
The role of the E3 ubiquitin ligase  
FBXO7-SCF  

in early-onset Parkinson's disease 
 

 

Ph.D. Thesis 

 

in partial fulfilment of the requirements for the degree 

“Doctor rerum naturalium” 

in the Neuroscience Program 

at the Georg-August-Universität Göttingen, 

Faculty of Biology 

 

submitted by 

David Brockelt 

 

born in 

Berlin, Germany 

 
 

Göttingen 2015 
 
 

 

 

 

 

 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Members of the thesis committee 
 
Dr. Judith Stegmüller, Reviewer 
 Department of Cellular and Molecular Neurobiology 
 Max Planck Institute for Experimental Medicine 
 
Prof. Dr. Tiago Fleming Outeiro, Reviewer 
 Department of Neurodegeneration and Restorative Research 
 University Medical Center Göttingen 
 
Prof. Dr. Klaus-Armin Nave 
 Department of Neurogenetics 
 Max Planck Institute for Experimental Medicine 
 
 
 
Date of the oral examination: 19th November, 2015



 

Table of contents 

 
Table of contents...................................................................................................... iii 

Abstract .................................................................................................................... vi 

1 Introduction ............................................................................................................ 1 

1.1 Parkinson's disease (PD) .................................................................................. 1 

1.1.1 Autosomal dominant forms of PD ............................................................... 2 

1.1.2 Autosomal recessive forms of PD ............................................................... 3 

1.1.3 Mutations on FBXO7 (PARK15) ................................................................. 3 

1.2 Parkinson's disease and the ubiquitin-proteasome system (UPS) ..................... 5 

1.2.1 Proteasomal dysfunction ............................................................................ 5 

1.2.2 Ubiquitin proteasome system components associated with Parkinson's 

disease................................................................................................................ 6 

1.3 Ubiquitin Proteasome System ........................................................................... 7 

1.4 FBXO7 protein function ................................................................................... 10 

1.5 Aim of the Study ............................................................................................. 11 

2 Results .................................................................................................................. 12 

2.1 Generation of a FBXO7 knockout mouse ........................................................ 12 

2.2 FBXO7 is abundantly expressed in the mouse brain and localizes to the 

cytoplasm in neurons ............................................................................................ 13 

2.3 No α-synuclein- or amyloid precursor protein (APP)-positive inclusions in 

the brain of FBXO7-/- mice ................................................................................... 16 

2.4 Increased astrogliosis and elevated levels of apoptosis in the brain of 

FBXO7-/- mice ...................................................................................................... 18 

2.5 Screening for novel FBXO7 interacting proteins .............................................. 23 



 
 

iv 

 
2.6 FBXO7 interacts with members of the MAP1 (microtubule-associated 

protein) familiy ...................................................................................................... 24 

2.7 The MAP1 family proteins are potential ubiquitination substrates of FBXO7-

SCF ...................................................................................................................... 28 

2.8 FBXO7 binds to the proteasome via its novel interaction partner PSMA2 

(proteasomal subunit alpha 2)............................................................................... 30 

2.9 FBXO7 ubiquitinates PSMA2 mainly by K63-linked chains with a non-

proteolytic outcome ............................................................................................... 34 

2.10 FBXO7 is required for proper proteasomal assembly and function ................ 41 

2.10.1 Proteasome activity is reduced as a result of FBXO7-deficiency ............ 41 

2.10.2 Loss of FBXO7 does not affect proteasomal gating ................................ 42 

2.10.3 Loss of FBXO7 causes incomplete assembly of the proteasome 

holoenzyme ....................................................................................................... 44 

3 Discussion ............................................................................................................ 49 

3.1 Systemic loss of FBXO7 results in detrimental effects on the mouse 

organism ............................................................................................................... 49 

3.2 FBXO7 and the MAP1 protein family - additional regulators of mitochondrial 

quality control? ..................................................................................................... 51 

3.3 FBXO7 - a novel proteasome regulating protein ............................................. 52 

3.4 Conclusion and perspective ............................................................................ 53 

4 Material and Methods ........................................................................................... 55 

4.1 Materials ......................................................................................................... 55 

4.1.1 Chemicals, Reagents and Kits .................................................................. 55 

4.1.2 Laboratory Equipment .............................................................................. 55 

4.1.3 Antibodies ................................................................................................ 55 

4.1.4 Enzymes .................................................................................................. 57 

4.1.5 Buffers and solutions ................................................................................ 57 

4.1.6 Plasmid constructs and Primers ............................................................... 61 



 
 

v 

 
4.2 Methods .......................................................................................................... 61 

4.2.1 Molecular biology ..................................................................................... 61 

4.2.2 Cell culture and transfection ..................................................................... 66 

4.2.3 FBXO7 knockout mice .............................................................................. 69 

4.2.4 General biochemical methods .................................................................. 70 

4.2.5 Proteasome biochemistry ......................................................................... 73 

4.2.6 Histological analysis of mouse brain tissue ............................................... 77 

5 References ............................................................................................................ 82 

Acknowledgements ................................................................................................... v 

Appendix 1 ............................................................................................................... vii 

Appendix 2 ................................................................................................................ ix 

List of abbreviations ................................................................................................ xi 

Affidavit ................................................................................................................... xvi 

Curriculum Vitae ................................................................................................... xvii 

 

 



 

Abstract 

Parkinson's disease (PD) is a debilitating movement disorder. Growing evidence 

associates genes with familial forms of the disease. Recently, gene mutations in the FBXO7 

(PARK15) gene have been identified in patients with early-onset parkinsonism symptoms and 

pyramidal tract signs. PARK15 encodes for the E3 ubiquitin ligase FBXO7, whose function in 

the brain remains to be elucidated. In this study, I report that systemic loss of FBXO7 in mice 

results in an early-onset motor phenotype and premature death, reminiscent of the PARK15 

patients. In neuropatholgical analyses, I find a regional increase in cell death and widespread 

astrogliosis. At the molecular level, I demonstrate the binding of FBXO7 to the proteasomal 

core subunit PSMA2 and identify PSMA as non-proteolytic ubiquitination substrate. 

Interestingly, I show that loss of FBXO7 in the brain leads to reduced proteasome activity as 

a consequence of defective proteasome integrity. Taken together, I established an FBXO7-

dependent mechanism of proteasome regulation in neurons, which provides novel insight into 

the role of the UPS in PD. 



 

1 Introduction 

 

1.1 Parkinson's disease (PD) 

Parkinson's disease (PD) is the second most common neurodegenerative disorder, 

which in its sporadic form affects approximately 1% of the population over the age of 60 

years. Clinically, it is characterized by motor impairment including resting tremor, 

bradykinesia, muscle rigidity and postural instability. Pathological hallmarks comprise the 

degeneration of the nigrostriatal dopaminergic system, which is thought to be causative for 

the observed motor symptoms (Sherer et al., 2012). Furthermore, post-mortem brain sections 

of PD patients show a widespread Lewy body pathology of intracellular inclusions consisting 

predominantly of the protein alpha-synuclein. The majority of the PD cases appears to be 

sporadic, but linkage studies and positional cloning have identified mutations causing 

Mendelian forms in approximately 5-10% of the cases (Cookson, 2005). Hereditary forms of 

PD resemble the sporadic form of the disease to a great extent both clinically and 

pathologically. This suggests that understanding of the associated cellular pathways is not 

only central to the understanding of the familial cases of PD but could also lead to new 

mechanistic insights and therefore therapies for sporadic PD. To date, mutations in 18 so-

called "PARK" genes or loci have been associated with PD (Table 1.1). 

 

Table 1.1: PD-associated loci and genes. 

 Gene Locus Inheritance Disease onset 

PARK1, 4 SNCA 4q22.1 dominant early onset 

PARK2 parkin 6q26 recessive early onset 

PARK3 unknown 2p13 dominant late onset 

PARK5 UCH-L1 4p13 dominant late onset 

PARK6 PINK1 1p36.12 recessive early onset 

PARK7 DJ1 1p36.23 recessive early onset 
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PARK8 LRRK2 12q12 dominant late onset 

PARK9 ATP13A2 1p36 recessive early onset 

PARK10 unknown 1p32 unclear late onset 

PARK11 GIGYF2 2q37.1 dominant late onset 

PARK12 unknown Xq21-q25 X-linked late onset 

PARK13 HtrA2 2p13.1 unclear late onset 

PARK14 PLA2G6 22q31.1 recessive early onset 

PARK15 FBXO7 22q12.3 recessive early onset 

PARK16 unknown 1q32 unclear unclear 

PARK17 VPS35 16q12 unclear unclear 

PARK18 EIF4G1 3q27 unclear unclear 

SNCA, synuclein, alpha (non A4 component of amyloid precursor); UCH-L1, ubiquitin carboxyl-terminal 

esterase L1 (ubiquitin thiolesterase); PINK1, PTEN induced putative kinase 1; LRRK2, leucine-rich 

repeat kinase 2; ATP13A2, ATPase type 13A2; GIGYF2, GRB10 interacting GYF protein 2; HtrA2, HtrA 

serine peptidase 2; PLA2G6, phospholipase A2, group VI (cytosolic, calcium-independent); FBXO7, F-

box protein 7; VPS35, VPS35 retromer complex component; EIF4G1, eukaryotic translation initiation 

factor 4 gamma, 1. 

1.1.1 Autosomal dominant forms of PD 

Alpha-synuclein (SNCA) is one example of a direct link between sporadic and 

hereditary forms of PD. It was the first PARK gene locus to be identified and found in a large 

family displaying parkinsonism with an autosomal-dominant inheritance pattern and Lewy 

body pathology (Polymeropoulos et al., 1996). Since then, two types of mutations in the 

SNCA gene have been recognized: three different point mutations (designated as PARK1) 

(Kruger et al., 1998; Polymeropoulos et al., 1997; Zarranz et al., 2004) and multiplications of 

the SCNA gene (PARK4) (Chartier-Harlin et al., 2004; Singleton et al., 2003). Although these 

mutations are rare, they led to the significant discovery that alpha-synuclein is the major 

fibrillar component of the Lewy bodies (Spillantini et al., 1997), suggesting the implication of 

altered alpha-synuclein function in both familial and sporadic PD.  

Identification of LRRK2 (Leucine-rich repeat kinase 2; PARK8) mutations provided 

another important link to sporadic PD, which on one hand is due to the close clinical 

resemblance with regard to a typical late-onset, levodopa-responsive parkinsonism 
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(Funayama et al., 2002). On the other hand, PARK8 is not only the most prevalent form of 

inherited PD but also frequently found in patients of sporadic PD itself (Bardien et al., 2011) 

and hence investigation of LRRK2 function and etiology is directly relevant for sporadic PD. 

1.1.2 Autosomal recessive forms of PD 

In contrast to dominantly inherited forms of PD, autosomal-recessive forms typically 

lead to an early onset of the disease. First identified in Japanese families with juvenile onset 

of parkinsonism (Kitada et al., 1998), mutations in the parkin gene (PARK2) are the most 

prevalent cause of early-onset PD (age of onset <40-50 years) (Periquet et al., 2003). Parkin 

patients clinically resemble sporadic PD patients but a number of additional clinical features, 

such as pyramidal signs, cerebellar features and psychiatric disease, have also been 

reported (Corti et al., 2011). Pathologically, they are characterized by a significant loss of 

dopaminergic neurons in the substantia nigra pars compacta usually with the absence of 

Lewy bodies (Mori et al., 1998). 

Growing evidence implicates the autosomal-recessive genes parkin together with 

PINK1 (PTEN-induced putative kinase 1; PARK6) as well as DJ-1 (PARK7) in mitochondrial 

regulation (Dodson and Guo, 2007). Owing to the observation that the parkinsonism-inducing 

neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a selective inhibitor of 

mitochondrial complex I (Langston et al., 1984; Markey et al., 1984), the involvement of 

mitochondrial dysfunction has been proposed as one of the main cellular pathogenic 

mechanisms in the etiology of PD. Implication of several autosomal-recessive genes in 

mitochondrial quality control has hence confirmed the role of this organelle in PD and 

moreover uncovered this cellular system as a potential therapeutic target. 

1.1.3 Mutations on FBXO7 (PARK15) 

Autosomal-recessive mutations of FBXO7 (F-box protein 7; PARK15) were first 

reported in 2008 (Shojaee et al., 2008) and subsequently associated with hereditary 

parkinsonism in 2009 (Di Fonzo et al., 2009). Since then, mutations in the gene have been 

identified in several families (Table 1.2). PARK15 patients display a juvenile onset of the 

disease with a broad spectrum of symptoms. While most of the so far reported cases show a 

parkinsonian-pyramidal syndrome (PPS), the phenotypes range from only pyramidal 

involvement (Shojaee et al., 2008) over a mixed contribution as parkinsonian-pyramidal 

syndrome (PPS) (Di Fonzo et al., 2009) to only parkinsonism (which also includes also a 

broad spectrum of disorders) (Lohmann et al., 2015). All patients treated with the amino acid 
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precursor of dopamine, levodopa, display a rather short-term response, however, with strong 

dyskinetic and behavioral side-effects. Other symptoms include dystonia, dysphagia, 

dysarthria, upgaze limitation, incontinence, cortical atrophy and cognitive decline (Di Fonzo et 

al., 2009; Lohmann et al., 2015). FBXO7 mutations were found to be mainly homozygous 

missense alterations with only two exceptions, one heterozygous missense (Lin et al., 2013) 

and one compound heterozygous mutation paired with a splice site variation (Di Fonzo et al., 

2009). While the clinical phenotypes of the identified PARK15 patients are well described, 

data on underlying pathological mechanisms is still missing. 

 

Table 1.2: Clinical characteristics of PARK15 patients. 

Patient code 10 patients BO-53 NIJ-002 
Family C, 
patient 1 

ANK-07 

Reference 
(Shojaee et 
al., 2008) 

(Di Fonzo et 
al., 2009) 

(Di Fonzo et 
al., 2009) 

(Paisan-Ruiz et 
al., 2010) 

(Yalcin-
Cakmakli et al., 

2014) 

Familiy origin Iran Italy Netherlands Pakistan Turkey 

Age of onset, 
y 

30s 10 18 17 14 

Mutation R378G R498X 
1144+1G > 

T22M 
R498X R498X 

Parkinsonian 
signs 

B, R 

(3 patients) 
B, R, RT, PI B, R, P B, R, P B, R, RT, PI 

Pyramidal 
signs 

++ (all 
patients) 

+ + + - 

Levodopa 
response 

+ (1 patient 
treated) 

+ + + + 

Levodopa 

side effects 
n.a. 

dyskinesia, 

behavioral 
disturbances 

dyskinesia, 

behavioral 
disturbances 

dyskinesia, 

behavioral 
disturbances 

dyskinesia, 

behavioral 
disturbances 

B, bradykinesia; R, rigidity; RT, resting tremor; PI, postural instability 
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1.2 Parkinson's disease and the ubiquitin-proteasome system (UPS) 

FBXO7 encodes a protein that functions as an E3 ubiquitin ligase and is hence part of 

the cell's main protein degradation pathway, the ubiquitin-proteasome system (UPS). 

Different lines of research have implicated dysfunction of the UPS or its components in the 

etiology of PD. First hints for this link derived from the observation of inclusion bodies that are 

ubiquitin-positive. Further research linked several components of the UPS machinery itself to 

PD. 

1.2.1 Proteasomal dysfunction 

Lewy bodies are protein inclusions and a major pathological hallmark of sporadic PD. 

The presence of ubiquitin, among other proteins, in the inclusion bodies suggested an 

involvement of dysfunctional proteasomal clearance mechanisms (Lowe et al., 1988). Indeed, 

postmortem tissue analyses of PD patients showed a reduction of proteasome activity in the 

substantia nigra (Furukawa et al., 2002; McNaught et al., 2003), but an increase of activity in 

other brain regions, such as the cerebral cortex and the striatum (Furukawa et al., 2002), 

possibly as a compensatory mechanism. The association of reduced proteasome function 

and pathogenesis of PD was further supported by in vitro studies demonstrating that 

proteasome inhibition led to degeneration of primary dopaminergic neurons with alpha-

synuclein and ubiquitin-positive inclusion body formation (Rideout et al., 2005). Moreover, 

systemic administration as well as nigral stereotactic injection of proteasome inhibitors in rats 

was reported to induce a behavioral and pathological phenotype resembling PD (McNaught 

et al., 2002a). However, these findings remain controversial due to a lack of reproducibility 

(Bove et al., 2006; Hawlitschka et al., 2007; Kordower et al., 2006), and hence in vivo 

administration of proteasome inhibitors is not considered to be a valid approach to model PD. 

A more recent study used a genetic approach to delete a subunit of the 26S proteasome in a 

brain region-specific manner. The mouse model showed Lewy body-like inclusions and 

neurodegeneration in the targeted nigrostriatal pathway or forebrain, demonstrating that 

proteasome dysfunction is a factor that can directly trigger the pathogenesis of 

neurodegenerative disease involving protein aggregates and neuronal death (Bedford et al., 

2008).  

The central position of the proteasome in the cell's functional network and its 

sensitivity to internal and external stimuli (Demasi et al., 2003; Wang et al., 2010), however, 

make it difficult to distinguish dysfunctions of the proteasome as a cause or a consequence. 

This, e.g., holds true for the alpha-synuclein-containing aggregates. While the proteinaceous 
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inclusions are ubiquitin-positive and point to deficient proteasomal degradation, it was also 

reported that wild type or mutant alpha-synuclein as well as alpha-synuclein aggregates in 

turn impair proteasome activity (Bodner et al., 2006; Fujita et al., 2007; Sun et al., 2005). 

Further research is hence required to shed light on the mechanisms of proteasome function 

and regulation in the early phases of disease pathogenesis. 

1.2.2 Ubiquitin proteasome system components associated with Parkinson's disease 

Genetic evidence underscoring the role of UPS components in PD is supported by at 

least two genes which are part of the pathway of ubiquitin-dependent degradation of proteins 

and are associated with familial cases of the disease.  

Parkin (PARK2) encodes an E3 ubiquitin ligase that attaches ubiquitin to a multitude 

of substrate proteins. Upon mitochondrial stress, parkin translocates to the outer 

mitochondrial membrane (Narendra et al., 2008) where it ubiquitinates several substrate 

proteins, ultimately leading to the removal of defective mitochondria (Tanaka et al., 2010). 

Some of the mitochondrial ubiquitination targets of parkin are degraded by the proteasome, 

such as the mitofusins (Chan et al., 2011) which are mitochondrial fusion regulators. 

Furthermore, parkin is viewed as a protective protein as overexpression can rescue cells from 

stress-induced unfolded protein response (Imai et al., 2000) or protect against proteasomal 

dysfunction and toxicity induced by alpha-synuclein (Petrucelli et al., 2002; Yang et al., 2003). 

This suggests that loss of functional parkin and its E3 ligase activity can lead to pathological 

alterations. 

Another UPS-component that was linked to genetic PD is ubiquitin carboxy-terminal 

hydrolase 1 (UCH-L1, PARK5) encoding a deubiquitinating enzyme. UCH-L1 is a highly 

abundant enzyme making up 1-2 % of the brain protein content (Solano et al., 2000; 

Wilkinson et al., 1992; Wilkinson et al., 1989). Mutations in UCH-L1 were reported to lead to 

an in vitro reduction of its deubiquitinase activity (Nishikawa et al., 2003) and shown to result 

in reduced intracellular ubiquitin levels (Osaka et al., 2003) which could potentially lead to a 

flawed clearance of proteins. Interestingly, inhibition of UCH-L1 in cell cultures of rat ventral 

midbrain neurons was shown to cause formation of inclusions and dopaminergic neuron 

degeneration (McNaught et al., 2002b). Taken together, dysfunction of the proteasome and 

components of the ubiquitin-attachment pathway have implicated the UPS as another integral 

cell system in the etiology of PD. 
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degraded is the posttranslational modification with the highly conserved, 

itin (Ub). Protein ubiquitination is an enzymatic reaction and involves three steps. In the 

first step, Ub is activated in an ATP-dependent manner and thereby covalently bound to the 

activating enzyme (E1). Next, ubiquitin is transferred to th

conjugating enzyme (E2). Finally, the E3 ubiquitin ligase (E3) mediates the transfer of Ub 

Ub conjugate to the substrate protein (Figure 1.1). Ubiquitin attachment typically 

of the substrate protein as a single moiety or polymeric Ub chains. 

Polyubiquitin chains are formed by attachment of another Ub molecule to one of the seven 

lysine (K) residues of the preceding Ub. K48-linked polyubiquitin chains are the widely 

accepted signal for degradation of a protein by the proteasome (Hershko and Ciechanover, 
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is one of the cell's major protein degradation 

s therefore involved in virtually every cellular process requiring the 

precise spatial and temporal regulation of protein levels. The signal for a protein to be 

degraded is the posttranslational modification with the highly conserved, 8.5 kDa protein 

itin (Ub). Protein ubiquitination is an enzymatic reaction and involves three steps. In the 

dependent manner and thereby covalently bound to the 

activating enzyme (E1). Next, ubiquitin is transferred to the E2 ubiquitin-

conjugating enzyme (E2). Finally, the E3 ubiquitin ligase (E3) mediates the transfer of Ub 

). Ubiquitin attachment typically 

a single moiety or polymeric Ub chains. 

