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Zusammenfassung

Diese Arbeit behandelt die Beschreibung des Fliefiens und des Blockierens von
granularer Materie. Granulare Materie kann einen Verfestigungsibergang durch-
laufen. Dieser wird Jamming genannt und ist mafigeblich durch vorliegende
Spannungen sowie die Packungsdichte der Korner, welche das Granulat bilden,
bestimmt. Die Rheologie dichter granularer Medien ist zusétzlich zu Spannung
und Packungsdichte stark durch Reibung zwischen den Kornern beeinflusst. Wir
zeigen mittels numerischer Simulationen und analytischer Betrachtungen, wie
Reibung Jamming qualitativ verdndert. Reibungsfreies Jamming ist ein kon-
tinuterlicher Phaseniibergang mit einem kritischen Punkt bei verschwindender
Spannung. Reibungsbehaftetes Jamming ist ein diskontinuierlicher Phaseniiber-
gang mit einem kritischen Punkt bei endlicher Spannung. Der kritische Punkt
bei endlicher Spannung fiithrt zu bemerkenswertem Verhalten: Oberhalb der kri-
tischen Packungsdichte gibt es ein Intervall an Packungsdichten, innerhalb dessen
grofle oder kleine Spannungen zum Flieflen fithren, mittlere Spannungen hingegen
fiihren zum Blockieren des Mediums. Das Flieverhalten nahe Jamming ist stark
durch die Systemgrofle beeinflusst: Es gibt eine kritische Systemgrofie, oberhalb
derer zeitabhdngiger Fluss entsteht. Dieser zeitabhangige Fluss wird durch die
Ausbildung von grofiskaligen Strukturen im Spannungsfeld erklart. Sowohl die
grofskaligen Strukuren als auch der damit einhergehende zeitabhéngige Fluss
sind neuartige Phdnomene im Fluss von trockenen Granulaten und durch Rei-

bung hervorgerufen.
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Abstract

This thesis deals with the description of flow and arrest of granular matter.
Granular matter can undergo a rigidity transition — called jamming — that is
mainly controlled by the applied stresses and the packing fraction of the grains
that constitute the medium. In addition to stress and packing fraction, inter-
particle friction greatly affects the rheology of granular matter. Using numerical
simulations and analytical modeling, we show how novel behavior in dense flow
and jamming regimes arises in the presence of friction. In particular, frictionless
jamming is continuous with a critical point at zero stress. In contrast, frictional
jamming is shown to exhibit a discontinuous phase transition with a critical point
at finite stress. The fact that the critical point resides at finite stress gives rise to
remarkable flow behavior, called reentrant flow. Explicitly, there is an interval of
packing fractions above the critical packing fraction in which large or low stress
leads to flow but intermediate stress jams the medium. The behavior close to
jamming depends substantially on the system size, i.e., there is a critical sys-
tem size above which unsteady flow emerges. Unsteady flow is rationalized by
large-scale structures in the stress fields. Both, the large-scale structures and
the accompanied unsteady flow, are novel phenomena regarding the flow of dry

granular matter and can be attributed to interparticle friction.
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Part |I.

Introduction






1. An introduction to granular

media

If we measure it by tons, the material most
manipulated by man is water; the

second-most-manipulated is granular matter.

(de Gennes [1999])

Granular media — collections of grains — are ubiquitous in nature, daily life,
and engineering disciplines. Grains constitute the seabed, dunes, beaches, and an
important proportion of the earth’s soil. We use pepper, sugar, and salt, coffee
beans or powder, and many other kinds of granular media in the kitchen and
in our daily life. Sand is a resource of which glass, semiconductors, concrete,
and ultimately buildings are made. Granular matter as a resource or consumer
products is handled in industrial processes, which, in total, are estimated to be
responsible for a tenth of the planet’s energy budget [Mullin, 2002]. The amount
of energy for the handling of grains, i.e., for processes where granular media are
deformed or transported, highlights the importance of a proper understanding of
flow properties of granular matter as a complex fluid.

Grains are composed of a vast number of molecules and the energy associated
with motion or contact is by orders of magnitude larger than the thermal en-
ergy, kgT. Granular media are therefore considered athermal [Bi et all 2015;
Brilliantov and Poschel, 2010]. Interactions between grains are inelastic, i.e., in
a collision, energy is dissipated into internal degrees of freedom, see, e.g., |[Lan-
dau and Lifshitz, 1970]. Furthermore, when grains are in contact, any motion
or force parallel to the contact surface is opposed by a frictional force [Johnson,
1985]. Energy scale separation, the inelastic character of collisions, and friction
make granular media distinct; classical equilibrium thermodynamics and fluid

dynamics are not applicable [Kadanoff, 1999].



1. An introduction to granular media

Granular media are reminiscent of fluids or solids but exhibit a host of unusual
phenomena [Jaeger et al., 1996]. In contrast to ordinary (simple) fluids, granular
fluids do not possess a constant wviscosity, i.e., the ratio between shear stress
and strain rate depends on the applied shear. An excessive increase in viscosity
can ultimately lead to a transition into a solid disordered state with a finite
shear modulus. The transition from fluid to solid is called jamming. The solid
state, too, shows extraordinary behavior. Granular particles are not bound to
each other by chemical bonds but by confinement in a volume. An infinitesimal
extension of the confining volume can lead to the complete loss of a finite shear
modulus and the initiation of a flowing state. Rheology studies flow problems of
fluids which are non-Newtonian, i.e., fluids that possess a viscosity that is not
constant as a function of strain rate or shear stress.

The rheological properties depend on a number of aspects and parameters: the
packing fraction of the particles, the particles themselves and their interaction,
the geometry and boundaries of the problem, and the preparation history. In
this thesis, we study these aspects, with a particular focus on the exceptional

role played by friction, in a granular medium under shear.



2. Scope of the thesis

In the course of this thesis we deal with dense granular media under shear. In
part [l we give an overview of the subject. In Chapter [3| we deal with molecular
models of granular particles. Chapter {| focuses on assemblies of grains and
explains the jamming transition: a rigidity transition from a flowing state to
a disordered solid state. Subsequently, Chapter deals with the shear flow
of densely packed particles including phenomena like shear thickening and flow
heterogeneities. Chapter [6] describes an approach to probe a complex fluid by the
dynamics of a probe particle.

In part [T we present the results of the thesis. This part is divided in two
Chapters. Chapter [7] constitutes the main results of this thesis and we investi-
gate the rheology of frictional grains. This Chapter is divided in three sections
corresponding to an article each. First, in section [7.1} we discuss the jamming
transition of frictional grains in small simulation cells. Results on large systems,
in which an unsteady and chaotic response emerges, are presented in section
[7.2l There, we also present a simple analytical theory, which is based on cou-
pling of hydrodynamics to a microstructure variable associated with friction and
which explains the main features of our simulations. Lastly, we present results
that characterize heterogeneous and unsteady flow states and connect the pre-
ceding studies in section Chapter [8] covers a microrheology study in a dense
granular medium. The nonlinear velocity-force relations of a probe particle are
investigated.

Part [T summarizes, discusses, and connects the results with a broader context.

Part [[V]is an outlook to future directions of research on flow of frictional grains.






3. Models for grains and friction

The interaction between grains is fundamental for the phenomena, which we
associate with a complex fluid, including the possibility to jam into a solid state.
Grains are solid bodies and the description of the dynamics of grains in contact
is a formidable task. A contact force, f;;, between granular particles, ¢ and j, of

mass, m, gives rise to motion according to Newton’s equation of motion:

mx; = »_ £, (3.1)
J#
with the coordinate, x;, of particle, i. The contact forces are governed by the
dynamics of the contact and the material properties of the particles. A thor-
ough treatment of contact mechanics including a discussion of friction is given
by [Johnson| [1985]. Results relevant for numerical simulations are presented in
Schafer et al.| [1996].

First, we give an overview of interactions of frictionless spheres in section [3.1}
Frictionless spheres allow for an extensive theoretical description and a com-
prehensive understanding of interaction mechanisms. Second, we highlight the
importance of incorporating frictional interactions in particle models and present

an approach to model friction in section [3.2]

3.1. Deformation of frictionless spheres

In this thesis, we examine the dynamics of assemblies of spherical grains with
numerical methods which allow for detailed resolution of positions, contacts, ve-
locities, interparticle forces, and local stresses. In practice, spherical particles
possess the advantage that a quantitative study of stress transmission is easily
accessible. In laboratory experiments, disks or spheres made from photoelastic

materials are used. Stress induced fringe patterns allow for direct inference of



3. Models for grains and friction

Figure 3.1.: Photograph of photoelastic disks: (i) disk without fringe pattern
and (ii) disk with stress originating at the contacts and leading to
the fringe pattern. Disks made by Jonathan Bares, Department of
Physics & Center for Nonlinear and Complex Systems, Duke Uni-
versity, Durham, North Carolina 27708, USA. Photo courtesy of J.
Bares.

contact points and loads [Johnson| 1985]. In figure we show an assembly of

photoelastic disks. Disk (i) is not under stress while contacts on disk (ii) lead to

a characteristic fringe pattern.

Ideal frictionless spheres are probably the simplest form of granular grains.
Frictionless spheres in contact transmit forces only along the line connecting
the spheres’ centers, called the normal of a contact. Here, we consider contact
interactions only, i.e., no electrostatic interactions, etc. When particles touch
just slightly they deform quasistatically like an elastic solid that stores energy in
the deformation. The elastic nature of the contact aims at minimizing the stored
energy which results in a repulsive force. The elastic energy depends on material

parameters and the geometry of the spheres: the Young’s modulus, the Poisson



3.1. Deformation of frictionless spheres
n
A
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Figure 3.2.: Amount of deformation of particles near the contact surface (dashed
line) modeled by the overlap §. The unit vectors, n and t, define
normal and tangential directions of contact, respectively.

ratio, and the radii of the particles. Frictionless elastic spheres in contact are
studied in detail in |Hertz| [1882]; Landau and Lifshitz [1970].

In fact not all the energy is stored as potential energy in the contact. Instead,
energy is irreversibly dissipated into the particles when plastic yield occurs or
vibrational modes are excited, which we might hear when particles interact (see
Michlmayr et al.| [2012] for a review). Energy dissipation implies that the impact

/

velocity, v', is larger than the post-collisional velocity, v. The negative ratio be-

tween the velocities after and prior the contact, is called coefficient of restitution:
€= ——. (3.2)

In general, the coefficient of restitution depends on material parameters and on
the relative velocity when particles collide |Guttler et al., 2012].

The simplest model that incorporates elastic repulsion and viscous damping due
to energy dissipation is the linear spring-dashpot model [Schwager and Poschel,
2007]. The deformation, or displacement, of particles in contact is described by

the overlap, 6, see figure [3.2l The contact dynamics of two spheres in contact



3. Models for grains and friction

with effective mass, meg, follows a damped harmonic oscillator, where the normal

force, £ acts on the displacement along the normal direction, n:
£ = (—k06 — 0™ /megd) n. (3.3)

The repulsive and dissipative component is governed by a spring constant, k™,
and a viscous damping constant, n™, respectively. Analogous to Hooke’s law, the
repulsive component of the force depends linearly on the amount of deformation.
The dissipative component is linear with the normal component of the relative
velocity of the particles, 4. In this particular model, one can show that the
coefficient of restitution and the binary collision timdl] t,, are independent of the
impact velocity. In principle, ™ and n™ can be tuned to meet experimental
values for € and t, which determine the nature of the collision completely. This
simple model lacks the velocity dependent coefficient of restitution and a realistic
repulsion law: spherical particles in three dimensions repel with f® oc §%/2,
see |Hertz, |1882], and two-dimensional disks repel with more complicated laws,
see |Gerl and Zippelius|, [1999]. However, the linear spring-dashpot model proofed

useful and for the sake of simplicity it is widely applied in simulations and theory.

3.2. Frictional interactions

In experiment and nature, grains are bodies with rough surfaces. The roughness
implies the existence of frictional contact forces: forces which act orthogonal to
normal, i.e., tangentially. Experiments on a variety of particulate media, not
only granular grains, highlight the role played by friction. Particles are as diverse
as PMMA spheres [Guy et al., 2015; Pan et all 2015, corn starch [Fall et al.,
2015; |Jiang et al., [2015], silica spheres [Royer et al., 2016, or photoelastic disks
[Bi et al., [2011]. A review on rheology with aspects on friction is given by |Denn
and Morris|, 2014].

Two particles in contact share a common area where the normal forces operate
(see figure . When particles are frictional, rotation or tangential relative

motion create tangential stress. Tangential stress results in a tangential force,

!The binary collision time is defined as the duration of a contact of two particles. In general,
the duration of an interaction of more than two particles deviates from the binary collision
time.

10



3.2. Frictional interactions

(i) fO < Hf(n) (i) fO = Hf(n)

f(t) / > fext

f(n)

Figure 3.3.: Sliding block model to illustrate Coulomb’s law of friction. The mass
of the block gives rise to a normal force, f™. Left: The block does
not slide and the external force, f**, acting on the block is balanced
by the frictional force with the surface, f®. Due to f*, the block

deforms by 6®) = k=1 fe<t. Right: The block slides and the frictional
force cannot balance the external force. In this depiction, pu = 1.

£ acting along the tangential of the contact, t, and acting as a resistive force
against the motion. A particle, 7, with moment of inertia, I, and angular velocity,

w;, experiences torques due to frictional contacts with particles, j:

i#j

with R;; pointing from particle ¢’s center to the contact with particle j.

The tangential force is bound by the normal force via Coulomb’s law of friction,

i.e., f® cannot exceed a material specific multiple of the normal force:
EO] < plf)]. (3.5)

The Coulomb friction coefficient, u, is a material parameter. In a frictional
contact with [f®| = u|f®| interfacial slip occurs and the contact is said to
slide. Otherwise the contact is called non-sliding. For a pictorial description of
Coulomb’s law of friction, see figure[3.3] In general, one discriminates the between
a static friction coefficient, s, when the contact is non-sliding and a dynamic
friction coefficient, pq, when the contact slides. Typically, both parameters are

of the same order of magnitude [Israelachvili, 2010]. Here, we set them equal:

= ps = fa.

11



3. Models for grains and friction

For numerical simulations of frictional grains, the model most referenced, that
obeys Coulomb’s law of friction, was proposed by |Cundall and Strack| [1979].
In the original model, non-sliding contacts store elastic energy according to the
tangential displacement, §). Analogously to the normal interaction, we extend
the original model by a dissipative contribution related to the relative tangential
velocity at the contact, 8. A spring constant, k¥, and a viscous damping

constant, 7(*), determine the mechanical properties. Explicitly, if |[f(®)] < pu|f®™)]:
£0) — (_k(t)(g(t) _ n(t)g(t)) t. (3.6)

If equality holds in Coulomb’s criterion and the contact slides, we set ") =
p/KO)E®] and [£O)] = k®§® to satisfy Coulomb’s criterionf] The model was
inspired by studies of frictional contacts [Mindlin and Deresiewicz, |1953] and used
in several rheology studies, see, e.g., [Silbert et al., [2001}; Otsuki and Hayakaway,
2011} |Chialvo et al,2012;|DeGiuli et al.,[2015; Henkes et al., 2016]. The presented
approach has physical flaws, see Etsion [2010], but its advantages are numerical
efficiency and conceptual simplicity. In this thesis, we consider large assemblies
of particles and we do not focus on details of collision mechanics and assume that

these details are not relevant for the rheology.

2Tt would require a study of a particular material to justify this sliding mechanism. In the
literature, a number of models exist and there is no obvious consensus which is justified by
a (simple) physical argument.

12



4. The jamming transition

As illustrated in figure [£.1] sparsely distributed particles in a finite volume can
move freely over a finite distance, i.e., without the interaction with other particles.
Densely packed grains may be blocked by contacts with their neighbors and not

even an infinitesimal motion is possible. This geometric statement has important

N

O
00O

Figure 4.1.: Particles in (i) are not geometrically constrained and can move with-
out the expense of energy. In (ii), particles are densely packed and
any motion results in repulsive forces exerted by the particles at con-
tact.

implications for the mechanical behavior of the whole assembly: Volume (i) can
be sheared with any shear stress but volume (ii) can sustain a finite maximum
shear stress — called yield stress — without deforming. A parameter to describe
the geometrical properties of an assembly of N grains with volumes V; confined

in a volume V' is the packing fraction:

=== (4.1)

13



4. The jamming transition

(PJ=(P

rcp
¢

Figure 4.2.: Schematic jamming phase diagram for frictionless spheres. The phase
and thus the mechanical response is determined by the shear stress,
Y., and the packing fraction, ¢. ¢; is the onset of rigidity at zero
stress, > = 0.

When the packing fraction increases, the granular medium can jam from a flowing
state, as in figure[4.1] (i), into an unordered solid state, as in figure |4.1} (ii). Figure
[4.2] shows a schematic phase diagram for the system in figure [4.1] similar to the
athermal plane in Liu and Nagel [1998]. The shear stress, ¥, and the packing
fraction, ¢, control which state is realized: fluid or jammed. A single line, the
yield stress line, separates regions of flowing states from jammed states. The
yield stress line touches zero stress, ¥ = 0, at the jamming packing fraction, ¢y,

which sets the jamming point, called point J.

The phase diagram in figure serves as a high-level description of the jam-
ming transition for a broad range of particulate media. However, the jamming
transition cannot be controlled by packing fraction and stress only, but is also
influenced by the preparation protocol and the mechanical properties of the par-
ticles. We take into account the particles’ roughness by considering frictional
contacts, as described in Chapter [3]

14



4.1. Frictionless jamming

In section we discuss the basic properties of the jamming transition and
focus on experiments and simulations of frictionless particled’] Subsequently, we
deal with jamming of frictional particles in section [£.2] where we discuss experi-

mental and numerical results that are directly linked to frictional interactions.

4.1. Frictionless jamming

In this section, we discuss results on the jamming transition of frictionless spheres
and rheological properties in the vicinity of the jamming transition.

A fixed volume that is densely and randomly packed with hard spheres, see
fig. [1.1}ii), cannot be deformed: The configuration is jammed. The geometric
study of such packings of spheres shows that there is a largest packing fraction
of randomly packed (hard) spheres, namely the random close packing, ¢yp [Song
et al., |2008]. The jamming packing fraction approaches random close packing in
the thermodynamic limit [O’Hern et al., 2003]:

¢y = Prep for N — o0 with ¢ = const. (4.2)

The jamming transition depends on the preparation of the jammed configuration,
see e.g., |[Chaudhuri et al, 2010]. In particular in a finite system, ¢; depends on
the initial condition and is localized in a finite interval, which narrows around ¢,
when the system size increases [O'Hern et al.| 2002]. For systems of frictionless
particles in two dimensions, the point J is accurately determined by simulations
of overdamped, bidisperse, and soft particles in simple shear geometry at zero

stress and packing fraction [Olsson and Teitel, [2011]:
¢y = 0.84347 + 0.00020. (4.3)

Even though this value changes with the protocol, equation gives a robust
estimate for jamming in two dimensions. Depending on the protocol, (Chaudhuri
et al.| [2010] observed a range of packing fractions, (¢, ¢,), in which jamming is
possible with a relative size of (¢ — ¢1)/¢u ~ 0.023% in the thermodynamic limit

in three dimensions.

