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Abstract 

Mitochondrial physiology requires a constant balance between biosynthesis and 

degradation events. This thesis addresses both mitochondrial biogenesis, exemplified by 

cytochrome c oxidase assembly, and mitochondrial removal in the course of mitophagy. 

The cytochrome c oxidase is the terminal enzyme of the respiratory chain. It assembles in a 

complicated pathway from nuclear- and mitochondria-encoded subunits. Together with 

other respiratory chain complexes the cytochrome c oxidase is included into 

supercomplexes. These oligomeric structures are implicated in efficient electron transfer 

and increased stability of their constituents.  

The first aim of this thesis was to address the role of an uncharacterized protein Cox26 in 

supercomplex biogenesis. I have identified Cox26 as a novel cytochrome c oxidase subunit 

that associates with respiratory chain supercomplexes. I discovered that Cox26 is required 

for efficient formation of supercomplexes and cytochrome c oxidase. Cox26 is expendable 

for catalytic activity of individual respiratory complexes and mitochondrial respiration. 

Abnormal biogenesis of the respiratory chain compromises cellular energy metabolism and 

leads to mitochondrial damage. Defective mitochondria have to be selectively removed in 

the course of mitophagy. Mitophagy receptors on mitochondrial surface provide the basis 

for such selectivity. 

Thus, the second goal of my project was to understand how yeast mitophagy receptor 

Atg32 governs mitochondrial recognition by the mitophagic machinery. I found that Atg32 

is included into a mitochondrial complex, which dissociates during mitophagy. Atg32 is 

subsequently modified and delivered to the vacuole, presumably together with its cargo. 

Unaltered receptor is digested by an undetermined protease, possibly preventing excessive 

mitochondrial degradation. 
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1 Introduction 

1.1 Mitochondrial structure and function 

Mitochondria are cellular organelles of symbiotic ancestry that constitute a control hub of 

cellular life, stress and death. They arose through an endosymbiotic event between an α-

proteobacterium and a pre-eukaryotic host. The mitochondrial evolutionary origin impacts 

their structure and physiology (Margulis, 1975; Poole and Gribaldo, 2014). 

Mitochondria are divided into four subcompartments, defined by two membranes (outer – 

OM, and inner – IM) encompassing the organelle. The outer membrane and the 

intermembrane space (IMS) are host-derived, while the inner membrane and the matrix 

space are of symbiont origin. The OM contains unselective channels and protein 

translocation machinery (TOM and SAM complex). Various other organelles, such as the 

endoplasmic reticulum (ER), the lysosomes, and the peroxisomes form contact sites with 

the mitochondrial OM required for ion and lipid exchange (Klecker and Westermann, 

2014; Klecker et al., 2014; Mattiazzi et al., 2015). The IM is impermeable to ions and 

metabolites and creates a diffusion barrier, necessary to establish chemical gradients across 

the membrane. It forms multiple invaginations – cristae, which increase the surface area 

and result in functional specialization of the membrane (Zerbes et al., 2012). 

Mitochondria are crucial for many fundamental processes in eukaryotic cells. They house a 

number of metabolic pathways, including the citric acid cycle and the β-oxidation system 

of fatty acids, as well as parts of amino acid, pyrimidine, and lipid biosynthesis pathways. 

Mitochondria are essential for metal metabolism, specifically for heme and iron-sulfur 

clusters production (Lill and Mühlenhoff, 2008). In addition, mitochondria play a role in 

redox regulation, apoptosis, and calcium homeostasis (Venditti et al., 2013; Li and 

Dewson, 2015; Finkel et al., 2015). However, mitochondria are most noted for their role in 

cellular energy metabolism. In mammals, the majority of the cellular energy needs are 

covered by the mitochondrial oxidative phosphorylation (OXPHOS). 

1.2 Oxidative phosphorylation and the respiratory chain 

OXPHOS involves series of redox reactions, where electron transfer from donors to 

acceptors is coupled to proton pumping across the inner mitochondrial membrane. The 
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OXPHOS machinery consists of five protein complexes localized in the IM. Four oxido-

reductases constitute the mitochondrial respiratory chain, or electron transport chain 

(ETC). These include the NADH dehydrogenase (complex I), the succinate dehydrogenase 

(complex II), the cytochrome c reductase (complex III), and the cytochrome c oxidase 

(complex IV or COX). Proton pumping by ETC generates the electrochemical gradient, 

composed of a membrane potential (Δψ) and a pH gradient across the inner membrane. 

This gradient is used by F1Fo ATP synthase (complex V) for adenosine triphosphate (ATP) 

synthesis (Mitchell and Moyle, 1968). Reduced equivalents NADH and FADH2 are fed 

into the ETC through complex I or complex II, respectively. Ubiquinone (CoQ), a 

lipophilic mobile carrier in the inner mitochondrial membrane, shuttles electrons from both 

complexes to the cytochrome c reductase. The latter supplies electrons to the cytochrome c 

oxidase via another electron carrier – cytochrome c, a heme-containing polypeptide. 

Molecular oxygen, O2, is the terminal electron acceptor. It becomes reduced by complex 

IV to form two water molecules. Proton pumping occurs at three of the four ETC 

complexes, namely complex I, III, and IV (Figure 1). 

 

Fig. 1 Schematic representation of the OXPHOS system. Oxidative phosphorylation is carried 

out by enzyme complexes of the respiratory chain and the F1Fo ATP synthase. The latter uses the 

proton gradient generated by complexes I, III, and IV to synthesize ATP. The respiratory chain 

complexes transfer electrons from NADH and FADH2 to molecular oxygen with the help of mobile 

electron carriers: ubiquinone (Q), and cytochrome c (c). S. cerevisiae lack complex I which is 

instead represented by three single enzymes. IMS – intermembrane space, IM – inner 

mitochondrial membrane. 
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1.3 The respiratory chain is organized in supercomplexes 

Evidence for an orderly organization of the respiratory chain came with the isolation of 

supercomplexes – stable associations of respiratory complexes (Schägger and Pfeiffer, 

2000; Cruciat et al., 2000). Supercomplexes are found in bacterial and mitochondrial 

membranes of many eukaryotic species (Berry and Trumpower, 1985; Schägger and 

Pfeiffer, 2000; Eubel et al., 2003; Schägger et al., 2004; Stroh et al., 2004). 

The respiratory complexes are thought to exist in free and supercomplex-associated states 

within the mitochondrial membrane and thus can switch between them to accommodate 

cellular metabolic needs (Schägger and Pfeiffer, 2000; Cruciat et al., 2000; Acin-Perez et 

al., 2008; Lapuente‐ Brun et al., 2013). Complex III forms a dimer (III2) that stably 

interacts with the complex I in mammalian and plant mitochondria (Schägger and Pfeiffer, 

2000; Dudkina et al., 2005). Numerous copies of complex IV associate with the 

supercomplexes (Figure 2.A), forming a single functional unit termed respirasome 

(Schägger and Pfeiffer, 2000; Schägger, 2001; Eubel et al., 2004). In S. cerevisiae complex 

I is represented by three single NADH dehydrogenases that lack proton translocation 

activity (Luttik et al., 1998; Small and McAlister-Henn, 1998; Velazquez and Pardo, 

2001). Hence, supercomplexes in yeast consist of a complex III dimer bound to one or two 

copies of complex IV, noted as III2IV and III2IV2 (Figure 2.B) (Schägger and Pfeiffer, 

2000). 

 

Fig. 2 Models of the respiratory chain supercomplexes. Exemplified supercomplexes of 

mammalian mitochondria (A), and mitochondria of S. cerevisiae (B). 
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In addition to supercomplexes of the respiratory chain, the F1Fo ATP synthase forms 

homo-oligomerizes in the mitochondria (Arnold et al., 1998; Wittig and Schägger, 2008). 

It exists in both monomeric (V) and dimeric (V2) forms, with the latter being vital for 

cristae formation and membrane curvature (Paumard et al., 2002; Zick et al., 2009). 

Supercomplex organization of the respiratory chain is thought to fulfill a number of 

functions in the organelle. Supercomplexes could impact assembly and stability of 

respiratory complexes, thus providing a regulatory pathway for respiration. It was shown 

that stability of OXPHOS components is affected by mutations in subunits of other 

respiratory complexes (Acin-Perez et al., 2004; Diaz et al., 2006; Li et al., 2007). However 

other studies disprove this notion, as the loss of either complex III or IV in yeast did not 

alter the levels of the other complex (Schägger and Pfeiffer, 2000). Supercomplexes limit 

the generation of reactive oxygen species (ROS) due to electron leak from the ETC 

(Maranzana et al., 2013; Ghelli et al., 2013). Finally, higher organization of the respiratory 

chain could provide enhanced catalysis due to substrate channeling – direct transfer of the 

redox intermediate between the active sites of the respiratory enzymes. This hypothesis is 

supported by increased electron transfer rates of the I-III2 supercomplex compared to the 

individual complexes, flux control of electron transfer, kinetic properties of isolated 

supercomplexes, and reduced distances for the mobile electron carriers between the 

complexes (Boumans et al., 1998; Schägger and Pfeiffer, 2000; Acin-Perez et al., 2008; 

Lenaz and Genova, 2010; Althoff et al., 2011). 

