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1 Overview

In 1770 Waring proposed the problem, whether each natural number n can be written
as the sum of k-th powers of natural numbers, as a generalization of an old problem of
the ancient greek Diophantus of Alexandria, who asked whether each natural number
n can be written as the sum of four integer squares. Waring’s question has become
famous as the so-called Waring’s problem and Hilbert [16] managed to prove, that
indeed, for every k there is a finite number s such that every n is the sum of at most
s k-th powers of natural numbers. This problem inspired many authors to come up
with new methods to further reduce the number of variables needed and lead to many
generalizations in the structure of the underlying diophantine equation.

In this work we want to replace the sum of k-th powers by homogeneous polynomials,
more precisely let f ∈ Z[x1, . . . , xs] be a form of degree d. We say that f represents
n ∈ N, if the diophantine equation f(x) = n has integral solutions x = (x1, . . . , xs) ∈
Zs. As with fewer variables it gets more unlikely to have solutions to the equation
f(x) = n, one can ask for good bounds on s in order to guarantee that every n ∈ N is
represented by f . A variant of this problem has been studied by Birch [1], who was
mainly interested in the special case n = 0 and also considered systems of equations.

A further generalization is to allow (few) exceptional n, which might not be repre-
sented by f . Thus one can ask whether almost all n ∈ A can be represented by the
form f , for a (infinite) subset A ⊂ N. Or more precisely, if we denote the set of
exceptional n up to N by

EN := {n ∈ A : n ≤ N, f does not represent n} ,

then the goal will be to show that

lim
N→∞

|EN |
|A ∩ {1, 2, . . . N}|

= 0.

This will be done using the circle method to transform the problem into a problem
of estimating certain exponential sums.

For A = N, a rather classical approach using Bessel’s inequality would lead to the
problem of finding appropriate upper bounds for the minor arc contribution to the
diophantine problem f(x) = f(y) in the 2s variables (x,y) ∈ Z2s. So roughly
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speaking, one can hope that only half as many variables are needed to give a positive
answer, as would be for the corresponding problem of finding non-trivial solutions
of g(x,y) = 0, where g(x,y) = f(x) − f(y). Thus one saves half the number of
variables by asking for almost all n ∈ N to be represented.

In our case we want to give similar answers when A is a thin (but infinite) set, namely
for AN := A ∩ {1, 2, . . . N}, we require limN→∞N

− 1
k |AN | = c > 0 for some k ≥ 2.

Especially we consider the case of A = {q(m) : m ∈ N} ∩ N, the positive values of
an integral quadratic polynomial q with positive leading coefficient, e.g. the set of all
squares.

Note that this is indeed a harder problem and it is not enough to show that almost
all n ∈ N are represented by f , since then the thin set A could still be completely
contained in the exceptional set. Instead a more flexible way of applying the circle
method has to be used. This is where we build on ideas of a series of papers of
Brüdern, Kawada and Wooley [5] – [12], concerning additive representations in thin
sequences.

Similar to our problem, the authors investigate Waring’s problem for cubes in [5]
and provide the strong bound EN � N19/56 for the exceptional set in the case of
six cubes representing the positive values of a quadratic polynomial q as above and
EN � N255/548 for representing the values of corresponding cubic polynomials. In [7]
they show that the expected asymptotic formula for the number of representation
holds for almost all values of q. In the other parts of the series further generalizations
are considered, such as replacing Waring’s sum of k-th powers by Goldbach’s problem
of sums of two primes in [6] or replacing A by the set of primes or almost primes in
[10].

This emphasizes the strength of this approach. The framework of the general method
will be laid out in chapter 2, adapted to our case of a polynomial f instead of k-th
powers.

The main task will be to estimate the size of the exceptional set by a minor arc
integral, where the number of variables can be thought of being 4

3
s. Such that we

will roughly only need 3
4
as many variables, as for the corresponding problem of

f(x) = 0.

In chapter 3 we will deal with the case of f being a form of arbitrary degree d. More
precisely, we show

Theorem 1.1. Let f ∈ Z[x1, . . . , xs] be a form of degree d with singular locus sing f
and A = {q(m) : m ∈ N} ∩ N as above. If s − dim sing f > 3

4
2d(d − 1) then almost

all n ∈ A are represented by f , as long as there are no real or p-adic obstructions.
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Where the condition s − dim sing f > 3
4
2d(d − 1) is exactly 3

4
times the number of

variables needed to ensure the solvability of f(x) = 0 (or f(x) = n) in [1] and almost
all n ∈ A means limN→∞

|EN |
|AN |

= 0.

Note. It is important to ensure that there are no real or p-adic obstructions, as the
following simple example illustrates. Let g ∈ Z[x1, . . . , xs] be an arbitrary polynomial.
Take f(x) = 2g(x) and q(m) = 2m2 + 1. Then there are no solutions to the equation
f(x) = q(m) at all, because this would imply 0 ≡ 1 mod 2, so we have a 2-adic
obstruction for all n.

Similarly, if f is negative definite, it will not be possible to represent positive n for
x ∈ R and we have a real obstruction.

As we will see at the end of section 3.2.1, p-adic obstructions lead to certain arithmetic
progressions, which are “forbidden” for n, together with the complementary progres-
sions containing “good” n. So if there is at least one n ∈ A without p-obstructions,
we immediately have infinitely many without obstructions, lying the in the corre-
sponding arithmetic progression of n. If we now restrict the set A to those “good” n,
a positive proportion of n ∈ A will remain and the new set will still be of the same
order of magnitude as the original set A. For the proofs of the Theorems, it will be
convenient to do so and assume, that f and the set A are such that A consists only
of those n without real or p-adic obstructions for f .

Another interpretation of our results with restriction to n without obstructions is,
that for almost all n ∈ A the Hasse principle holds, meaning that the solvability of
f(x) = n in Z can be decided by checking the solvability in R and modulo all prime
powers pk, since for the n with obstructions the Hasse principle holds trivially.

For forms of small degree, more refined results are available than the ones used for
arbitrary degree d. Namely for d = 3 Heath-Brown [15] investigated non-singular
cubic forms in 10 variables representing 0 and Hooley [17] refined the analysis to 9
variables. We can feed those results into the general method described in chapter 2
to get

Theorem 1.2. Let f ∈ Z[x1, . . . , xs] be a non-singular cubic form and A = {q(m) :
m ∈ N} ∩ N as above. If s ≥ 8 then almost all n ∈ A are represented by f , as long
as there are no p-adic obstructions.

This will be done in chapter 4. Note that in this case there are no real obstructions
since f is of odd degree. Unfortunately, not all of Hooley’s refinements are directly
applicable to our situation. So our method only works for at least 8, instead of
7 variables, which one might hope for by the heuristic, that our method roughly
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produces results in 3
4
times the number of variables needed for the corresponding

problem f(x) = 0. See chapter 4.4 for more details.

In chapter 5 we consider forms of degree d = 4 and use results from Browning and
Heath-Brown [4] to deduce

Theorem 1.3. Let f ∈ Z[x1, . . . , xs] be an absolutely irreducible quartic form defin-
ing a quartic hypersurface X ⊂ Ps−1

Q and σ = dim singX the dimension of its singular
locus. Further, let A = {q(m) : m ∈ N} ∩ N as above. If s− σ ≥ 32 then almost all
n ∈ A are represented by f , as long as there are no real or p-adic obstructions.

Note that Browning and Heath-Brown need s − σ ≥ 42 in order to prove that the
Hasse principle holds for f(x) = 0 and the 32 in Theorem 1.3 is 4

3
times that number,

rounded to the next integer, so in this case we are able to carry the full savings
through our method.

We close with a discussion of the general case of sets of size |AN | ∼ cN
1
k , k ≥ 2 in

chapter 6 and give a heuristic for the number of variables one would typically expect
to come out of our method.

4



1.1 Notation

Throughout this work, N will be a cut-off parameter for the set A and should be
thought of large and tending to infinity. We will be searching for solutions in a box
of size B, which (together with some other parameters) will grow as N →∞.

We use the usual Landau O-notation and Vinogradov’s� notation to mean “less than
a constant times”. In this context ε denotes a number that may be chosen arbitrarily
small (and may change on each occurrence). The constants hidden in the O-notation
may depend on ε and the polynomial f under consideration.

We denote a sum over elements a, co-prime to q by
q∑

a=1

∗, and similarly the union over

elements a, co-prime to q by
q⋃

a=1

∗. A sum over a complete set x = 1, . . . , q of residue

classes modulo q will be denoted by
∑
x (q)

.

The variable p will usually denote a prime number and pν ‖ q states that ν is the
exact power of p dividing q. The greatest common divisor of two integers a and b will
be denoted by (a; b).

A sum over elements of size c1R < q ≤ c2R, for some constants c1 and c2, will be
denoted by

∑
q∼R

. Usually, if not otherwise noted, the constants can be thought of as

being c1 = 1 and c2 = 2.

Elements x = (x1, . . . , xs) ∈ Zs are printed bold and summation conditions for such
elements should be read component-wise as in

∑
|x|≤M

=
∑
|x1|≤M

∑
|x2|≤M

. . .
∑
|xs|≤M

.

