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Abstract 

In demyelinating diseases such as multiple sclerosis (MS) activated astrocytes, 

characterised by up-regulation of the intermediate filament glial fibrillary acidic 

protein (GFAP), were shown to have beneficial as well as detrimental effects on 

demyelination. Therefore, this study aims to investigate the effect of enhanced 

GFAP expression in astrocytes on the interaction with oligodendrocytes and 

microglia during demyelination. To address this question, toxic demyelination was 

induced in transgenic mice with human (h)GFAP overexpression using two different 

approaches: the cuprizone model and intracerebral injection of lysolecithin. 

The results demonstrated that an enhanced hGFAP expression in astrocytes has 

protective effects in both models, resulting in reduced demyelination and decreased 

oligodendrocyte loss during cuprizone treatment. Furthermore, this study 

demonstrated that enhanced hGFAP expression in astrocytes reduced microglia 

infiltration during cuprizone treatment. This observation might be explained by 

decreased mRNA expression of the chemokines CCL2 and CXCL10 in transgenic 

mice. Both chemokines were demonstrated to regulate microglia recruitment. 

Additionally, this study demonstrated that NF-κB activity was reduced in vitro and in 

vivo in astrocytes of transgenic mice with enhanced GFAP expression. The nuclear 

transcription factor (NF)-κB signalling pathway was shown to regulate the 

expression of CCL2 and CXCL10 in reactive astrocytes.  

This study confirms that reactive astrocytes have protective effects in models of 

toxic demyelination in vivo. Enhanced hGFAP expression seems to modulate 

astrocytic chemokine expression, presumably via a reduced activation of the NF-κB 

pathway. The reduction of CCL2 and CXCL10 expression levels results in reduced 

microglia recruitment which may lead to reduced demyelination. 
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1 | Introduction 

1.1 Glial cells 

There are four main glial cell types in the central nervous system (CNS): astrocytes, 

oligodendrocytes, microglia and ependymal cells, which support neurons by 

providing growth factors, maintain the brain homeostasis and regulate the CNS 

immunity. This work focusses on astrocytes and their interaction with microglia and 

oligodendrocytes during demyelination.  

1.1.1 Astrocytes  

Astrocytes have many regulatory functions in the CNS. They are primary 

responsible for maintaining brain homeostasis in several ways, including potassium/ 

sodium balance (Hertz 1965, Hertz et al 2015), copper (Scheiber & Dringen 2013), 

water (Hubbard et al 2015, Nielsen et al 1997) and the reuptake of the 

neurotransmitter glutamate (Danbolt 2001). They orchestrate the homeostasis with 

several channels and transporters, for example the water channel aquaporin-4, 

which regulates the water homeostasis in the brain (Hubbard et al 2015, Nielsen et 

al 1997). Astrocytes reuptake extracellular glutamate via the glutamate transporter 

GLAST (glutamate aspartate transporter) and GLT-1 which is then converted to 

glutamine and released to the extracellular fluid to be taken up by neurons and 

reconverted to glutamate inside neurons (Bergles & Jahr 1997, Martinez-Hernandez 

et al 1977, Van Den Berg & Garfinkel 1971). Additionally, astrocytes are part of the 

blood brain barrier (BBB), which separates the brain from the blood and regulates 

the molecular exchange (Abbott et al 2006). Moreover, astrocytes are involved in 

synaptic transmission and synaptogenesis by the secretion of factors like glypicans 

that induce the formation of functional excitatory synapses between neurons (Allen 

et al 2012, Ullian et al 2001).  

Classically, astrocytes are identified by the expression of their main intermediate 

filament glial fibrillary acidic protein (GFAP) and star-like morphology (Bignami et al 

1972, Eng 1985, Eng et al 1971, Uyeda et al 1972). Together with vimentin and 

nestin GFAP builds the intermediate filament network in astrocytes and maintains 

the mechanical integrity of astrocytes and tissue (Eliasson et al 1999, Eng & 
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Ghirnikar 1994). But astrocytes are a heterogeneous cell population and gene 

expression of astrocytes depends among others on the brain region and 

developmental stage. Therefore, GFAP as classic astrocyte marker does not mark 

all astrocytes. Astrocytes from the brainstem, neocortex and cerebellum contain 

more than 98% GFAP-positive astrocytes, but cells from the optic nerve contain 

fewer than 30% GFAP-positive astrocytes (Yeh et al 2009). Cortical astrocytes were 

shown to express increased levels of Foxg1, Nr2el mRNA and astrocytes from the 

cerebellum express En2, Pax and Scn7 in vitro (Yeh et al 2009). Additionally, 

astrocytes from different brain regions show unique biological properties. Thus, 

astrocyte coupling via gap-junctions is stronger in astrocytes in the cerebellum and 

optic nerve than spinal cord or cortical astrocytes (Lee et al 1994). Furthermore, it 

was recently demonstrated that gene expression of human astrocytes changes 

during the different stages of astrocyte maturation and it was confirmed that mature 

human astrocytes express genes for synapse-induction, gap-junctions and neural 

transmitter recycling in vitro (Zhang et al 2016). However, to differentiate astrocytes 

from other glia cells, the expression of cell surface proteins and proteins integral in 

the plasma membrane are the most cell type-specific ones and the most specific 

protein molecules for astrocytes includes GFAP and the glutamate transporter 

GLAST, the enzyme aldehyde dehydrogenase family 1 member L1 (Aldh1l1) and 

the water channel aquaporin-4 (Sharma et al 2015). More than 80% of the 

astrocytes from brainstem, neocortex and cerebellum express GLAST (Yeh et al 

2009). Additionally, glutamine synthetase might be a marker for mature and 

immature astrocytes (He et al 2007) and is highly co-expressed with GFAP 

(Ståhlberg et al 2011).  

1.1.1.1 Reactive astrocytes 

 As consequence to CNS injuries, demyelinating disease like multiple sclerosis (MS) 

and trauma astrocytes become activated and form the so called reactive astrocytes 

or reactive astrogliosis (Dahl & Bignami 1974, Eddleston & Mucke 1993, Eng 1985, 

Roessmann & Gambetti 1986). The formation of reactive astrocytes induces a 

complex shift in the astrocytes cell states including morphological alterations with 

increased thickness of their extended processes (Wilhelmsson et al 2006), 

alterations of the cytoskeleton with GFAP up-regulation (Dahl & Bignami 1974, 

Eddleston & Mucke 1993, Eng 1985, Sofroniew 2009) and alterations in gene 
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expression (Eddleston & Mucke 1993). These alterations have detrimental as well 

as beneficial effects during demyelination. For instance, the glial scar, which is 

formed by reactive astrocytes, on the one hand barriers the infiltration of 

inflammatory cells (Brambilla et al 2014, Sofroniew 2009, Voskuhl et al 2009) and 

on the other hand prevents regeneration by secreting inhibitory factors like 

chondroitin sulphate proteoglycans (Davies et al 1999). The former has a beneficial 

effect during demyelination and the latter is detrimental. Thus, the heterogeneity of 

reactive astrocytes is thought to produce different types of outcomes, one being 

inhibitory and others not (Liddelow & Barres 2016). 

Furthermore, reactive astrocytes modulate their environment by secreting a specific 

subset of inflammatory cytokines and chemokines. Chemokines induce chemotaxis 

in microglia and attract them to the lesion area. In vitro and in vivo studies have 

shown that reactive astrocytes change their expression profile during activation 

(Choi et al 2014, Dong & Benveniste 2001, Hibbits et al 2012, Kang et al 2014, 

Meeuwsen et al 2003, Pekny & Nilsson 2005, Pekny & Pekna 2014, Pekny et al 

2014, Skripuletz et al 2012, Zamanian et al 2012). Reactive human astrocytes newly 

secrete the cytokines and chemokines like CD45, interleukin 1β (IL-1β), C-X-C motif 

ligand 10 (CXCL10), C-C motif ligand 3 (CCL3), CCL5 and tumour necrosis factor 

α (TNFα) upon cytokine stimulation in vitro (Choi et al 2014). Another study 

demonstrated that human astrocytes isolated from postmortem brain tissue show 

increased mRNA levels of CCL2, CCL5, CXCL8 and growth factors in vitro 

(Meeuwsen et al 2003). Remarkably, different types of injury cause different 

changes in gene expression in vivo including cytokines corresponding to the 

heterogeneity of astrocytes (Zamanian et al 2012). Many cytokines and chemokines 

expressed by astrocytes are involved in controlling and interacting with immune cells 

like the microglia chemoattractant CCL2 (Zamanian et al 2012). Overall, the broad 

range of regulated genes demonstrate the complexity of reactive astrocytes.  

1.1.1.2 The NF-kB signalling pathway  

Numerous inflammatory cytokines and chemokines expressed by reactive 

astrocytes are regulated by the transcription factor nuclear-factor (NF)-κB (Choi et 

al 2014, Kaltschmidt & Kaltschmidt 2009). In the healthy CNS NF-κB is not activated 

in astrocytes or other glial cells (Schmidt-Ullrich et al 1996). The rapid regulation of 
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gene transcription by activation of NF-κB allows cells to rapidly response to 

extracellular stimuli. Furthermore, the inhibition of astrocytic NF-κB was shown to 

decrease demyelination (Raasch et al 2011) and the anti-inflammatory effect of the 

immunomodulatory drug laquinimod in MS is mediated through an inhibition of 

astrocytic NF-κB activity (Brück et al 2012). NF-κB activation can be induced by 

TNFα, IL1β or TLR and is the main signalling in the initiation of innate immunity and 

inflammation (Mc Guire et al 2013). When not activated NF-κB dimers are inhibited 

in the cytoplasm by binding to the inhibitor of κB (IκB) (Baeuerle & Baltimore 1988). 

After activation, the signal is transduced through receptors, adaptor proteins and 

kinases to activate the IκB kinas (IKK) complex. The IKK complex than 

phosphorylates IκBs (Ghosh & Baltimore 1990). The phosphorylated IκB is than 

polyubiquinated and subsequently degradated by the 26S proteosom. After that NF-

κB dimers can accumulate and translocate into the nucleus where they activate 

transcription (Wong & Tergaonkar 2009).  

1.1.2 Oligodendrocytes 

Oligodendrocytes are the myelin forming cells of the CNS and interact closely with 

neurons and their axons. By wrapping multi-layered sheaths of their extended cell 

membrane around the axon oligodendrocytes form the myelin sheaths. One 

oligodendrocyte forms myelin for several neighbouring axons (Figure 1). The 

myelination of axons is essential for rapid nerve conduction in vertebrates (Moore 

et al 1978, Rushton 1951). Thus, myelination increases signal speed and the 

development of complex and compact neural circuits (Saab et al 2013). Beyond 

signalling, compact myelin sheaths are essential for neuronal functions (Griffiths et 

al 1998). The long axons of neurons are vulnerable and the ensheathing by 

oligodendrocytes therefore protects axonal integrity (Simons & Nave 2015). 

Furthermore, oligodendrocytes have a metabolic supportive function for axons 

(Funfschilling et al 2012). The three myelin proteins myelin-associated glycoprotein 

(MAG), protein proteolipid protein (PLP) and myelin basic protein (MBP) are 

expressed by oligodendrocytes and important for compact myelin formation. The 

two main proteins in compact myelin are PLP and MBP and the absence of MBP 

leads to dysmyelinated axons (Brady et al 1999). The lack of PLP causes altered 

oligodendrocyte function and leads to axonal swelling and degeneration (Griffiths et 

al 1998) and MAG is suggested to modulate myelination (Quarles 2007). 
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Figure 1: The three glial cell types in the CNS.  

Astrocytes have many regulatory functions. They maintain the brains homeostasis, build the blood 

brain barrier with endothelial cells, recycle glutamate and provide growth factors for oligodendrocytes. 

Oligodendrocytes form the myelin sheaths around the axons and microglia are the phagocytic and 

immune cells of the CNS. 

In MS, demyelination and oligodendrocyte death are among the earliest pathological 

changes (Brück & Stadelmann 2005) but with heterogeneity between different MS 

patients (Brück et al 1994). The loss or damage of oligodendrocytes during 

demyelination leads to unprotected axons. The unprotected axons are more 

vulnerable to neurotoxic factors which are produced during inflammation, including 

reactive oxygen species (ROS), nitric oxide or glutamate (Saab et al 2013). This 

causes axonal damage and degeneration, subsequently leading to persistent 

disability in patients (Bjartmar et al 2003). Cytokines which were released during 

inflammation and demyelination can act on oligodendrocytes due to a broad range 

of immune receptors like CXCR1, CXCR2, CXCR3 (receptor for chemokines) and 

TNF-R1/R2 (receptor for TNFα) (Omari et al 2005). Thereby oligodendrocytes are 

sensitive to changes in cytokine concentrations during demyelination (Peferoen et 

al 2014). Moreover, in vitro data suggests that oligodendrocytes itself can produce 

chemokines including CXCL10, CCL2, CCL3 and CCL5 and thereby contribute 

active to the inflammatory process (Balabanov et al 2007). 
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1.1.3 Microglia 

Microglia are the resident immune cells of the CNS which regulate the immune 

responses. In the healthy CNS microglia actively scan their environment, being 

ready to rapidly transform to activated stages (Gomez-Nicola & Perry 2015, Hanisch 

& Kettenmann 2007). Resting microglia furthermore are involved in maintaining 

brain homeostasis (Hanisch & Kettenmann 2007). Microglia become activated due 

to cytokines or the presence of pathogens, which are recognized by their 

cell-surface molecules acting as immunostimulants. One immunostimulant is 

lipopylsaccharide (LPS) on bacteria or other surface structures of viral, bacterial or 

fungal origin. Furthermore, microglia are the phagocytes of the CNS and remove 

death cell debris and myelin debris during demyelination (Brück et al 1995, Voß et 

al 2012). Thereby phagocytosis exacerbates demyelination but on the other hand 

removal of myelin debris is thought to be required for subsequent repair 

mechanisms and remyelination (Skripuletz et al 2012, Voß et al 2012).  

During demyelination an increased and persistent activation of microglia is thought 

to contribute to oligodendrocyte and neuronal damage. Here, microglia become 

activated due to cytokines like IL-1, interferon γ (INFγ), IL-6 or TNFα and are 

recruited to the lesion (Hanisch 2002). Activated microglia itself secrete 

immunomodulatory factors like free radicals (ROS, nitric oxide) and inflammatory 

cytokines, which are toxic to neurons and oligodendrocytes. Additionally, this leads 

to the recruitment of inflammatory cells like T-cells (Hanisch 2002, Merrill et al 1993, 

Peferoen et al 2014). Microglia express a wide variety of receptors (CXCR2, CXCR3, 

CXCR4, CCR3, CCR5) for many different chemokines (Hanisch 2002). The 

chemokine ligand binds to the complementary chemokine seven transmembrane 

domain receptor which causes the release of intracellular second messenger via G-

protein complexes (Kuang et al 1996, Wu et al 1993). For cell migration, receptor 

binding initiates intracellular alterations such as the reorganization of the 

cytoskeleton, formation of focal adhesion and pseudopodia extension leading to 

movement of the cell (Premack & Schall 1996). To convert the extracellular signal a 

family of serine/ threonine protein kinases called mitogen-activated protein kinases 

(MAPKs) including the Jun N-terminus kinase, p38 and the extracellular-signal-

regulated protein kinase (ERK) is activated. MAPKs are activated through a kinase 

signalling cascade which in turn active MAPKs by phosphorylation (Huang et al 

2004, Seger & Krebs 1995).  
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1.2 Toxic demyelination – murine models of multiple sclerosis  

Myelin loss is the pathological hallmark of demyelinating diseases like MS. To 

investigate underlying mechanisms of demyelination different animal models with 

toxin-induced demyelination have been established. The cuprizone model and the 

lysolecithin-induced focal lesion models serve as model in this thesis. 

1.2.1 Multiple sclerosis  

MS is a chronic inflammatory demyelinating disease predominantly affecting young 

adults leading to substantial disability in a proportion of patients. Active 

demyelination occurs due to inflammation (Brück et al 1995, Hemmer et al 2002, 

Kornek & Lassmann 1999). Based on evidence derived from the animal model of 

experimental autoimmune encephalomyelitis (EAE) and histopathological 

evaluation of MS brain tissue, MS is considered to be a T-cell mediated autoimmune 

disease. Myelin-reactive T-cells enter the CNS, become reactivated by myelin-

specific autoantibodies released by local antigen presenting cells and initiate the 

autoimmune process (Hemmer et al 2002, Sospedra & Martin 2005). B-cells can 

serve as antigen presenting cells (Flach et al 2016) and also endogenous CNS auto-

antigens are considered to reactivate T-cells (Kinzel et al 2016). 

MS patients typically show multifocal lesions anywhere in the CNS but 

predominantly in the optic nerve, periventricular and subcortical cerebral regions, 

the cerebellum, the brainstem and the spinal cord (Brück & Stadelmann 2005). 

Histopathological hallmarks are demyelination with oligodendrocyte loss during the 

chronic disease stage with variable degree of regeneration, inflammatory infiltration 

of immune cells of the adaptive and innate immune system (T-cells, B-cells, 

macrophages and microglia), axonal loss and reactive astrocytes (Brück & 

Stadelmann 2005).  

Demyelinating white matter lesions can be further classified into early active, late 

active and inactive lesions according to the presence and distribution of myelin-

degradation products within macrophages/ microglia and inflammatory 

macrophage/ microglia-activation markers (Brück et al 1995). Early active lesions 

are indicated by macrophages expressing the marker myeloid-related protein 14 

(MRP14) and contain myelin degradation products positive for MBP, PLP, myelin 
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oligodendrocyte glycoprotein (MOG) and cyclic nucleotide phosphodiesterase 

(CNPase). Macrophages in late active lesions contain myelin degradation products 

positive for MBP and PLP, but not for MOG or CNPase. Inactive demyelinated 

lesions are classified by macrophages containing either empty vacuoles or periodic 

acid-Schiff (PAS)-positive degradation products (Brück et al 1995).  

Reactive astrocytes are located mainly in active lesions (Brück & Stadelmann 2005, 

Schönrock et al 1998). As mentioned previously, reactive astrocytes were shown to 

expression increased levels of cytokines and chemokines (Choi et al 2014, 

Meeuwsen et al 2003). In MS lesions, reactive astrocytes were shown to express 

CXCL10 and CCL2 and thereby might induce microglia activation and recruitment 

(Balashov et al 1999) and could contribute to regulate inflammation. Additionally, 

astrocytes seem to restrict leukocyte entry by glial scar formation (Voskuhl et al 

2009) and decrease inflammation. However, their concrete role during 

demyelination in MS is not yet clear. 

1.2.2 Animal models of toxic demyelination 

Both models used in this thesis of toxic demyelination mimic pathological hallmarks 

of MS lesions like myelin loss, oligodendrocyte loss, microglia infiltration and 

reactive astrocytes. Cuprizone induces demyelination by acting toxic to 

oligodendrocytes whereas the lysolecithin is a detergent lysing myelin cell 

membranes. Thus, both models together can provide comprehensive information 

about glia cells during toxic demyelination.  

1.2.2.1 The cuprizone model  

Cuprizone-induced demyelination is commonly used to investigate glial functions 

during demyelination. Robust and consistent demyelination in the corpus callosum 

is induced by feeding mice the copper chelator cuprizone (Hiremath et al 1998). On 

a cellular level, severe oligodendrocyte loss is the first observed effect of cuprizone 

treatment (Goldberg et al 2013, Hesse et al 2010). During treatment oligodendrocyte 

loss increases (Buschmann et al 2012, Hiremath et al 1998, Komoly et al 1987). 