IFriction cannot be switched off in experiments. However, experiments which study universal
properties of the jamming transition are also discussed in section

15



4. The jamming transition

The jamming transition has been investigated thoroughly and identified as a
second-order, i.e., continuous, phase transition. The extraction of critical expo-
nents by numerical simulations confirms a continuous jamming scenario with a
zero-stress critical point, e.g., Olsson and Teitel [2007]; Otsuki and Hayakawa,
[2008]; Heussinger and Barrat| [2009]; |Otsuki and Hayakawa/ [2009]; Otsuki et al.
[2010]; |[Hatano [2010]; Heussinger et al.| [2010]; Vagberg et al. [2011].

The macroscopic mechanical properties of a granular assembly are directly
linked to the jamming point. At a packing fraction, ¢j, a rigidity transition
takes place and we expect solid like behavior above ¢y, i.e., finite and positive
shear and bulk moduli. Indeed, in an isotropic system, the packing fractions
where shear and bulk moduli become nonzero equal ¢; [O’Hern et al., [2003]. ¢;
is considered the critical packing fraction for the onset of rigidity, with a yield
stress, Yy, that vanishes at point J. Below ¢;, only fluid states can exist and the
stress is determined by the strain rate, 7, and a wviscosity, n, that depends on the

packing fractionﬂ

In the vicinity of ¢7, both states, solid and fluid, obey scaling laws with distance
to ¢3. Guided by numerical simulations, critical exponents for the behavior of
yield stress, viscosity, and stress are determined [Otsuki and Hayakawa), 2008,
2009; |Otsuki et al., 2010; [Hatano|, 2010]. For a comprehensive review on scaling
exponents, see [Dinkgreve et al., |2015]. Here, we state the exponents for soft
dry granular particles with inertia in two dimensions. In the solid state above

jamming, ¢ > ¢y, a finite yield stress emerges with distance to jamming:

Yy x (¢ — ¢J)Ba (4.4)

with an exponent, § = 1. In the fluid state, ¢ < ¢;, the viscosity, n, diverges

with the distance to jamming in the limit of zero strain rate:

n o< (¢g— @), (4.5)

with an exponent, a = 4. At the critical packing fraction, ¢ = ¢;, the shear

’In a Newtonian fluid, the viscosity is defined by the relation ¥ = n¥. In a dry granular
medium, there is no linear dependence between shear stress and strain rate and the so-
called generalized viscosity is defined by ¥ = 142, see section for further information.

16



4.1. Frictionless jamming

stress depends on the strain rate and scales as:

E(¢J) X ,j/X’ (46)
with an exponent, x = 2/5.

The rheological properties close to the jamming transition are related to the
particles and their motion. While approaching the jamming transition, particles
tend to move cooperatively when the granular medium is sheared: The motion
of one particle induces motion of other particles. This cooperative motion is

rationalized by a length scale, &, which diverges at the jamming transition:

5 X |¢_¢J|_V> (47)

with an exponent, v, typically estimated as v € [0.1,1] and possibly different

above and below jamming; For different estimates see, e.g, |[Lechenault et al.
2008; [Heussinger and Barrat| [2009; [Vagberg et all 2011 [Liu et al.| [2014; Kawasakil
et all [2015]. The diverging length scale near the transition from arrest to flow

is universal. A diverging length scale near jamming is observed for a variety of

systems: Flows down an inclind’} e.g., [Pouliquen| 2004} [Baran et al., [2006}; Bon-|

noit et al, 2010], simple shear geometry, e.g., [Olsson and Teitel, 2007; Goyon|

et al., [2008; [Heussinger and Barrat], [2009; [Lemaitre and Caroli, 2009; [Liu et al.,
2014], Poiseuille flow, e.g., [Goyon et al [2008; Tewari et al., 2009], or a vibrated

monolayer of brass cylinders, e.g., [Lechenault et al., |2008].

The existence of a length scale points towards finite size effects. Finite size

effects are predicted by theory [Bocquet et al.,[2009] and observed in experiments

|[Goyon et al.,|2008]. Systematic studies of finite size effects to gain insights in the

jamming transition are done numerically, e.g., [Goodrich et al., 2012; Liu et al.)
2014; Vagberg et al., 2014; |Goodrich et al., 2014]. In Kawasaki et al.| [2015],

the authors argue for possible finite size effects when the length scale becomes

comparable to the linear extension of the system.

3In this example the packing fraction is not a control parameter. The angle of the incline can
control whether flow or arrest of a deposited material is achieved.

17



4. The jamming transition

4.2. Frictional jamming

Friction changes the topology of the jamming phase diagram fundamentally. A
theoretical description of frictional hard spheres shows that jamming occurs in a
range of ¢up Up t0 Grep, Where ¢y, is called random loose packing [Song et al.,
2008]. In two dimensions, ¢, =~ 0.767 [Silbert, 2010]. The range from ¢y, up
to ¢y is considerably larger (=~ 1%) than what can be produced for frictionless
particles by changes in the protocol, see section 4.1, While ¢y, is the lower bound
for infinite friction coefficient, ¢,., is the upper bound that is approached by ¢;
in the frictionless limit. That is, the jamming packing fraction is a function of the
friction coefficient, ¢y = ¢;(p). Thus, friction opens a wide room for jamming to
take place.

Studies with photoelastic disks under external stress, see [Bi et al., [2011], show
that friction allows for anisotropic jammed states: States where stress trans-
mission is anisotropic, which implies the expectation of a rigid response along
restricted directions but fluid response in others [Cates et al., [1998]. Anisotropic
jammed states are observed at packing fractions lower than ¢j, which is the
isotropic jamming packing fraction. The anisotropic jammed states are called
shear jammed and are observed above a packing fraction ¢s; < ¢j. At ¢gy, the
yield stress of the jammed state is finite and vanishes discontinuously upon de-
creasing the packing fraction. For a schematic phase diagram for the frictional
jamming scenario inferred from [Bi et al| [2011], see figure [4.3] Shear jamming is
also found in corn starch experiments [Fall et al., 2015; Jiang et al., [2015] and
rheometry with PMMA spheres confirms the extraordinary impact of frictional
contacts |Guy et al., 2015; |Pan et all 2015].

Friction enriches rheological properties close to jamming by additional dynam-
ical phases of transient flow when granular media are sheared [Ciamarra et al.,
2011]. In contrast to frictionless systems, frictional systems show clear first-
order like phenomena like discontinuous flow curves and hysteresis |[Otsuki and
Hayakawal 2011]. Moreover, the authors showed that ¢; loses its exceptional
meaning to characterize scaling relations. The scaling exponents are not affected
by friction but ¢; alone does not suffice to characterize the scaling of the diver-

gence of the viscosity and of the yield stress.
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4.2. Frictional jamming
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Figure 4.3.: Schematic jamming phase diagram for frictional particles following |Bi
et al.|[2011]. Anisotropic shear jammed states exist below ¢; < ¢rcp.
Jammed states with the lowest packing fraction possible, ¢g;, possess
a finite yield stress, Xy # 0.
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5. Shear rheology

This Chapter deals with the rheological investigation of dense granular matter.
In section [5.1} we explain how rheological data is acquired experimentally. We
give an overview of the possible outcomes, which are collected in flow curves that
describe the relation between shear stress and strain rate. Complex fluids exhibit
different flow regimes, which are distinguished by the relation between stress and
strain rate. In sections [5.2] and [5.3] we deal with flow regimes of granular media.
A transition between these flow regimes, called shear thickening, is treated in
section [5.4] Close to transitions, unsteady flow emerges, which is discussed in
section .0l

5.1. Rheometry and flow curves — an overview

The mechanical response to strain or stress in the proximity of the jamming
transition is probed in rheometers or with computer simulations. The measured
response characterizes flow properties and provides insight into the jamming tran-
sition itself. A rheometer is sketched in figure [5.1 The probe is confined in a
fixed volume by a pair of plated] Hence, the packing fraction of the particles in
the volume is a control parameter. One confining plate remains fixed while the
other plate rotates with either constant angular velocity (constant strain rate)
or constant torque (constant shear stress). The complementary quantity is mea-
sured in terms of the response of the medium, which is characteristic of the flow
regime.

Typical flow curves of frictionless granular media with different packing frac-
tions are shown in figure (left). When the probe is dense, athermal, dry, and

composed of soft particles three different flow regimes are identified [Campbell,

IThere are also rheometers that guarantee fixed normal load. Then the volume of the probe
changes in course of the experiment.
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5. Shear rheology

Figure 5.1.: Sketch of a rheometer. A fixed volume between plates (closed by
dotted lines) is filled with particles (blue). The lower plate remains
at rest and the upper plate rotates with constant angular velocity or
torque (indicated by arrow).

2002; |Chialvo et al., 2012]:

(i) Inertial or Bagnold ﬂouﬂ at low strain rate and low packing fraction, ¢ <

b7,

(ii) quasistatic flow at low strain rate and densely packed media, ¢ > ¢;, and
(iii) elastic-inertial flow at large strain rate.

Both, quasistatic and elastic-inertial flow, are referred to as plastic flow.

The flow curves can be utilized to characterize the jamming transition. The
scaling laws of yield stress and viscosity, which are discussed in section [4.1], al-
low for a determination of the jamming packing fraction and scaling exponents.
Above ¢j, in the quasistatic regime, see m (left, ii), the stress plateau at low
strain rate equals the yield stress. The yield stress vanishes at ¢; and grows
above. Figure (right) shows the generalized viscosity, n = ¥/4%. Below ¢y, in

2The interaction and dissipation mechanisms (e.g., drag forces, friction, etc.) influence the
rheological response and determine the flow curve [Vagberg et al., 2014]. As a consequence,
e.g., when the grains are suspended in a Newtonian fluid, a Newtonian regime, i.e., 3 o< 4,
appears instead of Bagnold flow.
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Figure 5.2.: Left: Schematic flow curves according to the model in |Grob et al.
[2014], mimicking frictionless particle flow. The arrow indicates in-
creasing packing fraction and ¢j is marked by a thick line. Three
flow regimes are measured: (i) inertial flow, (ii) quasistatic flow, and
(iii) elastic-inertial flow. Right: Generalized viscosity corresponding
to the flow curves on the left. Units set by the particle properties
according to |Grob et al., 2014].
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5. Shear rheology

the inertial regime, the generalized viscosity plateaus at a value that depends on
the packing fraction. As ¢; is approached, the height of the plateau diverges in
the limit of zero strain rate. Both, viscosity and yield stress, allow for estimates

of the jamming packing fraction ¢j;.

The interplay of time scales set by the experimental setup, i.e., strain rate or
shear stress, and particle stiffness determine the rheology. The elastic proper-
ties of the constituents tune the flow characteristics and crossovers between the

regimes |Campbell, 2002].

5.2. Inertial flow

Stiff grains or slow deformation imply that the time scale set by the stiffness of
the particles, V&A1, is smaller than the time scale set by the strain rate, AL
When the only relevant time scale is set by the strain rate, i.e., the deformation
can be considered as sufficiently slow or the grains as sufficiently hard, stress
scales as [Bagnold, [1954]

¥ o A2 (5.1)

Inertial flow can be thought of as ballistic motion of grains interrupted by
collisions. It is this ballistic motion that governs the momentum transport in
the inertial flow regime |[Bagnold} 1954; Campbell, |2011]. Numerical simulations
of soft spheres show that, in the inertial flow regime, the duration of collisions
approaches the expected binary collision time set by the model parameters of
the particles [Campbell, 2002|. Therefore, collisions are mainly binary. The
binary character of collisions is a necessary precondition for the applicability of
the kinetic theory of granular gases as a description of flow, see [Brilliantov and
Poschel [2010]. In the kinetic theory, particles are modeled by infinitely stiff
spheres, i.e., hard spheres, which collide with a collision rule and a coefficient
of restitution. Hard spheres do not overlap and collisions are instantaneous. In
practice, the particle stiffness is finite and therefore the hard sphere limit cannot

be reached.

A measure to characterize the ratio of inertial forces — set by the strain rate —

to confining forces — set by the pressure in the system, P — is the dimensionless

24



5.3. Plastic flow

inertial number |Midi, 2004; |Da Cruz, 2004; |Da Cruz et al., 2005]:

I =4/m/P, (5.2)

with particles of mass m. In contrast to the kinetic theory of granular gases,
this rheological approach is a route of modeling flow that incorporates the finite
particle stiffness and does not rely on a collision mechanism. In a hard particle
system, inertia dominates since interparticle forces are absent in instantaneous
collisions, i.e., the inertial number is large. In a system of soft particles, this is
not necessarily true and confining forces can dominate. Therefore, the inertial
number is used to describe several flow regimes, not only inertial flow. The
inertial number proved to be a useful tool for the description of constitutive
equations and, in particular, of friction laws that relate macroscopic shear stress
to pressure, e.g., u = X /P [Midi, 2004; Da Cruz et al., |2005; Chialvo et al.,
2012]. The friction laws are known as p(I)-rheology and used in hydrodynamic
descriptions of granular flow, see, e.g., |Jop et al., 2006]. However, for fluid
mechanics applications, the simple p(7)-rheology is of limited applicability since
it is mathematically ill-posed for large and low inertial numbers |[Barker et al.,
2015]). Non-local rheology, which can be regarded as series expansions where
heterogeneities are taken into account, extends the idea of p(I)-rheology [Volfson

et al., 2003; Aranson et al. 2008; Bouzid et al.l 2013 2015].

5.3. Plastic flow

Plastic flow is subdivided into quasistatic flow and elastic-inertial flow. In the
quasistatic flow regime, the strain rate is low and only the time scale set by the
stiffness of the particles is relevant. The particle stiffness and packing fraction
determine the stress plateau in the flow curve. The value of the stress plateau
equals the yield stress:

¥ =y. (5.3)

In the elastic-inertial flow, the shear stress depends on the strain rate as a square

root, see, e.g., [Bocquet et al., | 2009; Lemaitre and Caroli, 2009; |Olsson and Teitel,
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5. Shear rheology
2012; (Chialvo et al., [2012], as shown in figure (left, iii):

¥ o 42, (5.4)

In the plastic flow regime, the particles’ elastic properties are relevant and
interparticle contacts are transmitters of stress and momentum |[Campbell, 2006].
The contact duration exceeds the binary collision time by up to two orders of
magnitude and contacts are not binary |[Campbell, 2002]. This requires flow

models other than the kinetic theory of granular gases and p([)-rheology.

Early work on the plastic deformation of metallic glasses led to the picture that
irreversible plastic events release stress in localized regions of size of a few par-
ticles — in so-called shear transformation zones [Argon, [1979]. The irreversible
yielding of a shear transformation zone is called shear transformation. The idea of
shear transformations was developed further to describe plastic flow and macro-
scopic yielding. Plastic flow is considered as a succession of elastic deformations,
which accumulate potential energy, until shear transformations release energy.
Shear transformations trigger each other in a cascade [Maloney and Lemaitre),
2006]. When average characteristics of shear transformations are incorporated
in a description of flow, even macroscopic yielding of a jammed medium upon
stress increase can be explained |Falk and Langer] [1997]. A similar description
is used to describe the dynamics of locally yielding zones in generic soft glassy
matter [Sollich et al. 1997]. The authors point out that many soft materials
show structural disorder and metastability, which lead to the glass like behavior
when deformed. A characteristic length for cooperativity larger than the size of
the molecules was evidenced in experiments |Goyon et al. [2008]. In line with
this insight, a nonlocal constitutive law with a local rate of plastic events has
been derived [Bocquet et all 2009]. The non-locality is expressed by a flow co-
operativity length that diverges in the quasistatic limit of zero strain rate. This
implies finite size effects of flow and a dynamic yield stress at a critical point
for a second-order phase transition. Elastic deformations interrupted by plastic
rearrangements and a growing correlation length have been reported in several

studies of dense flows, e.g., [Heussinger and Barrat), [2009].
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Figure 5.3.: Flow curves of a shear thickening fluid display continuous shear thick-
ening (green) and discontinuous shear thickening (brown). The ar-
rows indicate possible hysteresis in the discontinuous scenario.

5.4. Shear thickening

Flow regimes, e.g., inertial and plastic flow, differ fundamentally from each other
with respect to transport of particles, momentum, and stress. The transitions
between flow regimes are highly debated since the triggering mechanisms can be
manifold. Shear thickening is such a transition and describes the increase of vis-
cosity with shear stress or strain rate. Figure shows potential flow curves of
a shear thickening fluid. The scenario in figure (green thick line) with a flow
curve with finite, positive, and excessive increase (in this logarithmic represen-
tation a slope larger than 2), is termed continuous shear thickening. When the
flow curve exhibits parts with finite jumps shear thickening is discontinuous, see
figure (brown line). In the discontinuous scenario, the continuous increase or
decrease of the strain rate leads to jumps from one flow branch to the other, as
indicated by the arrows in figure[5.3] The shear stress, and thereby the viscosity,

changes discontinuously. The phenomenon of shear thickening is absent in the
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5. Shear rheology

flow curves of frictionless granular matter as illustrated in figure [5.2

Approaches that try to explain shear thickening of a complex fluid and the
shape of a flow curve, as shown in figure [5.3] stem from a broad variety of stud-
ies. In the following, we discuss studies that exhibit shear thickening but differ
by the (experimentally, numerically, or analytically) examined system. Experi-
ments are mainly conducted on suspensions, i.e., heterogeneous mixtures of solid
particles floating in a solvent. Examples are an aqueous solution with suspended
photoelastic disks or micro meter sized silica spheres. These examples possess an
important difference: large photoelastic disks are granular grains and athermal
contrasting small silica spheres that are only of micro meter size and experience
Brownian motion |Brown, [1828]. Solid Brownian particles, e.g., micro meter sized

silica spheres or micelles suspended in a solvent, are called colloids.

A general and abstract argument for discontinuous shear thickening flow curves
is the coexistence of differently flowing phases within the system. In this case,
local flow curves for each phase add up to the macroscopic flow curve that can
be described by a so-called s-shaped or sigmoidal flow curve [Olmsted, [1999]. In
particular, shear localization leads to non-monotonic flow curves [Olmsted, 2008;
Schall and van Hecke, 2010]. Indeed, localized phases are observed in experiments
and are accompanied with shear thickening. In micellar solution, shear thickening
is associated with localization of an anisotropic phase as an evidence of coexisting
phases [Berret et al., 2002]. In dense suspensions, shear thickening and shear
jamming are reported, but both pinned to shear localization [Fall et al., 2008].
The authors argue that shear jamming results from dilatancy and confinement,

i.e., shear thickening turns into shear jamming because the system’s finite size.