1.4 Biogenesis of the respiratory chain 

Components of the respiratory chain are heterogeneous in their genetic origin. Due to their 

endosymbiotic origin mitochondria contain their own genome (mitochondrial DNA – 

mtDNA), as well as a full translation system for protein synthesis. Although the majority 

of genetic information was transferred to the host nucleus in the course of evolution, 

catalytic subunits of the OXPHOS machinery are commonly encoded by the mtDNA 

(Adams and Palmer, 2003; Bowles et al., 2007; Wallace, 2007). Thus mitochondria have to 

cope with an intricate transport pathway that allows delivery of the nuclear-encoded 

proteins into the organelle. More than 99% of the mitochondrial proteins, along with 

metabolites and essential factors are imported from the cytosol with the help of specialized 

translocation machinery (Sickmann et al., 2003; Dudek et al., 2013; Schulz et al., 2015). 
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Protein targeting to various mitochondrial compartments is achieved due to a variety of 

sorting signals encoded in the protein sequence. 

1.4.1 Import of the nuclear-encoded subunits 

The majority of mitochondria-targeted proteins enter the organelle through the translocase 

of the outer membrane, the TOM complex (Endo and Yamano, 2010). Inner membrane 

proteins with an N-terminal presequence are imported with the help of the TIM23 complex 

(Vögtle et al., 2009). The presequence is a positively charged amphipatic α-helix (Heijne, 

1986). Presequence-containing proteins without hydrophobic sorting signals are targeted to 

the matrix. The presence of a sorting signal leads to an import arrest and a lateral release of 

the polypeptide into the IM (van Loon and Schatz, 1987; Glick et al., 1992). Presequence 

translocation across the inner membrane requires the membrane potential (Martin et al., 

1991). The import of precursors into the matrix is ATP-dependent and is driven by the 

presequence translocase associated motor – PAM (Figure 3). After import, the presequence 

is cleaved by the matrix processing peptidase MPP, resulting in precursor maturation 

(Luciano and Geli, 1996; Vögtle et al., 2009).  

1.4.2 Synthesis and insertion of the mitochondria-encoded subunits 

Together with tRNAs and rRNAs the mitochondrial genome encodes 13 proteins in human 

and 8 in the yeast S. cerevisiae. Mitochondrial translation occurs on membrane-bound 

ribosomes to facilitate co-translational protein insertion (Watson, 1972; Vogel et al., 2006; 

Ott and Herrmann, 2010). Export of the mitochondria-encoded proteins into the inner 

membrane is mediated by the conserved Oxa1 protein (Figure 3) (Bonnefoy et al., 1994; 

Altamura et al., 1996; Hell et al., 2001). It promotes IMS export of hydrophilic domains as 

well as integration of the transmembrane spans into the lipid bilayer (He and Fox, 1997; 

Hell et al., 1997; 2001). Oxa1 kinetically couples membrane insertion and mitochondrial 

translation due to its ribosome-binding domain (Szyrach et al., 2003; Jia et al., 2003; 2009; 

Haque et al., 2010). Two other ribosome-binding proteins of the inner membrane, Mba1 

and Mdm38, cooperate with Oxa1 to promote protein export in yeast (Preuss et al., 2001; 

Ott et al., 2006; Frazier et al., 2006; Lupo et al., 2011). 
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Fig. 3 Biogenesis of respiratory chain components. Precursor proteins synthesized in the cytosol 

take different import routes depending on their final destination. Translocase of the outer 

membrane (TOM) is an entry gate for all presequence-containing proteins, which are further passed 

to the translocase of the inner membrane 23 (TIM23). Later on, precursors are either transported 

into the matrix with the help of the presequence translocase-associated motor (PAM), or are 

laterally released into the inner membrane due to a hydrophobic sorting signal present in their 

sequence. Mitochondria-encoded proteins are inserted by the Oxa1 insertase in a co-translational 

manner. OM and IM – outer and inner mitochondrial membrane. IMS – intermembrane space. 

1.4.3 Assembly of the respiratory chain 

Assembly of nuclear- and mitochondria-encoded subunits into the respiratory complexes 

has to be coordinated with insertion of hemes and cofactors that form the catalytic cores. 

Specific pathways are required for assembly of each respiratory complex. Within the scope 

of this thesis I will focus on the assembly of the cytochrome c oxidase (COX) – the 

terminal enzyme of the respiratory chain that transfers electrons from reduced cytochrome 

c to molecular oxygen. 

In yeast S. cerevisiae mature cytochrome c oxidase is composed of 11 subunits, based on 

homology modeling with bovine COX structure (Tsukihara et al., 1996). Mitochondria-

encoded Cox1, Cox2, and Cox3 constitute the catalytic core of the enzyme and are highly 

conserved in all respiring organisms (Castresana et al., 1994). The Cox1 and Cox2 harbor 

prosthetic groups necessary for the electron transfer (Tsukihara et al., 1995), while Cox3 is 

a part of the structural core, possibly involved in modulation of oxygen access, or 

coordination of proton pumping (Brunori et al., 1987, Riistama et al., 1996; Hosler, 2004). 

The nuclear-encoded subunits surrounding the core (Cox4, Cox5a/b, Cox6, Cox7, Cox8, 

Cox9, Cox12, and Cox13 in yeast) are required for the assembly and stability of the 

enzyme, protection from the ROS and regulation of the catalytic activity (Dowhan et al., 

IV

III
2

TIM23

Ribosome

Oxa1

PAM

TOM

IMS

Cytosol

Matrix

+ + +

IM

OM



 8 

1985; Wright et al., 1986; Aggeler and Capaldi, 1990; Taanman and Capaldi, 1993; 

Fontanesi et al., 2006). Additional COX subunits, such as Rcf1 and Rcf2, have recently 

been described (Vukotic et al., 2012; Strogolova et al., 2012; Chen et al., 2012). COX 

contains four redox-active centers (two copper centers and two heme a moieties) and 

several metal ions with yet unknown functions (Tsukihara et al., 1995). 

COX assembles in a modular fashion with separate pathways involved in Cox1, Cox2, and 

Cox3 biogenesis (Figure 4) (McStay et al., 2013). The starting point of assembly is the 

Cox1 protein (Nijtmans et al., 1998; Tiranti et al., 2000; Stiburek et al., 2005). Cox1 

translation requires activator proteins, Pet309 and Mss51, that recognize the 5’-UTR of the 

COX1 mRNA and promote translation initiation (Decoster et al., 1990; Manthey et al., 

1995; Perez-Martinez et al., 2003; Towpik, 2005). After co-translational membrane 

insertion by Oxa1, Cox1 associates with the assembly factors Cox14 and Coa3, forming an 

early assembly intermediate – COA complex (Glerum et al., 1995; Barrientos et al., 2004; 

Mick et al., 2010). This interaction stabilizes Cox1 and prevents its degradation. It also 

poses a negative regulatory loop on Cox1 translation by Mss51 sequestration (Perez-

Martinez et al., 2003; Barrientos et al., 2004; Mick et al., 2007; Perez-Martinez et al., 

2009; Mick et al., 2010). As assembly progresses, other factors, such as Coa1 and Shy1, 

are recruited to the COA, while Mss51 is released (Mick et al., 2007; Pierrel et al., 2007; 

Mick et al., 2011). Hemes and metal cofactors are incorporated into the catalytic core prior 

to or together with the first nuclear-encoded subunits, Cox5a and Cox6, both of which 

form a separate complex (Stiburek et al., 2005). The Cox1-Cox5a-Cox6 intermediate 

associates with the Cox2 protein after its maturation (Tiranti et al., 2000). In yeast, Cox2 is 

synthesized as a precursor (pCox2) that has to be processed and metallated after Oxa1-

mediated export (Schneider et al., 1991; Nunnari et al., 1993; Herrmann et al., 1995; 

Rentzsch et al., 1999; Jan et al., 2000). During pCox2 maturation it is chaperoned by 

Cox20 protein that keeps it in assembly-competent state (Hell et al., 2000; Preuss et al., 

2001). Cox2 binding to the Cox1-Cox5a-Cox6 intermediate occurs prior to, or directly 

after the addition of the Cox3 subunit (Horan et al., 2005). Cox3 assembly progresses 

through several intermediates possibly involving Cox4, Cox7 and Cox13 (Su et al., 2013). 

Cox7 was reported to form a complex with Cox8 and Cox9 prior to their incorporation into 

the holoenzyme (Church et al., 2005). Cox12 and Cox13 are the last structural subunits 

that join the assembly (LaMarche et al., 1992; Taanman and Capaldi, 1993; Vukotic et al., 

2012). Cox13 assembly additionally requires Rcf1 (Vukotic et al., 2012). 
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Fig. 4 Assembly line of the cytochrome c oxidase in S. cerevisiae. The mature enzyme assembles from three modules, each containing a mitochondria-

encoded subunit (Cox1, Cox2 and Cox3, deep blue), with nuclear-encoded subunits (shown in light blue) joining in a linear fashion. Formation of the 

cytochrome c oxidase (COX) requires specific assembly factors (depicted in green) that are involved in several essential processes, such as translation, 

processing and membrane insertion of the COX subunits, as well as synthesis and incorporation of cofactors. 
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1.5 The respiratory chain defects lead to mitochondrial 

disorders 

OXPHOS biogenesis has to be precisely regulated, since inefficient respiratory chain 

formation can compromise energy metabolism in the cell. Mitochondrial dysfunction is 

implicated in various metabolic disorders, cancer, and neurodegenerative diseases, as well 

as in the aging process (Johannsen and Ravussin, 2009). It primarily affects high energy-

demand tissues, such as skeletal muscle, heart, liver and brain. 

