0,1],...,fd∈Wqd [0,1]

 1

n

(
Y −

d∑
k=0

fk

)T

R−1

(
Y −

d∑
k=0

fk

)
+

d∑
k=1

λk

∫ 1

0

{
f

(qk)
k (x)

}2

dx

 ,(4.1)

for λ1, . . . , λd ∈ R+, q1 . . . , qd ∈ N, and where data tuple (xi,i, . . . , xi,k, Yi) follow

Yi = f(xi) + ε =
∑d

k=0 fk(xi,k) + εi for f0(x) := β0 and {εi}ni=1 is a homoscedas-

tic stationary process with correlation Cor(εi, εj) = ri,j and correlation matrix R.

Theorem 9. The smoother matrices corresponding to the minimisation problem in

(4.1) are given by

G(λ, q,R) = S[−j] + (I − S[−j])Gj

Gj(λ, q,R) = Cj(C
T
j R

−1(I − S[−j])Cj + λjnDj)
−1CT

j R
−1(I − S[−j]),

where Cj = Cj,qj denotes an arbitrary basis of Wqj [0, 1], and

S[−j](λ[−j], q[−j],R) = C [−j]
(
CT

[−j]R
−1C [−j] + λ[−j]nD[−j]

)
CT

[−j]R
−1,

where the subindex [−j] denotes the exclusion of the j-th element in λ = {λ1, . . . , λd},

q = {q1, . . . , qd} and matrices C = [C1, . . . ,Cd] and D = blockdiag{D1, . . . ,Dd}.

Proof. The proof is an extension of Result 1 reported by Aerts et al. [2002] when

correlated errors are considered. Without lost of generality, consider blocks j and
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[−j] so the design matrix reads C = [C [−j],Cj]. To ease the notation we write

G = G(λ, q,R) and S = S(λ, q,R). By definition we have

G = C

 CT
[−j]R

−1C [−j] + λ[−j]nD[−j] CT
[−j]R

−1Cj

CT
j R

−1C [−j] CT
j R

−1Cj + λjnDj

−1

CT ,

or simply G = CACT . Following block matrix inversion formulae we obtain

G = S[−j] +C

 BCT
[−j]R

−1CjHC
T
j R

−1C [−j]B −BCT
[−j]R

−1CjH

−HCT
j R

−1C [−j]B H

CT

forB = (CT
[−j]R

−1C [−j]+λ[−j]nD[−j])
−1, andH = (CT

j (I−S[−j])Cj+λjnDj)
−1. For

the second summand straight forward matrix computations and proper factorisation

allows us to further simplify the smoother matrix to

G = S[−j] + (I − S[−j])CjHC
T
j (I − S[−j])

= S[−j] + (I − S[−j])Gj,

for Gj = CjHC
T
j (I − S[−j]), or more precisely

Gj = Cj{CT
j R

−1(I − S[−j])Cj + λjnDj}−1CjR
−1(I − S[−j]).

The solution of (4.1) reads

f̂ j(λ, q,R) = Gj(λ, q,R)Y

f̂(λ, q,R) =
d∑

k=1

Gk(λ, q,R)Y = G(λ, q,R)Y , (4.2)

which depends on parameters λ, q and R, whose values can be computed via es-

timating equations in an analogous fashion to the univariate case as presented in
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Chapter 3. Namely, for design matrices Xj(xj) = {φ2,qj(xj), . . . , φqj ,qj(xj)} and

Zj(xj) = {η−1/2
qj ,qj+1φqj ,qj+1(xj), . . . , η

−1/2
qj ,n φqj ,n(xj)} one arrives to the standard linear

mixed model

Y |u1, . . . ,ud = β0 +
d∑

k=1

(Xkβk +Zkuk) + ε, uk ∼ N (0, σ2
uk
, In−qk),

ε ∼ N (0, σ2, In), k = 1, . . . , d,

where β0 is the intercept. The profiled restricted log-likelihood can then be derived

to obtain

`(λ, q,R) = −n
2
σ̂2 +

1

2
log |R−1(I −G)|+, (4.3)

for σ̂2 = Y TR−1(I −G)Y /n. With the previous results the estimating equations for

λ and q can be written as

Tλj = −2λjσ̂
2∂`(λ1 . . . , λd, q1, . . . , qd, I;Y ∗)

∂λj

= Y ∗T (I − S−j)(I −Gj)GjY
∗ − σ̂2 tr(Gj) (4.4)

Tqj = −2qjσ̂
2∂`(λ1 . . . , λd, q1, . . . , qd, I;Y ∗)

∂qj

= −qjY ∗T (I − S−j)
∂Gj

∂qj
Y ∗ − σ̂2 tr

{
−qj(I −Gj)

−1∂Gj

∂qj

}
, (4.5)

where Y ∗ = R−1/2Y and

−qj
∂Gj

∂qj
= Gj(I − S−j)−1Cj diag {λjnηj,i log(nηj,i)}CT

jGj.

The previous formulation is general and no assumptions regarding the basis Cj were

made. In the following subsections we will make intensive use of the Demmler-Reinsch

basis to reduce the computational complexity of the solutions.
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4.1.2. Model for Signal Extraction

For data pairs (xi, Yi), i = 1, . . . , n, we are interested in the following (sometimes

called classical) smooth decomposition scheme:

Yi = τ(xi) +
l∑

j=1

αj(xi) cos(xiωj) + βj(xi) sin(xiωj)︸ ︷︷ ︸
ς(xi)

+εi, (4.6)

where τ(·) is an unknown smooth function that represents a deterministic trend and

ς(·) describes the seasonal component given frequencies ωj and smooth functions αj(·)

and βj(·) that modulate seasonal patterns over x as varying coefficients [cf. Hastie

and Tibshirani, 1993]. Given {εi}ni=1 a stationary homoscedastic error of unknown

structure, we consider (4.6) in its simplest form, i.e. l = 1 and β(xi) := 0 and aim to

solve a variant of (4.1), namely

min
τ∈Wq1 ,α∈Wqα

[
1

n
(Y − τ − diag{cos(xiω)}α)T R−1 (Y − τ − diag{cos(xiω)}α)

+ λτ

∫ 1

0

{
τ(x)(q1)

}2
dx+ λα

∫ 1

0

{
α(x)(qα)

}2
dx

]
, (4.7)

with corresponding solution given by (4.2) for d = 2 and estimators τ = G1Y and

ς = G2Y for the trend and seasonal components respectively. First note that if

C1 = Φq1 and C2 = Φ̃q2 = diag{cos(xiω)}Φq2 , then one can write the trend by

spanning a Demmler-Reinsch basis obtaining the naive smoother matrices

S1(λ1, q1,R) = R1/2Φq1 diag
{

(1 + λ1nηq1,i)
−1
}

ΦT
q1
R−1/2 (4.8)

G2(λ1, λ2, q1, q2,R) = Φ̃q2Λ
−1Φ̃T

q2
R−1/2Φq1 diag

{
λ1nηq1,i

1 + λ1nηq1,i

}
ΦT
q1
R−1/2,(4.9)

where

Λ = Φ̃T
q2
R−1/2Φq1 diag

{
λ1nηq1,i

1 + λ1nηq1,i

}
ΦT
q1
R−1/2Φ̃q2 + λ2n diag{ηq2,i}.
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With the previous expressions the seasonal component can be obtained directly, and

since the computation G(λ1, λ2, q1, q2,R) = S1 + (I −S1)G2 is immediate, the trend

component can be recovered via τ = (G − G2)Y . The rest of the parameters can

then be obtained by the corresponding estimating equations (4.4) and (4.5) following

an iterative search algorithm analogue to procedure presented for the univariate case

in Section 3.4.1 for grids (λ1, λ2) and (q1, q2) respectively. This direction carries a high

computational cost and instead we consider a sequential approach.

Statistical Algorithm

Assume l and ω are known (if not, they can be estimated via e.g. Fourier analysis,

etc.), and consider cubic smoothing splines to model both the trend and seasonal

components, i.e. q
(0)
1 = q

(0)
2 = 2. Solve the (reduced) LMM problem under working

independence and obtain λ
(0)
1 , λ

(0)
2 and e(0). Compute a consistent estimator R̂

(0)
and

denote Y ς = {I −G2(λ(0), q(0), R̂
(0)

)}Y as the de-seasonalised signal.