In this paragraph, we treat arguments that rely on the presence of a suspension.
An explanation for shear thickening suspensions are hydrodynamic interactions
[Wagner and Brady, 2009]. Dynamically correlated clusters, which enhance the
particles non-affine motion and thereby enhance dissipation, are another mecha-
nism [Andreotti et al.| |2012; [Heussinger, 2013]. In suspensions, where the inertia
of colloids is not negligible, shear thickening is argued to be due to anisotropy
in the microstructure which creates an effectively larger packing fraction [Picano
et al.;|2013]. A conclusive phase diagram, including a shear thickening regime, for
Newtonian suspensions with friction and inertia was proposed recently but does

not give an explanation for flows of dry granular media [Ness and Sun, 2015].
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5.4. Shear thickening

Also, the contact network between the particles is an important mediator for
shear thickening. In this paragraph, we deal with the importance of contacts.
The role of frictional contacts is highlighted by rheometry with PMMA spheres,
numerical simulations [Guy et al., 2015; Ness and Sun, [2016], and with colloidal
silica particles [Royer et al., 2016]. Shear thickening is explained by different
mechanisms of particle contacts [Wyart and Cates, [2014]: When particles are
pushed together with large enough forces, frictional contacts become relevant and
support larger load than lubricated contacts of particles which are just slightly
pushed together. However, it remains elusive which kind of shear thickening, i.e.,
continuous or discontinuous, is realized in an experiment or simulation and by
which mechanism it is implied. Contact forces dominate continuous shear thick-
ening in suspension, as the mildestrﬂ form of shear thickening |Lin et al., 2015|.
In Fernandez et al. [2013]; Mari et al.|[2014], both, continuous and discontinuous
shear thickening, were identified to occur based on frictional contacts and lubri-
cation forces but controlled by packing fraction, i.e., shear thickening becomes
stronger when the packing fraction increases and eventually turns from continuous
to discontinuous. The packing fraction controls the number of contacts and thus
the packing fraction is a crucial control parameter for shear thickening media, see
also [Brown and Jaeger| [2009]; Seto et al. [2013]. The discontinuous scenario is
accompanied with phenomenology reminiscent of first-order phase transitions in
equilibrium statistical mechanics, e.g., hysteresis in simulations of dry granular
media [Otsuki and Hayakawa, 2011]. Moreover, the interaction mechanisms that
is minimally required for shear thickening is controversial. In [Wyart and Cates
[2014], the authors argued that a microscopic stress scale, which distinguishes
lubricated from frictional contacts, is necessary for shear thickening. In contrast,
in |Otsuki and Hayakawa, [2011], the authors do not dwell on such a mechanisms
but use the same simplified approach as presented in Chapter

As the discussion points out, shear thickening is observed in different experi-
mental, numerical, and theoretical investigations. A host of different mechanisms
are found to be the origin for shear thickening, e.g., friction, lubrication forces,
correlated cluster, shear localization, and other heterogeneities. Heterogeneities
lead to gradients and result in unsteady flow. Heterogeneities and unsteady flow

have not been discussed in dry granular media. Also, many of the arguments

3The viscosity grows less in continuous shear thickening than in the discontinuous shear thick-
ening.

29



5. Shear rheology

above do not hold when the suspending fluid has zero or negligible viscosity.

5.5. Unsteady flow

The sections on inertial flow and on plastic flow deal with flow states
that do not show time dependent behavior — except for fluctuations. Due to
the fact that the flowing medium is composed of grains, discrete interactions,
i.e., collisions, make fluctuations an inherent feature of the dynamics and thus
will not be considered as a signature of unsteady flow. The flow is steady when
the system is tuned in the inertial or plastic flow regime. In the proximity of
transitions between inertial or plastic flow, unsteady behavior can emerge. Three

possible scenarios for unsteady flow are presented in the following:
(i) the coexistence of states, which are realized alternately as time progresses,
(ii) oscillations with a systematic pattern, and
(ili) chaotic response and irregular dynamics.

A rigorous characterization of these different scenarios is far from trivial and thus
a distinction between these states is a delicate task and not always unambiguous.
Figure shows time series of the different unsteady flow scenarios.
Coexistence is given when metastable states are realized alternately, e.g., in
the course of an experiment or a simulation, two differently flowing phases alter-
nate, see figure (i). In numerical studies of frictional particles, metastable flow
states are probed and successive alternations between plastic and inertial flow are
observed near a critical packing fraction [Aharonov and Sparks, |1999; [Mari et al.,
2014]. Similar features are found in three dimensional simulations, where the evo-
lution of contact number and pressure are shown to be linked; both fluctuate the
most at a critical packing fraction [Chialvo et al., 2012]. Metastable states and
hysteresis due to shear localization are found experimentally, e.g., [Chen et al.,
1992 Berret and Porte, |1999]. In a shear thickening regime, the stress distribu-
tion shows two peaks, which is interpreted as coexistence of differently flowing
states [Heussinger, 2013|. Therefore, the shear thickening regime presented by
the author is only apparent as it is constituted not by persistent, but alternating

flow states.
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5 6 7 8 9 10

Figure 5.4.: Different scenarios for unsteady flow: (i) coexistence, (ii) flow with
systematic patterns, and (iii) chaotic response. Units set by the
particle properties according to [Grob et al) [2014]. Simulation
parameters: ¢ = 0.7975 and (i) N = 8000, imposed strain rate
4 =1.1x1071, (ii) N = 80000, imposed strain rate ¥ = 1.25 x 1074,
and (iii) N = 80000, imposed shear stress ¥ = 6.28 x 107°.
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5. Shear rheology

Oscillations with a systematic pattern are another realization of unsteady flow,
see figure[5.4] (ii). A discussion on sigmoidal flow curves, their relation to frictional
contacts and the potential of shear instabilities leading to oscillations is given in
Bashkirtseva et al.| [2009]. The authors also present a phenomenological model
for the flow of a complex fluid, which, locally, shows a nonlinear viscoelastic re-
sponse to stress — ultimately leading to global oscillations. Colloidal experiments
show non-Gaussian stress fluctuations with heavy tailed distributions when the
system is driven in an apparent shear thickening regime |Lootens et al., 2003].
Experiments on micellar solutions evidence shear thickening, hysteresis and os-
cillating behavior [Fischer, 2000; Fernandez et al., 2009; Lutz-Bueno et al., 2013].
The authors conclude that the system does not settle into a steady state because
different phases with different flow characteristics exist. The emergence and de-
struction of these phases are dynamically induced by shear in an unstable flow
regime. Time dependent flow is found near jamming of gravity driven flow down
an incline and shows temporally heterogeneous dynamics and intermittent behav-
ior characterized by spatial heterogeneities visible in the contact network [Silbert,
2005). A simple rheological model predicts oscillatory flow and a sigmoidal flow
curve [Head et al., 2001} 2002].

The scenario of flow with chaotic dynamics, see figure (iii), appears to
be the least documented. A simple scalar model of a shear thickening material
predicts rheological chaos as a result of flow instabilities [Cates et al., |2002].
Also, fluid dynamic models show complex rheological behavior in shear thickening
states [Hess et al.| 2006]. In corn starch experiments, unpredictable rheological
response is measured where discontinuous shear thickening is expected [Hermes
et al., 2015].
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Microrheology examines rheological properties in complex fluids by the dynamics
of a suspended probe particle. A comprehensive review is given by [Squires and
Mason| [2010]. In so-called passive microrheology, the motion of the probe particle
is induced by the temperature of the suspending fluid, T'. The simplest microrhe-
ological equation is the Stokes-Finstein relation, equation which relates the

viscosity of a Newtonian fluid in equilibrium, 7, to the diffusion constant, D:

kT

D - )
6mrn

(6.1)

with the Boltzmann constant, kg, and the radius of the probe particle, r [Einstein,
1905} [Sutherland,, [1905]. The mean square displacement expressed in terms of the
diffusion constant, (Az?(t)) = 2Dt, is the link between the position of the probe
particle as a microscopic quantity and the viscosity as a rheological quantity.
Thereby, the Newtonian viscosity can be inferred from the probe particle’s fluc-
tuations. Seminal work by [Mason and Weitz| [1995] examines the relation of the
mean square displacement and the frequency dependent complex shear modulus,
G*(w)ﬂ of a non-Newtonian fluid, which describes the linear rheological relation
between shear stress and shear strain, completely [Mason and Weitz, [1995].
When external driving is applied to the probe particle microrheology is called
active. The active forcing allows to go beyond the linear-response regime and
to examine linear and nonlinear rheological response. Nonlinear phenomena are,
e.g., shear thinning, shear thickening, and the granular glass transition, a rigid-
ity transition of a stochastically driven granular fluid [Kranz et al., 2010; Sperl
et al., 2012; Kranz et al., 2013]. To study the granular rigidity transition, Can-
delier and Dauchot/ [2009} 2010] conducted experiments on a horizontal layer of

vibrated granular particles and examined the dynamics of an externally driven

'Real and imaginary part of G*(w) correspond to the elastic and viscous modulus, respectively.
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6. Active microrheology

probe particle. Two qualitatively different regimes, seperated by a packing frac-
tion dependent force threshold, which diverges at the granular glass transition,
are reported: a fluidized regime with continuous motion and a solid-like regime
with intermittend motion.

In general, the external driving is realized with a force, F’, or a velocity, v, which
is imposed on the probe particle and the complementary quantity is measured.

This gives access to the mobility, v, via the velocity-force relation
v="vF. (6.2)

A velocity-force relation is in general nonlinear due to force thickening, i.e., a sub-
linear velocity-force relation, or force thinning, i.e., a superlinear velocity-force
relation. In this context, the inverse of the mobility is called friction coefficient,
(E|. The frequency dependent generalized Stokes mobility, v*(w), relates the mo-
bility to the complex viscosity, n*(w) = —iw ' G*(w):

vi(w) = v, (6.3)

with the frequency, w, which is set by the velocity of the probe particle.

In shear rheology, as discussed in Chapter |5, the strain rate is homogeneous (in
a stationary state in simple shear geometry). In microrheology, however, shear
is applied locally, i.e., the medium near the probe particle can be far out of equi-
librium while further away from the probe particle, the medium can still remain
undeformed or unstressed. Therefore, a quantitative comparison between shear
rheology and microrheology is, in general, not appropriate. Nevertheless, mi-
crorheology gives insight into microstructural properties in force thinning regimes
[Sriram et al., 2009] or growing length scales close to jamming (or the granular
glass transition) |[Candelier and Dauchot, 2009, 2010]. The review Reichhardt and
Reichhardt| [2014] discusses what can be learned about jamming with the help of
externally driven probes and Puertas and Voigtmann [2014] review microrheology

on colloids and discuss granular systems, too.

2The friction coefficient is not to be confused with Coulomb’s friction parameter, which is
called p.
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This part contains the results of this thesis, which are presented as separate
articles.

Chapter [7] contains the main achievement of this thesis: studies on sheared
frictional granular media. In section [7.I] we present the article “Jamming of
frictional particles: A nonequilibium first-order phase transition”, |Grob et al.,
2014], which discusses the jamming transition of sheared frictional granular par-
ticles in small simulation cells. The article in section [7.2] “Rheological chaos of
frictional grains”, [Grob et al., 2016], treats unsteady flow near a shear induced
jamming transition in large simulation cells. We present numerical findings that
are in accordance with the prediction of a simple model that is developed in the
same study. The stability analysis of the solutions of the model is presented in
appendix [A] In section [7.3] we present the manuscript “Unsteady rheology and
heterogeneous flow of dry frictional grains”, a detailed study, which links the
preceding studies together and provides a detailed description of heterogeneities
and time dependent flow close to jamming.

Chapter |8] contains results of a study that was carried out as a side project
during the period of this thesis. The numerical foundations of this study, which
was developed before the period of this thesis, is described in [Fiege et al., |2012].
We use an event-driven simulation scheme that accounts for a resistive drag
forcd’| and introduces an actively driven probe particle of which we investigate
the nonlinear velocity-force relation close to the granular glass transition. The
numerical results are related to analytical results by Wang and Sperl in the article

“Active microrheology of driven granular particles” [Wang et al., [2014].

3When a particle moves ballistically with velocity, v, a drag force, Fp, is a resistive force
proportional to the particle’s velocity: Fp o —w; it is motivated by, e.g., a fluid that
surrounds the particles or, in a dry system, friction with a bottom plate on which the
experiment is built.
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7. Shear rheology of frictional

grains

7.1. Jamming of frictional particles: A

nonequilibium first-order phase transition

Reprinted article with permission from

Grob, Matthias and Heussinger, Claus and Zippelius, Annette
Physical Review E 89 050201 (2014)
http://dx.doi.org/10.1103/PhysRevE.89.050201
Copyright (2014) by the American Physical Society.
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Jamming of frictional particles: A nonequilibrium first-order phase transition
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We propose a phase diagram for the shear flow of dry granular particles in two dimensions based on
simulations and a phenomenological Landau theory for a nonequilibrium first-order phase transition. Our
approach incorporates both frictional as well as frictionless particles. The most important feature of the frictional
phase diagram is reentrant flow and a critical jamming point at finite stress. In the frictionless limit the regime
of reentrance vanishes and the jamming transition is continuous with a critical point at zero stress. The jamming
phase diagrams derived from the model agree with the experiments of Bi ez al. [Nature (London) 480, 355 (2011)]
and brings together previously conflicting numerical results.

DOI: 10.1103/PhysRevE.89.050201

Random close packing is the point at which hard
spherical—and frictionless—particles generally jam into a sta-
ble heap. Itis now known that the precise close-packing density
¢rcp depends on the preparation protocol [1]. Nevertheless, this
variability is small when compared to frictional systems, i.e.,
systems where particles not only transmit normal forces but
also tangential forces among themselves. Indeed, frictional
systems can jam at densities anywhere between random-close,
random-loose, or even random-very-loose packing [2,3]. In
this Rapid Communication we deal with the flow properties
of frictional granular systems, where the jamming transition
can be studied by monitoring the flow curves, i.e., the stress-
strain rate relations o (y). Previous simulations performed in
the hard-particle limit [4,5] do not observe any qualitative
difference between frictionless and frictional systems, other
than a mere shift of the critical density from @, to @ (),
which depends on the friction coefficient p of the particles.
Similar results, accounting for particle stiffness, are presented
in Refs. [6,7]. Quite in contrast, Otsuki et al. [8] recently
observed a discontinuous jump in the flow curves of the
frictional system, which is absent in the frictionless analog [9].
In addition, they find not one but three characteristic densities
for the jamming transition, which degenerate into random close
packing when u — 0. Similarly, Ciamarra et al. [10] observe
three (but different) jamming transitions. Experimentally, Bi
et al. [11] present a jamming phase diagram with a nontrivial
(reentrance) topology that is not present in the frictionless
scenario.

These latter results hint at friction being a nontrivial
and indeed “relevant” perturbation to the jamming behavior
of granular particles. Unfortunately, several inconsistencies
remain unresolved. For example, the phase diagram in [10]
is different from [11] and does not show stress jumps as
observed in [8]. This points towards a more fundamental
lack of understanding of the specific role of friction in
these systems. What is the difference between frictional and
frictionless jamming? By combining mathematical modeling
with strain- and stress-controlled simulations we propose a
jamming scenario that not only encompasses frictional as well
as frictionless systems, but also allows one to bring together
previously conflicting results.

We simulate a two-dimensional system of N = 8000 soft,
frictional particles in a square box of linear dimension L. The
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particles all have the same mass m = 1, but are polydisperse
in size: 2000 particles each for diameter d = 0.7,0.8,0.9,1.0.
The particle volume fraction is defined as ¢ = Zf\’:l nd?/AL*.
Normal and tangential forces, £ and f®, are modeled with
linear springs of unit strength for both elastic as well as viscous
contributions. (Thereby units of time, length, and mass have
been fixed.) Coulomb friction is implemented with friction
parameter . = 2 [12]. In the strain-controlled simulations, we
prepare the system with a velocity profile vgow = ¥(0)yé,
initially. Subsequently the shear rate is implemented with
Lees-Edwards boundary conditions [13] until a total strain
of 200% is achieved after time 7. Whenever the strain rate is
changed to a new value, we wait for a time ~0.5T to allow for
the decay of transients. In the stress-controlled simulations, a
boundary layer of particles is frozen and the boundary at the
top is moved with a force o Lé,, whereas the bottom plate
remains at rest.

In the strain-controlled simulations we impose the strain
rate y and measure the response, the shear stress o(y), for
a range of packing fractions 0.78 < ¢ < 0.82. Thereby the
system is forced to flow for all packing fractions; the resulting
flow curves are shown in Fig. 1.

We observe three different regimes. For low packing
fraction, the system shows a smooth crossover from Bagnold
scaling, o = ny? (called “inertial flow”) to o o y!/? (called
“plastic flow”). As the packing fraction is increased, we
observe a transition to hysteretic behavior [8]: Decreasing the
strain rate from high values, the system jumps discontinuously
to the lower branch. Similarly, increasing the strain rate from
low values, a jump to the upper branch is observed. A well
developed hysteresis loop is shown in the inset of Fig. 1. The
onset of hysteresis defines the critical density ¢.. We estimate
its value ¢, between 0.7925 and 0.795 by visual inspection
of the flow curves as described in the Supplemental Material
[14]. As ¢ is increased beyond the critical value ¢, the jump
to the lower branch happens at smaller and smaller y, until at
¢, the upper branch first extends to zero strain rate, implying
the existence of a yield stress, oyieq. For ¢, < ¢ < ¢,, the
strain rate for the jump to the lower branch, y, « ¢, — ¢,
scales linearly with the distance to ¢, which allows us
to determine ¢, = 0.8003. Finally at ¢,, the generalized
viscosity n = o/y? diverges and for ¢ > ¢, only plastic flow
is observed. The scaling of the viscosity n o (¢, — ¢)™* is

©2014 American Physical Society
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FIG. 1. (Color online) Flow curves o(y) for different packing
fractions ¢ = 0.78,0.7925,0.795,0.7975,0.79875,0.80,0.82 (from
bottom to top). Main part: Flow curves obtained by decreasing y .
Inset: Example of a hysteresis loop for ¢ = 0.80.

in agreement with previous results [8] and yields ¢, = 0.819.
Note that all three packing fractions are well separated, and
furthermore, @, is still well below the frictionless jamming
density at random close packing ¢, = 0.8433. The scaling
plots Y, and n are shown in the Supplemental Material [14].

All the observations can be explained in the framework of
a simple model, which can be viewed as a phenomenological
Landau theory, that interpolates smoothly between the inertial
and the plastic flow regime:

y(o) =ac'? — bo + co?, (D)

where a,b,c are coefficients which in general depend on the
packing fraction. Equation (1) can be taken to result from
a class of constitutive models that combine hydrodynamic
conservation laws with a microstructural evolution equation
[15], or from mode-coupling approaches [16].

The numerical data suggest that the plastic flow regime
is only weakly density dependent for packing fractions
considered here, so we take ¢ to be independent of ¢ for
simplicity. In the inertial flow regime, on the other hand,
we expect to see a divergence of the shear viscosity at ¢,
implying that the coefficient a of our model vanishes at ¢, and
changessign,a = a(¢) = aple, — ¢|(¢, — ¢). The coefficient
b is assumed to be at most weakly density dependent.

The simple model predicts a discontinuous phase transition
with a critical point in analogy to the van der Waals theory of
the liquid-gas transition [see Fig. 2(left)]. The critical point is
determined by locating a vertical inflection point in the flow
curve. In other words we require d,y = 0 and simultaneously
dsc Y = 0. These two equations together with the constitutive
equation (1) determine the critical point: b. = %a(wc)z/ 313
with the critical strain rate given by y,. = 13—6 % and the critical
stress o, = 1(4)?3.Forg > ., the model predicts an unstable
region, where 9,y < 0. This is where the stress jump occurs
in the simulations. The flow curves of the model are presented
in Fig. 2(left), assuming b = b,, and fitting the two constants
¢,ay to the data. The model predicts a yield stress to first occur,
when two (positive) zeros for the function y(c) = 0 coincide.
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FIG. 2. (Color online) Flow curves of the simple model, Eq. (1).
Left: Frictional scenario with range of packing fractions as in Fig. 1;
¢. is indicated by the red line, ¢, by the blue line, and ¢, by the green
line. Right: Flow curves for frictionless particles of the simple model
implemented with b = 0 and ¢, = ¢, = ¢, = 0.8433; critical flow
curve in red.

