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Abstract

This thesis is concerned with the numerical study of one-dimensional (1D) spin-1/2 quan-
tum magnets and related method development. Its focus is on the calculation of dynamical
spin correlation functions both at zero and finite temperature. This is motivated by the
accessibility of dynamical quantities in experiments such as inelastic neutron scattering
(INS) and electron spin resonance (ESR). The numerical methods used in this thesis are
based on extensions of the density-matrix renormalization group (DMRG) and are formu-
lated in the framework of matrix product states (MPS). While zero-temperature dynami-
cal correlation functions are computed with existing MPS frequency-domain methods, an
MPS frequency-domain approach for their calculation at finite temperature is developed
in this thesis. The new method combines the Liouville-space formulation of the dynamics
with a moment expansion of the dynamical correlation function. The majority of the
results are obtained via MPS-based Chebyshev expansions.

These numerical techniques are applied to two different model systems describing real
materials. The first one is the material copper pyrimidine dinitrate (Cu-PM) which is
modeled by a 1D spin-1/2 Heisenberg antiferromagnet with Dzyaloshinskii-Moriya in-
teractions. The spin dynamics of this model is studied in an applied magnetic field
and compared to ESR experiments. Zero-temperature calculations for momentum- and
frequency-resolved dynamical quantities give direct access to the intensity of the elemen-
tary excitations and go beyond the low-energy description by the quantum sine-Gordon
model. Thus, a deviation from the Lorentz invariant dispersion for the single-soliton reso-
nance is found. The presence of the strongest boundary bound state previously predicted
from a boundary sine-Gordon field theory is confirmed, while composite boundary-bulk
excitations have too low intensities to be found in the numerical results. At finite tem-
perature, there is a temperature-induced crossover of the soliton. Moreover, additional
temperature effects such as interbreather transitions emerge, which is confirmed by ac-
companying ESR experiments on Cu-PM over a wide range of the applied field strength.

The second system studied in this thesis is the compound BaCuyV,Og. It is shown that the
magnetic properties of this quasi-1D material can be described by a strongly alternating
antiferromagnetic-ferromagnetic spin-1/2 Heisenberg chain. As found for other dimerized
systems, the strong correlations in BaCuyV,0g persist even at elevated temperatures.
Moreover, these correlations lead to an asymmetric lineshape broadening of the magnetic
excitations at finite temperature. Upon raising the temperature, an increasingly asymmet-
ric lineshape is observed in high-resolution inelastic neutron scattering (INS) experiments
for BaCuyV50g. In this thesis, the lineshape is calculated by the MPS finite-temperature
method developed as a part of this work. Comparing these results to the INS data and
the lineshape obtained by a diagrammatic approach, excellent agreement is found over a
broad temperature range. This demonstrates that coherent quantum behavior persists at
elevated temperatures in BaCuyV5Og and that it can be predicted quantitatively.
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Introduction 1

Motivation and objectives 1.1

Quasi-one-dimensional compounds of magnetic ions with low spin have received a lot of
attention [MKO04|. Such materials are crystals with highly anisotropic properties [LGGO03|.
This implies that below a certain threshold temperature the coupling of the magnetic spins
in one spatial direction becomes dominant whereas the spin-spin interactions in the other
two directions are negligible. In a first approximation, such systems can be effectively
described by a single one-dimensional (1D) chain of coupled quantum spins localized at
the ion positions.! In this thesis, the corresponding magnetic moments are treated as
Heisenberg spins [Hei28| for which the spin vector can point in any direction in three-
dimensional space. In the considered materials, the magnetic moments are realized as
Cu** ions with a quantum mechanical spin of S = 1/2. A prototypical compound well
described by the Heisenberg model at low temperature is KCuF3; [TPCN93, TCNT95,
LTFNO5].

Such 1D quantum spin systems are particularly interesting for a multitude of reasons.
At low temperatures, they exhibit enhanced quantum effects due to their reduced di-
mensionality [BD05|. In addition, quantum fluctuations are most pronounced for a small
value of the spin. They vanish as a 1/5 effect in the classical limit S — oco. Fur-
thermore, the spin-spin interactions lead to strong quantum correlations among them
giving rise to, e.g., the suppression of long-range magnetic order and exotic ground-state
excitations [Faz99, BluO1|. These phenomena are a manifestation of true many-body
physics [FW71, Mah00] that cannot be captured by a theory treating the many degrees
of freedom individually on the single-particle level.

Many-body problems are difficult to treat in the presence of strong correlations and still
pose some of the hardest challenges in condensed matter physics. If one considers a chain
of L spin-1/2 degrees of freedom, each of them has a basis {| 1), | {)}. Therefore, the total
dimension of the quantum mechanical state space is 2*. In order to describe macroscopic
materials, one needs to consider the thermodynamic limit, i.e., L — oo, or at least finite
systems that are sufficiently large. The latter route is pursued by the numerical calcula-
tions in this thesis. The treatment of such systems is difficult due the large dimensionality
of the state space growing exponentially with system size. At absolute zero temperature
T = 0, there has been a lot of progress in the theoretical description of 1D quantum
many body-systems. For instance, the exact analytical solution of the ground state of
the 1D Heisenberg model is available via Bethe ansatz |Bet31, KMGT97, KHM98|. The
structure of basic Bethe-ansatz eigenfunctions for finite systems is generally inconvenient
for the calculation of dynamical quantities, which are mainly studied in this thesis. How-
ever, based on Bethe ansatz the exact calculation of the intensity of such quantities can
be achieved for infinitely large systems and in special cases at T' = 0 [CHO6]. Another

!Confer to Chapter 4 for a more detailed discussion of the considerations leading to such a model.
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class of analytical approaches based on field theory makes approximations |[Tsv07, Fral3|.
Their quality is usually hard to ascertain. Therefore, numerical studies as presented in
this thesis are very useful both as a means of verification of analytical results and to gain
new insights in cases where an analytical treatment is not available.

Studying dynamical observables of strongly correlated quantum spin systems is of great
interest as they provide important insights into the governing many-body physics [FWT71,
Mah00]. In contrast to static properties, dynamical response functions contain more
information about the system and its excitations.

The main focus of this thesis is the numerical calculation of dynamical quantities of 1D
spin chains at finite temperatures 7' > 0. This is largely motivated by recent experimental
advances in neutron scattering [ZL05, ZT15| and electron spin resonance [Zvy12] allowing
for very precise high-resolution measurements of dynamical quantities in quasi-1D quan-
tum magnets. Importantly, thermal fluctuations may lead to new phenomena occurring
upon tuning the temperature. Examples are temperature-induced transitions between
ground-state excitations [UTO"09], or the quantum critical regime in some strongly cor-
related materials [Sac01].

This implies that the availability of efficient and accurate numerical tools for making
theoretical predictions of dynamical observables at finite temperature is highly desirable.
One main part of this thesis is concerned with the development of such a numerical
method.

The numerical techniques used in this thesis are based on the density-matrix renormal-
ization group (DMRG) [Sch05a| in which the quantum mechanical wave function assumes
the form of a matrix product state (MPS) [Sch11]|. The methods employed are formulated
and implemented in the framework of MPS in this thesis. Concerning the terminology, in
the following they are referred to as MPS approaches or — in the broadest sense — simply
as DMRG. These methods have arguably been the most powerful numerical techniques
in the study of quantum chains. Initially, the original DMRG algorithm aimed at the
calculation of ground-state properties [Whi92, Whi93|. The idea behind the algorithm is
to truncate the many-body basis of the Hilbert space by a variational principle. It has
been extended to the accurate calculation of both frequency- and momentum-resolved
spectral functions of 1D systems at zero-temperature. These methods can be catego-
rized according to the route they pursue for such calculations. On one hand, spectral
functions may be computed directly in the frequency domain, e.g., by moment expan-
sions [Hal95, DWH"12, HWM*11]. On the other hand, they can also be obtained via
the calculation of time-domain correlation functions by DMRG-based real-time evolution
[Vid04, WF04, DKSV04] followed by a Fourier transform to frequency space. These zero-
temperature techniques are well established and the time-domain approaches have already
been extended to T' > 0 [BSW09, KBM12|. The challenge is that finite-temperature states
generally need to be described by mixed-state density operators. However, MPS can in
principle only represent pure-state wave functions. This problem can be solved via a
purification of the thermal density operator obtained by doubling the degrees of freedom
leading to an enlarged system of twice the size of the physical system. The advantage is
that the finite-temperature state can be represented by a wave function and thus by an
MPS again [Sch11]. Then the finite-temperature dynamics is formulated in Liouville space
[Fan57, BD87|. The first goal of this thesis is to use the existing formulation in order to
devise an MPS-based frequency-domain method for the calculation of finite-temperature
spectral functions. In this way, state-of-the-art zero-temperature MPS methods working
in the frequency domain will be extended to finite temperatures in the present thesis.
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It may also be mentioned that apart from the DMRG methods used in this thesis there
are other established numerical methods for the calculation of dynamical properties in
1D quantum systems at 7" > 0 such as, e.g., full diagonalization [NMO05| or quantum
Monte Carlo (QMC) methods [San10]|. In the first approach, the Hamilton operator is
represented as a matrix which is diagonalized in order to gain access to the full spectrum
of its eigenenergies and the corresponding eigenstates. From this information dynamical
observables can be calculated. However, the method is limited to rather small systems
only. QMC methods rely on stochastic sampling and are thus also applicable to larger
systems, but the technique is restricted by a challenging analytical continuation procedure
to calculate spectral functions. Depending on the system, the negative sign problem can
also pose a problem [GML*11].

Having pointed out the general interest in 1D systems and the numerical methods that
will be used, the following remarks are intended to give a brief introduction to the two
systems mainly studied in this work. The newly developed MPS method will be applied
to the calculation of their dynamical properties at finite temperature. The calculation
of zero-temperature spectral functions with existing MPS approaches is another essential
part of this thesis.

For the prototypical compound KCuF3 which is well described by the Heisenberg model,
experimental results obtained by inelastic neutron scattering (INS) at low temperature
are in good agreement [LTFNO5| with the model which has a gapless continuum of spin
excitations at T = 0 [FT81, MTBB81|. However, in many 1D quantum magnets the
antiferromagnetic Heisenberg Hamiltonian is not a good approximation because of further
or different exchange interactions between the magnetic ions. Two quasi-1D materials of
this type are mainly studied in this thesis.

The first system includes additional but weak Dzyaloshinskii-Moriya (DM) interactions
[Dzy58| presenting a perturbation to the Heisenberg Hamiltonian. These antisymmetric
interactions originate from the spin-orbit coupling [Mor60a| in crystals with alternat-
ing crystal axes. The staggered DM interaction is present in some anisotropic Cu?*-
based compounds, e.g., in copper benzoate [DYMT70| and copper pyrimidine dinitrate
([PM-Cu(NO3)2:(H20)s),,, PM=pyrimidine; or shortly Cu-PM) [INN*97, FAGT00]. The
latter material is studied in this thesis. In a uniform applied magnetic field, Cu-PM dis-
plays a field-induced gap in the magnetic excitation spectra probed by INS [DHR*97].
The gap can be attributed to an effective transverse staggered field induced by both the
DM interactions [OA97| and a staggered g tensor describing the anisotropic coupling be-
tween the applied magnetic field and the spins. Both effects occur as a consequence of
the alternating arrangement of the copper ions [DHR'97|. Although the magnitude of
these two effects is only a few percent compared to the Heisenberg exchange coupling,
the field-induced gap represents a striking departure from the gapless spin excitations
of the Heisenberg model. The effective Hamiltonian consisting of the Heisenberg terms
and the additive contributions including the uniform and staggered magnetic fields can
be mapped to a quantum sine-Gordon field theory [OA97, ET98, AO99] which is valid
at zero temperature and low energy. Materials such as Cu-PM are thus referred to as
sine-Gordon magnets. Their low-energy elementary excitations at zero temperature can
be effectively described by this field theory. The main elementary excitations are soli-
tons and antisolitons as well as their bound states. This was confirmed in electron spin
resonance measurements (ESR) at low T' for the compound Cu-PM [ZKKF04, ZCO*11].

Despite the good agreement, there remain open questions at 7' = 0. These are mainly due
to deviations from the field theory and recently reported boundary states [FO12|. Zero-
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temperature calculations of dynamical properties with state-of-the-art MPS methods are
therefore one goal of this thesis. They will offer new insights into these issues.

Moreover, the study of temperature effects in sine-Gordon quantum magnets is a focal
point of interest and a main objective of this thesis. This is motivated by hints of strong
temperature dependencies in ESR experiments on Cu-PM [Zvy12|. Moreover, there are
still a few experimentally unobserved field-theoretical predictions for thermally-induced
transitions between elementary excitations [FO12]. These are specific examples demon-
strating the need for accurate and reliable numerical calculations of finite-temperature
spectral functions.

Furthermore, another main question of this thesis is concerned with the persistence of
the strongly correlated quantum behavior observed at low 7" with increasing temperature.
Upon raising the temperature, there develops an interesting interplay of quantum and
thermal fluctuations. The latter will lead to a crossover to the classical high-temperature
regime in which the quantum mechanical coherence is lost. The persistence of quantum
behavior at higher temperatures is of practical importance for potential applications in
quantum devices. Also in the fundamental study of quantum coherence, highly anisotropic
Cu?*-based compounds have offered interesting insights. In particular, quasi-1D crystals
with two inequivalent exchange paths are considered in this context.

A paradigmatic example is the material copper nitrate [TLJ"12]. Another realization with
unexplored dynamical properties is the material BaCuyV,0g which represents the second
system studied in this thesis. It can be modeled by an alternating spin-1/2 Heisenberg
chain in which the spins are coupled by two different exchange couplings J and J’ in an
alternating fashion. For BaCuyV,Og, one has J > J’ which leads to a strong dimerization
of the system. Then two neighboring spins coupled by the antiferromagnetic J form
dimers which are only weakly coupled by J’. The model has a spin-singlet ground state
and gapped triplet excitations which are triplons. There are strong correlations between
these excitations.

In copper nitrate, the single-triplon mode is subject to asymmetric lineshape broadening
with increasing temperature as observed in inelastic neutron scattering (INS) experiments
[TLJ*12|. This is in contradiction to the conventional description of temperature effects
in quantum magnets [ML71] which predicts symmetric lineshape broadening. However,
this theory is based on weak interactions among the excitations. Asymmetric lineshape
broadening has also been predicted by integrable quantum field theories [EK08, EK09|
and full diagonalization for small dimerized systems [MLO06, TLJ12].

Concerning the study of BaCuyV,0g, the Hamiltonian of this compound is identified
by a combination of INS experiments and MPS calculations. Based on this model,
the asymmetric lineshape broadening in BaCuyV,0Og is investigated by means of the
finite-temperature MPS method developed in the present work. The results obtained
in this thesis are compared to further experimental INS data and a diagrammatic ap-

proach [FSU14, FU15].
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Outline 1.2

After motivating the objectives of this thesis, its outline is given below:

Chapter 2 starts by presenting some basic aspects of many-body quantum physics which
are relevant for the following chapters. Then dynamical response functions, which will be
mainly calculated, are briefly reviewed and formulated in Liouville space which is concep-
tually important for the finite-temperature method developed in this thesis.

Chapter 3 provides information on the computational methods employed in the present
work. After introducing matrix product states (MPS), the density-matrix renormalization
group (DMRG) and some of its extensions for the computation of dynamical properties are
reviewed in the framework of MPS. Special emphasis is put on existing frequency-domain
methods for the calculation of spectral functions at 17" = 0, see Sec.3.5. In Sec. 3.6, the
MPS method developed in this thesis is presented by formulating these frequency-domain
methods at finite temperature by exploiting a Liouville-space formulation.

In Chapter 4, the models studied in this thesis are motivated and reviewed.

First proof-of-principle MPS frequency-domain computations of finite-temperature spec-
tral functions are shown in Chapter 5. The newly developed method is characterized and
its potential is assessed — both by a comparison to exact results for the 1D X X model
and a treatment of spin-1/2 Heisenberg chains with Dzyaloshinskii-Moriya interactions
mimicked by a transverse staggered field. Moreover, static thermodynamic observables
are computed by MPS imaginary-time evolution.

In Chapter 6, both the frequency-field dependence and the intensity of the elementary ex-
citations in the sine-Gordon magnet copper pyrimidine dinitrate (Cu-PM) is investigated
at zero and finite temperature. The MPS results obtained in this thesis are compared to
exact diagonalization, predictions by sine-Gordon field theories, and electron spin reso-
nance (ESR) experiments.

In Chapter 7, the persistence of strongly correlated quantum behavior at elevated tem-
peratures is studied in the dimer-chain compound BaCuyV,0g. Here the main focus is
on the quantitative prediction of the asymmetric lineshape broadening occurring due to
these strong correlations. To this end, the finite-temperature spectral functions calcu-
lated within this thesis are compared to different results obtained by inelastic neutron
scattering (INS) and a diagrammatic approach.

Finally, Chapter 8 contains a concluding summary of the main results of this thesis and
opens perspectives for future research.






Spectral functions of many-body
quantum systems 2

Instead of providing a full and detailed review of many-body quantum physics [Mah00,
Pruld|, the goal of this chapter is to briefly introduce the main concepts that are rele-
vant for the further reading of this thesis. A particular focus is the definition of spectral
functions both at zero and finite temperature. Then a Liouville-space formulation and
thermofield dynamics are reviewed in order to express finite-temperature spectral func-
tions in a form amenable to the numerical approach developed in this thesis.

Many-body quantum states 2.1

The systems studied in this work are 1D spin-1/2 models defined on lattices consisting of
a finite number L of sites.! Therefore, the Hilbert space dimension is assumed to be finite
in the following. For spin-1/2 degrees of freedom, the local Hilbert space H}°° at each site
[ is spanned by the basis set {| |),| 7)} and is thus of dimension d = 2. The total Hilbert
space is obtained as the tensor product space

L
H = () 1 (2.1)
=1
yielding a dimension of
dim (H*") = d". (2.2)

The fact that this dimension grows exponentially with system size L poses a severe chal-
lenge for computational methods implemented on binary computers, as used in this thesis.

Any pure quantum mechanical state can be described by a vector |¥) which is an element
of the Hilbert space spanned by an arbitrary orthonormal basis set {|u,)}:

0) = > (unl®) [un) = Y e lun). (2.3)

n n

The coefficients ¢, of this state vector are generally complex numbers and a pure state is
referred to as a wave function.

In this thesis, the Hamiltonian H describing the physical system is always assumed to
be time-independent. The wave functions of stationary states are the solutions of the
time-independent Schrédinger equation

H|V) = E|T). (2.4)

!Confer to Chapter 4 for a discussion of the considerations leading to models of this type.

7
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This equation represents an eigenvalue problem. Therefore, the stationary states are also
called energy eigenstates |E,) with energies E, = (E,|H|E,)/{(E,|E,). The eigenstates
form an orthonormal basis set {|E,)} in Hilbert space.? Represented with respect to this
basis, the Hamilton operator becomes diagonal. At T" = 0, a system in equilibrium is
in its ground state |Ep) with minimal energy Ej. As we will see in Sec. 2.2.2 below, in
the definition of spectral functions the eigenstates and the discrete eigenspectrum of the
Hamiltonian play an important role.

The dynamics of a quantum mechanical system is governed by the time-dependent Schro-
dinger equation. For a pure quantum state it reads

o d

zhahlf(t» = H|¥(t)) (2.5)
and has the formal solution

(U(t)) = Ut —to)|W(t)), U(t—to) = e M0/m, (2.6)

where U(t — ty) is the unitary time-evolution operator and ¢, the initial time.
At finite temperature, the description of quantum states which are represented by state
vectors is not sufficient since the system is generally in a mixed state, i.e., in a statistical
mixture of pure states |¥;) each occurring with a probability p; > 0. In order to deal with

this probabilistic ensemble, the density matrix describing a mixed state is defined as the
linear operator

p= Z pi | Wi) (W4 (2.7)

The density operator p of a mixed state is a superposition of pure-state density opera-
tors |W;)(;|. The condition ). p; = 1 grants the normalization of p, i.e., Trp = 1. The
equilibrium expectation value of an operator A can thus be stated as

(A) =Tr (pA). (2.8)
At finite temperature 7' > 0, the canonical density operator reads
e BH
= 2.

The partition function is defined as Z = Tre 7 = " e 5 and 8 = (kgT)~! denotes
the inverse temperate, where kg is the Boltzmann constant. Thus, the expectation value
in the canonical ensemble is given by

(A) = %Tr (ePHA) = % > e (B, |AE,). (2.10)

Moreover, the time-dependence of arbitrary mixed quantum states as introduced in Eq. (2.7)
is described by the equation (see, e.g., Ref. [Muk95])

ih (1) = [H, p(1)]. (2.11)

It is known as the quantum Liouville equation or alternatively Liouville-von Neumann
equation and represents an extension of Eq. (2.5) to arbitrary quantum states.

2Due to the finite dimension of the Hilbert space assumed earlier, the basis set also remains finite.
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Dynamical response functions 2.2

In the following, a simplified situation motivated by experiments is used as a starting
point for the definition of dynamical response functions. Then the frequency-domain rep-
resentation of such quantities is derived following Refs. [Mah00, Prul4] in Sec. 2.2.2. The
representation is used to define spectral functions which play a central role in this thesis.
The presentation below is also based on Ref. [CLO00].3

Linear response theory 2.2.1

In order to investigate a solid in experiments, one frequently applied procedure is to
introduce a weak time-dependent external perturbation V' (¢). Then the total Hamiltonian
is of the form

Hyt = H+ V(1) (2.12)

Here H denotes the time-independent Hamiltonian of the unperturbed system. The per-
turbation is switched on at a time ¢y. For t < t, the system is assumed to be in thermal
equilibrium. An exemplary perturbation is given by

V(t) = —BF(t), (2.13)

where B is an operator representing an observable of the system (i.e. B = B') and f(t)
denotes a real-valued applied field which has no spatial dependence for simplicity.

A common way to treat the dynamical response of the system to a small external pertur-
bation, is linear response theory [Prul4|. In this theory, the thermal expectation value
(A)(t) of a further operator A with respect to Hy. is calculated up to linear order in
the field f(¢) in time-dependent perturbation theory [SN11]. This gives a so-called Kubo
formula [Kub57|

WO =)+ [t xant 1) 1) .14
in which the dynamical response function y4p(t — t') is defined as
/ Z / /
Xap(t —t) = O(t = t)([A(?), B{t)]). (2.15)

Note that the average in Eq. (2.15) is taken only with respect to the unperturbed Hamil-
tonian H. Moreover, O(t — t') represents the unit step function. The importance of
Eq. (2.14) is that it relates the changes 0 ((A)(t)) = (A)(t) — (A) in the expectation values
of the observable A to the weak time-dependent external perturbation, where (A) denotes
the equilibrium expectation value at t < t,, see Eq. (2.8). Thus, the quantity xap(t —t')
is important for the description of experiments and is also referred to as dynamical sus-
ceptibility. Causality is ensured by the condition ¢t > t'. In the following i = 1 is adopted.

3For further reading also confer to Refs. [BF04, Eco06.
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Finite-temperature dynamical response 2.2.2

Here finite-temperature spectral functions are formulated in terms of the previously de-
fined dynamical response functions. From a mathematical point of view, it will turn
out that there is a very close relation between a spectral function for a given observ-
able and the Fourier transform of the corresponding dynamical response function in Eq.
(2.15). Since finite temperatures are considered here, the average in Eq. (2.15) denotes the
thermodynamic average. In order to obtain a particular representation for the response
function, the canonical ensemble is used in the following. Moreover, it is justified to set
t' =0 as xyap only depends on the difference for a time-independent Hamiltonian H with
eigenstates |E,). Then a dynamical response function is cast in the following form:

Xan(t) = 00(1)  SUENe " (A()B ~ BA(®) | (216)

=i0(1) % Z e PE(E,| (A(t)B — BA(1)) |E,). (2.17)

Inserting two identities I = ) |E,,)(Ey,| and treating the time dependence of an oper-
ator A in the Heisenberg picture via

(E,|A(t)|Ey) = (B, |eft Ae Y E,,) = ! En=Enlt([ |A|E,,) (2.18)
yields
Xas(t) = S e (| A1) B 5, BIE) — (Bl BIE) (Bal AW B (219)
iO(t) |

= =5 e T B Al B ) El BIE)

m,n

— e WEEn) (B B|E, )W (B |A|E,)]. (2.20)

In the second term, the indices m and n can be exchanged which leads to the following
representation of the dynamical response function:

Xap(t) = z'@(t)% > (B A|En)(En|B|E,) e Fr=Fm) [o8Fn — o=FFm] (2.21)

m,n

Now it is desirable to obtain a frequency-domain representation of this expression as
well since many solid-state experiments give frequency-resolved results. The retarded
dynamical susceptibility is obtained by the Fourier transform

Xip(z =w+in) = / dt e xap(t) (2.22)

1 E A E E B E e_ﬁEn _ e_ﬁEnL
= = S AB AL Bl BIE) e

m,n

(2.23)

Here a small real number n > 0 is introduced to shift the poles of the integrand from the
real axis into the upper half of the complex plane in order to ensure the convergence of the
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integral. Using the frequency-domain expression for the response function in Eq. (2.23),
a spectral function can be defined as

1
R(w) = lim — Im }'5% (w + in). (2.24)
n—0 7T
The identity
Ll rins(z) for p—o0 (2.25)
- o .
x £ T o to

is useful for identifying the imaginary part of X% (w + in), which is also written as Xfﬁg”-

Here P denotes the Cauchy principal value. The result

Rap(w) = %Z (775 — e=#Fn) (E,| A|Ep)(Ep| B Ey) 6(w — (B — Ey))  (2:26)
- %(1 —e ) Z e PE B |A|Eu ) En|B|E,) §(w — (B, — E,))  (2.27)

m,n

is known as the Lehmann representation of the spectral function.* This representation

is very instructive as it reveals the excitation energies wy, , = (E,, — E,) of the system
since they appear in the arguments of the Dirac delta functions. Moreover, their spectral
weight is expressed by the corresponding matrix elements. In order to determine the
spectral function via Eq. (2.27), a huge number of general matrix elements would have to
be calculated. Therefore, its term-by-term calculation via the Lehmann representation is
generally rather challenging for interacting systems and will not be used for the density-
matrix renormalization group (DMRG) calculations in the present work.

Furthermore, the finite systems studied in this thesis (see Sec. 2.1) always possess a
discrete and finite set of excitation energies. In order to conceal the resulting finite-size
effects, the value of n should be chosen large enough in practical DMRG calculations
[Jec02, BS14|. A finite n > 0 smears out the delta functions by introducing a Lorentzian
broadening.

The numerical calculation of the dynamical spin structure factor is of central interest in
this thesis as it can be probed in inelastic neutron scattering experiments. The dynamical

spin structure factor is a both momentum- and frequency-resolved quantity which can be
defined as

ret!!
1 Xy W)

Son (W) = 2 T o7 (2.28)
- % > e P (B SY | En) (Em| SY1En) 6(w — (Em — Ey)). (2.29)

Here Sp and S denote the Fourier transform of local spin operators Si* or S defined in
real space. Their site indices are denoted by i respectively j, whereas ¢ is the momentum.
For spin-1/2 systems, they will be introduced in Sec. 4.2.1. Whenever the investigated
system has symmetries, different components of the dynamical structure factor can be
related. It is hence not necessary to study all nine components.

Furthermore, the imaginary part ng;”(w) in the long-wavelength limit ¢ — 0 is propor-
tional to the absorption intensity measured in electron spin resonance experiments which
will be further discussed in Sec. 6.3.

4In the last step, the temperature factors are rearranged, using e #n (1 — e’B(ET"’E")).
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2.2.3

Zero-temperature dynamical response

A zero-temperature dynamical response function can be derived if the canonical average
in Eq. (2.15) is replaced by a simple ground-state average. A subsequent Fourier transform
via Eq. (2.22) to frequency space yields

T = 3 (Eo| AlEn)(En|B|Ey) — (Eo| Bl En)(En| Al Eo)
= —(EplA B|E Ey|B AlE
(2.31)

where again z = w + 1. There are two expressions, one for positive and the other one
for negative frequencies. In this thesis, they are also referred to as dynamical correla-
tion functions. The Lehmann representation of the associated zero-temperature spectral
function® is then given by

Zn <E0|B|En><En|A|EO> 5(&1 + (En — Eo)), w <0

S (Eo|A|E)E,|B|Eo) 6 (w — (B, — Ey)), w>0 (2.32)

R (w) = { B

While focusing on, e.g., positive frequencies, one also obtains the following representation
by inserting an identity:5

RiE(w > 0) =Y (Ey|A|Epn) (Em|En) (E.| Bl Eo) 6(w — (E, — Ey)) (2.33)
= S (Bl Al En) (Enl8(w — (H — Eo))|Ea)(Eo| BIEy) (2.34)
— (Bl Ad(w — (H — o)) B|Ey). (2.35)

In order to obtain the expression in Eq. (2.34), one uses that
(Epld(w— (H — Ey))|E,) =0(w — (E, — Ep)) Omn (2.36)

holds for the matrix elements. This is justified as the Hamiltonian is diagonal in its
discrete eigenbasis. Apart from the discreteness, also the finite length of the basis is im-
portant and follows from the finite dimension of the Hilbert space for the systems studied
here.

The numerical calculation of zero-temperature spectral functions in this thesis proceeds
by considering the expression for w > 0 or w < 0 separately. For instance, the un-
broadened spectral function in Eq. (2.35) is the starting point for an approximation via
MPS-based Chebyshev expansions using the kernel polynomial method (KPM), for which
a finite broadening is introduced subsequently (see Sec. 3.5.4). Other zero-temperature
DMRG approaches such as a related variant of Chebyshev expansions [BS14] or a con-
tinued fraction expansion (see Sec. 3.5.2) evaluate the broadened resolvent expression for

®The spectral function at 7' = 0 is also obtained via the definition in Eq. (2.24).
6The result in Eq. (2.35) will be reused in Sec. 2.5.
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either positive or negative frequencies as occurring in Eq. (2.31).

Furthermore, the dynamical spin structure factor at 7' = 0 is given by

Sar (W) = R (w) = D (EolS; 1 En){EnlS7|Eo) 6(w — (En — Ep)). (2.37)
Comparing the zero- and finite-temperature dynamical structure factor in Eqgs. (2.29) and
(2.37), one realizes that the calculation at 7" = 0 is simplified as there is only a single
sum. Moreover, the matrix elements are less general as each of them involves the ground
state. The comparison illustrates the challenges encountered particularly at 7" > 0.

The density operator in Liouville space 2.3

So far, the density operator and the governing equation of its dynamics (see Eq. (2.11))
have been briefly introduced. At this point, it is useful to make the preliminary comment
that the density-matrix renormalization group (DMRG) techniques used in this thesis
inherently only allow for the treatment of pure states since their underlying variational
ansatz class are matrix product states (MPS). However, in finite-temperate calculations
the representation of mixed quantum states cannot be avoided. Now an alternative for-
mulation of how to consider the density operator representing such states is introduced.
Fortunately, this formulation in Liouville space will render practical calculations involv-
ing a density operator formally identical to calculations for a wave function. This is
one established procedure granting the applicability of DMRG methods at finite tem-
peratures [Schll|. In the following, the formulation of dynamics in Liouville space is
introduced largely following Ref. [Muk95]. The Liouville space was introduced by Fano
[Fan57].

First, a very brief introduction to the states and linear operators in Liouville space is
given. This is instructive to develop a rough idea of the underlying mathematical struc-
tures. However, these will not be used for actual calculations in this thesis. For the
axiomatic details and a more complete introduction confer to the Appendix of Ref. [Dal82].

In Liouville space, a general linear operator A, e.g., the density operator, is represented
by a vector. An operator A is rearranged into a vector starting from its ordinary repre-
sentation as a superposition of all outer products {|u,,){u,|} in Hilbert space with respect
to an orthonormal basis set {|u,,)} of length N:

Hilbert space: A= Z A [t) (| (2.38)
Liouville space: |A)) = Z A [ tin))- (2.39)

The Liouville-space ket |u,u,)) used in the above equation can be identified with the
operator |u,,){u,| in Hilbert space. The double bra-ket notation is completely analogous
to the ordinary bra-ket notation in Hilbert space and the bra is defined as the Hermitian
conjugate {{tn,i,| = (Jumty,)))T. Most importantly, in Eq. (2.38) one thinks of the matrix
elements A,,, as a vector of length N2. By defining the scalar product of two vectors in
Liouville space as the trace

((B|A)) = Tr (BT A), (2.40)
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one finds that ((u,u,|A)) = An,.” In particular, the use of Eq. (2.39) allows us to
represent a mixed-state density operator p as a vector in Liouville space by

p)) = Z<<umun|p>> |Umtun)) = men [Umtn)), (2.41)

m,n

which is formally equivalent to the representation of a pure quantum state in Eq. (2.3).
As a next step, it is useful to consider linear operators in Liouville space. Such an operator
is defined as

F= > lugu))((uyun] § lumun)) {(umin] (2.42)

(J, k),(m, n)

and its “matrix elements”

Sk, mn = (k| § [umin)) (2.43)

have four indices, but one thinks of them as N? x N2 matrices as suggested by the fusion of
indices in Eq. (2.43). The former fact explains why Liouville-space operators are referred
to as tetradic operators or superoperators.

In order to render calculations in Liouville space formally identical to calculations of a
wave function, the Liouville von-Neumann equation (2.11) has to be brought in a form
that is formally isomorphic to the time-dependent Schrédinger equation (2.5). Using
Eq. (2.5) and the above Liouville-space notation for a general density operator |p)), it
is possible to identify a superoperator governing the dynamics in Liouville space. This
superoperator is known as the Liouville operator £. With respect to it, the Liouville
von-Neumann equation (h = 1)

i% o)) = [[H, p(D)])) = £1p(1)))- (2.44)

is formally isomorphic to the time-dependent Schrodinger equation (also see Ref. [Muk95]).

Thermofield dynamics (TFD) 2.4

Having introduced the representation of a general mixed-state density operator p as a vec-
tor in Liouville space and its equation of motion (2.44) in this space, one might wonder
how a thermal state at temperature T' can be obtained in this framework. The answer is
provided by thermofield dynamics (TFD) and its very close connection to Liouville space.
TFD itself was inspired by the rigorous and axiomatic formulation of quantum field the-
ory at finite temperature. One central realization in this context was that the quantum
theory of free fields at 7' > 0 can be formulated by doubling the number of degrees of
freedom [UHTS82|.

TFD is a formulation of finite-temperature quantum theory which is suitable for practical
calculations in solid state physics [UHT82|. The main concepts such as dynamical response
functions and other concepts can be directly translated and applied in the framework of

"Additionally, in Liouville space the orthonormality conditions ({(ujug|umun)) = &jmdk, hold and
completeness condition is > |[tmtn)) ((Umun| = 1.
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TFEFD. In the following, the doubled Hilbert space underlying the TFD description is
discussed.

According to Ref. [BD87|, each vector |p)) in Liouville space can be identified with a
pure-state wave function |U) in a doubled Hilbert space Hp ® H¢, which is the tensor
product space of the physical state space Hp and an auxiliary space Hg chosen to be
isomorphic to Hp. Let {|np)} respectively {|mg)} be a basis set in the physical /auxiliary
Hilbert space. Then the basis of the tensor product space is {|np) ® |mg)}, which can
also be written as {|np;mg)}.

In TFD, a quantum state at inverse temperature [ is represented by a so-called “statistical
state vector” defined in such a doubled Hilbert space Hp ® H¢. Originally [Fan57|, these
statistical states were defined with respect to the eigenbasis of the Hamiltonian H:

W(B)) = %eﬁmlﬂy 1) =) [En pi Eng). (2.45)

Alternatively, a statistical state vector is referred to as a thermofield vacuum state. Such
a pure-state wave function is also called purification since the formulation using the ten-
sor product space Hp ® Hq purifies general mixed states. With the construction from
Eq. (2.45), it can be shown that an ordinary expectation value of a physical observable
Ap ® 1o with respect to |U(f)) yields the thermodynamic expectation value at finite
temperature:

(V(B)|Ap @ Io|¥(B)) = % Z(EH7P|Q—BH/2A e PHR\E,, pY(En ol Em.o)

m,n

1
_ § E —BH/2 A —BH/2 E
- Z(ﬁ) < n,P|€ € | m,P> 5n,m

m,n

1 s, _ _
=75 Zn: e PEn (B, |A|E,) = Tr (pA) = (A). (2.46)

Note that the representation of a thermal state does not depend on the choice of the basis
since the state |) in Eq. (2.45) is invariant for any orthogonal basis {|a)} satisfying

Enp) =Y Unalap) and |E,q)=> Us,lag). (2.47)

This is known as the general representation theorem of TFD [Suz85] and means that
both the state vector and the average do not depend on a particular basis.® One practical
relevance of the theorem is, e.g., that the choice of basis can be used to reduce the build-up
of entanglement in DMRG computations [KBM12, KBM13, Bar13].

The following remarks are based on Ref. [BD87|. Since it was shown that there exists
a Liouville-space vector representing any generalized thermofield state, the thermofield
wave function in Eq. (2.45) can also be represented as a vector in Liouville space. Via
this identification, the dynamics of the Liouvillian representation of a thermofield state is
governed by Eq. (2.44). Thus, the Liouville superoperator becomes the Hamilton operator
for the pure-state thermofield wave function. Its action on the physical and auxiliary space
is given by

L=Hp®Io—Ip® H. (2.48)

8Thus, TFD can also be applied to non-equilibrium systems [AU85, AU87|, which is however beyond
the scope of this thesis.
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Note that the eigenvalues of the Liouville operator are exactly the differences wy, , =
(B, — E,) of the eigenenergies of the Hamiltonian. This is a hint that a Liouville-
space formulation of spectral functions can be rather a natural choice since w,,_ , occur as
excitation energies in the Lehmann representation in Eq. (2.27).

In order to stress the close connection to Liouville space, one may say that the dynamics
of the pure-state wave function is governed by the Liouville operator £.° Moreover, the
pure-state thermofield wave function is usually referred to as purification in the DMRG
context (see Sec. 3.6.2), although the term purification is more general and can also be
used to refer to arbitrary mixed quantum states and not only thermal states.

A shorter notation typically used in TFD is H = Hp ® I and H=Ip® Hg. Here the
tilde symbol specifies that an operator acts only on the auxiliary space, while it leaves the
physical degrees of freedom unchanged. With this the Liouville operator can be written
more compactly as £ = H — H, which will be used in the next section.

Frequency-space dynamics in Liouville space 2.5

In this section, finite-temperature spectral functions, as defined in Sec. 2.2.2 are recon-
sidered. Here the goal is to obtain a convenient representation for them which can be
employed in practical computations. This can be achieved by a TFD formulation using
the Liouville operator £ in Eq. (2.48) above. The following calculation verifies that the
expression

Sap(w) = (V()] Ad(w — L) B|¥(5)) (2.49)

assumes the general form of the finite-temperature dynamical structure factor in Eq. (2.29).
Here one uses the tilde notation for the operators, e.g., A = (Ap ® Ip). In a first step,
the thermofield wave function |¥(53)) from Eq. (2.45) is inserted:

Sap(w) = L ( Z (Ew,p| @ (Ew,q

nl

Z(P)

eﬂHﬂ) AS(w—H+ H) x

) . (2.50)

Then the operators A, B, as well as e #H/2 acting on the physical state space are applied
to the corresponding eigenstates | E, p), both in the left and right square brackets. More-
over, the Hamiltonian H, which appears in the delta function, is also applied. This is
permissible due to the same arguments leading to Eq. (2.36) above. The corresponding
result is

x B (e_BH/Q

Y 1Eur) @1Euq)

X

Sap(w) = % S Pl (B p|A) @ (B

X [Z S(w—H + E,) e PE/2(B|E, p)) ® |En.0)| - (2.51)

9In order to distinguish £ from the true Liouville superoperator £ in this thesis, the symbol is slightly
changed.
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In the next step, the orthonormality of the eigenstates is exploited to eliminate the double
sum after rearranging the above expression with respect to the state spaces Hp and Hg:

1
Sap(w) = Z(B) D e e 2 (B ol B g) X
n, =9, /

n,n

X (En p|Ad(w— H + E,) B|E,,p) (2.52)
1 —BEn
= m; e PP (E,|Ad(w — H + E,) B|E,). (2.53)

Using the result of the derivation in Egs. (2.33)-(2.35) for a general eigenstate rather than
for the ground state exclusively, one finds

Sap(w) = % Z e PP (En|AlEp) (En|B|Ey) 6(w — (Em — En)). (2.54)

This implies that the Liouville-space formulation offers a very natural way for the repre-
sentation of finite-temperature dynamical correlation functions via Eq. (2.49). Concern-
ing the development of numerical methods for the calculation of such finite-temperature
quantities in this thesis, the expression will be of practical importance (see Sec. 3.6).






