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Summary 

Neurotransmitter release sites at the presynaptic terminus membrane, known 

as the active zones (AZs), are surrounded by synaptic vesicle pools and a 

dense network of five cytomatrix of the active zone (CAZ) proteins. At CNS 

synapses, Munc13s, RIMs, CAST/ELKS, Bassoon, and Piccolo predominantly 

form the CAZ scaffold, and together have been shown to promote short- and 

long-term plasticity by binding to Ca2+ channels and enabling priming and 

docking of synaptic vesicles to the presynaptic membrane. Even though the 

components of the CAZ are known, how they are exactly assembled opposite 

postsynaptic specializations is not yet understood.  

It has been shown that AZ proteins (AZPs) are transported on 80nm dense-

core vesicles called Piccolo/Bassoon transport vesicles (PTVs), to synapses 

in aggregates together with synaptic vesicles. In addition, Golgi-derived AZ 

precursor vesicles that transport these proteins have been reported to take 

different paths out of the Golgi and carry only a small subset of AZPs, 

although how all AZPs reach and generate a complete and functional AZ at 

the presynaptic terminus is still under investigation. These observations 

suggest traffic of a range of different transport vesicles, carrying subsets of 

AZPs to synaptic sites, and indicates that the mechanisms influencing the 

final assembly of AZPs at the presynaptic terminus may be predetermined as 

early as their sorting and loading onto transport vesicles at the Golgi. 

To address this hypothesis, this study, examines the localization of 

endogenous AZPs, using super-resolution microscopy, for the first time at 

Golgi substructures, the soma, and in the developing axons of hippocampal 

neurons.  AZPs are specifically localized at and around their respective Golgi 

lamella, in a range of signal sizes that correspond to different loaded 

transport-carrier types, and present low co-localizations, with one another, in 

developing axons. This distribution signifies the importance of early sorting 

and loading of preassembled AZP subsets in the soma. In order to 

understand the underlying mechanisms that dictate the specific localization of 

CAZ proteins, a detailed study of the nanostructural orientation and 

organization of AZPs, at different cellular locations, is required, but hampered 

by the limitations imposed by the use of primary and secondary antibodies. To 

overcome this technical limitation, I introduce, characterize, and use new full-

length second-generation Bassoon constructs that are optimized, with respect 

to their targeting behavior in neuronal cells, and are endowed with tags that 

can be detected with very small camelid antibodies, so called nanobodies, for 

super-resolution imaging. 

Bassoon is one of the largest CAZ proteins and among the first AZPs to be 

incorporated at young synaptic sites. It is known to bind to other AZ proteins 



 

in the CAZ scaffold, and provides structural stability to the CAZ scaffold by 

downregulating local ubiquitination. This suggests a central role of Bassoon in 

CAZ scaffold generation. In addition, Bassoon is also the mammalian AZP 

with the largest cohort of mutant and full-length constructs available, making it 

an ideal candidate for this study.  

STED and FLIM imaging show that full-length Bassoon molecules possess an 

open and extended conformation at the TGN and are organized 6—20nm 

from the TGN with neighboring N-termini of molecules in close proximity to 

each other. Further, these studies show that the first 94 amino acids of 

Bassoon’s N-terminus, but not its myristoylation motif, determines its correct 

subcellular localization to the TGN, while Bassoon’s CC2 domain is sufficient 

for recruiting the protein to the Golgi. A novel conformation change is 

observed as the Bassoon molecule travels from the Golgi to synaptic sites, 

where the molecule appears to lose its extended conformation during 

trafficking on ChromograninA-positive PTVs, and returns to its extended 

orientation at synaptic sites.  Within these sites, in CAZ scaffold, Bassoon 

molecules have been previously shown to be oriented with their N-termini 

extending 80nm into the presynaptic bouton and their C-termini positioned 

around 50nm from the presynaptic plasma membrane. In this study I show 

that the N-termini of neighboring Bassoon molecules are organized in close 

proximities of ≥5nm from each other. This result suggests that the 

organization of Bassoon molecules within the CAZ scaffold closely resembles 

triangular dense projections regularly observed in EM images of CNS 

presynaptic sites. Therefore the orientation and the organization of Bassoon 

molecules promotes structural stability by inhibiting localized ubiquitination 

and forms the backbone that other AZPs bind to within the CAZ scaffold. 

In conclusion, the data reported here suggest that the orientation and 

organization of Bassoon molecules plays an important role in promoting local 

subcellular mechanisms from influencing its localization and sorting at the 

TGN to providing structural stability to the CAZ scaffold, while its change in 

conformation on its journey, to the CAZ, highlights the first step in 

understanding the sequence of mechanisms involved in mammalian AZ 

assembly and synapse maturation. 

Keywords: Bassoon; orientation; super-resolution imaging; AZ assembly; 

cytomatrix of the active zone; STED; FLIM
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Introduction 

Synapses are specialized sites of contact between two neurons, designed for 

rapid communication via the chemical release of neurotransmitters from the 

presynaptic neuronal partner to the postsynaptic neuron. The term synapse was 

first coined in 1897 by Sir Michael Foster and Sir Charles Scott Sherrington, and 

based in part on both popular and contradictory theories of nervous system 

organization1, of the time, i.e. the Reticular model (supported by Camillo Golgi’s 

work) and the Neuron Doctrine (based on Santiago Ramón y Cajal’s findings). 

Both forefathers of modern neuroscience performed histological studies of 

subsets of neurons and their observations were formulated into the two models2. 

The reticular model postulated by Joseph von Gerlach in 1872, describes the 

nervous system as a continuous syncytial reticulum consisting of nerve fibers, 

dendrites, and neurons, nourished through their cell somas, and directly 

connected to each other over cytoplasmic bridges3. While the Neuron Doctrine, 

formulated by Waldeyer-Hartz in 1891, states that the nervous system is not a 

continuous reticulum of tissue, but rather consists of separated discontinuous 

units or cells that became known as neurons. These cells were described as  

consisting of three main subcellular areas: the soma, fine tree-like processes 

known as dendrites, and a single long axon4. This model was further added to by 

the law of dynamic polarization, that states that neuronal signals only travel in 

one direction in neurons i.e., from dendrites, through cell bodies, down axons to 

the synapse5. 
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This was an exciting time in neuroscience history where based on purely 

structural histological data, the basic understanding of the nervous system was 

deciphered. The next decade saw a range of physiological and biochemical 

experiments that described the chemical nature of synaptic signal transmission, 

but it was not until after the development of the electron microscope (EM) in 

1933, that the fine structure of synaptic organization was revealed. The first EM 

images of the synapses were taken in 19536, followed very shortly thereafter by a 

range of EM studies showing electron-dense regions at the pre- and 

postsynapse, and a synaptic cleft separating these structures. This confirmed the 

Neuron Doctrine, and the presence of secretory vesicles, now known as synaptic 

vesicles (SVs), in the presynaptic terminus (Figures 1D and 2A). These vesicles 

were postulated to contain neurotransmitters and explained the previously 

described quantal release of neurotransmitters at the synapse observed by Sir 

Bernard Katz and colleagues at about the same time in the early 1950s7. 

Although the growing number of EM studies provided a wealth of new information 

about the ultrastructure of the synapse, these alone were unable to identify the 

molecular components and proteins that constituted the electron-dense regions 

on both sides of the synapse. 

The last 50 years have seen the application of genetic, biochemical, molecular 

biological and genomic methods to uncover a large number of proteins, in 

different model organisms, that constitute the composition of the synaptic 

apparatus. The synaptic proteins discovered included a range of secretory 

vesicles transporting synaptic vesicle proteins, peptides involved in vesicle 

docking and fusion, receptors of neurotransmitters, ion channels, enzymes that 

regulate processing, and of course the neurotransmitters themselves to the 

plasma membrane. In addition a range of extracellular matrix proteins, cellular 

signaling proteins, cell adhesion molecules that promote neuronal contacts, 

cytoskeletal proteins that form the backbone structure of synaptic apparatus and 

a number of scaffolding proteins that help mediate the structural organization of 

the different classes of proteins on both sides of the synapse were identified2. 

This combination of proteins equips the presynaptic terminal for regulated 

depolarization and calcium-dependent exocytosis of neurotransmitter from 

synaptic vesicles, and the postsynaptic terminus for neurotransmitter detection by 

clustering of neurotransmitter receptors. Synapses can be found along the axon 

of a neuron at presynaptic sites known as en passant boutons or at the axonal 

distal end known as boutons terminaux8. 
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These boutons contain resting and recycling pools of synaptic vesicles, as well as 

a network of cytoplasmic scaffolding proteins known as cytomatrix of the active 

zone (CAZ) that tether and organize proteins and vesicles required for 

neurotransmitter release, around roughly 500nm-long specialized regions on the 

plasma membrane known as the active zone (AZ).  The presynaptic membrane 

of AZs possesses synaptic vesicle sorting and fusion machinery proteins, and is 

the site of neurotransmitter release. 

1.1. The active zone (AZ) and its CAZ scaffold  

The CAZ scaffold of presynaptic proteins is observed as the electron-dense 

structures in EM images, and this structure is organized exactly opposite the 

postsynaptic scaffold. The most important function of the CAZ is to restrict 

neurotransmitter release to AZs and regulate its properties. The CAZ scaffold 

organizes and separates neighboring AZs and vesicle docking sites while 

providing a protein network for proteins lacking transmembrane regions, which 

cannot integrate into the presynaptic plasma membrane, to localize in close 

proximity to their binding partners and the plasma membrane9,10. The CAZ 

functions to support the structure and function of the AZ site by modulating 

synaptic vesicle pools by influencing their recruitment, priming, and docking11. In 

addition, its components have also been shown to regulate the organization of 

Ca2+-channels in the plasma membrane, which indirectly influences and connects 

the Ca2+ influx within the terminus and to the balance of exo- and endocytic 

events of the readily-releasable pool (RRP) of synaptic vesicles12.  

Different AZ sizes, organizations and CAZ protein compositions exist and have 

been studied in detail in invertebrate Caenorhabditis elegans (C. elegans), 

Drosphila melanogaster, and vertebrate mice and rat animal models. CAZ 

composition is species-specific, although AZ size and the CAZ organization in 

these AZ is influenced by the synapse size, its morphology and the propensity of 

its function. For example, neuromuscular junctions (NMJ) are large synapses that 

possess thousands of SVs at elaborately organized AZs and PSDs and are 

programmed to ensure precise and reliable signal inputs for muscle contractions 

to occur with high fidelity. On the other hand, central nervous system synapses, 

such as glutamatergic hippocampal neurons have smaller AZs and less robust 

neurotransmitter signaling, which allows these neurons to modulate their 

functional propensity and allows these neuronal networks to have synaptic 

plasticity10,13,14. 

The central synapses have simple AZ structures characterized by electron–dense 

projections (DPs) that define their CAZs, which connect docked SVs and the 

readily releasable pool (RRP) of SVs via fine filamentous projections and tether 

them close to release sites on the plasma membrane. Vertebrate NMJ AZs share 

are similar to drosophila NMJs and are large structures with a linear organization 

of SV layers that are orchestrated through different filamentous structures, which 
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tether the vesicles to the PM. Drosophila NMJ AZs are also called T-bars, 

describing the meshwork of filament tethers that stretch out to form a 

consolidated dense site on the plasma membrane into a horizontal platform that 

organizes the SV layers. C. elegans NMJ AZs although large in size have an AZ 

structure similar to classical vertebrate central synapses. The most complex 

vertebrate AZ structures are seen at photoreceptor cell ribbon synapses. These 

synapses have an elongated AZ structure at the PM, known as an “archiform 

density”, which is attached to a long horizontal filament known as the synaptic 

ribbon. The ribbon tethers SVs all around it and brings them in close vicinity to 

the AZ site13 (Figure 1). 

 

Figure 1: Active zone ultrastructures of vertebrate and invertebrate neurons. Taken from 
Ackermann et al, 2015 shows the different AZ structures of NMJ, photoreceptor, and central 
nervous system synapses of vertebrates and invertebrates. The AZ structures show the 
arrangement of dense-electron projections of the CAZ proteins and the SVs at presynaptic termini 
of these different synapses. 

Vertebrate AZs and invertebrate AZs have many features and variants of core 

CAZ components in common. Although a greater molecular diversity of 

vertebrate CAZ proteins, in the form of splice variants and gene duplications, is 

present to support the functional diversity of different types of AZs and the 

modulation of synaptic plasticity in a network of central nervous system (CNS) 

neurons. 

Five prominent core CAZ proteins have been identified in the vertebrate 

synapses namely Bassoon and Piccolo, Rab-interacting molecules (RIMs), Munc-

13s and ELKSs/CAST11. The invertebrate Drosophila genome has similar 

orthologs to vertebrate CAZ proteins. For instance drosophila CAZs have Fife (a 

Piccolo homolog), Bruchpilot (an ortholog of CAST), DUNC-13 (replaces Munc-

13), and DRIM (Drosophila RIM)15–18. A Bassoon homolog has not yet been 

identified in Drosophila.  Similarly the CAZ composition of C. elegans, comprises 

of SYD-2, Liprin-a, ELKS-1, UNC-10/RIM, and UNC-13 (Munc-13 variant)19–21.



Introduction                                            Role of CAZ scaffold protein Bassoon 

19 

1.1.1. Role of CAZ scaffold protein Bassoon 

Bassoon is the second largest CAZ protein, weighs ~420kDa and forms a, multi-

domain protein. It was first identified in a rat cDNA screen of synaptic junctions 

and found to localize in the synaptosomal and synaptic junctional fractions but 

not in the soluble and myelin-sheath protein fractions. The Bassoon gene is 

localized on chromosome 9F, possess a 13kb coding sequencing which consists 

of 10 exons, with more than half of it sequence encoded from exon5 22. Bassoon 

is one of three vertebrate specific presynaptic proteins, and coincidently shares a 

large amount of homology, in the form of homology domains, with one of the 

other two remaining vertebrate specific AZ proteins (AZPs), that is also a key 

CAZ protein; Piccolo22,23. In silico predictions have estimated Bassoon and 

Piccolo possess an 80nm stretched-open, filamentous structure that is rich in 

prolines and glycines, which promotes their structure, although both proteins 

have several highly compact regions in their structure24. These compact regions 

form the two N-terminal zinc-finger domains, three coil-coil domains that Bassoon 

and Piccolo share in homology but use to interact with various secretory, 

transport, and synaptic proteins. In general, the N-terminus of Bassoon contains 

the zinc fingers that inhibit the local ubiquitination activity of seven in absentia 

homolog 1 (Siah1) and promotes synaptic stability25. The central CC2 domain 

region promotes sorting and transport regulatory mechanism as it is flanked by a 

CTBP binding site (may be involved in Bassoon sorting at the TGN and balancing 

its expression)26–28, and a dyein-light chain binding site (mediates retrograde 

transport of Bassoon and Piccolo vesicles)29, while the CC2 domain itself is the 

oligomerization site of Bassoon and Piccolo molecules and might promote 

assembly of AZPs at either the Golgi or at the AZ30–32. On the other hand, the C-

terminal region of Bassoon possess binding sites for a large range of synaptic 

AZPs such as CAST26,31,33, Munc-1331, RIMs34, RIM-binding proteins34, voltage 

gated calcium channels (VGCCs)35, enzymatic activity regulator D-amino acid 

oxidase36, and SV protein Mover37–39. The interaction partners of Bassoon are in 

more detail described in Table 1. 

Through these multi-domain binding sites and its extended structure Bassoon 

integrates into various mechanisms at play in the presynaptic terminus. These 

mechanisms include, organization of neurotransmitter release sites by influencing 

calcium channel localizations, bringing CAZ scaffold proteins and SV pools in 

close proximity to these sites, maintaining the structural stability, and synaptic 

integrity, while modulation the local synaptic and synapto-nuclear signaling 

pathways at play around the AZ40. 

To understand the exact cellular mechanisms that Bassoon is involved in that 

regulate presynaptic transmission, a range of studies have been performed using 

deletion mutants of Bassoon. A partial deletion mutant Bsn
ΔEx4/5 generated by 

deleting most of exons four and five of Bassoon, did not influence synaptic 
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transmission of intact cultured hippocampal neurons, although a larger number of 

silent synapses were generated in Bsn
ΔEx4/5 mice22. Similar results were 

observed in another study that performed a shRNA-mediated knockdown of 

Bassoon in autaptic hippocampal cultures23,41. Studies of the Bsn
ΔEx4/5 mutant in 

the high throughput synapses of cerebellar mossy fibers showed that Bassoon is 

involved in synaptic vesicle replenishment. This mutant and a full knockout of 

Bassoon showed that the loss of Bassoon caused slowed vesicle recycling and 

produced a stronger depression in during high-frequency signal transmission42. In 

addition, Bassoon deficient photoreceptor and inner hair cells neurons present a 

dramatic loss of ribbon synapses and their associated proteins, similar to the loss 

of SV around T-bars of Bruchpilot deficient drosophila NMJ43,44. In inner hair cells, 

the loss of ribbon synapses, that float into the cytosol, of Bassoon deficient mice 

severely affect the synchronous compound activity of the auditory nerve; 

therefore Bassoon is essential for normal hearing in these mice44. These results 

show that Bassoon molecules may behave as tethers for SVs in different AZs 

and/or that they emphasize the role of vesicle tethers in regulating vesicle 

replenishment45. 

Since its discovery in 1998, the extensive number of Bassoon studies show that 

there is no clear unifying role of Bassoon in vertebrate central, NMJ and sensory 

ribbon synapses, as Bassoon seems to have different roles in these synapses, 

although it is clear that irrespective of its exact role in the different AZs it 

promotes the presynaptic activity at specialized AZ sites46. 
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Table 1: Interaction partners of Bassoon. Modified from Gundelfinger, 2016. Abbreviations: Bsn, 
Bassoon; Pclo, Piccolo; CC1–3, coiled-coil regions; mouse: (ms) Znf: Zinc-finger domain 

 Bassoon 

binding site  

Interaction 

partner 

Description/ 

Potential function 

 

Reference 

Cellular 

process 

Pclo, Znf1 
521–582 

Pclo, Znf2 
1010–1071 
Bsn, Znf1 
162–225 
Bsn, Znf2 

459–523 (rat) 

 
 

Siah1, seven in 
absentia homolog 1 

 
E3 ubiquitin ligase, 
ubiquitinates SV 
proteins, component 
of the ubiquitin-
proteasome system. 
 

 
Waites et al. 
(2013) 
25 

 
Protein  
turnover/ 
degradation 

Bsn aa 
1360–1692 

(rat) 
, not present 

in Pclo 

Dynein light chains 
Dlc-1, Dlc-2 

 

Link to dynein 
motors, (retrograde) 
transport of Piccolo-
Bassoon transport 
vesicles 

Fejtova et 
al. (2009) 
29 

Membrane 
trafficking 

 
Bsn 

CC2 domain 
2088–2563 

(rat) 

 
Bsn CC2 

 
Pclo CC2 

(aa 3094–3218 
mouse) 

Homo-/hetero- 
dimerization region,  
presumably scaffold 
formation, 
Golgi-binding domain 
of Bassoon 

Dresbach et 
al. (2006)  
Wang et al. 
(2009) 
Maas et al. 
(2012) 30–32 

 
Scaffolding and 
Assembly of 
CAZ core 
complex 

Bsn, CC3(rat)  
2933–2995  
Bsn, CC3(ms) 
2873–3077  
Pclo, CC3 (rat) 
3601–3960  
Pclo, CC3(ms)) 
3657–3715  

 

 
 

ERC2/ 
ELKS2/ 
CAST 

Interaction with CAZ 
scaffolding proteins.  
Potentially involved 
in anchoring synaptic 
ribbons to the active 
zone 

Takao-Rikit-
su et al. 

(2004), tom 
Dieck et al. 

(2005), 
Wang et al. 

(2009)26,31,33 

Scaffolding and 
Assembly of 
CAZ core 
complex 

       Bsn, 
Ser2845 

(rat) 

14–3–3𝜂 
(and other 
isoforms) 

 Phospho-dependent regulation of anchoring of 
bassoon to CAZ Phosphorylation depends on 

RSK family 

Schröder et al. (2013) Cellular signaling, Scaffolding 
and Assembly of CAZ core 

complex? 
 

Phospho-dependent 
regulation of anchor-
ing of Bassoon to 
CAZ,Phosphorylation 
depends on RSK 
family 

Schröder et 
al. (2013) 
47 

Cellular signal-
ing, scaffolding 
and potentially 
assembly of 
CAZ core 
complex 

Bsn, aa 
2715–3263 

(rat) 
Not tested 
for direct 

interaction 
with Pclo 

 
D-Amino Acid 

Oxidase, 

Enzyme metabolizes 
the NMDA receptor 
co-agonist D-serine. 
DAO activity 
significantly inhibited 
by interaction with 
Bsn 

Popiolek et 
al. (2011) 
36 

Cellular 
signaling, 
Regulation of 
enzymatic 
activity 

Bsn, aa 3601–
3820 (C-term) 
(mouse) 

 

   Munc13 (N-term) 
and RIM 

Interaction with 
presynaptic 
scaffolding 

Wang et al. 
(2009) 
31 

Scaffolding and 
Assembly of 
CAZ core 
complex, SV 
priming 

 
Bsn aa 3263–
3938 (rat) 
Absent in Pclo 

 
Mover/TPRGL 

 
SV protein, negative 
regulator of synaptic 
release probability 

Kremer et 

al.(2007), 
Ahmed et 

al.(2013), 
Korber et al. 

(2015)37–39 

Potential role in 
membrane  
trafficking 
 
Regulation of 
exocytosis 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B122
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B76
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B108
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B110
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B122
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B99
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B99
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B89
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B122
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B68
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709825/#B65
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1.2. Members of the CAZ scaffold in central synapses 

1.2.1. CAZ scaffold protein Piccolo 

Piccolo (also known as Aczonin) is the largest CAZ protein in the scaffold, with a 

molecular weight of ~550 kDa, and it shares with Bassoon a high degree of 

sequence homology (50 – 80 % common sequence identity), at two N-terminal 

zinc-fingers and three coil-coil domains together known as the Piccolo-Bassoon 

homology domains. These domains enable Bassoon-Piccolo interactions at the 

central CC2 and allow Bassoon and Piccolo complexes to compete for binding 

with other synaptic and scaffold proteins26. For example the N-terminal zinc finger 

domains of Piccolo and Bassoon bind to Siah125, though it is not yet understood 

whether the proteins collaborate or compete to inhibit Siah1 activity, while the      

C-terminal CC3 domain of Bassoon and Piccolo have been shown to 

competitively interact with the CC2 domain of CAST48.

Piccolo in addition has some unique interaction domains that separates its 

function from Bassoon’s function and contributes to roles that CAZ scaffold 

provide towards enabling presynaptic transmission. 

The N-terminal zinc-finger domains of Piccolo additionally have 40 % and 39 % 

homology to the zinc- finger domains of rabphilin-3A and RIM respectively, and 

contain a PRA1 binding site that has been shown to mediate Piccolo interactions 

with rab3A and VAMP2 receptors, thus linking Piccolo and synaptic vesicles 

pools at the AZ49. Piccolo possesses a few proline-rich sequences over its 

structure. A proline patch in the N-terminus of piccolo interacts with actin binding 

protein 1(Abp1), which links Piccolo by interacting with actin, dynamin50, and a 

GTPase that mediates the fission of SV vesicles51.   

The central region of Piccolo also possess another proline patch that interacts 

with profilin, an actin-binding protein, that influences the actin-dynamics within 

presynaptic terminal52. This enables Piccolo to link the CAZ scaffold of proteins to 

cytoskeleton of the presynaptic terminus as well as incorporate itself into the 

process of endocytic fission at the AZ site.  

Piccolo possesses two C2 domains, namely C2A and C2B domains, within its C-

terminus that are not present in Bassoon. The C2A domain has been shown to 

undergo a conformation switch, upon binding Ca2+, that promotes dimerization 

and Ca2+-dependent phospholipid binding implicating a role for Piccolo in short-

term plasticity53. Overall, by virtue of its large size and its CAZ interaction 

partners, Piccolo incorporates itself into the CAZ scaffold and links the CAZ 

scaffold the action cytoskeleton and SV recycling events at the presynaptic 

terminus. 
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1.2.2. Munc-13s, RIMs and CAST/ELKs 

Munc13, the vertebrate specific isoform of unc-13 found in C. elegans, is a small 

yet integral CAZ protein that interacts and neuronal Rab3 isoforms (RIMs) to 

regulate presynaptic neurotransmitter transmission54,55,56. CAST/ELKs are 

quintessential CAZ as a scaffold proteins that despite having different roles in 

different synapses are always involved in organizing the CAZ structure18. All three 

proteins bind to specific C-terminal subdomains of Bassoon and Piccolo and are 

therefore integral members of the CAZ scaffold31,34,26,31,48,57. A schematic depiction 

of these interactions can be referred to in Figure 2. 

Three Munc13 genes exist in the brain Munc13-1, Munc13-2, and Munc13-3, are 

roughly ~222 kDa in weight and all three isoforms share three evolutionary 

conserved C2 domains present in the N- terminal, central, and C-terminal regions 

of the protein56,58.  

The C2 domains of Munc13-1, i.e. C2B and C2C, known as the MUN domain 

(spans from aa 859-1531), binds to the N-terminus of syntaxin and thereby 

integrates itself, while linking the CAZ scaffold, to the core of SNARE complex 

that forms presynaptic membrane machinery at AZ sites55. This interaction 

suggests that Munc13-1 may mediate synaptic vesicles docking at AZs. 

Additionally, the MUN domain, when expressed in hippocampal neurons lacking 

Munc13s, rescues the SV priming deficits59. SV priming is a maturation step that 

occurs between the vesicle docking and SNARE-mediated SV fusion steps. 

The presence of SV priming is attributed to the combination of opposing 

electrophysiological and ultrastructural observations noted in Munc13-1 knockout 

and Munc13-1 and Munc13-2 double knockout mice cultures. Glutamatergic 

hippocampal neurons of Munc13s, upon inspection for ultrastructural deficits, 

showed that docked SV vesicles numbers remained unchanged, despite the 

complete loss of evoked EPSCs in synapses deficient for Munc13s60,61. These 

results suggest Munc13s use their conserved MUN domain to play a crucial role 

for synaptic vesicle maturation. 

The role of Munc13s in SV priming is compounded by the interaction of Munc13-

1’s C2A domain with N-terminal zinc-finger domain of RIM. Disruption of this 

interaction in RIM deficient synapses prevents synaptic vesicles from reaching 

and fusing with the presynaptic membrane, as the lack of RIM forces Munc13-1 

C2A domains to homo-dimerize thereby inhibiting Munc13’s SV priming and 

fusion competence55,62. This observation suggests that the N-terminus of RIM is 

essential for activating Munc13-1 molecules to mediate SV priming. 

The RIM protein family consists of neuronal Rab3 isoforms that regulate 

neurotransmitter release at the presynaptic terminus. RIMs were first isolated and 

identified in a yeast two-hybrid screen of Rab3C against a rat brain cDNA library, 
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and found isolated on the synaptic vesicle fraction. The protein is 1554 amino 

acids long and consists of an N-terminal zinc finger domain comprised of alpha 

helices, alanine and proline-rich patches, a postsynaptic density domain, and C-

terminal C2A and C2B domains. The RIM protein sequence is well conserved in 

invertebrates, but in vertebrates at least four RIM genes exist, RIM1—RIM4, with 

two isoforms each for RIM1 and RIM254.  

The N terminal alpha helical domain of RIM binds to synaptic vesicle component 

rab3, forming a tight link between RIMs and SVs55. In addition the central PDZ 

domain of RIM proteins binds to N- and P-/Q-type Ca2+ channels. The interaction 

RIMs and Ca2+ channels is necessary for recruiting and organizing Ca2+ channels 

at the AZ. Deletion of the PDZ domain of RIMs not only affects the clustering of 

Ca2+ channel at the presynaptic membrane, but causes a decrease in Ca2+ influx, 

which in turn reduces the priming of SVs and thereby fails to interact Ca2+ 

channels to synaptic vesicles63. 

CAST or CAZ-associated structural protein, and ELKS (named after its highest 

a.a. content glutamate (E), leucine (L), lysine (K), and serine (S)) are CAZ 

proteins that are 957 a.a. and 948 a.a.-long, respectively, and share a 71 % a.a. 

identity64. Two isoforms for ELKS:  ELKS𝜀 and ELKS𝛼 exist. ELKS𝛼 is the neuron 

specific isoform that is involved in CAZ organization, while ELKS𝜀 are 

ubiquitously expressed, do not localize to the CAZ, and have been implicated in 

GTP-dependent Rab6 interaction that mediates its secretory traffic to 

membranes64,65.  

CAST and ELKS𝛼 colocalizes with Bassoon in neuronal cultures and possess 

four coil-coil domains and a C-terminal IWA conserved domains33,64.The first two 

coil-coil domains (spanning 680 a.a. of their N-terminus), are essential for CAST 

and ELKS𝛼 targeting to the CAZ, while the CC2 domain of CAST competitively 

binds to the CC3 domains of CAZ scaffold proteins; Bassoon and Piccolo48. 

Although knocking out CAST does not yield an effect on synaptic transmission in 

their central excitatory synapses, it however crucially impairs retinal ribbon 

synapse transmission. Knockout of the CAST protein produces smaller AZs and 

diminished transmission in excitatory neurons66, and enlarged resting SV pools in 

inhibitory neuronal terminals, suggesting that CAST influences SV priming67. 

Together these five AZPs build a network of proteins localized in close proximity 

to the AZ site, link the site to SVs and prime them, arrange Ca2+ channel to the 

AZ site, promote the structural stability of scaffold by inhibiting local degradation 

mechanisms and link the scaffold to the dynamically changing actin cytoskeleton 

in the presynaptic terminus (Figure 2). 
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Figure 2: Ultrastructural and schematic organization of AZPs and SV pools of central synapses. 

Modified from Gundlefinger et al, 2016. (A) Cryo-electron micrograph rat central excitatory 

synapse (originally published in Rostaing et al., 2006). (B) Schematic organization of SVs pools 
within presynaptic boutons, the reserve SV pool tethered via synapsin and the docked SV pool 

are implanted in the CAZ (red tethers). (C) Schematic of CAZ proteins, interaction partners 
guiding the SV clustering, translocation, docking, priming and fusion at the presynaptic terminus. 

Scale bar A, 200nm. 
 

1.3. CAZ Assembly 

Studies following the discovery of AZPs of CNS synapses initially proposed that a 

complete complement of AZPs present on a single, 80nm in diameter, dense-

core vesicle (DCV), defined at the Piccolo-Bassoon transport vesicle (PTV), 

delivers the entire CAZ scaffold to the presynaptic terminus possibly by fusing 

with the plasma membrane. And evidently so, as an exhaustive set of synaptic 

proteins (such as VGCCs, SNAREs: syntaxin-1 and SNAP-25, and N-cadherin) 

and active zone core components Bassoon, Piccolo, RIM1, Munc13, CAST1, and 

CAZ-associated protein Munc18-1 were isolated in the same insoluble 

synaptosomal fraction of rat light-brain fractions68,69.  

Today this view of the PTV model is considered an oversimplification, as recent 

studies illustrate that the model is a lot more complicated. The most recent study 

addressing this topic shows that, in fact, the assembly of AZPs may already 

begin at the trans-Golgi Network (TGN) sorting compartment of the Golgi. This 

study also highlighted differential sorting of AZPs, as early as their localization to 

the Golgi, and shows that a subset of Bassoon, Piccolo, and ELKs leave the 

Golgi on precursors generated at the TGN, while Munc13 is localized to cis-Golgi, 

and RIM1 is diffused in the cytosol, only to be recruited later during a post-Golgi 

step32. This suggests that preassembly of AZPs occurs in a multistep process, 

the order of which is as yet unclear, although it may involve a maturation step in 
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which PTVs recruit other AZPs on their way to the AZ. The preassembly of AZP 

subsets, for example for Piccolo-Bassoon-ELK precursors, have been suggested 

to first assemble at the TGN, and require not only localization and binding to 

specific Golgi substructures, but an association to each other, and membrane 

fission and translocation regulators such as CtBP1/BARS30,32,69,70 

In addition, ultrastructural studies of young hippocampal axons have revealed 

Bassoon and Piccolo in transit on ~220nm x 130nm transport aggregates, 

consisting of 1—2 PTVs and 5—6 SVs that co-traffic PTV proteins and SV 

proteins (such as VAMP2, synaptotagmin, synapsin-1, and SV2), together as a 

preassembled complex71. This clarifies the presence of synaptic proteins on 

synaptic vesicles and AZPs like Bassoon and Piccolo on PTVs that get isolated in 

the same biochemical brain fraction, whilst being loaded on different carriers. It 

also suggests that a certain degree of preassembly may be promoted during 

transport on such transport aggregates, and that the delivery of such an 

aggregate may suffice generation of a functional AZ site.  