This happens at a density ¢, determined implicitly by a(¢.) =
a(g,)+/2 and the yield stress is given by oyiel = [a/(2¢)]%/°.
The flow curves can be fitted better, if we allow for weakly
density dependent coefficients b and c. However, we refrain
from such a fit, because even in its simplest form the model can
account for all observed features qualitatively: a critical point
at ¢, the appearance of a yield stress at ¢, and the divergence
of the viscosity at ¢,, ordered such that ¢, < ¢; < ¢,. The
flow curves for these three packing fractions are highlighted
in Fig. 2 and further illustrated in the Supplemental Material
[14].

The limiting case of frictionless particles can be reached by
letting © — 0. Simulations indicate that in this limit hysteretic
effects vanish [8,9] and the jamming density is increased
approaching random close packing. Within the model this
transition can be understood in terms of the variation of two
parameters: First b(u) — 0 in Eq. (1) implies that the three
densities (¢¢,9s,9,) coincide and second @,(1) = @rep =
0.8433. While a p-dependent ¢, simply shifts the phase
diagram towards higher densities, the parameter b accounts
for the more important changes of the topology of the phase
diagram. The flow curves in this limit are presented in
Fig. 2(right). They present a continuous jamming scenario
consistent with previous simulations in inertial [9] as well as
overdamped systems [17,18].

What happens in the unstable region? Naively one might
expect “coexistence” of the inertial and the plastic flow regime,
i.e., shear banding. However, this would have to happen
along the vorticity direction [15,19], which is absent in our
two-dimensional setting. Alternative possibilities range from
oscillating to chaotic solutions [20,21]. We will see that,
instead, the system stops flowing and jams at intermediate
stress levels. Interestingly, this implies reentrance in the (o,¢)
plane with a flowing state both for large and small stress, and
a jammed state in between.
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FIG. 3. (Color online) Time series of the strain rate with packing
fraction ¢ = 0.7975 and different, but fixed, stresses 07 < 0, < 03 <
04 < 05 (stress values are indicated in Fig. 6). Lower right corner:
Schematic picture of the jamming time being cut off at the simulation
time 7.

To address the unstable regime in more detail, we have
performed stress-controlled simulations: The shear stress is
imposed and we measure the strain rate as a function of
time. The initial configurations are chosen with a flow profile
corresponding to the largest strain rate in the inertial flow
regime, which was observed previously in the strain-controlled
simulations. For a fixed ¢, several time series are shown in
Fig. 3, representing the different regimes. The lowest value
of o7 is chosen in the inertial flow regime, so that the system
continues to flow for large times. Similarly o5 is chosen in the
plastic flow regime and the system continues to flow as well.
The intermediate value o3 is chosen in the unstable region and
the system immediately jams. Between the jamming and the
flow regime we find intermediate phases with transient flow
that ultimately stops [10].

To quantify the different flow regimes, we introduce the
time Tj,, the system needs to jam. Schematically we expect the
result shown in the lower right corner of Fig. 3: In the jammed
phase 7j,, = 0, whereas in the flow phase T, is infinite. In
between Tjay, is finite implying transient flow before the system
jams. We expect Tj;m to go to zero as the jammed phase is
approached and to diverge as the flow phases are approached.
Given that the simulation is run for a finite time, the divergence
should be cut off at the time of the simulation run, 7', indicated
by the horizontal (red) line in the schematic in the lower right
corner of Fig. 3.

These expectations are borne out by the simulations: In
Fig. 4 we show a contour plot of 7,y as a function of ¢ and
o . In the dark blue region, j,, is very small, corresponding to
the jammed state. In the bright yellow region T;,,, exceeds the
simulation time; hence this region is identified with the flow
regime—inertial flow for small ¢ and plastic flow for large
o. The intermediate (red) part of the figure corresponds to the
transient flow regimes.

In our simple model, Eq. (1), the jammed state has to
be identified with the unstable region. It seems furthermore
suggestive to identify the transient flow regime with metastable
regions. The phase diagram, as predicted by the simple model
(with finite b) is shown in Fig. 5 (schematic). In the region
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FIG. 4. (Color online) Numerical results for the phase diagram.
The mean flow time Tj.n is encoded with color. The flow phase is
indicated in yellow (bright) and the jamming phase in blue (dark).
Lines are contours of constant Tjyy,.

within the (thick) red curve, Eq. (1) has no solution: the
system jams. Outside the (thin) blue curve, the solution is
unique corresponding to either inertial flow (low stress) or
plastic flow (high stress). In between, in the shaded region,
the equations allow for two solutions and hence metastable
states. Jamming from these metastable states is discontinuous,
i.e., the strain rate jumps to zero from a finite value. At a
packing fraction ¢,, a yield stress first appears and grows as ¢
is increased further, giving rise to a kink in the red curve and
a continuous jamming scenario. Beyond ¢, inertial flow is no
longer possible [22]. In the frictionless limit & — 0 all these
different packing fractions merge with ¢, giving the phase
diagram the simple structure well known from previous work
[23] and shown in the inset in Fig. 5.

The presence of long transients is fully consistent with
the results of Ref. [10]. Due to a restricted stress range in
those simulations, however, only the upper part of the phase
diagram is captured and the reentrance behavior is missed.
To get a better understanding of these transients (or possibly

plastic flow I
etastable
plastic flow
flow
<) jamming
A]al/ming

metastable 0
inertial flow )

inertial

flow

o I 1
O 05 Py Prep

¢

FIG. 5. (Color online) Phase diagram of the model (schematic),
revealing reentrant flow for small and large o, as well as flow and
jam states in the “metastable” regions for frictional particles (main
panel) and the known jamming phase diagram for frictionless particles
(inset).
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FIG. 6. Flow curves from the stress-controlled simulations. The
unstable branches (decreasing stress) are obtained as time averages
over the transient flow (right axis: stress values used for the time
series in Fig. 3).

metastable states), we have tried to construct the flow curves
in this regime by the following procedure: The monitored
time series are truncated as soon as the system jams. The
(transiently) flowing part of the time series is averaged over
time, giving rise to the flow curves, shown in Fig. 6. These flow
curves show clearly a nonunique relation o (y) or equivalently
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a non monotonic relation y (o), which can only be observed
as transient behavior, before the system has settled into a
stationary state.

In conclusion, the goal of this Rapid Communication is
to understand the role of friction in the jamming behavior
of dry granular matter. To this end we present a theoretical
model (supplemented by molecular dynamics simulations)
that can reproduce all the phenomenology of simulated flow
curves (Fig. 2) both for the fully frictional system as well as
for the limiting case of frictionless particles. The jamming
phase diagrams derived from the model agree with recent
experiments [11]. The key result is that the transition between
the two jamming scenarios, frictionless and continuous, and
frictional and discontinuous, can in our model be accounted
for by the variation of just a single parameter (). The most
important feature of the frictional phase diagram is reentrant
flow and a critical jamming point at finite stress. The fragile
“shear jammed” states observed in the experiments [11] then
correspond to the reentrant (inertial) flow regime in our
theory. Our work allows one to bring together previously
conflicting results [6—8,10] and opens a new path towards a
theoretical understanding of a unified jamming transition that
encompasses both frictionless as well as frictional particles.

We thank Till Kranz for fruitful discussions. We gratefully
acknowledge financial support by the DFG via FOR 1394 and
the Emmy Noether program (He 6322/1-1).
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I. ESTIMATION OF THE PACKING
FRACTION (¢c, 9o, ¢n)

This section describes the estimation of the packing
fractions (¢c, ¢o, ¢y) by molecular dynamics data. The
flow curves in the main article Fig. 1 show a jump in
stress for ¢ = 0.795 and smooth behaviour for ¢ =
0.7925. Therefore we conclude that ¢. lies in between
these two values. This is furthermore in agreement with
Fig. 4 in the main article where the first solid states
(Tjam < T) occur at ¢ = 0.7925.

The values of ¢, and ¢, are determined as described
in the manuscript. The data is displayed in Fig 1.

The precise values for the three characteristic packing
fractions are not essential for this work. What is more
important is that there are three different packing frac-
tions — and not just one as for the frictionless case. This
conclusion is robust and does not rely on the power-law
fits.

II. FURTHER INFORMATION ABOUT THE
SCHEMATIC MODEL

This section puts emphasize on the packing fractions
(Ye, o, pn) in the framework of the simple model and
aims to provide a better understanding of the phase di-
agram (schematic) in Fig. 5 in the main article. Fig. 2
is a log-linear representation of the flow curves shown
in the main article Fig. 1. The black line is subcritical

. T 10-2 .
— Fit — Fit
o Data o Data
10 | 1
= 10% t |
-5 ° . -4
10 10 10’3 1072 10 102 5.102
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FIG. 1: Left: Fit of the strain rate 4,, where the plastic
stress in the upper branch drops to zero to 4, x (ps — ©)<,
yielding ¢, = 0.8003(2) and a = 1.0(1). Right: Fit of the
inverse generalized viscosity to 77 o (@, —@)?* yielding ¢, =
0.819(1).
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FIG. 2: Flow curves of the simple model Eq. 1 of the main
article in log-linear representation. Frictional scenario; the
black line is subcritical, ¢. is indicated by the red line, ¢,
by the blue line and ¢, by the green line. The critical point
(¢es e, 0c) is encircled. oy;erq indicates the first yield stress,
ie. 4 =0 for o # 0 at p,.

and crosses smoothly from plastic to inertial flow as the
strain rate is decreased. Upon an increase in packing
fraction, @, is the first flow curve with zero slope (analog
to the critical isotherm in classical theory of first order
phase transition for a fluid-gas-system). At ¢, the ze-
roline (4 = 0) is touched at finite stress and at ¢, the
coefficient @ = 0 which makes the negative (linear) term
dominant for ¢ — 0. Therefore for ¢, and above the
flow curves bend downwards at the origin, i.e. the in-
ertial branch is vanished, which is reflected in a yield
stress.
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A two-dimensional dense fluid of frictional grains is shown to exhibit time-chaotic, spatially heterogeneous

flow in a range of stress values, o, chosen in the unstable region of S-shaped flow curves. Stress-controlled

simulations reveal a phase diagram with reentrant stationary flow for small and large stress o. In between, no

steady flow state can be reached, instead the system either jams or displays time-dependent heterogeneous strain
rates y(r,z). The results of simulations are in agreement with the stability analysis of a simple hydrodynamic
model, coupling stress and microstructure which we tentatively associate with the frictional contact network.

DOI: 10.1103/PhysRevE.93.030901

Discontinuous shear thickening is a ubiquitous phe-
nomenon, observed in many dense suspensions [1,2]. Sim-
ulations for non-Brownian particle suspensions [3-5] as
well as for frictional granular media [6,7] have highlighted
the particular role played by frictional particle interactions.
Discontinuous shear thickening implies a region of shear stress
which (at finite Reynolds number, Ref. [8]) is not accessible
to a homogeneous system in stationary state. What happens
if the system is forced into this regime by prescribing the
stress at the boundary in the unstable region? One possibility
is vorticity banding [9], corresponding to bands with different
stress values at the same shear rate. However, there is no clear
evidence for persistent vorticity banding in experiment so far.
Furthermore objections have been raised as to the possibility
of vorticity banding as a stationary state: The pressure—in
contrast to the shear stress—has to be the same across the
interface of the bands; otherwise particle migration is expected
to occur and thereby destabilize the interface. If stationary
states are not accessible to the system, we expect to observe
time-dependent, inhomogeneous states, either oscillatory or
chaotic [10].

In this Rapid Communication we show that spatiotemporal
chaos occurs in a two-dimensional system of frictional
granular particles subject to an applied stress which is chosen
in the unstable region of the flow curve. We present results
from simulations and formulate a hydrodynamic model to
derive a phase diagram and identify the regions of parameter
space, where time-chaotic, inhomogeneous solutions are to be
found.

We simulate a two-dimensional system of N soft, frictional
particles in a square box of linear dimension L as detailed
in [7]. The particles all have the same mass m = 1, but
are polydisperse in size with diameters 0.7, 0.8, 0.9, and
1 in equal amounts. Normal and tangential forces, ™ and
[, are modeled with linear spring-dashpots of unit strength
for both elastic and viscous contributions. Thereby units of
time, length, and mass have been fixed [11]. Flow curves for
other viscoelastic parameters are presented in the Appendix.
Coulomb friction is implemented with friction parameter u =
2, corresponding to the high friction limit. We expect the same
qualitative findings as presented in this Rapid Communication
for all values of ;v > 0 and refer to a systematic study of the
wn dependence in Ref. [6]. In the stress-controlled simulations,
a boundary layer of particles is frozen and the boundary at
the top is moved with a force o Lé,, whereas the bottom plate
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remains at rest. In shear direction we use periodic boundary
conditions.

Constitutive equation. Previous work [6,7] has revealed
discontinuous shear thickening for a range of packing fractions
close to the jamming transition. The flow curves for frictional
granular particles are well represented by the following
constitutive equation:

y(0) =ac'’? — bo + co?, (1)

where the term —bo is due to the frictional interactions, and
dependence on the packing fraction ¢ is implemented with
a = a(¢) [7,12]. This gives rise to the phenomenology of
the van der Waals theory for a first-order phase transition:
jamming first occurs at the critical point ¢, = 0.795 which
also marks the onset of hysteresis. A finite yield stress
first appears at ¢, = 0.8003, while the generalized viscosity,
n = o/y?, diverges only at ¢, = 0.819. A similar, but not
identical, sequence of characteristic packing fractions has
been proposed in [6,13]. Most remarkable is the existence
(due to the b-dependent term) of a regime of shear stress
which is unstable g—(’; < 0, corresponding to s-shaped flow
curves. In strain-controlled conditions such an s shape leads
to discontinuous shear thickening. In the van der Waals theory
it corresponds to the coexistence region.

Simulations in the unstable regime. These S-shaped flow
curves are indeed observed in the simulations (see Fig. 1),
however, only as transients and only in rather small simulation
cells (N < 24000). In larger systems the S shape is slowly
eroded and vanishes completely above a certain system size.
Instead a regime of continuous shear thickening develops.
Closer inspection of the simulations in this regime reveals
that no simple steady state is reached. Rather, the system
displays time-chaotic and spatially inhomogeneous behavior.
An example is shown in Fig. 2, which is a sequence of
four snapshots of the local-stress field (movies are given in
the Supplemental Material [14]). The system does not settle
into a time-independent steady state on the time scale of the
simulations. Instead one observes time-dependent large-scale
structures, e.g., shear bands which seem to propagate in
the principal stress direction, alternating with approximately
homogeneous states and random large-scale structures. In
Fig. 5 we show the corresponding time-dependent strain
rate. One clearly observes irregular time dependence with
intermittent oscillatory periods.

©2016 American Physical Society
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FIG. 1. Evolution of flow curves o(y) with system size N. For
small systems a pronounced S shape is visible in transients before the
system jams. In large systems no steady flow occurs; average over
the time-dependent flow results in continuous shear thickening (stress
controlled except for N = 80 000).

Hydrodynamic model. To understand these time-dependent
solutions and locate the regions of parameter space where
they can occur, we now formulate a hydrodynamic model,
determine its stationary states, and analyze their stability.
Our starting point is the momentum conservation equation
in the form 0,v;, = d,0,,. For simplicity we only consider
a one-dimensional model, allowing for a velocity vy in the
flow direction, dependent on y only. In addition we introduce
a variable w(y,t) for the internal state or the microstructure
of the fluid. Such a variable has been introduced for many
complex fluids, such as liquid crystals, entangled polymer
solutions, and colloidal systems [9]. Here we associate it
with the frictional contact network. In the simplest model
we only consider a scalar variable, representing, e.g., the
number of frictional contacts [8,15], but are aware that
a tensorial quantity, such as the fabric tensor, might be
more appropriate. We assume that the microstructure variable

logio(0)

FIG. 2. Four snapshots of the local stress, revealing large-scale,
time-dependent structures; ¢ = 0.8035.
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relaxes to a stationary state d,w = (w — w*)/t which should
vanish in the absence of stress w*(c — 0) — 0. Furthermore
dynamic rearrangements occur only due to driving, so that
77! o« y. So far the model is the same as considered by
Nakanishi er al. [16] for dilatant fluids. However, the coupling
of stress and microstructure is different for the frictional
grains under consideration. The frictional contacts reduce
the flow and hence the velocity gradient. Starting from the
constitutive equation for the strain rate of frictionless grains
v = ac'’? 4+ co?, we take the strain rate of our system of
particles with friction to be y = yy — w. This completes the
definition of the hydrodynamic model

dy = 00,
)):yo_U),
awz—%m—wm @)

Here we have introduced a proportionality constant, t = I'/y,
which can be fitted, when comparing simulations to the
predictions of the model. For the stability analysis, it is
irrelevant. Higher-order diffusive terms may be added to
the stress and/or the w equation. We have checked that the
inclusion of such terms does not change the stability analysis.
Other hydrodynamic models of granular fluids include velocity
fluctuations [17], e.g., granular temperature which, however,
cannot explain effects due to friction.

The model allows for two stationary states: The first one
corresponds to stationary flow and is explicitly given by

y=p—w", w=w", o=od7. 3)
Given that w* should vanish for vanishing shear, we take
it as w* = bo, so that we recover the constitutive relation
for frictional grains, Eq. (1). The second stationary solution

accounts for the jammed state and reads

y=0, w=yp, o=o. (€]

For both stationary states, the stress o = oy is homogeneous
over the sample, in agreement with the Navier-Stokes equation
which require a homogeneous stress in two dimensions and
hence does not allow vorticity banding.

Stability analysis. To study the stability of the stationary
states, we consider small deviations §o,8w ~ e ekY and
linearize Eq. (2) in §o,8w. As expected the stationary flow

dy

is unstable for o < 0. Below ¢, this does not occur and

we find two stable modes: a hydrodynamic one, €2; —k2,
corresponding to the conservation of momentum, and a
nonhydrodynamic one, €2 —g—g — 0, corresponding to
the relaxation of the microstructure, whose relaxation time
becomes infinite as ¢ — ¢. and 0 — o.. Above ¢., the model
predicts two stable stationary flow solutions: inertial flow at
small stress and plastic flow at large stress. In between, a
gap of unstable stress values occurs such that no stationary
homogeneous flow is possible in this range of stresses. A
typical flow curve in the range ¢, < ¢ < ¢, is shown in the
inset of Fig. 3 as line 1, indicating the unstable regime as
red. The jammed state is only stable for ¢ > ¢, in the region
where the constitutive relation yields a negative y. A typical
flow curve in the range ¢, < ¢ < ¢, is line 2 in the inset
of Fig. 3 with the stable jammed state marked in blue. For
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FIG. 3. Inset: Typical stationary states (flow curves) in the
range ¢. < ¢ < ¢, (1) and ¢, < ¢ < ¢, (2). Unstable regions are
highlighted in red (time-dependent flow) and blue (jamming). Main:
Phase diagram following from the linear stability analysis; the two
generic flow curves, displayed in the inset, correspond to the paths,
denoted by 1 and 2.

¢ > ¢,, only stationary plastic flow and stationary jamming
are predicted by linear stability analysis. The resulting phase
diagram of the model is shown in the main panel of Fig. 3.

Above the critical packing fraction, ¢., a finite range
of inaccessible stress values with 3—Z < 0 exists and gives
rise to a corresponding range of unstable wave numbers
kK< k2= |)'/2—3;|, which shrinks to 0 as ¢ — ¢.. Hence the
model predicts an approximately harmonically oscillating state
at the onset of instability, while well inside the unstable region
more and more wave numbers are unstable so that one expects
a broad range of frequencies to be present in the spectrum.
These expectations are born out by numerical integration of
the partial differential equations in order to obtain the full
nonlinear dynamical evolution. Close to ¢., the oscillations
are approximately harmonic, while we find oscillating and
seemingly chaotic solutions at larger packing fractions (see
Fig. 4).