As usual when working with exponential sums in this context, e (α) will denote the
exponential e2πiα.
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2 General Method

As mentioned in the introduction, we want to transform the problem of deciding,
whether the equation f(x) = n has solutions or not, into a problem of finding ap-
propriate bounds on certain exponential sums. This will be done using the Hardy-
Littlewood circle method.

First, instead of searching for arbitrary solutions x ∈ Zs, we want to focus on those
x that are somewhat close to a fixed point x0 ∈ Rs. For technical reasons, it will be
helpful to do so by introducing a weight as follows.

Let ω be a suitable weight function with support in (−1, 1) and define

w(x) :=
s∏
j=1

ω(ρ−1(x− x0)j) and wB(x) := w(xB−1), (2.1)

where ρ ∈ (0, 1) will be taken to be suitably small.

Now define the usual weighted exponential sum

S(α) :=
∑
x∈Zs

e (αf(x)) wB(x). (2.2)

By orthogonality we get∫ 1

0

S(α)e (−αn) dα =
∑

x∈Zs:f(x)=n

wB(x), (2.3)

counting the solutions x ∈ Zs to f(x) = n, weighted by w, in a box growing as
B →∞.

To be able to represent n ∼ N by a form of degree d, it is a natural choice to search
in a box of size B, where Bd ∼ N , which we assume from now on. For n in the
exceptional set E , there are no solutions to f(x) = n, so the right-hand side in (2.3)
will be zero.

If we dissect the unit interval into two disjoint sets [0, 1) = M ∪m, we obtain∫
M

S(α)e (−αn) dα = −
∫
m

S(α)e (−αn) dα.
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Summing this up over n ∈ EN := [N, τN ] ∩ E , with τ > 1, leads to

∑
n∈EN

∫
M

S(α)e (−αn) dα = −
∫
m

S(α)K(α) dα, (2.4)

where K(α) =
∑
n∈EN

e (−αn).

One part of the further investigation will be to prove∫
M

S(α)e (−αn) dα� Bs−d−ε (2.5)

for a suitable choice of major arcs M and almost all n ∈ A.

Inserting this into (2.4), we can bound the size of the exceptional set by

|EN | � B−s+d+ε

∫
m

|S(α)K(α)| dα. (2.6)

Note. At this stage we could apply the Cauchy-Schwarz inequality to recover esti-
mates in the case A = N as mentioned in the introduction.

Instead, we continue by applying Hölder’s inequality to the minor arc integral in (2.6)
to get

∫
m

|S(α)| |K(α)| dα�

∫
m

|S(α)|
4
3 dα

 3
4
∫

m

|K(α)|4 dα

 1
4

, (2.7)

where the exponents were chosen in such a way, that the first integral will lead to
a somewhat natural minor arc problem (in the sense that we have to get a saving
slightly better than B−d) as we will see later. And additionally, the integral in the
second term may be easily bounded by

Lemma 2.1. ∫
m

|K(α)|4 dα� N ε |EN |2 .
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Proof. For an upper bound we may complete the integral over m to a integral over
all of [0, 1). Using orthogonality, we can interpret the arising integral as the number
of solutions to the equation n1 − n2 = n3 − n4, where ni ∈ EN .

This is where the special shape of the set A of numbers we are trying to represent
comes into play. In our case, the ni are values of a quadratic polynomial q(y). By
completing squares, we see that all we have to do is to bound the number of solutions
to y2

1−y2
2 = y2

3−y2
4, where yi are restricted to a suitable set Y of the same cardinality

as EN . Both sides of this equation factorize and a usual divisor function estimate
yields the desired bound N ε |EN |2 as in [5, eq. (3.16)]. �

Inserting this into (2.7) leads to the bound on the exceptional set of the form

|EN | � B−2s+2d+ε

(∫
m

|S(α)|
4
3 dα

) 3
2

. (2.8)

The next part of the investigation will be to prove the minor arc estimate∫
m

|S(α)|
4
3 dα� B

4
3
s−d−δ, (2.9)

for some δ > 0.

Note. This can be seen as a minor arc integral over a polynomial in essentially 4
3
s

variables. So the general idea is, that whenever the circle method is able to handle
the minor arc contribution of a special class of polynomials in s ≥ s0 variables, we
can hope to apply the method to that class of polynomials in s ≥ 3

4
s0 variables, as will

be discussed in chapter 6.

We conclude this chapter by summing up what we have found so far. Inserting (2.9)
into (2.8) yields

|EN | � B
d
2
− 3

2
δ+ε

� N
1
2
−∆, (2.10)

where 0 < ∆ < 3
2d
δ.

Since |AN | � N
1
2 , we have

|EN |
|AN |

� N−∆ → 0, for N →∞,

and we can deduce that almost all n ∈ A are represented by f .

This method will act as the basis for the proofs of our theorems, so we state it as
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Theorem 2.2 (Prototype). Let f ∈ Z[x1, . . . , xs] be a polynomial of degree d, such
that

1. for almost all n ∈ A, n ∼ N we have the major arc estimate∫
M

S(α)e (−αn) dα� Bs−d−ε (2.11)

and

2. the minor arc estimate ∫
m

|S(α)|
4
3 dα� B

4
3
s−d−δ, (2.12)

for some δ > 0. Then almost all n ∈ A are represented by f .
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3 Forms of degree d

The following chapter is dedicated to the proof of Theorem 1.1.

The solvability for linear equations is trivial unless there are p-adic obstructions. Thus
we can assume f ∈ Z[x1, . . . , xs] to be a form of degree d ≥ 2 and A = {q(y) : y ∈
Z} ∩ N, the positive values of a quadratic polynomial q ∈ Z[y] with positive leading
coefficient. Using the results of the former chapter, we are left with the task to ensure
the validity of the major arc estimate (2.11) and the minor arc estimate (2.12) in the
Prototype Theorem 2.2.

First of all, we have to choose suitable major arcs. Therefore let Q = B(d−1)θ for a
small parameter 0 < θ < 1 and define the major arcs by

M(θ) :=
⋃
q≤Q

q⋃
a=1

∗
[
a

q
−B−dQ, a

q
+B−dQ

]
,

and the corresponding minor arcs as m(θ) := [0, 1)\M(θ), which should both be read
as being defined modulo 1.

As prototype for the weight function in (2.1) we choose the indicator function

ω(t) =

{
1 for − 1 < t < 1,

0 otherwise.

Let x0 = 0, such that the weight function wB(x) is just the indicator function of the
box B = {x ∈ Zs : |xi| < ρ, i = 1, . . . , s}.

We base our work on the results of Birch [1]. Therefore it will be helpful to addition-
ally define the slightly smaller major arcs

M′(θ) :=
⋃
q≤Q

q⋃
a=1

∗
[
a

q
− Q

2qBd
,
a

q
+

Q

2qBd

]
,

and the corresponding minor arcs as m′(θ) := [0, 1) \M′(θ) modulo 1.

The main ingredient to our proof will be [1, Lemma 4.3], which we state as
Lemma 3.1. Let s− dim sing f = 2d−1K, then for α ∈ m′(θ) we have

|S(α)| � Bs−Kθ+ε.

Note that in our case we have K > 3
2
(d− 1) by the assumptions in Theorem 1.1.
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3.1 Minor Arcs

For the treatment of the minor arcs, we use a pruning argument similar to Birch. We
begin by fixing δ > 0 and θ0 > 0 such that

1 > δ + 6dθ0 and 4
3
K − 2(d− 1) > 2δθ−1

0 . (3.1)

For this choice we have

Lemma 3.2. ∫
m′(θ0)

|S(α)|
4
3 dα� B

4
3
s−d−δ.

Proof. Choose a sequence θT > · · · > θ0 with

d = 2(d− 1)θT and 1
2
δ > 2(d− 1)(θt+1 − θt) for 0 ≤ t < T.

Note that this choice does not dependent on B and can be done with T � 1.

Now Lemma 3.1 together with (3.1) yields∫
m′(θT )

|S(α)|
4
3 dα� B

4
3

(s−KθT )+ε

� B
4
3
s−d−δ.

We successively fill the gap between m′(θT ) and m′(θ0) by portions of major arcs
M′(θt+1) \M′(θt) ⊂ m′(θt) for 0 ≤ t < T .

The size of M′(θt+1) can be estimated by |M′(θt+1)| � B−d+2(d−1)θt+1 . So∫
M′(θt+1)\M′(θt)

|S(α)|
4
3 dα� |M′(θt+1)|B

4
3

(s−Kθt)+ε

� B
4
3
s−d− 4

3
Kθt+2(d−1)θt+1+ε

� B
4
3
s−d− 4

3
Kθt+2(d−1)θt+

1
2
δ+ε

� B
4
3
s−d− 3

2
δ. �

Note that
∫

m(θ)

|S(α)|
4
3 dα �

∫
m′(θ)

|S(α)|
4
3 dα. So we are free to choose the slightly

larger major arcs M instead of M′ in the following chapter.
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3.2 Major Arcs

We will work with the major arcs M := M(θ0), where θ0 was defined by (3.1). We
define the exponential sum S(q, a) =

∑
x (q)

e (af(x)/q).