The transport of AZPs has been shown to require microtubule-based transport 

involving specific retrograde and anterograde transport motors. So far three AZP-

transport complexes have been identified, namely Piccolo-Bassoon-ELKs on 

TGN precursors, Munc13 on cis-Golgi precursors, and RIM-Neurexin-CASK-

VGCCs on unclassified precursors, that gets associated in a post-Golgi step3,32,71. 

In combination with their distinct transport subgroups, AZPs may also be 

differentially trafficked based on the motor proteins and adaptor binding sites they 

possess. For example, Bassoon has been shown to directly interact with dynein-

light chain (Dlc1/2) that mediates its retrograde transport, while PTVs have also 

been reported trafficking in an anterograde fashion. Anterograde transport of 

PTVs is mediated via the direct interaction of the PTVs to syntabulin, a kinesin 

adaptor protein29,72. Munc13 and RIM invertebrate-specific isoforms on the other 

hand have been implicated in an unidirectional kinesin mediated transport21. Such 

variability in transport could be used by the neuron to implement a temporal and 

sequential traffic of all AZPs to the AZ. Additionally, the incorporation of two to 

three PTVs, each carrying a unitary load of AZP, has been shown to suffice the 

generation of a new AZ, which might also promote sequential acquisition of the 

different AZPs into the CAZ scaffold69. 

How mammalian AZs are assembled is as yet unclear, although the classical 

PTV model hypothesizes delivery of a complete CAZ scaffold on top of a PTV 

that fuses with the plasma membrane, and leaves the CAZ proteins behind, at a  

defined AZ site, to form a quick CAZ scaffold. 
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This notion is supported by the presence of visible SV recycling events at the 

new AZ sites, within a matter of 30 minutes from AZ formation, suggesting that 

such a quick assembly of AZ sites is fashioned from the delivery of preassembled 

AZP sets73. In addition, it might be possible that a large and single step delivery 

of preassembled PTV and SV proteins might initiate the formation of a functional 

mammalian AZ, which is unique to only vertebrate synapses, as it involves the 

delivery of two of the three vertebrate-specific AZ proteins, Bassoon and 

Piccolo74. 

Upon delivery to nascent synapses, transsynaptic adhesion molecules Neurexins 

and Neuroligins signal the site of AZ on the plasma membrane, according to 

which the CAZ complex builds up exactly opposite the post synaptic scaffold. The 

mechanisms orchestrating this exact spatial organization of the CAZ scaffold are 

also not understood75. Once at its correct localization in the presynaptic terminus 

CAZ scaffold proteins interact with each other and the actin cytosketon of the 

presynaptic bouton to form a dense, insoluble network, from which, an AZP once 

incorporated cannot be washed out, even with a Triton extraction (Table 1& ref 70).

1.4. High-resolution imaging of CAZ proteins 

Ultrastructural studies of CAZ proteins of central synapses 

Since their discovery roughly two decades ago, CAZ proteins of central nervous 

system synapses have been extensively investigated for their function. A range of 

ultrastructural studies of single CAZ protein deficient synapses have reported no 

change in CAZ scaffold structure of central synapses41,42,60,61,63,66. Although 

reduction in populations of clustered SV pools around the CAZ was observed in 

double knockouts of Bassoon and Piccolo, RIM, and CAST deficient 

neurons41,42,63,66. This suggests that a single mammalian CAZ protein cannot 

alone cause a loss or change in CAZ scaffold structure. It is therefore essential to 

study the ultrastructure of all five AZPs in relation to each other, to begin 

understanding the mechanisms that influence assembly of the CAZ scaffold. With 

recent advances in new super resolution techniques, it has become easier to 

study the precise localization of tagged and endogenous AZPs. Two recent 

studies, using two different super resolution techniques, STORM and EM, have 

illustrated the specific localizations of N- and C-termini of Bassoon and Piccolo 

molecules to RIM, Munc13, and calcium channel localization in the presynaptic 

terminus of mature synapses. The N-termini of Piccolo and Bassoon extend 

roughly 80nm into the presynaptic bouton, while their C-termini, the central 

regions of Munc-13-1 and RIM1α, and the cytoplasmic loop of the P/Q type Ca2+ 

channels localize 20—30nm from the presynaptic plasmamembrane76,77.   
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With the ultrastructural ground work of matured mammalian CAZ structure 

available, the next questions to address are: 1) how does CAZ assembly occur, 

and 2) what sort of maturation events do AZPs undergo to attain their final 

ultrastructural localization in adult neuron. I will therefore, in this study, use STED 

microscopy and FLIM, and a range of full-length and mutant Bassoon constructs 

to understand the detailed localization, orientation, and organization of AZPs at 

different subcellular locations in developing neurons. 

1.4.1. STED imaging 

Imaging subcellular structures below the diffraction-limit of light has become a 

widespread technique. Super resolution microscopy using stimulated emission 

depletion (STED) is one such technique that alters the point spread function of 

traditional excitation laser beam by overlaying a second, doughnut-shaped, red-

shifted laser beam (the STED beam), which suppresses fluorescence emission of 

fluorophores located underneath the donut, leaving only the center of the 

excitation lazer free. The fluorophore suppression is executed through the 

fundamental properties of stimulated emission, wherein a fluorophore in its 

excited-state interacts with a photon that possesses the energy difference 

between the ground and excited state of the fluorophore, through this interaction 

the excited fluorophore is forced to return to its ground state, before any 

spontaneous fluorescence emission can occur. The fluorescence of the 

molecules that fall in the overlap regions of the STED beam and excitation beam 

are switched off, leaving roughly a 20—50nm in diameter point spread function of 

the center of the excitation beam free to image fluorescence and provide super 

resolution78.  

STED microscopy applies the use of further red-shifted wavelengths, with respect 

to the absorption spectrum of the fluorophores imaged, during stimulated 

emission to avoid undesired excitation. Similarly, the two-color STED microscopy 

setups, used in this study, employ a single 775nm STED pulsed laser beam, on 

spectrally distinct red and far-red dyes that are excited and detected in an 

interleaved fashion to diminish their spectral crosstalk79.  

STED microscopes have been used to visualize fluorescence-labeled sub-cellular 

structures in unprecedented detail while permitting the use of simple sample 

preparation and labeling techniques that employ fluorescent tags and antibodies 

to visualize locations of biomolecules. These microscopes can resolve single 

fluorescent molecules at a 20—50nm resolution range compared to the 200nm 

resolution of confocal microscopes, although the use of traditional mono- and 

polyclonal antibodies for STED imaging have been shown to inhibit the complete 

labeling of molecular epitopes of a protein of interest and limit the resolution 

obtained from the STED microscopes, due to the large sizes of primary and 

secondary antibodies complexes generated80. Alternatively the use of small, 

camelid antibodies, comprising of only one heavy chain, known as nanobodies
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have become popular to overcome the problems encountered with application of 

antibodies81. However the generation of nanobodies specific for a new protein of 

interest is expensive and time-consuming process. The recent success of RFP 

and GFP specific nanobodies have reduced costs and increased the possibility of 

super resolution imaging of a large cohort of fluorescent tagged proteins, 

traditionally used for biochemical assays and live imaging82–84. 

GFP and RFP nanobodies are small, high-affinity, antibody-fragments generated 

from a single amino acid chain, off one of the two heavy chains, of the camelid 

IgG antibody molecule. These antibody fragments are folded into a ~10–15kDa 

epitope-binding hypervariable domain of dimensions: 1.5nm in diameter and 

2.5nm in height81 and are generated to identify only one specific, three-

dimensional epitope on top of a RFP or GFP molecule. These nanobodies can be 

bought pre-coupled to two molecules of secondary ATTO-TEC dyes each with a 

size of 2.5nm making the entire antibody complex roughly 5nm and allowing 

super resolution imaging, at 20nm resolution limit, to be accurate and uninhibited. 

These nanobodies are routinely used to for tagged proteins pulldown assays84 

and single-molecule localization microscopy techniques82,83,85. 

In this study I will use full-length and mutant Bassoon constructs tagged with RFP 

and/or GFP to understand the detailed localization and orientation of the protein 

in developing neurons. 

 1.4.2. FRET-FLIM imaging 

Förster resonance energy transfer (FRET) is a dipole-dipole interaction between 

a pair of fluorophores that are closely positioned within 5m of each other and 

possess a large spectral overlap between the emission of a donor fluorophore 

and the absorbance spectrum of an acceptor fluorophore. FRET between donor 

and acceptor fluorophores quench the fluorescence of the donor, which is 

proportional to the efficiency of FRET recorded. FRET imaging has been 

extensively used to study interactions of couplets of proteins of interest in living 

cells and generate molecular tools in the form of FRET sensors to record various 

protein activities86. 

Fluorescence lifetime imaging (FLIM) is a powerful quantitative FRET approach 

that measures the changes in fluorescence lifetime of the excited state lifetime of 

the donor fluorophore in the presence of acceptor. The average lifetime of the 

donor is reduced when the acceptor is in a close enough proximity that permits 

quenching of the donor and is therefore a direct indicative of FRET87. 

This method is built around the intrinsic property of the fluorescence lifetime of 

fluorophores and is therefore independent of fluorophore concentration effects, 

microscope optical path, and moderate levels of photobleaching, which makes 
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the recorded reduction of the donor lifetime an extremely robust and quantitative 

estimate of the FRET efficiency87.  

These advantages also promote the use of tagged proteins, that are not 

necessarily generated as genetically encoded FRET sensors, and are ideal for 

the study of the same AZP constructs that are also used for STED microscopy. In 

addition, recent studies show that TagGFP—TagRFP pairs are superior to 

classical CFP/YFP FRET indicators, which have a lower spectral overlap and 

require narrow band-pass filters that cause a dramatic loss of emission. The 

TagGFP—TagRFP pair also have a 1.5-fold higher spectral overlap, compared to 

similarly separated band-pass filters pair of TagGFP-mCherry87. This makes FLIM 

imaging of readily available GFP- and RFP- tagged AZPs, an ideal choice to 

studying the orientation and organization of AZPs. 

1.5. Aims of this study 

Little is known about the mechanisms that regulate CAZ assembly and AZ 

maturation of mammalian synapses. With new advances in super-resolution 

microscopy techniques allowing more synaptic proteins to be visualized with 

greater detail, and compared to classical ultrastructural studies, the information 

describing the detailed localizations of AZPs is slowly being stitched together. 

However, a comprehensive overview of how the presynaptic scaffold is initiated, 

assembled, and matured at AZ sites is yet to be provided. There is recent 

evidence that suggests the delivery of AZPs, on PTVs to the presynaptic scaffold, 

is through an unclear multistep process32. It is therefore possible that assembly 

and organization of CAZ components may already be pre-programmed and 

influenced by cellular process, prior to the formation of a matured AZ site and 

may shape the final organization of AZPs within the CAZ scaffold. To realize this 

information, a detailed step-by-step localization of AZPs from their first station in 

the neuronal soma to nascent synaptic sites is required. 

In this study, I aim to dissect the detailed localization of AZPs at different 

subcellular locations in developing neurons. This line of investigation should help 

reveal molecular mechanisms that dictate the specific localization of CAZ 

proteins, and improve our understanding of basic cellular process that regulate 

sorting, trafficking and delivery of synaptic proteins to AZs. To perform these 

studies, I aim to characterize new full-length Bassoon constructs, optimize them 

for visualization by super-resolution microscopy techniques, and evaluate them in 

context of known ultrastructural studies. The application of these constructs 

provide a timely opportunity to resolve the orientation and organization of 

Bassoon molecules, and highlight changes in conformation that might link CAZ 

structure to the underlying mechanisms of CAZ assembly.
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Chapter 2 

Materials and Methods 
 

 

 

 

 

 

 

 

2.1. Materials  

2.1.1. Antibodies 

Primary antibodies 

Table 2: A selection of primary antibodies used in this study. 

 

Primary 

antibody 

Species 

reactivity 

Dilution 

factor 

 

Company 

 

Catalog number 

     

Bassoon  guinea pig 1 to 300 Synaptic 
systems 

141 004 

Bassoon  mouse 1 to 500 ENZO 
lifesystems 

040 111 20 

Bassoon  rabbit 1 to 500 Synaptic 
systems 

141 003 

     

Munc13 rabbit 1 to 300 Synaptic 
systems 

126 103 

Piccolo rabbit 1 to 200 Synaptic 
systems 

142 003 

Mover  rabbit 1 to 500  Synaptic 
systems 

248 003 
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TGN38 mouse 1 to 500 BD-
Transduction 
Laboratories 

610899 

TGN38 rabbit 1 to 500 BD-
Transduction 
Laboratories 

610898 

GM130 mouse 1 to 500 Gift from Dr. 
C. Dean  

 

Syntaxin 6  mouse 1 to 300 Abcam 12370 

Giantin  mouse 1 to 1000 Abcam 3726 

Giantin  rabbit 1 to 1000 Abcam  24586 

Vamp4 rabbit 1 to 1000 Synaptic 
systems 

136 002 

      

 

GFAP  

 
mouse 

 
1 to 1000 

 
Synaptic 
systems 

 
173 011 

Map2 chicken 1 to 6000 Synaptic 
systems 

188 006 

Smi312 mouse 1 to 2000 Covance SMI-321R 

Calreticulin  rabbit 1 to 1000 Abcam 2907 

Ankyrin G  mouse 1 to 400 Gift from  
Dr. C. Dean  

 

BDNF  chicken 1 to 400 Promega G164A 

Rab3a mouse 1 to 300 Synaptic 
systems 

107111 

     

GFP mouse 1 to 3000 Abcam 1218 

GFP chicken 1 to 3000 Abcam 13970 

     

Synaptophysin   mouse 1 to 1000 Sigma Aldrich 118K 4828 

Synapsin1/2  mouse 1 to 500 Synaptic 
systems 

106 002 

     

Homer1 rabbit 1 to 300 Synaptic 
systems 

 160 003 

SHANK2 guniea pig 1 to 1000 Synaptic 
systems 

162 202 

PSD95 mouse 1 to 300 Abcam 99009 
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Secondary antibodies 

Table 3: A list of Alexa Flour dyes used for light microscopy and FLIM, Atto dyes and STAR dyes 
used for STED microscopy and RFP and GFP nanobodies used for STED microscopy and FLIM. 

Alexa Fluor®350 

Alexa Fluor®488 

Species 

Dilution 

factor 

Antigen binding 

fragment Company   

Mouse 1 to 1000 IgG Invitrogen   

Rabbit 1 to 1000 IgG Invitrogen   

Guinea pig 1 to 1000 F(ab‘)2 Jackson   

Alexa Fluor®546 

Species 

Dilution 

factor 

Antigen binding 

fragment Company   

Mouse 1 to 1000 IgG Invitrogen   

Rabbit 1 to 1000 F(ab‘)2 Invitrogen   

Guinea pig 1 to 1000 IgG Invitrogen   

Cy3 

Species 

Dilution 

factor 

Antigen binding 

fragment Company   

Mouse 1 to 1000   Jackson   

Rabbit 1 to 1000 IgG Dianova   

Guinea pig 1 to 1000   Jackson   

Chicken  1 to 1000   Jackson   

  

 

AlexaFluor®647     

Species 

Dilution 

factor 

Antigen binding 

fragment Company   

Mouse 1 to 1000 F(ab‘)2 Invitrogen   
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Mouse 1 to 1000   Jackson   

Rabbit 1 to 1000 IgG Mobitec   

Cy5 

Species 

Dilution 

factor 

Antigen binding 

fragment Company   

Mouse 1 to 1000  F(ab‘)2 Jackson   

Rabbit 1 to 1000  IgG  Invitrogen   

Guinea pig 1 to 1000 F(ab‘)2 Jackson   

Atto594 

Göttfert STED 

setup 

Dilution 

factor 

Antigen binding 

fragment Company 

Company 

code 

Mouse 1 to 100 F(ab‘)2 ATTO-TEC 130 

Rabbit 1 to 100 IgG ATTO-TEC 184 

Guinea pig 1 to 100   ATTO-TEC 501 

RFP-BOOSTER 

All STED setups 

Dilution 

factor 

Antigen binding 

fragment Company   

RFP-Booster-

Atto594 1 to 300 VHH  Chromotek   

RFP-Booster-

Atto647 1 to 300 VHH Chromotek   

    Atto KK1212     

Göttfert STED 

setup 

Dilution 

factor 

Antigen binding 

fragment Company Code 

Mouse 1 to 100 F(ab‘)2 ATTO-TEC 504 

Rabbit 1 to 100 IgG ATTO-TEC 521 

Guinea pig 1 to 100   ATTO-TEC 535 
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AttoK9445     

Abberior STED 

setup 

Dilution 

factor 

Antigen binding 

fragment Company Code 

Mouse 1 to 100 F(ab‘)2 ATTO-TEC 259 

    STAR dyes     

Abberior STED 

setup 

Dilution 

factor 

Antigen binding 

fragment Company Code 

Rabbit 1 to 100 IgG Abbrerior STAR 639 

Mouse 1 to 100 F(ab‘)2 Abbrerior STAR 638 

Mouse 1 to 100 F(ab‘)2 Abbrerior 

STAR 

635p 

RFP-BOOSTER 

All STED setups 

Dilution 

factor 

Antigen binding 

fragment Company   

GFP-Booster-

Atto594 1 to 300 VHH  Chromotek   

GFP-Booster-

Atto647 1 to 300 VHH Chromotek   

2.1.2. List of DNA plasmids 

Table 4: A list of full length and mutant tagged DNA plasmids used in this study. 

 

DNA plasmid 

 

Tag position 

Size 

(amino 

acids) 

 

Resistance 

 

Obtained 

from 

Bassoon 

constructs 

    

 

mRFP-Bassoon-

EGFP 

Intramolecular N-
Terminal RFP 
(97a.a) and  
C-Terminal GFP 
fusion tag 

1-3938 Ampicillin  
 
Prof.T. 
Dresbach 

mRFP-Bassoon Intramolecular N 
Terminal RFP 
(97a.a)  

1-3938 Ampicillin Prof.T. 
Dresbach 



Materials 

37 

mEGFP-Bassoon Intramolecular N 
Terminal GFP 
(97a.a)  

1-3938 Ampicillin Self 
cloned 

Bassoon-mRFP C-Terminal GFP 
fusion tag  

1-3938 Ampicillin Self 
cloned 

Bassoon-mEGFP C-Terminal GFP 
fusion tag  

1-3938 Ampicillin Prof.T. 
Dresbach 

Bassoon mutants     

 

G2A mRFP-

Bassoon-EGFP 

Mutant 

Intramolecular N-
Terminal RFP 
(97a.a) and  
C-Terminal GFP 
fusion tag 

1-3938 Ampicillin  
 
Prof. T. 
Dresbach 

EGFP-95-Bassoon N -Terminal GFP 
fusion tag  

95-3938 Ampicillin Prof. T. 
Dresbach 

EGFP-Rbb26-

Bassoon 

N -Terminal GFP 
fusion tag  

2088-2563 Ampicillin Prof. T. 
Dresbach 

Other constructs     

 

pEGFP-Munc13-1 

 

N -Terminal GFP 
fusion tag  

1-1735 Kanamycin Prof. N. 
Brose 

CFP-ß-1,4glycosyl 

transferase 1 

N -Terminal GFP 
fusion tag  

0-81 Ampicillin Prof. T. 
Dresbach 

     

 

2.1.3. Bsn-/- knockout mouse 

The homozygous Bsn-/- knockout mice were generated by gene trapping introns 

1 and 2 of Bassoon by VICTR 48 (gene   trapping   vector). The gene-trapped 

Bassoon vector was obtained from the Omnibank ES cell line OST486029 by 

Lexicon Pharmaceuticals, Inc. (The Woodlands, TX)42. Bsn-/- knockout mice were 

bred at the Leibniz Institute for Neurobiology in Magdeburg, Germany and were 

supplied as banker cultures by the Fejtova and Gundelfinger laboratories.  

2.1.4. Microscopes 

Inverted Epifluoresence microscope 

Slides were visualized using an inverted Zeiss fluorescence microscope 

(Observer. Z1) with a Photometrics CoolSnap HQ2 camera at a magnification of 

40X and 63X. The following filters from AHF were used: F46-000 for DAPI, F46-

002 for GFP and Alexa 488, F46-004 for Atto594 and Alexa 546 dyes and F46-

006 for AttoKK1212 and Alexa 647. Exposure times of 500ns for F46-002 and 

F46-004 filters and 1000ns for the F46-006 filter were applied. 
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Confocal Microscope 

Images were acquired on a Leica TCS SP2 laser-scanning microscope (Lieca 

Microsystems, CMS, Germany) with a 63x/1.4NA oil-immersion objective. The 

488nm-Argon laser and the He-Ne laser, for the 561nm and 633nm wavelengths, 

were used to excite respective Alexafluor types. All images were acquired with 

identical settings of 1 airy-pinhole size and a 500Hz scan speed. These images 

were 1024*1024 pixels, imaged after 4 frame averages, at zoom factors of 1X (for 

the over view images) and 6X that possessed a pixel size of 230nm and 38nm, 

respectively. 

STED microscopes 

Bückers setup 

Figure 4, Figure 5, Figure 6, and Figure 8 were generated on a custom-built two-

color STED microscope88. Two excitation and two STED lazer beams, all 

supported by a single supercontinuum lazer source (SC-450-PP-HE, Fianium), 

were combined in the setup. Prism monochromators were used to set stringent 

excitation wavelength selections for Atto594 and Atto647 (at 570±2 nm and 

650±2 nm, respectively) and the STED wavelengths of 720±10 nm. Dichroic 

mirrors were used to generate two beam pairs by combining the two excitation 

and two STED beams, which were coupled to a beam splitter and a 100×/1.40–

0.7 oil objective lens (PL APO, Leica Microsystems, Wetzlar, Germany). The 

STED donut-shaped foci, that has a zero intensity minimum at its center, was 

generated by two vortex phase plates (RPC Photonics, Rochester, NY, USA.) 

and a superachromatic quarterwave plate (600–2700 nm, B. Halle GmbH, Berlin, 

Germany) placed behind the 100x objective lens in the STED beam path. Two 

separated confocal detection units were used to detect excitation for Atto590 at 

620±20 nm and Atto647N at 670±15 nm and both channels were scanned 

simultaneously in an interleaved fashion by applying a pulsed acquisition 

scheme. 

Göttfert setup 

STED images in Figures 15—Figure 19, Figure 22 and Figure 23, were acquired 

using a custom-built two-color STED microscope that is based on a confocal 

microscope that includes a 1.4 NA 100× objective (PL APO HCX 100x 1.4-0.7 

Oil, Leica Microsystems, Wetzlar), and a 775nm STED laser (ELP-5-775-DG, 

IPG Photonics Corporation, Oxford, MA, USA). The dyes were excited at 

wavelengths of 470nm, 595nm and 640nm while the fluorescence was detected 

with avalanche photo diodes from 500-550nm, 600-640nm and 660-720nm 

respectively. Epifluorescence images were acquired using a LED illumination 

source, a monochrome filter and camera (DMK41 AU02, The Imaging Source). 

For the overview images the LED illumination source was manually installed 

every session for one color, wherein a 590nm LED was installed with the 700/60 
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fluorescence filter and 640RDC dichroic filter or a 490nm LED was installed 

(upon requirement) with the 450/60 fluorescence filter, in the camera path. The 

775 STED beam is circularly polarized by being passed through a 0–360° vortex 

linear phase ramp and a 𝜆/4 plate to generate a focal beam “doughnut” that has 

zero intensity in the center. The doughnut-shaped STED beam only allows 

fluorescence around the zero intensity point. The images were obtained at using 

300-700 mW STED power, 4µW excitation power, dwell time of 30-100 

microseconds and a pixel size of 10 nm. The resolution regularly obtained for 

Atto594 antibodies was 30-45nm and for AttoKK1212 antibodies was 20-35nm 

(at 300mW and 700 mW STED-power, respectively). 

Abberior setup 

The images shown in Figure 24 and Figure 25, were taken on Abbrerior 

instruments QuadSCAN 2 color STED microscope. The setup possesses a 

pulsed 775nm STED lazer and two pulsed excitation lazer sources at 594nm and 

640nm integrated into a Olympus IX83 microscope that is equipped with 100× 1.4 

NA objective, a 4-color LED illumination source and a monochrome wide field. 

The Abberior QUAD scanner applies four galvo mirrors that provide four 

independent degrees of freedom and angle settings to allow for faster scan 

speeds and the images are detected with a gated avalanche photodiode (APD). 

A pixel size of 20 nm, dwell time of 3 ms and line accumulation of 3 were applied.  

FLIM microscope 

FLIM imaging was performed on an FV1000 lazer-scanning microscope with a 

UPlanS-Apo 60X 1.35-NA objective (Olympus) and a pulsed laser (Picoquant) 

running at 470 nm, at a 40 MHz repetition rate. Over view images were acquired 

at 2-5% LED power at the wavelength range of 505—545nm for GFP or Alexa 

Fluor®488, 570—625nm for RFP and Atto594 and 640-670nm for Alexa 

Fluor®647. Fluorescence lifetime was recorded with an avalanche photodiode 

(Micro Photon DevicesPDM) coupled to a Picoharp-300 (Picoquant). GFP 

lifetimes were recoded using a 520±15 nm filter in front of the FLIM detector. In 

order to avoid detector overload and to ensure stable and long lifetime imaging at 

minimum excitation intensity, images were recorded at 200Kcounts over 10 

minutes. The raw PT3 images were converted into *ics format using PT32ICS89 

(Geert van den Bogaart). Subsequently a mono-exponential phasor plot analysis 

was performed using TRI2 2.8.5.1 (Paul Barber,Gray Institute, Oxford, Uk) to 

obtain lifetime images. 
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2.2. Methods: 

2.2.1. Primary culture of rat and mouse hippocampi 

Rat primary culture 

Primary cultures of hippocampal neurons from E19 rats were prepared according 

to a modified Goslin and Banker protocol90 (1998). These neurons were 

trypsinized in Hanks’ Balanced Salts Solution (HBSS) (Life Technologies), 

containing 0.25% trypsin (Invitrogen) for 20 minutes at 37°C.  These cells were 

then washed and dissociated in Dulbecco’s modified Eagle’s medium (DMEM) 

(Life technologies), containing 10% fetal calf serum (FCS) (Biochrom). 50,000 

cells per well in 24-well dishes were plated on Poly-D-Lysin (Sigma Aldrich) 

coated coverslips. The neurons were plated and incubated in the plating medium, 

which contained Penicillin and Streptomycin (Pen-Strep 100U/ml from Life 

technologies) and 2mM L-glutamine (Invitrogen). 24 hours after incubation, the 

plating medium was substituted with Neurobasal medium (Life technologies), 

containing 2% B27 (Life technologies), 2% antibiotics and 0.5% L-Glutamine. The 

neurons were then left to incubate at 37°C and 5% CO2. 

Mouse primary culture (for Bsn-/- knockout mice and Bsn+/+ 

littermate controls) 

P0-P1 wild type mice cortexes were dissected to generate the feeder layer of a 

banker culture. Hemispheres of cortexes with their meneges removed were 

chopped up in 4.5 ml of HBSS and incubated for 15 minutes at 37°C in 2.5% 

trypsin (without EDTA). These pieces were then washed in HBSS and 

dissociated in glia medium that consisted of 90% plating medium and 10% 

DNAse (Invitrogen). Both hemispheres of one brain were dissociated in 1 ml glia 

medium and plated in 10 ml of plating medium that was identical to rat primary 

culture plating medium. The medium was changed every 4—5 days, and the 

confluent glia were trypsinated, washed in HBSS, and 5 ml of the glia were plated 

on a 6cm dish. 

Two P1 Bsn-/- knockout mice and two wild-type Bsn+/+ littermates were prepped 

into dissociated primary hippocampal neurons following the same protocol as 

was used for rat primary culture. 100 ml of 5000 hippocampal cells were plated 

on coated 18 mm round glass cover slips. These coverslips were first incubated 

for 1 hour at 37°C and 5% CO2 and then transferred, neurons facing down, on to 

dishes containing the feeder layer of glia and 5 ml of culturing medium (94% 

Neurobasal, 2% Glutamax (Invitrogen), 2% B27, 1% NaPyr (0.1M), 1% Pen/Strep 

(0.1M). These coverslips were left to grow at 37°C and 5% CO2 and were treated 

with 2 µl Ara-C (Sigma) on day in vitro 1 (DIV1) and DIV3 to prevent glia 



Methods 

41 

overgrowth and were fed once a week with an exchange of 1 ml of fresh culturing 

medium to maintain optimal growth of the culture. 

2.2.2. Cloning of full length Bassoon constructs 

Full length Bassoon constructs mRFP-Bassoon-mEGFP, mRFP-Bassoon and 

mutant G2A-mRFPBassoon-mEGFP were provided in a ampicillin resistant 

PCS2+ vector backbone and were designed to possess an intramolecular RFP at 

the 97 amino acid and/or a GFP fused to the C terminus of Bassoon such that the 

stop codon of the sequence was abolished. The constructs were designed by 

Prof. T Dresbach and generated by Clonetech.  

Molecular biology techniques 

To clone mEGFP-Bassoon, Bassoon-mEGFP and Bassoon-mRFP constructs a 

range of basic molecular biological protocols were employed and are described 

here. 

Digestion Protocol  

1µl of HindIII (Fermentas fast digest enzyme, Thermo Scientific) 

1 µg of DNA Plasmid 

2 µl 10X Green fast digest buffer (Thermo Scientific) 

x µl of H2O in a total volume of 20 µl for 30 minutes at 37°C 

Ligation Protocol 

25ng of linearized DNA plasmid 

125ng of DNA insert 

1 µl of 10X T4 DNA-ligase ligation buffer  

0.5 µl of T4 DNA-ligase 

x µl of nuclease free H2O in a total volume of 10 µl. 

This mixture was incubated overnight at 16°C and the ligation mixture was heat 

inactivated at 65°C for 10 minutes. 

Transformation Protocol 

A 100 µl of XL-1 Blue competent cells (thawed on ice) are placed in a pre-chilled 

tube. 10—50ng of DNA plasmid or 1—5 µl of a ligation mix is added by swirling 

the tube gently on ice and left to incubate on ice for 30 minutes. The tube is then 

heat pulsed on 42°C block for 45 seconds and directly incubated for 2 minutes on 

ice. 900 µl pre-warmed SOC medium is added to the cells and grown on a 37°C 

shaker for 1 hour at 225—250 rpm. 500 µl of this transformation mixture is plated 

on a pre-warmed LB-ampicillin and incubated for 17 hours at 37°C. 

Sequencing Protocol (GATC Biotech) 

100ng of DNA plasmid 

5 µM (5 pmol/µl) of primer 

x µl of nuclease free H2O in a total volume of 10 µl. 
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This mixture was sent to GATC Biotech in a 1.5ml eppendorf tube with a prepaid 

barcode. The sequences of the sequencing primers used for the cloning of the 

single labeled full length Bassoon constructs are listed in Table 5. 

Table 5: Sequencing primers for full length Bassoon. 