Comparison with simulations. To check the predictions of
the above analysis, we performed stress-controlled simulations
(for technical details see Ref. [7]) along paths 1 and 2 in the
phase diagram. The time-dependent strain rate along path 1 is

10% F

[ 6=1.0x10° ——

=4.5x10%

0 5000 10000 15000 20000 25000 30000 35000
t

FIG. 4. Spatially averaged strain rate vs time from numerically
integrating the hydrodynamical model for different imposed stress.
In the unstable region at intermediate stress values, we observe
oscillations and chaotic solutions (I' = 1073,¢ = 0.7975).
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FIG. 5. Strain rate y(¢) as a function of time for several values of
stress, corresponding to path 1 (top, ¢ = 0.7975) and path 2 (bottom,
¢ = 0.8035) in Fig. 3; the sudden drops of the strain rate in the time-
dependent flow curve indicate that the system nearly gets jammed.

shown in Fig. 5(a) for three different stress values. The lowest
one shows stationary flow in the Bagnold regime, the chaotic
time dependence with oscillatory components is represented
by the two red curves for intermediate stress, and larger stress
gives rise to stationary plastic flow [not shown in Fig. 5(a)].
Similarly in Fig. 5(b) we show the strain rate as a function of
time for path 2. In addition to the steady-state flow, and the
oscillatory flow, there are stationary jammed states, where the
initial flow ceases after a certain amount of time.

To get a quantitative measure of the irregularity in the
time dependence of the states, we have computed the power
spectrum C(w) as the Fourier transform of the strain rate
autocorrelation function (Fig. 6). In the stable regimes, the
power spectrum is C ~ w2, suggesting simple exponential
correlations and linear noise. In the unstable regime this
background spectrum is superposed by additional and irregular
complex structures. This is a strong indication of truly
nonlinear chaotic dynamics. Noteworthy is also the strong
peak at higher stresses. This corresponds to the fast oscillations
visible in Fig. 5(a).

Finite-size effects. The snapshots in Fig. 2 indicate the
buildup of large-scale coherent structures. A large correlation
length has also been observed in Ref. [3] in the context
of continuous shear thickening in non-Brownian particle
suspensions. These correlations are also in line with the strong
finite-size effects observed in the flow curves of Fig. 1. Indeed,
in lowering the system size, the oscillatory state acquires
a finite lifetime and the system jams. This is because in
small systems there is a finite probability that large strain
rate fluctuations towards y — 0 lead to a stable jammed
state [see Fig. 5(b) for an example of such an excursion].
Similarly, the appearance of S-shaped flow curves is due to
system-size-dependent strong strain rate fluctuations towards
the jammed state with y = 0.

Conclusion. We discuss stress-controlled driving of a gran-
ular system that undergoes discontinuous shear thickening.
In particular a regime is identified where the system does
not settle into a time-independent steady state. Instead, it

030901-3



GROB, ZIPPELIUS, AND HEUSSINGER

C(w) (arb. units)

N Y
e N

10*  10° 102 10’
(O]

FIG. 6. Power spectrum C(w) of strain rate fluctuations at
constant stress from low (bottom) to high (top) values of o (shifted
vertically for clarity of presentation); in the stable region C ~ w™2;
whereas in the unstable region additional complex structures are

superimposed on the w~? decay.

displays spatiotemporal oscillations and chaotic behavior as
anovel possibility to adopt to stress in the unstable parts of the
flow curve. Recent experiments on corn starch reveal very
similar unsteady flow where theory predicts discontinuous
shear thickening [18].

Simulations reveal a phase diagram that has a characteristic
re-entrant form with steady-state flow at small and large
stresses. At intermediate values of stress either time-dependent
states are observed or the system settles into a nonflowing
jammed state, depending on stress and packing fraction. For
¢. < ¢ < ¢, only time-dependent solutions are observed,
whereas for ¢, < ¢ a sequence of inertial flow, chaotic flow,
jammed state, and plastic flow are seen for increasing values
of o, until at ¢ = ¢, only a transition from the jammed state
to plastic flow remains.

We also present a hydrodynamical model, coupling stress
to a microstructural observable. Within linear stability analysis
we recover the detailed features of the phase diagram as
obtained from simulations. In the unstable region, the model
predicts either oscillating or time-chaotic flow.

In future work we plan to quantify the spatiotemporal
correlations that are visible in the snapshots and compare
them with length scales determined in [3] from velocity
correlations. We furthermore aim to better understand the
microstructural observable, check whether it can be associated
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TABLE I. Normal restitution coefficient €™ and binary collision
time ¢ for different k and 7.

k n e® ¢

1 1 0.305 2.375
1 172 0.569 2.26
1 1/10 0.895 2.22
172 1 0.163 3.63
2 1 0.44 1.4
10 1 0.7 0.7

with the contacts which are blocked by Coulomb friction, and
explore the possibility of a tensorial observable, such as the
fabric tensor.
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grams FOR 1394 and Emmy Noether He 6322/1-1.

APPENDIX

In this Appendix we deal with flow curves of frictional
grains at fixed packing fraction when the particles’ elastic
and viscous damping constants change. In the main text
we use unit strength for elastic and viscous contributions
in the linear-spring dashpots (k and 7, respectively). Units
of time and energy dissipation when particles interact are
set by this choice. In particular, the coefficient of (normal)
restitution, €™, and the binary collision time, #, are set. Table I
summarizes the normal coefficient of restitution and the binary
collision time for the parameters that we discuss here. We
tune both contributions, k = k™ = k® and n = n®™ = »n®,
independently. Both €™ and ¢ just serve as a guidance on
properties of pairwise collisions and do not respect the large
packing fraction. Also the important frictional contribution
which implies tangential restitution € is not characterized by
these quantities. The normal restitution can be computed easily
while the tangential part is of rich and complicated behavior
due to its dependence on the impact velocities [19].

10-1:' L | v L | v L | v L |
102 F
10° F
104 F
10° F
100 F
107 F
108 F ..

SN Y I RPN R |
1010‘6 10°  10* 108

o/k

FIG. 7. Scaled flow curves for ¢ = 0.80, viscous damping pa-
rameter n = 1 and varying elastic constant k.
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FIG. 8. Flow curves for varying packing fraction ¢ across the
transition with viscous damping parameter 7 = 1 and elastic constant
k=1.

The following data show flow curves of a system with
N = 8000 particles. Figure 7 shows scaled flow curves for
fixed ¢ = 0.80 and = 1. When k decreases (¢ decreases),
the discontinuity shifts towards small strain rate until it is
missed out by our simulation. Note that the numerical effort
for low strain rate is much larger than for large strain rate. An
increasing k (increasing €™) shifts the discontinuity towards
larger strain rate which makes the discontinuity smaller until it
vanishes. At k = 10 the transition from inertial to plastic flow
is smooth and without shear thickening. The phenomenology
of varying k seems in that range similar to a change of the
packing fraction. The latter was studied in previous work [7].
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FIG. 9. Flow curves for ¢ = 0.80, elastic constant k = 1, and
varying viscous damping parameter 7.

A systematic study of variations of all three parameters, ¢,k,
and 7, is out the scope of this article. In Fig. 8 we show a
choice of packing fractions with phenomenology similar to
Fig. 7. Lower ¢ leads to flow curves similar to those with
large €™, and larger ¢ shows the same behavior as small €.
The variation of the viscous damping parameter 7 is shown in
Fig. 9. The phenomenology is the same as above: decreasing
€™ (larger n) leads to a shift towards small strain rates and
an increasing coefficient of restitution (smaller 1) shifts the
discontinuity towards larger strain rate until it vanishes. Then
the transition between inertial and plastic flow is smooth and
without shear thickening again.
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Using molecular dynamics simulations we investigate heterogeneous and unsteady states in shear
thickening frictional granular media. We characterize the heterogeneous states by the decay of the
stress-stress correlation function providing a characteristic length scale. In only large simulation
cells, in which shear thickening is continuous, both, heterogeneities and unsteady states, are shown
to exist. The analysis of stress and strain controlled simulations in differently sized simulation cells
explains the role played by a length that is considerably larger than the particle size. Simulations
of small simulations cells relate shear jamming to discontinuous shear thickening. Local measures,
e.g., the nonaffine velocity or the local coordination number, are shown to follow instantaneously

the evolution of stress.

I. INTRODUCTION

Flow properties of dense granular matter are of funda-
mental importance in a wide range of engineering disci-
plines and nature. Many industrial resources are shipped
and processed as grains. In nature, sand is one of the
most abundant materials on earth. Collections of grains
can also attain solid states when they jam into unordered
and rigid states at large packing fractions. The transition
from fluid to solid is called jamming. Granular matter is
considered athermal as the energy associated with motion
or contact is by orders of magnitude above the thermal
energy [1, 2]. The phase diagram for athermal granular
media shows that the packing density and the shear stress
control whether arrest or flow is achieved [3]. Arrest and
flow are separated by the yield stress line, which goes
to zero stress, ¥ = 0, at a packing fraction, ¢y, called
jamming point. For frictionless spheres — spheres which
interact only along the normal direction at the contact
— flow and arrest around the jamming point have been
investigated thoroughly [4].

However, interactions of grains are typically frictional.
Rheometry with suspensions of PMMA and silica spheres
highlight the role of frictional contacts [5-7]. Experi-
ments with photoelastic discs show that jamming is pos-
sible below the isotropic jamming point when a finite
shear stress is applied [8]. Corn starch experiments show
a shear induced rigidity transition that is either shear
thickening or shear jamming [9, 10]. In computer simula-
tions friction is controlled parametrically, thereby allow-
ing for a direct comparison to the frictionless scenario.
Numerical investigations show that ¢y loses its excep-
tional role in the characterization of the rheology close to
the jamming transition. Instead, more than one packing
fraction is necessary for a thorough description of flow
and jamming [11-14]. Moreover, simulations with fric-
tional spheres exhibit novel phenomena in the dense flow
regime, e.g., transient flow that ceases after a character-
istic time [11, 13], hysteresis in the flow curve [12, 13],
the coexistence between a low viscosity and a high vis-
cosity state [15], or even rheo-chaotic response [14]. The
latter is also found in corn starch experiments [16]. Thus,
friction influences the dense flow close to jamming fun-

damentally.

A remarkable phenomenon in frictional systems is
shear thickening, i.e., the growth of viscosity with shear
rate or shear stress. Shear thickening can be continuous
or discontinuous. Increasing the packing fraction can lead
from a continuous shear thickening scenario to a discon-
tinuous shear thickening transition and finally to (shear)
jamming [17, 18]. Flow curves of shear thickening solu-
tions include regions that are mechanically unstable and
not accessible by homogeneous flow [19]. Moreover, het-
erogeneous steady states are not possible due to particle
migration [16]. Thus, the only remaining flow scenario is
heterogeneous and unsteady flow.

In this article, we perform numerical simulations to
study heterogeneous flowing states in dry granular sys-
tems. These states lead to unsteady flow and continu-
ous shear thickening. The heterogeneous states possess
a typical length scale which rules out heterogeneous flow
in small systems. Instead, small systems shear thicken
discontinuously. The discontinuous shear thickening in
small systems appears across an interval of stress. This
interval of stress is identified as unstable. Unstable values
of stress lead to unsteady flow in large systems contrast-
ing shear jamming in small systems. The overall dynam-
ics is not reflected only in the shear stress but also in
other (local) measures which adopt to the flowing state,
either stationary or unsteady.

The article is organized as follows: First, we recapitu-
late in sec. II the description of frictional particle flow by
means of flow curves. In sec. III, we present the molecular
model, our simulation set-up and measured quantities. In
sec. IV, we characterize heterogeneous states, show their
time dependence. We relate discontinuous shear thicken-
ing to shear jamming and continuous shear thickening to
time dependent states. Subsequently, we show that the
width of the velocity distribution shows non-monotonic
behavior and is related to the generalized viscosity. A
discussion and conclusion close the article in sec. V.
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FIG. 1. Flow curve for fixed ¢ = 0.7975 but varying system
size. Imposed strain rate indicated by “LE”.

II. FLOW CURVES OF DRY GRANULAR
PARTICLES

Dry granular media show a rich phenomenology when
deformed and flow curves (see, e.g., [13, 20, 21]) char-
acterize the flow regimes. Below jamming at low strain
rates, inertial flow (also called Bagnold flow) is charac-
terized by a quadratic dependence of the global stress
on the strain rate: ¥ o< 42. In this regime the only rele-
vant time scale is the inverse strain rate, ¥ ~!, dominating
its counterpart, vVk—1, set by the spring constant of the
particles, k, which reflects the particle’s stiffness. Bag-
nold flow corresponds to flow of hard spheres. However,
granular particles possess a finite stiffness that becomes
relevant at a characteristic strain rate or when the system
is dense: plastic flow, either quasistatic (¥ = const.) or
rapid (X o 4'/2), establishes. In previous work [13, 14],
the authors suggested s-shaped flow curves which capture
these flow regimes. Implications of the s-shape are flow
instabilities, which eventually lead to chaotic behavior
in large systems [14], or shear jamming in small systems
[13]. However, the relation between these phenomena
remained elusive.

Figure 1 shows flow curves for differently sized systems
and either controlled by strain rate or by shear stress. In
the shear rate controlled setting, flow curves show shear
thickening. This is either discontinuous, when the stress
jumps, or continuous when the stress changes continu-
ously with the strain rate. When the shear stress is con-
trolled and the strain rate is measured, the discontinuous
shear thickening turns into an s-shape, which is caused
by excursions of the system to nearly jammed states [14].
The unstable stress interval in which no persistent flow
is possible is clearly identified in the small system: the
stress jumps across an interval of stress when the strain
rate is controlled and in this interval we report jammed
states when the stress is controlled. The large system’s
characterization is subtle: irrespective of the protocol,

flow curves look well defined but, in fact, the unstable
stress interval reveals time dependent heterogeneous flow
which is a subject of this article.

III. MODEL AND METHODS
A. Molecular model

The setup in this article is identical to those of for-
mer studies [13, 14]. Due to the brevity of the former
articles we give full details of modeling and the simula-
tion here. We consider N soft particles in a square box
of linear dimension, L. N and L determine the packing
fraction, ¢ = S~ | w/4d?/L?. Forces between particles,

1 and j, arise at contact and are frictional. Frictional con-
£

tact forces have a normal component, f; ;i and a tangen-

tial component, fi(;’). We implement the model by Cun-
dall and Struck [22] with an additional tangential viscous
component as done by others, see, e.g., [12, 21, 23-25].
The Coulomb criterion limits the amount of tangential
force by a material specific multiple, u, of the normal
force:

£9] < ulEl). (1)

1 is called the friction coefficient. A contact is said to
slide if [£})| = pl"].

The normal interaction is a standard visco-elastic
model where the overlap, (55;) =R;+R;—|r;—rj| >0, of
particles with radii R;, R; at position r;,r;, determines
the interparticle normal force

£ = (<K% =y S ) By ()

The unit vector, f;;, points from particle i’s to particle
j’s center. When n(™ > 0 collisions are inelastic and
if contacts are frictionless a coefficient of (normal) resti-
tution can be evaluated analytically: € ~ 0.3 with unit
spring and viscous constants.

The non-sliding tangential force is analog to the nor-
mal force. Two particles rotate with angular velocities,
w; and w;, and move with velocities, v; and v, respec-
tively. The relative tangential velocity of spheres in con-
tact is given by the sum of contributions by rotation and
translation, Ug;-m = Riwi + ij]' -+ (Vi — Vj)f]ij, with the
tangential vector, ’E,-]-. The tangential viscous force is
given by —n) /megvi?® and a restoring contribution is

]
determined by the integral of v{?" but respecting eq. 1.

tan
ij
Explicitly, f{) = —p®of — kO5 if £ < pltlV)].

Where ftt+At v (t')dt" is the increment of the tangen-

tial displacement, 55;), during the interval [t, ¢+ At] when
the contact does not slide. If the contact slides, we set
51(;) = u/k(t)\fgl)| and consequently fi(;) = k(t)éf;) to sat-
isty Coulomb’s criterion.
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FIG. 2. Left: Simple shear geometry implies a compression

and dilation direction with defining angles, 91 /5. Right: Com-

pression and dilation direction as a function of strain rate

(¢ = 0.7975, N = 80000).

Following previous studies [12-14], four differently
sized particle species populate the system with equal
amounts and diameters, d = 0.7,0.8,0.9, 1.0, which sets
the unit of length. The unit of mass is set by the choice
m = 1. We set 4 = 2 and we are aware of the compar-
atively high value of u, which corresponds to the high
friction limit [12].

B. Protocol, geometry and measured quantities

To control the strain rate we use Lees-Edwards bound-
ary conditions (LE). In stress-controlled simulations we
freeze a bottom layer of particles which remains at rest
and a boundary layer at the top is moved with a force
oLe,; periodic boundary conditions are used in shear
(z-)direction. The geometry is sketched in fig. 2 (left).

Simple shear geometry implies two distinguished direc-
tions: compression and dilation direction. These direc-
tions are parallel to the eigenvectors of the stress tensor:

s (3 ). .

yx vy

with ¥o5 = 1/N 2, ; Uflj and r;; = r; —r;. In this
paper we use the short hand notation: ¥ = ¥,,. The
eigenvectors, vy 2, of 3 enclose angles, 91 2, with the -
axis. In fig. 2 (right) we show that these directions are
orthogonal and independent on the strain rate and thus
on the flow regime.

In the course of this manuscript we consider correla-
tion functions. To take anisotropy into account we are
interested in correlations not only dependent on the dis-
tance of particles, r = |r|, but on the displacement vector,
r = (z,y). We compute the correlation of two quantities,

a; and b, of particles, ¢ and j, as:

Z a;bjo(x; —

wﬁj

z)0(yij —y).  (4)

ab(r— X y

As correlation functions along directions vi 2 we com-
pute:
C’i,f(r Zazb i0(zi; —rcost 2)0(ys; — rsindy o).
Z#J

(5)
Averages are distinguished between spatial and tem-

poral averages. The spatial average of a quantity, z, over
a sample with N particles reads:

1 N
fﬁ;xi. (6)

The corresponding standard deviation is defined as
Anz = \/(z?)n — (x)%. The temporal mean is defined

with Ny measurements at ts with s € {1,..., Ny} as
1 &
= ts). 7
(e = Dot )

The corresponding standard deviation is defined as

Arz = /(2?)r — ()3

IV. RESULTS
A. Heterogeneous time dependent states

In this section, we study heterogeneous flow states that
we observe in large simulation cells in the regime of con-
tinuous shear thickening. We explain that the heteroge-
neous flow states are time dependent as we expect due
to the presence of strong gradients in the stress fields.
We focus on the evolution of the stress field and on the
global stress time series.

Here, we investigate properties of states in which we
find characteristics of both, inertial and plastic flow, at
the same time. Patches of a typical size show signatures
of either inertial or plastic flow. We focus on measure-
ments of local properties e.g., the stress of a particle 1,
o =3, i T3ji;- Other indicators are the local coordi-
nation number and the local nonaffine velocity as shown
in appendix A. Large systems (N > 24000) with inter-
mediate average stress show well separated patches dif-
fering by orders of magnitude in the absolute value of
local shear stress, see fig. 3. There are well visible stress
bands in compression direction that do not percolate in
dilation direction. Remarkably, not everywhere do these
stress bands span the system in compression direction.
In dilation direction the shear stress changes dramati-
cally while we see only weak variations in compression
direction. Thus, we can distinguish clearly between com-
pression and dilation direction by visual inspection.
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FIG. 3. Snapshot of local stress shows heterogeneous states.
¢ =0.7975 and N = 80000 (L = 240) with strain rate of ¥ =
1.25 x 107*. Particles with zero stress are colored according
to the lowest nonzero value that is depicted.