In principle, the smoothing parameter λ
(0)
1 resulting from the LMM representation of

the smoothing splines problem is known to be biased, [cf. Krivobokova and Kauer-

mann, 2007] and hence it must be updated. The same is true for λ
(0)
2 , however since the

structure of the time varying coefficient is likely to be mild, we set q2 = 2 and use the

estimator λ̂2 = λ
(0)
2 , so this quantities are no further modified. The implementation of

the second step retrieves an estimator for the smoothness class of the trend q̂1 which

must be consistent with the former assumption q
(0)
1 . If this is not the case, we return to

the first step and set q
(0)
1 = q

(0)
1 +1 and continue in this direction until q̂1 = q

(0)
1 . Once

this condition is fulfilled the estimator reads f̂ = G(λ̂
(l̃)
1 , λ

(0)
2 , q̂1, q

(0)
2 , R̂

(l̃)
) with trend

and seasonal components τ̂ = G1(λ̂
(l̃)
1 , λ

(0)
2 , q̂1, q

(0)
2 , R̂

(l̃)
) and ς̂ = G2(λ̂

(l̃)
1 , λ

(0)
2 , q̂1, q

(0)
2 , R̂

(l̃)
)

respectively.
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4.1.3. Comparison with Other Methods

Five hundred data points are generated with the following setup for the decompo-

sition scheme (4.6) with xi = ti/
∑n

i=1 ti, n = 500. The trend component is gen-

erated as τ(xi) = 6βa,b(xi)/10 + 4βc,d(xi)/10, with the beta function βa,b(xi) =

Γ(a+b){Γ(a)Γ(b)}b−1; the seasonal component follows ς(xi) = αe,f (xi) cos(ωxi) where

αe,f (xi) = (1/2π){1 + e2 + f 2 + 2e(f − 1) cos(π(2xi − 1)) − 2f cos(2π(2xi − 1))}−1,

with a period of 20 observations, i.e. ω = 2π(n/20); and for the remainder component

a first order autoregressive process is generated with the autocorrelation coefficient

equal to 0.4. Altogether, we consider four scenarios for different values of the pa-

rameter vector p = (a, b, c, d, e, f): scenario 1 with p = (3.3, 2, 5, 1, 0, 0), scenario 2

with p = (3.3, 2, 5, 1, 1.9, 0.9), scenario 3 with p = (30, 17, 3, 11, 0, 0) and scenario 4

with p = (30, 17, 3, 11, 1.9, 0.9). Furthermore, in all cases the trend, seasonal and re-

mainder components are re-scaled so their variances are 1, 0.5 and 0.1 respectively to

assure a reasonable signal-to-noise ratio. Figure (4.1) shows all four scenarios of the

simulation study. To portray the capabilities of the method under the most general

case, scenario 4 is selected, and model (4.7) is fitted.

Remark 2. If the data were circular, the operation τ̂ = S1(λ̂1, q̂1, R̂)Y obtained af-

ter fitting the model could be seen as a stationary invariant linear filter with a unique

impulse-response function κ(t) centred at the main diagonal of S1(λ̂1, q̂1, R̂). The

effect of this matrix on input Y is usually explored by taking the Fourier transform

of the impulse-response function, i.e. K(ω) =
∑∞

j=−∞ exp{−iωxj}κ(xj), also called

transfer function. Figure (4.2) shows the impulse-response function, its Fourier trans-

form and the resulting estimated trend for two choices of q1. The grey line in panel (b)

indicates the frequency of the seasonal component in the generated data, and shows

that for q1 = 2 the impulse-response function of the trend component lie in a range

of frequencies characterising the seasonal component, and hence captures both parts

indistinguishably. In turn q1 = 4 reveals to be more adequate, as it can be seen in
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Figure 4.1.: Simulation scenarios in signal decomposition: (a) simple trend and sea-
sonal components, (b) simple trend and varying seasonal component, (c)
varying trend and simple seasonal component and (d) varying trend and
seasonal components.
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panel (c) of the same figure.
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Figure 4.2.: (a) Impulse-Response Function; (b) Transfer Function; (c) Trend esti-
mate. In all plots the continuous and dashed lines represent the cases
when q1 = 2 and q1 = 4, respectively. In (c) the simulated data are added
as a grey line.

In what follows the performance of the splines based decomposition approach is com-

pared with two alternatives commonly used by practitioners, namely the STL proce-

dure and a state-space model (SSM) of a structured time series characterisation. The

section is closed by giving a proper comparison of all three methods by a Monte Carlo
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study.

The STL procedure

The STL procedure for the decomposition of a time series into trend, seasonal and

remainder components consists on systematic applications of the LOWESS smoother

embedded in two loops: an inner loop that performs a seasonal smoothing updat-

ing the seasonal component, followed by a trend smoothing that updates the trend

component; and an outer loop executed for robustness. LOWESS was developed

in Cleveland [1979] as a robust version of the standard locally weighted polynomial

regression estimator.

Consider, for example, the case of monthly data with yearly seasonality. In this

case the updates at the (j + 1)-th pass of the inner loop would be computed in

the following way: i) de-trend the series with the jth update of the trend compo-

nent by y(xi) − τ j(xi); ii) build a set of cycle-subseries based on the de-trended

series by grouping all Januaries, all Februaries, etc., smooth them with LOWESS,

and build a (temporary) seasonal series cj+1(xi); iii) construct a low-pass filter of

the (temporary) seasonal series Lj+1(xi); iv) update the seasonal series de-trending

cj+1(xi) by ςj+1(xi) = cj+1(xi) − Lj+1(xi); v) de-seasonalise the original time series

with y(xi)− ςj+1(xi); and vi) update the trend component by smoothing the resulting

de-seasonalised series by LOWESS and obtain τ j+1(xi). The outer loop updates are

executed for robustness and operate by modifying the weighting functions in steps ii)

and vi) of the inner loop so the effect of aberrant observations in the data (measured

by the local magnitude of the remainder) is diminished. de-trended

State space approach

The state space approach is commonly found in many applied disciplines to model

structured time series. In particular, it can be used as a decomposition method by
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making intensive use of the Kalman filter. Following Petris et al. [2009], model (4.6)

can be represented in state-space form by

yt = Z%t + εt εt ∼ N (0, σ2
ε )

%t = T%t−1 + ζt ζt ∼ N (0,Q).

The first expression is called measurement equation where % = (τt, δt, ςt, ς
∗
t )t is a

generally unobserved vector representing the state of the system at time t, and Z =

(1, 0, 1, 0), so that yt = τt + ςt + εt, i.e a decomposition similar to (4.6) holds. The

second equation carries out the parametric structure imposed to the problem and it

is called transition equation. Here T = blockdiag{T τ ,T ς} is defined, where

T τ =

 1 1

0 1

 and T ς =

 cos(ω) sin(ω)

− sin(ω) cos(ω)


with only one frequency ω, as the simulation setting requires. For the trend component

this implies the use of a random walk model for its slope δt and it is called the local

linear trend model. As for the seasonal part, if one sets (ς0, ς
∗
0 )t = (α, γ)t, it can be

seen that  ςi

ς∗i

 ≈
 cos(ωi) sin(ωi)

− sin(ωi) cos(ωi)

 ·
 α

γ


holds for i = {1, 2, . . . n} up to an error term, and hence ςt ≈ α cos(ωt) + γ sin(ωt) is

a time varying seasonal component. For completeness we can define the error vector

ζt = (ετt , ε
δ
t , ε

ς
t , ε

ς∗

t )t and Q = diag{σ2
τ , σ

2
δ , σ

2
ς , σ

2
ς } as its diagonal covariance matrix.

All together the previous model is called Basic Structural Model and it is what is

used in the simulation exercise. To setup the model, given the initial distribution

%0 = N (m0, C0), which can also be represented as a diffuse prior, parameters σ2
ε , σ

2
τ , σ

2
δ

and σ2
ς can be estimated by means of maximum likelihood, so that the densities

π(yt|%t) and π(%t|%t−1) are specified. The smoothing problem of a model with this

structure can be solved by computing the conditional distributions π(%t|y1, . . . , yn)
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for any t < n starting from the filtering distribution π(%n|y1, . . . , yn) and estimating

backwards all state’s history [cf. Harvey, 1989, Durbin and Koopman, 2001, Petris

et al., 2009].

Comparison

There are several conceptual similarities between all three discussed methods. For

example, both STL and splines based approach could be seen as stationary symmetric

linear filters for each of its components modulated by different weighting (or impulse-

response) functions. The link between the splines based method and the SSM can be

seen if one writes the state space representation of cubic smoothing splines [cf. Zivot

and Wang, 2006]. In general, all three methods require the setting of various param-

eters in order to be implemented. The differences among the procedures are various,

but we argue in favor of the proposed splines method mainly in two fronts. Firstly,

the splines based approach uses a non-parametric characterisation of the remainder.

Secondly, the smoothness class of the trend component is chosen in a data driven

manner.

An illustrative comparison of the methods to filter the simulated time series is shown

in Figure 4.3. For the splines method the model is set up with q2 = and ω = 20, as

indicated at the beginning of this section; and for the STL procedure dτ = 1, hτ = 39

are considered for the trend component and dς = 1, hς = 7 for the seasonal component.

As it can be seen in panel (a) of Figure 4.3, these methods produce very similar results

for the trend component, up to certain wiggliness in the STL case. The performance

of STL is not explored for polynomials of degree greater than 1, and the differences

between both methods are considered to be small in magnitude. Regarding the SSM,

the required parameters to set up the model were obtained via maximum likelihood

as in Petris et al. [2009]. The trend estimates obtained using SSM and splines based

method are almost undistinguishable.