Primer  Primer Sequence Temperature

(°C) 

Length 

Bsn_FW_1 CTAATGGGAGGTCTATATAAG 55.4 21 

Bsn_FW_2  AGCACTAGCTGGCGGCGGAC
A 

67.3 21  

mRFP-FW-3a     GTAATGCAGAAGAAGACCATG 57.5 21 

mRFP-Rev-3b    CATGGTCTTCTTCTGCATTAC 57.5 21 

Bsn_FW_3c GGGCTTCAAGTGGGAGCG 64.238 18 

Bsn_FW_4 GGGCCAGGAGGAGACAGACG 67.3 21 

Bsn_FW_5 GCTCCAAACCGGCAGCCAAAG 65.3 21 

 

mEGFP-Bassoon Cloning 

The mRFP-Bassoon construct was modified to mEGFP-Bassoon by inserting a 

mEGFP at the intramolecular 97 amino acid position. Four micrograms of mRFP-

Bassoon, in 80µl volume were digested using HindIII. This blunt digestion was 

dephosphorylated at its 5´ and 3´ ends with 1 µl of CIP (England Biolabs) for 

30 more minutes.  Simultaneously 3 tubes containing 1 µg each of HindIII-

mEGFP-HindIII-PUC vector (Clonetech), were also digested in a 20 µl volume 

each, with HindIII. These digested products were run for 1.5 hours on a 1% 

agarose gel (made by boiling 1% agarose in 20ml of 1X TAE buffer and 3 µl of 

Midori green) alongside a 1kb DNA ladder (Thermo Scientific). A 16000bp band 

for Bassoon (without mRFP) and three separate 750bp bands of HindIII-mEGFP-

HindIII were cut out and eluted using the PCR and Gel Purification Kit (Promega). 

Subsequently, the purified products were ligated in 1 volume of linearized 

Bassoon plasmid : 5 volumes HindIII-mEGFP-HindIII insert. 

XL-1 Blue competent cells (Stratagene) were transformed using 1—5 µl of the 

ligation mix and grown on LB Ampicillin plates at 37°C for 16 hours. 20 colonies 

from this plate were picked and grown in 3ml of warm LB-ampicillin broth and 

grown for 17 hours. A DNA mini prep was performed from 2ml of the bacterial 

culture of all 20 colonies using the Qiagen Mini Prep DNA Isolation Kit and 

following the manufacturer’s protocol, and 1ml of each colony culture was saved 

at 4°C. The DNA isolated from each colony was sequenced using primers 

Bsn_FW_1, Bsn_FW_3c, mRFP-Rev-3b, and Bsn_FW_5 (Sequences provided 

in Table 5 above). The saved culture of one correctly cloned colony was used to 
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inoculate 200ml of LB-ampicillin broth, grown for 17 hours at 37°C and its DNA 

isolated using the Qiagen endofree Maxi Prep DNA Isolation Kit according to the 

manufacturer’s protocol.  A second round of sequencing was performed with the 

same primers to double check construct created. The mEGFP-Bassoon was also 

checked for its DNA concentration and verified for its purity (using a 

spectrophotometer) and finally stored at -20°C to be used for transfections. 

Bassoon-mRFP Cloning 

Bassoon-mRFP was cloned by replacing mEGFP of the Bassoon-mEGFP 

construct with an mRFP tag from the Mlu-mRFP-SpeI-PUC vector (Clonetech). 

Bassoon-mEGFP (4µg) was digested in 40 µl with Mlu and SpeI and 

dephosphorylated using CIP as is described above. Three tubes each with 1 µg 

of mRFP-PUC were also digested similarly with Mlu and SpeI. The digestion 

products, the linearized Bassoon vector (expected16000bp band) and three wells 

of Mlu-RFP-SpeI (700bp expected bands), were run on an agarose gel, their 

respective expected band sizes cut out, eluted with the gel extraction kit, and 

ligated with a 1:5 ratio of Mlu-Bassoon-SpeI vector: Mlu-mRFP-SpeI.  This 

ligation mix is on the following day transformed into XL1 Blue competent cell, 

grown on LB–ampicillin plates and 20 colonies of the plate were grown, mini 

prepped and sequenced. Sequencing primers (Table 5) Bsn_FW_1, Bsn_FW_3c, 

Bsn_FW_4 and Bsn_FW_5 were used to confirm colonies that were successfully 

cloned. One such colony was regrown, maxi prepped, verified for concentration, 

purity and sequence and store at 20°C for future transfections. 

2.2.3. Transfection methods 

Early calcium phosphate transfection (transfection: DIV 2—4 

fixation: DIV 14—24)  

This protocol is the relevant choice for generating neurons tagged for a protein of 

desire that need to be studied post DIV15. Young DIV3 neurons are first 

substituted and incubated for a minimum of 10 minutes with 500 ml of 37°C 

Optimem and their conditioned medium saved in a sterile container. To prepare a 

DNA—calcium-phosphate precipitate mix, 15 ml of transfection buffer (274 mM 

NaCl, 10 mM KCl, 1.4 mM Na2HPO4, 15 mM Glucose, 42 mM HEPES, pH 7.06) 

were added in a dropwise manner to a 15 ml/well of solution containing 1.87 ml of 

2M CaCl2 and 1 mg DNA plasmid. This mixture was left to incubate for 20 

minutes at room temperature, and 30 ml DNA—calcium-phosphate precipitate 

was added to each coverslip and left to incubate for 60 minutes. The neurons 

were then washed three times with 1 ml of 37° pre-warmed Neurobasal, followed 

by two 750 ml exchanges. Finally, the neurons were reinstated into their original 

conditioned medium and returned to the incubator. This protocol has a lower yield 
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of transfected neurons compared to the late Lipofectamine protocol, but the 

transfected neurons have higher survival rates into late developmental stages. 

Early Lipofectamine transfection (transfection: DIV 2—6 fixation: 

within 24 hours) 

To tag proteins during Golgi association and during early transport in the 

neurons, DIV5/6 neurons were transfected using the Lipofectamine method. 

Neurons plated on 12 mm coverslips in 24-well plates had their conditioned 

medium exchanged and replaced with 500 ml 37°C Neurobasal medium 

containing 2% B-27 and 1% of 2 mM L-Glutamine; they were then incubated for a 

minimum of 10 minutes. 1µg of plasmid DNA in 25 ml Optimem (Life 

Technologies) was mixed with 1 ml of Lipofectamine 2000 (Invitrogen) in 25 ml of 

Optimem. This mix was incubated at room temperature for 20 min after which 50 

ml of it was added to each well. After 1.25 hours of incubation at 37°C and 5% 

CO2, the transfected coverslips were washed three times with 37°C Neurobasal 

medium and reinstated in their conditioned medium. These neurons were 

checked after 24hrs for health and transfection efficiency by light microscopy and 

were fixed for 20 minutes in cold 4% paraformaldehyde solution before 

immunocytochemistry was performed.   

Early mouse sandwich-culture Lipofectamine transfection 

(transfection: DIV 2-4 fixation: within 24 hours)  

The 18mm coverslips plated with Bsn-/- knockout mice and wild-type Bsn+/+ mice 

were moved to a 12-well plate containing 600 ml warm Optimem and left to 

acclimatize in the incubator at 37°C and 5% CO2. In addition, a tube containing 

50 ml of Optimem/well and 1.5 µg of DNA plasmid/well, and another containing 

50 ml of Optimem/well and 2.25 ml of Lipofectamine 2000 / well, were mixed and 

left to incubate for 20—30 minutes at room temperature. This DNA—

Lipofectamine mix was then, without mixing, applied in 100 ml volumes to the 

equally distributed over each coverslip and left to incubate for 3 to 4 hours. The 

coverslips were subsequently transferred back directly into their original 6cm 

dish, which possessed their original condition medium and the feeder layer. 

These neurons were left to grow for 24 hours at 37°C and 5% CO2 and were then 

fixed in a 12-well plate containing 600 ml per well of cold 4% paraformaldehyde 

solution for 20 minutes, in preparation for the immunocytochemistry protocol. 

Late Lipofectamine transfection (transfection: DIV 10 fixation: 

DIV 13-14) 

DIV10 primary hippocampal neurons on 12mm coverslips had their conditioned 

medium exchanged with 400 ml of 37°C Neurobasal medium with 2% B-27 and 2 

mM L-Glutamine and incubated for a minimum of 10 minutes. Meanwhile a DNA 
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transfection mix was prepared consisting of 0.75µg of plasmid DNA in 50 ml 

Optimem and was mixed with 1 ml of Lipofectamine 2000 (Invitrogen) in 50 ml of 

Optimem. This DNA-Lipofectamine mix was incubated at room temperature for 

20—30 minutes and 100 ml of this DNA mix was applied onto the coverslips and 

left to incubate for 3 hours. These coverslips were then washed once with pre-

warmed Neurobasal medium and reinstated into their original conditioned 

medium and returned to grow in the incubator. These neurons were allowed to 

express the DNA plasmids for no longer than 5 days as after this point 

overexpression artifacts were readily observed. This protocol yields higher 

transfection efficiencies compared to the calcium phosphate protocol and is 

applicable for experiments in which the neurons do not have to survive for longer 

than DIV15. 

2.2.4. Immunocytochemistry 

The hippocampal neurons were fixed using cold 4% paraformaldehyde for 20 

minutes and washed three times with 1X PBS. To reduce un-specificity of 

antibody binding, a primary block buffer (10% FBS, 5% sucrose, 2% albumin, 

0.3% Triton X-100 in 1× PBS) was applied for 20 minutes. The primary antibodies 

diluted in the primary block solution were left overnight at 4° C. All secondary 

antibodies were diluted in secondary antibody-buffer (0.3% Triton X-100, 5% 

sucrose and 2% albumin in 1× PBS) and incubated for 1 hour at room 

temperature, protected from light. Coverslips were subsequently washed three 

times with 1x PBS and once with distilled water before being mounted in 8 𝑚𝑙 

DABCO-mowiol (Calbiochem) and left to dry overnight. 

2.2.5. Image processing 

Epifluorescence images  

The images were opened in Image J software (NIH) and merged from single 

channel, 8-bit, black and white images into RGB merged tiffs. Depending on 

need, they were adjusted for brightness and contrast, calculated and stamped 

with a suitable sized scale bar and saved as TIFF files for further analysis with 

Metamorph and Imaris MeasurementPro software. 

STED images 

Images acquired on all STED setups used were processed using the 

Richardson—Lucy deconvolution function integrated into Imspector Software91 

(Max Planck Innovation). The point spread function for deconvolution was 

generated by using a 2D Lorentz function with its full width at half maximum 

(FWHM) fitted to the resolution estimate of each individual image. These images 
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were then analyzed using Imaris MeasurementPro. Images for figures were 

adjusted for brightness and contrast with Image J software (NIH). 

FLIM images 

Lifetime images were obtained in a PT3 format and converted using the PT32ICS 

software (Geert van den Bogaart). These images were then subjected to a mono-

exponential phasor plot analysis was performed using TRI2 2.8.5.1 software 

(Paul Barber, Gray Institute, Oxford, UK). The pixel density function values were 

extracted for each analyzed lifetime image.  The Alexa 488 lifetime range of 1.5—

2.0 nanoseconds (for Figure 20), the GFP lifetime range (boosted by Alexa 488) 

of 2.2—3.0 nanoseconds (for Figure 26), and the GFP lifetime range of 1.5—2.5 

nanoseconds (for Figure 27) were applied to all images in their respective 

experimental and their corresponding values were exported into Microsoft Excel. 

FRET images were generated by applying an inverted, 16-color look up table to 

the lifetime images, in their respective lifetime ranges, which were exported as 

TIFF files from TR12 and converted into a RGB file or HSB stack with Image J. 

Layer B of the HSB stack was replaced by the corresponding Alexa 488 intensity 

image to generated the FRET or Lifetime overlay images. All raw lifetime values 

were normalized to unity and fitted to a Gaussian distbribution in GraphPad 

Prism. These values were then converted to FRET efficiencies using the formula 

below and plotted in GraphPad. 

 

E=FRET Efficiency; DA=Donor Lifetimes*Acceptor Lifetimes (ns), DA= Donor 

Lifetimes (ns). 

The mean and SEM for each curve was calculated and an unpaired Student’s t 

test was performed, for Figure 24 and Figure 25, to statistically test the difference 

in lifetimes of the data sets. 

2.2.6. Analysis software and application 

MetaMorph Colocalization 

Merged multi-channel 40X light microscopy images were analyzed using 

MetaMorph Offline Version 7.7.0.0 (Molecular Devices, Inc.). A threshold is set 

for each channel followed by the generation of a mask for all channels, in three 

areas of size 25 pixels long (representing 2 µm in the sample) and 4 pixels wide, 

per image.  These area masks were then overlaid in the arithmetic tool and 

divided to generate a third mask containing only the population of signals in the 
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mask that do colocalize. The amount of bassoon colocalized is a represented as 

a percentage of the bassoon colocalized population divided by total bassoon 

population. 

Imaris MeasurementPro 8.1(Bitplane AG.) software 

Merged TIFF light microscopy images or STED images were analyzed using 

Imaris for range of analyses such as, the probability of colocalization (Pearson’s 

correlation coefficient), amount of colocalization, signal sizes and their 

population, and distribution of signals.  

For Figure 4—Figure 5, Figure 15—Figure 19, Figure 22—Figure 24, a free-hand 

drawn mask was drawn to exclude all signals in the image that were in the 

nucleus, outside the cell soma, or in the axons.  To factor out the effect of the 

varying number of signals counted per size of hand-drawn mask in each image, 

the area in µm3 of the mask used, was divided by the signals counted per image. 

Probability of colocalization  
Images with or without masks were all then run through the ImarisColoc module 

that is integrated with a Costes P-Value approximation92 plugin, to generate 

automated thresholds for all the channels of all the images in a set.  Also this 

module is integrated with Image J plugin: just another colocalization plugin that 

can calculate the colocalization Pearson’s and Manders’ correlation coefficient 

Constants in the image.  

To ascertain the amount of colocalization, the signal sizes and distribution of the 

spot signals in the image, the Imaris Spots module was first used to generate 

objects for each spot of signal in the image, for all channels. These objects are 

generated upon applying the automated intensity threshold value calculated by 

the Costes P-Value approximation, signal diameter size range of 30—160nm for 

STED images and >200nm for light microscopy images, an automated splitting of 

cluster signals (defined as >120nm for STED images and >400nm for light 

microscopy images) based on intensity profile plots of signals within the cluster, 

in each channel.  

Signal Sizes and their populations  

Imaris Spots calculates a range of statistical data for the spot objects generated 

for each channel. One such automatically generated type of data is the diameter 

size (determined by the FWHM of the PSF) of each spot signal. These data were 

collected in Excel for Figure 5 for all the images in the set, and the total number 

of spots in the size range of 30—60nm, 60—90nm and 90—130nm were 

calculated and plotted using GraphPad Prism. 

Amount of colocalization  

The amount of colocalization was calculated using the spot objects generated for 

each channel and a MATLAB extension in the spots module called Spots 
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colocalize, which calculates the colocalized population of all channels using the a 

distance threshold of 0—100nm (for STED images) and 0—350nm (for light 

microscopy images) from the spot centers.  

Distribution of Signals 

To analyze the distribution of AZP to a Golgi marker, the distance transformation 

MATLAB extension94 from the Imaris XT module was used. This extension 

exchanges the voxel intensities data of all signals in the Golgi marker channel 

into spot coordinates data and creates a new channel with this data. This channel 

indicates the shortest distance to the object border of the Golgi marker spot. The 

AZP channel is overlaid over the Golgi marker distance transformation channel to 

reveal the shortest distances between all the AZP signals and the border 

coordinates of the all the Golgi marker signals. The shortest distance value for 

every AZP spot to a Golgi marker spot can as easily be exported to excel, as well 

as the total number of AZP signals within 0—100nm or 101—100nm distance 

ranges. 

GraphPad Prism 5.02 

All resulting data were analyzed and graphically represented using GraphPad 

Prism 5.02. Comparisons between groups were statistically tested, and the data 

in the graphs are presented as mean ± SEM. Differences were considered 

significant (*p < 0.05), strongly significant (**p ≤ 0.01) and extremely significant 

(***p ≤ 0.001). For Figure 3—Figure 8, Figure 10—Figure 13, and Figure 15—

Figure 19, a one-way annova test was performed with a post-hoc test of Tukey’s 

multiple comparisons test (that compares the means of all columns).  For every 

significant difference noted between the two relevant groups, an additional two-

tailed, unpaired Student’s t test with different variances was also performed to 

reveal the same significant difference.
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Chapter 3 
 

 

 

 

 

 

 

 

 

 

 

Results 
 

This chapter details my results, in which I study the localization and ultrastructure 

of active zone proteins (AZPs) at various subcellular structures, on their journey 

from the soma of young developing neurons, to the presynaptic cytomatrix at the 

active zone (CAZ). A deeper understanding of how AZPs are oriented, organized, 

and transported, at various sites in the developing neuron, is required for 

unraveling the mechanisms at play during mammalian active zone assembly and 

CAZ maturation. To tackle these topics, I will here first study the ultrastructural 

localization of endogenous AZPs at Golgi substructures, in the soma, and during 

transport in the axons of young hippocampal neurons. I will then compare the 

endogenous AZP localizations to the localization of well-established recombinant 

AZP constructs, and will finally introduce, characterize, and use new tools made 

off the full-length Bassoon molecule. These second generation constructs have 

been optimized and used to study the orientation, organization, and the detailed 

localization of this AZP at the Golgi, the soma, on trafficking dense-core vesicles, 

and at synaptic sites.
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3.1. Localization of endogenous AZPs at the Golgi 

apparatus  

Initial studies in the field have shown AZPs Bassoon and Piccolo to be localized 

in the somas of young neurons at Golgi substructures and transported to 

presynaptic sites on 80nm dense-core vesicles known as Piccolo-Bassoon 

Transport Vesicles (PTVs)30,68,69. Other AZPs, namely Munc13-1, RIM1𝛼, and 

ELKS2, were also isolated in light brain fraction immunoprecipitates containing 

PTVs69,33. Golgi-derived AZP transport carriers, which are either preassembled 

PTVs93 or small clusters of clear- and dense-core vesicles carrying AZPs71,  are 

believed to sufficiently transport the entire CAZ scaffold to the presynaptic 

membrane for the generation of a functional synapse. 

3.1.1. Localization of AZPs to Golgi sub-compartments 

with and without a 19°C block (confocal) 

The biogenesis of PTVs and other AZ transport carriers still remains unclear, 

though a recent study has shown Piccolo, Bassoon, and ELKS2 localized to the 

trans-Golgi sub-compartment, Munc13-1 localized to the cis-Golgi sub-

compartment and RIM1𝛼 diffusely distributed through the neuronal processes of 

young neurons32. These results compliment my own observations but lacked a 

detailed description of how AZPs are distributed, sorted and localized at these 

Golgi substructures.  

To explore the extent of localization of a Golgi associated AZP to its Golgi sub-

compartment, I co-immunostained young neurons for AZP markers Bassoon, 

Munc13-1 and Piccolo at the cis-Golgi and the trans-Golgi network markers, 

GM130 and TGN38, respectively. In order to determine proper localization of 

AZP to Golgi substructures with confocal microscopy, stainings were performed 

in neurons blocked for 45 minutes at 19°C to arrest AZP transport out of the 

Golgi. This generates enough AZP signal around a Golgi substructure for 

confocal imaging30 and allows me to directly compare my results to related results 

in the field, which were similarly processed.  

All three AZP were imaged from the top of the soma, where the first cis-Golgi 

signals appear, to the bottom of the soma, closer to the coverslip, which ends 

with the last deeper trans-Golgi network signals. Bassoon and Piccolo present a 

higher visual degree of colocalization (observed as the high intensity yellow 

overlapping signals) to the TGN38 and are in best focus deeper in the 5𝜇m Golgi 

stack imaged. Both the proteins are also partially localized to the GM130 signals 

and may not be well confined to a single Golgi sub-compartment as the 19°C 

block arrests a much higher number of AZP than the unblocked situation, around 

all Golgi substructures. An opposite localization pattern is observed for Munc13-
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1, which is highly colocalized within the upper layers of the imaged stack, at the 

highest GM130 signals and has some, albeit lower, visual colocalization to the 

TGN38 marker (Figure 3).  

Figure 3: Bassoon, Piccolo and Munc13-1 associate with specific Golgi sub-compartments.      

A—F, confocal images of DIV7 hippocampal neuron cell somas were immunostained with 

antibodies against Bassoon (A—B), Munc13-1 (C—D) and Piccolo (E—F) at cis- and trans-Golgi 
markers TGN38 and GM130, respectively. All images were taken after a 45 minute 19°block 
before the paraformaldehyde fixation to arrest enough proteins to properly visualize their location.  
5μm stacks of the soma were imaged with 200nm Z slices. The Z value represents the position in 

the stack. Scale bars (A—F), 5μm. 

 

The localization of Bassoon and Piccolo to the TGN and Munc13-1 to the cis-

Golgi, is in congruence with previously reported associations of these proteins to 

Golgi substructures from our lab and others in the field30,32, and elude towards the 

presence of different AZP transport precursors – distinct not only in AZP 

composition but specific for the Golgi lamella they were derived from, which will 

ultimately influence their sorting in the soma, the pathway and mode of transport 

they take to the AZ. This study additionally reveals that a partial localization of all 

three AZPs occurs on both the cis-Golgi compartment and the trans-Golgi 
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network compartment, which could be caused by the 19°C block and may result 

in AZP mislocalization due to overcrowding of blocked proteins or overlapping of 

Golgi lamellas that are unable to maintain their natural structure through the 

balance of fusing and budding vesicular structures. 

The 19°C block allowed detection of endogenous AZPs through the Golgi stack 

with confocal microscopy, but it does not reflect normal localization conditions 

and indicates the need for AZP localization studies with another microscopy 

technique that does not require a similar temperature block. 

3.1.2. Localization of AZPs to Golgi sub-compartments with and 

without a 19°C block, at and on the Golgi lamella (STED) 

To visualize the localization of AZPs at Golgi substructures, with a different 

microscopy technique and in more detail, I repeated the localization experiment 

under both normal (37°C) and 19°C block conditions, with super resolution 

microscopy. Munc13-1 was co-immunostained with the cis-Golgi marker GM130 

and Bassoon and Piccolo were stained with the trans-Golgi marker TGN38. 

All three proteins were visualized as punctate signals at their respective 

substructures (Figure 4). This is a striking observation, as light and confocal 

microscopy techniques of the localization of these proteins have typically shown 

AZP signals in the soma that are visually similar to those of the Golgi lamella. 

The increase in resolution is similar for both channels labelled for either the Golgi 

marker or the AZP and the localization of both type of proteins are visualized 

using a primary antibody (10—15nm in size) and a secondary antibody (10—

15nm in size) complex, that generates a 30nm signal around each labeled 

molecule94,  allowing for similar-sized signals being observed. These signals can 

be resolved from neighboring signals as the resolution limit regularly obtained by 

the STED setup used for this experiment was between 40 and 60nm for both 

channels88. As the size of one AZP or Golgi molecule signal is similar, observing 

AZPs as punctate signals that are visually dissimilar to the Golgi marker staining 

signifies the presence of a low density of AZP signals that are being specifically 

distributed over their corresponding Golgi compartments. To take a closer look at 

the distribution of the AZP to their Golgi sub-compartment, I generated masks in 

each image representing a control region in the nuclear region of the soma 

(blue), a mask representing the area occupied by the Golgi lamella (yellow), and 

a mask for the regions between the Golgi lamella (white). I calculated the AZP 

signal populations/𝜇m2 area, in these mask regions for every image, in the 19°C 

blocked and 37°C condition sets. A higher number of all three AZP were 

observed in the 19°C blocked images at their respective Golgi sub-compartments 

in all mask regions. In particular, 13.7-times-higher Bassoon signals (from 0.14 to 

1.94 puncta/𝜇m2), 1.98-times-higher Piccolo signals (0.74 to 1.47 puncta/𝜇m2) 

and 2.96-times-higher Munc13-1 signals (from 0.7 to 2.1 puncta/𝜇m2) were 
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observed in the control regions of normal and 19°C blocked images (Figure 4). 

These results reflect the presence of a large load of AZP signals, arrested on all 

Golgi sub-compartments during a 19°block.  

Using STED microscopy, AZP localization in normal 37°C conditions was clearly 

discernable without a block in all three mask regions. To further discern the 

natural distribution patterns of the different AZP to their Golgi sub-compartment, 

images from the 37°C condition set were compared. All three AZP have higher 

frequencies at and between Golgi lamella regions when compared to their control 

region, though there appears to be no significant distribution pattern of AZPs 

favoring localization between the at- lamella and between-lamella masks (Figure 

4).  

These results show that AZPs Bassoon, Piccolo, and Munc13-1 appear as 

punctate signals, which do not resemble Golgi marker signals in the soma, and 

are localized at and around trans-Golgi network lamellae and cis-Golgi lamellae, 

respectively. The similar distributions of AZPs in close association to Golgi 

lamellae and next to them, is presumably a population AZP signals consecutively 

being recruited to the Golgi lamella to be loaded onto transport precursors that 

begin their transit out of the soma. These distribution patterns and localizations of 

AZPs were only discernable, without a transport block, using super resolution 

microscopy. The association of AZP subsets to specific Golgi substructures 

provides a means by which to characterize distinct transport precursors arising 

from the Golgi, for example, transport vesicles that bud from the cis-Golgi 

membrane transport Munc13-1 and trans-Golgi network-derived vesicles carry 

Bassoon, Piccolo, and ELKS2, of which a fraction of vesicles must be PTVs. 

These results illustrate the earliest presence of AZPs, at distinct cellular 

substructures in young neurons, and highlight the Golgi as the first modulatory 

station in their journey to the synapse.  

 

 

Figure 4: Distribution and localization of AZPs to their respective Golgi sub-compartments with 
and without a 19°C block using STED microscopy.  

Super resolution imaging of DIV6 hippocampal somas that were immunostained for Bassoon and 
Piccolo with TGN38, and Munc13-1 with GM130, in neurons kept at 37°C (A, C, E) and 19°C (B, 
D, F), before paraformaldehyde fixation. Blue outline of image area represents a control region in 
nucleus of the cell, the yellow outlines represent the area occupied by the lamella of the Golgi 
markers in the image, and the white outlines represent the image areas between the lamella of 
the Golgi signals. The number of puncta per 1μm2 area of the AZPs were quantified at all three 
regions of interest at 37°C and 19°C (G, H, I). Data were statistically tested with a one-way 
annova and a post hoc Tukey’s multiple comparison’s test where *p < 0.05, **p ≤ 0.01, and ***p ≤
0.001, N=20 cells from two separate sets.
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3.2. Transport and localization of endogenous and 

recombinant Bassoon constructs 

The soma of a neuron is a modulatory site at which transport vesicles are 

generated and organized. The vesicles generated at different Golgi 

compartments can carry a specific subset of AZPs into the axon. The type of the 

vesicles that AZPs are loaded onto may affect their assembly at the synaptic 

sites.  

Endogenous Bassoon is localized to the trans-Golgi network, with ELKS2 and 

Piccolo32. In addition a large number of studies employing the use of recombinant 

Bassoon constructs, including the well characterized tagged 95-Bsn construct, 

localize to TGN marker with light and confocal microscopy30,70, while unpublished 

data from our lab show EM micrographs of the same tagged 95-Bsn construct 

predominantly loaded onto clear-core vesicles in the soma (Dresbach and 

Wittenmayer, unpublished). These proteins were isolated in the same 

biochemical fraction that contained dense-core vesicles and were defined as 

PTVs69. Electron microcopy and live imaging of endogenous Bassoon has shown 

evidence of the protein localized on transporting dense-core vesicles as well as 

between a package of dense and clear-core vesicles in the axon6,95,96. Despite 

this information, a lot still remains unclear about the biogenesis, composition, and 

mechanism of their transport that attribute to CAZ assembly. For example, no 

one knows whether clear-core and dense-core vesicles arise from different sub-

compartments of the Golgi carrying a different AZP subset.  Subsequently, it is 

also unresolved whether AZPs are co-assembled before their transport down the 

axon or whether they get co-assembled en route. 

To fill in the gaps of knowledge that these questions raise, I will characterize the 

following: 

(1) the types of AZP transport carriers that arise from the cis-Golgi and the 
trans-Golgi network compartments positive for Munc13-1 and 
Bassoon/Piccolo, respectively; 

(2)  the distribution of the AZPs in different regions of a developing axon; 
(3)  the composition of co-trafficking AZPs in axons with super resolution 

microscopy; 
 
 

Together, these questions will help characterize the link between AZP 

localizations and their transport precursors as well as cast light onto possible 

modulatory steps during transport that might influence AZ assembly.
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3.2.1. Transport entities generated at the soma  

Signal sizes of AZP transport packets at the Golgi  

To characterize the different transport precursors generated at different Golgi 

compartments, I quantified the AZP signals that might reflect the size of transport 

vesicles they are transported on. Endogenous Bassoon, Munc13-1, and Piccolo 

were labeled with traditional antibodies and imaged with a two-color STED 

microscope at their respective Golgi compartments. A range of AZP signal sizes 

from 50nm—150nm were seen for Bassoon, Piccolo, and Munc13-1 at all Golgi 

compartments. This implies that any AZP, irrespective of the Golgi lamella that it 

was processed on, can be loaded on a range of different vesicles sizes. As AZP 

signals around the Golgi lamella could be vesicles in transit, a population of AZP 

signals, might also be loaded onto permutations of vesicle clusters in the soma, 

to promote their efficient transport to nascent synaptic sites. 

To test the distribution of the potential AZP transport precursors generated, all 

the AZP signal sizes in an image were measured and grouped in three size 

categories. These categories group the AZP signals into puncta diameter size 

ranges of 30—65nm (consistent with clear core vesicles sizes such as synaptic 

vesicles), 66—95nm (consistent with dense core vesicles such as PTVs) and 

96—150nm (representing small clusters of vesicles that may contain dense- and 

clear-core vesicle packages). The populations of signals present in these size 

ranges were plotted as a percentage of the total number of signals per image. 

Signal sizes greater than 150nm in diameter were rarely seen, for any AZP 

staining and the few that were observed were excluded on account of being size 

distribution outliers. Although AZP proteins are known to load on top of transport 

vesicles, the size of their signals may not accurately represent the size and type 

of the transport vesicle they are loaded on. As double-colored STED images do 

not provide a high resolution in the z-axis, it possible that AZP signals may 

appear erroneously large, due to the presence of out of focus signals below them 

in the z-plane. Nevertheless, the striking presence of a visible variety of signal 

ranges may elude towards the presence of a range of AZP transport precursor 

types. 

A detailed look at the population of AZP signals reveals a significantly larger 

fraction of the total population of signals of Bassoon (51.3%), Piccolo (46.8%), 

and Munc13-1 (48.7%) in the 96—150nm size range, which is indicative of small 

vesicle clusters (Figure 3). Interestingly, the distribution of AZP signals, 

irrespective of the type of AZP and its localization to a specific Golgi 

compartment, is similar for all AZP size categories. Images of all three AZPs 

reveal distributions of around 15—16% of the total AZP signal size population 

that corresponds to the clear-core transport precursor category, around 32—35% 

of the population that corresponds to the dense-core category, and 47—51% of 

AZP population that corresponds to small vesicle cluster category. This uniform 
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distribution of AZP signals point towards the presence of a pool of different 

vesicle types, available around Golgi structures, for AZPs to be indiscriminately 

loaded onto. Meanwhile, since the largest fractions of AZP signals are in the 96—

150nm range, a trend toward the formation of small AZP transport vesicle 

clusters in the soma is expected. This arrangement of transport precursors could 

be a sorting mechanism that prerequisites early transport in young neurons 

(Figure 5). 

 
Figure 5: Size populations of endogenous Bassoon, Piccolo, and Munc13-1 signals at their Golgi 

sub-compartments. A—C, Two-color STED images of DIV6 hippocampal neuron cell somas 

immunostained with antibodies against Bassoon (A, a), Munc13-1 (B, b), Piccolo (C, c), at 

TGN38 or GM130. ROIs a, b, and c represent a range of punctate signals that were measured for 
their size and grouped in three size categories that represent known clear-core vesicles (50—
65nm), dense-core vesicles (66—95nm) and small vesicle cluster sizes (96—150nm). Data are 
represented as a percentage of the total population of signals per image N=9 cells from three 

separate sets. Scale bars (A—C), 1μm. 
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Characterizing type of transport packets of tagged Munc13-1 and 

Bassoon in the soma 

Apart from their characteristic 80nm diameter size, dense-core vesicles are 

known to transport larger molecular weight neurotransmitters and a range of 

different neuropeptides such as BDNF and Chromogranin A/B (CGA / CGB)71,97, 

by which they can be characterized. Additionally, large dense-core vesicles are 

known to possess the synaptotagmin class of transmembrane proteins in their 

vesicle lipid bilayer. Synaptotagmin4 (Syt4) is one such vesicular transmembrane 

protein that has been shown to be present at the Golgi compartment, on large 

dense-core vesicles of differentiating PC12 cells and neurons97,98, making it a 

good candidate to label dense-core transport precursors in the soma.  

