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ABSTRACT 

Filtering auditory information according to its relevance is critical to elicit the appropriate 

behavioral response. The relevance of a sound is not carried by the sound itself but rather assigned 

by the brain based on previous experience to the same or similar sounds. Although in experimental 

settings, the effects of learning on sound processing are mostly studied in the context of extensive 

training, in real life the value and meaning of many sounds is learned without explicit feedback 

(implicit auditory learning). Up to date, it is not clear at which level of the auditory pathway previous 

experience starts to contribute to sound processing of incoming information. The inferior colliculus 

(IC), located in the midbrain, is the first auditory nucleus in the auditory pathway where inputs from 

all ascending and several descending auditory nuclei converge. Moreover, it also receives 

projections from multiple non-auditory areas, which suggests that it can be modulated by multiple 

factors. Here, using a combination of behavioral, electrophysiological and molecular tools, I tested 

the hypothesis that already at the level of the IC the sensory input is influenced by implicitly learned 

auditory associations.  

To manipulate the auditory experience of animals I used the Audiobox. The Audiobox is an 

automated testing chamber, where mice live 24 hours a day, allowing continuous monitoring of 

behavior. It consists of two compartments: a home cage and a sound - attenuated corner with water 

access, separated by a long corridor. To drink, mice needed to visit the corner and the individual 

visits were detected by a transponder previously implanted in each mouse. In a group of mice, every 

visit to the corner was paired with the presentation of tone pips of a specific frequency (exposed 

group). The control group consisted of mice that lived in the Audiobox, but were not exposed to 

sound in any compartment. In the exposed group, the sound was paired with a specific action in a 

specific area (visits to the corner), hence it was the group where an implicit association could 

develop. I characterized the evoked responses from multinunit activity in the IC by performing acute 

electrophysiological recordings in anesthetized mice. I found that, after 6-12 days of sound 

exposure, the amplitude of the tuning curves were higher than the control group, also there was a 

unspecific reorganization in frequency representation. There was also an expansion of the area that 

responded to the frequency used during behavior. These changes were not due to an increase in 

the overall excitation in the auditory pathway, since no changes in sound processing were found in 

the cochlear nucleus. It has been shown that collicular plasticity depends on cortical feedback. 

However, recordings in the IC while simultaneously inactivating the cortex revealed that no cortical 

feedback is needed for the maintenance of the observed changes. The electrophysiological changes 

were paralleled at a molecular level with an increase in the excitation/inhibition ratio in collicular 

synapses, as measured by immunolabeling of VGAT and Vglut2. 
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To test the effects of sound exposure alone, without implicit learning, I performed recordings in a 

group of animals that lived in the Audiobox, and were exposed to the same sound but in a random 

way. This group also showed plasticity in the IC, also in the form of tuning curves of larger 

amplitude. However these changes were more dominant in the dorsal cortex of the IC, an area that 

did not show plasticity in the exposed group. The shift in frequency representation was visible in 

this group but smaller than the induced in the exposed group. Additionally, it did not show an 

expansion of the area responsive to the exposed sound. 

A key question is whether these plastics changes, induced by implicit learning, had an effect on 

subsequent behavioural responses or even learning. To test whether frequency discrimination at a 

behavioral level could be affected by the changes described in sound processing in the IC, I tested 

frequency discrimination acuity using pre-pulse inhibition of the acoustic startle response, whose 

expression strongly depends on the IC. Sound exposure decreased frequency discrimination acuity 

in the exposed group, but not in the random group, indicating that relevant sound exposure, unlike 

random, increased sound generalization. To test implicit auditory learning, I trained the animals in 

a two-tone discrimination sound, where the conditioned sound had been previously presented in a 

non-conditioned manner. The exposed group elicited latent inhibition, a delay in learning, while the 

random group learned the task within the first day, indicating that indeed, the exposed group had 

developed an association between the exposed sound and a neutral outcome, previous to 

conditioning.  

Together, these results strongly support the idea of a correlation between long-term collicular 

plasticity of sound processing and two behavioral readouts of frequency discrimination, supporting 

the theory that the IC is a subcortical filter of current auditory information that is adjusted by 

previous auditory experience. Implicit auditory learning has been related to the developing of 

important communication processes such as the categorization of phonemes. The work of the 

present thesis offers an animal model to study the neuronal correlates of implicit auditory learning 

and, in combination with genetic models of neurodevelopmental diseases, can contribute to the 

better understanding of the neuronal deficits underlying higher cognitive processes such as speech 

acquisition.
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1. INTRODUCTION 

Survival of any organism critically depends on its ability to adequately sense and interpret the 

environment. In mammals, sensory systems are dedicated to transform some of the features of the 

external world into a neuronal code. Each sensory system is defined by the set of features it detects. 

For example, the auditory system detects mechanical vibrations that propagates through an elastic 

medium (sounds), the visual system detects electromagnetic waves (light) and the olfactory system 

detects volatile molecules (odors). Within each sensory system, the range of detectable features is 

optimized to the specific environment of each given species. However, the anatomical organization 

of the sensory systems is well conserved across species: they consist of similar sensory epithelia 

and related neuronal structures. Within this structures, the topographic order of the sensory 

epithelia is maintained in an organized manner: neurons tuned to similar features are grouped close 

to each other (topographic sensory representations). For example, topographic representations of 

the retina, cochlea and skin have been described along their respective anatomical pathways, 

including primary cortices (Bednar & Wilson 2015; Wilson & Bednar 2015; Kanold et al. 2014).  

Sensory representations are not fixed but rather they adapt to environmental changes. A critical 

process that allows this adaptation is experience-dependent plasticity. Experience-dependent 

plasticity is defined as the ability of neurons to undergo functional and structural changes in 

response to either sensory input alone or sensory-motor loops. Probably the most dramatic 

adaptation of sensory representations occurs during critical periods. Critical periods are time 

windows in early postnatal neuronal development, in which sensory stimuli have an enhanced 

capacity to induce plastic changes in sensory systems (Katz & Shatz 1996; Berardi et al. 2000; Sale 

et al. 2014). Specifically, neurons will bias their connections and response properties to represent 

the individual’s external world. One of the most striking examples of plasticity during this period is 

the easiness with which children acquire any “mother” language they are exposed to. It is clear that 

this ability is absent for the majority of adult people (Kuhl 2010). 

Once the critical period is over, the classic view is that, during adulthood, the experience needed 

to induce plasticity of sensory representations should be related to either important natural events 

such as motherhood; or to learning-related processes, such as associative or operant learning. In 

associative learning, also referred to as classical conditioning, a conditioned stimulus (CS, e.g. a 

sound) is paired with an unconditioned stimulus (US, e.g. usually a mild electric shock), in such a 

way that an association is generated. This association can be tested behaviorally by measuring the 

reaction of the animal to the CS alone. In contrast, in operant learning, the animal must learn that 

a specific sensory stimulus predicts a reward, if stimulus presentation is followed by a specific and  

voluntarily action (Blake et al. 2006; Bao 2015). However, in real life many stimuli are associated 
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without the need of an action, be it innate or voluntary, from the animal. These implicit learning 

can affect subsequent responses to other related stimuli (De Houwer 2009; Vlahou et al. 2012). 

Implicit sensory learning is defined as the ability of a sensory stimulus to acquire behavioral 

relevance that is not derived from extensive associative or perceptual training. The ability of implicit 

learning to modify sensory representations during adulthood and its effect on subsequent learning 

has been barely explored and is the topic of the present thesis. 

Experience-dependent plasticity during adulthood has been mainly related with cortical processes 

(Lee & Whitt 2015; Medini 2014; Weinberger 2004; Kato et al. 2015). It is unlikely that plasticity 

during adulthood will generate long-term changes in the auditory epithelia, but whether it is a 

phenomenon that can be observed already in subcortical structures and the conditions under which 

this would be the case are poorly understood questions.  

The current doctoral project aims to understand better the interaction between memory and 

sensation in the auditory pathway: how the past experience of a particular auditory stimulus will 

affect the way this and related acoustic stimuli are sensed. The assumption is that to filter auditory 

information efficiently, there should be an interaction -somewhere along the auditory pathway- 

between the ascending acoustic information about a specific stimulus and its learned and expected 

behavioral relevance or meaning. 

In this work, the rodent auditory system is used as a model since it has been widely used to study 

the modifications of sensory representations during adulthood by different forms of learning 

(Weinberger 2015). Additionally, the auditory system possesses features that facilitate the 

experimental setup: it is constantly analyzing the soundscape, sounds are perceived from long 

distances and different directions (we heard what is behind us), and does not require directed 

attention, posture or fixation of any type (such as head movements or saccades in the visual 

system). In the following sections, cortical plasticity in the auditory system is described in more 

detail. Many studies explore cortical plasticity and their results have determined how we think 

about plasticity in general. This will be followed by a discussion of the few studies on subcortical 

experience-dependent plasticity, with emphasis in the inferior colliculus. Finally the scope of the 

thesis is stated.     

1.1 Experience-dependent plasticity in the auditory system 

Most studies of experience-dependent plasticity have been done in the auditory cortex. These are 

briefly reviewed here. 
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1.1.1 Cortical experience-dependent plasticity by sound exposure during early postnatal 

development 

In the core fields (primary auditory cortex and anterior auditory field) of the auditory cortex (AC), 

frequency representation is a two dimensional map along the cortical surface area (Figure 1.1). 

Primary auditory cortex (A1) is located in the caudal part of the AC and the anterior auditory field 

(AAF) is located in the rostral part. High frequencies are represented in the adjacent areas of A1 

and AAF and lower frequencies are represented more rostrally in the AAF and more caudally in A1 

(Merzenich et al. 1975; Stiebler et al. 1997; Guo et al. 2012; Hackett et al. 2011; Kato et al. 2015). 

This characteristic gradient of frequency representation has been reported in at least 20 different 

mammalian species (Kaas 2011). In mice the measured range of cortical frequency representation 

in these areas is 2-64 kHz (Stiebler et al. 1997; Guo et al. 2012). 

 

Figure 1.1: Frequency representation in the auditory cortex. Scheme of the tonotopic map of the 
core fields auditory cortex of the mouse. A1, primary auditory cortex; AAF, anterior auditory field. 
Scale bar: 0.5 mm (scheme modified from Guo et al 2012). 

During early postnatal development (P11-P25 in rats), there is a gradual refinement of frequency 

selectivity of neurons in A1, that culminates with a tonotopic map that evenly covers the hearing 

range (Zhang et al. 2002; de Villers-Sidani et al. 2007). The influence of sound exposure on auditory 

cortical representations has been widely studied during the critical period. Sound exposure is 

achieved by placing speakers that deliver a sound, close to the standard cages where  
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Figure 1.2: Modification of cortical sound representation. Scheme of the tonotopic map of the 
auditory cortex of example adult rats that  were A, exposed to 7.1 kHz during the critical period 
were or B, reared under normal conditions (scheme taken from Han et al 2007). 

the experimental subjects live (passive exposure). Extracellular recordings in A1 of anesthetized 

rats, revealed that long periods (10-16 hours per day) of passive exposure to one tone (monotonal) 

from postnatal day 8 (P8) to P28, leads to an overrepresentation of the exposed frequency that 

persists until adulthood when compared to control animals (Zhang et al. 2001). This manipulation 

of the cortical auditory representations leads to behavioral consequences during adulthood. Rats 

reared under monotonal exposure from P9-P30,  failed to discriminate at P60 trains of repetitive 

tones from trains that contained two different tones of alternating frequencies near the exposed 

frequency (Figure 1.2) (Han et al. 2007).  

Passive exposure to sounds that contain many frequencies with equal intensities (white-noise) 

delays the closure of the critical period (Chang & Merzenich 2003). Rats exposed to white-noise 

from P8-P50 showed a degraded tonotopic map, characterized by incomplete frequency 

representation and wide tuning curves, resembling the maps at P16. Interestingly, rearing under 

normal sounds right after white-noise exposure, recovers the normal organization of A1. 

Additionally, white-noise exposure until P50 followed by monotonal exposure until P130 generated 

an overrepresentation of the exposed frequency.  

These studies highlight the importance of the acoustic environment during early neuronal 

development, its long-term impact on cortical sound representations and the behavioral 

consequences of altered tonotopic maps.   

1.1.2 Cortical experience-dependent plasticity by sound exposure during adulthood 

Monotonal passive exposure during adulthood has no long-term impact on cortical frequency 

representation or neuronal responses to sounds (Chang & Merzenich 2003; Zhou et al. 2011; Zhou 

& Merzenich 2012; Whitton et al. 2014). On the other hand, passive exposure to a multiple range 
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of tones, (5-20 kHz), presented constantly  in a random way for ~120 days, profoundly modifies 

cortical neuronal responses in anesthetized cats (Noreña et al. 2006). When compared to control 

animals, the neuronal responses of the exposed frequencies were reduced, while the frequencies 

below and above the exposed range were enhanced. These changes reversed following 12 weeks 

of rearing under quiet conditions (Pienkowski & Eggermont 2009). These results make evident the 

different effects of passive exposure during and after the auditory critical period. It seems that 

during adulthood, more complex sounds and/or longer exposure times are required for passive 

exposure to affect cortical sound representations.  

Passive exposure to white-noise degrades cortical tuning, synchronicity, temporal processing and 

behaviorally impairs the discrimination of high temporal sound rates in rats and cats (Gourévitch et 

al. 2014; Zhou & Merzenich 2012). Adult rats exposed to white-noise for 30 days showed degraded 

cortical tonotopy and performed worse than control animals in a fine frequency discrimination task. 

However, they performed similarly when tested under noisy conditions while control animals 

performed worse than noise-exposed rats (Zheng 2012). These results suggest an effect of prior 

experience on modulating perceptual adaptation under noisy conditions. Similar experiments to 

explore changes in subcortical auditory areas have not been performed. 

The effect of passive sound exposure in combination with enriched living conditions that favor 

cognitive and motor stimulation (e.g. bigger cages, larger groups of animals, running wheels, toys, 

etc.) has also been explored (environmental acoustic enrichment, EAE). In auditory cortex, EAE 

conditions increase response strength, synchronicity, reduces latencies and increases sharpening 

of tuning curves. The sounds presented were complex, included music and covered the hearing 

range of the rat (1-45 kHz) (Engineer 2004; Moucha et al. 2005; Percaccio et al. 2005; Kilgard et al. 

2007; Percaccio et al. 2007). Interestingly, these changes were followed by an enhancement of 

glutamatergic synaptic currents measured in vitro (Nichols et al. 2007). These changes suggest that 

the interaction between sound and environment, unlike what happens during passive exposure, 

might trigger the release of neuromodulators. In support of this theory, it has been shown that 

pairing of passive acoustic stimulation with electrical stimulation of the nucleus basalis (a 

cholinergic nucleus) induces cortical frequency reorganization (Kilgard & Merzenich 1998). 

Recently, it has been shown that rearing periods under EAE during adulthood, can rescue the  

physiological and behavioral deficits followed by noise exposure during early developmental stages 

(Zhu et al. 2014) or noise trauma (Norena & Eggermont 2005), contributing to the evidence of the 

positive effects of enriched environment after brain insults (Greifzu et al. 2014). 
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1.1.3 Auditory cortical experience-dependent plasticity induced by associative learning  

Classical conditioning results from the pairing of a conditioned (CS) with unconditioned stimulus 

(US), which usually consists of a mild electric shock. The effects of classical conditioning on primary 

auditory cortex were first described in 1956 (Galambos, Robert Sheatz, Guy Vernier 1956), who 

measured evoked potentials in cats before and after conditioning, using clicks as the CS. 

Conditioning induced an increase in the amplitude of the evoked potentials in the auditory cortex 

and the cochlear nucleus. The classic work of Bakin and Weinberger (1990) demonstrated that in 

neurons of the auditory cortex of awake guinea pigs, classical conditioning produces a specific 

increase in the responses to the conditioned sound and a reduced response to the original best 

frequency (BF) (Figure 1.3). This difference generates a shift in the tuning towards the conditioning 

tone. On the other hand, the unpaired presentation of the CS and the US does not generate a 

behavioral conditioned response and, in the AC, induces a generalized non-specific increase in 

evoked responses, without a tuning shift, suggesting that only associative learning induces cortical 

tuning shifts (Weinberger 2004). 

Perceptual or operant learning can induce reorganization of the cortical auditory representations 

specific for the feature of the target stimulus that the animals need to discriminate. For example, a 

frequency discrimination task can induce overrepresentation of the target frequency in monkeys 

and rats (Recanzone et al. 1993; Blake et al. 2002; Polley et al. 2006), while an intensity 

discrimination task induces an increase in the proportion of neurons tuned to the target intensity 

also in rats (Polley et al. 2004; Polley et al. 2006)  and a sound-repetition rate discrimination task 

induces stronger phase-locking responses indicating a better temporal sound processing (Bao et al. 

2004; Zhou & Merzenich 2009; Zhou et al. 2015). Similar cortical modifications have been observed 

in humans (Morris et al. 1998; Mears & Spencer 2012; Kluge et al. 2011; Whitton et al. 2014) 

suggesting a common adaptive mechanism. Additionally, it has been shown that the performance 

during the task influences the size of the cortical expansion to the target frequency (Rutkowski & 

Weinberger 2005). Rats with different levels of water deprivation were trained to perform a 

frequency discrimination task to obtain water reward. The different degrees of water deprivation 

generated different degrees of performance. Cortical auditory maps were obtained after training. 

Interestingly, there was positive correlation between the performance and the size of the cortical 

representation of the target frequency, which strongly suggested that changes in cortical auditory 

representations directly contribute to the behavioral performance (Bao 2015).  
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Figure 1.3: Receptive field plasticity in cortical neuron. Tuning curve of a single neuron from the 
auditory cortex of the gerbil before (green) and after conditioning learning (orange). The inset 
represents the difference in the spike rate of the conditioned tone before and after conditioning 
(scheme taken from Weinberger 2004). 

What are the mechanisms that drive cortical long-term changes in auditory cortical 

representations? There is evidence that neuromodulatory transmitters, such as acetylcholine and 

dopamine, play an important role to signal behavioral relevance of a sensory input and drive the 

remodeling of cortical representations towards the relevant acoustic input. Pharmacological 

experiments have shown that cortical application of the cholinergic antagonist atropine prevents 

the frequency-specific plasticity induced by associative learning (Bakin & Weinberger 1996; Ji & 

Suga 2003). Conversely, tone exposure paired with electrical stimulation of the cholinergic nucleus 

basalis induces overrepresentation of the exposed tone and sharpening of the tuning curves in a 

similar way as perceptual training (Kilgard & Merzenich 1998). Changes in the receptive field of 

cortical neurons, under this experimental paradigm, are generated by a fast reduction in the 

inhibitory synaptic input and an increase in the excitation that is specific to the exposed tone 

(Froemke et al. 2007). This artificial retuning of cortical neurons improved sensory perception at 

the frequency and intensity of the paired stimulus (Froemke et al. 2013). Rats learned to 

discriminate a target tone at any intensity (4 kHz) from other tones. The performance was better 

for louder target tones (~50 dB SPL). After pairing tone stimulation (4 kHz at 30 dB SPL) with 

electrical stimulation of the nucleus basalis or infusion of the cholinergic agonist carbachol directly 

in A1, the performance for lower intensities of the target tone improved. Moreover, infusion of 

atropine or the NMDA receptor antagonist AP5 prevented the improvement of the performance 
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induced by nucleus basalis stimulation, suggesting that long-term synaptic modifications in A1 are 

crucial for the improvement of sensory perception.  

Dopamine plays an important role in reward signaling (Bermudez & Schultz 2014; Schultz et al. 

2015). It has been hypothesized that dopaminergic nuclei such as the ventral tegmental area (VTA) 

provide reinforcement signals that might drive changes in cortical representations that follow 

perceptual training. Pairing tone exposure with electric stimulation of the VTA, in a similar way as 

with previous experiments involving NB, induced an expansion of the cortical area that represents 

the exposed tone and improved the synchronicity between cortical neurons (Bao et al. 2001). 

Additionally, VTA stimulations reduces the variability and shortens the responses of cortical 

neurons (Lou et al. 2014). 

Thus, important requisites for a sensory neuronal structure to undergo experience-dependent 

plasticity seem to be: a high degree of convergence of sensory input that allows for complex 

processing of incoming information and, at the same time, a high degree of connectivity with 

multiple other brain regions, such as neuromodulatory or associative nuclei, to be able to integrate 

the behavioral states and the relevance of the sensory input. The auditory cortex has proven to be 

the ideal candidate that fulfills these criteria. However, in the auditory pathway, the auditory cortex 

is not the only structure that possess a high degree of connectivity. The inferior colliculus (IC), 

located in the midbrain, also fulfills these criteria and makes it an ideal candidate to change upon 

relevant experience and modulate the incoming auditory information before it reaches the cortex. 

1.2 The inferior colliculus 

The IC is located in the posterior part of the midbrain tectum, has the highest metabolic rate in the 

brain (Zeller et al. 1997) and is the first auditory integration center where connections from all the 

auditory structures converge. It receives projections from all the auditory nuclei in the brainstem: 

cochlear nucleus, superior olivary complex and nucleus of the lateral lemniscus (Figure 1.4). Due to 

this convergence, important features of sound processing emerge here, such as critical bands, while 

others that  
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Figure 1.4: The auditory pathway. Scheme of the ascending connections and different nuclei of the 
central mammalian auditory pathway (scheme taken from Winer & Schreiner 2005). 

emerged earlier are refined, such as binaural coding (Ehret & Schreiner 2005; Ehret, Günter 

Merzenich 1985; Schreiner et al. 1997; Palmer & Kuwada 2005). The IC contains an important 

number of commissural fibers that connect both colliculi, it sends reciprocal projections to the 

brainstem nuclei that target it and bilateral projections to the thalamus, indicating a high degree of 

interconnectivity and feedback loops. It also receives projections from non-auditory areas, 

including somatosensory, amygdaloid and neuromodulatory regions suggesting an important role 

as both a multisensory processing center and a modulatory structure (Winer 2005). The IC receives 

an important amount of cortical projections that arise from layer V and to lesser degree from layer 

VI whose physiological role in the context of experience-dependent plasticity will be discussed in 

more detail below.  

The IC is divided into three main nuclei: the central nucleus, lateral nucleus or lateral cortex and 

dorsal cortex (Figure 1.5B). The central nucleus (ICC) is purely an auditory nucleus. The tonotopic 

gradient of the ICC is arranged in such a way that low frequencies are represented in the dorsal  
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Figure 1.5: Neuronal organization of the Inferior colliculus. A, Representation of the cellular 
organization of the frequency lamina in the ICC. Disc-shaped neurons form the frequency lamina 
(D) while stellate neurons (S) connect different frequency laminas. B, Scheme of a coronal section 
of the IC that shows its different divisions. DC, dorsal cortex; LC, lateral cortex; ICC, central nucleus 
(scheme taken from Oliver 2005). 

part and high frequencies are represented in more ventral areas (Figure 1.6). Neurons that respond 

to the same range of frequencies are grouped in rows and their dendritic fields are aligned in a 

narrow parallel way giving raise to frequency laminas (Oliver 2005). The result is that frequency 

representation in the IC is organized in discrete anatomical bands that extend along the rostro-

caudal and medio-lateral axes (Stiebler & Ehret 1985) (Figure 1.5A). This type of neuronal 

organization is well conserved and has been described in many species, from mice to humans 

(Casseday et al. 2005). Inputs from different auditory brainstem nuclei target particular locations 

of the frequency laminas generating discrete organized synaptic functional zones. For example, 

inputs from the dorsal cochlear nucleus arrive to the dorso-medial part of the lamina and inputs 

form the lateral superior olive arrive to the ventro-lateral part (Loftus et al. 2004; Loftus et al. 2010; 

Ono & Ito 2015). It is believed that these functional zones are responsible for the different patterns 

of responses along the same frequency lamina (Lim & Anderson 2007b; Straka et al. 2014). The ICC 

sends bilateral inhibitory and excitatory projections to the ventral and dorsal divisions of the medial 

geniculate body of the thalamus (MGBv) in a topographic order (Hackett et al. 2011; Ito et al. 2009; 

Ono & Ito 2015; Mellott et al. 2014).  

The lateral cortex or external nucleus (LC) is located lateral to the ICC. The main inputs to the LC 

come from the ipsilateral ICC, the auditory cortex, the spinal cord, and the dorsal column nuclei of 

the somatosensory nuclei suggesting a role in multisensory integration (Aitkin et al. 1978; Oliver 

2005). The electrophysiological properties of neurons in the LC have been poorly studied compared 

to those of the ICC. They have broader tuning than the ICC, show less spontaneous  
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Figure 1.6: Frequency representation in the inferior colliculus of the mouse. Microphotograph of 
the inferior colliculus that shows the frequency distribution and orientation of the frequency 
lamina. Scale bar, 0.5 mm (figure taken from Portfors et al. 2011). 

activity and respond to tactile stimulation (Aitkin et al. 1978; Syka et al. 2000). In mice, the low 

frequencies are best represented dorso-laterally and high frequencies ventro-medially (closer to 

the border of the ICC) (Stiebler & Ehret 1985).  