Polyubiquitin chains are formed by attachment of another Ub molecule to one of the seven 

linked polyubiquitin chains are the widely 

Hershko and Ciechanover, 

 

The E1 enzyme activates ubiquitin (Ub) in an ATP-
enzyme. Subsequently, the E3 enzyme binds both, 

Ub conjugate as well as the substrate protein to facilitate ubiquitin attachment on the substrate. 
Ubiquitinated proteins are then either destined for proteasomal degradation or altered in their protein function. 
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recognition of the ubiquitinated substrate, removal of its ubiquitin chain by deubiquitinases 

and subsequent unfolding and translocation of the substrate polypeptide c

(Tomko and Hochstrasser, 2013

Figure 1.2: Different assembly forms of the 
rings of α and β subunits. One or two 19S regulatory particles, together with the 20S core particle compose 
the degradation-competent 26S or 30S proteasome holoenzyme.
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The 26S proteasome is a 2.5 MDa macromolecular complex responsible for the ATP

dependent degradation of polyubiquitinated proteins. It consists of the proteolytic 20S core 

particle (CP) and one or two 19S regulatory particles (RP) (Figure 1.2). The CP is a hollow 

shaped particle comprising of four stacked rings with seven subunits each (α1

Coux et al., 1996). Three of the seven β-subunits (β1, β2, β5) harbor proteolytic 

activity and account for the caspase-, trypsin- and chymotrypsin-like protease activities, 

1999; Seemuller et al., 1995). The outer α-rings serve as contact 

sites for the RP and restrict the access to the proteolytic chamber via their N

. For the targeted degradation of polyubiquitinated proteins, CPs need to be

associated with the RP. The RP consists of 19 different subunits and is responsible for 

recognition of the ubiquitinated substrate, removal of its ubiquitin chain by deubiquitinases 

and subsequent unfolding and translocation of the substrate polypeptide chain into the core 

Tomko and Hochstrasser, 2013).  

 

Different assembly forms of the proteasome. The 20S core particle consists of four heptameric 
rings of α and β subunits. One or two 19S regulatory particles, together with the 20S core particle compose 

competent 26S or 30S proteasome holoenzyme. 
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K29 and K33, are involved have not yet been investigated in great detail (Ikeda and Dikic, 

2008). While examples of E2 enzymes that possess an internal preference for assembly of a 

specific chaintype have been reported (Chen and Pickart, 1990; Petroski and Deshaies, 

2005), a recent study suggests that it is also the E3 ligase itself, which instructs a given E2 to 

generate a specific chaintype (David et al., 2011). The crucial role of E3 ligases is also 

reflected in their large number with more than 600 ligases encoded in the human genome. In 

contrast, only 30 E2 and two E1 enzymes are known to date (Scheffner et al., 1995). 

Interestingly, one E3 ligase can ubiquitinate more than one substrate and a given substrate in 

turn, can be targeted by more than one E3 ligase. This further increases the level of 

complexity with which cellular proteins and hence pathways can be regulated in response to 

external and internal stimuli.  

Based on their mechanism of ubiquitin-attachment, E3 ligases can be classified into 

two main families: HECT-type and the RING-type E3 ubiquitin ligases. HECT (homologous to 

E6AP C-terminus) ligases recruit the E2-Ub conjugate and transiently form a thioester with 

the ubiquitin, prior to catalyzing its attachment to the substrate (Pickart and Eddins, 2004). 

RING (Really Interesting New Gene) ligases in contrast act as a scaffold that facilitates the 

ubiquitin transfer from the E2 enzyme to the substrate by bringing both into spatial proximity 

(Pickart and Eddins, 2004). RING E3 ligases exist as monomers or as multimeric complexes. 

FBXO7 (PARK15), for example, is part of a multimeric E3 ligase complex, the so-called SCF-

complex. 

1.3.3 SKP1-cullin1-F-box protein (SCF) complex 

SCF-type multisubunit E3 ligases were first identified in yeast (Feldman et al., 1997; 

Skowyra et al., 1997) and were initially implicated in the cell cycle. The two main functions of 

an E3 ligase - E2-Ub recruitment and substrate binding - are performed by different subunits 

of the complex (Figure 1.3). Cullin1 (Cul1) acts as the scaffold protein and binds to the 

RING-box protein 1 (Rbx1), which recruits the E2-Ub conjugate. The small adaptor protein S-

phase kinase-associated protein 1 (SKP1) binds to the F-box protein (FBP) (Cardozo and 

Pagano, 2004). FBPs are responsible for the critical step of substrate-recognition and 

recruitment to the complex. While SKP1, Cul1 and Rbx1 represent the ligase core, the FBP is 

the interchangeable subunit, enabling the SCF E3 ligase to rapidly adapt to the cell's needs 

by ubiquitinating different subsets of proteins at a time. All 68 members of the mammalian 

FBP family contain the name-giving F-box domain, an approximately 40 amino acid long 

stretch, which enables the FBP to form the SCF complex. Based on other structural motifs 



 
FBPs have been further categorized into FBXLs, FBXWs and FBXOs. FBXLs contain leucin
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While involvement of FBXO7 in cell cycle regulation is interesting, it does not account 

for its anticipated role in postmitotic neurons given that FBXO7 mutation lead to familial forms 

of PD, a neurodegenerative disease. Examination of PARK15 patient skin fibroblasts 

uncovered that two of the so far identified point mutations leads to a loss of protein stability as 

most of the main FBXO7 protein isoform 1 was depleted (Zhao et al., 2011). Two interesting 

lines of research imply FBXO7 in regulation of the mitochondrial and proteasomal systems. 

FBXO7 was shown to interact with PINK1 and Parkin, which are both involved in 

mitochondrial quality control. Consequently, reduced expression of FBXO7 in SH-SY5Y cells 

lead to faulty translocation of parkin to mitochondria, a key step in mitophagy (Burchell et al., 

2013). The evidence connecting FBXO7 to the proteasomal system has so far been more 

indirect. FBXO7 harbors a ubiquitin-like (Ubl) domain at its N-terminus, which is commonly 

found in proteins that regulate proteasomal function (Hartmann-Petersen and Gordon, 2004). 

Additionally, it was shown to dimerize with the proteasomal inhibitor 31 (PI31) via a globular 

domain of 150 amino acids that is structurally quite similar and has hence been termed FP 

(FBXO7-PI31) domain (Kirk et al., 2008). While studies in Drosophila associate nutcracker, 

an orthologue of FBXO7 with low sequence similarity, with DmPI31 in the control of 

proteasome activity (Bader et al., 2011), FBXO7's function in the control of mammalian 

proteasome activity still remains elusive. 

 

1.5 Aim of the Study 

Mutations in the FBXO7 (PARK15) gene are associated with familial PD. While the 

patients present with a complex spectrum of motor deficits, their neuropathology remains 

elusive. Also, it remains unclear how the mutations affect protein function. Owing to a report 

on loss of FBXO7 expression in skin fibroblasts isolated from PARK15 patients, I took a loss-

of-function genetics approach. I investigated the systemic loss of FBXO7 in a mouse model 

and characterized its neuropathological features. In addition, I examined the function of 

FBXO7 by screening for and establishing novel interaction partners and potential 

ubiquitination substrates, which provide insight into the neuronal role of the E3 ligase FBXO7-

SCF. 



 

2 Results 

2.1 Generation of a FBXO7 knockout mouse 

To gain further insights into FBXO7's function in the brain, we generated a FBXO7 

conventional knockout mouse using ES cells purchased from the International Knockout 

Mouse Consortium. Exon 4 of the FBXO7 gene is flanked by FLP-recognition target (FRT) 

and loxP sites, a lacZ reporter cassette and a neomycin selection cassette (Figure 2.1 a). 

After successful breeding with the Ella-Cre driver line, exon 4 and the neomycin selection 

cassette were excised leading to the expression of truncated FBXO7 and β-Galactosidase (β-

Gal) proteins driven by the endogenous FBXO7 promoter and terminated by a 

polyadenylation (pA) signal. Subsequently, successful disruption of the FBXO7 gene was 

confirmed by a genotyping PCR (Figure 2.1 b, kindly provided by Siv Vingill). I furthermore 

validated the successful generation of the FBXO7 knockout mouse at the protein level by 

immunoblotting of different brain tissues with the FBXO7 and β-Gal antibodies. As expected, 

FBXO7+/- mice showed reduced and FBXO7-/- mice a complete loss of FBXO7 protein levels 

(Figure 2.1 c). This result also validated the specificity of the FBXO7 antibody used in this 

study. Vice versa, β-Gal expression was absent from FBXO7+/+ mice and showed half the 

dose in FBXO7+/- as compared to FBXO7-/- mice (Figure 2.1 d).  

At postnatal day (P) 18, FBXO7-/- mice displayed reduced body size (Figure 2.1 e). 

Even though FBXO7-/- mice were born at the expected Mendelian ratios, both genders of 

knockout mice did not live beyond the third postnatal week (Data Siv Vingill). Basic behavioral 

testing and general examination of the mice performed by Siv Vingill showed that FBXO7-/- 

mice displayed kyphosis and mild hind limb clasping. Due to their reduced body size, physical 

weakness and motor deficits, FBXO7-/- mice were not examinable with the rotarod paradigm 

or other more demanding motor tests. Deletion of one FBXO7 allele, however, did not result 

in haploinsufficiency since FBXO7+/- mice displayed normal body weight and motor 

performance during a 12 months examination period. Altogether, our results suggest that 

complete loss of FBXO7 in the mouse model system leads to a rapid decline of physical 

health state as well as early-onset motor symptoms.  
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Figure 2.1: Validation of the FBXO7 knockout mouse: (a) Schematic representation of the mutated allele, 
in which exon 4 of the FBXO7 gene is flanked by loxP sites. The transgenic construct comprises FRT sites, a 
splice acceptor site (En2-SA), a lacZ reporter cassette as well as a β-actin:neomycin selection cassette. (b) 
Representative image of a genotyping PCR of FBXO7+/+, FBXO7+/- and FBXO7-/- mice using primers 
designed around exon 4 to test for presence or absence of the FBXO7 gene or the β-Gal reporter cassette, 
respectively. Image was kindly provided by Siv Vingill. (c) P18 midbrain lysates of FBXO7+/+, FBXO7+/- and 
FBXO7-/- mice were subjected to immunoblotting with the FBXO7 and 14-3-3 antibodies. The latter served as 
a loading control. (d) P18 cortical lysates of FBXO7+/+, FBXO7+/- and FBXO7-/- mice were subjected to 
immunoblotting with the β-Galactosidase and 14-3-3 antibodies. The latter served as a loading control. (e) 
Picture of P18 FBXO7+/+, FBXO7+/- and FBXO7-/- mice. 

 

2.2 FBXO7 is abundantly expressed in the mouse brain and 

localizes to the cytoplasm in neurons 

In order to investigate the spatial distribution of FBXO7 in the mouse brain, I took 

advantage of the lacZ expression cassette driven by the endogenous FBXO7 promoter. For 

this, I subjected sagittal brain sections of P18 FBXO7+/+ and FBXO7-/- mice to lacZ staining. 

While there was no staining detectable in the FBXO7+/+ brain (Figure 2.2 f), I found 

abundant  β-Gal expression in the FBXO7-/- brain (Figure 2.2 a, d) including the cortex, 

hippocampus, thalamus, midbrain regions and brainstem. In the cortex, the signal was more 

prominent in the deeper layers, while the hippocampus displayed a strong signal throughout 

its major regions (Figure 2.2 b, c). A higher magnification of the cerebellar layers revealed β-

Gal expression in the Purkinje cell layer (PCL) and very low expression in the cerebellar 
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granule neurons of the internal granular layer (IGL) with a few stained cells presumably 

representing interneurons (Figure 2.2 e). Interestingly, FBXO7 expression was not only 

restricted to neurons but could be abundantly observed in the white matter tracts of the 

striatum, the corpus callosum and the white matter region of the cerebellum indicating the 

expression of FBXO7 in oligodendrocytes in the CNS (Figure 2.2 a, b, e). Collectively, these 

results establish the expression of FBXO7 in neuronal and oligodendroglial cells in the mouse 

brain. 
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Figure 2.2: FBXO7 expression in the murine brain: (a, b) 40 μm thick sagittal sections at lateral 0.36 mm 
and 2.04 mm, respectively, of FBXO7-/- mice were subjected to lacZ staining. Cb= cerebellum, cc= corpus 
callosum, Ctx= cortex, Hpc= hippocampus, M= medulla oblongata, Olf= olfactory bulb, Pn= pontine nucleus, 
Th= thalamus, Sc= superior colliculus, Str= striatum. Scale bars equal 1000 μm. (c) Inset represents a higher 
magnification picture of (a) showing the cortical layers I-VI and the cc. Scale bars equal 200 μm. (d) Inset 
represents a higher magnification picture of (a) showing the hippocampal formation. CA1-3= cornu ammonis 
1-3, DG= dentate gyrus. Scale bar equals 200 μm. (e) Inset represents a higher magnification picture of (b) 
showing the cerebellum. PCL= Purkinje cell layer, IGL= internal granular layer, WM= white matter. Scale bar 
equals 200 μm. (f) 40 μm thick sagittal section of a FBXO7 +/+ mouse subjected to lacZ staining serving as a 
negative control with no β-Galactosidase reactivity. Scale bar equals 1000 μm. 

 

Having established the expression of FBXO7 in the mouse brain, I investigated the 

subcellular localization in neurons by first carrying out a crude subcellular fractionation 

analysis. Immunoblotting using the FBXO7 antibody revealed that FBXO7 robustly localized 

to the cytoplasmic fraction and was absent from the nuclear fraction in P18 mouse cortical 

tissue (Figure 2.3 a). Furthermore, due to the lack of a specific antibody for detection of 

endogenous FBXO7 by immunocytochemistry, I resorted to transfection of rat cultured 

hippocampal neurons with a GFP-tagged FBXO7 plasmid. GFP-FBXO7 localized to the 

cytoplasm as well as the neurites but not to the nucleus, further confirming FBXO7 as a 

cytotplasmic protein in neurons (Figure 2.3 b). 

 

Figure 2.3: FBXO7 localizes to the cytoplasm in neurons: (a) Cortical lysates of P18 FBXO7+/+, 
FBXO7+/- and FBXO7-/- mice were subjected to subcellular fractionation, followed by immunoblotting with the 
FBXO7 antibody. 14-3-3 and SP1 served as cytoplasmic and nuclear marker, respectively. (b) Fluorescent 
microscopy pictures of cultured hippocampal neurons transfected with GFP-FBXO7 expressing plasmid, 
followed by immunocytochemistry using the GFP antibody and the DNA-binding dye DAPI. 
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2.3 No α-synuclein- or amyloid precursor protein (APP)-positive 

inclusions in the brain of FBXO7-/- mice 

Ubiquitin- and α-synuclein-positive inclusions are hallmarks of sporadic PD but their 

prevalence in genetic cases of the disease and the reproducibilty in PD mouse models are 

variable (Hirsch, 2007; Poulopoulos et al., 2012). To find out whether the FBXO7-/- mouse 

displays any α-synuclein abnormalities in the brain, I subjected sagittal brain sections of P18 

FBXO7+/+ and FBXO7-/- mice to immunohistochemistry using the α-synuclein antibody. 

Screening of the FBXO7-/- mouse brain sections revealed no α-synuclein-positive inclusions 

(Figure 2.4 a). Additionally, I checked α-synuclein protein levels in P18 mouse cortical 

lysates and found no change (Figure 2.4 b, c). Owing to FBXO7's expression in 

oligodendrocytes, I wondered whether the axonal integrity on a lightmicroscopical level was 

intact. To test this, I subjected sagittal brain sections of P18 FBXO7+/+ and FBXO7-/- mice to 

immunohistochemistry using the APP antibody as APP is prone to accumulate as a result of 

axonal damage (Trapp et al., 1998). Screening of the white matter regions of the corpus 

callosum and the cerebellar white matter revealed no APP-positive inclusions (Figure 2.4 d). 

Also, APP protein levels in P18 FBXO7-/- mouse cortical lysates were unaltered when 

compared to the wild type littermates (Figure 2.4 e, f).  
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Figure 2.4: FBXO7-/- mouse brains display no α-synuclein- or APP-positive inclusions: (a) 
Representative images from 5 μm thick sagittal paraffin-embedded brain sections of the cortical region of P18 
FBXO7+/+ and FBXO7-/- mice. Whole brain sections were subjected to immunohistochemistry using the α-
synuclein antibody and screened for inclusions. Scale bar equals 40 μm. (b) Cortical lysates of P18 
FBXO7+/+ and FBXO7-/- mice were subjected to immunoblotting using the α-synuclein and γ-tubulin 
antibodies. The latter served as a loading control. (c) Densitrometric quantification of α-synuclein protein 
levels in (b). n= 5 FBXO7 litterpairs were analyzed (Paired t-test, ns= non significant, mean + s.e.m.). (d) 
Representative images from 5 μm thick sagittal paraffin-embedded brain sections of the corpus callosum and 
cerebellar white matter region of P18 FBXO7+/+ and FBXO7-/- mice. Whole brain sections were subjected to 
immunohistochemistry using the APP antibody and screened for inclusions. Scale bar equals 40 μm. (e) 
Cortical lysates of P18 FBXO7 +/+ and FBXO7 -/- mice were subjected to immunoblotting using the APP and 
γ-tubulin antibodies. The latter served as a loading control. (f) Densitrometric quantification of APP protein 
levels in (e). n= 8 FBXO7 litterpairs were analyzed (Paired t-test, ns= non significant, mean + s.e.m.). 

 

2.4 Increased astrogliosis and elevated levels of apoptosis in the 

brain of FBXO7-/- mice  

Increased inflammation is associated with several neurodegenerative diseases, 

including Parkinson's disease (Damier et al., 1993; Dickson, 2012). I hence compared sagittal 

brain sections of P18 FBXO7+/+ and FBXO7-/- mice first for astrogliosis using the glial 

fibrillary acidic protein (GFAP) antibody. Indeed, GFAP levels were increased in the FBXO7-/- 

animals (Figure 2.5 a, b). I also examined for increased microgliosis using the Iba1 antibody 

on the same brain sections but found no difference (Figure 2.5 c, d, e).  
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Figure 2.5: FBXO7-/- mice show increased levels of astrogliosis in the brain: (a) Representative images 
from 5 μm thick sagittal paraffin-embedded brain sections of the cortical region of P18 FBXO7+/+ and FBXO7-
/- mice. Whole brain sections were subjected to immunohistochemistry using the GFAP antibody. Scale bar 
equals 40 μm. (b) Quantification of GFAP-positive area (% stained area/mm²) in the cortex of at least three 
independent FBXO7+/+ and FBXO7-/- littermates. Three anatomically matched sections per animal were 
quantified in a blinded manner and analyzed using a custom-designed macro. (Paired t-test, *p<0.05, mean + 
s.e.m.). (c) Representative images from 5 μm thick sagittal paraffin-embedded brain sections of the cortical 
region of P18 FBXO7 +/+ and FBXO7 -/- mice. Whole brain sections were subjected to immunohistochemistry 
using the Iba1 antibody. Scale bar equals 40 μm. (d) Quantification of Iba1-positive area (% stained 
area/mm²) in the cortex of at least three independent FBXO7 +/+ and FBXO7 -/- littermates. Three 
anatomically matched sections per animal were quantified in a blinded manner and analyzed using a custom-
designed macro. (Paired t-test, ns= non significant, mean + s.e.m.). (e) Quantification of Iba1-positive cells 
(cells/mm²) of the same brain sections quantified in (d). Quantification was done manually and in a blinded 
manner. (Paired t-test, ns= non significant, mean + s.e.m.). 

 

Cell death and apoptosis are major factors in neurodegenerative diseases and are 

usually accompanied by inflammation (Wyss-Coray and Mucke, 2002). I hence determined, 

whether brain sections of P18 FBXO7+/+ and FBXO7-/- mice showed any abnomality in cell 

death levels using a commercial TUNEL kit. The TUNEL kit detects sites of fragmented DNA 

that result from apoptotic pathways. Interestingly, many of the brain regions analyzed (cortex, 

cerebellum, hippocampus) showed a tendency to elevated levels of apoptotic cells being only 

in the cortex significantly increased (Figure 2.6 a, b). Levels of apoptotic cells in the mibrain 

(Figure 2.6 c, d) as well as the number of dopaminergic in the substantia nigra were 

unchanged (Data Siv Vingill).  
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Figure 2.6: FBXO7-/- mice display increased apoptosis in the brain: (a) Representative images from 5 μm 
thick sagittal paraffin-embedded brain sections of the cortical, cerebellar and hippocampal region of P18 
FBXO7+/+ and FBXO7-/- mice. Whole brain sections were subjected to immunohistochemistry using a 
TUNEL detection kit, staining apoptotic cells. Arrowheads indicate apoptotic cell bodies. Scale bar equals 40 
μm. (b) Quantification of TUNEL-positive cells (cells/mm²) in the cortex, cerebellum and hippocampus. Three 
anatomically matched sections per animal were quantified manually in a blinded manner. (Paired t-test, 
*p<0.05, ns= non significant, mean + s.e.m.). (c) Representative images from 5 μm thick coronal paraffin-
embedded brain sections of the midbrain region of P18 FBXO7+/+ and FBXO7-/- mice. Whole brain sections 
were subjected to immunohistochemistry using a TUNEL detection kit, staining apoptotic cells. Arrowheads 
indicate apoptotic cell bodies. Scale bar equals 40 μm. (d) Quantification of TUNEL-positive cells (cells/mm²) 
in the midbrain. Three anatomically matched sections per animal were quantified manually in a blinded 
manner. (Paired t-test, ns= non significant, mean + s.e.m.). 