Following the lines of Birch [1, §5], we immediately get

∫
M

S(α)e (−αn) dα = S(n)J(B−dn)Bs−d + O
(
Bs−d−δ) , (3.2)

for some δ > 0, as long as we are able to ensure the absolute convergence of the
singular series

S(n) =
∞∑
q=1

q−n
q∑

a=1

∗
S(q, a)e (−an/q) , (3.3)

and the singular integral

J(ν) =

∫
R

e (−βν)

∫
Rs

e (βf(x)) w(x) dx dβ. (3.4)

3.2.1 Singular Series

Applying Lemma 3.1 to the special case S(q, a) = S(a/q) with B = q, we get

Lemma 3.3. For (q; a) = 1 we have

|S(q, a)| � qs−
K
d−1

+ε � qs−
3
2
−δ,

for some δ > 0, since K > 3
2
(d− 1).

Define An(q) = q−s
q∑

a=1

∗S(q, a)e (−an/q), then for the absolute convergence of the

singular series (3.3), we have to show
∑
q>Q

|An(q)| → 0, as Q→∞.

First of all we note that An(q) is a multiplicative function in q by [13, Lemma 5.1].

Now for t ∈ Z coprime to q, we have f(tx) = tdf(x) and when x runs through all
residue classes modulo q, the same holds true for tx. Thus

S(q, a) =
∑
x (q)

e (af(x)/q) =
∑
tx (q)

e (af(tx)/q) =
∑
x (q)

e
(
atdf(x)/q

)
= S(q, atd) .
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Let l the inverse to t modulo q, so lt ≡ 1 (q), then

Anld(q) = q−s
q∑

a=1

∗
S(q, a)e

(
−aldn/q

)
and since atd again runs through all residue classes modulo q, we have

Anld(q) = q−s
q∑

atd=1

∗
S(q, atd)e

(
−atdldn/q

)
= q−s

q∑
a=1

∗
S(q, a)e (−an/q) = An(q) .

So we have

ϕ(q)An(q) =

q∑
l=1

∗
Anld(q) = q−s

q∑
a=1

∗
S(q, a)

q∑
l=1

∗
e
(
−anld/q

)
, (3.5)

where ϕ(q) is Euler’s phi function.

The innermost sum can be estimated using the following result from Hua [20].

Lemma 3.4. Let U(q, b) =
q∑
l=1

∗e
(
−bld/q

)
, then

U(q, b)� q
1
2

+ε (q; b)
1
2

and

U(pk, b) = 0 for k > k0(p, b) :=

{
ν + 1 for p - d,
ν + 2 for p | d,

where pν ‖ b.

This, together with Lemma 3.3 leads to

|An(q)| � q−1−δ (q;n)
1
2 .

The factor (q;n)
1
2 does no harm, when summed over q, since∑

q∼R

(q;n)
1
2 =

∑
d|n

d
1
2

∑
q∼R
d|q

1 ≤ R
∑
d|n

d−
1
2 � Rnε. (3.6)

So we can conclude that the singular series in (3.3) is absolute convergent and can
be written as an Euler product

S(n) =
∏
p

∞∑
k=0

An(pk).
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Note that by the assumption that there are no p-adic obstructions for the n under
consideration, we immediately get S(n) > 0. But this is not enough, since for our
purpose we need a lower bound uniformly in (almost all) n, which we state as

Lemma 3.5. For almost all n ≤ N , for which there are no p-adic obstructions, we
have

S(n)� N−ε.

Proof. Since S(n) =
∏
p

∞∑
k=0

An(pk) is absolute convergent, there exists c > 0, such

that ∏
p≥c

∞∑
k=0

An(pk)� 1

uniformly in n ∼ N . For the remaining p < c we can use Lemma 3.4 to find that
An(pk) = 0 for k > k0(p, n). Let M(pk, n) = {x (mod pk) : f(x) ≡ n (pk)}, then
M(pk0(p,n), n) is non-empty since there are no p-adic obstructions for n. We can
interpret the factors of the singular series as local densities of solutions and get

∞∑
k=0

An(pk) =

k0(p,n)∑
k=0

An(pk) = p−(s−1)k0(p,n)
∣∣M(pk0(p,n), n)

∣∣ > p−(s−1)k0(p,n).

So S(n)� b(n)−(s−1), where b(n) =
∏
pν‖n
p<c

pν .

All we have to do now, is to show that b(n) is small for almost all n. Therefore let
B = {b ≤ N : p | b ⇒ p < c}, the set of all b ≤ N with prime factors p < c. Then
the number of n ≤ N with b(n) > X is

|{n ≤ N : b(n) > X}| =
∑
b∈B
b>X

|{n ≤ N : b(n) = b}|

≤
∑
b∈B
b>X

|{n ≤ N : b | n}|

≤ N

X
|B| � N

X
(logN)c.

On choosing X = N ε, we see that for almost all n ≤ N we have b(n) � N ε and
therefore for almost all n under consideration S(n)� N−ε.

�

14



Note. The statement of Lemma 3.5 is non-trivial. If the congruence condition is
satisfied for some n, then it is for a positive proportion of n ∈ A. As one can see
from the argument above, it is only necessary to check the congruence condition mod
N0 :=

∏
p<c

pk0(p). If there is one n = q(y) ≡ f(x) mod N0, then all q(y+ kN0) satisfy

the congruence condition.

In fact, only some arithmetic progressions are forbidden by p-adic obstructions. The
set of remaining n ∈ A still has the same order of magnitude as A.

3.2.2 Singular Integral

To ensure the absolute convergence of the singular integral, we write (3.4) as

J(ν) =

∫
R

e (−βν) IB(β) dβ, (3.7)

where IB(β) =
∫
B

e (βf(x)) dx and B = {x ∈ Zs : |xi| < ρ, i = 1, . . . , s} is the box

indicated by the weight w(x).

We want to use [1, Lemma 5.2], which we state as

Lemma 3.6. Let C be a box contained in {x ∈ Zs : −1 < xi < 1, i = 1, . . . , s} of
side-length σ < 1, then

|IC(β)| � σn min
(

1,
(
σd |β|

)− K
d−1

+ε
)
.

If we apply this for 1 < φ1 < φ2, we get∫ φ2

φ1

|e (−βν) IB(β)| dβ �
∫ φ2

φ1

|β|−
K
d−1

+ε dβ

�
∫ φ2

φ1

|β|−
3
2 dβ

� φ
− 1

2
1 ,

since K > 3
2
(d − 1). Therefore J(ν) is absolutely convergent (uniformly in ν). This

also implies that J(ν) is continuous, as uniform limit of a sequence of continuous
functions.

The final step will be to show that

J(1)� 1 . (3.8)

15



Then we can ensure that J(B−dn)� 1 uniformly in n ∈ ẼN = [N, τN ]∩E by choosing
τ > 1 small enough, since J is continuous.

In fact it is a rather standard argument to get (3.8) by Fourier inversion. We refer the
reader to [1, §6] for more details. Note that the argument requires s − dim sing f >
d + 1, which is the case, since s − dim sing f > 3

4
2d(d − 1) ≥ 3(d − 1) ≥ d + 1, for

d ≥ 2.

3.3 Conclusion

Inserting Lemma 3.5 into (3.2) we get the major arc estimate (2.11) for almost all
n ∈ A as ∫

M

S(α)e (−αn) dα� Bs−d−ε.

The minor arc estimate (2.12) is obtained via Lemma 3.2. So we can apply our
Prototype Theorem 2.2 to deduce Theorem 1.1.
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4 Cubic Forms

In this chapter we want to investigate the representation of n ∈ A = {q(y) : y ∈ Z}∩N
by non-singular cubic forms f ∈ Z[x1, . . . , xs] and improve the result of Theorem 1.1
in the case d = 3 from requiring s > 12 to s ≥ 8.

In the setting of chapter 2 we start by defining our major and minor arcs as follows.

For a small parameter 0 < θ < 1
6
, we set Q = Bθ and define the major arcs by

M :=
⋃
q≤Q

q⋃
a=1

∗
[
a

q
−B−3Q,

a

q
+B−3Q

]
,

and the corresponding minor arcs as m := [0, 1) \M modulo 1.

As prototype for the weight function in (2.1) we choose the smooth function

ω(t) =

{
exp( −2

1−t2 ) for |t| < 1,

0 otherwise,

as in [17] and define the weight function as

w(x) := ω(ρ−1 |x− x0|) and wB(x) := w(xB−1), (4.1)

where ρ is a fixed, small parameter to control the size of the range in which we search
for solutions.

We center the weight function around a point x0 ∈ Rs, which is a solution to f(x) = 1
with non-vanishing determinant of the Hessian matrix

H(x) = det

(
∂2f

∂xi∂xj

)
1≤i,j≤s

.