Even though all procedures allow for the variation of the seasonal part across time,
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Figure 4.3.: Comparison between STL, SSM and splines method: (a) trend compo-
nents, (b) seasonal components, (c) remainder components and (d) added
trend and seasonal estimation comparison.
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the SSM and the splines method seem to behave very similarly, while the STL fit

is much more variable. To understand the difference in the shape of the seasonal

components it can be noted that while the spline and SSM methods perform smoothing

for the data series along the index x, the STL alternative does it for each cycle-

subseries according to the span chosen for the LOWESS window. Clearly, once the

smoothed sub-series are re-arranged according to the original time sequence, a rough

path can be observed. Furthermore, in this example a span window of size hς = 7 is

chosen (a very small value compared the sample size n = 500), which produces a high

variance estimation for this component (with small bias). This choice was based on

the inspection of the seasonal-diagnostic plot under different hς values, as suggested in

Cleveland et al. [1990]. In fact, to our knowledge, there is no data driven method for

the selection of any of the STL parameters, including the crucial smoothing parameter

hς . Consequently, the seasonal component could be under-smoothed, as happens in

this example. Regarding the comparison with the SSM method for the seasonal part,

it appears that splines method performs particularly better than the SSM counterpart

when a more structured seasonal component is considered (scenarios 2 and 4). This

could be attributed to the fact that in SSM the smoothing parameters for the trend

and seasonal component are implicitly set to be equal, and this can generate a bias

in one of the components, in this case the seasonal part of the decomposition.

Lastly, regarding the scatterplots of the remainders in panel (c) of Figure (4.3), it is

clear that the remainder part from the spline approach (black circles) and the SSM

(black stars) follow better the true remainder than the STL (grey circles), which is

an obvious result of the better performance of the spline method to fit the seasonal

component, and, consequently, allows for a more accurate characterisation of an AR

model for the remainder. The last panel of Figure (4.3) compares the estimations of

the smooth part of the decomposition τ(x) under the three methods showing overall

similar results.

This section is closed by reporting the performance of the splines method when com-
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Figure 4.4.: AMSE component-wise comparison between the spline method (SPL in
the figure), the STL and the SSM procedures in the Monte Carlo experi-
ment considering four different scenarios for the components.
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pared to the STL and SSM alternatives in a Monte Carlo simulation study considering

M = 1000 realisations of the remainder component for the four scenarios mentioned at

the beginning of this section. The results are presented in terms of the component-wise

average mean squared error considering the usual AMSEj =
∑M

i=1(ĝj(ti)− g(ti))
2/M

of each method j = {SPL, STL, SSM} for functions g ∈ {τ, ς, f} as defined in (4.6).

The results are illustrated in Figure (4.4) and, as expected from the example presented

in Figure (4.3), under all scenarios the methods are quite similar for the estimation

of the trend with a slightly higher bias for the STL. However, when it comes to com-

paring the seasonal parts, the splines based procedure reveals its superiority, showing

to be less variable and more accurate than its counterparts.

4.1.4. Discussion

We presented a non-parametric new method that contributes to the signal decompo-

sition literature in that it does not only allows for the estimation of the smoothing

parameter, but also for the selection of the smoothness class of the trend component

and handles correlated errors. Monte Carlo simulations shown the finite sample prop-

erties of the components’ estimators, revealing that our method is more accurate than

its benchmark competitors in the literature.

The relation between cubic smoothing splines and dynamic models is well known in

the econometric literature [cf. Harvey, 1989, Zivot and Wang, 2006]. Moreover, this

equivalence can be extended to more general types of smoothing splines where the

second derivative in the penalty term is replaced by linear differential operators as

studied by Kohn and Ansley [1987]. In principle, this suggests that it is possible to

represent the empirical Bayes smoothing splines with correlated errors presented in

Chapter 3 as a state space model where the smoothness class of the trend component

is data driven. This selection approach is not known in the literature and could be of

interest for practitioners in the applied sciences.
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4.2. Functional Principal Component Analysis

Functional data is a term coined by Ramsay and Silverman [1997] to refer to data

curves (as opposite to data points). Many statistical problems arise when dealing

with such units of analysis, e.g. functional regression, functional principal component

analysis (FPCA), commonly used for prediction, classification, etc. For a mathemat-

ical discussion on the subject the reader is referred to Ferraty and Vieu [2006] and

Hsing and Eubank [2015]. There are many approaches to perform FPCA [cf. James

et al., 2000, Guo et al., 2013], however none of them consider the possibility of sea-

sonality in the observations or a data driven selection of the smoothness class of the

underlying functional observations, which is the main contribution of this subsection.

4.2.1. Functional Data

Following Ferraty and Vieu [2006], a random variable F is called a functional variable

if it takes values in an infinite dimensional space (or functional space). Moreover,

since F (resp. f) denotes a random curve (resp. its observation), the following iden-

tification is implicitly made F = {F(x);x ∈ [0, 1]} (resp. f = {f(x);x ∈ [0, 1]}).

The analysis takes place in a functional data set f1, . . . , fm of m functional variables

F1, . . . ,Fm identically distributed as F , where an observation f of F is called func-

tional data. Even though the data is functional in nature, we consider the possibility

of correlated measurement errors with respect to x for each realisation f1, . . . , fm,

so the characterisation of these curves. e.g. by means of Kernel regression, splines

methods, wavelets, etc., should consider it. Moreover, since we would like to take into

account the selection of the smoothness class of the data functions, the use of the

empirical Bayes smoothing spline method for correlated errors presented in Chapter

3 follows naturally.
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4.2.2. Principal Component Characterisation

Consider the function fj(x) and its de-seasonalised version f̃j(x) := fj(x) − ςj(x),

for j = 1, 2, . . . ,m, defined in the compact interval [0, 1] as functional data. More

specifically, assume each f̃j(x) is an independent realisation of the stochastic pro-

cess {f̃(x), x ∈ [0, 1]} with mean E[f̃(x)] = τ(x) and covariance kernel K(x, z) =

cov{f̃(x), f̃(z)}, x, z ∈ [0, 1]. Mercer’s lemma states that if
∫ 1

0
K(x, x)dx < ∞ then

there exists an orthonormal sequence of eigenfunctions {ζj}∞j=1 and non-increasing,

non-negative sequence of eigenvalues {κj}∞j=1 such that for (Kζj)(x) :=
∫ 1

0
K(x, z)ζj(z)dz =

κjζj(x), it holds that

K(x, z) =
∞∑
j=1

κjζj(x)ζj(z), and
∞∑
j=1

κj =

∫ 1

0

K(x, x)dx.

Hence we can write the Karhunen-Loève expansion as

f̃(x) = τ(x) +
∞∑
j=1

√
κjξjζj(x), (4.10)

where ξj := 1√
κj

∫
f̃(x)ζj(z)dz, E[εj] = 0, E[ξj, ξk] = δjk, j, k ∈ N and δj,k is the

Kronecker delta. From (4.10) the implementation of a reduced rank model for a

sample j = 1, 2, . . . ,m as presented in e.g. James et al. [2000] can be written as

fj(x) = τ(x) + ςj(x) +
h∑
k=1

ψk(x)vjk = τ(x) + ςj(x) + Ψ(x)Tvj (4.11)

where h is a finite integer usually h� m, Ψ(x) = {ψ1(x), ψ2(x), . . . , ψh(x)}T contain

the k-th principal component (PC) function ψk(x) and vj = {vj1, vj2, . . . , vjh}T is the

vector of PC scores for the j-th curve. Moreover, we can interpret each fj(x) in (4.11)

as a curve composed by an overall trend component τ(x), a subject specific seasonality

ςj(x) and a subject specific deviation ηj(x) :=
∑h

k=1 ψk(x)vjk.
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Given observation pairs (xi,j, Yi,j) for i = 1, . . . , n and j = 1, . . . ,m, one can write a

decomposition scheme similar to (4.6) as

Yi,j = τ(xi) + ςj(xi) + ηj(xi) + εi,j, (4.12)

where τ(x) is an unknown smooth function and {εi,j}ni=1 is the homoscedastic error

measurement of curve j with unknown correlation structure, i.e. Cor(εi,j, εk,j) = rj,i,k

for each individual. The seasonal component is modelled as ςj(x) = αj(xi) cos(xiω) +

βj(xi) sin(xiω), where αj(x) and βj(x) are unknown smooth functions that modu-

late the seasonal pattern over time as presented in Subsection 4.1.2. For simplicity

hereafter we consider ςj(xi) = αj(xi) cos(xiω) only. Furthermore, given Wqh [0, 1],

h ∈ {τ, α1, . . . , αm, ψ1, . . . , ψh} and setting qhα1 = · · · = qhαm , and qhψ1 = · · · = qhψm

we can represent the unknown functions as τ(x) = Cτ (x)θτ , αj(x) = Cα(x)θαj and

ψj(x) = Cψ(x)θψj , where the explicit dependence of the design matrices on qh is

omitted to ease the notation. For the last case we can also write Ψ(x)T = Cψ(x)Θψ

with Θψ = {θψ1 , . . . ,θψh} an n× h matrix such that

∫
Ψ(x)Ψ(x)Tdx = ΘT

ψ

(∫
C(x)TC(x)dx

)
Θψ = Ih,

holds, and the usual orthogonality requirements for the principal component curves

are satisfied. It follows that ΘT
ψΘψ = Ih and thus the estimation problem in (4.11)

is reduced to the computation of the spline coefficients θτ , θαj , θψk for j = 1, . . . ,m,

and k = 1, . . . , h in

76



4. Extensions of Smoothing Splines with Correlated Errors

min
θτ ,θαj ,θψk

[
1

n

m∑
j=1

(Y j −Cτθτ − C̃αθαj −CψΘvj)
TR−1(Y j −Cτθτ − C̃αθαj −CψΘvj)

+ λτθ
T
τ

(∫ 1

0

{
Cτ (x)(qτ )

}T {
Cτ (x)(qτ )

}
dx

)
θτ

+λαθ
T
αj

(∫ 1

0

{
Cα(x)(qα)

}T {
Cα(x)(qα)

}
dx

)
θαj

+ λψ

h∑
k=1

θTψk

(∫ 1

0

{
Cψ(x)(qψ)

}T {
Cψ(x)(qψ)

}
dx

)
θψk

]
, (4.13)

where C̃α = diag{cos(xiω)}Cα, ΘTΘ = Ih, vj is a random vector such that vj ∼

N
(
0, σvjIm

)
and we denote Ψ = CψΘψ. Given h and ω it remains to estimate vj,

λτ , λα, λψ, R1, . . . ,Rd, qτ , qα, qψ for which we turn to empirical Bayesian smoothing

splines as presented in Chapter 3.