The dorsal cortex (DC) surrounds the IC from the dorsal side. In the cat the DC has a thickness 

around 200-300 µm in their most caudal part (Morest & Oliver 1984). Although in cats the border 

between DC and ICC can be defined based on the sharp regression to low frequencies, indicating 

the beginning of the ICC (Merzenich & Reid 1974), in mice and rats there is a continuous frequency 

representation that has complicated the electrophysiological delimitation of the border between 

these two nuclei (Stiebler & Ehret 1985). Recently, using functional 2 photon imaging it has been 

shown that the DC in mice includes the first ~100 µm over the central part of the IC, and that DC 

neurons have wider receptive fields than neurons in the ICC (Barnstedt et al. 2015). The functional 

role of the DC has not been systematically explored, but it is suggested that DC contributes to the 

integration of inter-collicular and descending information from the auditory cortex.  

The IC is the auditory area that receives the largest density of corticofugal projections. It receives 

up to ten times more projections than the cochlear nucleus (Doucet et al. 2003). In the IC cortico-

collicular projections (CC) terminate mainly in the DC and LC and only weakly in the ICC (Figure 1.7). 

CC target the ICC in a tonotopic order while the projections that target DC and LC are more diffuse, 

suggesting two types of functional projections (Andersen et al. 1980; Winer et al. 1998; Lim & 

Anderson 2007a; Markovitz et al. 2013; Straka et al. 2015). CC projections are excitatory, express 

Vglut1 and target mainly excitatory collicular cells (Ito & Oliver 2010; Nakamoto et al. 2013; Ono & 

Ito 2015). Electrophysiological experiments have shown that CC  
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Figure 1.7: Cortico-collicular projections. A, Microphotograph of a mouse brain coronal section that 
shows the site of injection of AAV-GFP virus (green) in the auditory cortex (AC). Projections to the 
medial geniculate body (MGB) and the contralateral auditory cortex can be appreciated. B, 
Microphotograph of a coronal section of the same mouse in A that shows the inferior colliculus. 
Cortical projections (green) in the surroundings of the IC that correspond to the LC and DC can be 
appreciated. Projections to the ICC are sparse. Scale bar 500 µm. Images modified from ©2015 Allen 
Institute for Brain Science. Allen Mouse Brain Connectivity Atlas. http://connectivity.brain-map.org 
Experiment 112881858. 

activation can lead to suppression of responses and spontaneous activity in the ICC,  suggesting 

that CC activate also inhibitory neurons (Syka & Popelář 1984; Bledsoe et al. 2003). CC projections 

can also lead to changes in the spectral tuning of collicular neurons in bats and mice (Suga et al. 

2002; Yan & Ehret 2001; Yan & Ehret 2002; Wu & Yan 2007). On the other hand, inactivation of the 
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auditory cortex with TTX showed heterogeneous changes in firing rates of collicular neurons with 

no effect on thresholds and tuning properties (Popelář et al. 2003).   

1.2.1 Collicular experience-dependent plasticity by sound exposure during early postnatal 

development 

Compared to the auditory cortex, the effects of passive exposure during early development on the 

IC have received little attention. Collicular neurons of rats exposed during the first 4 months of life 

to sweep tones from 6 to 9 kHz or 9 to 6 kHz showed a preferential response to the exposed sweep 

tone (Clopton & Winfield 1976). Tuning curves of IC neurons in mice reared from P8-P19 under 

constant exposure to trains of sharp sounds (clicks) or two-tones were broader (Sanes & 

Constantine-Paton 1983; Sanes & Constantine-Paton 1985). These pioneering studies showed that 

the collicular neurons are sensitive to the acoustic environment during early neuronal 

development. As in AC, exposure to pure tones, leads to an overrepresentation of the exposed tone 

in the tuning of IC neurons. Rats exposed to tones of 4 or 20 kHz from P1-P21, and recorded under 

anesthesia 3 to 5 weeks after the end of the exposure, showed a higher number of collicular 

neurons tunes to the exposed tone than control animals (Poon & Chen 1992). Using magnetic-

resonance imaging, it has been shown that mice exposed from P9-P17 to 16 and 40 kHz, two 

frequencies that are typically represented in non-overlapping areas, and tested at P19, showed a 

larger responsive area that was responsive to both frequencies (Yu et al. 2007). In a more recent 

study, rats that were exposed to 14 kHz from P9-P28 and tested at either P24 or P65 showed an 

expansion of the collicular responsive area tuned around 14 kHz (Oliver et al. 2011). The collicular 

neurons of exposed animals had higher thresholds and larger responses at higher sound intensities 

than control neurons. Finally, a study where rats were exposed to 7.5 kHz (from P9-P25) and tested 

right after the end of the exposure or 14 days later did not find changes in  collicular frequency 

representation (Miyakawa et al. 2013). However, they found a transient narrowing of the 

bandwidth of neurons tuned around the exposed frequency that was no longer present 14 days 

after sound exposure. The effect of enriched acoustic environment (EAE) in the IC was recently 

evaluated (Bureš et al. 2014). The study used multiple complex sounds and one of them signaled 

the release of sweet syrup that was available for 2 s. Rats were reared under this EAE conditions 

from P14-P28, and the responses of collicular neurons were recorded after 3-5 months. Collicular 

neurons showed a decrease in excitatory thresholds, a sharper tuning, and an increase in evoked 

and spontaneous activity. The same study evaluated the effects of this EAE conditions in adult 

animals. Rats were reared under EAE conditions at P90-P104 and tested immediately or one month 

later. In the collicular neurons recorded right after, EAE induced multiple changes: a decrease in 

excitatory thresholds, a sharper tuning and an increase in evoked and spontaneous activity. 
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However, these effects were only seen in neurons with a BF higher than 8 kHz. Only the increased 

spontaneous activity and the sharper tuning persisted a month after EAE exposure ceased. Due to 

the complex nature of the stimulus, the effect its exposure had on frequency representation in this 

study was difficult to assess.  

These results indicate that during early postnatal development, the IC can undergo persistent 

experience-dependent plasticity that might affect sound processing at the level of the IC, but also 

at downstream areas such as the AC.  

1.2.2 Collicular experience-dependent plasticity by associative learning during adulthood and the 

role of the cortico-collicular projections 

The study of the role of the CC and IC plasticity in classic conditioning was initiated by Nobuo Suga 

who used the bat as model. He found that, in collicular neurons of awake bats, a foot shock paired 

with tonal stimulation induced a decrease in the response to the original BF and an increase in the 

responses towards the frequency used for conditioning, generating a shift in BF. This change in 

tuning required cortical feedback. Inactivation of the auditory cortex with muscimol previous to 

conditioning prevents the shift in the collicular neurons. Interestingly, preventing the shift of 

collicular neurons with atropine application strongly reduces the shift in of cortical neurons (Ji et 

al. 2001). Compared to the shift in BF seen in AC the collicular shifts are short-term since they last 

around 2-3 h. Interestingly,  shifts in BF only occur when the frequency of the conditioned tone was 

lower than the BF of the collicular neuron within 15 kHz range and the average change was 1.1 kHz, 

suggesting that asymmetric connections between frequency laminas might exist in the IC (Gao & 

Suga 1998; Gao & Suga 2000; Ji & Suga 2003). The collicular shifts in BF, in a similar way as the AC, 

are dependent on acetylcholine (Ji et al. 2001; Ma & Suga 2003; Zhang et al. 2005) and collicular 

NMDA receptors (Ji et al. 2005) indicating that in the IC neuromodulatory centers can also play a 

permissive role in plasticity.  

These studies have shown that the tuning properties of neurons in the IC of adult animals can also 

be modified due to associative training. More importantly, changes in the AC are dependent on 

plasticity at the level of the IC (a feedback loop that occurs through the CC), and highlights the need 

to integrate the IC into the equation of experience-dependent plasticity in the auditory system. 

Interestingly, studies on experience-dependent plasticity that used other models than bats and that 

explore other paradigms than classical conditioning have not been done.  

1.2.3 Plasticity in the auditory midbrain. Studies in humans  
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The influence of experience in the processing of behaviorally relevant sounds such as speech has 

been successfully evaluated in humans using EEG recordings that reflect the auditory processing at 

the IC level. This technique is termed complex auditory brain stem responses (cABR) 

(Chandrasekaran & Kraus 2010; Chandrasekaran et al. 2014; Kraus & White-Schwoch 2015). It has 

been shown that the differences in cABR measures between adult native Mandarin Chinese and 

English speakers does not exist in neonates that will speak either of these two languages, suggesting 

that the differences observed in adults depend on the language exposure (Jeng et al. 2011). Musical 

training during childhood can enhance specific auditory features such as heightened high-frequency 

phase locking and response consistency (Skoe & Kraus 2013; Wong et al. 2007). Finally, it has been 

shown also that speech processing is altered in disorders such as autism (Russo et al. 2008; Russo 

et al. 2009).  

Since these studies have been performed in humans there are no specific neuronal correlates in 

the auditory pathway, particularly at the level of the IC, that account and explain the changes of 

previous experience seen in those studies. 

The role of subcortical structures in experience-dependent plasticity has not been well studied. The 

inferior colliculus, given the features described above, is in a crucial cross-road between purely 

sensory information, modulatory, and cognitive inputs. For this reason this nucleus is the target of 

our study. 

1.3 Aim of the project 

The current doctoral project aims to understand how previous auditory experience will affect the 

way acoustic stimuli are sensed and where along the auditory pathway this interaction will start to 

affect the processing of auditory information. Based on the animal and human evidence 

summarized above and given its importance as a hub in the auditory pathway where multiple 

cortical and subcortical nuclei converge, I hypothesized that the IC is the site where previous 

auditory experience starts to influence the processing of incoming auditory information. 

By using a combination of behavioral, electrophysiological and molecular tools I aimed to 

understand the following points: 

The ability of auditory experience in the form of implicit auditory learning, during adulthood, to 

modify collicular frequency representations and sound processing; 

 

The behavioral consequence of prior auditory experience on innate and learned frequency 

discrimination; 
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The ability of frequency-discrimination learning to modify collicular frequency representations and 

sound processing, and the effect of previous auditory experience on this modification. 

Addressing these points will contribute to better understanding of the influence of acoustic 

experience on the adaptive mechanisms of sound processing and the contribution of the IC to the 

filtering of auditory information. 
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MATERIALS AND METHODS 

2.1 Animals 

Female mice C57BL/6JRj (Janvier labs, France) between 5 and 8 weeks old were used for all 

experiments. All animal experiments were approved and performed in accordance with the 

Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, project license 

number 33.14-42502-04-10/0288 and 33.19-42502-04-11/0658. 

2.2 Audiobox 

One day (exceptionally 2 days) after arrival, mice were anesthetized with an intraperitoneal (ip) 

injection of avertin (Tribromoethanol dissolved in Tert-amyl acohol; 1.5 mL/100 grs) and a sterile 

transponder (IS0 compliant 11784 transponder, 12 mm long, TSE, Germany) was implanted 

subcutaneously in the back. The small wound caused by the injection was closed with a drop of a 

topical skin adhesive (Histoacryl®, Braun, USA). After one day (exceptionally 2-3) of recovery, 

animals were placed in the Audiobox.  

The Audiobox (New Behaviour/TSE, Germany) is an automatic testing chamber that consists of two 

compartments connected by a corridor (Figure 2.1). Mice lived in groups of up to ten animals in the 

first compartment that consists of a normal mouse cage, where animals have ad libitum access to 

food. Water was available in the second compartment -the “corner”- that is located inside a sound 

attenuated chamber. Two ports are located in each side of the corner and are closed by sliding 

doors. To open the doors and gain access to the water, animals needed to nose-poked. Nose-pokes 

were detected by a sensor located in each port. An antenna located in the entrance of the corner 

identified the individual tag of the transponder. The individual visits to the corner were detected 

by coincident activity of a heat sensor and the reading of the transponder. The end of the visit was 

signaled when the heat sensor was no longer active and the antenna did not read any transponder. 

By detecting visits of specific animals, the Audiobox can select the stimulus to be presented 

accordingly and record the data of the activity occurred at single visits. A loudspeaker (22TAF/G, 

Seas Prestige) was located above the corner to present sound stimuli. The sounds presented were 

generated in Matlab (The MathWorks, USA) at a sampling rate of 48 kHz and consisted of 30 ms 

pure tones with 5 ms slope, repeated at 3 Hz during the duration of the visits and a variable intensity 

of 70 dB ± 5 dB at the center of the corner or the center of the homecage. The sound intensity was 

calibrated at the center of the corner with a Bruël & Kjaer (4939 ¼” free field) microphone. To check 

for harmonic distortions, the microphone was placed at different positions within the corner, as 

well as outside the corner, sounds (1-40 kHz) were played  
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Figure 2.1: The Audiobox. Schematic representation of the Audiobox and a picture of the corner. 
Sound exposure took place in the corner (underscored in red) or the homecage (underscored in 
green) (modified from de Hoz & Nelken, 2014). 

at the 60-70 dB. Microphone signals were sampled at 96 kHz and analyzed in Matlab. Tones 

between 3 kHz and 19 kHz did not show any significant harmonic distortion. The sounds presented 

inside the corner were attenuated outside the attenuated box (>20 dB). However, there was little 

attenuation in the corridor located inside the attenuated box that was directly connected to the 

corner. Therefore, mice in the corridor inside the attenuated box could hear the sound played in 

the corner. 

2.3 Sound exposure 

All the experimental groups were first habituated to the Audiobox for three days. During the 

habituation phase, there was no sound presentation during the visits and the sliding doors in the 

corner remained open all the time, therefore nose-pokes were not required to access water. 

After the habituation phase, a group of animals (exposed group) was exposed to a fixed tone pip of 

a specific frequency during every visit, regardless of nose-poke activity and water intake. The tone 

pips lasted the total duration of the visit. Another group of animals (random group) was exposed 

to a fixed tone pip in the homecage at random intervals. The sound was delivered by a loudspeaker 

(22TAF/G, Seas Prestige) located above the homecage and calibrated such that sound intensity was 

comparable to that inside the corner. The presentation of the sound was triggered by corner visits 

of a mouse living in another Audiobox. This ensured that the pattern and duration of sound 

presentation in the homecage was comparable to that experienced by each  
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Figure 2.2: Sound exposure. Scheme of the sound exposure protocols, for the control (blue), 
exposed (red) and random (green) groups. The length of the boxes represent the time in the 
Audiobox. 

 

mouse in the exposed group. This design prevented that the sound was associated with an action 

the mouse might make (such as a visit in the expose group) or an outcome (such as water in the 

exposed group), while ensuring a similar pattern of sound exposure as the exposed group. The 

sounds used during the exposure phase were: 8 or 16 kHz, depending on the experiment. The 

control group consisted of age matched animals that lived during the same amount of time in the 

Audiobox, without sound presentation (Figure 2.2). 

2.4 Electrophysiology 

2.4.1 Surgery 

Mice were anesthetized with avertin for all experiments involving neuronal recordings (induction 

with 1.6 mL/100 grs and 0.16 mL/100 grs ip to maintain the level of anesthesia as needed). 

Anesthetized mice were placed on a stereotaxic apparatus (Kopf Inc., Germany) and the 

temperature of the animal was monitored by a rectal probed and maintained constant at 36 °C (ATC 

1000, WPI, Germany). The scalp was removed to expose the skull, and Bregma and Lambda were 

aligned to a plane level ± 50 µm. A metal head-holder was glued to the skull 1.3 mm rostral to 

Lambda. To access the left inferior colliculus (IC), a craniotomy of 2.8 x 3 mm was made, with the 

center 1 mm lateral to the midline and 0.75 mm caudal to Lambda. The IC was identified by vascular 

landmarks (posterior to the transverse sinus anterior to the sigmoid sinus, Figure 2.3). 

The tip of the left IC became visible after the craniotomy and measurements from the rostro-caudal 

and medio-lateral borders were made to place the recording electrode exactly in the middle of the 

IC, targeting the ICC. Extracellular multiunit recordings were made using mainly multi-electrode 

silicon arrays (1 shank, 177 µm2, 50 µm electrode spacing, or 4 shanks, 177 µm2, 50 µm electrode 

spacing, 150 µm inter-shank spacing, Neuronexus Technologies, USA) (Figure 2.4) but also, 

occasionally, one glass-coated single electrodes: either glass coated tungsten electrodes,  
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Figure 2.3: Location of the inferior colliculus. Photograph that shows a typical example of the brain 
area exposed after craniotomy. Both inferior colliculi can be appreciated. The borders of the IC were 
partially delimited by the transverse and sigmoid sinuses.  

 

with a typical  impedance of 900 mOhm, and an external diameter of 140 microns (AlphaOmega, 

Germany ); or glass coated platinum/tungsten electrodes, with a typical  impedance of 1 mOhm 

(ThomasRecordings, Germany). The electrodes were inserted in the central part orthogonally to the 

dorsal surface of the IC and lowered with a micromanipulator (Kopf Inc., Germany). In the case of 

single electrodes, recordings were made every 50-100 µm. When multi-electrode silicon arrays 

were used, they were lowered (at a rate of 100 um/5 min) until the upper electrode was in contact 

with the IC surface, visualized with a microscope (750 µm depth). The electrodes were labeled with 

DiI (1,1'-dioactedecyl-3,3,3,3'-tethramethyl indocarbocyanide, Invitrogen, Germany) to allow the 

reconstruction of the electrode track in postmortem sections (Figure 2.5).  

The electric signal was amplified (HS-36 or HS-18, Neuralynx, USA) and sent to acquisition board 

(Digital Lynx 4SX, Neuralynx, USA). The raw signal was acquired at 32 kHz sampling rate, bandpass 

filtered (0.1-9000 Hz) and stored for offline analysis. Recording and visualization was made by 

Cheetah Data Acquisition System (Neuralynx, USA).   
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Figure 2.4: Multi-electrode arrays. Schematic representations of the multi-electrode arrays used. 
A, One shank with 16 electrodes (1x16). B, Four shanks with four electrodes in each (4x4). C, Close 
up showing the inter-electrode distance and the dimensions of the electrode (modified from 
Neuronexus catalog). 

 

2.4.2 Acoustic stimulation during electrophysiological recordings 

The experiments were performed in an acoustically isolated room. Sound stimuli consisted of 30 

ms pure tone pips with 5 ms rise/fall slope of 24 frequencies (3.3-24.6 kHz, 0.125 octave spacing) 

at different intensities (0-80 dB with steps of 5 or 10 dB) played in a pseudorandom order every 500 

ms. Each sound combination was played 5 times. The sound was synthesized using Matlab, 

produced by an USB interphase (Octa capture, Roland, USA), amplified (Portable Ultrasonic Power 

Amplifier, Avisoft Germany) and played in a free-field ultrasonic speaker (Ultrasonic Dynamic 

Speaker Vifa, Avisoft, Germany) located 15 cm horizontal to the right ear. The sound intensity was 
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Figure 2.5: Location of the recording electrode. Photomicrograph of the IC showing the location of 
recording electrode dyed with DiI, section counterstained with DAPI. ECIC, external cortex of the 
IC; DC, dorsal cortex of the IC; ICC, central nucleus of the IC; LPAG, periaqueductal gray matter; 2Cb, 
second cerebellar peduncle. 

 

calibrated at the position of the animal’s right ear with a Bruël & Kjaer (4939 ¼” free field) 

microphone. Microphone signals were sampled at 96 kHz and analyzed in Matlab. Tones between 

2 kHz and 30 kHz did not show any significant harmonic distortion. 

2.4.3 Simultaneous cortical inactivation and collicular recording 

To study the corticofugal effect on collicular plasticity,  the auditory cortex was inactivated with 

muscimol similar to Wu & Yan, 2007. After the surgery in the IC, a 4x3 mm craniotomy medial to 

squamosal suture and rostral of the lamboid suture was made to expose the left auditory cortex 

(AC). The AC was located dorsal and posterior of the transverse sinus (Guo et al., 2012).  A small 

amount of Vaseline was applied to the boundaries of the craniotomy to form a well. A single 

electrode or a 16-channel multi-electrode array was inserted. Evoked responses to the tone pips 

were constantly monitored. A small amount of volume of phosphate buffered saline solution 

(Sigma, USA) was applied (3-5 µL) every 10-15 min until obtain control recordings in the IC. After, 

3-5 µL of muscimol were applied in the AC (1mg/mL, dissolved in phosphate buffered saline 

solution, Sigma, USA) and evoked activity was monitored by playing frequency sweeps at 70 dB  

SPL or broad-band noise of different intensities every 5 minutes. AC was usually inactivated 15 

minutes after muscimol application. Once cortical inactivation was confirmed, recordings in the IC 

were made again. 

500 µm 

DC 

ICC ECIC 

2Cb 

LPAG 



MATERIALS AND METHODS 
_______________________________________________________________________________ 
 

25 
 

 

 

Figure 2.6: Electrophysiology. A, Filtered trace showing the responses to 10 kHz at 70 dB. B, 
Magnification of the response at 10 kHz showing the shape of the evoked spikes, the horizontal red 
line indicates the threshold. C, Representative raster plot built from the detected spikes, vertical 
red lines indicate onset and offset of the sound. 

 

2.4.4 Analysis of electrophysiological recordings 

Offline analysis was performed in custom written scripts in Matlab. The stored signals were high-

pass filtered (450 Hz). To improve the signal-to-noise ratio in the recordings with the silicon probes, 

the common average reference (CAR) was calculated by averaging all the functional channels and 

subtracted from each channel, as described in (Ludwig et al. 2009). Multiunit spikes were then 

detected by setting a threshold that was 6 times the median absolute deviation of each channel 

(Figure 2.6). 

To determine the presence of auditory responses, first a peri-stimulus time histogram (PSTH) was 

built, with 1 ms bin size, combining all the frequencies and the intensities above 30 dB. The overall 

spike counts of the 80 ms windows before and after tone onset were compared (p < 0.05, unpaired 

t-test). To characterize only the excitatory responses and to avoid mixing them with suppressive 

responses (when sound inhibits spontaneous activity, <10% of cases), a positive threshold of the 

difference of spikes before and after onset was set. This threshold was empirically determined by 

visualizing and counting the minimum spike number required to observe an excitatory response. 
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Finally, to classify a recorded site as sound driven two criteria were set: a significant difference in 

the PSTH between intervals of 80 ms before and after sound onset, and a positive spike count of at 

least 45 spikes. With these criteria 85% of the recorded sites where classified as sound driven. 

With the sound driven sites, the spikes across all the trials for each frequency-intensity combination 

were summed. Then, the number of spikes in an interval of 80 ms from tone onset was calculated 

and the spontaneous activity removed (calculated as the number of spikes 80 ms before tone 

onset). This yielded a specific spike count per each frequency-intensity combination that was used 

to build frequency response areas (FRA), as well as tuning curves at different sound intensities. FRA 

were generated by color-plotting the sum of spikes, as described above, for each frequencies- 

intensity combination (Figure 2.7). 

To calculate the best frequency (BF, frequency that elicited the best response in that population of 

cells), first, the FRA was smoothed by a 3 x 3 gaussian median filter (Guo et al. 2012; Polley et al. 

2013). The smoothed spike counts were summed over all intensities and the frequency with the 

highest spike count was selected as the BF. In the rare cases where more than one frequency 

elicited the highest response, the mean was used as BF.  

The threshold, the lowest sound intensity that elicited a reliable response, the calculated from 

smoothed FRA as the lowest sound intensity that elicited a spike count 1.5 times higher than the 

spontaneous activity (Schreiner & Sutter 1992). 

Temporal response areas for a given frequency were calculated from the PSTHs evoked by that 

frequency simultaneously at different IC depths. The PSTH was calculated from the sum of spikes 

over all intensities and all trials in 5ms bins. The counts across time were represented against depths 

of recording (i.e. Figure 3.8).  

2.5 Gene expression analysis 

To investigate whether sound exposure induced changes in collicular or cortical expression of genes 

related with neuronal plasticity, quantitative real time PCRs (qPCR) were made. The genes were 

chosen (Table 2.1) based on previous reports that showed changes in expression upon sound 

exposure, acoustic learning paradigms or enriched environment (Ortinski et al. 2004; Dong et al. 

2010; Holt et al. 2005; Browne et al. 2012; Marianowski et al. 2000; Tan et al. 2007; Mainardi et al. 

2010). The analysis involved several steps: i) tissue collection; ii) RNA extraction; iii) cDNA synthesis; 

iv) quantitative PCR. 
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Figure 2.7: Frequency response areas in the IC. Representative example of frequency response 
areas recorded simultaneously in the central part of the IC at different depths. The magenta arrows 
indicate the best frequency for each depth. 

 

2.5.1 Tissue collection 

Mice used for gene expression analysis were not those used for IC recordings, but were treated the 

same way. After 3 days of habituation and 7 days of sound exposure in the Audiobox, mice were 

anesthetized with avertin and killed by cervical dislocation, immediately the brain was extracted 

and both inferior colliculi and in some cases the AC were dissected and immediately frozen at -80 

°C and stored for later analysis. 