Figure 6: Early localization of recombinant Bassoon and Munc13-1 to dense-core vesicle marker: 
Synaptotagmin4 (Syt4). DIV7 hippocampal neurons were transfected for Bassoon (95-3938 

construct) (panels A), and Munc13-1 (panels B) were immunostained for syt4 and visualized in 

neuronal somas using confocal microscopy. Zoom images of A and B over view images (I) and 

inset of I represented in single channels and merge as images II. Arrows represent colocalizing 

signals. Scale bars over view images 10μm and 5μm (I and II zooms). 

 

In order to ascertain the presence of dense-core vesicles arising from the 

Munc13-1 (cis-Golgi) and Bassoon (trans-Golgi network) positive compartments, 

I co-immunostained for Syt4 in order to label AZP transport precursors that 

possess a dense-core and are close to the Golgi. Colocalization of tagged GFP-

95-Bassoon and eGFP-Munc13-1 was visualized in the somas of young (DIV7) 

neurons by confocal microscopy. Little to no visual colocalization of Munc13-1 

was seen with the Syt4 marker, suggesting that Munc13-1 is not loaded onto 

Syt4-positive dense-core vesicles. In comparison, a subpopulation of the clusters 

of Bassoon signals in the soma was visibly colocalized to Syt4-positive dense-

core vesicles (Figure 6). 

These results together and in the light of available information in field, impress 

upon the presence of a large range of available transport carriers that may 

transport an AZP to its final destination. These transport vesicles not only vary in 

size of AZP signals they carry but also in the composition of their cargo, although 
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the distribution and availability of this diverse vesicle population is evidently 

uniform for all AZPs, irrespective of the Golgi lamella from which they were 

loaded. Further characterization of the subtypes of AZP-specific transporter 

precursors is required. However, this is beyond the scope of this investigation at 

this point, due to the lack of functional vesicle subtype markers and the complex 

diversity of existing vesicle subtypes that are not fully characterized in 

hippocampal neurons. 

3.2.2. Distribution of endogenous Bassoon to other 

AZPs in axons of developing neurons undergoing 

trafficking 

The exact process of how a sufficient subset of all AZPs is recruited to an 

assembly site of an AZ is unknown, though it is believed that a preassembly of 

AZPs may occur before and/or during their transport down the axon. Results from 

section 4.4.1 show large populations of AZP signals in size ranges, reflecting 

those of grouped vesicles. This suggests that different AZPs may come in close 

proximity for preassembly at the soma, and might also do so during transport. To 

visualize the colocalizations of AZPs to each other during transport, I began by 

characterizing their distribution in the axons of developing neurons. 

Distribution of endogenous AZPs in different regions of the 

developing axon 

Epifluorescence microscopy was used to determine the endogenous distribution 

of Bassoon, Piccolo and Munc13-1 in three, identical, regions of interests 

selected in a proximal region of the axon, a central region of the axon, and a 

distal axonal region of young DIV6 hippocampal neurons.  To visualize the 

varying distribution of AZPs to one another, I co-immunostained Bassoon with 

Munc13-1 and Bassoon with Piccolo and determined their colocalization in the 

regions of interests. 

High colocalization frequencies of Bassoon are seen with Munc13-1 (55.2% at 

proximal axon, 57.8% at central axon, and 66.6% at distal axon) and Piccolo 

(64.7% at proximal axon, 49% at central axon, and 53.6% at distal axon), in all 

regions of interest. Although interestingly neither region of interest has a 

significantly higher colocalization of Bassoon with Munc13-1 or Piccolo (Figure 

7).  



Results                                           Distribution of endogenous AZPs in axons 

61 

 

Figure 7: Distribution of Bassoon, Piccolo and Munc13-1 in developing neurons with 

epifluorescence microscopy. A, over view image of DIV6 hippocampal neurons immunostained 

with Bassoon and Munc13-1 (B) and Bassoon and Piccolo (C) in three axonal regions: the 

proximal axon a, the central axonal region b and the distal axon c and quantified for the amount 

of colocalized Bassoon. Each axonal ROI is off size. Data represented as mean ± SD, N=20 cells 

from two separate experiment. Scale bars 10μm (A) 1μm (B and C). 

This signifies that AZPs are uniformly distributed throughout the developing axon 

and AZPs don’t appear to localize at specialized sites in the axon, to pre-

assemble during transport. 

A 

B 

C 
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Localization of endogenous Bassoon to other AZPs in the 

developing axon  

 

To visualize in detail the spatial localization of AZPs to one another, in the axons 

of young neurons, endogenous Bassoon—Piccolo and Bassoon—Munc13-1 co-

immunostainings were imaged with confocal microscopy and two-color STED in a 

central axonal region. A significant drop in the percentage of colocalized Bassoon 

was observed when comparing confocal images (67.8% with Piccolo and 50.2% 

with Munc13-1), to the STED images (36.4% with Piccolo and 30.9% with 

Munc13-1) (Figure 8). This suggests that a large fraction (approximately 70%) of 

the Bassoon population, being transported down the axon of developing neurons, 

travels on transport entities that do not contain Piccolo or Munc13-1. 

 

 

Figure 8: Distribution of Bassoon, Piccolo and Munc13-1 during high neuronal trafficking using 

STED microscopy. DIV6 hippocampal neurons immunostained with Bassoon and Piccolo (A and 

B), or Bassoon and Munc13-1 (C and D), in central axonal regions, imaged using confocal and 
STED microscopy on the same area. Quantification of the amount of colocalized Bassoon with 

Piccolo (E) and Munc13-1 (F) Data represented as mean ± SD, N=20 cells from two separate 

experiment, *p < 0.05. Scale bars 1μm (A–D). 
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This result highlights the fact that during transport the majority of AZP protein 

populations in the axon preferentially traffic on their own pre-assigned transport 

carriers and rarely begin co-trafficking with other AZP signals in the axon.   

These highlight the presence of a uniform distribution of AZPs in axons, which in 

turn indicates that AZP carrying transport vesicles do not accumulate at a specific 

region in the axon to organize an exchange of AZPs during transport. Super 

resolution imaging of AZPs in the soma reveals the predominant presence of 

AZP signals sizes on corresponding sizes of small groups of transport 

precursors, which may transport only one or a subset of AZPs. This suggests that 

combinations of AZP compositions on transport precursors may already be 

arranged in the soma prior to their transport out of the soma. This result is 

compounded by the fact that in the axon, super resolution microscopy reveals 

only 30% of the trafficking Bassoon population in close proximity to other AZPs. 

These 30% of colocalizing AZP signals could represent co-trafficking vesicles 

that are either prearranged in the soma or have become associated with each 

other during transport. These co-trafficking events might therefore bring different 

AZP compositions in close proximity, in an anticipatory first step towards AZP 

preassembly, at sites on the axon that might become immature synaptic sites. 

Together the results from this section suggest that subsets of AZPs on transport 

precursors may be prearranged in the soma, which may additionally come in 

close proximity to a different subset of AZPs during co-trafficking events, where it 

seems unlikely they would begin to preassemble into immature AZ. Nonetheless 

the close proximity of co-trafficking vesicles carrying different AZP subsets, might 

aid in the efficient recruitment of a sufficient group of AZPs to nascent synapses
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3.3.  Characterization of new full-length Bassoon 

constructs 

It is becoming increasingly evident that to have a better understanding of the 

assembly of AZPs, the localization of AZPs at their modulatory check points need 

to be studied in higher detail. Underlying specific details such as the orientation of 

an AZP and its interaction to membranes of the Golgi lamella, transport vesicles 

or the presynaptic membrane, may reveal temporal modifications that allow for 

AZ assembly and improve knowledge about their localization.  

Results in section 3.1 highlight the need to visualize AZP molecules at higher 

resolutions, although determining the localization of endogenous AZPs, requires 

traditional mono- and polyclonal antibody complexes for visualization, which in 

turn limits the understanding of AZP localization to 30nm from its true location94. 

Furthermore, the use of traditional poly- and monoclonal antibodies generate 

large antibody complexes that are believed to create steric problems that prevent 

unbound antibody molecules from reaching all the epitopes and thereby 

perpetuates artificial staining80. Expressing tagged recombinant protein allows the 

use camelid antibodies, which are small enough to reduce the steric problems. 

The emergence of fab fragments and nanobodies have helped reduce the 

problem of large antibody signals, although at this stage, specific AZP products of 

such nature are not available. Alternatively, the use of GFP and RFP nanobodies 

has been proven to improve localization of tagged proteins82,83,85. Thankfully a 

wide variety of tagged AZP constructs have been generously used and well 

characterized in the field30,70,99,100–102,47. This provides a great platform for me to 

employ, already available and freshly generated tagged AZP constructs and their 

deletion mutant variants to visualize in further detail the localization, orientation 

and organization of AZPs, en route to forming matured synapses. 

The largest range of full-length and well-documented AZP deletion constructs 

available today are that of the Bassoon molecule. First-generation recombinant 

Bassoon constructs have been widely used for trafficking, AZ assembly and 

maintenance studies in the field, and provide a strong background for the 

application of these constructs30,70,99. Additionally, new second-generation 

Bassoon constructs, which will be characterized in this section, have the 

advantage of being the first full-length constructs optimally tagged to visualize the 

orientation of the protein at different subcellular localizations. Ultimately, the 

application of Bassoon recombinant constructs have the advantage of being 

easily administered via transfections in cultured neurons and having their tags 

readily modified for a range of interaction assays and cutting-edge imaging 

techniques that provide the opportunity to visualize these AZPs in nanoscopic 

detail and follow their transport via live imaging. 
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Bassoon is also one of the two largest proteins in the AZ complex22,52; making it 

an ideal candidate to study AZP localization and orientation, and one of the first 

AZPs99 to be recruited to a young synapse, placing the molecule center stage 

during CAZ organization. All these factors contribute and compliment the choice 

of employing first- and second-generation Bassoon constructs to the study of 

localization, orientation, and organization of AZPs on their journey from the TGN 

to the synapse. 

In this section, I will introduce new second-generation single- and double-tagged 

full-length Bassoon constructs that were recently generated in the lab as the tools 

to visualize the nanoscopic localization and orientation of Bassoon. These new 

constructs carry an intramolecular mEGFP/mRFP at the 97 amino acid position 

(adjacent to its N terminus), leaving the N-myristolyation (MGNEASLEG) 

consensus site of Bassoon intact. Additionally, the constructs carry a C-terminal 

mEGFP/mRFP tag that is optimized, by the removal of Bassoon’s stop codon, to 

increase the stability of constructs (Figure 9). 

 
Figure 9: A schematic of the second-generation Bassoon constructs used in this study. A map of 
Bassoon (1—3938 amino acids) protein consisting of a myristoyl motif (M); zinc finger domains 
(Zn1, Zn2); and coiled-coil domains (cc1—cc3) can be used to compare the generated constructs. 
Five full-length double- and single-tagged constructs and a double-tagged myristoyl motif missing 
G2A mutant were generated and tagged with either a mEGFP or mRFP at the N-terminal, 97th 
amino acid position and/or at the 3937th amino acid position at the C-terminus. 
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3.3.1. Characterization of full-length Bassoon constructs 

at the Golgi 

Endogenous Bassoon is localized to the trans-Golgi network sub-compartment 

upon observation with epifluorescence and super resolution microscopy (Figures 

3 and 4). To determine whether the second-generation constructs are associated 

with the correct Golgi sub-compartment and hence are available to be recruited 

on to correct transport organelles, all constructs were transfected and fixed in 

young developing neurons (i.e. between DIV5—8; during high trafficking) and co-

stained with the TGN38 marker.  

The double-tagged construct was treated with cold methanol for five minutes prior 

to normal paraformaldehyde fixation to quench autofluorescence of the mRFP 

and mEGFP tags and was subsequently stained with TGN38 and GFP antibody 

to visualize the construct. Methanol treatment is known not only to quench 

autofluorescence but also to wash out soluble proteins from the neuron, though 

Bassoon signals have been previously shown to be preserved and well 

characterized in methanol fixed neurons22,70.   

All five full-length constructs have high-intensity juxtanuclear signals, at the 

TGN38 marker signal, and are easily visualized with epifluorescence microscopy, 

without the requirement of a 19°block (Figure 4). These signals are visibly higher 

than that of endogenous Bassoon signals as is expected for transfected neurons, 

which produce many more molecules of Bassoon. Figure 5 reveals endogenous 

Bassoon signal sizes range up to 150nm. Bearing this information in mind and 

allowing for a higher expression level of the fusion protein, and a lower resolution 

limit of the epifluorescence scope, I meticulously excluded neurons that may 

have signal clusters in the soma larger than 1𝜇m. Neurons that have malformed 

somas, transfection signals within the nucleus and/or have a high recombinant 

protein expression in all neuronal processes were all qualified as characteristics 

representative of an over-expressed neuron. Consequently, from this point on, I 

picked only medium to low expressing neurons for my experiments (an example 

of this can be seen in Appendix C), as the intention of this study was to record 

close to innate protein localization in neurons. 

High-intensity signals of medium transfected neurons were observed not only 

localized close to the TGN but also observed as high intensity punctate signals in 

the axons and were often seen localized in growth cones, as is representative of 

young neurons developing towards making synaptic contacts. There appeared to 

be no noticeable difference in the juxtanuclear localization of the double-tagged 

construct from the single-tagged ones, the N-terminally tagged constructs from 

the C-terminally tagged constructs and a difference as a result of the application 

of either mEGFP or mRFP tags between the single-tagged constructs (Figure 

10). 
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Figure 10: Recombinant Bassoon localizes closely with the TGN38 in young neurons. 

A-T, Full-length double-and single-tagged Bassoon constructs were expressed in DIV7 

hippocampal cultures, with a DIV6 lipofectamine transfection followed by 24 hour incubation prior 

to paraformaldehyde fixation and stained with the TGN38 marker. Panels A, E, I, M, and Q 

represent 40X over views of the transfections and B-D, F—H, J—L, N—P, and R—T the zooms 

of their white square insets, respectively. Neurons in panels A-D were briefly fixed in cold 

methanol prior to normal fixation, to quench RFP and GFP autofluorescence and stained with 

TGN38 and a GFP antibody. Scale bars 10𝜇m (A, E, I, M, and Q) and 5𝜇m (B, F, J, N, and R). 
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These results conclusively show that an accurate localization of the second-

generation full-length Bassoon constructs was seen in young neurons at the 

TGN, which situates the protein in the correct sub-compartment to be loaded on 

to appropriate transport organelles. Furthermore, the localization of the 

recombinant Bassoon signals into axons and growth cones was indicative of 

unimpaired early trafficking mechanisms in the neurons and a good sign for the 

targeting and incorporation of these proteins into synapses.

 

3.3.2. Characterization of full-length Bassoon constructs 

at synaptic sites 

To test whether the new full-length Bassoon constructs target to synapses and 

get incorporated into the CAZ, calcium phosphate transfection was used to 

express all five full-length constructs in neurons at DIV3. The subcellular 

targeting of these fusion proteins were examined post DIV13, at a stage where 

the neurons had matured and known to possess many stable synaptic contacts90. 

All five constructs were checked for colocalization with a synaptic marker, 

synaptophysin and Piccolo (a core component of the CAZ). Transfected neurons 

were co-immunostained post a 0.1%Triton X-100 extraction. 

The AZPs like cytoskeletal proteins have been previously shown to be resistant 

to the Triton X -100 extraction, as the AZPs become insoluble when incorporated 

into the CAZ scaffold70.  

The double-tagged Bassoon constructs, RFP-Bsn-GFP and G2A-RFP-Bsn-GFP, 

were additionally treated with methanol to quench the autofluorescence of both 

the tags, between the 0.1% Triton X-100 extraction and normal 

paraformaldehyde fixation steps. This additional step is necessary as the 

collective fluorescence of both the tags is detected through F46-002—F46-006 

(green, orange, and far-red wavelength) filters available on our epifluorescence 

scope, leaving no channel free to stain for Piccolo. Fortunately an antibody in the 

350nm wavelength was available to label against synaptophysin and visualized 

GFP puncta of RFP-Bsn-GFP were colocalized with synaptophysin at 70.25% ± 

18.23% SD, indicating that the double-tagged Bassoon protein correctly targets 

to synaptic sites. The fusion protein also showed resistance to the Triton X-100 

treatment and had a 85.43% ± 18.42% SD colocalization with the endogenous 

population of Piccolo puncta present (Figure 11).   



Results                             Characterization of full-length Bassoon constructs: 

At Synaptic Sites 

69 

 

Figure 11: Double-tagged recombinant Bassoon colocalizes with synaptic markers in adult 
neurons. 

A—B, Immunostained DIV14 hippocampal neurons transfected with full-length dual tagged 

Bassoon construct, post a DIV3 lipofectamine transfection, and stained with the synaptophsyin 

marker (blue). Zoom of ROI b is represented in panels B and panels C represent a similar ROI for 

double-tagged Bassoon immuno-labeled for GFP antibody (green) and Piccolo (red) after a 90 

second treatment with to 0.1%Triton X-100 and five minute methanol wash. Graph D. 

quantification of (B—C); data are represented as mean ± SD, N=5 cells from two separate 

experiments for each quantification. Scale bars 10𝜇m (A) & 2𝜇m (B—C). 
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Figure 12: Single-tagged recombinant Bassoon also colocalizes with synaptic markers in adult 

neurons. A-L, Immunostained DIV14 hippocampal neurons transfected with full-length single-
tagged Bassoon constructs, post a DIV3 lipofectamine transfection, and co-stained with the 

synaptophysin (A, B D, E, G, H, J, L) or Piccolo marker.  M: Quantification of (A-L), data are 
represented as mean ± SD, N=5 cells from two separate experiments for each quantification.  

Scale bars 10μm (A) & 2μm (B—C).
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A similar trend was observed for the single-tagged Bassoon constructs where the 

N–terminally tagged mRFP-Bsn and mEGFP-Bsn constructs had 66.7% ± 12.9% 

SD and 62.64% ± 6.37% SD colocalization with synaptophysin and the C-

terminally tagged Bsn-mRFP and Bsn-mEGFP constructs had 52.72% ± 5.57% 

SD and 63.02% ± 20.33% SD colocalization with synaptophysin, respectively 

(Figure 12). This data suggest that on an average, per image, 63% of the total 

tagged Bassoon puncta, were being correctly trafficked and localized to synaptic 

sites positive for the synaptophysin marker (Figure 12).  

Additionally, these recombinant constructs also colocalized to a population of 

PSD95 or SHANK2 puncta (postsynaptic glutamatergic markers) and strengthen 

the observation seen with synaptophysin by verifying the correct subcellular 

targeting of these constructs to active presynaptic sites (Appendix B). 

Additionally, the single-tagged constructs mRFP-Bsn, mEGFP-Bsn, Bsn-mRFP 

and Bsn-mEGFP were also resistant to Triton X-100 and had 69.07% ± 5.62% 

SD, 64.85% ± 15.74% SD, 65.23% ± 7.28% SD and 76.97% ± 24.01% SD 

recombinant Bassoon puncta colocalizing with endogenous CAZ incorporated 

Piccolo, respectively (Figure 12). On an average, per image, of 72.3% of tagged 

Bassoon localized to Piccolo labeled AZs and suggesting that the second 

generation constructs behaved indistinguishably from the endogenous Piccolo 

upon Triton X-100 extraction and the first-generation Bsn1-3938 construct (that 

has a 72% of GFP puncta colocalization with Piccolo70. 

These results show that the second-generation Bassoon constructs fully define 

the properties of the full-length Bassoon protein, as these fusion proteins like the 

endogenous protein had no nuclear signal and high concentration of juxtanuclear 

signals in young neurons. These neurons matured with correct targeting and 

incorporation of Bassoon into the AZ’s cytomatrix at presynaptic sites. 

3.3.3. Characterization of full-length Bassoon myristoyl 

mutant at the Golgi and at synaptic sites 

Myristoylation is a common co-translational lipid modification brought about by 

the addition of a myristrate consensus via the N-myristoyltransferase (myristoyl–

CoA protein) to the N terminus of a desired protein. This type of N-terminal 

acetylation can mediate the interaction between two proteins, facilitate 

association and binding to membranes103. The myristoyl consensus site of 

Bassoon lies at its second amino acid position as a glycine, which we have point 

mutated into an alanine. This point mutant destroys the hydrophobic 

myristoylation modification that may associate Bassoon to various lipid bilayers 

such as Golgi membranes, transport or synaptic vesicle membranes and 

cytoskeletal molecules, aiding the targeting and proper orientation of the 

molecule on its way to the AZ. 
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In order to test whether the loss of the myristoyl consensus alters the targeting or 

localization of the Bassoon molecule, DIV6 lipofectamine transfection for Golgi 

association and DIV3 calcium phosphate transfections, matured in DIV14 

neurons to gauge synaptic targeting and CAZ incorporation were performed 

using the G2A-RFP-Bsn-GFP mutant construct. 

 

Figure 13: Mutation of the myristoyl group of Bassoon does not impede the normal Golgi and 
synaptic localization of the protein in young and adult neurons. 

Immunostained DIV7 (A, C—F) and DIV14 (B, G—N) hippocampal neurons transfected with full-

length myristoyl mutant Bassoon constructs, post a DIV3 lipofectamine transfection, are co-

stained with the TGN38 (A, C—F), synaptophysin (G—J) and Piccolo (K—N) markers.  O is the 

quantification of (G—N); data are represented as mean ± SD, N=6 cells from two separate 

experiments for each quantification. Scale bars 10𝜇m (A—B), 5𝜇m (C—F) and 2𝜇m (G—N).

The mutant fusion protein of G2A-RFP-Bsn-GFP construct localizes not unlike 

the full-length non-mutant constructs, in high-intensity juxtanuclear signals, 
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closely localized to the TGN38 marker signal (Figure 13). This indicates that the 

myristoyl motif does not impair localization of Bassoon to the TGN.  

The myristoyl motif also seems to permit normal trafficking and incorporation of 

Triton X-100 resistant recombinant Bassoon molecules into the AZ, as was 

observed by the average colocalizing Bassoon puncta population of 61.23 % ± 

7.115% SD with synaptophysin and 73.03% ± 4.199% SD with Piccolo (Figure 

13).

This signifies that the myristoylation motif may not be involved in orchestrating 

the transport or the sub-cellular localization of the fusion protein into synaptic 

sites. The myristoyl motif may still be involved in orienting the molecule at the 

TGN or at the synapse. This hypothesis is explored further, later in this chapter, 

in section 3.5.5. 

3.4. Super resolution localization of AZPs with 

nanobodies 

As section 3.2 demonstrates that all second-generation full-length constructs 

transport and localize like endogenous Bassoon proteins, they can hence be 

used as tool to study the innate localization and orientation of proteins to specific 

nanoscopic subcellular structures in the developing neuron. 

3.4.1. Nanobody approach of the localization of tagged 

proteins (STED) 

In order to observe specific details of AZP localization at a higher resolution 

without having the labeling strategy limit the observation, I used a combination of 

characterized eGFP- and mRFP-tagged Bassoon constructs and GFP and RFP 

nanobodies.  

The GFP and RFP nanobodies used are small, high-affinity, antibody-fragments 

created from a single amino acid chain taken from one of the two heavy chains of 

an alpaca IgG antibody molecule. This single amino acid chain is folded into a 

∼10–15kDa epitope-binding hypervariable domain that is usually 1.5nm in 

diameter and 2.5nm in height81. These nanobodies have been routinely used to 

gauge interactions between tagged proteins via pulldown assays84 and for the 

super resolution microscopy of single-molecule localization82,83,85. The GFP and 

RFP nanobodies are designed such that one nanobody can identify a single, 

three-dimensional epitope per fluorescent protein molecule, and were bought pre-

coupled to two molecules of bright organic Atto dyes that are suited for two-color 

STED microscopy. Each molecule of secondary Atto dye is ∼2–3nm in size, 

thereby making the entire structure of a GFP/RFP-nanobody pre-coupled with 

STED dyes, maximally 9nm in size in any direction. 
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The eGFP or mRFP tags on Bassoon fusion products are roughly each 4nm 

large. The fluorescent tags are boosted and visualized by the 9nm nanobody 

complex, allowing the localization of Bassoon molecules to be within a maximal 

13nm distance from the Bassoon epitope. This labeling protocol allows signals to 

be localized roughly three times closer to the molecule of interest, than with the 

application of antibodies. Additionally, it also improves the labeling frequency 

because large poly- and monoclonal antibody clusters inhibit labeling of epitopes 

within 30nm of any already labeled epitope94. To make the best use of these 

optimally labeled constructs, a two-color STED setup that regularly obtained a 

resolution of 30nm for Atto 594 channel and for 20nm for the Atto kk1212/647 

channel was used79. As every tagged Bassoon molecule is boosted with one 

nanobody complex, which generates a signal size smaller than of the 20nm 

resolution limit of the STED microscope, all signals ≥ 20nm can be assumed to 

represent the xy localization coordinates of the tagged Bassoon epitope (Figure 

14). 

 

 

Figure 14: Using GFP and RFP specific nanobodies to visualize of single molecules of tagged 

Bassoon protein under 30nm resolution. GFP and RFP tags localize ∼4 nm from the N and/or C- 
terminus of the Bassoon molecule and are visualized on STED scopes using specific 3-D domain 
binding GFP and/or RFP nanobodies (2.5 nm in diameter) that come pre-coupled to two 
molecules of ∼2-3 nm in size Atto dyes. The entire tag—nanobody complex is ∼13nm in size and 
significantly below the resolution of two-color STED scopes used in this study. 
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3.4.2. Localization of tagged AZPs at their respective 

sub-compartments (STED) 
To visualize the localization of tagged AZP proteins Munc13-1 and Bassoon, I 

transfected their most well characterized constructs, full-length eGFP-Munc13-

1100–102 and recombinant eGFP-95-Bassoon30,70,99,47. Both constructs have an N-

terminally tagged GFP that was boosted with the GFP nanobody pre-coupled to 

Atto 647 dyes. The AZPs were visualized with two-color STED microscopy at 

their respective Golgi compartment labeled with traditional antibodies for TGN38 

and GM130, respectively.   

With the increase in resolution the amount of visual colocalization of AZPs to the 

Golgi markers decreases, although 42.2% ± 14.9% SD of the total Munc13-1 

signals colocalize to the cis-Golgi marker and 36.2% ± 12.9% SD of 95-Bassoon 

colocalizes with trans-Golgi marker. Additionally all the signals in the 95-Bassoon 

and Munc13-1 transfected images were recorded and their populations grouped 

in two distance categories from the Golgi signals. A 0—100nm distance range 

from Golgi signals represents signals at the Golgi lamella, as typically the 

diameter of a single Golgi marker signal was observed to be around 80 nm and 

an extra + 20nm allowance was added to the range as the TGN structure is a 

large three-dimensional structure, which may be surrounded by out of focus 

signals neighboring the focal plane imaged. A 101nm—1𝜇m distance range from 

Golgi signals represents AZP signals between and around the TGN lamella. For 

both 95-Bassoon (fraction of total population: 0.41 at lamella and 0.59 away from 

lamella) and Munc13-1 (fraction of total population: 0.39 at lamella and 0.61 away 

from lamella) there is a significantly higher population of signals distributed away 

from the Golgi lamella than at the lamella. This could signify a large population of 

signals, which were previously assumed to be colocalized with confocal 

microscopy, to be AZPs loaded on to transport carriers in transit to or from the 

Golgi compartments (Figure 15). 
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Figure 15: Super resolution localization of GFP tagged Bassoon (95-3938) and full-length 
Munc13-1 at their respective Golgi sub-compartments.  

A and E, wide field over view of transfected DIV7 neurons immunostained for recombinant 

Bassoon and Munc13-1 using the GFP nanobody with TGN38 or GM130 antibodies, respectively. 

B and F, represent blow-ups of a and e ROIs, which were imaged first with confocal and then two-

color STED microscopy, C—D and G—H, respectively. STED zooms of Bassoon (d) and 

Munc13-1(i). I, colocalization quantification and J distribution quantification at and away from 

Golgi lamella i.e. 0—100nm or 101nm—1𝜇m, respectively. Data represented as mean ± SD, 

N=10 cells from two separate experiment, *p < 0.05. Scale bars 1𝜇m (B—E). 
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3.4.3. Localization of full-length Bassoon construct at 

neighboring Golgi structures 

Low colocalizations of recombinant Munc13-1 and 95-Bassoon signals were seen 

at their respective cis- and trans-Golgi network lamella at a 20 nm resolution limit 

(Figure 15). This result suggests that visualizing these AZPs at super-resolutions 

might reveal clearer picture of their nanoscopic localization and their low 

colocalizations might actually reflect their localization to a different neighboring 

Golgi compartment than previous assumed. Additionally, the use of traditional 

antibody complexes to label the Golgi markers may boost the out of focus Golgi 

lamella signals, presenting the nanobody labeled AZPs at the wrong Golgi 

localization. To test whether with an increase in resolution it was possible to 

visualize AZPs at neighboring Golgi compartments and to employ nanobodies in 

both STED channels, I transfected a RFP tagged full-length Bassoon construct 

and CFP-Golgi construct, and visualized them using the RFP and GFP nanobody 

in the somas of young (DIV6) neurons.  

The CFP-Golgi construct targets 81 amino acids of the N-terminal cytoplasmic 

domain of the ß-1,4-galactosyltransferase1 transmembrane protein that localizes 

specifically in the lamellae of the trans-Golgi compartment104.  In contrast the 

TGN38 protein is an integral membrane protein of the trans-Golgi network 

lamellae and is retained by a different mechanism into the TGN from that of the 

transferase enzymes of the trans-Golgi105. To visualize the difference in 

localization of the trans-Golgi compartment and the trans-Golgi network 

compartment with two-color STED, the TGN38 antibody was labeled in CFP-

Golgi transfected neurons and revealed no colocalization upon visual inspection, 

signifying the presence of two neighboring Golgi compartments occupying 

different z-position localizations in the soma. In order to ascertain the specific 

localization of full-length Bassoon to the two neighboring Golgi compartments, 

the tagged molecule was visualized in CFP-Golgi-transfected and TGN38-labeled 

neurons.  

Surprisingly, there is a significantly higher yellow visual colocalization signal of 

the mRFP-Bsn construct to the TGN38 lamella, compared to almost no 

colocalization seen with the CFP-Golgi construct (Figure 16). This result 

illustrates that Bassoon is specifically localized only to the trans-Golgi network 

compartment and that irrespective of the use of nanobodies or antibodies to label 

the Golgi sub-compartments, high colocalization of an AZP can be detected at its 

expected localization.  

This result raises a discrepancy regarding the low colocalization of the 95-

Bassoon recombinant protein observed at the TGN38 marker, while full-length 

mRFP-Bsn recombinant protein displays a high colocalization. This difference in 

colocalization of the same AZP molecules, in constructs that both reach synaptic 

sites, signifies a role of the missing 94 amino acids of Bassoon’s N–terminus in 
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its proper localization, orientation and hence consequently its transport on correct 

transport precursors to synapse. This topic is explored in detail in section 3.5.5. 

 

 
Figure 16: Full-length Bassoon localizes specifically to the trans-Golgi network compartment 
instead of the trans-Golgi sub-compartment. DIV7 hippocampal neurons were transfected with 
CFP-Golgi (trans-Golgi sub-compartment maker), full-length single-tagged mRFP-Bsn construct, 

and immunostained using GFP and/or RFP nanobodies against tagged constructs and from A—E 
with TGN38 (trans-Golgi network maker). Two-color STED images of both Golgi sub-

compartment markers (A—E), CFP-Golgi and RFP-Bsn constructs (F—J), and RFP-Bsn at 

TGN38 (K—O).  A, F, K show wide field over view of transfected construct, B, G, L the confocal 

zoomed image of the soma, inset a reflects both the single channels and merged STED 

deconvolved (Deconv.) images of C—E, H—J, and M—O, and b the STED zooms.  With the 
images in each panel, a schematic diagram of the transfected constructs used is supplied.  Scale 

bars 4μm (B, G and L) and 1μm (E, J and O). 