Genetic alterations in both nuclear and mitochondrial genomes can contribute to 

mitochondrial pathology (Area-Gomez and Schon, 2014). About 15% of disease-related 

mutations reside in the mtDNA, resulting in maternally inherited syndromes, such as 

MELAS – mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes 

(Pavlakis et al., 1984; DiMauro and Davidzon, 2005; Davis and Sue, 2011). A 

mitochondrial theory of ageing suggests age-dependent accumulation of somatic mtDNA 

mutations to cause respiratory chain defects, impaired ATP synthesis, and decline in 

cellular energy metabolism (Harman, 1972; Barja, 2014). A vast number of mitochondrial 

disorders originate from mutations in genes coding for assembly factors of the OXPHOS 

system (Diaz et al., 2011). Leigh syndrome, an infantile subacute necrotizing 

encephalomyopathy, is caused by defective OXPHOS system, as a result of mutations in 

COX assembly factors (Tiranti et al., 1998; Zhu et al., 1998; Pequignot et al., 2001; Zhang 

et al., 2007a). Additionally, defects in protein import, organellar dynamics, apoptosis, or 

mitochondrial metabolism can lead to mitochondrial pathologies (DiMauro and Schon, 

2008). 

Mitochondrial dysfunction poses yet another danger. The lack of functional respiratory 

chain complexes, and COX in particular, leads to accumulation of high-energy electrons, 

resulting in elevated ROS levels. The assembly intermediates themselves can catalyze 

ROS production due to extremely reactive heme moieties, as well as active metal centers 

(Khalimonchuk et al., 2007). ROS can damage multiple macromolecules in the cell 

including DNA, proteins and lipids. To prevent increased ROS formation, the protein 

synthesis and the heme biogenesis are tightly regulated, while the unassembled ETC 

subunits are rapidly degraded (Forsburg and Guarente, 1989; Barros and Tzagoloff, 2002; 

Tatsuta and Langer, 2008). Mitochondrial ROS levels can also be modulated by various 
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antioxidants, as well as uncoupling proteins, which mediate proton leakage (Venditti et al., 

2013). However, if the organelle becomes damaged, additional mechanisms are required to 

maintain a healthy mitochondrial population. 

1.6 Mitochondrial quality control 

Cells exploit a number of quality control systems to prevent mitochondrial malfunction. 

The cytosolic proteasomal system together with mitochondrial proteases constitutes the 

first line of cellular defense. The proteasome degrades mistargeted mitochondrial proteins 

(Radke et al., 2008; Livnat-Levanon and Glickman, 2011), as well as damaged proteins of 

the outer mitochondrial membrane (Karbowski and Youle, 2011). Mitochondrial proteases, 

such as Lon and AAA+ family proteases (ATPases associated with a variety of cellular 

activities), fulfill a number of different functions. Besides their conventional role in the 

degradation of oxidized and misfolded mitochondrial proteins, they also degrade non-

assembled complex subunits and act as processing peptidases, which control protein 

stability (Quiros et al., 2015). 

In addition to the proteolytic protein removal, mitochondrial fission and fusion contributes 

to the quality control. Mitochondria in the cell are integrated into a dynamic functional 

reticulum that is governed by dynamin-like GTPases in the mitochondrial inner and outer 

membrane (Lackner, 2014). Intact mitochondrial dynamics is crucial for health and 

development, as mice knockouts of fusion and fission factors are embryonic lethal, and 

mutations in these factors lead to a number of human disorders (Chan, 2012). Fission and 

fusion ensure non-random segregation of malfunctioning mitochondria during cell 

division, facilitating their retention or removal from the mother cell (Vevea et al., 2014). 

Fusion allows mitochondrial content mixing to complement pathogenic mtDNA mutations 

(Gilkerson et al., 2008), while fission enables the discrimination and removal of damaged 

organelles (Sathananthan and Trounson, 2000). 

However, membrane potential loss resulting from severe mitochondrial damage impairs 

mitochondrial fusion. Ongoing fission events then lead to fragmentation of the 

mitochondrial network (Ishihara et al., 2003). This is an important prerequisite for the 

mitochondria-specific form of autophagy, termed mitophagy, which represents another 

form of mitochondrial quality control. During mitophagy, fragmented mitochondria are 
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sequestered into autophagosomal vesicles and transported to the lysosome for degradation 

(Wei et al., 2015). 

Finally, if all previous steps of quality control fail, stressed cells undergo apoptosis. The 

apoptosis is a programmed cell death pathway, carried out by specific cysteine proteases, 

or caspases (Kerr et al., 1972; Thornberry, 1997). Mitochondria are central players in 

apoptotic signaling and execution (Li and Dewson, 2015). Apoptotic stimuli result in a 

pore formation at the mitochondrial membranes, governed by the pro- and anti-apoptotic 

Bcl-2 family proteins. This in turn allows release of pro-apoptotic proteins, such as 

cytochrome c, into the cytosol to promote caspase activation (Jurgensmeier et al., 1998; 

Narita et al., 1998; Shimizu et al., 1998; Cory and Adams 2002). 

1.7 Mitophagy mechanisms 

Among different mitochondrial quality control systems, mitophagy represents a bulk 

degradation pathway, capable of clearing entire organelles rather than a subset of proteins. 

Mitophagy is a selective form of autophagy, an evolutionarily conserved cellular 

degradation pathway. Autophagy occurs ubiquitously in eukaryotic cells and is implicated 

in various processes, such as cellular development and differentiation, innate and adaptive 

immunity, cancer and aging (Mizushima, 2005). Autophagy combines different pathways 

for lysosomal degradation of cytosolic substrates and organelles. A bulk, non-specific 

autophagy is a typical cell response to nutrient starvation (Takeshige et al., 1992). On the 

contrary, selective autophagy clears superfluous or damaged organelles, as in the case of 

mitochondrial (mitophagy) or peroxisomal (pexophagy) degradation. Selective autophagy 

utilizes the core autophagic machinery for packaging and delivery of the cargo, together 

with specific receptors necessary for substrate recognition (Johansen and Lamark, 2011; 

Suzuki, 2013). Genetic screens for defects in autophagy pathway in the yeast 

Saccharomyces cerevisiae have identified more than 30 autophagy-related (ATG) genes 

(Tsukada and Ohsumi, 1993; Thumm et al., 1994; Klionsky et al., 2003).  

1.7.1 Autophagic machinery 

There are three major classes of autophagy: chaperone-mediated autophagy (CMA), micro- 

and macroautophagy (Nakatogawa et al., 2009). The CMA involves chaperone-mediated 

translocation of various substrates across the lysosomal membrane for degradation (Kon 
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and Cuervo, 2010). During microautophagy, portions of the cytoplasm are directly 

engulfed by invaginations of the lysosomal membrane (Li et al., 2012). Macroautophagy 

(further referred to as autophagy) is the most prominent autophagy type, involving 

generation of double membrane vesicles – autophagosomes, which deliver their cargo to 

the lysosomes (Klionsky and Codogno, 2013). 

Autophagy starts with the formation of a phagophore, an isolation membrane that 

surrounds a portion of the cytoplasm, or an organelle. The phagophore is produced at a 

specific position in the cell, termed phagophore assembly site (PAS), which serves as a 

recruitment platform for autophagy components. The phagophore expands and fuses to 

generate an autophagosomal vesicle. Autophagosomes are targeted to the lysosome or 

vacuole, where hydrolytic degradation takes place (Figure 5) (Mizushima et al., 2011). 

Nutrient starvation, especially in the form of amino acid depletion, is a prominent inducer 

of autophagy. Under nutrient-rich conditions TOR (target of rapamycin) kinase represses 

autophagy in yeast and mammals by phosphorylating components of the Atg1 kinase 

complex (Noda and Ohsumi, 1998; Kamada et al., 2000). The Atg1 complex is a starting 

point of autophagic signaling. It consists of the Atg1 kinase and its regulatory subunit 

Atg13, together with other accessory proteins (Matsuura et al., 1997; Straub et al., 1997; 

Funakoshi et al., 1997; Kabeya et al., 2005). TOR prevents Atg13 from binding Atg1, and 

starvation removes this restriction (Kamada et al., 2000). Additionally, a TOR inhibitor 

rapamycin can be used to induce autophagy in the absence of starvation (Heitman et al., 

1991). The Atg1 complex acts as a scaffold for assembly of downstream components and 

is required for activation of the phosphatidylinositol 3-kinase (PI3K) complex (Abeliovich 

et al., 2003; Cheong et al., 2008). The PI3K complex is directed to the PAS by Atg14, 

where it generates phosphatidylinositol 3-phosphate (PI3P). PI3P serves as a recruitment 

platform for the PI3P-binding proteins implicated in membrane trafficking and phagophore 

expansion (Kametaka et al., 1998; Kihara et al., 2001; Obara et al., 2006; Krick et al., 

2008; Vergne and Deretic, 2010; Burman and Ktistakis, 2010). 
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Fig. 5 Summary of the cellular autophagic process. Morphological steps (A) and Atg8-

conjugation (B) are shown schematically and are summarized in the text. Atg8* depicts activated 

Atg8 after its cleavage by Atg4 protease. PAS – pre-autophagosomal structure, TOR – target of 

rapamycin, PI3K – phosphatidylinositol 3-kinase, PE - phosphatidylethanolamine. Numbers 

indicate different steps of the process. 