FIG. 4. Time evolution of local stress with same parameters
as in fig. 3. Time difference At ~ 0.297 .

In the snapshot, fig. 3, the local stress differs by or-
ders of magnitude. These strong stress gradients lead
to flow/deformation, i.e., the snapshot shown above is
a realization of a time dependent state. The sequence
of snapshots in fig. 4 shows the evolution in time (for
movies, see the supplemental material to [14]). The stress
band that we see in fig. 3 wanders in dilation direction
(fig.4 left), eventually interacts with other forming stress
bands (fig.4 middle) and vanishes. Sequences of almost
homogeneous states (fig.4 right) follow before new het-
erogeneities emerge. Stress bands form again, wander in
dilation direction and the dynamics repeats.

The dynamics of the flowing state leads to a time de-
pendent stress on the particles, 0. This is reflected by the
global average of shear stress, 3, shown in fig. 5, where
we compare a highly time dependent state (of which in-
stants are shown in the snapshots) with steady flow in the
inertial flow regime. The strongly time dependent data
confirms the expectation of unsteady flow and reminds on

inertial
3t time dependent

L/ <X>t

15 16 17 18 19 20
!

FIG. 5. Shear stress as a function of time leading to time
dependent flow with large amplitude (green, 4 = 1.25x 10™%).
For comparison, we show a time series in the inertial flow
regime (purple, ¥ = 1 x 107%). N = 80000, ¢ = 0.7975.
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FIG. 6. Relative standard deviation of the measured global
stress normalized by 1/ VN. @ =0.7975.

the time series in [6, 26]. To quantify the degree of the
time dependence, we show in fig. 6 the standard deviation
of the measured global stress, A3, for differently sized
systems. Asymptotically, for low and large strain rate,
the fluctuations scale with the square root of the number
of particles, v/N. In the large system fluctuations show
a broad peak (¥ = 107* — 1073) as an evidence for the
time dependence in the shear thickening regime. Over
this broad range of strain rate, the large system shows
a larger standard deviation than the small system which
is yet in the plastic flow regime. The peak in the data
of the small systems at ¥ ~ 10~ stems from short-lived
excursions from an inertial flow state to a plastic flow
state (not shown).

In the course of this article, we take averages over
heterogeneous and unsteady states. We justify this by
the stationarity of the shear stress distribution. As time
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FIG. 7. Distribution of global stress in a specific time window
as indicated. Data corresponding to the time dependent time
series shown in fig. 5.

progresses, we measure the global stress, X(¢), and com-
pute the distribution, P(X; ¢, t+At), between times ¢ and
t+At. When this distribution is independent of ¢, the dis-
tribution is stationary. In fig. 7, we show P(X;¢,t+ At).
The distributions coincide. This confirms the station-
arity of the stress distribution providing the reason for
taking averages over finite time intervals.

The conclusion to this part is that there is only a het-
erogeneous unsteady state that leads to an intermediate
value of stress that gives rise to continuous shear thick-
ening as shown in the flow curve fig. 1. Only averages
over unsteady and heterogeneous flow states lead to inter-
mediate stress values which are not accessible by steady
flow. However, we showed that characteristic flow fea-
tures in the dynamics repeat. Moreover, the stress dis-
tribution is stationary. The heterogeneity in these states
is in stark contrast to the homogeneous states in recent
experiments with PMMA particles which also show dis-
continuous shear thickening due to frictional contacts [6].

B. Stress correlation and anisotropy

As shown in the previous part, heterogeneous flow
states are unsteady but show a stationary stress distri-
bution. We make use of this and time average to extract
characteristic lengths and fluctuations by means of stress
correlation functions. We contrast our findings to homo-
geneous and stationary flow.

As seen in the sequence of snapshots in fig. 4, the stress
field changes its characteristics in course of its evolu-
tion. However, we are interested in the average char-
acterization of the heterogeneous time dependent flow.
To quantify the characteristic length and anisotropy we
compute stress correlations as in eqn. 5, with a; = b; =
o; — {o)N = d0;. The spatial stress correlation averaged
over several snapshots is shown in fig. 8. On short dis-
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FIG. 8. Stress correlation functions for the heterogeneous
time dependent state up to L/2 ~ 120. Average in compres-
sion direction, (Ci,s,(r)), is shown in green and standard
deviation is marked in gray. Average stress correlation in

dilation direction, (CZ, s, (1)), is shown in blue. Parameters
according to fig. 3.

tances the stress correlation follows the pair correlation
function, g(r) (not shown), which gives rise to a series of
maxima and minima for » < 4. On long distances the cor-
relations decay slowly and exhibit the anisotropy clearly.
The average stress correlation in compression direction,
C}_s.(r), does not decay to zero on a distance L/2. This
corresponds with the persistence of stress in compression
direction that we see in the snapshot (fig. 3). In dilation
direction the correlation function, CZ s, (r), crosses zero
at about r ~ 45 which corresponds roughly to half the
width of the stress band shown in the snapshot.

We quantify the decay of the correlation by the length,
I, where the correlation function, C'go 50 (1), is decayed to
0.025 [27]. The resulting length is shown as a function of
strain rate in fig. 9. We find that the correlation in com-
pression direction behaves non-monotonically as a func-
tion of strain rate. In the regime of time dependent flow
(4 =107*—1073 and N > 32000), the correlation length
peaks. The length ratio, {/L, plateaus for large system
at intermediate strain rate, see inset of fig. 9. For lower
or larger strain rates, the correlation lengths are compar-
atively small and similar to each other. The small sys-
tem does not exhibit heterogeneous and time dependent
states consistent with the comparatively small correlation
length that we measure for NV < 8000. The correlation
length in dilation direction (not shown) exhibits the same
qualitative behavior but is smaller than in compression
direction.

We use an analog of a structure factor of a density
field to identify contributions to stress correlations with
different wave numbers. For a motivation see appendix
C. Bands with low stress and large stress alternate
in characteristic large scale structures, see fig. 3. The
large scale structures are associated with contributions
to small wave numbers in the analog of the structure fac-
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FIG. 9. Main: Distance, [, where the correlation function,
C3.50(7), is decayed, as a function of strain rate. Inset: Rela-
tive length, I™*® /L, for ¥ = 1.58 x 10~ * as a function of linear
system size, L.
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FIG. 10. The Structure factor for heterogeneous time depen-
dent flow exhibits strong anisotropy and shows a large contri-
bution in dilation direction for small wave numbers. Arrows
indicate compression and dilation direction. Parameters ac-
cording to fig. 3.

tor for the stress field:
NS, (k) = (6(k)o(=k))p — (6(k))r(6(=k))r.  (8)

Figure 10 shows the structure factor of the stress field,
eq. 8, for time dependent flow. A large contribution
(bright) at low wave numbers in dilation direction sig-
nals the heterogeneity that corresponds to the large scale
structure in the snapshot. Only small contributions are
found in directions other than dilation direction or for
larger wave numbers. Only the heterogeneous time de-
pendent regime shows a remarkable peak for the smallest
wave numbers which can be resolved. This wave number
corresponds to the size of the stress band that we see
in the snapshot (fig. 3) and suggests that the system re-
quires a certain size to build up heterogeneous and time
dependent states. The inertial flow regime for low strain
rate and the plastic flow regime for large strain rate do
not show long ranged structures (not shown), i.e., the
system is homogeneous.
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FIG. 11. Average standard deviation of the stress correlation
in compression direction, s, as a function of strain rate. The
N-dependence is explained in appendix B.

Now, we want to examine the fluctuations of the stress
correlation functions. As shown in fig. 8 (gray area),
we compute the binwise standard deviations of the stress
correlation to characterize fluctuations in a distance r/L.
To compare different systems by means of a single num-
ber, we average the standard deviations in compression
direction over all Ny bins:

1
s= Z std O} s, (). (9)

Figure 11 shows s as a function of strain rate. The av-
erage standard deviation confirms that the small system
does not show time dependent behavior while the large
system shows highly unsteady dynamics in the continu-
ous shear thickening regime.

In this part, we examined average properties of corre-
lations and the structure of the stress field. Even though
the flow is unsteady, we can distinguish clearly between
compression and dilation direction, and, more impor-
tantly, we report a characteristic length, which is given
by the average decay of the stress correlation function.
Moreover, the fluctuations of the correlation functions
reflect the dynamics of the heterogeneous unsteady flow.

C. Apparent shear thickening and shear jamming

In this section we link results with controlled strain
rate and results with controlled stress together. In small
systems, this relates discontinuous shear thickening to
shear jamming. In large systems we find continuous shear
thickening and time dependent states instead.

First, we focus on strain rate controlled simulations.
The stress that is shown in the flow curve, fig. 1, is a
result of time-averaging over possibly metastable or time
dependent states. Examples of such states are shown
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FIG. 12. Left: Smoothed time series, 3(t), for ¢ = 0.7975.
Small system (N = 8000): 4 = 1.125x 10~* leads to temporal
coexistence of metastable states at low and large stress. Large
system (N = 80000): 4 = 1.58 x 10™* leads to intermediate
but unsteady stress (time at top axis). Right: Corresponding
stress distributions.

in the time series in fig. 12. In green we show a time
series of the small system with an intermediate strain
rate where flow is metastable: Both, large and low stress
states, are attained alternately. The shear stress jumps
between the two states which differ in stress by more
than an order of magnitude. This jump determines the
discontinuous shear thickening in the flow curve. The or-
ange curve shows a time series of the large system with
an intermediate strain rate leading to apparent continu-
ous shear thickening in the flow curve. At this strain rate
we see a time dependent state. Remarkably, the time de-
pendent state lives in an interval of stress which is not
favored by the small system. Instead, the time series
and flow curve of the small system exhibit jumps across
that interval of stress. The distribution of the metastable
state is bimodal with peaks at metastable values of stress.
The peak of the distribution for the time dependent state
resides at the local minimum of the distribution of the
metastable flow. This reminds on the results in [15, 28].
Thus there is an unstable band of stress values leading
to jumps in the small system and time dependent flow in
the large system.

Next, we focus on stress controlled simulations. To
probe jamming in the unstable region we impose stress
following previous studies [13]. In the unstable regime we
observe that the flow ceases and the system jams when
the simulation cell is small. Figure 13 shows the time
of transient flow in differently sized systems. In small
systems, N = 4000 — 16000, we find that the system
jams after a finite transient time which is characteristic
for the stress that is applied. Jamming occurs around
the minimum in the bimodal distribution in fig. 12. This
is the same range of stress where we find the jumps in
the time series fig. 12 or in the flow curve in fig. 1. In
contrast, in large simulation cells, N > 24000, we cannot
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FIG. 13. Time of transient flow, Tjam, for fixed ¢ = 0.7975 but
different system size, N = 4000 — 80000. When the system
never jams, we show the simulation time (5000).

find shear jamming at this packing fraction but unsteady
flow instead.

To conclude this part, the results of simulations with
different protocol and differently sized simulation cells di-
rectly relate to the flow curves shown in fig. 1. Small sys-
tems follow a sigmoidal flow curve and show metastable
and unstable states, i.e., alternating stress at fixed strain
rate and shear jamming at fixed shear stress, respec-
tively. When the system is large we observe apparent
shear thickening and we cannot find jammed states at
this packing fraction in the stress controlled setting. In-
stead, unstable flow is realized by time dependent states
as predicted by the model in [14].

D. Velocity distributions

In this section, we investigate the distribution of non-
affine velocities. We describe the time evolution and av-
erage characteristics in terms of the width of distribution
and relate the findings to the flow curves via the gener-
alized viscosity.

In the heterogeneous state, stress varies by orders of
magnitude across the system and these strong gradients
suggest a broad distribution of velocity, see fig. 19 for
an example of a heterogeneous velocity field. We com-
pute the velocity distributions in gradient direction over
the particles, P(v,), in a single configuration as shown
in fig. 14. By inspection of the distributions we find a
remarkable non-monotonicity as a function of the strain
rate. At large strain rate the width of the velocity distri-
bution is small but increases as the strain rate decreases.
In the shear thickening regime at intermediate strain rate
the distribution is the widest. At low strain rate the dis-
tribution is again narrow. For all strain rates the distri-
bution is peaked at zero and symmetric due to the prob-
lem’s symmetry. Hence, the width of the distribution is
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FIG. 14. Velocity distribution of individual snapshots at dif-
ferent strain rates for ¢ = 0.7975 and N = 80000. Inset:
Width of the velocity distribution as a function of strain rate.
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FIG. 15. Time series for the width of the velocity distribu-
tion (left axis, red) and the shear stress (right axis, blue).
Parameters according to fig. 3.

a suitable measure for the typical velocity of a particle
in the system. These widths are shown in the inset of
fig. 14, confirming the non-monotonic behavior.

However, the velocity distributions are affected by the
unsteady character of heterogeneous flow. At each in-
stant of a simulation, ¢, we compute P(vy,t) individually
and extract the width of the velocity distribution as a
function of time. These widths, Aywvy(t), are shown as
a time series in fig. 15. The time series of the standard
deviation reflect the overall time dependence of the sys-
tem as could be observed in other quantities, e.g., the
shear stress which is shown for comparison. We charac-
terize the widths of the velocity distribution by fig. 16,
where the corresponding time averaged standard devia-
tions, (Anvy(t))r, are shown. This quantity shows the
same behavior as the flow curve by means of the gen-
eralized viscosity, n = o /4% (fig. 17): a discontinuity in
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FIG. 16. Time averaged width of the velocity distributions
showing non-monotonic behavior.
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havior.

Generalized viscosity showing non-monotonic be-

small systems and continuity as a result of taking the av-
erage over time dependent quantities in the large system
for ¢ = 0.7975. The standard deviation has a maximum
near the jump in the small system and in the time depen-
dent regime in the large system. A packing fraction of
¢ = 0.78 leads to only a small increase in viscosity and in
the width of the velocity distribution. The densest sys-
tem with ¢ = 0.8035 does not settle in the inertial flow
branch and the viscosity and the width of the velocity
distribution grow as the strain rate decreases.

In this section, we showed that velocity fluctuations are
linked to the effective viscosity of the system as also ob-
served in simulations of particles suspended in a viscous
fluid [28]. Both, the width of the velocity distribution
and the generalized viscosity, shown in fig. 17, show the
same qualitative dependence on the flow state.



V. DISCUSSION AND CONCLUSION

We studied the shear thickening phenomenon of dry
frictional granular particles. Large simulation cells ex-
hibit continuous shear thickening across an unstable in-
terval of stress. Continuous shear thickening is accom-
panied by heterogeneous and unsteady flow. The het-
erogeneous flow states, which were first reported in [14],
possess a strong anisotropy and a characteristic length,
which is considerably larger than the particle size. The
characteristic length grows linearly with the system size.
A length, which is based on vortexlike nonaffine displace-
ments, linearly dependent on system size is reported in
[29]. This is in accordance with large-scale structures
that we observe by visual inspection in the velocity field,
i.e., vortexlike structures and additional almost parallel
moving particles (red), see fig. 19.

In small simulation cells, the application of stress in the
unstable interval leads to shear jamming, see also [13].
Strain rate controlled simulations show jumps across the
unstable interval, see also [13, 15], giving rise to discon-
tinuous shear thickening. The system size is found to be a
relevant property for the shear thickening scenario. This
is in stark contrast to the claim that hysteresis (accom-
panied by discontinuous shear thickening) persists in the
thermodynamic limit [12], where we expect continuous
shear thickening instead.

The investigation of the nonaffine velocity distribu-
tions shows that their width is a sensible proxy for the
state of the system: The time dependence of stress and
width of the velocity distribution coincide and the aver-
age width shows the same strain rate and packing frac-
tion dependencies as the viscosity. A recent study relates
velocity fluctuations to dissipation and shows that the
major contribution to dissipation stems from a fraction
of particles that goes to zero as jamming is approached
[30]. We reported a novel phenomenon: a nonmonotonic
strain rate dependence of the width of velocity distribu-
tions below jamming, i.e., the fastest particles are found
in the continuous shear thickening regime. It remains
elusive how these particles contribute to the dissipation,
and thereby to the rheology and the unsteady nature of
flow.
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Appendix A: Local coordination number and
nonaffine velocity

The features that we see in the stress can be measured
in other quantities, too, e.g., the local coordination num-
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FIG. 18. Snapshot of the local coordination number, Ziocal,
of the configuration in fig. 3.

ber and the nonaffine velocities. This correspondence is
shown in figs. 18 and 19, where we show the local coor-
dination number, Zjoca1, and the nonaffine velocity, vya,
respectively. In the region of large stress, the coordina-
tion number is large and in the regions of low stress the
coordination number is low. Strikingly, the state, which
is shown, is unsteady: There is a large region of parti-
cles (red) that moves to the bottom left with a velocity
that is considerably larger than the strain rate. Regions
of large nonaffine velocity correspond to regions of large
stress and a low nonaffine velocity corresponds to low
stress. An strong correlation between mean coordination
number and average stress was already reported [21, 31].
Here we want to emphasize the local relation.

Appendix B: Scaling of the average standard
deviation of the correlation functions

Here, we demonstrate the dependence s(N) oc N—3/4,
We consider average correlation functions with N, bins
stemming from Np samples with N particles each. Due
to the computational complexity and data storage, we
have chosen: N o« 1/Np. Moreover, the number of bins
is constant, N, = const. N snapshots contribute to the
binwise standard deviation, std(C(r;)) with bin ¢. The
number of pairs of particles per snapshot that fall in a
bin is called Ng. Therefore, we expect scaling as:

Std(C(’l‘l)) X 1/\/ NTNd

Ny is proportional to the size of the bins times the num-
ber of pairs of particles, i.e., Ng oc L/NyN? oc N°/2/Nj,.

(B1)
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FIG. 19. Snapshot of the local nonaffine velocity, vna, of the configuration in fig. 3. Nonaffine velocities are indicated by arrows.
The length and color scale with the absolute value of the nonaffine velocity. The reader of a digital copy is invited to zoom in
and investigate the rich structure.