2.5.2 RNA extraction 

RNA was extracted from the dissected samples using a combination of Qiazol Reagent and RNeasy 

kit, each according to manufacturer’s instructions (QIagen,Germany). To the frozen samples, 1 ml 

of Qiazol was added and homogenized immediately for 1 min using a rotor stator ultramax and 

incubated for 5 min at room temperature. Then, the samples were centrifuged at 14,000 rpm for 

15 min at 4°C. The aquatic phase was transferred into a new tube (~600 µl) and the same volume 

of ethanol 70% RNA-grade was added and mixed vigorously for 15 s. Next, the sample was loaded 

onto an RNeasy Mini Spin Column in a 2ml collection tube and centrifuged 1 min at 12,000 rpm. 

700 µl of RW1 buffer were added followed by 1 min centrifugation at 12,000 rpm. The flow through 

was discarded and the collection tube was replaced. 500 µl of RPE buffer were added 
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Table 2.1: Genes analyzed with qPCR.

 

followed by 1 min centrifugation at 12,000 rpm, this step was repeated once. The column was 

centrifuged during 2 min at 12,000 rpm with the lid open to dry the column from traces of ethanol. 

For the elution step the column was transfer to a new tube and 20 µl of RNA-grade water was 

loaded onto the column and centrifuged for 1 min at 12,000 rpm. The RNA concentration and 

quality was assessed in a nano spectrophotometer. 

2.5.3 cDNA synthesis 

The Superscript III kit to synthesized cDNA was used (Invitrogen Life Technologies, Germany). For 

each sample 1 µg of RNA was transferred into a PCR tube. 1 µl of dT-Mix primer (0.6 pmol/ µl, ID 

9578-4) and 1 µl N9-random primer (120 pmol/ µl, ID 4542) was added to the PCR tube, and 

incubated for 2 min at 70° C. The tubes were placed on ice right after. Then, 2.6 µl of 5x 1st strand 

buffer, 1 µl of 0.1 M DTT, 2 µl of a mix of deoxynucleotides (100 mM each), 1 µl of Superscript III 

(200 U/ µl) were added for a final volume of 13 µl. The mix was placed in the thermocycler to 

incubate 10 min at 25 °C, 45 min at 50 °C, and 45 min at 55 °C. Then, the tubes were placed on ice 

and diluted with water to a final volume of 200 µl. 

 

Category Protein Gene

Transcription factors and immediate early genes 

Arc arc

C-fos cfos

cAMP response element-binding (CREB) creb

Inhibitory transmission

GABAa receptor:

subunit β2 gabrb2

subunit β3 gabrb3

subunit α1 gabra1

subunit α3 gabra3

Glutamic acid descarboxylase gad1

GABA vesicular transporter (VGAT) vgat

Excitatory transmission

NMDA receptor:

subunit 2A grin2a

subunit 2B grin2b

AMPA receptor:

subunit 1 gria1

subunit 2 gria2

Post-synaptic density protein 95 (PSD95) psd95

Glutamate vesicular transporter 2 (Vglut2) vglut2

Neurotrophic factors and neuronal plasticity

Brain derived neurotrophic factor (BDNF) bdnf

Matrix-metalloprotease 9 (MMP9) mmp9

Cholinergic receptor muscarinic 2 chrm2



MATERIALS AND METHODS 
_______________________________________________________________________________ 
 

29 
 

Table 2.2: Primers used for qPCR.

 

2.5.4 Primers 

The primers for most of the genes were available at the AGCT-Lab of the Max Planck Institute of 

Experimental Medicine, Göttingen, Germany, with the exception of the genes:  gabra1, gabrb2 

gabrb3, gria1, and grin2a that were designed using the Assay Design Center for Universal Probe 

Library by Roche (http://lifescience.roche.com), and synthesized in the AGCT-Lab. Primers are listed 

in the Table 2.2.  

2.5.5 Quantitative PCR 

For quantitative qPCR, SyBr Green Master Mix kit (Applied Biosystems, Germany) was used, and 

amplification reactions were run on a Roche LC480 Detection System (384 well plates) or 7500 Fast 

Real-Time PCR System (96 well plates). Reactions were run in four replicates. For each replicate, 2 

µl of cDNA, 0.2 µl of forward primer, 0.2 µl of reverse primer, 5 µl of SyBr Green Master Mix and 

2.6 of water were added into each well. The amplification program was as follows: 2 min at 50 °C, 

10 min at 95°C, 15 s at 95 °C followed by 1 min at 60 °C, the last 2 steps were repeated 40 times. 

The melting curves were obtained using the following running program: 15 s at 95 °C, 1 min 60 °C 

and 15 s at 95 °C. Ct values and melting curves were obtained using the software provided for each 

Gene Forward 5'-3' sequence Reverse 5'-3' sequence

Arc AGGGGCTGAGTCCTCACA  GACTTCTCAGCAGCCTTGAGAC

Bdnf GCATCTGTTGGGGAGACAAG TGGTCATCACTCTTCTCACCTG 

Cfos TCGACCTAGGGAGGACCTTACC CCAGATGTGGATGCTTGCAA

Chrm2 AAAGGCTCCTCGCTCCAG AGTCAAGTGGCCAAAGAAACA

Creb CCACTGATGGACAGCAGATTC GGTATGTTTGTACATCGCCTGA

Gabra1 GCCCACTAAAATTCGGAAGC CTTCTGCTACAACCACTGAACG

Gabra3 CTTGGGAAGGCAAGAAGGTA TGGAGCTGCTGGTGTTTTCT

Gabrb2 GGGTCTCCTTTTGGATTAACTATGA  GGTCATTGTTAGGACAGTTGTAATTC 

Gabrb3 CTCCATTGTAGAGCACCGTCT TCAATGAAAGTCGAGGATAGGC

Gad1 TGGGATTTGAAAACCAGATCA GAAACAGACATTTGTGTGCTCAG

Gria1 AGGGATCGACATCCAGAGAG TGCACATTTCCTGTCAAACC

Gria2 CAAACACTGCAATTTTAGATCTCC CCAGGCATCCTGTTCCAG

Grin2a CCTTGAGGTCAACAGCATCA GCATAACATGCTCTGAAATATACACA

Grin2b GGGTTACAACCGGTGCCTA CTTTGCCGATGGTGAAAGAT

Mmp9 CAGAGGTAACCCACGTCAGC GGGATCCACCTTCTGAGACTT

Psd95 ACTCCTGCTCCAGCTTCGT GGAGCTCCAGGGAGACAGT 

Rpl13a ATCCCTCCACCCTATGACAA GCCCCAGGTAAGCAAACTT

Vgat17 ACGTGACAAATGCCATTCAG TGAGGAACAACCCCAGGTAG

Vglut2 GGAAAATCCCTCGGACAGA TGGTCTCTCGGTTGTCCTG
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system. The efficiency (𝐸) of each pair of primers was estimated based on the slope (𝑚) of a 

standard curve of the Ct values from 5 serial logarithmic dilutions of a template cDNA, using the 

following formula: 

𝐸 = 10(
−1
𝑚

) 

The goodness of fit (R2) of all the standard curves was > 0.98. 

Gene expression relative to the housekeeping gene (Rpl13a) was calculated with the method used 

by (Smith et al. 2014), where corrections for different efficiencies between target gene and 

housekeeping gene are made: 

𝑅𝐸 =
𝐸𝑘ℎ𝑔𝐶𝑇ℎ𝑘𝑔

𝐸𝑡𝑔𝐶𝑇𝑡𝑔
 

Where 𝑅𝐸 is the relative expression, 𝐸𝑘ℎ𝑔 is the efficiency of the housekeeping gene, 𝐶𝑇ℎ𝑘𝑔 is 

the Ct value of the housekeeping gene, 𝐸𝑡𝑔 is the efficiency of the target gene, and 𝐶𝑇𝑡𝑔 is the Ct 

value of the target gene.  

2.6 Immunolabeling for presynaptic markers 

To investigate whether sound exposure induces changes in the expression of presynaptic proteins 

in the IC, different immunolabelings were performed by Olga Babaev (Neurobiology department, 

Max Planck Institute of Experimental Medicine, Göttingen). Prior to immune-histochemical 

procedure, mice were paired according to day of sound exposure. Brains were dissected and post 

fixed in PFA 4% over night, and cryoprotected in 30% sucrose in 0.1 PB. Free floating coronal 

sections of 40 micrometers thickness taken from rostral to caudal parts of inferior colliculus (from 

-0.55 to -0.95 mm from lambda) were prepared using a Leica CM3050S cryostat (Leica, Wetzlar, 

Germany). The sections were incubated in blocking solution (10% bovine serum albumin, 3% goat 

serum, 0.3% Triton-X in 0.1M phosphate- buffered saline (PBS)) for 1 hour. Primary antibody for 

Vglut2 (guinea pig polyclonal antibody, clone 135 404, Synaptic Systems, Göttingen, Germany) was 

diluted to 1:2000 and primary antibody for Vgat (rabbit polyclonal antibody, clone 131 002, Synaptic 

Systems, Goettingen, Germany) was diluted to 1:500, both in blocking solution. Sections were 

incubated with both antibodies simultaneously for 24 hours. Secondary antibodies, goat anti 

guinea- pig polyclonal antibody conjugated to Alexa Fluor 555 and goat anti rabbit polyclonal 

antibody conjugated to Alexa Fluor 488 (Invitrogen, Darmstadt, Germany) were diluted to 1:600 in 

blocking solution and applied to sections for 2 hours. The sections were washed with PBS after each 
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incubation step, and were finally mounted on glass slides using Aqua-Poly/ Mount (Polysciences, 

Eppelheim, Germany). 

2.6.1 Imaging of synaptic markers 

Images of synaptic markers Vglut2 and VGAT were obtained using a confocal laser scanning 

microscope (Leica SP2; Leica, Wetzlar, Germany) and 63x oil immersion objective. For each control-

exposed pair, sections were anatomically matched and the settings for laser power, gain and offset 

were kept constant during imaging. After scanning through Z axis of each section to determine the 

area with highest penetration of both antibodies (defined as an area with highest fluorescent 

intensity), one stack of two optical sections with parameters 238 µm x 238 µm x 2 µm (height, 

length, width) was obtained separately from dorsal (300 µm depth) and ventral areas (600 µm 

depth). In total, 10 stacks of each area were obtained per animal. 

2.6.2 Image analysis 

Quantification of Vglut2 and VGAT positive puncta was performed with IMARIS software (Bitplane, 

Switzerland) using "spots" function. Threshold to eliminate background staining was applied using 

automatic threshold function in IMARIS and positive puncta were defined as spots with 1 µm 

diameter above threshold intensity value. Total number of Vglut2 and VGAT positive puncta was 

quantified for dorsal and ventral areas in each animal and the ratio between total number of VGAT 

and the total number of Vglut2 was calculated in EXCEL.  

2.7 Single unit recording from cochlear nucleus 

To investigate whether sound exposure induces plastic changes in the cochlear nucleus, recordings 

in the cochlear nucleus were performed by Dr. Zhizi Jing and Dr. Nikola Strenzke (Auditory Systems 

Physiology Group, InnerEarLab, University Medical Center, Göttingen). Mice were placed in the 

Audiobox as usual. The control group heard no sound upon entering the corner and the exposed 

groups heard an 8 kHz tone. Six to 12 days after beginning of sound exposure mice were removed 

from the Audiobox one a time for acute electrophysiology. Mice were anesthetized with urethane 

(1.32 mg/kg, ip) and xylazine (5 mg/kg, ip). Animal temperature was maintained at 36.5 °C using a 

custom-designed heating pad in a sound proof chamber with ambient temperature of 33 °C. A 

tracheotomy was performed and the cartilaginous ear canals were removed before positioned in a 

custom-designed head-holder and stereotaxic apparatus. Then a craniotomy was performed on 

part of the occipital bone. The surface of cochlear nucleus was exposed by removing part of the 

cerebellum. Glass microelectrode filled with 2M NaCl and 1% methylene blue was advanced in 4 

um steps (Inchworm micromanipulator, EXFO Burleigh, Germany) through the cochlear nucleus. 
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Once single unit was isolated, the spontaneous rate, characteristic frequency (CF) and best 

threshold for each unit was determined. 200 repetitions of 50 ms tone burst at CF (2.5 ms cos2 

rise/fall, 10 Hz repetition rate) and 8 kHz were used to characterize sound evoked responses. To 

map the receptive area of each unit, frequency sweeps of 30 ms tones at 70 dB (10 repetitions per 

sweep, 3 Hz repetition rate) of frequencies ranging from 4 kHz to 30 kHz (13 frequencies in total) 

were presented.  Extracellular signals were amplified, bandpass filtered (300-3000 Hz) using ELC-

03X amplifier (NPI Electronic, Tamm, Germany). Digitized signals (TDT system 3) were saved for 

offline analysis using custom written Matlab software. Unit classification was based on their 

response characteristics to supra-threshold (30 dB above threshold) 50 ms tone bursts presented 

at the characteristic frequency (Pfeiffer, 1966). 

2.8 Behavioral experiments 

2.8.1 Pre-pulse inhibition 

To evaluate whether sound exposure in the corner or the homecage affected frequency 

discrimination acuity, pre-pulse inhibition (PPI) of the acoustic startle response (ASR) was used 

(Clause et al. 2011; Aizenberg & Geffen 2013a; Aizenberg et al. 2015). The acoustic startle response 

is a reflexive motor response due to an unexpected loud noise that can be attenuated by the 

presentation of a weak sound right before the loud noise (Koch 1999).  

The experiments were performed in an acoustically isolated room kept in darkness. Animals were 

placed in a custom-made acrylic chamber of 12 x 4 cm. Movements of the animal were detected by 

a piezoelectric sensor located below the chamber. The signal was sent to an acquisition board 

(National Instruments, USA), digitized (1 kHz sampling rate) and sent to the computer for storage 

and analysis. Custom written routines in Matlab were used for visualization and analysis of the data. 

The sound was synthesized using Matlab, produced by an USB interphase (Octa capture, Roland, 

USA), amplified (Portable Ultrasonic Power Amplifier, Avisoft Germany) and played in a free-field 

ultrasonic speaker (Ultrasonic Dynamic Speaker Vifa, Avisoft, Germany) located 15 cm away from 

the chamber on the horizontal plane.  

The trials were divided in “startle-only trials” and “pre-pulse trials” and consisted of a frequency 

change from 1 ms ramp from the background tone (f1) to the pre-pulse tone (f2) at constant 70 dB 

SPL (Figure 2.8). The frequency change remained constant for 80 ms and immediately followed by 

20 ms of broad-band noise (BBN) at ~100 dB. The background tone was presented again right after 

the BBN and kept constant until the following trial. For the startle-only trials f1 and f2 were 16 kHz 

and for pre-pulse trials, f2 were 15.92, 15.84, 15.68, 15.472, 15.2, 14.72, 14, and 8 kHz that 
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corresponded to a Δf of: 0.5, 1, 2, 3.3, 5, 8, 12.5 and 50%, respectively. All the trials were presented 

randomly between 8 and 25 s. To avoid silent gaps between trials, a sound file that included all the 

sound phases was generated, saved in wav format and played at once. 

 

 

Figure 2.8: Pre-pulse inhibition of the acoustic startle response. PPI consisted of three different 
sounds, a background tone (f1), a pre-pulse tone (f2) and a startle noise. f1 and f2 had an intensity 
of 70 dB while the startle noise was 100 dB. 

 

The experiment was divided in 5 phases followed one after the other uninterruptedly. 1) Chamber 

habituation: at the start of each session, animals were placed in the test chamber and allowed to 

habituation for 10 minutes; 2) Sound habituation: a constant background tone (f1: 16 kHz, 70 dB 

SPL) was played for 5 minutes; 3) Startle-only trials: 10 startle-only trials were presented on the 

background of 16 kHz to allow for short-term habituation to the startle sound; 4) Test phase: 10 

pre-pulse trials and 10 startle only trials were presented to assess frequency discrimination; 5) 

Startle-only trials: 5 startle-only trials were presented to check for habituation over the duration 

experiment.  

The ASR was measured as the maximal vertical force that occurred in a 200ms window starting with 

the onset of the startle noise, minus the mean of the force of 50 ms before the startle noise. For 

each animal, the startle-only trials of the test phase and the pre-pulse trials of each frequency were 

averaged (Figure 2.9A,B). The percent of inhibition for each pre-pulse frequency  𝑃𝑃𝐼(%)  was 

calculated as follows: 

𝑃𝑃𝐼(%) = 100 ∗  
𝐴𝑆𝑅𝑛𝑜𝑝𝑝𝑠 − 𝐴𝑆𝑅𝑝𝑝𝑠

𝐴𝑆𝑅𝑛𝑜𝑝𝑝𝑠
 

Where, 𝐴𝑆𝑅𝑛𝑜𝑝𝑝𝑠 is the mean response of the startle-only trials and 𝐴𝑆𝑅𝑝𝑝𝑠 is the mean response 

of the pre-pulse trials for that particular frequency. 

Discrimination thresholds (Th) for each animal defined as the Δf that caused 50% of inhibition of 

the maximum response were calculated from parametric fit to a generalized logistic function (fit 

function Matlab)  (Aizenberg & Geffen 2013a) (Figure 2.9C). 
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𝑃𝑃𝐼 = −
𝑎

2
+

𝑎

1 + exp (𝑏 + 𝑐∆𝑓)
 

Animals with a fit coefficient of the curve (R2) below 0.7 were excluded from statistical analysis. 

Additionally, the pooled data for each group was also fitted to a generalized logistic function. 

 

Figure 2.9: Inhibition of the ASR. A, Representative raw traces of all the trials during the PPI test. 
B, Example of the average ASR for each frequency tested. C, Inhibition of the ASR as function of the 
frequency change. Legend indicates the goodness of fit to a generalized logistic function and the 
threshold measured as the frequency change (∆f in %) that elicits 50% of the maximum inhibition. 

 

2.8.2 Latent Inhibition 

To study the effect of previous acoustic experience on subsequent learning, I used the latent 

inhibition paradigm in the Audiobox (de Hoz & Nelken, 2014). Latent inhibition is a delay in learning 

due to previous exposure without conditioning to what later will be the conditioning stimulus. The 

animals were divided in 3 different groups and the experiment consisted on 4 phases: habituation, 

safe, pre-conditioned and conditioned. Only the 3rd phase (pre-conditioned ) was different for each 

group, while the other phases remained identical (Figure 2.10). 
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1) In the habituation phase (3 days), no sound was presented and the sliding doors remained open 

allowing free water access; 

2) In the safe phase (7 days), a safe tone of 8 kHz was paired with visits to the corner and the sliding 

doors were open only after a nose-poke; 

3) In the pre-conditioned phase (5 days), groups were exposed to different frequencies as follows: 

(i) for the control group, 71% of the visits were paired with an 8 kHz tone and 29% were paired with 

a 4 kHz tone; (ii) for the latent inhibition group, 71% of the visits were paired with an 8 kHz tone  

and 29% were paired with a 16 kHz tone; (iii) for the random group, 100 % of the visits were paired 

with 8 kHz and a 16 kHz tone -played in the homecage- was paired to 29% of the visits of a mouse 

living in another Audiobox to its corresponding corner. All the sounds presented were safe for the 

animals to nose-poke and gain water access. 

4) In the conditioned phase (5-12 days), during the first 5 hours, an 8 kHz tone pip was paired with 

visits to the corner in 91% of the visits and 9% were paired with 16 kHz. For the rest of the phase 

the probabilities changed to 71 and 29 %, respectively. During this phase, mice had to learn to nose-

poke only when they hear 8 kHz (safe visit) and to avoid nose-poking when they hear 16 kHz 

(conditioned visit). In case of a nose-poke during a conditioned visit, a 1 s air-puff was delivered 

through a hole locate above the drinking ports.  

2.8.2 Quantification of discrimination 

To assess discrimination performance, the discriminability index (d’) was calculated. d’ used in 

signal detection theory is defined as: 

𝑑′ = 𝑍(𝐻𝑅) − 𝑍(𝐹𝐴𝑅) 

Where  𝑍(𝑝), 𝑝 ∈ [0 1] , is the inverse of the cumulative of the Gaussian distribution, 𝐻𝑅 is the hit 

rate, where a hit is the correct avoidance of a nose-poke during a conditioned visit, and 𝐹𝐴𝑅 is the 

false alarm rate, where a false alarm is the avoidance of a nose-poke during a safe visit. Since d’ 

cannot be calculated when either the hits or the false alarms reach levels of 100% or 0%, in the few 

cases where this happened 99% and 1%, respectively were used for these calculations. This 

manipulation reduced d’ slightly (de Hoz & Nelken 2014). 
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Figure 2.10: Latent inhibition. Scheme of the latent inhibition protocol for A, Control, B, Latent 
inhibition (red) and C, Random exposed groups. Boxes in color for each group indicate the 
frequency and location used for exposure during the pre-conditioned phase.  

 

2.9 Statistical analysis 

After testing for normality distribution using the Jarque-Bera test, group comparisons were made 

using multiple way ANOVAs, accordingly, followed by Bonferroni post-hoc tests. To analyze the 

cortical inactivation experiments a mixed design ANOVA with frequency, group and muscimol as 

fixed effects was used. For the immunohistochemistry data, where normality test failed, a 

Wilcoxon-signed rank test was used. To evaluate for significance in the temporal response matrices, 

a non-parametric two-sample test was used. The test uses permutations of group labels to estimate 

the null distribution, computed independently from each row as described by Glerean et al. 2015. 

The number of permutations was set to 10,000 for better estimation (a published Matlab script, 

bramila_ttest2_np, was adjusted for our data). To estimate the size differences between groups at 

each pixel of the matrix, the t-value, that represents the difference in units of standard error, was 

calculated. Means are expressed ± SEM. Statistical significance was considered if p<0.05. 
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3. RESULTS 

3.1 Electrophysiology 

To test whether behaviorally-relevant auditory experience during adulthood induces 

reorganization of frequency representation and changes in sound processing at the level of the 

inferior colliculus (IC), I performed acute electrophysiology and characterized auditory evoked 

responses in the IC of animals that lived for several days in groups in an enriched environment and 

heard a specific sound every time they entered the area where water was available. This 

environment is called the Audiobox, an automated behavioral apparatus that allows the monitoring 

of individual animals. Food is available ad libitum in a homecage space, while water is only available 

in a neighbor sound attenuated space where the animals can enter a ‘corner’, nose-poke in the hole 

and drink. Each mouse was exposed to tone pips of a specific frequency in every visit to the drinking 

corner (exposed group). I hypothesized that when pairing sounds with visits to the corner, an 

association between the acoustic stimulus and the environment of the corner is generated. The 

mice did not need to pay attention or respond to the sound but the sound was activated every time 

a mouse entered the drinking corner and for the duration of the visit. In the first experiment the 

pips had a frequency of 8 kHz. The control group consisted of age matched animals that lived during 

the same amount of time in the Audiobox without sound presentation.  Mice lived in the Audiobox 

24 hours a day for at least 5 days before acute electrophysiology began.  

3.1.1 Analysis of spectral tuning in the IC 

To analyze the effects of sound exposure on the spectral tuning of the IC, I performed acute 

electrophysiological recordings, where electrode penetrations were oriented dorso-ventrally and 

perpendicular to the isofrequency laminas and, therefore, along the tonotopic axis, and measured 

at each location the responses to different frequency-intensity combinations of sounds. In this 

initial experiment, the control group included 11 recorded sites from 4 animals, and the exposed 

group included 21 recording sites from 6 animals. 

Examples of evoked activity for a control (Figure 3.1A) and an exposed (Figure 3.1B) mouse are 

represented in raster plots of spikes recorded in response to 5 trials per frequency for 24 

frequencies, presented at 70dB. In this case, raster plots at different depths were not recorded 

simultaneously. For both mice, the dorso-ventral organization of the tonotopic map is evident with 

clusters of spikes appearing in response to progressively higher frequencies as depth increases in 

the IC (Figure 3.1). It is also evident that the evoked activity is stronger in the exposed group. To 

quantify the tuning in both groups, tuning curves were generated out of the spikes  
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Figure 3.1: Evoked activity during 6 to 12 days of exposure to 8 kHz. Representative examples of 
raster plots recorded from different depths from A, control; and B, exposed animals. Each dot 
represents a recorded spike. Five repetitions of 30 ms tones of different frequencies were played 
at 70 dB SPL. Vertical red lines indicate the onset and offset of the tone. The recordings were 
obtained during 6 to 12 days of exposure to 8 kHz. 

 

evoked, at 70dB, over an interval of 80 ms following stimulus onset (Fig. 3.2). The tuning curves of 

both the control (blue) and exposed (red) animals show that responses were larger in the exposed 

group. This was particularly evident in the area of the inferior colliculus that had best frequencies 

(peak of the tuning curve) near 8 kHz, the frequency used during behavior. The tuning curves in this 

graph also hint to something what will be one of the main findings of these series of experiments: 

for a given depth the best frequency of the exposed group tends to be higher than that of the 

control group. Note for example the difference in the peaks of the tuning curves at 400 microns 

depth. The statistical analysis showed that the tuning curves between groups were different at 

different depths (group effect, F2=8.43 p=0.0038, group-depth interaction, F1,6=4.92 p=0.0001). 

These results suggest, first that sound exposure induces an increased excitability in the exposed 

groups, and second that this happens mainly in the areas of the IC with a tuning around the exposed 

frequency.  