Such a point is easy to construct as follows. Let y ∈ Rs be a arbitrary point with
f(y) > 0 and H(y) 6= 0. Choose x0 = f(y)−

1
3y, then H(x0) = f(y)−

1
3
sH(y) 6= 0 and

f(x0) =
(
f(y)−

1
3

)3

f(y) = 1.

17



4.1 Preparations

We write α = a/q + β and rewrite the exponential sum (2.2) by changing the order
of summation x→ x + qk and sorting by residue classes modulo q as

S(a/q + β) =
∑
x (q)

∑
k∈Zs

e ((a/q + β)f(x + qk)) wB(x + qk).

Next we apply the Poisson summation formula to get

S(a/q + β) =
∑
x (q)

e (af(x)/q)
∑
m∈Zs

∫
y∈Rs

e (βf(x + qy)) e (m · y) wB(x + qy) dy.

On substituting t = x + qy we can write

S(a/q + β) = q−s
∑
m∈Zs

S(q, a,m)I(m/q, β),

where

S(q, a,m) =
∑
x (q)

e ((af(x)− x ·m)/q) ,

and
I(m/q, β) =

∫
t∈Rs

e (βf(t)) e (m · t/q) wB(t) dt.

As large values of m lead to cancellation in the integral above, we can cut the sum-
mation over m at a suitable parameter M and get [3, Lemma 1]

Lemma 4.1. For α = a
q

+ β we have

S(α) = q−s
∑
|m|≤M

S(q, a,m)I(m/q, β) + O(1),

where
M � q(|β|B2 +B−1)(logB)7. (4.2)

Moreover we get the following bound, similar to [17, Lemma 7].

18



Lemma 4.2.

I(m/q, β)� min{Bs, B−
s
2

+ε |β|−
s
2}.

It will be useful to collect all necessary estimates for the sum S(q, a,m).

Lemma 4.3. S(q, a,m) is multiplicative. Namely for (p; q) = 1, a = a1q + a2p we
have

S(pq, a,m) = S(p, q3a1,m)S(q, p3a2,m).

Thus it suffices to estimate S(q, a,m) on prime powers q = pk and combining the
estimates via Lemma 4.3.

Consider the projective variety defined by f(x) = 0. Then the dual variety is a
hypersurface, defined by an equation f ∗(x) = 0. When estimating S(p, a,m), we get
a better bound, if f ∗(m) does not vanish modulo p. Namely we have [15, Lemma 13]
or [3, Lemma 5], which we state as

Lemma 4.4. Let q1 be square-free and (a; q) = 1, then we have∣∣∣∣∣
q∑

a=1

∗
S(q1, a,m)

∣∣∣∣∣ ≤ Aω(q1)q
1
2

+ 1
2
s

1 (q1; f ∗(m))
1
2 ,

This can be extended to the case of squares as in [17, Lemma 11].

Lemma 4.5. Let q2 be the square of a square-free number and (a; q) = 1, then we
have ∣∣∣∣∣

q∑
a=1

∗
S(q2, a,m)

∣∣∣∣∣� q
1
2

+ 1
2
s

2

(
q2; f ∗(m)2

) 1
2 .

In the square-full case we have [3, Lemma 7] or or [15, Lemma 14], stated as

Lemma 4.6. Let q3 be square-full, then we have

∑
0<|m|≤M

∣∣∣∣∣
q3∑
a=1

∗
S(q3, a,m)

∣∣∣∣∣� q
1+ 1

2
s+ε

3 (q
1
3
s

3 +M s).

In the case f ∗(m) = 0 we additionally get [3, Lemma 7] or [15, Lemma 16] as
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Lemma 4.7. Let q3 be square-full, then we have∑
0<|m|≤M
f∗(m)=0

∣∣∣∣∣
q3∑
a=1

∗
S(q3, a,m)

∣∣∣∣∣� q
1
2

+s+ε

3 +M s− 3
2 q

4
3

+ 1
2
s+ε

3 .

For primes occurring to higher powers pk and m = 0, we provide a way to reduce the
exponent k, using

Lemma 4.8. Let p be a prime and pγ‖6D, where D is the discriminant of f . Then
for k > 2γ + 1 and (a; p) = 1 we have the recursive reduction formula

S(pk, a,0) = p2sS(pk−3, a,0).

Proof. We split the sum over x (mod pk) into x = y + pk−γ−1z, where we take
y (mod pk−γ−1) and z (mod pγ+1). Using Taylor expansion for k > 2γ + 1 we get

f(x) ≡ f(y) + pk−γ−1∇f(y).z (mod pk)

and therefore

S(pk, a,0) =
∑
x (pk)

e
(
af(x)/pk

)
=

∑
y (pk−γ−1)

e
(
af(y)/pk

) ∑
z (pγ+1)

e (a∇f(y).z/pγ+1)︸ ︷︷ ︸
=0 for ∇f(y)6≡0 (pγ+1)

.

So only terms with ∇f(x) ≡ 0 (mod pγ+1) contribute to the sum.

Due to the non-singularity of f and pγ+1 - 6D, there are no primitive solutions to
∇f(x) ≡ 0 (mod pγ+1) with (x; p) = 1. So only terms with x ≡ 0 (mod p) are left
and it is enough to sum over x of the form x = py with y (mod pk−1). Furthermore
we have f(py) = p3f(y) and get

S(pk, a,0) =
∑

y (pk−1)

e
(
af(py)/pk

)
=

∑
y (pk−1)

e
(
af(y)/pk−3

)
.

Again splitting y = y1 + pk−3y2 and using f(y1 + pk−3y2) ≡ f(y1) (mod pk−3) yields
the desired result

S(pk, a,0) =
∑

y1 (pk−3)

∑
y2 (p2)

e
(
af(y1 + pk−3y2)/pk−3

)
=

∑
y1 (pk−3)

e
(
af(y1)/pk−3

) ∑
y2 (p2)

1

= p2sS(pk−3, a,0). �
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Using this we can formulate the general bound as follows.

Lemma 4.9. For (a; q) = 1 we have

|S(q, a,0)| � q
2
3
s+ε.

Proof. For q = 1 the Lemma is trivial. The case q = p prime is handled by Deligne
[14, Theorem 8.4], as well as Lemma 4.4. The case q = p2 follows directly from
Lemma 4.5 . For q = pk with k > 2 we may apply Lemma 4.8 for all p - 6D to
recursively reduce to one of the cases above. For the remaining finitely many p, we
can apply Lemma 4.8 as long as k > 2γ + 1 and for the remaining finitely many
k ≤ 2γ + 1 the Lemma holds trivially. For q consisting of different prime powers, we
can use Lemma 4.3 to reduce to the cases above. �

4.2 Major Arcs

Note that for α ∈M the summation over m in Lemma 4.1 is restricted to only one
summand, namely m = 0, so the integral over the major arcs (2.11) can be written
as∫
M

S(α)e (−αn) dα =
∑
q≤Q

q−s
q∑

a=1

∗
S(q, a,0)e (−an/q)

∫
|β|≤QB−3

I(0, β)e (−βn) dβ + O(1).

(4.3)

We can estimate the error from completing the integral using Lemma 4.2 as

�
∞∫

QB−3

|I(0, β)| dβ � B−
s
2

+ε

∞∫
QB−3

|β|−
s
2 dβ � Bs−3+εQ−

s
2

+1,

which produces a total error

∑
q≤Q

q−s
q∑

a=1

∗
|S(q, a,0)|

∞∫
QB−3

|I(0, β)| dβ � Bs−3+εQ−
s
2

+3,

where we have used the trivial bound |S(q, a,0)| ≤ qs. This is satisfactory for s ≥ 7.
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Now it is again a rather standard substitution (as in [13, §16] similar to section 3.2.2)
to rewrite the integral in the form J(B−3n)Bs−3, where

J(ν) =

∫
R

e (−βν)

∫
Rs

e (βf(x)) w(x) dx dβ

is the singular integral. Which is a continuous function in ν and J(1) can be inter-
preted as suitable volume of the set {f(x) = 1,x ∈ Rs}, which is non-zero, since f is
homogeneous of odd degree and therefore has no real obstructions. So for suitably
small τ > 1, we can ensure that J(B−3n)� 1 uniformly in n ∈ ẼN = [N, τN ] ∩ E .

Next we want to complete the sum over q in (4.3). Therefore we write

An(q) = q−s
q∑

a=1

∗
S(q, a,0)e (−an/q) .

As in section 3.2.1 we get

An(q) = ϕ(q)−1q−s
q∑

a=1

∗
S(q, a,0)U(q, an)

� q−
s
3

+ 1
2

+ε (q;n) ,

using Lemma 4.9.

So the error on completing the sum is∑
q>Q

q−s

∣∣∣∣∣
q∑

a=1

∗
S(q, a,0)e (−an/q)

∣∣∣∣∣�∑
q>Q

q−
s
3

+ 1
2

+ε (q;n)� Q−
s
3

+ 3
2

+εnε,

which is satisfactory for s ≥ 5. With exactly the same arguments that lead to
Lemma 3.5 in section 3.2.1, we find that the singular series

S(n) =
∑
q

q−s
q∑

a=1

∗
S(q, a,0)e (−an/q)

is � n−ε for almost all n ≤ N , as long as there are no p-adic obstructions.