Oligodendrocyte apoptosis is paralleled by microglia activation. Actually, microglia 

become activated during the first two weeks and severe demyelination is observed 

at week three (Gudi et al 2009, Hiremath et al 1998). Other immune cells are not 
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involved in cuprizone-induced demyelination as the BBB remains intact and 

prevents immune cell infiltration in the CNS (Bakker & Ludwin 1987, Kondo et al 

1987, McMahon et al 2002). Pronounced demyelination starts around week three 

and reaches its maximum at week five or six and is concomitant with astrocyte 

activation (Gudi et al 2009, Hiremath et al 1998). Moreover, reactive astrocytes are 

caused by cuprizone-treatment with increased GFAP mRNA expression (Hibbits et 

al 2012, Hiremath et al 1998, Werner et al 2010). 

The exact mechanism of cuprizone-induced demyelination is not clear. However, it 

was assumed that cuprizone as a copper-chelating agent induces copper deficiency 

in the CNS of mice (Hiremath et al 1998). As other chelators fail to induce similar 

clinical signs and substituting copper on top of the cuprizone diet failed to reduce 

toxicity another mechanism of cuprizone action was suggested (Carlton 1966). 

Enlarged mitochondria in oligodendrocytes were identified and related to cuprizone-

induced oligodendrocyte damage (Blakemore 1972). Mitochondria provide cells with 

adenosine-5-triphosphate (ATP) and are the source for cellular energy. It has been 

postulated that cuprizone-induced oligodendrocyte apoptosis could be a result from 

the inhibition of enzymes of the mitochondrial respiration chain (Goldberg et al 2013, 

Kipp et al 2009). Data of in vitro studies are controversial. One study showed no 

affected cell viability in rat primary oligodendrocytes when treated with cuprizone 

alone, but in combination with INFγ and/ or TNFα cell viability was decreased 

(Pasquini et al 2007). In contrast, other studies showed in vitro reduced 

differentiation in rat oligodendrocytes treated with cuprizone (Bénardais et al 2013, 

Cammer 1999). However, all studies show altered mitochondrial function in 

oligodendrocytes. In vivo and in vitro results demonstrate a decrease in activities of 

complex I and III of the respiratory chain (Bénardais et al 2013, Pasquini et al 2007). 

Even if the underlying mechanism is not completely understood the well-studied 

robust and predictable course of demyelination during cuprizone treatment makes 

it a valid model to investigate glia function and cell interaction during demyelination. 

1.2.2.2 The focal lesion model 

The focal lesion model provides a model were the effects of demyelination can be 

investigated locally in the brain and rapidly after induction. Stereotactic injection of 

lysolecithin induces focal areas of demyelination. Lysolecithin is a potent detergent 
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lysing cell membranes, including myelin and results in focal areas of demyelination 

(Gregson 1989, Hall & Gregson 1971). It is assumed that lysolecithin primarily 

attacks myelin sheaths rather than oligodendrocytes because it starts to disrupt 

myelin within 30 minutes after injection (Hall 1972). In the white matter of the spinal 

cord lysolecithin leads to demyelination of axons, increased oligodendrocyte 

precursor cell densities and activated astrocytes (Hall 1972, Woodruff et al 2004). 

Lysolecithin induce lesions with axonal loss only around the injection side (Keough 

et al 2015, Woodruff & Franklin 1999). Demyelination of axons starts two days after 

lesion induction and is complete after 10 days. After that an endogenous 

remyelination process starts around day 14. At day 21 nearly all axons are 

remyelinated (Hinks & Franklin 1999). In contrast to the cuprizone model leukocyte 

involvement cannot be excluded in the focal lesion model. The injection needle 

induces at least partial leakage of the BBB. In focal lesions infiltrated T-cells, 

neutrophils and monocytes were found 6 until 12 hours after lesion induction 

(Ousman & David 2000). The lysolecithin-induced demyelination is a highly 

reproducible model with a known mode of action. Therefore, it is suitable to 

investigate glia function and cell interaction during demyelination. 

1.3 The GFAP Tg73.7 transgenic mice with elevated hGFAP expression 

The GFAP Tg73.7 mice were used in this thesis to investigate the function of 

astrocytes with enhanced hGFAP expression. GFAP is commonly expressed in 

mature astrocytes and strongly up-regulated in response to CNS damage (Dahl & 

Bignami 1974, Eddleston & Mucke 1993, Eng & Ghirnikar 1994, Eng et al 1971). 

The transcriptional regulation of GFAP allows to investigate manipulated astrocyte 

function. To generate this model, genomic clones were isolated of the human 

(h)GFAP gene (Brenner et al 1990). A promotor (gfa2) consisting of 2.2 kilo base 

pairs (kb) of 5’-flanking DNA of the hGFAP gene has been found to drive astrocytic-

specific expression in vitro (Besnard et al 1991). To generate transgenic mice a 

gfa2-lac Z (an Escherichia coli β-galactosidase reporter gen) construct was 

generated with the 2.2 kb fragment of the hGFAP gene and injected into male 

pronucleus of fertilized mouse eggs. The gfa2-lacZ transgene was almost 

exclusively expressed in astrocytes throughout the CNS and up-regulated after CNS 

stab injury in the immediate area around the wound. Thus, the gfa2 region provides 
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a critical regulator element for directing expression of other genes of interest in 

astrocytes (Brenner et al 1994). Accordingly, numerous GFAP knockout mice were 

generated by disrupting the first exon of the GFAP gene in embryonic stem cells. 

These mice do not develop anatomical abnormalities and astrocytes are present 

(Gomi et al 1995, McCall et al 1996, Pekny et al 1995). The 448 bp gfa28 GFAP 

promoter is expressed in only restricted CNS regions confirming the heterogeneity 

of astrocytes (Lee et al 2008, Lee et al 2006). This suggests that astrocytes in 

different regions have different regulatory mechanisms for controlling GFAP 

expression.  

In this study the transgenic mouse line GFAP Tg73.7 was used carrying multiple 

copies of the hGFAP gene (Messing 1998). These mice show a moderate hGFAP 

up-regulation and were originally generated to investigate the neurodegenerative 

Alexander`s disease (Messing 1998). Alexander’s disease is a rare disorder of the 

CNS, mostly manifesting in children and leading to leukoencephalopathy and 

premature death (Alexander 1949, Brenner et al 2001). Alexander`s disease is 

primary caused by mutations in the GFAP gene (Brenner et al 2001, Messing 1998). 

With the GFAP Tg73.7 mice it was formerly demonstrated that overexpression of 

hGFAP causes reactive astrocytes but no alterations in myelination (Messing 1998). 

1.4 Aim of this thesis 

The main aim of this study is to investigate the role of astrocytes with enhanced 

expression of hGFAP in the animal models of cuprizone-induced demyelination and 

lysolecithin-induced focal demyelination. The investigation will consider two major 

aspects:  

I. Investigation of the effect of enhanced hGFAP expression in astrocytes on 

the cellular pathology of demyelination. How does enhanced astrocytic 

hGFAP expression change the interaction of astrocytes with other glial cells 

(oligodendrocytes and microglia) during demyelination? 

II. Investigation of the effect of enhanced hGFAP expression in astrocytes on 

cytokine expression and cell signalling in vivo and in vitro. Does enhanced 

astrocytic hGFAP expression induce changes in cytokine expression and 

NF-kB signalling in astrocytes during demyelination? 
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2 | Materials and methods 

2.1 Materials 

2.1.1 Chemicals 

Table 1: Chemicals 

Chemicals  Provider 

Acetic acid, 10% solution Merck Millipore, Germany 

Agarose StarLab GmbH, Germany 

AgNO3 (silver nitrate) Carl Roth, Germany 

Ammonium chloride (10x) BD Bioscience, Germany 

Ammonium solution, 32% Merck Millipore, Germany 

AquaTex Merck Millipore, Germany 

Azure II, powder Merck Millipore, Germany 

Boric acid Carl Roth, Germany 

Chloral hydrate Fagron GmbH&Co. KG, Germany 

Citric acid Merck, Millipore 

Cuprizone Bis(cyclohexanone)oxaldihydrazone) Sigma Aldrich, USA 

DAB (3,3’-diaminobenzidine) Sigma Aldrich, USA 

DAPI (4’,6-diamidino-2-phenylindole) Sigma Aldrich, USA 

DDSA (dodecenyl succinic anhydride) Serva Electrophoresis, Germany 

DePeX mounting medium Serva Electrophoresis, Germany 

dNTP (deoxynucleoside triphosphate) mix Thermo Scientific, USA 

DMEM (Dulbecco`s Modified Eagle Medium) high glucose 

4.5 g/l 

Gibco life technologies™ Thermo 

Scientific, USA 
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Chemicals  Provider 

Eosin G Merck Millipore, Germany 

Ethanol 96% Merck Millipore, Germany 

Ethidium bromide Sigma Aldrich, USA 

EDTA (ethylenediamine tetraacetic acid disodiumsalt 

dehydrate)  

Carl Roth, Germany 

FCS (fetal calf serum) Sigma Aldrich, USA 

Fluorescence mounting medium Dako, Germany 

Formalin (37% formaldehyde solution, free from acid) Merck Millipore, Germany 

GeneRuler™, 100 base pairs (bp) DNA ladder Plus Thermo Scientific, USA 

Glutaraldehyde, 25% aqueous solution Merck Millipore, Germany 

Go-Taq® DNA polymerase buffer, 5x Promega, USA 

Ground mouse chow (complete feed for rats & mice-

maintenance, ground) 

Ssniff Spezialdiäten GmbH, 

Germany 

HBSS (Hank’s Buffered Salt Solution) Sigma Aldrich, USA 

HCl (hydrochloride acid) Merck Millipore, Germany 

Hydrogen peroxide, 30% solution Merck Millipore, Germany 

Isopropyl alcohol Merck Millipore, Germany 

Ketamine, 10% Medistar®, Germany 

Lysolecithin (L-α-lysophosphatidyl choline) Sigma Aldrich, USA 

Myers Hämalaun Merck Millipore, Germany 

Metapyrin, 500 mg/ ml Serumwerk Bernburg AG, Germany 

Monastral blue Sigma Aldrich, USA 

NaCl (sodium chloride) Carl Roth, Germany 

NaOH (sodium hydroxide solution), 1 M Merck Millipore, Germany 
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Chemicals  Provider 

Nitric acid, 65% solution Merck Millipore, Germany 

Osmium tetraoxide, powder Carl Roth, Germany 

Paraffin, (paraplast plus) Tyco Healthcare, Germany 

PBS (phosphate buffered salt solution) Sigma Aldrich, USA 

Penicillin, 10,000 units/ streptomycin, 10 mg/ml Sigma Aldrich, USA 

Periodic acid Merck Millipore, Germany 

PFA (paraformaldehyde), powder Merck Millipore, Germany 

PLL (poly-L-lysine hydrobromide), powder Sigma Aldrich, USA 

Schiff`s reagent Sigma Aldrich, USA 

SDS (sodium dodecyl sulfate), 10% solution Sigma Aldrich, USA 

Sodium thiosulfate pentahydrate Merck Millipore 

Tris Carl Roth, Germany 

Triton X-100 MP Biomedicals, Germany 

Trizma Base Sigma Aldrich, USA 

Xylazine solution, 20 mg/ml Ecuphar, Berlgium 

Xylol Merck Millipore, Germany 

 

2.1.2 Enzymes/ proteins 

Table 2: Enzymes and proteins 

Enzymes/ proteins  Provider 

Collagenase D Roche, Switzerland 

DNase I Roche, Switzerland 

IFNγ, recombinant R&D Systems, USA 
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Enzymes/ proteins  Provider 

IL-1β, recombinant R&D Systems, USA 

TNFα, recombinant R&D Systems, USA 

Trypsin-EDTA, 0.25% and 0.05% solution Gibco/Invitrogen, USA 

 

2.1.3 Applied kits and gene expression assays 

Table 3: Applied Kits  

Kits Provider 

Cignal Lenti NF-κB Reporter (luc) Kit SABioscience/ Qiagen, USA 

High capacity cDNA, Reverse Transcription Kit AB applied biosystems™, USA 

miRNeasy Mini Kit Qiagen, Germany 

RNase-Free DNase Set (50) Qiagen, Germany 

RNeasy Microarray Tissue Kit Qiagen, Germany 

RT2 PreAMP cDNA Synthesis Kit Qiagen, Germany 

RT2 PreAMP cDNA Synthesis Primer Mix for Mouse 

Multiple Sclerosis PCR 

Qiagen, Germany 

RT² Profiler™ PCR Array Mouse Multiple Sclerosis Qiagen, Germany 

RT-QP73-05 qPCR core kit Eurogenetec, Belgium 

 

Table 4: Gene expression assays 

TaqMan® Gene Expression Assays Provider 

B2m, Mm00437762_m1, 20x Thermo Fisher, USA 

CCL2, Mm00441242_m1, 20x Thermo Fisher, USA 

CCL5, Mm01302428_m1, 20x Thermo Fisher, USA 
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TaqMan® Gene Expression Assays Provider 

CXCL10, Mm00445235_m1, 20x Thermo Fisher, USA 

CXCL12, Mm00445553_m1, 20x Thermo Fisher, USA 

HPRT, Mm01545399_m1, 20x Thermo Fisher, USA 

IL-6, Mm00446190_m1, 20x Thermo Fisher, USA 

TNFα, Mm00443258_m1, 20x Thermo Fisher, USA 

 

2.1.4 Solutions 

Table 5: Solutions  

Solution Composition 

Chloral hydrate, 14% solution 14 g chloral hydrate 

100 ml bidistilled water 

DAPI 1 µl DAPI 

10,000 µl PBS 

FACS (fluorescent-activated cell sorting) buffer 490 ml PBS, sterile 

10 ml FCS 

Ketamine/ xylazine mixture 1.2 ml ketamine 

1 ml xylazine 

7.8 ml NaCl 

Lysolecithin, 1% solution 10 mg lysolecithin 

1 ml sterile PBS 

Metapyrin 3 ml metapyrin® 

1l water 

Monastral blue, 3% solution 0.3 g monastral blue 

10 ml sterile PBS 

Filtration 

PFA, 4% solution 40 g PFA 

1,000 ml 1-fold PBS 
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Solution Composition 

50 µl NaOH, adjust to pH 7.4 

filtration 

Tail lysis buffer 6.057 g Tris 

400 ml bidistilled water 

HCl, adjust to pH 8.5 

5 ml 5 mM EDTA 

20 ml 200 mM NaCl 

10 ml 0.2% SDS 

TBE buffer 10.8 g Tris 

5.5 g boric acid 

4 ml 0.5 M EDTA 

1,000 ml water 

 

Table 6: Solutions for electron microscopy 

Solution Composition 

Glutaraldehyde, 3% solution 12 ml 25% glutaraldehyde 

88 ml PBS 

Richardson’s Stain (Richardson et al 1960) 2 ml 1% azure II 

1 ml 2% methylene blue 

1 ml 1% borax 

Synthetic resine 27 ml renlam M-1 

23 ml DDSA 

0.75-1 ml DMP-30 

 

Table 7: Solutions for (immuno-) histochemistry 

Solution Composition 

AgNO3, 20% solution 10 g AgNO3 

50 ml distilled water 

Citric acid buffer, 10 nM 2.1 g citric acid 

1,000 ml distilled water 
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Solution Composition 

NaOH, adjust to pH 6 

CuSO4 working solution 1 ml 2% CuSO4 

50 ml NaCL 

DAB working solution 49 ml PBS 

1 ml DAB 

20 µl hydrogen peroxide 

Developer stock solution 20 ml formalin  

0.5 g citric acid 

500 ml distilled water 

Eosin, 1% solution 2 ml eosin 

198 ml 70% isopropyl alcohol 

Filtration 

LFB working solution 1 g LFB 

1 l ethanol 

5 ml acetic acid (add after complete 

solution of LFB) 

Filtration 

Sodium thiosulfate, 2% solution 10 g sodium thiosulfate 

pentahydrate 

500 ml distilled water  

Tris-EDTA, 1mM 1.21 g Trizma base 

1 ml 0.1 M EDTA 

1,000 ml distilled water 

Adjust to pH 8 

Triton, 1% solution 100 µl Triton X-100 

10 ml PBS 

 

Table 8: Solution for cell culture 

Solution Composition 

DMEM+ 500 ml DMEM 
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50 ml inactivated FCS 

5 ml pen/ strep 

Sterile filtration 

 

2.1.5 Antibodies 

Table 9: Primary antibodies for immunohistochemical staining  

Antigen Marker for Species/clone Dilution Provider 

APP Amyloid 

precursor protein 

Mouse/ 22c11 1:2,000 Chemicon, Germany 

Caspase-3 Activated 

caspase-3 

Rabbit/ C92-605 1:150 BD-Pharmingen™, 

USA 

CXCL10/ IP-10 C-X-C motif 

chemokine 10 

Goat 1:100 R&D Systems, USA 

GFAP Glial fibrillary 

acidic protein 

Rabbit 1:1,000 Dako, Germany 

Iba1 Microglia/ 

macrophages 

Rabbit 1:100 Wako Pure 

Chemicals 

Industries, Japan 

Mac-3 Microglia/ 

macrophages 

Rat/ M37/84 1:200 BD-Pharmingen™, 

USA 

MBP Myelin basic 

protein 

rabbit 1:1,000 Dako, Germany 

NF-κB p65 Subunit of NF-κB 

transcription 

complex 

Rabbit/ C-20 1:1,000 Santa Cruz, USA 

Olig2 Oligodendrocyte 

precursor cells/ 

mature 

oligodendrocytes 

Rabbit/ 18953 1:300 IBL international, 

Germany 

P25/ TPPP Mature 

oligodendrocytes 

Rabbit/ 92305 1:500 Abcam, Great Britain 
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Table 10: Secondary antibodies for immunohistochemical staining 

Antibody Host Directed against Dilution Provider 

Goat anti rabbit Goat Anti-rabbit IgG 1:500 Dianova, Germany 

Streptavidin Cy3 Sheep Anti-goat IgG 1:100 Jackson Immuno-

Research, USA 

Streptavidin Cy2 Goat  Anti-rabbit IgG 1:100 Jackson Immuno-

Research, USA 

 

Table 11: Flow cytometry antibodies 

Antibody Fluorochrome Clone Dilution Provider 

CD11b APC M1/70 1:200 eBioscience, USA 

CD16/CD32 - 93 1:200 BioLegend, USA 

 

2.1.6 Consumables 

Table 12: Consumables 

Consumables Provider 

24-well culture plate Greiner Bio-One GmbH, Germany 

Bottle top filter, 0.2 µm Sarstedt, Germany 

Cell culture flask, 25 m² Sarstedt, Germany 

Cell culture flask, 75 m² Sarstedt, Germany 

Cell culture dish, 60 x15 mm Sarstedt, Germany 

FACS tubes, 5 ml BD Bioscience, USA 

Glass capillary, Micropipettes 1-5 µl B. Braun Melsungen AG, Germany 

Neubauer counting chamber (surface 0.0025mm²) Brand GmbH, Germany 
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Consumables Provider 

Ocular counting grid, WHSZ 10x-H Olympus, Germany 

Petri dish Greiner Bio-One GmbH, Germany 

RT2 PCR Array Loading Reservoir (12) Qiagen, Germany 

Falcon tubes (50 ml, 15 ml) Sarstedt, Germany 

 

2.1.7 Technical devices 

Table 13: Technical devices 

Technical devices  Provider 

BD LSRFortessa™ cell analyzer BD Bioscience, USA 

Camera for light microscope DP71 Olympus, Germany 

Camera for fluorescence microscope XM10 Olympus, Germany 

Centrifuge 5415 R Eppendorf, Germany 

Centrifuge 5810 R Eppendorf, Germany 

Dental drill control tool K44974 Kavo, Dental Excellence, Germany 

Dental drill 4912 Kavo, Dental Excellence, Germany 

Fluorescence microscope BX51 Olympus, Germany 

iQ5 Multicolor Real-Time PCR Detection System BioRad Laboratories, Germany 

Light microscope BX41 Olympus, Germany 

Mastercycler gradient Eppendorf, Germany 

Microtome SM2000R Leica, Germany 

Microwave Panasonic, Japan 

Mithras LB 940 Multimode Reader Berthold Technologies, Germany 
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Technical devices  Provider 

NanoDrop™ Spectrophotometer ND-1000 PEQLAB, Biotechnologie GmbH, 

Germany 

Sliding microtome SM2000 R Leica, Germany 

TissueRuptor  Qiagen, Germany 

Thermomixer comfort Eppendorf, Germany 

Speed vacuum Concentrator 5301 Eppendorf, Germany 

Stereotactic device STO-51730 FMI GmbH-Stoelting, Germany 

 

2.1.8 Software 

Table 14: Software  

Software Utilization 

FlowJo 7.6.1 (Tree Star Inc., Ashland, USA) Data analysis flow cytometry 

GraphPad Prism Version 5.01 

(GraphPad, California, USA) 

Statistical analysis  

ImageJ 64 (http://imagej.nih.gov/ij/) Measurement of demyelinated 

areas/ lesion size 

Adobe® Illustrator® CS4 (Adobe Systems Incorporated, 

California, USA) 

Figures 
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2.2 Mice 

Transgenic mice carrying a copy of the human GFAP gene TgN(GFAP)Mes10 (from 

now referred to as GFAP Tg73.7) were generated and first described by Messing 

(Messing 1998). Mice were obtained on FVB/ N genetic background and 

backcrossed to C57BL/ 6N. For the present studies, heterozygous mice were used 

and wild type littermates served as controls. Animals were derived from in house 

colonies at the animal facility of the University Medical Centre Göttingen, Germany. 