To test the hypothesis that sound exposure induces frequency specific changes in restricted areas 

of the IC, I exposed a different group of animals to 16 kHz in the corner, instead of 8 kHz. Since 16 

kHz is represented more ventrally in the IC, the changes in the amplitude of the tuning curves  
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Figure 3.2: Effect of exposure to 8 kHz on the spectral tuning of the IC. Average tuning curves at 
70 dB for different depths in the IC for control (blue), and exposed (red) groups. The tuning curves 
were obtained by averaging the tuning curves of animals exposed for 6 to 12 days to 8 kHz. 

 

would be expected to appear more ventrally than the locations modified by exposure to 8 kHz. In 

these experiments I used multi-electrode arrays that allowed me to record simultaneously 16 

different depths spaced 50 microns apart. The most superficial electrode was always visible above 

the brain dura, making the depth assignment of the other electrodes very precise (±13 µm). All 

recording depths with significant responses (see Methods 2.4.4) were included in the analysis. The 

control group included 101 recording sites from 10 animals, and the exposed group included 168 

sites from 15 animals. All animals lived in the Audiobox from 6-12 days. 

Figure 3.3 represents again example raster plots of recordings performed in individual mice. 

Compared to the control animal (Figure 3.3A), the evoked responses of the exposed mouse (Figure 

3B) were higher in multiple depths of the IC including the dorsal areas as noted before. The change 

was not restricted to areas with BF around 16 kHz (600 µm) and, included depths comparable to 

those of the animals exposed to 8 kHz (i.e. 300-400 µm). This pattern was typical for the mean of 

the groups (Figure 3.4, blue and red traces) since it can be observed in the tuning curves at many 

but not all depths (see for example 200, 350, 450 and 550 µm). The amplitude of the tuning curves 

of both groups, but specially the control group, showed zig zag type fluctuations along depths 

(Figure 3.4, blue and red traces). I believe this to be a true pattern since it can be observed in 

individual animals. By calculating the standard deviation across depths as a measure of dispersion, 

these fluctuations were more evident in the control group (7.06 vs 5.7 spikes, for control and 

exposed, respectively). Thus, it seems that activity is generally stronger in the exposed groups and 

that the increase is not restricted to the region with a BF comparable to that used in the behavioral 

exposure.  
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The statistical analysis showed a significant difference between groups (group effect, F2=23.62 

p=1x10-6, group-depth interaction, F1,13=1.31 p=0.2). To quantify the pattern of results, the 16  

   
Figure 3.3: Evoked activity during 6 to 12 days of exposure to 16 kHz. Representative examples of 
raster plots recorded from different depths from A, one control; B, one relevant-exposed and C, 
one random animal. Each dot represents a recorded spike. Five repetitions of 30 ms tones of 
different frequencies were played at 70 dB SPL. Vertical red lines indicate the onset and offset of 
the tone. The recordings were obtained during 6 to 12 days of exposure to 16 kHz. 

 

recorded locations were divided in 5 zones for statistical analysis. The first zone included the sites 

recorded from 100-150 µm, since there is strong evidence that this area corresponds to the dorsal 

cortex overlaying the ICC (putative dorsal cortex). This region in mice was recently shown to have a 

thickness of ~100 µm (Barnstedt et al. 2015) and, as we will see in several of the tests performed 

here, it behaves differently from the rest of the colliculus. The rest of the zones were grouped in 
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ranks of 150 µm as following: 200-300 (including both edges); 350-450; 500-600; and 650-750. The 

statistical analysis corroborated, the differences described between groups (group: F2,4=15.46, 

p<0.0001; group-rank interaction: F2,4=1.79 p=0.07). Therefore I compared groups at  

 

Figure 3.4: Effect of exposure to 16 kHz on the spectral tuning of the IC. Average tuning curves at 
70 dB for different depths in the IC for control (blue), relevant (red) and random (green) exposed 
groups. The tuning curves were obtained during 6 to 12 days of exposure to 16 kHz.  

 

each individual rank. When compared to the control group, the average amplitude of the tuning 

curves at the locations tuned around 16 kHz (500-600 µm) was larger in the exposed animals (group 

effect, F1,13=34.19 p=6x10-9, group-frequency interaction, F1,13=2.38 p=0.0002). Surprisingly, the 

effects of the exposure to 16 kHz on spectral tuning extended beyond the area tuned to 16 kHz. 

More ventrally (650-750 µm) the amplitude of the tuning curves was smaller (group effect, 

F1,13=7.99 p=0.0048, group-frequency interaction, F2=1.02 p=0.4). Surprisingly, in the dorsal zones 

(200-300 µm and 350-450 µm) the tuning curves were also larger in the exposed group (200-300 

µm: group effect, F1,13=13.12 p<0.001, group-frequency interaction, F2=1.2 p=0.2; 350-450 µm: 

group effect, F1,13=12.2 p<0.001, group-frequency interaction, F2=0.9 p=0.4). In the putative dorsal 

cortex there were no differences (group effect, F1,23=1.85 p=0.17, group-frequency interaction, 

F2=0.2 p=0.9).  

Additionally, as already noticed in the previous experiment, the peak of the tuning curves of the 

exposed animals was shifted at multiple depths towards higher frequencies compared with the 
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control group. To further characterize this possible change in frequency representation, the 

average BF at different depths between control and exposed animals were compared (Figure 3.5). 

The average BFs along the tonotopic axis were higher in animals exposed to 16 kHz (Figure 3.5B). 

This increase in BF was evident from 200 to 750 µm. To quantify the change, I calculated the  

 

Figure 3.5: Effect of tone exposure on collicular tonotopy. Average best frequencies for different 
depths in the IC obtained during 6 to 12 days of sound exposure to 16 kHz for control (blue), relevant 
(red) and random (green) exposed groups.  

 

average difference in BF between control and exposed groups at each depth, and then averaged 

across depths, with the dispersion referring to the across depth variability (Δf 1800 ± 300 Hz along 

the axis, F2,13=34.56, p<0.0001, group-depth interaction F2,13=1.48; p=0.06, group comparisons 

p<0.0001 vs control). Together these results indicate that sound exposure can modify the spectral 

tuning in a non-specific manner by increasing the excitability in the IC. Furthermore, sound 

exposure can induce a frequency-unspecific shift in frequency representation towards higher 

frequencies along the measured length of the tonotopic map. The spatial extension of the effects 

in the IC seems to depend on the exposed frequency.  

The previous results have shown that sound-exposure in the corner area of the Audiobox, triggered 

by visits of the animals, can lead to a frequency unspecific shift in frequency representation towards 

high frequencies and generates tuning curves with larger amplitudes in the low frequency range of 

the exposed sound, and lower amplitudes in the high frequency range of the IC of adult animals. 

The hypothesis is that collicular plasticity is induced because an association is generated between 

the exposed sound and the corner area. Thus, the sound acquires behavioral relevance. To confirm 

this hypothesis, it was required to compare the collicular tuning curves from animals exposed to 

the same sound, when this was not associated with anything in particular. For that purpose, a group 

of mice that lived in the Audiobox in similar conditions as the control group was exposed to 16 kHz 
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in the homecage area, instead of the corner as the exposed group. To ensure a similar pattern of 

exposure, a mouse living in another Audiobox, triggered the sound every time it visited its 

correspondent corner. This design prevented that the sound would be associated with a particular 

behavior (other than being in the homecage) or an outcome (such as water in the exposed group), 

while ensuring a similar pattern of sound exposure as in the exposed group. In these experiments, 

I used again multi-electrode arrays with 16 recording sites. From this group (random group) 

recordings were obtained from 92 sites and from 7 animals. All animals lived in the Audiobox from 

6-12 days. In average, the animals from the exposed group and random group heard the tone during 

similar amount of time (1614 ± 242 and 1330 ± 232 s per day, respectively, p=0.275), as calculated 

by the average daily length of visits to the corner (equivalent to exposure time to the sound) in both 

the animals of the relevant-exposed group and the mice that activated the sound in the homecage 

for the random group in the different replications, respectively.  

Figure 3.3C shows examples of raster plots at different depths from a representative random 

mouse. The most superficial depths (100-200 µm that includes the putative dorsal cortex) showed 

a strong evoked activity that seems to gradually decrease to reach a minimum at 400 µm. More 

ventrally (500-700 µm), strong evoked activity is recovered. It is clear that the evoked responses 

are larger at multiple depths than the control example (Figure 3.3A, see 100-200 and 500-600 µm). 

Compared to the exposed example, the pattern of evoked activity is different in the dorsal-half of 

the IC (100-400 µm). The activity of the random mouse is also larger at 100 µm, while the activity 

at 300-400 µm is smaller than the exposed group. More ventrally, the activity between both 

examples is similar. The pattern previously described was similar for the group mean (Figure 3.4, 

green traces), tuning curves with large amplitudes in the putative dorsal cortex (100-150 µm) that 

gradually decrease until reach a minimum at 350 µm, to further recover at 550 µm and gradually 

decrease again at 750 µm.  

I divided the recorded sites in zones, as previously described, and compared them with the control 

and exposed groups. Compared to the control group, the average amplitude of the tuning curves 

in the zone tuned to 16 kHz (550-600 µm) was larger in the random animals (group effect, F2=10.71 

p<0.0001, group-frequency interaction, F2=1.32 p=0.07; p<0.0001). More ventrally (650-750 µm) 

the amplitude of the tuning curves was smaller (group effect, F2=11.10 p<0.001, group-frequency 

interaction, F2=1.66 p=0.003; group comparisons p<0.0001), as previously observed with the 

exposed group. The average tuning curves of the dorsal zones (200-300 and 350-450 µm) were 

similar between groups (200-300 µm: group effect, F2=7.51 p<0.001, group-frequency interaction, 

F2=0.79 p=0.8; group comparisons, p>0.05; 350-450 µm: group effect, F2=7.26 p<0.001, group-

frequency interaction, F2=0.73 p=0.9; group comparisons p>0.05). In the zone of the putative dorsal 
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cortex (100-150 µm), the tuning curves were larger in the random group (group effect, F2=30.8 

p<0.0001, group-frequency interaction, F2=0.41 p=0.9; group comparisons p<0.0001).  

When compared to the exposed group, the average amplitude of the tuning curves in the zone 

tuned to 16 kHz (550-600 µm) was similar (group comparison, p=0.1). More ventrally (650-750 µm) 

the amplitude of the tuning curves was smaller (group comparison, p=0.018). The average tuning 

curves of the dorsal zones (200-300 and 350-450 µm) was similar between groups (group 

comparison, p>0.05, for both zones). In the zone of the putative dorsal cortex (100-150 µm), the 

tuning curves were larger in the random group (group comparison, p<0.0001).  

These results indicate that random exposure also modifies the spectral tuning in the IC, with a 

different pattern to that observed after relevant sound exposure in the corner, mainly by inducing 

larger tuning curves in the area tuned to 16 kHz and in the putative dorsal cortex, while decreasing 

the activity in the most ventral regions.  

The observed increase in evoked activity in random and exposed groups could reflect an overall 

state of excitability in the IC. An indirect way to measure non-evoked excitability is by calculating 

the spontaneous activity (Bureš et al. 2014). I calculated the spontaneous activity by counting the 

spikes detected during 80 ms previous to tone onset, and average the spike counts across all trials 

in all the recording sites. Compared to the control group, the average spontaneous activity was 

significantly higher in the exposed group (Figure 3.6; F2=5.57, p=0.004; 2.35 ± 0.28 vs 4.32 ± 0.47 

spikes, control and exposed group, respectively, group comparisons, p=0.0032). Compared to the 

random group, the spontaneous activity of the exposed group was higher but not significantly (4.32 

± 0.47 vs 3.38 ± 0.32 spikes p=0.2, for exposed and random groups respectively). Finally, the average 

spontaneous activity of the random group was higher than the control but not significantly (2.35 ± 

0.28 vs 3.38 ± 0.32 spikes p=0.4). This result suggests that sound exposure increases overall 

excitability in the IC. Since spontaneous activity was subtracted from the spike count used to 

generated the tuning curves and calculate the frequency shifts, this increase is not responsible for 

the pattern of results described above. 

To characterize if random exposure also induces changes in frequency representation, the average 

BF at different depths of the random group was compared to the control and exposed groups. The 

average BFs along the tonotopic axis were higher in random animals compared to controls (Figure 

3.5, green trace; Δf 900 ± 364 Hz along the axis, p=0.0011 vs control). Compared to the exposed 

group the average shift of the random group along depth was half of the shift of the exposed group 

(Δf 900 ± 364 Hz vs 1800 ± 364 Hz, for random and exposed groups respectively, p=0.0001). 
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Figure 3.6: Effect of tone exposure on the spontaneous activity in the IC. Average spontaneous 
activity per trial during 6-12 days of sound exposure for control, exposed and random groups. * 
p<0.05. 

 

Together, these results indicate that random and behaviorally-relevant exposure generate plasticity 

in the IC of adult animals. Mainly an increase in excitability as observed by a non-specific increase 

in the spontaneous and evoked activity and a shift in the frequency representation towards high 

frequencies. However, the locations along the IC where the increase in evoked activity occurred 

were not identical between exposure paradigms. The most striking difference was the increase in 

evoked activity in the putative dorsal cortex of the random group. Additionally, the shift in 

frequency representations was stronger in the exposed group, suggesting an additive effect of 

behavioral relevance to sound exposure. 

3.1.2 Analysis of temporal firing patterns in the IC 

The next question I asked was whether in addition to the induced changes in spectral tuning and 

frequency representation, sound exposure could also modify the temporal firing pattern in neurons 

of the IC. Changes in the temporal firing pattern could indicate that the coding properties of 

collicular neurons are susceptible of plastic changes (Quian Quiroga & Panzeri 2009; Panzeri et al. 

2010). I was particularly interested in analyzing the temporal firing pattern evoked by the sound 

used during behavior (16 kHz). For this analysis I selected the recorded locations with a BF of 16 

kHz ± 0.25 octaves. If more than one location was found per animal, an average of the responses 

was made before including it in the group dataset. The data analyzed was the same as the one used 

in the spectral tuning analysis of animals exposed to 16 kHz. 

First, for each group, from the selected recorded locations, I built an average PSTH with 5 ms bins 

from the response to 16 kHz at 70 dB. The average depths of the recording sites selected for the  
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Figure 3.7: Effect of tone exposure on the firing pattern of the IC. Average PSTH (5 ms bins) of the 
depth with the best responses for control (blue), relevant (red) and random (green) exposed groups 
to A, 8 kHz; and B, 16 kHz at 70 dB. The responses were obtained during 6 to 12 days of exposure 
to 16 kHz. Vertical dashed lines indicate tone onset and delayed. *p<0.05, exposed vs control; *p<0 
.05 exposed vs random; **p<0.001 random vs control;  

 

analysis were: 601 ± 72 µm for the control group, and 473 ± 57 µm, for the exposed group. As it can 

be appreciated in the figure 3.7A, the average pattern of the response to 16 kHz, between control 

(blue trace) and exposed groups (red trace) during sound duration (represented by the vertical 

dashed lines) was very similar. After sound offset, there was a sustained increase in activity from 

40 to 60 ms in the exposed group compared to the control group. For statistical comparisons, the 

responses were divided in onset (0-30 ms after sound onset) and delayed (31-80 ms after sound 

onset), thus there was no difference in the onset component, while the delayed  component was 

significantly larger than the control group (p=0.03). These results indicate that sound exposure 

mildly changes sound processing by increasing the delayed response. 

Next, to evaluate if the temporal firing could affect the responses to other sounds in a similar non-

specific way as the changes previously described for spectral tuning and frequency representation, 

I analyzed in the same way the responses to 8 kHz ± 0.25 octaves, an octave below the exposed 

sound. The average depths of the recording sites selected for this analysis were: 236 ± 51 µm and 

147 ± 54 µm, for the control and exposed groups, respectively. The averaged PSTH of the exposed 

group and control group was very similar in magnitude and in the pattern of the response (Figure 

3.7B). There were no significant differences in the onset and delayed components of the response.  

As with the previous analysis of spectral tuning and frequency representation, to evaluate the effect 

of sound exposure without behavioral relevance, I analyzed the temporal firing pattern to 16 kHz ±  
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Figure 3.8: Effect of relevant tone exposure on the spatio-temporal firing pattern to 8 kHz in the 
IC. Average temporal response areas (5 ms bins) of the simultaneous response, along the dorso-
ventral axis of the IC, to 8 kHz at 70 dB for A, Relevant exposed to 16 kHz and C, Control groups. B, 
Difference in activity between exposed and control groups normalized by the error standard. D, 
Pixels in the matrix with a significant difference (p<0.05). Recordings were obtained during 6 to 12 
days of sound exposure. 

 

0.25 octaves of the random group exposed to 16 kHz. The average depth of the recording locations 

used in this analysis was 531 ± 41 µm. Interestingly, in the random group there was a slight increase 

in the amplitude of the peak response (Figure 3.7A, green trace). Also, it had sustained larger 

response that finished around 60 ms after sound onset. Compared to the control group, the onset 

component of the response was not significantly different, but the late component was highly 

significant (p=0.0001). When compared to the exposed group, there were no differences in the 

onset component as well, while the delayed component was significantly larger in the random 

group (p=0.01), indicating that random exposure also modifies the temporal firing pattern to the 

exposed sound.  

Finally, I analyzed and compared the temporal firing pattern to 8 kHz of the random group. The 

peak response was slightly higher than the control and exposed groups. (Figure 3.7B, green trace), 

and the delayed component also showed a tendency to have a larger amplitude. However, these 
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differences did not reach significance. Together, these results indicate that relevant and random 

sound exposure  

 

Figure 3.9: Effect of relevant tone exposure on the spatio-temporal firing pattern to 16 kHz in the 
IC. Average temporal response areas (5 ms bins) of the simultaneous response, along the dorso-
ventral axis of the IC, to 16 kHz at 70 dB for A, Relevant exposed to 16 kHz and C, Control groups. 
B, Difference in activity between exposed and control groups normalized by the error standard. D, 
Pixels in the matrix with a significant difference (p<0.05). Recordings were obtained during 6 to 12 
days of sound exposure. 

 

do not modify the pattern of responses in the IC. However, sound exposure induced a significant 

increase of the delayed response. The magnitude of the increase was higher in the random group 

than in the exposed group. Moreover, this increase was observed only at the frequency of the 

exposed tone (16 kHz), suggesting a frequency specific effect.  

What is the spatial profile of the responses to a sound along the dorso-ventral axis of the IC? It is 

important to keep in mind that, even though frequencies are best represented at particular depths, 

they still can evoke responses at depths different from their preferred depth. Since in these 

experiments simultaneous activity was recorded using multi-electrode arrays, I could address this 

question. For this purpose, I built temporal response matrices using the PSTH of a specific frequency 

recorded simultaneously at different depths. For this analysis, I built the temporal response 

matrices to 16 and 8 kHz. The Figure 3.8C, shows the average temporal response area to 8 kHz of 
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the control group. Each pixel represents the average spike count (the larger the spike count the 

warmer the color) of a depth-time combination. As it can be appreciated there is a cluster of pixels 

in the most  

 

Figure 3.10: Effect of relevant and random tone exposure on the spatio-temporal firing pattern 
to 8 kHz in the IC. Average temporal response areas (5 ms bins) of the simultaneous response, along 
the dorso-ventral axis of the IC, to 8 kHz at 70 dB for A, Relevant and C, Random groups exposed to 
16 kHz. B, Difference in activity between exposed and control groups normalized by the error 
standard. D, Pixels in the matrix with a significant difference (p<0.05). Recordings were obtained 
during 6 to 12 days of sound exposure. 

 

dorsal area that represent the response to 8 kHz, with the warmest pixel (peak response) located 

at 300 µm for the control group. In contrast, the average temporal response area to 8 kHz of the 

exposed group (Figure 3.8A) shows that the peak response (warmest pixel) is located more dorsally, 

at 200 µm. This result was consistent with the shift in BFs of the tonotopic axis. Group comparisons 

were made using the difference in the responses at each pixel normalized by the standard error (t-

value, see Methods 2.1). The differences in the response to 8 kHz, between exposed and control 

group are in Figure 3.7B and the p-values in Figure 3.8D. A warmest color indicates the exposed 

group had larger spike counts, while a colder color indicates that the control group had a larger 

spike counts.  
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Next, I evaluated the response to the tone used during behavior: 16 kHz. The average temporal 

response area of the control group (Figure 3.9C) revealed that the response to 16 kHz covered the 

most ventral part measured in the IC (500-750 µm), spanning a distance of ~250 µm. The average 

temporal response area to of the exposed group (Figure 3.9A) showed that the response to 16 kHz  

 

Figure 3.11: Effect of relevant and random tone exposure on the spatiotemporal firing pattern to 
16 kHz in the IC. Average temporal response area(5 ms bins) of the simultaneous response, along 
the dorso-ventral axis of the IC, to 16 kHz at 70 dB for A, Relevant and C, Random groups exposed 
to 16 kHz. B, Difference in activity between exposed and control groups normalized by the error 
standard. D, Pixels in the matrix with a significant difference (p<0.05). Recordings were obtained 
during 6 to 12 days of sound exposure. 

 

covered the medial and ventral areas of the IC (400-750 µm), covering a distance of 350 µm. 

Consequently, the evoked activity between 400-550 µm was higher in the exposed group, while the 

activity from 650 to 750 µm was lower (Figure 3.9B-D). These results indicate that the responsive 

distance to the exposed sound is expanded and shifted after sound exposure. Identical analysis was 

made for the random group. The average temporal response area to 8 kHz of the random group 

(Figure 3.10C), revealed that the response to 8 kHz covered the most dorsal part of the IC (100-400 

µm), including the putative dorsal cortex, covering a distance of ~300 µm. When compared to the 

exposed group (Figure 3.10A), the evoked activity was larger in all this area (Figure 3.10D).  
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The average temporal response area to 16 kHz of the random group (Figure 3.11C) showed that the 

response to 16 kHz covered the ventral part of the IC (500-750 µm), a distance of ~250 µm, similar 

to the control group. When compared to the exposed group the responsive distance was smaller 

(Figure 3.11A; 250 vs 350 µm). However, the onset responses of the random group were stronger 

in the ventral areas of the IC and smaller more medially (Figure 3.11B,D). These results indicate that 

relevant and random sound exposure alters the spatial response profile in the IC in different ways. 

For the exposed group, the peak response to 16 kHz was located more dorsally and there was an 

increase in the depths that responded to 16 kHz; while only a shift (more dorsally vs control) in the 

peak response, without increase in the responsive area, was found in the responses to 8 kHz. For 

the random group there was a shift (also dorsal) in the peak response to 16 kHz, but not an 

expansion; while the response area to 8 kHz was expanded compared to the exposed group. In the 

figures it is interesting that often the patches of significant differences are in areas that do not have 

a proper response per se. In the exposed groups it looks like there is a faint background response 

everywhere. 

3.1.2 Two-dimensional organization of frequency representation in the IC 

The anatomical organization of frequency representation in the IC are the frequency laminas, that 

extend in the rostro-caudal axis with an inclination of ~ 45 degrees (Figure 3.12A). For example, in 

the rostral part 16 kHz is represented more ventrally while in the caudal part it is represented more 

dorsally (Figure 3.12A, e.g. red line of the scheme). I hypothesized that the shift in frequency 

representation towards high frequencies, caused more dramatically by relevant-sound exposure, 

should affect the whole extension of the frequency lamina rather than discrete areas. 

To test this hypothesis, I performed recordings using time multi-electrode arrays arranged in 4 

shanks with 4 electrodes per shank. The penetrations of the electrode were oriented dorso-

ventrally as in previous recordings (Figure 3.12A). In this experiment, I recorded animals from the 

control and exposed group and compared BF distribution at different depths along the rostro-

caudal axis. The control group consisted of 287 recording sites from 6 animals and from the exposed 

group consisted of 306 recording sites from 7 animals. 