4.2.3. Statistical Algorithm

Since the solution of (4.13) is constraint to the knowledge of v, in the next section we

present an algorithm that computes v iteratively until convergence is achieved on the

h principal component functions ψk(x). Our procedure is based on the work by Guo

et al. [2013] with the difference that we allow for correlation in the errors and make

use of the LMM representation of smoothing splines.

Initial values

1. Solve (4.13) forR1 = · · · = Rm = In, θα1 = · · · = θαd = 0, θψ1 = · · · = θψh = 0

to obtain λτ and compute

θ̂
(0)

τ =
(
CTτ Cτ + λτnDτ

)−1 CTτ Y
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with Cτ = Cτ ⊗ Im and Dτ = Dτ ⊗ Im.

2. Write the residuals for each curve as rj = Y j −Cτ θ̂
(0)

τ and fit the linear least

squares model

rj = CψΓj + εj,

to obtain Γ̂(0) = {Γ̂(0)
1 , . . . , Γ̂

(0)
N }T .

3. Calculate the singular value decomposition

Γ̂(0) = UΣV T ,

and set θ̂
(0)

ψk
= V kΣk, and hence Ψ̂(0) = CψΘ̂

(0)
ψ .

Iterative procedure

Given h, initial value Ψ̂(0) and parametrisation Φ, the main idea consists in updating

the computation of v̂(l) in (4.13) for the l-th iteration and the corresponding Ψ̂(l)

matrix until convergence is achieved. More precisely

1. Solve (4.13) given Θ̂
(l−1)
ψ and update v̂(l), λ̂

(l)
τ , λ̂

(l)
α and R̂

(l)
= blockdiag{R̂

(l)

1 , . . . , R̂
(l)

m }

to compute

θ̂
(l)

τ =

{
CTτ
(
R̂

(l)
)−1

Cτ + λ̂(l)
τ nDτ

}−1

CTτ
(
R̂

(l)
)−1

Y ,

θ̂
(l)

α =

{
CTα
(
R̂

(l)
)−1

Cα + λ̂(l)
α nDα

}−1

CTα
(
R̂

(l)
)−1

Y ,

with Cα = Cα ⊗ Im and Dα = Dα ⊗ Im; and Cτ and Dτ as defined in the

initialisation step.

2. Write the residuals for as r(l) = Y − Cτ θ̂
(l)

τ − Cαθ̂
(l)

α and fit the penalised least

squares model

r(l) = CψΘ̂
(l−1)
ψ v̂(l) + ε,
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to update Θ̂
(l)
ψ by

θ̂
(l)

ψk
=

{
N∑
j=1

(
v̂

(l)
jk

)2

CT
ψ

(
R̂

(l)
)−1

Cψ + λ̂
(l)
ψ Dψ

}−1

{
N∑
j=1

(
v̂

(l)
jk

)
CT
ψ

(
R̂

(l)
)−1 (

Y j −Cτ θ̂
(l)

τ −Cαθ̂
(l)

α −CψQ̂
(l)

jk

)}
,

for

Q̂
(l)

jk =
∑
l 6=k

θ̂
(l)

ψl
v̂

(l)
jl , j = 1, . . . , N.

3. Construct Θ̂
(l)
ψ and use the QR decomposition to orthonormalise its columns.

With the new estimation of Θ̂
(l)
ψ go back to step one until convergence is achieved.

The previous algorithm takes place making the implicit assumption that fj(x) ∈

Wqj [0, 1], where the smoothness classes of the overall trend, seasonal component and

subject specific variations take place and need to be estimated. Here we proceed as

in Subsection 4.1.2 and take cubic smoothing splines for both seasonal and subject

specific deviation components, and hence the problem reduces to find the smoothness

class of the overall trend qτ .

The estimation of qτ is performed in an outer loop, after executing the previous

algorithm (inner loop) for qτ ∈ Q, and Q = {2, . . . , blog(n)c}. So that given certain

qτ , we compute Y ∗j = R̂
−1/2

(Y j − C̃αθ̂αj −CψΘ̂vj) and collect the q̂τ,j’s that solve

Tq(λj, qτ , I;Y ∗j) = 0 for each j as presented in (3.18). We then assign a unique q̂τ

computed as q̂τ = Mode{q̂τ,j} and take the estimations that resulted from q̂τ in the

inner loop.

4.2.4. Discussion

We presented a semi-parametric new method that contributes to the functional data

literature in that we consider the possibility of correlated measurement errors with
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respect to x for each realisation f1, . . . , fm, so the characterisation of these curves by

means of smoothing splines accounts for it. Moreover, we also took into consideration

the selection of the smoothness class of the data functions, and hence the link between

FPCA and the empirical Bayes smoothing spline method presented in Chapter 3 is

stablished naturally. We also provided an statistical algorithm for the estimation

procedure.

The semi-parametric FPCA method presented is rather natural for functional data,

where the dependence structure of each curve’s measurement error is, in principle, mild

and an ARMA(p,q) can be used to capture its features. It should also be noted that

this modelling is different from the so-called dependent functional data analysis, where

the dependence between functional observations f1, . . . , fm is taken into account. In

our case we assumed that such observations are independent realisations of the same

stochastic process. Extensions in this direction could be interesting for future research.
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In this chapter we apply the methods described in sections 4.1 and 4.2 to agricultural

economics and biophysics. In the first application we make use of signal decomposition

to study price transmission for agricultural commodities, where the use of smoothing

methods is motivated from the pork cycle conjecture [cf. Ezekiel, 1938]. In the second

application we explore the multivariate co-movement of adult human mesenchymal

cell data via functional principal component analysis. Specifically, stem cell’s image

area are modelled as independent realisations of certain functional stochastic process

to study their time dynamics in a climatic chamber.

5.1. Nonparametric Price Transmission

Piecewise linear or regime-dependent cointegration methods are currently popular

in the price transmission literature. See Ihle [2009] for a detailed revision on the

topic. However, the methods have been criticised for making unrealistic assumptions

about the functional form and the nature of the transition process between regimes.

The often used threshold vector error correction model [cf. Goodwin and Piggott,

2001, Greb et al., 2013] assumes that the price transition process between two prices

changes abruptly the moment the difference between these prices crosses a certain

threshold value. While this is clearly more flexible than assuming that a single price

transmission process holds for all values of the difference between prices, it does not

allow the price transmission process to change gradually. Other regime dependent
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cointegration methods maintain a number of assumptions regarding functional form

and the parametrisation of the transition between regimes. In response, some authors

have proposed using non-parametric methods to estimate price transmission. Namely

Serra et al. [2006a], and Serra et al. [2006b] made an important contribution to the

price transmission literature by introducing the use of non-parametric methods in

cointegration analysis. Our contributions are in this direction.

First, the non-parametric approach employed in Serra et al. [2006a], and Serra et al.

[2006b] maintain the assumption that the long run equilibrium relationship between

the prices being studied is constant and linear. There are many settings in which

this assumption might be too restrictive. For example, policy changes such as the

introduction of a tariff will affect the spatial equilibrium condition for prices in two

locations and, thus, alter the long run relationship between these prices. In the verti-

cal price transmission setting, changes in processing technology and shifts in market

power can lead to changes in the long run equilibrium between prices at different

levels of a food chain as in Lloyd et al. [2006]. Finally, in both vertical and spatial

settings the long run equilibrium might display a seasonal component, for example

if product qualities or the costs of transportation between markets display seasonal

fluctuations [cf. Holst and von Cramon-Taubadel, 2011]. Ideally one would account

for such factors explicitly by including appropriate variables in the estimation of the

long run relationship. However, in many cases the variables of interest are difficult or

impossible to observe, especially at high frequency (weekly or daily) at which much

commodity price transmission analysis is carried out. Hence, in the following study we

propose a non-parametric vector error correction model (NPVECM) that allows for

time-varying long run equilibrium relationships, that can capture drifting and seasonal

components.

Second, while Serra et al. [2006a] and Serra et al. [2006b] employ local polynomial

techniques, in recent years non-parametric estimation has been enriched by the refine-

ment of spline methods [cf. Kauermann et al., 2011]. In particular, recent advances
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by Wiesenfarth et al. [2012] allow for estimation and simultaneous direct inference

without the need for re-sampling methods, which can reduce computational costs

significantly. The NPVECM that we propose employs these techniques.