 

To corroborate the increased levels of apoptosis observed in vivo, I performed a 

survival assay by acutely knocking down FBXO7 in cultured cortical neurons. For this, I 

transfected cortical neurons at day in vitro (DIV) 3 with plasmids encoding either the control 

vector, functional FBXO7 shRNA or non-functional shRNA (Figure 2.7 b) and quantified the 

number of pyknotic nuclei and level of cleaved caspase 3 at DIV 7. The number of apoptotic 

neurons was increased by more than 2.5 fold in the condition, in which FBXO7 was knocked 

down as compared to control cells (Figure 2.7 a), suggesting that FBXO7 is essential for 

cortical neuron survival both in vivo and in vitro. 

 

Figure 2.7: FBXO7 is required for neuronal survival: (a) Apoptotic cortical neurons were counted manually 
in a blind manner and quantified. At least four independent experiments were included in the analysis 
(ANOVA, **p<0.01, mean + s.e.m.). (b) Lysates from cultured rat cortical neurons were nucleofected at DIV0 
with either control pSuper, functional FBXO7 shRNA or non-functional FBXO7 as an additional control. 
Neurons were harvested four days after nucleofection and subjected to immunoblotting with the FBXO7 and 
14-3-3 antibodies. The latter served as a loading control. 
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2.5 Screening for novel FBXO7 interacting proteins 

Since the first reports associated mutations in the FBXO7 gene with hereditary 

parkinsonism, FBXO7 has been implicated in several cell contexts including cell cycle, 

mitophagy and the proteasome (Nelson et al., 2013). However, mechanistic insight into how 

FBXO7 influences these cell functions is very limited and in particular its role as an E3 ligase 

remains greatly underexplored.  

Ubiquitination targets have to directly interact with the E3 ligase. To uncover those, I 

sought to identify interaction partners of FBXO7. For this, I carried out a yeast two-hybrid 

screen using full-length FBXO7 fused to the DNA-binding domain (DNA-BD) and a human 

fetal brain cDNA library fused to the activator domain (AD) of the yeast transcription factor 

Gal4. Both the FBXO7 plasmid and the plasmid library were transformed into different yeast 

strains, the yeast strains were mated and subsequently selected for compensation of 

auxotrophy by growth on triple amino acid-lacking medium plates. The selection was based 

on two amino acid synthesis genes being encoded on either the bait or the prey plasmid. The 

third selection gene was transactivated by physical proximity of the Gal4 transcription factor 

DNA-BD and AD upon interaction of FBXO7 with one of the library proteins.  

The initial control tests of the yeast two-hybrid screen included investigation of bait 

toxicity, bait autoactivation and control mating. Normal yeast colony growth of the 

tryptophane-auxotrophic yeast AH109 transformed with pGBT9-BD-FBXO7 on SD/-Trp plates 

showed that no bait toxicity was present. To exclude that the bait construct transactivates the 

third selection gene without the prey construct, yeast growth of pGBT9-BD-FBXO7 

transformed into AH109 yeast on SD/-His plates was tested and resulted in no colony growth. 

The control mating between the transformed AH109 and Y187 yeast strains yielded stable 

growth on SD/-Trp/-Leu indicating that yeast mating had taken place.  

After successful small-scale control mating, the large-scale mating for library 

screening was carried out by growth selection of the transformed yeast strains on SD/-Trp/-

Leu/-His plates. Subsequently, library titer, diploid number and mating efficiency were 

determined as verification factors for the screen. The library titer was determined to be 1.24 x 

108 and was in the range of expected values (>2 x 107 cells). The diploid number counts 

indicated that a total of 14.6 x 106 clones were screened, which is well above the 

recommended 1 x 106 for efficient screening. Mating efficiency was determined by the ratio of 

viability of diploids to the viability of the prey library and was found to be 12.3 %, which was 
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exceeding the expected 2 - 5 %. The verification factors indicated that the screen was 

efficiently carried out.  

Approximately 175 yeast colonies grown on the triple selection plates were then 

subjected to a ß-galactosidase assay to exclude false-positives followed by colony PCR and 

sequencing for identification of the putative interactor. Among the identified interaction 

partners were already published interactors, such as PI31 (Kirk et al., 2008) and SKP1 (Hsu 

et al., 2004) (Table 2.1). Interestingly, two novel putative interactors were identified - the 

proteasomal subunit alpha 2 (PSMA2) and the light chain of the microtubule-associated 

protein 1 B (MAP1B-LC1) (Table 2.1).  

 

Table 2.1: List of identified interaction partners by yeast two-hybrid screening. 

Putative interactor Number of hits Status 

PI31 34 Known interactor (Kirk et al., 2008) 

SKP1 1 Known interactor (Hsu et al., 2004) 

PSMA2 13 Unknown interactor 

MAP1B-LC1 2 Unknown interactor 

 

2.6 FBXO7 interacts with members of the MAP1 (microtubule-

associated protein) familiy 

MAP1A, MAP1B and MAP1S are microtubule-associated proteins. While MAP1S is a 

comparably small (120 kDa) protein with ubiquitous expression (Liu and McKeehan, 2002), 

MAP1A and MAP1B are larger proteins (> 300 kDa) and only expressed in the central and 

peripheral nervous system (Noiges et al., 2002; Togel et al., 1998). All three proteins are 

synthesized as polyprotein precursors that are subsequently cleaved into a heavy and light 

chain. The two chains can subsequently reassociate or exert separate functions (Schoenfeld 

and Obar, 1994). Having identified the light chain 1 of MAP1B as a potential interactor in the 

yeast two-hybrid screen, I went on to confirm MAP1B-LC1 as an interactor in a mammalian 

cell system. Transfection of HEK293T cells with plasmids encoding control vector, myc-

FBXO7 and FLAG-LC1 followed by co-immunoprecipitation analyses with either of the 

possible antibody combinations revealed the specific interaction of FBXO7 and MAP1B-LC1 

(Figure 2.8 a, b, c).  
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Figure 2.8: FBXO7 interacts with MAP1B-LC1: (a) Schematic representing the MAP1 protein familiy. 
Dashed line represents the cleavage site between heavy chain (HC) and light chain (LC). M= Microtubule-
binding domain, A= Actin-binding domain, Yellow box= highly similar MAGD domain. Adapted from {genome 
biol, 2006, halpain} (b) At least 1 mg of lysates from HEK293T cells, transfected with either myc-FBXO7 or 
FLAG-LC1 together with appropriate control vectors or both myc-FBXO7 and FLAG-LC1 plasmids, were 
subjected to IP (immunoprecipitation) with the FLAG antibody and subsequent immunoblotting using the myc 
antibody. 50 μg of total cell lysate was subjected to IB (immunoblotting) using the same antibodies and served 
as an input control. Arrowhead indicates specific interaction band. IgGH indicates the heavy chain of the IP 
antibody. (c) At least 1 mg of lysates from HEK293T cells transfected with either myc-FBXO7 or FLAG-LC1 
together with appropriate control vectors or both myc-FBXO7 and FLAG-LC1 plasmids were subjected to IP 
with the myc antibody and subsequent immunoblotting using the FLAG antibody. 50 μg of total cell lysate was 
subjected to immunoblotting using the same antibodies and served as an input control.  Arrowhead indicates 
specific interaction band. IgGH indicates the heavy chain of the IP antibody. 

 

To investigate which domain of FBXO7 was responsible for LC1-binding, I carried out 

a mapping analysis using FBXO7 deletion mutants (Figure 2.9 a). Co-immunoprecipitation 

analyses using transfected HEK293T cells with the control vector or the myc-FBXO7 deletion 

mutants together with FLAG- MAP1B-LC1 identified the amino acids 1 - 180, which include 

the ubiquitin-like (Ubl) domain, as indispensable for the interaction (Figure 2.9 b). I 

furthermore investigated which of the known domains on MAP1B-LC1 was responsible for the 

interaction with FBXO7 and generated three LC1 deletion mutants (Figure 2.9 c). Using 
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HEK293T cells transfected with the control vector or either of the FLAG-LC1 deletion mutants 

along with myc-FBXO7 identified the 25-amino acid mitochondrial aggregation and genome 

destruction (MAGD) domain (Liu et al., 2005) as the specific region of interaction (Figure 2.9 

d).  

 

Figure 2.9: Mapping analysis of the FBXO7-LC1 interaction: (a) Schematic representation of FBXO7 
deletion ( ) mutants. WT= wild type, NT= N-terminus, FP= FBXO7-PI31 interaction domain, CT= C-terminus, 
F-box= F-box domain, PRR= proline-rich region. (b) At least 1 mg of lysates from HEK293T cells, transfected 
with either FLAG-LC1 or myc-FBXO7 with respective control vectors or FLAG-LC1 together with either the 
myc-FBXO7 WT, NT, FP, CT, F-box or PRR plasmid were subjected to IP with the myc antibody and 
subsequent IB using the FLAG antibody. 50 μg of total cell lysate was subjected to IB using the same 
antibodies and served as input control. Arrowheads indicate specific interaction bands. IgGH indicates the 
heavy chain of the IP antibody. (c) Schematic representation of MAP1B-LC1 mutants. WT= wild type, MTB= 
Microtubule-binding domain only, MTB= Lacking the microtubule-binding domain, MAGD= Lacking the 
mitochondrial aggregation and genome destruction, AB= Actin-binding domain (d) At least 1 mg of lysates 
from HEK293T cells, transfected with either myc-FBXO7 or FLAG-LC1 with respective control vectors or myc-
FBXO7 together with either FLAG-LC1, MTB, MTB or MAGD were subjected to IP with the FLAG antibody 
and subsequent IB using the myc antibody. 50 μg of total cell lysate was subjected to IB using the same 
antibodies and served as an input control. Arrowhead indicates specific interaction band. IgGH indicates the 
heavy chain of the IP antibody. 
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Since this domain displays high sequence similarity between LC1 of MAP1B, LC2 of 

MAP1A and MAP1S, I wondered whether LC2 and MAP1S would also interact with FBXO7. 

Co-immunoprecipitation analyses of HEK293T cells transfected with control or myc-FBXO7 

along with either FLAG-LC2 or full-length FLAG-MAP1S identified two more interactors of 

FBXO7 (Figure 2.10 a, b) and furthermore elucidates the MAGD region as the specific 

FBXO7-binding motif. 

 

Figure 2.10: FBXO7 also interacts with the MAP1 family members MAP1A-LC2 and MAP1S: (a) At least 
1 mg of lysates from HEK293T cells, transfected with either myc-FBXO7 or FLAG-LC2 together with 
appropriate control vectors or myc-FBXO7 and FLAG-LC2 together were subjected to IP with the FLAG 
antibody and subsequent IB using the myc antibody. 50 μg of total cell lysate was subjected to IB using the 
same antibodies and served as an input control. Arrowhead indicates specific interaction band. IgGH indicates 
the heavy chain of the IP antibody. (b) At least 1 mg of lysates from HEK293T cells, transfected with either 
myc-FBXO7 or FLAG-MAP1S with respective control vectors or myc-FBXO7 and FLAG-MAP1S together were 
subjected to IP with the FLAG antibody and subsequent IB using the myc antibody. 50 μg of total cell lysate 
was subjected to IB using the same antibodies and served as an input control. Arrowhead indicates specific 
interaction band. IgGH indicates the heavy chain of the IP antibody. 
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2.7 The MAP1 family proteins are potential ubiquitination substrates 

of FBXO7-SCF 

Having established MAP1B-LC1, MAP1A-LC2 and MAP1S as novel FBXO7 

interaction partners, I asked whether these proteins could be potential ubiquitination 

substrates of FBXO7. Co-expression analyses of control, myc-FBXO7 WT or myc-FBXO7 F-

box (a mutant lacking the E3 ligase activity-conferring domain) with FLAG-LC1 or FLAG-LC2 

resulted in the appearance of a higher molecular weight smear that was sensitive to ligase 

activity of FBXO7 (Figure 2.11 a, c brackets) suggesting that it might be ubiquitin 

modification. This effect was specific to FBXO7, since co-expression of another F-box protein 

FBXO31 did not result in the same effect (Figure 2.11 b, d). Furthermore, co-expression of 

HA-tagged ubiquitin enhanced the intensity of the higher molecular weight signals on FLAG-

LC2 indicating that the observed modification might be ubiquitination (Figure 2.11 e). As 

compared to wild type ubiquitin, a ubiquitin mutant that was unable to form lysine (K) 63-

linked chains diminished the appearance of the smear whereas another ubiquitin variant 

harboring the K48R mutation did not diminish the smear (Figure 2.11 e). As compared to 

LC2, LC1 appeared as a double band in the co-expression analysis independent of FBXO7. 

To investigate, whether one of the bands was a phosphorylated form of LC1, I treated 

transfected HEK293T lysates with λ-protein phosphatase. Indeed, the upper band of FLAG-

LC1 was responsive to λ-protein phosphatase treatment while FBXO7 did not show any 

response (Figure 2.11 f). SP1 served as a positive control and displayed a shift indicative of 

a loss of phosphorylation. Taken together, I confirmed MAP1B-LC1, MAP1A-LC2 and MAP1S 

as novel interaction partners of FBXO7 and furthermore presented data suggesting that LC1 

and LC2 could be potential ubiquitination substrates of FBXO7. Further experiments, such as 

in vivo or in vitro ubiquitination assays are required to confirm this hypothesis. 



Results 
2.7 The MAP1 family proteins are potential ubiquitination substrates of 

FBXO7-SCF 

29 

 

 



Results 
2.7 The MAP1 family proteins are potential ubiquitination substrates of 

FBXO7-SCF 

30 

 
Figure 2.11: LC1 and LC2 proteins are modified in a FBXO7-dependent manner: (a) Lysates from 
HEK293T cells, transfected with either myc-FBXO7 or FLAG-LC1 together with appropriate control vectors as 
well as FLAG-LC1 together with either myc-FBXO7 WT or F-box plasmid, were subjected to IB using the 
FLAG, myc or 14-3-3 antibodies, respectively. The latter served as a loading control. The bracket indicates 
smear. (b) Lysates from HEK293T cells, transfected with either myc-FBXO31 or FLAG-LC1 together with 
appropriate control vectors as well as FLAG-LC1 together with myc-FBXO31, were subjected to 
immunoblotting using the FLAG, myc or 14-3-3 antibodies, respectively. The latter served as a loading control. 
Arrowheads indicate the LC1 protein bands. (c) Lysates from HEK293T cells, transfected with either myc-
FBXO7 or FLAG-LC2 with respective control vectors as well as FLAG-LC2 together with either myc-FBXO7 
WT or F-box, were subjected to immunoblotting using the FLAG, myc or 14-3-3 antibodies, respectively. The 
latter served as a loading control. The bracket indicates smear. (d) Lysates from HEK293T cells, transfected 
with either myc-FBXO31 or FLAG-LC2 with respective control vectors as well as FLAG-LC2 together with 
myc-FBXO31, were subjected to IB using the FLAG, myc or 14-3-3 antibodies, respectively. The latter served 
as a loading control. (e) Lysates from HEK293T cells, transfected with either myc-FBXO7 or FLAG-LC2 
together with appropriate control vectors as well as FLAG-LC2 together with myc-FBXO7 WT along with one 
of the indicated HA-Ubiquitin variant plasmids were subjected to IB using the FLAG, myc or 14-3-3 antibodies, 
respectively. The latter served as a loading control. The bracket indicates smear. (f) 75 μg of lysates from 
HEK293T cells, transfected with myc-FBXO7 and FLAG-LC1 were incubated with or without addition of λ-
protein phosphatase for 1 h at 37°C and subjected to IB using the FLAG, SP1 or myc antibodies. 

 

2.8 FBXO7 binds to the proteasome via its novel interaction partner 

PSMA2 (proteasomal subunit alpha 2) 

Another novel interaction protein identified in the screen was the proteasomal subunit 

alpha 2 (PSMA2) (Table 2.1). To determine whether PSMA2 is a novel interactor of FBXO7, I 

transfected HEK293T cells with plasmids encoding control vector, myc-FBXO7 and FLAG-

PSMA2 and subjected them to co-immunoprecipitation analyses. Specific interaction bands in 

the experimental as compared to the control conditions confirmed the interaction of FBXO7 

and PSMA2 (Figure 2.12 a, b).  

 

Figure 2.12: FBXO7 interacts with PSMA2: (a) Lysates from HEK293T cells, transfected with either myc-
FBXO7 or FLAG-PSMA2 together with appropriate respective control vectors or both myc-FBXO7 and FLAG-
PSMA2 plasmids were subjected to IP with the FLAG antibody and subsequent IB using the myc antibody. 50 
μg of total cell lysate was subjected to IB using the same antibodies and served as an input control. 
Arrowhead indicates specific interaction band. IgGH indicates the heavy chain of the IP antibody. (b) Lysates 
from HEK293T cells, transfected with either myc-FBXO7 or FLAG-PSMA2 together with appropriate 
respective control vectors or both myc-FBXO7 and FLAG-PSMA2 plasmids were subjected to IP with the myc 
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antibody and subsequent IB using the FLAG antibody. 50 μg of total cell lysate was subjected to IB using the 
same antibodies and served as an input control.  Arrowhead indicates specific interaction band. IgGL 
indicates the light chain of the IP antibody. 

 

To investigate, which domain of FBXO7 was responsible for PSMA2-binding, I made 

use of FBXO7 deletion mutants lacking either of its known protein domains (Figure 2.13 a). 

Co-immunoprecipitation analysis in HEK293T cells transfected with control vector or either of 

the myc-FBXO7 deletion mutants along with FLAG-PSMA2 identified the N-terminal ubiquitin-

like (Ubl) domain as the interacting domain (Figure 2.13 b). Furthermore, I tested whether 

one of the known patient mutations located at the N-terminus of FBXO7 (T22M) might 

interfere with its interaction with PSMA2 and found no difference in the quality of the 

interaction (Figure 2.13 c).  

 

Figure 2.13: FBXO7 interacts with PSMA2 via its Ubl-domain: (a) Schematic representation of FBXO7 
deletion ( ) mutants. WT= wild type, Ubl= ubiquitin-like, FP= FBXO7-PI31 interaction domain, NT= N-
terminus, PRR= proline-rich region, CT= C-terminus. (b) Lysates from HEK293T cells, transfected with either 
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FLAG-PSMA2 or myc-FBXO7 with together with appropriate control vectors or FLAG-PSMA2 together with 
either myc-FBXO7 WT, Ubl, FP, NT, PRR or CT plasmid were subjected to IP with the myc antibody 
and subsequent IB using the FLAG antibody. 50 μg of total cell lysate was subjected to IB using the same 
antibodies and served as an input control. Arrowhead indicates specific interaction band. IgGL indicates the 
heavy chain of the IP antibody. (c) Lysates from HEK293T cells, transfected with GFP-PSMA2 together with 
control, myc-FBXO7 WT or myc-FBXO7-T22M were subjected to IP with the GFP antibody and subsequent IB 
using the myc antibody. 50 μg of total cell lysate was subjected to IB using the same antibodies and served as 
an input control. 

 

FBXO7 has been shown to interact with the proteasome-interacting protein PI31 (Kirk 

et al., 2008) and was moreover identified in two mass spectrometry studies designed to 

identify novel proteasome regulators (Bousquet-Dubouch et al., 2009; Fabre et al., 2015). 

Although biochemical evidence is still missing, these studies suggest that FBXO7 

constitutively binds to the proteasome in a constitutive or transient manner and that FBXO7 

may regulate proteasomal processes. To provide biochemical evidence for FBXO7’s 

interaction with the proteasome, I carried out a glycerol gradient density centrifugation. For 

this, I fractionated transfected HEK293T cell lysates overexpressing either myc-FBXO7 WT, 

myc-FBXO7 Ubl or myc-FBXO7 FP, the latter two representing loss-of-binding mutants for 

PSMA2 or PI31, respectively. In the 10 - 40% glycerol gradient, the proteasomes sedimented 

in the bottom fractions. Since proteasomes exist in different assembly forms, which is 

reflected by the difference in sedimentation coefficients, I observed two peaks of enrichment 

that represent these forms. Immunoblotting for PSMB5, a subunit of the 20S core, revealed 

an enrichment between fractions 10 - 12 and fractions 14 - 16 (Figure 2.14 a). Due to the 

simultaneous presence of the 19S cap protein Rpt6 and the 20S core markers, fractions 14 - 

16 were identified as the 26S / 30S proteasome fractions, whereas fractions 10 - 13 are likely 

to contain 20S particles as well as 20S particles associated with alternative regulatory 

particles. Overexpressed FBXO7 was enriched in the top fractions 3 – 5 and is likely to 

represent cytoplasmic forms of FBXO7. In addition, a substantial amount of FBXO7 co-

fractionated with the different proteasome forms in fractions 8 - 13 and to a lesser degree in 

fractions 14 - 20 (Figure 2.14 a). Deletion of the PSMA2-interaction domain led to a complete 

loss of co-fractionation with the proteasome-enriched fractions and an accumulation of the 

myc-FBXO7 Ubl mutant in fractions 3 - 5 (Figure 2.14 b) suggesting that PSMA2-binding is 

required for FBXO7’s association with the proteasome. In contrast, interaction with PI31 was 

not required for co-fractionation of FBXO7 in the proteasome-enriched fractions as deletion of 

the PI31-interaction domain did not result in a change in the distribution pattern of FBXO7 

(Figure 2.14 c). The distribution of myc-FBXO7 FP, however, seemed to be shifted by one 

fraction towards bottom glycerol concentrations, which can be explained by the reduced size 
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and hence molecular weight of this mutant (Figure 2.14 c, 2.13 a). Taken together, I 

identified the proteasomal core subunit PSMA2 as a novel interaction partner of FBXO7, 

mapped the PSMA2-interacting domain to the N-terminal Ubl-domain and provided 

biochemical evidence that FBXO7 associates with the proteasome holozenzyme by binding 

to PSMA2. 