C57BL/ 6 mice were purchased from Charles River Laboratories (Germany). 

All mice were kept under standardized conditions with a 12/ 12 hour (h) light/ dark 

cycle and food and water ad libitum in the animal facility of the University Medical 

Center in Göttingen, Germany. All animal experimentation was carried out in 

accordance with the European Communities Council Directive of 24 November 1986 

(86/EEC) and were approved by the Lower Saxony Federal State Office for 

Consumer Protection and Food Safety, Germany. Experiments contained at least 4 

animals per group and were performed at least twice. 

2.3 Methods 

2.3.1 Genotyping of GFAP Tg73.7 mice 

Polymerase chain reaction (PCR) was used to analyse the genotype of GFAP 

Tg73.7 mice. During PCR small fragments of a DNA template were amplified. 

Specific nucleic acid sequences (primers) serve as starting point for the 

amplification. Both primers flank the region of interest and ensure correct 

amplification of the target. The DNA polymerase builds a new complementary DNA 

strand to the template DNA (DNA target). The new DNA strands work as template 

for further amplification. Basing on this principle the DNA target is multiplied. The 

PCR cycle consist of three steps. During the first phase (denaturation) the DNA, 

polymerase and nucleotides are heated to 95°C to separate DNA strands. In the 

annealing phase the primers bind to the DNA single strands and the polymerase 

starts to synthesize DNA in 5´→3´‐direction (elongation). 

For genotyping, DNA was extracted from tail biopsies of GFAP Tg73.7 mice. To 

achieve that, the tissue was digested in 350 µl tail lysis buffer containing 
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20 µl proteinase K overnight in a thermomixer at 350 rounds per minute (rpm) and 

56°C. Digested tissue was centrifuged by 13,200 rpm at RT for 5 min. Supernatant 

was transferred to a new tube containing 350 µl isopropyl alcohol and was 

centrifuged again for 5 min at 13,200 rpm at RT. Supernatant was disposed and the 

pellet was washed with 350 µl 70% ethanol. After another centrifugation the 

supernatant was disposed and the pellet was dried for 10 min in a speed vacuum 

concentrator and resuspended in 100 µl bidistilled water.  

The extracted DNA served as template for DNA amplification. Additionally, each 

reaction contained 2 µl genomic DNA, 1 µl 10 mM dNTP Mix, 2 µl oligonucleotide 

primers (MB-114, Pr. 35, each 1 µl), 0.2 µl Go-Taq polymerase, 5 µl of the supplied 

buffer (5x PCR buffer) and 14.8 µl bidistilled water.  

Table 15: Primers sequences for genotyping PCR of GFAP Tg73.7 mice. 

Primers for GFAP Tg73.7 Sequence Provider 

MB-114  5’-CTC ATA CTC ATG ATG GGG AG-3’ Promega, 

Germany 

Pr. 35   5’-AAC AGC CTA TGG AGG GAC TG-3’ Promega, 

Germany 

 

All PCR reactions were run in a T3 Thermocycler with the following cycle parameters:  

Table 16: Cycle parameters for genotyping PCR. 

Temperature Time Step 

95°C 180 sec Pre-denaturation 

95°C 40 sec* Denaturation 

62°C 30 sec* Annealing 

72°C 1 min Elongation 

72°C 10 min Final elongation 

4°C  Storage 

*35 cycles 
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To visualize PCR products, 10 µl of the sample were loaded on agarose gel (1.8% 

in TBE buffer) containing 3 µl ethidium bromide. A 100 bp DNA ladder (5 µl) was 

used to estimate PCR-product length. Electrophoresis was performed at 100 volt (V) 

for 60 min. One single PCR band of 381 bp marks hemizygous GFAP Tg73.7 

transgenic mice.  

2.3.2 Cuprizone treatment 

Cuprizone is a commonly used model to study different aspects of demyelination. 

In this study, GFAP Tg73.7 mice at the age of 8 to 10 weeks received a 0.25 % 

cuprizone (Sigma-Aldrich, Germany) diet at libitum. Cuprizone (2.5 g) was mixed 

with normal ground chow (1,000 g; ssniff Spezialdiäten GmbH, Germany). The 

control group received normal chow and are further referred to as naïve mice. Body 

weight was controlled once weekly. The measured weight was converted into 

percentage because GFAP Tg73.7 mice were smaller than their wild type littermates. 

The mean of the initial body weight was set to 100% and the measured body weight 

during cuprizone treatment was then converted in relation to the body weight at the 

beginning of the experiment. 

To analyse demyelination, apoptosis, acute axonal damage, oligodendrocyte 

precursor cell (OPC) numbers, oligodendrocyte numbers and macrophage 

infiltration GFAP Tg73.7 mice and wild type littermates were fed for either 1, 2, 3, 4, 

5 or 6 weeks with 0.25% cuprizone. To asses long-term effects, GFAP Tg73.7 mice 

and wild type littermates received 0.25% cuprizone for 12 weeks. To investigate 

gene expression of CCL2, CCL5, CXCL10, CXCL12, IL-6 and TNFα, GFAP Tg73.7 

mice and wild type littermates were treated for 3 or 6 weeks with 0.25% cuprizone.  

2.3.3 Intracerebral stereotactic injection with lysolecithin 

Lysolecithin is a cell membrane-solubilizing agent and a model to study different 

parts of focal demyelinated. GFAP Tg73.7 mice and wild type mice at the age of 8 

to 10 weeks were injected with 1 µl of 1% lysolecithin into the corpus callosum to 

induce focal demyelination. Lysolecithin was diluted in sterile PBS. Animals were 

perfused 7 days after injection. For that purpose, mice were anaesthetized with 

intraperitoneal injection (i.p.) of ketamine/ xylazine mixture (100 µl/ 10 g body 

weight). After surgical tolerance was reached, tested via loss of pedal reflex, a 
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rostro-caudal cut at the top of the head was made to expose the skull. Mice were 

fixed in a stereotactic device to ensure precise injection. At 1 mm caudal to the 

bregma and 2 mm sagittal to the bregma a small hole was drilled with a dental drill. 

To avoid brain damage, drilling was stopped when one thin bone layer was still intact. 

The layer was carefully removed with a fine scraper until the brain was visible. 

Lysolecithin was combined with monastral blue to mark the point of injection. 1 µl 

lysolecithin was injected stereotactically with a thin finely calibrated glass capillary 

(diameter 0.05-0.10 mm) into the corpus callosum. To prevent disruptive lesions, 

lysolecithin was administered very slowly. Afterwards, the capillary was carefully 

removed and the skin was stitched. For pain therapy mice receive Metapyrin® from 

2 days before injection until 3 days afterwards.  

2.3.4 Histology 

After experiments were completed, mice were injected i.p. with a lethal doses of 

14% chloral hydrate solution. After loss of protective reflexes and loss of 

consciousness, mice were transcardially perfused through the left ventricle with cold 

PBS followed by cold 4% paraformaldehyde (PFA). Brain, liver and spleen were 

taken and stored in 4% PFA at 4°C for 2 days post-fixation and afterwards were 

transferred into PBS. For the histological analysis of cuprizone experiments, brains 

were dissected in 2 mm thick coronal sections using a brain matrix (mouse acrylic 

matrices, Braintree scientific Inc., USA). To analyse stereotactic injection 

experiments histologically, one coronal brain section including the injection side was 

cut. The injection was localized by Monastral blue trace. 

For paraffin embedding, tissue was washed in water and gradually dehydrated over 

night by performing a graded alcohol/ xylene/ paraffin series with an automated 

tissue processor and embedded in paraffin. Embedded tissue was cut in 1 µm thick 

sections using a sliding microtome (Leica SM2000R, Leica, Germany) and tissue 

sections were mounted on microscope slides.  

Before the staining procedure, tissue sections were deparaffinized for at least 30 

min at 54°C and rehydrated. The rehydration series was done as follows:  
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Table 17: Rehydration steps for deparaffinization.  

Time Solution 

4x 10 min xylol 

1x 5 min isoxylol 

2x 5 min 100% isopropyl alcohol 

1x 5 min 90% isopropyl alcohol 

1x 5 min 70% isopropyl alcohol 

1x 5 min 50% isopropyl alcohol  

distilled water  

After the staining procedure, stained sections were dehydrated by performing the 

procedure described above in reverse order. Finally, stained sections were mounted 

in DePeX medium or were embedded without dehydration in AquaTex mounting 

medium.  

2.3.4.1 Luxol fast blue-periodic acid-Schiff staining 

To analyse the degree of demyelination after cuprizone treatment, Luxol fast blue-

periodic acid-Schiff (LFB-PAS) staining was performed. LFB-PAS stains myelin in 

the central nervous system in dark blue (LFB) and demyelinated areas in pink (PAS). 

After rehydration in 90% isopropyl alcohol, tissue sections were transferred into LFB 

working solution and incubated at 60°C over night. Afterwards, sections were 

washed with 90% isopropyl alcohol and differentiated, first with 0.05% lithium 

carbonate (diluted in water), followed by short incubation in 70% isopropyl alcohol. 

Differentiation was stopped when only myelin was stained deep blue. To stop the 

reaction, stained sections were rinsed extensively with distilled water. For PAS 

reaction, stained sections were incubated for 5 min in 1% periodic acid (diluted in 

water), followed by 5 min washing with running tab water and 5 min thoroughly 

washing with distilled water. Afterwards, sections were stained for 20 min with 

Schiff`s reagent and washed again for 10 min with running tab water. 

Counterstaining with Mayers Hämalaun was performed to stain cell nuclei. Sections 

were incubated 3 min with Mayers Hämalaun, washed with distilled water and 
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shortly differentiated in 1% HCl. After washing with distilled water, bluing was 

achieved by rinsing stained sections for 10 min under running tab water.  

The grade of demyelination in the corpus callosum after cuprizone treatment was 

analysed using a semi-quantitative scoring system, as previously published in Brück 

et al (2012): no (0), minimal (0.5), <33% (1), 33-66% (2) and >66% (3) demyelination. 

The size of focal lesions in the corpus callosum after lysolecithin injection was 

measured with the ImageJ software and pictures were taken at 4x original 

magnification using a light microscope (Light microscope BX41) connected with a 

digital camera. 

2.3.4.2 Bielschowsky silver impregnation  

To investigate axonal integrity and loss, tissue slices were stained with 

Bielschowsky silver impregnation. First, tissue sections were rehydrated as 

described above. After washing with distilled water sections were transferred for 20 

min in 20% AgNO3 solution and washed at least twice with distilled water. To clear 

the AgNO3 solution, ammonia solution was added drop by drop. Sections were 

incubated in cleared AgNO3 for 15 min in the dark. For washing, 3 drops ammonia 

were added to distilled water to rinse slices. 10 drops developer were added and 

slices were developed for 3-5 min until tissue turns ochre. Reaction was stopped by 

rinsing with bidistilled water and stained sections were transferred in 2% sodium 

thiosulfate solution for 2 min.  

2.3.4.3 Immunohistochemistry and fluorescence staining 

Immunohistochemistry was performed with primary antibodies against acutely 

damaged axons (amyloid precursor protein, APP), apoptotic cells (activated 

caspase-3), astrocytes (glial fibrillary protein; GFAP), activated 

microglia/macrophages (Mac-3), myelin basic protein (MBP), oligodendrocyte 

lineage cells (olig2) and mature oligodendrocytes (p25). For immunofluorescence 

staining primary antibodies against the chemokine CXCL10, GFAP, p25 and 

microglia (Iba1) and the nuclear factor (NF)-κB-subunit p65 were used. Prior to 

immunohistochemistry, epitope retrieval was performed by heating the slides 5 

times in 10 mM citric acid buffer (APP, CXCL10, Iba1, Mac-3) or 1 mM Tris-EDTA 

solution (activated caspase-3, olig2, p25) in a microwave for 3 min. To achieve that, 



  2 | Materials and methods 

 

29 

tissue sections were transferred in glass cuvettes filled with the corresponding buffer. 

Between the steps, the cuvettes were refilled alternating with distilled water or 

corresponding buffer. To block endogenous peroxidase, sections were first washed 

in PBS followed by 20 min incubation in 3% hydrogen peroxide solution at 4°C. After 

washing with PBS for 3 times to inhibit unspecific binding, sections were incubated 

with 10% FCS (diluted in PBS) for 20 min at RT. Activated caspase-3 

immunohistochemistry requires blocking with 1% Triton-X 100 solution for 1h and 

CXCL10 requires blocking in 10% donkey serum diluted in PBS. Primary antibodies 

(see Table 9 see table in section 2.1.5) were diluted in 10% FCS in PBS, CXCL10 

in 10% donkey serum in PBS and incubated overnight in wet chambers. Control 

sections were incubated in the absence of primary antibodies or with isotype control 

antibodies. Then sections were washed 3 times with PBS. Biotin-conjugated 

secondary antibody binding was visualized with peroxidase and 

3,3`-diaminobenzidine tetrachloride (DAB). Biotinylated secondary antibodies were 

diluted in 10% FCS in PBS and incubated for 1h at RT. Unbound antibody was 

removed by washing with PBS. Fluorescence secondary antibody was visualized 

with cyanine (Cy) 2-conjugated goat-anti-rabbit IgG and biotinylated goat-anti-sheep 

Cy3 Streptavidin. Nuclei were counterstained with DAPI. 

APP-positive axons, activated caspase3-positive apoptotic cells, Mac-3-positive 

microglia, p25-positive and olig2-positive oligodendrocytes were light 

microscopically evaluated in the corpus callosum at 400x original magnification 

using an ocular counting grid. The cell numbers were quantified per square mm. 

Fluorescent double-stainings of CXCL10 either with p25, Iba1 or GFAP were 

assessed using a magnification of 400x (Light microscope Olympus BX41). 

2.3.4.4 Electron microscopy 

To evaluate myelin integrity of axons in the corpus callosum, electron microscopic 

(EM) analysis was performed. A subset of GFAP Tg73.7 mice and wild type mice 

(n=3 per group) received cuprizone treatment for 0, 6 or 12 weeks. Mice were 

sacrificed and perfused with cold PBS (see section 2.3.4). Triangle pieces of the 

corpora callosa were removed and stored in 3% glutaraldehyde at 4°C for at least 7 

days for post-fixation. Para-sagittal slices of 1 mm were prepared and sections were 
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processed through 1% osmium tetroxide for 1h at 4°C. After two washing steps with 

PBS the slices were dehydrated as followed:  

Table 18: Dehydration steps for EM. 

Time Solution 

1h at 4°C uranyl acetate (in 70% 

alcohol) 

10 min 50% alcohol 

10 min 80% alcohol 

10 min  96% alcohol 

2x15 min 100% alcohol 

2x20 min propylene oxide 

The slices were embedded in synthetic resin (araldite®/propylene oxide) at 60°C 

overnight. Ultrathin sections were cut for EM. Semi thin sections were stained with 

Richardson`s Stain to select regions for EM evaluation. The number of myelinated 

axons was counted in non-overlapping fields with results expressed as a percentage 

of myelinated axons (number of myelinated axons/ total axons x 100).  

2.3.5 Astrocyte isolation from newborn mice 

To investigate astrocyte changes due to hGFAP overexpression in vitro, primary 

astrocytes were isolated. To achieve that, newborn (postnatal day 0-3) GFAP 

Tg73.7 mice and wild type mice were decapitated. Afterwards, heads were 

transferred into a petri dish with cold HBSS to rinse of the blood. The scull was 

opened and brains were carefully removed and transferred into a new petri dish with 

cold HBSS. Olfactory bulbs and cerebella were removed. Fibroblast growing would 

inhibit astrocyte growing. For that purpose, the meninges were neatly removed from 

all over the brain to prevent growing of meningeal fibroblasts. Then isolated brains 

were transferred into 15 ml Falcons™ with cold HBSS and stored on ice. Before 

further proceeding, Falcons™ were incubated in a waterbath for 3 min at 37°C. To 

achieve a single cell solution, brain tissue was digested and afterwards 

mechanically dissociated. First, HBSS was removed and brains were digested in 

0.25% Trypsin-EDTA (3 ml/ brain) with DNase (33.33 µl/ brain) for 10 min at 37°C. 
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Digestion solution was removed and tissue was washed twice with 5 ml 37°C warm 

HBSS. Brains were mechanically dissociated by pipetting with a 1,000 µl pipet tip 

and 1 ml DMEM+. The cell suspension plus 9 ml DMEM+ was filled in PLL-coated 

75 mm² cell culture flasks. The primary cell culture containing astrocytes, 

oligodendrocytes and microglia were cultivated for 7 to 10 days in a tissue culture 

incubator at 37°C and 5% CO2. Medium was changed every 3 to 4 days.  

After 7 to 10 days of cultivation, cells were washed with 37°C PBS and shaken 

vigorously to remove oligodendrocytes and microglia. To detach astrocytes, cells 

were incubated with 3 ml warm Trypsin-EDTA (0.05%) for 3 min. Flasks were 

shaken and washed thoroughly to remove all astrocytes. To stop the reaction, 

Trypsin-EDTA-cell lysate was transferred into a 15 ml Falcon™ containing 5 ml 

warm DMEM+. After centrifugation for 10 min at 900 rpm, the supernatant was 

discarded and the cell pellet was resuspended in warm DMEM+.  

2.3.6 Analysis of NF-κB activation in isolated astrocytes 

To assess the effect of hGFAP overexpression on astrocytic NF-κB activity an in 

vitro assay was performed. Astrocytic NF-κB signalling pathway activity was 

measured in primary astrocytes using the luciferase reporter assay (Cignal Lenti 

NF-κB Reporter (luc) kit). The experiments were done in cooperation with Dr. 

Nadine Kramann (Institut of Neuropathology, University Medical Center Göttingen, 

Germany).  