Results                    Orientation and organization of the Bassoon molecules: 

from the Golgi to synapses 

79 

Orientation and organization of the Bassoon 

molecule at the trans-Golgi network, on transport 

vesicles and at synaptic sites 

It has already been shown that endogenous AZP Bassoon signals are best 

visualized at 37°C (Figure 3 and Figure 4), at and around the trans-Golgi network 

lamella, and are predominantly 96—150nm in size at their juxtanuclear 

localization (Figure 5). These endogenous Bassoon signals are uniformly 

distributed along the axons of young neurons (Figure 7), and roughly 30% of their 

population was observed co-trafficking with other AZPs (Figure 8). 

Additionally, full-length tagged Bassoon constructs, characterized to reflect 

endogenous Bassoon localizations (Figure 10—Figure 12). 

In comparison, the well-characterized first-generation GFP-95-Basoon construct, 

despite also being observed colocalizing with a subpopulation of dense-core 

vesicles positive for the Syt4 marker in the soma (Figure 6), has a significantly 

lower colocalization to the TGN lamella (Figure 9). This recombinant protein was 

also shown to be loaded on to a large number of clear-core vesicles at juxta-

nuclear positions (Dresbach and Wittenmayer, unpublished). 

These results raise interesting questions about the orientation and localization of 

the Bassoon molecule on its journey to the synapse and how deletion mutants of 

Bassoon alter these processes that may ultimately influence AZ assembly. 

To address these topics, I will in this section study the following: 

1) the orientation of single- and double-tagged full-length Bassoon constructs 

at TGN markers with STED microscopy; 

2) the orientations of a range of Bassoon mutants at the TGN with STED 

microscopy; 

3) the orientation of single-tagged Bassoon molecules on transport vesicles 

4) the organization of Bassoon molecules at the TGN with FLIM; 

5) the organization of Bassoon molecules at synaptic sites with FLIM; 

6) a comparison of the organization of Bassoon molecules as they move from 

the TGN, on transport vesicles, and at the synapse. 

 

Together, these questions will help us visualize the proper localization, 

orientation and organization of an essential AZ backbone protein Bassoon and 

will reveal how AZP molecules are organized before and after AZ assembly. 
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3.5. Localization of full-length Bassoon constructs 

to the trans-Golgi network 

The orientation of Bassoon at synapses has been previously shown via 

stochastic optical reconstruction microscopy (STORM) and electron microscopy 

(EM), where the C- terminus of the Bassoon molecule faces the presynaptic 

membrane and its N- terminus faces the away from the presynaptic membrane 

and lies roughly 50nm from the C-terminus52,76. The precise orientation of 

Bassoon has not as yet been studied at another substructure; hence, to begin 

with, this subsection will delve into Bassoon’s orientation at the TGN.  

 The trans-Golgi network (TGN) is a tubular network of lamellae that forms a 

separate subcellular compartment in the soma of neurons. The TGN usually 

follows the trans-Golgi compartment and is a major station for the recruitment, 

sorting, and transport of proteins to various subcellular destinations106. TGN38 is 

a specific type I, integral membrane protein found in the TGN lamella. TGN38 is 

known to form heterodimers with TGN46, which in turn promotes constitutive 

recycling of TGN38 positive transporters and its cargo, back and forth from the 

TGN to plasma membrane. TGN38 is a 268 amino acid (a.a.)-long protein that 

possesses a luminal domain at its N-terminus, followed by a 21 a.a. hydrophobic 

transmembrane region and a 33 a.a-long C-terminal tail that contains the TGN 

targeting motif105. The TGN38 marker used in this section recognizes a large 

portion (31—244 amino acids) of the TGN protein including its transmembrane 

domain and has been previously used in the field for targeting and localization 

experiments30,32,70. Full-length single- and double-tagged Bassoon constructs that 

possess either a mEGFP and/or a mRFP tag at either termini, which have been 

characterized in Figure 10—Figure 12, will be observed at the TGN38 lamella. 

3.5.1. Orientation of full-length double-tagged construct 

at TGN38 

To visualize both termini of a tagged full-length Bassoon molecule, the double-

tagged mRFP-Bsn-mEGFP construct was used. The termini of the construct were 

visualized by employing either the RFP nanobody or the GFP nanobody at the 

TGN38 marker and imaged using a two-color STED setup. The DIV7 transfected 

neurons were found and first imaged in the wide field mode to gauge the quality 

of transfection. A 20𝜇mX20𝜇m area containing the soma of the transfected 

neurons is focused and scanned in the confocal mode, at the z-plane containing 

the highest TGN38 signal, and a 10𝜇mX10𝜇m area within the confocal image 

was then scanned for both channels in the STED mode. This standard imaging 

process is applied for the acquisition of all STED images in this section.  
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STED imaging reveals a striking visual of N-terminal Bassoon signals colocalizing 

to the TGN38 signals (seen as white Bassoon punctate signals), and C-terminal 

Bassoon signals predominantly appear to be non-colocalized signals close to the 

TGN38 signals (seen as green Bassoon punctate signals). The C-terminal 

Bassoon signals appear to be high-intensity signals that are in focus with the 

TGN38 signals, although their localization appears to be next to rather than on 

the TGN38 signals. Further inspection into the population of colocalizing Bassoon 

signals demonstrates the presence of a significantly higher number of 

colocalizing N-terminal Bassoon signals/image (67.5% ± 12.5% SD), in 

comparison to the 29.8% (± 7.7% SD) of C-terminal Bassoon signals/image that 

appear colocalized with the TGN38 marker.  

This suggests that the colocalizing N-terminal Bassoon signals and the TGN38 

signals are located within the 20nm resolution limit of the STED microscope and 

that the large fraction of non-colocalizing C-terminal Bassoon signals are not. 

To gather a detailed understanding of the localization of N- and C-terminal 

Bassoon signals, an analysis of the distribution pattern of the Bassoon signals 

was conducted and sorted in two distance categories: a) 0—100nm (representing 

signals that are at or close to the 80nm TGN38 lamella signals) and b) 101nm—

1𝜇m distance category (representing all signals that are between and around 

TGN38 lamella). Signals further than 1𝜇m in distance from the TGN38 lamella, in 

any direction, were excluded from the analyses and considered to be AZP 

molecules that were not being oriented at the trans-Golgi network.  

The analysis reveals a significantly higher fraction of N-terminal Bassoon signals 

located on average 32.5nm ± 8nm from the TGN lamella, within the distance 

category of 0—100nm (0.67 ± 0.1 SD), in comparison to its signals in the 

101nm—1𝜇m distance category (0.33 ± 0.1 SD) which are located on average at 

210.6nm ± 13nm. An opposite trend is observed for the C-terminal Bassoon 

signals, which display significantly higher signal fractions residing within the 

distance category of 101nm—1𝜇m (0.63 ± 0.1 SD) at an average distance of 

229.4nm ± 5.3nm, rather than the 0—100nm category (0.37 ± 0.1 SD) that 

localizes on average 60.4nm ± 7nm from the TGN lamella (Figure 17 and 

Appendix G for average distances). 

These results demonstrate that the N-termini of Bassoon molecules colocalize 

with the TGN38 signals and are localized below the 20nm resolution limit to be 

observed as such, and are distributed within 0—100nm of the TGN38 signals, 

while the C-terminus of the Bassoon molecules are localized close to TGN38 

signals and are distributed within the distance range of 101nm—1𝜇m. 
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Figure 17: Orientation of mRFP-Bsn-mEGFP at the trans-Golgi network. DIV7 hippocampal 
neurons transfected with double-tagged full-length Bassoon, immunostained with the trans-Golgi 

network marker TGN38 and Bassoon’s N–terminus using a RFP-nanobody-Atto594 (A—G) or its 

C–terminus using a GFP-nanobody-Atto594 (H—K). The experimental schematic demonstrating 
the acquisition of two-color STED images begins with the wide field over view of the transfected 

neuron (A), its corresponding confocal over view of the soma, with GFP autofluorescence in blue, 

(B) and a 10μm X 10μm inset scanned in STED mode to visualize the construct’s N—terminus 

(C, D) and C—terminus (H). Zoomed split and merged channels of E—G and I—K, are 

representations of the insets in the STED images D and H respectively. L represents the 

colocalization quantification, and M represents the distribution quantification at and away from 
TGN lamella i.e. 0—100nm or 101nm—1μm, respectively. Data are represented as mean ± SD, 
N=10 cells from two separate experiments, statistically tested with a one-way annova with the 

Tukey’s multiple comparison’s post-hoc test ***p ≤ 0.001. Scale bars 2μm (B) and 1μm (C—K). 
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3.5.2. Orientation of full-length single-tagged constructs 

at TGN38 

To verify whether the introduction of fluorescent tags on both the termini of all 

transfected Bassoon molecules creates an artificially exaggerated orientation of 

the molecule at TGN, single-tagged Bassoon constructs were transfected and 

imaged, following the standard protocol used for Figures 10 and Figure 16.  

In addition to rule out the possibility of varying avidities of the RFP and GFP 

nanobodies influencing the orientation results obtained from the mRFP-Bsn-

mEGFP transfections (Figure 17), RFP-tagged full-length mRFP-Bsn and Bsn-

mRFP constructs were compared.  

The N-termini of Bassoon visualized by the RFP tag of mRFP-Bsn is observed as 

white, punctate, colocalized signals that have a significantly higher population of 

signals colocalizing to the TGN38 (84.8% ± 4.6% SD), in contrast to the large 

population of non-colocalizing Bsn-mRFP signals present. Although 44.4% ± 

2.4% SD population of the all Bsn-mRFP signals were seen to colocalize with 

TGN38 signals and were distributed within 0—100nm distance category at an 

average distance of 50.3nm ± 3nm from the TGN lamella. These signals 

represented only a 0.45 faction ± 0.03 SD of the total signals/image. The majority 

of the Bsn-mRFP signals, were in close proximity but not at the TGN38, was 

distributed within the 101nm—1𝜇m distance category at an average distance of 

192nm ±11.6nm from the TGN38 and represented the 0.55 fraction (±0.03 SD) of 

total population of its signals. The inverse observation is apparent for the highly 

colocalized mRFP-Bsn signals that are predominantly distributed within the 0—

100nm distance category at an average distance of 30.5nm± 6.9nm from the 

TGN lamella, representing the 0.84 fraction ± 0.04 SD of the total signal 

population.  While the significantly lower fraction of mRFP-Bsn signals are 

distributed within 101nm—1𝜇m distance category at an average distance of 

154nm ± 12nm from the TGN, representing the population fraction size of 0.15 ± 

0.04 SD (Figure 18 and Appendix G). 

These results are similar to those obtained from the double-tagged Bassoon 

constructs and show that despite the number and type of tag used the N-termini 

of Bassoon molecules are largely colocalized and oriented towards the TGN38 

lamella while C-termini of Bassoon are mainly localized close to the TGN38 and 

appear to be oriented away from the TGN38 lamella. 
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Figure 18: Orientation of mRFP tagged full-length Bassoon constructs at the trans-Golgi network 
(TGN).Transfected DIV7 hippocampal neurons immunostained for the either termini of full-length 
Bassoon with RFP-nanobody-Atto594 and the TGN38 marker. Two-color deconvolved 10μm X 

10μm STED images of the N–terminus of Bassoon (A) and the blow-ups of its inset (B—D) or the 

C–terminus of Bassoon (A) and the blow-ups of its inset (F—H). I represents the colocalization 

quantification, and J represents the distribution quantification at and away from TGN38 lamella 
i.e. 0—100nm or 101nm—1μm, respectively. Data are represented as mean ± SD, N=10 cells 
from two separate experiment, statistically tested with a one-way annova with the Tukey’s multiple 

comparison’s post-hoc test *p < 0.05 and ***p ≤ 0.001. Scale bars 1μm (A—H). 

 

 

3.5.3. Orientation of full-length single and double-tagged 

constructs at Syn6 

To ascertain whether the orientation of Bassoon is specifically regulated to the 

TGN38 domain or whether the orientation of Bassoon is uniform all over the TGN 

lamella, the orientation of double-tagged and single-tagged full-length Bassoon 

constructs were visualized at another TGN lamella protein; Syntaxin6 (Syn6),  

Syn6 much like TGN38 is a protein present at the lamellae of the trans-Golgi 

network that is involved in sorting and trafficking of proteins from the TGN to the 

plasma membrane and back. Syn6 is a 255 a.a.-long protein that possesses a N-

terminal soluble SNARE domain that localizes Syn6 to the TGN, and possess an 

additional sorting motif that promotes retrograde transport of the Syn6 positive 

vesicles. It also possesses a hydrophobic C-terminal transmembrane region that 

acts as a membrane anchor and regulates the sorting of proteins at the TGN 

lamella107,108. The antibody toward Syn6 targets an epitope spanning 6—136 

amino acids that contains its N-terminal TGN-targeting motif and therefore works 

as an additional marker to label the TGN lamella. Images of the single- and 

double-tagged Bassoon constructs were imaged and processed with the 

standard STED imaging protocol. 



Results                  Orientation of full-length Bassoon constructs to the TGN 

85 

Remarkably, the N-terminally tagged Bassoon signals of both the mRFP-Bsn-

mEGFP and mRFP-Bsn construct have high colocalizations with the Syn6 signals 

at 71.8% and 75.8% respectively, while the C-termini of the mRFP-Bsn-mEGFP 

(23.8%) and Bsn-mRFP (43.7%) construct have significantly lower number of 

colocalized signals. 

These results reflect the same colocalization patterns as those observed in the 

TGN38 images and therefore expectedly present with similar signal distribution 

patterns. 

Wherein, significantly higher fraction of signals were distributed within 0—100nm 

distance category for the N-termini of single- (0.8 population fraction ± 0.03 SD) 

and double-tagged Bassoon molecules (0.71 population fraction ± 0.02SD), while 

the major fraction of C-terminal Bassoon signals from the single- (0.62 population 

fraction ± 0.03 SD) and double-tagged (0.65 population fraction ± 0.04 SD) 

images lay in the 101nm—1𝜇m category (Figure 19). 

This result reflects that Bassoon molecules are orientated robustly all over the 

TGN lamella with their N-termini localizing within 0—100nm of the TGN lamella, 

irrespective of the application of either TGN38 or Sny6 marker, and are present 

as highly colocalized signals even after being resolved by STED. The C-termini of 

tagged Bassoon molecules are also always seen localized close to the TGN 

lamella, irrespective of the marker used, and are present as clearly resolved 

signals that are majorly distributed within the 101nm-1𝜇m distance category. 
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Figure 19: Orientation of single and double-tagged full-length Bassoon constructs at the trans-
Golgi network marker: Syntaxin 6 (Syn6).  

Transfected DIV7 hippocampal neurons immunostained for the either or both termini of full-length 

Bassoon with RFP-nanobody-Atto594 and/or GFP-nanobody-Atto647 with the Syn6 marker. Two-

color, deconvolved, 10𝜇m X 10𝜇m STED images and their insets, representing the N–terminus of 

double-tagged and single-tagged Bassoon constructs in panels A—D and I—L, respectively. 

Similar STED images of the C–terminus of the double-tagged and the single-tagged Bassoon 

constructs, are available in panels E—H and M—P, respectively. Graph Q quantifies the amount 

the colocalization and graph R quantifies the signal distributions at and away from TGN38 lamella 

i.e. 0—100nm or 101nm—1𝜇m, respectively. Data are represented as mean ± SD, N=10 cells 

from two separate experiment, statistically tested with a one-way annova with the Tukey’s multiple 

comparison’s post-hoc test **p ≤ 0.01 and ***p ≤ 0.001. Scale bars 1𝜇m (A—P). 
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3.5.4. Detailed orientation of Bassoon molecule at the 

trans-Golgi network 

STED reveals that N-terminal full-length Bassoon signals colocalize within the 

20nm resolution limit of the setup, and shows the significantly higher populations 

of its signals distributed within the 0—100nm distance range. To repeat this novel 

observation with another high-resolution microscopy technique and potentially to 

reveal new insights about the detailed localization of the N-terminus of Bassoon 

to the TGN lamella, I performed fluorescence-lifetime imaging microscopy (FLIM). 

This imaging technique can be used to display interactions of tagged proteins 

within 0—5nm of each other. Young mRFP-Bsn expressing hippocampal neurons 

were stained with the TGN38-Alexa488 and fluorescence lifetime of Alexa488 

was measured in order to determine FRET with RFP-Bsn. FLIM recordings were 

imaged in the soma at a focal plane presenting the highest intensity signals of the 

TGN38 marker. The TGN38 labeled Alexa488 lifetime in transfected neurons 

were compared to the Alexa488 lifetimes of the TGN38 marker in untransfected 

somas of neurons, from the same culture and coverslip. 

A lifetime of 1.75 ns was recorded at TGN38 positive structures, which were 

represented by a yellow to red color (Figure 19 F), in untransfected neuronal 

somas. The N-terminus of mRFP-Bsn is labeled using the RFP-nanobody-

Atto594 and the RFP nanobody is expected to FRET with the Alexa488 

fluorophore, when both dyes are present within a 5nm distance of each other. A 

FRET interaction is reflected by lower lifetimes in nanoseconds and is 

represented by a cooler look up table (LUT) color.  

The lifetime of TGN38 in the presence of the N-terminally tagged RFP molecules 

of full-length mRFP-Bsn, is 1.7ns and insignificantly different from the TGN38 

lifetimes in untransfected neurons. This is also confirmed by visualizing the 

yellowish-red LUT color for the transfected and its neighboring untransfected 

soma. This implies that the RFP tag stained with RFP-nanobody-Atto594 is not 

within 5nm of the Alexa488 dye, and by relation, the RFP-tag at the 97th a.a. of 

Bassoon and the TGN38 antibody epitope site do not directly interact (Figure 20). 

Additionally this result shows that the colocalizing signals of the RFP tag at the N-

terminus of Bassoon, at the TGN38 signals, seen within the 20nm resolution of 

STED are in fact localized between 6 and 20nm from each other. More 

significantly it highlights that as Bassoon is oriented with its N-terminus facing the 

TGN38, the first few amino acids in the N terminus of Bassoon must be involved 

in its proper localization and orientation to the TGN. An interesting candidate that 

might specifically influence this interaction is the hydrophobic myristoyl group 

present at the 2nd amino acid of Bassoon.  Myristoyl mutants as well as mutants 

lack either one of both termini of Bassoon may present alternative orientation of 
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the Bassoon molecule at the TGN. This will be investigated in detail the next 

subsection (3.5.5). 

 
Figure 20: FLIM imaging of N-terminus of Bassoon to TGN38 to visualize interaction within 5nm.  

A—F and G—L, represent DIV7 untransfected and transfected mRFP-Bsn hippocampal neurons 

labeled with the RFP-nanobody-Atto594 to visualize the construct and TGN38 visualized and 

boosted with an Alexa488 dye, respectively. A—C and G—I represent the immunolabeling of the 

samples and D—F and J—L represent the Alexa intensity and lifetime information. Insets of C 

and I were imaged for lifetimes in D—F and J—L, respectively. N=4 from two cultures. LUT 

lifetimes range from 1.5 to 2.0ns. 
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The N-terminus of Bassoon orients the molecule with 6—20nm of TGN  

All data so far points at full-length Bassoon molecules being oriented with its N 

terminus facing the TGN lamella, where the 97th amino acid RFP tag appears 

colocalized to the TGN marker signals and is localized within 6 and 20nm from it. 

Bassoon molecules appear to consistently be oriented at the TGN, thus the 

prevalence of random Bassoon orientations can be ruled out, as it would be 

reflected in the average distributions of its N- and C-termini values, which would 

be roughly similar. Centrally symmetric orientations are evident for small synaptic 

proteins that form oligomers like the postsynaptic protein Homer1, which has 

been reported to have nearly identical positions for its N- and C-termini at the 

post synaptic membrane76. Since Bassoon possesses a central oligomerization 

domain70, central symmetry influencing the molecule’s orientation is a concern 

that might be ruled out at the TGN, as the molecule appears extended with 

significantly different distance distributions of its N- and C-termini. 

 In addition, the exact averages distance of N- and C-terminal Bassoon signals, in 

the two distance categories, (tabulated in detail in Appendix G) shows that N- and 

C-termini of Bassoon localize on average in two populations, one that is close 

and appears localized to the TGN and one population that is further away from 

the TGN lamella and represents molecules that are being sorted onto transport 

precursors. On average the closer population of N-terminal signals of Bassoon, 

irrespective of whether they belong to single- or double-tagged construct, localize 

30—32nm from the TGN while the C-termini of Bassoon localize on average 

around 50—60nm and indicate that full-length Bassoon molecules extend upto 

30nm at the TGN (Figure 21). The second population of full-length Bassoon 

signals have very similar distances of N- and C-termini of Bassoon molecules, 

that both localize within 160—220nm from the TGN lamella and reflect the 

population of equidistantly placed Bassoon molecules on top of transport 

precursors. To understand the orientation of Bassoon molecule on transport 

packets an additional study was carried out with full-length single tagged 

Bassoon constructs on dense-core vesicles, later in this chapter in section 3.6. 

Together these results robustly show the orientation of Bassoon at the TGN, 

where it appears in an extended conformation with its N-terminus facing the TGN 

lamella and its C-terminus facing away from the lamella (Figure 20). The same 

orientation of Bassoon was observed in images labeled with TGN38 and Syn6, 

TGN lamella markers, and from the transfections of single- and double-tagged 

Bassoon constructs (Figure 17—Figure 19). 

This novel finding of an extended orientation of Bassoon at the TGN 

compartment bears interesting functional implications. It invites the assumption 

that Bassoon, much like Bassoon and piccolo at synapses, possesses a filament-

like confirmation at the TGN52,77. As Bassoon is localized to the TGN with Piccolo 
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and ELKS232, its extended confirmation may allow the recruitment of others AZPs 

to form subsets of AZPs that might be loaded onto transport packages together. It 

might also act a tether between different types of transport vesicles, promoting 

the larger AZP signal sizes seen at the soma (Figure 5). Additionally the 

extended confirmation of Bassoon reveals its central oligomerization domain, 

which in turn could promote clustering and hence recruitment of Bassoon and 

piccolo molecules to the TGN, so as to properly orient and direct them onto 

transport precursors. 

Comparing the orientation of various deletion constructs of Bassoon at the TGN 

might cast light onto the implications of Bassoon’s extended orientation at both 

the TGN and the synapse. 

 
 
 
Figure 21: A summary of the orientation of full-length Bassoon molecules at the trans-Golgi 
network.  

Transfected DIV7 hippocampal neurons, visualized with two-color STED imaging, immunostained 

with either trans-Golgi network marker TGN38 or Syn6 and expressing any full-length Bassoon 

molecule (irrespective of the presence of the myristoyl motif) has high colocalization with the TGN 

marker at its N–terminus (A) and low colocalization with the TGN marker at its C–terminus (B).A 

and B: representative images from Figure 17. C, A diagram demonstrating the orientation and the 

minimum average distance of the N- and C-terminal tags of RFP-Bsn-GFP at the TGN lamella. 

Scale bars 1𝜇m (A—B). 
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3.5.5. Localization of Bassoon mutants at the trans-Golgi 

network 

To understand the influence of Bassoon’s orientation at the TGN and to compare 

the change in orientation brought about by deleted domains and motifs from the 

Bassoon molecule, first- and second-generation mutant Bassoon constructs are 

imaged and described in this subsection. 

The extensively cited and well-characterized first-generation deletion mutant 

constructs of Bassoon: GFP-Rbb26Bsn that lacks both the N- and C-terminus of 

Bassoon molecule (2088-2038a.a.) and GFP-95-Bassoon that lacks the first 94 

a.a. of the molecule were visualized with STED microscopy. Using these 

constructs enabled me to understand the effect the loss of the two termini of 

Bassoon have on its orientation at the TGN.  

In addition, the second-generation myristoyl mutant Bassoon construct was also 

imaged with STED in order to understand the role the myristoyl group plays in 

orienting and localizing the N-terminus of Bassoon at the TGN lamella. 

Localization of Bassoon constructs lacking one or both termini 

at the TGN 

The GFP-Rbb26Bsn construct spans from amino acids 2088 to 2563. This 

sequence contains the coiled-coil 2 (CC2) region of Bassoon and is also known 

as the Bassoon Golgi Binding Region (BsnGBR), as it is suggested to be the 

hetero-/homo-oligomerization domain of Bassoon. This construct has been 

previously shown to accumulate onto Golgi membranes and subsequently 

decreases the endogenous Bassoon levels at synaptic sites in transfected 

neurons3,. In addition, the construct was shown to form intracellular clusters with 

various sized Bassoon cDNA clones that also contain the CC2 domain, in a yeast 

two-hybrid assay, promoting its ability to form oligomers30,32.  

On the other hand, unlike the GFP-Rbb26Bsn construct, the GFP-95Bassoon 

construct has been shown to successfully traffic and integrate into presynaptic 

CAZ. Therefore the C-terminus for Bassoon is important for its transport, 

although the missing N-terminus in this construct may reveal the role these first 

94 amino acids have to play in orienting the protein at the TGN. 

Both these constructs were transfected in young hippocampal neurons, 

visualized using the GFP-nanobody-Atto647 at the TGN38-labeled TGN lamella 

and imaged with two-color STED microscopy following the standard protocol 

described before. 
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As these constructs have been previously characterized in other studies, I have 

not included their characterization here, although representative confocal images 

of both constructs at the Golgi can be referred to in Appendix D. 

 

Figure 22: Orientation of first-generation mutant Bassoon constructs at the trans-Golgi network. 
DIV7 hippocampal neurons transfected with GFP tagged Bassoon mutants devoid of Bassoon’s 

N–terminus, i.e., (95-3938) 95-Bsn construct (A—D), and its N– and C–termini (2088-2038), i.e. 

Rbb26Bsn construct (E—H), were visualized with a GFP-nanobody-Atto647 and TGN38 marker. 

Insets of the two-color STED deconvolved images in A and E, are represented in panels B—D 

and F—H, respectively. Graph I and J: quantifications the colocalization and signal distributions, 

respectively. Data are represented as mean± SD, N=10 cells from two separate experiment, 

statistically tested with a one-way annova with the Tukey’s multiple comparison’s post-hoc test *p 

< 0.05 & ***p ≤ 0.001. Scale bars 1𝜇m (A—P). 

 

Both N-terminally tagged deletion mutants 95-Bsn (36.2%) and Rbb26-Bsn 

(41.5%) constructs have a significantly lower number of colocalizing signals at 

the TGN38 lamella compared to the RFP-Bsn construct (84.8%). A small 

population of colocalized signals also translates into significantly higher 

populations (0.60 population fraction ± 0.04 SD) of the mutant Bassoon signals of 

95-Bassoon localized 232nm±41nm, and Rbb26-Bsn (0.67 population fraction ± 
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0.03 SD) are distributed 243nm±29nm away from the TGN38 lamella, in the 

101nm—1𝜇m distance category (Figure 22 and Appendix G).  

Despite the low colocalization rate of Rbb26-Bsn at the TGN, it is fascinating that 

this relatively small piece of Bassoon, spanning 450 amino acids, is still observed 

in close association to, although not at, the TGN38 signals. This result is similar 

to the previous observations noted for the C-terminal signals of full-length 

Bassoon and implies that like full-length Bassoon, Rbb26-Bsn is correctly 

recruited to the TGN but maybe is incorrectly organized at the TGN. These 

observations could be a caused by the CC2 domain of Bassoon, expressed by 

the Rbb26-Bsn construct, oligomerizing with endogenous Bassoon molecules, 

which are correctly oriented at the TGN. 

In comparison, the 95-Bassoon signals also were observed associated to the 

TGN but not colocalizing with it and presented a signal distribution pattern similar 

to the C-termini of full-length Bassoon. As the 95-Bassoon construct also 

contains a functional CC2 domain, its association to the TGN may also be a 

result of the molecule being correctly recruited, but incorrectly organized, at the 

TGN by the Rbb26 domain. 

Nonetheless, both constructs lack a significant portion of Bassoon’s N-terminus, 

which in turn distinctly reduces the colocalization of the molecules at the TGN 

lamella. This result reveals that the lack of the N-terminus of Bassoon deprives 

the molecules from being correctly localized at the TGN and shows that the first 

94 amino acids of Bassoon are important for Bassoon to attain its extended 

orientation at the TGN. 

Unpublished EM data from our lab show DAB precipitates of 95-Bassoon loaded 

onto a large number of clear-core vesicles and a handful of dense-core vesicles 

in the soma (Dresbach and Wittenmayer, unpublished). This observation deviates 

from the relatively small population of endogenous AZP signal sizes 

corresponding to clear-core vesicles observed in Figure 5 and suggests that 95-

Bassoon may be incorrectly loaded on the wrong population of transport carriers. 

In light of the role of the N-terminal 94 amino acids in orienting the Bassoon 

molecule to the TGN lamella, the EM observation from Dresbach and 

Wittenmayer (unpublished), provides a vital link between the orientation of the 

molecule and its correct sorting and loading onto transport vesicles. Though to 

understand how the orientation of Bassoon facilitates these processes, a detailed 

understanding of how the N-terminus of Bassoon and TGN lamella interact is 

needed. 
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Role of the myristoyl group of Bassoon in orienting the molecule 

at the TGN 

An ideal motif within Bassoon’s N terminus, to study this question, is its 

hydrophobic myristoyl motif at the very N-terminal tip of the molecule. The 

second-generation constructs were designed with the purposeful intention to 

promote the myristoyl group’s inherent interactions during orientation, transport 

and assembly of AZPs. To reveal these interactions a point mutated Bassoon 

construct was created, in which glycine was changed to an alanine, at the 2nd 

amino acid position therein destroying the myristoyl motif. This construct 

characteristically accumulates around the TGN in young neurons and gets 

assimilated at synaptic sites (Figure 13). Although this construct does not appear 

to affect the transport of the recombinant protein, it may be the interaction site 

between Bassoon’s N-terminus and the TGN lamella as myristoyl groups are 

known to preferentially integrate into the lipid layers of membranes103. 

To dissect in detail the exact means by which the N-terminus of Bassoon 

promotes its extended orientation at the TGN, the myristoyl mutant construct, 

G2A-RFP-Bsn-GFP, is imaged in comparison to the myristoyl containing RFP-

Bsn-GFP construct. 

As with the observations of the previous subsection the G2A myristoyl mutant 

also possess a function CC2 oligomerization domain that may, via 

oligomerization events with endogenous Bassoon, influence its localization to the 

TGN. In order to visualize the true potential of the myristoyl group in orienting 

Bassoon at the TGN, the myristoyl mutant is visualized with STED in the normal 

rat cultures, as well as a in Bsn–/– knockout mice cultures that provide an 

endogenous Bassoon free environment. 

Orientation of the myristoyl Bassoon mutant at the TGN  

DIV7 rat hippocampal neurons transfected with the myristoyl mutant G2A-RFP-

Bsn-GFP were imaged with STED microscopy using the standard protocol 

previous described. The N- or C-termini of the mutant Bassoon molecules were 

labeled with either the RFP/GFP nanobody at the TGN38 marker. Images of full-

length RFP-Bsn-GFP that were labeled and imaged identically were compared to 

G2A-RFP-Bsn-GFP images to gauge their difference in orientation. 
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Figure 23: Comparing the orientation of the double-tagged myristoyl mutant Bassoon construct to 
the double-tagged full-length the trans-Golgi network. 

DIV7 hippocampal neurons transfected with mRFP-Bsn-mEGFP (A—H) and myistoyl mutant 

G2A-mRFP-Bsn-mEGFP (I—P). These two-color STED images were compared by visualizing 

their N– (A—D and I—L) and C– (E—H and M—P) termini, respectively using RFP-nanobody-

Atto594 or GFP-nanobody-Atto647 and TGN38 marker. Graph Q and R were represented as 

mean ± SD, N=10 cells from two separate experiment for quantifying the colocalization and signal 

distributions, respectively, ***p ≤ 0.001. Scale bars 1𝜇m (A—P). 
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Surprisingly, the N- and C-termini of the G2A-Bsn mutant had similar 

colocalization and signal distribution as the non-mutant full-length Bassoon 

termini. 

The N-termini of the double tagged G2A-Bsn and full-length Bassoon had high 

percentages of colocalizing signals, of 74.5% and 67.5% respectively, at the 

TGN38 signals. In comparison their respective C-termini, showed significantly 

lower colocalizations of 28.2% (G2A-Bsn) and 30% (RFP-Bsn-GFP) at the 

TGN38 signals. Similarly, the signal distribution trends favored a significantly 

larger fraction of the N-terminal signals for G2A-Bsn (0.75 ± 0.02 SD) and RFP-

Bsn-GFP (0.71 ± 0.02 SD) localized within the 0—100nm category, while the C-

terminal signals had significantly larger fractions of their signals distributed 

101nm—1𝜇m from the TGN38 signals for G2A-Bsn (0.68 ± 0.02 SD) and RFP-

Bsn-GFP (0.65 ± 0.04 SD) (Figure 23). 