Two ubiquitin-like conjugation systems take part in membrane elongation and determine 

its curvature (Nakatogawa et al., 2013). Atg12 is covalently linked to a target protein, 

Atg5, by the action of Atg7 and Atg10. The Atg12-Atg5 conjugate forms an oligomeric 

complex with Atg16. This new complex then promotes the lipidation of Atg8 (homolog of 

mammalian LC3) in a second ubiquitin-like reaction (Mizushima et al., 1998; Mizushima 

et al., 1999; Kuma et al., 2002; Hanada et al., 2007; Noda et al., 2013; Sakoh-Nakatogawa 
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et al., 2013). Atg8 is first processed by the Atg4 protease, activated by Atg7 and 

conjugated by Atg3 to phosphatidylethanolamine (PE) on the autophagosomal membrane 

(Kirisako et al., 2000; Ichimura et al., 2000; Kim et al., 2001). Lipidated Atg8 is required 

for cargo recognition during selective autophagy and determines the size of the 

autophagosomal vesicle (Noda et al., 2008; Xie et al., 2008; Knorr et al., 2012; Knorr et 

al., 2014). After autophagosome completion, Atg8 is removed from the outer surface of the 

autophagosome by a second Atg4 cleavage. This process appears to be important for 

disassembly of the autophagic machinery and subsequent fusion with the lysosome 

(Kirisako et al., 2000; Nakatogawa et al., 2007). Once in the lysosome, the 

autophagosomal membrane must be lysed by the Atg15 lipase, and the cargo is degraded 

by various hydrolases (Teter et al., 2001; Epple et al., 2001). 

1.7.2 Mitophagy in human 

Mitophagy can eliminate both malfunctioning and healthy mitochondria, the latter being 

important for mitochondria removal during development and differentiation (Ney, 2015). 

A central role in the damage-induced mitophagy has been assigned to the PINK1 and 

Parkin proteins. Mutations in both genes are linked to the autosomal recessive forms of 

Parkinson's disease, leading to the accumulation of defective mitochondria and death of 

dopaminergic neurons in the substantia nigra (Kitada et al., 1998; Valente et al., 2004). 

PINK1 is a mitochondrial protein kinase, which is imported in a membrane potential (Δψ)-

dependent manner and cleaved by PARL protease, resulting in PINK1 degradation 

(Silvestri et al., 2005; Jin et al. 2010; Deas et al., 2011; Meissner et al., 2011; Yamano and 

Youle, 2013). Mitochondrial depolarization inhibits PINK1 import and leads to PINK1 

accumulation on the outer mitochondrial membrane (Narendra et al. 2010). Stabilized 

PINK1 recruits Parkin to the mitochondria (Narendra et al. 2008; Narendra et al. 2010). 

Parkin is a cytosolic ubiquitin ligase that exists in an auto-inhibited form (Caulfield et al., 

2015). PINK1 phosphorylates Parkin, leading to its activation and ubiquitination of target 

proteins on the OM (Kondapalli et al., 2012; Sarraf et al., 2013). Depending on the linkage 

of the attached ubiquitin chain, Parkin substrates are either degraded by the proteasome, or 

serve to recruit autophagic adaptor proteins, such as p62 (Geisler et al., 2010; Chan et al., 

2011; Ordureau et al., 2014; Cunningham et al., 2015). These adaptors interact with the 

LC3 protein on the autophagosomal surface, thereby docking mitochondria at the 

autophagosome (Figure 6) (Geisler et al., 2010; Okatsu et al., 2010). 
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Fig. 6 Mechanism of PINK-Parkin mediated mitophagy. (A) Under physiological conditions 

PINK1 kinase is imported into the mitochondria by the TIM23 complex, cleaved by PARL 

protease and subsequently degraded. Ubiquitin ligase Parkin remains in the cytosol in an auto-

inhibited form. (B) If the membrane potential is decreased import of PINK1 via the TIM23 

complex is blocked and PINK1 accumulates on the outer mitochondrial membrane, leading to its 

auto-phosphorylation and Parkin recruitment. Parkin is phosphorylated by PINK, leading to its 

activation. Active Parkin promotes ubiquitination of various substrates, resulting in their 

degradation or recruitment of autophagic adaptors, necessary for the autophagosome formation. 

OM – outer mitochondrial membrane, IMS – intermembrane space, IM – inner mitochondrial 

membrane, Δψ – membrane potential, P – phosphorylation, Ub – ubiquitination. 

In contrast to the damage-induced mitophagy, programmed mitophagy eliminates healthy 

mitochondria during development and cell differentiation. Nix, a protein of the outer 

mitochondrial membrane, is a mitophagy receptor involved in reticulocyte maturation 

(Schweers et al., 2007; Zhang et al., 2008; Novak et al., 2010). Notably, NIX can also 

stimulate mitophagy upon membrane depolarization, providing an alternative mitophagic 
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pathway (Ding et al., 2010). The Nix homolog, Bnip3 protein, was shown to mediate 

mitophagy in hypoxic cells by disrupting the interaction between an autophagy inductor 

Beclin 1 and its inhibitor, Bcl-2 (Bellot et al., 2009). FUNDC1 is another mitochondrial 

receptor for hypoxia-induced mitophagy (Liu et al., 2012). 

1.7.3 Mitophagy in yeast Saccharomyces cerevisiae 

In S. cerevisiae mitophagy serves various purposes, including quality control, steady-state 

turnover, and adaptation to environmental changes. Damage-induced mitophagy can be 

triggered by defects in mitochondrial protein turnover, F1Fo ATP synthase assembly, 

K+/Na+ exchange, or mtDNA replication (Campbell and Thorsness, 1998; Priault et al., 

2005; Nowikovsky et al., 2007; Zhang et al. 2007b). In contrast to the mammalian systems, 

dissipation of the mitochondrial membrane potential (Δψ) by carbonyl cyanide m-

chlorophenyl hydrazone (CCCP) does not result in mitophagy in yeast (Kissova et al., 

2004; Kanki et al., 2009a; Mendl et al., 2011). 

Yeast growth on non-fermentable carbon sources results in mitochondrial proliferation. 

Surplus mitochondria are subsequently recycled by mitophagy either during stationary 

phase or upon nitrogen starvation (Kissova et al., 2004; Tal et al., 2007; Kanki and 

Klionsky, 2008; Kanki et al., 2009a; Okamoto et al., 2009; Mendl et al., 2011). 

Mitochondrial turnover in aged or starved yeast cells can provide necessary nutrients and 

decrease deleterious ROS production. Impaired mitochondrial degradation during 

stationary phase leads to oxidative damage and decreased cell viability (Tal et al., 2007; 

Journo et al., 2009). Similarly, if mitophagy is restrained during starvation, non-degraded 

mitochondria produce excess ROS, leading to mitochondrial damage and loss of mtDNA 

(Suzuki et al., 2011; Kurihara et al., 2012). In the case of starvation reduced amino acid 

pool results in lower expression of the ROS scavenger proteins and subsequent 

mitochondrial damage. Accordingly, N-acetylcysteine treatment increases glutathione 

levels and prevents starvation-induced mitophagy (Deffieu et al., 2009; Kissova and 

Camougrand, 2009).  

Mitochondria appear to regulate their own mitophagic degradation. For instance, 

respiratory deficiency due to mtDNA loss or inhibition of respiratory chain components 

can compromise autophagy during nitrogen starvation (Graef and Nunnari, 2011). On the 

other hand, mitophagy requires functional mitochondrial dynamics. Changes in organellar 
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morphology, caused by impaired mitochondrial bioenergetics, can help to distinguish 

defective organelles and ensure their selective removal. For example, reduced ATP levels 

in the matrix affect processing of the mitochondrial fusion factor Mgm1, resulting in 

mitochondrial fragmentation (Herlan et al., 2004). The role of mitochondrial fission in 

mitophagy remains controversial. Fission could provide a segregation mechanism to 

separate damaged components from the healthy mitochondrial network. Accordingly, 

mitochondrial fission factor Dnm1 was identified as a positive mitophagy regulator 

(Nowikovsky et al., 2007; Kanki et al., 2009a; Mao et al., 2013; Bernhardt et al., 2015). 

However, according to several studies, deletion of fission machinery components does not 

affect mitophagy (Okamoto et al., 2009; Mendl et al., 2011). Finally, efficient mitophagy 

requires a contact between mitochondria and the ER via the ER-mitochondria tethering 

complex (ERMES). The absence of ER-mitochondrial junctions leads to the accumulation 

of immature mitophagosomes due to disrupted lipid exchange between the organelles. The 

expression of artificial membrane tethers rescues mitophagy defects in cells lacking 

ERMES complexes (Böckler and Westermann, 2014). 

Post-translational protein modifications, including protein phosphorylation, are implicated 

in mitophagy regulation. A stress response factor Whi2 controls mitochondrial degradation 

by modulating protein kinase A (PKA) signaling pathway (Mendl et al., 2011). 

Furthermore, two mitogen-activated protein kinases (MAPK), Slt2 and Hog1, are involved 

in mitophagy. Hog1 together with its upstream kinase Pbs2 affects phosphorylation of the 

yeast mitophagy receptor Atg32 (Aoki et al., 2011). In Slt2-deficient cells mitochondrial 

recruitment to the PAS is disturbed (Mao et al., 2011). Moreover, mitochondrial protein 

phosphatase Aup1, localized in the intermembrane space, is important for stationary phase 

mitophagy (Tal et al., 2007). Aup1 regulates mitophagy by coordinating the retrograde 

signaling pathway, a cellular mechanism that couples mitochondrial stress to changes in 

nuclear gene expression (Journo et al., 2009).  

Recently it was shown that ubiquitination plays a role in mitophagy regulation in yeast. 