5.1.1. Model

Here we consider a non-parametric vector error correction model with time-varying

cointegration. The method we propose can be seen as an extension of the classical

method given by Engle and Granger [1987] that can be applied when the unconstrained

expectation of the error correction term exhibits i) a non-linear deterministic variation

over time and/or ii) a deterministic seasonal pattern. For estimation we use a two-

step method. First we estimate the error correction term allowing for a time-varying

cointegrating relationship following the results given in Chapter 4 regarding signal de-

composition; and second we estimate the error correction process semi-parametrically

using the penalised spline methods developed in Wiesenfarth et al. [2012].

Consider the following extension of the system given in Engle and Granger [1987]:

x1,t + γ̄x2,t = et + g(t) (5.1)

x1,t + β̄x2,t = Wt + h(t),

measured at times t = 1, . . . , n for functions g(t) and h(t). Assume et = ρ(et−1)et−1+µt

and Wt = Wt−1 + εt, with µt ∼ N (0, σ2
µ), εt ∼ N (0, σ2

ε ) and Cov(µt, εt) = 0. Hence et

is characterised as a smooth transmission auto regressive (STAR) model [cf. Teräsvirta

and Eliasson, 2001, van Dijk et al., 2002], where |ρ(et−1)| ≤ 1 (in fact for the non-

reaction regime one would expect ρ(et−1) = 1 so that et behaves like a random walk).

More specifically ϑ(·) is a transition function, e.g. logistic, exponential. Both γ̄ and

β̄ are fixed in time. Under this setting g(t) can be seen as a time varying intercept

that modulates the long term relationship between x1,t and x2,t. As defined here, et

and Wt contain no seasonality. If the processes defined in (5.1) contains deterministic

83



5. Applications

seasonal patterns, e.g. ςi(t) in Xi,t = xi,t + ςi(t) for each i = {1, 2}, these can be

removed independently. In fact, equation (5.1) can be re-written as:

X1,t + γ̄X2,t = et + {ς1(t) + γ̄ς2(t)}+ g(t), (5.2)

X1,t + β̄X2,t = Wt + {ς1(t) + β̄ϑ2(t)}+ h(t),

where the first equation is of special interest since it accounts for common features

mentioned in the previous section, i.e. a remainder with a drifting (possibly non-

linear) component and a seasonal pattern in the error correction term [cf. Holst and

von Cramon-Taubadel, 2011]. Solving (5.2) for x1,t and x2,t leads to:

x1,t = −
(

β̄

γ̄ − β̄

)
et +

(
γ̄

γ̄ − β̄

)
Wt −

(
β̄g(t)− γ̄h(t)

γ̄ − β̄

)
, (5.3)

x2,t = +

(
1

γ̄ − β̄

)
et −

(
1

γ̄ − β̄

)
Wt +

(
g(t)− h(t)

γ̄ − β̄

)
.

Since the seasonalities cancel out in the derivation of (5.3), subsequent analysis can

focus on the de-seasonalised series. This is not a surprising feature, as a number of

authors have suggested that whenever deterministic seasonality is present, it should

be removed [cf. Box and Jenkins, 1971, Engle and Granger, 1987, Hylleberg et al.,

1990]. From (5.3) we obtain the error correction representation by taking differences:

∆x1,t = ρ1(et−1) + τ1(t) + ε1,t, (5.4)

∆x2,t = ρ2(et−1) + τ2(t) + ε2,t,

where ρi(et−1) = ρi(et−1)et−1, τ1(t) = −(β̄∆g(t)− γ̄∆h(t))/(γ̄ − β̄), τ2(t) = (∆g(t)−

∆h(t))/(γ̄−β̄), ε1,t = (γ̄vt−β̄µt)/(γ̄−β̄) and ε2,t = (µt−vt)/(γ̄−β̄) so that in general

Cov(ε1,t, ε2,t) 6= 0 unless −γ̄/β̄ = σ2
µ/σ

2
v holds. Moreover, the adjustment speeds can

be computed as the first derivatives of ρi(et−1), i = {1, 2}.
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5.1.2. Estimation

The estimation of the NPVECM can be conducted in two steps. In the first step the

error correction term is computed non-parametrically from (5.1), and in the second

step the adjustment speeds are computed semi-parametrically from (5.4).

The first step is equivalent to the estimation of γ̄ and g(t). A direct semi-parametric

estimation to compute both simultaneously would be ideal. However, methods that

use non-intrusive / data-driven smoothing parameter selection suffer from an identi-

fication problem in this setting: the magnitude of γ̄ tends to be underestimated since

the inherent flexibility of g(t) allows it to explain most of the variance in x1,t. Esti-

mating γ̄ first by least squares and then estimating g(t) non-parametrically is also not

possible as omitting g(t) in the initial least squares estimation of γ̄ would induce bias.

Instead we follow Gardner [1975], and set γ̄ = 5/2 to estimate function g(t) using the

signal decomposition techniques presented in Chapter 4.

The second step can be performed by a direct semi-parametric extension of (5.4)

following Wiesenfarth et al. [2012]. Specifically, we estimate: ∆xi,t = ρi(et−1) +

τi(t) + εi,t with εi,t ∼ N (0, σ2
εi

) and assuming Cov(εi,t, εj,t) = δi,j for δi,j the kronecker

delta and i = {1, 2}. From this model the adjustment speeds can be directly obtained

as ρ̂i(et−1) = ∂ρ̂i(et−1)/∂et−1, so that β(et−1) can be recovered as −ρ̂1(et−1)/ρ̂2(et−1).

5.1.3. Application

Here we study the dynamics of vertical transmission between piglet and pork prices

in Germany. The application uses 18 years of weekly prices from 1996 to 2013. The

piglet price is an average of regional prices in Euro for 25 kg piglets in Lower Saxony,

and the slaughter pig price is an average price for the main classes of slaughter pig in

Euro/kg also in Lower Saxony, which is the largest pork producing region in Germany

as reported in the Land und Forstwirtschaftliche Zeitung. The raw data and the

corresponding de-seasonalised series are depicted in Figure (5.1).
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Slaughter pig producers in Germany generally purchase piglets from specialised farrow-

ing operations located in Germany but increasingly also in Denmark and the Nether-

lands. After feed, which accounts for roughly one-half of the cost of slaughter pig

production, piglets are the second largest cost component with a share of roughly

40%. While slaughter pig producers are largely price takers on the markets for inputs

such as feed, energy and labour, piglets are a specialised input for which there is es-

sentially no alternative demand. Hence, piglet prices depend heavily on the expected

profitability of slaughter pig production and, thus, slaughter pig prices. This, in turn,

depends on conditions on pork markets, which are subject to well-known cyclical fluc-

tuations, see Berg and Huffaker [2014] and the original conjecture provided by Ezekiel

[1938].

Holst and von Cramon-Taubadel [2011] hypothesise that when pork prices are in the

declining phase of a cycle, slaughter pig producers will be less interested in purchasing

piglets, leading, ceteris paribus, to oversupply. On the resulting buyers’ market for

piglets, slaughter pig producers will be able to pass negative price shocks on to piglet

producers more rapidly than positive shocks; i.e. price transmission between slaughter

pig and piglet prices will be characterised by negative asymmetry as in Meyer and von

Cramon-Taubadel [2004]. The opposite will hold when pork prices are in the increasing

phase of a cycle: slaughter pig producers will be eager to expand production, and the

resulting sellers’ market for piglets will be characterised by positive asymmetry –

sometimes referred to as the “rockets and feathers” phenomenon, see Bacon [1991] –

whereby piglet prices react quickly when slaughter pig prices increase, but slowly when

they fall. Holst and von Cramon-Taubadel [2011] test this hypothesis by means of a

piecewise linear error correction model. They first use the Hodrick and Prescott [1997]

filter to extract a smooth cyclical component from the series of slaughter pig prices

and divide their dataset into increasing and decreasing phases of pork prices. They

then estimate a separate asymmetric error correction model for each of these phases

and find support for the hypothesis of alternating regimes of positive and negative

asymmetric price transmission.
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Figure 5.1.: Piglet and slaughter pig prices in Germany (Euro/piglet and Euro/kg,
1996-2013). Panels (a) and (b) show the raw data and panels (c) and (d)
the corresponding de-seasonalised series.
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Figure 5.2.: Detailed decomposition of piglet prices.
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Figure 5.3.: Detailed decomposition of slaughter pig prices.
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The upper panels of figure (5.1) display the series for piglets and slaughter pigs re-

spectively. It shows that the piglet and the slaughter pig prices both display seasonal

fluctuations, and hence the error correction term could inherit this feature. We ex-

tract the deterministic fluctuations in each series following Chapter 4 and illustrate

the results for the piglet and slaughter pig prices in Figures (5.2) and (5.3) respec-

tively. The adjustment responses estimated semi-parametrically using these series are

presented in Figure (5.4), together with the corresponding 95% confidence intervals

for two scenarios on the error correction term (ect).