The activities of firefly (Photinus pyralis) and Renilla (Renilla reniforms) luciferases 

were measured sequentially from the same sample. First, the firefly luciferase 

reporter is measured, then the reaction is quenched and the Renilla luciferase 

reaction is simultaneously initiated. To investigate changes of NF-κB activation in 

primary astrocytes of GFAP Tg73.7 mice compared to wild type astrocytes, isolated 

astrocytes were plated at a density of 1x105 astrocytes per well in a PLL-coated 96-

well-plate. When astrocytes were 60-80% confluent, they were transfected with the 

inducible NF-κB responsive firefly luciferase reporter and a Renilla luciferase 

normalization reporter for 24h at 37°C and 5% CO2 . After 24h, astrocytes were 

stimulated with 10 ng/ml TNFα or 10 ng INFγ with IL-1β for 1h. The medium was 

removed and astrocytes were rinsed with PBS, followed by adding 100 µl LAR II 

solution to generate stabilized luminescent signal. The firefly luciferase activity was 
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measured luminometrically (Mithras LB 940 Multimode Reader, Berthold 

Technologies, Bad Wildbad, Germany). Then, the Stop & Glo® reagent was added 

to quench firefly signal and Renilla luciferase activity was measured. The fold 

induction was calculated as quotient of relative light units (RLU) of induced cells 

divided by RLU of control cells.  

2.3.7 Analysis of myelin phagocytosis in co-cultures of microglia with 

astrocytes 

To measure whether astrocytes have an effect on myelin phagocytosis of microglia, 

co-cultures of astrocytes with microglia were established and phagocytosis of myelin 

was measured via flow cytometry. Isolated primary astrocytes of GFAP Tg73.7 mice 

and wild type mice were plated in a 24-well-plate, 100,000 per well. After 2 days of 

culturing at 37°C and 5% CO2, 200,000 microglia per well were added. After 24h, 

fluorescently labelled myelin (10 µg/ ml) was added and cells were incubated for 2h. 

Myelin was removed and cells were washed with warm DMEM+ and twice with warm 

PBS. Cells were detached with 0.05% Trypsin-0.02% EDTA for 3 min at 37°C. The 

reaction was stopped by adding 600 µl DMEM+ per well and cells were carefully 

detached with a cell scraper and transferred into 2 ml Eppendorf cups on ice. 

Remaining cells were transferred into the Eppendorf cups after washing the cells 

with 600 µl DMEM+.  After centrifugation at 800x g for 10 min at 4°C supernatant 

was decanted, cells were resuspended in 1 ml FACS buffer and again centrifuged. 

The supernatant was decanted and cells were resuspended in FC-block solution 

(anti-CD16/32 antibody, 1:200), diluted with FACS buffer and incubated for 10 min 

at 4°C. The fluorochrome-labelled antibody against CD11b (CD11b-APC, 1:200) 

was prepared in FACS buffer and added to the cells. After 25 min incubation at 4°C 

in the dark 1 ml FACS buffer was added and cells were centrifuged at 800x g for 10 

min. The supernatant was decanted and cells were resuspended in 200 – 500 µl 

FACS buffer and transferred to FACS tubes. Flow cytometry was performed using 

the BD LSRFortessa™ (BD Bioscience, USA). The results were analysed using 

FlowJo 7.6.1 (Tree Star Inc., USA). For analysis, 10.000 CD11b-positive cells were 

included and myelin incorporation was measured. The phagocytosis ratio of 

microglia was calculated (CD11b+ cells with myelin incorporation/ total CD11b+ 

cells x 100).  
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2.3.8 Measurement of cytokine and chemokine expression 

To analyse effects of hGFAP overexpression on cytokine and chemokine 

expression in vitro and in vivo, RNA from the corpus callosum of mice after 

cuprizone treatment and from stimulated astrocytes was isolated, cDNA 

synthesised and gene expression measured.  

2.3.8.1 RNA isolation from corpus callosum and primary astrocytes 

For in vivo studies, total RNA was isolated from the corpus callosum of GFAP 

Tg73.7 mice and wild type mice after 3 and 6 weeks of cuprizone treatment using 

the RNeasy® Microarray kit (Qiagen) according to the manufacturer protocol. Mice 

were sacrificed with a lethal dose of chloral hydrate solution (i.p.) after 3 or 6 weeks 

of cuprizone treatment. Age matched naïve mice served as controls. After mice were 

perfused with PBS, the brains were dissected and the corpora callosa carefully 

isolated. Prior to further procedure, dissected tissue was frozen in liquid nitrogen 

with 1,000 µl Qiazol® lysis buffer. For RNA isolation, tissue was homogenized using 

the TissueRuptor (Qiagen, Germany). For in vitro studies, total RNA was isolated 

from GFAP Tg73.7 and wild type primary astrocytes using the miRNeasy Mini Kit 

(Qiagen) according to the manufacturer’s instructions. Astrocytes were plated in 

25 cm² culture flasks and cultured for 3 days. Than primary astrocytes were once 

washed with PBS and stimulated with either TNFα (10 ng/ ml in 2ml DMEM+) or 

INFγ with IL-1β (10 ng/ ml in 2 ml DMEM+) for 3h. Unstimulated astrocytes served 

as controls. After incubation, cells were washed with DMEM+, followed by washing 

with cold PBS. Astrocytes were carefully detached using a cell scraper and 

transferred into 1.5 ml Eppendorf cups. Remaining liquid was removed by 

centrifugation for 10 min at 12,000 rpm and 4°C. Cell pellet was resuspended with 

500 µl Qiazol™ lysis buffer and frozen in liquid nitrogen. For RNA isolation, cells 

were homogenized using a syringe. 

Homogenized tissue or astrocytes was incubated for 5 min at RT. To segregate 

RNA from other proteins, 200 µl chloroform was added and the samples were 

shaken vigorously for 15 sec and centrifuged for 15 min with 12,000x g at 4°C. The 

samples separate into 3 phases: an upper, clear, aquatic phase containing RNA, a 

white interphase and a red lower, organic phase. The upper phase was transferred 

in a new 1.5 ml Eppendorf cup. One volume of 70% ethanol was added and mixed 
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by pipetting up and down to perform ethanol precipitation. Without delay, the mixture 

was directly transferred into RNeasy Mini columns and centrifuged with 10,000 rpm 

for 15 sec at 21°C. The RNeasy Mini columns contain a silica gel inside to bind 

nucleic acid. Several wash steps with the provided buffer followed by centrifugation 

(15 sec, 10,000 rpm, 21°C) remove impurities from the membrane. To cleave DNA, 

DNase1 was added and incubated for 15 min. Then the membrane was washed 

with buffer and samples were centrifuged for 1 min with 13,000 rpm and 21°C to 

remove possible carryover of buffer or ethanol. 30 µl RNase free water was added 

to bind the RNA. After 1 min centrifugation at 10,000 rpm and 21°C the RNA yield 

was determined with the NanoDrop®. Nucleic acids have absorbance maxima at 

260 and 280 nm. Samples with a 260/280 absorbance ratio of ~2 ±0.2 contain pure 

RNA and were used for cDNA synthesis. 

2.3.8.2 Synthesis of cDNA  

To synthesize cDNA from total RNA, the high capacity cDNA reverse transcription 

kit (AB Applied Biosystem™, USA) was used. First, the reverse transcription master 

mix was prepared on ice containing 10x RT buffer (2 µl per reaction), 25x dNTP mix 

100 mM (0.8 µl per reaction), 10x RT random primers (2 µl per reaction), 

MultiScribe™ reverse transcriptase (1 µl per reaction), RNase inhibitor (1 µl per 

reaction) and nuclease-free water (3.2 µl per reaction). The RNA samples were 

prepared with 300 ng RNA (brain tissue) and 500 ng RNA (isolated primary 

astrocytes) and diluted in RNase-free water to reach a total volume of 10 µl. Next, 

10 µl RNA-sample and 10 µl master mix were mixed in an 8-tube-strip. After mixing 

by pipetting up and down for 2 times, the tubes were sealed, briefly centrifuged and 

placed in a Thermocycler with cycle parameters listed below: 

Table 19: Cycle parameters for cDNA synthesis. 

Temperature Time 

25°C 10 min 

37°C 120 min 

85°C 5 min 

4°C  Storage 
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2.3.8.3 Measurement of gene expression by quantitative real-time PCR 

The expression of inflammatory cytokines and chemokines was analysed in vivo in 

the corpus callosum of GFAP Tg73.7 mice and wild type mice after 3 and 6 weeks 

of cuprizone treatment. Additionally, the expression was analysed in vitro in primary 

astrocytes after TNFα or INFγ with IL-1β stimulation by quantitative real-time PCR 

(qPCR). With the qPCR technique the amplification product, indicated by 

fluorescence intensity, of a target DNA sequence is measured in real-time. Specific 

primers bind to the target DNA sequence to start amplification. To calculate the 

relative product quantity, the cycle number at which a sample begins to amplify 

exponentially, the cycle threshold (Ct), is used. The expression of the genes of 

interest is quantified in relation to the housekeeping genes. 

Prior to single qPCRs, the RT2 Profiler™ PCR Array mouse multiple sclerosis 

(Qiagen, Germany) was used to identify genes of interest. The RT2 Profiler™ PCR 

Array was conducted following the company’s instructions. Beforehand, the cDNA 

transcription was performed using the RT2 PreAMP Synthesis kit (Qiagen, Germany) 

and the RT2 PreAMP Pathway Primer Mix (Qiagen, Germany) following the 

manufacturer’s instructions. Afterwards, the measured Ct-values were used to 

calculate relative gene expression (see next section).  

The identified genes transcribe the cytokines and chemokines CXCL10, CXCL12, 

CCL2, CCL5, TNFα and IL-6 and were further analysed with single qPCRs using 

the RT-QP73-05 qPCR core kit (Eurogentec) and FAM labelled TaqMan® Gene 

Expression Assays (TaqMan® Gene Expression Assay Thermo Fisher, USA). B2m 

and HPRT were used as housekeeping genes. For the qPCR analysis the master 

mix of the qPCR core kit was prepared containing the specific primers (1 µl), 2x 

reaction buffer (2 µl per sample), MgCL2 solution (50 mM, 2 µl per sample), dNTP 

solution (5 mM, 0.8 µl per sample), HotGoldStar enzyme (0.1 µl per sample) and 

nuclease-free water to reach a total volume of 20 µl. The master mix and 2 µl 

sample-cDNA was pipetted into a 96-well-plate and sealed carefully. All samples 

were measured as duplicates. The plates were placed in an iQ5™ real-time cycler 

with cycle parameters listed below. Data was collected at 60°C. 
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Table 20: Cycle parameters for qPCR. 

Temperature  Time Step 

95°C 10 min HotGoldStar activation 

94°C 15 s* Denaturation 

60°C 1 min* Annealing and extension 

*40 cycles     

2.3.8.4 Quantification of relative gene expression  

To compare the expression levels of CXCL10, CXCL12, CCL2, CCL5, TNFα and 

IL-6 in GFAPTg73.7 mice or astrocytes to wild type controls the ΔΔCt-method was 

applied. First, the expression of the target gene is normalized to the mean Ct of the 

housekeeping genes (ΔCt), here B2m and HPRT 

ΔCt=Ct target gene -Ct mean [housekeeping genes] 

Then the ΔCt of the control was subtracted from the ΔCT of GFAP Tg73.7 to 

calculate the ΔΔCt: 

ΔΔCt= ΔCt GFAP Tg73.7 mice -ΔCt wild type mice 

The fold change in expression was calculated with the formula:  

Fold change = 2-ΔΔCt 

A fold change from 0.5 until 1.5 indicates no gene-expression regulation. A fold 

change greater than 1.5 indicates a gene expression up-regulation and less than 

0.5 indicates a gene expression down-regulation compared to the normalisation 

control.  

2.3.9 Data analysis and statistics 

Statistical analysis was performed using GraphPadPrism Software (version 5.01 

GraphPad Software, USA). All data is given as mean with standard error (± SEM). 

Normal distribution was tested with D’Agostino-Pearson normality test or 

Kolmogorov-Smirnov test for smaller samples. Statistical significance was 

determined as p ≤ 0.05. 
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Histological differences of GFAP Tg73.7 mice compared to wild type mice after 0, 1, 

2, 3, 4, 5 or 6 weeks of cuprizone treatment were analysed with two-way analysis of 

variance (ANOVA) followed by Bonferroni multiple comparison test. Histological 

differences after 12 weeks of cuprizone treatment were analysed with the Mann-

Whitney U test for non-parametric data. The differences in lesion size, microglia 

infiltration, p25-positive oligodendrocyte numbers and nuclear p65-translocation in 

GFAP-positive astrocytes in lysolecithin-induced lesions between GFAP Tg73.7 

mice and wild type mice were analysed with the Student’s t-test for parametric data. 

The differences in mRNA expression levels of MAG, MBP, PLP1, CCL5 and IL-6 

between GFAP Tg73.7 mice and wild type mice were analysed using the one-way 

ANOVA followed by Dunn’s multiple comparison test. The differences in mRNA 

expression levels of CCL2, CXCL12, TNFα and CXCL10 between GFAP Tg73.7 

mice and wild type mice were analysed with one-way ANOVA followed by Tukey’s 

multiple comparison test. The differences in NF-κB activity in GFAP Tg73.7 

astrocytes compared to wild type astrocytes were analysed using one-way ANOVA 

followed by Bonferroni’s multiple comparison test. The expression levels of CCL2 

and CXCL10 in GFAP Tg73.7 astrocytes compared to wild type astrocytes were 

analysed with the Student’s t-test. Myelin phagocytosis activity of microglia with 

astrocyte co-culture were compared to microglia single cultures using the Mann-

Whitney U test. 
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3 | Results 

3.1 Evaluating the effect of enhanced astrocytic human GFAP expression on 

oligodendrocytes and microglia during toxic demyelination  

To investigate effects of enhanced astrocytic hGFAP expression on 

oligodendrocytes and microglia, the effects were analysed immunohistochemically 

in naïve GFAP Tg73.7 mice, after cuprizone treatment and in focally induced lesions. 

3.1.1 Regular myelin density and oligodendrocyte numbers but increased 

astrogliosis in naïve GFAP Tg73.7 mice  

To examine whether naïve GFAP Tg73.7 mice show alterations in astrocyte 

activation, myelination, microglia infiltration and oligodendrocyte numbers 

compared to wild type littermates histochemical and immunohistochemical analysis 

was performed.  

 

Figure 2: Reactive astrocytes in naïve GFAP Tg73.7 mice.  

Naïve GFAP Tg73.7 mice (b) show GFAP-positive astrocytes with reactive morphology compared to 

wild type littermates. Myelination, shown with LFB-PAS staining, is dense in GFAP Tg73.7 mice (d) 

and wild type littermates (c). Representative pictures of the corpus callosum of naïve mice were 

taken at 400x original magnification (a, b; scale bars: 50 µm) and 100x original magnification (c, d; 

scale bars: 100 µm).  
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Astrocytes immunostained for GFAP did not show reactive morphology in naïve wild 

type mice (Figure 2a) whereas naïve GFAP Tg73.7 mice showed reactive GFAP-

positive astrocytes (Figure 2b). Luxol fast blue-periodic acid-Schiff (LFB-PAS)-

stained brain sections revealed no alterations in myelination in GFAP Tg73.7 mice 

(Figure 2d) compared to wild type mice (Figure 2c). 

Mac-3-positive microglia were not altered in naïve GFAP Tg73.7 mice (Tg) 

compared to wild type mice (WT) (Tg: 1.3 ±1.27 cells/mm² vs. WT: 3.9 ±2.72 

cells/mm²; Figure 3c). Additionally, oligodendrocyte numbers were not altered in 

naïve GFAP Tg73.7 mice compared to wild type littermates, counted on p25- 

immunostained brain sections (Tg: 1142.0 ±84.79 cells/mm² vs. WT: 1059.0 ±32.08 

cells/mm²; Figure 3f). 

 

Figure 3: No alterations in microglia and oligodendrocyte density in naïve GFAP Tg73.7 mice. 

Immunohistochemical staining with Mac-3 for microglia (a, b) and p25 for mature oligodendrocytes 

(d, e) showed no alterations in naïve GFAP Tg73.7 mice (b, e) compared to wild type littermates (a, 

d). Representative pictures of the corpus callosum after 1 week of cuprizone treatment were taken 

at 400x original magnification (scale bars: 50 µm). Data are presented as mean ±SEM. 

3.1.2 Reduced cuprizone-induced weight loss and apoptosis in GFAP Tg73.7 

mice after one week 

To assess the clinical effects of cuprizone feeding, body weight was measured once 

weekly during 6 weeks of cuprizone treatment (Figure 4d). During 6 weeks of 
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cuprizone treatment GFAP Tg73.7 mice showed significantly higher body weight 

than their wild type littermates (p<0.01; Tg: 105.10% ±2.94 vs. WT: 92.18% ±1.39; 

Figure 4). 

To analyse the effect of enhanced astrocytic hGFAP expression on cell death during 

the first week of cuprizone treatment, brain slices of GFAP Tg73.7 mice and wild 

type littermates were stained with antibodies against activated caspase-3. The 

evaluation of caspase-3-positive apoptotic cells revealed significantly less numbers 

of apoptotic cells in GFAP Tg73.7 mice (Figure 4b) compared to wild type littermates 

(Figure 4a) after 1 week of cuprizone treatment (p<0.001; Tg: 24.21 cells/mm² ±5.10 

vs. WT: 121.8 cells/mm² ±10.70; Figure 4c). 

 

Figure 4: Decreased apoptosis in GFAP Tg73.7 mice after 1 week of cuprizone-induced 

demyelination and higher body weights during 6 weeks of cuprizone treatment. 

Immunohistochemistry for activated caspase-3 revealed significantly reduced apoptotic cells in 

GFAP Tg73.7 mice (b) compared to wild type littermates (a) after 1 week of cuprizone treatment (c). 

Body weight was controlled once weekly. GFAP Tg73.7 mice show significantly higher body weights 

[%] compared to wild type littermates during 6 weeks of cuprizone treatment (d). Representative 

pictures of the corpus callosum after 1 week of cuprizone treatment were taken at 400x original 

magnification (scale bars: 50 µm) (**p<0.01, ***p<0.001). Data are presented as mean ±SEM. 

3.1.3 Reduced cuprizone-induced demyelination in GFAP Tg73.7 mice 

To evaluate the effect of enhanced astrocytic hGFAP expression on cuprizone-

induced demyelination, myelin loss was analysed on LFB-PAS stained sections in 
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GFAP Tg73.7 mice (Figure 5b) and wild type littermates (Figure 5a) after 3, 4, 5 and 

6 weeks of cuprizone treatment. Demyelination was evaluated using a semi-

quantitative scoring system, previously published in Brück et al (2012): no (0), 

minimal (0.5), <33% (1), 33-66% (2) and >66% (3) demyelination. 

The evaluation revealed a significant reduction of cuprizone-induced demyelination 

in the corpus callosum of GFAP Tg73.7 mice compared to wild type littermates after 

4 weeks of cuprizone treatment (p<0.05; Tg: 0.80 ±0.33 vs. WT: 1.90 ±0.36), after 

5 weeks of cuprizone treatment (p<0.001; Tg: 0.42 ±0.20 vs. WT: 1.88 ±0.23) and 

after 6 weeks of cuprizone treatment (p<0.001; Tg: 0.90 ±0.33vs. WT: 3.00 ±0.00; 

Figure 5c). 

 

Figure 5: Decreased cuprizone-induced demyelination in GFAP Tg73.7 mice. 

Demyelination is extensive in the corpus callosum of wild type littermates (a) compared to moderate 

demyelination in GFAP Tg73.7 mice (b) after 6 weeks of cuprizone treatment. Evaluation of LFB-

PAS stained sections revealed demyelination in GFAP Tg73.7 mice (b) is significantly reduced after 

4, 5 and 6 weeks of cuprizone treatment compared to wild type littermates. Representative pictures 

of the corpus callosum after 6 weeks of cuprizone treatment were taken at 100x original magnification 

(scale bars: 100 µm) (*p<0.05; ***p<0.001). Data are presented as mean ±SEM. 