The Ubp3-Bre5 deubiquitination complex was found to inhibit mitophagy while promoting 

other types of autophagy. During mitophagy Ubp3-Bre5 complex components dynamically 

translocate from the cytosol to mitochondria and in their absence mitophagy rate is 

drastically increased (Baxter et al., 2005; Kraft et al., 2008; Müller et al., 2015). 
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1.7.4 Yeast mitophagy receptors 

Mitochondrial association with the autophagic machinery requires the presence of 

mitophagy receptors on the mitochondrial surface. The mitochondrial outer membrane 

protein Uth1 was shown to function in starvation-induced mitochondrial removal (Kissova 

et al., 2004). This gene was not found in screens for mitophagy components, and another 

study proved Uth1 to be fully dispensable for mitophagy (Kanki et al., 2009a; Okamoto et 

al., 2009; Welter et al., 2013). Mitochondrial removal in stationary phase requires Atg33, a 

mitochondrial outer membrane protein found by a genetic screen for yeast mutants 

defective in mitophagy (Kanki et al., 2009a). Recently, Atg32 was identified as a 

mitophagy receptor in yeast, essential for all modes of mitophagy induction (Kanki et al., 

2009b; Okamoto et al., 2009). 

Atg32 is a 59-kDa protein of the outer mitochondrial membrane. It contains a single 

transmembrane domain with its N- and C-termini in the cytosol and the intermembrane 

space (IMS) respectively (Kanki et al., 2009b; Okamoto et al., 2009). During initial steps 

of mitophagy Atg32 interacts with Atg11, an adaptor protein for selective autophagy 

(Kanki et al., 2009b; Suzuki, 2013). The Atg32-Atg11 complex recruits Dnm1 to 

mitochondria undergoing mitophagy, thereby promoting mitochondrial fission (Mao et al., 

2013). Atg11 then transports its cargo to the PAS, where Atg32 binds the autophagosome 

component Atg8 (Kanki et al., 2009b; Okamoto et al., 2009). This interaction ensures 

mitochondrial docking at the autophagosome, and destines the mitochondria for 

degradation. Atg32 is then recruited to the vacuole along with the mitochondria, and is 

subsequently degraded in mitophagy-dependent and independent manner (Figure 7) 

(Okamoto et al., 2009; Kanki et al., 2009b). 

Interaction of Atg32 with both Atg8 and Atg11 is significantly increased during 

mitophagy, although it does not depend on other autophagy components  (Kondo-Okamoto 

et al., 2012). Atg11 binding requires a SSD/EXSEE/DE motif, conserved among yeast 

homologs of Atg32 (Aoki et al., 2011; Kondo-Okamoto et al., 2012). Atg32 interaction 

with Atg8 requires a conserved WXXL consensus sequence, termed Atg8 family 

interacting motif (AIM) in yeast or LC3 interacting region (LIR) in mammals. Mutations 

in this region reduce Atg32 binding to Atg8, resulting in mitophagy defect (Okamoto et al., 

2009; Kondo-Okamoto et al., 2012). 
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Fig. 7 Atg32 as a yeast mitophagy receptor. (A) Mechanism of Atg32-mediated mitophagy. 

Atg32 is modified in response to a mitophagy trigger and can subsequently recruit Atg11, adaptor 

protein for selective autophagy. Atg32-Atg11 complex promotes mitochondrial fragmentation 

through its interaction with fission factor Dnm1. Both Atg32 and Atg11 interact with Atg8 tethered 

to the isolation membrane, thus docking mitochondria at the autophagosome. (B) Schematic 

representation of the Atg32 domain structure. AIM – Atg8 interacting motif, Atg11 IM – Atg11 

interacting motif, TMD – transmembrane domain. Numbers indicate amino acid residues. 

Post-translational modifications regulate Atg32-mediated mitophagy. The cytosolic 

domain of Atg32 is phosphorylated on two serine residues, Ser114 and Ser119, by Casein 

kinase 2 (CK2) upon mitophagy induction (Aoki et al., 2011; Kanki et al., 2013). Ser114 

phosphorylation stabilizes the Atg32-Atg11 interaction, thus promoting mitophagy, 

however it is dispensable for Atg8 binding (Aoki et al., 2011). In addition, proteolytic 
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processing of the C-terminus of Atg32 by mitochondrial Yme1 protease enhances the 

interaction between Atg32 and Atg11. C-terminal tagging blocks Atg32 cleavage and 

hinders mitochondrial degradation, suggesting that the IMS domain of Atg32 negatively 

regulates mitophagy (Wang et al., 2013). 

Recently, Bcl-2-like protein 13 (Bcl2-L-13) has been identified as an Atg32 homolog in 

mammals. Bcl2-L-13 is expressed in all tissues and localizes to mitochondria. It contains 

two WXXL motifs for LC3 (Atg8 homolog) binding. Bcl2-L-13 induces mitochondrial 

fragmentation and mitophagy in mammalian cells independent from Parkin, and can 

trigger mitophagy in Atg32-deficient yeast cells (Murakawa et al., 2015). 
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1.8 Project aims 

Mitochondria are complex organelles that are constantly recycled by the cell in response to 

environmental changes. Diverse protein machineries orchestrate mitochondrial biogenesis 

and degradation. Often formation of mitochondrial protein complexes is interconnected, as 

can be illustrated by the respiratory chain biogenesis. Complexes of the electron transport 

chain together form higher oligomeric structures, known as respirasomes or 

supercomplexes. These supramolecular assemblies are important for efficient electron 

transfer, decreased ROS production, and stabilization of individual complexes. In the last 

years several new supercomplex-associated factors were described in yeast Saccharomyces 

cerevisiae. For example, a novel protein termed Cox26 was specifically co-purified with 

supercomplexes. However, its physiological function with regard to mitochondrial 

respiration was not addressed. Hence, the first aim of this study was to determine Cox26 

role by biochemical and functional analysis of this protein, as well as by characterization 

of its deletion mutant. 

Notably, improper biogenesis of the respiratory chain can lead to higher ROS load and thus 

to increased mitochondrial damage. Malfunctioning mitochondria need to be removed 

from the healthy network by mitophagy to maintain cellular homeostasis. Nonetheless, the 

mechanism that provides selective recognition of damaged mitochondria is not well 

understood. Mitophagy requires a specific receptor on the mitochondrial surface, which 

interacts with the components of the autophagic machinery. In yeast, Atg32 protein was 

identified as mitophagy receptor. It is plausible that mitophagy triggers formation of 

mitochondrial receptor signaling complexes. Therefore, this project aimed to determine 

Atg32 interaction profile and to assess its alterations upon various mitophagy-inducing 

conditions. Identification of the novel players in the mitophagic signaling cascade would 

provide insights into general mechanisms of mitophagy regulation, and allow better 

understanding of how mitophagic stimuli are sensed and transduced by the mitochondrial 

mitophagy receptor. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and manufacturers 

Laboratory equipment, kit systems, and common and specific reagents used in this study 

were purchased from the companies listed in the Table 1. List of chemicals is given in the 

Table 2. 

Table 1 Companies information. 

Company name City Country 

Adobe Systems San Jose USA 

Affymetrix Santa Clara USA 

Agfa Mortsel Belgium 

AppliChem  Darmstadt Germany 

Applied Precision Issaquah USA 

Avestin Mannheim Germany 

BD New Jersey USA 

Beckman Coulter Pasadena USA 

Bio-Rad München Germany 

BioChemica Billingham UK 

Biomatters Ltd Auckland New Zealand 

Biometra Göttingen Germany 

Calbiochem Darmstadt Germany 

Dianova Hamburg Germany 

Eppendorf Hamburg Germany 

Epson Suwa Japan 

Fermentas Waltham USA 

Fluka Taufkirchen Germany 

Foma Bohemia Hradec Kralove Czech Republic 

FujiFilm Tokyo Japan 
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GE Healthcare Buckinghamshire UK 

Greiner Bio-One Solingen Germany 

Gilson Limburg an der Lahn Germany 

Grano Vita Radolfzell Germany 

Hartmann Analytic Braunschweig Germany 

Heat Systems-Ultrasonics Billingham UK 

Heidolph Schwabach Germany 

Heinemann Labortechnik Duderstadt Germany 

Hitachi High Technologies Tokyo Japan 

Invitrogen Waltham USA 

LABalance New Jersey USA 

LC Laboratories Woburn USA 

Life Technologies Carlsbad USA 

Merck Darmstadt Germany 

Metabion Martinsried Germany 

Millipore Darmstadt Germany 

MoBiTec Göttingen Germany 

MP Biomedicals Eschwege Germany 

Nacalai Tesque Kyoto Japan 

New Brunswick Scientific Hamburg Germany 

Novagen Darmstadt Germany 

OROBOROS Instruments Innsbruck Austria 

PAA Buckinghamshire UK 

PEQLAB Biotechnologie Erlangen Germany 

Promega Manheim Germany 

Qiagen Venlo Netherlands 

Retsch Haan Germany 

Roche Manheim Germany 

Roth Karlsruhe Germany 

Sarstedt Nümbrecht Germany 

Sartorius AG Göttingen Germany 

Scientific Industries New York USA 
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Scie-Plas Holliston USA 

Seqlab Göttingen Germany 

Serva Heidelberg Germany 

Sigma-Aldrich Taufkirchen Germany 

Stratagene Santa Clara USA 

Systec Lohfelden Germany 

Thermo Scientific Waltham USA 

Varian Palo Alto USA 

Werner BioAgents Jena-Cospeda Germany 

Xylem Group New York USA 

 

Table 2 List of chemicals and their suppliers. 