Computational methods 3

Introduction 3.1

The exponential growth of the Hilbert space dimension with system size L makes the
computation of static and dynamical quantities — even at T" = 0 — a challenging prob-
lem. For instance, a full diagonalization of the Hamiltonian matrix to solve the stationary
Schrodinger equation (see Eq. (2.4)) for spin-1/2 systems can only be applied up to roughly
20 spins [NMO05, Sanl0]. In order to treat larger quantum systems, more sophisticated
methods are necessary. Generally, there is no such numerical method that works for any
system. The numerical tools used in this thesis are based on the density-matrix renormal-
ization group (DMRG) which is especially successful for 1D systems. Originally, DMRG
was devised as a numerical method to variationally calculate ground states of strongly
correlated quantum many-body systems [Whi92, Whi93|, thereby also giving access to
local expectation values and static correlation functions. For simple spin Hamiltonians on
lattices of a few hundred sites the ground-state energies can determined with an accuracy
of up to ten decimal digits for open boundary conditions (OBCs). Instead of working with
the full Hilbert space of tremendously high dimensionality, the idea behind DMRG is to
work with a much smaller subspace representing the physically relevant portion in the
entire Hilbert space. Realizing that the wave function optimized in the DMRG algorithm
assumes the form of matrix product states (MPS) [OR95] has led to a reformulation of
DMRG in the framework of this powerful variational ansatz class [McC07, Sch11] and a
deeper theoretical understanding of the algorithm itself [VCMO8]. For 1D Hamiltonians
with short-range interactions and a gap in the excitation spectrum, it could be shown that
MPS approximate ground-state physics to almost exponential accuracy [VC06]. There-
fore, DMRG is considered the most accurate algorithm for 1D systems. The success can
be understood by the special quantum mechanical entanglement properties, described by
so-called area laws, of the corresponding ground states. These can be captured by MPS
descriptions of such states. This illustrates the close connection between DMRG and
quantum information theory [ACL12|.

After its invention, the method has soon been extended to the computation of zero-
temperature spectral functions in the frequency domain [Hal95, KW99, Jec02|. The
introduction of DMRG approaches allowing for the time evolution of quantum states
[Vid04, WF04, DKSV04, Sch04, MMNO5| opened the possibility of evaluating spectral
functions also in the time domain followed by subsequent Fourier transforms to frequency
and momentum space. In particular for frequency-domain techniques, the MPS formula-
tion turned out to be especially suited for the calculation of excited states and spectral
functions [WVST09, HWM*11, DWH"12|. Therefore, the frequency-domain methods
used in this thesis are expressed and implemented in the language of MPS.

In DMRG or MPS methods to compute spectral functions challenges arise due to the ne-
cessity to represent quantum states with higher entanglement than in ground states. This

19
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leads to situations in which these states do not obey an area-law — both in time-domain and
frequency-space methods. As a consequence, these approaches have limitations of some
kind, e.g., accessible times and hence spectral resolution. Due to increasing computa-
tional resources, these zero-temperature approaches have nevertheless fostered significant
progress in the study of strongly correlated electron systems (see Sec.3.5.1).

One main objective of this thesis is the calculation of finite-temperature spectral func-
tions in the frequency domain. However, the MPS ansatz in principle only allows for the
representation of pure states. Fortunately, there exist a few ways to address the challenge
of mixed-state density operators at finite temperature, which are briefly reviewed at this
point. One of the earlier approaches is the DMRG applied to transfer matrices known as
TMRG. This could be used to calculate static thermodynamic properties [BXG96, WX97,
SK02| as well as dynamical properties at 7' > 0 [NWZvdL99, SK05|. The main idea be-
hind this method is the relation between the density matrix of a quantum chain to a
partition function of an equivalent two-dimensional classical model. This connection was
obtained by means of a Trotter-Suzuki decomposition and an extension of the DMRG to
two-dimensional classical systems [Nis95|. A more recent DMRG method is the minimally
entangled typically thermal states approach (METTS) [Whi09]. In this, one samples over
an ensemble of product states constructed by imaginary-time evolution in order to approx-
imate the finite-temperature state of the system. Since its introduction METTS has been
used for the calculation of static thermodynamic quantities [SW10, Alv13| and dynamical
correlation functions [BB15, BvDW15|. Until today, most approaches are based on a pu-
rification of the mixed density operator. In this thesis, a purification is used to represent
thermal states as introduced in Sec. 2.4. In the MPS context, thermal states are obtained
by imaginary-time evolution. Spectral functions are then computed via real-time evolution
of real-space correlation functions and subsequent Fourier transforms to frequency and/or
momentum space [VGRC04, ZV04, FW05, BSW09, KBM12, Bar13, KBM13, PEAT14|.
This has been the most common approach to calculate finite-temperature spectral func-
tions so far.

The development of a reliable MPS method for the calculation of finite-temperature spec-
tral functions directly in the frequency domain forms a contrast to the existing time-
domain computations using purifications at 7" > 0. Devising such an approach is one of
the main goals of this work. The envisioned route uses a Liouvillian formulation of the
frequency-space dynamics of purifications (see Sec. 2.5) as a foundation in order to extend
existing zero-temperature MPS frequency-domain methods to T > 0.

Structure

The present chapter provides a step-by-step introduction to the main building blocks
needed in order to accomplish this goal. In Sec. 3.2, a brief introduction of the Lanczos
method is given since this algorithm will recur as a component of various numerical
methods in this chapter. Section 3.3 provides a short summary of the basic properties of
MPS which are needed to develop an understanding of the main ideas and concepts behind
DMRG. This part also focuses on the numerical aspects that are relevant for this thesis. As
DMRG is a state-of-the-art method today, there exist several comprehensive reviews and
books covering both the original formulation [PWKH99, Sch05a] and its MPS formulation
[McCO07, Sch1l, Hol12| which is adopted throughout this thesis. Especially Ref. [Sch11]
contains many implementation details, e.g., concerning the variational compression of

MPS.
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Section 3.4 gives a brief overview on time evolution in the framework of MPS. In partic-
ular, the recently developed time evolution via the time-dependent variational principle
[HLO™14] is reviewed as it has mainly been used to compute thermal states by imaginary-
time evolution in the present work.

In Sec. 3.5, MPS methods for the calculation of zero-temperature spectral functions in the
frequency domain are reviewed. This includes continued fraction expansions obtained via
the Lanczos algorithm, but the main focus is on Chebyshev expansions. Section 3.5.3 pro-
vides the basics of such an expansion in orthogonal polynomials and introduces the kernel
polynomial method (KPM) [WWAFO06]. In Sec. 3.5.4, the operator-valued Chebyshev
expansion of a zero-temperature spectral function in the framework of MPS [HWM™11]
is reviewed. In this context also recent developments, such as the extrapolation of Cheby-
shev moments by linear prediction [GTV*14], are addressed.

Finally, the formulation of MPS frequency-domain methods at finite-temperature is pre-
sented in Sec. 3.6. The purification of mixed states at T > 0 is also covered in this context.
Then it is shown how the Liouville-space formulation can be exploited to devise expan-
sions in Chebyshev polynomials. A presentation of this approach, which has been newly
developed as a part of this work, is contained in Sec. 3.6.4.

The Lanczos method for ground states 3.2

In contrast to a full diagonalization of the Hamiltonian matrix determining all eigenstates,
the Lanczos algorithm [Lan50, NMO05] only allows for the calculation of the extremal eigen-
values and the corresponding eigenstates of the Hamiltonian matrix H. However, this is
sufficient if one is only interested in the ground state and a few low-lying excitations which
can be obtained with an accuracy close to machine precision. The Lanczos algorithm be-
longs to the class of iterative diagonalization techniques [GL96, Saa03|. Therefore, it
is possible to treat significantly larger systems than by full diagonalization, e.g., up to
N = 50 spin-1/2 degrees of freedom.

The basic idea behind the algorithm is to project the Hamiltonian onto a Krylov subspace
whose dimension is substantially smaller. Such an n-dimensional Krylov subspace is
spanned by the following basis

{1 fo). H| fo), H?| fo), H’| fo), ..., H" ' fo)} (3.1)

generated by applying the Hamiltonian to, e.g., a random starting vector | fy).! There are
several possibilities to construct a basis spanning this subspace. An orthogonal Krylov
basis can be obtained via the recursion relation

\fir) = HIfi) = ail fi) = b}|ficr) (Do =0, [f-1) =0),
a; = (FIH|f) /il fi), 07 = (filfa) [ fioal fima)- (3.2)
The | f;) are referred to as Lanczos vectors since the quantum states are usually encoded as

ordinary vectors. The key operation in the Lanczos recursion is to apply the Hamiltonian.
A random starting vector |fy) is used as it most probably has a finite overlap with the

1This basis is generated by the power method which can also be used to motivate the Lanczos algorithm
as a projection method, see Ref. [NMO05].
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ground state |Fp). After n iterations the Hamiltonian is approximated by a tridiagonal
matrix 7, represented in the basis of the normalized Lanczos vectors |f/)

Qo bl 0
Tn _ bl aq
bnfl
0 bnfl Ap—1

The lowest eigenvalues and eigenstates given by the diagonalization of this matrix very
well approximate? those of the full Hamiltonian since the best convergence is obtained
for the extremal eigenvalues. Note that a tridiagonal matrix can be diagonalized very
efficiently with a computational cost of O(n?). As the eigenstates are obtained in the
Lanczos basis they still need to be expanded with respect to the many-body basis, e.g.,
by running the algorithm again.

One problem of the algorithm is the partial loss of orthogonality of the | f;) due to numer-
ical errors. This leads to so-called ghosts in the energy convergence scheme. These are
already converged eigenvalues which, after a certain number of iterations, spontaneously
collapse onto lower levels of the spectrum. The result is an unphysical multiplicity of
some eigenvalues. Important technical details of the method as well as possible solutions
of this problem, such as a reorthogonalization of the Lanczos vectors, are discussed in

Refs. |GL96, CW02, NM05, Dar12].

The Lanczos method is presented at the beginning of the present chapter, since it is used as
a key component of various DMRG methods in this thesis. These applications go beyond
the calculation of ground states for which the method was initially devised. For instance,
iterative eigensolvers such as the Lanczos algorithm represent an important component
of the ground-state DMRG algorithm (see Sec.3.3.3). Moreover, the method can also
be used in time-evolution methods as it can be employed to approximate exponentials
of the form e 2% (see for instance Sec. 3.4.3). Furthermore, the Lanczos algorithm has
an extension allowing for the calculation of dynamical properties via a continued fraction
expansion (see Sec. 3.5.2). All of these applications are used in this work, with the latter
being most important due to the topic of this thesis.

Matrix product states and the density-matrix
renormalization group 3.3

Entanglement 3.3.1

Decisive progress in understanding the success of DMRG and MPS has been made with
concepts from quantum information theory such as the entanglement entropy [FSWO0S|.
The subjects discussed here are hence not only relevant in the DMRG context as they
are also important concerning the general characterization of quantum states. In the
quantum many-particle problems studied in this work, the individual parts of the system
interact with each other. Therefore, the quantum state of the single components cannot
be considered independently of each other and the corresponding degrees of freedom

2Even after only n ~ 100 iterations for the ground state.
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Figure 3.1: Bipartition of a 1D lattice with

OBCs into blocks A (sites 1 to [) and B (sites

‘al>A |al>B I +1 to L). Each block has an orthonormal

basis {|a;)a} ({|a])B}) of length N4 (Np) that

o—0—0C-0O o-O0—0—0 is used for a tensor-product representation of

1 2 1 1+1 L the wave function |¥) describing the state of
the entire combined system in Eq. (3.3).

are intertwined. In such situations, one speaks of entangled states or the presence of
entanglement. In the following paragraphs, the focus will be on the connection between
reduced density matrices and quantum mechanical entanglement which is crucial for the

success of DMRG and MPS.

Reduced density matrices

Let us first consider a wave function |¥) with respect to a bipartition of the system as,
e.g., depicted in Fig. 3.1 for a 1D lattice. The Hilbert spaces of the two subsystems A
and B may each have an orthonormal basis {|a;) 4} (or {|a])5}) of length N4 (Np). Then
the wave function |¥) of the composite system can be represented by

0) =D Voo lar) al) 5. (3.3)

l
ap, a;

Any rectangular matrix ¥ can be decomposed by a singular value decomposition (SVD)
yielding

U =USVT. (3.4)

Here the matrix U has orthonormal columns, S is a diagonal matrix, and the rows of V
are orthonormal. The diagonal elements S,, = s, of S are non-negative and are called
singular values. Defining a new basis on subsystem A by {|a)a = >, U, 4lar)a} and
similarly for subsystem B by {|a)p = Za; V[;Z’a]a@ B}, one can formulate the Schmidt
decomposition as

min(Na,Np)

T) = Y sla)ala)s. (3.5)
a=1

It is important that the single sum only runs up to the Hilbert space dimension of the
smaller subspace. The entanglement properties of a state |¥) are contained in the Schmidt
coefficients s,. For instance, if only one single coefficient s, is nonvanishing, |¥) is a
product state. The state is called maximally entangled, if all values s, are of equal
magnitude. If |¥) is normalized, one finds )" s2 = 1.
Similarly, one may also consider the density matrix p = |U)(¥| and trace out the degrees
of freedom belonging to one subsystem. This yields the reduced density matrix of the
other subsystem

pa=Trgp or pp="Tryp. (3.6)
Using Eq. (3.5), the diagonal forms of the reduced density matrices are given by

po =D lsal* l@)aalal, a=AB. (37)

n



24 | Chapter 3. Computational methods

This reveals that both p4 and pp possess the same nonvanishing eigenvalues w, = |sa|2 and
|a), are the eigenstates of p,. This eigenspectrum encodes the entanglement properties of
the state with respect to a bipartition. The selection of an optimal subspace of the total
Hilbert space, e.g., in the course of a DMRG ground-state search, basically proceeds by
retaining only the m states |a), with the largest eigenvalues w,, whereas the other states
with smaller weights are discarded. This truncation of the Hilbert space is motivated by
the Schmidt decomposition (3.5), but is only successful if the discarded weight is negligibly
small. Therefore, the decay of the eigenvalue spectra of the reduced density-matrix for
each bipartition is crucial for the success of DMRG and MPS methods.?

Entanglement entropy of ground states

Quantifying and comparing entangled states via the spectra of reduced density matrices
offers a full description of the entanglement content, but the use of a simple measure
related to the eigenvalues w, would be a lot more convenient in many cases. Such a
measure is the von Neumann entropy? which is also called entanglement entropy. It
quantifies the entanglement between to parts A and B of the system:

S(A) = =Tr (palogy pa) = = Y wqlogyw,. (3.8)

From this definition, it is clear that S(A) = S(B) and the von Neumann entropy vanishes
for product states and assumes its maximal value S = log,(w) in a maximally entangled
state, where w, = w for all a.

There have been many works studying the entanglement entropy of ground states of
Hamiltonians with short-range interactions, oftentimes based on conformal field theories
[Sre93, CC04, PEDCO05] or spin Hamiltonians [VLRK03, BHV06, EO06]. These studies
found a universal scaling behavior of the entanglement entropy: the entanglement entropy
of ground states of Hamiltonians with short-range interactions was found to scale with the
surface area, i.e., the boundary between the two subsystems. Consequently, these scaling
dependencies are called boundary or area laws and depend on the spatial dimension D of
the system under consideration. Note that the subsequent presentation of entanglement
properties is not comprehensive. Good reviews on this topic are given in Refs. [AFOVO08,
ECP10, EV11, ACL12].

The entanglement entropy between a block A consisting of [P sites and the rest of the
system scales as the size of its boundary:

S(A) oc 1P~ (3.9)

Strictly speaking, this result is only valid for gapped Hamiltonians with short-range in-
teractions. Such systems are referred to as non-critical. For critical systems which are
gapless, the area laws are modified by logarithmic corrections

S(A) oc 1P log,(1). (3.10)

These results have been obtained in the thermodynamic limit. For [ — oo, D =1 and in
the non-critical case, the entanglement entropy is proportional to a constant. However,

3 A more detailed discussion of the conceptual background of the DMRG and, in particular, the decay
of the spectrum of reduced density matrices in ground states can be found in Chapter 20 of Ref. [FSWO0S|.
4The von Neumann entropy corresponds to the Shannon entropy in information theory [ACL12].
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for finite systems with open boundary conditions (OBCs) in one dimension D = 1, a setup
frequently encountered in DMRG calculations, the entanglement entropy only approaches
this constant for block sizes larger than the correlation length. A good representation or
approximation of ground states or other quantum states by an MPS depends on whether
MPS can encode the entanglement properties inherent to the state of interest. Switching
to a theoretical perspective, in the more favorable case of 1D systems with short-range
interactions and a gap, it could be proven that the entanglement entropy of an MPS with
fixed bond dimension remains constant upon increasing the system size [Has07a, Has07b].
It is said that MPS represent ground-state physics faithfully, i.e., approximate it up to
almost exponential accuracy [VCO6].

For critical systems the logarithmic correction of a subsystem of length [ in one dimension
was determined as

“logy(1) + g, (3.11)

S(A4) ~ <

where ¢ denotes the central charge of the related conformal field theory and g is a constant
[VLRKO03|. From a rigid point of view, ground states of critical systems can therefore in
general not be represented faithfully by MPS. However, even in the critical case, it is
possible to accurately approximate the ground-state properties up to some reasonably
large length scale [VCMO8|. The price to be paid is an increase in the maximal matrix
dimension m used to represent an MPS which will be introduced in the following section.
The computational cost usually only scales as O(m?®) for MPS methods.

Formalism of matrix product states (MPS) 3.3.2

Matrix product states

The following passages briefly review matrix product sates (MPS). First of all, consider
a general pure quantum state, expanded in the tensor product basis

|s) = [s1,80,...,50) = [51) ® [s2) @ -+ ® 1) (3.12)

of the d-dimensional local bases {|s;); s, = 1,...,d} at site [, on a chain of length L

T) = > coa ls). (3.13)

81,-5SL

The coefficients c,, 5, can be written as a trace over a product of matrices M*:
Csy.sp = (S|W) = Tr ML M52 .- M5, (3.14)

As the matrix index s; suggests, there are d matrices at each site used to represent an MPS
on the entire lattice. Such a local set of matrices may just as well be considered as a rank-3
tensor M;! . Here s; is a physical index and both a;—; and q; are referred to as internal
indices of the MPS matrices. The notion of locality is inherent to MPS and also essential
for algorithms formulated in the framework of MPS since it allows for local updates.
Instead of working with a huge number of coefficients growing exponentially with system
size, these algorithms only use a number of matrix elements that is increasing polynomially
with L and hence numerically manageable. Therefore, the matrices in Eq. (3.14) have to
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be truncated to circumvent the problem of exponentially growing matrix dimensions. In
the case of OBCs which is adopted for the DMRG calculations in this work, one treats
M*' and M*t as boundary vectors.® Then the truncated MPS consists of matrices whose
dimensions go as (1xd), (dxd?),..., (d*xm), (mxm),..., (mxm), (mxd"),..., (d*xd),
(d x 1). Here m denotes the maximal matrix dimension that is fixed and also referred to
as internal bond dimension of the MPS. Such a truncation can be achieved in the spirit of
a Schmidt decomposition using a singular value decomposition (SVD) compression (see
Sec. 3.3.1). To this end, one splits the system into two parts A and B and wants to obtain
orthonormal bases on both subsystems. The construction of these bases is significantly
simplified if the matrices fulfill normalization conditions. Therefore, we call the matrices
A®t (B*) at a specific site left-normalized respectively right-normalized if they obey

Do AMAT=T or Y BB =1 (3.15)

One may also say left-canonical instead of left-normalized. Unnormalized matrices are
denoted by M?*" in this notation. The orthonormal basis on each block are then obtained
as

|(I>[1l]> (ASIASQ...ASZ)LCLZ |31752,...751>, (3.16)
’(I)[l-&-l L] > — (A g2 -ASL)al,l |S141, 142, - -+ SL)- (3.17)

Then the Schmidt decomposition of an MPS can be written as

0) =) 50, 1057 al L) . (3.18)

ap

In order to treat the degrees of freedom at site [ individually, which is for instance im-
portant for updates in a ground-state search with MPS, one may partition the chain into
three parts: a block left to this site, the individual site, and a block right to it. This
yields the so-called mixed-canonical representation of an MPS

a;— l:al ar—1

Z M [1lfl]> |S>|(I)[l+1L> 5 (3.19>

a;—1,ag,s;

where the matrices in block A (B) are left-normalized (right-normalized) resulting in
orthonormal bases for these parts of the partition. The corresponding tripartition of the
lattice is illustrated in Fig. 3.2. It it possible to conveniently move the local site [ in such
a mixed-canonical representation to site [ + 1.

Technically, this is achieved by merging two indices® of the rank-3 tensor M al o Yielding
the matrix M, 4, ,),q, Which can be decomposed by an SVD

a
M(Sl aj_1),a; — =USvV™. (3.20)

To undo the merging operation, the matrix U satisfying UTU = I can be split into
the set of left-normalized matrices A%. The matrix SV is multiplied to the matrices
B##1 in order to obtain M?®+'. In fact, if one only wants to change the normalization

5Then the trace can be omitted in Eq. (3.14). However, it is important for periodic boundary condi-
tions.
6Ref. [SPV11] gives a good review discussing such operations in general tensor network states.
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Figure 3.2: Tripartition of a 1D lattice into

block A (sites 1 to [ — 1), one single site that is

[1:0—1] [1+1:L)] treated exactly, and block B (sites [+ 1 to L).

‘(I)al,l >A ‘Sl> ’(I) >B For each block the basis set is specified. Note

O—0—0O-0O| @ [O0O—0—0)] that the block bases [®4,", ) 4 and [@f" "1

have to be orthonormal in order to arrive at a

12 FLo1 141 L mixed-canonical representation (3.19) and ex-
ploit its benefits.

of matrices without truncating them, it is not necessary to perform an SVD. Instead a
computationally cheaper QR decomposition [Sch11]| is favored in this thesis and an SVD
is only performed whenever the singular values are needed, e.g., in order to assess the
quality of a compression, or if a calculation of the entanglement entropy is desired (see
Eq. (3.8)).

Moreover, the updated A% can be used to iteratively construct the orthonormal basis of
the block consisting of sites 1 through [ by the relation

@5 A= D A B0 alsia). (3.21)

ar,S1+1

In DMRG-based algorithms, this growth /shrinkage procedure is used to increase block A
by a single site, which is removed from block B, until A is of length L —1. Then the roles of
the two blocks in this growth procedure are reversed until convergence is reached. In fact,
also a right-to-left sweep is possible and proceeds in a similar manner as the individual
steps of a left-to-right sweep explained above. For details on how to absorb a site [ into
the right block confer to Ref. [Sch1l1]. For the case of an SVD compression at each bond
in such a sweep, it could be shown that the cumulated error of the compressed state with
reduced internal matrix dimensions |Wcomp,) has the following bound with respect to the
2-norm:

I19) = [Yeompn) [l < 2D (D), (3.22)

where (D) =3, s7 is the sum of the neglected squared Schmidt coefficients at bond
[, also known as discarded weight.

Furthermore, it has to be noted that the choice of left or right-canonical matrices does by
far not exhaust the gauge degrees of freedom of an MPS. This choice rather represents
a convenient special case. There are even more gauge transforms leaving the physical
state unchanged. This can be understood by the following example. One may insert an
invertible matrix X between any two adjacent matrices

M5 — M5 X, Mo+ — X Mo, (3.23)

Although the MPS matrices have changed, the physical content remains the same.

Calculation of overlaps
Civen the two MPS |¥) and |¥), their overlap can be written as

(B[@) = Y MO MM MR (3.24)

S15--SL
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where the M are the complex conjugates of the MPS matrices of |T). For OBCs the
matrix product M*®* ... M*®L* is a scalar which can be transposed leading to a reversed
ordering

(O[T) = > MeE MM M (3.25)
S14.-45SL,

In the expression there are so-called contractions both over the matrix indices being con-
cealed in the matrix multiplications and over the physical indices (s, ..., sy). This exam-
ple is supposed to convey the importance of contracting the indices in an optimal order.
It is a general issue of MPS calculations and not merely encountered in the calculation of
overlaps. Contracting the internal matrix indices in the first place and subsequently treat-
ing the physical indices would amount to a summation of d* terms growing exponentially
with system size. However, rearranging the summation in Eq. (3.25) gives

(T[T) =) Moo ( . (Z Vel (Z MSlTMsl) Msz) ) Mer, (3.26)

SI, S92 S1

The above expression is contracted starting from the inside. First, the vectors M*!T and
M?#" are multiplied (dm? operations). The results for different states s; are added.” Then
the matrices M*2' and M** are contracted with the innermost result in between and
added afterwards. This iterative procedure is continued until the outermost sum over sy,
is performed. Therefore, the complexity scales polynomially with on the order of (L dm?)
operations. The procedure is referred to as optimal bracketing and is very important in
order to efficiently contract matrices in the MPS framework. Related examples of such
advantageous bracketing occur in many situations, e.g., the application of a Hamiltonian
matrix product operator (see below) to a mixed canonical state. Further detailed examples
are given in Ref. [Schl1l].

A useful insight concerning an MPS |U) consisting only of left-normalized matrices is that
it is normalized, i.e., (¥|¥) = 1. The result is obtained by inserting the left-normalization
condition from Eq. (3.15) into Eq. (3.26). The normalization also applies to MPS consist-
ing of right-normalized matrices.

Addition of MPS

An operation frequently needed due to the recursive character of the frequency-domain
methods (see, e.g., Eq. (3.93)) mainly used in this thesis is the addition of MPS. Here two
unnormalized MPS |¥) and |¥) are considered. Their sum is given by

[T) +[¥) = Y TrN'N*2---N°*|s), N% =M@ M (3.27)
S1,e-ySL,

The symbol @ signifies that N¥ is a block diagonal matrix with two diagonal blocks M *®
and M*. Thus, the internal bond dimensions of the MPS matrices add under addition and
MPS of a given dimension are not closed under this operation. For OBCs, it is necessary
to treat the matrices at the first and the last sites differently to conserve their boundary-
vector shape. So a row [M*', M*'] respectively column vector [M*r, M*:]” is formed
[Sch1l]. In order to maintain an MPS with computationally manageable dimensions, it
is oftentimes practical to compress sums of matrix product states (see Sec. 3.3.4 below).

"These first two steps as well as further contractions in Eq. (3.26) can be efficiently implemented using
the dgemm or zgemm routines of BLAS libraries. The routines deal with matrix expressions of the form
C < aA- B+ pBC, where a and 3 are scalars.
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Matrix product operators (MPO)

In the framework of MPS, it is natural to express operator matrix elements in analogy to
Eq. (3.14) as

(s|Als') = WoL S5 %2 L WSE-1 51 175051 s) (). (3.28)
The notion of locality is preserved since at each site there is a rank-4 tensor W, . lb with
two physical indices denoting the physical state at that site before s; and after Sz the ap-

plication of the operator.® Therefore, the matrix product operator (MPO) representation
of an operator A is given by

A=) WA S S s) (8. (3.29)

s, s’

Note that any operator can be represented as an MPO. For OBCs the outermost MPO
matrices also serve as boundary vectors, which is in complete analogy to MPS. In this
thesis, mostly short-range Heisenberg Hamiltonians are expressed in this manner.” As
an example, the internal MPO dimensions (associated indices b;_; and b;) for an X X7
Heisenberg chain with nearest-neighbor couplings have a dimension of D = 5. Therefore,
such operators can be stated and applied exactly without the need for truncation of the
MPO matrices. Applying an MPO to an MPS leads to an MPS with increased internal
bond dimensions, which can be inferred from the updated matrices in

|li/> = A|V) = ZMQMSZ' . Mt |s) M — Z Ifll’sllbl az ar- (3.30)

S

The dimension of the resulting matrices M*® is given as the product (mD), where D
denotes the internal bond dimension of the MPO and m the one of the MPS. An important
implication arising from this is that in each step of, e.g., the MPS-based Lanczos recursion
(see Eq. (3.2)) the bond dimensions multiply leading to rapid increase. Hence, there
is the need of compressing the updated state after each such iteration if one applies
the Hamiltonian according to Eq. (3.30). Besides an SVD compression, there is also a
variational compression scheme reviewed in Sec. 3.3.4 below.

Applying an MPO to a mixed-canonical MPS

Instead of applying an MPO globally, as in Eq. (3.30), there also exist other possibilities.
In this context, globally means involving operations at each site which are generally not
exploiting the normalization of the state. It is sometimes more convenient to locally apply
an MPO such as the Hamiltonian to an MPS in a mixed canonical representation, see

Eq. (3.19). To this end, it is necessary to construct tensors L;, "1 and RZ;’GE that include
the action of the MPO Hamiltonian on the left respectlvely rlght block with respect to
the current site [. In the growth/shrinkage procedure of the blocks during a left-to-right
sweep, the L tensors can be updated iteratively by an efficient recursion,!® while the
R tensors that were calculated in the previous right-to-left sweep can be reused for the

8Here OBCs are assumed. Therefore, the trace is omitted as the sets of matrices W15t and WeL 5L
serve as boundary vectors similar to the MPS convention for OBCs.

9For details on MPO representations of Hamiltonians confer to Sec. 6.1 of Ref. [Sch11].

10Gee, e.g., Eq. (195) in Ref. [Sch11].
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block of decreasing size. With these tensors the Hamiltonian can be applied to a mixed
canonical MPS as

Hw) = 3 Lt o, ZR“”“ZMZW ) als)| @) 5.

b 1,al71 blsl

(3.31)

For the sake of efficiency, one should again start with the operation in the innermost paren-
thesis and perform the outermost sum at the end of these contractions. Equation (3.31)
contains the key operation of the ground-state search algorithm presented in the next
section.

Ground-state search 3.3.3

The calculation of the ground state |Ey) and its energy Ej can be formulated as a mini-
mization problem, in which the energy F

V| H |
Ey<FE= mln< 2] %)

i ey )

is minimized by optimizing the parameters of the wave function |¥). Equation (3.32)
is known as the (time-independent) variational principle in quantum mechanics. The
variational ansatz class used here are MPS of finite bond dimensions. Therefore, the
DMRG algorithm — originally invented as a method to compute ground-state proper-
ties [Whi92, Whi93| — is regarded as an application of the time-independent variational
principle to MPS as the underlying variational ansatz class [VCMO8|. The minimization
problem in Eq. (3.32) can be treated by using the Lagrange formalism, i.e., (V|H|)
is minimized under the constraint that (V|¥) remains normalized. The energy to be
minimized takes the role of the Lagrange multiplier A in the following Lagrange function:

= (V|H|¥) = A((¥|P) —1). (3.33)

Even for an MPS with finite internal bond dimensions denoted by m, there are roughly
(Ldm?) optimization parameters. Thus, the usual procedure of differentiation with respect
to each of these parameters yielding a set of coupled equations can only be successful for
rather small systems and dimensions m. Otherwise it is not tractable to globally optimize
these parameters. At this point the mixed-canonical representation of an MPS is advanta-
geous, since it allows for optimization of the rank-3 tensor M;! at a distinguished site.
Therefore, one may formally differentiate only with respect to these parameters. Setting
the resulting equations to zero yields

! oL o 9
0= o .~ anm, WHIW) = A gre— (W) (3.34)

It can be shown [Sch11] that for OBCs and an MPS in the mixed-canonical representation
Equation (3.34) reduces to an ordinary eigenvalue problem for the local matrix parameters

Mg, after merging their indices to obtain the vector V(s 4, ;,a)):

H"y — \v =0. (3.35)
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Here H°T is a (dm? x dm?) matrix

H{, Z Lbzl N - IW;l’il,blR%al’ (3.36)

(siar—1a1),(sja)_qay)
bi—1,bi

which can be fully diagonalized for small systems. However, in a ground-state search one
only needs to determine the ground-state of this matrix. This can be achieved by an
iterative eigensolver [Saa03] such as the Lanczos algorithm (see Sec. 3.2) which is used in
this thesis.!! To speed up convergence significantly, one uses the current local parameters
V(si,ai_1,a;) @S the starting vector. The resulting vector obtained by the iterative eigensolver
is then reshaped to update M;! . As a next step, the current site with unnormalized
matrices is moved to the left or right depending on the current direction of sweeping,
while the mixed-canonical representation is maintained. In contrast to this single-site
algorithm for finite systems, the traditional finite-system DMRG [Whi92, Whi93| has
been formulated as a two-site variant. This means that the system is partitioned in a
right and a left block with two adjacent single sites in between. Such a two-site algorithm
is less prone to getting stuck in a non-global energy minimum since its ansatz space
is slightly enlarged in comparison to the single-site variant. This is a generic problem
of variational ground-state searches: even if the variationally determined ground-state
energy is close to the true one, the ground-state properties such as correlation functions
may differ from the true ground-state.'? For more details see Ref. [Sch11].

For the systems studied in this work, the ground-state calculations are performed using
the singe-site MPS algorithm explained above. As a starting point, a random MPS is
chosen. The convergence to the ground-state is checked via the variance'®

(Eo|(H — Eo)?|Ey) = (Eo|H?|Eo) — ((Eo|H|Ep))* (3.37)

which is in all cases smaller than < 107% and therefore well controlled. Note that, in this
thesis, ground-state calculations are not the bottleneck in the numerics since they mainly
provide the input for the more challenging computation of zero-temperature spectral
functions.

Variational compression of MPS 334

Some frequently used operations on MPS lead to considerably increased dimensions of the
resulting MPS matrices. This issue is of significant importance in MPS-based frequency-
domain methods. More general examples are the global application of an MPO to an
MPS or the addition of two or even more MPS. Apart from the aforementioned SVD
compression, there also exists the possibility to compress an MPS |¥) with increased
internal bond dimensions m’ variationally. In this case, one starts from an MPS |¥) of
the desired as well as smaller dimension m < m/.

The variational compression can be formulated as a minimization problem for the squared
norm difference

[hw) — 1) = (wiwy — w1y — (Bjw) + (D)) (3.38)

"The Jacobi-Davidson method represents a frequently used alternative [SAV96].

12There have been proposals of how to avoid such problems in single-site DMRG algorithms [Whi05,
HMSW15].

13Here |Ey) and Ey denote the numerically determined results.
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with respect to |\il>, i.e., its matrix entries M*. One possibility is to choose the initial
guess |\I/) as a random MPS. The optimization of a local matrix M* is again achieved by
iteratively sweeping back and forth along the chain. In this sweeping procedure the other
matrices are kept constant. After a few sweeps the approximation |\if> will usually have
converged.

For updating M#® at the i-th site, it is sufficient to regard (¥|¥) — (¥U|¥) as the matrix
only appears in these contributions. It is evident that this represents a highly nonlinear

minimization problem because one extremizes with respect to M*:(#) on all other sites
(I # 1). This leads to

0 ~

P ((xp\\m <\IJ|\I!)> 0. (3.39)
A solution of this problem is derived in Ref. [Sch1l]. In the following the implementation
of the solution is reviewed. First of all, it is beneficial to represent the ansatz MPS
|¥) with the desired internal bond dimensions in a mixed-canonical form, see Eq. (3.19).
The MPS can be brought into this form by a series of computationally cheaper QR
decompositions since the additional information provided by an SVD is not needed at this
point. Assuming that the matrices are of the form Ast... Ast=1 50 the unnormalized
matrix M5C is updated.’® Then a QR decomposition is used to shlft the unnormalized
matrices one site to the left, i.e., A5 ... AsL-2\[52-1 BSL_ Ag a next step, the matrix R

needed to update M5-1 is calculated by iteratively contracting

Ry = (Z M# ( 9 (Z MSLMSLT> ) Msﬁ> . (3.40)
i SL a;, al

At this site only the innermost sum is performed. The general form of Eq. (3.40) shows
that it is nothing else than the partial evaluation of an overlap (see Eq. (3.26)). Also note
that R, o will be reused and hence inserted in Eq. (3.40) to iteratively compute R,

ar,a’f,

’
Ai—1,0;_1

at a later point. In the current step, M*-! can now be updated by

az 1,04 = Z La1 1,0, 1 ZRal,a MSZ ,a’ . (341)

a;_1,94

If one starts to optimize the M*® matrices in a right-to-left sweep, as explained here, it is
necessary to calculate the L,, , .  matrices beforehand. This is done in the course of the
left-to-right sweep used to 1mpose the canonical form at the beginning. These matrices
are also computed by iterative contractions:!

Lai_ha;il = Z Mt ( .. (Z MSNLMSl) .. > MSi-1 . (3‘42)
51

Si—1 ,

@j—1,0;_1

Having updated Msz-1, another QR decomposition is applied to shift the unnormalized
matrices one site to the left. Afterwards R, o is used to obtain R via Eq. (3.40).

’
ar—1,0y7,_4

“For the update Eq. (3.41) is used, but in this case R only is a matrix represented by a scalar one
since there is no tripartition of the system.

15In Egs. (3.40) and (3.42), the canonical form of the MPS matrices of |¥) is not pointed out by the
notation since it is not required for the calculation of these contractions.
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Now M#*2-2 can be updated. Then the procedure is continued by a couple of sweeps. The
distance |||¥) — |¥)||> between the updated approximation |¥) and |¥) is evaluated in
order to assess the quality of the variational approximation. The sweeping is stopped
once it falls below a specified threshold.

For general sums such as |[U) = " _| |®,) the expression in Eq. (3.39) has to be extended.
It then reads

0
s1,(l#1
aMaf (1?21
B 0
o ~rsi,(l#£
oM

(¢019) - (B]w))
((01D) = (D[@1) — (B @) — - = (¥]2,)) . (3.43)

As a consequence, the update of M . is modified by introducing an additional sum:

NeZs

al Lai Z Z ai—1,a;_4 ZRa,,a SZ,T, : (344)

a;_q

Here the matrices L* and R* represent the contractions incorporating the MPS matrices
M= of the state |®,) for « = 1,...,n. These are still obtained via Egs. (3.40) and
(3.42). Tt is assumed that the states |®,) have an initial bond dimension of m.

Note that a straightforward calculation of [¥) = Y "_, |®,) using the ordinary MPS
algebra would lead to a result |¥) with maximal internal bond dimensions (nm), which
are usually truncated back to m by SVD compressions with a computational effort of
(n®*m3) in a single step. Therefore, it is desirable that such an inflated state does not
have to be constructed. The update in Eq. (3.44) only includes contractions of matrix
product states with the original and final internal bond dimensions m. Here the most
costly operation is the SVD or QR factorization needed to maintain the mixed-canonical
representation of |\i/) It includes of the order of m? operations for a single decomposition.
The example illustrates why an iterative or variational compression is oftentimes more
efficient than an SVD compression [Schll]|. In Ref.[Schll], it is also noted that this
advantage is not that decisive for small compressions. However, in this thesis mostly
larger compressions are necessary. The reason is that for the frequency-domain methods
used in this thesis (see Sec. 3.5 below), one has to cope with states of the form

|T) = Al®) + [Dg) + |D3), (3.45)

where A denotes an operator with internal MPO dimension D, e.g., the Hamiltonian
(D = 5) or Liouville operator (D = 8) for a spin-1/2 Heisenberg chain. Now there is
an additional issue since the state A|®1) has increased internal bond dimensions that are
Dm.1® For memory efficiency, its MPS matrices are only created on the fly for the site that
is currently optimized. As for the variational compression, there is no need to perform a
QR decomposition on them, these matrices only occur in the evaluation of contractions.
Apart from that, the other contractions associated with |®5) or |®3) are computed as
discussed above.

16 As explained before, under the application of an MPO to an MPS the internal dimensions of the
result are the product of the MPO and MPS dimensions.
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Time evolution 34

In order to determine the time evolution of a quantum state governed by the time-
dependent Schrodinger equation (2.5), there are essentially two approaches. The first
is to directly integrate the Schrodinger equation, e.g., by the Runge-Kutta method which
can also be implemented with MPS [GRO06]. The second is the use of the formal solution
in Eq. (2.6). Here the time-evolution operator applied to an initial quantum state at time
to (h=1)

U (o + At)) = e~ A (¢y)) (3.46)

is discretized on a small time interval At. This allows for a propagation of the initial state
by successively applying the time-evolution operator for small time intervals At:

W(8)) = e AL HHAL L o AL (1 — (), (3.47)

where the time ¢ is the sum of several time steps At after setting ¢ty = 0. Currently, a
widely used approach is the adaptive time-dependent DMRG method [WF04, DKSV04] or
the time-evolving block decimation [Vid03, Vid04|, where a Suzuki-Trotter decomposition
[Tro59, Suz76| is used to approximate the exponentials e *# 2! Another class of algo-
rithms uses a Krylov-space approximation, e.g., via the projection of the time-evolution
operator onto the space spanned by a Lanczos basis [Sch04, MMNO5|. These approaches
are reviewed in Refs. [Sch05b, GRO6].

The algorithm mainly used in this thesis is a recent development based on the time-
dependent variational principle (TDVP) [HLO'14]. Therefore, the main goal of this
section is to review this approach and only briefly mention other techniques in Sec. 3.4.4.
The TDVP time evolution algorithm has been chosen due to its straightforward implemen-
tation and the ability to treat long-range interactions, which could be useful for further
studies beyond this thesis.!”