To evaluate myelination of axons on the ultrastructural level, electron microscopic 

(EM) pictures of the corpus callosum were taken. EM analysis revealed a 

significantly higher percentage of myelinated axons in GFAP Tg73.7 mice compared 

to wild type littermates after 6 weeks of cuprizone treatment (p<0.01; Tg: 92.00% 

±7.65 vs. WT: 81.48% ±18.52; Figure 6c). In naïve GFAP Tg73.7 mice (Figure 6b) 

and wild type littermates (Figure 6a) 100% ±0.00 axons were myelinated. 
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Figure 6: Less demyelinated axons in GFAP Tg73.7 mice after 6 weeks of cuprizone-induced 

demyelination. 

Naïve wild type mice (a) and GFAP Tg73.7 mice (b) show intact myelin sheaths of callosal axons (c). 

After 6 weeks of cuprizone treatment the percentage of myelinated axons is significantly higher in 

GFAP Tg73.7 mice (e, c) compared to wild type littermates (d, c) (scale bars: 2µm) (**p<0.01). Data 

are presented as mean ±SEM. 

3.1.4 Reduced cuprizone-induced oligodendrocyte loss in GFAP Tg737 mice 

To assess the effect of enhanced astrocytic hGFAP expression on oligodendrocytes 

during cuprizone-induced demyelination, GFAP Tg73.7 mice and wild type 

littermates were treated for 1, 2, 3, 4, 5 and 6 weeks with cuprizone. The analysis 

of brain slices stained with p25, a protein expressed in mature oligodendrocytes 

(Höftberger et al 2010), revealed significantly higher numbers of mature 

oligodendrocytes in GFAP Tg73.7 mice (Figure 7c) compared to wild type 

littermates after 4 weeks of cuprizone treatment (p<0.001; Tg: 936.2 cells/mm² 

±95.39 vs. WT: 434.90 cells/mm² ±95.45; Figure 7c), after 5 weeks of cuprizone 

treatment (p<0.001; Tg: 1020.0 cells/mm² ±98.28 vs. WT: 495.0 cells/mm² ±70.43; 

Figure 7c) and after 6 weeks of cuprizone treatment (p<0.001; Tg: 1087.0 

±21.22 cells/mm²; vs. WT: 406.5 ±88.81 cells/mm²; Figure 7c). P25-positive 

oligodendrocyte numbers were not altered in GFAP Tg73.7 mice compared to wild 

type littermates after 1, 2 and 3 weeks of cuprizone treatment (Figure 7c). 

To analyse oligodendrocyte precursor cells (OPC), brain slices were immunostained 

with antibodies against olig2, an oligodendrocyte transcription factor. Olig2 detects 

mainly immature oligodendrocytes, but also binds to mature oligodendrocytes, 
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however, with a weaker staining signal. Analysis of olig2 staining revealed 

significant higher numbers of olig2-positive oligodendrocytes in GFAP Tg73.7 mice 

compared to wild type littermates only after 1 week of cuprizone treatment (p<0.05; 

Tg: 707.2 cells/mm² ±34.21 vs. WT: 282.3 cells/mm² ±42.85; Figure 7f). Olig2-

positve oligodendrocytes were not altered in GFAP Tg73.7 mice compared to wild 

type littermates after 2, 3, 4, 5 and 6 weeks of cuprizone treatment (Figure 7f).  

 

Figure 7: Reduced oligodendrocyte loss in GFAP Tg73.7 mice. 

Analysis of p25-positive mature oligodendrocytes displays significantly reduced oligodendrocyte loss 

in GFAP Tg73.7 mice (b) compared to decreased oligodendrocyte numbers in wild type littermates 

(a) after 5 and 6 weeks of cuprizone treatment. Immunostaining against olig2 showed significant 

more olig2-positive oligodendrocytes in GFAP Tg73.7 mice (e) compared to wild type littermates (d) 

only after 1 week of cuprizone treatment. Representative pictures of the corpus callosum after 6 

weeks of cuprizone treatment were taken at 400x original magnification (scale bars: 50 µm) (*p<0.05; 

***p<0.001). Data are presented as mean ±SEM. 

3.1.5 Reduced cuprizone-induced acute axonal damage in GFAP Tg73.7 mice 

Cuprizone-induced demyelination is paralleled by axonal damage. To determine the 

effect of enhanced astrocytic hGFAP expression on acute axonal damage during 

cuprizone-induced demyelination, GFAP Tg73.7 mice and wild type littermates were 

fed with cuprizone for 3, 4, 5 and 6 weeks. Acute axonal damage was analysed on 

brain sections stained with an antibody against the amyloid precursor protein (APP). 

Acute axonal damage causes disrupted APP transport and leads to the formation of 

APP-positive spheroids. The quantification of APP-positive spheroids in the corpus 
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callosum revealed significantly lower numbers in GFAP Tg73.7 mice (Figure 8b) 

compared to wild type littermates (Figure 8a) after 4 weeks of cuprizone treatment 

(p<0.001; Tg: 60.04 cells/mm² ±34.66 vs. WT: 696.8 cells/mm² ±95.26; Figure 8c).  

The number of APP-positive spheroids was also significantly lower in GFAP Tg73.7 

mice compared to wild type littermates after 5 weeks of cuprizone treatment (p<0.01; 

Tg: 5.75 cells/mm² ±3.56 vs. wild type littermates: 313.30 cells/mm² ±53.68; Figure 

8c) as well as after 6 weeks of cuprizone treatment (p<0.05; Tg: 14.78 cells/mm² 

±6.84 vs. WT: 288.90 cells/mm² ±43.24; Figure 8c).  

 

Figure 8: Less acute axonal damage in GFAP Tg73.7 mice. 

Evaluation of APP-positive axonal spheroids reveals significantly less spheroids in GFAP Tg73.7 

mice (b) compared to wild type littermates (a) after 4, 5 and 6 weeks of cuprizone treatment. 

Representative pictures of the corpus callosum after 4 weeks of cuprizone treatment were taken at 

400x original magnification (scale bars: 50 µm) (*p<0.05; **p<0.01; ***p<0.001). Data are presented 

as mean ±SEM. 

3.1.6 Less cuprizone-induced microglia infiltration in GFAP Tg73.7 mice 

To analyse the effect of enhanced hGFAP expression in astrocytes on microglia 

infiltration during cuprizone-induced demyelination, GFAP Tg73.7 mice and wild 

type littermates were treated with cuprizone for 1, 2, 3, 4, 5 and 6 weeks. Afterwards 

brain sections were immunostained with an antibody against Mac-3, which is an 

antigen on the surface of tissue macrophages. The evaluation of Mac-3 

immunostained brain sections of GFAP Tg73.7 mice (Figure 9b) and wild type 

littermates (Figure 9a) revealed significantly less Mac-3-positive microglia in GFAP 

Tg73.7 mice compared to wild type littermates after 4 weeks of cuprizone treatment 

(p<0.01; Tg: 371.3 cells/mm² ±75.36 vs. WT: 947.8 cells/mm² ±154.60; Figure 9c). 

Mac-3-positive microglia were also significantly less in GFAP Tg73.7 mice 

compared to wild type littermates after 5 weeks (p<0.001; Tg: 98.7 ±11.52 cells/mm² 

vs. WT: 909.7 ±82.04 cells/mm²; Figure 9c) and after 6 weeks of cuprizone treatment 
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(p<0.001; Tg: 149.0 ±22.04 cells/mm² vs. WT: 727.0 ±55.37 cells/mm²; Figure 9c). 

Microglia infiltration was not altered in GFAP Tg73.7 mice compared to wild type 

littermates after 1, 2 and 3 weeks of cuprizone treatment (Figure 9c). 

 

Figure 9: Less microglia infiltration in GFAP Tg73.7 mice. 

Evaluation shows significantly less Mac-3-positive microglia in GFAP Tg73.7 mice (b) compared to 

wild type littermates (a) after 4, 5 and 6 weeks of cuprizone treatment (c). Representative pictures of 

the corpus callosum after 6 weeks of cuprizone treatment were taken at 400x original magnification 

(scale bars: 50 µm) (**p<0.01; ***p<0.001). Data are presented as mean ±SEM. 

3.1.7 Less cuprizone-induced demyelination and oligodendrocyte loss, but 

similar microglia infiltration in GFAP Tg73.7 after 12 weeks of cuprizone 

treatment 

To analyse the effect of enhanced astrocytic hGFAP expression on cuprizone-

induced pathology after long-term cuprizone treatment, GFAP Tg.73.7 mice and wild 

type littermates were fed with cuprizone for 12 weeks. The semi-quantitative 

analysis of demyelination (see score in 3.1.3) on LFB-PAS stained sections 

revealed significant less demyelination in GFAP Tg73.7 mice compared to wild type 

littermates after 12 weeks of cuprizone treatment (p<0.05; Tg: 1.8 ±0.20 vs. WT: 2.9 

±0.03; Figure 10c). In contrast, Mac-3-positive microglia numbers were not altered 

in GFAP Tg73.7 mice compared to wild type littermates after 12 weeks of cuprizone 

treatment (Tg: 476.2 cells/mm² ±50.12 vs. WT: 540.3 cells/mm² ±45.90; Figure 10f). 

However, the number of p25-positive mature oligodendrocytes was significantly 

higher in GFAP Tg73.7 mice compared to wild type littermates (p<0.05; Tg: 1019 

cells/mm² ±106.0 vs. WT: 447.2 cells/mm² ±80.71; Figure 10i), as well as the 

number of olig2-positive oligodendrocytes (p<0.05; Tg: 1214 cells/mm² ±108.4 vs. 

WT 860.4 cells/mm² ±45.02; Figure 10l). 
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Figure 10: After 12 weeks of cuprizone treatment, cuprizone-induced demyelination and 

oligodendrocyte loss is less, whereas microglia infiltration is not altered in GFAP Tg73.7 mice. 

To analyse long-term effects, GFAP Tg73.7 mice (b, e, h, k, n) and wild type littermates (a, d, g, j, m) 

were treated for 12 weeks with cuprizone. Semi-quantitative evaluation of demyelination on LFB-

PAS stained sections revealed only minimal demyelination in GFAP Tg73.7 mice (b,c) compared to 

extensive demyelination in wild type littermates (a, c). Mac3-positive microglia numbers were not 

altered in GFAP Tg73.7 mice (e, f) compared to wild type littermates (d, f). P25-positive mature 

oligodendrocytes as well as olig2-positive oligodendrocytes were significantly higher in GFAP Tg73.7 

mice (h, k) compared to wild type littermates (g, j). Representative electron microscopic pictures 

show axons without myelin sheaths in wild type littermates (m) compared to myelinated axons in 
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GFAP Tg73.7 mice (n). Representative pictures of the corpus callosum were taken at 100x original 

magnification (a, b; scale bar: 100 µm) and at 400x original magnification (d-k; scale bars: 50 µm) 

(*p<0.05). Data are presented as mean ±SEM. 

3.1.8 Less efficient lysolecithin-induced focal demyelination, but similar 

microglia infiltration and oligodendrocyte numbers in GFAP Tg73.7 mice 

To analyse the effect of enhanced astrocytic hGFAP expression on focal 

demyelination, lysolecithin was stereotactically injected into the lateral corpus 

callosum. The lesion size was assessed on LFB-PAS stained sections 7 days post 

injection. Measurement of demyelinated area revealed significantly smaller lesions 

in GFAP Tg73.7 compared to wild type controls (p≤0.001; Tg: 75321 µm² ±12169 

vs. WT: 148982 µm² ±13340; Figure 11c). To investigate Mac-3-positve microglia 

and p25-positive oligodendrocytes in the lesion area, brain sections were double-

stained with an antibody against myelin basic protein (MBP) to identify the lesion 

area and either with Mac-3 or with p25. The evaluation did show similar high 

microglia numbers inside the lesion area in GFAP Tg73.7 mice compared to wild 

type controls (Tg: 1938 cells/mm² ±151.8 vs. WT: 1864 cells/mm² ±139.9; Figure 

11f), as well as similar low numbers of p25-positive oligodendrocytes compared to 

wild type mice (Tg: 117.4 cells/mm² ±42.54 vs. WT: 48.72 cells/mm² ±10.40; Figure 

11i). 
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Figure 11: Smaller demyelinated lesions in GFAP Tg73.7 mice and no differences in microglia 

infiltration and oligodendrocyte numbers compared to wild type mice. 

To evaluate focal demyelinated lesions, lysolecithin was injected into the corpus callosum of GFAP 

Tg73.7 mice and wild type littermates and evaluated after 7 days. The measurement of lesion area 

on LFB-PAS stained sections reveals significantly smaller lesions in GFAP Tg73.7 mice (b, c) 

compared to wild type controls (a, c). Double stained sections with antibodies against the myelin 

basic protein (MBP) and Mac-3 did not show any alteration in the density of Mac-3-positive microglia 

in GFAP Tg73.7 mice (e, f) compared to wild type controls (d, f), however, smaller lesion size was 

confirmed. Double stained sections with antibodies against MBP and p25, indicate no difference in 

p25-positive mature oligodendrocyte numbers between GFAP Tg73.7 mice (h, i) and wild type 

controls (g, i), but oligodendrocytes were almost depleted in comparison to normal white. 

Representative pictures of the corpus callosum were taken at 100x original magnification (a, b; scale 

bars: 100 µm) and at 400x original magnification (d, e, g, h; scale bars: 50µm) (***p<0.001). Data 

are presented as mean ±SEM. 
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3.1.9 Reduced NF-κB-activity in lysolecithin-induced focal demyelinated 

lesions in GFAP Tg73.7 mice 

The activity of the NF-κB pathway regulates gene transcription of several genes 

essential during demyelination (Raasch et al 2011). When NF-κB is activated it 

translocates into the nucleus to activate gene expression. To analyse the effect of 

enhanced astrocytic hGFAP on NF-κB activity in focal lesions, brain sections were 

doublestained with antibodies against the NF-κB-subunit p65 and GFAP. Nuclei 

were stained with DAPI. Seven days post lesion induction, GFAP-positive astrocytes 

with nuclear p65 were counted in the lesion area. The analysis revealed significantly 

less nuclear translocation of p65 in GFAP Tg73.7 astrocytes (Figure 12b) compared 

to wild type controls (p<0.01; Tg: 27.22% ±1.99 vs. WT: 55.93% ±8.65; Figure 12c).  

 

Figure 12: Reduced astrocytic NF-κB activity in lysolecithin-induced lesions in GFAP Tg73.7 

mice. 

Nuclear translocation of the NF-κB subunit p65 (red) in GFAP-positive astrocytes (green) indicates 

NF-κB activation. The evaluation in focal lesions shows less GFAP-positive astrocytes with nuclear 

p65 in GFAP Tg73.7 mice (b, c) compared to wild type mice (a, c). Representative pictures of the 

corpus callosum were taken at 400x original magnification (scale bars: 25 µm) (**p<0.01). Data are 

presented as mean ±SEM. 

3.2 Evaluating the effect of enhanced astrocytic hGFAP expression in 

astrocytes on myelin and cytokine mRNA expression 

To investigate the effect of enhanced hGFAP in astrocytes expression on cytokine 

expression in vivo selected cytokines and chemokines were analysed by qPCR after 
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cuprizone treatment. Afterwards identified chemokines were further analysed in 

stimulated astrocytes in vitro. Furthermore, myelin protein mRNA expression after 

cuprizone treatment was measured to further analyse effects of enhanced astrocytic 

hGFAP expression on demyelination. 

3.2.1 Increased cuprizone-induced myelin mRNA expression in GFAP Tg73.7 

mice in vivo  

Myelin genes are downregulated prior to actual degradation of myelin during 

cuprizone-induced demyelination (Morell et al 1998). Thus, the analysis of myelin 

mRNA expression can reveal early effects of cuprizone-induced demyelination. To 

investigate the effect of enhanced astrocytic hGFAP expression on myelin mRNA 

expression during cuprizone treatment, GFAP Tg73.7 mice and wild type littermates 

were fed with cuprizone for 3 and 6 weeks. Myelin associated glycoprotein (MAG), 

proteolipid protein 1 (PLP1) and MBP mRNA expression in the corpus callosum was 

analysed with the RT2 Profiler™ PCR Array mouse multiple sclerosis (Qiagen, 

Germany). The fold change was normalised to wild type controls. The array analysis 

revealed higher mRNA levels of MAG (Figure 13a), MBP (Figure 13b) and PLP1 

(Figure 13c) in GFAP Tg73.7 mice after 3 weeks of cuprizone treatment (p<0.05, 

MAG: 7.63 ±1.22; p<0.05, MBP: 7.89 ±1.90; p<0.01, PLP1: 8.12 ±1.21) compared 

to naïve mice (MAG: 0.81 ±0.06, MBP: 0.71 ±0.03, PLP1: 0.81 ±0.06). After 6 weeks 

of cuprizone treatment the myelin protein mRNA expression was reduced (p<0.01, 

MAG: 1.25 ±0.19; p<0.05, PLP1: 1.42 ±0.17) compared to 3 weeks (Figure 13).  
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Figure 13: Higher myelin mRNA levels in GFAP Tg73.7 mice after 3 weeks of cuprizone-

induced demyelination. 

The mRNA expression of myelin proteins in the corpus callosum of GFAP Tg73.7 mice after 3 and 6 

weeks of cuprizone treatment was analysed via qPCR. The fold changes were normalized to wild 

type littermates. Expression of myelin associated glycoprotein (MAG) (a), myelin basic protein (MBP) 

(b) and proteolipid protein 1 (PLP1) (c) mRNA is significantly higher in GFAP Tg73.7 mice after 

3 weeks of cuprizone treatment compared to naïve GFAP Tg73.7 mice. The fold change of MAG and 

PLP1 is significant higher after 3 weeks compared to 6 weeks of cuprizone treatment (*p<0.05; 

**p<0.01). Fold changes are presented as mean ±SEM.  

3.2.2 Less cuprizone-induced CCL2 and CXCL10 mRNA expression in GFAP 

Tg73.7 mice in vivo 

To analyse the effect of hGFAP overexpression on cytokine and chemokine 

expression during cuprizone-induced demyelination, the mRNA expression of C-C 

motif ligand 2 (CCL2), CCL2, CCL5, C-X-C motif ligand 10 (CXCL10), CXCL12, 

interleukin-6 (IL-6) and tumour necrosis factor α (TNFα) were analysed with qPCR. 

It was previously shown that cytokine and chemokine mRNA are regulated during 

cuprizone-induced demyelination (Biancotti et al 2008, Buschmann et al 2012, 

Jurevics et al 2002, Skripuletz et al 2012). The fold change was normalised to naïve 

controls. 

The qPCR analyses revealed significantly less up-regulated CCL2 mRNA 

expression in GFAP Tg73.7 mice compared to increased up-regulation in wild type 

littermates after 3 weeks (p<0.01; Tg: 1.56 ±0.60 vs. WT: 5.91 ±1.00) and 6 weeks 

of cuprizone treatment (p<0.01, Tg:  0.65 ±0.24 vs. WT: 4.56 ±0.82; Figure 14a). 

Additionally, the mRNA expression of CXCL10 was significantly less up-regulated 

in GFAP Tg73.7 mice compared to wild type littermates whereas it is substantially 
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increased after 6 weeks of cuprizone treatment (p<0.001, Tg: 1.51 ±0.45 vs. WT: 

9.40 ±1.40; Figure 14c). After 3 weeks of cuprizone treatment CXCL10 mRNA 

expression was similar not up-regulated in GFAP Tg73.7 mice and wild type 

littermates (Tg: 1.20 ±0.30 vs. WT: 0.97 ±0.13).  