Chemical Supplier 

[35S]-L-methionine Hartmann Analytic 

2-mercaptoethanol (β-mercaptoethanol) Sigma-Aldrich 

6-aminocaproic acid Sigma-Aldrich 

Acetic acid Roth 

Acetone AppliChem or Merk 

Acrylamide/bisacrylamide (37.5:1) solution (Rotiphorese® 

Gel 30) 

Roth 

Acrylamide, 4x crystallized Roth 

Adenine hemisulfate salt Sigma-Aldrich 

ADP (adenosine-5'-diphosphate) Sigma-Aldrich 

Agarose NEEO ultra-quality Roth 

Ammonium acetate (NH4Ac) Merck 

Ammonium persulfate Roth 

Ampicillin AppliChem 

Antimycin A Sigma-Aldrich 

ATP (adenosine-5'-triphosphate) Roche 

BactoTM Agar BD 

BactoTM Peptone BD 
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BactoTM Tryptone BD 

Bacto Yeast Extract BD 

N,N'-Methylene bisacrylamide Roth 

Bis-Tris AppliChem 

Bovine serum albumin (BSA) fatty acid free Sigma-Aldrich 

Bromophenol Blue Merck 

Calcium chloride (CaCl2) dihydrate Roth 

cOmplete, EDTA-free protease inhibitor tablet Roche 

Coomassie Brilliant Blue G-250 Serva 

Coomassie Brilliant Blue R-250 Serva 

Creatine kinase Roche 

Creatine phosphate Roche 

CSM-HIS  MP Biomedicals 

Cytochrome c from bovine heart Sigma-Aldrich 

Diaminobenzidine (DAB) Sigma-Aldrich 

DDM (n-Dodecyl-b-D-maltoside) Sigma-Aldrich 

2',7'-Dichlorodihydrofluorescein diacetate (H2DCFDA) Invitrogen 

Digitonin Calbiochem 

DMSO (dimethylsulfoxide) AppliChem 

DNase I Roche 

DTT (1,4-dithiothreitol) Roth 

EDTA (ethylene diamine tetraacetic acid) Roth 

EGTA (ethylene glycol tetraacetic acid) Sigma-Aldrich 

Ethanol Roth 

Ethidium bromide 0.07% AppliChem 

Galactose, D(+) Roth 

Geneticin 418 Sulfate (G418) PAA 

Glucose, D(+) Roth 

Glycerol Sigma-Aldrich 

Glycine Roth 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) Roth 

Herring sperm DNA Promega 
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L-Histidine Serva 

Hydrochloric acid (HCl) 37% Roth 

Hydrogen peroxide solution Sigma-Aldrich 

IgG from bovine serum Bio-Rad 

IgG from human serum Sigma-Aldrich 

Imidazole Merck 

IPTG (Isopropyl β-D-1-thiogalactopyranoside) Roth 

L(+)-Lactic acid AppliChem 

Lead (II) nitrate (Pb(NO3)2) Merck 

L-Leucine Serva 

Lithium acetate (LiAc) AppliChem 

L-Lysine Serva 

Lysozyme from chicken egg white Sigma-Aldrich 

Mannitol, D(+) Roth 

Magnesium chloride (MgCl2) heptahydrate Merck 

Magnesium sulfate (MgSO4) heptahydrate Roth 

Manganese (II) chloride (MnCl2) tetrahydrate Roth 

Methanol Roth 

L-Methionine Roth 

Milk powder Grano Vita 

MOPS (morpholinopropanesulfonic acid) Sigma-Aldrich 

NADH (nicotinamide adenine dinucleotide) Roche 

Nourseothricin Werner BioAgents 

Oligomycine Sigma-Aldrich 

OrangeG Sigma-Aldrich 

Oxaloacetic acid Sigma-Aldrich 

PEG-4000 (polyethylene glycol 4000) Merck 

PMSF (phenylmethanesulfonyluoride) Roth 

Potassium acetate (KAc) Merck 

Potassium chloride (KCl) Roth 

Potassium cyanide (KCN) Sigma-Aldrich 

Potassium dihydrogen phosphate (KH2PO4) Merck 
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Di-potassium hydrogen phosphate (K2HPO4) Roth 

Potassium hydroxid (KOH) Roth 

Proteinase K Roche 

Rapamycin LC Laboratories 

Rubidium chloride (RbCl) Roth 

Saccharose Roth 

SDS (sodium dodecyl sulfate) Serva 

Sodium chloride (NaCl) Roth 

Sodium hydroxide (NaOH) Roth 

Sodium bicarbonate (Na2CO3) Sigma-Aldrich 

Sodium dithionite Fluka 

Sodium hydrogen carbonate (NaHCO3) Merck 

di-Sodium hydrogen phosphate (Na2HPO4) AppliChem 

Sorbitol  Roth 

Sulfuric acid (H2SO4) Merck 

TCA (trichloroacetic acid)  Merck 

TEMED (tetramethylethylenediamine) Roth 

Tricine  Roth 

Tris (tris(hydroxymethyl)aminomethane) Roth 

Triton X-100 Sigma-Aldrich 

L-Tryptophan AppliChem 

Tween-20 Roth 

Uracil Sigma-Aldrich 

Urea Roth 

Valinomycine Sigma-Aldrich 

Yeast nitrogen base without amino acids (YNB) BD 

 

2.1.2 Kits and disposals 

Disposals and commercial kits used in this study together with suppliers are listed in Table 

3. Kits were used and stored according to the manufacturers' instructions. 
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Table 3 Kits and disposals. 

Product Supplier 

Amicon® Ultra-4 centrifugal filter unit 10K MWCO Millipore 

Blotting paper Heinemann 

Labortechnik 

CELLSTAR® Centrifuge Tubes 15 ml, 50 ml Geiner Bio-One 

Cyanogen bromide activated Sepharose 4B GE Healthcare 

ECL Plus Western Blotting Detection Reagent GE Healthcare 

Fast Digest restriction enzymes Fermentas 

Flexi® Rabbit Reticulocyte Lysate System Promega 

GeneRuler DNA Ladder Mix Fermentas 

High molecular weight calibration kit GE Healthcare 

High Pure PCR Template Preparation Kit Roche 

HisTrap Desalting 5 ml column GE Healthcare 

HisTrap HP 1 ml column GE Healthcare 

Immobilon-P Transfer membrane (PVDF) Millipore 

KOD Hot Start DNA Polymerase Novagen 

MEDIX X-ray films FOMA BOHEMIA 

Microtube 1.5 ml and 2.0 ml Sarstedt 

Minisart syringe filters Sartorius AG 

MitoTracker® Orange CMTMRos Life Technologies 

Ni-NTA agarose Qiagen 

Pierce® ECL Western Blotting substrate Thermo Scientific 

Pipette tips 10 μl, 200 μl, and 1 ml Sarstedt 

Rapid DNA Ligation Kit Thermo Scientific 

Resourse S column 5 ml GE Healthcare 

Roti-Quant® reagent Roth 

SnakeSkinTM dialysis tubing 7K MWCO Life Technologies 

Spin columns Mobicol „classic“ MoBiTec 

SP6 mMESSAGE mMACHINE® Kit  Life Technologies 

TNT® SP6 Quick coupled Transcription/Translation System Promega 
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Unstained SDS PAGE Protein Marker (6.5 – 200 kDa) Serva  

USB® Taq DNA Polymerase Affymetrix 

Wizard® Plus SV Gel and PCR DNA Purification System Promega 

Wizard® Plus SV Minipreps DNA Purification System Promega 

Zymolyase®-20T enzyme (20,000 U/g) Nacalai Tesque  

 

2.1.3 Equipment 

Table 4 Equipment. 

Product Model Supplier 

Electrophoresis 

and blotting 

EPS 601 power supply GE Healthcare 

Mini-PROTEAN® 3 Cell Bio-Rad 

Mini-Sub® Cell GT Cell Bio-Rad 

PowerPacTM HC Power Supply Bio-Rad 

SE 600 Ruby Standard system GE Healthcare 

Semi Dry Blotting Chamber PEQLAB Biotechnologie 

FPLC equipment 
ÄKTA Purifier 10 GE Healthcare 

SuperoseTM 6 10/300 GL GE Healthcare 

Centrifuges 

OptimaTMDX-XP Beckman Coulter 

Sorvall RC 12BP Thermo Scientific 

Sorvall® RC6 Plus Thermo Scientific 

12-MC Beckman Coulter 

5415R Eppendorf 

5417R Eppendorf 

5424 Eppendorf 

 5804R Eppendorf 

Rotors 

A-4-44 Eppendorf 

F45-24-11 Eppendorf 

F45-30-11 Eppendorf 

FA-45-24-11 Eppendorf 

Sorvall® F10S- 6x500Y Thermo Scientific 

Sorvall® F14S- 6x250Y Thermo Scientific 
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Rotors 

Sorvall® H-12000 Thermo Scientific 

Sorvall® SS-34 Thermo Scientific 

TLA-55 Beckman Coulter 

Scanners 

Autoradiography storage phosphor 

screen 

GE Healthcare 

BioPhotometer Eppendorf 

Cary® 50 UV-Vis spectrophotometer Varian 

Curix 60 processor Agfa 

Perfection V750 Pro scanner Epson 

F-7000 fluorescence 

spectrophotometer 

Hitachi High Technologies 

GeneQuantTM 1300 Spectrophotometer GE Healthcare 

iMarkTM microplate absorbance reader Bio-Rad 

LAS 1000 FujiFilm 

NanoVueTM Spectrophotometer GE Healthcare 

Starion FLA-9000 FujiFilm 

Storm 820 Phosphorimager GE Healthcare 

UVsolo TS transilluminator Biometra 

Other 

Autoclave Systec DX-200 Systec 

Balance BP 3100P Sartorius 

CryoMill Retsch 

DeltaVision microscope Olympus IX71 Applied Precision 

Electronic Digital Balance Kern ABJ 

220-4M 

LABalance 

EmulsiFlex C5 Avestin 

Excella® E10 platform shaker New Brunswick Scientific 

G25 Shaker Incubator New Brunswick Scientific 

Innova® 44 Incubator shaker New Brunswick Scientific 

Magnetic Stirrer MR 3001 Heidolph 

Milli-Q-Water purification system Millipore 

Oxygraph 2k OROBOROS Instruments 

pH-meter Xylem Group 
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Other 

Pipettes Gilson 

Potter S glass-Teflon Homogenizer Sartorius AG 

Sonicator Cell Disruptor W-220F Heat Systems-Ultrasonics 

Termomixer Comfort Eppendorf 

TPersonal 48 thermocycler Biometra 

Vortex-Genie 2 Scientific Industries 

Vacuum gel drier Scie-Plas 

 

2.1.4 Software 

List of software used for data analysis, image processing, and data documentation is given 

in Table 5. 