The average BF distribution for each shank at multiple depths from control (dashed lines) and 

exposed animals (continuous line) is shown in Figure 3.12B. It can be appreciated that the dashed 

lines (averaged BF of control animals) are always to the left of their color matched continuous lines 

(average BF of exposed animals) indicating that, along the rostro-caudal axis of the IC, control 

animals have a frequency distribution with lower frequencies than exposed animals.  
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To better understand the frequency laminas' distribution, we color coded the BF at each depth in a 

separate color dot-plots for each group (Figure 3.12C-D). In these plots lower frequencies have a 

colder color and high frequencies a warmer color, the BF of 16 ± 1 kHz were colored black for better 

appreciation. In the control group (Figure 3.12 C), the reported inclination of the 16 kHz frequency 

lamina can be easily appreciated (Stiebler & Ehret 1985). In the shank that recorded the rostral 

portion of the IC (rostral), the BF of 16 kHz appears at 750 µm, and move gradually upwards until it  

 

Figure 3.12: Effect of tone exposure on the tonotopic organization at the rostro-caudal and dorso-
ventral axes of the IC. A, Representation of a sagital section of the IC that shows the anatomical 
distribution of the isofrequency laminas (different transversal color lines) and the recording 
approach using 4 shanks multi-electrode arrays. B, Average best frequencies along the dorso-
ventral axis at different rostro-caudal locations obtained during 6 to 12 days of sound exposure to 
16 kHz for control (dashed lines) and exposed (continuous lines) groups. Error bars are omitted for 
clarity. C, Distribution of average best frequencies in the dorso-ventral axis for each recording shank 
of the control group. D, Distribution of best frequencies in the dorso-ventral axis for each recording 
shank of the exposed group. For C and D, the black dots represent best frequencies of 16 ± 1 kHz 
and the horizontal dashed lines the upper and lower limits of the corresponding depths for the 
exposed group. 
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reaches its most dorsal position in the caudal part (300 µm). It also occurs with the exposed group, 

however the depth in the rostral part where 16 kHz is the BF is located more dorsally (600 µm). This 

shift upwards is maintained along the rostro-caudal axis until the caudal part (250 µm). The stronger 

shift of the exposed animals occurred in the rostral and caudal extremes of the IC. In the rostral 

part, the average BF shift (calculated as in section 3.1.1) along the dorso-ventral axis was Δf 1,468 

± 205 Hz (F1,13=6.24, p=0.013, group-depth interaction F1,13=0.12; p=0.99). In the caudal part, the 

average BF shift along the dorso-ventral axis was Δf 1,263 ± 367 Hz (F1,13=5.23, p=0.02, group-depth 

interaction F1,13=0.38; p=0.97). The central portions of the IC also showed a shift in BF but lower in 

magnitude (central1, a shift of 874 ± 371 Hz, F1,13=2.14, p=0.14, group-depth interaction F1,13=0.35; 

p=0.98; central2, a shift of 771 ± 445 Hz, F1,13=1.82, p=0.18, group-depth interaction F1,13=0.53 

p=0.89). Additionally, I calculated the proportion of sites with a BF of 16 ± 1 kHz. Interestingly, the 

overall number of sites in the IC tuned to 16 kHz increased (11.81 ± 1.8% vs 5.4±1.1% of sites, for 

exposed and control, respectively, p=0.02). This increased in the proportion of sites preferentially 

tuned to 16 kHz seems to be specific effect, since the proportion of sites tuned to frequencies closed 

to 16 kHz did not change (13 ±1 kHz: 11.23 ±1.7% vs 10.92 ± 1.5%, for exposed and control groups, 

respectively, p>0.05; and 19 ± 1 kHz: 10.7 ± 1.8 % vs 9.4 ± 1.8%, for exposed and control groups, 

respectively, p>0.05). 

In summary, these results indicate that sound exposure modifies frequency representation by 

inducing an upward shift along the rostro-caudal axis of the high frequency laminas in the IC. 

Additionally, sound exposure specifically increases the proportion of sites tuned to its own 

frequency. 

3.1.3 Effect of days of sound exposure on collicular plasticity 

So far the experiments presented here have shown that sound exposure induces plastic changes in 

the IC of animals exposed to sounds in the Audiobox from 6-12 days. I was interested in determining 

at what point in time during sound exposure these changes can be detected (e.g. shift in frequency 

representation). For that purpose, I performed recordings from control and exposed animals to 16 

kHz from day 1 until day 5 from exposure. For these experiments I used multi-electrode arrays with 

one shank. The control group included 68 recorded sites from 6 animals and the group included 51 

recorded sites from 5 animals. 

Figure 3.13 shows examples of raster plots at different depths from individual control (Figure 3.13 

A,B), and exposed mice (Figure 3.13C,D). The strong evoked activity is evident in all the examples. 

It can be appreciated that the activity of the control mice is stronger than the exposed mice, 

particularly from 200-600 µm. The average tuning curves reflected this difference (Figure 3.14). In 
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the dorsal part (100-350 µm) the tuning curves of both groups were more heterogeneous, evident 

by the multiple peaks, than the tuning curves of animals recorded from 6-12 days (Figure 3.4). I 

divided the recorded sites in zones as previously described and compared them between groups. 

There was a significant difference between groups (group effect: F2,4=47.96, p=5x10-12; group-rank 

interaction: F2,4=4.4 p=2x10-7). With the exception of the putative dorsal cortex (group effect: 

F1,23=1.68, p=0.19; group-frequency interaction: F1,23=0.04, p=1), and the contiguous rank (200-350 

µm, group effect: F1,23=1.30, p=0.2; group-frequency interaction: F1,23=1.06, p=0.37) in the rest of 

the zones the activity of the control group was larger (350-450 µm, group effect: F1,23=67.13, 

p=1x10-15; group-frequency  
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Figure 3.13: Evoked activity during the initial days of tone exposure. Representative examples of 
raster plots recorded from different depths from A-B, control; and C-D, relevant-exposed animals. 
Each dot represents a recorded spike. Five repetitions of 30 ms tones of different frequencies were 
played at 70 dB SPL. Vertical red lines indicate the duration of the tone. The recordings were 
obtained during 1-5 days after exposure to 16 kHz. 
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Figure 3.14: Effect during the initial days of tone exposure on the spectral tuning of the IC. Average 
tuning curves at 70 dB for different depths in the IC for control (blue) and relevant (red) exposed 
groups. The tuning curves were obtained during 1 to 5 days of exposure to 16 kHz.  

 

interaction: F1,23=1.62, p=0.03; 500-600 µm, F1,23=61.3, p=1.7x10-14; group-frequency interaction: 

F1,23=1.9, p=0.006; 650-750 µm, F1,23=43.4, p=1.2x10-10; group-frequency interaction: F1,23=2.41, 

p=0.003). These results indicate that during the early days of sound exposure the activity of the 

control group is higher than the exposed group.  

I compared the tuning curves at different depths, of the control and exposed groups during the two 

time windows of sound exposure: the early phase, which included the first 5 days of exposure; and 

the late phase, which included the 6th to 12th day of sound exposure. The statistical analysis showed 

that the activity of the control group was higher than all the groups during both phases of exposure 

(group effect, F1,13=15.37, p=8x10-5; group-depth interaction, F1,13=2.41, p=0.003; group-phase 

interaction, F1,13=82.92, p=1x10-19; group-depth-phase interaction, F1,13=6.1, p=1.62x10-11; pair 

comparisons, p=4x10-8 control early vs control late; and p=4x10-34 control early vs exposed late). 

Interestingly, the activity of the exposed group slightly decreased from the early to the late phase 

but it was not significantly different (p=0.06). Together these results indicate that the activity of 

both groups changes along time spent in the Audiobox, with the control group exhibiting the most 

dramatically affected. In conclusion both groups undergo plasticity in the IC, probably due to the 

enriched environment of the Audiobox. Next, I analyzed the frequency representation of control 

and  
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Figure 3.15: Effect of time of sound exposure on collicular tonotopy. Best frequencies of single 
animals recorded at different depths in the IC obtained at different days of sound exposure for A, 
control group and B, exposed group. The average is represented in black for each group. The 
frequency of the exposed tone was 16 kHz. The animals were grouped in two time windows: early 
(1-5 days) and late (6-12 days) according to the frequency distribution of the control animals. C, 
average best frequencies for control and D, exposed group. 

 

exposed animals during the early phase (1-5 days) of exposure. Ideally, I would expect that for 

example, frequency representation in exposed and control animals would be similar during the first 

day of exposure, and would gradually shift towards high frequencies for the exposed animals until 

it reached the values observed during the late phase (6-12 days) of exposure. To explore this idea, 

I plotted BF values of single animals recorded from day 1 to 12 of exposure. The single values of the 

control animals are shown in Figure 3.15A, and are color-coded according to the day of recording 

(colder color is close to day 1 and warmer color, to day 12). The black trace represents the group 

average. An interesting pattern can be observed, and is that control animals recorded within the 

first 5 days showed BF that were on or above the group average (5 out of 6), while the animals 
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recorded from day 6 onwards showed BF below the mean average (7 out of 10). This indicates that 

in control  

 

Figure 3.16: Effect of time of sound exposure on collicular tonotopy for the control and the 
homecage groups. Average best frequencies for the control group at different phases of exposure 
and for the homecage group. The control animals were grouped in two time windows: early (1-5 
days) and late (6-12 days). The recordings of the homecage group were obtained from animals that 
lived in standard homecages similar amount of time as the animals from the late phase of sound 
exposure (7-14 days). 

 

animals, there was a shift towards low frequencies with the exposure days. Clustering the control 

animals in groups according to this pattern (1-5 and 6-12 days) and averaging the BF in each depth 

(Figure 3.15C) reflects the shift to low frequencies (F2,13=7, p=0.0012, group comparisons control 

early vs control late p=0.016). The same pattern was not observed in the exposed group (Figure 

3.15B), where the values of BF of the animals recorded during the first 5 days of exposure were 

scattered on both sides of the mean. Nevertheless, averaging the clusters as in control animals 

revealed a shift towards high frequencies between the early and late days (Figure 3.15D; F1,13=5.19, 

p=0.023). In conclusion, these results indicate that the differences in BF representation observed 

during 6-12 of exposure is the contribution of both groups that initially shift their BF in opposite 

directions. 

It seems that changes in frequency representation in the IC are the norm rather than the exception. 

A question that immediately arose: what is the frequency representation of the animals before they 

are placed in the Audiobox? Are frequency representations of naïve animals more similar to the 

late phase of exposure or to the early phase? To answer this question, I performed recordings in 
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the IC of animals that were kept in standard home cages in the same room where the Audiobox is 

located for the duration of the sound exposure experiments in the Audiobox (homecage group). 

Using multi-electrode arrays with one shank, 73 sites were recorded from 6 animals from the 

homecage group.  

The average BF for each depth of the homecage group is shown in Figure 3.16 (black trace), plotted 

together with the average BF during 1-5 and 6-12 days of exposure of the control group (same as 

in 3.15C). The average frequency distribution of the homecage group was more similar to the 

frequency distribution of the control animals during 6-12 days (Figure 3.16; green trace) than during 

the first 5 days of exposure (Figure 3.16 blue trace; F2.13=7, p=0.0012, group comparisons: p=0.79, 

homecage vs late exposure; and p=0.001, homecage vs early exposure).  These results indicate that 

placing the animals in the Audiobox, transiently alters frequency representation in the IC that 

returns to basal naïve levels after 6-12 days. Although surprising, these result are not illogical since 

the Audiobox is an enriched environment, also from the auditory perspective, different from that 

of the standard cage. For example, the noise of the sliding doors in the corner prior to access to 

water is also a behaviourally relevant sound. However, there are differences between this sound 

and the repetitive pips presented for the duration of an animal's visit. While the sound of the sliding 

door is triggered by a very specific behaviour of the animal and is associated with a visible 

movement of the door the animal just touched, the pips played for the duration of the visit can only 

be associated with the context in which the animal is but not with a particular behaviour or 

outcome. 

3.1.5 Effect of cortical inactivation in the IC 

In bats, it has been shown that the generation of collicular plasticity depends on direct cortical 

feedback through descending projections from the layer V of the auditory cortex (Gao & Suga 2000; 

Suga et al. 2002). To test whether the maintenance of the collicular plastic changes due to relevant 

sound exposure was dependent on cortical feedback, I performed simultaneous inactivation of the 

auditory cortex and recordings in the IC with multi-electrode arrays (1 shank, 16 electrodes, and 

penetration in the middle of the IC surface). For these experiments, the IC and ipsilateral AC were 

exposed. Saline solution was applied to the surface of the AC and the responses to sounds in the IC 

were recorded. After collecting the evoked responses in the absence of muscimol, a solution with 

muscimol was directly applied to the surface of the AC. Activity in the AC was monitored during the 

duration of the experiment through evoked local field potentials. Usually, after 20 minutes of 

muscimol application, evoked responses in the AC were no longer observed (Figure 3.17). Once 

cortical silencing was ensured, evoked responses in the IC were recorded again. I recorded IC 



RESULTS 
________________________________________________________________________________ 
 

60 
 

responses from exposed and control animals from day 1 to 12 of exposure and analyzed in groups 

of early and late exposure as previously described. For the early phase (days 1-5) the control group 

included 62 sites recorded from 6 animals, for the exposed group it included 41 sites recorded from 

5 exposed animals. During the late phase the  

 

 

Figure 3.17: Inactivation of auditory cortex with muscimol. Representative color plots showing 
the simultaneous evoked LFP at different depths in the auditory cortex to stimulation with broad-
band noise at different sound intensities A, before and B, 20 minutes after muscimol application 
in the cortical surface. The vertical white dashed lines in each subplot represent the duration of 
the stimulus (100 ms). 

 

control group included 63 sites recorded from 7 animals; and for the exposed group it included 64 

sites recorded from 6 animals. The data collected from these animals prior to muscimol were a 

subset of the animals included in previous analysis. The analysis of the spectral tuning and 

frequency representation was made in the same way as in the previous analysis shown above.  

During early phase of exposure (1-5 days), the average tuning curves are shown in the Figure 3.18. 

As mentioned before, with the exception of most dorsal areas, the average amplitude of the tuning 

curves of the control group were larger at multiple depths (350-750 µm, Figure 3.18, continuous 

blue and red traces). Cortical inactivation induced larger evoked activity at multiple depths for both 

groups (400-700 µm; Figure 3.18 dashed red and blue traces). However, the increase was larger in 

the exposed group (6.43 ± 0.55 vs 9.88 ± 0.98, average increase in spike number per depth, for 

control and exposed, respectively) and eliminated the differences in the amplitude of the tuning 

curves observed before cortical inactivation. The initial statistical analysis showed that there was 
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no significant group effect (group effect, F1,13=2.13, p=0.16; group-muscimol interaction, F1,13=0.03, 

p=0.87), however it showed a significant interaction of muscimol and depth (F1,13=13.4, p=1.95x10-

18). Therefore, I decided to perform the analysis by particular zones of the recorded sites, to explore 

how cortical inactivation affected the particular areas of  

 

Figure 3.18: Effect of cortical inactivation during the early phase of tone exposure on the spectral 
tuning of the IC. Average tuning curves at 70 dB for different depths in the IC for control (blue) and 
relevant (red) exposed groups, before (continuous line) and after (dashed lines) cortical 
inactivation. The tuning curves were obtained during 1 to 5 days of exposure to 16 kHz.  

 

the IC. Cortical inactivation had no effect on the putative dorsal cortex (100-150 µm, group effect, 

F1,23=0.01, p=0.9; muscimol effect F1,23=1.16, p=0.3, group-muscimol interaction, F1,23=0.6, p=0.4), 

and the contiguous dorsal area (200-300 µm, F1,23=0.5, p=0.4; muscimol effect F1,23=0.8, p=0.3, 

group-muscimol interaction, F1=0.23, p=0.63). In turn, cortical inactivation modified the responses 

in the ventral half of the IC in similar ways for both groups at 350-450 µm (F1,23=4.5, p=0.04; 

muscimol effect F1,23=23.23, p=5x10-6, group-muscimol interaction, F1=1.12, p=0.29), and with a 

higher impact on the exposed group in the area the area tuned to 16 kHz, where muscimol induced 

larger tuning curves in the exposed group (500-600 µm, F1,23=3.4, p=0.07; muscimol effect 

F1,23=104.9.2, p=1.2x10-10, group-muscimol interaction, F1,23=7.8, p=0.009; 650-750 µm, F1,23=3, 

p=0.09; muscimol effect F1,23=94.3, p=4x10-8, group-muscimol interaction, F1=2.5, p=0.12). 

During the late phase of exposure (6-12 days), the amplitude of the tuning curves of the exposed 

animals was larger than the control animals and the peaks shifted towards high frequencies at 



RESULTS 
________________________________________________________________________________ 
 

62 
 

multiple depths (Figure 3.19; 200-600 µm). The amplitude was lower than control animals at depths 

above 600 µm, when the BF was above 16 kHz (Figure 3.19, same code as previous figure). The 

initial statistical analysis revealed a significant effect of group, and significant interaction of 

muscimol and  

 

Figure 3.19: Effect of cortical inactivation during the late phase of tone exposure on the spectral 
tuning of the IC. Average tuning curves at 70 dB for different depths in the IC for control (blue) and 
relevant (red) exposed groups, before (continuous line) and after (dashed lines) cortical 
inactivation. The tuning curves were obtained during 6 to 12 days of exposure to 16 kHz.  

 

depth (group effect, F1,13=4.36, p=0.04;  muscimol-depth interaction, F1,13=4.57, p=1.7x10-6). The 

analysis by zones, revealed that with the exception of the putative dorsal cortex (100-150 µm, group 

effect, F1,23=0.6, p=0.4; muscimol effect F1,23=0.04 p=0.8, group-muscimol interaction, F1,23=2.7, 

p=0.1), cortical inactivation modulated the evoked activity in the IC (200-600 µm) of control and 

exposed group in equal magnitudes (200-300 µm, F1,23=2.09, p=0.15; muscimol effect F1,23=13, 

p=0.0011, group-muscimol interaction, F1=0.3, p=0.5; 350-450 µm, F1,23=0.07, p=0.78; muscimol 

effect F1,23=8.7, p=0.0066, group-muscimol interaction, F1=1.6, p=0.2; 500-600 µm, F1,23=0.1, p=0.7; 

muscimol effect F1,23=6.09, p=0.02, group-muscimol interaction, F1=0.01, p=0.9). The increase in the 

amplitude only eliminated the differences in evoked activity between groups before cortical 

inactivation in the most ventral area (600-750 µm), but not the differences in the frequency of the 

peak (F1,23=1.57, p=0.2; muscimol effect F1,23=4.6, p=0.04, group-muscimol interaction, F1=1.46, 

p=0.2). 
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To further characterize the effect in frequency representation after cortical inactivation, the 

average BF at different depths between control and exposed animals were compared before and 

after cortical inactivation (Figure 3.20). During the early phase the distribution of BFs between 

control and relevant exposed animals was similar (Figure 3.21A; F1,13=0.0537, p=0.8219). Cortical 

inactivation did  

 

Figure 3.20: Effect of cortical inactivation on collicular tonotopy. Average best frequencies for 
different depths in the IC obtained during A, the early phase (1 to 5 days) and B, the late phase (6 
to 12 days) of tone exposure to 16 kHz for control (blue) and relevant (red) exposed groups, before 
(continuous line) and after (dashed lines) cortical inactivation.  

 

not change BFs (group-muscimol interaction F1,13=0.04 p=0.8) at any tested depth (group-depth-

muscimol interaction F1,13=1.33, p=0.21). During the late phase, in the subset of exposed animals 

used in this experiments, there was a consistent shift in BFs along different depths of the IC 

(consistent with the effect of the whole group previously shown) already evident in the peak of the 

tuning curves (Figure 3.20B; F1,13= 15.7, p<0.01; group-depth interaction F1,13=3.47, p<0.001). 
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Cortical inactivation did not alter this difference (group-depth-muscimol interaction F1,13=0.65, 

p=0.79). 

In summary, cortical inactivation affected the spectral tuning of both control and exposed groups 

in the two different time windows of sound exposure. The main effect was an increase in the 

amplitude of the tuning curves, mainly in the ventral half of the IC. During the early phase of sound 

exposure, the effect was larger on the exposed group in the ventral area and eliminated the 

previous differences in multiple depths. In the late phase of sound exposure, the increase in the 

amplitude of  

3.1.6 Analysis of spectral tuning in the lateral cortex of the IC 

The lateral cortex (LC) of the IC is multisensory nucleus that receives projections from different 

brain areas (Oliver 2005). Compared to the IC, the LC has broader spectral tuning (Syka et al. 2000) 

and the tonotopic organization in the LC of the mouse has not being well characterized. To assess 

whether sound exposure induces changes in the LC, I performed recordings in the LC during the 

early and late phase of sound exposure to 8 kHz. In a set of mice, after recordings in the central IC 

were made, the single electrode was moved 450-500 µm lateral and recordings were made at 

different depths of the LC. The control group included 11 recorded sites from 5 animals in the early 

phase and 12 recorded sites from 4 animals in the late phase. The exposed group included 7 

recorded sites from 3 animals in the early phase and 13 recorded sites from 5 animals in the late 

phase. The recordings made in the lateral portion of the IC confirmed the broader tuning previously 

reported and was easily distinguished from those in the central IC (Figure 3.21). 

Figure 3.21 represents example raster plots of recordings performed in the LC of individual mice. 

Compared to the recordings in the central IC (Figure 3.21), the evoked responses in the LC were 

widely tuned and showed no evident tonotopy with increasing depth, in agreement with previous 

reports (Syka et al. 2000). The evoked responses of the control mouse during the early phase of 

exposure (Figure 3.21A; 1-5 days) were larger than the evoked responses of the control mouse 

during the late phase of exposure (Figure 3.21B; 6-12 days). Although to a lesser extent, this pattern 

was similar for the exposed animals (Figure 3.21 C and D for early and late exposure respectively). 

The statistical analysis revealed that, indeed, the activity of the control mice decreased from the 

early to the late phase of exposure, while the exposed animal relatively stable (group effect F1=0.39, 

p=0.53; exposure phase effect F1=15.04, p=0.0001; group-phase interaction,  F1=3.6, p=0.057, pair 

comparisons, p=0.0003 control early vs control late; p=0.003 exposed early vs control late; and 

p=0.9 exposed early vs exposed late).These results in activity were similar to the decrease in evoked 
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activity seen in the central IC, indicating an overall excitability state in the IC during the first days of 

living in the Audiobox.  

Next, I compared the different groups during the two, early and late, exposure phases. During the 

early phase, the exposed group had larger evoked activity in one out of three locations measured 

(Figure 3.21C 200 µm). The average tuning curves also reflected this difference (Figure 3.22A; 200 

µm F1,23= 14.17, p=0.0003, group-frequency interaction F1,23=0.2, p=0.9; 400 µm F1,23= 0.7, p=0.4, 

the tuning curves caused by cortical inactivation was smaller and equally affected both groups. 

Interestingly, it did not modify the BFs neither in the early nor late phases, indicating that cortical 

feedback is not required to maintain the collicular plasticity. 

 

Figure 3.21: Evoked activity in the lateral cortex of the IC during the early and late phases of tone 
exposure. Representative examples of raster plots recorded from the lateral cortex at different 
depths from A, one control and; C, one exposed animal during the early phase (1-5 days) and; B, 
one control and; D, one exposed animal during the late phase (6-12 days) of tone exposure to 8 
kHz. Each dot represents a recorded spike. Five repetitions of 30 ms tones of different frequencies 
were played at 70 dB SPL. Vertical red lines indicate the duration of the tone.  
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group- frequency interaction F1,23= 0.2, p=0.9; 600 µm F1,23= 13.92, p=0.0003, group-frequency 

interaction F1,23=0.2, p=0.9).  

In the late phase, the evoked responses (Figure 3.21B,D) and the amplitude of the tuning curves 

were also higher for the exposed animals in two out of three recording locations (Figure 3.22B) (300 

µm F1,23= 9.42, p=0.0025, group-frequency interaction F1,23=1.92, p=0.01; 400 µm F1,23= 49.28, 

p<0.001, group-frequency interaction F1,23= 2.75, p<0.001) and lower at 500 (F1,23= 32.66, p<0.0001, 

group-frequency interaction F1,23=1.02, p=0.4) and 600 µm (F1,23= 13.95, p=0.0003, group-frequency 

interaction F1,23=0.42, p=0.9). Interestingly, the tuning curves of the exposed animals were sharper 

than control animals, mainly due to a reduction in the responses frequencies below 8 kHz (Figure 

3.22B). 

 

Figure 3.22: Effect during the early and late phases of tone exposure on the spectral tuning of the 
lateral cortex of the IC. Average tuning curves at 70 dB for different depths in the lateral cortex of 
the IC for control (blue) and relevant (red) exposed groups during A, the early phase (1-5 days) and 
B, the late phase (6-12 days) of tone exposure to 8 kHz.  

 

In summary, the activity in the LC decreased from early to late phase of exposure in both groups, 

suggesting an increase in overall excitability in the IC during the first days of living in the Audiobox. 
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However, sound exposure induced larger tuning curves during the early phase of exposure that was 

maintained and extended to other locations of the LC in the late phase.  

3.2 Molecular analysis  

3.2.1 Gene expression analysis 

To investigate whether the observed electrophysiological changes in animals exposed to 16 kHz 

were accompanied with molecular changes in the IC or AC, I measured the expression of different 

genes involved in synaptic transmission and neuronal plasticity that have been reported to change 

its expression levels upon sound exposure, acoustic learning paradigms or enriched environment 

(Ortinski et al. 2004; Dong et al. 2010; Holt et al. 2005; Browne et al. 2012; Marianowski et al. 2000; 

Tan et al. 2007; Mainardi et al. 2010). The genes analyzed were grouped in the following categories: 

immediate early genes, genes associated to inhibitory transmission, excitatory transmission, or 

 

Figure 3.23: Gene expression in the IC of the housekeeping gene rpl13a. Gene expression was 
measured by RT-qPCR. Average Ct values of standard cage, control and exposed groups. Samples 
were collected at 7 days of sound exposure to 16 kHz. 

 

neuronal plasticity, and neurotrophic factors (Table 3.8). To test if the environment in the Audiobox 

itself induced changes, I also measured gene expression in age-matched mice that were kept in 

standard home cages.  

I used the gene of the Ribosomal protein L13a (rpl13a) as a reference gene, since it has been 

reported as the best candidate gene for brain gene expression analysis (Gubern et al. 2009). The 

relative expression of Rpl13a showed no change between the three groups tested (Figure 3.23; 

F2,17=0.8, p=0.47, n=7,8 and 5 for exposed, control and homecage groups, respectively).  