Spectral functions via real-time evolution 341

Besides frequency-domain methods, time-evolution methods have been used extensively in
the calculation of spectral functions — both at zero [WF04, WAOS8| and finite temperature
by purifying mixed-state density operators [BSW09, KBM12, KKHM15|. The computa-
tion of time-dependent correlation functions (S7/,,,,(¢)S] so) (with e.g. v = = 2) in real
space is used as an input to subsequent Fourier transforms to momentum and frequency
space. For instance, the dynamical spin structure factor is obtained by

. 1 ikn iwt— o
Sy () = lim — 3"t /dte S8 (ST ), (3.48)

n—0

if the system is large enough and one may assume translational invariance. One can also
exploit time translational invariance (A(t)B) = (A(t/2)B(—t/2)). However, accessible
time scales are limited by the growth of entanglement in the course of the time evo-
lution. Thus, the accuracy and resolution of the spectral function is restricted by the

1"Long-range interactions can also be incorporated by other approaches based on MPOs [ZMK*15].
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maximal accessible time [BSW09, FF10|. In particular, the properties at small frequency
depend on the hardly accessible long-time behavior of response functions. Therefore, one
oftentimes inserts a finite parameter 7 introducing Lorentzian broadening in Eq. (3.48).
One remedy is the extrapolation of time-dependent correlation functions by linear pre-
diction (see Sec.3.5.4). An efficient measure which helps to reduce the entanglement
growth at finite temperature and therefore reduces the computational effort is a back-
ward time-evolution on the auxiliary degrees of freedom [KBM12, KBM13|. This unitary
transformation merely changes the basis of the auxiliary space and leaves the physical
content untouched. Note that the backward time evolution on the auxiliary space can
be motivated by the Liouvillian description. There are also further related optimization
schemes |Barl3|.

Having briefly covered the calculation of spectral functions in the time-domain by DMRG
or MPS methods for real-time evolution, one should stress that in this thesis such methods
will be used for imaginary-time evolution to accurately obtain purifications of thermal
states (see Sec. 3.6.2). An imaginary-time evolution is obtained by the replacement ¢ —
—i7. Thermal states are an important prerequisite for the calculation of finite-temperature
spectral functions and also for the calculation of static thermodynamic properties.

Time evolution via the time-dependent variational principle 3.4.2

Compared to other time-evolution approaches in the DMRG or MPS context, this ap-
proach is rather new and only recently a simplified as well as promising algorithm could
be formulated in Ref. [HLOT14|. Thus, the following presentation is based on this refer-
ence. The conceptual idea is the formulation of the Dirac-Frenkel time-dependent varia-
tional principle (TDVP) reviewed in Ref. [LEK72] for the variational ansatz class of MPS
[HCO™11, LRSV13].

From a geometrical point of view, as illustrated in Fig. 3.3, the TDVP corresponds to an
orthogonal projection of the time-evolution vector —iH|W[M]) onto the tangent space of
the MPS manifold Myps at the state |V [M])

dW[M]) _

dt it MMPSH|\IJ[M]>- (3.49)

Here the argument in the square brackets denotes the set of MPS matrices. According to
Ref. [LOV15], the projection operator onto the tangent space can be expressed as

N L—-1
PTN, iy Marps = ij[qlzl—l} ® Il ® Pg-‘rl:L} . ZPEZ] ® Pg-‘rlzﬂ7 (350>
=1 =1
where the projectors
Pl = Z B0 (@] and PR = Z @5 s (@] (3.51)

on the left (right) block of the lattice are stated with respect to the associated orthonormal
basis sets |<I>[o}:”)A (|®%+1:L]>B).

From this, a key feature of TDVP time evolution follows directly: the time-evolved state
will always remain in the manifold. Therefore, it is justified to directly time-evolve the
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Figure 3.3: (Figure inspired by Fig.1
in Ref.[HCOT11].) Sketch illustrating the
MPS manifold M = Myps (curved surface)
and the tangent space Ty M = Ty Myres
(gray plane) spanned by the coordinate axes
|01 U[M]) and |0 W[M]) which are in general
not orthogonal. The direction iH|¥[M]) of
time evolution (blue arrow) is best approxi-
mated by the orthogonal tangent-space pro-
jection (green head). The optimal trajectory
|W[M (t)]) is denoted by the red curve.

parameters of the MPS which is formally represented by |W[M(¢)]) including the time
dependence for the set of MPS matrices as an argument. This is an important conceptual
difference to time-evolution approaches based on a Suzuki-Trotter splitting [Tro59, Suz76|
of the Hamiltonian (see Sec. 3.4.4). In these cases, the time-evolved state leaves the MPS
manifold upon applying the Trotter time step, but has to be approximated within it
subsequently.

The original TDVP-based algorithm [HCO™11] solved the system of non-linear coupled
equations arising from Eq. (3.49) by using an explicit integration scheme. This procedure
results in a simultaneous update of all MPS parameters, which is different from the DMRG
philosophy of local updates and requires the calculation of explicit inverses limiting the
applicability of this approach.

The crucial insight leading to a much simpler algorithm, which is very similar to the
ground-state DMRG algorithm, is that each term in Eq. (3.50) can be integrated exactly
[LOV15]. For instance, one may consider the term PE:l_” QL ® PEHZL] and |U[M]) in
the mixed canonical form with a single-site center block M (l) at site {. Such a center
block is simply M, q, ,),a, Which is obtained by fusing indices. As mentioned earlier, one
now has to deal with the time dependence of the MPS parameters. This is achieved by
including the time dependence in the center block M¢(l,t), which fulfills

M (1, t) = —iH()Mg(1,t). (3.52)

Following Ref. [HLOT14], we adopt a bold notation to denote whenever the matrix
Mc(l,t) is represented as a vector. The formal solution of this equation is obtained
as

M (1,t) = e HOMA(1,0). (3.53)

The operator H(l) is the one-site effective Hamiltonian. Analogously, the projectors
— Pl @ P can be integrated. To this end, |¥) is considered in the mixed canonical
form, in which all parameters are absorbed into the left and right blocks, except for the
degrees of freedom contained in the zero-site center block C'(I) on the bond between sites
[ and | + 1. The singular values of C(l) are the Schmidt coefficients of this state with

respect to the bipartition. Here the formal solution is given by
C(l,t) = e™KOLC(1, 0). (3.54)
The zero-site effective Hamiltonian with respect to the bases |®5"), and |<I>E+LL]> B is

denoted by K (I). The positive sign in the exponential in Eq. (3.54) suggests a backward
time evolution.
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In order to treat the full projector consisting of integrable parts in Eq. (3.50), this approach
employs a Trotter splitting of the tangent space projector. Each individual projector
considered above is then evolved for a small time step At. Similar to DMRG, the algorithm
includes a sweeping protocol'® starting with a right-canonical MPS at [ = 1:

1. Evolve M¢(1) via Eq. (3.53) for a time step At.

2. Factorize the result Mq(l) = Ac(1)C(1) and split Ac(l) into the new A;.

3. Backward time evolution of C(l) for a step At using Eq. (3.54).

4. Multiply the result C(I) to the right by C(I) B¥+* and obtain M¢(l+ 1) by merging.

5. Continue with the first step.

A following right-to-left sweep leads to a second-order scheme yielding the time-evolved
state |U[M(t + At)]) with an error of the order O(At?). This error is associated with
the splitting scheme of the tangent space projector. As a matter of convention, the time
step At is specified for one full sweep, i.e, the state is propagated by At/2 in, e.g., one
left-to-right sweep. The errors occurring in the numerical application of the exponentials
in Egs. (3.53) and (3.54) by the Lanczos algorithm'? (see Sec. 3.2 below) are significantly
smaller and can therefore be neglected. Another source of possible inaccuracies is the error
with respect to the time evolution described by the original Schrodinger equation. This
is assessed by performing the calculations for several values of the MPS bond dimension.
For time-independent Hamiltonians, the algorithm from Ref. [HLO*14] outlined above
conserves the energy and the norm of the evolved state.

In this thesis, the approach will be used for imaginary-time evolution, i.e., ¢ — —i7, which
allows the use of purely real arithmetics. Generally, imaginary-time evolution can also be
used as a projection method to find ground states. While this method is rather inefficient
compared to the single-site DMRG algorithm discussed in Sec. 3.3.3, it is important for
the connection between the simplified TDVP algorithm and DMRG. It turns out that the
TDVP algorithm for imaginary-time evolution is formally identical to single-site DMRG in
the limit A7 — oo [HLOT14]. This insight into the concealed connection to DMRG-like
algorithms also marked important progress in the conceptual understanding of MPS-
based time-evolution methods in the past two years. The TDVP formulation for the time
evolution of MPS is conceptually of similar importance than the realization that DMRG
is basically an application of the time-independent variational principle to MPS.

Krylov-space time evolution 3.4.3

Another class of DMRG time-evolution methods is based on the projection of the time-
evolution operator e *# 4% for a small time step t — ¢t + At onto a Krylov subspace
[Sch04, MMNO05|. These are so-called Krylov-space approaches. Usually the Lanczos
algorithm (see Sec. 3.2) is used to generate an orthonormal basis spanning the Krylov
subspace to approximate e *# 2t but generally also the Arnoldi method is an alternative

B8Details for the implementation of this method are given in the supplemental material of Ref.
[HLO*14].

19Tn contrast to the Krylov-space projection of exponentials described in Sec. 3.4.3, the Lanczos vectors
are represented as real-valued vectors here instead of MPS.
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[GRO6]. The Lanczos method for time evolution is described in detail in Ref. [NMO05].

Formally, the projection of the exponential e *#4! onto the Krylov subspace can be
written as

(W(t+ At)) = e H2 T (1)) (3.55)

~V, () e O V) [U(2)) (3.56)

=V, (U, (1) e PO ULV I(1) [9(1)). (3.57)

In the following, the method and the above equations are explained. It proceeds like this:

1. The initial wave function |W(¢)) is chosen as the starting vector |fo) in the recursion
relation in Eq. (3.2).

2. After n Lanczos iterations, the tridiagonal matrix 7),(¢) approximating the Hamil-
tonian is used to project e *# 2! onto the Krylov subspace in Eq. (3.56). Here the
columns of the matrix V,,(t) contain the Lanczos vectors.

3. In the next step, the tridiagonal matrix T}, (t) is diagonalized yielding U, (t)D,,(t)U} (t),
where D,,(t) is a diagonal matrix.

4. Then the time-evolved state |U(¢ + At)) and the related observables are calculated.

Note that in this thesis an MPS formulation of this algorithm is used [GR06]. Due to the
ability to add matrix product states (see Sec. 3.3.2), Equation (3.57) is implemented as
the sum

n

(Tt + At)) =) [e a0 O, 0 1F). (3.58)

k=0

Here the Lanczos vectors |fy) are represented as MPS. Thus, their internal dimensions
add under addition and it is necessary to compress the resulting MPS to an internal bond
dimension of m. Here this is implemented as an SVD compression which represents the
main source of errors. On the other hand, only a rather small number of Lanczos iterations
is needed to ensure a high accuracy of the Krylov space projection, i.e., n < 20 iterations
are usually sufficient [HL97, HL99, MVLO03|. In this thesis, a rather small time step of
At = 0.005 is used which only requires at most n = 7 to enforce [e_iAtT"(t)]n 0 S107
for the matrix entry in Eq. (3.58). 7

The Lanczos time-evolution method just described was employed for the imaginary-time
evolution in the first publication related to this thesis [TMPH14| since the TDVP algo-
rithm explained in the previous section had not yet been introduced at that time. The
errors of both methods are shown for the specific heat of a XX chain in Fig. 5.1(b) in
Sec. 5.2.

Other time-evolution methods 3.4.4

A very popular approach is pursued in the adaptive time-dependent DMRG method
[WF04, DKSV04] or the time-evolving block decimation [Vid03, Vid04|, where a Suzuki-
Trotter decomposition [Tro59, Suz76| is used to split a Hamiltonian with nearest-neighbor
interactions into terms acting on odd and even bonds

H = H,qq + Heven- (359)
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This can be used to factorize the time-evolution operator, e.g., by a second-order Suzuki-
Trotter decomposition?’

e tH AL o =i Hodd At/2 =i Heven At =i Hoqa At/2 + 0 ((At>3) (360>

for a small time step At. Although all terms in H,qq and in H., commute, one generally
has [Hoqd, Heven| # 0, which introduces errors due to neglected terms. Therefore, the main
drawback of approaches based on a Suzuki-Trotter decomposition is that they cannot
equally well cope with Hamiltonians including long-range interactions. Implemented in
the framework of MPS, the exponentials are represented as MPOs. Being applied, these
operators lead to an increase of bond dimensions in the time-evolved MPS. So the MPS
matrices need to be truncated by, e.g., an SVD compression after each time step. A more
detailed description of this standard method for time evolution is given in Ref. [Sch1l].
Moreover, there is the possibility of expanding the time-evolution operator in Chebyshev
polynomials using MPS [HWM™11]. Although this approach is also interesting due to its
ability to treat systems with long-range interactions, it was recently found to be inferior
to Krylov- or Trotter-based methods since the accessible times after a global quantum
quench in the Bose-Hubbard model have been rather limited [HKM15].

20n fact, a fourth-order decomposition is chosen in most applications [Sch11, KBM13].
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MPS frequency-domain methods at zero
temperature 3.5

351

Introduction

As mentioned before, DMRG has been extended to the computation of zero-temperature
spectral functions in the frequency domain soon after its invention. The first approach of
this kind was a continued fraction expansion (CFE) of the dynamical correlation function
relying on a DMRG implementation of the Lanczos algorithm [Hal95|. Later another
frequency-domain method, namely the correction-vector method [RPK™96, KW99|, was
introduced. Its more efficient formulation in terms of a minimization problem for a func-
tional by Eric Jeckelmann [Jec02| is known as the dynamical density-matrix renormali-
zation-group method (DDMRG). The DDMRG represents an important development in
the numerical study of both momentum and frequency-resolved dynamical properties
since it provides highly accurate results at T' = 0. It has thereby fostered significant
progress. For instance, it has been used to investigate the optical properties of the 1D
Hubbard model [JGEO00, Jec02, Jec03, SJ09, TVD'16| and to study inelastic neutron
scattering spectra of the low-dimensional frustrated quantum magnet azurite [JOK*11].
However, DDMRG or MPS-based correction-vector [WVS*09] calculations are compu-
tationally very costly as a separate calculation for each frequency is needed in order to
obtain the entire spectral function. Of course, this drawback also allows for easy paralleli-
zation, but one would prefer numerical approaches requiring less total resources while
giving results for the entire frequency range at one shot. This is certainly one important
reason why moment expansions of the dynamical correlation function have been further
improved. For instance, the CFE could be improved by an adaptive DMRG scheme for
the Lanczos recursion [DHP*11]. Independently, the expansion of spectral functions in
Chebyshev polynomials, which is known as one variant of the kernel polynomial method
(KPM) [WWAFO06], has been successfully introduced in the MPS context and also gives
very accurate results [HWM™11]. In fact, it was not a coincidence that frequency-domain
methods could be further improved upon the realization of the intimate links between
DMRG and MPS. The reason is that the MPS formulation is better suited for the calcu-
lation of excited states [DWH™12]. For instance, the excited states generated to determine
the expansion coefficients, the Lanczos or Chebyshev vectors, can each be represented by
an MPS and the application of, e.g., the Hamiltonian in the recursion is in principle ex-
act.?! Therefore, also the adaptive Lanczos method [DHP*11| has been further improved
by a reformulation in terms of MPS [DWH12]. Furthermore, it could be stabilized by a
subsequent reorthogonalization procedure. This allowed for a very accurate calculation of
the dynamical spin structure factor of the spin-1/2 Heisenberg chain at 7= 0 [DWH*12].
Due to the encouraging progress made in the development of frequency-domain methods
for the calculation of zero-temperature spectral functions, one main goal of this thesis is
to devise MPS frequency-domain methods working at 7" > 0. This can be achieved by
an extension of existing 7' = 0 techniques which are reviewed in the present chapter. It
is reasonable to employ MPS approaches based on the expansion of spectral functions
giving results over the entire frequency range as they are computationally less demanding
than correction-vector approaches. Therefore, the following subsections review the CFE
as well as Chebyshev expansions. As the latter technique is mainly used in this work,

2 However, the resulting MPS with increased internal bond dimensions has to be truncated afterwards.
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it is discussed in more detail. In particular, there have been quite a few recent develop-
ments proposed to increase the spectral resolution of MPS-based Chebyshev expansions
[GTV*14, WIMS15].

Continued fraction expansion of spectral functions at 7' = 0 352

The calculation of spectral functions by the Lanczos method (see Sec. 3.2) has a long
history [HHK72, Hay80, GB87, Dag94|. The dynamical quantities can be determined by
starting the recursion in Eq. (3.2) with the vector |fo) = A|Ey)//(Eo|ATA|Ey). This
ensures that only states contributing to the spectral function with non-vanishing spectral
weights are generated. The resulting Lanczos coefficients a; and b; then enter a continued
fraction expansion (CFE) of a zero-temperature spectral function (see Sec. 2.2.3)

_ 1 | 1 (Eo| AT A| Eo)
RIZ9(2) = ——Im(Fy|A' ————— A|F)) ~ ——1 3.61
ATA(Z) T m< Ol - (H_EO) ‘ 0> T mz_ao_ b% - ( )

subjected to a finite broadening. Above only positive frequencies are considered, but the
treatment of w < 0 is analogous. The derivation of the CFE is contained in Refs. [Ful95,
Dag94|. Here z = w + in denotes a complex frequency yielding a Lorentzian broadening
of the spectral function for finite n. If one is interested in a smooth spectral function, the
broadening has to be chosen large enough such that the individual delta peaks occurring
as a consequence of the finite system size are not visible any more.

The key operation in the Lanczos recursion (3.2) is to apply the Hamiltonian H|f;).
In most cases, this amounts to a matrix-vector multiplication which can be implemented
efficiently for sparse matrices. For example, one may exploit the symmetries of the Hamil-
tonian?? and constructs the matrix elements of the Hamiltonian on the fly [Saa03, NMO05].
Like this it is possible to treat systems consisting of up to about N = 40 spin-1/2 degrees
of freedom. The technical explanation of the limitation is that the representation of the
Lanczos vectors which are needed at each iteration cannot be kept in computer memory
any more.

One approach to resolve the issue is to approximate the Lanczos vectors for 1D models by
MPS (see Sec. 3.3.2). In this case, the operation H|f;) corresponds to the application of an
MPO to an MPS. This illustrates the flexibility that one may exploit in the representation
of the wave function as long as these operations are performed in an efficient framework.
For example, an MPS Lanczos method was used to calculate the zero-temperature dy-
namical spin structure factor of the spin-1/2 antiferromagnetic Heisenberg chain with high
accuracy [DWHT12].

Expansions in Chebyshev polynomials 353

Another frequency-domain technique which can be used to compute spectral functions is
an expansion in terms of Chebyshev polynomials. In some respects this method is similar
to a CFE. For instance, the expansion is also generated by a recursive scheme. Prior
to discussing the more complicated cases of MPS-based or operator-valued expansions of

22This will not be possible for the Hamiltonian in Eq. (4.13) which is mostly studied in this work.
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spectral functions in Chebyshev polynomials in Sec. 3.5.4, it is useful to review a few basic
properties of expansions in orthogonal polynomials.

Basic properties

This review of some basic properties follows Ref. [WWAF06| and particularly focuses on
the case of Chebyshev expansions. In general terms, one may define a scalar product

(o) = [ w@gle)h(o)ds (3.62

between the integrable functions g, h : [a,b] — R, where w(z) denotes a positive weight
function. For any such scalar product, there exists a complete set of orthogonal polyno-
mials p,(x) fulfilling the orthogonality relations

(PalPm)w = On,m (PnPn)w- (3.63)

This largely facilitates the expansion of a given function f(z), which is for simplicity
assumed to be sufficiently well-behaved,?® in terms of the polynomials p,(x). The corre-
sponding expansion is given by

f(:l?) = Z anpn($)v where o, = <pn|f>w/<pn|pn>w' (3'64)

In principle, any complete set of orthogonal polynomials can be used to expand the
function f(z). However, in most applications dealing with polynomial expansions the
Chebyshev polynomials of the first or second kind represent the preferred choice [Boy89,
Riv90]. This is the case due to their good convergence properties and the fact that they
are sufficiently easy to compute. Thus, Chebyshev polynomials T,,(z) of the first kind are
used in this thesis. For brevity, we henceforth refer to them as Chebyshev polynomials.
The T, (x) are obtained for the weight function v(z) = (7v/1 — 22)~! in Eq. (3.62) and
are defined on the interval [ = [—1, 1]. They thus fulfill the orthogonality relations

1494,
(T, | Ty = +2 2 6. (3.65)

Using trigonometric functions, the Chebyshev polynomials can be represented explicitly

T, (z) = cos|n arccos(z)] (3.66a)
= cosh[n arccosh(z)], (3.66Db)
which explains their, in principle, easy computation. For many numerical applications

as in this thesis, the generation of the Chebyshev polynomials by means of the recursion
relation

Toii(z) =2aT,(x) — Thoa(x), Ti(z)=z, To(z)=1 (3.67)

is used.?* Now we briefly review some basic properties of the Chebyshev polynomials.
From the above Eq. (3.67) it is evident that the polynomials 7},(x) are even functions for

23For instance, one may think of a piecewise smooth and continuous function.

24MPS-based Chebyshev expansions of spectral functions, which are operator-valued, also make use of
the recursion relation in Eq. (3.67). However, they will turn out to be computationally more demanding
(see Sec. 3.5.4).
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Figure 3.4: Chebyshev polynomials T),(z) of the first kind for selected values of n. (a) T),(z)
depicted on the interval I = [—1,1] to illustrate the oscillating nature for higher values of n and
the boundedness |T),(z)| < 1 on I. (b) The absolute value |T),(x)| of the Chebyshev polynomials
increases very rapidly for n > 0 and = ¢ I.

even numbers of n, whereas they are odd functions for odd n. Moreover, their trigono-
metric nature in Eq. (3.66a) reveals that Chebyshev polynomials of higher order n are
heavily oscillating functions as depicted in Fig. 3.4(a). Another feature is their bounded-
ness |T,(x)] < 1 for x € I on the interval I = [—1,1]. As illustrated in Fig. 3.4(b), the
absolute value |T,,(x)| increases very rapidly for n > 0 and = ¢ I. In order to prevent a
Chebyshev expansion from diverging, one therefore works on a slightly smaller interval,
[—1+4€,1 — €] with € > 0, for the implementation of numerical methods.

From Eq. (3.64) it becomes clear that expanding a function f(z) with = € I in Chebyshev
polynomials of the first kind leads to an expansion of the form

flz) = g % To(z) = af + 2; of T, (), (3.68)

where the coefficients are given by

o = (Tlf)s :/ To() f ()

—————dux. 3.69
-1 ’/T\/l—.Q?Q v ( )

Modified moments

In many numerical applications as, for instance, in MPS-based Chebyshev expansions one
would like to avoid integrations over weight functions since they complicate the calculation
of expansion coefficients. Thus, one rearranges the expansion by choosing the slightly
modified orthogonal functions
T,(z)
Tr) = —— 3.70

() = —E (3:10
instead the T),(x). In addition, resorting to the weight function u(z) = 71 — 22 in the
scalar product,®® ensures that the orthogonality relations of the functions ¢, (z)

14 0n0

(Dn|Om)u = 5 On,m- (3.71)

25The weight function u(z) corresponds to the Chebyshev polynomials of the second kind.
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are the same as in Eq. (3.65). This leads to a rearranged expansion of the form

ni:; (ngn ). (), (3.72)

which may also be expressed in terms of the Chebyshev polynomials T;,(x):

1 oo
—— +2 n o
N g Ho ;M (z)

The result in Eq. (3.73) above represents an important interim result of this section.
This is the case since the modified expansion coefficients p,, can now be evaluated effi-
ciently using the recursive scheme in Eq. (3.67). They are commonly known as Chebyshev
moments.

Numerical approaches as pursued in this thesis oftentimes only allow for the calculation
of a finite number N of coefficients. Given this constraint, one wants to find the best
approximation to a function f(z) by a polynomial series expansion of some finite maximal
order. A simple truncation of the infinite series (see Eq. (3.73))

N-1
1
e w2 T
—— |Ko ;u ()

leads to inaccuracies such as oscillations. These occur close to points where f(z) is,
e.g., not continuously differentiable. The approximation of functions f(z) displaying
discontinuities or singularities is still harder since the oscillations, also referred to as Gibbs
oscillations, become worse in such circumstances. In order to illustrate these undesirable
effects near singularities or jumps, we consider the truncated Chebyshev expansions fx ()
of the Dirac delta function d(x) and a step function which are each represented by the
solid line in Figs. 3.5(a)-(b) further below. In both cases the expansions are truncated
after N = 100 moments.

f(z) = ,  with u, = / T.(z)f(x)dx. (3.73)

1

f@) = fn(x) = (3.74)

The kernel polynomial method

One established way to remove the artificial Gibbs oscillations is the convolution of the
truncated series in Eq. (3.74) with a kernel Ky (x,y):

KN / /T 7 Kn(a,) () dy = En(e, )| (@) (3.75)

where z, y € [—1,1]. This procedure is known as the kernel polynomial method (KPM)
[WWAFO06]. Note that Ky(z,y) depends on the number of retained moments N. One
preferably uses kernels granting uniform convergence between f(x) and fi™(x) with re-
spect to the supremum norm |||/, on an interval, i.e., —1+¢ < x < 1—e. Mathematically,
this reads

1f =N Ml =" sup  [f(z) = f§"(2)] =0 for N — oo. (3.76)

—14e<a<l—e

For a detailed review on several proposed kernels and the conditions they have to sat-
isfy for uniform convergence refer to Ref. [WWAF06]. In practice, one of these required
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conditions is the positivity of the kernel Ky (z,y) > 0 Va, y € [—1,1]. It enforces that ap-
proximations of positive functions also assume positive values. An important property of

the KPM is that the integral of the original function f(x) equals that of its approximation

KPM ;
N o, le,

/_ 11 flz)dr = /_ 11 M) da. (3.77)

This is guaranteed by the normalization condition f_ll Kn(z,y)dzr = ¢o(y), being equiv-
alent to go = 1. Equation (3.77) can be used whenever a physical sum rule is checked
after a computation.

The convolution in Eq. (3.75) introduces real-valued damping factors g,, which amounts
to another important modification of the series expansion:

S, (0lf) 1 =
KPM _ n u _

In this thesis, we use the Jackson kernel yielding the damping coefficients

g = ot 1) cos i + sin i cot w7y (3.79)

" N +1 ’
which are depicted for N = 100 in Fig. 3.5(c). In order to assess the effect of Jackson
damping, one may regard the convolution of a Dirac delta function §(z — ) shifted to
T € [—1,1] by the Jackson kernel. For N = 100 and z = 0, the resulting Chebyshev
expansion is depicted as the dashed line in Fig. 3.5(a). The oscillations have evidently
been suppressed at the expense of an introduced broadening which reduces the spectral
resolution. In order to better understand this, it can be shown [WWAFO06| that the delta

peak is subjected to nearly Gaussian broadening and its approximation is therefore given
by

SKPM(y 5 \/217? exp (—(9”2_—77;”"’)2) | (3.80)

Most importantly, note that the Gaussian broadening 7 in Eq. (3.80) depends on both
N and also the position of the delta function and is thus not uniform throughout the
interval:

n(N,T) ~ % V1- 72 (3.81)

Jackson damping is usually a very good choice as a continuous function can be approxi-
mated up to errors of O(1/N) [Jacll, Jac12, WWAF06|. Moreover, this damping scheme
is optimized for high resolution. Thus, most of the intensity belonging to peaks in the
spectral function is found very close to the peak position since a Gaussian function has
rapidly decaying tails.

The Lorentzian kernel presents an important alternative since Lorentzian broadening is
intrinsic to some approaches for the calculation of dynamical correlation functions. Thus,
the Chebyshev expansions of the Dirac delta function and a step function obtained for
Lorentz damping and N = 100 are also shown in Figs. 3.5(a)-(b). The damping factors
for this case are

, _ sinh (A1 —2)]
Inx = sinh A ’

(3.82)
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Figure 3.5: (a) Chebyshev expansions (using Eq. (3.78)) of order N = 100 of (a) the Dirac
delta function é(x) and (b) a step function illustrating three different damping schemes in the
undesirable presence of singularities or jumps. In the case of no damping (g, = 1) unwanted
Gibbs oscillations are present. They can be significantly cured by the convolution of the truncated
expansion in Eq. (3.74) with a broadening kernel. Here results employing the Jackson respectively
the Lorentz kernel are shown. (c) Associated damping factors g, for N = 100 as a function of
the iteration number n. (d) Absolute value |5 | of the first 700 Chebyshev moments obtained
in the expansion of the step function. In this case, the envelope of the moments converges
algebraically with 1/n for n > 1 (see Sec. 3.5.3). Note the oscillatory behavior of the moments.

which are depicted for N = 100 in Fig. 3.5(c). Here A = 4 is adopted following Refs.
[WWAF06, HWM™11]. This choice for A\ will cause a delta function §(x — Z) to be
broadened into a nearly Lorentzian function

Ui

1
SKPML ) oy o 1
VR g

(3.83)

of width n,(N,z) = V1 — 22 \/N.

Convergence of Chebyshev moments

In order to discuss the rate of convergence of the Chebyshev moments for a function f(x)
in the limit n — oo, it is very helpful to note the very close connection between Chebyshev
expansions and Fourier series [Boy89]. In fact, it can be shown by a change of variable,
x = cosf, that the polynomials T},(x) in a Chebyshev expansion are equivalent to the
basis functions used in a Fourier cosine series

T, (cos 0) = cos(nd). (3.84)
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Thus, Chebyshev polynomial expansions are equivalent to Fourier cosine series under this
change of variable. The convergence properties of Chebyshev expansions are therefore
very similar to those of Fourier series. For a review of this issue refer to Ref. [Boy89.
The convergence of the Chebyshev moments i, of a function f(x) depends on the highest
integer k for which its k-th derivative f*)(z) is integrable. For finite k, there is algebraic
convergence and the envelope exhibits a decay by at least 1/n*.2® For a smooth function
f(z), k = oo, the envelope of the moments 1,, even exhibits exponential convergence with
respect to n. Thus, in the case of a step function (k = 1), the envelope has an order of
convergence of about 1/n and is also depicted in Fig. 3.5(d) to verify this result. For a
delta function (k = 0), the Chebyshev moments oscillate without any decay. This or slow
algebraic decay in the presence of discontinuities leads to unfavorable Gibbs oscillations if
the Chebyshev expansion is truncated (see Eq. (3.74)). Most importantly, the asymptotic
behavior discussed in this paragraph only holds for n > 1 and not for small or moderate
n |Boy89]. With this knowledge about the convergence of the p, for intermediate n, it
is easier to understand the recent developments to improve the resolution of Chebyshev-
expanded spectral functions in the next section.

Chebyshev expansion of spectral functions at 7' = 0 354

In the following it is explained how the kernel polynomial method (KPM) is used to expand
zero-temperature spectral functions in an MPS framework. This results in an operator-
valued Chebyshev expansion and some other complications arising, e.g., from the fact that
a Chebyshev expansion only grants convergence in the interval [—1, 1]. The presentation
of such issues in the current section is mainly based on Ref. [WWAF06, HWM*11] and
is very important since the KPM will be intensively used in this thesis.

Rescaling scheme

As mentioned above, a Chebyshev expansion only converges in the interval [—1, 1]. Thus,
in order to expand a zero-temperature spectral function in Chebyshev polynomials, one
needs to map the full many-body bandwidth W# of the Hamiltonian H to the interval
I € [—1,1]. In principle, any one-to-one mapping works for this purpose. However, one
requirement is that the mapping has to be efficiently applied in the framework of matrix
product states and operators since this operation has to be performed in each recursion
step of a Chebyshev expansion. In this work, the standard choice, a linear rescaling
scheme, used both in the KPM [WWAF06| and most MPS approaches [HWM*11, BS14,
WMPS14] is adopted.

At zero temperature, one needs to rescale and shift the Hamiltonian H for which W =
FH — FH  Here EL  denotes the ground-state energy and EX  the maximal energy

max min* min max

26 Although in Ref. [Boy89| these results have been obtained for expansions using the unweighed scalar
product in Eq. (3.69), they also hold for the scalar product in Eq. (3.73) [WJMS15].
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of the Hamiltonian H. In the following, we focus on w > 0 and therefore consider
w € [0, WH].2T In this case the linear map for the frequency reads

we0,WH] = e [-W W], W =1-¢/2

, W , wWH
=2 _-W = . 3.85
Wi = ;0= oy (3.85)
Accordingly, the Hamiltonian is shifted and rescaled by
H-FE
H' 0w (3.86)
a

such that H' possesses the ground-state energy E| = W’. The choice of W' < 1 with
e = 0.025 acts as a safeguard to strictly impose w’ € [—1, 1] in order to exclude divergences
due to numerical inaccuracies. Note that the support of the zero-temperature spectral
functions calculated in this thesis lies within the lower part of the interval [0, W], which
is mapped to the lower part of the interval [—TW' W] by the linear rescaling scheme.

Operator-valued Chebyshev expansion

Zero-temperature spectral functions with respect to the operators B and C' are of the
form

RLD(w) = (Eo|Bé(w — H + Ey) C|Ep). (3.87)

See Sec. 2.2.3 for the derivation. After applying the linear rescaling scheme in Eqgs. (3.85)
and (3.86), the spectral function is given by

1

RED (w) = - (Eo|Bo(w — H') C|Ey). (3.88)
The operator-valued expression f(z) = d(z — H') with x = w’ is now expanded in Cheby-
shev polynomials. One formally uses the modified moments in Eq. (3.73) and the trun-
cated series in Eq. (3.78) in order to obtain an operator-valued Chebyshev expansion by

means of the KPM:

N-1

gotto + 2> g Tu(H) T ()

n=1

(3.89)

_ w/2

Inserting this result into Eq. (3.88) gives the Chebyshev expansion of the spectral function:

N-1
1
REd ~ ——— +2 " guptn Tl 3.90
BC N T |2 ) (w) (3.90)

Note that this expression includes the damping factors g, which lead to a broadened
spectral function as already discussed in Sec. 3.5.3. The Chebyshev moments

i = (Eo| BT (H') C| Ep) (3.91)

27This is a consequence of the shifted delta functions §(w — (E, — Ep)) appearing in the Lehmann
representation of the zero-temperature spectral function.
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turn out to be given by a ground-state expectation value of essentially an nth order
Chebyshev polynomial in H’. By defining the nth Chebyshev vector |¢,), the moments
can be stated as

fin = (Eo|Bltn), |tn) = T,(H)C|Ej). (3.92)

Now the main task is to determine |¢,), which is possible via the Chebyshev recursion in
Eq. (3.67). One starts with the ground state and obtains |¢y) after applying the operator
of interest to it. Then Eq. (3.67) translates into

’tn> = 2Hl’tn71> - |tn72>7 |t1> = Hl|t0>7 ‘t0> = CY|E0> (393>

In the original KPM [WWAF06] the operations in this recursion relation are implemented
by means of operations commonly used for the exact diagonalization of sparse Hamiltonian
matrices, i.e., matrix-vector and vector-vector operations, as the [t,) are represented by
vectors. In order to treat larger systems, the MPS implementation of Eq. (3.93) is reviewed
in the next section.

MPS evaluation of the Chebyshev moments

First of all, the ground state |E;) is calculated as explained in Sec.3.3.3. Moreover,
the rescaled Hamiltonian H’ is represented as an MPO and the Chebyshev vectors will
be represented as MPS.?® The recursion relation in Eq. (3.93) is implemented using the
variational compression reviewed in Sec. 3.3.4. Given a maximal internal dimension m of
the MPS matrices, the state |t,,) is found via variationally minimizing the quantity

€compr = || [tn) — (2H'[tn-1) = [tn-2))l (3.94)

by sweeping through the chain. The sweeps are stopped once €compy is sufficiently small.
The accuracy of the calculations is controlled by specifying m. For a zero-temperature
calculation, this compression error is usually well controlled for the first ~ 1000 recursion
steps, 1.e., at most €compr ~ 10~® for m ~ 100. The recursion represents the main and
computationally most time consuming part of the method. It usually makes up about
80-90 % of the computation time.

Resolution

An important consequence of the rescaling scheme is that the resolution is modified. In
the case of Gaussian broadening as in Eq. (3.81) and a linear map, the resolution of the
Chebyshev-expanded spectral function is given by

W
n(w, W) = % g VI = (3.95)

As noted before, the resolution is generally not uniform as it does not only depend on the
expansion order N and the bandwidth W but also on the frequency. Remember that the
support of the zero-temperature spectral function is mapped onto the lower part of the
interval [—W' W], where ' is only slightly larger than —1. Therefore, the broadening
varies significantly in this frequency range. However, this in fact represents an advantage
as the resolution is enhanced towards small frequency w. In many plots it is desirable to
show the spectral function using a uniform broadening at all frequencies, the expansion
order is thus adapted as a function of the frequency, if not stated otherwise.

Z8Note that the term Chebyshev vector is still used although this state is represented as an MPS.
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Developments for increased resolution

As a linear rescaling scheme with respect to the full spectral width provides a more or less
uniform resolution,? one may wonder whether it is possible to enhance the resolution, e.g.,
on a particular subinterval, where the physical features of interest are found [HWM™11].
After the introduction of MPS-based Chebyshev expansions, there have been proposals
[HWM*11, GTV'14, WJMS15] of how to enhance the spectral resolution.

Two of these proposals are based on modifications of the rescaling scheme. The first ap-
proach [HWM™11] proposes to work with an effective band width instead of mapping the
entire bandwidth to [—1, 1]. The smaller interval can be chosen comparable to the actual
support of the spectral function. The procedure is known as high-energy truncation and
removes the contributions from higher frequencies |w’| > 1 contained in the Chebyshev
vectors. This is done in a DMRG-like sweeping procedure and is absolutely necessary to
avoid divergencies when working with this smaller interval. However, high-energy trun-
cation cannot be formulated variationally such as the ground-state DMRG algorithm.
Hence, there is no notion of optimality with respect to a certain measure and no simple
criterion for convergence [HWM™11, GTV*14|. This drawback complicates the error anal-
ysis significantly because the calculations have to be performed for several different energy
truncation parameters to assess their accuracy, which counteracts the possible speedup.
In addition, recent results also suggested that a gain in resolution with respect to a fixed
amount of computational resources cannot be expected [BS14, WMPS14]. There are also
hints that high-energy truncation leads to an unfavorable increase in entanglement for the
Chebyshev vectors [HWM™11], i.e., a slower decay of the eigenvalues of the corresponding
reduced density matrices. For these reasons, a simple linear rescaling scheme with respect
to the full width of the spectrum is used in this thesis.

The second approach [GTV'14] proposed to enhance the resolution of MPS-based Cheby-
shev expansions at 7' = 0 advocates the map H' = I — exp(—7(H — Ey + €)) using a suf-
ficiently small 7. Here 1/7 plays a similar role as the rescaling parameter a in Eq. (3.85).
Moreover, the map is convenient since such an exponential can be applied to MPS by
efficient time-evolution algorithms, see Sec. 3.4. This rescaling scheme gives the highest
resolution for the part of the spectrum located at low frequency in [0, WH]. At T = 0,
this subinterval corresponds to the support of the spectral function. However, at T" > 0,
the support does not lie close to this region (cf.Sec.3.6.4). Therefore, the exponential
rescaling scheme as presented in Ref. [GTV 14| is inconvenient for finite-temperature cal-
culations and the linear scheme using the full bandwidth gives a better resolution.

The other two proposals for enhancing the resolution aim at improving the convergence
properties of the Chebyshev moments in certain cases [GTVT14, WIMS15]. The basic
idea behind this is the removal of jumps in the spectral functions, thereby creating a
faster convergence of the Chebyshev moments (see Sec. 3.5.3). Then the damping factors
introduced to cure Gibbs oscillations in the KPM can be discarded, allowing for a higher
resolution.

The idea has been applied to the zero-temperature spectral function of 1D fermionic
models. If one considers the particle A~ (w > 0) or hole branch A<(w < 0) of the spectral
function separately, each of them may assume a finite value A~(0) > 0 [A<(0) > 0] at
w = 0 observed as a step at the Fermi energy w = 0. Hence, there occurs a jump if one
calculates each branch by an individual Chebyshev expansion leading to an algebraic decay

ZNote that the resolution towards the end points of the interval is higher, but generally this statement
is true for the central region.
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of the moments. By expanding the particle A~ (w > 0) and hole branches A<(w < 0) as the
full spectral function A(w) = A~ (w)+A<(—w), such a jump occurring at w = 0 is removed.
This has been shown to lead to an exponential decay of Chebyshev moments for the
noninteracting single-impurity Anderson model which allows for a reliable extrapolation
of the moments by linear prediction [GTV'14]. The moments are extrapolated until they
are negligibly small allowing for a truncation of the Chebyshev expansion without Gibbs
oscillations and without the need of introducing broadening in such cases. The technique
of linear prediction will be discussed in the next section.

Alternatively, it is also possible to do an individual Chebyshev expansion of one single
branch A~ (w > 0) [A<(w < 0)] [WJMS15]. This is achieved by subtracting the Chebyshev
expansion of a step function of finite height A~ (0) [A<(0)] in a self-consistency loop using
linear prediction in each step.

Linear prediction

In the DMRG context, linear prediction [Mak75] has originally been used to extrapolate
real-time evolution data both at zero [WAO08| and finite temperature [BSW09]. For time-
dependent DMRG, it therefore is an established method, but recently it has also been
applied to extrapolate Chebyshev moments y,, [GTV*T14, WIMS15]|. In Chapter 7, it will
be used to predict the Chebyshev moments of finite-temperature spectral functions.