Figure (5.4) shows that slaughter pig prices do not react significantly to any devi-

ations from the long run equilibrium, i.e the estimated adjustment response is not

significative over the entire range of deviations (panels b and d). Hence, as expected

the burden of adjustment to disequilibrium is carried out by the piglet prices, which

react to positive and negative deviations. These results suggest that piglet prices

react more strongly when they are too high vis-à-vis slaughter pig prices, i.e. if the

slaughter pig producers’ margins are squeezed. When piglet prices are too low, which

increases slaughter pig producers’ margins, the reaction of piglet prices is of smaller

magnitude.

5.1.4. Conclusions

The current price transmission literature largely draws on piecewise-linear or regime-

dependent VECM specifications such as the threshold VECM and the Markov-switching

VECM. While these specifications are more flexible than a linear VECM, they are all

based on the assumption that the linear VECM is a valid parametrisation of the

price transmission process within each individual regime is valid, and each is based on

some parametric assumption about the process that governs switches between regimes.

These assumptions have been criticised as too restrictive, leading some authors, e.g.

Serra et al. [2006a], and Serra et al. [2006b], to propose the use of non-parametric es-

timation techniques. We used a fully data-driven non-parametric VECM estimation
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Figure 5.4.: Result of semi-parametric error correction model. (a) piglet speed of ad-
justment wrt error correction term; (b) slaughter pig speed of adjustment
wrt error correction term; (c) piglet speed of adjustment wrt error correc-
tion term where the pork cycle was removed for each series; (d) slaughter
pig speed of adjustment wrt error correction term where the pork cycle
was removed for each series.
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method that allows for non-parametric error correction but also a time varying long

run equilibrium relationship.

5.2. Stem Cell Dynamics

Stem cells feature the ability to become different types of cells, which is useful for

applications in medicine like tissue replacement from the patient’s own cells [cf. In-

verardi and Ricordi, 2001]. Adult human mesenchymal stem cells from bone marrow

(hMSCs) are able to differentiate into various cell lines like fat, cartilage, bone or

muscle cells. Most strikingly is the observation that providing a distinct mechanical

stimulus in form of substrate stiffness is sufficient to guide hMSC differentiation [cf.

Engler et al., 2006]. Furthermore, within the first 24 hours on such elastic hydrogels,

the cells show a distinct, substrate elasticity dependent, actin-cytoskeleton structure

that can be used as an early morphological marker for early stem cell differentiation

as presented in Zemel et al. [2010].

To elucidate the complex interplay of integration of mechanical cues from the outside

to bio-chemical signals it is imperative to understand the kinetics of the formation and

structure of acto-mysoin stress fibres. This could provide insight into the mechanisms

of hMSC differentiation strategies, which are relevant for medical applications. In this

context, massive parallel live-cell imaging of hMSCs were performed on polyacrylamide

substrates with Young’s modulus of 1, 10 and 30 kilo Pascak (kPa) to determine early

stem cell differentiation to neuronal, muscle and bone tissue precursor cells. From a

developmental biology point of view, it is expected that hMSCs on 10 kPa and 30 kPa

polyacrylamide will show a much more similar behaviour when compared to the cells

on 1 kPa.
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5.2.1. Experiment

A detailed explanation of the experiment can be found in Wollnik [2016]. Here we

summarise its main aspects to provide some insight into the data generating process.

Namely, adult human mesenchymal stem cells (hMSCS) from bone marrow were ob-

tained from Lonza (Switzerland) and transfected with pCMV Lifeact-TagRFP (ibidi,

Germany) using electroporation (Nucleofector, Lonza, Switzerland). Cells were cul-

tured in DMEM (life technologies, Germany) + 10 % FBS (Sigma-Aldrich, USA) + 1

% Pen/Strep (life technologies, Germany) at 37◦ and 5 % CO2. After transfection, cells

were allowed to rest for 48 hours in T75 cell culture flasks (Corning, USA) and were

then seeded onto polyacrylamide (PA) gels of distinct elasticity, as described before in

Zemel et al. [2010]. Solutions for PA gels were mixed from 40% acrylamide solution

(Bio-Rad, USA) and cross-linker bis-acrylamide 2% solution (Bio-Rad, USA), and

subsequently polymerised using TEMED (Bio-Rad, USA) and APS (Sigma-Aldrich,

USA) for 60 minutes. Hydrogels were then coated with collagen I (rat tail collagen I,

Corning, USA) using the cross-linker Sulfo-SANPAH (Thermo Scientific, USA). Fol-

lowing this step, gels on cover glasses were glued into bottomless petri-dishes (ibidi,

Germany) by using UV-curable glue (NOA 68, Norland products inc., USA). During

live-cell imaging on an inverted microscope (Axio Observer.Z1, Zeiss, Germany), cells

were kept in a climatic chamber (ibidi, Germany) at 37◦ and 5 % CO2 throughout the

imaging time of 24 hours. Images were recorded with a Zyla camera (Zyla sCMOS

4.2, Andor, United Kingdom) at time intervals of ten minutes between two subsequent

images.

5.2.2. Model

To model the stem cell dynamics we use the area measurement of the cell’s image

across time and conduct the FPCA approach presented in Section 4.2 to study the

area dynamics, see e.g. Figure (5.5), where images of 10kPa stem cells are provided
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(a) (b)

(c) (d)

Figure 5.5.: Stem cell data example for 10 kilo Pascal. The panels show an arbitrary
cell at: (a) hour 1; (b) hour 6; (c) hour 12; and (d) hour 24.

94



5. Applications

as an illustration. In particular, we assume that each group of cells is generated by a

different data generating process as τ l,i(x) = {τ l(x), x ∈ [0, 1]}, where l represents the

Young’s modulus of the group and i is a subject specific realisation. The underlying

assumption is that the time dynamic of the cell’s area can be characterised as a smooth

function in group l, and that each τ l,j (each area process across time) is an independent

realisation of that group. Namely, consider representation in (4.11) omitting seasonal

components, that is

τ l,j(x) = τ l(x) +

hl∑
k=1

ψk(x)vj,k + εl,j, εl,j ∼ N (0,Rl),

where τ k(x) represents the population mean in group l, and ηl,j =
∑hl

k=1ψk(x)vj,k

captures the subject specific deviation for each individual in their group, characterised

as a linear combination of the first hl principal components in the group’s data.

5.2.3. Estimation

We estimate (5.5) for l = {1kP, 10kP, 30kP} separately but considering the same

input variables in each case for comparative purposes. Namely we select h = 7 based

on the likelihood-ratio test to asses the significance of adding an additional principal

component; To estimate the smoothness class of the population we applied criteria

(3.18) for each individual for Y ∗l,j = R̂
−1/2

l (Y l,j−ηl,j) and take the mode of the results

as an estimator of qτ (in this case we obtained qτ = 3). Additionally, inspection of

the individual ACF’s suggest the use of an AR(1) process for the error for all groups.

Lastly regarding the subject specific deviations, we set qη = 2, i.e a cubic spline

without further analysis.

The results are reported in Figure (5.6) and reveal similar qualitative results to those

found by Wollnik [2016]. Namely, the second row of plots in the same figure shows

that the cell’s area for 1 kilo Pascal portrays a significantly different behaviour when

compare to its 10 and 30 kilo Pascal counterparts, however the differentiation among
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the last two groups is not clear since the 95% confidence bands indeed cross each other.

Moreover, the shaded grey area highlights hours 9, 10 and 11 in the overall trend for

each group, where a change in the slopes of the overall trends is apparent. To study

this feature further, we turn into the estimated functional principal components.

Figures (5.7) and (5.8) report the estimated functional principal components. Visual

inspection suggests that the first component captures the curves intercept, while the

second component mostly captures the groups’ trends. Similarly, the third component

reveals a landmark region for all groups that coincides with the highlighted grey

area in Figure (5.6). For 1 and 10 kilo Pascal modulus this happens around the

tenth hour, while for 30 kilo Pascal modulus the change point seems to be delayed

for approximately two hours (see the shift to the right in the lower panel of Figure

(5.7). The interpretation of the second three most important functional principal

components is more involved. The fourth principal component however shows a clear

departure between the 1 kilo Pascal modulus and its counterparts, which happens

notoriously around hours 14, 15 and 16, highlighted in the first panel of Figure (5.8).

For comparative purposes here we reproduce Table 4.6 from Wollnik [2016], where

statistics of the point-wise mean per group are reported. Although the comparison is

not direct, there are some qualitative similarities between both studies. Specifically

there appears to be an initial state of growth until hour 10, which eventually lead

to a plateau and a shrinkage in the 1 kilo Pascal cells. For the 10 kilo Pascal the

shrinkage seems to be much more subtle, while for the 30 kilo Pascal the cells’ area

keep expanding until the end of the experiment.