 

Figure 2.14: FBXO7 associates with the proteasome in a Ubl-domain-dependent manner: (a, b, c) 
Lysates from HEK293T cells, transfected with either myc-FBXO7 WT (a), myc-FBXO7 Ubl (b) or myc-
FBXO7 FP (c) were separated by glycerol gradient centrifugation, fractionated and subjected to IB using the 
FBXO7, Rpt6 or PSMB5 antibodies. The latter two served as fraction controls for 26S + 30S or 20S 
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proteasomes, respectively. (d) Input control for (a, b, c), 50 μg of total cell lysate was subjected to IB using the 
myc and GAPDH antibodies. The latter served as a loading control. 

2.9 FBXO7 ubiquitinates PSMA2 mainly by K63-linked chains with a 

non-proteolytic outcome 

Having identified PSMA2 as an FBXO7 interaction partner the next question was 

whether it also is an ubiquitination target. A first hint that this would be the case came from a 

co-expression analysis in HEK293T cells using control vector, myc-FBXO7 WT or F-box (a 

mutant lacking the E3 ligase activity-conferring F-box domain) with FLAG-PSMA2. Under 

these conditions, only co-expression of PSMA2 with FBXO7 WT but not FBXO7 F-box or 

control vector led to the appearance of a typical ladder-like pattern above the wild type form 

of PSMA2, indicative of ubiquitination (Figure 2.15 a). Co-expression of another F-box 

protein FBXO31 did not trigger to this response (Figure 2.15 b) suggesting a FBXO7- and E3 

ligase-dependent modification of PSMA2.  

 

Figure 2.15: PSMA2 is modified in a FBXO7-dependent manner: (a) Lysates from HEK293T cells, 
transfected with either myc-FBXO7 or FLAG-PSMA2 together with appropriate control vectors as well as 
FLAG-PSMA2 together with either myc-FBXO7 WT or F-box were subjected to IB using the FLAG, myc or 
14-3-3 antibodies, respectively. The latter served as a loading control. The bracket indicates smear. (b) 
Lysates from HEK293T cells, transfected with either myc-FBXO31 or FLAG-PSMA2 with respective control 
vectors as well as FLAG-PSMA2 together with myc-FBXO31 were subjected to immunoblotting using the 
FLAG, myc or 14-3-3 antibodies, respectively. The latter served as a loading control. 
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To confirm that this was indeed ubiquitination, I carried out a cell-based ubiquitination 

assay for which I transfected HEK293T cells with control vector, myc-FBXO7 WT or myc-

FBXO7 F-box along with GFP-PSMA2 and subjected them to a lysis protocol under 

denaturing conditions to avoid contamination of PSMA2 by unspecifically binding proteins. 

The following immunoprecipitation for GFP-PSMA2 and subsequent immunoblotting with a 

ubiquitin antibody specific for higher molecular weight ubiquitin chains revealed a ubiquitin-

positive smear (Figure 2.16 a). The same experimental conditions were used with a different 

antibody, which recognizes all forms of ubiquitin conjugates (Figure 2.16 b) confirming that 

FBXO7 indeed modifies PSMA2 by ubiquitination. Due to the denaturing lysis conditions, all 

FBXO7 should have ideally been removed from the PSMA2-precipitates. To control for any 

possible contribution of FBXO7 autoubiquitination to the ubiquitin signal, I carried out a cell-

based ubiquitination assay as described before, transfecting only control vector, myc-FBXO7 

WT or myc-FBXO7 F-box and immunoprecipitating for myc-FBXO7 followed by 

immunoblotting with different ubiquitin antibodies. None of the ubiquitin antibodies detected a 

ubiquitin smear (Figure 2.16 c) suggesting that FBXO7 does not have a high constitutive 

autoubiquitination activity and furthermore confirming the specificity of ubiquitination to 

PSMA2 in the previous experiments.  
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Figure 2.16: FBXO7 ubiquitinates PSMA2: (a) Lysates from HEK293T cells, transfected with GFP-PSMA2 
together with either control, FBXO7 WT or FBXO7 F-box were subjected to a denaturing lysis protocol, 
followed by IP using the GFP antibody. Subsequently, precipitated proteins were immunoblotted using the 
ubiquitin antibody (DAKO). Ubn indicates the ubiquitin-reactive smear. IgGH indicates the heavy chain of the 
IP antibody. 50 μg of total cell lysate was subjected to IB using the GFP and myc antibodies, serving as an 
input control. (b) Lysates from HEK293T cells, were transfected and treated as described in (a) followed by IB 
using the ubiquitin antibody (sc-P4D1). (c) Lysates from HEK293T cells, transfected with either control vector, 
FBXO7 WT or FBXO7 F-box, subjected to a denaturing lysis protocol and subsequently immunoblotted with 
the DAKO, K63 polyubiquitin-specfic or K48 polyubiquitin-specific antibodies. IgGH indicates the heavy chain 
of the IP antibody. 50 μg of total cell lysate was subjected to IB using the myc antibody, serving as an input 
control. 

 

A general concept of gene mutations is interference with the protein function. To test 

whether any of the reported gene mutations of FBXO7 is interfering with its E3 ligase activity, 

I subjected HEK293T cells transfected with control vector, myc-FBXO7 WT, the mutants 

T22M, R378G, R498X and the SNP M115I along with GFP-PSMA2 and tagged HA-Ubiquitin 

to a denaturing lysis protocol. No ablation of the previously seen ubiquitination smear could 

be observed (Figure 2.17), suggesting that none of the investigated mutants are interfering 

with FBXO7's E3 ligase function.  

 

Figure 2.17: FBXO7 mutations do not affect its ligase activity: Lysates from HEK293T cells, transfected 
with HA-Ubiquitin and GFP-PSMA2 together with either control, FBXO7 WT, T22M, M115I, R378G or R498X 
were subjected to a denaturing lysis protocol, followed by IP using the GFP antibody. Subsequently, 
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precipitated proteins were immunoblotted using the HA antibody. Ubn indicates the ubiquitin-reactive smear. 
IgGH indicates the heavy chain of the IP antibody. 50 μg of total cell lysate was subjected to IB using the GFP 
and myc antibodies, serving as an input control. 

 

Attachment of ubiquitin to a substrate protein can occur in different modes, either as 

mono-, multimono-conjugates or polyubiquitin. The latter chains require the specific usage of 

lysine residues on ubiquitin to assemble polyubiquitin chains. Different types of ubiquitination 

have a different functional outcome for the protein. The prominent ladder patterns observed in 

total cell lysates of co-expression of FBXO7 and PSMA2 show distinct bands at molecular 

weights which correspond to the size of attachment of mono- or multimono- ubiquitin moieties 

(Figure 2.15 a, 2.16 a - Input panel).  

The consistent stability of the ubiquitinated forms of PSMA2 also suggests that the 

functional outcome of the ubiquitination is non-proteolytic. To examine the type of ubiquitin 

chain by which PSMA2 is modified (Figure 2.9 b), I subjected HEK293T cells to the same 

protocol as described, followed by immunoblotting with antibodies specific for either K48- or 

K63-linked ubiquitin chains. While the K63-specific antibody revealed an increase in smear, 

the K48-specific antibody did not (Figure 2.18 a). I furthermore took advantage of HA-

Ubiquitin variants that carry mutations in either the lysine residue 48 or 63 and are hence 

unable to form ubiquitin chains of the respective type. Immunoblotting for the HA antibody 

revealed that as compared to wild type, mutation of the lysine residue 48 did not lead to a 

decreased intensity of the smear, while mutation of the lysine 63 residue did (Figure 2.18 b). 
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Figure 2.18: FBXO7 ubiquitinates PSMA2 mainly by K63-linked polyubiquitination: (a) Lysates from 
HEK293T cells, transfected with GFP-PSMA2 together with either control, FBXO7 WT or FBXO7 F-box were 
subjected to a denaturing lysis protocol, followed by IP using the GFP antibody. Subsequently, precipitated 
proteins were immunoblotted using the K63 polyubiquitin-specfic or K48 polyubiquitin-specific antibodies. 
IgGH indicates the heavy chain of the IP antibody. 50 μg of total cell lysate was subjected to IB using the GFP 
and myc antibodies, serving as an input control. (b) Lysates from HEK293T cells transfected with 
combinations of plasmids encoding GFP-PSMA2, control, myc FBXO7 WT or F-box and HA-Ubiquitin WT or 
the indicated linkage-mutant, respectively, were subjected to a denaturing lysis protocol, followed by IP using 
the GFP antibody. and immunoblotting with the HA antibody. Ubn indicates the ubiquitin-reactive smear. IgGH 
indicates the heavy chain of the IP antibody. 50 μg of total cell lysate was subjected to IB using the GFP, myc 
and HA antibodies, serving as an input control. 

 

 Collectively, these results suggest that FBXO7 ubiquitinates PSMA2 and that the 

modification might be mono- or multimono-ubiquitin in addition to lysine 63-linked 

polyubiquitin chains.  

To confirm that the outcome of ubiquitination was indeed non-proteolytic, I compared 

PSMA2 protein levels in cortical lysates of P18 FBXO7+/+ and FBXO7-/- mice and found no 

change (Figure 2.19 a, b). Furthermore, PSMA2 protein levels were not notably changed in 

response to knockdown of FBXO7 in HEK293T cells (Figure 2.22 c), strengthening the idea 

that the consequence of PSMA2 ubiquitination by FBXO7 is a functional modification rather 

than degradation. 

 

Figure 2.19: PSMA2 stability is not affected in FBXO7-/- animals: (a) P18 cortical lysates of FBXO7+/+ 
and FBXO7-/- mice were subjected to immunoblotting with the PSMA2 and γ-tubulin antibodies. The latter 
served as a loading control. (b) Densitrometric quantification of PSMA2 protein levels in (a). n= 10 FBXO7 
litterpairs were analyzed (Paired t-test, ns= non significant, mean + s.e.m.). 
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2.10 FBXO7 is required for proper proteasomal assembly and 

function  

As a subunit of the proteasome core complex, PSMA2 regulates the gating of 

unfolded protein chains into the proteolytic chamber as well as the assembly of the 20S core 

complex with the 19S regulatory complex (Kish-Trier and Hill, 2013). Functional modification 

of PSMA2 by FBXO7 would hence be expected to have an impact on either function.  

 

2.10.1 Proteasome activity is reduced as a result of FBXO7-deficiency 

To first investigate whether proteasome activity in general was affected, I subjected 

whole brain lysates of P18 FBXO7+/+ and FBXO7-/- mice to a proteasome activity assay 

protocol. Lysates from aforementioned littermates were incubated with the artificial 

fluorogenic peptide substrate Suc-LLVY-AMC, which is specifically recognized and cleaved 

by the main protease activity of the proteasome resulting in the release of the fluorophore and 

the emission of light. As compared to the wild type littermate, brain lysates of FBXO7-/- mice 

displayed reduced proteasome activity (Figure 2.20 a, b). This result was further 

corroborated by knockdown of endogenous FBXO7 in the HEK293T heterologous cell 

system, resulting in a corresponding decrease in proteasome activity (Data Siv Vingill).  

 

Figure 2.20: Proteasome activity is decreased in the FBXO7-/- brain: (a) P18 whole brains of FBXO7+/+ 
and FBXO7-/- mice were subjected to a detergent-free lysis protocol. Lysates were incubated with the 
chymotrypsin-like proteasome activity substrate Suc-LLVY-AMC. Proteasome activity was measured at 0, 30, 
60 and 90 min, respectively. Lysates from three independent FBXO7 litters were analyzed and the relative 
fluorescence normalized to the FBXO7+/+ endpoint quantified (ANOVA, *p<0.05, **p<0.01, mean + s.e.m.). 
(b) P18 whole brain lysates from (a) were subjected to immunoblotting using the β-Gal and 14-3-3 antibodies. 
The latter served as a loading control. 
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2.10.2 Loss of FBXO7 does not affect proteasomal gating 

To find out whether the decrease in proteasome activity was a result of less efficient 

gating of single proteasomes, I subjected cortical lysates of four pooled P18 FBXO7+/+ and 

FBXO7-/- mice, respectively, to an affinity purification protocol for 26S proteasomes. In this 

protocol, cortical lysates were incubated with the GST-tagged Ubl-domain of RAD23B, which 

binds 26S proteasomes with high affinity allowing the precipitation of 26S proteasome-

RAD23B-Ubl complexes from the lysates. Elution of the 26S proteasome complexes from 

GST-beads was achieved by binding competition for the RAD23B Ubl-domain with the His10-

tagged UIM-domain of S5a followed by removal of excess His10-UIM with Ni2+-NTA beads. 

The obtained purified 26S proteasome fractions displayed the typical protein band pattern of 

26S proteasomes on Coomassie Blue-stained SDS-PAGE gels and had little or no impurities 

(Figure 2.21 a). Subsequently, 25 μg of purified proteasomes from FBXO7+/+ and FBXO7-/- 

brains were resolved by native PAGE and the gel incubated with the artificial substrate Suc-

LLVY-AMC. Both FBXO7+/+ and FBXO7-/- proteasomes displayed comparable activities 

(Figure 2.21 b, c) suggesting that FBXO7-mediated modification of PSMA2 is not required 

for proper proteasomal substrate gating or proteasome activity per se. 
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Figure 2.21: Assembled proteasomes from FBXO7-/- mice are functionally active: (a) Pooled cortical 
lysates of four P18 FBXO7+/+ and FBXO7-/- mice, respectively, were subjected to an affinity purification 
protocol of 26S proteasomes. GST-tagged RAD23B-Ubl was added to the lysates, binding the 26S 
proteasomes and subsequently isolated via GST-beads. Proteasomes were eluted from the beads by 
competition with the His10-tagged UIM of S5a. Excess His10-UIM was removed by binding to Ni

2+
-NTA beads. 

Fractions of each purification step were resolved by SDS-PAGE and stained with the Coomassie blue dye. 
Asterisk indicates GST-UBL, arrowheads indicate His10-UIM. (b) 25 μg of purified proteasomes were resolved 
by native PAGE and the gel subsequently incubated with Suc-LLVY-AMC for 10 min at 37°C. The gel was 
exposed to UV light and photographed. (c) The same native PAGE gel from (a) was subjected to western 
blotting and immunoblotted with the PSMA2 antibody. 

 



Results 
2.10 FBXO7 is required for proper proteasomal assembly and function 

44 

 
2.10.3 Loss of FBXO7 causes incomplete assembly of the proteasome holoenzyme 

With proteasome gating remaining functional upon loss-of-FBXO7, the next question 

was whether proteasome assembly was affected. To test this, I took advantage of a native 

PAGE gel analysis protocol allowing the visualization of proteasome complexes from cell 

lysates. HEK293T cell lysates were transfected with empty control vector or RNAi plasmids 

encoding functional or non-functional FBXO7 shRNA and resolved by native PAGE, followed 

by incubation of the gel with the artificial substrate Suc-LLVY-AMC. Knockdown of FBXO7 

resulted in a marked increase of free 20S core particles (CP), which was already visible prior 

to the stimulation of the latent 20S CP activity with low concentrations of SDS (Figure 2.22 

a). While the abundance of single-capped (RP1-CP), so-called 26S proteasomes was 

comparable between knockdown and the controls, the levels of double-capped (RP2-CP), 

30S proteasomes was reduced. To confirm, that the differences in the different assembly 

states of proteasomes reflected changes in abundance of the respective proteasome species 

and not differences in their activity, the same native PAGE gel was subjected to 

immunoblotting using the PSMA2 antibody. The results confirmed the overabundance in the 

FBXO7 RNAi condition (Figure 2.22 b). Analysis of the total cell lysates additionally showed 

however that total PSMA2 levels were not increased, suggesting that the increase in free 20S 

core particles was indeed due to assembly deficits of 26S or 30S proteasomes and not 

increased production of 20S proteasomes (Figure 2.22 c). Furthermore, I immunoblotted the 

same experimental conditions analyzed on native PAGE with the antibody against the 

proteasome cap subunit Rpt6. This experiment confirmed the decrease in 30S proteasome 

particles and furthermore revealed an increase in free 19S caps (Figure 2.22 d), which was 

due to assembly deficits and not due to an increase in 19S cap production since Rpt6 levels 

were comparable in total cell lysates (Figure 2.22 e).  
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Figure 2.22: FBXO7 is required for proteasome assembly: (a) Lysates from HEK293T cells, transfected 
with either control, functional FBXO7 shRNA or non-functional control shRNA were subjected to a detergent-
free lysis. Lysates were resolved by native PAGE and the gel subsequently incubated with Suc-LLVY-AMC for 
10 min at 37°C in the absence of SDS, followed by 10 min at 37°C in the presence of 0.02 % SDS. After each 
incubation, the gel was exposed to UV light and photographed. (b) The same native PAGE gel from (a) was 
subjected to IB with the PSMA2 antibody. (c) Input control for (a) and (b), 50 μg of total cell lysate was 
subjected to IB using the FBXO7, PSMA2 and γ-tubulin antibodies. The latter served as a loading control. (d) 
Lysates from HEK293T cells, transfected with either control, functional FBXO7 shRNA or non-functional 
control shRNA and subjected to a detergent-free lysis protocol. Lysates were resolved by native PAGE and 
immunoblotted with the Rpt6 antibody. (e) Input control for (d), 50 μg of total cell lysate was subjected to IB 
using the Rpt6 and 14-3-3 antibodies. The latter served as a loading control. (f) Cortices of P18 FBXO7+/+ 
and FBXO7-/- mice were subjected to a detergent-free lysis protocol. Lysates were resolved by native PAGE 
and the gel subsequently incubated with Suc-LLVY-AMC for 10 min at 37°C in the absence of SDS, followed 
by 10 min at 37°C in the presence of 0.02 % SDS. After each incubation, the gel was exposed to UV light and 
photographed. (g) The native PAGE gel from (f) was subjected to IB with the PSMA2 antibody. (h) 50 μg of 
total cell lysate was subjected to IB using the β-Gal, FBXO7 and γ-tubulin antibodies. The latter served as a 
loading control. 

 

Having observed an assembly deficit under short-term conditions of reduced FBXO7 

protein levels, I wondered whether this was also true in the FBXO7-/- representing a long-

term and complete loss-of-FBXO7. To address this question, I resolved cortical lysates of 

P18 FBXO7+/+ and FBXO7-/- mice by native PAGE and subjected the gel to incubation with 

the artificial substrate Suc-LLVY-AMC followed by immunoblotting with the PSMA2 antibody. 

Both analyzed litterpairs displayed increased levels of free 20S proteasomes in activity and 

western blot as well as a decrease of 30S proteasomes in western blot (Figure 2.22 f, g, h) 

confirming the results observed under knockdown of FBXO7.  

Investigation of the proteasome profile by native PAGE provides a rapid, qualitative 

tool for profiling of the different assembly states of the proteasome but it lacks a fine, 

quantitative consideration of the distribution of the proteasome forms as well as their activity 

levels. To achieve this, I performed glyerol gradient density centrifugation analyses of 

HEK293T lysates transfected with empty control vector, functional shRNA or non-functional 

FBXO7 shRNA. As compared to exogenously overexpressed FBXO7 (Figure 2.14 a), 

endogenous FBXO7 protein was also enriched in fractions 3 - 5 and displayed co-

fractionation with the proteasome-enriched fractions 8 - 17, however to lower amounts 

(Figure 2.23 a). Knockdown of FBXO7 expectedly led to a total decrease in FBXO7 protein 

as well as a decrease in the proteasome fractions (Figure 2.23 b). Measurement of 

proteasome activity of the control-transfected lysates revealed one major peak of activity in 

the 26S and 30S proteasome-enriched fractions 14 - 16 (Figure 2.23 c). FBXO7 shRNA-

transfected cells in contrast displayed a narrower major peak and additionally a smaller peak 

in the fractions 12 - 14. Measurement of proteasome activity upon SDS treatment, lead to a 

stimulation of the latent 20S proteasome activity and resulted in the expected appearance of 
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an activity peak in the fractions 11 and 12 for the control (Figure 2.23 d). In accordance with 

the data acquired by native PAGE proteasome profiling, knockdown of FBXO7 led to an 

increase of the stimulated 20S peak in fractions 11 and 12 as well as a narrower second peak 

(Figure 2.23 d).  