The mRNA levels of CCL5, CXCL12, IL-6 and TNFα were similar up- or down-

regulated in GFAP Tg73.7 mice compared to wild type littermates after 3 or 6 weeks 

of cuprizone treatment (Figure 14). As normalised to naïve controls, CCL5 mRNA 

expression (Figure 14b) was up-regulated in GFAP Tg.73.7 mice and not in wild 

type mice (Tg: 1.79 ±0.42 vs. WT: 0.98 ±0.29) after 3 weeks of cuprizone treatment 

and comparable up-regulated in GFAP Tg73.7 mice and wild type mice after 6 

weeks of cuprizone treatment (Tg: 3.12 ±0.58 vs. WT: 2.65 ±0.68). CXCL12 mRNA 

expression (Figure 14d) was down-regulated in wild type mice and not in GFAP 

Tg73.7 mice after 3 weeks of cuprizone treatment (Tg: 0.57 ±0.06 vs. WT: 0.30 

±0.07). The level of IL-6 (Figure 14e) was down-regulated in wild type mice and not 

regulated in GFAP Tg73.7 mice after 3 weeks (Tg: 0.82 ±0.23 vs. WT: 0.33 ±0.06) 

and after 6 weeks of cuprizone treatment (Tg: 0.63 ±0.16 vs. WT: 0.33 ±0.06). 

Whereas TNFα mRNA expression (Figure 14f) was up-regulated in GFAP Tg73.7 

mice and wild type littermates after 3 weeks (Tg: 3.75 ±1.01 vs. WT: 6.52 ±0.88) 

and after 6 weeks of cuprizone treatment (Tg: 3.42 ±0.73 vs. WT: 4.93 ±0.68). 
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Figure 14: Cytokine and chemokine mRNA expression in vivo after 3 and 6 weeks of 

cuprizone-induced demyelination. 

The cytokine and chemokine mRNA expression in the corpus callosum of GFAP Tg73.7 mice and 

wild type littermates after 3 and 6 weeks of cuprizone treatment was analysed with qPCR. The fold 

changes were normalized to naïve controls. CCL2 (a) expression is significantly less up-regulated in 

GFAP Tg73.7 mice compared to wild type littermates after 3 and 6 weeks of cuprizone treatment. 

The CXCL10 (c) expression level is significantly less up-regulated in GFAP Tg73.7 mice after 6 

weeks of cuprizone treatment whereas it is substantially increased in wild type mice. The expression 

levels of CCL5 (b), CXCL12 (d), IL-6 (e) and TNFα (f) are not significantly different in GFAP Tg73.7 

mice compared to wild type littermates after 3 or 6 weeks of cuprizone treatment. (**p<0.01, 

***p<0.001). Fold changes are presented as mean ±SEM.  

3.2.3 CXCL10 is expressed in astrocytes after 6 weeks of cuprizone-induced 

demyelination 

CXCL10 expression levels were only found to be highly up-regulated in wild type 

mice but not in GFAP Tg73.7 mice (Figure 14c). To assess the cellular source of 

CXCL10, double immunofluorescence staining with antibodies against the 

chemokine CXCL10 and astrocytes with GFAP were performed after 6 weeks of 
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cuprizone treatment (Figure 15). Additionally, double staining against CXCL10 and 

Iba1 (microglia) or CXCL10 and p25 (oligodendrocytes) were performed (Figure 16). 

Analysis of double staining showed that GFAP-positive astrocytes express the 

chemokine CXCL10 in GFAP Tg73.7 mice (Figure 15b) and wild type littermates 

(Figure 15a) after 6 weeks of cuprizone induced demyelination.  

 

Figure 15: Astrocytes express CXCL10 after six weeks of cuprizone-induced demyelination. 

Double staining with antibodies against CXCL10 (red) and GFAP (green) demonstrate that GFAP-

positive astrocytes are a source of CXCL10 in wild type mice (a) and GFAP Tg73.7 mice (b) after 6 

weeks of cuprizone treatment. Nuclei were counterstained with DAPI (blue). Representative pictures 

of the corpus callosum were taken at 400x original magnification (scale bars: 25 µm). 

Double staining with CXCL10 and the microglia marker Iba1 showed no co-

localization of CXCL10 in these cells in GFAP Tg73.7 mice (Figure 16b) and wild 

type littermates (Figure 16a). Additionally, double staining with CXCL10 and the 

oligodendrocyte marker p25 showed no co-localization of CXCL10 in the cytoplasm 

of oligodendrocytes in GFAP Tg73.7 mice (Figure 16d) and wild type littermates 

(Figure 16c).  
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Figure 16: Microglia and oligodendrocytes do not express CXCL10 during cuprizone-induced 

demyelination. 

Double staining with CXCL10 (red) and the microglia marker Iba1 (a, b; green) or the oligodendrocyte 

marker p25 (c, d; green) show that neither microglia nor oligodendrocytes express CXCL10 after 6 

weeks of cuprizone treatment. Microglia in wild type mice (a) and GFAP Tg73.7 mice (b) were not 

CXCL10 positive. In addition, oligodendrocytes in wild type (c) and GFAP Tg73.7 mice (d) were not 

CXCL10 positive in the cytoplasm. Nuclei were counterstained with DAPI (blue). Representative 

pictures of the corpus callosum were taken at 400x original magnification (scale bars: 25 µm). 

3.2.4 Unaltered CCL2 and CXCL10 mRNA expression in GFAP Tg73.7 

astrocytes after cytokine stimulation in vitro 

To further confirm the expression of CXCL10 as well as CCL2 in astrocytes, primary 

astrocytes of GFAP Tg73.7 mice and wild type littermates were isolated and 

stimulated with TNFα or with a combination of IL-1β and INFγ or for 3h. Expression 

of CCL2 and CXCL10 was analysed with qPCR. The fold change was normalized 
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to unstimulated astrocytes. The expression of CXCL10 mRNA was not significantly 

altered, however, it showed a trend towards lower expression in GFAP Tg73.7 

astrocytes compared to wild type astrocytes after TNFα stimulation (p=0.06, Tg: 

17.99 ±1.11 vs. WT: 33.10 ±5.66; Figure 17b). CXCL10 mRNA expression after IL-

1β and INFγ stimulation was not altered in GFAP Tg73.7 astrocytes (Tg: 197.90 

±7.13 vs. WT: 299.10 ±89.19; Figure 17b). Furthermore, CCL2 mRNA expression 

was not altered in GFAP Tg73.7 astrocytes compared to wild type astrocytes after 

TNFα stimulation (Tg: 76.98 ±10.25 vs. WT:55.94 ±8.98) and stimulation with IL-1β 

and INFγ (Tg: 48.61 ±0.89 vs WT:54.61 ±9.15; Figure 17a).  

 

Figure 17: Similar expression levels of CCL2 and CXCL10 mRNA in GFAP Tg73.7 and wild 

type astrocytes in vitro. 

Primary astrocytes of GFAP Tg73.7 mice and wild type littermates were stimulated with TNFα or 

IL-1β and INFγ for 3h. Fold changes were normalised to unstimulated controls. CCL2 (a) and 

CXCL10 (b) expression was not significantly altered in GFAP Tg73.7 astrocytes compared to wild 

type astrocytes. GFAP Tg73.7 and wild type astrocytes show both an up-regulation of CCL2 (a) and 

CXCL10 (b). Fold changes are presented as mean ±SEM.  

3.2.5 Lower NF-κB activity in GFAP Tg73.7 astrocytes after cytokine 

stimulation in vitro 

The NF-κB signalling pathway regulates astrocytic cytokine expression. Therefore, 

astrocytic NF-κB activity was analysed after cytokine stimulation in vitro. Primary 

astrocytes of GFAP Tg73.7 mice and wild type littermates were stimulated for 1h 

either with TNFα or with IL-1β and INFγ. Unstimulated astrocytes served as controls. 

NF-κB activity was measured luminometrically with the Cignal Lenti NF-κB 

luciferase reporter Assay. Stimulation with both cytokines increased NF-κB activity 
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compared to unstimulated controls (Figure 18). NF-κB activity in GFAP Tg73.7 

astrocytes was significantly lower compared to wild type astrocytes after stimulation 

with TNFα (p<0.001; Tg: 5.67 RLU ±0.40 vs. WT: 13.06 RLU ±0.31; Figure 18) and 

after stimulation with IL-1β and INFγ (p<0.001; Tg: 6.72 RLU ±1.09 vs. WT: 15.30 

RLU ±0.86; Figure 18). 

 

Figure 18: Diminished increase in NF-kB activity in stimulated primary astrocytes of GFAP 

Tg73.7 mice.  

NF-κB activity was measured luminometrically (RLU) in primary astrocytes of GFAP Tg73.7 mice 

and wild types. NF-κB activity was stimulated with TNFα or IL-1β with INFγ. Unstimulated astrocytes 

served as controls. Cytokine stimulation increases NF-kB activity in GFAP Tg73.7 and wild type 

astrocytes. Compared to NF-kB activity in wild type astrocytes, NF-kB activation is significantly less 

increased in GFAP Tg73.7 astrocytes after stimulation with TNFα or IL-1β with INFγ (***p<0.001). 

Data are presented as mean ±SEM. 

3.3 Reduced phagocytosis activity of microglia in co-cultures with astrocytes 

in vitro 

Microglia infiltration was less in GFAP Tg73.7 mice after 4, 5 and 6 weeks of 

cuprizone treatment (see Figure 9). As phagocytosis is one of the main functions of 

microglia, the effect of enhanced astrocytic hGFAP expression on microglial 

phagocytosis activity was analysed. This was measured by quantifying the uptake 

of fluorescently labelled myelin by CD11b-positive microglia measured via flow 

cytometry. To analyse whether astrocytes of GFAP Tg73.7 mice have an effect on 

myelin phagocytosis of microglia, isolated astrocytes of GFAP Tg73.7 mice or wild 

type littermates were co-cultured for 24h with microglia of C57BL/ 6 mice. Microglia 

single-cultures served as controls. Cells were incubated with myelin for 2h followed 

by analysis with flow cytometry to measure the phagocytosis rate. The analysis by 

flow cytometry revealed increased phagocytosis activity in microglia single-cultures 
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compared to astrocyte co-cultures with either GFAP Tg73.7 astrocytes (p<0.05; Tg: 

50.97% ±2.66 vs ctrl: 63.41% ±3.47; Figure 19g) or wild type astrocytes (p<0.05; 

WT: 49.25% ±2.11 vs. ctrl: 63.41% ±3.47; Figure 19d). To investigate whether 

soluble factors released by astrocytes influence microglial phagocytosis, microglia 

were incubated for 24h with supernatant of GFAP Tg73.7 astrocyte cultures or wild 

type astrocyte cultures. Analysis with flow cytometry revealed supernatant of GFAP 

Tg73.7 astrocytes did not differentially affect phagocytosis activity compared to 

supernatant of wild type astrocytes (Tg: 55.07% ±6.75 vs. WT: 55.47% ±5.82; Figure 

19d, g). 

 

Figure 19: Astrocytes inhibit myelin phagocytosis activity of microglia in vitro. 

The effect of astrocytes on microglia myelin phagocytosis was investigated in vitro in 24h co-cultures 

(co) of microglia either with GFAP Tg73.7 astrocytes (e) or wild type astrocytes (b). Microglia single-

cultures served as controls (ctrl, a). Flow cytometry histograms show representative results from 
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myelin phagocytosis assays. The numbers in the histograms indicate the percentage of 

phagocytically active microglia cells. Phagocytosis activity is significant less in microglia-astrocyte 

co-cultures (d, g) compared to the control (a). Astrocyte conditioned supernatant (sn) of GFAP 

Tg73.7 astrocytes (f) or wild type astrocytes (c) has no effect on microglia phagocytosis activity (d, 

g) compared to the control (a). Data are presented as mean ±SEM. 
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4 | Discussion 

4.1 Summary of the results 

To investigate whether increased GFAP expression in astrocytes has an impact on 

toxin-induced demyelination, transgenic GFAP Tg73.7 mice which overexpresses 

human (h)GFAP (Messing 1998) were used. Overexpression of hGFAP leads to 

reactive astrocytes in the corpus callosum of GFAP Tg73.7 mice compared to wild 

type mice as identified by their morphology. Naïve GFAP Tg73.7 mice show similar 

myelination, oligodendrocyte and microglia numbers compared to wild type mice.  

GFAP Tg73.7 mice and wild type mice were treated with cuprizone for 1, 2, 3, 4, 5, 

6 and 12 weeks. Demyelination was assessed immunohistochemically as well as 

on the ultrastructural level using electron microscopy (EM) of the corpus callosum. 

This study demonstrated that cuprizone-induced demyelination was substantially 

less pronounced in GFAP Tg73.7 mice compared to wild type mice after 4, 5, 6 and 

12 weeks of cuprizone treatment (Figure 20). This was confirmed by EM after six 

weeks. Furthermore, it was shown that mature oligodendrocyte numbers remained 

stable in GFAP Tg73.7 mice, while pronounced oligodendrocyte loss was observed 

in wild type mice after 4, 5 and 6 weeks of cuprizone treatment (Figure 20). GFAP 

Tg73.7 mice showed higher numbers of OPCs with oligodendrocytes compared to 

wild type mice after one week of cuprizone, however, OPC numbers were not 

altered from week two on. Additionally, it was demonstrated that oligodendrocyte 

loss and ensuing demyelination in wild type mice leads to pronounced acute axonal 

damage after four weeks of cuprizone treatment, while axonal damage was nearly 

absent in GFAP Tg73.7 mice. Reduced oligodendrocyte numbers leads to reduced 

mRNA expression of myelin genes (Morell et al 1998). The increased mRNA 

expression of myelin associated glycoprotein (MAG), proteolipid protein 1 (PLP1) 

and myelin basic protein (MBP) in GFAP Tg73.7 mice compared to wild type mice 

after three weeks of cuprizone treatment reflects stable oligodendrocytes numbers 

and function. Long-term cuprizone treatment after 12 weeks still demonstrated 

higher oligodendrocyte numbers and reduced demyelination in GFAP Tg73.7 mice 

compared to wild type mice.  
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Figure 20: Summary of the effects of enhanced hGFAP expression in astrocytes on 

demyelination, mature oligodendrocyte numbers and microglia infiltration during cuprizone-

induced demyelination. 

In wild type mice (black) decreasing mature oligodendrocyte numbers (dashed line) were associated 

with increasing demyelination (bars) and is paralleled by increasing microglia numbers (continuous 

line). Whereas in GFAP Tg73.7 mice (grey), increased astrocyte activation might lead to stable 

oligodendrocyte numbers and short-time microglia infiltration, with a peak at week three. Both effects 

are associated with attenuated cuprizone-induced demyelination (bars). 

Furthermore, this study demonstrated that microglia infiltration was increased to the 

same extent in wild type and GFAP Tg73.7 mice after three weeks of cuprizone. 

Interestingly, GFAP Tg73.7 mice showed substantially less microglia infiltration from 

week four on compared to wild type mice. In wild type mice microglia infiltration was 

increasing over treatment duration with a peak after four weeks (Figure 20). To 

analyse the effect of enhanced astrocytic hGFAP expression on microglial myelin 

phagocytosis, phagocytosis activity of microglia was analysed via flow cytometry in 

vitro. For that purpose, microglia were co-culture for 24 hours with either astrocytes 

with enhanced hGFAP expression or wild type astrocytes and incubated with 

isolated myelin. This study shows that astrocytes reduced microglia phagocytosis 

activity independent of enhanced hGFAP expression.  

Additionally, focal lesion induction via lysolecithin injection was performed in the 

corpus callosum of GFAP Tg73.7 mice and wild type mice. Seven days post lesion 

induction demyelinated lesion size was smaller in GFAP Tg73.7 mice compared to 
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wild type mice. Oligodendrocyte numbers in the lesion area were decreased and 

microglia infiltration increased in both transgenic and wild type mice.  

To investigate underlying mechanisms of the attenuated cuprizone course in GFAP 

Tg73.7 mice, cytokine mRNA expression was analysed with quantitative real-time 

PCR (qPCR) after three and six weeks of cuprizone. This study demonstrated that 

the expression of C-C motif ligand 2 (CCL2) was less up-regulated in GFAP Tg73.7 

mice compared to wild type mice after three and six weeks of cuprizone treatment. 

The expression level of C-X-C motif ligand 10 (CXCL10) was also less up-regulated 

after six weeks of cuprizone treatment in GFAP Tg73.7 mice but highly up-regulated 

in wild type mice. Both chemokines are regulated by the nuclear factor (NF)-κB 

pathway (Ohmori & Hamilton 1993, Ueda et al 1994).  

To investigate whether NF-κB activation is regulated in astrocytes with enhanced 

hGFAP expression, NF-κB activity was assessed in vitro and in vivo. In vitro results 

show that in astrocytes of GFAP Tg73.7 mice NF-κB activity was substantially less 

compared to wild type astrocytes upon cytokine stimulation. Furthermore, NF-κB 

activity was assessed in vivo in astrocytes in mice with focal lesions. In line with the 

in vitro results astrocytes of GFAP Tg73.7 mice showed less NF-κB activity 

compared to activity in wild type mice within the lesion area. 

4.2 Reactive astrocytes have diverse function  

In the present study a transgenic model with reactive astrocytes was used. The 

present study confirms that in naïve GFAP Tg73.7 mice enhanced expression of 

hGFAP in astrocytes leads to a phenotype of reactive astrocytes without external 

stimuli, as shown before (Brenner et al 2001, Hagemann et al 2005, Messing 1998). 

In this study, GFAP-positive astrocytes showed a reactive morphology with easily 

visible, enlarged cell bodies and thickened processes (Figure 2). This is in line with 

the described up-regulation of GFAP in reactive astrocytes (Eng & Ghirnikar 1994), 

which is accompanied by modifications in the cell morphology shown by increased 

thickness of astrocytic processes (Wilhelmsson et al 2006).  

During demyelination reactive astrocytes are discussed to have detrimental as well 

as beneficial effects. On the one hand, reactive astrocytes around the demyelinated 

lesion create a functional barrier (glial scar) between lesion and surrounding tissue 
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(Sofroniew 2009, Sofroniew 2015). This barrier decreases the spreading of 

inflammatory cells into the lesion and therefore regulates inflammation (Brambilla et 

al 2014, Voskuhl et al 2009). In the present study, reactive astrocytes might barrier 

the diffusion of injected lysolecithin and reduced the demyelinated lesion area (for 

detailed discussion see section 4.3.1). Furthermore, reactive astrocytes secrete, 

among others, the growth factors brain-derived neurotrophic factor (BDNF) and 

platelet derived growth factor (PDGF) to promote oligodendrocyte differentiation and 

improve myelination after demyelination (Fulmer et al 2014, Moore et al 2011). 

Recently it was demonstrated that also human astrocytes grown under serum-free 

conditions promote neuronal survival by secreting soluble factors in vitro (Zhang et 

al 2016). In regard to the present results, the secretion of growth factors might 

promote oligodendrocyte survival in GFAP Tg73.7 mice during cuprizone-induced 

demyelination (see section 4.3.2). With their reactive oxygen species (ROS) 

eliminating ability astrocytes protect neurons from oxidative stress (Desagher et al 

1996). High levels of reactive oxygen species (ROS) are toxic to oligodendrocytes 

and neurons and contribute to demyelination and axonal damage during MS 

(Gilgun-Sherki et al 2004, Lassmann et al 2001). During demyelination ROS is 

produced by microglia through the activation of the nicotinamide adenine 

dinucleotide phosphate (NAPDH) oxidase (Block et al 2007, Qian et al 2007). On 

the other hand, also reactive astrocytes contribute to increased demyelination 

through the production of ROS, as demonstrated in human astrocytes in vitro 

(Sheng et al 2013). Additionally, the glial scar formed by reactive astrocytes inhibits 

the regeneration ability in the central nervous system (CNS) by providing inhibitory 

factors that stop axonal growths (Davies et al 1999, Davies et al 1997). The diverse 

functions of astrocyte are complex and can prevent or increase demyelination. 