This result reveals that the myristoyl group does not significant influence the 

orientation of the Bassoon molecule at the TGN as the signal distributions of the 

N- and C-termini of this mutant Bassoon molecule are similar to the non-mutated 

tagged Bassoon molecules. These results also suggest that the orientation of 

Bassoon might be heavily influenced by the presence of properly oriented 

endogenous Bassoon molecules that might organize recombinant Bassoon 

molecules at the TGN if they possess a functional CC2 domain. Additionally this 

experiment does not reveal if the myristoyl group is the interaction site between 

Bassoon’s N-terminus and the TGN lamella. 

Orientation of the myristoyl Bassoon mutant in Bsn–/– knockout and Bsn+/+ 

littermate wildtype mice 

To reveal the role of Bassoon’s myristoyl group at the TGN the G2A-RFP-Bsn-

GFP was transfected in Bsn–/– knockout mice neurons, which were devoid of any 

Bassoon except the administered mutant G2A-Bsn molecules. As the orientation 

of Bassoon had thus far been studied only in rat hippocampal neurons the 

orientation of G2A-Bsn molecules were additionally recorded from G2A-RFP-

Bsn-GFP transfected Bsn+/+ wildtype littermate mice neurons and compared to 

Bsn–/– knockout mice neurons. The labeling and imaging protocol for acquiring the 

two-color STED images were identical with the exception of use of a TGN38 

antibody raised in rabbit instead of the traditionally used mouse antibody. 
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Figure 24: Orientation of G2A-mRFP-Bsn-mEGFP myristoyl mutant construct in endogenous 
Bassoon-free Bsn–/– knockout mice and their Bsn+/+ wildtype littermates.  

DIV7 Bsn+/+ (A—H) and Bsn–/– (I—M) sandwich hippocampal cultures were transfected with G2A-

mRFP-Bsn-mEGFP. Two-color STED images with their respective insets are shown for the N– 

(A—D and I—L) and C– (E—H and M—P) termini of the myristoyl mutant construct, respectively. 

Immunostaining was performed using RFP-nanobody-Atto594 or GFP-nanobody-Atto647 and 

TGN38 marker. Graph Q and R were represented as mean ± SD, N=8 cells from two knockout 

and two wildtype animals and quantified for amount of colocalization and signal distributions, 

respectively, *p ≤  0.05 ,**p ≤ 0.01 and ***p ≤ 0.001. Scale bars 1𝜇m (A—P). 
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The N- and C-termini of the G2A-Bsn mutant in WT and KO mice had similar 

colocalization and signal distribution trends as were observed in rat G2A-Bsn 

neurons.  

The N-termini of the G2A-Bsn in mice neurons had higher percentages of 

colocalizing signals at 42.3% for WT neurons and 60.9% for KO neurons in 

comparison to their respective C-termini, which were only colocalized by 31.9% 

(WT) and 25.7% (KO) at the TGN38 signals. Subsequently, the signal 

distributions also trended towards the larger fraction of the N-terminal signals in 

G2A-Bsn transfected WT (0.52 ± 0.04 SD) and KO (0.65 ± 0.10 SD) neurons 

localized within the 0—100nm distance category, and the larger fraction of C-

terminal G2A-Bsn signals in WT (0.65 ± 0.07 SD) and KO (0.75 ± 0.05 SD) 

neurons were distributed in the 101nm—1𝜇m category (Figure 24). 

This observation reveals that full-length Bassoon molecules are not localized 

close to the TGN by simply oligomerizing with endogenous Bassoon molecules. 

This is evident because Bassoon’s extended orientation is visible not only in rat 

neurons, but also in WT and endogenous Bassoon-free KO mice neurons. It also 

re-emphasizes the importance of Bassoon’s N-terminus in orienting and 

promoting colocalization of Bassoon molecules at the TGN lamella. It becomes 

evident now that the myristoyl motif in Bassoon’s N-terminus is not the site 

responsible for the orientation or the interaction of the N-terminus of Bassoon 

molecules at the TGN. The persistence of high colocalizations of Bassoon 

signals, at the TGN, in the absence of both myristoyl motif and endogenous 

Bassoon suggests that there might be other interaction sites and sequences 

within the first 94 amino acids that orient the N-termini of Bassoon molecules 

within 6 and 20 nm of the TGN38 signals.  

3.6. Orientation of Bassoon during PTV transport 

To understand whether the AZP orientation on transport precursors plays a role 

in priming the assembly of the protein at the CAZ, full-length N-terminally tagged 

mRFP-Bsn or C-terminally tagged Bsn-mRFP were visualized on GFP-

ChromograninA (CGA) carrying dense-core vesicles. As Bassoon has been 

shown with super resolution microscopy to be loaded onto CGA positive dense-

core vesicles in the axons of developing neurons71 and is the only AZP protein for 

which N- and C-terminally constructs are currently available, it was naturally the 

best choice to visualize its orientation on trafficking dense-core vesicles. Two-

color STED imaging was performed for both Bassoon termini, labeled with the 

RFP nanobody, on CGA-positive dense-core vesicles, labeled with the GFP 

nanobody. 
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3.6.1. Orientation of the N- and C- termini of Bassoon 

around chromogranin A positive transport packets 

Both N- and C- terminally tagged Bassoon and CGA positive puncta are seen in 

high intensities at juxtanuclear positions in young DIV6 transfected neurons. 

There appears to be low colocalizations of both AZP and tagged vesicle cargo at 

these juxtanuclear locations. This signifies that the AZP are either not yet loaded 

on to CGA positive vesicles, and/or are localized to different Golgi planes, or are 

associated at least 20nm from the core of the vesicles. Close inspection of the 

punctate signals of N-terminally and C-terminally tagged Bassoon molecules in 

the axon reveals with great clarity that CGA positive dense-core vesicles carry 

Bassoon on them, as is indicated by the Bassoon signal surrounding the CGA 

signal. The axonal confocal punctate signals after being resolved with STED 

reveal from a couple to a few CGA positive vesicles trafficking Bassoon within 

them. 

In many instances these resolved puncta contain Bassoon signals that look like 

they are being dragged along with the CGA vesicles. Interestingly though, neither 

the N- nor the C-terminus of Bassoon is arranged differently around CGA signals 

and neither termini are visually colocalized to the CGA positive vesicle signals 

(Figure 25). 

This result suggests that Bassoon does not possess a stretched open or linear 

confirmation during its transport on CGA positive dense-core vesicles. This 

observation reflects that large AZP proteins like Bassoon may be favorably folded 

during their transport to synaptic sites, thereby reducing the likelihood that they 

are oriented to promote preassembly AZPs during transport. 

Figure 25: Orientation of full-length single-tagged Bassoon constructs to chromogranin A (CGA) 
positive PTVs in the soma and down the axon.  

DIV7 hippocampal neurons double transfected with mRFP-Bsn or Bsn-mRFP and GFP-CGA and 

immunostained with the RFP-nanobody-Atto 594 and GFP-nanobody-Atto 647. A—C and H—J, 

represent confocal over views and two-color STED images of N- and C-terminally tagged 

Bassoon around CGA packets in the soma. D and K represent confocal axonal over views of the 

same transfected neurons shown in A—C and H—J, respectively. Insets E, F, M, and N represent 

two-color deconvolved STED images of central axonal regions. Zooms of trafficking packets 

labeled for the N–terminus (G—H) and the C–terminus (M—N) of Bassoon. N=8 for two images 

per area per neuron from one set. Scale bars confocal over views 5𝜇m (A, H), 10𝜇m (C,J), STED 

images 1𝜇m (B-F, J-L) and 0.5𝜇m (E, F, M, and N). 
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3.7. Organization of Bassoon molecules at the 

Golgi and synaptic compartments 

The extended orientation of the Bassoon molecules at the TGN in immature 

neurons resembles observations of Bassoon’s orientation in mature presynaptic 

boutons. Bassoon’s orientation at synapses has been implicated in providing a 

filament-like backbone for other CAZ proteins to bind to and guide synaptic 

vesicles from the their pool to the fusion site76,77. Similarly, Bassoon’s extended 

orientation at the TGN may also promote interactions and local mechanisms. To 

understand these, a detailed examination of the characteristics conferred by the 

extended orientation needs to be studied.  

Inspiration was drawn from the observation where small fragments of Rbb26-Bsn 

molecules were organized at the TGN, despite their lack of an N- or C-terminus 

(Figure 22). This observation highlighted the fact, that like orientation, the 

organization of a molecule at a subcellular compartment might influence its 

correct processing at specific substructures. 

To visualize the organization of Bassoon molecules at the TGN, single-tagged 

full-length Bassoon constructs, characterized in Figures 4 and 5, were co-

transfected in pairs of either N- or C-terminally tagged constructs. FLIM imaging 

of the transfected neurons was performed to assess the proximity the N- or C-

termini of neighboring molecules had to each other. 

In addition, a similar experiment to visualize Bassoon’s organization in synaptic 

sites, which hasn’t yet been studied, was also performed to estimate whether the 

extended orientation of Bassoon, at the TGN and at synapses, encouraged 

similar organizations of the Bassoon molecules. 
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3.7.1. Organization of Bassoon molecules in the soma 

DIV10 hippocampal neurons were co-transfected with either the N-terminally 

tagged mRFP-Bsn and mEGFP-Bsn or the C-terminally tagged Bsn-mRFP and 

Bsn-mEGFP constructs, fixed at DIV14 and imaged for their difference in 

fluorescence lifetimes compared to the mEGFP-Bsn control. The GFP and RFP 

tags on Bassoon molecules were boosted with the application of a polyclonal-

GFP polyclonal antibody labeled with Alexa488 and the RFP-nanobody-Atto594. 

This would generated a ~30nm cloud around each GFP tag and ~13nm cloud 

around the RFP tag, in an effort to bring these signals closer for quantifiable 

FRET to occur. FLIM imaging was performed in a 5x zoom of the over view 

image, clearly representing the neuronal soma, which was centered at a z-

position that presented with the highest intensity of Bassoon signals at 

juxtanuclear positions. The GFP tags of Bassoon boosted with Alexa488 were 

recorded for their lifetimes and the FRET efficiencies for the control and the co-

transfected N- and C-terminal Bassoon images were calculated, normalized, 

fitted to a Gaussian distribution and plotted. 

FRET efficiencies were centered on 0% and were represented by a blue to green 
LUT color range for the control mEGFP-Bsn molecules in the soma, since these 
molecules have no acceptor molecules to FRET with. No FRET was measured 
between the C-termini of GFP and RFP Bassoon constructs as seen in Figure 24 
H—K, represented by the cooler bluish-green LUT color, as their 0.085% FRET 
efficiency was insignificantly different from the control. The N-termini of Bassoon 
on the other hand showed significant higher FRET efficiencies of 3.73% 
represented by a warmer yellowish LUT color representation, indicative of 
positive FRET (Figure 26). 
 
These results are indicative of significantly closer proximities between the N- 

termini of neighboring Bassoon molecules oriented at the TGN, while the boosted 

C-termini signals appear to be localized at least 5nm away from each other. 

The close organization of the N-termini of full-length Bassoon molecules 

emphasizes the molecule’s orientation at the TGN lamella. This result provides a 

link between the orientation and organization of AZPs at the TGN and also 

highlights the importance of Bassoon’s N-terminus, in not only orienting but 

organizing the open conformation Bassoon molecules such that they may be 

open to interactions with other AZPs for co-transport or adapter protein on 

transport carriers. 
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Figure 26: Organization of neighboring Bassoon molecules at the soma. Single-tagged full-length 

Bassoon constructs, double transfected in pairs of mRFP-Bsn and mEGFP-Bsn (E—H) and Bsn-

mRFP and Bsn-mEGFP (I—L) and compared to mEGFP-Bsn control A—D were recorded for 
their GFP-Alexa 488 lifetimes in DIV7 hippocampal neurons, labeled with the GFP-Alexa 488 and 

RFP-nanobody-Atto594. A, E and I are immunofluorescence over view images of the transfection 

and their insets are reflected in panels B—D, F—H, and J—L. Graph M represents the 
normalized and Gaussian fitted lifetime pixel density over a 10-minute recording and plotted for 

their FRET efficiency. N=6, Unpaired Student’s t test, ***p ≤ 0.001. N: a diagram to represent the 

organization of the termini of the Bassoon molecules at the TGN. Scale bars 2𝜇m (A—K).  

16-color LUT reflects FRET efficiencies from -10% — +15 % FRET.
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3.7.2. Organization of Bassoon molecules at the synapse 
It has been shown that Bassoon is oriented with its C-terminus facing the 

presynaptic membrane and localized 30nm from it, while its N-terminus faces into 

the presynaptic bouton and is localized 80nm from the plasma membrane76,77. 

As Bassoon molecules are extended both at the TGN and at the synapse they 

might share similar characteristics that are conferred by their orientation. To 

determine whether the extended orientation of Bassoon promotes the 

organization of the molecules or not, a similar FLIM experiment was performed in 

synaptic sites of DIV14 neurons. 

Co-expressed C-terminally or N-terminally tagged EGFP and RFP fusion 

constructs of Bassoon, as well as the mEGFP-Bsn control neurons were imaged 

without boosting the GFP and RFP tags. Since a synaptic site is roughly five 

times smaller109 than a neuronal soma and contains fewer Bassoon molecules, 

the distance between neighboring molecules should be small enough to visualize 

direct FRET between GFP and RFP molecules. Over view images of potential 

synaptic sites from transfected DIV14 neurons were located by tracking a 

neuronal process far away from the soma of the neuron, to sites that have 

transfected Bassoon puncta in close proximity to projections or somas of 

untransfected neurons. Such sites are favorable for creating synapses and an 

average of 63% of second-generation full-length Bassoon signals have been 

shown to accumulate at synapses (Figure 12). Zooms of these over view images 

were then focused to have high intensities for all synaptic spots in the image and 

the GFP fluorescence lifetimes of these images were recorded. FRET efficiencies 

were calculated from normalized lifetime distributions of the raw images, which 

were fitted to a Gaussian distribution and plotted. 

Quite remarkably, a similar organization pattern, as was observed at the TGN, for 

the N-terminal, C-terminal and the control Bassoon molecules at the synaptic 

sites as. The FRET efficiencies of the control mEGFP-Bsn (0%) and the co-

transfected C-terminal constructs: Bsn-mEGFP and Bsn-mRFP (1.62%) were 

marginally different, represented by bluish to green LUT range at synaptic sites, 

while the N-termini of Bassoon showed FRET efficiency of 7.26%, which were 

represented by a yellowish-red LUT color, indicative of positive FRET (Figure 27). 

This result shows that the organization of Bassoon molecules at the synapse 

promotes localization of the N-termini of Bassoon within 5nms and implies that 

they bundle together in the CAZ scaffold, which might be responsible for the 

triangular dense structures of AZs often reported at the presynaptic membrane in 

classical EM images. It also shows that the C-termini are farther than 5nm apart 

and reflects that the CAZ structure has a larger base and might be responsible 

for separating two vesicle-docking stations at the presynaptic plasma membrane.
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Figure 27: Organization of Bassoon molecules at synaptic sites.  
Single-tagged full-length Bassoon constructs, double transfected in pairs of mRFP-Bsn and 

mEGFP-Bsn (E—H) and Bsn-mRFP and Bsn-mEGFP (I—L) and compared to mEGFP-Bsn 

control A—D were recorded for their GFP lifetimes in DIV7 hippocampal neurons. A, E and I are 
immunofluorescence over view images of the transfection and their insets are reflected in panels 

B—D, F—H, and J—L. Graph N represents the normalized and Gaussian fitted lifetime pixel 
density over a 10-minute recording and plotted for their FRET efficiency. N=6, Unpaired Student’s 

t test, ***p ≤ 0.001. N: a diagram to represent the organization of the termini of the Bassoon 

molecules at the synaptic sites. Scale bars 2μm (A—K). 16-color LUT reflects FRET efficiencies 

from -10% — +15 % FRET. 
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Discussion 

The CAZ is presynaptic scaffold of proteins that regulates synapse assembly and 

function110. The sequence of events that cause these proteins to assemble, 

exactly opposite the post-synaptic scaffold, in mammalian synapses is still poorly 

understood. Despite two decades of research addressing the function and roles 

of each individual AZP in the CAZ, the mechanisms that mediate the assembly of 

the CAZ structure are yet to be understood9,110. Nanoscopic observations of these 

proteins have started to bring in new evidence that could help unravel assembly 

mechanisms76,77 by linking the structure and localization of these proteins to their 

function in the CAZ complex.  

In this study, I have used super-resolution microscopy to reveal that different 

subsets of AZPs are distributed to specific Golgi subcompartments. This is their 

first site of localization in neurons and the sorting site for AZPs to be loaded onto 

a range of different transport precursors. AZP signals were predominantly 

observed on sizes that corresponded to the presence of small clusters of clear- 

and dense-core transport vesicles that may bring different AZPs in close 

proximity to each other. This trend of AZP distribution suggests the presence of 

early preassembly and sorting mechanisms for AZPs in the soma, and highlights 

the Golgi as the first modulatory station in their journey to the presynaptic 

membrane. 

Trafficking AZPs Bassoon, Munc13-1 and Piccolo, were uniformly distributed in 

the neuronal axon and STED imaging revealed a much smaller population, than 
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previously reported, of Bassoon colocalizing, and hence co-trafficking, with 

Munc13-1 and Piccolo in axons. This indicates that the sorting mechanism in the 

soma may have a larger effect on the composition of AZPs transported to 

nascent synapses. 

In addition, Bassoon, one of the two largest AZP molecules, was discovered to 

possess an extended orientation at its Golgi compartment. The N-terminus of full-

length Bassoon was seen colocalized within 6—20nm from a TGN marker, while 

the C-terminus did not colocalize and faced away from the TGN. The N-terminus 

of Bassoon is therefore implicated in localizing and orienting the molecule at the 

TGN. The myristoyl motif within Bassoon’s N-terminus does not influence its 

orientation at the TGN, although deletion mutant proteins lacking either both 

termini of Bassoon (Rbb26-Bsn) or the N-terminus of Bassoon (95-Bsn) lose their 

colocalization to the TGN lamella. This makes the first 94 amino acids of 

Bassoon’s N-terminus essential for its proper localization and orientation at the 

TGN and highlights the ability of the central CC2 domain of Bassoon (expressed 

by the Rbb26-Bsn construct) to sufficiently recruit Bassoon molecules to the 

Golgi. 

Bassoon molecules possess an extended conformation at the TGN (Figure 17—

Figure 19) and at mature synapses76,77; this conformation uniquely presents itself 

with the characteristic property of neighboring Bassoon molecules organized with 

their N-termini in close proximity to each other and their C-termini localized at 

least 6nm apart at both subcellular localizations. Interestingly, the N- and C-

termini of Bassoon molecules on CGA positive trafficking DCVs were positioned 

on top of the DCVs, equidistant from its core, suggesting that Bassoon no longer 

possess an extended conformation on transporting vesicles, in order to facilitate 

its transport as a large, albeit, more compact cargo. This change in conformation 

of Bassoon from extended at the TGN, to compact on trafficking vesicles and 

back to being extended at synaptic sites is the first hint towards a mechanism 

that influences the sequential assembly of the CAZ complex. The orientation and 

organization of the Bassoon molecule, at different subcellular destinations, bears 

interesting functional implications on local mechanisms at these structures and 

helps to allude towards additional underlying mechanisms that govern the proper 

assembly of the CAZ structure. 

4.1. Localization at the Golgi 

4.1.1 Active zone proteins selectively localize to different Golgi 

subcompartments  

AZPs are first observed in young neurons localized to the Golgi and selectively 

get recruited to specific Golgi subcompartments. Bassoon, Piccolo and ELKS2 

have been shown to specifically localize to the trans-Golgi Network, Munc13-1 is 
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observed at the cis-Golgi lamella, and RIM1𝛼 is diffused in the soma and in 

young neurites (Figure 3, Figure 4 and ref.32). While Rim1𝛼’s localization is only 

observed later in development, on RIM-Neurexin-CASK-voltage-gated Ca2 

channels (VGCCs) transport units in the axon3, the other CAZ proteins undergo 

sorting and assembly onto transport carriers at their respective Golgi 

compartments. Using STED microscopy, I observed endogenous AZPs at their 

designated Golgi compartment as punctate signals decorating regions at and 

around the Golgi lamella, and, unlike previous observations with confocal 

microscopy, these AZP localizations were not uniformly spread all over the Golgi 

signals. This localization of AZPs suggests the presence of specialized sites at 

their Golgi subcompartment where the proteins are sorted and loaded onto 

unique transport carriers. The properties of the transport carriers, conferred by 

the Golgi compartment they are generated from, will ultimately define the subsets 

of AZPs that co-traffic out together from the soma and the route of transport they 

take down the axon based on the microtubule adaptor proteins they possess 

(Figure 28). 

Similar localizations of invertebrate AZ proteins Liprin and Syd2111 and 

presynaptic proteins such as synaptic vesicle marker 2 (SV2)112,  

synaptophysin113, SNAP25, and VAMP2114 have also been reported at the TGN 

network with light and confocal microscopy. In addition, TGN-derived vesicles 

have been shown to supply developing inhibitory synapses by shuttling GABAA 

receptors, their associated cytoskeletal linker protein Gephyrin, and ATPase N-

ethylmaliemide-sensitive factor (NSF) (that activates SNARE proteins) to the 

synaptic sites115.  

These and many more studies add to the evidence that most AZ proteins and 

synaptic proteins originate from the TGN96,113,115116–118, although no known link 

between cis-Golgi traffic and supply to the presynaptic terminus has been 

documented. Nevertheless, proteins undergoing a first round of sorting at the cis-

Golgi are known to be either internally trafficked, through all the Golgi lamellae, to 

the TGN for a second round of sorting or a subset of certain proteins are also 

known to be transported back to the ER after only the first round of sorting119.  

Interestingly, glutamate receptor NMDAR subtypes and their associated 

postsynaptic adaptor proteins CASK and SAP97 have been shown to be 

transported from the cis-Golgi and localized at the ER. From the ER these 

proteins take an unconventional secretory pathway to the plasma membrane 

where the proteins first get trafficked to axonal and dendritic Golgi outposts, 

which eventually traffic these proteins to presynaptic and post-synaptic sites120. 

As Munc13-1 is the first documented AZP to be localized at the cis-Golgi and 

does not colocalize to the TGN, it might take a similarly unconventional route, like 

the NMDAR receptors, out of the soma to the presynapse (Figure 28). This 

choice of unconventional localization may hint at a mechanism that brings a 
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greater diversity of proteins to the presynapse, temporally recruits subsets of 

AZPs for each step of the CAZ assembly, and fosters heterogeneity within pre-

assembled AZP subsets co-trafficking on small vesicle clusters.  

 

Figure 28: A diagrammatic representation of AZPs localizations to different Golgi 
subcompartments. This diagram depicts a schematic of transport precursors being generated at 
the cis-Golgi vesicles carry Munc13-1 and TGN vesicles carrying subsets of ELKS2, Piccolo and 
Bassoon which may come in close proximity in the soma for co-transport down the axon.  

4.1.1 The N-terminus of Bassoon localizes it to the TGN  

The localization of Bassoon, Piccolo and ELKS to the TGN may be conferred by 

a direct interaction site on the protein or via an adaptor protein that is localized at 

the TGN lamella. N-terminally tagged RFP-Bsn specifically localizes to the TGN 

marker TGN38 but not to the trans-Golgi lamella marker 𝛽-1,4-

galctosyltransferase 1, positioning full-length Bassoon to the sorting TGN 

compartment (Figure 16). The C-terminus of full-length Bassoon does not localize 

close to the TGN lamella but also does not localize at the trans-Golgi lamella 

(Appendix F). Therefore Bassoon molecules are not localized between the trans-

Golgi lamella and the TGN but are rather localized on a more distal Golgi lamella. 

The TGN network constitutes the last three cisternae of the Golgi and has 

subdomains that are characteristic for different resident proteins. TGN cisternae 5 
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and 6, of the whole Golgi stack, are asialoglycoprotein positive and are decorated 

with 60nm clear-core vesicles with lace-like-coats that are regulated by protein 

kinase D activity. These vesicles are believed to transport cargoes en route to the 

plasma membrane. On the other hand, mannose-6-phosphate protein positive 

cisternae 7 is known as the clathrin-coat subdomain of the TGN, and produces 

~100 nm clathrin-coat buds that are regulated by ADP-ribosylation facto family of 

GTPases ARFs) and GGA (Golgi-localized, gamma-ear containing, ADP-

ribosylation factor binding) proteins121,122. 

Since neither full-length Bassoon termini are localized close to the trans-Golgi 

lamella (Figure 16, Figure 17—Figure 19, and Appendix F) and endogenous 

Bassoon majorly presents itself in signal sizes of 95-150nm (Figure 5), it seems 

likely that Bassoon molecules may be localized to the furthest TGN subdomain of 

cisternae 7. In addition, Bassoon transported on a range of different DCVs 

subtypes such as CGA-positive vesicles, PTVs and Syt4-positive vesicles 

(Figures 6, 25 and ref 69), which may also possess clathrin coats, since there is 

strong evidence from electron micrographs of neuroendocrine cells 

demonstrating budding DCVs possessing clathrin coats123,124. It therefore would 

be interesting to see if Bassoon carrying PTV transporters are clathrin-coated 

and whether their fission from the TGN lamella is ARF- or GGA-protein mediated. 

Full-length Bassoon is highly colocalized to TGN markers through its N-terminus 

and not though its C-terminus (Figure 16—Figure 19, and Appendix F), making 

the N-terminus of Bassoon its localization and possibly interaction domain for 

sorting at the TGN. The myristoyl motif, at the second amino-acid position of the 

N-terminus, was found to not influence its localization at the TGN though another 

site within the N-terminal domain might (Figure 23). This would require a 

systematic characterization of an array of N-terminal deletion constructs to 

pinpoint the exact site that influences Bassoon’s localization, although it might 

very well be possible that the N-terminus of Bassoon never integrates into the 

TGN membrane but rather is attached to the TGN via an adaptor protein or is 

directly loaded onto constitutively formed nascent buds from the TGN lamella. 

4.2. Recruitment and sorting of AZPs at the TGN 

4.2.1. The role of the CC2 domain in recruiting Bassoon to the 

Golgi 

The Rbb26-Bsn construct spans a 475-a.a sequence (2088—2563 a.a.) and 

contains the centrally localized coil-coil 2 (CC2) domain of Bassoon. This domain 

has been reported as the hetero-/homo-oligomerization domain of Bassoon and 

the protein has been seen accumulated to the Golgi. Recombinant constructs 

containing the CC2 domain of Bassoon are subsequently referred to possessing 

“the Golgi Binding region of Bassoon”30,32,70. However, in the studies here, I have 
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resolved Rbb26-Bsn signals with STED and see them primarily localized at an 

average distance of 171.9nm ± 34.8nm SD from the TGN membrane markers 

(Figure 22), while full-length RFP-Bsn signals are localized closer, at an average 

distance of 50.5nm ± 8.5nm SD, to the TGN membrane markers (Figure 18). This 

result reveals that the CC2 domain of the Bassoon molecule is in fact not the site 

within the Bassoon molecule that binds Bassoon to its Golgi compartment. 

As the signals of the N-terminal deletion construct 95-Bsn have a similar distance 

distributions like Rbb26-Bsn and an average distance of 157.1nm ± 40.5nm SD 

from the TGN (Figure 22), it might be possible that both Rbb26-Bsn and 95-Bsn 

deletion mutant proteins are mislocalized to another Golgi compartment, as a 

result of the loss of the N-terminal region. This observation in combination with 

the high colocalization of N-terminally tagged Bassoon molecules to the TGN 

(Figures 16—19), show that N-terminus of Bassoon rather than the central CC2 

domain may possess the TGN binding domain. 

Nonetheless, it is quite remarkable that this small piece of Bassoon, lacking both 

N- and C-termini, localizes the mutant protein to the Golgi, even though it might 

be mislocalized to the wrong subcompartment. This indicates that the CC2 

domain of Bassoon recruits Bassoon and possibly Piccolo molecules (which also 

have a similar CC2 domain), from the somatic cytoplasm to the Golgi.  

4.2.2. Potential sorting mechanisms of AZPs 

Sorting of membrane proteins typically occurs at the TGN. Sorting of proteins at 

the TGN is accomplished by the combination of a passive process and active 

process at the TGN. DCV proteins undergoing sorting at the TGN tend to first 

passively accumulate and form aggregates around the TGN lamella, as a result 

of the high Ca2+ concentration promoted around the TGN lamellae. These 

aggregated proteins next get packed in or onto TGN transport precursors often 

with the help of a sorting signal on the protein that enter through the TGN lamella 

and bind to sorting receptors within the TGN lumen in an active process125. 

Alternatively, membrane-associated DCV proteins are known to directly interact 

at lipid raft sites in the TGN membrane, which are the cholesterol-sphingolipid-

rich microdomains, where budding of TGN precursors occurs126. As a mutation of, 

the only identified lipid integrating, myristoyl motif in Bassoon’s N-terminus does 

not alter its localization to the TGN (Figure 23), Bassoon may not be sorted via 

the active process of directly binding to a lipid raft or a sorting receptor site on the 

TGN and may become accumulated around the TGN lamella for sorting via a 

passive process. 

The passive influence of high Ca2+ levels is known to regulate the activity of the 

neuronal calcium sensor-1 protein – Calneuron, which has been reported to 

inhibit PI4K𝛽 (phosphoinositide 4-kinase III𝛽) activity at the TGN. PI4K𝛽 and 

elevated Ca2+ levels have been show to mediates the synthesis of phospholipids 
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required for the budding of PTVs and synaptophysin-positive vesicles (SPVs) and 

influence their exit from the TGN127. 

This suggests that similar sorting conditions that apply to DCV proteins may also 

apply to Bassoon, Piccolo, and ELKs, the cargo for the PTV subtype of DCVs, in 

which Bassoon may accumulate at the TGN due to passive sorting conditions 

such as the high Ca2+ concentrations around the TGN, form AZP clusters with 

neighboring Bassoon and Piccolo molecules via its CC2 oligomerization domain 

and be loaded onto PTVs and SPVs via PI4K𝛽 activity. 

Much less is known about the mechanisms by which AZPs at the cis-Golgi are 

sorted. Although, COPI-coated cis-Golgi vesicles transported back to the ER are 

also sorted in a Ca2+-dependent manner127. Munc13-1 vesicles that may take the 

unconventional NMDARs pathway out of the soma may also undergo a similar 

Ca2+ mediated passive sorting step at the cis-Golgi, which may promote 

accumulation of Munc13-1 to be loaded onto a range of transport carriers. 

These sorting mechanisms support the observations of large populations of AZP 

signal sizes corresponding to small vesicle cluster sizes, seen in the neuronal 

soma with STED imaging (Figure 5), and promote the idea that subsets of AZPs 

get loaded on transport carriers and form a partially preassembled set of proteins, 

before their transport down the axon.  

As AZP signals were observed in a range of signal sizes in the soma ( Figure 5), 

these proteins may be loaded onto a range of different transport vesicle types, 

which may in turn require different sorting and vesicle fission mechanisms. 

This notion may very well be feasible, as Bassoon’s localization to the TGN is 

also proposed to be mediated by the carboxyl-terminal binding protein (CtBP) 

family. The N-terminus of CtBP-1 is known to bind to Bassoon at a site directly 

upstream of its CC2 domain at the Golgi and has also been shown to inhibit 

Bassoon and Piccolo transport into axons in CtBP1 loss of function 

experiments26,32. CtBP-3, an ortholog of CtBP1, is involved in mediating vesicle 

fission at the Golgi128 and may be involved in the sorting and fission of a certain 

subgroup of Bassoon and Piccolo carrying transport precursors at the TGN. 