Collectively, these results suggest that FBXO7 regulates 19S-20S proteasome 

assembly, possibly by its direct association with the proteasome at the 20S core subunit 

PSMA2 and its regulation of protein function by ubiquitination.  



Results 
2.10 FBXO7 is required for proper proteasomal assembly and function 

48 

 

 

Figure 2.23: Glycerol gradient analysis of FBXO7 knockdown: (a, b) Lysates from HEK293T cells, 
transfected with either control (a) or FBXO7 shRNA (b) were separated by glycerol gradient centrifugation, 
fractionated and subjected to IB using the FBXO7, Rpt6 or PSMB5 antibodies. The latter two served as 
fraction controls for 26S + 30S or 20S proteasomes, respectively. (c, d) Proteasome activity of fractions 1 - 20 
was determined by incubation with the chymotrypsin-like proteasome activity substrate Suc-LLVY-AMC either 
with (d) or without (c) addition of 0.02 % SDS. 

 



 

3 Discussion 

Parkinson's disease is a highly prevalent neurodegenerative disease of unknown 

cause. In an effort to uncover its etiology, different approaches have been taken. While some 

lines of research focus on the drug-induced disease models, e.g. the MPTP model, others 

take genetic and molecular approaches. Familial cases of PD have provided significant 

starting points by identifying affected genes. Besides the immense fuelling of the alpha-

synuclein field, this has led to the identification of basic mitochondrial quality control 

mechanisms, such as the PINK1/parkin pathway. Also the ubiquitin proteasome system 

(UPS) has been extensively linked to PD but functional insight of UPS components in the 

disease context is still limited. Mutations in the gene encoding the E3 ligase FBXO7-SCF 

have recently been identified in familial cases of PD and shown to lead to the disease 

spectrum PARK15. In this study, I present the effect of loss of the UPS component FBXO7 in 

mice and shed light onto the so far uncharacterized neuropathology thereof. Furthermore, I 

provide further insight into the protein function of FBXO7-SCF by identifying a novel 

ubiquitination substrate. Remarkably, one of the substrates is the alpha 2 subunit of the 

proteasome core and led me to the finding of proteasomal dysfunction in the FBXO7 

knockout brain. My results hence establish the previously anticipated role of FBXO7 in 

proteasomal regulation and furthermore show that UPS deficiency can be involved in the 

etiology of PD. 

 

3.1 Systemic loss of FBXO7 results in detrimental effects on the 

mouse organism 

A previous study showed that FBXO7 mutations lead to a loss of stability of the main 

protein isoform 1 in skin fibroblasts isolated from patients (Zhao et al., 2011). This suggests 

that a loss of protein stability is, at least to a large extent, contributing to the PARK15 loss of 

function mechanism. To model this, we chose a systemic FBXO7 knockout approach using 

mice. Loss of FBXO7 had severe effects on general motor behavior and viability. This was in 

contrast to the mild or absent phenotype in several mouse models of other PARK gene 

knockout mice (Abeliovich et al., 2000; Gautier et al., 2008; Goldberg et al., 2003) and 
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suggests that FBXO7 is a critical component for the entire organism. FBXO7 -/- mice died 

between P19 and P21 without exception (Data Siv Vingill) and could barely move in the end 

stage. This is reminiscent of the bedridden state (Di Fonzo et al., 2009; Yalcin-Cakmakli et 

al., 2014) and premature death (Gunduz et al., 2014; Paisan-Ruiz et al., 2010) of some 

PARK15 patients. To distinguish the potentially negative impact of organic failure on motor 

dysfunction, we also generated conditional knockout mouse lines to investigate the 

contribution of neuronal FBXO7. Deletion of FBXO7 from principal neurons in the forebrain 

resulted in early-onset motor deficits, whereas deletion of FBXO7 in dopaminergic neurons 

displayed hypolocomotion, bradykinesia and alterations of the gait, which are also changed in 

the MPTP model (Data Siv Vingill), (Amende et al., 2005). Taken together, these mouse lines 

recapitulate the main characteristics of the PARK15 spectrum. The variability of pyramidal 

tract signs versus parkinsonian symptoms observed in patients is likely due to the varying 

severity by which the different brain regions are affected in a given genetic background. 

Despite the increasing amount of clinical data on PARK15 patients, the underlying 

neuropathology remains unknown. Since systemic loss of FBXO7 recapitulated the severe 

phenotype of PARK15 patients, I subjected brain sections of these mice to histopathological 

examinations. FBXO7-/- mice displayed significantly increased cell death in the cerebral 

cortex, an effect that I could attribute to the specific loss of FBXO7 by acute knockdown in a 

primary cortical neuron system. This finding was particularly interesting considering that 

cortical atrophy was reported in some of the PARK15 patients (Gunduz et al., 2014; Paisan-

Ruiz et al., 2010). Cerebellar and hippocampal regions displayed a tendency to increased cell 

death, which, however, due to a high variability was not consistent. Furthermore, levels of cell 

death in the midbrain, number of TH-positive neurons in the midbrain (Data Siv Vingill) and 

striatal dopamine were unchanged. This suggested that the nigrostriatal system of FBXO7-/- 

mice at P18 was intact. Based on the patients' response to levodopa treatment, an effect on 

the nigrostriatal system would be expected, however due to the early death of FBXO7-/- 

mice, examination of later degenerative effects was not possible. An absence of nigral neuron 

degeneration is also observed in other PARK gene knockout mouse models (Goldberg et al., 

2005) suggesting that mouse dopaminergic midbrain neurons are more resilient than the 

human ones. Aside from the cell death in the cerebral cortex, I observed increased levels of 

astrogliosis. Astrogliosis can accompany neuronal cell death and is also seen in other 

models, such as the neurotoxic MPTP (Kato et al., 2003) and the genetic ATP13A2 mouse 

model (Kett et al., 2015). Additionally, I did not observe axonal damage or alpha-synuclein-
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positive inclusions. Considering that Lewy bodies are only observed in a few mouse models 

and moreover not a consistent part of the pathology of early-onset parkinsonism patients 

(Poulopoulos et al., 2012) this was not surprising. Taken together, these data demonstrate 

that disruption of the PARK15 gene leads to detrimental consequences for the mouse 

organism. 

 

3.2 FBXO7 and the MAP1 protein family - additional regulators of 

mitochondrial quality control? 

Studies on the protein function of FBXO7 have so far mostly reported ligase-

independent and non-neuronal functions. Thus, identification of novel FBXO7-SCF 

ubiquitination substrates involved in pathways relevant to the neuronal cell system is crucial. 

Since ubiquitination substrates have to physically interact with the ligase, I started my 

analysis by conducting a screen for interaction partners. This screen revealed two novel 

interactors:  

The first interactor was the light chain of microtubule-associated protein 1 B (MAP1B-

LC1). By carrying out mapping analyses, I found the mitochondria accumulation and genome 

destruction (MAGD) domain of LC1 to be responsible for FBXO7-binding. This was 

interesting, since this domain displays a high sequence similarity with MAP1A-LC2 and 

MAP1S/C19ORF5 (Liu et al., 2005). Subsequent identification of MAP1A-LC2 and MAP1S as 

additional and novel interactors confirmed that the highly related MAGD domain is indeed 

responsible for the interaction. While all three MAP1 proteins carry the MAGD domain, its 

function has only been studied in MAP1S. MAP1S is a cytoplasmic protein that is recruited to 

stabilized microtubules. Upon accumulation, it causes aggregation of mitochondria leading to 

cell death and destruction of genomic DNA, for which it uses the eponymous MAGD domain 

(Liu et al., 2005). In contrast to MAP1S, which is expressed in a variety of tissues (Liu and 

McKeehan, 2002) MAP1B and MAP1A are only expressed in developing and adult neuronal 

tissue, respectively (Noiges et al., 2002; Togel et al., 1998). This suggests a critical function 

of MAP1B-LC1 and MAP1A-LC2 in mitochondrial regulation. MAP1B-LC1 has already been 

linked to a mitochondrial function via its S-nitrosylation-dependent degradation by the E3 

ligase MITOL (Yonashiro et al., 2012). However, the mechanism of action exerted by the 

MAGD domain remains unknown. The identification of the highly specific binding of FBXO7 to 

the 25 amino acid MAGD domain suggests that the mitochondrial function of all three MAP1 
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family members is carried out in association with FBXO7.My preliminary experiments also 

suggest, that the FBXO7-MAP1 pathway might involve the ubiquitination of these proteins. 

The recent study by Burchell and colleagues reported a function for FBXO7 in parkin/PINK1-

dependent mitochondrial regulation (Burchell et al., 2013). FBXO7 was shown to bind to 

PINK1 and parkin and facilitate parkin-recruitment to defective mitochondria. This raises the 

question whether FBXO7 binds to mitochondria in a PINK1-dependent manner and which are 

the triggers for FBXO7 translocation. My data indicates the contribution of a MAP1-FBXO7-

dependent pathway to the reported mitochondrial quality control function of FBXO7. 

 

3.3 FBXO7 - a novel proteasome regulating protein  

The other identified interactor was the proteasomal subunit alpha 2 (PSMA2). This 

was particularly interesting because Parkinson's disease and the ubiquitin proteasome 

system have been linked for a long time but mechanistic insight into UPS dysfunction in this 

context is still sparse. Moreover, FBXO7 has been shown to interact with PI31 (proteasomal 

inhibitor 31), a potential proteasome inhibitor (Bader et al., 2011; McCutchen-Maloney et al., 

2000), but FBXO7's contribution to proteasome regulation remained unknown.  

In this study, I show that FBXO7 binds to PSMA2 via its N-terminal ubiquitin-like (Ubl) 

domain. This interaction also mediates the association of FBXO7 with the proteasome, as 

deletion of the Ubl-domain abolished its association with proteasomes. This is consistent with 

previous studies, which show that Ubl domains are typically present in proteins that associate 

with the proteasome. The interaction of Ubl domain-containing proteins with the proteasome 

mostly occurs at the 19S regulatory particle (RP) (Luders et al., 2000; Sakata et al., 2003). 

FBXO7 however uses the Ubl domain to associate with the 20S core particle (CP). Together 

with two recent mass spectrometry studies (Bousquet-Dubouch et al., 2009; Fabre et al., 

2015), my data establishes FBXO7 as a novel proteasome-interacting protein and indicates a 

proteasome-regulating function. To this end, FBXO7 might act on the proteasome on its own, 

or as an E3 ubiquitin ligase complex. Proteasomal subunits are known to be 

posttranslationally modified, including ubiquitination (Cui et al., 2014). Indeed, my data 

revealed that PSMA2 is a ubiquitination substrate of FBXO7 and that the ubiquitination is 

dependent on FBXO7's association with the SCF complex. Correspondingly, also SKP1, 

Cullin1 and Rbx1 have also been detected at proteasomes (Bousquet-Dubouch et al., 2009; 

Verma et al., 2000). Moreover, I showed that FBXO7-dependent ubiquitination of PSMA2 
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occurs mainly via K63-linked ubiquitination and that PSMA2 protein levels are unchanged 

under loss of FBXO7 conditions. This supports the notion that FBXO7 mediates non-

proteolytic ubiquitination and likely induces the functional modification of the target protein. 

Proteasomal alpha subunits have two established functions. The first function is to restrict 

access to the proteolytic chamber by extension of their C-terminal tails to prevent non-specific 

proteolysis of proteins. This process is called gating and gate opening is achieved by binding 

to the RP (Beck et al., 2012; Lander et al., 2012). According to my data however, gating was 

unaffected as purified proteasomes display unaltered activity in loss of FBXO7 conditions. 

The second function of the alpha subunits is to interact with subunits of the RP to promote the 

assembly of proteasome holoenzymes. This process appeared to be affected by loss of 

FBXO7 as seen in an increase of free CP and RPs, and a decrease in proteasome 

holoenzymes associated with two RPs. This observation was intriguing given that in contrast 

to most other alpha subunits, PSMA2 makes additional crucial contact with the RP. All alpha 

subunits are binding to Rpt1-6 proteins of the base of the RP (Lander et al., 2012; Tian et al., 

2011). Due to the asymmetry between the heptameric alpha ring of the core and the 

hexameric AAA-ATPase base of the RP, however, the contacts appear to be rather weak. An 

additional, rather surprising direct interaction has been established between the lid of the RP 

and the CP. Here, the lid subunit Rpn6 directly binds the core subunit PSMA2, stabilizing the 

weak CP and RP interaction (Pathare et al., 2012). Moreover, this link appeared particularly 

stable in reconstructions of core particles with two RPs, but not of those with only one RP (da 

Fonseca and Morris, 2008). This corresponds with my findings that proteasome holoenzymes 

with two RPs appeared to be more affected compared to holoenzymes with only one. 

Collectively, my data indicates that the FBXO7-PSMA2 interaction and the functional 

modification of PSMA2 is essential for maintaining proper proteasome function since free 

CPs are not capable of ubiquitin-dependent degradation under physiological conditions 

(Finley, 2009). 

 

3.4 Conclusion and perspective 

The results from this study establish a role for FBXO7 in regulation of proteasome 

integrity and activity. The importance of the regulation of proteasome assembly by 

posttranslational modification has been reported for the subunit PSMA7, which is 

phosphorylated by protein kinase CK2. PSMA7 phosphorylation appeared to stabilize the 

association of CP and RPs to form proteasome holoenzymes while loss of phosphorylation in 
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response to γ-interferon treatment resulted in unstable holoenzyme complexes (Bose et al., 

2004). With PSMA2, this study also uncovers a novel ubiquitination substrate of the FBXO7-

SCF E3 ligase, which is relevant in the neuronal context. Additionally, a ligase-independent 

interaction of FBXO7 to PSMA2 could also contribute to the observed effects and it would 

hence be interesting to differentiate the binding- from ubiquitination-dependent mechanisms.  

This study strengthens the link between the UPS and PD by uncovering a mechanism 

of proteasome regulation that is dysfunctional in the disease context of PARK15. Moreover, 

FBXO7 seems to be involved in the regulation of two integral cell systems, mitochondria and 

proteasomes. The reciprocity of these systems makes it difficult to trace which of them would 

be affected first by FBXO7 deficiency. Loss of FBXO7-mediated mitochondrial dysfunction 

(Burchell et al., 2013) is known to e.g. lead to an increase in reactive oxygen species (ROS), 

which has been recently reported to result in proteasomal disassembly (Livnat-Levanon et al., 

2014). Conversely, a reduction in proteasome activity has been demonstrated to result in an 

impairment of mitochondrial homeostasis and turnover. Due to FBXO7's potential to localize 

to both the proteasome as well as the mitochondria, FBXO7 could represent a protective 

mechanism of the cell to react to deficiencies in either system. Increased mitochondrial 

dysfunction, e.g. would be anticipated to result in increased translocation of FBXO7 to 

mitochondria, which, in turn would lead to reduced FBXO7 on proteasomes. The 

consequence would be an increase in free core particles, which are thought to be capable of 

the non-specific degradation of oxidized proteins and hence serve as a preventive 

mechanism to restrict ROS-mediated damage (Livnat-Levanon et al., 2014). Under conditions 

with normal mitochondrial function, FBXO7 would be abundantly available to maintain 

physiological levels of associated proteasome holoenzymes. In the case of PARK15, leading 

to a loss of FBXO7, both cell systems are hence affected in their basic functions and would 

be expected to negatively impact on each other leading to high cellular stress levels. The 

degree of cell stress in the different cell-types could be modulated by protective 

compensatory mechanisms inherent to them. Collectively, my findings demonstrate that 

proteasome function and integrity are dependent on FBXO7 function and emphasize UPS 

dysfunction as a major contributing mechanism to PD etiology. 



 

4 Material and Methods 

4.1 Materials 

4.1.1 Chemicals, Reagents and Kits 

Chemicals and reagents used in this study were purchased from Applichem 

(Darmstadt, Germany), Enzo Life Sciences, Inc. (New York, US), GE Healthcare (New 

Jersey, US), Invitrogen (Darmstadt, Germany), Merck (Darmstadt, Germany), Roth 

(Karlsruhe, Germany), Sigma-Aldrich (Munich, Germany), Thermo Fisher Scientific 

(Massachusetts, US), Th. Geyer (Renningen, Germany), Qiagen (Limburg, Netherlands) or 

Worthington (New Jersey, US). Cell culture media and supplements were purchased from 

GibcoTM / Thermo Fisher Scientific. Commercially available kits include the Nucleobond® and 

NucleoSpin® kits for DNA isolation and extraction, respectively, from Macherey-Nagel 

(Dueren, Germany) and the DeadEnd™ Fluorometric TUNEL System (Promega, US). DNA 

and protein ladder markers were obtained from Fermentas / Thermo Fisher Scientific.  

4.1.2 Laboratory Equipment 

The following equipment was used in this study: micropipettes (Gilson, USA), 

consumables and plastic ware (Falcon (Becton Dickinson Labware Europe, Le Pont De Claix, 

France); Eppendorf (Hamburg, Germany); Greiner Bio-One (Frickenhausen, Germany)), 

tabletop and ultracentrifuges (Eppendorf (Hamburg, Germany) and Beckmann Coulter 

(Krefeld, Germany), respectively), rocker and shaker (Heidolph, Germany), thermocycler 

(Biometra, Germany), heater block (Grant Instruments, UK), UV transluminator (Intas, 

Germany), spectrophotometer (Amersham Biosciences, UK), Fluorescent plate reader 

(Wallac 1420 VICTOR2 TM), fluorescent microscope, inverted light microscope and dissection 

microscope (Eclipse Ti, Eclipse TS100 and SMZ645, respectively, from Nikon, Japan), 

brightfield light microscope (Zeiss Axiophot). 

4.1.3 Antibodies 

Primary and secondary antibodies used in this study are listed in Table 4.1 and 4.2. 
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Table 4.1: List of primary antibodies. 

Primary antibody Application Dilution Host Company 

pan 14-3-3 WB 1:5000 ms Santa Cruz 

α-Synuclein IHC, WB 1:250, 1:1000 rb Cell signaling 

ß-galactosidase WB 1:500 ms Santa Cruz 

γ-Tubulin WB 1:10000 ms Sigma-Aldrich 

APP IHC, WB 1:250, 1:250 ms Thermo Fisher Scientific 

Cleaved caspase-3 ICC 1:200 rb Cell signaling 

Cullin1 WB 1:500 ms Santa Cruz 

Myc WB 1:500 ms Santa Cruz 

Flag WB 1:1000 ms Sigma-Aldrich 

GFP WB 1:500 ms Santa Cruz 

GFP ICC 1:1000 rb Thermo Fisher Scientific 

HA WB 1:500 ms Santa Cruz 

SP1 WB 1:500 ms Santa Cruz 

GFAP IHC 1:200 ms Nova Castra 

Iba1 IHC 1:1000 ms Wako 

Ubiquitin WB 1:500 rb Dako 

Ubiquitin (P4D1) WB 1:500 ms Santa Cruz 

FBXO7 WB 1:500-1:40 ms Santa Cruz 

Ubiquitin K63 WB 1:200 ms Millipore 

Ubiquitin K48 WB 1:200 ms Millipore 

PSMA2 WB 1:1000 rb Cell signaling 

PSMB5 WB 1:1000 rb Cell signaling 

Rpt6 WB 1:500 ms Enzo lifescience 

GAPDH WB 1:2000 ms Abcam 
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Table 4.2: List of secondary antibodies. 

Secondary antibody Application Conjugated probe Dilution Host Company 

anti-mouse IgG WB HRP 1:10000 goat Dianova 

anti-rabbit IgG WB HRP 1:10000 goat Dianova 

anti-mouse IgG ICC Cy2 / Alexa 488 1:1000 goat Dianova 

anti-rabbit IgG ICC Cy3 / Alexa 555 1:1000 goat Dianova 

 

4.1.4 Enzymes 

Enzymes used in this study are listed in Table 4.3. 

 

Table 4.3: List of enzimes. 