Alerted astrocyte function may lead to the observed attenuated toxin-induced 

demyelination may in this study.  

Reactive astrocytes modulate their environment by secreting cytokines. Therefore, 

reactive astrocytes express a specific subset of cytokines and chemokines (Choi et 

al 2014, Eddleston & Mucke 1993, Meeuwsen et al 2003, Zamanian et al 2012). 

Indeed, CXCL10 and CCL2 play an important role in the recruitment of microglia 

(Ransohoff et al 1993). By binding to the complementary receptor these chemokines 

induce chemotaxis and activation in microglia; the receptors expressed by microglia 

include CXCR3 (ligand CXCL10) and CCR2 (ligand CCL2) (Hanisch 2002, Simpson 
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et al 2000a). In the present study less up-regulated chemokine expression may 

regulate microglia recruitment during cuprizone treatment (for detailed discussion 

see section 4.4.2). Furthermore, CXC chemokines secreted by astrocytes can 

interact with oligodendrocytes as oligodendrocytes express the chemokine receptor 

CCR1, CCR2 and CXCR3 (Omari et al 2005). The less up-regulation of chemokine 

expression observed in the present study may affect oligodendrocytes (see section 

4.3.3). Altered chemokine expression by reactive astrocytes may have various 

consequences on the other glial cells.  

4.3 Astrocytes with enhanced hGFAP expression protect from 

oligodendrocyte loss during cuprizone-induced demyelination 

4.3.1 Beneficial effects of reactive astrocytes due to enhanced hGFAP 

expression during toxic demyelination 

The present results point out that enhanced astrocytic hGFAP expression leads to 

reduced cuprizone- (Figure 5) and lysolecithin-induced demyelination (Figure 11) in 

GFAP Tg73.7 mice. In contrast, pronounced demyelination is observed in wild type 

mice. The course of demyelination observed in wild type mice is in line with previous 

studies where cuprizone induced demyelination starts around week three and 

results in severe demyelination after six weeks (Buschmann et al 2012, Gudi et al 

2009, Hiremath et al 1998), whereas lysolecithin induces demyelinated lesions 

within days (Hall 1972, Hall & Gregson 1971).  

Reactive astrocytes with increased thickness of their processes are able to build the 

glial scar over time and restrict the spread of inflammatory cells as well as infectious 

agents (Sofroniew 2009). In the present study, the enhanced hGFAP expression in 

astrocytes resulted in phenotypically reactive astrocytes already in naïve mice. 

Therefore, it could be concluded that reactive astrocytes were already present at 

the time point when lysolecithin was injected. The reactive phenotype might have 

restricted the dispersion of lysolecithin to a smaller area than in wild types leading 

to reduced demyelination. The beneficial effect of reactive astrocytes was 

demonstrated before as their ablation increases the outcome of CNS injuries 

indicating a protective role of the glial scar formation. Here, proliferating reactive 

astrocytes were conditionally ablated in transgenic mice expressing the herpes 
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simplex virus thymidine kinase (HSV-TK) under the GFAP promotor, by 

administering the antiviral agent ganciclovir. These mice were generated using a 

fusion gene construct of HSV-TK sequence inserted into the exon of a 15 kb GFAP 

promoter cassette (Bush et al 1998). The ablation of reactive astrocytes resulted in 

increased damage of moderate cortical contusion injury with a 60% greater loss of 

cortical tissue and increased neuronal degeneration. Additionally, forebrain and 

spinal cord stab injuries in mice with astrocyte ablation caused increased disruption 

of the BBB. This disruption of the BBB increased immune cell infiltration and results 

in increased neuronal degeneration (Bush et al 1999, Faulkner et al 2004). 

Moreover, in the experimental autoimmune encephalomyelitis (EAE) model the 

ablation of astrocytes leads to increased disease severity with increased 

macrophage infiltration (Toft-Hansen et al 2011).  

The beneficial effect of astrocytic GFAP expression during CNS injury was 

previously demonstrated in studies using mice with a GFAP knockout. GFAP 

knockout mice were generated by disrupting the first exon of the GFAP gene in 

embryonic stem cells. These mice do not develop anatomical abnormalities and 

astrocytes are present. In mice generated by Gomi et al (1995) and McCall et al 

(1996) other intermediate filaments like vimentin, nestin or neurofilaments were 

present, whereas in the mice generated by Pekny et al (1995) intermediate filaments 

are completely absent. The GFAP knockout mice generated by McCall et al (1996) 

were demonstrated to be more vulnerable to percussive cervical spinal cord injury. 

Most knockout mice died within a few minutes after injury whereas wild type mice 

survived several days (Nawashiro et al 1998). Another mouse strain lacking GFAP 

(generated by Gomi et al 1995) show increased neuronal damage in the 

hippocampus after traumatic brain injury or the neuroexcitotoxic agent kainic acid-

induced neurotoxicity (Otani et al 2006). Further contrasting evidence was provided 

by other studies. Here, mice lacking GFAP show no alterations in the severity of fine 

needle injury of the brain (Pekny et al 1995). However, the present study provides 

evidence that enhanced hGFAP expression in astrocytes leads to increased 

resistance to toxic demyelination. In line with the above mentioned studies, this 

demonstrates that enhanced hGFAP expression alters astrocyte function towards 

being beneficial during demyelination. Previously, an altered astrocytes function 

was shown to attenuates cuprizone-induced demyelination (Raasch et al 2011). 
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Mice with double knockout of GFAP and vimentin in astrocytes do not form 

intermediate filaments or develop reactive astrocytes after spinal cord injury and 

show increased spinal cord lesions (Pekny et al 1999). This suggests that the lack 

of GFAP alone in some cases can be compensated by other filament proteins such 

as vimentin during fine needle injuries.  

4.3.2 Astrocytes with enhanced hGFAP expression lead to oligodendrocyte 

preservation during cuprizone-induced demyelination but not in focal lesions 

Oligodendrocyte apoptosis is the first pathological observation during cuprizone-

induced demyelination (Hesse et al 2010, Komoly et al 1987, Mason et al 2004). 

The present results point out that enhanced hGFAP expression in astrocytes leads 

to preserved oligodendrocyte numbers during cuprizone treatment (Figure 7). The 

observed oligodendrocyte loss in wild type mice is in line with earlier studies 

(Blakemore 1972, Mason et al 2004). Oligodendrocyte apoptosis is accompanied 

by down-regulation of myelin protein mRNA expression after two and three weeks 

of cuprizone treatment (Jurevics et al 2002, Morell et al 1998). Additionally, acute 

axonal damage occurs due to cuprizone-induced demyelination (Lindner et al 2009).  

Furthermore, this study demonstrated that enhanced hGFAP expression in reactive 

astrocytes decreased oligodendrocyte apoptosis by 80% indicated by activated 

caspase-3 immunostaining (Figure 4) after one week of cuprizone treatment. It was 

previously shown that oligodendrocytes undergoing apoptosis express caspase-3 

during the first week of cuprizone treatment (Goldberg et al 2013, Hesse et al 2010). 

The decrease in oligodendrocyte apoptosis is consistent with the stable 

oligodendrocyte numbers observed in the present study (Figure 20) and suggests 

that reactive astrocytes with enhanced hGFAP expression provide protection or 

support for oligodendrocytes. In line with the present results another study showed 

that the ablation of reactive astrocytes increases oligodendrocyte damage after five 

weeks of cuprizone treatment by using GFAP HSV-TK transgenic mice (Skripuletz 

et al 2012). Additionally in line, the ablation of reactive astrocytes caused a 

significant increase of more than 90% oligodendrocyte loss and more severe 

demyelination of the white matter after longitudinal stab spinal cord injury (Faulkner 

et al 2004).  
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Previous studies show that reactive astrocytes contribute to oligodendrocyte 

survival by providing growth factors. In vitro, astrocytes were shown to express 

increased mRNA levels of growth factors like PDGF, BDNF or bone morphogenetic 

protein-2A/3 (Meeuwsen et al 2003). In vivo it was shown that the overexpression 

of PDGF in astrocytes increased OPCs survival in lysolecithin-induced 

demyelinated lesions (Woodruff et al 2004). Therefore, reactive astrocytes may 

support oligodendrocyte survival during demyelination. Furthermore, the function of 

astrocytes to eliminate ROS for instance via the enzyme catalase (Desagher et al 

1996) could also preserve oligodendrocytes. That ROS is selectively toxic to 

oligodendrocytes was demonstrated in vitro (Griot et al 1990) and cuprizone is 

known to induce increased oxidative stress on oligodendrocytes (Cammer 1999, 

Goldberg et al 2013, Hiremath et al 1998, Pasquini et al 2007). Enhanced GFAP 

expression might influence the ROS elimination function as it was shown that the 

double-knockout of GFAP and vimentin impaired the astrocyte ROS elimination 

function and causes increased cell death in vitro (de Pablo et al 2013). 

In the present study acute axonal damage was nearly absent in GFAP Tg73.7 mice 

resulting in a difference of 95% amyloid precursor protein (APP) accumulation 

between wild type and transgenic mice after six weeks of cuprizone treatment 

(Figure 8). The accumulation of APP marks disturbed anterograde axonal transport 

of an injured axon and, by inference, acute axonal damage (Bjartmar et al 2003, 

Kuhlmann et al 2002). The results of the present study demonstrated that the 

preserved myelination in GFAP Tg73.7 mice leads to reduced axonal damage 

observed in these mice (Figure 8). This is consistent with myelin sheaths being 

essential for maintaining axonal functions, including axonal transport (Brady et al 

1999). The increased preservation of myelin in GFAP Tg73.7 mice were further 

confirmed on the ultrastructural level using EM. Supporting the present results a 

previous publication demonstrated in mice with ablated astrocytes that viable 

oligodendrocytes and myelinated axons correlate with the presence of reactive 

astrocytes whereas areas devoid of reactive astrocytes exhibit degeneration of 

myelin after crush spinal cord injury (Faulkner et al 2004).  

Axonal integrity can also be preserved by remyelination. Here, damaged 

oligodendrocytes are replaced by newly generated oligodendrocytes from OPC 

(Blakemore 1973, Franklin 1993). In contrast, the present results indicate that 
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enhanced astrocytic hGFAP expression did not affect OPCs and oligodendrocyte 

numbers during cuprizone treatment, except during the first week of treatment 

(Figure 7). Moreover, myelin sheaths in EM do not appear thinner which would 

indicate remyelinated axons (Dubois-Dalcq et al 2005). Together with the relatively 

stable oligodendrocyte numbers in GFAP Tg73.7 mice, these findings argue against 

a replacement of oligodendrocytes and are consistent with the theory that 

oligodendrocyte loss is prevented and myelin remained present. After 12 weeks of 

cuprizone treatment OPC and oligodendrocyte numbers were more in GFAP 

TG73.7 mice compared to wild type mice. This leads to the question whether 

increased hGFAP expression might affect remyelination which was not investigated 

in the present study but would be interesting for future research.  

The expression of myelin proteins is required for the formation of intact myelin 

(Brady et al 1999, Fitzner et al 2006, Griffiths et al 1998) and, for instance, mice 

lacking MBP are unable to form compact myelin sheaths (Brady et al 1999). 

Consequently, the results of the present study show an up-regulation of MBP, PLP1 

and MAG mRNA expression in GFAP TG73.7 mice after three weeks of cuprizone 

treatment normalised to wild type mice (Figure 13). Since a pronounced 

oligodendrocyte loss was observed in wild type mice from week four of cuprizone 

treatment leading to reduced mRNA expression of myelin genes, the measured 

myelin gene expression in transgenic mice represents the higher number of 

preserved oligodendrocytes during cuprizone treatment. Furthermore, the high 

levels of myelin mRNA in transgenic mice might further indicate that preserved 

oligodendrocytes were intact. The study by Griffiths (1998) point out that 

histologically visible myelin might be non-functional. PLP-deficient mice show 

myelin but disturbed oligodendrocyte support as the mice develop axonal swellings 

and degeneration (Griffiths 1998). Furthermore, in this study myelin protein 

expression was regulated in wild type mice before pronounced myelin loss was 

observed on the histological level which emphasizes that oligodendrocytes die 

before myelin is lost. In line, previous studies demonstrated that regulation of MBP, 

MAG and PLP mRNA expression starts during the first week of cuprizone treatment 

(Buschmann et al 2012, Hesse et al 2010). MBP and MAG had the lowest 

expression levels after three weeks of cuprizone treatment and then expression 

increased again until week six (Morell et al 1998) whereas PLP decreases over 

treatment duration (Groebe et al 2009). In line, in the present study MBP, MAG but 
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also PLP mRNA expression is less up-regulated after six weeks compared to after 

three weeks of cuprizone treatment.   

In contrast to preserved oligodendrocyte numbers in the cuprizone mode, in 

lysolecithin-induced focal lesions oligodendrocyte numbers were similarly 

decreased in the demyelinated lesion area of transgenic mice compared to wild type 

mice (Figure 11). Lysolecithin is a potent detergent lysing cell membranes including 

myelin (Gregson 1989, Hall 1972, Hall & Gregson 1971). It acts rapidly within 30 

minutes, after two days swollen tongues of oligodendrocytes were observed and 

after three days also oligodendrocyte damage (Hall 1972). The present results 

demonstrated that the number of oligodendrocytes in the lesion areas were not 

different between GFAP Tg73.7 mice and wild type mice. However, compared to 

the corpus callosum of naïve mice oligodendrocyte numbers were strongly 

decreased per square millimetre in the lesion area in GFAP Tg73.7 mice by 90% 

and in wild type mice by 93% indicating an extensive oligodendrocyte loss seven 

days after lesion induction. This suggests that most oligodendrocytes in both lesions 

died due to the detergent function of lysolecithin. The enhanced hGFAP expression 

in astrocytes seems to be prevent oligodendrocyte death in the cuprizone model but 

not in the lysolecithin model. However, demyelination was reduced in both models 

indicating different beneficial effects of reactive astrocytes during cuprizone- and 

lysolecithin-induced demyelination. 

4.3.3 Altered chemokine expression of astrocytes may be beneficial for 

oligodendrocytes during cuprizone-induced demyelination 

Oligodendrocytes express different chemokine receptors and are therefore a 

possible target of chemokines secreted by astrocytes. The effect of chemokines on 

oligodendrocytes has not yet been investigated in detail (Zeis et al 2015). However, 

it has been shown that oligodendrocytes express chemokine receptors such as 

CXCR1, CXCR2 (ligand CCL2) and CXCR3 (ligand CXCL10) which are also 

expressed at increased levels on oligodendrocytes in MS. The complementary 

ligand CXCL10 was up-regulated in activated astrocytes at the edge of active MS 

lesions suggesting a potential cross-talk with oligodendrocytes (Omari et al 2005). 

Furthermore, the effect of chemokines on oligodendrocytes was previously 

analysed in vitro. It was shown that quiescent astrocytes inhibited myelination by 
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secreting CXCL10 whereas activated astrocytes supported myelination in rat spinal 

cord co-cultures. Additionally, CXCL10 protein inhibits myelination in culture (Nash 

et al 2011). Moreover, the treatment of OPCs with CXCL10 resulted in cell death in 

a concentration-dependent manner in vitro (Tirotta et al 2011). These studies 

suggest that CXCL10 expression during demyelination may contribute to damage 

of oligodendrocytes by signalling through CXCR3. In this study, CXCL10 expression 

was less up-regulated in GFAP Tg73.7 mice but highly up-regulated in wild type 

mice after six weeks of cuprizone treatment (Figure 14). This indicates that the 

altered CXCL10 expression in GFAP Tg73.7 mice may directly contributed to the 

prevented oligodendrocyte loss during cuprizone-induced demyelination. 

Additionally, OPCs were shown to express the receptor for CXCL12 CXCR4. 

Activation via CXCR4 promotes OPC differentiation and remyelination. Furthermore, 

increased CXCL12 activation was observed in reactive astrocytes during cuprizone 

treatment (Patel et al 2010). In contrast, it was also shown that astrocytes inhibit 

OPC recruitment and differentiation by secretion of CXCL12 (Maysami et al 2006, 

Williams et al 2007). The present results demonstrated that enhanced astrocytic 

hGFAP expression did not affect CXCL12 mRNA expression. Expression levels 

were similarly not regulated in GFAP Tg73.7 mice and wild type mice after six weeks 

of cuprizone treatment (Figure 14). In line with this, the present study demonstrated 

that enhanced astrocytic hGFAP expression only leads to increased OPC numbers 

after one and 12 weeks of cuprizone treatment. OPC proliferation was not 

investigated but it might be interesting to investigate the effect of enhanced hGFAP 

expression on OPC proliferation and remyelination. This could be achieved, for 

instance, in lysolecithin-induced focal lesions.  

4.4 Astrocytes with enhanced hGFAP expression regulate microglia 

recruitment during cuprizone treatment 

4.4.1 Reduced cuprizone-induced oligodendrocyte death and less myelin 

degeneration is associated with less microglia infiltration but not in focal 

lesions 

Microglia activation is crucial for demyelination. The present results confirmed this 

and emphasize additionally that enhanced hGFAP expression in astrocytes leads 
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to a decline of infiltrated microglia after three weeks of cuprizone treatment 

paralleled by reduced demyelination, whereas in wild type mice microglia infiltration 

is increased until week six with a maximum after four weeks of cuprizone treatment 

(Figure 9; Figure 20). This is consistent with previous studies where microglia 

infiltration increased over the duration of cuprizone treatment (Blakemore 1972, 

Blakemore 1973, Hiremath et al 1998) with a peak after four and a half weeks (Voß 

et al 2012). Microglia infiltration starts during the first two weeks of cuprizone 

treatment, prior to demyelination and is subsequently increased until complete 

myelin loss (Hiremath et al 1998). Additionally, microglia infiltration correlates with 

acute axonal damage in the cuprizone model (Lindner et al 2009) as well as lesional 

macrophages in paediatric MS patients (Pfeifenbring et al 2015). This indicates an 

active participation of microglia in the exacerbation of the demyelination process. 

The contribution of microglia to demyelination is diverse as activated microglia 

produce inflammatory cytokines, reactive oxygen and nitrogen, which are potentially 

toxic for oligodendrocytes and they phagocytose myelin debris. In the cuprizone 

model it was previously demonstrated that phagocytosis activity of microglia is 

highly up-regulated during demyelination (Voß et al 2012). 

Oligodendrocytes are vulnerable to inflammatory products released by microglia. In 

vitro it was previously shown that isolated rat microglia release nitric oxide which 

induces oligodendrocyte damage (Merrill et al 1993). Moreover, in vitro experiments 

demonstrated that oligodendrocytes are extremely sensitive to damage mediated 

by free radicals (Griot et al 1990). Activated microglia express increased levels of 

TNFα during five weeks of cuprizone treatment (Voß et al 2012) which causes 

oligodendrocyte and myelin damage in vitro (Selmaj & Raine 1988). Furthermore, 

an in vitro study demonstrated that TNFα or IFNγ is required for the neurotoxic effect 

of cuprizone (Pasquini et al 2007). Thus, the reduced microglia infiltration observed 

in GFAP Tg73.7 mice might lead to a reduced inflammatory and cytotoxic 

environment for oligodendrocytes in this model.  