We sum up what we have found as the main result for this chapter.

Lemma 4.10. For s ≥ 7 we have∫
M

S(α)e (−αn) = S(n)J(B−3n)Bs−3 + O
(
Bs−3− θ

2
+ε
)
,

where the singular series S(n) � nε and the singular integral J(B−3n) � 1 for
almost all n ∈ EN without p-adic obstructions.
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4.3 Minor Arcs

To treat the minor arc integral (2.12), we apply Dirichlet’s approximation theorem
and write α ∈ m as α = a/q + β, where (a; q) = 1, q ≤ Q̂ and |β| ≤ (qQ̂)−1, which
will be optimal for the parameter Q̂ = B

3
2 .

Note that α ∈ m implies q > Q or |β| > QB−3, which will be indicated by ? in the
following integration over β.

We get ∫
m

|S(α)|
4
3 dα�

∑
q≤Q̂

q∑
a=1

∗
?∫

β

|S(a/q + β)|
4
3 dβ .

It will be convenient to split the summation over q into O(logB) intervals of the form
R < q ≤ 2R. So we can bound the minor arc integral by

� Bε max
R≤Q̂

∑
q∼R

q∑
a=1

∗
?∫

β

|S(a/q + β)|
4
3 dβ . (4.4)

Now follows a discussion of the various ranges for R and β.

We begin by considering the case |β| ≤ B−3. Note that being on the minor arcs, we
have R > Q.

Applying Hölder’s inequality to (4.4), we get

� B−1+ε max
Q<R≤Q̂

R
2
3

∑
q∼R

q∑
a=1

∗
∫

|β|≤B−3

|S(a/q + β)|2 dβ


2
3

. (4.5)

Expanding the squares, we find that |S(α)|2 = S2(α), where S2 is the exponential sum
corresponding to the polynomial g(x,y) = f(x) − f(y) ∈ Z[x1, . . . , xs, y1, . . . , ys] in
2s variables. Note that g is non-singular again, therefore we may use all our previous
results with s replaced by 2s for g instead of f .

Applying Lemma 4.1 to S2(α), we get

S2(a/q + β) = q−2s
∑
|m|≤M

S2(q, a,m)I2(m/q, β) + O(1),
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where S2(q, a,m) and I2(ν, β) are defined to correspond to g instead of f accord-
ingly.

The contribution coming from the error term O(1) to (4.5) is negligible and we find
that these ranges of the minor arcs can be estimated by

� B−1+ε max
Q<R≤Q̂

R
2
3

∑
q∼R

q−2s
∑
|m|≤M

q∑
a=1

∗
S2(q, a,m)

∫
|β|≤B−3

I2(m/q, β) dβ


2
3

(4.6)

� B
4
3
s−3+ε max

Q<R≤Q̂
R

2
3

∑
q∼R

q−2s
∑

0<|m|≤M

∣∣∣∣∣
q∑

a=1

∗
S2(q, a,m)

∣∣∣∣∣
 2

3

, (4.7)

using the trivial bound B2s from Lemma 4.2 for I2(m
q
, β).

The term with m = 0 is reminiscent of the major arc approximation and shall be
treated first.

Here S2(q, a,0) can be bounded by Lemma 4.9. The contribution is

� B
4
3
s−3+ε max

Q<R≤Q̂
R2− 4

9
s

� B
4
3
s−3+εQ

18−4s
9 ,

which is satisfactory for s ≥ 5.

For the terms with m 6= 0 in (4.7), we have |m| ≤M � qB−1+ε by (4.2), so we only
have to consider the q � B, which will contribute

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

∑
q∼R

q−2s
∑

0<|m|≤M

∣∣∣∣∣
q∑

a=1

∗
S2(q, a,m)

∣∣∣∣∣
 2

3

.

We write
q = q1q2q3, (4.8)

where q1, q2, q3 are pairwise co-prime, q1 is square-free, q2 is the square of a square-
free number and q3 contains all prime factors that occur at least to the power 3 in q.
Using the multiplicativity of S2 in Lemma 4.3 , we get∣∣∣∣∣

q∑
a=1

∗
S2(q, a,m)

∣∣∣∣∣�
∣∣∣∣∣
q1∑

a1=1

∗
S2(q1, a1,m)

∣∣∣∣∣
∣∣∣∣∣
q2∑

a2=1

∗
S2(q2, a2,m)

∣∣∣∣∣
∣∣∣∣∣
q3∑

a3=1

∗
S2(q3, a3,m)

∣∣∣∣∣ .
(4.9)
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The three summands can be estimated using Lemmata 4.4 to 4.7.

For the moment, we restrict our attention to those m in (4.7), with g∗(m) 6= 0. We
employ Lemmata 4.4 and 4.5 together with (4.9) and get the bound

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

∑
q∼R

(q1q2)−s+
1
2 q−2s

3

∑
0<|m|≤M

(q1q2; g∗(m))
1
2

∣∣∣∣∣
q3∑
a=1

∗
S2(q3, a,m)

∣∣∣∣∣
 2

3

.

As in (3.6), the gcd only contributes qε, when summed over q. For the innermost
sum we use Lemma 4.6 and are left with

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

(∑
q∼R

(q1q2)−s+
1
2

+εq1−s+ε
3 (q

2
3
s

3 +M2s)

) 2
3

. (4.10)

The terms involving q3 contribute

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

(∑
q∼R

(q1q2)−s+
1
2

+εq
1− 1

3
s+ε

3

) 2
3

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

(
R

4
3
− 1

3
s+ε
) 2

3

� B
4
3
s−3+ε max

B<R≤Q̂
R

14
9
− 2

9
s+ε

� B
4
3
s−3− 2

9
+ε,

for s ≥ 8.

The terms involving M contribute

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

(∑
q∼R

(q1q2)−s+
1
2

+εq1−s+ε
3 (qB−1+ε)2s

) 2
3

� B−3+ε max
B<R≤Q̂

R
2
3

(∑
q∼R

(q1q2)s+
1
2

+εq1+s+ε
3

) 2
3

� B−3+ε max
B<R≤Q̂

R
2
3
s+ 5

3
+ε

� B−3+εQ̂
2
3
s+ 5

3
+ε � B

4
3
s−3− 2s−15

6
+ε � B

4
3
s−3− 1

6
+ε,

for s ≥ 8.
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For the remaining m in (4.7) with g∗(m) = 0 we proceed similarly, but instead of
only using Lemma 4.6 we can also employ Lemma 4.7 and get the bound

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

∑
q∼R

(q1q2)−s+1q−2s
3

∑
0<|m|≤M
g∗(m)=0

∣∣∣∣∣
q3∑
a=1

∗
S2(q3, a,m)

∣∣∣∣∣


2
3

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

(∑
q∼R

(q1q2)−s+1 min(q1−s+ε
3 (q

2
3
s

3 +M2s), q
1
2

+ε

3 + q
4
3
−s+ε

3 M2s−3)

) 2
3

.

(4.11)

First we consider the term q
1− 1

3
s

3 in the minimum. Its contribution is

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

(∑
q∼R

(q1q2)−s+1q
1− 1

3
s

3

) 2
3

� B
4
3
s−3+ε max

B<R≤Q̂
R

14−2s
9

� B
4
3
s−3+ 14−2s

9
+ε

� B
4
3
s−3− 2

9
+ε,

for s ≥ 8.

Next we investigate the term q
4
3
−s+ε

3 M2s−3, this contributes

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

(∑
q∼R

(q1q2)−s+1q
4
3
−s+ε

3 (qB−1)2s−3

) 2
3

� B−1+ε max
B<R≤Q̂

R
2
3

(∑
q∼R

(q1q2)s−2q
− 5

3
+s+ε

3

) 2
3

� B−1+ε max
B<R≤Q̂

R
2
3
s

� B−1+εQ̂
2
3
s

� B
4
3
s−3+ 6−s

3
+ε,

which is satisfactory for s ≥ 7.

What remains is to consider the terms with

min(q1−s+ε
3 M2s, q

1
2

+ε

3 )� min(q1−s+ε
3 (qB−1+ε)2s, q

1
2

+ε

3 )

� (q1−s+ε
3 (qB−1+ε)2s)A(q

1
2

+ε

3 )1−A.
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These contribute

� B
4
3
s−3+ε max

B<R≤Q̂
R

2
3

(∑
q∼R

(q1q2)−s+1(q1−s+ε
3 (qB−1+ε)2s)A(q

1
2

+ε

3 )1−A

) 2
3

� B
4
3
s−3− 4

3
As+ε max

B<R≤Q̂
R

2
3

(∑
q∼R

(q1q2)−s+1+2Asq
1
2
A+ 1

2
+As+ε

3

) 2
3

.