Table 5 Software. 

Software Company 

Adobe Illustrator CS6 Adobe 

Adobe Photoshop CS6 Adobe 

Genious Pro 5.3.6 Biomatters Ltd 

ImageQuant TL Software GE Healthcare 

SoftWoRx 3.5.1 Applied Precision 

 

2.1.5 Buffers and solutions 

Refer to Table 6 for buffer recipes. All buffers were prepared using Milli-Q deionized 

water and analytical grade chemicals. 

Table 6 Buffers and solutions. 

Buffer Composition 

Acetate buffer 0.5 M NH4Ac/acetic acid pH 3.5  

Activity assay buffer 

complex III 

40 mM KPi pH 7.4, 0.02% bovine heart cytochrome c, 0.5 

mM NADH, 10 mM KCN 

Activity assay buffer 

complex IV 

40 mM KPi pH 7.4, 0.02% reduced bovine heart 

cytochrome c 
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Activity assay buffer MDH 0.1 M KPi pH 7.4, 0.1 mM NADH, 0.2 mM oxaloacetate 

Agarose gel solution 1% agarose, TAE buffer 

AVO mix 1 mM antimycin A, 0.1 mM valinomycin, 2 mM 

oligomycin in ethanol 

Blocking solution 5%-10% milk powder in TBST 

Blotting buffer 25 mM Tris, 192 mM glycine, 10% ethanol 

BN acrylamide 48% acrylamide, 1.5% bis-acrylamide 

BN anode buffer 50 mM Bis-Tris/HCl pH 7.0 

BN clear cathode buffer 50 mM tricine, 15 mM Bis-Tris 

BN blue cathode buffer 50 mM tricine, 15 mM Bis-Tris, 0.2% Coomassie Brilliant 

Blue G-250 

BN gel buffer 67 mM 6-aminocaproic acid, 50 mM Bis-Tris/HCl pH 7.0 

BN loading buffer 0.5% Coomassie Brilliant Blue G-250, 50 mM  

6-aminocaproic acid, 10 mM Bis-Tris/HCl pH 7.0 

BN solubilization buffer 20 mM Tris/HCl, 60 mM NaCl, 10% glycerol, 1 mM 

EDTA, 1mM PMSF with 1% digitonin or 0.6% DDM 

Carbonate buffer 100 mM Na2CO3/NaHCO3 pH 10.8 

Carrier DNA Herring sperm DNA (10 mg/ml) in TE buffer 

Coomassie destaining 

solution 

30% ethanol, 10% acetic acid 

Coomassie staining solution 0.25% Coomassie Brilliant Blue R-250, 40% ethanol, 10% 

acetic acid 

Digitonin stock solution 5% digitonin in H2O 

DDM stock solution 5% DDM in H2O 

DNA loading dye 10% saccharose, 0.25% OrangeG 

DTT buffer 10 mM DTT, 100 mM Tris/H2SO4 pH 9.4 

E. coli cracking buffer 20 mM Tris/HCl pH 7.4, 50 mM NaCl, 5 mM imidazole, 

1 mM MgCl2, 1 mM PMSF, 0.1 mg/ml lysozyme, 0.01 

mg/ml DNase I, cOmplete, EDTA-free protease inhibitor 

tablet 

Equilibration solution 

complex IV 

50 mM KPi buffer pH 7.4 
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Equilibration solution 

complex V 

270 mM glycine, 35 mM Tris/HCl pH 8.3 

EM buffer 1 mM EDTA, 10 mM MOPS/KOH pH 7.2 

Homogenization buffer 0.6 M sorbitol, 1 mM EDTA, 0.2% fatty acid free BSA, 1 

mM PMSF, 10 mM Tris/HCl pH 7.4 

HisTrap buffer 50 mM NaCl, 5 mM imidazole, 20 mM Tris/HCl pH 7.4 

Import buffer 3% BSA, 250 mM saccharose, 80 mM KCl, 5 mM MgCl2, 

2 mM KH2PO4, 5 mM methionine, 5 mM ATP, 5 mM 

NADH, 10 mM MOPS/KOH pH 7.2 with or without 6.25 

mM creatin phosphate and 125 µg/ml creatin kinase 

MAS buffer 70 mM saccharose, 220 mM mannitol, 5 mM MgCl2, 1 

mM EGTA, 10 mM KH2PO4, 2 mM HEPES/KOH pH 7.4 

MonoS buffer 50 mM NaCl, 20 mM Tris/HCl pH 7.4 

PMSF stock 0.2 M PMSF in ethanol 

Phosphate buffer saline 

(PBS) 

137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM 

KH2PO4/HCl pH 7.4 

Potassium phosphate (KPi) 

buffer  

80.2% K2HPO4, 19.8% KH2PO4 

Rapamycin stock solution 1mg/ml rapamycin in DMSO 

Reduced cytochrome c 1% cytochrome c, 50 mM KPi, 0.12% sodium dithionite 

Resolving gel (SDS PAGE) 10-16% acrylamide (Rotiphorese® Gel 30), 0.05% 

TEMED, 0.1% APS, 0.1% SDS, 386 mM Tris/HCl pH 8.8 

Resolving gel (Urea PAGE) 17.5% acrylamide, 0.23% bis-acrylamide, 5.4 M urea, 8 

mM NaCl, 0.09% SDS, 0.1% APS, 0.05% TEMED, 684 

mM Tris/HCl pH 8.8 

ROS assay buffer 0.1% Triton X-100, 150 mM NaCl, 20 mM Tris/HCl pH 

7.4 

SDS loading buffer 10% glycerol, 2% SDS, 0.01% bromophenole blue, 1% β-

mercaptoethanol, 60 mM Tris/HCl pH 6.8 

SDS running buffer 25 mM Tris, 192 mM glycine, 0.1% SDS 

SEM buffer 250 mM saccharose, 1 mM EDTA, 10 mM MOPS/KOH 

pH 7.2 
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Stacking gel (SDS PAGE) 4% arylamide, 0.1% SDS, 0.1% APS, 0.05% TEMED, 80 

mM Tris/HCl pH 6.8 

Stacking gel (Urea PAGE) 5.4% arylamide, 0.07% bis-acrylamide, 0.12% SDS, 3.33 

M urea, 0.1% APS, 0.05% TEMED, 109 mM Tris/HCl pH 

6.8 

Staining solition complex IV 50 mM KPi pH 7.4, 0.5 mg/ml DAB, 1 mg/ml reduced 

cytochrome c 

Staining solition complex V 270 mM glycine, 35 mM Tris/HCl pH 8.3, 8 mM ATP, 14 

mM MgSO4, 0.2% Pb(NO3)2 

Solubilization buffer 

(mitochondria) 

100 mM NaCl, 5% glycerol, 0.5 mM EDTA, 1mM PMSF 

20 mM Tris/HCl pH 7.4 with 1% digitonin or 0.6% DDM 

Solubilization buffer (yeast 

powder) 

150 mM NaCl, 10% glycerol, 0.1 mM EDTA, 1mM 

PMSF, 1% digitonin, cOmplete, EDTA-free protease 

inhibitor tablet, 1% DNase I, 20 mM Tris/HCl pH 7.5 

TAE buffer 2 mM EDTA, 40 mM Tris/acetic acid pH 8.0 

TBS (Tris-Buffered Saline) 150 mM NaCl, 50 mM Tris/HCl pH 7.5 

TBST (TBS and Tween-20) 150 mM NaCl, 0.05% Tween-20, 50 mM Tris/HCl pH 7.5 

TCA solution 100% TCA in water 

TE buffer 1 mM EDTA, 10 mM Tris/HCl pH 8.0 

TfB1 buffer 30 mM KAc, 100 mM RbCl, 10 mM CaCl2, 50 mM 

MnCl2, 15% glycerol/acetic acid pH 5.8 

TfB2 buffer 10mM RbCl, 75 mM CaCl2, 15% glycerol, 10 mM 

MOPS/KOH pH 6.5 

Urea PAGE acrylamide 60% acrylamide, 0.8% bis-acrylamide in H2O 

Urea PAGE running buffer 50 mM Tris, 192 mM glycine, 0.1% SDS 

Washing buffer 

(mitochondria) 

100 mM NaCl, 5% glycerol, 0.5 mM EDTA, 1mM PMSF 

20 mM Tris/HCl pH 7.4 with 0.3% digitonin or 0.6% 

DDM 

Washing buffer (yeast 

powder) 

300 mM NaCl, 10% glycerol, 0.1 mM EDTA, 1mM 

PMSF, 1% digitonin, cOmplete, EDTA-free protease 

inhibitor tablet, 20 mM Tris/HCl pH 7.5 

Yeast cell lysis solution 255 mM NaOH, 1% β-mercaptoethanol 
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Yeast cracking buffer for 

DNA extraction 

0.2 M LiAc, 1% SDS 

Yeast transformation 

solution 

0.1 M LiAc, 40% PEG-4000 in water, filter sterilized 

Zymolyase buffer 1.2 M sorbitol, 20 mM KPi buffer 

 

2.1.6 Media 

Refer to Table 7 for medium recipes. All media were prepared using Milli-Q deionized 

water and analytical grade chemicals. 