In total: Appendix C: Definition of the analog of the
structure factor for the stress field

std(C(r;)) ox NY/2/NO/4 = N—3/4, (B2)
For all system sizes, the number of bins is constant

and averaging does not affect the scaling and therefore To motivate eq. 8 we consider a particle, i, at position
s(N) oc N=3/4, r;(t) at time t. The local stresses on the particles, o;(r; t),



constitute a field localized at the particles’ positions:

(C1)

The field, o(r;t), has a spatial average, (o (r;t))n, and
do(r;t) = o(r;t) — (o(r;t))n is the deviation from the
spatial average. Correlations in space are measure by:

C(ryr+71'5t) = do(r;t)do(r +1';t)
=o(r;t)o(r+1'5t) —

(C2)

(o(r;t))%- (C3)

The assumption that correlations are only dependent on
the displacement between two points yields:

C(r;t) = 60(0;t)do (r; t). (C4)

11

With this assumption, the Fourier transform only de-
pends on the wave vector, k, and time:

Clkst) = 3 603(t)50 (1) exp [~i(k(ri(t) — r;(1)))]

0.
(C5)
With the transformed field
do(k;t) = d0i(t) exp (—ikr;(t)), (C6)
we can write:
C(k;t) = 0o (k; t)do(—Fk;t). (C7)

The structure factor, S, (k;t), of a field, o(r; t), is defined
as the fluctuating Fourier components averaged over an
ensemble. Here, the ensemble that we consider is given
by the time evolution of our dynamics. Thus we have
with N particles:
NS, (k) =

<5J (ks t)do( k;t)>T (C8)

= (|6(k;t)*) . — 6k )pl*. (C9)
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When pulling a particle in a driven granular fluid with constant force F,, the probe particle approaches a
steady-state average velocity v. This velocity and the corresponding friction coefficient of the probe ¢ = Fi/v
are obtained within a schematic model of mode-coupling theory and compared to results from event-driven
simulations. For small and moderate drag forces, the model describes the simulation results successfully for both

the linear as well as the nonlinear region: The linear response regime (constant friction) for small drag forces is

followed by shear thinning (decreasing friction) for moderate forces. For large forces, the model demonstrates

a subsequent increasing friction in qualitative agreement with the data. The square-root increase of the friction
with force found in [Fiege et al., Granul. Matter 14, 247 (2012)] is explained by a simple kinetic theory.

DOI: 10.1103/PhysRevE.89.042209

I. INTRODUCTION

Active microrheology (AM) studies the mechanical re-
sponse of a many-particle system on the microscopic level
by pulling individual particles through the system either
with constant force or at constant velocity [1]. While in
passive microrheology only the linear response can be probed,
AM can also be applied to explore the nonlinear response
by imposing large drag forces. An external force F.x can
be imposed by magnetic [2] or optical tweezers [3] to a
probe particle embedded in a soft material and then the
corresponding steady-state velocity (v) is measured by optical
microscopy [4]. Recently, AM experiments [2] and simulations
[5-7] for dense colloidal suspensions found that (i) in the
linear-response region, the friction coefficient of the probe ¢ =
Fex/(v) directly indicates the increasing rigidity of the system
when approaching the glass transition from the liquid state; (ii)
in the nonlinear response region, the friction coefficient tends
to decrease to a certain value with increasing pulling force—an
effect reminiscent of shear thinning in macrorheology. Both
effects could be explained by an extension of mode-coupling
theory (MCT) to describe AM [8,9].

Within the MCT interpretation, the description of AM for
colloidal suspensions is based on the existence of a glass
transition in such systems. The interplay between growing
density correlations by glass formation and the suppression of
those correlations by microscopic shear explains the observed
behavior of the friction microscopically. In addition to col-
loidal suspensions, a glass transition is also predicted by MCT
for driven granular systems [10—12]. Here, the energy lost in
the dissipative interparticle collisions is balanced by random
agitation. Starting from the nonequilibrium steady state of
this homogeneously driven granular system, the corresponding
AM shall be elaborated below.

In AM of granular matter similar phenomena as in colloidal
suspensions are found: (i) Dramatic increasing of the friction
coefficient and (ii) shear thinning have been identified in
experiments with horizontally vibrated granular particles
[13,14], and both effects were reproduced in recent simulations
of a two-dimensional granular system [15]. Moreover, for
large pulling forces in the simulation, beyond the thinning

1539-3755/2014/89(4)/042209(5)
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regime the friction coefficients increase again and exhibit
power-law behavior close to a square root: {(Fex) X A/ Fey for
Fex > 1. This finding is in contrast to the predicted constant
friction (second linear regime) in the colloidal hard-sphere
system [8,9]. In the following, we shall demonstrate how a
schematic MCT model can capture the increase with friction
for large forces. In addition, for dilute systems we shall derive
a square-root law for large forces exactly.

II. DYNAMICS OF A GRANULAR INTRUDER

The driven granular system under consideration is com-
posed of N identical particles interacting with each other. One
probe particle experiences a constant pulling force F... The
dynamics of the system is given for every particle i by the
equation of motion

mv; = —Lov; + fly 4+ 0 + FexSis (1)

where ¢ is the bare friction depending on the friction of the
surrounding medium, which for large values is reminiscent of
a colloidal suspension. The force f  is the particle interaction
force, which for the granular case is typically given by a
collision rule to include the energy loss at contact. »; is a
random driving force satisfying a fluctuation dissipation re-
lation (n; (t)y;(t")) = 2ok T /md; ;j6(t — t'), and the constant
pulling force F is imposed on the probe particle (denoted s)
only. Models similar to Eq. (1) have been proposed frequently
and elaborated on regarding their dynamics in the description
of driven granular systems [16].

A. Schematic model

The use of MCT for the description of glassy dynamics
can be found fully self-contained and in considerable detail
in recent reviews and books such as Ref. [18]. We shall
outline briefly the general framework of the theory as follows.
MCT describes the dynamics in the liquid state by correlation
functions for which one can derive the microscopic equa-
tions of motion for the system under consideration. Using
projection-operator formalisms, the equations of motion can
be reformulated exactly as integrodifferential equations for

©2014 American Physical Society



WANG, GROB, ZIPPELIUS, AND SPERL

the correlation functions where the integral terms represent
memory effects. To close the equations, an approximation—
the mode-coupling factorization—is invoked, and the resulting
equations are solved numerically by asymptotic expansion. In
addition to the full microscopic MCT equations, simplified
so-called schematic models can be used that capture the
mathematical structure of the full theory but are easier to solve
[18]. The MCT formalism has been extended to dissipative
granular dynamics in Ref. [12]. The theory predicts a glass
transition for a driven granular fluid for all degrees of
inelasticity, parametrized by the coefficient of resitution &.
Hence, there is a glass transition line in the phase diagram
spanned by volume fraction and ¢. In the following, we build
on these results to discuss the dynamics of a single intruder
pulled through a dissipative granular medium. As a first step
toward a full MCT theory, we generalize schematic models
that have been devised for the dynamics of an intruder in a
colloidal fluid [9] to the case of an intruder inside a dissipative
granular host fluid.

The friction coefficient of the probe can be calculated by the
integration-through-transients (ITT) method combined with
the MCT approximation. This procedure was first applied to
describe the macrorheology [17] and was later extended to
AM for colloidal suspension [8,9]. We follow the approach
in Refs. [8,9] to construct a schematic MCT model for
driven granular systems. Different from colloidal systems, the
equations of motion for the density autocorrelation functions
for both the bulk system and the probe particle, ¢,(f) :=
(0g()pg)/(pgpy) and ¢y (1) := (expliq - [ry(1) — ril}), re-
spectively, include a second time derivative, because granular
systems are not overdamped. Here, (- - - ) denotes the ensemble
average and p, (1) := YN | ¢/47® is the Fourier transform
of the density. In schematic models the dependence of the
correlation functions on the wave vector q is ignored. Instead,
the correlation functions are evaluated at one particular
wavenumber ¢, e.g., the maximum of the structure factor.
The equations for ¢(t) = ¢, (t) and ¢,(t) = ¢fm(t) read

d(@) + vo(t) + Qz[qb(t) +/ dtm(t — f)di(r)] =0
0

bs(t) + vy (1) + Q2 [qss(r) + / drmy(t — r)@(r)] = 0.
0
2)

The first 3 terms in Eq. (2) describe oscillations with frequency
Q(2;), which are damped with rate v(vy). The last terms
account for memory effects. In a schematic MCT model (called
F1> model) the memory kernels are approximated by nonlinear
functions of the correlation functions as follows:

m(t) = vip(t) + v29° (1)
my(t) = vag(t)Re[es(1)].

The host fluid is assumed to be large enough so that its
density correlation function is not affected by the external
pulling force F.x. Consequently, the collective dynamics is
completely decoupled in Eqs. (2) and (3). Here, we are
interested in the long-time behavior of ¢(¢), which is not
affected by v and €2, so that we take v = = 1 for simplicity.
The control parameters (v;,v;) of the host fluid determine the

3)
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liquid or glassy state together with the distance of a chosen
state point from a glass-transition line, which in the case of
schematic models can be calculated analytically [18]. The
state points (vi,v2) = [v{(1 4 o), v5(1 + o)] are specified by
adistance o to the transition line given by v{ = UE(Z/ﬁ; -1
with the specific choice v§ = 2 for the transition point.

The coupling strength between the probe and the host
system is indicated by v,. Q2 is the effective frequency of the
correlation function of the probe and set to be Q2 = 1 — i Fy.
This result can be obtained exactly from Eq. (1) by considering
the limit of vanishing interacting force:

@5 (1) = exp (— Q7 ,1°)
C))

2 Fex
@ =L (kT —iFe) — Lppr(1—i .
4 m m qoksT

Vs describes the dynamics of the density correlator of the probe
for short time scales. In order to assure that |¢;(z)| < 1, it is
required that

Vg > Fu, ()

which is obtained by solving the second equation in Egs. (2)
without the memory kernel. By integration of the density
autocorrelators [8,9], we get the expression for the effective
friction of the probe as

2 oo
$/o=1+ Z—szT/ dt Re[¢;()]p(1). (6)
0

Equation (5) shows clearly that vy depends on the pulling
force. However, its dependence beyond the inequality can only
be obtained from a microscopic theory. Within the schematic
model, we have investigated several functional forms of vy (Fex)
complying with the constraint in Eq. (5). The simplest choice
is the straightforward generalization of the colloidal case: (a)
vy = 1 + Fi. As shown below, this choice is not compatible
with the data from simulations. This has led us to consider case
(b) vy = 1 + F2. Ultimately, a microscopic derivation needs
to show if case (b) can be obtained from the microscopic
equations of motion, cf. [9].

The respective numerical solutions for the force-dependent
friction coefficients are given in Fig. 1, where o indicates
the distance from the glass transition. The force-dependent
friction of the probe exhibits three characteristic regimes. For
small pulling forces in both models, the friction coefficient is
constant, or equivalently, the average velocity of the probe is
proportional to the external pulling force. This region extends
to external forces of order unity and describes a linear response.
When approaching the glass transition, the friction increases
drastically as the correlation functions in Eq. (6) extend to
increasingly longer time scales. Starting around Fx =~ 1, the
linear-response regime ends and gives rise to shear thinning:
The friction decreases and it is proportionally easier to pull
the particle. Equivalently, the average velocity of the intruder
increases faster than linear with external force. For the model
in the left panel of Fig. 1, the friction ¢ approaches the limiting
value given by the bare friction {; and remains there for yet
higher forces. This model hence describes behavior similar to
the colloidal results for Newtonian microscopic dynamics. For
the model in the right panel of Fig. 1, the friction approaches
a minimum around F¢x &~ 100 and starts increasing for higher
pulling forces.
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FIG. 1. (Color online) Force-dependent

In comparison, the models in Figs. 1(a) and 1(b) are
almost equivalent in the linear-response and shear-thinning
regimes, where the friction in Eq. (6) is dominated by the
memory effects leading to a slowing down of the relaxation.
The difference in the microscopic damping v, does not
play a significant role. In contrast, for large pulling forces,
the correlation function ¢;(#) relaxes to zero rapidly and
the integral Eq. (6) is dominated by the short-time part
of the correlation functions.

B. Comparison with simulation data

The simulation is performed in two dimensions and the
setup is the same as described in Ref. [15]: In a bidisperse
mixture of hard disks with size ratio R;/R;, = 4/5 of small to
big particles and a respective mass ratio m,/m;, = 16/25, an
intruder of radius Ry = 2R, and mass my = 4m is suspended.
All collisions are inelastic, characterized by the coefficient of
restitution, ¢. The particles are kicked randomly to balance
energy input and dissipation by drag and inelastic collisions.
Lengths and masses are measured such that R, = landm; = 1
and a time scale is set by requiring that the granular temperature
Tc = 1 in the system with Fx = 0. An event driven code is
implemented to simulate N = 10* particles for a wide range
of Fex and &.

We adopt with v; = 1 + F2 the second schematic model to
compare with the simulation data in detail. Since the schematic
models only capture the overall mathematical structure of the
theory, it is equally well applicable in both three and two
dimensions as the underlying glass transitions are similar in
both 2D and 3D [12]. The same holds for monodisperse and
bidisperse systems.

Figure 2 shows the fit of the measured correlation functions
by the model. The numerical solution of the density autocorre-
lator of the intruder fits quite well the corresponding simulation
data for the moderately high force Fx = 250. For the smaller
force Fex = 1, it shows some deviations. The fitting parameters
are vy = 200, 0 = —0.05 for ¢ = 0.9 as well as (not shown
in Fig. 2) v4 = 300, 0 = —0.09 for ¢ = 0.7 and v4 = 600,
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FIG. 2. (Color online) Comparison between the schematic model
and the simulation data for the density autocorrelator of the probe
particle at fixed packing fraction ¢ = 0.8 and energy dissipation
e =0.9. The pulling forces are Fox =1 and 250. The symbols
represent the simulation data; the solid lines are the descriptions
by the schematic model.

o = —0.13 for ¢ = 0.1. The other parameters are the same as
the ones mentioned above.

The corresponding fit of the friction coefficients is given
in Fig. 3. In the regime of small forces, the schematic model
shows a linear-response plateau. The simulation data also show
a plateau for small forces (see Fig. 3 in Ref. [15]). As the glass
transition is approached, this regime moves to smaller forces,
so that it is visible in Fig. 3 only for the smallest ¢ = 0.1,
which is further away from the glass transition than ¢ = 0.9
and 0.7. However, for ¢ = 0.1 and ¢ = 0.8 the simulations
become increasingly difficult for small forces due to the
occurrence of long-lasting contacts. Hence, the error bars
become comparable to the result itself. For large pulling forces,

10°g

10 10° 10 10

FIG. 3. (Color online) Effective friction of the intruder for differ-
ent energy dissipation ¢ = 0.9, 0.7, and 0.1 at fixed packing fraction
¢ = 0.8 of the host fluid. Individual data points show the simulation
results; curves represent the results from the schematic models. The
dashed straight line indicates the slope of ~/F.
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the model shows qualitatively how the increasing friction
coefficient can be rationalized within a schematic model.
While the schematic model exhibits different limits for varying
distances from the glass transition, the simulation data follow
the same curve for Fx = 500. Between the extreme regimes of
large and small pulling forces the friction coefficient exhibits
a minimum that is similar for all distances from the glass
transition for both the schematic model and the simulation.

While the schematic model may only qualitatively fit the
simulation data for the friction coefficient in Fig. 3, in addition
to the good agreement of the correlation functions in Fig. 2,
the results are also consistent with the predictions from MCT
for hard spheres [10-12]. For smaller dissipation, i.e., larger
coefficient of restitution ¢ in Fig. 3, the data can be described
only by choosing points closer to the glass-transition line in
the schematic model. Smaller distances to the glass transition
given by smaller values of o indicate that for the same density
of ¢ = 0.8 the data for ¢ = 0.9 are much closer to the glass
transition than for ¢ = 0.1 with ¢ = 0.7 located in between.
This finding is in agreement with the predicted increase of
the glass-transition density with decreasing & within MCT
[10-12].

III. KINETIC THEORY IN THE LOW-DENSITY LIMIT

To clarify the origin of the scaling law ¢ oc /Fe in the
large-force asymptote, we propose a simple kinetic theory
in the following. The simulation result from Ref. [15] has
shown that the scaling law is independent of packing fraction.
Therefore, a potential explanation of the increased friction
by jamming or shear thickening seems unlikely. Also, the
correlation functions for large pulling forces decay relatively
quickly, cf. Fig. 2, also contradicting a buildup of long-time
glass-like contributions to the integrals like in Eq. (6). In the
following we shall therefore focus on the low-density limit,
where exact solutions can be obtained.

The formal solution of v(¢) in Eq. (1) can be readily obtained
and the corresponding ensemble average of the velocity of the
intruder is given by

%
e m!

Fex by ! L0y / ,
(v()) = ; (1—e ')+ / en' (fi())dt',  (7)

0 m 0

where we have averaged out the initial velocity and the random
force: (vg) = 0 and (n(¢)) = 0.

The direct calculation of {fiy(¢)) in Eq. (7) is difficult.
The key point of our kinetic theory is to introduce the mean
free path of the intruder, /) = p~lo,,, where p = N/V is the
particle number density and o, is the intruder’s cross section,
which for hard sphere reduces to o, = 47 RZ. Let us denote
the collision time as 7.. Between two successive collisions
nt. <t < (n + 1)t., there is no interaction force in the hard
sphere limit, { fi,(#)) = 0. Onaverage, after 7, a collision event
causes a momentum transfer from the intruder to its collision
partner of the order of the intruder’s complete momentum. The
velocity of the intruder increases again from almost zero due to
the constant pulling force. Statistically, the intruder’s velocity
exhibits periodic motion. Consider the motion of the probe in
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the first period: The average velocity reads

FCX —20
(v(t)> = é_ (1 —e n )7 0 g t g Ie, (8)
0

and the displacement of the motion satisfies

te m %
Iy = '/ (v(1))dt |:tc — —(1 — emr(.)]. ©)
0 &

0
The average velocity of the probe is given by

FCX
o

t Io
f (woydi] = 2. (10)
0 '

<Us> = [_ 3

c
In general, the friction of the probe (v,) can be calculated
by Egs. (9) and (10) exactly. We first consider the two lim-
iting cases 7. > 2"—0 (overdamped limit) and ¢, < % (ballistic
regime).
In the overdamped limit, velocity relaxation dominates over
collisions and the collision times are large,

logp - m
te= > — (1D)
F. ex ;0
or equivalently,
F. ex l(]
— K —. 12
&G m 2

The average velocity and the friction of the intruder can
be obtained by Eq. (10) and definition of the friction itself,
yielding

(vs) = Fex/S0, ¢ = o. (13)

The friction experienced by the intruder is dominated by the
effective friction originating from the medium.

In the ballistic limit, collisions dominate over velocity
relaxation. Expanding e m!

get

in Eq. (9) to second order, we

2mly < m
Fex §0 .

The ballistic limit is given by the presence of pulling forces
very large compared to the bare friction,

(14)

C

Fox 21
e (15)
%o
The average velocity and the friction of the probe are
loFex
(vs) = e X/ Fex
2m
(16)

2m Fey
= l— X/ Fex-
0

Both the velocity as well as the friction are proportional to the
square-root of the external pulling force and independent of
the bare friction.

The general solution of Egs. (9) and (10) can be calculated
in parametric form and is given in Fig. 4, where the crossover
is shown for the friction coefficient from a constant (linear
large-force behavior of the velocity) to the square-root increase
(square-root increase of the velocity for large forces). The
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10g IOFex

FIG. 4. (Color online) Force-friction relation at large forces for
different damping in the low-density limit.

reason why for a driven granular system the friction of the
probe increases as ¢ o« o/Fy in the large-force regime, but
for colloidal hard-sphere systems the friction only decreases
to a constant value, can be explained as follows. For different
bare frictions ¢y, the Fx-¢ plots can be rescaled as Fex/ é’oz
versus ¢ /¢, cf. the inset in Fig. 4. The behavior of the probe
in the large-pulling-force regime is determined by the ratio of
the collision time scale over the Brownian velocity relaxation
time scale, f./ I{% or equivalently the value of the rescaled
force Fexm/ (g“ozlo). In a driven granular system, the bare
friction is quite small compared with the one in a Brownian
suspension, {o = 1 in the granular simulation [15] and ¢y = 50
in the colloidal one [5]. Indeed, one would also obtain the
same asymptotic behavior ¢ oc /Fey for Brownian systems
for extremely large pulling forces.