In a more general context, linear prediction is an approach to extrapolate the behavior
of a sequence xg,r1,...,ry of equidistant data points. These sequences may contain
oscillations, but the method works best for exponentially decaying envelopes of the data.
As the name might suggest, it makes the assumption that each predicted data point z,
with n > N is approximated by a linear combination of the previous p data points:

p
> ajr,;. (3.96)
j=1

The coefficients a; are determined by solving a minimization problem for the least-squares
error given by

F=)Y Fo=)Y (& —x) (3.97)

on a fitting subset Iy containing all n € {N — Ng, — 1,..., N — 1, N}. Differentiation
with respect to a fixed n leads to

oF, .
aa‘ =2 <_ Z AjTp—j — l’n> . (_xn—z) . (398)

J=1

The full expression (0F'/0a;) set to zero then yields

Z <Z Tn—iln J) Z TnLn—i, (399)

j=1 nelgt ne€lgg

-~

=:Ry;; =r;

which with the above definitions can be identified as one system of equations

R-a=—r. (3.100)
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Figure 3.6: Assuming that only
the first N = 100 data points are

" ~, | - data ' known, the extrapolation of the se-
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n accuracy close to machine precision.

The solution for the coefficients is thus given by the vector a = —R™! - r. It has been

found that Ng, = N/4 is generally a sufficient size of the fitting interval I, [WJIJMS15].%°
Moreover, p should not be chosen too large in order to avoid overfitting. Hence, the choice
p = min(Ng/2,100) is adopted [BSW09]. For the sake of numerical stability, one adds a
small constant to the diagonal elements of the matrix R prior to inverting it.3! Then the
matrix M defined by

—Qa1 —ag —Aas —Qp
1 0 o - 0
M = . S . (3.101)
0 0 1 0

can be used to recursively generate the predicted data points
Enn = [M"-zy], . (3.102)

The extrapolation of a sequence by linear prediction is illustrated in Fig. 3.6. However, the
matrix M may contain eigenvalues \; with |)\;| > 1 which will lead to a divergence of the
predicted data. In order to ensure convergence, M is diagonalized and such eigenvalues
are normalized, i.e., set to A;/|\;|. This is done prior to the calculation in Eq. (3.102). On
the other hand, if the weight associated with the eigenvalues |\;| > 1 makes up more than
a few percent, it is plausible to conclude that the problem cannot be treated by linear

prediction [WJMS15].

30This is the case since the sequence is not stochastic.
31 Alternatively, it is also possible to work with a pseudo-inverse determined by an SVD with cutoff of
the order of 107° for small singular values [GTV*14].
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MPS frequency-domain methods at finite
temperature 3.0

Note that a much shorter version of the present section has been published as a Rapid
Communication in Physical Review B [TMPH14| together with the proof-of-principle
calculations shown in Chapter 5. Moreover, the content of Sec.3.6.3 has been published
as part of a Regular Article in Physical Review B [THP*16]. Accordingly, some parts of
the present section may resemble both manuscripts which were mainly written by me.

Introduction 3.6.1

Having reviewed MPS methods generating expansions of spectral functions at 7' = 0 in
Sec. 3.5, it is now possible to move on to the calculation of finite-temperature response
functions in the frequency domain. The MPS formulation of frequency-domain dynamics
at T' > 0 is one of the main objectives of this thesis. The idea is to devise a new finite-
temperature approach by combining the purification of a mixed-state density operator3?
at T' > 0 with the MPS frequency-domain methods known from 7" = 0.

The method development is motivated by the observation that the resolution of low-
frequency properties in spectral functions can be rather limited if they are calculated
by DMRG or MPS real-time evolution. This is the case as the properties at small fre-
quency depend on the hardly accessible long-time behavior of response functions. As
already discussed in Sec. 3.4.1, the maximal accessible time is restricted by the growth of
entanglement in the course of the time evolution.

The following sections are structured in the following way: First, in Sec. 3.6.2 the purifi-
cation of mixed-state density operators is considered in the MPS context. Secondly, the
dynamics of the purification are reviewed in Liouville space in Sec. 3.6.3. Moreover, the
MPS-based Chebyshev expansion of finite-temperature spectral functions is formulated
in Liouville space in Sec. 3.6.4. Last but not least, the MPS Lanczos method generating
a CFE is also presented using the Liouvillian formulation of the dynamics in Sec. 3.6.5.

Purification 3.6.2

A mixed-state density operator representing thermal states at T > 0 can be purified. The
resulting pure-state wave function |¥) is known as a thermofield state defined in a doubled
Hilbert space. See Sec. 2.4 for details. In the DMRG context |¥) is mostly referred to
as purification. The doubled Hilbert space is the tensor product space Hp ® Hq of the
physical state space Hp and an auxiliary space Hg chosen to be isomorphic to Hp. The
purified state |¥) can then be represented as an MPS. Alternatively, the doubled degrees
of freedom can also be implemented by an MPO [Barl3, PEAT14| as the purification
represented as an MPS in a doubled Hilbert space and the corresponding MPO can be
mapped onto each other by an isomorphism. In this thesis, the MPS purification is used.
The following paragraphs contain its definition on a lattice and other technical details
and is mainly based on Ref. [Sch11].

32 As obtained in thermofield dynamics (TFD), see Sec. 2.4.
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Figure 3.7: Purification of mixed states for
a 1D system: (a) The physical degrees of free-
dom living in H p reside at the odd sites of the

(a) P Q P Q P Q lattice (marked by P). The auxiliary degrees
1 2 3 4 5 6 of freedom belonging to Hq are situated at

(W_O the even sites (Q) between the physical sites
in order to minimize the range of the phys-

ical nearest-neighbor interactions (red links)
in the combined system. (b) Geometrically,

P m}{) this chain may also be thought of as a ladder
QO——O0O—"10O—"C0O—"0O—0O—0O 0 with interactions between the physical sites
2 4 6 8 10 12 (red links). The filled gray ellipses illustrate

the maximally entangled state at each rung of
the ladder at T' = oo.

In practical applications, the auxiliary state space is simply taken as a copy of the physical
space, i.e., Hg = Hp. As a consequence, the number of sites has to be doubled. To avoid
longer-ranged interactions the physical and auxiliary sites are arranged in an alternating
fashion as depicted in Fig. 3.7. This turns nearest-neighbor interactions between physical
sites into next-nearest-neighbor interactions if the purification is considered. However,
these slightly longer-ranged interactions can be treated by increasing the bond dimensions
of the MPO representing the Hamiltonian Hp ® I for the purification |¥). Here the
Hamiltonian H and the identity operator I act on the spaces specified by the respective
indices.

As a next step, let us consider the density operator of the physical system, which can be
obtained by tracing out the auxiliary degrees of freedom:

pp = Tro|U) (U], (3.103)

Note that in the following the normalized thermal density operator at temperature 7' is
considered which is given by

pr = Z<T)—1e—(HP®IQ)/(kBT) (3.104)
— Z(T)—le—(HP®IQ)/(2kBT) T e_(HP®IQ)/(2kBT)’ (3.105)

where the inverse of Z(T) = Trg e~ #r®)/(ksT) jg ysed for the normalization. Note that
the identity in Eq. (3.105) can be written as I = Z(00)ps. With this replacement one
obtains

_ (o)
pT = Z(T)

Trg o~ (Hp®IQ)/(2ksT) o) <\Ijoole_(HP®IQ)/(2kBT) (3.106)
as the Hamiltonian Hp ® I does not act on Hg. By comparing this result to Eq. (3.103),
the purification of the thermal state can be identified as

|Ur) = o~ (Hp®IQ)/(2ksT) 1Woo). (3.107)

Also note that Z(T')/Z(o0) = (VUr|¥7). Since an infinite-temperature purification |¥ )
can be stated analytically, the above expression implies that |WUr) is accessible via an
imaginary-time evolution starting at 7" = oco. The imaginary-time evolution successively
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lowers the temperature and represents a standard numerical tool (see Sec. 3.4). A purifi-
cation at T' = oo is a product state of maximally entangled states between the physical
and auxiliary degrees of freedom at each rung of the ladder [Sch11]. This is depicted in
Fig. 3.7 and assumes the following form

1
Vo) = @51 [Poos)s  [Woos) = 7i Y s ®lsj)g- (3.108)

In the case of a spin-1/2 Heisenberg chain (see Sec. 4.2), another possible choice that is
used in this thesis is the singlet state at each rung

1
V2

The corresponding MPS matrices for 7 = 1,2,..., L are, e.g., given by

Vaoj) = —= [| Trlo) — | Lrta)]- (3.109)

M= (10), M¥7 =0 =1), M™ = (0 1/\/§)T, Mb = (1/V2 O)T.
(3.110)

This state conserves, e.g., the z component of the total spin of the enlarged system
consisting of both physical and auxiliary sites. However, this symmetry is broken for the
Dzyaloshinskii-Moriya interactions effectively described by a transverse staggered field
(see Chapter 4.5) and hence it is not possible to exploit it for the computations.

In the presence of symmetries, the authors of Ref. [NA16] reported an approach to further
restrict the quantum numbers in the preparation of the purification. The very recent
development proposes a computation within a subspace in which, e.g., the z component of
the total spin of the physical system is conserved for a Heisenberg chain. One consequently
works in the canonical ensemble for the physical chain resulting in smaller Hilbert space
dimensions. In contrast, a purification of the form (3.110) is used throughout this work.
It leads to a calculation which can be considered as grand canonical.

In the course of the imaginary-time evolution starting at 7" = oo, static thermodynamic
properties can be calculated conveniently since the evaluation of the expectation value of
an operator A = Ap ® Ig is given by

(Ur|(Ap ® 1) |Vr)
(Wr|Pr)

The MPS-based evaluation of such expectation values can be performed with the same
procedures used for zero-temperature expectation values. For instance, the internal energy
(H)r and (H?)7 can be calculated in this manner, which will be used to evaluate the
specific heat in Sec. 5.2.

(A)r = Trg (Apr) = (3.111)

Dynamics of the purification 3.6.3

The dynamics of the purification also known as a thermofield state has been considered
in Sec. 2.4. Here one may start by recapitulating a few things. If one thinks of the density
operator p as a state vector |p)) in the Liouville space of operators, the corresponding
Liouville-von Neumann equation in Eq. (2.44) becomes formally isomorphic to the time-
dependent Schrodinger equation in Hilbert space. According to Ref. [BD87|, each vector
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|p)) can be identified with a pure-state wave function |¥) in a doubled Hilbert space
Hp ® Hg. With this association, the Liouville operator £L = Hp ® I — Ip ® Hg serves
as the Hamiltonian for the purification |¥). Technically, £ is implemented as an MPO.
If one wants to study magnetic fields, it has to be noted that the fields included in Hg
need to be reversed in sign due to time reversal symmetry [KBM13].

The eigenvalues of the operator L are the differences of the eigenenergies of the Hamilto-
nian H. From this, it becomes evident that a Liouville-space formulation is natural for
the treatment of finite-temperature dynamics and the expression for a spectral function
at T'> 0 is

1
AT(w) = 5 S e /BT, | BIE,)

(B[ CIE) 6 (w0 — (B — E)) (3.112a)
= <\I/T|(BP®IQ)5(W—£) (Op@IQH\I/T). (3.112b)

See Sec. 2.5 for more details. Here |Ur) € Hp @ Hg denotes the thermal state which
is obtained via an imaginary-time evolution as explained in Sec.3.6.2. The Liouvillian
formulation can be used to recast finite-temperature spectral functions (see Eq. (3.112b))
into a form very similar to the 7" = 0 expression in Eq. (3.87). Thus, standard numerical
methods working directly in the frequency domain are inherently applicable also at T" > 0.
Examples are a continued fraction expansion as well as a Chebyshev expansion of spectral
functions. How these methods can be formulated in Liouville space is discussed in the
following two sections.

Chebyshev expansion of finite-temperature spectral functions 3.6.4

Rescaling scheme and resolution at 7' > 0

At finite temperature, the Chebyshev recursion is performed with respect to the Liouville
operator £ which also needs to be rescaled. To this end, it is helpful to realize that the
eigenenergies of £ are the differences of the eigenenergies of the Hamiltonian, the width
of the spectrum of the Liouville operator turns out to be

W* = E-  — E- Ef —EH EHE —FH y=2WH, (3.113)

max min — ( max min) - ( min max

It hence assumes twice the value of the Hamiltonian width W#. The linear rescaling
scheme used in this thesis is given by the map

WE WE
w € [—7,7} —w e [—W’,W’], W =1 —€/2,
1 Wk WE
r_ = oy / _
W w —a<w+ 5 ) W' a Tk
The rescaled Liouvillian is
1 Wt
L — = (E—l—T) - W (3.114)
a

The support of a finite-temperature spectral function usually corresponds to the central
region of [-W¥£/2, W% /2], and is therefore mapped to rescaled frequencies w’ < 1 in the
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interval [—W’ W']. This is one essential difference in comparison to 7" = 0, where the
support of the spectral function is rescaled to the lower part of the interval [—W' W],
i.e., w' is only slightly larger than —1. Although Equation (3.95) for the broadening
is still valid at T > 0, there is only a weak frequency dependence in this case since
the square-root expression in the equation is approximately one — at least as far as the
support of the spectral function is concerned. The expansion order can hence be chosen
constant at 7' > 0 to obtain a nearly uniform resolution. However, the support mapped
to w' < 1 at T > 0 also represents a drawback of the linear rescaling scheme since the
resolution towards the boundaries of the interval [—-W’ W] is higher. This is exploited
at T'= 0. Furthermore, the spectral width of the Liouvillian assumes twice the width of
the Hamiltonian, which reduces the resolution by a factor of two when working with the
full bandwidth at T" > 0. These two issues make it computationally more expensive to
obtain a high resolution at 7" > 0.

Operator-valued Chebyshev expansion at 7" > 0

Different from the Chebyshev expansion at 7" = 0 described in Sec. 3.5.4, here an expansion
in Chebyshev polynomials with respect to the linearly rescaled Liouville operator £’ from
Eq. (3.114) is employed. Instead of the ground state, the thermal state |Ur) is used as the
initial state. It is represented as a pure-state wave function using the purification trick.
This also applies to the other Chebyshev vectors generated by the recursion relation (3.93)
which now translates into

’tn> = 2£/‘tn71> - ‘tn72>7 ‘t1> = £/|t0>7 ’t0> = C‘\DT>7 (3115)

where C' = Cp® I is written for brevity. The recursion represents the main and computa-
tionally most time consuming part of the method. The MPS evaluation of the Chebyshev
moments i, proceeds along standard lines (see Sec. 3.5.4) using, for instance, variational
compression. The coefficients

pn = (Yr|Blty),  |tn) = T0(L') C|¥r). (3.116)

are computed after each recursion step. These coefficients are used to expand the finite-
temperature spectral function in Eq. (3.112b) as

N-1
1
ALY (W) x ———— + 2 bt Tr (W) | 3.117
BC (W) T |90k ;9# (w') ( )

The example of MPS-based Chebyshev expansions at T' > 0 demonstrates how the cal-
culation of finite-temperature spectral functions with frequency-domain methods known
from T = 0 can be formulated in Liouville space. Nevertheless, note that one has to pay
a higher computational price than at 7" = 0. One issue is the doubled system size needed
for the purification. As illustrated in Fig. 3.7, physical nearest-neighbor interactions be-
come next-nearest-neighbor interactions in the Liouville operator.?® Consequently, the
internal bond dimensions D of the MPO representing £’ are slightly larger than for the
Hamiltonian. For a Heisenberg chain, one finds D(H') = 5 and D(L') = 8 as an example.

33There are also next-nearest-neighbor interactions between auxiliary sites due to the term —Ip ® Hg
in the Liouvillian.
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Continued fraction expansion at 7' > 0 3.6.5

Besides MPS-based Chebyshev expansions of finite-temperature spectral functions, it is
also possible to formulate the MPS Lanczos method generating a CFE in Liouville space.
This demonstrates the flexibility of the formulation. Consequently, the results are ob-
tained by a continued fraction expansion (CFE) of the spectral function generated by the
Lanczos algorithm with respect to the Liouville operator L:

\fir1) = LIf:) — ailfi) = Vi fic)  (bo=0, |f1) =0),
a; = (HILIf) /il f), 02 = (Filfi) ) {fimal fima)- (3.118)

Here the Lanczos states |f;) are also represented by MPS purifications living in the tensor
product space Hp ® Hg. The initial state for the Lanczos recursion is

|fo) = B[Yr)/\/(Yr|BIB|Yr), (3.119)

where |Ur) still denotes the thermal state obtained via imaginary-time evolution. Hav-
ing determined the coefficients from Eq. (3.118), a finite-temperature dynamical response
function is approximated by a CFE of the form

1 1
Spip(z =w+in) = ——Im <\I'T BTﬁB' \IIT> (3.120)
1 U, | BT B|W
Ly (0 |b2T> (3.121)
™ Z_ao_Z7a71b%

Different from the MPS Chebyshev method, CFE results exhibit an intrinsic Lorentzian
broadening both at 7' =0 and 7" > 0. Depending on the number of Lanczos iterations n,
the value 7 of the broadening is chosen such that the spectral function is visibly converged.
Essentially, the spectral function is approximated by a sum of Lorentzian peaks. This is
different from Chebyshev expansions where highly oscillating polynomials are used. Thus,
it might be harder to resolve, e.g, the multi-particle continua of Heisenberg chains with a
CFE.

For a little more completeness, it has also to be noted that there are also finite-temperature
variants of the Lanczos method which allow for the calculation of dynamical properties.
These methods are not implemented using MPS or purifications but use a vector represen-
tation of the Lanczos states, as explained in Sec. 3.2. These finite-temperature methods
are summarized in Ref. [PB13]. All of them are a combination of the Lanczos method and
stochastic sampling. At low temperature, only a smaller amount of sampling is needed
compared to higher temperatures. The most prominent method in this context is the
finite-temperature Lanczos method (FTLM) [JevPev94, JP0O| and its low-temperature
version [ADEvdLO03]. The FTLM has also been combined with the traditional DMRG.
This method only works well at rather low temperatures 7/J < 0.5 as it is based on
stochastic sampling. It can treat Heisenberg chains of length L < 40 [KPcv09].
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Introduction 41

This chapter is concerned with the review of models effectively describing the magnetic
properties of quasi-1D materials. A typical solid is composed of ions and electrons that
are condensed in a crystalline structure in three spatial dimensions. Even a small chunk
of a solid having a volume of 1 cm?® contains a gigantic number of such constituents,
i.e., of the order of 10%® particles. To describe such many-body quantum systems, it is
necessary to reduce the very large number of variables by making justified approximations.
This will finally lead to effective models allowing for the description of many quantum
phenomena in solids. One very common phenomenological simplification is the decoupling
of the dynamics of the atomic nuclei and the electrons. This assumption is known as the
Born-Oppenheimer approximation [BH54]. The motion of the nuclei can be neglected
and one may think of them as a static lattice.! This is well justified since the nuclei
are considerably heavier? than the electrons which accordingly move significantly faster.
Then the dynamics of the electrons are considered in the periodic potential of fixed ions.
It is also possible to make a further drastic simplification such as neglecting the repulsive
two-body interactions among electrons. However, this thesis is concerned with quantum
magnetism and therefore strong correlations as introduced by the Coulomb interaction
represent an indispensable ingredient.

A very important model for interacting electrons which displays true many-body phenom-
ena driven by strong correlations is the Hubbard model [Gut63, Hub63, Kan63, EFGT05].
Since the major motivation behind this work is the study of quasi-1D materials, only
1D models are considered in the following. In the formalism of second quantization
[Mah00, Prul4|, the Hubbard Hamiltonian for a chain of atoms is given by

H=H,+ Hy = —tz (cj,sciH’S + cLl’sci,s) + UZ NN | (4.1)

Here cf? denotes the annihilation (creation) operator for an electron at site ¢ with spin
s =T,]. At each site the local Hilbert space is spanned by the basis {|0),] }),| 1), 41},
where the last basis state corresponds to a doubly occupied site. Moreover, due to the
Pauli exclusion principle double occupancies of two electrons with the same spin quantum
number are forbidden.

The first term H; in Eq. (4.1) is responsible for the itinerant behavior of the electrons.
However, here one assumes that the electrons are mainly localized at the lattice sites while
they are allowed to hop between adjacent sites.®> This is called tight-binding approxima-

IThis, e.g., includes neglecting phonons which provide a quantum mechanical description of vibrational
lattice modes.

2About four orders of magnitude heavier.

3Here isotropic hopping amplitudes t are assumed.
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tion. So there is only one orbital per site having a sufficient overlap with the orbitals at
neighboring sites. This is a valid hypothesis for the derivation of models. However, in real
materials consisting of magnetic ions with partially filled d or f orbitals, the situation is
more subtle and will be discussed further below.

The second contribution Hy to the Hubbard model incorporates the Coulomb interactions.
However, this simple variant of the model assumes only local interactions. This is usually
the case due to the strong screening in transition and rare earth metals. The Coulomb
interactions are thus mimicked by a repulsive (U > 0) on-site interaction favoring a
localization of the electrons. The model does hence not include long-range Coulomb
forces. The particle number operator at site ¢ is denoted by n; s = czsci’s. The interplay
of these two contributions determines the behavior of the system.

Although the above approximations have led to a simplified model in Eq. (4.1), there has
so far been no general analytic treatment of it. However, it is possible to calculate the
exact eigenvalues and eigenstates of the 1D Hubbard model via the Bethe ansatz [LW68],
but even the calculation of the norm of the exact eigenfunctions poses a challenge [GK99].
Despite these difficulties, the Hubbard model plays an important role in the study of
itinerant magnetism and metal-insulator transitions. These two aspects are for instance
treated pedagogically in Ref. |[Faz99]. There has been a lot of progress in understanding
its physical properties by a combination of analytical and numerical approaches.

The Heisenberg model 4.2

Rather than reviewing the Hubbard model further, it is more important to point out
a special case which is studied throughout this thesis. This is the strongly interacting
limit U/t > 1 in combination with a half-filled electron band which sets the stage for
quantum magnetism. Then every site is essentially singly occupied in order to avoid double
occupancies which are energetically unfavorable in the presence of a strong electronic on-
site repulsion. This gives rise to a localized magnetic moment carrying a spin of S = 1/2
at each site. In this situation the system can be described by nearest-neighbor exchange
interactions between the magnetic spins. This is known as the Heisenberg model, which
has originally been proposed already back in 1928 [Hei28|.

Exchange interactions are of quantum mechanical origin and occur between identical par-
ticles such as electrons. Generally, they give the main reason for spin ordering in magnetic
materials leading to, e.g, antiferromagnetism which is obtained in the case of a predom-
inantly alternating ordering of the electronic spins. Furthermore, ferromagnetism may
emerge when the magnetic moments of electrons are mostly aligned. The classical dipolar
interactions between the electronic spins are too weak (about 107* €V corresponding to
1 K) in order to account for such ordering since it is commonly observed at much higher
temperatures. Exchange interactions arise due to the following fundamental properties of
electrons [Aue94|:

e The electron’s intrinsic angular momentum.
e [ts kinetic delocalization energy.
e The Pauli exclusion principle.

e The Coulomb repulsion between electrons.
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In order to motivate the Heisenberg Hamiltonian in the next section, the exchange inter-
action between electronic spins at adjacent sites in the single-orbital Hubbard model is
considered.

The Heisenberg Hamiltonian 421

The following discussion is mainly based on Ref. [Faz99]. In order to obtain the Heisenberg
Hamiltonian, one regards the Hubbard Hamiltonian (4.1) in the strongly interacting limit
U/t > 1 and at half filling and resorts to perturbation theory. In the perturbative
treatment Hy represents the zeroth-order term and the weak (¢/U < 1) single-particle
Hamiltonian H; is the perturbation. This is different from standard perturbation theory
since one usually treats problems with a strong one-particle Hamiltonian and a weak
interaction term. In such a standard case the zeroth-order ground state has no degeneracy.
However, here the ground-state of the zeroth-order term Hy is highly degenerate and the
weak perturbation by H; has a considerable effect and lifts the degeneracy. It therefore
mixes the degenerate eigenstates of Hy. In order to treat higher orders of ¢/U, a series
of canonical transformations can be applied to derive an effective spin Hamiltonian. In a
first step, a new eigenbasis is constructed from the zeroth-order eigenstates of Hy whose
elements are not mixed in order ¢. In a second step, mixing of order t? is avoided. A
detailed discussion of the perturbative treatment can be found in Ref. [Faz99|. As a result,
at half filling and U/t > 1 the spin-1/2 Heisenberg model effectively describes the low-
energy behavior of the repulsive Hubbard model. The isotropic* Heisenberg Hamiltonian
defined on a chain with L sites is given by

L-1 L-1

J — - 2 Q%
H=17)8; Sj1 =) 5 (555 +578).) +78;5. (4.2)

J=1 J=1

It can be determined in second-order perturbation theory in ¢ and represents a paradig-
matic spin model. Here S; represents the spin operator at site [ with components S
where a = x,y,z. Heisenberg spins can be oriented in any spatial direction in three
dimensions. Moreover, one has S;" = S¥ +iS} and S;” = SF —iS}. There is an antiferro-
magnetic exchange coupling J between nearest-neighbor spins. This can be understood
by considering two adjacent antiparallel spins at different sites. Then a virtual hopping
process can lead to, e.g., the following transition

[0 [ = 10), 14D (4.3)

resulting in an energy gain of ~ ¢?/U in second-order perturbation theory. The coupling
between nearest-neighbor spin operators is given by J = 4¢?/U in second order. Note that
the coupling constant sets the global energy scale of the system. Having only considered
antiparallel spin alignment, one finally has to note that for a parallel configuration of
neighboring spins such a virtual process is excluded by the Pauli principle.

4There are also anisotropic variants of the Heisenberg model such as the X X Z model with anisotropic
exchange in the z direction. Although it is not considered in this thesis, further generalizations of the
isotropic Heisenberg model are reviewed in Ref. [MKO04].
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The Heisenberg Hamiltonian acts on spin states having a basis {| |), | 1)} at each site. Also
note that the z,y, 2 components of the quantum spin operators obey the commutation
relations

[Slav S;] = iea'yu 5ll’ Slyv (44)

where €,,, denotes the totally antisymmetric Levi-Civita tensor. Apart from the low
dimensionality of the model, the noncommutativity in Eq. (4.4) leads to quantum behavior
which is considerably enhanced for a small value of the spin, e.g., for S = 1/2 treated
here.

In the ground state of the 1D antiferromagnetic Heisenberg model, there is no long-range
order due to the presence of strong quantum fluctuations. The ground state is a spin
singlet and can be described by the massless Luttinger liquid theory [Gia04].

4.2.2

Excitations

The following paragraphs contain a brief discussion of the ground-state excitations in the
1D spin-1/2 Heisenberg antiferromagnet. For a more detailed cf. Refs. [Faz99, MKO04]. Its
elementary excitations are fractional spin-1/2 quasiparticles which are interacting weakly
in a non-trivial manner. They are known as spinons. Assuming an infinite 1D chain with
lattice periodicity a, the spinons have a dispersion relation [dCP62]| given by
T, .. T
wi(g) = Sl sin(ag)l, g€ |52, (45)
where ¢ represents the wave vector (h = 1). The dispersion is depicted as the lower bound-
ary of the two-spinon continuum in Fig. 4.1. Two-spinon excitations carry a spin of S = 1.
Their continuum governs the dynamics of the isotropic Heisenberg antiferromagnet. Its
upper boundary is given by
wa(q) = 7| J sin <%) . (4.6)

Moreover, the boundaries of the two-spinon continua in the 1D Heisenberg antiferromag-
net can be calculated exactly by Bethe ansatz in the presence of a uniform magnetic field
[MTBBS81].

The excitation spectrum is gapless at ¢ = 0 and ¢ = +7/a. Although the 1D Heisenberg
model can be solved exactly by Bethe ansatz [Bet31] which provides for instance the
excitation energies and all eigenstates, the calculation of the dynamical spin structure
factor also involves matrix elements of spin operators between excited states. This renders
analytical calculations complicated. However, the contribution of both the two-spinon
[KMB*97] and four-spinon excitations [CHO6] to the zero-temperature dynamical spin
structure factor have been obtained exactly. These works showed, e.g., that at 7' = 0 the
two-spinon excitations contribute 72.89 % to the total integrated intensity whereas the
four-spinon contributions make up 27 +1%. Consequently, the remaining ~ 1% of the
intensity arise from higher spinon excitations [CHO6.

Ferromagnetic Heisenberg model 423

Originally, the Heisenberg model was proposed in 1928 [Hei28| to effectively describe both
ferromagnetism and antiferromagnetism. In the case of ferromagnetic exchange couplings
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0 ‘
—m/a 0 T/a

Figure 4.1: (a) Isotropic Heisenberg antiferromagnet: The spinon dispersion wi(q) from
Eq. (4.5) represents the lower boundary of the two-spinon continuum whose extent is marked
by the gray shaded region. Its upper boundary is given by wa(q) in Eq. (4.6)

(J < 0), the Heisenberg model in Eq. (4.2) has a ground state in which the maximum
value of the total spin is assumed. Therefore, the state

1.1 (4.7)

is a ground state of the system which is maximally polarized in the z direction. However,
the Heisenberg Hamiltonian is invariant under spin rotation resulting in a degenerate
ground state. The excitations are classified by the number of flipped spins in a ferromag-
netic ground state. A so-called single-magnon excitation which has S =1 is created by a
single spin flip. Although this thesis is not concerned with the ferromagnetic Heisenberg
model, magnon excitations are also present in the fully spin-polarized phase of, e.g., the
antiferromagnetic Heisenberg chain.

X X model 4.3

The spin-1/2 XX model [LSM61] is obtained from the Heisenberg Hamiltonian in Eq.
(4.2) by setting the exchange coupling between the z components of nearest-neighbor spins
to zero. Using the Jordan-Wigner transformation [LSM61], the X X model can be mapped
to non-interacting spinless fermions and is hence exactly solvable. Its Hamiltonian is given
by

L—1

Hyx =J»  (S7S7,+SUSY,). (4.8)

j=1

For the XX model different observable quantities such as the dynamical spin structure
factor can be calculated exactly [DK98, DKS00|. This allows for a comparison to numer-
ical results in Sec. 5.2.3.
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Superexchange interactions 4.4

The following brief review of superexchange interactions is mainly based on Refs. [Faz99,
Blu01, Goo08] which may also be consulted for further reading. An aspect also reviewed
here is the occurrence of ferromagnetic superexchange which is relevant for the study of
the material BaCuyV,0Og in Chapter 7.

In the previous discussion of exchange interactions in Sec. 4.2, only the so-called direct
exchange between adjacent sites in the single-orbital Hubbard model has been considered.
In this case, the electrons may gain kinetic energy by virtual hopping between neighboring
sites in the presence of a Coulomb repulsion. However, in many materials direct exchange
does not represent the dominant mechanism for explaining their magnetic properties. The
reason is simply that there is not sufficient overlap between the neighboring orbitals of the
magnetic ions. This is the case for many antiferromagnetic insulators such as transition
metal compounds.

Therefore, one oftentimes needs to consider longer-ranged so-called indirect exchange
interactions. Such indirect exchange mechanisms are important in the description of
many antiferromagnetic insulators. For instance, the 3D ionic solid in which the magnetic
Mn?* cations are separated with nonmagnetic intermediary O?~ anions on a simple cubic
lattice. The antiferromagnetic order in this material is formed due to a dominating indirect
exchange interaction mediated by the orbitals of the nonmagnetic ions in-between the
magnetic moments. This is known as superexchange [Kra34, And50, And63|. In order
to understand it, an even further idealized example adopted from Ref. [Faz99| is given
in Fig.4.2. The two cations, A and B, each have one electron in the d orbital. The
intermediary anion is chosen as O?~ having a filled p shell. The overlap between the
cationic d orbitals with the anionic p orbital in-between allows the p electrons to occupy
these d orbitals with a nonvanishing probability. This gives rise to an effective exchange
interaction between the spatially separated d orbitals of the cations.

Superexchange can be obtained by considering the energetics of several possible configura-
tions in a perturbative treatment as done in Sec. 5.2 of Ref. [Faz99|. In this consideration,
competing effects have to be considered. On the one hand, there is a kinetic exchange by
virtual electron transfers between overlapping orbitals leading to double occupancies. Due
to the Pauli exclusion principle antiferromagnetic exchange is energetically more favorable
in this case since the indicated hopping in Fig. 4.2 is allowed. The magnitude of the kinetic
exchange depends crucially on the overlap between the d orbitals and the p shell of the

£ N

v b v yort
d P d
cation A anion cation B

Figure 4.2: (Figure based on Fig. 5.1 in Ref. [Faz99|) Idealized example illustrating the su-
perexchange between two magnetic cations A and B which is mediated by an intermediary anion.
Here the cationic d orbitals are singly-occupied and the p shell of the anion is filled. This allows
for virtual hopping processes. One of them is indicated by the arrow.
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intermediary anion. The overlap depends on the angle of the cation-anion-cation bond.
An angle of about 180°, as depicted in Fig. 4.2, typically leads to an antiferromagnetic
alignment of the spins.

On the other hand, the superexchange can also be ferromagnetic in certain cases. This is
less common since the contribution leading to the antiferromagnetic exchange explained
above is generally dominant. Ferromagnetic superexchange can occur when the virtual
electron transfer through an intermediary anion is for instance from a half-filled to an
empty d orbital. Ferromagnetic ordering is also favored for orthogonal orbitals, but this
contribution is usually small as the magnetic cations are spatially separated. In this case
there is no virtual electron transfer and the corresponding exchange between the spins is
a ferromagnetic potential exchange. For a more in-depth treatment of superexchange, a
high number of excited orbital states has to be considered, see Ref. [ZP73|.

In order to predict whether the net magnetic superexchange is antiferromagnetic or fer-
romagnetic, there exist the semi-empirical Goodenough-Kanamori rules.® These have
originally been formulated by Goodenough [Goob5, Goo58, Goo60| and have been further
refined by Kanamori [Kan59|. Mainly based on the electron occupancies in atomic orbitals
and symmetry relations, the semi-empirical rules allow for a quantitative prediction of the
sign of the exchange interactions. They predict that a crossover from antiferromagnetic
to ferromagnetic superexchange is possible at a bond angle of about 90°.

Dzyaloshinskii-Moriya interactions 4.5

Note that parts of the present Section 4.5 have already been published in Ref. [THP*16].

Since the spin-1/2 Heisenberg antiferromagnet has a ground state characterized by strong
quantum fluctuations, it is therefore highly unstable even to small perturbations which
may completely change the ground-state excitations of the antiferromagnetic Heisenberg
model [OA97, Zvy12]. One example for such a perturbation are Dzyaloshinskii-Moriya
(DM) interactions. First postulated by Dzyaloshinskii using a combination of phenomenol-
ogy and symmetry considerations based on Landau theory [Dzy58|, these interactions
could be identified as a consequence of spin-orbit coupling by Moriya [Mor60a, Mor60b|
who developed a general theory of anisotropic superexchange taking into account spin-
orbit coupling by a perturbative treatment. Here the spin-orbit interaction in the mag-
netic ions is modeled as ~ AL -S with a small constant A < 1. The DM interaction is an
antisymmetric exchange interaction of the general form

HDM = D12 . (81 X Sg) s (49)

where D15 is a constant vector, the DM vector. The interaction is linear with respect
to spin-orbit coupling |Dj3| ~ A. When the crystal symmetry is sufficiently low, it is
the largest contribution from anisotropic superexchange [Mor60b]. Moreover, small DM
interactions in addition to symmetric exchange of the form S, - S;;; also explain a very
small spontaneous magnetization known as “weak ferromagnetism” in antiferromagneti-
cally ordered crystals [Dzy58, Mor60a|. The reason is that DM interactions lead to a
slight misalignment of the spins resulting in a net ferromagnetic moment.

5They are sometimes also called Goodenough-Kanamori-Anderson rules.
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DM interactions are relevant in quasi-1D compounds with alternating crystal axes such as
copper pyrimidine dinitrate (Cu-PM) [INN*97, YIA*01, FAGT00] studied in Chapter 6.
In Cu-PM, the alternating crystal axes give rise to staggered DM interactions with a
factor of (—1)7 [OA97] in the following chain Hamiltonian

Hpum = Z (=1)’D-(S; x Sjy1). (4.10)

J

Here only nearest-neighbor DM interactions along the chain are taken into account. Now
the DM term in Eq. (4.10) is added as a perturbation to the antiferromagnetic Heisenberg
Hamiltonian:

H=> [JS;-Sjs1+h.S; +(—1)) D (8; x S;11)]. (4.11)

J

Moreover, a uniform magnetic field H is applied along the z direction in Eq. (4.11) above,
i.e., H = h,. This contribution is included as the excitations will be studied in dependence
of the magnetic field in this thesis. For simplicity, we first neglect the effects of the
anisotropic g-tensor in materials such as Cu-PM. Later on, we shall see that it leads to a
similar effect as the DM interactions.

Effective model 451

DM interactions can be eliminated [PC76, Mat77| by a staggered rotation of the spin
operators about the direction of the DM vectors D; = (—1)/D as long as |D| < J [OA97,
AO99|. The rotation angle is (—1)? arctan(|D|/.J). For |D| < J, the transformation can
be linearized (see, e.g., Ref. [FO12]) and one obtains

Sj — Sj + (—1>]R

57 %S (4.12)

This redefinition of the spin operators generates a transverse staggered magnetic field
perpendicular to both the longitudinal applied field and D. Then the Hamiltonian in
Eq. (4.11) takes the simpler form

H=JY Si-Sy1+h.Y Si+hy Y (-1)'8f (4.13)

involving only a transverse staggered field hg.e = h, instead of the more complicated
vector products. The staggered field is chosen along the x direction and its strength is
proportional to the uniform field, h, = ¢h,. The Hamiltonian in Eq. (4.13) is used for the
MPS computations in Chapters 5 and 6.

The effect of the initially neglected anisotropy of the g tensor in a more general Zeeman
term (D ;H-g- S;) also generates a staggered magnetic field whose transverse component
can also be included in the material parameter ¢, whereas the longitudinal component we
assume to be very small and therefore negligible, see for instance Ref. [FO12]. Note that
the elimination of the DM interactions also leads to a very small exchange anisotropy in
the Heisenberg model [Ess99] which is ignored in the following.
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4.5.2

Quantum sine-Gordon model

In some cases, it will be useful to compare the numerical MPS calculations for the effective
Hamiltonian in Eq. (4.13) to previous field theoretical results. This will be discussed in
Chapter 6. To this end, a short account of the quantum sine-Gordon model is given in
the following.

For hgay < J, the low-energy behavior of the model in Eq. (4.13) above can be treated by
Abelian bosonization and is given by the quantum sine-Gordon model with Lagrangian
density [OA97, ET98, A099, Ess99],

L- %@@)2 4 Ahetng) 05 (B(h2) ©). (4.14)

Here @ is a boson field and © the corresponding dual field and the coefficient A(hstag)
is field dependent. Another field dependence is included in the coupling S(h,) which is
calculated from the exact solution of the Heisenberg model in only a uniform magnetic
field (hstag = 0). The coupling B(h,) should not be confused with the inverse temperature
B carrying no argument. This approximation is assumed to be justified for hg,e << h..
The model in Eq. (4.14) is exactly solvable [Lut76, ZZ79, BT79, Kor79] and the low-
energy elementary excitations are known to be solitons and antisolitons which interact
and propagate as robust localized quasiparticles with mass Mg and charge () = £1. The
soliton mass was determined for magnetic fields h, comparable to J (hstae < J) [EFHO3]:

Ms 20 T(§) [T(5e) gusmA, L s (4.15)
—_ = sta, : ’
J VRN [T(5) 27 )

Here v is the dimensionless spin velocity. Although Equation (4.15) is exact [Zam95|, the
field-dependent amplitude A, for the bosonized expression of a spin operator is not known
analytically. Therefore, both v and A, were determined via DMRG for static correlation
functions [EFHO03]. The parameter ¢ is related to the field-dependent coupling § via
& = B(h,)?/(8m — B(h.)?). Tt is important to stress that the soliton and antisoliton are
found at incommensurate wave vectors ¢s = £qo and qs = 7™ & qo as sketched in Fig.4.3.
The shift gy = 2m(h.) is given in terms of the total magnetization per site m(h,) [AO99].
In order to predict the single-soliton resonance at ¢ = 0 resp. ¢ = m, the field theory
assumes a Lorentz invariant dispersion

Eg =/ M2+ h2, (4.16)

which is sketched as a gray solid line in Fig.4.3. Further elementary excitations, the
breathers, consist of soliton-antisoliton bound states. The mass gap of the nth breather
depends both on the soliton mass Mg and on £ as

M, = 2Mgsin (%ﬁ) . (4.17)

The number of breathers is restricted, i.e., n = 1,2,...,[£7!|. Breather excitations do
not carry any soliton charge @) = 0.



70 Chapter 4. Models
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Figure 4.3: (Published in Ref. [THP*16].) Schematic sketch of the low-energy modes of the

transverse (left panel) and longitudinal (right panel) dynamical spin structure factor. Here B1

and B2 label the first two breathers, whereas S (S) denotes the (anti)soliton. As discussed in
Chapter 6, note that the modes are actually connected to each other via the dashed lines, while
the field theory (thin gray lines) assumes a linear dispersion of the soliton around ¢ = 0.