Table 5.1.: Cell Area Development in Time

Time Intervals
Modulus 0-5 h 5-10 h 10-15 h 15-20 h 20-24 h

1 kPa 9.44% 0.55% 2.12% −6.50% −7.85%
10 kPa 14.82% 9.70% 0.41% 4.41% −1.73%
30 kPa 13.63% 9.13% 4.31% 2.44% 2.57%

Source: Wollnik [2016]
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Figure 5.6.: FPCA for stem cell data. First row: raw data. Second row: population
f(x) and subject specific estimations fi(x). The grey area correspond to
hours 9, 10 and 11.
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Figure 5.7.: First three functional principal components. Thick black line: 1 kilo
Pascal; thick grey line: 10 kilo Pascal; dashed grey line: 30 kilo Pascal.
The grey area for PC3 correspond to hours 9, 10 and 11.
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Figure 5.8.: Second three functional principal components. Thick black line: 1 kilo
Pascal; thick grey line: 10 kilo Pascal; dashed grey line: 30 kilo Pascal. .
The grey area for PC4 correspond to hours 14, 15 and 16.
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5.2.4. Conclusions

Our method reports comparable results to those given in Wollnik [2016], but we con-

sider they can be further improved. In principle, tracking only the cell’s area is

possibly insufficient to capture the whole dynamics of the cells, which are constructed

as bidimensional objects. In this application we did not consider aspect ratio data

(which is available from the experiment) because the roughness of its paths is a fea-

ture that does not adjust to the assumptions of the stochastic processes considered

here. However other variables such as anisotropy or order parameter could also be

explored. Additionally, it might be useful to consider a time varying AR(1) process

for the error’s measurement. This could be adequate since it is apparent that the

dependence of the error weakens as the experiment progresses.
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The implementation of the ideas presented in Chapter 3 and Chapter 4 was developed

in the R programming language. The computations and plots for the applications

presented in Chapter 5 were conducted using the packages scsd and fpca for sections

5.1 and 5.2 respectively. Both packages depend on an additional package called ebsc,

where the statistical model of the empirical smoothing splines under correlated errors

was developed.

6.1. R Package ebsc

The approach proposed in Chapter 3 is implemented in the comprehensive R package

ebsc. Its contents are based on the results presented in Chapter 3 and in Serra and

Krivobokova [2016]. To be able to manipulate numbers of large magnitude (resulting

from the exact computation of the Demmler-Reinsch basis described in Chapter 2) we

use the Brobdingnag library. To exploit the parallel structure of our implementation

we require the parallel library. In principle these are the only dependencies of ebsc.

The main function of the package is called by

O<-ebsc(y,q.fixed,R,iterations,method,arma.order,parallel)

for arguments
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y
One dimensional array of equidistant real values. No missing

values are allowed.

q.fixed
Smoothness class of the function. If q.fixed=NULL, its optimal

value is selected using the Tq(·) criteria described in Chapter 3.

R
Correlation matrix used to start the iterative process. If

R=NULL, the identity matrix is used.

iterations
Maximum number of iterations. If iterations=NULL, 25 is

used.

method

Method to estimate the model. If method=NULL the

non-parametric estimation presented in Chapter 3 is done. If

method="MM" the linear mixed model’s representation of

smoothing splines is fitted using the nlme package.

arma.order

Only necessary if method="MM". It is a vector of the form

c(p,q) where p and q represent the AR and MA orders of the

error process.

parallel
Option to select if parallel computation is to be used. If

parallel=NULL a sequential estimation is performed.

The function returns the estimations of the smoothing parameter lambda.hat, the

correlation sigma2.hat and R.hat, the smoothness class q.hat and the optimal fit

f.hat.

6.2. R Package scsd

Signal decomposition under empirical Bayesian smoothing splines with correlated er-

rors is implemented in the package sdsc. Details of the method are presented in

subsection 4.1.2 of Chapter 4, hence the only dependency of the package is the library

ebsc presented in the previous section.

The main function of the package is called by
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O<-scsd(y,R,iterations,method,arma.order,parallel,method,h,q1.0)

for arguments

y
One dimensional array of equidistant real values. No missing

values are allowed.

R
Correlation matrix used to start the iterative process. If

R=NULL, the identity matrix is used.

iterations
Maximum number of iterations. If iterations=NULL, 25 is

assumed.

method

Method to estimate the model. If method=NULL the

non-parametric estimation presented in Chapter 3 is done. If

method="MM" the linear mixed model’s representation of

smoothing splines is fitted using the nlme package.

arma.order

Only necessary if method="MM". It is a vector of the form

c(p,q) where p and q represent the AR and MA orders of the

error process.

parallel
Option to select if parallel computation is to be used. If

parallel=NULL a sequential estimation is performed.

seas.struct

Method to de-seasonalised the data. If seas.struct=NULL, the

smoothing splines method is applied. Other options are stl and

dlm.

h Frequency of the seasonal component.

q1.0
Smoothness class of the trend component for the initial

iteration.

The function returns the estimations of the smoothing parameter for the trend com-

ponent lambda.hat, the correlation sigma2.hat and R.hat, the smoothness class of

the trend component q.hat and the optimal fit for the seasonal component seas.hat,

trend component trend.hat and overall fit f.hat. For more details the user can type

?scsd in the terminal window.
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6.3. R Package fpca

Functional principal component analysis using the mixed models representation of

smoothing splines are developed in the package fpca. Details of the method are

presented in subsection 4.2.2 of Chapter 4. The fpca package depends on libraries

nlme and ebsc presented in the first section.

The main function of the package is called by

O<-fpca(DATA,k,q,correlation)

for arguments

DATA

Matrix where each column represents a sample measured in an

equidistant grid of nrow(DATA) points. No missing values are

allowed.

k
Number of eigenfunctions to construct subject specific

deviations between 1 and ncol(DATA)

q

Smoothness class of the model specified as a vector of the form

c(q.pop,q.subj) indicating the smoothness class of the overall

trend and subject specific deviations respectively.

correlation
Correlation structure of the errors specified as corARMA(p,q). If

left empty a white noise error is assumed.

The function returns the population fit f, the subject specific deviations di and subject

specific fits fi. Details of the fitted LMM can be inspect on the est object. For more

details the user can type ?fpca in the terminal window.
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Smoothing splines is a well stablished method in non-parametric statistics, although

the selection of the smoothness class q for f ∈ Wq[0, 1] is rarely addressed and,

instead, a cubic smoothing spline, i.e. q = 2, is the standard assumption taken by

practitioners. For a general regression function there is no known method to identify q

under the presence of errors with correlation matrixR. This apparent disregard in the

literature can be justified because the condition number of the solution increases with

q, turning the estimation unstable. In Chapter 2 we introduced an exact expression

for the Demmler-Reinsch basis constructed as the solution of an ordinary differential

equation. In Chapter 3 we presented an estimation procedure that can be carried

out for an arbitrary q and for a general positive definite Toeplitz matrix R, without

affecting the condition number of the solution. Asymptotic properties of the proposed

estimators were provided in Section 3.3, and Monte Carlo experiments were conducted

to study their finite sample properties and reported in section 3.4.2. In Chapter 4 we

presented extensions where the empirical Bayes smoothing splines method serves as a

building block. Namely, we considered extensions to signal extraction and functional

principal component analysis. In Chapter 5 the empirical relevance to our findings

was shown by applications in agricultural economics and biophysics. Finally, Chapter

6 provided a summarised description of the R software developed to implement the

ideas presented in chapters 3 and 4 and that were used to obtained the results reported

in Chapter 5.

The studying of empirical Bayes smoothing splines with correlated errors is of great
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importance. In theoretical terms, the results presented in Section 3.3 showed that the

estimators for the smoothing parameter and correlation matrix are consisten under

short range correlation for the provided statistical algorithm. Moreover, we showed

that our method outperforms its benchmark competitors in the literature in finite

samples via Monte Carlo experiments. We also have presented the relevance of the

empirical Bayes smoothing splines method for real life applications. Namely, values

of q = 5 and q = 3 were reported for the non-parametric price transmission and stem

cell applications presented in Chapter 5. This results are not surprising and, in fact,

values of q > 2 have been previously observed in the literature. Consider for example

the so-called SiZer feature significance problem, as presented in Hanning and Marron

[2006], or the study of phase plots in functional data analysis as described by Ramsay

and Silverman [1997], where the second or third derivatives (and not the regression

function itself), are the focus of the study, and hence large values of q are presumed.

The present work can be extended in various directions. A possible field for future

research is the study of the relation between state space models and smoothing splines

of general degree q. As presented in Section 4.1, the work by Kohn and Ansley [1987]

suggests that it is possible to represent the empirical Bayes smoothing splines with

correlated errors presented in Chapter 3, as a state space model where the smoothness

class of the trend component is data driven. This is a non-trivial extension of the,

already well known, relation between cubic smoothing splines and state space models

[cf. Harvey, 1989, Zivot and Wang, 2006]. Another interesting area for future develop-

ments is the extension of the FPCA method developed in Section 4.2 to the dependent

functional data case, and to explore a method to further estimate the smoothness class

of the subject specific deviations.
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A. Auxiliary Results

Here we present some auxiliary results that are required for Section 3.3 of Chapter 3.

Let {ψk}k∈N represent the Fourier basis functions such that for k ∈ N,

ψ1(t) = 1, ψ2k(t) =
√

2 cos(2πkt), and ψ2k+1(t) =
√

2 sin(2πkt). (A.1)

Define the matrix

Ψ =
[
n−1/2ψj(ti)

]n
i,j=1

, (A.2)

so that ΨTΨ = ΨΨT = I.