There were no differences in the expression of the immediate early gene arc (Figure 3.24A). The 

detailed statistical values for all the genes analyzed are provided in Table 3.8. The expression of 
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cfos showed a tendency to be downregulated in the control and exposed groups (Figure 3.24B). 

There was a robust increase in the expression of the transcription factor creb for the groups that 

lived in the Audiobox, regardless of sound exposure (Figure 3.24C; p<0.001 for control and exposed 

vs standard cage. 

The relative expression of the genes involved in inhibitory transmission remained unchanged for 

the different subunits of the GABAa receptor (Figure 3.25A-D) and gad1 (Figure 3.25E). There was 

a slight reduction in vgat expression for the control and exposed groups (Figure 3.25F; p>0.05). 

In the group of genes related to excitatory transmission, compared to the standard cage animals 

the expression of gria1 and gria2 were reduced in the control group (Figure 3.26D,E; p=0.004 and 

p=0.04, respectively). It is important to note that the exposed group showed a tendency towards 

decrease for gria1 (p=0.06). There were no changes in the expression in the rest of the genes in this 

category (Figure 3.26A-C,F). 

 



RESULTS 
________________________________________________________________________________ 
 

69 
 

 

 

C
atego

ry
P

ro
tein

G
en

e
d

F
 F valu

e
p

-valu
e

Stan
d

ard
  cage

  

m
e

an
 e

xp
re

ssio
n

 ± 

SEM
 (x10

3)

A
u

d
io

b
o

x n
o

 so
u

n
d

 

m
e

an
 e

xp
re

ssio
n

 ± SEM
 

(x10
3)

A
u

d
io

b
o

x e
xp

o
se

d
  

m
e

an
 e

xp
re

ssio
n

 ± SEM
 

(x10
3)

Tran
scrip

tio
n

 facto
rs an

d
 im

m
ed

iate early gen
es 

A
rc

arc
2,9

0.03
0.97

218±30
236±26

225±58

C
-fo

s
cfos

2,17
3.32

0.06
65±5

45.6±3
54±7

cA
M

P respo
nse elem

ent-binding (C
R

EB
)

creb
2,17

129.41
<0.0001

5.1±0.8
36.5±1.5

32.8±1.4

In
h

ib
ito

ry tran
sm

issio
n

G
A

B
A

a recepto
r:

subunit β
2 

gabrb2
2,17

3.11
0.07

1216±100
1379±74

1531±82

subunit β
3

gabrb3
2,17

0.11
0.98

1394±112
1414±33

1391±182

subunit α
1 

gabra1
2,17

0.13
0.87

1483±76
1565±164

1493±60

subunit α
3

gabra3
2,16

0.59
0.56

17.4±2
15.52±0.8

15.71±1.2

G
lutam

ic acid descarbo
xylase

gad1
2,17

0.14
0.86

252±13
263±47

238±24

G
A

B
A

 vesicular transpo
rter (V

G
A

T)
vgat

2,14
3.4

0.06
231±12

161±21
207±19

Excitato
ry tran

sm
issio

n

N
M

D
A

 recepto
r:

subunit 2A
grin2a

2,16
0.55

0.58
6.2±0.9

8.8±4
4.8±0.2

subunit 2B
grin2b

2,17
0.18

0.18
4.1±0.4

3.4±0.3
3.3±0.2

A
M

PA
 recepto

r:

subunit 1
gria1

2,17
6.7

0.007
185±12

139±6
156±8

subunit 2
gria2

2,17
4.34

0.029
0.15±0.04

0.06±0.006
0.09±0.007

Po
st-synaptic density pro

tein 95 (PSD
95)

psd95
2,12

0.78
0.47

2030±159
2217±67

2228±139

G
lutam

ate vesicular transpo
rter 2 (V

glut2)
vglut2

2,17
1.25

0.31
194±12

242±34
258±30

N
eu

ro
tro

p
h

ic facto
rs an

d
 n

eu
ro

n
al p

lasticity

B
rain derived neuro

tro
phic facto

r (B
D

N
F)

bdnf
2,17

5.33
0.03

39±9
14±1

16.7±3.4

M
atrix-m

etallo
pro

tease 9 (M
M

P9)
m

m
p9

2,17
0.73

0.49
1.6±0.15

1.74±0.1
1.5±0.1

C
ho

linergic recepto
r m

uscarinic 2
chrm

2
2,14

0.31
0.73

89±13
96±12

105±14

Tab
le 3

.1
: Effect o

f so
u

n
d

 e
xp

o
su

re o
n

 co
llicu

lar gen
e

 e
xp

re
ssio

n
. Statistic valu

es o
f th

e an
alysis o

f co
llicu

lar gen
e exp

ressio
n

. Th
e in

ferio
r co

llicu
li 

w
e

re co
llected

 fro
m

 an
im

als e
xp

o
sed

 to
 1

6
 kH

z d
u

rin
g 7

 d
ays, an

d
 age m

atch
ed

 co
n

tro
l an

im
als th

at lived
 in

 th
e A

u
d

io
b

o
x o

r in
 stan

d
ard

 
h

o
m

ecage. Sign
ifican

t valu
es are m

arke
d

 in
 b

o
ld

. 
 



RESULTS 
________________________________________________________________________________ 
 

70 
 

 

Figure 3.24: Effect of tone exposure on the collicular gene expression of immediate early genes. 
Gene expression was measured by RT-qPCR. Relative expression of A, arc; B, cfos and C, creb.  
Samples were collected at 7 days of sound exposure to 16 kHz. ** p<0.001. 
 

 

Figure 3.25: Effect of tone exposure on the collicular gene expression of genes involved in 
inhibitory transmission. Gene expression was measured by RT-qPCR. Relative expression of A, 
subunit β2 of the GABAa receptor, gabrb2; B, subunit β3 of the GABAa receptor, gabrb3; C, subunit 
α1 of the GABAa receptor, gabra1; D, subunit α3 of the GABAa receptor, gabra3; E, glutamic acid 
descarboxylase,  gad1; F, GABA vesicular transporter, vgat. Samples were collected at 7 days of 
sound exposure to 16 kHz. 
 
The expression of bdnf in the control group was significantly decreased compared to the standard 

cage group (Figure 3.27A; p=0.04). The exposed group also showed a tendency in the same direction 

(p>0.05). There were no differences in the expression of mmp9 and chrm2 (Figure 3.27B,C).  
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Figure 3.26: Effect of tone exposure on the collicular gene expression of genes involved in 
excitatory transmission. Gene expression was measured by RT-qPCR. Relative expression of A, 
Subunit 2A of the glutamate NMDA receptor, grin2a; B, subunit 2B of the glutamate NMDA 
receptor, grin2b; C, Post-synaptic density protein 95, psd95; D, glutamate receptor AMPA 1, gria1; 
E, glutamate receptor AMPA 2, gria2; F, glutamate vesicular transporter 2, vglut2. Samples were 
collected at 7 days of sound exposure to 16 kHz. * p<0.05, ** p<0.001. 
 

 

Figure 3.27: Effect of tone exposure on the collicular gene expression of genes involved in 
neuronal plasticity. Gene expression was measured by RT-qPCR. Relative expression of A, brain 
derived neurotrophic factor, bdnf; B, matrix-metalloprotease 9, mmp9; C, cholinergic receptor 
muscarinic 2, chrm2. Samples were collected at 7 days of sound exposure to 16 kHz. *p<0.05. 
 

Interestingly, the ratio between the expressions of vglut2/vgat showed a significant increase for 

control and exposed groups (Figure 3.28; F2,14= 12.78 p<0.001, p<0.01 standard cage vs control and 

exposed groups).  
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Figure 3.28: Effect of tone exposure on the collicular vglut2/vgat expression ratio. Gene 
expression was measured by RT-qPCR. Samples were collected at 7 days of sound exposure to 16 
kHz. ** p<0.001. 
 

 

Figure 3.29: Effect of tone exposure on the cortical gene expression of genes involved in neuronal 
plasticity. Gene expression was measured by RT-qPCR. Relative expression of A, cholinergic 
receptor muscarinic 2, chrm2; B, glutamic acid descarboxylase, gad1; C, GABA vesicular transporter, 
vgat; D, glutamate vesicular transporter 2, vglut2. Samples were collected at 7 days of sound 
exposure to 16 kHz. * p<0.05. 
 

In summary, the similarity in the expression of measured genes between the control and exposed 

groups suggests that the changes in gene expression are triggered by the Audiobox environment 

and not by relevant sound exposure itself.     

It has been reported changes in the cortical expression of chrm2, gad1, vglut2 and vgat due to 

sound exposure in the AC (Browne et al. 2012; Lai et al. 1989) and enriched environment in the 
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visual cortex (Mainardi et al. 2010). Therefore, I measured the expression of these genes in the AC. 

Compared to the control group (n=6), the expression of the exposed group (n=6) of gad1 was 

reduced (Figure 3.29B; control, 0.17 ± 0.02 vs exposed 0.11 ± 0.007, p=0.03). No differences were 

found in the expression of chrm2 (control, 0.04 ± 0.004 vs exposed 0.04 ± 0.005, p=0.65), vgat 

(control, 0.18 ± 0.03 vs exposed 0.13 ± 0.01, p=0.27) and vglut2 (Figure 3.29A-D; control, 0.01 ± 

0.001 vs exposed 0.02 ± 0.003, p=0.14). These results indicate that sound exposure in the Audiobox 

reduces specifically the expression of GAD in the auditory cortex. 

3.2.3 Expression of presynaptic markers in the IC 

To investigate whether the observed electrophysiological changes, induced by sound exposure, and 

the increase in the Vglut2/VGAT ratio at the level of gene expression were accompanied by 

molecular changes in protein expression of presynaptic molecules at particular locations of the IC, 

Olga Babaev (Neurobiology department, MPI-em, Göttingen) measured immunoreactivity to VGAT 

and Vglut2 proteins in the dorsal and ventral portion of the IC of control and exposed animals to 16 

kHz during 6-12 days. We were particularly interested in the ratio between these two proteins as 

an expression of excitation/inhibition (E/I) balance, since it has been shown to be modified upon 

environmental manipulations and a common signature in cortical synaptic plasticity (Mainardi et 

al. 2014). The total number of Vglut2 and VGAT positive puncta was quantified for dorsal and 

ventral areas in each animal and the ratio between total number of VGAT and total number of 

Vglut2 was calculated (Figure 3.30A). We found that the amount of Vglut2 in the dorsal area was 

similar (Figure 3.29B; 119976 ± 12940 vs 130625 ± 3907, p=0.68, control and exposed to 16 kHz, 

respectively. n=7 for each group), while there was a significant reduction of VGAT for the exposed 

animals (Figure 3.30C; 92251 ± 9406 vs 69241 ± 9864, p=0.03, control and exposed, respectively). 

Therefore, we observed a significant increase in the Vglut2/VGAT ratio of exposed animals (Figure 

3.30C; 1.5 ± 0.15 vs 1.9 ± 0.27, p = 0.03, control and exposed, respectively). In the ventral areas, 

there was a decrease in Vglut2 for the exposed animals; while there was no change in the amount 

of VGAT (Figure 3.30F). The Vglu2/VGAT ratio was slightly higher for the exposed group (p>0.05). 

This result indicates that relevant sound exposure increases the E/I balance only in the dorsal part 

of the IC. 
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Figure 3.30: Effect of tone exposure on the collicular expression of presynaptic proteins. A, 
Representative photomicrographs of a section of the IC double labeled for VGAT and Vglut2 for 
control (upper panels) and exposed (lower panels) groups. Quantification of the positive puncta for 
Vglut2 in B, Dorsal and E, Ventral areas. Quantification of the positive puncta for VGAT in the C, 
Dorsal and F, Ventral areas. Ratios between Vglut2/VGAT in D, Dorsal and G, Ventral areas. Samples 
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were collected between 6-12 days of sound exposure to 16 kHz. *p<0.05. Data collected by Olga 
Babaev. 

3.3 Effect of sound exposure in the cochlear nucleus. 

We were interested in knowing whether the changes observed in the IC due to sound exposure 

were due to an overall plastic change along the entire auditory pathway, particularly at sub-

collicular nuclei. For that purpose, Dr. Zhizi Jing and Dr. Nikola Strenzke from the Auditory 

physiology lab in the Klinikum, Göttingen, performed single unit recordings in the cochlear nucleus 

of control (n=6) and exposed animals (8 kHz; n=6) during 6-12 days. 

The tuning curves obtained from different types of units, the spike rates as well as the temporal 

response, were similar between groups (Figure 3.31). In summary, sound exposure did not induce 

changes in the sound processing for different types of units in the cochlear nucleus. 

 

Figure 3.31:  Effect of tone exposure on sound processing in the cochlear nucleus. A-B, Averaged 
tuning curves at 70 dB. C-D, Evoked spike rate to the characteristic frequency (CF) and to 8 kHz of 
units with a CF 6-12 kHz. E-F, Evoked spike rate to the CF and to 8 kHz of units with a CF 12-24 kHz. 
Single units were classified as primarylike (PL), primarylike-with-notch (left panels) and other types 
(right panels). Recordings were made between 6-12 days of sound exposure to 8 kHz. Data collected 
by Dr. Zhizi Jing and Dr. Nicola Strenszke 
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3.4 Behavior 

3.4.1 Pre-pulse inhibition of the acoustic startle response.  

At this level of the study, I was interested in evaluating whether the plastic changes observed in the 

IC due to sound exposure (frequency representation, amplitude of tuning curves, etc) were 

correlated with behavioral changes. Since changes in frequency discrimination have been 

correlated with changes in cortical sound representation (Weinberger 2004; Han et al. 2007; 

Froemke et al. 2013), I decided to test whether sound exposure in the Audiobox modified frequency 

discrimination. It was important to assess frequency discrimination acuity without training, to avoid 

possible induction of plasticity by the training itself and being able to correlate the behavioral 

readout with the changes already characterized in the IC. Pre-pulse inhibition (PPI) of the acoustic 

startle response (ASR) is a behavioral assay that has been used to successfully determine frequency 

discrimination acuity (FDA) in mice without the need of training (Clause et al. 2011; Aizenberg & 

Geffen 2013a; Mwilambwe-Tshilobo et al. 2015; Aizenberg et al. 2015). The ASR is an innate reflex 

to loud sounds that can be inhibited if a short pre-pulse is delivered before the loud sound. If PPI is 

assessed with a constant background tone the inhibition of the ASR will be proportional to the 

difference between the background tone and the pre-pulse tone (see Figure 2.3). I tested animals 

that were exposed to 16 kHz with every visit to the corner (exposed group); animals exposed to 16 

kHz in the homecage (random group) and control animals that lived in the Audiobox the same 

amount of time as the other groups but without sounds (control group). The experiments were 

carried between 7 to 11 days of sound exposure and the animals were tested only once. On each 

day a few animals of each group were tested. In this experiment the mean daily length of the visits 

to the corner was similar between the relevant-exposed group and the mouse that activated the 

sound in the homecage for the random group (1378 ± 184 and 1335 ± 40 s, respectively, p=0.806), 

indicating that animals from both groups heard 16 kHz during similar amount of time. 

Moreover, when I analyzed the group data of all the PPI values for each Δf, the exposed group was 

significantly different from the control and random exposed animals (Figure 3.32A; F2,8= 13.59, 

p<0.0001; p<0.001 vs control and random exposed groups). For the analysis I used the same 

methodology previously described by Geffen & Aizenberg, 2013. By fitting a generalized logistic 

function of the PPI values for each animal, I calculated the individual discrimination thresholds (Th) 

defined as the shift in frequency that caused 50% of inhibition of the maximum response (see 

Methods 2.3.4). Animals with a fit coefficient below 0.7 were excluded from the analysis (2 control 
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animals, 3 exposed animals and 1 random animal, out of 10 for each group). The individual Th and 

the mean value for each group are plotted in the Figure 3.32B. The thresholds of the  

 

Figure 3.32: Effect of tone exposure on frequency discrimination acuity. A, PPI as function of 
frequency change between the pre-pulse and the background tone for control (blue), exposed (red) 
and random (green) groups. The exposure frequency was 16 kHz. Color lines indicate the fitted 
curve for each group. B, Average discrimination thresholds for control, exposed and random 
groups. *p<0.05. 

 

control and random group were very similar (6.1 ± 1.8 vs 5.4 ± 1% Δf). The average Th between 

groups was different (Figure 3.32B; F2= 4.32, p=0.02). The average Th of the relevant exposed 

animals was higher than control animals but did not reach statistical significance, due to very low 

value in the exposed group (11.35 ± 1.8 vs 6.1 ± 1.8% Δf, n= 8 and 7, respectively, p=0.097). However, 

the average Th of the exposed group was significantly higher than random exposed animals (11.35 

± 1.8 vs 5.4 ± 1% Δf, n=8 and 9, respectively, p<0.05).  

In summary, these results indicate that relevant but not random exposure inside the corner of the 

Audiobox decreases FDA around the exposed frequency. 

3.4.2 Latent inhibition 

Once established that sound exposure decreases FDA around the exposed frequency, but only 

when it occurs inside the corner, I was interested to test whether sound exposure will also affect 

subsequent learning. Particularly, I was interested to test how long it will take for the exposed and 

random animals to learn the change in the behavioral value of the exposed sound (from safe or 

neutral to punishment signal). For this purpose I used the latent inhibition paradigm. Latent 

inhibition is defined as the delay in learning due to pre-conditioned exposure of what later will be 

the conditioned stimulus. The latent inhibition paradigm in the Audiobox consisted of four different 

phases: habituation (3 days; no sound), safe (7 days; 8 kHz tone pips were paired with visits to the 
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corner), pre-conditioned (5 days, explained in detail below) and conditioned (5 days; animals had 

to learn to  

 

Figure 3.33: Effect of tone exposure during the pre-conditioned phase on the expression of latent 
inhibition. Daily performance (expressed in % of visits without nose-pokes) of mice during different 
training phases of the latent inhibition paradigm. Filled circles represent habituation or safe visits 
paired with 8 kHz, open circles are visits paired with the pre-exposed tone. Animals were pre-
exposed 17% of the visits to different tones during the pre-conditioning phase: A, 4 kHz in the 
corner (control group); B, 16 kHz in the corner (LI group); or C, 16 kHz in the homecage (random 
exposed group). Filled triangles represent the conditioned visits to 16 kHz where animals in case of 
nose-poking received an air-puff. D, Discriminability index (d’) as a function of the conditioning day 
for the three groups of animals. 

 

nose-poke in the corner only when 8 kHz was presented and to avoid nose-poking when 16 kHz was 

presented) (Figure 2.2; see Methods 2.3.1). Only the pre-conditioned phase was different between 

groups. During this phase two different tones were presented. For the control group, in 71% of the 

visits to the corner 8 kHz was played and in 29% of the visits, 4 kHz was played. For the latent 

inhibition group (LI), 8 and 16 kHz were played (71 and 29% respectively). For the random group, 8 

kHz was played in 100% of their visits to the corner and 16 kHz was played in the homecage (see 

Methods 2.3.1). During the safe and pre-conditioning phases the tones played were safe sounds, 

meaning that the animals could nose-poke without punishment. On average, animals did not nose-

poke in 20-30% of their visits to the corner (Figure 3.33A-C). During the safe phase, control animals 
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showed lower proportion of visits with nose-pokes during the first 4 days (n=15). However, by the 

end of the safe phase, the performance was similar between groups. Addition of a second tone 

during the pre-conditioned phase did not alter the performance in the control and LI groups (n=19). 

The random exposed group (n=20) showed a lower number of visits with nose-pokes in the last 2 

days previous to the beginning of the conditioned phase. During the pre-conditioned phase, the 

average daily length of time spent in the corner was similar for the mice in the LI group and the 

mice that activated the sound for the random exposed group in the two replications that were 

made (432 ± 41 and 338 ± 35 s, respectively), indicating that the animals from these two groups 

heard 16 kHz in the pre-conditioned phase during similar amount of time. During the conditioned 

phase, the control mice (exposed to 4 kHz during pre-conditioning phase) learned to discriminate 

the conditioned tone (16 kHz) within the first day, with an average of 85±3% of the conditioned 

visits without nose-pokes (Figure 3.33A). As expected, it took longer for the LI group (exposed to 16 

kHz in the corner during pre-conditioning phase) to learn to avoid nose-poking during conditioned 

visits (Figure 3.33B). On average animals of the LI group avoided nose-poking in 62±5% of the 

conditioned visits, thus expressing latent inhibition. The random group (exposed to 16 kHz in the 

homecage during pre-conditioning phase) showed an intermediate level between the control and 

LI group, with an average of 74±4% of the conditioned visits without nose-pokes (Figure 3.33C). By 

the second day of conditioning, the proportion of conditioned visits without nose-pokes of the 

control animals slightly increased to 90±3%, while the LI and random groups was 70±6 and 77±4% 

respectively. It was not until the fourth day of conditioning that the proportion between LI and 

random groups became similar (75±5 and 72±4%, respectively). 

For all groups there was also an increase in the proportion of safe visits without nose-pokes (47±4, 

42±4 and 42±3%, for control, LI and random exposed, groups, respectively), that gradually decrease 

for the LI and random groups down to 30±3% for both groups. The safe visits without nose-pokes 

for control animals remained around 42±4% along the conditioning days.  

We calculated the discriminability index (d’, see Methods 2.3.2) for each group across conditioning 

days (Figure 3.33D). A d’ of 1 or higher indicates that the animals could discriminate between safe 

and conditioned visits. Control animals showed an index above 1 during the 5 days of conditioning. 

In contrast, LI animals had average d’ values below 1 during the first two days (0.42 and 0.85, 

respectively) indicating that they could not discriminate until the third day. Random exposed 

animals had average d’ values of 1 or above from the first day of conditioning indicating that indeed 

they could discriminate since day 1. The average d’ of the LI group were significantly different from 

the control and random exposed group on day 1 (0.42±0.07 vs 1.01±0.15 for LI and random, 
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respectively, p<0.05) and from the control group on day 2 (0.85±0.2 vs 1.67±0.2, for LI and control, 

respectively, p<0.05). 

In summary, it took longer for animals to learn the conditioned value of a sound when it was pre-

exposed inside the corner, strongly suggesting that the animals indeed assign a behavioral 

relevance to it, contrary to the case in which the sound was pre-exposed in the homecage. 

3.5 Electrophysiology after conditioning  

Since it has been shown that there are short term plastic changes in the IC after fear conditioning 

in bats (Ji et al. 2005; Suga et al. 2002), I was interested in knowing whether our training paradigm 

(two-tone discrimination task) could also modify frequency representation in the IC and the effect 

of latent inhibition. 

I performed recordings with multi-electrode arrays (4 shanks x 4 electrodes) in the IC of animals 

from one replication of the latent inhibition experiments showed in the section 3.4.2. These 

animals, after 3 days of habituation without sounds, went through a safe phase (7 days) where 8 

kHz was played in visits to the corner; a pre-conditioned phase (5 days) where they were pre-

exposed to 8 and 16 kHz, and a conditioning phase (5 days). In the conditioning phase animals learnt 

to nose-poke in the corner only when 8 kHz (safe tone) was presented and to avoid nose-poking 

when 16 kHz was presented (conditioned tone). One group of animals were from the LI group 

(Figure 3.33B, pre-conditioned exposure to 8 and 16 kHz, n=6, 259 recorded sites) and the other 

group of animals were from the random group (Figure 3.33C, pre-conditioned exposure to 8 kHz in 

the corner and 16 kHz in the homecage, n=7, 311 recorded sites). The recordings started after five 

days of conditioning to 16 kHz, at this time, both groups showed similar discriminability indexes (d’) 

(Figure 3.33D; 1.25±0.09 vs 1.23±0.1, for LI and random groups, respectively).  