Alternating Heisenberg chain 4.6

Another model studied in this thesis is the spin-1/2 alternating Heisenberg chain which
is a further generalization of the uniform Heisenberg antiferromagnet in Eq. (4.2). Its
Hamiltonian is given by

H = Z [Jintra Sj1 * Sj2 + Jinter Sj2 + Sjt1.1] - (4.18)
J

Here strongly alternating systems in one dimension are studied. In this case, the condition
Jintra > Jinter holds and one calls such systems dimerized. Assuming antiferromagnetic
exchange (Jinter, Jintra > 0), this terminology becomes clear since the dominant interaction
Jintra couples two neighboring spins into so-called dimers. Thus, Ji . is referred to as
intradimer coupling and describes the interaction of the two spins S;; and S; 5 constituting
the jth dimer in Eq. (4.18). The ground-state of an isolated dimer is a spin singlet

1

E, imer/) — = - 4.19

| Eo, dimer) ﬂ(\TU [ 41) (4.19)

with energy Eo dimer = —3Jintra/4. The excited states of a single dimer are triplet states
1

E1 dimer) = —= + : 4.20

| B, dimer) \/5(|N> [41) (4.20)

|E2,dimer> = | TT>7 (421)

|E3,dimer> — ‘ ¢¢> (422)

with energy Eiiplet = Jintra/4 carrying a spin of S = 1. Such excitations in the chain
of coupled dimers are henceforth referred to as triplons [SU03|.® The ground state of a
strongly dimerized chain is a product state of dimer singlets in which a small amount of
two-triplon fluctuations with a total spin of zero is admixed due to the interdimer coupling

SIn order to avoid confusion about the terminology, note that these excitations are also called magnons
in other works such as Ref. [TLJ*12].
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Jinter [TLJT12]. The interdimer exchange interactions make the single-triplon excitations
mobile. They are allowed to hop between adjacent dimers along the chain, while they
obey a hard-core constraint. The constraint signifies that a single site cannot be occupied
by two triplons simultaneously. Their dispersion can be expanded up to lowest order in
the perturbation & = Jigter/ Jintra i given by

W) oy T, (4.23)

Jintra Jintra

where a is the lattice periodicity [Har73].” The condition Jiyga > Jinter guarantees a large
gap compared to the bandwidth of the single-triplon dispersion. The dispersion up to
fifth order in & = Jinger/ Jintra 1S given by

intra

# = ; a; cos(laq). (4.24)

This result is obtained in Ref. [BRT99] where the coefficients a; are calculated as polyno-
mials in o

_ 1 .2 .3 3 23 4 3 5
ap = 1 6 Tt Ton« 256 &
_ 1 1.2 1 .3 5 4 35 5
ar = 7 & 100 ot tapa 2048 &
_ 1.2 1.3 15 4 _ 283 5§
az = 16 & 32 & 512 & 18432 & >
(4.25)
_ 1.3 1.4 _ 9 5
as = 61 & 8@ 1024 ¢
_ 5 4 6T 5
ay = 1024 & 9216 & >
_ 7 5
as = 1096 & -

The expression for the dispersion in Eqs. (4.24) and (4.25) will be used in Chapter 7.

Further ground-state excitations of the dimerized chain are studied in [BRT99, KU00|. For
instance, two-triplon excitations lead to continua at higher frequencies. For Jinira => Jinter,
they are well separated from the single-triplon dispersion at lower frequency. There is a
two-triplon bound state with total spin S = 1 just below the continua [BRT99|.

Last but not least, there are many compounds which can be effectively described by
this model. See Ref. [BRT99| for a list. In dimerized materials different inequivalent
exchange paths are linked in such a way that they can be described by alternating exchange
couplings Jinter—Jintra—Jinter—Jintra— - - —Jinter—Jintra- One of these realizations is the quasi-
1D compound copper nitrate [Mor70, TBR*03| in which both exchange interactions are
antiferromagnetic and their ratio is Jiner/ Jintra &= 0.227, where Jipra = 0.443 +0.002 meV
[TLJ*12]. The model in Eq.(4.18) will be used in the study of another dimer-chain
compound, namely BaCuyV,0g [VMB90, HKI04], in Chapter 7.

"Due to the two alternating exchange couplings, one has a lattice periodicity of a = 2 lattice spacings.






Proof-of-principle MPS
frequency-space calculations at 7" > 0

The main content of this chapter is published as a Rapid Communication in Physical
Review B [TMPH14| and therefore some parts of the following chapter are directly adopted
from the manuscript of Ref. [TMPH14|. In particular, this is the case for Secs. 5.2.3 and
5.3.2. Moreover, Section 5.4 represents the supplemental material of Ref. [TMPH14|. The
manuscript as well as the supplemental material were written mainly by me and revised
together with my coauthors Salvatore R. Manmana, Andreas Honecker, and Thomas
Pruschke. The MPS calculations have been performed by me and I implemented the
related MPS code from scratch.

Furthermore, it is pointed out that the resolution of the zero-temperature Chebyshev

expansions is specified incorrectly in Ref. [TMPH14|. Thus, the resolution is corrected in
Figs.5.7(a), 5.7(b), and 5.9 in the present chapter.

Introduction 5.1

The main scope of this chapter is to present proof-of-principle results obtained by a
newly developed approach for the calculation of finite-temperature spectral functions of
1D strongly correlated quantum systems. As explained in Sec. 3.6, the method combines
the purification of the finite-temperature density operator with a moment expansion of
the dynamical correlation function and operates in the framework of MPS.

The flexibility of the approach is shown by implementing both a Chebyshev expansion
of the spectral function and, alternatively, a continued fraction expansion (CFE). The
potential of the method is demonstrated by proof-of-principle calculations for the XX
model introduced in Eq. (4.8). The accuracy of zero-temperature MPS methods crucially
depends on the entanglement scaling which is closely related to the eigenvalue spectra of
reduced density matrices corresponding to a bipartition of the system. Therefore, such
spectra are studied in dependence of the Chebyshev iteration in order to assess the appli-
cability of frequency-domain methods at finite temperature. Then the finite-temperature
properties of dynamical spectral functions of isotropic spin-1/2 Heisenberg chains with
symmetry breaking Dzyaloshinskii-Moriya interactions are studied in magnetic fields.

The second purpose of this chapter is the calculation of static thermodynamic observ-
ables in the course of an imaginary-time evolution of an MPS purification, as explained
in Sec.3.6.2. These data are compared to existing exact results allowing to check the
accuracy of imaginary-time evolution algorithms. This is crucial as the methods are used
to compute the thermal states |Ur) which constitute the starting point in the calculation
of a spectral function at temperature 7.

73
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Results for the XX model 5.2

In order to assess the accuracy of the MPS frequency-space approach at finite temper-
atures, the antiferromagnetic X X model in zero magnetic field introduced in Sec.4.3
represents a good test case. By means of the Jordan-Wigner transform [LSM61]|, this
system can be mapped to free fermions and is hence exactly solvable.

Thermodynamics 5.2.1

First of all, the accuracy of the MPS-based imaginary-time evolution used to obtain the
thermal state |U7) at temperature T is checked. To this end, the temperature dependence
of the specific heat

o) = (57). = o= (] 7 (5.0

is calculated. The MPS results for this static thermodynamic quantity are calculated
using the purification trick (see Eq. (3.111)) and the TDVP algorithm for imaginary-time
evolution. The time step is chosen as At = 0.01.1 These are shown for a finite chain of
L = 50 sites and an internal MPS bond dimension of m = 200 in Fig. 5.1(a) where they
are directly compared to the exact result. There is excellent agreement for C'(T"), which is
also reflected by the absolute deviation from the exact results |Cexact(T)) — Crpve(T)|/L
plotted as a function of the inverse temperature 3 = (kgT')~! in Fig. 5.1(b) for different
values of m. Note that kg = 1 is adopted for the calculations. In particular, the choice
of m = 200 ensures that the absolute deviation of C'(T') is only of the order of 1079 for
B < 10. Therefore, it is justified to assume that the error accumulated in the course of
the imaginary-time evolution only represents a negligible source of errors with respect to
the subsequent calculation of spectral functions in the following section.

Moreover, Figure 5.1(b) also contains the absolute deviation between the exact results
and the MPS-based Lanczos time evolution using a time step of At = 0.005. Moreover,
the parameters specified in Sec. 3.4.3 were used. For m = 200, the deviation is very small
(< 1071, The Lanczos time-evolution method has been employed for the imaginary-
time evolution in the first publication related to this thesis [TMPH14| since the TDVP
algorithm has not yet been introduced at that time.

Reduced density-matrix spectra 52.2

The present section is a prelude to the calculation of the dynamical spin structure factor
in the following subsection. In the following paragraphs, the applicability of frequency-
domain methods at finite temperatures is considered. The accuracy of MPS methods is
closely related to the entanglement properties of the underlying system (see Sec.3.3.1).
Hence it is useful to study the entanglement generated in the course of the Chebyshev

!The imaginary-time evolution is not the bottleneck in the numerics since the frequency-domain
calculations are computationally more costly. Thus, the time step is not optimized for utmost efficiency
here.
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Figure 5.1: Results for the XX model: (a) Specific heat C(T") as a function of temperature
calculated using the MPS-based TDVP algorithm for imaginary-time evolution compared to
exact results for a chain of length L = 50 and an internal MPS bond dimension of m = 200.
The time step is At = 0.01 for one full sweep. (b) Absolute deviation |Cexact(T) — Ctpve(T)|/L
between the exact and TDVP results (solid lines) for a few selected values of m. Moreover,
the absolute deviation |Cexact(T) — ClLanczos(T')|/L is also plotted for MPS-based Lanczos time
evolution (solid circles) using At = 0.01 for a full sweep.

recursion at 7' > 0. Since there is no commonly accepted measure for the characterization
of entanglement at 7" > 0 [AFOV08, ACL12|, it can be more instructive to consider the
reduced density matrix eigenvalue spectra and, in particular, their decay. This information
helps to understand the generation of entanglement by frequency-domain methods at
finite temperature. Therefore, the reduced density-matrix eigenvalue spectra are plotted
in dependence of the Chebyshev iteration n in Fig. 5.2. Each panel of this figure contains
the spectra for a given temperature and n = 0 denotes the starting vector. The results
are obtained for an X X chain with L = 50 physical sites. The system is partitioned into
two parts by a cut through the center of the chain.

At high temperature, it is a striking feature that n = 0 spectrum falls off a lot faster
in Fig. 5.2(a) than at lower temperature in Figs. 5.2(b)-(e). This can be understood
by the fact that the entanglement of the starting vector is built up during the previous
imaginary-time evolution lowering the temperature. In all panels of Fig. 5.2, the decay of
the eigenvalue spectra becomes slower with increasing Chebyshev iterations.

Figure 5.2(f) contains zero-temperature results for the reduced density matrix eigenvalue
spectra obtained without the purification.? The zero-temperature spectra have been stud-
ied when the Chebyshev MPS method was introduced [HWM™11]. In particular, it was
found that the decay of the spectra saturates for higher iterations at T = 0. It is now
interesting that, in the present work, the saturation of the spectra is also observed at
finite temperature in Fig. 5.2(a)-(e).

The decay of the eigenvalue spectra is crucial for the accuracy of DMRG methods as the
eigenvalues represent the weights of the corresponding states. For the zero-temperature
Chebyshev MPS method it was found that including all states above a threshold of about
1073 gives accurate results [HWM™11]. This threshold is a few orders of magnitude
higher than in ground-state DMRG calculations where truncation errors are typically

2Note that the Hamiltonian was rescaled with the many-body bandwidth of the Liouvillian to allow
for better comparability.
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Figure 5.2: Results for an XX chain with L = 50 physical sites: Evolution of the reduced
density-matrix eigenvalue spectra with the number of Chebyshev iterations n for a bipartition
through the center of the chain. Each panel shows the eigenvalues w, = |s4|? of the reduced den-
sity matrices for a fixed temperature. Panels (a)-(e) show results obtained with a purified wave
function at 7" > 0. Panel (f) contains zero-temperature data obtained without the purification.
The solid horizontal lines at 10™3 are added for a better comparison.

between 107 and 107%. In the nontrivial test case of the X X model treated here, the
finite-temperature eigenvalue spectra decay also to about 1073 if one keeps m = 200
eigenstates. This is roughly the same order of magnitude as for the T'= 0 data in Figure
5.2(f). In fact, retaining only m = 100 states causes no significant deviations in the
spectral function as it can be seen in Fig. 5.4 further below.

As additional information, the error €comp, made by the variational compression after
each Chebyshev iteration is plotted in Fig. 5.3. It offers another source of guidance for
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Figure 5.3: Results for an XX chain with L = 50 physical sites: Error of the variational
compression €compr depicted in dependence of the Chebyshev iteration n for a fixed internal MPS
bond dimension of m = 200 and a few selected temperatures.

the accuracy of the results — here specifically for the dynamical spin structure factors
presented in the following section.

Dynamical spin structure factor 523

As a first proof-of-principle calculation for the Liouville-space formulation of MPS frequency-
domain methods at 7" > 0, the longitudinal spin structure factor S,,(k,w) of the XX
model (4.8) is computed in zero field. Since open boundary conditions are adopted, the
spin operators in k space are defined via particle-in-a-box eigenstates rather than plain
waves

L
« 2 3 - (67
Sy = T+1 Z sin(kj) Sj (5.2)

J=1

with respect to the quasi momenta k = 7n/(L + 1) and integers n = 1,..., L [BGJ04].
For the computation of S, (k,w), the operator of interest then reads A = (S7)p ® Ip.

A comparison to exact results is possible since the time-dependent spin correlation func-
tions (S7(t)S%(0)) can be evaluated exactly [DK98, DKS00] and transformed into w and
k space using Eq. (5.2) by

S..(k,w) = Z % / dt ™= T12(S2 () S2(0)), (5.3)

,
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where (S7(—t)S7(0)) = (S7(t)S;(0))* holds for negative times.? The expectation value de-
notes the canonical thermodynamic average. Here n introduces uniform Gaussian broad-
ening needed for a comparison to Chebyshev expansions with Jackson damping.*

The MPS results are obtained by using the Liouvillian formulation of frequency-space
dynamics in combination with Chebyshev expansions of the spectral function (order
N =1700). They are compared to exact results in Fig. 5.4 for a system of size L = 50. Fig-
ure 5.4(a) shows the results for the longitudinal spin structure factor S,,(k = 257/51,w)
at T' = oo for different numbers of the internal MPS bond dimension m. Although the
Gaussian broadening 7 of the expansions is not strictly uniform by construction, the
agreement with the exact result (n = 0.06) is excellent for m = 100.

In Fig. 5.4(b) the temperature dependence of S,.(k = 257 /51, w) is depicted for m = 100.
Since these MPS results are obtained with the same resolution, it is possible to study
temperature effects. In this case, the thermal broadening of a van Hove singularity in one
dimension is observed. It is resolved as the main feature of the dynamical spin structure
factor in Fig. 5.4. The MPS results fit the exact curves well down to temperatures as low
as T'/J = 0.125.

Moreover, for an infinite system the support of the zz dynamical spin structure factor at
T = 0 and k = 257/51 also has a lower boundary at w > 0 at which a finite jump in
intensity occurs [DV06]. Above this gap the two-spinon continuum extends. The MPS
results for finite temperatures shown in Fig. 5.4 suggest that the threshold is smeared out
already at low temperature and confirm its disappearance at high temperature.

3There is also an exact expression for the dynamical spin structure factor in the thermodynamic limit,
see Eq. (3.1) in Ref. [DVKBOG6].

4Lorentzian broadening, e.g., needed for a comparison to CFE results, is obtained for €'~ in the
integral expression in Eq. (5.3).
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Figure 5.4: (Published in Ref. [TMPH14].) Finite-temperature DMRG calculations for the
dynamical spin structure factor S, (k = 25m/51,w) of an open X X chain with L = 50 sites com-
pared to exact results with Gaussian broadening n = 0.06 (N = 1700). Here J = 1 is adopted.
(a) At T' = oo, the accuracy is studied for different numbers for the MPS bond dimension m.
(b) Temperature dependence of S,,(k = 257 /51, w) compared to the exact solutions (solid lines)
for T'=0.125, 0.25, 0.5, and 1 (from top to bottom).
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Results for the isotropic Heisenberg chain 5.3

In the following two subsections, results for the isotropic Heisenberg chain are shown.
Section 5.3.1 is concerned with static thermodynamic properties. The temperature depen-
dence of the dynamical spin structure factor in the presence and absence of Dzyaloshinskii-
Moriya (DM) interactions is studied in a uniform magnetic field in Sec. 5.3.2. The DM
interactions are incorporated into the model as a transverse staggered field (see Sec. 4.5).
The dynamical spin structure factor is calculated by MPS-based Chebyshev expansions
directly in the frequency domain. At T > 0, the Liouville-space formulation is exploited
providing further proof-of-principle results for the newly developed approach.

Thermodynamics in zero magnetic field 531

For the isotropic spin-1/2 Heisenberg Hamiltonian in Eq. (4.2) (J, = J), there also exist
exact results for the specific heat and the static magnetic susceptibility obtained via the
thermodynamic Bethe ansatz in the limit L — oo [EAT94, K1ii98, KJ00, WRC™03]. The
exact specific heat data is compared to those obtained for finite systems by imaginary-
time evolution in Fig. 5.5(a). There is very good agreement between the exact and the
MPS results down to low temperatures. The inset in Fig. 5.5(a) focuses on intermediate
temperatures where the deviations from the infinite-system Bethe ansatz data are still
minor but most pronounced. However, it is very likely that these appear due to the finite
number of physical sites and the choice of OBCs. Indeed, the inset shows that the finite-
size curves move closer towards the exact result for L = oo with increasing system size.
Moreover, Fig. 5.5(a) also contains not exclusively TDVP data but also Lanczos time-
evolution results for L = 40 also underlining the similar reliability of this approach.’ A
similar comparison between exact and MPS results for the static magnetic susceptibility
is shown in Fig. 5.5(b). This thermodynamic observable is defined as

AT h=0)= T = (82~ (83T (5.4

For x(T') excellent agreement is found from intermediate to high temperatures. Due to
finite-size and boundary effects there are increasing deviations from the exact results for
an infinite system towards low temperature. These small discrepancies (at most 10 %) are
more pronounced than in Fig. 5.5(a) showing the specific heat. The inset of Fig. 5.5(b)
is focused on this region and reveals that the MPS curves for larger systems are found to
approach the exact result (L = 00).

In order to control the error of the TDVP approach quantitatively, the calculations are
performed for different internal bond dimensions of the MPS, i.e, m = 100, 200, and
in some cases even m = 300. Then the absolute difference between the m = 100 and
m = 200 [m = 200 and m = 300| data is plotted for both C(7")/L and x(T)/L as
a function of the inverse temperature $ in Fig. 5.6. The quantity serves as an error
estimate and is below 107° for 5 < 10 if the difference between the m = 100 and m = 200
results is considered. Therefore, even a m = 100 calculation gives accurate results for

°In fact, the Lanczos method was used to obtain the thermal states in Ref. [TMPH14] in which parts
of this chapter have been published.
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Figure 5.5: Results for the isotropic spin-1/2 Heisenberg chain in zero magnetic field: (a)
Temperature dependence of the specific heat C(T") calculated for finite systems with OBCs using
the TDVP algorithm for imaginary-time evolution in comparison to exact Bethe ansatz results
in the thermodynamic limit (taken from Ref. |[Kli98|). For the smaller system of size L = 40,
there are also Lanczos time evolution data (m = 100). (b) Temperature dependence of the static
magnetic susceptibility x(7"). In each panel, the inset zooms in on the results at intermediate (a)
respectively low (b) temperature showing that the finite-system curves move closer towards the
exact results with increasing system size. For the TDVP computations an internal MPS bond
dimension of m = 200 and the same time step as in Sec. 5.2.1 were used (At = 0.01).

this temperature range. The comparison between m = 200 and m = 300 shows that
the improvements for m = 300 are not very significant. Thus, m = 200 or m = 250
is sufficient to obtain highly accurate results. Moreover, it is also interesting that the
normalized error estimates (e.g. for m = 100 vs. m = 200) as depicted in Fig. 5.6 behave
in a very similar way, irrespective of the actual system size and over a broad temperature
range.
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Figure 5.6: Results for the isotropic spin-1/2 Heisenberg chain: Temperature dependence of
the absolute difference between the TDVP results for both (a) C(T")/L and (b) x(7")/L computed
for different MPS bond dimensions m = 100 and m = 200 [m = 200 and m = 300] and system
sizes. The quantity serves as an error estimate.
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Dynamical spin structure factor 53.2

The present section features further proof-of-principle results for finite-temperature spec-
tral functions obtained by MPS-based Chebyshev expansions directly in the frequency
domain. The following study is motivated by quasi-1D compounds such as Cu-PM
[ZKKF04, ZCO*11] and copper benzoate [DDacR*96, ANI*T03]. These materials possess
alternating crystal axes giving rise to nearest-neighbor Dzyaloshinskii-Moriya (DM) inter-
actions and an alternating g tensor. In the presence of a uniform magnetic field h,, both
generate an effective staggered field h, perpendicular to the direction of h, [OA97, AO99|.
These effects are captured by the isotropic Heisenberg chain with antiferromagnetic ex-
change coupling J = 1 in a staggered transverse field as included in the model Hamiltonian
in Eq. (4.13). In the following, this model is studied. For more details see Sec. 4.5. Note
that the proof-of-principle calculations assume a larger value of h, than in real materials
where the staggered field is usually only a few percent of the applied uniform field.

The dynamical spin structure factor S,,(k,w) is studied in the central region of the mag-
netization curve, i.e, h, = 1. In order to analyze the effect of these symmetry and
integrability breaking interactions, MPS-based Chebyshev expansions are computed both
for systems with strong interactions mimicked by a staggered field of h, = 0.3 and sys-
tems without DM interactions, i.e., h, = 0. Figure 5.7 presents the results for S,.(k,w)
for L = 50 sites and OBCs at temperatures of 7' = 0, 0.5, and 1. Note that all temper-
atures are stated in units of J in this chapter as J = 1 is adopted for the calculations.
An internal MPS bond dimension of m = 120 states is retained. A separate calculation
for each k value is performed. At T > 0, Chebyshev expansions of order N = 1500
for a (nearly) uniform Gaussian broadening of n &~ 0.13 are obtained. As explained in
Sec. 3.5.4, a fixed as well as frequency-independent resolution of the zero-temperature
results are obtained by adapting the expansion order in dependence of w in Figs. 5.7(a)-
(b). Unfortunately, in the published version of these two panels, i.e., Figs.2(a)-(b) in
Ref. [TMPH14], the expansion order of the results at 7' = 0 is not adapted. Thus, the
resolution of the Chebyshev expansions is frequency dependent and better than specified
in Ref. [TMPH14]. Therefore, it differs from the resolution of the results at 7" > 0. The
reason is the frequency-dependent factor /1 — w’? in Eq. (3.95). This is corrected in the
present Figs.5.7(a)-(b) allowing for a direct comparison between 7'= 0 and 7" > 0 as the
same frequency-independent broadening is used in both cases. This technical correction
has no impact on the physical results in each panel.

First of all, the zero-temperature dynamical spin structure factor at h, = 0 is discussed.
The result at T" = 0 obtained via an MPS-based Chebyshev expansion without the pu-
rification is shown in Fig. 5.7(a). For the discussion of these results, it is helpful to also
include them at a higher resolution than the proof-of-principle results at finite temper-
ature. These data using a smaller Gaussian broadening are shown in Fig. 5.8. It can
be seen that the numerical results agree well with the analytical boundaries for the two-
spinon continua from Bethe ansatz [MTBBS81|. Moreover, well-converged finite-size effects
(FSEs) can be resolved for L = 50. In the lower continuum, the oscillations are FSEs and
decay in amplitude towards higher frequencies, most prominently at k =~ 37/4. Note the
tiny peak just above the lower boundary of the lower continuum at k ~ 37/8 moving to
higher frequencies with increasing k and a similar branch visible in the upper two-spinon
continuum which may be physical features. The high intensity for k,w — 0 occurs due
to spin conservation. For h, = 1, S.,(k,w) is gapless at k = 0 and at k ~ 37/4. This
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Figure 5.7: (Corrected version of Fig.2 published in Ref. [TMPHI14|.) Longitudinal spin
structure factor S..(k,w) of an isotropic Heisenberg chain (J = 1) in a magnetic field h, = 1
obtained by the Chebyshev MPS method with approximate Gaussian broadening 7. The left
column shows results for h, = 0 (n =~ 0.13), and the right column for h, = 0.3 (n ~ 0.14). Top
row: T'= 0. Central row: T" = 0.5. Bottom row: 7" = 1.

is representative for a 7' = 0 Luttinger liquid (LL) with Fermi momentum 2kp ~ 37/4
[Gia04].

It is now interesting to study how the LL behavior changes or even disappears by in-
creasing the temperature. For example, in Refs. [FF10, BHM" 12|, the ‘melting’ of a
LL for a t¢-J chain with Kondo impurities and for SU(N) symmetric Hubbard systems,
respectively, has been investigated numerically by considering spectral functions at fi-
nite (effective) temperatures. The authors of Ref. [BHM™ 12| used a quench extension of
METTS and found the peak at 2kp to move with temperature to k = 7w at T~ 0.2 in
their units of energy. The quantum Monte Carlo results of Ref. [GB09| indicate that at
T = 0.25 a feature in the vicinity of 2kr remains visible. Therefore, this system represents
an interesting testing ground for proof-of-principle calculations using the Liouville-space
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Figure 5.8: Zero-temperature results for the longitudinal spin structure factor S,,(k,w) of a
Heisenberg chain in a magnetic field of h, = 1 obtained by the Chebyshev MPS method with
uniform Gaussian broadening 17 = 0.025. This figure shows the results of Fig. 5.7(a) at a higher
resolution. This is for instance helpful to discuss finite-size effects. The solid lines represent the
two-spinon continua from Bethe ansatz [MTBBS81]. Note that h, = 0.

formulation and an MPS-based Chebyshev expansion. The finite-temperature results for
h, = 0 are thus shown in Figs. 5.7(c) and 5.7(e). These calculations are in accordance
with Ref. [BHM™12] since for T' = 0.5 the zero-temperature signal at k ~ 37 /4 is replaced
by a broad distribution around k = 7 in Fig. 5.7(c). Besides this tremendous redistribu-
tion of spectral weight, there is also strong temperature broadening and spectral intensity
is found below the lower boundary of the two-spinon continuum at zero-temperature. In-
creasing the temperature to 7' = 1 in Fig. 5.7(e) leads to further temperature broadening,
but does not significantly alter the picture.

Now the effect of a staggered field of magnitude h, = 0.3 on S..(k,w) is studied. Compar-
ing Figs.5.7(a) and 5.7(b), one identifies the opening of a field-induced gap at 7' = 0 and
the formation of a well-defined band. This is in agreement with the expectations from
adding a DM term to the Heisenberg Hamiltonian since it causes the opening of gaps
[OA97, DDacR*96]. Interestingly, increasing the temperature from 7'= 0 to T = 0.5
does not change the results significantly: A redistribution of the weights is obtained and
the signals are smeared out, but in contrast to the h, = 0 case the qualitative features
persist. Further increasing the temperature to 7" = 1 leads to a stronger redistribution of
the weights and eventually the band disappears.

Next, these features are studied in more detail in Fig. 5.9, which shows the temperature
dependence of the longitudinal spin structure factor for h, = 0.3 at k = 497/51. Note
that the published Fig. 3 in Ref. [TMPH14| corresponds to the present Fig. 5.9. However,
here the resolution has been enhanced by subsequent calculations using the variational
compression (see Sec.3.5.4) instead of an SVD compression. This reproduction also al-
lowed to correct the zero-temperature results. As explained for Figs. 5.7(a)-(b) above, the
resolution specified for the 7" = 0 data published Fig. 3 of Ref. [TMPH14]| is wrong since its
frequency dependence has been ignored. This is corrected in Fig. 5.9 where all curves have
the same resolution over the shown frequency range. It now turns out that at 7" = 0.25
there is only little thermal broadening of the peak at w =~ 1.3. Only further increasing
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Figure 5.9: (Corrected version corresponding to Fig.3 published in Ref. [TMPH14].) MPS
results for the frequency dependence of S, (k,w) at k = 497 /51 of an isotropic Heisenberg chain
(J = 1) with L = 50 sites in a uniform magnetic field h, = 1 and an additional staggered field
h, = 0.3 at temperatures T"= 0, 0.25, 0.5, 1, and oo.

temperature up to 7" = 0.5 significantly broadens this feature. Also note the filling in of
spectral weight into the gap at small frequencies when increasing the temperature, which
is due to scattering. The signal corresponding to the excitations at high energies (w ~ 2)
starts to disappear for temperatures of the order of 7' = 0.5. Even further increasing the
temperature from 7' = 0.5 to T' = 1 also significantly broadens the peak at w ~ 1.3, which
corresponds to the band visible at T" = 0. Finally, at infinite temperatures, the curve is
rather flat with only small features up to w = 2, where it slowly starts to decay to zero.

Continued fraction expansion results 54

This section is intended to demonstrate the flexibility of the Liouville-space formulation.
The main content is directly adopted from the supplemental material of Ref. [TMPH14|.
Although it is conceptually also possible to use other tensor network states [VCMO8| than
MPS in combination with the Liouvillian formulation, this aspect will not be changed in
the following since efficient algorithms for the manipulation of such states are a subject
of current research [PBTT15, Corl6]. The degree of flexibility studied here is related
to the expectation that a variety of MPS methods can be applied using the Liouville
space formulation. In the following, the finite-temperature spectral functions are obtained
by a continued fraction expansion (CFE) generated by means of the Lanczos algorithm
formulated with respect to the Liouville operator £ (see Sec. 3.6.5).

In Fig.5.10 the exact results for the longitudinal spin structure factor of an X X chain
with L = 30 are compared to the CFE data. The exact results are obtained as described
in Sec. 5.2.3, except that we adopt a Lorentzian broadening of n = 0.1 on account of the
CFE. The agreement of the CFE results with the exact solutions is good as the relative
deviations are always < 10 % (see below for more details). Comparing the CFE results
for L = 30 to the Chebyshev expansions for L = 50 shown in Fig. 5.4, we find that the
MPS bond dimension m for a Chebyshev expansion can be chosen considerably smaller
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Figure 5.10: (Published in the supplemental material of Ref. [TMPH14|.) Finite-temperature
MPS calculations using a CFE for the dynamic spin structure factor S,,(k = 157/31,w) of an
open XX chain with L = 30 compared to the exact solution. (a) At T' = oo the accuracy is
studied for different numbers m. (b) Temperature dependence of S,,(k = 157/31,w) compared
to the exact solutions for 7' =1, 0.5, and 0.25 (solid lines).

than for a CFE: When devising the Chebyshev expansion, visible deviations cannot be
resolved in this plot for as small a value as m = 100, whereas for the CFE in Fig. 5.10 we
need to keep a substantially larger number m 2 300 to achieve a comparable accuracy at
a still lower resolution. Moreover, the convergence properties of the Chebyshev expansion
at finite temperatures also improve over those of the Lanczos algorithm. This becomes
particularly clear in Fig. 5.10(a) which shows our CFE results for the longitudinal spin
structure factor S.,(k = 157/31,w) at infinite temperature. Here, the absolute deviation
of the CFE from the exact result (< 0.005 for m = 300 and < 0.002 otherwise) is largest
in the center of the spectrum, i.e., at small frequency. This can be explained by the fact
that the extremal eigenvalues at the edges of the spectrum converge best in the Lanczos
algorithm.

In Fig. 5.10(b) the temperature dependence of S,.(k = 157/31,w) for m = 1200 is
depicted. Again, the CFE results fit the exact curves well down to temperatures as
small as T' = 0.25. A detailed analysis reveals that the maximum relative deviation for
m = 1200 is ~ 3.5 % for T =1, ~ 6 % for T'= 0.5 and ~ 85 % for T" = 0.25 (the
absolute deviations are < 0.004 in all cases). Thus, these errors in the spectral functions
are mostly due to the CFE and can be lowered by devising a Chebyshev expansion.

In Fig. 5.11, we furthermore show the momentum-resolved spin structure factor of the
isotropic Heisenberg chain in a uniform magnetic field h, with and without a staggered
magnetic field h, at temperatures T' = 0, 0.5, and 1 obtained via a CFE. All panels of
this figure correspond to those of Fig. 5.7 featuring the Chebyshev results. The main
features of the dynamical spin structure factor are also resolved by the CFE. However,
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in the Lanczos algorithm an MPS internal bond dimension of m = 500 is retained for a
chain of L = 30 and at least 300 iterations are performed. This yields a well converged
CFE with a Lorentzian broadening of n = 0.2. In contrast, the Chebyshev expansion only
requires m = 120 states for L = 50 at an even enhanced resolution.
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Figure 5.11: (Published in the supplemental material of Ref. [TMPH14|.) Longitudinal spin
structure factor S, (k,w) of a Heisenberg chain with L = 30 in a magnetic field h, = 1 obtained
with the CFE approach (n = 0.2). The left column shows results for h, = 0, and the right
column for h, = 0.3. Top row: T'= 0. Central row: T"= 0.5. Bottom row: T = 1.
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Interim summary 55

In this chapter, results from an efficient and very accurate approach to compute finite-
temperature spectral functions directly in the frequency domain are presented. The ap-
proach exploits a Liouville-space formulation of the dynamics. It was implemented via
a Chebyshev expansion in an MPS framework. A comparison between proof-of-principle
results for the longitudinal dynamical spin structure factor of the X X model and exact
results gives very good quantitative agreement at 7" > (. The high resolution allowed to
observe the disappearance of the Luttinger-liquid ground state upon increasing temper-
ature, see Sec. 5.3.2. In contrast, the effect of DM interactions and a staggered g tensor
leads to an opening of a field-induced gap and the formation of a band which both remain
stable over a wide temperature range.

The flexibility of the Liouvillian formulation was demonstrated by showing additional
results from an alternative CFE implementation in the previous section. For the systems
considered in this chapter, the MPS Chebyshev method turned out to be more efficient.
In particular, the two-spinon continua could be better resolved for even larger systems
and smaller internal MPS bond dimensions. Thus, Chebyshev expansions will be used in
the following chapters.

So far, the focus has been on proof-of-principle calculations, it is expected that the fre-
quency resolution can be further increased by using a variational compression of the
Chebyshev vectors after each iteration (see Sec. 3.5.4) instead of an SVD compression
employed for the majority of the results shown in this chapter. The scope of the following
two chapters is the application of this unbiased and efficient approach to models for quan-
tum magnetism describing quasi-1D compounds. This will allow for a direct comparison
to experimental results at finite temperatures, as obtained in electron spin resonance and
inelastic neutron scattering experiments.



Dynamical properties of the
sine-Gordon quantum spin magnet

Cu-PM | O

The content of this chapter is published as a regular article in Physical Review B [THP*16].
It is therefore mainly adopted from the manuscript of Ref. [THP*16]. This manuscript
was written primarily by me and revised together with the coauthors. I also performed
the DMRG calculations. The exact diagonalization results shown in the present chapter
and Figure 6.1 were contributed by Andreas Honecker. The ESR experiments have been
conducted by Alexey Ponomaryov and Sergei A. Zvyagin at the Dresden High Magnetic
Field Laboratory.

Introduction 6.1

The isotropic spin-1/2 Heisenberg chain with antiferromagnetic nearest-neighbor exchange
coupling is a paradigmatic model for quantum magnetism. Due to the strong enhance-
ment of quantum fluctuations on account of its low dimensionality, there is no long-range
order at zero temperature. The ground state is a spin singlet and its elementary ex-
citations are spinons carrying a fractional S = 1/2. They are unbound and interact
only weakly [FT81|. The dynamics of this model is governed by a gapless two-spinon
continuum [KMB*97, CH06|. A uniform magnetic field makes the soft modes of the exci-
tation spectrum incommensurate [MTBB81, SRB103|, but leaves the spinon continuum
gapless. Since the Heisenberg antiferromagnetic chain is in a critical phase, even small
perturbations can significantly change its ground-state physics.

A typical perturbation in spin-chain materials is the presence of Dzyaloshinskii-Moriya
interactions caused by spin-orbit coupling and/or a staggered g tensor due to alter-
nating crystal axes. In such cases, an applied magnetic field H induces an effective
transverse staggered field hgae o< H, which opens an energy gap oc H 2/3 [OA97, AO99.
There are several realizations of such quasi-1D materials, for example, copper benzoate
(Cu(CgD5C0O0)2:3D50) [DDacR ™96, DHR*T97, ANIT00, ANI*03|, copper pyrimidine dini-
trate ([PM-Cu(NOj)q:(H20)a],, PM=pyrimidine; or shortly Cu-PM) [INN*97, YIA*01,
FAGT00, ZKKF04, ZKKF05, ZCO™11], YbsAs3 [KIM*01], CuCly - 2(dimethylsulfoxide)
[KCB*04, KBCT05], and KCuGaFg [UTOT09, UTO"12, UTK*15].

The low-energy degrees of freedom of these materials can be effectively described in the
framework of the quantum sine-Gordon field theory (see Sec. 4.5.2). One central approx-
imation of this approach is that the field-dependent parameters such as the coupling con-
stant 5(H ) in the sine-Gordon model need to be determined in the absence of the staggered
field. The quantum sine-Gordon model is exactly solvable [Lut76, ZZ79, BT79, Kor79|,
so that many experimental observables can be evaluated for these sine-Gordon quantum
magnets. This includes static properties such as the specific heat [Ess99| and the field
dependence of the excitation energies [OA97, ET98, AO99|. Very important progress has
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been made in the prediction of dynamical properties. Nevertheless, they are accessible
only for a restricted set of wave vectors. For instance, the dynamical magnetic suscep-
tibilities can be calculated at the antiferromagnetic wave vector ¢ = 7 using the form-
factor method [ET98|. This approach has also been used to obtain the dynamical spin
structure factor for both the isotropic Heisenberg chain [EFH03| and anisotropic X XZ
Heisenberg antiferromagnets [KE09] in a uniform longitudinal and a transverse staggered
field. Nevertheless, the sine-Gordon theory does not fully capture the physics of high-
energy bound-spinon states observed in neutron scattering [KBC*05] and its predictions
are limited to the range of small to moderate fields. Beyond this, the density-matrix
renormalization group (DMRG) [Whi92, Whi93, PWKH99, Sch05a] has provided new
insights into the field dependence of a few low-lying excitations up to strong magnetic
fields [ZWX*03, LCZ105, LCWO06]. Furthermore, it has been shown that DMRG calcu-
lations for the lowest excitation are in agreement with ESR experiments probing the field
dependence of the excitation gap at very strong magnetic fields [ZCOT11|. For small sys-
tems, there exist a few numerical results for dynamical properties of sine-Gordon quantum
magnets, see, e.g., Refs. [KBC105] and [TE03].

In the present work, these systems are revisited by means of a detailed and systematic
study based on DMRG and exact diagonalization (ED) [NMO05, San10, HW09| calcu-
lations for momentum- and frequency-resolved response functions at zero and at finite
temperature. This gives direct access to relevant dynamical quantities probed in electron
spin resonance (ESR) [OA02, Zvy12] or neutron scattering allowing for the study of new
features emerging upon raising the temperature. In the employed approach, the DMRG
results for the spectral functions are computed directly in the frequency domain via a
Chebyshev expansion of the dynamical correlation function (see Sec. 3.5.4) using matrix
product states (MPS) [Schll]. At finite temperatures this is done in the framework of
a Liouville-space formulation for the dynamics of the purified finite-temperature density
operator, see Sec. 3.6. This combination of methods is used to investigate various aspects
of previous predictions and findings with a high resolution, and to make a prediction for
the evolution of intensities of the spectral functions with temperature.

At T = 0, the ESR resonance modes and their intensities are studied for a wide range
of the applied magnetic field and at higher frequency. Although the predictions by sine-
Gordon field theory are in very good agreement with many of the resonance frequencies
in ESR experiments, a systematic deviation for the single-soliton resonance probed in
Cu-PM [ZKKF04] has been observed. In this chapter, the discrepancy can be resolved
with the help of DMRG results for the dynamical spin structure factor.

As ESR experiments on Cu-PM [ZKKF04, ZKKF05, ZCO"11] and KCuGaFg [UTOT09|
also probed excitations which cannot be explained in the bulk sine-Gordon theory, Furuya
and Oshikawa studied boundary and impurity effects in sine-Gordon quantum magnets
[FO12|. Using a boundary sine-Gordon field theory approach, they found that there is
only one type of boundary bound state (BBS) for the soliton, antisoliton, and the first
breather, which is found below the bulk gap. The energy of this BBS is also known from
DMRG calculations restricted to low-lying excitations [LCZT05, LCWO06|. According to
the boundary field theory, there are even more predictions for boundary resonances at
T = 0. However, the exact intensities of these excitations have not been determined, yet.
In this work it is found that, except for the BBS, none of the boundary resonances is
clearly observable in the DMRG results for the spectral functions.

At T > 0, Ref. [FO12] also expects additional thermally induced transitions between
the sine-Gordon excitations. Since a few interbreather excitations were experimentally
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observed in KCuGaFg [UTOT09], one central goal of this chapter is the observation of
thermally-induced transitions between breathers in the material Cu-PM. To this end, both
numerical calculations and accompanying ESR experiments are performed for a wide range
of the applied magnetic field. It is found that finite temperature can lead to excitations
between the elementary breatherlike excitations of the sine-Gordon field theory at 7" = 0.
The evolution of their intensities with temperature will be studied.