It turns out that the optimal choice for A is A = 1− 4
6s−3

, which leads to

� B
4
3
s−3− 4

3
(1− 4

6s−3
)s+ε max

B<R≤Q̂
R

2
3

(
Rs+ 2

3
− 4

6s−3

) 2
3

� B
4
3
s−3− 4

3
(1− 4

6s−3
)s+ε max

B<R≤Q̂
R

2
3
s+ 10

9
− 2

3s−1

� B
4
3
s−3− 4

3
(1− 4

6s−3
)s+εQ̂

2
3
s+ 10

9
− 2

3s−1

� B
4
3
s−3− 4

3
(1− 4

6s−3
)s+εBs+ 5

3
− 3

3s−1

� B
4
3
s−3− 23−3s

9
− 4

18s−9
+ε

� B
4
3
s−3− 1

9
+ε,

for s ≥ 8.

We split the remaining range for β into O(logB) intervals of the form φ < |β| ≤ 2φ.
And again apply Hölder’s inequality and Lemma 4.1, to get the analog of (4.6) as

� max
R,φ

(
R2φ

) 1
3

∑
q∼R

q−2s
∑
|m|≤M

q∑
a=1

∗
S2(q, a,m)

∫
β∼φ

I2(m/q, β) dβ

 2
3

� B−
2
3
s+ε max

R,φ
R

2
3φ−

2
3
s+1

∑
q∼R

q−2s
∑
|m|≤M

∣∣∣∣∣
q∑

a=1

∗
S2(q, a,m)

∣∣∣∣∣
 2

3

, (4.12)

where the innermost integral has been estimated by Lemma 4.2 to be� B−s+εφ−s+1,
and the maximum ranges over all R ≤ Q̂ and B−3 < φ ≤ 1

RQ̂
, such that not both

R < Q and φ < QB−3 hold simultaneously.

Next we want to estimate the contribution of the B−3 < φ ≤ QB−3 and thus we have
R > Q.
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For the term with m = 0 we use Lemma 4.9 to bound S2(q, a,0) and get a contribu-
tion

� B−
2
3
s+ε max

R,φ
R−

4
9
s+2φ−

2
3
s+1 (4.13)

� B
4
3
s−3+εQ

18−4s
9 ,

which is satisfactory for s ≥ 5.

For the terms with m 6= 0 in (4.12), we have |m| ≤ M � RφB2+ε by (4.2). Again
dividing into the m with g∗(m) 6= 0 and those with g∗(m) = 0, the sum over q can
be estimated by multiplicativity and the Lemmata from chapter 4.1 as

∑
q∼R

q−2s
∑
|m|≤M
g∗(m)6=0

∣∣∣∣∣
q∑

a=1

∗
S2(q, a,m)

∣∣∣∣∣�∑
q∼R

(q1q2)−s+
1
2

+εq1−s+ε
3 (q

2
3
s

3 +M2s) (4.14)

�
∑
q∼R

(q1q2)−s+
1
2

+εq1−s+ε
3 (q

2
3
s

3 + (RφB2+ε)2s)

� R
4
3
− 1

3
s +R

3
2

+sφ2sB4s+ε, (4.15)

similar to (4.10), where we have written q = q1q2q3 as in (4.8).

Inserting (4.15) into (4.12), we see that the contribution from m with g∗(m) 6= 0 is

� B−
2
3
s+ε max

R,φ
R

2
3φ−

2
3
s+1
(
R

4
3
− 1

3
s +R

3
2

+sφ2sB4s+ε
) 2

3 (4.16)

� B−
2
3
s+ε max

R,φ
(R

14−2s
9 φ−

2
3
s+1 +R

5
3

+ 2
3
sφ

2
3
s+1B

8
3
s+ε)

� B
4
3
s−3+εQ

14−2s
9 +B−3+εQ̂

5
3

+ 2
3
sQ

2
3
s+1

� B
4
3
s−3+εQ

14−2s
9 +Bs− 1

2
+εQ

2
3
s+1

� B
4
3
s−3+εQ

14−2s
9 +B

4
3
s−3+ε+ 15−2s

6 Q
2
3
s+1.
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For m with g∗(m) = 0, we get

∑
q∼R

q−2s
∑
|m|≤M
g∗(m)=0

∣∣∣∣∣
q∑

a=1

∗
S2(q, a,m)

∣∣∣∣∣
�
∑
q∼R

(q1q2)−s+1 min(q1−s+ε
3 (q

2
3
s

3 +M2s), q
1
2

+ε

3 + q
4
3
−s+ε

3 M2s−3)

�
∑
q∼R

(q1q2)−s+1q
1− 1

3
s+ε

3 (4.17)

+
∑
q∼R

(q1q2)−s+1q
4
3
−s+ε

3 (RφB2+ε)2s−3 (4.18)

+
∑
q∼R

(q1q2)−s+1 min(q1−s+ε
3 (RφB2+ε)2s, q

1
2

+ε

3 ), (4.19)

as in (4.11).

The contribution of the summand (4.17) to (4.12) is

� B−
2
3
s+ε max

R,φ
R

2
3φ−

2
3
s+1

(∑
q∼R

(q1q2)−s+1q
1− 1

3
s+ε

3

) 2
3

� B−
2
3
s+ε max

R,φ
R

2
3φ−

2
3
s+1
(
R

4−s
3

) 2
3

� B−
2
3
s+ε max

R,φ
R

14−2s
9 φ−

2
3
s+1

� B−
2
3
s+ε max

R,φ
R

14−2s
9 φ−

2
3
s+1 (4.20)

� B
4
3
s−3+εQ

14−2s
9 .

The contribution of the summand (4.18) to (4.12) is

� B−
2
3
s+ε max

R,φ
R

2
3φ−

2
3
s+1

(∑
q∼R

(q1q2)−s+1q
4
3
−s+ε

3 (RφB2+ε)2s−3

) 2
3

� B2s−4+ε max
R,φ

R
2
3
sφ

2
3
s−1 (4.21)

� B−1+εQ̂
2
3
sQ

2
3
s−1

� B
4
3
s−3+ 6−s

3
+εQ

2
3
s−1,

which is satisfactory for s ≥ 7 and θ small enough.
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The minimum in (4.19) is

min(q1−s+ε
3 M2s, q

1
2

+ε

3 )� min(q1−s+ε
3 (RφB2+ε)2s, q

1
2

+ε

3 )

� (q1−s+ε
3 (RφB2+ε)2s)A(q

1
2

+ε

3 )1−A.

So its contribution to (4.12) is

� B−
2
3
s+ε max

R,φ
R

2
3φ−

2
3
s+1

(∑
q∼R

(q1q2)−s+1(q1−s+ε
3 (RφB2+ε)2s)A(q

1
2

+ε

3 )1−A

) 2
3

� B−
2
3
s+ 8

3
As+ε max

R,φ
R

2
3φ−

2
3
s+ 4

3
As+1

(∑
q∼R

(q1q2)−s+2As+1q
1
2
A+As+ 1

2
3

) 2
3

.

Choosing A = 1− 4
6s−3

as above, leads to

� B2s− 16
9
− 16

18s−9
+ε max

R,φ
R

2
3
s+ 10

9
− 8

18s−9φ
2
3
s+ 1

9
− 8

18s−9 (4.22)

� B−
19
9

+ 8
18s−9

+εQ̂
2
3
s+ 10

9
− 8

18s−9Q
2
3
s+ 1

9
− 8

18s−9

� B
4
3
s−3+ 23−3s

9
+ 4

18s−9
+εQ

2
3
s+ 1

9
− 8

18s−9 ,

which is satisfactory for s ≥ 8.

We finish our estimates by considering the remaining range QB−3 < φ ≤ 1

RQ̂

in (4.12).

As in (4.13) the term with m = 0 contributes

� B−
2
3
s+ε max

R,φ
R−

4
9
s+2φ−

2
3
s+1

� B
4
3
s−3+εQ

3−2s
3 .

For the terms m 6= 0 we have |m| ≤M � RφB2+ε as before. So the contribution of
the m with g∗(m) 6= 0 can be bound as in (4.16) by

� B−
2
3
s+ε max

R,φ
R

2
3φ−

2
3
s+1
(
R

4
3
− 1

3
s +R

3
2

+sφ2sB4s+ε
) 2

3

� B
4
3
s−3+εQ

3−2s
3 +B2s+ε max

R
R

5
3

+ 2
3
s(RQ̂)−

2
3
s−1

� B
4
3
s−3+εQ

3−2s
3 +B2s+ε max

R
R

2
3 Q̂−

2
3
s−1

� B
4
3
s−3+εQ

3−2s
3 +B2s+εQ̂−

2
3
s− 1

3

� B
4
3
s−3+εQ

3−2s
3 +B

4
3
s−3+ 15−2s

6
+ε,

which is satisfactory for s ≥ 8.
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Finally, the contribution of the m with g∗(m) = 0 can be bound as in (4.20) by

� B−
2
3
s+ε max

R,φ
R

14−2s
9 φ−

2
3
s+1

� B−
2
3
s+ε(QB−3)−

2
3
s+1

� B
4
3
s−3+εQ

3−2s
3 ,

and as (4.21) by

� B2s−4+ε max
R,φ

R
2
3
sφ

2
3
s−1

� B2s−4+ε max
R

R
2
3
s(RQ̂)−

2
3
s+1

� B2s−4+εQ̂−
2
3
s+2

� B
4
3
s−3+ 6−s

3
+ε

and as (4.22) by

� B2s− 16
9
− 16

18s−s+ε max
R,φ

R
2
3
s+ 10

9
− 8

18s−9φ
2
3
s+ 1

9
− 8

18s−9

� B2s− 16
9
− 16

18s−s+εQ̂−
2
3
s− 1

9
+ 8

18s−9 max
R

R

� B
4
3
s−3− 23−3s

9
− 4

18s−9
+ε

� B
4
3
s−3− 1

9
+ε.