3.5.1 Sound processing in the IC after conditioning 

The Figure 3.34 shows the average BF per depth for each group (LI group, magenta traces; random 

group green traces) along the rostro-caudal axis (A to D). The average BF of a non-conditioned 

control group is shown in blue as a reference (the values for this group are the same as in Figure 

3.12). The average BF of the LI group are higher than the random group in ventral depths (400-750 

µm) of the rostral and medial portion of the IC (Figure 3.34 A-B; Rostral: F1,13= 30.05 p<0.001, group-

depth interaction F1,13=1.51; p=0.11; Central 1: Figure 3.34B; F1,13= 6.21 p=0.01, group-depth 

interaction F1,13=1.05; p=0.4). There was no significant difference in the central 2 (Figure 3.34C; 

F1,13= 3.83 p=0.053, group-depth interaction F1,13=0.7259; p=0.73) and caudal part (Figure 3.34D; 

F1,13= 1.64 p=0.2, group-depth interaction F1,13=0.9; p=0.55).  
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In the AC and IC a specific increase in the responses to the conditioned tone of fear conditioned 

animals has been shown (Bakin & Weinberger 1990; Gao & Suga 2000). Therefore, I analyzed the  

 

Figure 3.34: Effect of conditioning on collicular tonotopy. A-D, Average best frequencies along the 
dorso-ventral axis from different rostro-caudal locations of the IC of animals conditioned to 16 kHz. 
Before conditioning, the animals were pre-exposed to 16 kHz in the corner (magenta) or in the 
homecage (green). Recordings were obtained during 6 to 10 days after the animals from both 
groups learned the task and the discrimination indexes were similar. Average best frequencies of 
the control non-conditioned group were plotted as reference (blue).  
 

responses to the conditioned tone (16 kHz) in the IC. The Figure 3.35 shows the average response 

to 16 kHz per depth for each group (LI group, magenta traces; random group green traces) along 

the rostro-caudal axis (A to D). The average BF of a non-conditioned control group is shown in blue 

as a reference. The average responses between groups were similar in the rostral (Figure 3.35A; 

F1,13= 0.58, p=0.44, group-depth interaction F1,13=0.66, p=0.8), central 1 (Figure 3.35B; F1,13= 0.05 

p=0.8, group-depth interaction F1,13=1.25, p=0.25) and central 2 (Figure 3.35C; F1,13= 0.8 p=0.3, 

group-depth interaction F1,13=0.1, p=1) along the dorso-ventral axis. In contrast the average 

responses were higher in the random group compared to the LI group in the caudal part (Figure 

3.35D; F1,13= 15.76 p<0.001, group-depth interaction F1,13=1.54, p=0.1). 
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Interestingly, the average responses to the safe tone (8 kHz), shown in the Figure 3.36, for random 

animals were higher in the rostral areas compared to the LI group (Figure 3.36A; F1,13= 19.84, 

p<0.0001, group-depth interaction F1,13=0.3, p=0.9), central 1 (Figure 3.36B; F1,13= 4.6, p=0.03, 

group-depth interaction F1,13=0.5, p=0.9), while the most caudal parts were similar between groups 

(Figure  

 
 
Figure 3.35: Effect of conditioning on the responses to the conditioned tone (16 kHz) in the IC. A-
D, Average responses to the conditioned tone (16 kHz) along the dorso-ventral axis from different 
rostro-caudal locations of the IC of animals conditioned to 16 kHz. Before conditioning, the animals 
were pre-exposed to 16 kHz in the corner (magenta) or in the homecage (green). Recordings were 
obtained during 6 to 10 days after the animals from both groups learned the task and the 
discrimination indexes were similar. Average values of the control non-conditioned group (blue) 
were plotted as reference. 
 

3.36C,D; central 2: F1,13= 0.5, p=0.4, group-depth interaction F1,13=0.1, p=0.9; caudal: F1,13= 0.7 p=0.4, 

group-depth interaction F1,13=0.4, p=0.9). 

To characterize the temporal firing pattern of the LI and random groups to the conditioned and safe 

tones, I selected the depth with the best response to 8 or 16 kHz in each of the four rostro-caudal 

positions, and compared the average PSTH (5 ms bins) between groups. The temporal response was 

divided in onset (0-30 ms after sound onset) and delayed (31-80 ms after sound onset) responses, 

as in the previous analysis of the section (3.1.2).The onset component of the average responses to 
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the conditioned tone (16 kHz) was different between random and LI groups in the central portion 

of the IC (Figure 3.37B; p=0.04 and 0.03 for central 1 and central 2, respectively). In the caudal 

portion, the delayed component was longer in the random group compared to the LI group 

(p=0.0002). Compared to the control non-conditioned group, the average responses in the onset 

component of the LI group  

 

 

Figure 3.36: Effect of conditioning on the responses to the safe tone (8kHz) in the IC. A-D, Average 
responses to the safe tone (8 kHz) along the dorso-ventral axis from different rostro-caudal 
locations of the IC of animals conditioned to 16 kHz. Before conditioning, the animals were pre-
exposed to 16 kHz in the corner (magenta) or in the homecage (green). Recordings were obtained 
during 6 to 10 days after the animals from both groups learned the task and the discrimination 
indexes were similar. Average values of the control non-conditioned group (blue) were plotted as 
reference. 
 
 
and the average delayed responses of the random group were different in the caudal part of the IC 

(Figure 3.37B; p=0.0045 and p=0.0014, for LI and random group, respectively). The onset 

component of the average responses to the safe tone (8 kHz) was slightly higher in the rostral and 

caudal portions of the IC of the random group compared to the LI group (Figure 3.37A; p=0.07). 

Compared to the control non-conditioned group, the onset and delayed responses of both trained 

groups were larger in the medial and caudal part of the IC (Figure 3.37A; central 2 and caudal, 

p<0.05).  
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In summary, these results indicate that previous sound exposure has a long lasting effect in 

frequency representations in the IC. Additionally, the random group showed larger responses to 

the safe tone in the rostral part and larger responses for the conditioned tone in the caudal part. In 

the caudal part the firing pattern to the conditioned tone was also different between the trained 

groups, with larger peak response for the LI group and a larger delayed response for the random 

group. 

 

 
 

Figure 3.37: Effect of conditioning on the firing pattern along the rostro-caudal axis of the IC. 
Average PSTH (5 ms bins) of the depth with the best responses at different rostro-caudal locations, 
for pre-exposed animals in the corner (magenta) and pre-exposed animals in the homecage (green) 
to A, the safe tone (8 kHz); and B, the conditioned tone (16 kHz), at 70 dB SPL. Recordings were 
obtained during 6 to 10 days after the animals from both groups learned the task and the 
discrimination indexes were similar. Vertical dashed lines indicate tone onset and delayed. The 
average PSTH of control non-conditioned animals (blue) were plotted as reference.*p<0.05 
**p<0.001 LI vs random. 
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3.6 Regulation of auditory cortical plasticity by blocking c-Fos expression 

Additional to my main project, I collaborated in a study that explored the role of c-Fos and its direct 

contribution to regulate discrimination-driven auditory cortical plasticity . Specifically, I contributed 

with electrophysiological data, by performing acute recordings in the auditory cortex of naïve and 

trained mice in the Audiobox treated with a short hairpin RNA that blocked c-fos expression. Here, 

I presented a brief version of the study, currently under revision. 

Blocking c-Fos expression reveals the role of auditory cortex plasticity in sound frequency 

discrimination learning 

Livia de Hoz1,2, Dorota Gierej1,3, Victoria Lioudyno3, Jacek Jaworski4, Magda Blazejczyk4, Hugo 

Cruces-Solís2,5, Anna Suska3, Tomasz Lebitko3, Tomasz Nikolaev3, Ewelina Knapska3,@, Israel 

Nelken6,@, Leszek Kaczmarek3,@ 

Abstract 

Operant learning is associated with plasticity in early sensory cortices as well as with modulation of 

gene expression, but the connection between the behavioral, molecular and electrophysiological 

changes is only partially understood. Here we causally connect the three levels by showing that 

locally blocking c-Fos expression in mouse auditory cortex resulted in decreased cortical 

experience-dependent plasticity and a parallel and specific behavioral deficit in a sound 

discrimination task. c-Fos expression blockade had not effect on baseline excitability or basic 

auditory processing. Thus, experience-driven c-Fos expression is necessary for experience-

dependent plasticity in the auditory cortex and c-Fos-dependent cortical plasticity is necessary for 

frequency discrimination assessment in an operant behavioral task. 

Results 
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Mice lived in the Audiobox and had to learn to avoid nose-poking when the conditioned tones 

where present. Performance became better over time (Figure 3.38b). As expected, sound 

frequency discrimination learning resulted in a clear increase in c-Fos expression in the auditory 

cortex (Figure 3.38c). Experience-dependent plasticity was assessed with in vivo acute 

electrophysiology in animals that had either been trained in the Audiobox or had spent the same 

amount of time in their homecage. We found that experience-dependent plasticity was impaired 

in LV_sh_c-fos mice. Training led to an increase in sound-evoked neuronal activity, as well as 

sharpening of tuning curves in auditory cortex of LV_sh_luc but not LV_sh_c-fos mice (Figure 3.39a). 

Peri-stimulus time histograms for responses to ‘safe’ and ‘conditioned’ tones in trained animals 

show that onset responses were weaker in the LV_sh_c-fos mice (Figure 3.39b). The differences in 

the onset tuning were partly due to increased number of failures (trials which elicited no spikes) in 

LV_sh_c-fos mice (Figure 3.39c). Tuning of the late response (50-200 ms) was not different between 

the trained groups (Figure 3.39d). Stimulus specific adaptation (SSA), a reduction in neural activity 

caused by repeated presentation of a stimulus that does not generalize to other stimuli(Ulanovsky 

et al. 2003; Taaseh et al. 2011), was comparable between groups. SSA indices quantify the 

difference in the responses to a given frequency when deviant (rare, 5% of the trials) and when 

standard (95% of trial; see methods) and confirmed that deviance detection was intact in cortical 

neurons of LV_sh_c-fos mice (Figure 3.39e-f). Local field potentials, which reflect the cortical input, 

were also comparable between the two groups (Figure 3.39g).  

Impaired experience-dependent plasticity in LV_sh_c-fos mice was accompanied by learning 

deficits in tone discrimination in the Audiobox. Another group of mice was injected with either 

LV_sh_c-fos or LV_sh_luc. The mice were then trained in the Audiobox (Figure 3.40a) such that after 

a phase of only safe visits, the conditioned visits were introduced gradually. While the number of 

visits was similar in both groups throughout the training (Figure 3.40c), the rate of incorrect operant 

responses was significantly higher in the LV_sh_c-fos compared to the LV_sh_luc mice but, 

importantly, only when the rate of conditioned visits was high(Ono et al. 2006) (Figure 3.40b). 

LV_sh_c-fos animals also showed a faster rate of extinction, suggesting that the original memory 

trace was less consolidated.  

Importantly, the behavioral deficits were not observed when the ‘conditioned’ tone was rare (5% 

and 10%, Figure 3.40c). Indeed, since SSA was not affected by the manipulation, cortical responses 

to the conditioned tones, when rare, were presumably enhanced even after blocking c-Fos 

expression. Only when the ‘safe’ and ‘conditioned’ tones had similar probability, and deviance 

detection was not associated with the difference between the two, the behavioral deficits did 



RESULTS 
________________________________________________________________________________ 
 

87 
 

emerge. Indeed, the late component of the auditory response, which was often present in LH_sh_c-

fos mice (Figure 3.39d), has been found to show deviance sensitivity(Chen et al. 2015).  

In summary, for the first time we link a specific form of experience-driven plasticity in auditory 

cortex which depends on c-Fos expression with specific behavioral deficits. Our findings also show 

c-Fos involvement in learning and memory. Whereas for over 25 years c-Fos expression has 

repeatedly been shown to correlate with the synaptic plasticity, learning and memory, only the very 

recent studies have demonstrated, by means of optogenetics, that c-Fos expressing neurons form 

the memory engram (Tonegawa et al. 2015). Our experiments provide for the first time unequivocal 

support for the c-Fos function in neuronal plasticity, learning and memory. 
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Figure 3.38: c-Fos expression increase in auditory cortex following sound discrimination training 
is blocked by lentivirally delivered shRNA against c-fos.  (a) Sound discrimination training. After 
adaptation, a 'safe' sound (6.7 kHz) accompanied every visit for 4 consecutive sessions. Then, an 
aversively 'conditioned' tone (13.4 kHz) was introduced in up to 17% of visits. (b) Rate of incorrect 
operant responses (nose-pokes during 'conditioned' visits) during the first and last sessions of 
discrimination training [Kolmogorov-Smirnov test]. (c) c-Fos expression in auditory cortex following 
repeated sound exposure: one-way ANOVA: F(3, 24)=8.10, p<0.001, and Fisher’s LSD test. (d) GFP 
signal in the lentivector infected area. (e,f) Sound-evoked c-Fos expression measured through c-
Fos-positive cells within the infusion site [t-test], *p<0.05, **p<0.01, ***p<0.001; ± S.E.M. 
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Figure 3.39: Blocking c-Fos expression in auditory cortex impairs experience-dependent plasticity. 
(a) Mean peri-stimulus time histograms evoked by the 'safe' (top) and 'conditioned' (bottom) tone 
in trained LV_sh_c-fos (red) and LV_sh_luc (black) mice. (b) Tuning (firing rate 1-50 ms after 
stimulus onset) in trained (circles) and naïve (diamonds) mice from LV_sh_c-fos (right) and 
LV_sh_luc (left) groups. We found a significant 3-way interaction [F(21,5893)=4.51, p<0.0001] 
between the three fixed effects: group, training and frequency; as well as a group effect: 
F(1,5893)=14.94, p<0.001, a training effect: F(1,5893)=9.22, p<0.01 and a group x training  
interaction: F(1,5893)=6.37, p<0.05. (c) Mean number of failures (trials without spikes) in evoked 
responses across tones for trained LV_sh_c-fos (black) and LV_sh_luc (gray) mice. (d) Tuning of late 
response (firing rate 50-200 ms after stimulus onset) for trained LV_sh_c-fos (black) and LV_sh_luc 
(gray) mice. (e) Example responses to a 9264 Hz tone when standard (blue) and when deviant (red) 
in a LV_sh_c-fos (left) and LV_sh_luc (right) mouse. (f) SSA indices for frequency-pairs presented in 
the oddball paradigm in trained LV_sh_c-fos (red) and LV_sh_luc (black) mice: F(1,143)=2.11, 
p=0.148. (g) Mean local-field potential evoked by the 'conditioned' tone for LV_sh_c-fos (red) and 
LV_sh_luc (black) groups: F(1,52)=1.3, p=0.259 for the peak. 
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Figure 3.40. Blocking c-Fos expression in auditory cortex impairs sound discrimination learning. 
(a) Discrimination training scheme. 'Safe' and 'conditioned' phases were followed by three 
extinction sessions, during which nose-poke responses were not punished. (b) Incorrect responses 
during discrimination learning [two-way ANOVA (group x session), the effects of group: 
F(6,108)=9.87, p<0.01, session: F(6,108)=71.09, p<0.001), and the group x session interaction: 
F(6,108)=2.97, p<0.01); followed by one-way ANOVAs, dev17% session: F(1,18)=8.16, p<0.01, 
dev50% session: F(1,18)=5.03, p<0.05, and extD1 session: F(1,18)=15.64, p<0.001]. (c) Number of 
visits in the conditioning unit [Kolomogorow-Smirnow test].  
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4. DISCUSSION 

Using a combination of behavioral, electrophysiological and molecular tools, in this work I have 

shown evidence of experience-dependence plasticity during adulthood in a subcortical nucleus in 

the auditory pathway- the inferior colliculus. Sound exposure that leaded to implicit auditory 

learning induced long term plasticity of sound processing in the IC that correlated with behavioral 

changes in frequency discrimination. 

First, I found that at electrophysiological and behavioral level, the effects of sound exposure were 

dependent on the behavioral relevance of the exposed sound. Second, I found that behaviorally-

relevant sound exposure induced a functional reorganization in the IC as evidenced by: a 

reorganization of the tonotopic map preferentially tuned to higher frequencies, tuning curves with 

higher amplitude in the areas with a similar BF or lower of the exposed frequency, and smaller 

amplitude in the locations with a BF higher than the exposed frequency and, an expanded area that 

responded to the exposed sound. Third, I found that sound exposure also induced larger tuning 

curves in the lateral cortex of the IC. Fourth, while previous work on collicular plasticity has reached 

the conclusion that it depends on cortical input, I found that the maintenance of the collicular 

plasticity was not dependent of the cortico-collicular projections. Fifth, that the increase in the 

excitability and amplitude of the tuning curves, followed by relevant sound exposure, could be 

explained through a spatially localized increase in the ratio of E/I at the level of presynaptic 

molecules. Sixth, the reorganization observed in the IC was not due to an overall excitation in the 

auditory pathway, since no differences were found in the properties of the neuronal responses in 

the cochlear nucleus. Seventh, these electrophysiological changes paralleled behavioural changes 

such that relevant exposure decreased frequency discrimination acuity and elicit latent inhibition.  

4.1 Collicular plasticity due to sound exposure 

The main finding of this study is that sound exposure modifies sound processing in the IC in different 

ways that will be discussed separately in the following sections. 

4.1.1 Frequency representation 

Sound exposure induced a reorganization in frequency representation along the dorso-ventral and 

rostro-caudal axes in the IC of adult animals. The robust shift in frequency representation along the 

tonotopic axis, observed during the late phase of exposure, was partially “masked” during the early 

phase exposure due to a higher than normal frequency representation in control animals compared 

to those seen during the late phase. Collicular frequency representations of naïve animals reared 

in standard cages, were similar to those of the control animals during the late phase, indicating a 
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transient change in frequency representation in the control animals. The transient change in 

frequency representation was paralleled by a decrease in evoked activity, as discussed below. This 

finding supports the hypothesis that the IC is under constant adaptation to the acoustic 

environment. In the exposed animals, there was a shift towards high frequencies from the early to 

the late phase. The shift in frequency representation was evident when animals were exposed to 

16 kHz. In my experiments, the BF of animals exposed to 8 kHz showed a tendency to be higher 

than control, however the dispersion of the control animal was high and did not reach significance. 

It is plausible that frequencies lower than 16 kHz might induce shifts in frequency representation. 

There is evidence that in mice, electrical stimulation of the AC shifts the BF of collicular neurons by 

12± kHz to match the cortical BF (egocentric cortical feedback) (Yan & Ehret 2001; Yan & Ehret 

2002). However, it is not known whether this range of frequency adjustment applies to all the 

collicular neurons, or only to neurons within a specific range of BF. The mechanism of egocentric 

cortical feedback seems plausible to adjust frequency specificity in the IC to relevant acoustic input. 

However, I did not observe an egocentric adjustment towards the exposed sound but always 

towards high frequencies. This occurred even at ventral depths with higher BF than 16 kHz. In fact 

this shift seemed to appear earlier than the shift at lower frequencies. The shift in the frequency 

representation, could also indicate an expansion in the width of the frequency lamina tuned to 16 

kHz that could be the equivalent of cortical expansion to specific sounds seen in the AC by others 

(Weinberger 2004; Bao 2015). In support of this idea, the analysis of the simultaneous responses 

to 16 kHz along the dorso-ventral axis showed that the amount of the response area was expanded 

~100 µm more in the exposed group. This expansion could also explain the dorsal shift of the 

frequency laminas along the rostro-caudal axis. Interestingly, the size of the area that responded to 

8 kHz was the same as the control group, suggesting a frequency specific expansion. However, an 

expansion of the frequency lamina does not explain the shift to high BF of locations with higher BF 

than the exposed and requires further characterization, for example, to determine if the shift also 

occurs in locations with a BF further apart from 16 kHz (e.g. >32 kHz). 

The only report that explored the effect of non-traumatic sound exposure, during adulthood, on 

sound representations in the IC did not find any differences in the distribution of BFs (Bureš et al. 

2014). These discrepancies could be due to different reasons: 1) a rippled noise was used as the 

exposed sound, which made it difficult to evaluate for specific changes in the tonotopy; 2) they did 

not report a systematic approach in the insertion of the multi-electrode array, without which there 

could be a high degree of variability. In contrast, in this study pure tones were used with the 

intention to assess frequency-specific effects, and measurements from the medio-lateral and 
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rostro-caudal borders were always made to assure the insertion of the electrode always in the same 

central portion of the IC.  

It has been shown that passive exposure during the auditory critical period can lead to an 

overrepresentation of the exposed tone in the majority of the studies (Poon & Chen 1992; Yu et al. 

2007; Oliver et al. 2011; Miyakawa et al. 2013). In most of the studies, frequencies of 14 kHz or 

above have been used.  Using a similar rearing paradigm, but 7.5 kHz as the exposed sound, 

Miyakawa et al. (2013) reported a transient narrowing of the tuning specific to the exposed tone, 

but no changes in the tonotopy of the IC. Interestingly, both rearing paradigms have been shown 

to generate an overrepresentation of the exposed tone in the auditory cortex (Zhang et al. 2001; 

Han et al. 2007). This discrepancy in the results between studies is in agreement with the theory 

that exposure to frequencies only above 14 kHz can induce a robust change in collicular tonotopy. 

My results suggest that sound exposure during adulthood induces and expansion of the anatomical 

frequency lamina in the IC of adult animals, that leads to a reorganization of the frequency 

representation. This happens as a possible mechanism of adaptation to behaviorally relevant 

sounds. It is possible that the expansion of the frequency lamina results from the combination of 

an enriched environment as the Audiobox and the relevance of the acoustic input. Although 

random exposure to sound also induced a shift in frequency representation, it was lower in 

magnitude, indicating and additive effect of behavioral relevance to frequency reorganization in 

the IC. The reorganization in frequency representation in the IC of the exposed animals could serve 

as a mechanism of adaptation that generalize the value of the experience sound to include similar 

sounds (categorize), as a way to filter information in an efficient way. 

4.1.2 Tuning curves and temporal firing patterns 

Sound exposure also induced changes in the amplitude of the tuning curves at different depths of 

the IC. During the early phase of exposure, the evoked activity of the control group was larger than 

that of the exposed group. However, the activity dropped until it was smaller than the exposed 

group. Together with the transient shifts in frequency representation it strongly suggests that the 

environment of the Audiobox itself can induce plasticity. It has been shown that a short period of 

exposure to an enriched environment enhances plasticity in the barrel cortex (Rema et al. 2006). It 

is plausible then that the environment of the Audiobox triggers a transient state of enhanced 

plasticity in the brain that is capitalized differently between the exposed and control group. For the 

control group, the lack of a patterned auditory input in the corner that lead to implicit learning, as 

occurred with the exposed group, could be the cause that leaded to a downregulation in the high 

collicular evoked activity observed during the first days. This downregulation could be achieved by 
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different mechanisms of homeostatic plasticity, such as the internalization of glutamate receptors 

(Sale et al. 2014; Nithianantharajah & Hannan 2006). Enriched environment has also been shown 

to cause remodeling of synaptic spines (Bednarek & Caroni 2011). Additionally, the turnover of 

spines can be directly regulated by sensory experience (Holtmaat et al. 2005), and novel sensory 

experience can promote stabilization (Holtmaat et al. 2006). It is possible that the Audiobox triggers 

spine remodeling that in the exposed group is stabilized and strengthen by sound exposure and the 

development of an association through implicit learning.  

The non-specific increase in the amplitude of the tuning curves, in areas non-tuned to the exposed 

sound could be a reflection of the expansion of the frequency lamina that was specific to the 

exposed group. Interestingly, the random group showed a different pattern in evoked activity, 

namely a robust increase in activity in the putative dorsal cortex, that correlated with an increase 

in the area that responded to low frequencies such as 8 kHz. This effect was not seen in the exposed 

group. Although the tuning curves of the area tuned to 16 kHz were also increased in the random 

group, the area that responded at to 16 kHz was similar (~250 µm) to the control group. These two 

contrasting results between the exposed and the random group, in the amplitude of the responses 

as well as the area devoted to 8 and 16 kHz, indicate that the plasticity induced by the different 

paradigms of sound exposure is not the same. Furthermore, it suggests that the IC adjust its spectral 

tuning accordingly to the relevance of the sound and that is susceptible of implicit auditory learning. 

These differences were directly reflected at a behavioral level (Figure 4.1, as will be discussed in 

detail later). 

Not only was the evoked activity increased in the exposed group but also the spontaneous activity, 

which reflected the overall excitability of the IC. I did not observe changes in the thresholds and 

bandwidth of the tuning curves as has been reported for the auditory cortex in animals that lived 

in an enriched environment (Engineer 2004). My results are in agreement with Bures et al. (2014) 

where they found that 2 weeks AAE in adult rats increase evoked responses and spontaneous 

activity of neurons in the IC regardless of its BF. In contrast, they found sharpened tuning curves 

and lower threshold in neurons with BF>8 kHz. In that study the authors analyzed the activity of 

single units while here my analysis was based on multiunit activity. It is possible that in the analysis 

of evoked activity from a small population of neurons some differences are diluted due to the 

contribution of neurons with heterogeneous properties. In that respect, it has been shown at least 

four types of neurons with different properties in bandwidths and thresholds the IC (Egorova et al. 

2001). 
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Recently, it has been shown that there is a rapid change in the spectral selectivity of neurons in the 

IC following engagement in an auditory detection task in awake ferrets (Slee & David 2015). This 

changes were similar to those previously observed in the AC (David et al. 2012). The PSTHs of 

neurons with BF matching that of the target tone were suppressed while neurons with non-

matched BFs showed less suppression or an enhancement of the responses. More interestingly, the 

plasticity observed during the task lasted after the end of the behavior in the majority of the 

recorded neurons. I could not detect such differences in my experiments, most likely because the 

animals were anesthetized. Anesthesia is a factor that could masks potentially rapid plasticity and 

the influence of possible online modulators in the responses to sound. Nevertheless measurements 

of plasticity can still be performed with reliability (Polley et al. 2006; Han et al. 2007; Guo et al. 

2012; Zhou & Merzenich 2012). Awake recordings in mice using a similar paradigm as the Audiobox 

would be required to analyze online changes in the spectral tuning of collicular neurons due to 

sound exposure. 