The chapter is organized as follows. Section 6.2 provides information about the com-
pound Cu-PM and reviews further experimentally observable excitations in sine-Gordon
magnets. The relevant contributions probed in ESR experiments on sine-Gordon quan-
tum magnets are reviewed in Sec. 6.3. Then the details and parameters of the numerical
calculations are briefly presented in Sec. 6.4. In Sec. 6.5, the zero-temperature ESR
modes in the material Cu-PM and their intensities are studied and compared to previous
experiments. Section 6.6 is focused on thermally activated transitions between excited
states and includes both numerical and experimental results. Finally, the main results
and conclusions of the chapter are summarized in Sec. 6.7.

The compound Cu-PM 0.2

Crystal structure and effective model 6.2.1

Quasi-1D spin systems such as Cu-PM [INN197, YIAT01, FAGT00, WRC'03, ZKKF04,
WWS*05, ZKKF05, DWKO07, ZCO*11] and copper benzoate [DDacR™96, DHR197,
ANTT00, ANTT03] possess alternating crystal axes giving rise to staggered Dzyaloshinskii-

Moriya (DM) interactions and an alternating g tensor. The crystal structure of Cu-PM
[INN*T97, YIAT01, FAGT00] is illustrated in Fig. 6.1.

Figure 6.1: (Taken from Ref.
[THP*16].) Structure of Cu-
PM: chain of staggered Cu co-
Q @ Cu ordination octahedra linked by

e O pyrimidine rings (running along
! c- the a-c diagonal). The magnetic

NS 4 «N . . . .
interaction J is mediated by
’ ¢C a Cu-N-C-N-Cu superexchange
c\ - H pathway. (This figure was cre-
ated using the program Mercury

3.8 [MBCT08].)

As reviewed in Sec. 4.5, the DM interactions can be eliminated by a staggered rotation
of the spin operators yielding an effective transverse staggered field hgae = h, which is
chosen along the x direction. Its strength is proportional to the uniform field applied in
the longitudinal direction, h, = ch,. For the compound Cu-PM treated here, one has
J/kg =36 K and |D| = 0.139J [FAG'00], so that the condition |D| < J is fulfilled, and
the effective model Hamiltonian in Eq. (4.13) is expected to be valid for all strengths of
the magnetic field considered. The parameter ¢ is a material constant that determines
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the magnitude of the staggered transverse field. When the magnetic field is applied along
the direction in which the maximal staggered magnetization is assumed, the material
parameters ¢ = 0.08 and ¢ = 0.083 were determined for Cu-PM [ZKKF04, ZKKFO05].

Elementary excitations 6.2.2

The zero-temperature elementary excitations at low energies of the model Hamiltonian
(4.13) for Cu-PM can be effectively described by the quantum sine-Gordon model as long
as hgag << J. This model as well as its bulk excitations have already been reviewed in
Sec. 4.5.2. A schematic sketch of the low-energy modes, such as solitons, antisolitons,
and their bound states, which are called breathers, is given in Fig. 4.3. In the following,
further excitations predicted by sine-Gordon field theory are briefly reviewed and their
observation in ESR experiments on Cu-PM or KCuGaFy is summarized.

In the sine-Gordon magnets Cu-PM [ZKKF04, ZCO"11] and KCuGaFg [UTO"09], there
are experimentally observed ESR resonance modes which cannot be accounted for by the
bulk sine-Gordon theory for an infinite system which has been discussed so far. Pursuing
a boundary sine-Gordon field theory approach, Furuya and Oshikawa found that for the

soliton, antisoliton, and the first breather there is only one identical boundary bound
state (BBS) [FO12|. This BBS is found below the bulk gap and its mass is given by

Mpgps = Mg sin(7 §). (6.1)

Here Mg is the soliton mass from Eq. (4.15). Furthermore, Furuya and Oshikawa ar-
gued that additional boundary resonances predicted from their theory can be assigned
[FO12] to unexplained modes in the materials Cu-PM |[ZKKF04, ZCO*11] and KCuGaF
[UTO109].

Since this study is interested in finite-temperatures excitations, note that interbreather
transitions at frequencies M, — M,, (n > m) are possible, and Ref. [UTO%09]| reports
to have observed these excitations for the material KCuGaFg in pulsed-field ESR ex-
periments, even though the measurements were performed at very low temperatures
(T'/J =~ 0.005). Moreover, there is the field theoretical expectation [FO12| for addi-
tional finite-temperature resonances at |Egs — M,,|, which are soliton-breather transitions.
These excitations will be reconsidered in Sec. 6.6.2.

ESR and mixing of components 0.3

In ESR |OA02| experiments a linearly polarized electromagnetic wave is coupled to the
g = 0 component of the total spin operator S* = >, S*. In the Faraday configuration
the radiation is polarized perpendicular to the applied magnetic field in the z direction,
i.e., a L z. Within linear response theory [Prul4|, the absorption intensity

2
Iw) = 0 uxala=0,0) (62

is proportional to the imaginary part x” of the dynamical magnetic susceptibility. The
amplitude of the electromagnetic wave is denoted by fy, which is set to fo = 1 for the
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bulk boundary
X/-{-—(q =T, w) w= My, My + M,, | w= Mggs, M, + Mggs

w=Fg, Esg+ M, w=FE,=+/M2+hZ
Egs + Mpps, En + MBBs

~—

X1 (¢=0,w

Table 6.1: (Table adapted from Ref. [FO12]) Typical resonance modes from bulk resp. bound-

ary sine-Gordon field theory at T'= 0. Note that x.(¢ = m,w) contains the same resonances as
1

Xi—(¢=0,w).

calculations. Due to the staggered rotation of the spin operators performed to eliminate
the DM interaction in Eq. (4.12), the dynamical susceptibility xpnys relevant for the exper-
iments has contributions from both uniform (¢ = 0) and staggered (¢ = ) susceptibilities
calculated for the effective model in Eq. (4.13) [FO12]:

Xghys(q = O,W) ~ le (q = 07w>
D.\* , Di\? ,
+ (7) Xi_(qg=mw)+ (f) Xan(q=mw). (6.3)

The mixing is determined by D, and D, which are the components of the DM vector D
parallel and perpendicular to the external magnetic field pointing in the z direction. Note
that in ESR experiments on sine-Gordon magnets only excitations occurring at ¢ = 0 and
q = 7 for effective model in Eq. (4.13) can be probed |Zvy12|. Therefore, the dispersion
branch linked to the soliton S and the antisoliton S at incommensurate wave vectors is
probed at the two experimentally accessible momenta ¢ = 0 and ¢ = 7, see Fig. 4.3. In
Eq. (6.3), xXI_ (x7.) denotes the imaginary part of the transverse (resp. longitudinal)
dynamical susceptibility. The closely related dynamical spin structure factor then reads

1 Xoy(gw)
Sar(@W) = — T i (6.4)
Moreover, kg = 1 and h = 1 are adopted in the calculations. It is known that the

longitudinal susceptibility x”.(¢ = m,w) contains the same resonances as the transverse
contribution x| _(¢ = 0,w) [FO12|. That is why in particular x”,(¢ = 7,w) is considered
in order to study the corresponding excitations since their intensity is enhanced in this
component of the dynamical susceptibility. Table 6.1 gives an overview of the most
relevant bulk and the predicted boundary excitations in the different components of the
dynamical susceptibility at 7' = 0 [FO12].

Numerical details 6.4

DMRG calculations 6.4.1

At T = 0, the dynamical response functions are calculated in the frequency domain by
MPS-based Chebyshev expansions (see Eq. (3.90)), as explained earlier in Sec. 3.5.4. If
not specified differently, all spectral functions exhibit a uniform as well as finite Gaus-
sian broadening 7, which is achieved by adapting the expansion order as a function of
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frequency, cf. Eq. (3.95). After each Chebyshev iteration, the new Chebyshev state is
variationally compressed to an MPS with smaller maximal matrix dimensions m. The
accuracy is controlled by specifying m. If not stated otherwise, m = 250 is used in order
to evaluate the spectral line shape at T = 0 corresponding to a compression error of
€compr ~ 1077, see Eq. (3.94).

At T > 0, the finite-temperature MPS approach developed in this thesis is used (see
Sec. 3.6). Thus, the dynamical susceptibilities are computed directly in the frequency
domain by exploiting a Liouville-space formulation. Here the method is implemented as a
Chebyshev expansion with respect to the linearly rescaled Liouville operator as explained
in Sec.3.6.4. For the evaluation of finite-temperature spectral functions in Sec.6.6, a
maximal matrix dimension of up to m = 300 is used in order to enforce a compression
error of €compr 5 107°.

Exact diagonalization 6.4.2

In this chapter, exact diagonalization [NMO05, San10] results for the dynamical correlation
functions are presented as well. The corresponding calculations have been performed
by Andreas Honecker. Periodic boundary conditions (PBCs) are adopted, in order to
exploit the translation invariance of the model in Eq. (4.13). For small systems, a full
diagonalization of the Hamiltonian was achieved for L < 16 in Ref. [WWS*05]. This could
be extended up to L = 18 for the present purposes. In order to treat even larger systems,
the Lanczos method (see Sec. 3.2) is used in order to compute low-lying eigenstates |E,,)
and the corresponding eigenvalues F,. To obtain a large number of eigenvectors, the
procedure from Ref. [HWO09] is applied to remove the so-called ghosts occurring in the
course of the Lanczos recursion. As not all eigenstates are accessible in this manner, only
a limited number of terms in the double sum in Eq.(2.29) can be taken into account.
Thus, reliable results for the finite-temperature spectral functions can only be obtained
at low temperature and small frequency. For L = 20, about 10000 terms are calculated,
whereas for L = 24 roughly 2000 terms are kept. Since the individual eigenvalues and
states are accessible, the Gaussian broadening as well as the temperature is specified in
the post-processing stage. This grants results for different (low) temperatures without a
completely new calculation.

Zero-temperature results 0.5

For the numerical study of the ESR modes and their intensities, the value of ¢ is a cru-
cial model parameter as it determines the magnitude of the staggered transverse field
h, = ch,. For instance, in KCuGaFg the parameter ¢ assumes a value of ¢ = 0.178
in the direction of the maximal staggered magnetization [UTOT09]. In copper ben-
zoate [DDacR*T96, DHR'97, ANIT00, ANIT03] and dimethylsulfoxide CuCly, [KCB*04,
KBC05] the values are ¢ = 0.065 and ¢ = 0.075, respectively. This is a typical order of
magnitude that also applies to Cu-PM. When the magnetic field is applied along the ¢’
direction, in which the maximal value of the staggered magnetization is assumed, the ma-
terial parameters ¢ = 0.08 and ¢ = 0.083 were determined for Cu-PM [ZKKF04, ZKKF05].
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Except for Sec. 6.5.3, where ¢ = 0.08 is considered for a direct comparison to the experi-
ments in Ref. [ZKKF04], the value ¢ = 0.083 is adopted for the numerical calculations at
T=0.

0.5.1

BBS and breather excitations

First, the BBS and the breather excitations are studied in the transverse staggered sus-
ceptibility x| _(¢ = m,w). Figure 6.2(a) shows the DMRG results for the related ESR
intensity for h, = 1 and ¢ = 0.083. The first three breather excitations B1-B3 are
clearly observed for different system sizes L. Since the DMRG calculations are per-
formed for open boundary conditions (OBCs), the BBS observed in earlier DMRG studies
[LCZ*T05, LCWO06| and finally identified as such in a boundary sine-Gordon field theory
[FO12] is found slightly below Bl in the bulk gap. The masses of the elementary ex-
citations from the sine-Gordon theory are included as vertical lines in Figs. 6.2(a)-(b).
The peak positions are in good agreement with the predictions. Moreover, the intensity
decreases for the heavier quasiparticles B2 and B3. Figure 6.2(b) shows the finite-size
dependence of the BBS and Bl at an enhanced resolution (n = 0.006). Two interesting
observations are that the position of the B1 peak seems to converge towards the field
theoretical value, and that the BBS intensity decreases with increasing system size. To
check this, finite-size analyses using a fitting function of the form f(z) = A + Ba” are
performed, where x = 1/L. In Fig.6.2(c) the analysis confirms that the L — oo extrapo-
lation of the B1 peak position agrees with the field theoretical breather mass M;, which
is plotted as the horizontal solid line. Furthermore, a finite-size scaling of the integrated
peak intensity is performed, which is independent of the broadening, both for the BBS in
Fig.6.2(d) and for B1 in Fig. 6.2(e). Here the best agreement was achieved by setting the
exponent v = 1. The peak intensity of the BBS scales close to zero, whereas the intensity
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Figure 6.2: (Published in Ref. [THP"16].) Zero-temperature DMRG results for the transverse
staggered contribution to the ESR intensity at h, = 1 (J = 1, ¢ 0.083) complemented
with values from the sine-Gordon theory (vertical lines): (a) Observation of the BBS and three
breathers B1-B3 in the intensity ~ wx/|_(¢ = m,w) for various system sizes L and a Gaussian
broadening of 7 = 0.01. (b) Zoom-in on BBS and B1 at higher resolution (n = 0.006). (c)—(e)
Finite-size scaling analyses for the mass M; of B1 (c), and the integrated peak intensity of the
BBS (d) as well as B1 (e).
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of B1 extrapolates to a finite value in the thermodynamic limit. Thus, the expectations
for a boundary resp. bulk excitation are met.

As a next step, the frequency-field dependence of the breather excitations B1, B2, and B3
is determined from the DMRG results for the ESR spectral function. The peak positions
for B1 and B3 are obtained from the absorption intensity ~ wxj, (¢ = 7, w) for L = 80
which is plotted as a function of the magnetic field in Fig.6.3(a). For this calculation,
m = 150 DMRG states are kept corresponding to €compr ~ 10~* at small fields and
Ecompr < 107° for h, > 1. Since an MPS-based Chebyshev expansion of order N = 6000 is
used and the spectral width becomes larger for increasing fields, the Gaussian broadening
included in these results depends both on the frequency and the field, i.e. n(w,h,).
As an example, the broadening ranges from n(w = 0) = 0.004 to n(w = 3) = 0.01
at h, = 1 in this case. The frequency of B2 is determined from the ESR intensity
~ wx" _(¢ = m,w), which is shown in Fig. A.1(a) in AppendixA.1. In Fig.6.3(b), DMRG
results for the breather resonances are compared to sine-Gordon predictions for an infinite
system and exact diagonalizations (ED) of a system with L = 28 sites. For B1, the DMRG
results show deviations towards small magnetic fields, since in this field regime finite-size
effects (FSEs) are gradually enhanced. However, this has been understood by the finite-
size analysis in Figs. 6.2(b)-(c). Since the ED calculations are performed with periodic
boundary conditions (PBCs), FSEs are less severe in the ED data. Interestingly, the
DMRG results for B2 and B3 show a weaker finite-size dependence than for B1. In this
figure one can also assess the limits of the field theoretical description which is based on
the limit of a small h,: Towards high fields, h, > 1.3, the description by the field theory
breaks down the earlier the heavier the mass of the breather excitation is.

Moreover, it is interesting to study the evolution of the field-induced gap up to strong mag-
netic fields, i.e., beyond the realm of sine-Gordon physics. In Fig.6.3(c), the frequency-
field dependence of the BBS extracted from the spectral function for L = 80 in Fig. 6.3(a)
is compared to DMRG results from Ref. [ZCOT11]. Note that the previously published
data for the lowest excitation energy computed by a multi-target DMRG approach for
L = 200 and OBCs perfectly coincidence with the present results for the BBS. Further-
more, the BBS is observed as a weak feature of the absorption intensity ~ wx’,(¢ = 7,w)
in Fig.6.5(a) below. Besides the BBS, Fig.6.3(c) also includes results for B1. Interest-
ingly, the two excitations merge into one single excitation close to the saturation field. In
the fully spin-polarized phase at high fields, the elementary excitations are magnons and
the gap is proportional to h, — h$* where h$** is the saturation field [ZCOT11]. Further-
more, the two-magnon continuum and in particular its lower boundary are clearly visible
in Fig.6.3(a). Again, note that the resolution becomes worse towards higher fields and
frequencies, since the expansion order is kept fixed at N = 6000.
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Figure 6.3: (Published in
Ref. [THP16].) Frequency-field
diagrams in the presence of an
applied external field h,: (a)
Frequency-field plot at T 0
of the absorption intensity ~
WXy (g m,w) obtained by
DMRG-based Chebyshev expan-
sions (order N = 6000) at fixed
fields h, € [0,3.4] for a step
increment of Ah, = 0.1 and
L 80. (b) The frequency-
field dependence of the first (B1),
second (B2), and third (B3)
breather excitations obtained by
DMRG for L 80 is com-
pared to field theoretical and
ED results. (¢) DMRG calcula-
tions for the frequency-field de-
pendence of the BBS and the
first breather showing the transi-
tion to magnon physics towards
high fields (J =1 and ¢ = 0.083
for all panels). The DMRG re-
sults for L = 200 are taken from
Ref. [ZCOT11].
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Single-soliton resonance 0.5.2

The single-soliton resonance probed in ESR experiments using the Faraday configu-
ration mainly originates from the uniform component of the transverse susceptibility
X't _(¢ = 0,w) since its presence in the longitudinal staggered susceptibility x7.(¢ = 7, w)
is suppressed in Eq. (6.3). However, since the intensity of the excitation is higher in
X7 (¢ = m,w) by about two orders of magnitude (cf. Fig.6.5(c) below), the focus is on
this component for the DMRG calculations. Figure 6.4 shows results for different system
sizes L and various values of the magnetic field h,. In Fig. 6.4(a) the peak corresponding to
the single-soliton resonance is the dominating feature at h, = 1. In addition, one observes
the lower edge of a two-particle continuum at higher frequency. The extension of this
continuum will be discussed in more detail in Sec. 6.5.4 where results for the momentum-
resolved dynamical spin structure factor are presented. The L — oo extrapolation of
the single-soliton resonance is represented by the dashed vertical line in Fig.6.4(a) and
is found below the field theoretical prediction Es = /M2 + h? (solid vertical line). This
discrepancy even persists for the smaller fields h, = 0.25 and 0.5 in Figs. 6.4(b)-(c), which
focus on the region around the soliton resonance. By plotting the field dependence of the
ratio w/h, for the soliton resonance in Fig. 6.5(b), this discrepancy is also confirmed by
ED results for L = 28 and PBCs which are in good agreement with the DMRG calcu-
lations. Thus, it cannot be a boundary effect. A very similar deviation from the same
theory has been observed in ESR experiments on Cu-PM [ZKKF04| and will be discussed
in detail in the next subsection.
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Figure 6.4: (Published in Ref. [THP"16|.) Zero-temperature DMRG results for the longitu-
dinal uniform contribution to the ESR intensity for different system sizes L and three values of
the applied field h,: (a) h, = 1, (b) h, = 0.25, and (c) h, = 0.5. Here J =1 and ¢ = 0.083
are adopted in all panels. The dominant peak corresponds to the single-soliton resonance and is
found below the field theoretical prediction Es = /M2 + h? (solid vertical line). The dashed

vertical line marks the result of the finite-size scaling.
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Next, the fate of the soliton excitation after the transition into the fully spin-polarized
phase is discussed. To this end, the position and intensity of the single-soliton resonance is
determined from the ESR absorption ~ wx”, (¢ = 7, w) obtained by DMRG calculations
for different fields in Fig.6.5(a) for a system of L = 80 sites. The fact that the ratio
w/h, approaches a value close to one for very high fields in Fig. 6.5(b) suggests that this
excitation becomes the paramagnetic line which is located at w = h, in standard ESR
experiments and perturbed by the small staggered field here. In Fig. 6.5(c), the integrated
peak intensity from different components of the dynamical susceptibility is depicted as
a function of the magnetic field. From this, one finds that the highest soliton intensity
appears in the longitudinal staggered susceptibility x”.(¢ = 7,w), whereas the intensity
of the paramagnetic line at high fields is largest in the uniform transverse susceptibilities
Xr(q = 0,w) and xy, (¢ = 0,w). An additional frequency-field diagram for the intensity
~ wxh.(q = 0,w) is provided in Fig. A.1(b) in the appendix.
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Comparison to the experiment 6.5.3

In the following, the DMRG results are related to the experimentally determined ESR
resonance modes in the material Cu-PM from Ref. [ZKKF04]. Since the only free param-
eter ¢ has been determined as ¢ = 0.08 by a fit to the B1 mode in this previous experiment
|[ZKKF04], the value is adopted in the calculations for the comparison to the experiment.

First, the frequency-field dependence of the breather excitations is compared in Fig. 6.6.
The resonance modes Bl and B3 are extracted from the absorption ~ w X;’y(q = m,w) for
L = 80 as their intensity is higher in this component. The B2 mode is again determined
from the intensity ~ wx’l_(¢ = m,w). Apart from the finite-size effects towards small
magnetic fields (discussed earlier in Figs. 6.2(b)-(c)), there is good agreement between
DMRG and experiment.

Next, the experimental data for the frequency-field dependence of the single-soliton res-
onance in Cu-PM is compared to sine-Gordon and DMRG results for the intensity ~
wx”, (¢ =m,w). Figure 6.7 shows this comparison for two values of the material parame-
ter ¢ from the literature, ¢ = 0.08 and ¢ = 0.083 [ZKKF04, ZKKF05|. One of the main re-
sults is that there is very good agreement between the DMRG results and the experiment.
Moreover, these results are both found below the sine-Gordon field theory irrespective of
the c-value. The reason for the deviation can be understood by considering the momentum
dependence of the dynamical structure factor S.,(¢,w) = x7,(¢,w)/m in Fig.6.8(c). For
q ~ 7, the dominating feature is the dispersion relation of the antisoliton, which clearly
exhibits curvature. This curvature comes from irrelevant operators which break Lorentz
invariance [OA02|. Therefore, the Lorentz invariant dispersion Eg = /M2 + h? used
by the field theory is not perfectly suitable for describing the single-soliton resonances
appearing at ¢ = 7 in x7,(¢,w) and at ¢ = 0 in X" _(q,w).

600 ] ;
—sine-Gordon theory
500 | ® Experiment
+ DMRG, L =80

Frequency w [GHZ]

J/kp =36 K, g=2.24

0 5 10 5 20 25
Magnetic field H [T]

Figure 6.6: (Published in Ref. [THP16|.) Comparison between DMRG (L = 80), experimen-
tal, and field theoretical results for the frequency-field dependence of the breather excitations
(¢ =0.08). The experimental data are taken from Ref. [ZKKF04].
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Figure 6.7: (Published in Ref. [THP*16].) Comparison between DMRG (L = 80), experimen-
tal, and field theoretical results for the frequency-field dependence of the single-soliton resonance.
The experimental data are taken from Ref. [ZKKF04].

Moreover, it is important to also discuss the presence of boundary modes in Cu-PM. Due
to the very low impurity concentration in the sample, the BBS just below B1 is not experi-
mentally observed [ZKKF04, ZCO™11]. Since the DMRG calculations are performed with
open boundaries, this BBS has been clearly identified in Figs. 6.2 and 6.3(c). According
to the boundary field theory [FO12|, there should be even more boundary resonances
at T' = 0. However, none of them is clearly observable in the DMRG results for the
spectral functions since their intensity is too low. Ref. [FO12| argues that some of these
additional modes can be assigned to the unknown modes, which were observed in Cu-
PM [ZKKF04, ZCO*11] and to similar modes observed in KCuGaFg [UTOT09]. These
unexplained resonances could previously not be accounted for in the bulk sine-Gordon
theory. However, the fact that the BBS was not observed in Cu-PM, while a significant
BBS weight is found in the numerical calculations for finite chains, indicates the Cu-PM
samples to be very clean. Now the other boundary modes seem to have so low spec-
tral weight that they are unobservable even in the numerical computations. Thus, one
concludes that these additional boundary modes are unlikely to explain the unexplained
experimental Ul and U2 modes in Cu-PM.

Dynamical spin structure factor 6.5.4

Up to this point, the results are obtained for the momenta ¢ = 0 and ¢ = 7, which are
relevant for a comparison to ESR experiments (cf. Eq. (6.3)). Now the full momentum
dependence of the elementary excitations at 7" = 0 will be investigated for a magnetic
field of magnitude h, = 1. Figure 6.8 shows DMRG results for the zz, yy, and zz
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components of the dynamical spin structure factor S, (¢, w) for an L = 80 site chain. For
momentum-resolved quantities, the spin operators in ¢ space can be defined as [BGJ04]

L

o 2 : N\ Qo
Sy = 1 Z sin(q 1) S; (6.5)

i=1

with respect to the quasi-momenta ¢ = 7n/(L + 1) and integers n = 1,..., L. The
transverse components of the dynamical structure factor in Figs. 6.8(a)-(b) contain the
soliton dispersion which assumes a minimum at the incommensurate wavevector ¢ = qq.
The minimum of the antisoliton dispersion at ¢ = m — ¢ is a main feature of the zz
component shown in Fig.6.8(c). In the yy (zz) component, the soliton continuously
merges into the B1 dispersion, which has its minimum at the antiferromagnetic wavevector
g = m (resp. ¢ = 0). Furthermore, one can identify the heavier breathers B2 and B3 at
g = min Sy, and Sy,. Interestingly, there is a manifestation of the BBS in all three
components of the dynamical structure factor, while the most intense signal occurs in the
yy component in Fig.6.8(b). As expected for a localized mode, one also finds that the
BBS has a flat dispersion [FO12].

10!

0 w/4 w/2 3¢/4 w0 /4 w/2 3n/4 w0  w/4 w2 3n/4 o«
q q q

Figure 6.8: (Published in Ref. [THP*16].) DMRG results for the zz, yy, and zz components
of the dynamical spin structure factor at 7' = 0 for h, = 1 and ¢ = 0.083 using a uniform
broadening of = 0.012 (J = 1, L = 80, m = 150 and €compr ~ 107%). The horizontal solid
lines represent the frequencies of the elementary excitations from the sine-Gordon theory. Most
importantly, the curvature of the soliton dispersion for ¢ ~ 0 in panel (a) resp. the curvature of
the antisoliton for ¢ ~ 7 in panel (c) lead to a deviation from the Lorentz invariant dispersion.
The arrows at ¢ = 7 in panels (b) and (c) mark the soliton-antisoliton excitation SS and the
lower edge of the continuum, respectively.

The results in Fig. 6.8 represent an improvement over a previous ED investigation of the
dynamical structure factor for L ~ 20 in Ref. [KBCT05]. These ED calculations for
¢ = 0.075 are in agreement with neutron scattering results for the low-energy modes
in dimethylsulfoxide CuCl, published in the same work. The DMRG calculations for
L = 80 in Fig.6.8 provide a higher momentum and frequency resolution. Thus, the
multi-particle continua can be resolved more clearly. As a main result, the curvature
of the soliton dispersion is observed for ¢ ~ 0 in Fig.6.8(a) resp. the curvature of the
antisoliton for ¢ ~ 7 in Fig.6.8(c). The presence of this curvature is also implied by
previous ESR experiments [ZKKF04] since the single-soliton resonance is found below its

field theoretical prediction Eg = /M2 + h? (see Sec.6.5.3).
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Moreover, multi-particle continua are observed at higher frequency. In particular, the
extended continuum in Fig.6.8(c) was analyzed by using the following consideration.
Since there is a continuous one-particle dispersion €;(q) throughout the Brillouin zone,
it is possible to construct the energies of the two-particle excitations at ¢; + g2 by
e2(q1 + q2) = €1(q1) + €1(g2). Indeed, it is found that the boundaries of the continuum
mostly coincidence with the extremal es(q; + ¢2). Thus, the continuum corresponds to
the continuous dispersion linking the first breather and the soliton.

An important resonance labeled as ‘SS’ in the DMRG calculations for the absorption
intensity ~ wyy,(¢ = 7, w) in Fig.6.3(a) is also found in the yy component of the dy-
namical spin structure factor (see Fig.6.8(b)) where it is marked by an arrow. This
feature is found at an energy of twice the single-soliton resonance and therefore consistent
with a soliton-antisoliton excitation. It represents the singularity at the upper edge of a
continuum.

Finite-temperature results 0.0

Motivated by experimental hints of strong temperature dependencies of ESR line widths
in Cu-PM [Zvy12|, the temperature effects on the ESR intensity of this material is stud-
ied. The focus is on the wavevectors ¢ = 0 and ¢ = 7, which are relevant for a comparison
to ESR experiments, cf. Eq.(6.3). With increasing temperature, the redistribution of
spectral weight and, in particular, the emergence of thermally-induced transitions be-
tween zero-temperature excitations of the sine-Gordon theory are investigated. For the
breather and interbreather excitations, there are both experimental and numerical results
in Sec. 6.6.1. In the numerical results, the observation of a soliton-breather transition is
discussed in Sec.6.6.2. Moreover, temperature effects may also lead to a crossover be-
tween excitations. As an example, the temperature dependence of the soliton is studied
in Sec.6.6.3.

Breather and interbreather excitations 6.6.1

Numerical results

First of all, the focus is set on the temperature dependence of the breathers at h, = 1. To
this end, both contributions, I,,(¢ = 7, w) and I,,(¢ = 7, w), to the staggered transverse
ESR intensity for L = 50 are studied in Fig.6.9. It is important to note that B2 is
contained in the former component and Bl as well as B3 in the latter. These finite-
temperature DMRG calculations for OBCs are obtained by a Chebyshev expansion with
respect to the Liouville operator. In contrast to the purely 7" = 0 results shown at
a broadening of n = 0.01 in Fig.6.2(a), the resolution in Fig.6.9 assumes the value
n = 0.035 at 7" > 0 and is therefore not as high as at 7" = 0. This is due to the increased
computational effort for purifying the thermal density matrix as well as applying the
Liouville operator, whose spectral width is twice the width of the Hamiltonian and, most
importantly, directly proportional to the broadening. As a consequence of this limitation,
the BBS and B1 are not resolved as two separate peaks at 7' = 0 in Fig.6.9. However,
the obtained resolution is high enough to see that at higher temperature the breather
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excitations are clearly subject to thermal broadening. In particular, B3 is only observable
at T'= 0 in the DMRG computations due to this effect.

Since thermally activated interbreather transitions at frequencies M,, — M,,, (n > m) have
been reported in the sine-Gordon magnet KCuGaFg [UTO'09], it is interesting to look
for these excitations in the numerical calculations for Cu-PM. Therefore, the resolution of
the DMRG calculation at T'/J = 0.5 is enhanced in the inset of Fig. 6.9(b), which focuses
on the region around the field theoretical value for Ms — M, (solid vertical line). Very
close to this frequency a weak maximum is found which can be interpreted as evidence for
the M3 — M; interbreather transition. Unfortunately, it is not possible to observe further
excitations of this type in the DMRG calculations. For instance, the observation of a
possible feature at w = My — M; is obstructed by the choice of OBCs. More precisely,
the large BBS intensity appears very close to this frequency. Therefore, ED calculations
with PBCs are a viable possibility for the detection of further interbreather transitions,
since the BBS is absent in this case. The ED results are shown for L = 20 at T"= 0.5
resp. L = 24 at T < 0.25 in Fig.6.10. Here the magnetic field is chosen as h, = 0.6,
which corresponds to a field of about 14.36 T in experiments on Cu-PM discussed further
below. The vertical solid lines in the insets of Figs.6.10(a)-(b) highlight the frequencies
M, — M, at which the excitations are expected. However, here these predictions are not
determined via the sine-Gordon theory but from the finite-size positions of the breathers,
as B2 and B3 are still subject to finite-size effects for L = 24. In both the zz and the
yy component of the ESR intensity, the transitions at My — M; and M3 — M; are clearly
visible and match the expected frequencies. Fig.6.10(c) shows the spectral weight of the
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Figure 6.9: (Published in Ref.[THP'16].) DMRG results for the temperature dependence
of breather excitations in the transverse ESR intensities I;;(¢ = m,w) (a) and I,(¢ = m,w)
(b) for a magnetic field of h, = 1 and ¢ = 0.083. The solid vertical lines mark the 7" = 0
sine-Gordon predictions. Inset: DMRG calculations with enhanced resolution provide evidence
for the interbreather transition at Mz — My (solid vertical line).
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B1-B2 transition as a function of temperature for L. = 24. Here, the coefficient of the
corresponding delta-function in the spectral representation Eq. (2.29) has been computed,
i.e., the thermal occupation of the B1 mode multiplied with the matrix elements for the
transition to B2. The effect is that the temperature dependence of all three quantities
in Fig.6.10(c) is identical, just the matrix elements are different. It is observed that
the B1-B2 transition is thermally activated at low T', goes through a maximum a little
below T'/J = 0.15, and then decays again towards high temperature. The latter is also
reflected in panels (a) and (b) of Fig.6.10 where one observes that upon increasing the
temperature to T'/J = 0.5, these weak-intensity features become hardly distinguishable
from the finite-temperature background. Thus, the appearance of these transitions, which
is expected from the sine-Gordon theory [FO12], is limited to low temperatures only.

T/J =05
—=T/J =0.25
—T/J =0.125

Ixm(q =T, CU)

Lyy(q =7, w)

Weight of B1-B2 transition

Figure 6.10: (Published in Ref. [THP*16].) ED results for systems with PBCs addressing
the temperature dependence of breather and interbreather excitations at a magnetic field of
h, = 0.6 and ¢ = 0.08. The transverse ESR intensities I,;(¢ = m,w) resp. I,(¢ = 7, w) are
shown for n = 0.01 in panels (a) and (b). Here results for L = 24 at ' < 0.25 and L = 20
at T' = 0.5 are shown. The insets focus on finite-temperature transitions at M,, — M,, between
breather excitations, which are marked by solid vertical lines. (c¢) Temperature-dependence of
the spectral weight of the interbreather transition between B1 and B2 calculated from different
components of the absorption intensity in dependence of temperature (L = 24).
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Experimental results

High-field ESR experiments on Cu-PM were performed using a 16 T superconducting mag-
net ESR spectrometer (similar to that described in Ref. [ZKvL104]), equipped with VDI
sources of millimeter-wave radiation (product of Virginia Diodes Inc.) and a transmission-
type probe in the Faraday configuration. The field sweep rate was 0.5 T /min. The mag-
netic field was applied along the ¢’ direction, which is characterized by the maximal value
of the staggered magnetization for Cu-PM [FAG*00]. High-quality single-crystals of Cu-
PM with typical size of 3 x 3 x 1 mm? were used that have been grown by slow evaporation
of the equimolar aqueous solution of copper nitrate and pyrimidine [INNT97, YIAT01].
Figure 6.11(a) shows the temperature dependence of ESR absorption spectra in Cu-PM
measured at 178 GHz. The most prominent feature is the first breather B1 which is clearly
visible up to temperatures T' ~ 3 K. Furthermore, the measurement confirms that there
is no evidence for the presence of the BBS towards higher fields. The only stable feature
observed in addition to B1 is identified as the interbreather transition at Ms — M;. The
inset of Fig. 6.11(a) shows the corresponding absorption minimum at 7" = 2.2 K for a
few selected frequencies. By measuring the frequency-field diagram over a broad range
of the applied magnetic field, it is shown that there is excellent agreement with sine-
Gordon and DMRG results for My — M in Fig. 6.11(b). In the DMRG calculations, M;
and My were determined as the peak position of B1 and B2 in the absorption intensities
~ WXy, (@ = mw) resp. ~ wx,, (¢ = mw) at T = 0 for large systems of L = 120 to
minimize finite-size effects at small magnetic fields.
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Figure 6.11: (Published in Ref. [THP'16].) (a) Temperature dependent ESR absorption
intensity of the first breather B1 at 178 GHz. There is no signature of the BBS towards higher
fields, but at about H = 14.5 T the interbreather transition between B1 and B2 is observed. The
inset shows this excitation for different frequencies at T' = 2.2 K. (b) Frequency-field plot of the
B1-B2 interbreather transition comparing the ESR modes with Ms — M; from the sine-Gordon
theory and zero-temperature DMRG calculations for L = 120.
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The signals of the interbreather transition in the present ESR experiments are rather
weak at a temperature of T'/J & 0.06. Therefore, it is surprising that the authors of
Ref. [UTO"09] report that the intensities of breather and interbreather excitations are of
the same order in KCuGaFg at an even much lower temperature (7'/J ~ 0.005). However,
it has to be mentioned that their ESR measurements have been performed in a pulsed
magnetic field using a larger sample of size 3 x 3 x 3 mm?. This is different from the ESR
experiments shown in the present chapter as they were obtained in a static magnetic field.

Soliton-breather transition 6.6.2

Based on field theory, soliton-breather transitions at frequencies |Es — M,| have been
predicted to occur at finite temperature [FO12]. However, nothing has been known about
the corresponding intensities so far. The ED results for L = 24 resolve the low-intensity
transition between the soliton and the first breather at w = Eg — M; in the intensity
I..(¢ = m,w). The temperature dependence of this feature is shown in the insets of
Fig. 6.12 for magnetic fields of h, = 0.6 and h, = 1. The transition assumes its maximum
intensity around a temperature of 7'/J = 0.25, while it is hardly visible at 7'/J = 0.5.
Therefore, this feature occurs in the same temperature range as the interbreather transi-
tions.
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Figure 6.12: (Published in Ref. [THP*16].) ED results for L = 24, n = 0.01, and PBCs
addressing the temperature dependence of the soliton and the transition between the soliton and
the first breather for different values of the magnetic field h, = 0.6 (a) and h, = 1 (b). The
finite-temperature transition Eg — M; is highlighted by the solid vertical lines in the two insets.
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Crossover: soliton to paramagnetic line 0.6.3

Now, the temperature-induced crossover between the soliton at low temperature and the
paramagnetic line perturbed by the staggered field at higher temperature is studied. For
small systems, litaka and Ebisuzaki have presented results [IE03| using their Boltzmann-
weighted time-dependent method which is based on a random vector representation for
the evaluation of the trace and a Chebyshev expansion of the Boltzmann operator. Results
for lattices of L = 16 sites have been published. The finite-temperature DMRG approach
developed in this thesis is used to revisit this feature by providing state-of-the-art results
for larger systems with L = 50 sites. On this basis, the interpretation given in Ref. [IE03|
is corrected. The DMRG results for different temperatures at h, = 1 are shown in Fig.
6.13(a). Figure 6.13(b) contains ED results at h, = 1. Here systems with L = 24
(T'/J <0.25) and L = 20 sites at T'/J = 0.5 are considered. In Appendix A.2 a detailed
finite-size analysis for these data is shown. ED results for h, = 0.6 are depicted in
Fig. 6.13(c). For both magnitudes of the magnetic field, it is intriguing how quickly an
increase in temperature redistributes spectral weight from the soliton at T' = 0 to the
paramagnetic line perturbed by the staggered field at w =~ h, and that this crossover can
be traced numerically.
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Figure 6.13: (Published in Ref. [THP*16|.) Temperature-induced crossover between the soli-
ton at low temperature and the paramagnetic line at higher temperature in I,,(¢ = 0,w): (a)
DMRG results for . = 50 in the presence of a uniform magnetic field h, = 1 and ¢ = 0.083
with resolution n = 0.03. (b) ED results for systems with PBCs at higher resolution n = 0.01,
h, =1, and ¢ = 0.083. (c) ED results for systems PBCs at h, = 0.6 and ¢ = 0.08 with resolution
n = 0.01. The ED results are shown for L =24 (T/J < 0.25) and L =20 at T'/J = 0.5.
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Conclusion 0.7

Spectral functions for the material Cu-PM have been computed with unprecedented accu-
racy using DMRG and ED. At T' = 0, the intensities and the frequency-field dependence
of the breather excitations and the BBS found directly below the first breather, which was
predicted by a boundary sine-Gordon field theory in Ref. [FO12]|, were studied. Adopting
OBCs for the DMRG calculations, it was shown that the BBS intensity scales to zero
in the thermodynamic limit. Moreover, the first breather and the BBS merge into one
single excitation close to the saturation field. Besides the BBS, Furuya and Oshikawa
also predicted additional boundary modes at T' = 0 and in the case of Cu-PM assigned
two of them to the previously unexplained modes Ul and U2 found for this compound
[FO12]. These additional boundary resonances are not observable in the DMRG calcula-
tions for Cu-PM. Thus, one concludes that their intensities must be so low that they are
unlikely to explain the Ul and U2 modes. This conclusion is supported by the fact that
in ESR experiments not even the boundary mode with the highest intensity is observed
|[ZKKF04]. The absence of boundary effects in the experiments can be explained by the
high purity of the Cu-PM samples. A second conclusion in this context is that there
are no signatures for the experimental modes Ul, U2, or U3 [ZKKF04] in the DMRG
computations, which suggests that these modes in Cu-PM may not be contained in the
effective model in Eq. (4.13). They might occur as a consequence of further effects beyond
this effective model. Possible candidates are additional anisotropies or interchain coupling.

Another main finding is that the DMRG results provide a better description for the
frequency-field dependence of the single-soliton resonance in the material Cu-PM [ZKKF04]
than the sine-Gordon theory. The reason is that the Lorentz invariant dispersion relation
Eg = /M2 + h? used by the field theory does not capture the band curvature gener-
ated by the coupling of marginally irrelevant operators. This is supported by the DMRG
calculations for the momentum and frequency-resolved dynamical spin structure factor
in Fig.6.8. Furthermore, recent inelastic neutron scattering experiments on KCuGakFyg
[UTK*15] probed the dispersion branch along which the soliton and antisoliton are lo-
cated at the incommensurate wavevectors q; = 7™ + ¢ as sketched in Fig.4.3. It can be
concluded that these experimental results are also compatible with the occurrence of band
curvature and the single-soliton resonance at ¢ = .