On choosing θ = 19
892

, we find that all error terms are � B
4
3
s−3− 19

4014
+ε and we can

collect the results as

Lemma 4.11. The minor arc contribution is∫
m

|S(α)|
4
3 dα� B

4
3
s−3−δ,

where 0 < δ < 19
4014

.

4.4 Conclusion

Using Lemma 4.10, we can deduce the major arc estimate∫
M

S(α)e (−αn) dα� Bs−3−ε.

for almost all n ∈ A, without p-adic obstructions.
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Together with the minor arc estimate Lemma 4.11 we can use our Prototype Theo-
rem 2.2 to immediately deduce Theorem 1.2.

In order to improve further on the number of variables, Hooley [17] and more recently
in [18] and [19] makes use of cancellation in the exponential sums when averaged over
certain ranges. Unfortunately, inherent in our method, we have to estimate the
minor arc integral over the absolute value of the exponential sum, therefore it is not
possible to apply results, which depend for example on cancellations occurring in the

summation
q∑

a=1

∗S(q, a). In order to make use of those results, it seems more promising

to work directly on the exponential sum corresponding to the form f and the quadratic
polynomial q, instead of splitting them up, as in the method presented here. However
it might be possible to generalize Theorem 1.2 to arbitrary cubic polynomials f , where
the homogeneous cubic part f0 is non-singular, as in [3]. Also, it might be possible
to apply the method to cubic forms that split and get corresponding results to the
ones by Browning [2].
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5 Quartic Forms

As another application of our Prototype Theorem 2.2, we want to investigate the
representation of n ∈ A = {q(y) : y ∈ Z} ∩N by absolutely irreducible quartic forms
f ∈ Z[x1, . . . , xs] and prove Theorem 1.3.

5.1 Preparations

The general setup for the circle method will be the same as in [4, §8] and will be
stated briefly. We choose the smooth weight

ω(t) =

{
exp( −1

1−t2 ) for |t| < 1,

0 otherwise,

and define
w(x) := ω(ρ−1 |x− x0|) and wB(x) := w(xB−1), (5.1)

as in chapter 4.

For a small parameter 0 < θ < 1
5
, we set Q = Bθ and define the major arcs by

M :=
⋃
q≤Q

q⋃
a=1

∗
[
a

q
−B−4Q,

a

q
+B−4Q

]
,

and the corresponding minor arcs as m := [0, 1) \M modulo 1.

As in the chapters before, the main task will be to provide the necessary major and
minor arc estimates (2.11) and (2.12).

5.2 Major Arcs

In order to estimate∫
M

S(α)e (−αn) dα =
∑
q≤Q

q∑
a=1

∗
∫

|β|≤B−4Q

S(a/q + β)e (−(a/q + β)n) dβ , (5.2)
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we sort the summation over x occurring in S(α) by residue classes modulo q using
the transformation x→ x + qk as follows.

S(a/q + β) =
∑
x (q)

∑
k∈Zs

e ((a/q + β)f(x + qk)) wB(x + qk)

=
∑
x (q)

e (af(x)/q)
∑
k∈Zs

e (βf(x + qk)) wB(x + qk) . (5.3)

Next, we want to replace the summation over k ∈ Zs by an integration over t ∈ Rs.
Therefore we define h(k) = e (βf(x + qk)) wB(x+ qk) and note that for y ∈ [0, 1]s

h(k + y) = h(k) + O

(
max

y∈[0,1]s
|∇h(k + y)|

)
.

So the error in replacing the summation by an integration is∣∣∣∣∣∣
∫
Rs

h(t) dt−
∑
kinZs

h(k)

∣∣∣∣∣∣� meas(B) max
t∈B
|∇h(t)|

�
(
B

q

)s
(qB−1 + q |β|B3)

� |β| q1−sBs+3 + q1−sBs−1 ,

where B is an s-dimensional cube with sides of order � qB−1.

Inserting this into (5.3) and making the change of variables x + qk→ Bt, we get

S(a/q + β) = Bsq−sS(q, a)

∫
Rs

e (βB4f(t)) w(t) + O
(
|β| qBs+3 + qBs−1

)
,

where S(q, a) =
q∑

x=1

∗e (af(x)/q) and the error term is O
(
Bs−1+2θ

)
, since |β| ≤ B−4+θ

and q ≤ Bθ on the major arcs.

Hence, the right-hand side of (5.2) becomes

Bs
∑
q≤Q

q−s
q∑

a=1

∗
S(q, a)e (−an/q)

∫
|β|≤B−4Q

∫
Rs

e (β(B4f(t)− n)) w(t) dt dβ + O
(
Bs−5+5θ

)
,

on noting that the major arcs have a measure O
(
B−4+3θ

)
contributing to the error

term.
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Finally the transformation β → B−4β leads to∫
M

S(α)e (−αn) dα = Bs−4
∑
q≤Q

q−s
q∑

a=1

∗
S(q, a)e (−an/q)

∫
|β|≤Q

I(β) dβ + O
(
Bn−5+5θ

)
= Bs−4S(Q, n)J(Q, n) + O

(
Bn−5+5θ

)
,

where
I(β) =

∫
e (β(f(t)− nB−4)) w(t) dt

and the the finite versions of the singular series and the singular integral are defined
as

S(Q, n) =
∑
q≤Q

q−s
q∑

a=1

∗
S(q, a)e (−an/q) and J(Q, n) =

∫
|β|≤Q

I(β) dβ .

5.2.1 Singular Series

To see the absolute convergence S(Q)→ S of the singular series

S(Q) =
∑
q≤Q

q−s
q∑

a=1

∗
S(q, a)e (−an/q) =:

∑
q≤Q

An(q),

we proceed as in section 3.2.1.

Here (3.5) becomes

An(q) = q−sϕ(q)−1

q∑
a=1

∗
S(q, a)U(q, an) (5.4)

� q−s+
1
2

+ε (q;n)
1
2 max

(a;q)=1
|S(q, a)| , (5.5)

using Lemma 3.4.

Now we can write q = uv, where (u; v) = 1 and u is the square-free part of q. This
allows us to use [4, Lemma 7], which we state as

Lemma 5.1. For u ∈ N square-free and (u; a) = 1, we have

S(u, a)� u(s+σ+1)/2+ε ,

together with [4, eq. (6.11)], which we state as
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Lemma 5.2. For arbitrary q ∈ N and (q; a) = 1, we have

S(q, a)� q(23s+σ+1)/24+ε .

Since An(q) is a multiplicative function in q, (5.5) yields

An(q)� q−s+
1
2

+ε (q;n)
1
2 u(s+σ+1)/2+εv(23s+σ+1)/24+ε .

So the tail of the singular series can be estimated as∑
q>Q

|An(q)| �
∑

uv>Q,(u;v)=1
u square-free
v square-full

u(−s+σ+2)/2+ε (u;n)
1
2 v(−s+σ+13)/24+ε (v;n)

1
2

� Q−
1
24

∑
uv>Q,(u;v)=1
u square-free
v square-full

u−2v−
13
24 (uv;n)

1
2 → 0

for s − σ ≥ 26. The sum being convergent, since the number of square-full integers
v ≤ V is O

(
V

1
2

)
and the gcd only contributes nε as in (3.6).

With exactly the same arguments that lead to Lemma 3.5 in section 3.2.1, we find
that the singular series is S(n)� n−ε for almost all n ≤ N , as long as there are no
p-adic obstructions.

5.2.2 Singular Integral

Browning and Heath-Brown establish the absolute convergence of J(Q, n)→ J(B−4n)
for s− σ ≥ 26 and get∫

M

S(α)e (−αn) dα = Bs−4S(n)J(B−4n) + O
(
Bs−4−δ)

for some δ > 0 in [4, §10,Lemma 23]. Note that the additional factor e (−αn),
which appears here, does no harm and the analog proof applies to our situation
at hand, uniformly in n. The arguments that show J(B−4n) � 1 uniformly in
n ∈ ẼN = [N, τN ] ∩ E in (3.8) are still valid and we can conclude

Lemma 5.3. For s−σ ≥ 26 and almost all n without p-adic obstructions, the major
arc integral fulfills ∫

M

S(α)e (−αn) dα� Bs−4−ε .
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5.3 Minor Arcs

To treat the minor arc integral (2.12), we apply Dirichlet’s approximation theorem
and write α ∈ m as α = a/q + β, where (a; q) = 1, q ≤ Q̂ and |β| ≤ (qQ̂)−1, where
Q̂ = B

8
5

+φ and φ > 0.