Enzyme Company 

Restriction Enzymes New England Biolabs 

Pfu DNA Polymerase Fermentas / Thermo Fisher Scientific 

T4 DNA Ligase Fermentas / Thermo Fisher Scientific 

GoTaq® DNA Polymerase Fermentas / Thermo Fisher Scientific 

Proteinase K AppliChem 

DNase I Roche 

Lambda Protein Phosphatase New England Biolabs 

 

4.1.5 Buffers and solutions 

 

10x PBS: 1.37 M NaCl, 14.7 mM KCl, 78.1 mM Na2HPO4, 26.8 mM KH2PO4, adjust to pH 7.4 

 

Molecular Biology: 

2x TAE: 80 mM Tris-acetate, 2 mM EDTA, adjust to pH 8.5 

2x YT medium (for 1 L): 5 g NaCl, 16 g tryptone, 10 g yeast extract 

2x YT agar plates: add 1.5 % agar and 50 μg/ml ampicillin or kanamycin 
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Yeast Two-Hybrid: 

SD (synthetic dropout) media and plates (for 500 ml): 3.35 g Yeast nitrogen base w/o amino 

acids, X g Drop out supplement {X = 0.69 g -Leu, 0.64 g -Leu/-Trp, 0.72 g -His, 0.62 g -Leu/-

Trp/-His} (Clontech), adjust pH to 5.8 and autoclave (for plates: add 10 g agar). After cooling, 

add 25 ml of 40 % glucose 

2x YPDA (for 250 ml): 10 g peptone, 5 g yeast extract, adjust pH to 6.5 and autoclave. After 

cooling, add 25 ml of 40 % glucose 

Z-buffer (for 1 L): 16.1 g Na2HPO4 x 7 H2O, 5.5 g NaH2PO4 x H2O, 0.75 g KCl, 0.246 g 

MgSO4 x 7 H2O, adjust pH to 7 and autoclave 

autoclave. After cooling, add 25 ml of 40 % glucose 

X-Gal stock: 20 mg/ml in dimethylformamide 

Z-buffer / X-GalX-Gal stock: 10 ml Z-buffer, 167 µl X-Gal stock, 27 µl ß- 

mercaptoethanol 

 

HEK293T cell culture 

HEK293T medium: DMEM [+] 4.5 g/L glucose [-] glutamine [-] pyruvate (GibcoTM), 10% FCS 

(HyClone), 1% GlutaMAX® (GibcoTM) 

1x TE (for 10 ml): 1 ml Trypsin-EDTA 0.5 % (GibcoTM), 1 ml 10x HBSS (GibcoTM), 8 ml H2O 

 

HEK293T and primary neuron culture transfection 

2x HBSS: 50 mM HEPES pH 7.05 - 7.11, 280 mM NaCl, 10 mM KCl, 15 mM glucose, 1.5 mM 

Na2HPO4 

Nucleofection plating medium: DMEM [+] 4.5 g/L glucose [-] L-glutamine [-] pyruvate 

(GibcoTM), 10% FCS (HyClone) 

 

Primary cortical neuron cell culture 

HHGN: 1x HBSS (Hank's Balanced Salt Solution), 2.5 mM HEPES pH 7.5, 35 mM glucose 

(GibcoTM), 4 mM NaHCO3 

TDn: 50 mg Trypsin (Worthington), 5 ml HHGN, 250 µl DNase (2µg/µl) 

Cortical neuron plating medium: NeurobasalTM [-] L-glutamine (GibcoTM), 1 % PSG, 2 % B27 

supplement (GibcoTM) 
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Immunocytochemistry 

BME / HS: BME [+] Earle's salts [-] L-glutamine (GibcoTM), 10 % horse serum (heat 

inactivated) 

8 % PFA: 375 ml H2O at 60°C, 50 ml 10x PBS, 40 g Paraformaldehyde, 40 g sucrose, adjust 

to pH 7.4, adjust volume to 500 ml with H2O 

Mounting medium: 12 ml 0.2 M pH 8.5 Tris-HCl, 6 g glycerol (85%), 2.4 g Mowiol 4-88 

(Calbiochem), 6 ml H2O, 2.5 % C6H12N2 (DABCO®) 

DAPI: 1 µg/µl stock, final concentration 1:8000 in H2O 

 

Common buffers for biochemistry 

TritonTM X-100 lysis buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 % TritonTM 

X-100 

Co-IP buffer:  20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 % NonidetTM P-40, 10% 

glycerol  

RIPA buffer: 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM EDTA, 0.5 % sodium 

deoxycholate, 1 % NonidetTM P-40, w/ or w/o 0.1 % SDS 

 

Subcellular fractionation 

Buffer A: 10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA 

Buffer A+: Buffer A, 0.1 % NonidetTM P-40 

Buffer C: 20 mM HEPES pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM EGTA 

 

Cell-based ubiquitination assay 

UA-Lysis Buffer: 50 mM HEPES pH 7.5, 150 mM NaCl, 1.5 mM MgCl2, 1 % TritonTM X-100, 

10 % glycerol 

HNTG buffer: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1 % TritonTM X-100, 10% glycerol 

 

Protein purification 

Resuspension / Lysis buffer: 20 mM Tris-HCl pH 7.5, 0.5 M NaCl, 0.025 % NonidetTM P-40, 1 

mM DTT, 20 mM Imidazole 

Dialysis buffer: 20 mM Tris pH 7.5, 10 % glycerol, 40 mM KCl, 5 mM MgCl2, 1 mM DTT 
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Proteasome affinity purification 

Proteasome lysis buffer C / Purification buffer: 25 mM Tris-HCl pH 7.5, 10 % glycerol, 5 mM 

MgCl2, 1 mM ATP, 1 mM DTT 

 

Proteasome assays 

Proteasome cell lysis buffer A: 50 mM Tris-HCl pH 7.5, 250 mM sucrose, 5 mM MgCl2, 2 mM 

ATP, 1 mM DTT, 0.5 mM EDTA, 0.025 % digitonin 

Proteasome cell lysis buffer B: 20 mM Tris-HCl pH 7.4, 5 mM MgCl2, 2 mM ATP, 1 mM EDTA 

Proteasome activity assay buffer: 50 mM Tris-HCl pH 7.5, 40 mM KCl, 5 mM MgCl2, 0.5 mM 

ATP, 1 mM DTT, 0.05 mg/ml BSA 

Native PAGE activity assay buffer: 50 mM Tris-HCl pH 7.4, 5 mM MgCl2, 1 mM ATP, w/ or 

w/o 0.02 % SDS 

Glycerol gradient buffer: 20 mM Tris-HCl pH 7.4, 5 mM MgCl2, 2 mM ATP, 1 mM DTT, 1 mM 

EDTA, 10 - 40 % glycerol 

 

SDS-PAGE 

Lower buffer: 1.5 M Tris-HCl pH 8.8, 0.4 % SDS 

Upper buffer: 0.5 M Tris-HCl pH 6.8, 0.4 % SDS 

Running buffer: 125 mM Tris, 1.25 M glycine, 0.5 % SDS 

Transfer buffer: 20 mM Tris, 153 mM glycine, 20 % methanol  

SDS-sample buffer: 300 mM Tris-HCl pH 6.8, 50 % glycerol, 10 % SDS, 25% β-

mercaptoethanol, 0.05% bromophenol blue  

PBST: 1x PBS, 0.1% Tween-20  

 

Native PAGE 

Native PAGE running buffer: 90 mM Tris base, 90 mM boric acid, 5 mM MgCl2, 0.5 mM 

EDTA, 0.5 mM ATP 

Native PAGE pre-transfer buffer: 25 mM Tris base, 192 mM glycine, 1 % SDS 

Native PAGE sample buffer: 125 mM Tris-HCl pH 6.8, 50 % glycerol, 2 % bromophenol blue 

 

Colloidal Coomassie staining 

Dye stock solution: 0.1 % w/v Coomassie Brilliant Blue G-250 (AppliChem), 2 % w/v ortho-

phosphoric acid, 10 % w/v ammonium sulfate 

Dye working solution: 80 % v/v Dye stock solution, 20 % v/v methanol 
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Genotyping 

Tail lysis buffer: 10 mM Tris pH 8.0, 200 mM NaCl, 10 mM EDTA, 0.5 % SDS 

 

Immunohistochemistry 

X-gal: 1 mg/ml X-gal in DMSO 

X-gal buffer: 2 mM MgCl2, 0.02% NP40, 0.01 % sodium deoxycholate, 5 mM potassium 

ferrocyanide, 5 mM potassium ferricyanide 

0.2 M Phosphate fixation buffer: 0.36 % w/v NaH2PO4, 3.1 % w/v Na2HPO4, 1 % w/v NaCl 

HCl/Alcohol:  1.25 ml concentrated HCl, 500 ml 70 % EtOH 

4 % PFA for paraffin IHC: 4 % w/v PFA, 0.1 M phosphate fixation buffer 

Citrate buffer: 1.8 mM C6H8O7 x H2O, 8.2 mM C6H5Na3O7 x 2 H2O, adjust to pH 6.0 

Tris buffer:  0.9 % w/v NaCl, 50 mM Tris-HCl pH 7.6 

BSA/PBS: 0.04 M NaH2PO4, 0.16 M Na2HPO4, 1.8 % w/v NaCl, 1 % w/v BSA 

Blocking buffer: 20 % goat serum v/v in BSA/PBS 

 

Anesthetics 

Ketamine/xylazine: 10 % ketamine v/v (10% Ketamine, Medistar, Arzneimttelveitrieb 

GmbH®), 5 % xylazine (2 % xylazine, CP Pharma®) 

 

4.1.6 Plasmid constructs and Primers 

A detailed list of plasmid constructs and primer sequences used in this study is 

attached as Appendix 1 and Appendix 2. 

 

4.2 Methods 

4.2.1 Molecular biology 

4.2.1.2 Expression plasmid cloning 

To generate expression plasmids encoding the gene of interest, appropriate primers 

were designed for subsequent amplification of the cDNA with PCR (Tables 4.4 and 4.5). The 

annealing temperature of the primers was set 5°C below the melting temperature of the 

respective primer. Elongation time was adjusted to the length gene of interest and the 

anticipated elongation rate of the Pfu polymerase of 500 bp / min. 
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Table 4.4: PCR mix. 

Amount Reagent 

10 - 50 ng DNA template 

1 μl forward primer (10 pmol/μl) 

1 μl reverse primer (10 pmol/μl) 

0.4 μl dNTP (25 mM) 

0.5 μl Pfu DNA Polymerase (2.5 U/μl) 

5 μl 10x Pfu reaction buffer (+MgSO4) 

41.1 μl H2O 

 

 

Table 4.5: PCR program. 

Program step Temperature Time Repetitions 

Initial denaturation 95°C 3 min - 

Denaturation 95°C 30 sec 

 

30 cycles 
Annealing X°C 30 sec 

Elongation 72°C X min 

Final elongation 72°C 5 min - 

 

Following the PCR, amplificates were analyzed using 1 % agarose gel 

electrophoresis. DNA fragments of expected size were then excised, extracted from the gel 

using the NucleoSpin® gel clean-up kit and eluted in 20 μl H2O.  

Subsequently, the purified PCR product (insert) and 2 μg of the target expression 

vector were digested for 1 h at 37°C using restriction enzymes corresponding to the vector's 

multiple cloning site. After restriction digest, insert and vector were purified using the 

NucleoSpin® gel clean-up kit and eluted in 15 μl and 50 μl H2O, respectively. The ligation 

reaction was set up using 3 - 5 μl of insert combined with 1 μl of linearized and 

dephosphorylated vector and incubated overnight in icy water on the bench (Table 4.6).  
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Table 4.6: Ligation mix. 

Amount Reagent 

1 μl Plasmid vector 

3.5 μl DNA insert 

0.6 μl ATP (10 mM) 

1 μl T4 DNA Ligase 

1 μl 10x T4 DNA Ligase Buffer 

2.9 μl H2O 

 

After overnight ligation, the full ligation reaction was used to transform 100 μl of the 

chemically competent E.coli strain DH5α. For transformation, bacteria were incubated 30 min 

on ice with the ligation reaction, followed by a 2 min heat shock at 37°C and a 1 min cool 

down on ice. Afterwards, 500 μl of 2x YT medium without antibiotics was added and the 

bacteria incubated for 30 min at 37°C. Finally, bacteria were spun down for 5 min at 4000 rpm 

and plated onto prewarmed 2x YT agar plates containing the antibiotic matching the vector-

encoded antibiotic resistance. Agar plates were incubated overnight at 37°C. To verify 

successful ligation of insert and vector, bacterial colonies were first picked and inoculated in 2 

ml 2x YT medium with antibiotic and incubated overnight at 37°C and 175 rpm. Then, plasmid 

DNA extraction from the bacterial culture was carried out using the NucleoSpin® plasmid 

quick pure kit. Extracted DNA was subjected to a restriction digest to identify positive clones. 

DNA from putatively positive clones was then submitted for sequencing to the AGCT Lab at 

the Max Planck Institute of Experimental Medicine, Göttingen. 

 

4.2.1.2 Deletion mutant cloning 

For the generation of a gene mutant lacking a given sequence or domain, two sets of 

primers were designed to carry out fusion PCR. The first set covers the sequence before to 

the domain to be deleted and includes 15 base pairs of the sequence right after the domain. 

The second set, in turn, covers 15 base pairs of the sequence before the domain and the 

sequence after the domain to the stop codon. The so generated PCR product thus has an 

overlapping stretch to support the annealing of the two fragments. The two sets of primers 

were then used to run two separate PCRs using 50 ng of template DNA under the previously 
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mentioned conditions (Tables 4.4 and 4.5) resulting in the generation of two fragments of the 

gene, lacking the domain of interest. The partially overlapping fragments were then used as 

template DNA for a fusion PCR, using the start and the stop codon primers thereby 

generating a full-length version of the gene lacking the domain of interest. Generation of an 

expression plasmid containing the deletion mutant was then carried out as described above. 

 

4.2.1.3 Yeast Two-Hybrid library screening 

The yeast two-hybrid system was used to screen a cDNA library for potential 

interaction proteins of FBXO7. The method is based on the fusion of the Gal4 DNA-binding 

domain (Gal4-BD) to the bait and the Gal4 DNA-activation domain (Gal4-AD) to the prey 

protein resulting in the functional assembly of the Gal4 transcription factor only in case of 

interaction of the bait and the prey protein. Assembly of the Gal4 transcription factor then 

leads to the transactivation of selection genes, allowing the screening of a large library. The 

method was carried out according to the Matchmaker® Gold Yeast Two-Hybrid System User 

Manual (Clontech, US). 

Full-length FBXO7 was used as bait and cloned into the pGBT9-BD vector carrying 

the TRP1 nutritional marker. The tryptophane-auxotrophic yeast strain AH109 was used for 

bait construct transformation. As a first step, the bait construct and the AH109 yeast strain 

were tested for toxicity and autoactivation. To test for toxicity of the bait construct, AH109 

yeast was transformed with the pGBT9-BD-FBXO7 construct followed by plating on SD/-Trp 

and assessment of colony growth after 2 - 3 days incubation at 30°C. Autoactivation was 

assessed by transformation and growth on SD/-His plates.  

As prey, the Mate & PlateTM Library containing a human fetal brain cDNA library 

(Clontech, Cat. No. 630469) transformed into the leucine-auxotrophic yeast strain Y187 was 

used. To perform a control mating, one colony of each yeast strain grown on their respective 

selection plate was placed in a 1.5 ml reaction tube containing 2x YPDA and vortexed. 

Subsequently, the mixture was incubated for 24 h at 30°C and 200 rpm. The mated culture 

was then plated on SD/-Trp/-Leu plates and incubated at 30°C for 3 - 5 days.  

For the main culture of mating, a fresh bait strain colony was inoculated in 50 ml SD/-

Trp medium and incubated at 30°C and 250 rpm until OD600 = 0.8 (13h). Cells were then 

pelleted by centrifugation for 5 min at 1000 g and adjusted to a cell density of >1x108 cells / 

ml in a total of 5 ml SD/-Trp medium. Next, a 1 ml aliquot of the library strain was thawed out, 

10 μl removed and plated on SD/-Leu plates for library titer determination, and the rest used 
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for mating. For mating, 1 ml of the Mate & Plate library was combined with 5 ml bait strain in a 

2 L flask containing 45 ml of 2x YPDA supplemented with 50 μg/ml kanamycin. The mating 

culture was then incubated for 24 h at 30°C and 50 rpm. Subsequently, cells were centrifuged 

for 10 min at 1000 g and resuspended with 100 ml of 0.5x YPDA supplemented with 50 μg/ml 

kanamycin. Following another centrifugation for 10 min at 1000 g, cells were resuspended in 

10 ml of 0.5x YPDA/Kan and 100 μl of the mated culture plated on SD/-Trp, SD/-Leu and 

SD/-Trp/-Leu plates to determine the mating efficiency. The remainder of the culture was then 

spread with 200 μl per 150 mm SD/-Trp/-Leu/-His plates and incubated at 30°C for 5 days. 

Specific colonies (>2 mm) were then picked and replica-plated on prewarmed SD/-Trp/-Leu/-

His plates. 

To eliminate false-positive clones, a ß-galactosidase assay was performed using one 

of the replica plate sets. For this, a nitrocellulose membrane was placed on the replica plate 

for 1 min and then dipped into liquid nitrogen for 30 sec. After 20 sec of thawing, the 

membrane was placed onto a Whatman paper soaked in Z-buffer / X-Gal solution and 

incubated for 30 min - 3 h at RT followed by identification of the ß-gal-producing clones. 

ß-gal-positive clones were then subjected to colony PCR (Tables 4.7 and 4.8) and 

submitted for sequencing to the AGCT Lab at the Max Planck Institute of Experimental 

Medicine, Göttingen. 

 

Table 4.7: Colony PCR mix. 

Amount Reagent 

 mix with pipette tip dipped in the colony 

1 μl forward primer 1596 (10 pmol/μl) 

1 μl reverse primer 1681 (10 pmol/μl) 

2.1 μl dNTP (2.5 mM) 

0.1 μl GoTaq® DNA Polymerase 

5 μl 5x GoTaq® reaction buffer 

10.8 μl H2O 
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Table 4.8: Colony PCR program. 

Program step Temperature Time Repetitions 

Initial denaturation 95°C 3 min - 

Denaturation 95°C 30 sec 

 

30 cycles 
Annealing X°C 30 sec 

Elongation 72°C 5 min 

Final elongation 72°C 10 min - 

 

 

4.2.2 Cell culture and transfection 

Experimental work with cell cultures was carried out in a biological safety cabinet 

(HERAsafe®, Thermo Fisher Scientific). Cultured cells and cell lines were maintained in an 

incubator (HERAsafe®, Thermo Fisher Scientific) at 37°C with 5% CO2. 

 

4.2.2.1 HEK293T cell culture 

HEK293T cells were maintained in HEK293T medium on 10 cm culture dishes 

(Falcon®, Corning). Regular passaging was achieved by cell splitting at a confluency of 90 % 

by briefly rinsing the cells with 3 ml PBS, followed by incubation with 2 ml 1x TE for 5 min at 

37°C. Stopping of the trypsin digest and detachment of the cells from the cell culture dish was 

carried out by suspending the cells in 8 ml HEK293T medium. Subsequently, cells were 

collected and centrifuged for 5 min at 4°C and 800 rpm. The supernatant was then discarded 

and the cell pellet resuspended in fresh HEK293T medium. Resuspended cells were plated 

onto either 10 cm culture dishes at a dilution of 0.5 - 2 ml cell suspension in 8 ml HEK293T 

medium or onto 6-well plates (CELLSTAR®, Greiner Bio-One) at a dilution of 200 μl cell 

suspension in 2 ml HEK293T medium.  

 

4.2.2.2 Transfection of HEK293T cells 

HEK293T cell transfection was carried out using an adapted version of the calcium 

phosphate method described in (Konishi et al., 2004).  
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Cells were split onto 6-well plates the day before and transfected once the cells 

reached a confluency of 80 %. For each 6-well, 0.01 - 3 µg of plasmid DNA was diluted in 90 

µl of H2O, followed by addition of 10 µl of 2.5 M CaCl2 and 100 µl of 2x HBSS. Subsequently, 

the DNA calcium phosphate solution was pipetted up and down to ensure proper mixing and 

incubated 5 min at RT. Finally, the entire DNA mix was added to the 6-well and incubated 

with the cells 48 and 96 h prior to lysis for overexpression and knockdown plasmids, 

respectively. 

 

4.2.2.3 Primary cortical neuron culture 

Cortices from P0 Wistar rats were isolated in 1x HBSS (Hank's Balanced Salt 

Solution) and separated from meninges as well as the hippocampus. Following three washes 

with 1x HBSS, cortices were incubated with 5 ml of TDn for 10 min at 37°C. To stop the 

trypsin digest, cortices were washed three times with 1x HBSS and subsequently triturated in 

5 ml of cortical neuron plating medium with 250 µl of freshly added DNase (2 mg/ml). The cell 

suspension was then centrifuged for 5 min at 4°C and 800 rpm and the pellet resuspended in 

20 ml of cortical neuron plating medium. Plates and 12 mm coverslips were coated with 

polyornithine for at least 30 min at 37°C followed by two washes with H2O and drying at 37°C. 

Cell titer was determined using a hemocytometer. 0.2 - 0.3 x 106 cells were plated per 24-well 

and 6 - 10 x 106 per 6-well. 

 

4.2.2.4 Transfection of primary cortical neurons 

Primary cortical neurons grown on 12 mm coverslips in a 24-well plate were 

transfected at day in vitro (DIV) 1 for overexpression analysis and at DIV3 for survival assays 

using a modified version of the previously described calcium phosphate transfection method. 

First, the conditioned culture medium was collected, stored at 37°C and replaced with 

prewarmed 1x DMEM ( [+] 4.5 g/L glucose [-] L-glutamine [-] pyruvate (GibcoTM) ). After one 

wash with 1x DMEM, neurons were starved in 500 µl 1x DMEM for 30 - 45 min at 37°C. In the 

meanwhile, 0.02 - 3 µg of plasmid DNA was diluted in 18 µl of H2O, followed by addition of 2 

µl of 2.5 M CaCl2 and 20 µl of 2x HBSS. Subsequently, the DNA calcium phosphate solution 

was pipetted up and down to ensure proper mixing and incubated 5 min at RT. The entire 

DNA mix was then added to the 24-well and incubated with the neurons for 14 - 18 min at 

37°C. Finally, neurons were washed twice with 1x DMEM before the stored conditioned 

medium was returned. 
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4.2.2.5 Nucleofection of primary cortical neurons 

Following the primary cortical neuron culture, 8 x 106 rat cortical neurons were 

resuspended in 100 µl of 1x DMEM and 7 - 10 µg plasmid DNA added. The DNA-cell 

suspension was then subjected to electrical pulsing using the O-005 program of the 

nucleofector (Amaxa®, Lonza) and incubated with 1 ml of prewarmed 1x DMEM for 5 min at 

RT. Finally, neurons were plated onto polyornithine-coated 6-well plates with prewarmed 

nucleofection plating medium. After 4 h, the medium was replaced by cortical neuron plating 

medium. 