At T > 0, the temperature dependence of the breather and thermally activated inter-
breather transitions was investigated. In the ED calculations with PBCs contributed by
Andreas Honecker, various interbreather excitations were observed up to temperatures
of about 7'/J = 0.5 at both h,/J = 0.6 and h,/J = 1. In Fig.6.10(c) the transition
at My — M; shows maximum intensity at about 7'/J = 0.15 and quickly decays upon
increasing the temperature. This interbreather excitation was also observed below the
first breather over a wide field range in ESR experiments on Cu-PM. The frequency-field
dependence is in excellent agreement with sine-Gordon theory. Unfortunately, the open
boundaries for the DMRG computations are not convenient in this case since the high
BBS intensity is located very close to the frequency of the strongest interbreather excita-
tion My — M, which could therefore not be resolved. However, evidence for the M3 — M,
transition is found in the DMRG data.
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Finally, the single-soliton resonance was revisited, which with increasing temperature
crosses over to the paramagnetic line perturbed by the staggered field. This has been
studied before by Iitaka and Ebisuzaki for small systems (L = 16) using their Boltzmann-
weighted time-dependent method [IE03]. The finite-temperature DMRG approach work-
ing directly in the frequency domain enables us to correct their interpretation by studying
larger systems with L = 50 sites.



Magnetic excitations in the spin-1/2
dimerized-chain compound BaCuy,V;0g 7

The main content of the present chapter has been published as a Rapid Communica-
tion in Physical Review B [KTFT16]. Some parts the following chapter resemble the
manuscript and the supplemental material of Ref. [KTF*16]. The manuscript as well as
the supplemental material contain major contributions from many authors including me.
In addition, I performed the DMRG calculations. Together with Salvatore R. Manmana
and Andreas Honecker, I also contributed to the interpretation of the results. The in-
elastic neutron scattering results as well as the static magnetic susceptibility data were
obtained by Ekaterina S. Klyushina and Bella Lake. Ekaterina S. Klyushina also did the
main part of the fitting analyses. She was supported by Bella Lake. The diagrammatic
calculations (DBA-CUT) were performed by Benedikt Fauseweh under the supervision of
Gotz S. Uhrig.

Introduction 7.1

Many magnetic materials with strong electronic correlations host unconventional states of
matter at low temperatures. Upon raising the temperature, there develops an interesting
interplay of quantum and thermal fluctuations in which the latter will ultimately suppress
the quantum mechanical coherence of such states. For potential applications in quantum
devices the study of this crossover from the quantum regime at low temperatures to the
classical high-temperature regime is of practical importance. Previous experimental and
theoretical progress reviewed in the following paragraphs reported that strong correlations
between thermally-induced excitations may lead to quantum coherence persisting even at
relatively high temperatures in quantum magnets.

Such coherent behavior at elevated temperature is not expected by the conventional de-
scription of temperature effects in quantum magnets [ML71| which can be summarized
as follows. In the limits of zero temperature and long wavelength, elementary excitations
in quantum magnets do not interact and have an infinite lifetime. At finite temperature,
the interactions between the excitations are assumed to be weak in the conventional pic-
ture. The excitations are oftentimes described as spin waves [HKHH71, TH90, Kop90].
The scattering between spin waves can be calculated in perturbation theory [TH90|. The
states occupied as a consequence of the scattering processes represent an extensive por-
tion of phase space as the excitations only interact weakly. With rising temperature the
number of thermally excited spin waves grows and thus their scattering rate increases.
This limits the lifetime of the excitations which is decreasing with increasing tempera-
ture. The result is a loss of coherence. The corresponding damping of spin waves results
in a symmetric Lorentzian broadening of the lineshapes. The spin-wave description works
best at low temperature for systems with long-range order and gapless excitations, e.g., in
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the presence of dominant nearest-neighbor antiferromagnetic (AFM) Heisenberg interac-
tions in SU(2) invariant systems. Two experimentally investigated examples are RboMnF
[HTC*08, BTL"13| which is a two-dimensional Heisenberg antiferromagnet and the three-
dimensional MnF, [BKHKO06, BTL" 13| which has dominating AFM interactions. In both
compounds the magnetic Mn?" ions possess a spin of S = 5/2. The thermal lineshape
broadening in these materials exhibits a symmetric Lorentzian profile and is therefore in
agreement with the predictions from spin-wave theory [HKHH71, TH90, Kop90|. More-
over, there is also a 2D Heisenberg antiferromagnet with spin-1/2 degrees of freedom for
which such behavior has been reported [RMC*01].

The conventional picture of thermal decoherence described above is not valid for quantum
magnets in general. There exist magnets with strong correlations between the thermally
activated excitations. Thus, the available states are constrained in phase space. Gapped
antiferromagnets and systems in which the excitations can be described by hard-core
bosons constitute possible candidates. Among them are for instance Haldane chains
[Aff89] and dimerized systems [TBR103]. The present chapter is focused on 1D dimer
magnets. Assuming only an AFM intradimer coupling Ji,a, the system consists of iso-
lated dimers. Each of them has a spin-singlet ground state with degenerate triplet excita-
tions above an energy gap. Such excitations are henceforth referred to as triplons [SU03].
Upon introducing an interdimer coupling Jina, triplons become mobile and dispersive.
Imposing the condition Jitra <K Jinter guarantees a large gap compared to the bandwidth
of the single-triplon dispersion. The triplons are spin S = 1 quasiparticles. Moreover,
there is a hard-core constraint for triplons. This means that only one excitation is allowed
per dimer. With rising temperature the number of thermally activated triplon excitations
increases ~ exp(—BA). Due to the hard-core constraint they should scatter in a strongly
correlated manner. These interactions between thermal excitations restrict the available
density of states, i.e., impose phase space constraints which are not accounted for in the
conventional picture. Now one may wonder whether these strong correlations have an
impact on the lineshape broadening with temperature. Inelastic neutron scattering (INS)
experiments on copper nitrate [TLJT12|, which is a S = 1/2 quasi-1D dimer-chain com-
pound with alternating AFM couplings, revealed an increasingly asymmetric profile of the
observed lineshape upon raising the temperature. The asymmetry was ascribed to the cor-
relations between the excitations in this strongly dimerized compound. This implies that
quantum mechanical coherence persists at elevated temperatures. In order to support this
statement, Ref. [TLJ12] also contains theoretical results based on Refs. [ML06, JEKOS]
which are discussed further below.

One may ask the question whether the asymmetric lineshape broadening is a peculiarity
of low-dimensional systems. Due to pronounced quantum effects in one dimension and
the geometrical situation favoring scattering processes among quasiparticles [Gia04], it
might be tempting to think so. However, the answer is that the occurrence of asymmetric
lineshapes is not restricted to low dimensions since it has also been observed in the gapped
3D spin-1/2 dimer compound SrzCryOg [QCLIT12, JQCIT14|. This suggests that it is a
consequence of strong interactions between thermally activated quantum excitations.

To better understand the asymmetric temperature broadening of a coherent single-particle
mode, it is useful to briefly review the main progress made in the theoretical study of finite-
temperature lineshapes. The state of affairs will also motivate the DMRG calculations
presented in this thesis. Previous approaches based on semiclassical approximations are
only valid at temperatures 7" < A, which are significantly lower than the spin excitation
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gap A. They predict a symmetric Lorentzian lineshape at energies w ~ A close to the
gap [SY97, DS98, DS05, RZ06]. Dynamical response functions can also be calculated us-
ing low-temperature expansions in integrable quantum field theories [EK08, EK09|. The
method predicts an asymmetric lineshape broadening of a single-particle excitation for
such integrable field theories. This approach may also be applied to 1D lattice mod-
els. However, dimerized spin-1/2 Heisenberg chains, as studied in this chapter, are not
exactly solvable. Thus, the required matrix elements cannot be calculated from integra-
bility constraints any more and need to be approximated perturbatively [JEKO0S|. Apart
from the AFM-AFM dimerized chain [JEKOS|, the approach also predicted asymmetric
lineshape broadening in a dimerized spin ladder [GKE10|. The asymmetry is found to
increase with temperature in both cases. However, these results are only expected to be
valid for temperatures lower than the gap A. A full diagonalization study [ML06, Luc08|
for the AFM—-AFM dimerized chain also reported an increasingly asymmetric profile of
the lineshape with rising temperature. Nevertheless, the accessible system sizes with this
approach have been rather limited (L = 16). For these reasons, it would be desirable to
compute the finite-temperature spectral functions of such 1D dimer systems in a controlled
way also allowing for the treatment of larger systems.

Such calculations with quantitative predictive power are the main goal of this chap-
ter and are intended to put the occurrence of an asymmetric lineshape on more firm
grounds. To this end, the finite-temperature DMRG method working directly in the
frequency domain and developed in this thesis is employed, see Sec.3.6. The material
investigated in this chapter is the quasi-1D dimer compound BaCuyV,0g [VMB90|. The
DMRG calculations are compared to high-resolution inelastic neutron scattering (INS)
measurements for BaCuyV,0g and theoretical results obtained by the Briickner approach
on top of continuous unitary transitions (DBA-CUT) [FSU14, FU15|. By this compar-
ison between experimental and theoretical results, the presence of strongly correlated
behavior at elevated temperatures is studied. A second main goal of this chapter is to
identify the Hamiltonian of BaCuyV50Og. So far there have been no measurements of
the spin excitation spectra in BaCuyV,0g. Therefore, mainly static susceptibility mea-
surements [SYKO02, HKI04, HTT06, GPB*05, SMDO0§| and band structure calculations
[KW06, SMDO08| have obtained conflicting results about the weaker interdimer interac-
tion. Its strength was predicted to lie in the range between 0 % and 20 % of the intradimer
coupling. However, a comparison of INS data and DMRG calculations for BaCuyV,0Og
will reveal a weak ferromagnetic (FM) interdimer coupling. The material thus repre-
sents a complementary system to the purely AFM dimer-chain compound copper ni-
trate. Therefore, it is also investigated whether the correlated behavior in gapped dimer
systems depends on the sign of the interdimer coupling. Another subject studied by
finite-temperature DMRG calculations is the finite low-frequency intensity arising from
intraband transitions which has been observed for copper nitrate [TLJ*12].

This chapter is structured as follows: In Sec. 7.2, the state of affairs concerning the com-
pound BaCuyV,0g is presented. The Hamiltonian of BaCuyV5Og is determined in Sec. 7.3.
Section 7.4 presents the main results verifying the asymmetric lineshape in BaCuy V5,05 at
finite-temperatures by a comparison of experimental and theoretical results. It also con-
tains DMRG calculations for the thermally activated excitations at low frequency which
are predicted to occur in BaCuyV50Og. A conclusion of the present chapter as well as
perspectives for future research are given in Sec. 7.5.



114 | Chapter 7. Magnetic excitations in the spin-1/2 dimerized-chain compound. ..

-
. V5+
oV
@ o

Figure 7.1: (Taken from Ref. [KTF16].) Key structural element of BaCuyV2Og showing the
two proposed models of the dimerized chain along the c axis: first model with exchange paths J}
(dashed line) and Jo (solid line) resulting in two independent non-interacting dimerized linear
chains; second model with exchange paths J; (dash-dotted line) and .J» (solid line) leading to a
single dimerized screw chain. The Ba?" ions are omitted.

The compound BaCu,V,04 7.2

The investigated compound BaCusV,0g [VMBI0| has a tetragonal crystal structure of
space group 142d. The lattice parameters are a = b = 12.744 Aande=8.148 A. Figure 7.1
shows the key structural element of BaCuyV50g. The material essentially consists of
alternating chains of magnetic Cu®* ions with spin S = 1/2 that are coordinated by O?~
ions in square-planar geometry. These CuO, plaquettes form edge-sharing pairs which
rotate about the ¢ axis and are oriented with the ¢ axis lying within the plaquettes as
shown in Fig. 7.1.

Previous static magnetic susceptibility [SYK02, HKI04, HTI06, GPB*05, SMDO0S§|, spe-
cific heat [HKI04] and °'V nuclear magnetic resonance [GPB*05, LX05| measurements
revealed a non-magnetic ground state. The magnetic ground-state excitations were found
above a gap of A ~ 31.0 — 40.5meV. This implies that the Cu?* ions are coupled into
dimers by a dominant AFM intradimer interaction. The dimerization leads to a spin-
singlet ground state and gapped triplon excitations.

However, there are conflicting results about a possible weaker interdimer interaction.
Based on static susceptibility measurements on powder samples and supporting elec-
tronic structure calculations, Ref. [SMDO08| concludes in favor of an isolated dimer model.
This model is also in agreement with previous NMR results [LX05|. In contradiction,
other experimental works predict a weak AFM interdimer coupling of up to 20 % of the
intradimer coupling [HKI04, HTT06, GPB*T05, LX05|.

The exchange paths, modeled as the intradimer (Jiy,) and interdimer (Jinger) couplings
in the Hamiltonian (4.18), are strongly debated in the literature [HT106, KW06, SMDO0S|.
These paths are sketched in Fig.7.1. The magnetic interaction .J, between the two Cu?*
ions within the edge-sharing plaquettes is mediated via the superexchange path Cu—-O-
Cu [KWO06]|, which is marked by J, and associated with the exchange coupling Jiyger in
the Hamiltonian (4.18). Moreover, there are also proposed super-superexchange paths
(Cu-O-V-O-Cu) denoted by J; and J; in Fig.7.1 [KWO06]. These enter the model in
Eq. (4.18) as Jiga. Two models for BaCuyV,Og have been suggested. The first, assuming
the paths Jy and Ji, gives rise to almost straight alternating double chains parallel to
the ¢ axis [HKIO4|. The second, in which J; and J, are the exchange paths, couples
the Cu®" ions into alternating screw chains [KWO06]. The second model is favored by
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two electronic structure investigations which predict that J; and Jy; are both AFM with
ratio Jo/J; of 0.16 [KWO06| or 0.05 |[GPB*05], while J; is much weaker. However, the
approach [WKDO03| used for the spin dimer analyses in Ref. [KWO06| neglects a possible
FM intradimer coupling as an assumption.

In summary, the above findings of previous works leave open questions concerning the
microscopic model of BaCuyV50g. The first one is whether the compound is described
by isolated dimers or rather a strongly alternating chain. The second issue would be to
reliably determine the sign (AFM versus FM) and magnitude of a possible interdimer
interaction. The goal of the following Sec. 7.3 is to shed new light on these issues and to
identify the Hamiltonian.

7.3

Identification of the Hamiltonian

7.3.1

Static magnetic susceptibility

So far most measurements of the static magnetic susceptibility have only been obtained
for temperatures up to 300-400 K [SYK02, GPB*05, HTI06, SMDO08|. As noted by Ref.
[SMDOS|, there is a problem concerning the data analysis in Ref. [HKI04] which has
been the only work providing high-temperature data up to 900 K for the static magnetic
susceptibility. However, in order to distinguish an AFM interdimer coupling from a FM
one, the analysis of the high-temperature region is crucial since the different behavior is
most pronounced there [Bii03]. Therefore, the static magnetic susceptibility x is measured
over the temperature range 2-900 K for a magnetic field parallel H || ¢ and perpendicular
H 1 c to the ¢ axis. Both experimental curves are of very similar shape, although their
amplitude for H L ¢ is about 15% larger than for the other direction. This implies an
anisotropic ¢ factor in BaCuyV50Og. Moreover, Figure 7.2 shows fits to the experimental
susceptibility data. The fitting function is of the form

Xobserved(T> = Xo + Ximp(T) + Xint.dimer(T) (71)

Cmp. 3C/T
T — 8 3 —|— eJintra/(kBT) —|— Jinter/T

= Xo+ (7.2)

which contains the susceptibility Xins.dimer(7') for a model of coupled dimers treated in
a molecular field approximation [Joh97, SJ07|. See Appendix B.1 for the derivation.
Equation (7.2) also includes a contribution xim, from paramagnetic impurities. The Weiss
temperature of which is denoted by 6 and Cjy,p is the Curie constant of the impurities.
Xo is a temperature independent offset. The best fit to the experimental data yields the
fit results Jingra = 39.8 £20.13 meV, Jipger = —9.87 £ 2.64 meV, g = 2.09, and g, . = 2.27,
which suggest a FM interdimer coupling. The ¢ factors obtained from the experimental
data are calculated from the fitting result for the Curie constant C' of the magnetic atoms
via the relation [Joh97]

Natoms 921 S(S + 1)

C =
3kp

(7.3)

To further investigate this issue, Figure 7.2 also includes susceptibility data for the Hamil-
tonian (4.18) obtained via an imaginary-time evolution using DMRG and the purification
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Figure 7.2: (Adapted from Ref. [KTF16].) (a) Static magnetic susceptibility x as a function
of the temperature 7" for a magnetic field of magnitude 1 T applied parallel (H I .) and perpendic-
ular (H ) to the ¢ axis. The dotted red line represents the susceptibility in Eq. (7.2) calculated
for a model of weakly coupled dimers. Here the g factors and exchange constants were fitted
(Jintra = 39.8 £ 0.13 meV, Jipter = —9.87 £ 2.64 meV, g, = 2.09, g1 = 2.27). The DMRG
results are the solid lines (AFM—-AFM model) and the dashed (AFM-FM model) lines. Here the
exchange couplings are not fitted but rather adopted from Tab.7.1 below. Scaling the DMRG
data on top of the experimental results yields anisotropic g factors of g, = 2.14 &+ 0.015 and
g1c = 2.29+0.015 for the AFM-FM model. Panel (b) focuses on the high-temperature behavior
where the differences between the AFM—-AFM and the AFM-FM case are most pronounced,
which can be seen from the DMRG data. The experimental measurements and the fit analysis
were performed by Ekaterina S. Klyushina. The DMRG data were obtained in this thesis.

trick (see Sec.3.6.2).) These calculations are performed for both the AFM-AFM and
AFM-FM model using the corresponding exchange couplings taken from Tab.7.1 be-
low. Here only the g factors were determined by scaling the AFM-FM DMRG results
to the experimental data yielding g, = 2.14 4 0.015 and g,. = 2.29 £ 0.015. Thus,
there is good agreement with the g factors obtained for the coupled-dimer model above.
Moreover, in BaCuyV20g the plaquettes contain the ¢ axis and rotate about it. There-
fore, one considers the g factors parallel g|plq = g = 2.12 & 0.03 and perpendicular
Gliplag = 291c— g|c = 2.44£0.03 to the plaquettes. For these values the g factors obtained
from the experimental and DMRG data are averaged. The results are for instance in
agreement with the related material BaCuSiyOg where gplaq ~ 2.05 and g p.q ~ 2.31
[ZWKT06].

To answer the question which model, AFM-AFM or AFM-FM, gives a better description,
the focus is on the high-temperature data in the right panel of Fig.7.2. Here the AFM—
FM DMRG results are considerably closer to the experimental data giving another hint
that the interdimer coupling could indeed be FM. As also concluded previously [HTI06], it
is difficult to determine the Hamiltonian for BaCuyV;0g solely based on thermodynamic
measurements. To this end, inelastic neutron scattering experiments probing the dynam-
ical spin structure factor of sufficiently large single crystals are presented in Sec. 7.3.2 and
compared to DMRG calculations for both models.

'Tn contrast to the measurement which is conducted in the presence of a magnetic field of 1 T, there is
no magnetic field included in the DMRG calculations. This is justified since the applied field is negligible
compared to the energy scale of the dominant exchange coupling.
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7.3.2

Magnetic excitation spectra at 7' =0

In the present section the Hamiltonian of BaCuyV50Og shall be finally deduced. It thus
aims at a comparison between the magnetic excitation spectra measured by INS and
DMRG results for the dynamical spin structure factor for both the AFM-AFM and the
AFM-FM model. The experiments are conducted at a temperature of 7' =5 K which is
sufficiently low in order to compare the magnetic excitation spectra to zero-temperature
DMRG calculations. Before the results are presented, the technical details of these DMRG
calculations are briefly discussed.

Details of the DMRG calculations

The DMRG computations are performed directly in the frequency domain for 1D systems
of finite size and open boundary conditions (OBCs). MPS-based Chebyshev expansions
at zero temperature are used, see Sec. 3.5.4. It is important to take account of the crystal
structure of BaCuyV,0g since there is an experimental hint that the weaker dispersion
in Fig. 7.3(a) below might be engendered by the screw-chain geometry of the compound.
In order to include the effect of the crystal structure in the longitudinal dynamical spin
structure factor, the real positions R; of Nytom = 80 copper atoms along one screw chain
are used in the Fourier transform of the spin operator

1 )
S = D el gz (7.4)

V N atom

J

The momentum @ is specified by Miller indices @ = (H, K, L) and S7 is the z component
of the local spin operator acting at site j. With this, the zero-temperature longitudinal
dynamical structure factor is given by

ST0w, Q) =Y (Bl S3lEo)|* 6(w — (B, — Ey)) (7.52)

= (Ey| SiQ d(w— (H — Ey)) ng | Eo) (7.5b)

=) i@ (RiRy) {Eo| Sf 0w — (H — Ey)) S} | Eo) . (7.5¢)
7! =Gy 5(w)

Here |E,) and E,, denote the eigenstates and eigenvalues of the Hamiltonian H. Equa-
tions (7.5b) and (7.5¢) now offer two different schemes for the computation of spectral
functions via MPS-based Chebyshev expansions. In the first case of Eq. (7.5b), @ is spec-
ified prior to one single calculation in momentum space. More flexibility is provided by
the scheme in Eq. (7.5¢). Here the dynamical correlation functions G, ;(w) are computed
individually in real space giving access to arbitrary momenta in the postprocessing stage,
at the expense of an increasing computational effort by a factor ~ Nom. Moreover, the
reflection symmetry of the system is also exploited for G j(w). The latter computation
scheme is therefore advantageous in order to obtain results along various directions in ()
space as shown in Fig. 7.3 below. For these zero-temperature results a maximal internal
MPS bond dimension of m = 150 is retained. Note that the nearly Gaussian broadening
introduced in the Chebyshev expansions is chosen equal to the experimental resolution. As
the broadening depends inversely on the number of Chebyshev iterations, see Eq. (3.95),
this also gives a stopping criterion for the calculations. In each Chebyshev iteration the
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error resulting from the variational compression is €ompr < 107°. Since there are two
screw chains with different winding orientation in each BaCuyV5Og unit cell, the results
are obtained as a superposition of both screw chains.

Comparison between DMRG and INS experiments

Figures 7.3(a)-(b) present INS data measured along two directions in the (H,0,L) plane
at T = 5 K. Along (6,0,L) the magnetic excitation spectrum consists of two gapped
branches dispersing over the energy range 35.37 £ 0.05 meV to 45.56 4+ 0.05 meV, as
shown in Fig.7.3(a). The modes have the same periodicity and bandwidth, but are
shifted with respect to each other by half a period and alternate in intensity. The two
branches are dispersionless along the H direction, which can be inferred from the INS
data in Fig. 7.3(b). The same is also true for the K direction. Both modes in Fig. 7.3(a),
the strong and the weak one, are in very good agreement with the fifth-order expansion
of the one-triplon dispersion in Eq. (4.24) obtained for the alternating Heisenberg chain.
Assuming either an AFM—AFM (dashed line) or an AFM-FM alternating chain (solid
line), the fifth-order expression for the dispersion is plotted in Fig. 7.3(a).

These results show that BaCuyV50Og is a highly dimerized 1D quantum magnet in which
the dimers are coupled along the ¢ axis whereas the coupling in the ab plane is absent
or negligibly small. Moreover the presence of a structure factor with two modes implies
that these chains are not straight. In addition to the following arguments, this can also
be concluded from the DMRG results discussed further below. The extracted value of the
alternating chain periodicity (d = 4.04 + 0.04 A) is the same for both modes and is half
the lattice parameter c. This periodicity corresponds to the alternating screw chain model
assuming the exchange paths denoted by J; and J,, whereas the linear chain model (J;
and J;) can be excluded because it would have a periodicity of d = ¢ = 8.124 A. Thus,
the INS results confirm the exchange path predicted by electronic structure calculations
[KWO06]. However, from this one cannot determine which of the two exchange paths is
FM,? it is most likely that J; = Jiptra is AFM, while Jy = Jipter is FM. This assumption
is based on band structure calculations predicting that the super-superexchange path
J1 (Cu-O-V-0O-Cu) provides the strongest AFM interaction [KW06, SMDO08| and that
the bridge angle of the J, superexchange path (Cu-O-Cu) is 94° [KW06]. This further
supports the current finding as the predicted angle is very close to the crossover from AFM
to FM according to the Goodenough-Kanamori-Anderson rules [And50, Kan59, Goo60].

As a next step, the values of Jier and Jiya are determined via a fit of the fifth-order
expansion of the one-triplon dispersion in Eq. (4.24) to high-resolution energy scans at the
dispersion minima and maxima. In this fitting analysis both the AFM—-AFM and AFM-
FM models were considered leading to the fit results summarized in Tab. 7.1. Using these
values for the couplings as an input (Jipga = 1, Jinter = J2/J1), DMRG computations for
the dynamical spin structure factor at 7' = 0 were performed for both models.

To distinguish between the AFM-AFM and AFM-FM alternating screw-chain models,
these zero-temperature DMRG calculations provide results along the (6,0,L) and (H,0,5)
directions for the AFM-AFM (Figs. 7.3(c)-(d)) and the AFM-FM (Figs. 7.3(e)-(f)) mod-
els. In both cases gapped modes are found, matching the experimental data in terms of
energy and periodicity. However, only the AFM—FM model agrees with the observed in-
tensity while the AFM—AFM chain is clearly wrong since the strong and the weak modes

2It is also not possible to conclude this from the DMRG calculations below.
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Figure 7.3: (Adapted from Ref. [KTF*16].) Panels (a) and (b) show INS results contributed
by the experimental collaborators. Panels (c¢)-(f) contain DMRG data obtained in this thesis.
Background-subtracted INS data along (a) (6,0,L) and (b) (H,0,5) at 7' = 5 K. The dashed
and solid lines show the one-triplon dispersion to fifth order in J/.J; for the AFM-AFM model
(J1 = 40.75 £ 0.02 meV, Jo = 9.16 + 0.10 meV) and AFM-FM (J; = 40.92 £ 0.01 meV,
Jo = —11.97 £ 0.10 meV) model, respectively. The zero-temperature dynamical structure factor
is calculated by DMRG for the AFM-AFM screw-chain model along (c) (6,0, L) and (d) (H,0,5).
Furthermore, this quantity is also computed for the AFM-FM screw-chain model along (e)
(6,0,L) and (f) (H,0,5). In both cases, the calculations adopt the values for the exchange
couplings specified above as well as in Tab. 7.1. The DMRG results take into account the positions
of the Cu?" ions, see Eq. (7.4).
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model J1 (meV) Jy (meV) Jo/ J1
AFM-AFM | 40.7540.02 9.16£0.10 0.225
AFM-FM | 40.92+0.01 | —11.974+0.10 | —0.29

Table 7.1: Fit results for the intradimer and the weaker interdimer exchange couplings obtained
by a fit of the fifth-order expansion of the one-triplon dispersion (see Eq. (4.24)) to high-resolution
energy scans at the dispersion minima and maxima.

are interchanged with respect to the experiment. The DMRG results thus confirm the
presence of an FM interdimer coupling, which represents one of the main results. This
is in agreement with the static magnetic susceptibility data which has been analyzed in
Sec.7.3.1.

Moreover, another important result is that the DMRG calculations help to undoubtedly
relate the origin of the low-intensity dispersion branches to the screw-chain geometry.
These weak features only appear if one takes into account the corresponding crystal
structure in the Fourier transform (7.4). If the Fourier transform for a linear chain is
used instead, the low-intensity dispersions are not visible. Consequently, they are not
engendered by interchain coupling.

Finite-temperature results 7.4

Having determined the Hamiltonian of BaCuyV,0g in the previous sections, this knowl-
edge is used to investigate the persistence of strongly correlated behavior at elevated
temperatures. Since materials described by an alternating AFM-FM chain are scarce,
BaCuyV,0g grants the opportunity to study the effect of temperature on a new dimer
system with weak FM interdimer coupling.

Correlation length 7.4.1

In Fig. 7.4(a) both the temperature and distance dependence of the correlation functions
|(SzSi+j>] for the AFM-FM dimer model with Jigter/ Jintra = —0.29 are studied. Note
2 2

that these data are shown in dependence of the inverse temperature. The correlations
are evaluated in the thermal states obtained by TDVP imaginary-time evolution with
an internal MPS bond dimension of m = 150. As expected for a system of weakly
coupled dimers, the correlations decrease rapidly with increasing distance. In particular,
at inverse temperatures 8 < 3 (i.e. T/Jina > 1/3) the decay of the correlations becomes
even faster with increasing temperature. This implies a shorter correlation length towards
higher temperatures which is expected due to increasing thermal fluctuations. At first
sight, for § > 3 the decay of the correlations appears to be almost identical over a wide
range of temperatures in Fig. 7.4(a). However, this has to be analyzed in more detail.

To this end, the correlation length £ is determined by fits of the form ~ exp (—j/&) to
the data in Fig. 7.4(a). Each fit is obtained at a fixed temperature. The results for ¢ are
displayed in Fig. 7.4(b) and allow to assess the extent of the low temperature region even
better. At low temperatures, £ is found very close to the correlation length calculated in
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the ground state of a 50-site chain. There appears to be a very weak maximum. However,
its presence is not guaranteed due to the fitting errors. Upon raising the temperature,
the correlation length decreases. The data points suggest a monotonic decrease which is
steepest around T'/ Jipga ~ 1/2.
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Figure 7.4: DMRG results for the AFM-FM dimer model (Jipter/ Jintra = —0.29): (a) Correla-

tions functions [(S7 S7 +j>| between the center of a chain of L = 50 sites and spins at a distance
2 2

of j lattice spacings plotted in dependence of the inverse temperature = Jiptra /7. (b) Temper-

ature dependence of the correlation length determined from fits of the form ~ exp (—j/£) to the

data in panel (a). The weak maximum in {(7") at low temperatures should not be overinterpreted

since due to finite-size effects fitting errors are most pronounced in this temperature range. As

expected, these errors decrease with increasing temperature.

Temperature-induced asymmetric lineshape broadening 7.4.2

Prior to presenting the DMRG computations for the dynamical spin structure factor at
T > 0 which represent a main result of this thesis, the INS measurements are discussed.
Apart from the experimental results, one focus of this discussion is an explanation of
the fitting analysis used to quantify the asymmetric lineshape broadening at elevated
temperatures. This explanation is important since the same analysis is also applied to
the DMRG results.

Details of the DMRG calculations

At T > 0, the finite-temperature approach developed in this thesis is used (see Sec. 3.6).
Here it is implemented as a Chebyshev expansion for the Liouville operator in an MPS
framework. At finite temperature, it is computationally more expensive to compute the
Chebyshev moments (see Sec.3.6.4). Therefore, one calculates only N = 1000 moments
using a higher MPS bond dimension (m = 250) than at T' = 0, leading to a compression
error of €compr S 1074, Here the calculation proceeds directly in momentum space for a
specific momentum (@), i.e., by means of the computation scheme already presented for T =
0 in Eq. (7.5b). The scheme is chosen since a subsequent extrapolation of the Chebyshev
moments by linear prediction is usually performed in momentum space [BSW09|. Linear
prediction (see Sec. 3.5.4) is used to enhance the resolution. A more detailed presentation
of the linear prediction results is given in Appendix B.4. Due to the Fourier transform in
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Eq. (7.4) complex arithmetics are used. In order to assess the quality of the extrapolation
at a given temperature, the input parameters for the linear prediction are varied, e.g.,
the number of computed Chebyshev moments and the fitting interval. These data sets
produced by linear prediction were then fitted by the function in Eq. (7.10) below. The
resulting fit parameters for the Lorentzian width W, and asymmetry « displayed a slight
dependence on the fit interval at a fixed temperature. The error estimates shown in
Fig.7.5(g) and 7.5(h) represent the maximal deviation found. See Appendix B.4 for the
analysis of the linear prediction results. At T" > 0, only the atom positions of a single
screw chain consisting of Nyom = 40 Cu?* ions were used for the Fourier transform in
Eq. (7.4) since the effect of a different winding orientation is very small.

Experimental results and fitting analysis

In order to study the effect of temperature, INS energy scans of high resolution are
obtained for a wide range of temperatures of up to 200 K. They are performed at the
dispersion minima, (6,0,1) and (8,0,0), where some of the most pronounced deviations from
the symmetric Lorentzian lineshape are expected [JEK08, TLJT12, QCLIT12, JQCI™14].
The background-subtracted INS data is shown in Figs. 7.5(a)-(f). First of all, it is observed
that the measured lineshape broadens with increasing temperature. Note that the vertical
axes in Figs. 7.5(a)-(f) have a different range in each panel. The lineshapes look more
and more asymmetric as well as weighted towards the center of the band with increasing
temperature.

In a first step it can be shown that the lineshape at elevated temperatures, 175 K and
200 K, cannot be described by a symmetric Lorentzian profile. The idea pursued here is
to fit a symmetric Lorentzian to the data. However, one also needs to take into account
the resolution function R(E) of the experiment. To determine R(FE), one assumes that
at the base temperature of 3.5 K the observed broadening is only attributed to resolution
broadening. In other words, the effect of thermal broadening is neglected. To this end, a
slightly asymmetric Gaussian function G, (E) of the form

1 _E_Eea 2
exp ( p k)

= 2
/ Wa _ W,
27r(2 21n(2) +y(E Epeak)) 2 (2 /—21(;(2) +(E - Epeak)>

(7.6)

is fitted to the experimental data at base temperature in Fig. 7.5(a). Here £ denotes the
energy variable. The Gaussian asymmetry parameter 7 introduces an asymmetric profile
with respect to the peak position Ec. of the excitation. This represents a modification
to the ordinary Gaussian full width at half maximum (FWHM) W¢. From the fit, it turns
out that the resolution broadening of the experiment is well described by Eq. (7.6), i.e.,
R(E) =G, (E). The determined values for Wg = 0.89+0.03 meV and v = 0.1 £0.04 are
fixed for the analysis at higher temperatures. Setting v = 0 for the fit yields a Gaussian
broadening of W = 0.863 £ 0.010 meV. Therefore, the theoretical results in Fig. 7.5,
including the DMRG data, are also presented at this resolution.
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Figure 7.5: (Taken from Ref.[KTF"16].) The figure shows a comparison of the DMRG
results computed in this thesis to experimental data and DBA-CUT calculations, both obtained
by collaborators. The background-subtracted constant wave-vector INS scans at (6,0,1) and
(8,0,0) were measured at (a) T = 3.5 K, (b) T = 100 K, (¢) T = 125 K, (d) T" = 150 K,
() T'=175 K, and (f) T = 200 K. At T" = 3.5 K in panel (a), the instrumental resolution
function is determined by a fit (solid line) using the asymmetric Gaussian function G- (E) in
Eq.(7.6). In panels (b)-(f), the solid lines are the fits of the function Fyy, o(F) in Eq.(7.10)
to the experimental results in order to extract the Lorentzian width W; and the Lorentzian
asymmetry parameter . The dotted lines in panels (e) and (f) represent fits with o = 0 showing
that a symmetric Lorentzian lineshape is not compatible with the experiment. The dash-dotted
lines in panels (b), (d), and (f) are the finite-temperature DMRG results for the AFM-FM model
obtained in this thesis. Corresponding DBA-CUT results are given by the dashed lines. Panels
(g) and (h) show the temperature dependence of the parameters for the Lorentzian width Wy,
and the asymmetry « obtained by fits of Eq. (7.10) to both the experimental and theoretical
results.
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In order to finally illustrate the departure from a symmetric Lorentzian lineshape at
elevated temperatures, the experimental resolution function R(F) is convolved with an
ordinary Lorentzian function
L
L(E) == - (7.7)
(B = Bpead)” + (3)

modeling only symmetric temperature broadening. Then the resulting fit function is of
the form

F(E)=A-L(E)*R(E), (7.8)

where the prefactor A denotes the peak height and * signifies the convolution. Now F(E)
is fitted to the lineshapes at 175 K and 200 K in Figs. 7.5(e)-(f) (dotted red line). From
this, it becomes clear that the lineshape at these elevated temperatures does not have a
symmetric Lorentzian profile.

Next, one would like to parametrize the observed asymmetry in order to study its tem-
perature dependence. A tractable route is to modify the ordinary Lorentzian width W,
in Eq. (7.7) by the introduction of a Lorentzian asymmetry parameter «:

WL+a(E_Epeak)
2 . (7.9)

LWL704(E) - 2
(E — Epeak)2 + (WL+OL(E27Epeak)>

3=

The parameter o makes the lineshape asymmetric with respect to the peak position Epeak.
The fitting function Fyy, o(FE) used for a parametrization of the asymmetric lineshape is
thus given as the convolution of an asymmetric Lorentzian Ly, o(E) and the experimental
resolution function R(F):

Fi, o(E) = A- Ly, o(E) « R(E). (7.10)

The solid red lines in Figs. 7.5(b)-(f) represent the best fits of Fyy, o(E) to the experi-
mental data at either (6,0,1) or (8,0,0). The fit results for the width W, and the asym-
metry parameter o are depicted as a function of temperature in Figs.7.5(g)-(h). The
temperature dependence of Wy, shows that the FWHM of the excitations increases with
temperature, which clearly reveals thermal broadening of the excitations. Furthermore,
their lineshape is asymmetric above 100 K and becomes even more asymmetric with rising
temperature as « increases in Fig. 7.5(h).

DMRG results

As motivated in the introduction of this chapter, one main objective of this thesis is to
verify the experimentally observed asymmetric thermal lineshape broadening by reliable
and accurate DMRG computations for the alternating AFM-FM screw-chain model. The
newly developed finite-temperature approach working directly in the frequency domain
in combination with linear prediction is employed for this purpose. The technical details
that are relevant for the calculation of the dynamical spin structure factor at 7" > 0
have been discussed above. The corresponding DMRG results are obtained at 100 K,
150 K, and 200 K for the alternating AFM—FM chain with dimensionless coupling con-
stants Jinra = 1 and Jiper = —0.29, see Tab. 7.1. The data are rescaled with the slightly
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Temperature (K) | J1(T) (meV)
3.5 40.92 + 0.03
100 40.60 £ 0.05
150 40.18 £ 0.05
200 39.69 £+ 0.10

Table 7.2: Temperature dependence of the interdimer coupling .J;. The corrections included
in J1(T) are smaller than 5% compared to the base-temperature value of .Jj.

temperature-depend intradimer coupling J;(T") specified in Tab.7.2. The analysis yield-
ing these values is based on a comparison between DMRG and experimental results and
is shown in Appendix B.3. A slight temperature dependence of J; is plausible since
for instance lattice distortion may occur in BaCuyV,0g due to the wide temperature
range considered here. The DMRG results are shown as the dash-dotted blue curves
in Figs. 7.5(b), 7.5(d), and 7.5(f). Over this broad temperature range, there is good
quantitative agreement between the lineshapes calculated by DMRG and probed in the
experiment. The resolution of the DMRG-based Chebyshev expansions is enhanced by
linear prediction to exactly fit the experimental resolution broadening of Wg = 0.86 meV
determined above, whereas it does not take account of the slight asymmetry of the ex-
perimental resolution in Eq. (7.6). The asymmetric lineshape of the calculations is solely
attributed to thermal broadening. Note that the Gaussian broadening 7 introduced in
the Chebyshev expansions (see Sec. 3.5.4) is related to Wg by n = Wg/(24/21n(2)) for a
vanishing Gaussian asymmetry (v = 0) in Eq. (7.6).

In Figs. 7.5(b), 7.5(d), and 7.5(f), the DMRG computations confirm the asymmetric
lineshape broadening weighted towards the center of the band. There is good quantitative
agreement with the experimental results. The previously explained fit analysis based on
Eq. (7.10) is also applied to these DMRG data. The extracted fit parameters for the
Lorentzian width W, and the Lorentzian asymmetry « are also included in Figs. 7.5(g)-
(h). They show good agreement with the experimental values. The calculations thus
confirm persistence of correlation effects at elevated temperatures.

Comparison to the diagrammatic approach

Now the finite-temperature results obtained by the diagrammatic Briickner approach
(DBA-CUT) are compared to the DMRG calculations as well as the INS measurements.
The DBA-CUT results obtained by Benedikt Fauseweh are displayed as the dashed lines
in Fig. 7.5 and also support the asymmetric lineshape broadening. The fit analysis using
Eq. (7.10) is also applied to the DBA-CUT data. The resulting fit parameters Wy, and «
are shown in Figs. 7.5(g)-(h). In particular, the analysis reveals a slightly better agree-
ment between the Lorentzian width W}, extracted from the DBA-CUT spectra and the
experiment than for the DMRG results. However, the peak positions of the DBA-CUT
curves display an offset with respect to the maxima of both DMRG and the INS. There-
fore, the DBA-CUT data have been shifted for better comparability in Fig.7.5. While
both theoretical approaches quantitatively predict the asymmetric profile observed in INS,
DBA-CUT better resolves the lineshape whereas the peak positions are better described
by DMRG. The DBA-CUT deviations for the peak position are discussed further below.
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Figure 7.6: (Taken from the supplemental material of Ref. [KTF*16].) Comparison of finite-
temperature results obtained by the diagrammatic Briickner approach (DBA-CUT) and DMRG
(left column) at the minimum and (right column) at the maximum of the single-triplon dispersion
for Jintra/Jinter = —0.29. Here Jintra = 40.92 meV is used to determine the temperatures in all
panels. The DBA-CUT results were calculated by Benedikt Fauseweh, while the DMRG results
were obtained in this thesis.