We define the (rescaled) spectral density of the correlation function r as

r̃(ω) =
∞∑

k=−∞

r(k)e−2πikω. (A.3)

For two real matrices A,B of the same dimension, let A ≈ B mean that the entries

of A − B converge uniformly to zero, as n goes to infinity. By Proposition 4.5.2

of Brockwell and Davis [2009],

ΨTRΨ ≈ diag
{
r̃(t1), r̃(t2), r̃(t2), r̃(t3), r̃(t3), · · ·

}
= diag(r̃). (A.4)

Assume that r̃ is absolutely continuous. Note that by choice of the design points,

r̃1 = r̃(t1) = r̃(0) which we define as ρ so that that for any sequence mn = o(n), the
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eigenvalues satisfy |r̃i − ρ| → 0, uniformly over i = 1, . . . ,mn. This follows since

sup
i=1,...,mn

|ρ− r̃(ti)| = sup
i=1,...,mn

|r̃(0)− r̃(ti)| ≤ sup
i=1,...,mn

∫ ti

0

|r̃′(x)| dx ≤
∫ tmn

0

|r̃′(x)| dx,

which goes to zero as n→∞.

We now compute some traces and quadratic forms involving the smoother matrix

S
λ,R. It is not difficult to see that if we denote ∆ = ρR−1 − I, then

S
λ,R = S

ρλ,I
{
I + ∆(I − S

λ,R)
}
. (A.5)

Since S
λ,R = R1/2CR

(
CT

RCR + nλρD
)−1
CT

RR
−1/2 where CR = R−1/2C, the

eigenvalues of S
λ,R are between 0 and 1. For any sequence mn as above we also have

that the first mn eigenvalues of ∆ are uniformly close to zero, as n → ∞, and the

remaining eigenvalues are bounded. Hence conclude that the first mn eigenvalues of

I + ∆(I − S
λ,R) are uniformly 1 + o(1), as n → ∞. Note also that by Lemma 1

of Krivobokova [2013] that for l ∈ N, and m ∈ N ∪ {0},

tr
{

(I − S
λ,I )mSl

λ,I
}

= λ−1/(2q)κq(m, l){1 + o(1)}, (A.6)

where κq(m, l) = Γ{m+1/(2q)}Γ{l−1/(2q)}/{2πqΓ(m+l)}; cf. also Lemma 1 of Serra

and Krivobokova [2016].

Let R be a Toeplitz correlation matrix and denote by τ the associated rescaled spec-

tral density at 0, as defined in (A.3). Using identity (A.5), relation (A.6), and the

dominated convergence theorem, conclude that for l ∈ N, and m, s, t ∈ N ∪ {0},

tr
{
RtRs(I − S

λ,R)mSl
λ,R
}

= τ tρs(ρλ)−1/(2q)κq(m, l){1 + o(1)}. (A.7)

Consider now the quadratic form fTR−1(I −S
λ,R)S

λ,Rf . Using identity (A.5), for

109



A. Auxiliary Results

m, l ∈ N ∪ {0},

(I − S
λ,R)mSl

λ,R = (I + S
ρλ,I∆)−m(I − S

ρλ,I )mSl
ρλ,I{I + ∆(I − S

λ,R)}l.

By use of the identity from the previous display and the same argument as with the

trace, if fT (I − S
ρλ,I )S

ρλ,If converges, then

fT (I − S
λ,R)S

λ,Rf = fT (I − S
ρλ,I )S

ρλ,If{1 + o(1)},

so that we conclude that if fT (I − S
ρλ,I )S

ρλ,If converges, then

fTR−1(I − S
λ,R)S

λ,Rf =
1

ρ
fT (I − S

ρλ,I )S
ρλ,If{1 + o(1)}. (A.8)

Indeed by Lemma 2 in Krivobokova [2013], and Lemma 3 in Serra and Krivobokova

[2016], the quadratic form above converges and

fTR−1(I − S
λ,R)S

λ,Rf = nλ‖f (q)‖2{1 + o(1)}, f ∈ Wq, (A.9)

fTR−1(I − S
λ,R)S

λ,Rf ≤ nρ−1(ρλ)β/q‖f (β)‖2{1 + o(1)}, f ∈ Wβ, q > β.

(A.10)

It also holds that that for l ∈ N ∪ {0},

fTR−1(I − S
λ,R)Sl

λ,Rf = fTR−1(I − S
λ,R)S

λ,Rf{1 + o(1)}. (A.11)

Using the identity in (A.5) one can (approximately) diagonalise S
λ,R. Let Φ represent

the Demmler-Reinsch basis matrix such that ΦTΦ = ΦΦT = I. Then

ΦTS
λ,RΦ =

{
I + nλρ diag(η)

}−1{
I + ΦT∆(I − S

λ,R)Φ
}
, (A.12)

where η are the eigenvalues of the Demmler-Reinsch basis matrix.
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Table B.1.: Simulation Results (Scenario III): MSE

(φ1, φ2) (0, 0) (0.2, 0) (0.4, 0) (0.6, 0) (0.52,−0.3) (0.3,−0.52) (0, 0.3) (0,−0.3) (0, 0.6) (0,−0.6)
f1

EBS 0.11 0.16 0.23 0.39 0.14 0.06 0.19 0.07 0.37 0.04
(0.04) (0.06) (0.07) (0.12) (0.06) (0.02) (0.07) (0.03) (0.14) (0.01)

HER 0.29 0.33 0.37 0.49 0.31 0.26 0.34 0.25 0.46 0.24
(0.08) (0.09) (0.10) (0.15) (0.09) (0.05) (0.10) (0.04) (0.15) (0.03)

LMM 0.14 0.20 0.28 0.42 0.17 0.07 0.22 0.08 0.39 0.04
(0.04) (0.07) (0.08) (0.13) (0.06) (0.02) (0.07) (0.02) (0.12) (0.01)

HVK 0.19 0.66 0.78 1.34 0.66 0.60 1.19 0.60 2.04 0.58
(0.06) (0.15) (0.23) (0.34) (0.16) (0.08) (0.21) (0.08) (0.41) (0.06)

f3

EBS 0.15 0.21 0.29 0.48 0.19 0.11 0.25 0.10 0.50 0.09
(0.04) (0.06) (0.08) (0.26) (0.06) (0.06) (0.07) (0.02) (0.22) (0.05)

HER 0.49 0.53 0.57 0.66 0.50 0.46 0.54 0.47 0.65 0.46
(0.07) (0.09) (0.11) (0.17) (0.07) (0.04) (0.11) (0.05) (0.14) (0.03)

LMM 0.15 0.20 0.28 0.42 0.17 0.08 0.24 0.09 0.39 0.05
(0.04) (0.06) (0.08) (0.12) (0.05) (0.02) (0.07) (0.02) (0.12) (0.01)

HVK 0.16 0.33 0.45 0.62 0.32 0.18 0.52 0.28 0.83 0.15
(0.04) (0.09) (0.15) (0.20) (0.07) (0.05) (0.13) (0.05) (0.26) (0.02)

‖f − f̂‖2: mean and standard deviations (in parenthesis) are reported. Quantities scaled by 104.
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B. Additional Tables

Table B.2.: Simulation Results (Scenario IV): MSE

(φ1, φ2) (0, 0) (0.2, 0) (0.4, 0) (0.6, 0) (0.52,−0.3) (0.3,−0.52) (0, 0.3) (0,−0.3) (0, 0.6) (0,−0.6)
f1

EBS 0.11 0.16 0.22 0.38 0.13 0.06 0.18 0.06 0.34 0.03
(0.04) (0.06) (0.08) (0.12) (0.05) (0.02) (0.06) (0.02) (0.10) (0.01)

HER 0.29 0.33 0.37 0.49 0.31 0.26 0.34 0.25 0.46 0.24
(0.08) (0.09) (0.10) (0.15) (0.09) (0.05) (0.10) (0.04) (0.16) (0.03)

LMM 0.14 0.20 0.28 0.42 0.17 0.07 0.22 0.08 0.39 0.04
(0.04) (0.07) (0.08) (0.13) (0.06) (0.02) (0.07) (0.02) (0.12) (0.01)

HVK 0.19 0.66 0.78 1.34 0.66 0.60 1.19 0.60 2.05 0.58
(0.06) (0.15) (0.23) (0.34) (0.16) (0.08) (0.21) (0.08) (0.42) (0.06)

f3

EBS 0.15 0.20 0.28 0.42 0.17 0.08 0.24 0.09 0.39 0.05
(0.04) (0.06) (0.08) (0.12) (0.05) (0.02) (0.07) (0.02) (0.12) (0.01)

HER 0.49 0.53 0.57 0.66 0.50 0.46 0.55 0.47 0.65 0.46
(0.07) (0.09) (0.11) (0.17) (0.07) (0.04) (0.11) (0.05) (0.14) (0.03)

LMM 0.15 0.20 0.28 0.42 0.17 0.08 0.24 0.09 0.39 0.05
(0.04) (0.06) (0.08) (0.12) (0.05) (0.02) (0.07) (0.02) (0.12) (0.01)

HVK 0.16 0.33 0.45 0.62 0.32 0.18 0.53 0.28 0.83 0.15
(0.04) (0.09) (0.15) (0.20) (0.07) (0.05) (0.13) (0.05) (0.26) (0.02)

‖f − f̂‖2: mean and standard deviations (in parenthesis) are reported. Quantities scaled by 104.
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