What is the functional role of a change in the amplitude of a tuning curve? Neurons in the IC are 

tuned to frequencies with a particular preferred frequency. It is logic to think that these neurons 

will convey maximal information at their BF (maximum firing rate). However, the dynamic range of 

spike rate is not located in the BF but in the flanks of the tuning curve where they have a steepest 

slope can also offer a good source of information, since small changes in frequency would produce 

larger differences in spike rate. In a theoretical study, it has been shown that when the trial-to-trial 

variability is high, the maximum specific-information is carried at the peak of the tuning curve (Butts 

& Goldman 2006). When trial-to-trial variability is reduced, the maximal information is carried in 

the flanks of the tuning curves. For neurons in the auditory cortex the maximal information is at the 

BF (Montgomery & Wehr 2010), assuming that the amount frequency information is encoded in 

spike rates. If it is the case for the IC, then an increase in the amplitude of the tuning curve would 

not make such big difference if the BF remained the same. However, if the maximum information 

is carried at the flanks of the tuning curve, an increase in the amplitude of the tuning curve would 

generate an increase in the amount of information carried. In this case, tuning curve amplitude 

between the exposed and random groups was similar in the collicular areas tuned to 16 kHz while 

frequency representation was different along the tonotopic axis. Since the behavioral experiments 

showed a difference in frequency discrimination between these two groups, it strongly suggests 

that is the BF and not amplitude of the tuning curve the relevant parameter with the maximal 

information at the level of the IC. Further theoretical studies will be required to corroborate this 

hypothesis. 

4.1.3 Lateral cortex 
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The LC receives inputs from auditory and non-auditory areas (Aitkin et al. 1978; Oliver 2005). 

Interestingly, the electrophysiological properties of neurons in the LC have been poorly studied. 

Compared to the ICC, in our recordings tuning curves of LC were broader in agreement with 

previous studies (Syka et al. 2000). Tonotopic input has been reported for the LC of cats and mice 

(Loftus et al. 2008; Stiebler & Ehret 1985) based on anterograde tracers injected in the cochlear 

nucleus and electrophysiological recordings. I did not observe a particular tonotopic arrangement, 

probably due to the orientation the recording electrode. To my knowledge this is the first study to 

address plastic changes in the lateral cortex of the IC. As with the recording in the central IC, I found 

that the activity during the early phase of exposure was larger for control and exposed groups than 

during the late phase of exposure. These results add evidence to the initial increase in overall 

excitability in the whole IC, caused by the environment of the Audiobox. Nevertheless, in contrast 

to the recordings in the central IC, the evoked activity in the LC was stronger in the exposed group 

already in the early phase of exposure. This result suggests that multisensory neurons in the LC are 

more susceptible to undergo plastic changes. In support of this idea, analysis in slices revealed that 

neurons in the LC  have a lower threshold for firing than those in central IC, therefore they are more 

excitable (Ahuja & Wu 2007). Additionally, the LC sends projections to the ipsilateral central IC 

(Chernock et al. 2004), suggesting the possible role of multisensory neurons in the IC as a key 

initiators of collicular plasticity. Furthermore, the LC projects to the medial division of the geniculate 

body, who has a modulatory role in the input that reaches the auditory and somatosensory cortices 

(Edeline & Weinberger 1992). It has also been implicated in the circuits that modulate auditory fear 

conditioning (LeDoux et al. 1985). A more detailed study will be necessary to address the specific 

role of the LC in collicular plasticity and its modulation by other sensory modality. 

4.1.4 Overall excitability in the auditory pathway 

I found several changes that pointed to an increase in the excitability of the IC: a transient increase 

in evoked activity during the early phase of exposure for control and exposed group and larger 

amplitude of tuning curves and higher spontaneous activity followed by sound exposure during the 

late phase. Interestingly, the increase in excitability did not seem to be a generalized state in the 

auditory pathway. Recordings in the cochlear nucleus, during the late phase of exposure, revealed 

that sound exposure does not alter sound processing at that level. Nevertheless, the cochlear 

nucleus is also susceptible of cortical influence that can modify its activity (Kong et al. 2014; Luo et 

al. 2008) as well as certain forms of plasticity such as short-term and spike-time dependent plasticity 

(Tzounopoulos et al. 2004; Wang et al. 2011). Recordings during the early phase of exposure were 

not made to establish whether the initial excitability observed in both groups also holds true for 

sub-collicular nuclei.  
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4.2 Corticofugal projections and frequency representation 

The finding that cortical inactivation during acute recordings did not modify the changes observed 

between control and exposed groups during the late phase, suggests that at least once the collicular 

plasticity is established cortical control is not required. The effects observed after cortical 

inactivation in the neuronal responses were heterogeneous, but the finding that its effect was 

larger during the early phase suggests a dynamic influence of the cortico-collicular projections. 

Heterogeneity of effects in neuronal responses due to AC silencing has been previously reported. 

Popelář et al. (2003) showed heterogeneous changes in firing rates of collicular neurons after AC 

inactivation with TTX while thresholds and tuning properties were unchanged. These 

heterogeneous results suggest that cortico-collicular projections might target different circuits in 

the IC. It has been reported that electrical stimulation of the AC leads to transient changes in the 

collicular frequency representation of bats and mice that depends on the cortical BF of the area 

electrically stimulated such as collicular frequency representation is centered around the 

stimulated cortical BF (Yan & Ehret 2001; Gao & Suga 2000; Suga et al. 2002; Suga & Ma 2003). 

Since reports of changes in collicular frequency representation have always been accompanied by 

changes of the CC projections and the view that IC plasticity depends on cortical plasticity is well 

extended, we hypothesized that the shift in frequency representation observed in relevant-exposed 

animals was dependent on CC projections. Since cortical inactivation did not alter the frequency 

shift observed in our experiments, it suggests that CC projections are not required for the 

maintenance of this change. 

4.3 Underlying mechanisms 

The main finding of the gene expression experiments is that control and relevant exposed animals 

showed a similar pattern of expression in the genes measured, suggesting that it is the Audiobox 

and not the sound exposure the main factor responsible for these changes. In the IC the expression 

of the genes measured in this study has been evaluated only in the acoustic-trauma and hearing 

loss context  (Dong et al. 2010; Holt et al. 2005; Hu et al. 2014; Marianowski et al. 2000; Tan et al. 

2007;) making  a direct comparison difficult. The gene expression analysis of this work was made to 

have a general overview of the molecular changes that might occur following relevant sound 

exposure in the IC. Since neuronal function is tightly regulated at different levels (from gene 

expression to post-translational modifications of proteins), an increase in gene expression does not 

necessarily corresponds with an increase in protein or a modification in synaptic function (Sutton 

& Schuman 2006). However, gene expression analysis are more straightforward to perform than 

other assays that measure general protein levels, such as western blots, or more specific such as 
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immunohistochemistry analysis, and can offer a faster overview of the possible molecular changes 

that might be happening following relevant sound exposure. Additionally, the electrophysiology 

and the gene expression experiments can complement each other to offer a better understanding 

of adult collicular plasticity, so far poorly understood. 

From the genes measured, the most robust increased was in CREB. CREB is a transcription factor 

involved in long term neuronal plasticity (Tao et al. 1998; Lee et al. 2013; Tardito et al. 2006). For 

example, it has been shown that whisker use in rodents induces the expression of CREB and BDNF 

(Gomez-Pinilla et al. 2011). BDNF is a neurotrophic factor known to be involved in multiple functions 

such as neuronal survival, axonal and dendritic growth, synapse formation and synaptic plasticity 

and, together with cfos, is a direct target gene of CREB (Martinowich & Lu 2008). It has been shown 

an increase in the cortical expression of BDNF followed by enriched environment and sensory 

experience (Falkenberg et al. 1992; Zhu et al. 2014). In this study I found a reduction of BDNF and 

no change in cfos expression. How an increase in expression of CREB leads to a reduction of BDNF? 

In order to activate gene transcription, CREB needs to be in its phosphorylated form (pCREB). The 

levels of pCREB has been used a signature of transcriptional activation (Gonzalez & Montminy 

1989), therefore it is possible that there could be no differences in the levels of collicular pCREB 

and consequently no transcription of the BDNF gene. Here I did not measure protein levels of pCREB 

that could have shown a more accurate measure of CREB activity. However, it has been shown 

positive correlations of gene expression between CREB and BDNF upon different conditions 

(Chaudhury & Wadhwa 2009; Nibuya et al. 1996). Another explanation for the low mRNA levels of 

BDNF would be an increase in the translation rate that leads to a reduction in mRNA levels. 

Translational control has been shown to be an important regulatory phenomenon in neuronal 

plasticity although it has not been demonstrated for BDNF (Belelovsky et al. 2005; Gal-Ben-Ari et 

al. 2012; Sutton & Schuman 2006). Protein level measurement of BDNF would help to clarify this 

point. 

The finding that the expression of the subunits 1 and 2 of the AMPA receptor was specifically 

reduced in the control group might indicate a general downregulation of the AMPA mediated 

synaptic transmission that might be directly reflected in the smaller tuning curves of the control 

group during the late phase. Interestingly, I found an increase in the ratio between the expression 

of the presynaptic molecules Vglut2/VGAT, for control and exposed groups. A more detailed 

immunohistochemical analysis of the protein levels showed an increase in the E/I ratio of the sound 

exposed group over the control only in the dorsal part of the IC, this increase was mainly due to a 

reduction of VGAT expression that we could not detect in the gene expression analysis suggesting 

that pre-synaptic plasticity occurs in a particular location of the IC. The ratio between Vglut/VGAT 
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has been used to express the E/I at the presynaptic level and as a signature of pre-synaptic plasticity 

following environmental manipulations (Mainardi et al. 2014; Mainardi et al. 2010). By measuring 

Vglut2 levels, we cover the most abundant form of Vglut in the IC. It has been shown to be located 

in brainstem nuclei that input into IC as well as in local IC terminals, while terminals that contain 

only Vglut1 are most likely to arise from pyramidal neurons in the layer V of AC (Ito et al. 2009; 

Winer et al. 1998). A measurement of Vglut1 expression would help to determine whether cortico-

collicular pre-synaptic plasticity also occurs followed by sound exposure. Interestingly, I found a 

decrease in the expression of GAD in auditory cortex, suggesting a reduction in inhibition due to 

relevant sound exposure at the cortical level. These finding is in agreement with previous reports 

where a regulation of cortical GAD has been observed following sensory learning (Gierdalski 2001; 

Donato et al. 2013).  

The increase in the E/I ratio suggest an increase in the release probability at collicular synapses  

(Takamori 2006; Wojcik et al. 2004), thus providing a plausible mechanism that explains the 

increase in spontaneous activity, and the larger amplitude in the tuning curves observed in relevant 

exposed animals. Indeed, it has been shown that synaptic inhibition mediates ocular dominance 

plasticity (Ma et al. 2013; Hensch et al. 1998; Hensch 2014) and many studies have shown the 

importance of the E/I balance in shaping the neuronal tuning properties in the auditory cortex (Wu 

et al. 2008; Wehr & Zador 2003; Benali et al. 2008; Seybold et al. 2012; Rubenstein & Merzenich 

2003). Specifically in the IC, it has been described that GABA mediated synaptic transmission shapes 

receptive fields and frequency tuning curves differently in two populations of IC neurons (Vater et 

al. 1992; Yang et al. 1992; Faingold et al. 1991; LeBeau et al. 2001). In the first group, GABAa 

receptor blockade generates an increase in the firing rates only in the excitatory response of the 

receptive field with little change in the firing lateral to the tuning curve. In the second group, GABAa 

receptor blockade increased the firing rates at the BF, similar to the previous group, but it also 

broaden the frequency range of the original tuning curve for that neuron increasing thus the 

bandwidth of the tuning curve (Yang et al. 1992; LeBeau et al. 2001). Based on the finding here that 

sound exposure induced tuning curves with larger amplitude but no apparent increase in 

bandwidth, one can speculate that the reduction in inhibition occurs at a particular type of neurons 

that become more responsive to acoustic stimulation. A more detailed characterization of these 

two types of neurons would be important to determine whether one particular type of neuron in 

the IC is more susceptible to plastic changes than others. 

4.4 Changes in frequency discrimination due to sound exposure 
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Interestingly, the collicular plasticity induced by relevant sound exposure correlated with 

behavioral changes: mainly a decrease in frequency discrimination acuity (FDA) as measured by the 

inhibition of the acoustic startle reflex (ASR), induced by pre-pulses of different frequencies from 

the background tone (PPI). PPI has the advantage that does not require learning, making it a useful 

behavioral test to measure changes in frequency discrimination acuity after different paradigms of 

acoustic experience, such as acoustic fear conditioning or acoustic trauma (Clause et al. 2011; 

Aizenberg & Geffen 2013b; Mwilambwe-Tshilobo et al. 2015). Aizenberg & Geffen (2013) have 

shown that FDA can be modified after auditory fear conditioning depending on whether the animals 

generalized the fear response to a wider range of tones (low-specificity), or whether the fear 

response is expressed only in frequencies very similar to the conditioned tone (high-specificity). 

While low-specificity decreased FDA (that explains the generalization of the fear response to other 

non-conditioned tones) higher specificity increased FDA. Here, it is possible that exposed animals 

generalized to other tones the behavioral meaning of the exposed tone (as a safe signal), that leads 

to a decrease in FDA. This generalization might also explain the generalization of latent inhibition 

to other frequencies found by de Hoz & Nelken (2014). While the Aizenberg study showed an 

average decrease of the FDA for non-specific learners of 100%, in our case the decrease in FDA was 

around 86%. It is important to note that in this study, FDA comparisons came from different groups 

of animals and not within the same animals before and after sound exposure as in the Aizenberg 

study. Nevertheless, the finding that specific sound exposure in the Audiobox decreased FDA 

suggests that its behavioral relevance is capable of modifying behavior close to auditory fear 

conditioning. PPI is present in animals decerebrated at the level of the reticular formation leaving 

intact the IC intact,  indicating that the main circuits are located at the midbrain and brainstem level 

(Fox 1979). Furthermore, lesions of the IC have shown to reduce PPI levels, suggesting that the IC 

is an important relay in the PPI circuit (Fox 1979; Li et al. 1998), while cortical lesions had no effect 

(Li et al. 1998). It has been proposed that the role of the IC in the expression of PPI is to send 

auditory information to the superior colliculus via the lateral cortex. The superior colliculus, sends 

projections to the pedunculopontine tegmental nucleus (PPTg) that in turn inhibits the caudal 

pontine reticular nucleus (PnC) via an inhibitory cholinergic projection (Koch 1999).  The PnC has 

been shown to be critical part of the ASR, since it projects to spinal, facial, and cranial motor 

neurons (Koch 1999). Recently, it has been shown that parvalbumin positive neurons in the AC 

modulate frequency discrimination acuity (Aizenberg et al. 2015). Modulatory cortical information 

can be transferred to the lateral cortex of the IC via cortico-collicular projections (Winer 2005). 

Interestingly, apomorphine injections in the IC reduce PPI (Satake et al. 2012), suggesting a 

dopaminergic control in the filtering of auditory information at the IC level. It is probable that this 

adjustment requires neuromodulators such as dopamine. Further experiments that prevent 
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collicular plasticity due to sound exposure, by pharmacological or optogenetic means, will be 

needed to test this theory. 

The frequency laminas in the IC have been correlated with perceptual critical bands, which are a 

range of frequencies perceived with the same pitch, and has been proposed as the place where 

perceptual critical bands arise. For a given frequency lamina the frequency range covered is the 

same as the perceived critical band: 0.3 octaves. Also, the distance in frequency range between one 

frequency lamina to the other is the bandwidth of a critical band (Ehret & Schreiner 1997; Schreiner 

et al. 1997; Ehret & Schreiner 2005). The perception of sounds related with the critical bands 

includes the perception of tones in a noisy background and changes in the identification of vowels 

by shifts of frequency components (Ehret & Schreiner 2005). In the PPI experiments, a pre-pulse 

sound needs to be distinguished from the background tone to inhibit the ASR, and it might be 

directly related with critical bands. The increase in FDA of the exposed group might indicate that 

frequency resolution is altered in the spectral coding in the frequency laminas of the IC. This 

alteration could be the expansion in the responsive area to the exposed sound or the shift in BF to 

high frequencies. This last correlation is plotted in the Figure 4.1B, where it can be appreciated that 

frequency discrimination threshold increases with increasing frequency shift in the IC. This finding 

strongly supports the theory of the IC as a subcortical filter of current auditory information that is 

adjusted by implicit auditory learning 

4.5 Sound exposure and latent inhibition 

The main finding of this set of experiments is that random exposure during the pre-conditioned 

phase to the future conditioned sound is not enough to generate LI, since animals could 

discriminate well between the safe and conditioned sound (an average d‘ around 1) already in the 

first day of conditioning. In this experiments, animals from the LI and random exposed groups did 

not reach the same high levels of visits without nose-pokes during conditioned visits compared to 

control animals (~75% vs 90%, respectively) as has been shown in previous experiments (de Hoz & 

Nelken 2014). Also, during the conditioning phase, the percentage of visits without nose-pokes 

during the safe visits of the control animals did not return to pre-conditioned levels as in the 

previous study. These differences could arise from differences in the experimental settings. The 

probability used for conditioned visits in the de Hoz & Nelken (2014) study was 17% while in this 

study was 29%. A higher probability of conditioned visits could generate a more conservative 

approach for the control group that prevented them nose-poked during the safe visits. 

Nevertheless, these differences do not invalidate these results since the discriminability indexes 
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calculated are in agreement with the previous report. However, a replication using the same 

probability of conditioned visits will be required.  

One theory states that LI is the expression of the competition between one association previously 

acquired and a new association to the same sensory stimulus. This explanation is supported by our 

results where only animals that implicitly learned the association sound-corner in the Audiobox 

(relevant exposed animals) but not random exposure elicited LI, and by experiments that have  

shown context-specificity of LI where non-competitive associations are created (Lovibond et al. 

1984; Honey & Good 1993; Diaz et al. 2015). Here the expression of latent inhibition and the change 

in frequency representation seems also to be related (Figure 4.1A). This could be due to the 

modified spectral processing that the implicit learning elicits in the LI group to the conditioned tone 

during the preconditioned phase. 

The IC has been implicated as an important structure in the expression of LI. It has been shown that 

local injections in the IC of the dopaminergic agonist apomorphine suppress the expression of LI in 

rats (Melo et al. 2009). Dopamine is known to modulate firing rates, spontaneous activity and  

 

Figure 4.1: Correlation between two behavioral measures of frequency discrimination and the 
shift in the tonotopic map caused by relevant and random tone exposure. A, Average d’ values 

during the first day of conditioning in the latent inhibition paradigm and B, average discrimination threshold 
of the PPI test, both, as a function of the averaged frequency shift along the tonotopic axis of the IC in control, 
exposed and random exposed animals.  
 

latencies in an heterogeneous manner of neurons in the IC (Gittelman et al. 2013). Considering the 

important role of dopamine in reward signaling as well as to modulate plasticity in auditory cortex 

(Bao et al. 2001; Bao et al. 2003; Bermudez & Schultz 2014; Schultz et al. 2015), it is possible that 

dopamine plays an important role in the collicular plasticity involved in the expression of LI. Further 
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experiments involving pharmacological or pharmacogenetical manipulations in combination with 

acute electrophysiology will be required to address this question.  

4.5.1 Collicular plasticity due to conditioning  

The finding that animals in the LI group and the random exposed group showed different frequency 

representations and neuronal responses in the IC at a time when they already have similar 

discriminability indexes during the conditioned phase suggests that sound exposure during the pre-

conditioned phase might still influence future plasticity. It has been shown that visual experience 

leads to long lasting structural signatures in the form of persistent dendritic spines in visual cortex, 

that in the event of new experience did not disappear but increase in size (Hofer et al. 2009). Similar 

anatomical mechanisms could account for the differences observed between the groups that 

directly affect frequency representation and processing. If that is the case, I would expect the 

control conditioned animals to also show different frequency representations. Further experiments 

with recordings from the control conditioned group would be required to answer this question. 

Additionally, experiments that would allow for chronic imaging of dendritic spines would be also 

useful to determine the dynamic of structural changes, if any, in the IC following implicit learning 

and subsequent conditioning. Compared to LI and control untrained animals, the random exposed 

animals showed a shift in frequency representation towards lower frequencies while LI animals had 

a similar frequency representation to control untrained animals. This could suggest for the random 

group a possible egocentric reorganization towards the safe tone in the rostral-half of the IC, and 

an egocentric reorganization towards the conditioned tone in the caudal half of the IC. This shift in 

frequency representation correlated with stronger responses to the safe tone in the rostral part 

and to the conditioned tone in the caudal part. It has been shown that the pattern of responses to 

the same frequency changes according to the location in the frequency lamina. For example, the 

rostral portion of the same frequency lamina responds to the same stimulus with more spikes, but 

for a shorter time than the caudal portion of the same lamina (Lim & Anderson 2007b; Straka et al. 

2014). These differences arise due to the different patterns of synaptic inputs that arrive to the 

same frequency lamina from sub-collicular structures (Loftus et al. 2010; Ono & Ito 2015). It is 

possible that the segregation in the locations of the strongest responses to the safe and conditioned 

frequencies (rostral vs caudal) in the random group reflects the functional role of the different 

pattern of synaptic inputs within a frequency lamina, that might encode for the behavioral value of 

the auditory information. Why the same pattern was not seen in the LI group is still an intriguing 

question. Recordings during the pre-conditioned phase will be required to answer whether the 

segregation, or lack of it, in the pattern of responses to the safe and conditioned tones arose 

previously to conditioning and directly determines the ability of the animal to discriminate between 
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these tones, or whether it is the consequence of integration between previous and new relevant 

experience. These results indicate that the IC “accumulates” acoustic experiences in a continuous 

way. This accumulation influences how the new experience will be processed and, importantly, how 

the new experiences will be imprinted in the IC (Skoe & Chandrasekaran 2014).  

4.6 Experimental considerations 

C57BL/6J animals suffer from a progressive degeneration of inner and outer hair cells starting at 

the base of the cochlea, leading to high frequency (>30kHz) hearing loss by P80 (Hequembourg & 

Liberman 2001). I used young animals that were around P37 when they were placed the Audiobox 

and P40-52 when the acute recordings were made, made comparisons between animals of the 

same age, and used frequencies below 20 kHz. Thus, our experiments were not influenced by the 

congenital deficit in C57BJ/6J mice. This age was beyond the auditory critical period described for 

mice (P11-21) (Barkat, Polley, & Hensch, 2011). Recently,  age-related behavioral and synaptic 

alterations have been described in auditory cortex of animals during early adolescence (P28) 

compared to young adult animals, while no changes were found between young adult and late 

adolescent mice (P56) (Moyer et al. 2015). Although I used young animals in this study, the age at 

the time of experiment does not coincide with the important time points of auditory plasticity (P11-

28) previously described. 

4.7 Conclusions 

The IC is the first structure in the auditory pathway where all auditory nuclei converge. This feature 

makes it an ideal candidate to be the first site in the pathway where previous experience in the 

form of implicit auditory learning influences the processing of auditory information. The goal of this 

study was to test this idea by measuring plastic changes in the IC of mice that went through specific 

auditory experience. The results of the present study show that the IC in adult mammals undergoes 

important plastic changes that affect sound processing. These plastic changes include a wide range 

of effects observed at an electrophysiological and molecular level. The main changes are an 

increase in excitability, an increase in evoked responses and a shift in frequency representation. At 

the molecular level, the main change is a decrease in inhibitory presynaptic markers. Additionally, 

the shift in frequency representation correlates with a decrease in frequency discrimination at a 

behavioral level, thus strongly supporting the idea of the IC as a key player in filtering auditory 

information. Therefore it is plausible that the neuronal substrate for implicit auditory learning 

includes the neurons in the IC. Not only the IC filters auditory information but it also seems to 

accumulate acoustic experiences to, again, influence the processing of incoming auditory 

information. This study has important implications to place the IC in a central and active role in the 
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field of auditory plasticity. So far, studies related with auditory experience-dependent plasticity 

have been centered on the AC. It is becoming clear now that the AC does not “act” alone in the 

filtering of auditory information, but rather this process involves active feedback loops between 

multiple structures including neuromodulatory nuclei. With the new technologies that allow the 

study of specific circuits with precise timescales, it will facilitate the study of auditory processing in 

a more integrative view of highly dynamic neuronal circuits rather than individual structures.  

Implicit auditory learning has been related to the developing of important communication 

processes such as the categorization of phonemes (Gabay et al. 2015). The acquisition of novel 

auditory non-speech categories through implicit learning is impaired in dyslexic patients, suggesting 

that dyslexic patients have a general deficit in auditory category learning that result in the negative 

effects of language acquisition and reading (Gabay & Holt 2015). Furthermore, by measuring 

auditory brainstem responses it has been shown that children with developmental dyslexia show 

an impairment in context-dependent encoding of speech (Chandrasekaran et al. 2009). 

Additionally, brainstem responses in children with autistic spectrum disorders exhibit a reduction 

in neural synchrony and phase locking of speech sounds as well as degraded responses by 

background noise when compared to normal controls (Russo et al. 2009), suggesting that 

subcortical dysfunction is related to language impairments. The work of the present thesis offers 

an animal model to study the neuronal correlates of implicit auditory learning and, in combination 

with genetic models of neurodevelopmental diseases, can contribute to the better understanding 

of the neuronal deficits underlying higher cognitive processes such as speech acquisition and to the 

development of therapeutic treatments. 
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