Additionally, invertebrate-specific AZP protein Liprin-𝛼 is known to interact with 

GTPase-activating proteins (GITs) subtype of ARFs that regulate its fission and 

traffic out of the TGN on CAST/ELKS positive vesicles111,129,130. As ARF mediated 

vesicle formation is favored at cisternae 7 121, the last TGN lamella, it is likely that 

AZP proteins are preferentially sorted at cisternae 7 and loaded onto varying 

types of transport vesicles that may employ a specific sorting mechanism 

whether it is mediated via ARFs, CtBPs or PI4K𝛽. 
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4.3. Transport of AZPs from the soma to nascent 

presynaptic sites 

Pioneering studies in the field have shown AZPs Bassoon and Piccolo to be 

localized in the somas of young neurons at Golgi substructures and transported 

to presynaptic sites on 80nm dense-core vesicles known as Piccolo-Bassoon 

Transport Vesicles (PTVs)30,68,69. Other AZPs, namely Munc13-1, RIM1𝛼, and 

ELKS2, and synaptic proteins syntaxin-1, SNAP25, N-cadherin, Rim1, and 

Chromgranins were also isolated in light brain fraction immunoprecipitates 

containing PTVs69,33,68. Golgi-derived AZP transport carriers, which are either 

preassembled PTVs93 or small clusters of clear- and dense-core vesicles carrying 

AZPs71, are believed to sufficiently transport all AZPs to the presynaptic 

membrane, fuse with the membrane and leave behind an entire complement of 

proteins that generate the CAZ scaffold and integrate with the presynaptic 

machinery to form a functional synapse9,68,69. 

The current state of studies shows the existence of at least three types of 

specialized transport precursors that carry complexes of Piccolo-Bassoon-

ELKS/CAST3,32,71, RIM-Neurexin-CASK-VGCCs3, and Munc13-132 to mammalian 

synaptic sites.  These subsets of AZPs trafficking to nascent synaptic sites use 

the microtubule-based transport system of the neuron by interacting with the 

anterograde and the retrograde motors moving along the microtubules in the 

axon29,32,131. Bassoon and Piccolo containing PTVs are transported anterogradely 

via the PTV specific adaptor syntabulin that binds to the KIF5b motor protein72,95, 

and also traffic in the retrograde fashion facilitated by Bassoon’s direct binding to 

dynein light chains (Dlc1/2), a retrograde motor29. Conversely, the invertebrate 

specific variants of RIM and Munc13 proteins, loaded on to synaptic vesicles 

(SVs), are only transported in an anterograde fashion with the help of kinesin 

motors132.  

Co-trafficking of PTVs and small clear core vesicles, reminiscent of SVs, have 

been reported in ultra-structural studies of hippocampal axons. Electron 

microscopy (EM) images from this study show ~220nmX130nm transport 

aggregates consisting of one to two CGA-positive PTVs and up to five SVs that 

express a range of SV proteins such as VAMP2, synaptotagmin, synapsin-1 and 

SV2, co-trafficking together71.  

These immunogold labeled EM images of co-trafficking AZPs and SV proteins in 

vesicle aggregates showed Bassoon and Piccolo signals typically on top of DCVs 

with their signals clustered in the center of the aggregates.  

These results corroborate my own data, in which N- or C-terminally tagged full-

length Bassoon were observed localized on top of a CGA positive vesicle. In 

addition, the N- and C-termini of full-length Bassoon appear equidistant from the 
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CGA positive vesicle core with almost no colocalization between the Bassoon 

and CGA signals (Figure 25). These results reflect that a group of Bassoon 

molecules co-traffic with CGA positive vesicles, most probably as a part of a 

vesicle cluster and Bassoon molecules do not retain their extended orientation 

and organization on top these transport carriers as their N- or C-termini are 

equidistantly positioned in the transport cluster. These transport entities are 

therefore arranged to efficiently co-traffic a subset of AZPs and SV proteins in a 

compact form to nascent synaptic sites. 

Such co-trafficking entities possessing different vesicle types may arise from 

different Golgi substructure and may serve the purpose of bringing different 

subsets of AZPs in close proximity of each other, for optimal delivery of all AZPs 

to nascent synaptic sites.  

In this study, I show with STED imaging that AZPs have a much lower 

colocalization with each other than previously assumed, in comparison to co-

trafficking events of AZPs recorded with confocal microscopy (Figure 8). In 

addition, the distribution of AZP colocalizations at proximal, central, and distal 

axonal regions in DIV6 neurons is uniform (Figure 7). 

This small population of co-trafficking vesicles in axons points not only to the 

lower possibility of co-trafficking events of AZPs being coordinated during 

transport but also suggests that sorting mechanisms in the soma may play a 

larger role in preassembling subsets of AZPs and their vesicle clusters for direct 

delivery to nascent synaptic sites. 

RIM1𝛼 and PSD95 are synaptic proteins that are transported both via active and 

passive mechanisms to synaptic sites and are present in the soluble pools during 

early development32,133. Both these proteins can be recruited from the soluble 

pools and appear associated later during development on their respective 

transport carriers3,133,134. A similar mechanism has been proposed for the 

preassembly of a complete AZP set on to PTVs, that don’t start out carrying all 

AZPs when they leave the Golgi but acquire them en route, and is also 

suggested as a mechanism for maturing Golgi derived transport precursors into 

matured PTVs that supply a sufficient subset of all AZPs to the presynaptic 

membrane32.  

However, since the distribution of the AZPs and their colocalizations with one 

another remain uniform in the developing axon (Figure 7), it seems more likely 

that transport vesicles arrive at the presynaptic terminus consecutively and 

supply the full complement of AZPs required to form the CAZ in a temporal 

fashion. This notion supports observations that show PTVs carry unitary amounts 

of AZPs and predicts that on average the cargo of 2-3 PTVs may be required to 

assemble a complete AZ69. 
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Through their interaction with anterograde and retrograde motor complexes, 

AZPs on DCVs have been proposed to constantly circulate along axons and 

supply nascent synaptic sites and new en passant boutons of invertebrate 

neurons135. This constant and dynamic access of transport packages to the CAZ 

could be a mechanism by which neurons temporally and spatially control the 

assembly and maturation of the CAZ structure74. 

Interestingly, hierarchical assembly mechanisms have already been observed in 

C. elegans and Drosophila neurons, in which transmembrane proteins SYG-1/2 

initiate synaptogenesis by first recruiting the key scaffolding proteins SYD-2/liprin-

𝛼 and SYD-1, which in turn assemble the other presynaptic components19,136. 

It therefore seems ideal, that at mammalian presynapses, the structural 

scaffolding proteins Bassoon and Piccolo are the first recruits that form the CAZ 

backbone. These proteins are delivered off of PTVs co-trafficking in clusters with 

SVs previously observed71, that also bring along ELKS2 and a small subgroup of 

SV proteins and may together suffice the initiation of a nascent CAZ at 

presynaptic sites71,131. This nascent structure containing the oriented molecules of 

Bassoon and Piccolo may in turn then recruit their C-terminal binding partners 

Rim1𝛼 and Munc13-1 from their trafficking vesicle subtype and/or from the 

soluble cytoplasmic pool. 

4.4. Orientation of the Bassoon molecule  

4.4.1 Current concept: Bassoon possesses an extended 

conformation at the presynaptic terminus 

Bassoon (420kDa) and Piccolo (550kDa) are the two largest proteins in the CAZ, 

and both molecules have been shown to possess an extended orientation at 

matured presynaptic sites in mammalian neurons76,77. In-silico modeling predicts 

that both molecules contain a large number of proline and glycine residues, which 

prevent folding of these proteins as a whole, but also contain interspersed 

compact regions that hold the Zn-finger, coil-coil, and Piccolo-Bassoon homology 

domains, as a result of which their entire molecule elongates to about 80 nm 

(Figure 29,B and ref24).  
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Figure 29: Structure and orientation of Bassoon and Piccolo proteins at the presynaptic terminus. 

A and B, In-silicio model of Bassoon and Piccolo proteins with interaction sites and binding 

partners (Modified from Gundelfinger et al, 2015). C and D, Gold labeled EM images of N- and C- 
termini of Piccolo protein, on the apical and base locations of the dense projections (DPs) in 

mammalian presynaptic sites (Modified from Limbach et al, 2011). E and F, represent triple 
colour-3D STORM images of Bassoon and Piccolo at side view synapses (Modified from Dani et 

al, 2010). G is a representation of CAZ and pre- and postsynaptic protein distances from the 
synaptic cleft. (Modified from Dani et al, 2010 and enhanced with information on Munc13-1, RIM1 
and Ca2+ channel distances from Limbach et al, 2011). 

 

In a recent study, triple-color 3D STORM images of cortical synapses labeled 

using a Bassoon monoclonal antibody spanning the region between 765—

1001a.a. (closest antibody to the N-terminus of Bassoon), a C-terminal polyclonal 

Bassoon antibody spanning the last 338 a.a. of the molecule, and a Homer1 

antibody (to define postsynaptic membrane and the synaptic cleft size) were used 

to determine Bassoon’s orientation at the synapse (Figure 29E,F). These images 

showed that the N-terminus of Bassoon is localized at ~78nm, and ~30nm further 

away from the synaptic cleft than the C-terminus of Bassoon signals, which is 

localized ~43 nm from the synaptic cleft. Bassoon and Piccolo signals were 

shown to spatially occupy similar locations in the CAZ as Piccolo’s N- and C-

terminal regions were located roughly 86nm and 44.4nm, respectively, from the 

synaptic cleft76. 

The orientations of Bassoon and Piccolo molecules recorded by STORM imaging 

also fit with results from another study that studied the localization of many 

immunogold electron micrographs of cerebellar rat neurons labeled for a range of 

antibodies generated against short sequences within Aczonin/Piccolo molecule 

and for Bassoon’s C-terminus. 70% of the total N-terminal sequences of Piccolo 

were observed localized within 73—79nm from the plasma membrane (PM), 



Discussion                                               Orientation of the Bassoon molecule 

118 

while the 70% of the C-terminal Piccolo sequences lay within 33—39nm, and 

Bassoon’s C-terminal antibody signals were observed positioned within 35—

37nm from the PM (Figure 29C,D and ref77).  

Both these studies, using two different super-resolution imaging techniques, have 

shown that the N-termini of Bassoon and Piccolo molecules within an AZ 

complex are at least 80nm from the PM, their C-termini face the PM, and are 

roughly 30—40nm from the presynaptic membrane.  

Ultrastructural imaging of the same synapses also revealed AZPs that bind to C-

termini of Bassoon and Piccolo, in particular the N-termini of Munc13-1 and 

RIM1𝛼, localized 19nm from the PM and the cytoplasmic loop of the P/Q type 

Ca2+ channels were localized 20nm from the PM, positioning the entire AZ 

complex within a minimum distance range of 20—80nm from the PM (Figure 28G 

and ref77). These studies revealed a range of additional characteristics that define 

the CAZ ultrastructure such as the following: the presence of 60nm high and 

30nm wide dense projections (DPs) at the presynapses of chemically fixed EM 

images that reflect the dimensions of a collapsed CAZ filament structure (Figure 

28C/D and ref77), the distances of the C-termini of Piccolo and Bassoon noted are 

similar to the diameter of synaptic vesicles (SVs) (i.e. ∼35–40 nm)3,77, and that 

none of the AZPs in the CAZ have transmembrane regions that warrant their 

presence at the PM40,70. This shows that the CAZ structure localizes within the 

presynaptic bouton but floats at a minimum 20—30nm distance, reflective of the 

size of a SVs docked, on top of the PM. 

This extended orientation of Bassoon and Piccolo molecules seem to inherently 

influence the function of the CAZ, and are also seen in invertebrate synapses. 

Bruchpilot, a Drosophila CAZ core component that is evolutionarily unrelated to 

Bassoon and Piccolo, has also been shown to possess an extended orientation 

at the neuromuscular junction. Although the orientation of Bruchpilot differs from 

Bassoon and Piccolo’s, as its N-terminus is closer to the presynaptic membrane, 

it vertically extends 40—65nm into the presynaptic bouton and matches Bassoon 

and Piccolo heights in mammalian presynaptic membrane77,137. This shows that 

CAZ structure needs to be accessible to resting and recycling SV pools in the 

presynaptic terminus, and Bassoon and Piccolo, like Bruchpilot at invertebrate 

synapses, provide the structural backbone of the CAZ scaffold with their 

extended conformations. 

4.4.2 Bassoon also possesses an extended conformation at the 

TGN but it is inversely oriented 

In this study, Bassoon was visualized at its first station the TGN and was 

revealed to possess an extended conformation at this structure. This is a novel 

observation as it ties the orientation of Bassoon at it its initial and final station in 

its journey, shows that Bassoon possess a similar conformation at both sites and 
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that the orientation of the molecule is inversed during or after its transport to 

synaptic sites. 

I show that 67% of N-terminal tag of the full-length RFP-Bsn-GFP construct is 

localized on average 32.5nm ± 8nm SD from the closest TGN38 marker, while 

33% of N-terminal tag of the same construct was localized on average at 

229.4nm ± 5.3nm SD from the closest TGN38 marker.  Meanwhile, 63% of the 

tagged C-termini signals of the same full-length construct were localized on 

average around 210.6nm ± 13nm SD, and the remaining 37% of C-terminal tag 

signals were localized around 60.4nm ± 6.8nm SD from the TGN38 marker. This 

predicts that at and around the TGN, there is a mixed population of Bassoon 

molecules that are being oriented at the TGN and those that are already loaded 

onto transport carriers. The closest signals of full-length Bassoon’s N-terminal tag 

were seen localized ∼30—40nm from the TGN and the closest C-terminal signals 

were seen around 60—67nm from the TGN membrane. These represent the 

molecules that are being oriented at the TGN and show that the N- and C-termini 

of Bassoon are positioned within 30—40nm of each other (Figure 17). These 

results remarkably concur with the 30—40nm extension of the Bassoon molecule 

seen in mammalian presynaptic boutons, from their EM and STORM orientation 

studies76,77.  

The second fraction of Bassoon molecules were seen oriented within 210—

229nm from the TGN membrane and may reflect the populations of Bassoon 

molecules that are already loaded onto transport carriers. It is interesting that 

both the N- and C-termini of Bassoon molecules in the second fraction are 

roughly equidistant from the TGN lamella and confirm the observation of 

Bassoon’s equidistant localization on top of CGA-positive DCVs, seen further 

down the axon (Figure 25 and Figure 17). 

These localizations of full-length Bassoon are extremely reproducible and robust 

since similar distances for single-tagged RFP-Bsn and Bsn-RFP constructs were 

also observed, along with a similar distribution of all full-length Bassoon 

constructs to a different TGN marker: Syn6 (Figures 18 and 19). The subset of 

single-tagged Bassoon signals being orientated at the TGN were localized at 

30.5nm± 6.9nm SD (for 85% of the RFP-Bsn) and at 50.3nm ± 3nm SD (for 45% 

of the Bsn-RFP) from the closest TGN marker, while the fraction of signals on 

transport precursors were localized at 154.1nm ± 12.06 nm SD (for 15% of RFP-

Bsn) and 192nm ±11.6nm SD (for 55% of the Bsn-RFP) (Figure 18).  

Overall these results show that Bassoon orients itself with its N-terminus at the 

TGN membrane while its C-terminus is at least 30—40nm form the TGN lamella. 

Although the extension of the Bassoon molecule is remarkably similar to its 

reported extension within the CAZ, the orientation of the molecule is inversed 

between the two stations. As the Bassoon molecule does not possess 

transmembrane regions that may integrate the molecule at either the TGN lipid 
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bilayer or the PM, and its N-terminal myristoyl motif is not involved with its 

localization to the TGN membrane, one may assume that Bassoon’s orientation 

is not influenced by a docking site within either membrane at the two stations. 

The inverse orientation is therefore a reflection of the roles and the local 

subcellular mechanisms the Bassoon molecule is involved in, at both stations. 

At the TGN, the extended orientation of Bassoon may promote sorting 

mechanisms and aid in exposing Bassoon’s central CC2 domain. The CC2 

domain has been shown to sufficiently recruit Bassoon molecules to the Golgi 

(Figure 22), and, while at the TGN, promotes oligomerization of Bassoon-

Bassoon and Bassoon-Piccolo clusters that get loaded onto a range of transport 

carriers thereby promoting subsets of preassembled AZP to be co-trafficked. 

Additionally upstream from the CC2 domain lies the CtBP1 interaction site, which 

should become available for binding as Bassoon’s conformation becomes 

extended at the TGN membrane thereby promoting CtBP1 mediated sorting. It 

therefore would be interesting to visualize the average localization that CtBP1 

occupies at the TGN using full-length Bassoon as a ruler. 

4.4.3. The limitations of different super-resolution microscopy 

techniques in understanding Bassoon’s orientation  

Until recently, all ultrastructural imaging in the brain was done using transmission 

electron microscopy (TEM). The constant challenge of acquiring sufficient 

contrast though ultrathin sectioning, followed by the demands of serial sectioning 

and section alignment, have decreased the throughput of TEM sample 

preparation. In addition, the technique necessitates harsh sample preparations 

that often subject the samples to form artifacts that could obscure the true 

structure and localization of proteins at an ultrastructural level. The last decade 

has seen the rise of light microscopes created to break the resolution limit of light 

and resolve a much higher level of detail. STED and STORM microscopy are 

classical examples of such tools that have created a platform to revisit and add to 

existing EM data by allowing the visualization of tagged proteins at super-

resolution. 

In this study, I have made use of a range of full-length Bassoon constructs that 

have allowed me to visualize the orientation of the Bassoon molecule with great 

detail and accuracy. Visualizing these constructs with two-color STED 

microscopy (at a resolution limit of 20nm) benefits from the tags on the N- and C-

termini of Bassoon being placed at the extreme poles of the protein, without 

hampering its localization, transport and incorporation into synapses, and allows 

for the use of specific nanobodies targeting the fluorescent tags, that localize the 

whole tag-complex within 13nm of the protein. The use of the double-tagged full-

length Bassoon construct, boosted with nanobodies, and imaged with STED to 

visualize the localization of the N- and C-termini of Bassoon, overcomes a range 
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of disadvantages faced by the other super-resolution imaging studies performed. 

One of the key advantages is eliminating the use of traditional antibodies of 

Bassoon for STED microscopy, which would create a 30nm cloud of signal 

around the protein epitope and distances the correct subcellular localization of 

the termini of Bassoon. STED imaging of transfected neurons also benefits from 

the ability to avoid the use of the harsh processing steps that are essential for 

processing EM images that cause the CAZ structure to collapse into DPs. When 

comparing my imaging paradigm with the drawbacks of STORM imaging results 

of Bassoon’s orientation at the presynaptic termini, it becomes clear that the 

latter’s results suffer from the application of two traditional antibodies targeting a 

region of Bassoon around its 1000th a.a. and the extreme C-terminal region and 

can therefore only predict, at a 30nm distance from the true localization, the 

distance between the 1000th and 4000th amino acids of the Bassoon molecule. It 

therefore would be interesting to visualize the orientation of Bassoon at mature 

synapses using nanobodies and the full-length Bassoon constructs and ascertain 

whether the first 1000 a.a. of Bassoon add to further extend the molecule into the 

presynaptic bouton or whether it folds to create a cap for the filament like 

structure that Bassoon possesses within the CAZ.  

The STED imaging paradigm I use, on the other hand, is limited by the confocal 

resolution (~200nm) in its z-plane, in comparison 3D STORM imaging allows for 

a ~14nm resolution limit in the z-plane. This limitation has so far made it difficult 

to find in culture, pre- and postsynaptic sites in the side view conformation, which 

is a clear separation of pre- and postsynaptic compartments with the synaptic 

cleft (Figure 28E, F). This conformation of viewing synapses is important as it 

provides a clear marker from which to define the distance of the N- and C-termini 

of a molecule and can be observed with greater ease with 3D super resolution 

imaging. In addition, to understand the real orientation and organization of CAZ 

proteins in the CAZ scaffold live neurons need to imaged, for which the required 

dual-color RFP and GFP live STED microscopes are still being developed. 

4.5. Organization of Bassoon molecules at the TGN and 

presynaptic sites 

In addition to showing that Bassoon possesses the same extended conformation 

at the TGN and at the synapses, this study also reveals how Bassoon molecules 

are organized at both these locations. These novel results allow us to understand 

how the orientation of one Bassoon molecule interacts with neighboring Bassoon 

molecules to ultimately contribute to Bassoon’s structural functionality at both 

subcellular locations. 

In the soma, the signals of the N-termini of co-transfected RFP-Bsn and GFP-

Bsn, boosted with a GFP polyclonal antibody and an RFP nanobody, were seen 

packed within 5nm and produced a +3.7% FRET. On the other hand, C-termini of 
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Bsn-RFP and Bsn-GFP, boosted similarly, produced no FRET. This result shows 

that the N-termini of neighboring Bassoon molecules are closely organized while 

the C-termini of neighboring Bassoon molecules are at least 6nm apart (Figure 

26). This observation most importantly links the role of the N-termini of Bassoon 

in promoting an extended conformation at the TGN and the organization of 

neighboring molecules, such that Bassoon molecules may align in close proximity 

to one another, thereby enabling efficient sorting at the TGN. The organization of 

the N-termini of Bassoon may also help accentuate the open conformation and 

orientation of the Bassoon molecule at the TGN, and the cµulative effect of both 

features should in turn promote oligomerization between neighboring Bassoon 

molecules and ultimately provide a greater variety of AZP subsets and higher co-

trafficking opportunities of AZPs exiting the soma. 

As the organization of Bassoon molecules is conceptualized in an environment 

flooded with large numbers of tagged Bassoon molecules, thereby increasing the 

possible Bassoon-Bassoon interactions, it would be important to also ascertain 

whether neighboring N-termini of Bassoon and Piccolo molecules are similarly 

organized around the TGN and whether this configuration promotes the 

generation of preassembled PTVs. 

Just as the extended orientation of Bassoon is prevalent at both TGN and 

presynaptic sites, the intermolecular organization of these proteins, around both 

the structures, is also similar. Punctate sites on matured neurites that represent 

synaptic sites, containing co-transfected full-length RFP-Bsn and GFP-Bsn 

constructs produced a +7.3% FRET or containing Bsn-RFP and Bsn-GFP 

constructs produced no FRET, were readily observed without having to boost the 

RFP and GFP tags. The robust positive FRET seen between the N-termini of 

neighboring Bassoon suggests that, at these sites, the organization of Bassoon 

molecules localize the N-termini of neighboring molecules within 5nm of each 

other (Figure 27). 

This result mimics the structure of triangular DPs, often seen in chemically fixed 

EM images, representing the collapsed CAZ structure atop the presynaptic 

membrane. The N-termini of Bassoon molecules within a single AZ form the 

closely localized apex of the DP and the C-termini the spread out to form the 

base of the structure. The simplest purpose behind this molecular anatomy of 

Bassoon molecules at presynaptic sites could be to create a structural backbone 

for the CAZ scaffold to stabilize upon. The larger distances between the C-termini 

of neighboring Bassoon molecules could therefore physically separate and 

generate intermittent SV docking sites on the presynaptic membrane.   

The N-termini of Bassoon on the other hand seem to have a deeper role in CAZ 

ultrastructure and their super close proximities (< 5nm) warrant the presence of 

an underlying mechanism that promotes its anatomical and functional roles at the 

CAZ. It has been previously shown that the N-termini of Bassoon and Piccolo 
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molecules possess a Siah1 binding site within their N-terminal zinc finger 

domains. Siah1 is an E3 ubiquitin ligase that promotes local degradation of 

proteins within microdomains of the presynaptic bouton by poly-ubiquitination. 

The ubiquitin-proteasome system is thought to regulate neurotransmitter release, 

SV recycling and/or the clearing of misfolded or aged proteins within presynaptic 

boutons13,138. Bassoon and Piccolo have been shown to locally regulate this 

system by binding to and downregulating Siah1 activity and promoting localized 

structural stability of the CAZ scaffold25. The close localization of neighboring 

Bassoon N-termini might be a result of two N-terminal zinc fingers binding Siah1. 

Siah1 is known to exist in dimers139 and could recruit N-termini of neighboring 

Bassoon and Piccolo molecules within extremely close proximities at the CAZ to 

necessitate the complete activity inhibition of Siah1 dimers. 

Overall the extended orientation of Bassoon and the close organization of 

neighboring N-termini of Bassoon molecules at both the Golgi and presynaptic 

stations show that Bassoon and possibly Piccolo, through their homology 

domains, prefer an open conformation when they are not in transit on transport 

vesicles. These observations also imply that the N-terminus of the Bassoon 

molecule integrates itself into local functional mechanism, while the C-terminus of 

the molecule promotes the overall anatomical structure that Bassoon is a part of 

at the different subcellular sites it is present at.
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4.6. Perspectives and open questions 

Very little is known about nanostructural events involved in the assembly of the 

mammalian presynaptic CAZ scaffold; a structure that restricts neurotransmitter 

release to specific sites on the presynaptic membrane known as the active zone 

(AZ) and regulates its properties. This study investigates the molecular 

localizations and the ultrastructural configuration of AZPs, in particular Bassoon, 

at different subcellular locations in its journey to the presynapses. By doing so 

this study highlights the anatomical functionality of AZPs at different subcellular 

localizations and the molecular mechanisms they are involved in, that ultimately 

influence their assembly in the CAZ scaffold. 

I show here that AZPs are first localized to Golgi substructures in young neurons, 

they are distinctively distributed to specialized Golgi compartments and not all 

AZPs use the same TGN mediated secretory pathway. This 

compartmentalization of AZPs at the Golgi is the first mechanism that AZPs 

undergo that ultimately influences their assembly at presynaptic sites. This early 

segregation of AZPs into subsets suggests the presence of different transport 

carriers, trafficking mechanisms and a temporal delivery of AZPs to nascent 

synaptic sites. I also show that during trafficking the distributions of AZPs are 

uniform all throughout the axon, which reduces the chances of exchanging or 

acquiring a higher AZP composition closer to synaptic sites. In addition, upon 

resolving the confocal colocalizations of AZPs in the axon, it became evident 

though this study that a remarkably small population of AZPs co-traffic together in 

the axon, therefore indicating that the assembly of AZPs onto transport 

precursors in the soma may have a larger influence on the composition of co-

trafficked AZPs.  

AZPs Bassoon and Piccolo have been identified on transport aggregates 

containing PTVs and SVs, with a range of SV and DCV proteins, present 

primarily in young (DIV3—6) axons, that are believed to sufficiently form new 

functional AZs71. Multiple tags of N- and C- terminally tagged full-length Bassoon 

localized on top of similar vesicles clusters containing CGA positive vesicles 

trafficking in young axons, were seen in this study with STED imaging, carrying 

Bassoon molecules in a compact configuration. 

All these observations highlight that AZP assembly mechanisms involve a 

sequential delivery of transport packages, with Bassoon and Piccolo carrying 

preassembled multi-vesicle transport aggregates arriving first at the nascent 

presynaptic bouton, followed by the acquisition of RIM and Munc13-1 proteins 

that take a different transport pathway to presynapse. 

In addition, this study identifies a novel configuration change of the large 

Bassoon molecule, from an open and extended orientation with its N-terminus 
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facing the TGN, to a more compact configuration on transport vesicles, and to 

finally possessing a similar extended orientation at matured presynaptic sites 

(Figure 30). This change in configuration is an additional mechanism that could 

necessitate proper transport, assembly and maturation of the CAZ scaffold. 

 

Figure 30: A diagrammatic representation of the orientation and organization of tagged Bassoon 
molecules. Full-length double- and single-tagged Bassoon molecules are illustrated as they are 
organized at the TGN lamella, on PTVs, and at their final localization in the presynaptic terminus. 

 

Finally, the orientation of Bassoon molecule also revealed the importance of 

Bassoon’s N-terminus in localizing it to the TGN and accentuating its extended 

orientation by organizing the N-termini of neighboring Bassoon molecules in 

close proximity. The N-termini of Bassoon molecules at synaptic sites were also 

organized within 5nm of each other and highlight the role Bassoon’s N-termini in 

inhibiting Siah1-dimer mediated local degradation and confers structural stability 

in microdomains around the CAZ. The C-termini of Bassoon molecules on the 

other hand have a less clear role in local mechanisms at the TGN, where they 

promote the extended conformation of Bassoon by being localized further away 

from the TGN lamella, and may thereby promote access to the oligomerization 

domain of Bassoon, enabling Bassoon-Bassoon and/or Bassoon-Piccolo 

preassembly in the soma for co-traffic on multi-vesicle aggregates. Nonetheless, 

the C-termini at presynaptic sites avoid close interactions and have been 

recorded 20—30nm from the PM suggesting that the C-termini may help 

separate two synaptic vesicle docking sites on the PM and form the base, of the 

CAZ scaffold, to which other AZPs such as Munc13-1 and RIM1α can bind. 

These studies bring forward the first few novel mechanisms that influence 

mammalian CAZ assembly and provides a platform to understand an integrated 

model of the molecular localizations, ultrastructural configuration and the 

anatomical functionality of AZPs from the TGN to the CAZ scaffold. 
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As these are the first insights in mammalian CAZ assembly a number of 

questions are yet to be answered, for example the following: 

- What are the sorting and transport mechanism required for cis-Golgi mediated 
transport precursors of Munc13-1 and when is RIM1α first associated to the 
other AZP complement? 

- Are preassembled multi-vesicle aggregates assembled at the TGN, in the soma 
before axonal transport or during transport in developing neurons? 

- None of the mammalian AZP proteins have transmembrane regions, yet they use 
the secretory pathway and are transported to AZ sites where they float on top of 
the PM. What anchors the CAZ and what factors determine its localization 
opposite postsynaptic scaffolds? 

- Do PTVs and SVs fuse with the PM to deliver AZPs to the presynaptic scaffold? 
- How are the other AZPs organized within the CAZ ultrastructure? 
- Does the orientation of Bassoon molecule change with activity and is the CAZ 

scaffold a dynamic structure? 
 