Next, it is interesting to further compare the results of both theoretical approaches in Fig.
7.6. It shows the theoretical data at both the minimum and maximum of the single-triplon
dispersion for a lower resolution (Wg/Jinra = 0.082) than in Fig. 7.5. At the resolution
the results are compared to each other, the DMRG data do not have to be extrapolated by
a linear prediction in the Chebyshev moments. At the lowest temperature, 7' = 100 K, in
Fig.7.6(a)-(b), the peak heights are fixed to one. These scaling parameters are also kept
fixed at higher temperatures allowing for a direct comparison of the theoretical approaches
in each column of Fig. 7.6. Concerning the evolution of the lineshape with temperature,
there is very good agreement of the two approaches up to T' = 150 K. At T" = 200 K,
there is a deviation in the peak positions, which can be explained by the low-temperature
approximation inherent to the diagrammatic Briickner approach. While effects already
described by the leading order exp (—A/(kgT')) are accounted for exactly, it could be
shown that the shift is an effect ~ exp (—2A/(kgT")) [FSU14]. Therefore, deviations from
the peak positions with increasing temperature are not unexpected.
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The left column of Fig. 7.6 also shows DMRG results for different system sizes Niom = 40
and 80. Since these two DMRG curves are very close to each other, finite-size effects seem
to be negligibly small. Moreover, the lineshape of the dominant peak is not significantly
altered by adopting a 1D Fourier transform (not shown), which does not take account of
the real atom positions. Such a transform is used in the Briickner approach.

In summary, at the resolution shown in Fig. 7.6 both theories show an excellent agreement
for the shape, width, and temperature-dependence of the height and good agreement on
the position at low temperatures. Deviations between both approaches only occur for
very high resolutions as required for the quantitative analysis of the experiment. This
leads to the slightly different results for width and asymmetry displayed in Fig. 7.5(g)-(h).

Comparison of the AFM-FM and AFM-AFM models

Furthermore, a comparison of the thermal lineshape broadening for the AFM-FM and
AFM-AFM models is interesting since the effect of the interdimer exchange coupling can
be studied in this manner. Therefore, the spectral function at the dispersion minimum
is computed by DMRG for both the AFM-FM and AFM-AFM model at T = 100 K.
Together with the experimental data for BaCuyV5Og these results are presented in Fig. 7.7.
Both calculations yield an almost identical asymmetric lineshape revealing that there is
only a marginal dependence on the sign of the weak interdimer coupling at 7= 100 K.
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Figure 7.7: (Adapted from the supplemental material of Ref. [KTF16].) DMRG calculations
for the spectral function at the dispersion minimum for both the AFM-FM [at @ = (6,0, 1)] and
AFM-AFM [at Q = (6,0,2)] model at "= 100 K compared to the background-subtracted INS
data for BaCuaV2Og at @ = (6,0,1). The asymmetric lineshape broadening does only weakly
depend on the sign of the interdimer coupling at 7" = 100 K.
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Finite-temperature correlation functions 7.4.3

Furthermore, it is also interesting to study the temperature dependence of spin-spin corre-
lation functions which are readily accessible in the course of an imaginary-time evolution
to obtain thermal states. Retaining an internal MPS bond dimension of m = 150, the cal-
culation was performed using the TDVP method for chains of L = 30 and 50 sites. Results
for both the correlation functions at the strongly-coupled intradimer bonds (S; 1S; 2) and
the weakly-coupled interdimer bonds (S; 2S;:1,1) are shown for J,/.J; = —0.29 in Fig. 7.8.

The intradimer correlations (S;1S;2) in Fig.7.8(a) only show minor deviations from
the isolated dimer limit in which the correlations can be calculated exactly as (see Ap-
pendix B.2 for the derivation)
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Figure 7.8: DMRG results for the temperature dependence of the spin-spin correlation func-
tions in the AFM-FM model (J2/J; = —0.29): (a) Intradimer correlation function (S; 1S; 2) at
the center of a chain with L = 50 (L = 30) sites compared to exact results for an isolated dimer
in Eq. (7.11). (b) Deviation [(S; 1S; 2) — (S1S2)isolated| between the isolated dimer case and the
DMRG calculations for the intradimer correlations (L = 30). (c¢) Interdimer correlation function
(Si,2Si+1,1). For a better comparison to the other results for BaCuyV2Og the temperature axis
is rescaled using J; = 40.92 meV in all panels. The vertical lines mark 7' = 100 K, 150 K, and
200 K.
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At first sight, the qualitative behavior is very similar in Fig.7.8(a). To have a closer
look, the temperature dependence of the deviation between the DMRG results for weakly
coupled dimers (Jy/J; = —0.29) and a single dimer is plotted in Fig.7.8(b). The dif-
ference shows a maximum slightly below 7" = 150 K before the isolated dimer curve is
monotonically approached towards higher temperatures. In the limiting case of T" = oo
the correlations are zero. Interestingly, the maximum falls into the range of temperatures
where the asymmetric lineshape is observed for BaCu,V3Os.

The temperature dependence of the interdimer correlation function (S; 2S;11,1) is depicted
in Fig. 7.8(c). It represents the deviation from the isolated dimer limit since the corre-
lations between different dimers are zero in this case. Again, in the temperature range
where the asymmetric lineshape is observed for BaCuyV50Og, there is an increase of the
correlations between two adjacent dimers which are assuming a maximum slightly above
T =200 K.

Although the studied effects in both intradimer and interdimer correlation functions in
Figs. 7.8(b)-(c) are very tiny, one may wonder whether this increase in quantum corre-
lations at elevated temperatures is related to the increase of the Lorentzian asymmetry
parameter « found in the same temperature range in Fig.7.5(h). This question will be
discussed as a perspective for future research in Sec. 7.5 below.



130 Chapter 7. Magnetic excitations in the spin-1/2 dimerized-chain compound. ..

Intraband excitations 1.4.4

INS data for the compound copper nitrate showed a continuum of temperature-induced
excitations at small energies which could be attributed to scattering within the one-triplon
band [TLJ"12|. These excitations are in agreement with full diagonalization results for
small systems of L = 16 sites [ML06, Luc08| and an analytical approach based on a
low-temperature expansion [JEKOS].

Since BaCuyV50Og is described by an AFM—FM model instead of the AFM-AFM model
for copper nitrate, the presence of such intraband transitions in BaCu,;V5Og is an inter-
esting question. However, INS measurements of the intraband continuum in BaCuyV,0g
turned out to be challenging due to its low intensity [Kly16]. Therefore, only theoretical
predictions for the temperature dependence of these excitations is presented here. To this
end, the finite-temperature frequency-domain approach developed as a main part of this
thesis (see Sec.3.6) is used. In order to study the corresponding momentum dependence,
MPS-based Chebyshev expansions with respect to the Liouville operator are obtained by
the computation scheme in Eq. (7.5¢). The calculations are thus performed in real arith-
metics and without linear prediction, using an internal MPS bond dimension of m = 200.
The DMRG results for the dynamical spin structure factor S,.(Q,w) along the (6,0, L)
direction are presented in Fig.7.9. The finite-temperature data obtained for a chain of
L = 30 sites clearly shows the appearance of continua at small energies. With rising
temperature, their intensities increase further. However, also note that Figure 7.9 shows
the intensities on a logarithmic scale. It turns out that the intensity of the thermally-
activated intraband transitions is only a small fraction of the weight associated with the
one-triplon excitations. This explains why INS measurements of these excitations are not
straightforward.

There is an analogous observation of low-frequency intensity for AFM spin chains. This is
oftentimes referred to as Villain mode which was first reported for Ising antiferromagnets
[Vil75]. In contrast to the model for BaCuyV,Og, here the excitations are domain walls
in the AFM order and not triplons.
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Figure 7.9: DMRG results for the dynamical spin structure factor S..(Q,w) showing the
appearance of intraband excitations at small energies and the thermal broadening of the one-
triplon dispersion along the (6,0,L) direction at temperatures of (a) T'= 0 K, (b) 100 K, (c)
150 K, and (d) 200 K. The finite-temperature results are obtained for L = 30 whereas a system
of L = 40 sites is studied at T'= 0 in panel (a). The temperatures and the energy axis is scaled
using a fixed value of J; = 40.92 meV for simplicity. The broadening is 7 = 0.035 (corresponding
to Wg ~ 3.37 meV) and therefore higher than in the INS experiments.
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Conclusion 7.5

One result of this chapter is the identification of the Hamiltonian for the quasi-1D dimer
compound BaCuyV,0s. It is shown that BaCuyVoOg is described by a spin-1/2 alter-
nating Heisenberg chain. The weaker interdimer coupling is FM whereas the stronger in-
tradimer coupling is AFM. This corrects the long-held view from all previous experimental
[HKI04, HTT06, GPB*05, LX05, SMDO0S8| and theoretical [KW06, SMDO08| works that the
interdimer coupling J, is AFM or negligibly small. However, the exchange paths J; and
Jo predicted by electronic structure calculations [KW06, SMDOS8| are compatible with our
results. Moreover, an FM interdimer exchange .J, can also be reconciled with a previous
prediction for the bridge angle of the corresponding superexchange path (Cu—O—Cu). The
predicted value is 94° [KWO06| and therefore very close to the crossover from AFM to FM
according to the Goodenough-Kanamori-Anderson rules [And50, Kan59, Goo60).

Apart from the identification of the Hamiltonian, the DMRG calculations taking into
account the atom positions in Fig. 7.3 also verified that the weaker dispersion in the INS
spectra appears due to the screw-chain geometry of BaCuyV50Os.

The main result of this chapter is that there is an extraordinary coherence of magnetic
excitations at elevated temperatures in the gapped dimer compound BaCu,V5,0g. Most
importantly, the temperature effects in BaCuyV,Og are thus accounted for by the AFM-—
FM model. This is found by calculating the temperature dependence of the dynamical
spin structure factor directly in the frequency domain by MPS-based Chebyshev expan-
sions for this model and comparing them to high-resolution INS measurements. The
computed lineshapes quantitatively describe the experimentally observed lineshapes in
BaCuyV,0g over a broad temperature range. Fitting analyses of both the computed
and experimentally probed lineshapes, reveal an asymmetric broadening at the minimum
of the one-triplon dispersion which increases with temperature. The fit results for the
experimental and theoretical asymmetry parameters are in good quantitative agreement.

In order to further support these results, the asymmetric lineshape broadening is also stud-
ied by the recently developed theoretical approach DBA-CUT [FSU14, FU15|. As shown
in Fig. 7.5, there is good quantitative agreement between the experimentally observed and
the theoretically predicted lineshapes obtained by both DBA-CUT and DMRG.

Furthermore, a comparison to the quasi-1D compound copper nitrate, which can be de-
scribed by a AFM-AFM dimer model and also exhibits asymmetric lineshape broadening
[TLJ*12|, leads directly to the next conclusion. The persistence of strong correlations in
dimerized quantum magnets is independent of the sign of the interdimer exchange cou-
pling. In particular, DMRG calculations at 7' = 100 K even showed that the asymmetry
in the lineshape is almost identical for the AFM-FM and AFM-AFM models.

In this context, it has to be pointed out that the theoretical results presented here repre-
sent an improvement over previous results obtained by full diagonalization [MLO06, Luc08|
and the field theoretical treatment [JEK08| of an AFM-AFM dimer model for copper ni-
trate [TLJT12|. Finite-temperature Chebyshev expansions formulated in Liouville space
give accurate results for the dynamical spin structure factor for significantly larger sys-
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tems of up to Nuom = 80 atoms, which is an important achievement of this thesis. These
computations also include the details of the crystal structure.

Last but not least, DMRG results for the temperature dependence of interdimer and
intradimer correlation functions are presented. In this study the deviations from the
isolated-dimer limit are studied and turn out to be rather tiny. However, these slight
deviations are most pronounced over the temperature range in which the asymmetric
lineshape broadening increases for BaCuyV,Og. A possible relation between the asym-
metry and these quantum fluctuations needs further studies and would be an interesting
question for future research. Here also a connection to the quantum mechanical entan-
glement of the system is of interest. However, the quantification of finite-temperature
entanglement itself poses a challenging problem as no commonly accepted measure exists

[AFOV08, ACL12].






Summary and conclusion 3

One key result of this thesis is the development of an efficient and unbiased numerical
approach for the calculation of finite-temperature spectral functions of 1D strongly cor-
related quantum systems. The approach is implemented in the framework of MPS and
works directly in the frequency domain.

Another main achievement is that the developed method could be successfully applied
to two different spin-1/2 models for the quasi-1D compounds copper pyrimidine dinitrate
(Cu-PM) and BaCuyV,0s, allowing for a direct comparison to high-resolution experi-
mental results for dynamical quantities at 7" > 0. A summary and concluding remarks
concerning these projects are given below. First, methodical aspects as well as their
implications for future research are discussed.

MPS formulation of frequency-space dynamics
at finite temperature 8.1

A main component of the developed finite-temperature MPS approach is the established
purification |Wr) of the thermal density matrix which is employed since MPS can only
represent pure quantum states. In order to arrive at such a pure-state wave function de-
scribing a generally mixed finite-temperature state, the system’s degrees of freedom need
to be doubled [UHTS82|. As a consequence, one works with a tensor product space Hp®@H
of the physical and an auxiliary state space. Choosing a Liouvillian formulation for the
frequency-space dynamics of the purification |Wr), it is possible to extend existing zero-
temperature frequency-domain methods to the calculation of spectral functions at 1" > 0.
Proof-of-principle calculations for two such approaches, both MPS-based Chebyshev and
continued fraction expansions (CFE) of dynamical correlation functions, are presented in
Chapter 5. They reveal that the Liouvillian formulation of finite-temperature frequency-
space dynamics allows for an efficient as well as unbiased treatment of 1D quantum spin
chains in the framework of MPS. This methodical insight is one main result of this thesis.
Both methods give accurate results for the finite-temperature dynamical spin structure
factor of the 1D X X model, which is verified by a comparison to exact results. The
temperature dependence of the same quantity is also calculated for an antiferromagnetic
Heisenberg chain in a uniform and a staggered magnetic field, serving as a further non-
trivial test case. From the calculations, it is concluded that the Chebyshev MPS method
is more efficient than the CFE at T' > 0. It therefore better resolves the dynamical struc-
ture factor for these models at a much smaller internal MPS bond dimension.

It is useful to regard the method developed in this thesis in relation to other established
methods for the calculation of finite-temperature spectral functions. For instance, quan-
tum Monte Carlo (QMC) simulations based on the stochastic series expansion scheme
[San10] are a state-of-the-art approach. Here spectral functions need to be obtained
by a challenging analytic continuation procedure from imaginary-frequency data [JG96,
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Bea04], which can be hard to control in certain cases. On the contrary, the finite-
temperature Chebyshev MPS approach provides an approximation which can be well
controlled. Reliable error estimates help to detect numerical artifacts. One drawback
of the iterative Chebyshev MPS approach is that it cannot be easily parallelized on a
large scale such as the stochastic sampling in QMC simulations. Therefore, it is possi-
ble to obtain the QMC results in only a small fraction of the time elapsed in the course
of the MPS calculations, but the total CPU time used for QMC can be significantly higher.

In this context, one should also comment on existing DMRG approaches for the calcula-
tion of spectral functions via real-time evolution of a purification [KBM12, Bar13| followed
by a Fourier transform to frequency space. At zero-temperature, the MPS Chebyshev ap-
proach has been benchmarked against two different variants of MPS-based time-evolution
methods only recently [WJMS15, BWvDG16|. The analysis in Ref. [BWvDG16]| con-
cludes that neither the time-domain nor the Chebyshev method shows clear advantages
at T'= 0. However, note that comparisons between two numerical methods depend on the
details of their implementation as well as the studied models, parameters, and quantities.
At finite temperature, there exist no benchmark calculations of this kind. This question
is left for future investigations as a meaningful analysis would be a comprehensive project.

Another aspect is that the dynamical response at very low frequency calculated by MPS
time evolution using the purification trick can be limited as it depends on the long-time
behavior of time-dependent correlation functions [KKM14, KKHM15|. For MPS-based
Chebyshev expansions at 7' > 0, it can be concluded that the resolution at low frequency
is constant and not degrading even at strictly w = 0. For instance, a continuum of
intraband transitions could be observed as a low-frequency feature of very weak intensity
in the model calculations for BaCuyV,0Og, see Fig. 7.9. This is expected to be a general
characteristic of finite-temperature frequency-domain approaches formulated in Liouville
space and should definitely be further explored. It is an interesting question to assess the
full potential, e.g., in the study of transport properties [HMHB07, KKHM15|.

Dynamical properties of the sine-Gordon
quantum magnet Cu-PM 8.2

Modeling the Dzyaloshinskii-Moriya interactions in the quasi-1D sine-Gordon compound
Cu-PM by an effective staggered field, the spectral functions for this system were stud-
ied for a broad range of the uniform magnetic field h, applied in the longitudinal direction.

At zero temperature, the frequency-field dependence and the intensities of several elemen-
tary excitations such as the soliton and breather excitations were calculated by MPS-based
Chebyshev expansions with unprecedented accuracy. The system could therefore be stud-
ied beyond the limitations of existing low-energy descriptions by sine-Gordon field theory
and at high magnetic fields. The frequency-field dependence of the breathers calculated
in this thesis is in good agreement with the field theory. Concerning the frequency-field
dependence of the single-soliton resonance, the MPS calculations could resolve the dis-
crepancy between ESR experiments and sine-Gordon field theory and are in excellent
agreement with the experiments. The explanation is the band curvature of the single-
soliton dispersion found in the MPS results for the dynamical spin structure factor, see
Fig. 6.8. The Lorentz-invariant dispersion assumed for the field theoretical predictions
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cannot account for such effects. Furthermore, the curvature is compatible with recent INS
results for the sine-Gordon magnet KCuGaFg [UTK*15].

Moreover, the presence of boundary as well as composite boundary-bulk excitations was
assessed for the effective Hamiltonian modeling Cu-PM. While such excitations have been
predicted by a boundary sine-Gordon field theory at T = 0 [FO12|, their intensity has
not been determined. One result is that only the boundary bound state (BBS) directly
below the first breather is found in the calculations for finite systems with open boundary
conditions. It was shown that its intensity scales to zero in the thermodynamic limit. The
predicted composite boundary-bulk resonances have too small intensities to be visible in
the calculated spectral functions.

Motivated by experimental hints of strong temperature dependencies of ESR line widths
in Cu-PM |Zvy12|, the temperature dependence of the breather excitations at frequen-
cies M, was studied. Besides the thermal broadening of the breathers, the focus at
T > 0 was on additional thermally activated transitions between the sine-Gordon ex-
citations [FO12]. In particular, the presence of interbreather transitions at M, — M,
with small intensities is confirmed by DMRG and exact diagonalization calculations. The
B1-B2 interbreather transition was probed in the accompanying ESR experiments and
its frequency-field dependence is in excellent agreement with the one expected from both
zero-temperature DMRG calculations and the sine-Gordon field theory. Unfortunately,
the B1-B2 transition is found directly below the BBS and could therefore not be resolved in
the finite-temperature spectral functions calculated by the newly developed MPS method.
However, there is evidence for the M3 — M, transition in these MPS results. Since the
BBS is absent in the ED calculations with periodic boundary conditions contributed by
Andreas Honecker, another finding is that several interbreather excitations were observed
up to temperatures of about 7'/.J = 0.5 at intermediate fields of h,/J = 0.6 and h,/J = 1.

In addition, a rapid redistribution of spectral intensity with increasing temperature, origi-
nally reported in Ref. [[E03], has been revisited in Fig. 6.13. In this thesis, the temperature
effect could be identified as the crossover between the single-soliton resonance at low T
and the paramagnetic line emerging at w = h, towards higher temperatures.

As a perspective for future experimental research, impurity doping in sine-Gordon mag-
nets such as the quasi-1D compound YbyAsg [KIMT01| offers a promising experimental
realization for studying boundary resonances. This is interesting as the boundary bound
state [FO12|, which was found in the presented DMRG calculations for Cu-PM, is not
observed in the accompanying ESR experiments.

Coherent quantum behavior at elevated
temperatures 8.3

It is shown that the magnetic excitations in the compound BaCuyV;,0g can be well de-
scribed by a spin-1/2 dimer chain with an antiferromagnetic intradimer coupling Jina
and a weaker ferromagnetic interdimer coupling Jiuer. This corrects the long-held view
from previous experimental [HKI04, HTI06, GPB*05, LX05, SMDO08] and theoretical
[KW06, SMDOS| studies that Jiye, is antiferromagnetic or negligible.
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A main result of this thesis is that the extraordinary coherence of the magnetic excitations
in BaCuyV30Og at elevated temperatures is confirmed by DMRG calculations. In particu-
lar, the finite-temperature method developed in this thesis is used in combination with a
linear prediction of Chebyshev moments to compute the dynamical spin structure factor.
The calculations reveal that the asymmetric lineshape broadening due to the persistence
of strong correlations is an effect which is inherent to the model Hamiltonian.

An increasingly asymmetric profile of the lineshape with rising temperature has been pre-
viously observed for dimerized systems, e.g., in a combined experimental and theoretical
study [TLJT12| for the quasi-1D dimer-chain compound copper nitrate, in which both
Jintra and Jinter are antiferromagnetic. However, the system sizes accessible before via
full diagonalization were rather limited (L = 16) and the field theoretical treatment was
based on a low-temperature expansion. Therefore, the investigation of a similar system
such as BaCuyV2Og with a method allowing for the treatment of larger systems (L = 40)
and controlled approximations represents an important improvement. It also led to the
conclusion that the persistence of strong correlations in dimerized quantum magnets is
independent of the sign of the interdimer exchange coupling.

Most importantly, the DMRG calculations obtained for BaCuyV,Og are directly compared
to the magnetic excitation spectra probed by inelastic neutron scattering at different tem-
peratures, i.e., T = 100 K, 150 K, and 200 K. There is good quantitative agreement for
the increasingly asymmetric lineshape of the single-triplon excitation. This demonstrates
that the quantitative prediction of strongly correlated behavior over a broad temperature
range is possible for BaCuyV50Og.

Quantitative predictions of this type can simplify the identification of compounds, in which
coherences at elevated temperatures are possible. This is a fundamental issue which is
relevant for potential applications in quantum devices [NC00].

The newly developed MPS method could be applied to calculate finite-temperature spec-
tral functions for gapped 1D antiferromagnets with higher spin. For instance, the spin
S = 1 Heisenberg chain also hosts a gapped excitation at zero temperature. Therefore,
one objective of future research could be to quantify the asymmetric thermal lineshape
broadening in such systems. Furthermore, the method developed in this thesis is well
suited for the study of boundary states as revealed in the numerical study of Cu-PM.
Thus, it could be applied to investigate signatures of topological boundary states [HK10|
in the spin S = 1 Heisenberg chain.

Moreover, the temperature dependence of the static interdimer and intradimer correlation
functions is studied. There are small deviations from the isolated dimer limit. These are
however most pronounced in the temperature range in which the asymmetric lineshape
broadening is observed for BaCuyV50Og. This raises the question of a possible connection
between the asymmetry and such small corrections to the isolated dimer limit. In this
respect, the quantum mechanical entanglement in the system may lead to further insights.
However, the characterization of entanglement at finite temperature is a very extensive
question itself as no commonly accepted measure exists so far [AFOV08, ACL12]. Such
issues are interesting for future investigations.
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Further perspectives 8.4

Having already mentioned several questions for future investigations along the lines of the
concluding remarks above, the author would like to conclude with some further comments
and ideas:

Here one central aspect which opens a broad range of possibilities for future method devel-
opment is the flexibility of the Liouvillian formulation. Therefore, it is conceptually possi-
ble to use other tensor network states [VCMO08| as MPS in combination with the Liouville-
space formulation. An example are projected entangled pair states (PEPS) which are a
generalization of MPS to two dimensions. The development of efficient algorithms for the
manipulation of such states is a subject of current research [PBT*15, Corl16].

Apart from MPS-based moment expansions of spectral functions such as the Cheby-
shev expansions employed in this thesis, it remains an open question whether further
zero-temperature frequency-domain methods can be implemented using the Liouvillian
formulation. MPS-based correction-vector approaches [Jec02, WVST09| are interesting
candidates as they allow for high-accuracy calculations of spectral functions, with the
drawback that each frequency needs to be addressed separately. However, this might not
matter too much if one is only interested in low-frequency transport properties at 7' > 0.

In this thesis, the MPS code has been developed from scratch and does not exploit sym-
metries of the Hamiltonian since in Chapters 5 and 6 the Hamiltonian mainly studied in
this thesis does for instance not conserve the z component of the total spin. This is the
case since the Dzyaloshinskii-Moriya interactions, which are modeled by a small staggered
field, break the spin rotational invariance of the isotropic Heisenberg model. However,
DMRG or MPS methods [Sch05a, Sch11, Weil2| generally allow for the exploitation of
quantum numbers associated with symmetries of a Hamiltonian. As an example, the use
of an Abelian U(1) symmetry such as the conservation of the z component of the total
spin can lead to a speedup of the calculations by a factor between 10 and 100. The
study of the dimerized spin-1/2 Heisenberg chain in Chapter 7 reveals that it is possible
to obtain meaningful results without the exploitation of such a symmetry. However, for
future investigations the implementation of U(1) symmetries would be beneficial since a
treatment of longer-ranged interactions, ladder systems, or the fermionic Hubbard model
involves even more degrees of freedom than in spin-1/2 systems.

For future method development, it may also be interesting to combine the MPS-based
Chebyshev expansions at 7' > 0 with other approaches. One candidate is cluster perturba-
tion theory (CPT) [SPPL00, SPP02| which can also be applied to spin systems [OBS10].
This method works with small clusters which are tiled together to an infinite 1D or 2D
system by treating the intercluster interactions with perturbation theory. For the calcu-
lation of the spectral functions for the full system, the dynamical correlation functions
are only calculated on small clusters. This can be achieved by Chebyshev expansions at
T > 0 as developed in this thesis. One crucial modification is that both the real and
imaginary parts of the dynamical correlation function are needed [BS14].
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Further results for Cu-PM A

The content of the following two sections with additional results for the material Cu-PM
has been published in the appendix of Ref. [THP'16].

Frequency-field plots Al

In this appendix, additional frequency-field plots of the ESR absorption intensity com-
puted by DMRG-based Chebyshev expansions at T' = 0 are provided in Fig. A.1. Note
the two different expansion orders N and that consequently the Gaussian broadening
included here depends on both w and the spectral width W (h,).

1073 1072 107! 100 10!

N = 4500

Figure A.1l: (Published in Ref.[THP*16].) Frequency-field plots of the T' = 0 absorption
intensities ~ wx’l_(¢ = m,w) (a) and ~ wx},.(¢ = 0,w) (b) for L = 80 and ¢ = 0.083. The
results were obtained by DMRG-based Chebyshev expansions for fixed fields h, € [0,3.4] for a
step increment of Ah, = 0.1.
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Finite-size analysis of ED results A2

Here a finite-size analysis for the ED data at h, = 1 shown in Fig. 6.13(b) is presented. To
this end, the ESR absorption intensity I,,(¢ = 0,w) is plotted for different system sizes
at various temperatures in Fig. A.2. Note that at 7'//J = 0 the lineshape resembles the
thermodynamic limit for all studied system sizes, while at 7'/J = 0.125 and T'/J = 0.5
the results for the largest system should be very close to those of an infinite system. Only
at T'/J = 0.25, one still observes finite-size effects for L = 20.

T/J =025 i
_ N

8 o
~ 7
0.95 1.00 1.05 110 1.15

w/J

Figure A.2: (Published in Ref. [THP"16].) Finite-size analysis of the ED results with PBCs
at h, = 1 contained in Fig. 6.13(b).
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Dimer susceptibility B.1

In this appendix the static magnetic susceptibility of weakly coupled dimers in one di-
mension is derived using a molecular field approximation. To this end, an isolated dimer
is considered first since its static magnetic susceptibility can be calculated exactly. A
slightly different derivation to the one given here can be found in Ref. [Joh97].

First of all, the Hamiltonian of a single dimer is given by

Ji tra
2

H = JintraS1- S = (5755 4+ S75F) + Jintra ST 55 (B.1)

The Hamiltonian matrix is diagonal in the eigenbasis

1 1
| Eo) = E(!TU — M), [E) = —2(|N>+|¢T>), (B-2a)
|E2) = [11), [Es) = [1d) (B.2b)

with the corresponding eigenenergies

3 1
E() = _Z intra and E1 == E2 = E3 = Zjintra' (BS)

The singlet ground state |Fy) of the dimer is separated by an energy gap of Jiny. from

the degenerate triplet excitations |E,) for n = 1,2,3. The static magnetic susceptibility
is defined as [Noll4]

. OM(h) . OPF 2
X = lim == = — lim = = im B [{(5%))n — (S2)7] 9% p (B.4)

in the limit of zero magnetic field h — 0. Here F' denotes the free energy, Z the partition
function:

1
F=-g InZ, — Z=Tre P omhs:) (B.5)

The constant up is the Bohr magneton. The inverse temperature is given by 8 = 1/(kgT)
and S* = S7 4 55 represents the total spin operator of the dimer. Using the expression
for a finite-temperature expectation value in the canonical ensemble in Eq. (2.10) and the
eigenbasis in Eqs. (B.2a) and (B.2b), the expectation value ((S#)?) in Eq. (B.4) above can
be stated as

(50 = HTe (80 ] = 23 e PP(B(SPIEY,  (B6)

n=0
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where after the last equality one may write

3
Z — (Z e_BE‘n> — e%JintraB _I_ 36_% intraﬂ‘ (B?)

n=0

Due to
(Eol(S°)*|Eo) = (EA|(S7)’|Er) =0 and  (E|(S%)°|B,) = (Es[(S%)°|Es) =1 (B.8)
this yields

2
. —
<( ) >h70 eJintraB + 3

Similarly, one finds (S%),—o = 0 and thus the static susceptibility of a single dimer is given
by

(B.9)

2
eJintra,B —+ 3 '
If one considers a completely dimerized system of L magnetic atoms, there are L/2 non-

interacting dimers. Their static susceptibility is

202 L 2 3C 1
Xdimer(T) - Mo 5 (Bl]_)

- kBT 2 eJintra/(kBT) _|_ 3 - ? eJintra/(kBT) _|_ 37
where in the last step the Curie constant C' was introduced [Joh97]. By means of a
molecular field approximation, weak interdimer couplings can be included as effective

fields. Following Ref. [SJO7| the susceptibility of the weakly interacting dimers reads
Xdimer (T) 3C'/CF

Xsingle dimer — g2ﬂ2]3 B (BlO)

int. dimer T) = = . B.12
Xint. d ( ) 1 + y Xdimer(T) 3 —+ eJintra/(kBT) -+ y SC/T ( )
Inserting the molecular field constant v = Jiyer/(3C) yields
3C/T
Xint.dimer(T) / <B13)

= 34 eJintra/(kBT) -+ Jinter/T.

This result is used for the fitting analysis of the experimental static magnetic susceptibility
data in Sec.7.3.1.

Intradimer correlation function B2

Partly based on the results of the previous section, the exact evaluation of the intradimer
correlation function (S; - Ss) of an isolated dimer as a function of temperature is briefly
sketched here. As S; - S, is closely related to the Hamiltonian in Eq. (B.1), one finds the
matrix elements

3 1
<E0’ 81 . 82 |E0> = _L_L and <Ez| Sl : SQ |En> = Z for n= 1,273. <B14)
With these intermediate results, the correlation function can be calculated as
3 3
(St -+ S)isotated(T) = Y _ e PE (B[S - So|E,) /() e 7Pr) (B.15)
n=0 n=0
3 1 — eJintra/(kBT) 3 1 — e_Jintra/(kBT)

B Z_l 3 + eJintra/(kBT) - _Z 1 —|— 3 e_Jintra/(kBT) ) <B16)

The result in Eq. (B.16) is used in Sec.7.4.3.
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B.3

Temperature dependence of J; in BaCuy,V,0g4

The present section summarizes results from the supplemental material of Ref. [KTF*16].

Since the INS measurements are performed over a broad temperature range, the presence
of lattice distortion may for instance lead to slight changes of the values J; and J, for the
exchange interactions. Such small temperature dependencies of the couplings are observed
as a shift of peak positions at finite temperature. In general, an observed shift occurs as
a combination of two factors. First, thermal effects intrinsic to the magnetic system play
a role, which are included in the DMRG computations. Secondly, the aforementioned
temperature dependence of .J; and/or Jy causes an energy shift of the excitations. The
latter effect is not taken into account by the DMRG calculations since the intradimer
coupling Jinra is set to unity and Jiyer = J2/J1 is assumed to be constant — irrespective
of temperature.

In a first step, the temperature dependence of J; and J is neglected. Consequently,
the DMRG results are scaled with a fixed value J; = 40.92 meV at all temperatures
and compared to the INS data in Fig. B.1(a). With increasing temperature the DMRG
peak positions are consistently found at higher energy than the experimentally observed
excitations. These offsets grow only moderately with temperature and are roughly of the
same magnitude at both the minima and maxima. Therefore it is justified to assume
that only J; is temperature dependent as its value shifts the center of the band (CB). By
analyzing the CB for both DMRG and experimental results, the dependence J; (T') stated

70 T T T T 70
(@) (b)
sol - INSdata T=35K 1 sol INS data T=3.5 K |
QGO § o DGTOK { Q(6.02) QBOD & . DNEGTOK . Q6.02)
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— 50F _DMRG T=100K { 1= 90r ir _DMRG T=100K H
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Figure B.1: (Taken from the supplemental material of Ref. [KTF*16].) Comparison of DMRG
results obtained in this thesis and experimental data at the dispersion minimum (6,0,1) and
maximum (6,0, 2) at temperatures of T = 3.5 K, 100 K, 150 K, and 200 K in order to assess
the temperature dependence of the exchange coupling J;. Note that the Gaussian resolution
n = 0.035 (corresponding to Wi = 3.37 meV) of the DMRG data at (6,0,2) is lower than the
experimental one but sufficiently high to reliably determine the peak position. (a) The DMRG
calculations are scaled by the fixed value of J; = 40.92 meV at all temperatures. (b) The DMRG
computations are scaled by the temperature dependent values of J; = 40.92 meV, 40.60 meV,
40.18 meV, and 39.69 meV at T'= 0 K, 100 K, 150 K, and 200 K.
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Temperature | CB experiment | CB DMRG J1(T)
(K) (meV) (E/J1) (meV)
3.5 40.495 £ 0.03 0.9896 40.92 + 0.03
100 40.19 £ 0.05 0.9900 40.60 £ 0.05
150 39.92 + 0.05 0.9935 40.18 £ 0.05
200 39.65 £ 0.1 0.9990 39.69 + 0.10

Table B.1: Temperature dependence of the center of the band (CB) determined both from the
experiment and DMRG in order to determine J; (7).

in Tab.B.1 is obtained. Thus, the DMRG data is scaled by these values in Fig. B.1(b)
which shows excellent agreement for the peak positions. The corrections included in J; (7T')
are smaller than 5% compared to the base-temperature value of J;.

Linear prediction B.4

As explained in Sec. 7.4.2, linear prediction has been used to enhance the resolution of the
MPS-based Chebyshev expansions at finite temperature in Fig. 7.5 in order to compare
them to the high-resolution data obtained in inelastic neutron scattering experiments.
The scope of this appendix is to assess the accuracy of the linear prediction.

In a first step, the accuracy of the input for the linear prediction is studied. The first 1000
Chebyshev moments for the dynamical spin structure factor S,.(Q,w) at @ = (6,0, 1) are
calculated for different numbers of the maximal internal bond dimension of the MPS:
m = 150 and m = 250. A comparison of these data at different temperatures is presented
in the top row of Fig. B.2. The bottom row of this figure shows that the absolute deviation
between the results obtained for m = 150 and m = 250 which grows with the number of
iterations and is still sufficiently small compared to the value of the Chebyshev moments.
Therefore the first 1000 moments can be calculated accurately for m = 250 and are used
as an input for the linear prediction.

Now linear prediction (see Sec. 3.5.4) is performed in order to extrapolate the Chebyshev
moments i, to n > 1000. To this end, the m = 250 data from Fig. B.2 and the training
interval Iz, = [500, 1000] are used. FigureB.3 shows the extrapolated moments in com-
parison to Chebyshev moments calculated without linear prediction using m = 150. In
Fig. B.3(b), also the Chebyshev moments calculated for m = 250 are shown at 7' = 150 K.
The predicted moments display small but visible deviations from the results obtained with-
out linear prediction. The discrepancies are most pronounced at the local extrema around
n ~ 1800 and are about 20 % for m = 150 and roughly 10 % for m = 250. However, linear
prediction extrapolates the moments using very accurate input data. Hence, one may
assume that the prediction is also of high accuracy. Therefore it is not surprising that
the continued calculation for a fixed value of m = 250 collects further errors mainly as a
consequence of the iterative compression of the Chebyshev vectors. Increasing deviations
between the predicted moments and the calculated m = 150 data with the number of
iterations, as also seen in Figs. B.3(a) and B.3(c), can thus be expected. However, the
crucial question is how large the effect of potential deviations in the predicted Chebyshev
moments will be for the spectral lineshape. This is considered in the following.



Section B.4. Linear prediction | IX

0.3
I
3 i &(CJ
0.2 il
£ e
g 01 At ]
&‘*mﬁ"?‘ﬁm o 3K

5 00 GAriiriig
= [ 3 KK R
~ 01 BEETEY
o] X ¥ K x
S 02 MM
O o3

0.005
5 (b) (d)
= 0.004
-
% 0.003
o T=100K
Z0.002
=
2 0.001
= M
<< 0.000

0 200 400 600 800 10000 200 400 600 800 10000 200 4()(6()() 800 1000
Chebyshev iteration n

Figure B.2: (Top row) Chebyshev moments for the dynamical spin structure factor S,.(Q,w)
at Q@ = (6,0,1) for Jinter/Jintra = —0.29 in dependence of the iteration. In order to check
the accuracy, the results are calculated both with a maximal internal MPS bond dimension of
m = 150 and m = 250 at different temperatures: (a) 7' = 100 K, (¢) 150 K, and (e) 200 K.
(Bottom row) The absolute deviation between the computed Chebyshev moments calculated for
an internal MPS bond dimension of m = 150 and m = 250 is depicted versus the iteration number
for the same temperatures as in the top row: (b) 7"= 100 K, (d) 150 K, and (f) 200 K. The small
deviations in the Chebyshev moments confirm a very high accuracy of the MPS calculations.

Due to the slow decay of the Chebyshev moments for the dynamical spin structure factor
S..(Q,w) at @ = (6,0, 1), it is not reasonable to discard the damping factors g, in the
Chebyshev expansion as proposed in recent developments concerning the calculation of
spectral functions at T' = 0, see Sec.3.5.4. Instead, the g, from Eq.(3.79) introducing
a Gaussian broadening of the spectral function are kept. The experimental resolution
is reproduced for an expansion order of N ~ 8390. In order to get an estimate of the
errors obtained in the lineshape, the spectral function is obtained by linear prediction
using the two different fitting intervals I, = [500, 1000] in combination with m = 250 and
I, = [1000,2000] (mostly m = 150). The corresponding results for the dynamical spin
structure factor S,,(Q,w) at @ = (6,0, 1) are shown in Fig. B.4. It turns out that there
is only a slight dependence of the lineshape on I, and m since the deviations are small.
Therefore the data using Iz = [500,1000] are shown in Fig.7.5. The discrepancies are
most pronounced at 7' = 200 K in Fig. B.4(c).

In order to obtain the Lorentzian width W, and asymmetry parameter o needed for a
quantitative comparison to the experiment, the fitting function in Eq. (7.10) is not only
fitted to a single data set at each temperature but rather to the spectral functions obtained
for both Iy = [500,1000] and Iz = [1000,2000] in Fig. B.4. In addition, there is also a
slight dependence on the frequency interval chosen for the fit. This effect is also considered
to obtain the error estimates for the Lorentzian width W and asymmetry parameter «
depicted in Figs. 7.5(g)-(h). These error estimates reflect the maximal deviation found for
the two training intervals Iy, and different frequency windows for fitting the function in
Eq. (7.10) to the MPS data.
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Figure B.3: Comparison between the calculated Chebyshev moments for the dynamical spin
structure factor S,.(Q,w) at @ = (6,0,1) (Jinter/Jintra = —0.29) and the Chebyshev moments
extrapolated by linear prediction using the fitting interval I, = [500,1000]. Data computed
with a maximal internal MPS bond dimension of m = 250 is used for the linear prediction. The
results are presented at different temperatures: (a) T'= 100 K, (b) 150 K, and (c) 200 K. The
Chebyshev moments calculated without linear prediction are shown for m = 150 and also for
m = 250 in panel (b). Note that the horizontal axis starts at n = 1000 in all panels since the
data is not predicted for smaller iteration numbers.
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for two different fitting intervals Ig; are shown in order to assess their effect on the spectral

lineshape.
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