IV. CONCLUSION

We have investigated the microrheology of the driven
granular hard-sphere system by a schematic model and a

PHYSICAL REVIEW E 89, 042209 (2014)

simple kinetic theory. For small and moderate external pulling
forces, the schematic model agrees reasonably well with the
simulation data, cf. Fig. 3, and implies that the glass-transition
density increases with smaller coefficient of restitution ¢,
confirming predictions from mode-coupling theory [10-12].
For large forces, glassy dynamics becomes irrelevant and a
simple kinetic theory clarifies the origin of the scaling of the
friction with increasing pulling force. When damping by a
surrounding fluid dominates the motion of the intruder at high
forces, a second linear regime emerges where the friction
becomes constant. When collisions dominate, the friction
increases in a square-root law, ¢ o 4/Fex. Such behavior of
the drag force, Fx v2, is reminiscent of Bagnold’s law for
granular rheology where the shear stress is proportional to the
square of the shear rate.

While the derivation of the equations above implies the
existence of a thermostat to ensure a steady state at the presence
of energy dissipation, one may argue that for high enough
velocities of the intruder, sufficient energy may be injected
into the host fluid to overcome the necessity of an additional
thermostat: Consistent with that view, experiments without
thermostat but high intruder velocities [19] found for high
densities that the average drag force F increased quadratically
with the pulling velocity v of the intruder, which is consistent
with ¢ oc /Fy found above.

In the models presented in this work, the phenomenon of
increasing friction ¢ for high pulling forces is not specific to
the details of granular dynamics; it may only be more likely
to access that high-force regime in granular simulations and
experiments for typical control parameters. The elaboration of
the microscopic version of the theory similar to the Brownian
case [9] shall clarify this issue in the future.
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In summary, we studied rheological properties of dry granular media. In the
following, we recapitulate the key results of the articles.

In section we presented a detailed study on the jamming transition of
frictional granular media confined in small simulation cells. The main result is a
jamming phase diagram of sheared frictional granular media based on a theory
for a first-order phase transition. At finite Coulomb friction coefficient, three well

separated packing fractions, (¢, ¢o, ¢y,), describe the rheological behavior:

(i) ¢. is the onset of rigidity, i.e., a packing fraction above which a finite stress,

3 # 0, can produce shear jammed states,

(ii) ¢, is the lowest packing fraction where a finite yield stress, Yy, occurs, i.e.,
for ¢ > ¢, it holds that (5 — 0,¢) = Xy(¢) > 0, and

(iii) ¢, is the packing fraction where the generalized viscosity, n = o/52, diverges

at zero strain rate and above, for ¢ > ¢,, no inertial flow is possible.

The lowest of the three packing fractions, ¢., and random loose packing, ¢y,
are both considered as the onset of rigidity in a frictional packing. We expect ¢.
to equal random loose packing for infinite Coulomb friction parameter [Silbert,
2010]. The fact that we can assign a physical meaning to ¢, and ¢,, is an
advancement compared to treating them as “fictitious” or “fitting” parameters for
scaling laws Otsuki and Hayakawa [2011] (therein called ¢g and ¢y, respectively).

Moreover, we observe reentrant flow: Starting from a jammed configuration at
finite stress, and then lowering or increasing the imposed stress, leads to flow.
Instead of the inertial flow phase at low stress in our reentrance topology, in Bi
et al.| [2011], the authors report fragile states, i.e., anisotropic jammed states with
force chains, which percolate in only one direction. The difference between the
inertial flow phase at low stress and the fragile states stems from the fact that
our grains are embedded in a frictionless environment, which allows for ballistic
motion and thus inertial flow. In the experiment by Bi et al. [2011], particles,
which are subject to quasistatic shear, move on a bottom plate with a finite
roughness, i.e., no inertial flow is possible. Fragile states are eliminated when
friction with the bottom plate is ruled out [Zhang et al., 2015]. Another route
to fragile states is cohesion between particles [Zhang et al., 2015; |[rani et al.,
2014, 2016]. Our simulations neither incorporate friction with a bottom plate

nor cohesion, consistent with the absence of fragile states.
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In section we studied the rheological response of a frictional granular
medium in a large simulation cell. The main result is the existence of strongly
time-dependent and heterogeneous states. We showed the existence of unsteady
states by prescribing stress in the unstable region of a flow curve. The hydro-
dynamic model, which is derived in this work, couples hydrodynamics to the
evolution of a microstructure variable, which we associate with contributions to
the dynamics that stem from friction. The steady state solutions of the hydrody-
namic model corresponding to flow equal the flow curves in the previous article,
see (Grob et al| [2014] and section [7.1] The steady states are investigated with

linear stability analysis that is in agreement with the simulation.

In the phase diagram for large granular systems [Grob et al., 2016], three
packing fractions, (¢, ¢, ¢y), are necessary to describe the rheology — just as
for small simulation cells, as studied in [Grob et al., 2014]. From the discussion
of the phase diagram and the previous study, [Grob et al., 2014], we expect
that without the contribution associated with friction, the frictionless scenario is
recovered and only steady and homogeneous flow is possible. Unsteady states,
either oscillatory or chaotic, have been shown to exist in scalar models [Cates
et al.} 2002]. Moreover, experimental findings show unpredictable flow behavior in
a potential discontinuous shear thickening regime [Hermes et al.,|2015]. However,

this work presents the first example of chaotic flow for a dry granular medium.

Section [7.3] dealt with the characterization of flow states of dense frictional
granular matter. It connects the previous studies Grob et al. [2014] and |Grob
et al|[2016]. In both previous studies, we presented a phase diagram. These
phase diagrams show an identical sequence of characteristic packing fractions,
(¢cs o, ¢y). However, the rheology of the frictional granular medium, and thus
the phases in these phase diagrams, differ between the two studies. We showed
that this difference stems from heterogeneities. The size of the simulation cell
allows granular media in only large systems to develop heterogeneities in the
unstable region of a flow curve. Heterogeneities imply unsteady flow, which leads
to shear thickening in the flow curve. Small systems instead show discontinuous
shear thickening in a strain rate controlled setting but jam when driven by an
imposed stress in the unstable region of a flow curve. We show that the global
stress is related to the width of the nonaffine velocity distribution. This width is

maximal in the heterogeneous flow state in which the generalized viscosity is also
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maximal. Stress and the width of the nonaffine velocity distribution follow the
same time dependence. Moreover, we report strong spatial correlations between
stress and nonaffine velocities. In particular, the strong heterogeneities in the

stress fields are accompanied by large gradients in the nonaffine velocity fields.

In addition to the stress, which is measured in an experiment or a simulation,
the nonaffine velocity is a key quantity since dissipative contributions to particle
interactions are typically velocity dependent. In|Olsson| [2016], the author points
out how rheology is governed by dissipation via the energy balance. In the fric-
tionless system in [Olsson, [2016], the width of the velocity distribution increases
monotonically as jamming is approached. This increasing width means that the
number of particles dominating dissipation decreases. These particles are the
fastest particles. Below jamming, we report the fastest particles, which presum-
ably contribute most to dissipation, in the shear thickening regime. Both, flow
in the proximity of jamming and shear thickening, are flow regimes that possess
a broad nonaffine velocity distribution and, consistently, both are regimes that
are governed by heterogeneity and cooperative motion giving rise to enhanced

velocities.

In Chapter [§, the dynamics of an active probe particle near the granular glass
transition was probed by numerical simulations and related to analytical results.
The steady state behavior of the probe particle provides a velocity-force rela-
tion. This velocity-force relation is linear for low forces far from the glass tran-
sition. Close to the glass transition, the linear response regime is followed by
a superlinear velocity-force dependence. For large forces, we report a sublinear
velocity-force relation, independent of the packing fraction. The kinetic theory
by Wang and Sperl in Wang et al.| [2014] rationalized the sublinear dependence

in the granular system.

Experiments show [Habdas et al., 2004] that also colloids display a superlinear
velocity-force dependence close to the glass transition. This effect is rationalized
by a localization/delocalization transition that takes place when a packing frac-
tion dependent force threshold is crossed |Gazuz and Fuchs| 2013]. The sublinear
force thickening regime at large forces, which we observe for granular particles,
is in contrast to linear or superlinear regimes in colloidal systems, as observed
in experiments [Habdas et al., 2004; [Wilson et al., 2009], numerical simulations

[Carpen and Brady, [2005], and predicted by mode coupling theory |Gazuz et al.,

7



2009].

The kinetic theory by Wang and Sperl [Wang et al., 2014] also links the mi-
crorheology studies and the shear rheology studies together. The theory states
that in a collision dominated regime, the friction coefficient grows as a square-
root with the external force: ( Felx/f This implies that the velocity grows
as v Felx/t2 or v? < F, — analogous to Bagnold’s results for shear rheology
studies, where the only relevant time scale of the inertial flow regime is set by the
strain rate [Bagnold} |1954]. In both cases, the inertial flow in shear rheology and
the limit of large driving forces in microrheology, the dynamics is governed by
collisions of hard grains. Therefore, the only relevant time scale is the external
time scale, i.e., 7 in shear rheology or F,y in microrheology.

The other flow regimes of the shear- and microrheology studies cannot be
connected directly. The shear rheology studies are carried out with particles with
a finite elasticity, which sets a time scale and allows for plastic flow. This timescale
is absent in the microrheology studies since the particles are infinitely hard. If
they possessed a large (but finite) stiffness the collisional regime would be followed
by elastic-inertial flow at a driving force once particle deformations would become
important. The stochastic agitation of the bath particles in the microrheology
studies sets a time scale that leads to an effective granular temperature and thus
diffusion. This time scale is absent in our shear rheology studies, which exclude
flow regimes other than quasistatic or inertial flow at low strain rate.

In essence, this thesis provided (i) a thorough study of the jamming phe-
nomenon of dry frictional particles and (ii) the examination of the dynamics
of a probe particle in a granular medium close to the granular glass transition.
Both, shear rheology and microrheology, treated transition phenomena of non-
equilibrium systems. In the shear rheology study, we presented results that rely
on the presence of friction. The incorporation of friction increases the complex-
ity of the jamming scenario but provides a stronger connection to experimental
results. We provide a shear thickening and shear jamming scenario of a dry
granular system and report, for the first time, unsteady flow states. The mi-
crorheology studies revealed the role of the different time scales whose interplay
determines the dynamics of a probe particle by which the rheological properties of
its surrounding are characterized. Overall, this thesis sheds light on fundamental

aspects of the peculiarities of particulate media rheology.
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Part 1V.

Outlook
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The work presented in this thesis contributes to a better understanding of the
flow of dry frictional particles under simple shear. Three major future directions

are directly implied by this work:

(i) the investigation of the microscopic processes,
(ii) the characterization of the chaotic nature of the unsteady flow,

(iii) and the study of frictional particles in Poiseuille flow geometry.

In the following, we discuss the directions (i)-(iii) in detail.

On a microscopic scale, friction opens two new channels of energy dissipation:
in addition to normal viscous damping, particles can rotate and dissipate energy
during sliding or non-sliding interactions. The role played by different dissipation
mechanisms is crucial for the flow of granular media [DeGiuli et al., 2015]. As
show in this thesis, the transition from flowing states into jammed states is also
highly affected by friction. When a frictional granular medium jams, all the
contacts become non-sliding since sliding is a dynamic phenomenon. For infinite
friction coefficient, however, all contacts are non-sliding, irrespective of the state
of the granular medium. In contrast, in the frictionless limit, all contacts slide
but jamming at finite 3 below ¢; is not possible. The role of sliding contacts and
dissipation via sliding in the (shear) jamming picture remains elusive. Moreover,
the relation between sliding and shear transformations — plastic, dissipative, and
irreversible events — is not yet studied.

It is challenging to detect the chaotic nature of the unsteady flow. Several
algorithms exist that allow for the computation of Lyapunov exponents of a dy-
namical system based on a time series of a signal, see, e.g., [Sano and Sawada,
1985; |Geist et al., [1990; [Rosenstein et al.l |1993; Kantz, 1994 Small et al.| [2013].
For an accurate estimate of the Lyapunov exponent the time series needs to be
sufficiently long but with high resolution. In addition, a zoo of (technical) param-
eters needs to be tuned according to the dynamics. The presence of mechanical
noise, which stems from the collisions of grains, makes a distinction between
mechanical noise and chaotic dynamics a delicate problem. An unusual path in
studying the jamming transition is taken in [Banigan et al.[2013]. There, the au-
thors apply techniques of nonlinear dynamics to molecular dynamics simulations
close to the jamming transition and report not only a transition from liquid to

solid state near ¢; but also from chaotic to non-chaotic dynamics when the strain
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Figure 8.1.: Inset: Poiseuille flow geometry with suggested parabolic velocity pro-
file. Main: Non-parabolic profile of streaming velocity, v,, showing
flow (large pressure, green) and arrest (low pressure, purple). Units
according to [Grob et al., 2014].

rate of the system is fixed. The dependence of the largest Lyapunov exponent
on the packing fraction suggests that a non-chaotic regime exists at low packing

fractions far from the jamming transition, i.e., in the inertial flow regime.

Poiseuille flow, i.e., the flow through a pipe, is a natural step in the direction of
the investigation of granular media under shear. Simple shear has the conceptual
advantage that hydrodynamics implies homogeneous strain rate and stress profiles
in a steady state. In contrast, a Newtonian fluid flowing through a pipe shows
a non-homogeneous steady state: The velocity profile is a parabola, see inset of
figure 8.1} Therefore, we expect that the strain rate profile and the stress profile
in a granular fluid are non-homogeneous, too. Figure shows a set of velocity
profiles that show non-parabolic velocity fields and a clear distinction between
flowing and non-flowing states. These phenomena have already been reported

in studies of particulate media, see, e.g., [Varnik and Raabe, 2008; Chikkadi

32



and Alam)| 2009; Chaudhuri and Horbach, 2013], but frictional effects have not

yet been taken into account. In simple shear geometry, steady state flow is

homogeneous and probes one point in our proposed phase diagrams. In contrast,
Poiseuille flow is inherently heterogeneous and samples not only a point in the
phase diagram but a line, e.g., at constant packing fraction but ranging over an
interval of stress. It would be interesting to study whether Poiseuille flow exhibit
several coexisting phases with different stress at the same time, i.e., blobs of shear

jammed particles and areas of a flowing phase, either in plastic or inertial flow.
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A. Details on the hydrodynamic
model

In this Chapter, we detail the stability analysis, of the model that we present in
the article “Rheological chaos of frictional grains” in Chapter [7.2] Here, we use

the second equation in equations 2 in |Grob et al.| 2016],

Yo, w) =o(0) — w, (A1)
and formulate the model, equations 2 from |Grob et al.| [2016], via two equations:

O(5o(0) —w) = o
ow = —z(w—w*). (A.2)

The microstructure variable, w, evolves towards a stress dependent value: w* =
w*(0). As w describes frictional contributions, w* should be zero at zero stress
and it should grow with the stress that is applied. The simplest relation which

fulfills these requirements is w*(o) = bo.

The model allows for two stationary states, i.e., the left hand sides of equations
are set to zero. In a stationary state, (og, wp), the stress is homogeneous and
w determines the strain rate via equation The first solution corresponds to

stationary flow:

we = w*(0); 09 =o0. (A.3)

The flowing steady state solution recovers the phenomenological constitutive
equation, equation 1 in article |Grob et al|[2014], via equation . This implies
for the slope

aa;Y’ao = a;YO’oo —b. (A-4)
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A. Details on the hydrodynamic model
The second stationary solution accounts for the shear jammed state:
wo = Yo(00); 00 = 0. (A.5)

In this solution, inserting equation in equation leads to zero strain rate.

In the following, we discuss the stability of the solutions in equations and
[A.5] We employ linear stability analysis and consider small deviations, do = o —
0o and dw = w — wy, from the steady state solution, (o¢,wy), of the equation .

A.1. The flowing state

The linearization of the coupled equations [A.2] requires the linearization of each
term. To linearize around the flowing solution, equation [A.3 we linearize the
frictionless constitutive relation, 4o(co), and its derivative: 4y(o¢+do) = Ao(00) +
(2a07 24+ 2co)d0 + O(60?) and 0,70(0) = Oy0(00) — (iaao_?’/Q +2¢)o0+O(do?),
respectively. Up to linear order in the small quantities, do and dw, or products
of these, and with the notation 7 = I'/4/(0¢) equation reads:

Oyy00 — 05 Y00y 000 + 0w = 0
b(5a — l5w — Ow = 0. (A.6)
T

;
By Fourier transform, we substitute d, — ik, with wave number k, and 0, —
1w = (), with frequency, w or growth rate (2. The Fourier transform of equations

can be written in matrix notation:

0 —k2 = 0,%0]0, 0 Q So
= 0 - . A7
(0) ( At A

The hat indicates the transformed variables. If the determinant of the matrix in
equation vanishes there can be more than the trivial solution (o = 0 = Jw).

Hence, we have

]432

1
=024+ Q—— (k2 4+ 0,%]p — b _
0 + (Tk* + 05500y — b) + ol

; AR
Tao%|oo ( )

The polynomial is solved for its roots given all the constants. The roots lead to
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A.2. The shear jammed state

the dispersion relation Q(k) = ' + Q" with

1 1
Qo = S (7K* + 95,
2= = g K+ Oil)
2
1 1 k?
+ —————(Tk% + 0,90 - A9
J (2 Tacr;yo‘oo (T i ’y| 0)> 7-80;)/0|0'0 ( )

A finite coulomb friction parameter, u > 0, i.e., b > 0, is necessary for the
growth of perturbations and oscillations since only then the growth rate, Re(£2),
can become positive due to a negative slope, 0,7|s,, of the flow curve. In the
frictionless case, i.e., when b = 0, the dispersion relation is always negative giving
rise to a negative growth rate and stable flow. When 7 gets small, i.e., infinitely
fast relaxation of w to w*(o), or k — 0, i.e., infinitely large systems, the dispersion
relation becomes proportional to the slope of the frictional flow curve, which

makes the frictional contribution to the slope, —b, become increasingly important.

A.2. The shear jammed state

A linearization of the coupled equations around the shear jammed solution,
equation [A.5] yields up to linear order
(9yy(50 — 8070]00815(50 + atéw =0

1
—f(wg — b00)(0550|sy00 — dw) — 0w = 0. (A.10)

The Fourier transformed set of equations can be written in matrix nota-

— k2 — 0,400 0 S
0) _ Dol ) 7. (A.11)
0 0700 14+ QL] \w

As above, if the determinant of the matrix in equation vanishes there can

be more than the trivial solution (0o = 0 = dw). Hence, we have

tion:

_ k2w0 - bO'()

0=0%+Qk*— Ry
60'70‘00 F8070|00

(A.12)

The solutions of equation [A.12]lead to the dispersion relation of the shear jammed
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A. Details on the hydrodynamic model

state:

1 k’2 1 k2 2 Wy — bO’O
Qyjg = ———— + —— + k2. A.13
1/2 2 05%0| o, J <2 8(,70|00> T'95%0] 0, ( )

Below ¢,, see [Grob et al., 2014 2016], there is potentially one unstable and
one stable mode when wy — boy is positive and large enough, i.e., Re(2;) > 0
and Re({2;) < 0. Shear jamming is then unstable and a flowing solution is
attained. Above ¢,, the strain rate gets negative and both solutions are stable
when wy —bog < 0. This is what we identify with shear jamming. Note that here,
in contrast to the flowing state, the parameter b enters via the full flow curve,

wo — bog = o(09) — bog, and not via the slope.
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