Addressing these questions will not only help understand how the mammalian AZ 

is assembled and how its structure maintains local synaptic mechanisms but will 

also improve our fundamental understanding of how basic cellular mechanisms of 

sorting, transport, and organizations of proteins, that travel long distances to form 

synapses, are mediated in neurons. 
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Appendix 
Appendix A: The sequence of double-tagged full-length Bassoon construct:RFP-tag GFP-tag 

Primers  

CGCCATTCTGCCTGGGGACGTCGGAGCGATATCGATTTAGGTGACACTATAGAATACAAGCTACTTGTTCTTTTTGCAGGATCCCATCGCTAGCGCTACCGGACTCAGATCCTGCCCACCATGGGCAACGAGGCCAGCCTGGAGGGCGGCGCG

GGCGAAGGGCCGCTGCCGCCGGGAGGCTCTGGTCTGGGTCCGGGCCCCGGAGCAGGGAAGCCGCCTTCAGCACTAGCTGGCGGCGGACAGCTCCCCGTGGCTGGTGCTGCGCGAGCGGCGGGACCCCCGACCCCTGGTCTCGGTCTGGT

CCCCGGCCCTGGTCCCGGCCCCGGCCCGGGCAGTGTTTCCCGGAGACTGGACCCCAAGGAGCCCCTGGGCAGCCAGAGAGCAACTTCTCCAACCCCAAAGCaagcttctatgggctcctccgaggacgtcatcaaggagttcatgcgcttcaaggtgcgcatggagggctccgtg

aacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggcggccccctgcccttcgcctgggacatcctgtcccctcagttccagtacggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagctgtccttccccgagggcttcaagtgggagcg

cgtgatgaacttcgaggacggcggcgtggtgaccgtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgggctgggaggcctccaccgagcggatgtaccccgaggacggcgccctgaagggcgagatcaagatgaggctgaagct

gaaggacggcggccactacgacgccgaggtcaagaccacctacatggccaagaagcccgtgcagctgcccggcgcctacaagaccgacatcaagctggacatcacctcccacaacgaggactacaccatcgtggaacagtacgagcgcgccgagggccgccactccaccggcgcctccggactcagatctcgagctcaagcttCTGCTACT

GCTCCTGGCCGAGAGAGCCCCCGAGAGACAAGGGCCCAAGGCCTGTCAGGCCAGGAGGCCGAAGGTCCCCGCAGGACACTGCAGGTAGACAGCAGGACACAGAGATCAGGACGGTCCCCCTCCGTGTCACCAGACAGAGGCAGCACTCCCA

CATCACCCTATTCCGTCCCCCAGATTGCCCCTCTTCCCAGCAGCACCCTGTGTCCAATATGCAAGACATCGGACCTCACATCAACCTCCAGCCAGCCAAACTTCAACACCTGCACCCAGTGTCACAACAAGGTCTGCAACCAATGTGGGTTCAAC

CCCAACCCTCACCTCACCCAGGTGAAGGAGTGGCTCTGTTTGAACTGTCAGATGCAGAGGGCCCTGGGAATGGACATGACCACTGCACCTCGGTCCAAGAGCCAGCAGCAGCTACACTCCCCGGCCCTGTCTCCTGCCCACTCCCCAGCCAAA

CAGCCTCTGGGGAAGCCAGAGCAAGAGAGATCTCGGAGCCCAGGGGCCACACAGTCTGGTCCCCGCCAGGCTGAAGCAGCCAGGGCCACCTCAGTGCCTGGGCCTACCCAGGCAACTGCCCCTCCAGAGGTGGGGAGGGTGTCTCCTCAGC

CCCCTCTCTCTACCAAGCCTTCCACAGCTGAGCCCAGGCCACCTGCAGGAGAGGCCCAGGGCAAAAGTGCCACCACAGTGCCCTCCGGGCTTGGTGCTGCTGAACAGACCCAGGAGGGGCTCACCGGGAAGCTCTTTGGCCTTGGAGCATCA

CTGCTGACCCAGGCAAGCACCCTTATGTCTGTGCAGCCAGAGGCTGACACCCAGGGCCAGCCTTCCCCCAGCAAGGGGCCACCCAAGATTGTCTTCAGTGATGCCAGCAAGGAGGCGGGTCCAAGACCCCCAGGCTCAGGGCCCGGGCCTGG 

GCCAACCCCTGGAGCCAAAACGGAGCCTGGGCCTAGAACAGGTCCTGGATCAGGGCCTGGGGCCCTGGCAAAAACTGGAGGAACCCCCAGTCCAAAGCATGGCAGAGCAGACCATCAGGCAGCATCCAAAGCTGCTGCCAAGCCAAAGACCA

TGCCGAAGGAAAGGGCTGCCTGCCCACTGTGCCAAGCCGAGCTCAACGTGGGTAGCAGGGGCCCAGCCAACTACAATACCTGCACTGCCTGCAAGCTCCGGGTGTGCACCCTGTGTGGCTTTAACCCGACACCACACCTGGTGGAGAAAACAG

AGTGGCTCTGTCTGAACTGCCAAACCAAGAGGCTGCTGGAGGGCAGCTTGGGGGAGCCGGCCCCCCTGCCTCTGCCCACCCCACAGCAGCCTCCAGCAGGGGTCCCTCAGCGAGCAGCTGGAGCAAGTCCTCTGAAGCAGAAAGGGCCACA

GGGGCCGGGCCAGCCCTCAGGCTCCCTGCCTCCCAAGGCCAGTCCTCAAGCCGCCAAGGCCAGCCCTCAGGCCGCCAAGGCCAGCCCTCAGGCCAAGCCTCTCAGGGCTTCTGAACCCAGCAAGACCTCTAGCAGCGCCCCGGAAAAGAAG

ACAGGGATCCCTGTGAAAGCTGAGCCTGTGCCGAAGCCACCTCCAGAGACTGCTGTGCCTCCTGGGACTCCTAAAGCAAAAAGCGGGGTGAAGAGGACCGACCCTGCCACCCCAGTCGTCAAGCCTGTTCCAGAAGCTCCCAAGAGCGGGGA

GGCTGAGGAACCTGTCCCCAAGCCTTACTCTCAGGATCTGTCTCGAAGCCCACAAAGCCTCAGTGATACAGGCTACTCCTCCGATGGCGTCTCCAGCTCCCAGAGTGAGATCACAGGTGTTGTACAGCAAGAAGTGGAGCAACTTGACAGTGCG

GGGGTGACAGGCCCACGTCCACCCAGCCCCTCAGAGCTCCACAAAGTGGGCAGTAGTATGCGCCCTTCCCTGGAGGCCCAGGCTGTGGCTCCCAGTGGTGAGTGGAGCAAGCCACCCAGCGGCAGTGCTGTTGAAGACCAGAAACGGCGTC

CCCACTCCCTGTCCATCATGCCCGAGGCCTTCGACTCTGACGAGGAGCTGGGGGATATTCTAGAAGAGGATGACTCCTTGGCATGGGGGCGTCAGAGGGAGCAGCAAGACACAGCTGAGTCTTCAGATGACTTTGGCAGCCAGCTGAGGCATG

ACTACGTGGAAGACAGCAGTGAAGGCGGCTTGTCTCCCCTTCCACCTCAGCCCCCAGCCAGGGCAGATATGACTGATGAAGAGTTCATGCGGCGGCAGATCCTAGAAATGAGCGCCGAGGAAGACAACTTGGAGGAAGACGACACCGCTGTCT

CCGGGCGAGGCCTGGCCAAACACGGTGCCCAGAAGGCAAGTGCCAGACCCAGGCCCGAATCTAGCCAAGAATCAGTAGCACTGCCCAAGAGGCGCCTGCCCCATAATGCCACCACAGGTTACGAGGAACTTCTGTCTGAGGAAGGCCCAGCA

GAGCCCACTGACGGAGCCCTTCAGGGAGGTCTCCGACGCTTTAAAACTATTGAGCTCAACAGCACAGGTAGCTATGGTCACGAGCTAGACCTGGGCCAAGGCTCTGATCCCAACCTAGACCGGGAGCCTGAGCTGGAGATGGAGAGCCTTACA

GGCTCGCCTGAAGACCGCTCTCGTGGGGAGCACTCCTCTACACTGCCGGCTTCCACGCCTAGCTATACATCTGGCACCTCACCCACCTCCCTGTCTTCCCTGGAGGAGGACAGTGACAGCAGCCCCAGCCGCAGGCAGCGGCTAGAAGAAGC

GAAGCAGCAGCGCAAGGCCCGGCACCGGTCCCACGGGCCCCTGCTGCCCACCATTGAGGACTCTTCCGAGGAGGAGGAGCTGCGGGAAGAAGAGGAGCTGCTGCGTGAGCAAGAGAAGATGCGGGAGGTGGAACAGCAGCGAATTCGAAG

CACAGCCCGCAAGACCCGGCGTGACAAGGAAGAACTTCGGGCTCAGCGGCGGCGTGAGCGCTCCAAGACACCGCCTAGTAACCTGTCACCCATCGAAGATGCGTCCCCTACAGAGGAGCTGAGGCAGGCAGCGGAGATGGAGGAGCTACAC

CGCTCTTCCTGCTCTGAGTACTCCCCCTCCCCCTCCCTGGACTCAGAGGCTGAGACCCTCGATGGCGGCCCCACTCGGCTCTACAAGTCGGGCAGCGAGTACAACCTGCCTGCCTTTATGTCCCTCTGCTCACCAACCGAGACCCCTTCAGGCA

GTTCCACCACGCCCAGTTCTGGACGGCCCCTTAAGAGTGCGGAGGAGGCCTACGAGGACATGATGAGAAAAGCTGAGCTGCTCCAGAGACAGCAGGGCCAGGCGGCAGGGGCCCGGGGACCCCATGGCGGCCCCTCTCAGCCCACAGGCCC

CCGCAGCCAGGGCTCCTTTGAATACCAAGACACCCAAGACCATGACTATGGCGGCAGGGCTTCTCAGCCTGCGGCAGATGGCACGCCCGCAGGCCTCGGAGCAACAGTGTATGAGGAGATCCTTCAGACATCCCAGAGCATAGCCCGGATGC

GGCAGGCCTCCTCGCGGGATCTGGCCTTCACTGAGGACAAAAAGAAGGAGAAGCAGTTTCTGAATGCGGAGAGTGCATACATGGACCCAATGAAGCAAAATGGTGGCCCACTTACCCCTGGGACTAGCCCCACCCAACTTGCTGCTCCTGTGTC

ATTTCCCACTTCCACCTCCTCAGACAGCAGCGGGGGCCGAGTTATTCCCGATGTCAGAGTCACTCAGCATTTTGCAAAAGAGCCTCAGGAGCCTCTCAAGCTACATAGCTCTCCTGCCTCTCCCAGTCTGGCCTCTAAGGAGGTAGGCATGACCT

TCTCCCAGGGTCCTGGAACTCCAGCCACCACAGCCATGGCGCCTTGTCCAGCCAGCCTTCCACGGGGGTATATGACTCCAGCCGGCCCTGAGCGCAGCCCATCAACATCTTCCACAATACACAGCTATGGACAGCCCCCAACCACTGCTAACTA

TGGGTCTCAGACGGAGGAGCTGCCTCACGCTCCCAGTGGCCCTGCTGGAAGTGGGCGGGCCTCCAGAGAGAAGCCTCTGAGTGGGGGTGATGGTGAGGTTGGTCCCCCCCAGCCTTCTCGGGGATATTCTTATTTTACGGGCTCTAGCCCAC

CTCTCTCTCCATCCACCCCCTCCGAGAGCCCCACCTTCTCTCCAAGCAAGCTGGGTCCAAGGGCCACAGCAGAGTTCTCTACACAGACGCCAAGCCTAACGCCTTCCTCTGACATTCCACGGAGCCCTGGCACCCCTTCCCCCATGGTAGCCCA

AGGCACGCAGACGCCACACCGACCTAGCACTCCTCGCTTGGTGTGGCAGCAGTCTTCCCAGGAGGCTCCTGTTATGGTCATCACGCTAGCTTCAGATGCTTCTAGCCAGACCCGAATGGTACACGCCAGTGCCTCTACTTCCCCTCTGTGCTCG

CCTACGGACTCTCAGCCTGCCTCCCATAGCTACAGCCAGACCACACCCCCAAGTGCATCTCAAATGCCCTCAGAACCAGCTGGGCCACCTGGTTTCCCACGAGCACCCAGTGCTGGTGTAGACGGGCCATTGGCGCTGTATGGCTGGGGTGCC

CTCCCTGCTGAAAACATCTCCTTATGCCGGATCTCCTCTGTCCCTGGAACATCTAGAGTTGAGCCGGGCCCCAGGCCCCCGGGCACCGCAGTGGTCGACCTTCGCACGGCTGTCAAGCCCACACCCATTATCCTTACCGACCAGGGCATGGATC

TGACCTCTCTTGCTGTGGAAGCAAGGAAGTATGGCCTTGCCCTGGATCCAGTTCCAGGCCGCCAGTCAACCGCCGTGCAGCCTCTAGTTATTAACCTCAATGCCCAAGAGCAGACCCATACCTTCCTGGCCACTGCCACCACAGTGAGCATCAC

CATGGCCTCATCTGTGCTCATGGCGCAGCAAAAGCAACCAGTGGTATATGGAGATCCTTTCCAGAGCCGCCTCGACTTTGGCCAGGGTTCAGGTAGCCCTGTGTGCCTGGCCCAGGTCAAGCAAGTAGAGCAGGCTGTCCAGACAGCCCCATAC

CGAGGTGGGCCCAGGGGAAGACCCAGGGAGGCTAAGTTCGCCAGGTATAACCTTCCCAACCAGGTAACACCTCTGGCCAGAAGGGACATTCTGATCACTCAGATGGGCACTGCCCAGAGTGTTAGCCTGAAGCCAGGACCAGTGCCAGAGCCT

GGTGCTGAACCCCACCGGGCTACTCCTGCAGAGCTCCGGGCACATGCTCTACCAGGTACCAGGAAGCCACACACAGTGGTGGTGCAGATGGGAGAGGGCGCAGCCGGCACGGTGACTACCCTGCTCCCAGAAGAGCCAGCAGGAGCCCTGG

ACCTCACTGGGATGAGGCCCGAGAGCCGACTGGCATGCTGTGACATGGCCTATAAGTTTCCCTTTGGCAGTAGCTGCACTGGTACCTTCCATCCTGCCCCTAGTGCACCTGACAAGAGTGTGACAGATGCTGCCCTGCCTGGCCAAAGCAGTGG

CCCCTTCTACAGTCCCAGAGACCCTGAGCCTCCTGAGCCCCTCACCTTCCGGGCACAAGGGGTCGTAGGACCTGGGCCCCATGAAGAACAGAGGCCCTACCCACAGGGCTTGCCCGGTAGGCTCTACTCCTCCATGTCTGACACCAATTTGGC

TGAAGCTGGTCTCAACTACCACGCCCAGAGGATTGGGCAGCTCTTCCAGGGCCCTGGGAGGGACTCAGCTGTGGATCTCAGCTCGCTGAAGCATTCTTACAGCTTAGGCTTCGCTGATGGACGCTACTTGGGGCAGGGCTTACAGTATGGCTCG

TTCACGGACCTGCGCCACCCCACAGACCTTTTGTCTCACCCACTGCCCATGAGGCGCTACAGCTCTGTGTCAAACATCTATTCGGATCACCGGTACGGCCCACGGGGAGATGCCGTCGGCTTTCAGGAGGCCAGCCTGGCCCAGTACAGTGCC

ACCACAGCCCGCGAGATCAGCCGCATGTGTGCCGCCCTCAACTCCATGGACCAGTACGGTGGGCGGCATGGCGGTGGAAGTGGTGGGCCCGACCTTGTGCCGTATCAGCCCCAGCACGGGCCTGGACTCAATGCTCCACAGGGTCTGGCTTC

CCTTAGATCTGGCCTCCTCGGCAACCCCACCTACCCAGAAGGGCAACCAAGTCCTGGGAACCTTGCTCAGTACGGGCCTGCAGCAAGCCAAGGAACAGCAGTCAGACAGTTGCTCCCATCCACAGCAACAGTGCGTGCAGCCGATGGCATGAT

CTACTCGACTATCAATACCCCAATCGCTGCAACACTGCCCATCACCACCCAGCCTGCCTCAGTACTGCGGCCCATGGTGCGTGGTGGCATGTACAGGCCTTACGGATCTGGCGGAGTCACAGCTGTGCCCCTTACCAGCCTGACCCGGGTGCC

CATGATTGCCCCTCGGGTACCTCTTGGACCAGCAGGGTTATACCGCTATCCTGCACCAAGTCGATTCCCCATCGCTTCCACCATTCCACCCGCTGAAGGACCTGTCTATTTGGGAAAGCCAGCAGCCGCCAAGGCCTCGGGGGCAGGAGGCCC

GCCAAGGCCTGAGCTACCAGCAGGGGGTGCTCGAGAAGAACCTCTCTCCACAACTGCCCCTCCTGCTGTCATCAAGGAAGCCCCGGTGGCCCAGGCCCCGGCCCCACCACCAGGCCAAAAGCCAGCAGGAGATGCTGCTGCTGGGAGTGGC

AGTGGAGTCCTCGGCCGGCCTGTGATGGAGAAGGAGGAGGCATCTCAGGAGGACCGGCAGCGAAAGCAACAGGAGCAGCTGCTGCAGCTGGAGCGGGAACGGGTAGAGTTGGAAAAGCTCCGGCAGTTGCGGCTACAGGAGGAGCTGGAG

CGAGAGAGGGTGGAGCTGCAGAGGCATCGTGAGGAGGAGCAGCTGCTGGTGCAGAGAGAGTTGCAGGAGCTCCAGACCATCAAGCACCATGTTCTGCAGCAGCAGCAAGAAGAGCGCCAAGCTCAGTTCGCACTGCAGCGCGAGCAGCTGG

CACAGCAGCGGCTGCAGCTAGAGCAGATCCAGCAACTGCAGCAGCAGCTGCAGCAGCAGCTAGAGGAGCAGAAACAGAGGCAAAAGGCCCCCTTTCCTGCAACCTGTGAGGCGCCTAGCCGAGGGCCTCCCCCCGCTGCTACCGAGCTGGC

CCAGAACGGCCAGTATTGGCCACCATTGACCCACACAGCCTTCATCGCCGTGGCAGGAACCGAAGGGCCTGGGCAAGCTCGTGAGCCCGTGCTGCACAGGGGCCTCCCCAGCTCTGCCTCAGACATGTCCCTGCAAACTGAGGAGCAGTGGG

AGGCAGGCCGTAGTGGCATCAAGAAACGTCACTCTATGCCACGCCTGAGAGACGCCTGTGAACCAGAGTCAGGCCCTGATCCCAGCACGGTCAGGAGGATTGCAGACAGCAGTGTTCAGACAGATGATGAGGAGGGCGAGGGCCGCTACCTC

CTGACCCGTAGGCGCAGGACACGGCGCAGTGCCGACTGCAGTGTGCAGACAGATGACGAGGACAATGCCGAATGGGAGCAGCCTGTCCGCCGCCGCAGGTCTCGTCTTTCCCGTCACTCAGACTCAGGCTCTGACAGCAAGCACGAGGCCTC

GGCCTCATCGTCCGCTGCTGCCGCTGCGGCGAGGGCCATGAGCAGTGTGGGTATCCAGACCATCAGTGACTGCTCTGTACAGACAGAGCCTGAGCAGCTGCCCAGGGTCTCACCAGCCATCCACATCACAGCCGCCACTGACCCAAAGGTGG

AGATCGTCAGATACATATCAGCACCAGAAAAGACTGGGCGAGGGGAGAGCCTGGCCTGCCAGACAGAACCCGATGGGCAGGCTCAGGGTGTGGCTGGGCCACAGCTCATAGGACCAACTGCCATCAGCCCCTACCTACCTGGCATCCAGATAG

TCACCCCAGGAGCCCTAGGCAGATTTGAAAAGAAGAAGCCAGATCCTCTGGAGATTGGGTACCAGGCCCACCTGCCCCCGGAGTCCCTGTCGCAGCTTGTGAGCCGCCAGCCTCCCAAGTCTCCACAAGTGCTCTACTCACCAGTGTCGCCACT

GTCCCCACACCGGCTCCTGGACACCTCGTTTGCTTCCAGTGAGAGGCTGAACAAGGCTCATGTGAGTCCCCAGAAGCAGTTCATAGCTGACAGCACTCTTCGCCAGCAGACTCTGCCGCGCCCCATGAAGACCCTGCAGCGGTCCCTGTCCGA

CCCTAAGCCCCTGAGCCCCACCGCCGAGGAGTCTGCCAAAGAGAGATTCTCCCTCTACCAGCACCAGGGGGGACTAGGTAGCCAGGTGTCGGCGCTGCCACCCAACGGCCTGGTCCGCAAGGTGAAGCGGACACTGCCCAGCCCCCCTCCA

GAGGAAGCTCACCTTCCCCTGGCTGGCCAGGTGCCCTCACAGCTGTATGCAGCCAGTCTGCTGCAGCGAGGGTTGGCGGGGCCCACCACCGTCCCTGCTACCAAGGCCAGCCTGCTCCGGGAGCTGGACCGGGACCTGCGGCTGGTGGAGC

ATGAATCCACCAAGCTGCGCAAGAAGCAGGCGGAGTTGGACGAGGAGGAGAAGGAGATTGATGCCAAGCTCAAGTACCTGGAGCTGGGCATCACCCAGCGCAAAGAGTCTTTGGCCAAAGACCGGGTTGGCCGTGACTACCCACCTTTACGTG

GCCTTGGTGAGCATCGTGACTACCTGTCTGACAGCGAGCTCAACCAGCTGCGGCTCCAGGGTTGTACCACGCCCGCTGGCCAGTATGTGGACTACCCTGCCTCAGCTGCTGTGCCTGCCACCCCCTCTGGCCCCACTGCCTTCCAACAGCCCC

GGTTCCCACCTGCAGCCACACAGTACACTGCAGGCAGTAGTGGACCAACTCAGAATGGATTTCTAGCCCACCAGGCACCTACCTACACTGGCCCTAGCACGTACCCAGCACCTACCTACCCTCCTGGAACGAGTTATCCAGCTGAGCCTGGCCT

GCCAAGCCAACCGGCTTTCCACCCCACAGGCCATTACGCAGCCCCAACGCCCATGCCAACCACGCAGAGCGCCCCTTTTCCAGTCCAAGCTGACAGTCACGCTGCCCACCAGAAGCCGCGCCAGACCTCACTGGCTGATTTGGAGCAGAAGGT

TCCCACCAATTATGAAGTGATCAGCAGCCCTGCTGTAACCGTGTCCTCAACCCCCTCTGAGACCGGCTACAGTGGTCCAGCTGTGAGCAGCAGCTACGAGCACGGTAAAGCCCCTGAGCATCCCCGGGGTGGTGATCGAAGCAGTGTGAGCCA

GAGCCCAGCCCCTACATATCCCTCTGACTCCCATTACACCAGTCTGGAGCAGAACGTTCCCCGAAACTATGTGATGATCGATGACATCAGTGAGCTAACCAAGGACAGCACCCCCACTGCCTCGGATAGCCAACGGCCAGAGCCCTTGGGCCCA

GGTGGAGTCAGTGGGCGTCCCGGGAAGGATCCCGGAGAACCAGCTGTCCTAGAGGGACCCACTCTGCCCTGCTGCTATGGCAGAGGTGAGGAAGAATCTGAGGAGGACTCATATGACCCCCGTGGCAAATCTGGTCATCACCGGAGCATGGA

GAGCAACGGCCGACCAGCCAGCACCCACTATTACAGTGACAGTGACTATAGACATGGGGCTCGAGCAGACAAGTATGGCCCAGGACCCATGGGGCCAAAGCATCCCTCTAAGAACCTGGCCCCGGCTGCCATCTCCTCCAAGCGCAGCAAGCA

CCGGAAGCAAGGCATGGAGCAAAAGATCTCCAAGTTCTCACCTATCGAGGAGGCCAAGGACGTGGAATCAGACCTGGCCTCCTATCCCCCACCCACCGTCAGCAGCAGCCTGACCTCTCGGAGCAGAAAGTTCCAAGACGAAATCACCTATGG

GCTCAAGAAGAATGTGTATGAACAGCAGAGGTACTACGGGGTGTCCAGCCGGGACACAGCCGAGGAGGATGACCGCATGTATGGTGGTAGCAGCCGGTCCCGAGTGGCATCGGCATACAGTGGGGAGAAGCTGTCCAGCCATGATTTCAGCA

GCCGAAGCAAAGGGTATGAACGGGAACGGGAGACTGCAGAGCGACTTCAAAAGGCGGGGCCCAAGCCCTCATCCCTGAGCATGGCTCATGGACGGGCACGGCCCCCCATGAGGAGCCAGGCCTCTGAAGAGGAGAGCCCTGTCAGCCCCTT

AGGGCGGCCCCGTCCCGCAGGGGGCGCTCTTCCTCCTGGGGATACCTGCCCACAGTTCTGCTCCAGCCACTCCATGCCGGACGTCCAGGAGCACGTCAAGGACGGACCGCGCGCCCACGCATATAAGCGTGAGGAGGGCTACATCTTGGATG

ACTCCCACTGCGTGGTTTCGGACAGTGAAGCGTATCACCTGGGCCAGGAGGAGACAGACTGGTTTGATAAGCCCCGAGATGCCCGCTCCGACCGGTTCAGGCACCATGGGGGGCATACAGTCTCCTCCTCCCAGAAGCGAGGCCCTGCCAGG

CACAGCTACCATGACTACGATGAGCCCCCTGAGGAGGGCCTGTGGCCTCATGATGAGGGTGGTCCAGGCCGGCATACCTCAGCCAAGGAGCACCGGCACCACGGTGACCACGGGAGGCACTCAGGCCGCCATGCTGGTGAGGAGCCAGGGC

GCCGTGCTGCCAGACCACATGCTCGGGACATGGGTCGCCACGAGACCCGGCCTCACCCTCAGGCCAGCCCTGCCCCTGCCATGCAAAAGAAGGGTCAGCCTGGGTACCCCAGCTCTGCTGATTACTCACAGCCATCCCGGGCTCCGTCAGCA

TACCACCATGCCTCTGACAGCAAAAAGGGCTCCCGGCAGGCCCACTCTGGGCCTACTGTACTGCAGCCAAAGCCAGAAGCCCAGGCACAGCCACAGATGCAAGGTCGGCAGGCGGTTCCGGGACCGCAGCAATCACAGCCACCATCGTCCAG

GCAGACGCCCTCAGGCACAGCATCACGCCAGCCACAGACACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAACAGCAACAGCAACAGCAGCAACAGCAAGGTCTTGGGCAACAAGCTCCCCAGCAGGCTCCATCACAGG

CTCGGCTACAGCAACAGAGCCAGCCAACCACCCGGAGCACAGCCCCTGCTGCCAGCCACCCAGCAGGGAAACCTCAACCAGGCCCCACCACAGCCCCAGGGCCCCAGCCAGCAGGACTGCCACGTGCAGAGCAGGCAGGCAGCTCCAAACC

GGCAGCCAAAGCGCCCCAGCAGGGGCGCGCTCCTCAGGCCCAGTCAGCTCCAGGACCTGCAGGGGCGAAGACTGGAGCCAGGCCTGGGGGGACCCCAGGGGCTCCTGCTGGTCAGCCAGCGGCAGAAGGAGAGAGTGTATTTTCTAAGATC

CTCCCTGGTGGGGCAGCAGAGCAAGCCGGAAAGCTGACAGAAGCTGTCTCTGCTTTTGGCAAAAAATTTTCCTCATTCTGGACGCGTGGCCCGGGATCCATCGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAG

CTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGT

GCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCT

GGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAAC

ATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCAAGCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCT

GGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCGACTAGTCCTAGAACTATAGTGAGTCGTATTACGTAGATCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAG

TGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAATTCGCGGCCGCGGCGCCA

ATGCATTGGGCCCGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGG

GTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCAC

TGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTT

GCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTT

ACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTA

ACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGT

ATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTA

CGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCT

TAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGAT

TTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGG

CATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATC

ACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGC

GCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGG

TGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAA

ACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACC

GAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAA

AGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACA

CCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGTCGACCATAGCCAATTCAATATGGCGTATATGGACTCATGCCAATTCAA

TATGGTGGATCTGGACCTGTGCCAATTCAATATGGCGTATATGGACTCGTGCCAATTCAATATGGTGGATCTGGACCCCAGCCAATTCAATATGGCGGACTTGGCACCATGCCAATTCAATATGGCGGACTTGGCACTGTGCCAACTGGGGAGGG

GTCTACTTGGCACGGTGCCAAGTTTGAGGAGGGGTCTTGGCCCTGTGCCAAGTCCGCCATATTGAATTGGCATGGTGCCAATAATGGCGGCCATATTGGCTATATGCCAGGATCAATATATAGGCAATATCCAATATGGCCCTATGCCAATATGG

CTATTGGCCAGGTTCAATACTATGTATTGGCCCTATGCCATATAGTATTCCATATATGGGTTTTCCTATTGACGTAGATAGCCCCTCCCAATGGGCGGTCCCATATACCATATATGGGGCTTCCTAATACCGCCCATAGCCACTCCCCCATTGACGT

CAATGGTCTCTATATATGGTCTTTCCTATTGACGTCATATGGGCGGTCCTATTGACGTATATGGCGCCTCCCCCATTGACGTCAATTACGGTAAATGGCCCGCCTGGCTCAATGCCCATTGACGTCAATAGGACCACCCACCATTGACGTCAATGG

GATGGCTCATTGCCCATTCATATCCGTTCTCACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCACTTGGCAGTACATCAATATCTATTAATAGTAACTTGGCAAGTACATTACTATTGGAAGGACGCCAGGGTACATTGGCAGTACTCCCATT

GACGTCAATGGCGGTAAATGGCCCGCGATGGCTGCCAAGTACATCCCCATTGACGTCAATGGGGAGGGGCAATGACGCAAATGGGCGTTCCATTGACGTAAATGGGCGGTAGGCGTGCCTAATGGGAGGTCTATATAAGCAATGCTCGTTTAGG

GAAC 
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Appendix B 

 

Appendix B. Colocalization of Full-length Bassoon constructs to post-synaptic densities. A, B 

double-tagged Bassoon construct (over view and zoom images) and C, D and E zoom images of 

single-tagged Bassoon constructs in the processes of transfected DIV14 hippocampal neurons, 

co-immunostained with SHANK2 (post-synaptic marker). Graph F quantification of the colocalized 

Bassoon puncta populations. N=4 cells from 2 sets. Scale bars: A-10µm and B—E-2µm. 
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Appendix C 

 

Appendix C. Over-expressed and medium expressed full-length single-tagged Bassoon 

constructs in young and matured hippocampal neurons. Epifluorescence images of Bassoon 

transfection in young DIV5—7 neurons and DIV14 matured neurons. Over-expressed neurons 

have high intensity signals which are bassoon over-expression artifacts, roughly 1 µm large 

clusters, present in the soma and in the neuronal processes. While medium-transfected neurons 

have Bassoon signals at juxta-nuclear signals, which are usually seen as Golgi-lamella-like-

structures with epifluorescence images. These signals travel out as punctate signals into axons 

and even decorate large growth cones in young neurons. Matured medium transfected neurons 

also have, although less intense, Golgi-lamella-like-signals in the soma and their punctate 

bassoon signals are seen in neighboring neuronal processes. Scale bar: 10µm.  
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Appendix D 

 

Appendix D. Localization of Rbb26-Bsn and 95-Bsn construct at the TGN38 lamella. A construct 

sequence map on top shows the sized of the Bassoon molecules transfected. DIV6 Lipofectamine 

transfected hippocampal neurons fixed with PFA at DIV7. Confocal were acquired of the neuronal 

soma and TGN38 antibody staining and GFP autofluorescence is visualized. Scale bar: 5µm. 
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Appendix E 

 

Appendix E: Double-tagged full-length Bassoon never orients in anti-parallel confirmation and a 

molecule’s N- and C-termini are not localized within 5nm of each other in the soma. A, 

Transfected DIV7 hippocampal neuronal soma, B—E represents fluorescence images of A, pre- 

and post- acceptor bleaching in the outlined ROI. F—H represented the lifetime information 

obtained and overlaid. No warmer LUT ranges in the bleached ROI was observed, therefore none 

of the signals in the rest of the image is indicated to possess lower FRET lifetimes. I, represents a 

schematic of Bassoon’s conformation at the TGN. 
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Appendix F 

 

 

Appendix F: N and C terminus of full-length Bassoon localizes at the trans-Golgi sub-

compartment. DIV7 hippocampal neurons were transfected with CFP-Golgi (trans-Golgi sub-

compartment maker), full-length single-tagged mRFP-Bsn or Bsn-mRFP constructs, and 

immunostained using GFP and/or RFP nanobodies against tagged constructs and from A—E with 

TGN38 (trans-Golgi network maker). Two-color STED images of both Golgi sub-compartment 

markers (A—E), CFP-Golgi and RFP-Bsn constructs (F—J), and CFP-Golgi and RFP-Bsn (K—

O).  A, F, K show wide field over view of transfected construct, B, G, L the confocal zoomed 

image of the soma, inset a reflects both the single channels and merged STED deconvolved 

(Deconv.) images of C—E, H—J, and M—O, and b the STED zooms.  With the images in each 

panel, a schematic diagram of the transfected constructs used is supplied.  Scale bars 4μm (B, G 

and L) and 1μm (E, J and O). 
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Appendix G 

 0—100 nm 101—1000 nm 

[N] RFP-Bsn-GFP 32.5nm±8.0nm 
(67% of the population) 

210.6nm±13.0nm 
(33% of the population) 

RFP-Bsn-GFP[C] 60.3nm±6.8nm 

(37% of the population) 

229.4 nm±68.4nm 

(63% of the population) 

RFP-Bsn 30.5nm±6.9nm 
(84% of the population) 

154.1nm±12.01nm 
(16% of the population) 

Bsn-RFP 50.3nm±3.03nm 
(46% of the population) 

192.1nm±11.58nm 
(54% of the population) 

GFP-95Bsn 51.3nm±12.4nm 
(40% of the population) 

231.9nm±41.0nm 
(60% of the population) 

GFP-Rbb26Bsn 52.2 nm±12.2nm 
(33% of the population) 

243.0nm±29.06nm 
(67% of the population) 

 

Appendix G: Table 6. Average distances of full-length and deletion mutants of Bassoon to the 

closest TGN38 signal. These are the accumulated values in the two population distributions of 

0—100nm; representing signals close to the TGN and 101—1000nm; representing signals further 

away from the TGN. The green highlighted panels represent the dominant distance localization of 

all the Bassoon constructs.
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