 

4.2.2.6 Immunocytochemistry 

Cortical neuron cultures subjected to survival assays were fixed with 8 % PFA, which 

was directly added to the conditioned medium to a final concentration of 4 % and incubated 

for 10 min at RT. Cells for morphological analyses were washed twice with PBS and then 

fixed with 4 % PFA for 10 min at RT. Following fixation, cells were washed twice with PBS 

and then permeabilized with 0.04 % TritonTM X-100 in PBS for 10 min at RT. After two more 

washes with PBS, cells were blocked using BME / HS for 30 min at RT. The primary antibody 

was diluted and applied in BME / HS and incubated for either 1 h at RT or overnight at 4°C. 

Subsequently, cells were washed twice with BME / HS and then incubated with the 

secondary antibody diluted in BME / HS for 30 min at RT. Following two washes with PBS, 

the cells were incubated with the DNA dye DAPI (4’6-diamidino-2-phenylindole) for 10 min at 

RT, then rinsed twice more with PBS and finally mounted using mounting medium on 

microscope slides (Marienfeld). 

 

4.2.2.7 Survival assay in primary cortical neurons 

The survival assay was carried out using an adapted version of the method described 

in (Becker and Bonni, 2004). Cortical neurons plated on 12 mm coverslips were transfected 

at DIV3 with 0.05 - 0.2 µg GFP, serving as a transfection marker along with the respective 

plasmids of interest. At DIV7, neurons were subjected to immunocytochemical staining using 

the GFP and the cleaved caspase-3 antibodies along with the DNA dye DAPI. GFP-positive 

neurons were examined for their viability status based on integrity of neurites, nuclear 

morphology and the apoptotic marker cleaved caspase-3. Analyses were carried out in a 

blinded manner and approximately 100 cells were analyzed per condition. 
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4.2.3 FBXO7 knockout mice 

4.2.3.1 Generation of FBXO7 knockout mice 

The generation of FBXO7 conventional knockout mice was achieved using ES cells 

purchased from the International Knockout Mouse Consortium (EUCOMM ID: 23037). ES 

cells were injected into C57BL/6N blastocysts, implanted into a female foster mouse and the 

resulting chimeras crossed to C57BL/6N mice to achieve germline transmission.  

 

4.2.3.2 Isolation of genomic DNA 

To isolate DNA for genotyping, mouse tail biopsies were digested for 3 h or overnight 

at 55°C in 200 µl of Tail lysis buffer freshly supplemented with 3 µl proteinase K (200 µg/ml). 

After resuspension of the digested tails by agitation of the tube, samples were centrifuged for 

7 min at 14000 rpm. The supernatant was then transferred into a new tube and the DNA 

precipitated using 2.5 volumes of 100 % EtOH. DNA pellets were washed twice with 70 % 

EtOH and subsequently air-dried prior to addition of 100 µl of H2O. 

 

4.2.3.3 Genotyping of FBXO7 knockout mice 

Two separate PCR reactions (Tables 4.9 and 4.10) were set up to achieve 

genotyping of FBXO7 mice determining presence or absence of the FBXO7 gene or the lacZ 

reporter cassette, respectively. 

 

Table 4.9: Genotyping PCR mix. 

Amount Reagent 

100 ng (0.5 μl) DNA 

1 μl forward primer (10 pmol/μl) 

1 μl reverse primer (10 pmol/μl) 

2.1 μl dNTP (2.5 mM) 

0.1 μl GoTaq® DNA Polymerase 

5 μl 5x GoTaq® reaction buffer 

10.3 μl H2O 
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Table 4.10: Genotyping PCR program. 

Program step Temperature Time Repetitions 

Initial denaturation 95°C 3 min - 

Denaturation 95°C 30 sec 

 

28 cycles 
Annealing 51°C 30 sec 

Elongation 72°C 2 min 

Final elongation 72°C 10 min - 

 

4.2.4 General biochemical methods 

4.2.4.1 Tissue lysate preparation 

Mice were sacrificed by CO2 inhalation or cervical dislocation. For general analysis, 

the isolated tissue of interest was lysed in TritonTM X-100 lysis buffer freshly supplemented 

with protease, phosphatase and in case of ubiquitin-dependent processes also 

deubiquitination enzyme inhibitors (3 µg/ml aprotinin, 1 µg/µl leupeptin, 1 µg/µl pepstatin, 1 

mM DTT; 0.5 mM NaVO3, 1 mM NaF; 10 mM N-ethylmaleimide (NEM)). Tissue lysis and 

homogenization was carried out with a 2 ml dounce (KONTES®) followed by incubation on 

ice for 30 min. Subsequently, lysates were centrifuged for 10 min at 4°C and 14000 rpm, the 

supernatant collected in a fresh tube and either directly used for analysis or snap frozen using 

liquid nitrogen and stored at -80°C. 

 

4.2.4.2 Cell lysate preparation 

HEK293T or primary neuronal cells were first washed once with PBS, followed by 

addition of TritonTM X-100 lysis buffer or co-IP buffer freshly supplemented with protease, 

phosphatase and in case of ubiquitin-dependent processes also deubiquitination enzyme 

inhibitors. Subsequently, adherent cells were scraped off the plate surface using a cell 

scraper (Greiner Bio-One) and incubated on ice for 30 min. Subsequently, lysates were 

centrifuged for 10 min at 4°C and 14000 rpm, the supernatant collected in a fresh tube and 

either directly used for analysis or snap frozen using liquid nitrogen and stored at -80°C. 
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4.2.4.3 Protein concentration determination 

Protein concentration determination of cell or tissue lysates was done using the Bio-

Rad Protein Assay, which is based on the method of Bradford (Bradford, 1976). The reagent 

was diluted 1:5 in ddH2O and pipetted into cuvettes (Greiner Bio-One). Subsequently, 1, 3, 5 

and 10 µg BSA were added to the mixture serving as a standard curve as well as 1 - 2 µl of 

the respective lysate of interest followed by vortexing and incubation for 5 min at RT. The 

absorbance at wavelength 595 nm was read using a spectrophotometer and the protein 

concentration calculated according to the BSA standard curve. 

 

4.2.4.4 Co-immunoprecipitation (co-IP) 

1 - 2 mg of cell lysates from transfected HEK293T cells were incubated with the 

primary antibody on a rotator for 3 h at 4°C. If different conditions varied in volume, co-IP 

buffer was used to equalize them. Subsequently, 10 - 30 µl of Protein A-sepharose bead 

slurry (Protein A-SepharoseTM Fast Flow, GE Healthcare), prewashed and maintained in co-

IP buffer, was added to the samples and incubated for another 45 - 60 min at 4°C on the 

rotator. Next, the samples were centrifuged for 30 sec at 7500 rpm, the supernatant 

discarded and the beads washed thrice with TritonTM X-100 lysis buffer followed by one wash 

with PBS. Finally, the PBS supernatant was removed except for approximately 20 µl, 

supplemented with 30 µl of SDS-sample buffer and boiled for 5 min at 95°C. 50 - 100 µg of 

the original cell lysate served as an input control. 

 

4.2.4.5 Subcellular fractionation 

Cortical tissue was lysed in Buffer A supplemented with protease inhibitors using a 2 

ml dounce. Next, lysates were centrifuged for 5 min at 4°C and 2000 rpm, the supernatant  

collected (S1) and spun down again for 5 min at 4°C and 2000 rpm. The resulting 

supernatant served as the cytoplasmic fraction. The pellets were washed 6 times with Buffer 

A+ and then resuspended in 100 µl Buffer C followed by centrifugation for 20 min at at 4°C 

and 14000 rpm. The resulting supernatant was harvested as the nuclear fraction. 

 

4.2.4.6 Cell-based ubiquitination assay 

The cell-based ubiquitination assay was carried out using an adapted version of the 

method described in (Lu et al., 2007). Transfected HEK293T cells were lysed in RIPA buffer 



Material and Methods 
4.2 Methods 

72 

 
without SDS supplemented with protease inhibitors and 10 mM NEM. Next, 1 - 2 mg of cell 

lysate were incubated with 1 % SDS for 5 min at 4°C on a rotator followed by boiling for 10 

min at 95°C to disrupt protein-protein interactions. The SDS concentration was then reduced 

to 0.1 % by mixing with UA-Lysis Buffer. Subsequently, primary antibody added and 

incubated overnight at 4°C on a rotator. For immunoprecipitation, Protein A-sepharose bead 

slurry was added and incubated with the samples for 45 min at 4°C on a rotator. Finally, 

beads were washed twice with UA-Lysis Buffer, once with RIPA containing SDS and once 

with PBS, followed by addition of 30 µl of SDS-sample buffer and boiling for 5 min at 95°C. 50 

- 100 µg of the original cell lysate served as an input control. 

 

4.2.4.7 SDS-PAGE and western blot 

SDS-PAGE gels were cast using the Mini-PROTEAN® Tetra Electrophoresis System 

from Bio-Rad. A standard gel consisted of an upper, so-called stacking gel containing 3.9 % 

acrylamide, and a lower, so-called separating gel containing 7.5 - 12 % acrylamide depending 

on the size of the proteins of interest. The composition of the stacking and separating gels is 

indicated in Table 4.11. 

 

Table 4.11: of gels used for SDS-PAGE. 

Reagent Separating gel Stacking gel 

Acrylamide 7.5 % 8 % 10 % 12 % 3.9 % 

ml Acrylamide (30 % stock) 1.875 2 2.5 3 0.65 

ml Lower Buffer 1.875 1.875 1.875 1.875 1.25 ml Upper Buffer 

ml H2O 3.75 3.625 3.125 2.625 3.05 

µl 10 % APS 75 49.5 

µl TEMED 7.5 4.95 

 

The separating gel reagents were mixed, poured into the gel casting setup and 

overlaid with a thin layer of isopropanol. After gel polymerization for 10 - 20 min, isopropanol 

was removed with H2O followed by addition of the stacking gel solution, insertion of a 10-well 

comb and polymerization for another 15 min.  
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Boiled SDS sample buffer-added protein samples were loaded into the Running 

buffer-immersed gel wells along with a protein ladder marker and resolved at 25 - 35 mA per 

gel. Following electrophoresis, the SDS-gel was placed onto a nitrocellulose membrane 

(AmershamTM ProtranTM) and the proteins transferred using the Mini Trans-Blot® cell from 

Bio-Rad in cooled Transfer Buffer for 110 min at 230 mA. Nitrocellulose membranes were 

then blocked for 30 min using 4 % milk in PBST followed by three 10 min PBST washes. 

Subsequently, the membrane was incubated for 1 h at RT or overnight at 4°C with the 

primary antibody diluted in 3 % BSA or 4 % milk in PBS supplemented with 0.02 % NaN3. 

Following primary antibody incubation the membranes were washed three times for 10 min 

with PBST and then subjected to incubation for 30 min at RT with an HRP-coupled secondary 

antibody diluted in 4 % milk blocking solution. Subsequently, membranes were washed 

another three times for 10 min with PBST prior to incubation with an enhanced 

chemiluminescent (ECL) solution from a peroxidase substrate kit (PierceTM, Thermo Fisher 

Scientific). Finally, photographic films (Amersham HyperfilmTM ECL) and an automatic film 

developer machine (Curix 60, Agfa) were used to visualize the protein bands. 

 

4.2.4.8 Colloidal Coomassie staining 

Colloidal Coomassie staining was carried out according to Dörte Hesse's adapted 

protocol from (Neuhoff et al., 1988). SDS-PAGE gels were fixed with 40 % v/v EtOH, 10 % 

v/v acetic acid for at least 60 min at RT. After two washes with H2O for 10 min, the gels were 

incubated in Dye working solution for 60 min or overnight at RT. Subsequently, the gels were 

washed with 1 % acetic acid until all Coomassie particles were removed. 

 

4.2.5 Proteasome biochemistry 

4.2.5.1 Measurement of proteasome activity from lysates 

The lysate proteasome activity assay was carried out using an adapted version of the 

method described in (Kisselev and Goldberg, 2005). Transfected HEK293T cells or tissue 

were lysed and homogenized in the non-detergent-based Proteasome cell lysis buffer A to 

prevent dissociation of the proteasome holocomplexes and then centrifuged for 10 min at 4°C 

and 14000 rpm. Subsequently, 12 µg of tissue or cell lysate was pipetted in triplicates into a 

96-well plate containing Proteasome activity assay buffer and incubated for 5 min at 37°C. 

Next, 100 µM of the fluorogenic peptide substrate Suc-LLVY-AMC was added to the wells, 
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mixed and fluorescence measured at 0, 30, 60, 90 min using a fluorescent plate reader (355 

nm excitation and 460 nm emission). To verify comparable lysate loading amounts, genotype 

or successful transfection, 50 µg of the respective lysate was subjected to western blot. 

 

4.2.5.2 Characterization of proteasome profiles using native PAGE 

Native PAGE gels were cast using the Mini-PROTEAN® Tetra Electrophoresis 

System from Bio-Rad. The gels consisted of a stacking gel containing 2.75 % acrylamide, 

and a separating gel containing 3.75 %. The composition of the stacking and separating gels 

is indicated in Table 4.12. 

 

Table 4.12: Composition of gels used for Native PAGE. 

Reagent Separating gel Stacking gel 

400 mM Tris base/Boric acid 1.5 ml 0.6 ml 

1 M MgCl2 37.5 µl 15 µl 

500 mM EDTA 7.5 µl 3 µl 

400 mM ATP 18.75 µl 7.5 µl 

Acrylamide (30 %) 937.5 µl 275 µl 

H2O 4.98 ml 2.1 ml 

APS (10 %) 75 µl 30 µl 

TEMED 7.5 µl 3 µl 

 

The separating gel reagents were mixed, poured into the gel casting setup and 

overlaid with a thin layer of isopropanol. After gel polymerization for 10 - 20 min, isopropanol 

was removed with H2O followed by addition of the stacking gel solution, insertion of a 10-well 

comb and polymerization for another 15 min. Gels were then placed into a running chamber 

placed on ice and filled with cold Native PAGE running buffer.  

25 - 75 µg of cell or tissue lysates prepared in Proteasome cell lysis buffer A or 25 µg 

of purified 26S proteasomes were mixed with Native PAGE sample buffer and loaded into the 

gel well. Next, the gels were resolved for 125 min at 175 V and afterwards immersed in 

Native PAGE activity assay buffer. Following addition of 100 µM of Suc-LLVY-AMC, the gel 

was incubated for 10 min at 37°C and the proteasome profile visualized by exposure to UV 
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light. For stimulation of the latent 20S proteasome activity, 0.02 % SDS was added and the 

gel incubated for another 10 min at 37°C. Subsequently, the gel was immersed in Native 

PAGE pre-transfer buffer and incubated for 10 min at RT. Finally, the gel was placed onto a 

nitrocellulose membrane (AmershamTM ProtranTM) and the proteins transferred using the Mini 

Trans-Blot® cell from Bio-Rad in cooled Transfer Buffer for 110 min at 230 mA. Western blot 

was then carried out to confirm the proteasome content in the gels.  

 

4.2.5.3 Glycerol density gradient centrifugation and analysis of proteasome fractions 

Glycerol density gradient centrifugation was carried out using an adapted version of 

the method described in (Koulich et al., 2008). Transfected HEK293T cells or tissue were 

lysed and homogenized in Proteasome cell lysis buffer B and then centrifuged for 10 min at 

4°C and 14000 rpm. Per condition, a total amount of 0.5 - 1.5 mg of lysate was used. Linear 

glycerol gradients containing 10, 20, 30 and 40 % glycerol were prepared in a total volume of 

4 ml using Glycerol gradient buffer followed by loading of the sample on top. Subsequently, 

samples were centrifuged for 14 h at 4°C and 83000 g using a Beckman XL-90 

ultracentrifuge with a SW-60 Ti rotor (Beckman Coulter). Following centrifugation, the 

gradients were pipetted off into 20 fractions with a volume of 200 - 220 µl. Per fraction, 20 µl 

were subjected to proteasome activity measurement as described in section 4.2.5.1. The 

remaining fraction was precipitated using a 4x volume of icecold acetone. Following an 

incubation time of 60 min at -20°C, the samples were centriuged for 10 min at 14000 rpm and 

the supernatant discarded. The pellets were air-dried for 30 min prior to addition of SDS-

sample buffer and boiling for 5 min at 95°C. SDS-PAGE and western blot were then carried 

out to confirm protein and proteasome content in each fraction.  

 

4.2.5.4 Proteasome affinity purification 

Proteasome affinity purification was carried out using an adapted version of the 

method described in (Besche and Goldberg, 2012). In this protocol, the GST-tagged Ubl-

domain of RAD23B is used to bind and precipitate 26S proteasomes with high affinity. In a 

second step, the His10-tagged UIM-domain of S5a is used for elution of 26S proteasomes by 

binding competition for the RAD23B Ubl-domain.  

GST-UblRAD23B was previously generated in the lab. To bacterially express and purify 

His10-UIMS5a, the UIMS5a cDNA was cloned into the bacterial expression vector pET28a. For 

transformation of BL21 bacteria, 50 ng of plasmid was used followed by plating on 
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kanamycin-containing 2x YT agar plates and overnight growth at 37°C. Next, a preculture of 

12 ml 2x YT with kanamycin was inoculated with a bacterial colony and grown overnight at 

37°C and 175 rpm. 10 ml of the preculture was then used to adjust the main bacterial culture 

of 300 ml 2x YT and kanamycin to an OD600 = 0.1. The main culture was then grown at 37°C 

and 175 rpm up to an OD600 = 0.6 and induced using 0.5 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG). At an OD600 = 1.0 the bacterial culture was spun down for 30 

min at 4°C and 4000 rpm and resuspended in Resuspension / Lysis buffer freshly 

supplemented with protease inhibitors (3 µg/ml aprotinin, 1 µg/µl leupeptin, 1 µg/µl pepstatin, 

150 µM phenylmethanesulfonylfluoride (PMSF)). Subsequently, the samples were sonicated 

three times at 30 % power for 30 sec (SONOPULS UW 2070, Bandelin) followed by 

centrifugation for 20 min at 4°C and 10000 g. The supernatant was then added with 800 µl Ni-

NTA sepharose bead slurry (Ni-NTA Sepharose®, iba lifesciences) and incubated overnight 

at 4°C on a rotator. The beads were then spun down for 1 min at 4°C and 1000 g followed by 

one wash of 20x bead volume Resuspension buffer and another wash of 10x bead volume 

Resuspension buffer with 40 mM imidazole. Elution was achieved by incubation of the beads 

with Resuspension buffer with 500 mM imidazole overnight at 4°C on a rotator. Finally, the 

eluted fraction was dialyzed twice overnight at 4°C in Dialysis buffer and the purification 

verified by SDS-PAGE and Coomassie blue staining. 

For 26S proteasome affinity purification, 750 mg of cortical tissue pooled from four 

P18 FBXO7+/+ and -/- mice, respectively, was lysed in Proteasome lysis buffer C / 

Purification buffer using a mechanical homogenizer (POLYTRON®, PT 1200 E). Following 

the centrifugation of the cortical lysates for 20 min at 4°C and 14000 rpm, 750 µg of GST- 

UblRAD23B and 230 µl GST-bead slurry (Glutathione SepharoseTM 4B, GE Healthcare) were 

added to the lysates and incubated for 2.5 h at 4°C on a rotator. Subsequently, the beads 

were washed twice with 40x bead volume Purification buffer prior to the first elution by 

addition of 750 µg of His10-UIMS5a. After mixing of the resin by pipetting and incubation for 15 

min at 4°C, the beads were spun down. A second elution was then performed by addition of 

750 µg of His10-UIMS5a. The eluates 1 and 2 were then combined and incubated with 112.5 µl 

Ni-NTA sepharose bead slurry for 30 min at 4°C on a rotator. Following centrifugation for 1.5 

min at 4°C and 500 rpm, the supernatant was collected as the 26S proteasome elution 

fraction. Purity of the 26S proteasome eluates was determined by SDS-PAGE and 

Coomassie blue staining. Purified proteasomes were subjected to further analysis by native 

PAGE and proteasome activity assays. 
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4.2.6 Histological analysis of mouse brain tissue 

4.2.6.1 Transcardial perfusion and fixation 

Mice were anesthetized by intraperitoneal injection of Ketamine/xylazine. Successful 

anesthesia was assessed by testing twitching reflexes due to pinching of the hind limbs. 