Additionally, the prevented oligodendrocyte loss in transgenic mice during cuprizone 

treatment resulted in less myelin degradation and might further contributed to the 

reduced microglia infiltration. Furthermore, the present results demonstrated that in 

lysolecithin-induced lesions the density of microglia infiltration was comparable 

increased in the lesion area of transgenic mice compared to wild type mice (Figure 
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11). The high amount of death cell and myelin debris inside the focal lesions rapidly 

recruits microglia to remove debris which accounts for the similarly high numbers of 

microglia in GFAP Tg73.7 mice and wild type mice observed in this study. This 

assumption is further supported by previous studies which show that lysolecithin 

induces an influx of T-cells and rapid recruitment of monocytes, followed by resident 

microglia in the mouse spinal cord (Ousman & David 2000). Furthermore, myelin 

phagocytosis by perivascular macrophages was observed in demyelinated lesions 

(Hall 1972) as well as debris-filled macrophages in rat spinal cord lesions 10 days 

after lesion induction (Hinks & Franklin 1999). This further supports the assumption 

that high numbers of microglia infiltrated the lesion in transgenic and wild type mice 

to phagocytose cell and myelin debris in this study.  

Whether astrocytes with enhanced hGFAP expression inhibit myelin phagocytosis 

was analysed in vitro in the present study in astrocyte-microglia co-cultures 

incubated with fluorescently labelled myelin. The presence of astrocytes reduced 

myelin phagocytosis activity of microglia. This is in line with a previous publication 

that has shown that astrocytes inhibit the phagocytosis activity of microglia in vitro 

by direct contact and also by the secretion of inhibitory factors (DeWitt et al 1998). 

However, in the present study astrocyte conditioned media had no inhibitory effect 

on phagocytosis activity. Thus, here direct cell-cell contact seems required. 

Furthermore, the present results also demonstrated that there was no difference in 

microglial phagocytosis between co-cultures with transgenic astrocytes or wild type 

astrocytes. Therefore, microglial phagocytosis activity might not be affected by 

astrocytes with enhanced hGFAP expression in vitro. However, enhanced astrocytic 

hGFAP expression may lead to reduced microglia infiltration during cuprizone-

induced demyelination in this study.  

4.4.2 Reduced CCL2 and CXCL10 mRNA expression decreases microglia 

recruitment during cuprizone-induced demyelination 

This study points out that elevated hGFAP expression affects microglia recruitment 

leading to a decline of microglia infiltration, which could be regulated by chemokines. 

The results of the present study demonstrated also that levels of CCL2 mRNA were 

less up-regulated in GFAP Tg73.7 mice while they were increased up-regulated in 

wild type mice after three and six weeks of cuprizone treatment. Additionally, levels 
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of CXCL10 were not up-regulated in GFAP Tg73.7 mice but highly up-regulated in 

wild type mice after six weeks of cuprizone treatment (Figure 14). Both 

complementary receptors were expressed by microglia, for CCL2 (CCR2) and for 

CXCL10 (CXCR3) (Flynn et al 2003, Zhang et al 2007). And CCL2 and CXCL10 

were demonstrated to induce migration in human and rat microglia in vitro via the 

induction of redistribution and polymerization of f-actin in the microglia cytoskeleton 

(Cross & Woodroofe 1999). The molecular mechanisms underlying the CCL2-

induced migratory activity of microglia cells involve the signalling of the ERK/MAPK 

pathway. It was in vitro shown that CCL2 induces the phosphorylation of Akt, Mek1/2, 

ERK1/2 and p90RSK whose are the downstream effectors of the phosphoinositide 

3-kinase (Bose et al 2016). Thus, CCL2 is one important chemoattractant for 

microglia migration. 

Further in vivo studies underline the relevance of CCL2 for microglia recruitment 

(Biancotti et al 2008, Buschmann et al 2012, Kim et al 2014). CCL2 was suggested 

to be involved in early microglia activation during cuprizone treatment. As it has 

been shown that CCL2 mRNA expression reached the maximum after one week of 

cuprizone treatment when microglia activation and recruitment occurs (Biancotti et 

al 2008). Consistent with this in dissected corpora callosa CCL2 mRNA expression 

peaked after one week but then decreased again (Buschmann et al 2012). 

Furthermore, the therapeutic effect of the drug fingolimod, which decreased the rate 

of relapses in relapsing-remitting MS, is associated with a reduction of CCL2 mRNA 

expression and a reduction of microglia recruitment after six weeks of cuprizone 

treatment (Kim et al 2011). This further demonstrates that CCL2 mRNA expression 

is associated with microglia recruitment. That astrocytes can contribute to CCL2 

mRNA expression was previously shown in microdissected astrocytes via laser 

capture microscopy. Here, the expression of CCL2 mRNA was increased in 

astrocytes after five weeks of cuprizone treatment (Raasch et al 2011). Additionally, 

the astrocytic specific knockout of CCL2 was shown to decrease microglia 

recruitment in EAE which was associated with a less severe EAE disease course 

and reduced axonal loss and demyelination (Kim et al 2014). In contrast, another 

studies demonstrated that microglia did not show increased CCL2 expression during 

five weeks of cuprizone treatment as analysed via flow cytometry (Voß et al 2012). 

The mentioned studies support the assumption, that astrocytes but not microglia 

might be the source of the measured CCL2 alterations in the present study. A further 



  4 | Discussion 

 

74 

study demonstrated that astrocytes secrete CCL2 which induces microglia migration 

in vitro (El-Hage et al 2006). Together with previously published in vivo and in vitro 

data it can be concluded that astrocytes with enhanced hGFAP expression may 

regulate microglia recruitment via CCL2 in the present study.  

Contrasting studies using the cuprizone model demonstrated that the mice lacking 

CCL2 did not show altered microglia activation after one (Clarner et al 2015), three 

and five weeks of treatment (Janssen et al 2016, Remington et al 2007). Only 

macrophage numbers were reduced in mice lacking CCL2. However, only very few 

macrophages, 0.5% of CD11b-positve cells, were observed in the corpus callosum 

during cuprizone treatment and microglia are the main immune cell population 

(Remington et al 2007). Furthermore, the ablation of astrocytes in the EAE model 

leads to an increase of CCL2 mRNA expression and no alterations of microglia 

infiltration in spinal cords (Toft-Hansen et al 2011). But, it is unclear whether the 

small number of animals, infiltrated microglia or remaining astrocytes contribute to 

the CCL2 increase. However, in line with the present results, the general knockout 

of the CCL2 receptor was shown to reduce microglia activation and disease course 

in EAE (Fife et al 2000).   

Besides CCL2 also CXCL10 mRNA up-regulation was less in GFAP Tg73.7 mice 

after six weeks of cuprizone treatment in the present study. In line with this, another 

study showed an up-regulation of CXCL10 after five weeks of cuprizone treatment 

(Raasch et al 2011). Whereas others demonstrated that CXCL10 was up-regulated 

after one week of cuprizone treatment in wild type mice and then decreases 

(Biancotti et al 2008). The relevance of CXCL10 for the recruitment of microglia 

during cuprizone-induced demyelination was previously demonstrated in GFAP 

HSV-TK transgenic mice. The ablation of astrocytes reduces CXCL10 mRNA 

expression after three weeks of cuprizone treatment leading to a delayed microglia 

recruitment (Skripuletz et al 2012). Consistent with this the knockout of CXCL10 

was previously shown to reduce microglia activation after one and three weeks of 

cuprizone treatment (Clarner et al 2015). And the knockout of its receptor CXCR3 

reduces CD45- and CD11b-positive microglia after three weeks of cuprizone 

treatment without affecting demyelination (Krauthausen et al 2014). Also in the EAE 

model CXCL10 was shown to enhance microglia migration into the sub-ventricular 

zone (Muzio et al 2010). Additionally, it was shown that CXCL10 regulates early 
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microglia recruitment during the first (Biancotti et al 2008, Clarner et al 2015) and 

the first three weeks (Skripuletz et al 2012) of cuprizone-induced demyelination. 

However, the present study demonstrated that reduced CXCL10 mRNA expression 

might be involved in later microglia recruitment as CXCL10 mRNA expression is up-

regulated in wild type mice after six weeks of cuprizone treatment. This is in line with 

another study demonstrating an up-regulated CXCL10 level in astrocytes after five 

weeks of cuprizone treatment (Raasch et al 2011). Furthermore, the present results 

suggest that early microglia recruitment is regulated by CCL2, which is reduced after 

three weeks, and later microglia recruitment might be regulated by CCL2 and 

CXCL10 synergistically. 

The present study demonstrated by double-immunofluorescent staining that 

astrocytes, not microglia or oligodendrocytes express CXCL10 after six weeks of 

cuprizone treatment. Other studies further support astrocytes as source of CXCL10 

(Clarner et al 2015, Skripuletz et al 2012). The ablation of proliferating astrocytes in 

GFAP HSV-TK mice leads to decreased CXCL10 mRNA expression in the EAE 

model (Toft-Hansen et al 2011). Here, the decrease of CXCL10 due to ablated 

astrocyte was not associated with a decrease of microglia infiltration, whereas the 

astrocyte ablation caused an increase in T-cell infiltration as well as disease severity 

(Toft-Hansen et al 2011). This contradictory response of T-cells and microglia to 

altered CXCL10 expression emphasizes the complexity of chemokine-immune-cell 

interactions. Also, an astrocytic knockout of CXCL10 did not alter microglia 

recruitment in EAE. However, clinical onset of EAE, acute demyelination and 

accumulation of lymphocytes was delayed due to the absence of CXCL10 (Mills Ko 

et al 2014) further suggesting that CXCL10 might be involved in activation and 

recruitment of other immune cells.  

In the present work, the reduction of CXCL10 mRNA measured in vivo was 

additionally investigated in vitro. The results show that CXCL10 mRNA expression 

in astrocytes with enhanced hGFAP showed a trend towards less CXCL10 mRNA 

expression upon TNFα stimulation in vitro, which was, however, not significant. A 

possible explanation might be that the stimulation time of three hours was too short 

as in other studies astrocytes were stimulated for 24 hours (Choi et al 2014) or up 

to 48 hours (Meeuwsen et al 2003). Therefore, further experiments are needed to 
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investigate in more detail whether enhanced hGFAP expression alters chemokine 

expression in astrocytes in vitro. 

The relevance of chemokine expression for demyelinating diseases is emphasized 

by the finding of CXCL10 and CCL2 in MS lesions. In the brain of MS patients 

CXCL10 and CCL2 were localized in astrocytes of active lesions assessed in post 

mortem brain sections via immunohistochemical analysis (Balashov et al 1999). 

Further studies demonstrated via immunohistochemical analysis that CCL2 is 

localized in astrocytes within the lesion and in the surrounding tissue (McManus et 

al 1998, Simpson et al 2000b). Also in patients with secondary progressive MS 

CCL2 and CXCL10 are expressed by reactive astrocytes at the rim of lesions 

(Tanuma et al 2006). Furthermore, CXCL10 is upregulated in the cerebrospinal fluid 

of MS patients (Balashov et al 1999, Sorensen et al 1999).  

4.5 Reduced NF-κB activity in reactive astrocytes protects from exacerbated 

toxic demyelination 

It has recently been shown that reduced astrocytic NF-κB activity is associated with 

reduced cuprizone-induced demyelination. Brück et al (2012) demonstrated that the 

immunomodulatory drug laquinimod protects from cuprizone-induced demyelination 

via down-modulation of astrocytic NF-κB activity. The astrocyte-specific inhibition of 

NF-κB in knockout mice leads to reduced cuprizone-induced demyelination (Raasch 

et al 2011). These knockout mice were generated by overexpressing the inhibitor of 

κBα (human IκBα gene) under the hGFAP promoter (Brambilla et al 2005). Moreover, 

it was previously shown that in GFAP Tg73.7 mice astrocytic NF-κB activity was 

reduced after six weeks of cuprizone treatment (Pförtner 2013) which corresponds 

to the attenuated demyelination course observed in the present study. In addition, 

the present study demonstrated that enhanced hGFAP expression might lead to 

reduced NF-κB activity in astrocytes in lysolecithin-induced demyelinated lesions in 

vivo since lesions were smaller in GFAP Tg73.7 mice (Figure 12). In line with the in 

vivo data, this study further demonstrated that NF-κB activity was reduced in vitro in 

isolated astrocytes with enhanced hGFAP expression upon cytokine stimulation 

compared to wild type astrocytes (Figure 18). The in vitro results suggest that the 

decrease of NF-κB activity in transgenic astrocytes is an intrinsic process and not 

mediated by external factors like lysolecithin.  
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A CNS wide NF-κB inhibition was previously shown to lead to reduced 

demyelination after five and ten weeks of cuprizone treatment whereas an 

oligodendrocyte specific NF-κB inhibition had no effect on cuprizone-induced 

demyelination (Raasch et al 2011). This suggests that oligodendroglial NF-κB is not 

actively involved in the demyelination process. Furthermore, the CNS wide NF-κB 

inhibition was shown to not alter lysolecithin-induced spinal cord demyelinated 

lesions 14 days post lesion (Raasch et al 2011). These findings are in contrast to 

the present study, because here, reduced astrocytic NF-κB activity was 

accompanied by reduced lysolecithin-induced demyelination. A possible 

explanation for the differences might be that lesions were evaluated earlier after 

lesion induction in the present study, and 14 days after lesion induction early 

remyelination might abolish possible differences.  

Furthermore, astrocytic NF-κB is also important in the EAE model. Thus, astrocytic 

NF-κB inhibition was shown to lead to a less severe disease course (Brambilla et al 

2009) and to protect from myelin loss in the optic nerve in EAE (Brambilla et al 2012). 

Inhibition of astrocytic NF-κB additionally suppressed the expression of oxidative 

stress-related genes in the optic nerve including the inducible nitric oxide synthase 

and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in EAE 

(Brambilla et al 2012). A reduced ROS production is one mechanism how reactive 

astrocytes with reduced NF-κB activity may contribute to increased oligodendrocyte 

survival during cuprizone treatment.   

If the results obtained here and the already published work in the literature is put 

into context, reactive astrocytes with altered NF-κB activity were shown to attenuate 

demyelination. The up-regulation of NF-κB dependent chemokines seem to play a 

major role in demyelination. The present study demonstrated less CCL2 and 

CXCL10 mRNA expression during reduced cuprizone-induced demyelination in 

GFAP Tg73.7 mice. Both chemokines are direct targets of the NF-κB signalling 

pathway (Ohmori & Hamilton 1993, Ueda et al 1994). In line with the present results 

it was demonstrated that astrocytes from mice with a CNS-wide NF-κB inhibition 

show reduced expression of CXCL10 and CCL2 mRNA after five weeks of 

cuprizone treatment, in the EAE model and after contusive spinal cord injury 

(Brambilla et al 2005, Brambilla et al 2009, Raasch et al 2011). Together these 

results point out that a down-modulation of astrocytic NF-κB activity is beneficial 
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during demyelination and could be responsible for the reduced CXCL10 and CCL2 

mRNA expression. Furthermore, the findings suggest that modelling astrocytic NF-

κB activity could be a future target treating demyelinating diseases. As NF-κB 

regulates many cellular processes a broad systemic inhibition of NF-κB could have 

sever and incalculable consequences. Although, there is interest in developing 

efficient NF-κB inhibitor for neurodegenerative diseases (Srinivasan & Lahiri 2015, 

Yamamoto & Gaynor 2001, Yan & Greer 2008). 

4.6 Summary and conclusions 

During the last decades it was shown that astrocytes have detrimental as well as 

beneficial effects during demyelination. This thesis confirms that reactive astrocytes 

have protective effects in models of toxic demyelination in vivo. The present results 

emphasize that enhanced hGFAP expression in astrocytes changed the interaction 

with other glia cells during cuprizone-induced demyelination. The observed altered 

astrocyte function leads to a protective effect on oligodendrocytes which was 

indicated by stable oligodendrocyte numbers, less oligodendrocyte apoptosis, 

increased myelin mRNA expression and less acute axonal damage during 

cuprizone-induced demyelination. Furthermore, it was shown that enhanced hGFAP 

expression in astrocytes mediated microglia recruitment indicated by lower 

microglia numbers. Whereas both effects were not observed in lysolecithin-induced 

lesions. Here oligodendrocyte loss and microglia infiltration was similar in transgenic 

and wild type mice. However, demyelination was also reduced in this model 

indicating different beneficial effects of astrocytes with enhanced hGFAP expression. 

Moreover, the enhanced hGFAP expression changed astrocytic chemokine 

expression and NF-κB signalling.  

To conclude, the enhanced hGFAP expression in astrocytes causes an altered 

astrocyte function which leads to reduced toxin-induced demyelination. Furthermore, 

the present results confirm astrocytic NF-κB as one major mediating signalling 

pathway in this process. The measured decreased astrocytic NF-κB activity in this 

work might regulate the decreased CCL2 and CXCL10 mRNA expression. Thus, 

the reduced chemokine expression results in decreased microglia infiltration during 

cuprizone-induced demyelination which prevents oligodendrocyte apoptosis and 
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demyelination. Therefore, the present results show that astrocytes with enhanced 

hGFAP expression have beneficial functions during demyelination. 

 

 

Figure 21: Schematic overview of the effects of enhanced hGFAP expression in astrocytes 

during cuprizone-induced demyelination resulting in preserved oligodendrocytes, myelin and 

reduced microglia recruitment in GFAP Tg73.7 mice. 

In wild type mice (left) cuprizone induces oligodendrocyte damage and myelin degradation. The 

CXCL10 and CCL2 expression in astrocytes is up-regulated by nuclear translocation of NF-κB which 

might induce migration of microglia. Additionally, CXCL10 might directly affect oligodendrocytes. In 

GFAP Tg73.7 mice (right) elevated hGFAP expression in astrocytes leads to reduced 

oligodendrocyte apoptosis and reduced myelin degradation. The reduced NF-κB activity leads to 

reduced up-regulation of CXCL10 and CCL2 and decreases microglia recruitment. Lower microglia 

numbers might lead to the reduced oligodendrocyte loss. Thus, the present results show that 

astrocytes with enhanced hGFAP expression have beneficial functions during demyelination.  
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5 | Outlook 

The present study demonstrates that enhanced astrocytic hGFAP expression alters 

astrocyte functions. It would be suggested to analyse the expression of GFAP in 

reactive astrocytes in detail to clarify the phenotype of reactive astrocytes better. A 

newly published purification method to grow human astrocytes in serum-free 

conditions avoids a reactive state induced by serum contact (Zhang et al 2016). This 

method may be suitable to investigate the function of astrocytes with enhanced 

hGFAP expression in vitro. Moreover, this study shows that enhanced astrocytic 

hGFAP alters chemokine mRNA expression in GFAP Tg73.7 mice. Therefore, it 

would be interesting to investigate glial chemokine and chemokine receptor 

expression for each glia cell separately to draw a more detailed conclusions about 

the network of glia cell interaction. To understand the course of glial cell-cell 

interaction is relevant to better understand the role of astrocytes during the 

demyelination process. Additionally, earlier time points during the first days of 

cuprizone treatment are suggested to detect early alterations of gene expression. 

Remyelination is an intrinsic repair mechanism of the CNS. To promote efficient 

remyelination could be a tool to improve the chronic progressive of the disease 

course in MS (Olsen & Akirav 2015). The results of this study show that OPC and 

oligodendrocyte numbers remained high in GFAP Tg73.7 mice after six as well as 

after the long-term treatment of 12 weeks. OPCs differentiate to mature 

oligodendrocytes during remyelination and can replace damaged oligodendrocytes. 

Therefore, it would be of interest to investigate in vivo whether enhanced astrocytic 

hGFAP expression has an effect on OPC differentiation and remyelination. 

Additionally, in vitro experiments investigating the effect of isolated primary 

astrocytes with enhanced hGFAP expression on OPC proliferation in OPC enriched 

cell culture might provide further information about the OPC-astrocyte interaction. 

To understand how reactive astrocytes with enhanced hGFAP expression influence 

the remyelination process, might help to understand how remyelination could be 

promoted and whether reactive astrocytes are a target to improve recovery after 

demyelination. 
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