This is the point, where Browning and Heath-Brown improve on the work of Birch by
using van der Corput’s method to come up with an alternative bound for S(a/q+β).
Therefore the range of integration is split up according to the approximation α =
a/q+β above. Note that α ∈ m implies q > Q or |β| > QB−4, which will be indicated
by ? in the following integration over β.

∫
m

S(α) dα =
∑
q≤Q̂

q∑
a=1

∗
?∫

β

S(a/q + β) dβ .

For R < q ≤ 2R and t < |β| ≤ 2t the authors provide bounds Υ(R, t) on

Σ(R, t,±) =
∑

R<q≤2R

q∑
a=1

∗
∫

t<|β|≤2t

|S(a/q + β)| dβ �
∑

R<q≤2R

RtΥ(R, t) .

Namely [4, Lemma 22], which we slightly reformulate as

Lemma 5.4. We have

Υ(R, t)� Bs+ε
(
Q̂B−9/5 + µ

)(s−σ−1)/2

,

where µ = min

(
R

5/7
1

R3/7 +R
2/5
1 t1/5B1/5 +

R
1/2
1

B1/2 ,
R

1/2
1 R

1/4
2

R3/8

)
and R1,R2 and R3 stem from

splitting q = r1r
2
2r3 with r1 =

∏
pe‖q
e≤2

pe, r3 =
∏
pe‖q
e≥3,2-e

p and restricting ri ∼ Ri.

For some ranges of R and t this bound is better than the one obtained by iterated
Weyl Differencing [4, Lemma 21], which we state as

Lemma 5.5. For t > (RB2)−1 we have

Υ(R, t)� Bs+ε (Rt)(s−σ−1)/24 ,

while for t ≤ (RB2)−1 we have

Υ(R, t)� Bs−(s−σ−1)/6+ε (Rt)−(s−σ−1)/24 .

37



It takes quite a lengthy calculation to balance both contributions and get an optimal
bound. We do not want to redo the similar calculations for our case, but rather
inspect the structure of the argument to see what it produces in out situation.

Note that both Lemma 5.4 and Lemma 5.5 are of the form

Υ(R, t)� Bs+εΨ(R, t)(s−σ−1) (5.6)

where Ψ(R, t) is such, that∑
R<q≤2R

RtBs+εΨ(R, t)(s−σ−1) � Bs−4−δ,

for all R and t under consideration and some δ > 0 as long as s − σ ≥ 42. In other
words Ψ(R, t) provides a saving of the form∑

R<q≤2R

RtΨ(R, t)41 � B−4−δ . (5.7)

In our case, we have to estimate

∫
m

|S(α)|
4
3 dα =

∑
q≤Q̂

q∑
a=1

∗
?∫

β

∣∣∣S(a
q

+ β)
∣∣∣ 43 dβ

� Bε max
R≤Q̂

∑
R<q≤2R

q∑
a=1

∗
?∫

β

∣∣∣S(a
q

+ β)
∣∣∣ 43 dβ .

Note that there are only O(logB) intervals [R, 2R] up to Q̂, so we can restrict the
sum over q to one such interval at the cost of Bε.

The ranges |β| ≤ B−4−δR−2 are now easily estimated as

∑
R<q≤2R

q∑
a=1

∗
∫

|β|≤B−4−δR−2

∣∣∣S(a
q

+ β)
∣∣∣ 43 dβ � R2B−4−δR−2B

4
3
s = B

4
3
s−4−δ,

by using the trivial bound |S(α)| � Bs.

The remaining ranges |β| > B−4−δR−2 can be split into O(logB) intervals [t, 2t] at
the cost of Bε and using (5.6) we arrive at
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∑
R<q≤2R

q∑
a=1

∗
∫

t<|β|≤2t

∣∣∣S(a
q

+ β)
∣∣∣ 43 dβ � ∑

R<q≤2R

RtΥ(R, t)
4
3

� B
4
3
s+ε

∑
R<q≤2R

RtΨ(R, t)
4
3

(s−σ−1) .

For s − σ ≥ 32 the sum produces a saving of at least B−4−δ according to (5.7) and
we get

Lemma 5.6. For s− σ ≥ 32 we have the minor arc estimate∫
m

S(α) dα� B
4
3
s−4−δ+ε .

Note that we needed 4
3
(s− σ − 1) ≥ 41, which is equivalent to s− σ ≥ 31.75 instead

of s − σ ≥ 3
4
· 42 = 31.5. Luckily this small loss does not increase the number of

variables needed.

5.4 Conclusion

The Prototype Theorem 2.2 together with Lemma 5.3 and Lemma 5.6 complete the
proof of Theorem 1.3.

Here the available estimates for the exponential sum S(α) were good enough to carry
enough savings through our method to reduce the number of variables needed to
represent almost all n to 3

4
times the number of variables needed for the representation

of 0. This was possible because the provided bounds were somewhat “pointwise”
bounds on |S(a/q + β)| for q ∼ R and β ∼ t.
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6 Conclusion

Instead of requiring the explicit major arc and minor arc estimates in Theorem 2.2
it would be nice to reformulate the Prototype-Theorem as

(Desired) Heuristic 6.1. Let C ⊂ Z[x1, . . . , xs] be a class of polynomials of degree
d. If we can prove a theorem, stating that for each f ∈ C the equation f(x) = 0 has
non-trivial solutions as soon as s ≥ s0 by providing an asymptotic formula for the
major arc integral of the form∫

M

S(α) dα = SJBs−d + O(Bs−d−δ)

and a minor arc estimate of the form∫
m

|S(α)| dα� Bs−d−δ, (6.1)

then almost all n ∈ A are represented by f ∈ C as long as s ≥ 3
4
s0 and there are no

real or p-adic obstructions.

This would be possible, if the estimates roughly came from estimates for α ∈ m of
the form |S(α)| � B(1−γ)s, such that γs0 > d. As then

|S(α)|
4
3 � B

4
3

(1−γ)s = o(B
4
3
s−d),

for s > 4
3
s0.

But unfortunately the more recent applications of the circle method often do not
provide such estimates for the absolute value |S(α)| point-wise, but rather rely on
some additional cancellation on averaging over S(α) for certain ranges of α. In some
cases those estimates are only provided under additional assumptions and geometric
arguments are used to find at least one solution to f(x) = 0 if the assumptions do
not hold.

So in practice the Heuristic 6.1 could not be applied directly and some more work
has to be done to follow the technical arguments in detail and provide the necessary
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estimates for Theorem 2.2, as worked out in chapter 4 and chapter 5 for the case
d = 3 and d = 4 respectively.

Finally, one may ask, what happens for arbitrary sets A ⊂ N of size |AN | ∼ N
1
k ,

k ≥ 2. We want to give a quick heuristic for the number of variables needed by
using the method presented before. Therefore we assume that we were able to prove
the major arc estimates of our Prototype Theorem 2.2 for some class of polynomials
f ∈ Z[x1, . . . , xs] of degree d. For α ∈ m additionally we assume to have estimates of
the form |S(α)| � B(1−γ)s mentioned above. In this case we get

Heuristic 6.2. If s0 is the number of variables needed to prove that f(x) = 0 has
non-trivial solutions under the assumptions above (that is γ s0 > d), and A ⊂ N is
an arbitrary set of size |AN | ∼ N

1
k , k ≥ 2, then almost all n ∈ A without real or

p-adic obstructions are represented by f as soon as s ≥ 2k−1
2k

s0.

Proof. We proceed as in chapter 2 to get (2.6). Note that the additional factor
e (αn) typically gives rather big savings compared to the problem with n = 0. So the
major arc estimates usually should carry through with the help of Lemma 3.4.

As we do not know more about the structure of the set A, we just use the Cauchy-
Schwarz inequality and get

|EN | � B−s+d+ε

∫
m

|S(α)K(α)| dα

� B−s+d+ε

(∫
m

|S(α)|2 dα
) 1

2
(∫ 1

0

|K(α)|2 dα
) 1

2

.

The integral on the right can be interpreted as counting the number of n1, n2 ∈ EN
with n1 = n2. Together with the bound on S(α) we have

|EN | � B−s+d+εB(1−γ)s |EN |
1
2 .

So

|EN | � B2d−2γs+ε � N2− 2
d
γs+ε.

In order to prove that this is � N
1
d
−ε, we need 2− 2

d
γs < 1

k
, so γs > 2k−1

2k
d, which is

fulfilled for s ≥ 2k−1
2k

s0.

�

So for sets A of size AN ∼ N
1
k our method should need 2k−1

2k
times the number of

variables to represent almost all n ∈ A without real or p-adic obstructions as for the
corresponding problem of representing 0.
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Besides the possible generalizations mentioned at the end of chapter 4.4, another
direction of further research might be to reduce the requirement from almost all
n ∈ A to only some n ∈ A and come up with lower bounds for the number of
elements in A that do possess a representation, as done in [8] for instance in the case
of sums of five cubes. This might lead to insights to representable sets for forms in
fewer variables than needed for the representation of almost all n ∈ A.
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