Subsequently, animals were stabilized on their dorsal side and the abdomen opened using 

dissection scissors and forceps. Upon removal of the diaphragm, a small butterfly canula 

(Venoflix®, Braun) attached to a peristaltic pump (HeidolphTM PD 5001, Thermo Fisher 

Scientific) was inserted into the left ventricle with simultaneous incision making on the right 

atrium. The blood was then flushed out using PBS, followed by fixation with 4 % PFA (diluted 

from 8 % PFA with PBS) for tissue destined for vibratome sectioning or 4 % PFA for paraffin 

IHC for tissue destined for microtome sectioning. The tissues of interest were then harvested 

and further processed by postfixation. For vibratome sectioning, tissues were postfixed in 4 % 

PFA for 4 h at 4°C, washed once in PBS followed by incubation in a 30 % sucrose solution 

overnight at 4°C. For Microtome sectioning, tissues were postfixed in 4 % PFA for paraffin 

IHC overnight at 4°C. 

 

4.2.6.2 X-Gal staining of vibratome mouse brain sections 

40 µm thick sagittal whole brain sections of P18 FBXO7 +/+ and FBXO7 -/- mice were 

obtained by vibratome sectioning (VT100S, Leica), collected in PBS and stored in PBS wit 

0.02 % NaN3 at 4°C until further processing. Free floating sections were then incubated under 

the exclusion of light overnight at 37°C in X-gal buffer with freshly added X-Gal. 

Subsequently, sections were washed in PBS and mounted onto microscope slides 

(Marienfeld), air-dried and mounted in 50 % glycerol. Finally, sections were imaged using a 

brightfield microscope (Axio Observer Z1, Zeiss) and the Zen 2011 imaging software (Zeiss, 

Germany). 

 

4.2.6.3 Microtome tissue embedding and sectioning  

Tissue destined for microtome sectioning was embedded in paraffin (Paraplast®, 

Leica) using an automated tissue processor (HMP110, MICROM) program listed in Table 

4.13.  

 



Material and Methods 
4.2 Methods 

78 

 
Table 4.13: of the automated tissue processor. 

Program step Time 

50 % v/v EtOH 1 h 

70 % v/v EtOH 2 x 2 h 

96 % v/v EtOH 2 x 2 h 

100 % v/v EtOH 2 x 2 h 

Isopropanol 1 h 

Xylol 2 x 2 h 

Paraffin 2 x 2 h 

 

 

Subsequently, brains were positioned in metal molds, embedded in 60°C warm 

paraffin and solidified by cooling. Paraffin blocks were then stored at RT until microtome 

sectioning (HM 430, Thermo Fisher Scientific) of 5 µm thick whole brain sagittal or coronal 

sections of P18 FBXO7+/+ and FBXO7-/- mice. Sections obtained with the sliding microtome 

were collected and transferred into a waterbath heated to 40°C (HIR-3, Kunz Instruments), 

mounted on microscopy slides (Marienfeld) and then air-dried at RT. 

 

4.2.6.4 Immunohistochemical staining of paraffin-embedded sections 

Mounted 5 µm thick sections were first subjected to a series of deparaffinization and 

rehydration steps. For this, sections were incubated for 10 min at 60°C to soften up the 

paraffin. Paraffin removal was then achieved by two 10 min incubations in Xylol and one 10 

min incubation in Xylol/Isopropanol (1:2). Subsequently, a series of rehydration steps was 

carried out by 5 min incubation in 100 %, 90 %, 70 % and 50 % v/v EtOH, respectively, 

concluded by a 5 min incubation in ddH2O. Subsequently, sections were incubated for 5 min 

in Citrate buffer followed by boiling for 10 min at 650 watts in a microwave for antigen 

retrieval. Afterwards, sections were cooled down at RT for 30 min and rinsed in Tris buffer 

with 2 % w/v milk powder prior to placement into ShandonTM coverplates (Thermo Fisher 

Scientific). Following another rinse in Tris buffer with 2 % w/v milk powder, endogenous 

peroxidase activity was inhibited by treatment with 3 % H2O2 for 5 min and washing in Tris 

buffer with 2 % w/v milk powder. Sections were blocked by incubation with Blocking buffer for 
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10 min at RT and subsequently incubated overnight at 4°C in primary antibody diluted in 

BSA/PBS. The next day, sections were rinsed with Tris buffer with 2 % w/v milk powder and 

subjected to staining using the LSAB2 kit (Dako). For this, the slides were first incubated with 

a biotinylated secondary antibody solution for 10 min, followed by a rinse with Tris buffer with 

2 % w/v milk powder. Then, slides were incubated for 10 min with peroxidase-labelled 

streptavidin and rinsed with Tris buffer. Coverplates were then dismantled and the slides 

incubated for 5 - 10 min with the HRP substrate chromogen 3-3'-diaminobenzidine (DAB, 

Dako) resulting in brown-colored precipitates at the sites of antigen localization. Following 

DAB labelling, the slides were subjected to nuclear staining by rinsing twice in ddH2O prior to 

incubation in 0.1 % haematoxylin w/v (Merck) for 15 - 30 sec. Subsequently, sections were 

rinsed in ddH2O, developed by dipping in HCl/Alcohol and incubated for 5 min with the 

blueing agent Scott's solution (Thermo Fisher Scientific). After rinsing the slides once more 

with ddH2O a series of dehydration steps was carried out by 5 min incubations in 50 %, 70 %, 

90 % and 100 % v/v EtOH followed by 10 min incubations in Xylol/Isopropanol (1:2), Xylol 

and Xylol, respectively. Finally, samples were coverslipped using Eukitt® (Friedrichs et al.) 

mounting medium. Image acquisition was done using a brightfield microscope (Axio Observer 

Z1, Zeiss) and the Zen 2011 imaging software (Zeiss, Germany). 

 

4.2.6.5 Labelling of apoptotic cells using the TUNEL assay 

Mounted 5 µm thick sections were subjected to the TUNEL assay following the 

instructions of the commercially available DeadEnd™ Colorimetric TUNEL System kit 

(Promega). The assay is based on labelling of fragmented DNA by detection of biotinylated 

nucleotides at 3'-OH DNA sites incorporated by the terminal deoxynucleotidyl transferase 

(TdT) enzyme. Samples were coverslipped using Aqua-Poly/Mount (Polysciences) mounting 

medium. Image acquisition was done using a brightfield microscope (Axio Observer Z1, 

Zeiss) and the Zen 2011 imaging software (Zeiss, Germany). 

 

4.2.6.6 Area quantification of DAB stainings 

Area quantification of GFAP- or Iba1-positive areas was achieved using a custom-

designed imageJ macro provided by Dr. Miso Mitkovski. The macro functions by converting 

the picture into a black and white image, representing DAB-positive areas as black followed 

by measuring of the percentage area covered by the DAB signal as compared to the total 

area of interest selected. The detailed script is given below: (Trapp et al., 1998). 
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run("Close All"); 

roiManager("reset") 

run("Clear Results"); 

open(""); 

run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel"); 

setTool("polygon"); 

beep();                                               

waitForUser("Hi there", "Select the region of interest and click OK"); 

run("Add to Manager"); 

//// 

// Color Thresholder 1.45k 

// Autogenerated macro, single images only! 

min=newArray(3); 

max=newArray(3); 

filter=newArray(3); 

a=getTitle(); 

run("HSB Stack"); 

run("Convert Stack to Images"); 

selectWindow("Hue"); 

rename("0"); 

selectWindow("Saturation"); 

rename("1"); 

selectWindow("Brightness"); 

rename("2"); 

min[0]=0; 

max[0]=50; 

filter[0]="pass"; 

min[1]=54; 

max[1]=255; 

filter[1]="pass"; 

min[2]=0; 

max[2]=163; 

filter[2]="pass"; 

for (i=0;i<3;i++){ 

  selectWindow(""+i); 

  setThreshold(min[i], max[i]); 

  run("Convert to Mask"); 
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  if (filter[i]=="stop")  run("Invert"); 

} 

imageCalculator("AND create", "0","1"); 

imageCalculator("AND create", "Result of 0","2"); 

for (i=0;i<3;i++){ 

  selectWindow(""+i); 

  close(); 

} 

selectWindow("Result of 0"); 

close(); 

selectWindow("Result of Result of 0"); 

rename(a); 

// Colour Thresholding------------- 

///// 

run("Set Measurements...", "area redirect=None decimal=3"); 

roiManager("Select", 0); 

roiManager("Measure"); 

run("32-bit"); 

setThreshold(200.0000, 255.0000); 

run("NaN Background"); 

roiManager("Select", 0); 

roiManager("Measure"); 

setMinAndMax(200, 255); 

 

Quantification and analysis was performed in a blinded manner using at least three 

P18 FBXO7+/+ and FBXO7-/- littermate pairs per staining of interest.  
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Appendix 1 

List of plasmid constructs used in this study along with respective identification 

numbers, if applicable: 

 

Table A: List of plasmids. 

Vector plasmid Constructed by Primer numbers 

pEGFP-C1-FBXO7 Madhuvanthi Kannan 15222, 15223 

pSUPER-shFBXO7 #1 Siv Vingill A 

pSUPER-shFBXO7 #4 Siv Vingill B 

pCMV-myc-FBXO7 WT Madhuvanthi Kannan 15222, 15223 

pCMV-myc-FBXO7 T22M Siv Vingill 23795, 23796 

pCMV-myc FBXO7 M115I Siv Vingill 23797, 23798 

pCMV-myc-FBXO7 R378G Siv Vingill 23799, 23800 

pCMV-myc-FBXO7 R498X Siv Vingill 23801, 23802 

pCMV-myc-FBXO7 NT Siv Vingill 15223, 28045 

pCMV-myc-FBXO7 Ubl Siv Vingill 29150-2, 25771 

pCMV-myc-FBXO7 FP Siv Vingill 28506, 28507 

pCMV-myc-FBXO7 CT Siv Vingill 15222, 25771 

pCMV-myc-FBXO7 Fbox Siv Vingill 28504, 28505 

pCMV-myc-FBXO7 PRR Siv Vingill 28044, 25771 

pEGFP-C1-PSMA2 David Brockelt 30490, 28647 

p3xFLAG-CMV-10-PSMA2 David Brockelt 29139, 28647 

pCMV10-3xFLAG-LC1 WT David Brockelt 28482, 28646 

pCMV10-3xFLAG-LC1 MTB David Brockelt 28482, 28927 

pCMV10-3xFLAG-LC1 AB David Brockelt 28928, 28646 
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pCMV10-3xFLAG-LC1 
MAGD 

David Brockelt 28482, 28930, 28929, 28646 

pCMV10-3xFLAG-LC2 David Brockelt 29441, 29442 

pCMV10-3xFLAG-MAP1S David Brockelt 29439, 29440 

pET-28a-UIM2
S5a

 David Brockelt 33589, 33590 

pGEX-Ubl
RAD23B

 David Brockelt 31340, 31341 

pGBT9-FBXO7 David Brockelt 25769, 25771 

pCMV-myc-FBXO31 
Dr. Raman Kumar, Prof. David 

Callen 
University of Adelaide, 

Australia 

pRK HA Ub WT Hiroshi Kawabe MPI-EM, Göttingen 

pRK HA Ub K63R Hiroshi Kawabe MPI-EM, Göttingen 

pRK HA Ub K48R Hiroshi Kawabe MPI-EM, Göttingen 

 

 



 

Appendix 2 

List of primer sequences used in this study along with respective identification 

numbers, if applicable: 

 

Table B: List of primers. 

Primer number Sequence 5' - 3' 

15222 ATATGAATTCATATGAGGCTGCGGGTG 

15223 ATATGGTACCTCACATGAATGACAGCCGG 

A GAAGAGACCTTGGCTTCATA 

B GAAACTACGCATCTTCCGAC 

23795 CCCGAGACGGAGCCGATGCTGGGGCATTTGCGC 

23796 GCGCAAATGCCCCAGCATCGGCTCCGTCTCGGG 

23797 TCCAATCAGACTAGCATCCAGGATGAACAACCA 

23798 TGGTTGTTCATCCTGGATGCTAGTCTGATTGGA 

23799 AGGTTTTTATATCTGGGTGATTTTCGAGACAAT 

23800 ATTGTCTCGAAAATCACCCAGATATAAAAACCT 

23801 CCCATCTTGCCAGGGTGAGGCGGCCCCAATGAC 

23802 GTCATTGGGGCCGCCTCACCCTGGCAAGATGGG 

28045 ATAGAATTCATGCCAGATGTATTTGGGTTGGTC 

28044 CTCGCGGCCGCTCAGTCTCGAAAATCACGCAGATA 

29150-2 ATAGAATTCATATGCCAGCGCCTAATATACCTTCATCC 

25769 ATAGAATTCATGAGGCTGCGGGTGCGG 

25771 CTCGTCGACTCACATGAATGACAGCCGGCCATC 

29139 TATAGCGGCCGCAATGGCGGAGCGCGGGTACA 

28647 CTCGGATCCTTATGCTATGGCAGCCAAGT 
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28482 ATAAAGCTTATGGACAAAACTGTCACGTACAAACACA 

28646 CTCGGATCCTTACAGTTCAATCTTGCATGCAG 

28927 CTCGGATCCTTAAGTTCCTGGTCCTGCAGTGGC 

28928 ATAAAGCTTATGACTGCAGGACCAGGAACTACC 

28930 AAAGCGTCCAGGACATTCCACATCAACATT 

28929 AATGTTGATGTGGAATGTCCTGGACGCTTT 

29441 ATAAAGCTTATGCCCCGCCCATCCCCTCCC 

29442 CTCGTCGACTCAGAACTCAATCTTGCAGGCAGGG 

29439 ATAAAGCTTATGGCGGCGGTGGCTGGATC 

29440 CTCGTCGACCTAGAACTCCACCTTGCAGGCC 

30490 ATAGAATTCGATGGCGGAGCGCGGGTACA 

31340 TATGAATTCATGCAGGTCACCCTGAAGACCCT 

31341 CTCGCGGCCGCTTATGGTGCTGGTGTGGACACTGC 

33589 ATAGAATTCATGACCATCAGCCAGCAA 

33590 CTCGCGGCCGCTCAGTCTGCTGATTCCGCCT 

1596 TCGATGATGAAGATACCCCACC 

1681 AGAAATTGAGATGGTGCACGAT 

28506 TTCCAATGGGAGGACGACCAACCCAAACGATTCACTACAGAGCATGGGTTCTGA 

28507 TCAGAACCCATGCTCTGTAGTGAATCGTTTGGGTTGGTCGTCCTCCCATTGGAA 

28504 GCTTTTACCCGACAAGCACTGAACCTACGAGACAATACTGTCAGAGTTCAAGAC 

28505 GTCTTGAACTCTGACAGTATTGTCTCGTAGGTTCAGTGCTTGTCGGGTAAAAGC 

LacZ fwd ATTCCAGCTGAGCGCCGGTCGC 

LacZ rev GCGAGCTCAGACCATAACTTCGTATA 

WT F7 

fwd 
GGGCTGTATGAAGGAAGTGCTATT 

WT F7 rev CCCTGAGAGTGAAGGGTGCTGTTC 
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°C 

 

 

Degrees Celsius 

AAA-ATPase ATPases Associated with diverse cellular Activities 

AD  Activator domain  

APP  

APS 

Amyloid precursor protein 

Ammonium persulfate 

ATP  Adenosine triphosphate 

ATP13A2 ATPase type 13A2 

ATPas Adenylpyrophosphatase 

β-Gal  β-Galactosidase 

bp Basepairs 

BME  Basal Medium Eagle  

BSA  Bovine serum albumin 

Cdk6  Cell division protein kinase 6 

cDNA complementary DNA 

cIAP1 Cellular inhibitor of apoptosis 1 

cm Centimeter 

CNS  Central nervous system 

Co-IP  Co-Immunoprecipitation 

CP  Core particle  

CT  C-terminus 

Cy Cyanine 

DAB  3-3’-diaminobenzidine  

DAPI  4’6-diamidino-2-phenylindole 

DIV  Days in vitro 

DMEM  Dulbecco’s modified Eagle’s medium  

DmPI31 Drosophila melanogaster proteasome inhibitor 31 

DNA Deoxyribonucleic acid 
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DNA-BD  DNA-binding domain 

dNTP Deoxyribonucleotide triphosphate 

DTT  Dithiothreitol 

e.g. exempli gratia 

E1 Ubiquitin-activating enzyme 

E2  Ubiquitin-conjugating enzyme  

E3  Ubiquitin ligase enzyme  

ECL  Enhanced chemiluminescence  

EDTA  

EGTA 

Ethylenediaminetetraacetic acid 

Ethylene glycol tetraacetic acid 

EIF4G1 Eukaryotic translation initiation factor 4 gamma, 1 

En2-SA Mouse engrailed 2 gene splice acceptor 

ES  Embryonic stem 

FBP F-box protein 

FBXL  F-box protein with leucine-rich repeats 

FBXO  F-box protein with other domain motifs 

FBXW  F-box protein with WD40 domains 

FCS Fetal calf serum 

FLP  

FP 

FRT 

G 

Flippase 

FBOX7-PI31 interaction domain 

FLP-recognition target 

Glycine 

g Gram 

Gal4 

Gal4-AD 

Gal4-BD 

GAPDH  

Galactose-responsive transcription factor 4 

Gal4 DNA-activation domain 

Gal4 DNA-binding domain 

Glyceraldehyde 3-phosphate dehydrogenase 

GFAP  Glial fibrillary acidic protein  

GFP  Green fluorescent protein 

GST Glutathione S-transferase 

HBSS  Hank’s Balanced Salt Soulution  

HECT  Homologous to E6-AP carboxy terminal  

HEK293T  Human Embryonic Kidney 293T cells 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
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HRP  Horseradish peroxidase 

HS  Horse serum 

HtrA2 HtrA serine peptidase 2 

HURP 

I 

IB  

Hepatoma up-regulated protein 

Isoleucine 

Immunoblot 

Iba1  Ionized calcium-binding adapter molecule 1 

ICC  Immunocytochemistry 

IgG Immunoglobulin G 

IHC  Immunohistochemistry 

IP  Immunoprecipitation 

IPTG Isopropyl β-D-1-thiohalactopyranoside 

IRES 

K 

Kan 

kb 

Internal ribosome entry site 

Lysine 

Kanamycin 

Kilobase 

kDa Kilodalton 

L 

LC1, 2 

Leu 

LRRK2 

LSAB2  

Liter 

Light chain 1, 2 

Leucine 

Leucine-rich repeat kinase 2 

Labelled Streptavidin-Biotin2 System 

M 

mA 

MAGD 

MAP1 

Methionine 

Milliampere 

Mitochondrial aggregation and genome destruction 

Microtubule-associated protein 1 

Mda 

mg 

Megadalton 

Milligram 

ml Milliliter 

mm2 Square millimeter 

mRNA Messenger RNA 

µg Microgram 

µl Microliter 

µM Micromolar 
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mM Milimolar 

mm 

MPTP 

milimeter 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

ms 

NEM  

millisecond 

N-ethylmaleimide 

ng Nanogram 

ns  non-significant 

NT N-terminus 

OD Optical density 

P(n) Postnatal Day (n) 

pA Polyadenylation 

PBS  Phosphate-buffered saline 

PBST  Phosphate-buffered saline with Triton-X 

PCR  Polymerase chain reaction 

PD 

PFA  

Parkinson's disease 

Paraformaldehyde 

PMSF  Phenylmethanesulfonylfluoride 

PPS  Parkinsonian-pyramidal syndrome 

PRR Proline-rich region 

PSG Penicillin/Streptomycin with L-Glutamine 

PI31  Proteasomal inhibitor 31 

PSMA2 

PSMB5 

PINK1 

PTEN 

R 

rb 

Rbx1  

Proteasomal subunit alpha 2 

Proteasomal subunit beta 5 

PTEN Induced Putative Kinase 1 

Phosphatase and tensin homolog 

Arginine 

Rabbit 

RING-box protein 1 

RING  

RIPA 

Really Interesting New Gene 

Radioimmunoprecipitation assay buffer 

RNA Ribonucleic acid 

RNAi  RNA interference 

rpm Revolutions per minute 



List of abbreviations 
 

xv 
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RT  Room temperature 

s.e.m. Standard error of the mean 

SCF  Skp, Cullin, F-box-containing complex 

SDS  Sodium dodecyl sulfate 

SDS-PAGE  SDS-Polyacrylamide gel electrophoresis 

shRNA  Short hairpin RNA 

SKP1  

SNCA 

S-phase kinase-associated protein 1 

Synuclein, alpha (non A4 component of amyloid      

precursor) 

SNP  Single nucleotide polymorphism 

SP1  Specificity protein 1 

T 

TAE  

Threonine 

Tris base, Acetic acid and EDTA 

TEMED  Tetramethylethylenediamine 

TNF 

TRAF2 

TUNEL  

Tumor necrosis factor 

TNF receptor-associated factor 2 

TdT-mediated dUTP Nick-End Labeling 

TdT  Terminal deoxynucleotidyl transferase 

Trp 

Ub 

Ubl 

UCH-L1 

UIM 

UPS  

UV 

Tryptophan 

Ubiquitin 

Ubiquitin-like 

Ubiquitin carboxyl-terminal esterase L1 

Ubiquitin-interacting motif 

Ubiquitin proteasome system 

Ultra violet 

V 

WB 

WT  
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Volts 

Western blot 

Wildtype 

Termination 
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