Table 7 Media composition. 

Medium Composition 

Lysogeny broth (LB) 0.5% yeast extract, 1% tryptone, 1% NaCl 

LB agar medium 0.5% yeast extract, 1% tryptone, 1% NaCl, 1.5% agar 

LB cryo storage medium 0.5% yeast extract, 1% tryptone, 1% NaCl, 15% glycerol 

Nitrogen starvation medium 

(SD-N) 

0.67% YNB without amino acids, 2% glucose 

Synthetic drop-out medium 0.67% YNB, 0.07% single dropout mixture (CSM) 

Synthetic complete medium 0.67% yeast nitrogen base without aminoacids (YNB), 

0.2% adenine hemisulfate, 0.2% L-histidine, 0.3% L-

leucine, 0.3% L-lysine, 0.2% L-methionine, 0.2% L-

tryptophan, 0.2% uracil, filter sterilized 

YP medium 1% yeast extract, 2% peptone 

YPAD (2x) 2% yeast extract, 4% peptone, 4% glucose, 0.008% 

adenine hemisulfate 

YP agar medium 1% yeast extract, 2% peptone, 2.5% agar 

YPD cryo storage medium 1% yeast extract, 2% peptone, 2% glucose, 0.3% adenine 

hemisulfate, 15% glycerol 
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2.1.7 Antibodies 

Primary polyclonal antibodies were produced by injecting antigen (synthetic peptide or 

purified proteins) into rabbits. For detection of HA tag or FLAG tag corresponding mouse 

monoclonal antibodies were used (Sigma-Aldrich). Collected serum was diluted in 5% 

blocking solution (1:100 – 1:2000). Secondary goat anti-rabbit or anti-mouse antibodies 

coupled with horseradish peroxidase (HRP) (Dianova) were used at 1:10,000 dilution in 

blocking solution. Peroxidase Anti-Peroxidase Soluble Complex antibody (Sigma-Aldrich) 

was used for detection of ZZ tag. 

2.1.8 Microorganisms 

E. coli strains for cloning and protein expression are listed in Table 8. 

Table 8 Bacterial strains. 

Strain Genotype Reference 

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)] 

Stratagene 

Rosetta(DE3)pLysS F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) 

pLysSRARE (CamR) 

Novagen 

 

Saccharomyces cerevisiae wild-type strains and their derivatives are listed in Table 9. 

Yeast strains used in this study are derivatives of S. cerevisiae strains YPH499 (Sikorski 

and Hieter, 1989), BY4741 (Euroscarf), and WCG4a (Hilt et al. 1993). Cox4ZZ, cyt1∆, 

cox4∆, cox13∆, rcf1∆, and rcf2∆ were described previously (Vukotic et al., 2012; Frazier 

et al., 2006). Gene deletions were achieved by homologues recombination of HIS3MX6, 

KANMX6, or NATMX6 cassettes into the corresponding loci. In rcf1∆ and cox26∆ strains 

KANMX6 disruption cassette was removed upon Cre recombinase expression leaving a 

single loxP site at the chromosomal locus (Güldener et al., 1996). Generation of tagged 

strains was performed by PCR-based chromosomal integration (Longtine et al., 1998; 

Knop et al., 1999; Janke et al., 2004). If the tag was incorporated at the N-terminus of the 

protein, NOP1 or GAL1 promoters (NOP1pr or GAL1pr) were used to drive protein 

expression. Atg32 tagging and PEP4 deletion in autophagy mutants were done in 

corresponding mutant strains from the Euroscarf collection.  



Table 9 Yeast strains. 

Strain Genotype Reference 

YPH499 MATa ade2-101; his3-Δ200; leu2-Δ1; ura3-52; trp1-Δ63; lys2-801 Sikorski and Hieter, 1989 

rcf2Δ YPH499 rcf2Δ::HIS3 Vukotic et al., 2012 

rcf1Δ YPH499 rcf1Δ::loxP Vukotic et al., 2012 

cyt1Δ YPH499 cyt1Δ::HIS3 Frazier thesis 

cox4Δ YPH499 cox4Δ::HIS3 Frazier et al., 2006 

cox13Δ YPH499 cox13Δ::HIS3 Vukotic et al., 2012 

Cox4ZZ YPH499 cox4::COX4-TEV-ProA- His7-HIS3 Vukotic et al., 2012 

Cox26GFP YPH499 cox26::COX26-GFP-kanMX4 M. Deckers 

Cox26FLAG YPH499 cox26::COX26-FLAG-HIS3 M. Deckers 

Cox26ZZ YPH499 cox26::COX26-TEV-ProA- His7-HIS3 M. Deckers 

cox26Δ YPH499 cox26Δ::loxP M. Deckers 

atg32Δ YPH499 atg32Δ::HIS3 This study 

Atg32ZZ YPH499 atg32::ATG32-TEV-ProA-His7-HIS3 J. Dudek 

ZZAtg32 YPH499 atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32 J. Dudek 

ZZAtg32IMS YPH499 atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32(382-529) J. Dudek 

HAAtg32 YPH499 atg32::HIS3-GAL1pr-HA3-ATG32 J. Dudek 

HAAtg32IMS YPH499 atg32::HIS3-GAL1pr-HA3-ATG32(382-529) J. Dudek 
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BY4741 MATa his3Δ1; leu2Δ0; met15Δ0; ura3Δ0 Euroscarf 

atg32Δ BY4741 atg32Δ::kanMX4 Euroscarf 

ZZAtg32 BY4741 atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32 This study 

ZZAtg32 pep4Δ BY4741 pep4Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32 This study 

ZZAtg32 pep4Δ atg1Δ BY4741 pep4Δ::natMX6; atg1Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg3Δ BY4741 pep4Δ::natMX6; atg3Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg4Δ BY4741 pep4Δ::natMX6; atg4Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg5Δ BY4741 pep4Δ::natMX6; atg5Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg7Δ BY4741 pep4Δ::natMX6; atg7Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg8Δ BY4741 pep4Δ::natMX6; atg8Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg10Δ BY4741 pep4Δ::natMX6; atg10Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg12Δ BY4741 pep4Δ::natMX6; atg12Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 
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ZZAtg32 pep4Δ atg13Δ BY4741 pep4Δ::natMX6; atg13Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg14Δ BY4741 pep4Δ::natMX6; atg14Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg15Δ BY4741 pep4Δ::natMX6; atg15Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pep4Δ atg16Δ BY4741 pep4Δ::natMX6; atg16Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32IMS
 BY4741 atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32(382-529) This study 

ZZAtg32IMS pep4Δ BY4741 pep4Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32(382-529) This study 

ZZAtg32IMS pep4Δ atg11Δ BY4741 pep4Δ::kanMX4; atg11Δ::natMX6; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32(382-529) 

This study 

WCG4a MATα his3-11; 15 leu2-3; 112 ura3 Hilt et al. 1993 

ZZAtg32 WCG4a atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32 This study 

ZZAtg32 pep4Δ WCG4a pep4Δ::kanMX4; atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32 This study 

ZZAtg32 atg11Δ WCG4a atg11Δ::natMX6; atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32 This study 

ZZAtg32 pep4Δ atg11Δ WCG4a pep4Δ::kanMX4; atg11Δ::natMX6; atg32::HIS3-NOP1pr-His7-ProA-TEV-

ATG32 

This study 

ZZAtg32 pre1-1 pre2-2 WCG4a pre1-1; pre2-2; atg32::HIS3-NOP1pr-His7-ProA-TEV-ATG32 This study 
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2.1.9 Oligonucleotides and plasmids 

Oligonucleotides used in this study were produced by Metabion and are listed in Table 10. 

Table 10 Oligonucleotides. 

Primer Sequence Purpose 

pJD16 5’AGAAGAGAATTCTCGATTTAGGTGACACTATAGAATA

CGCCGCCGCCATGGTTTTGGAATACCAACAAAGGG3’ 

pML1 cloning  

pJD17 5’ATAAGAGTCGACTTACAATAGAATATAACCCAGTGCC

AAAATCCG3’ 

pML1 cloning 

pMVP72 5’GATCGATTTAGGTGACACTATAGATGTTTAGACAGTG

3’ 

Cox13 lysate 

pMVP73 5’TTAATCGTCGTGCTCGATGTGCCTG3’ Cox13 lysate 

pOMD19 5’GGATTTAGGTGACACTATAGAATACGAATTCATGTCA

CGCATGCCATCTAGT3’ 

Rcf1 lysate 

pOMD20 5’AAGCTTCTCGAGTTACTTCTTTCCAAGCTTATTTTC3’ Rcf1 lysate 

pOMD22 5’GGATTTAGGTGACACTATAGAATACGAATTCATGTTC

TTCAGCCA3’ 

Cox26 lysate 

pOMD445 5’CGAAGCTTTTACATCATCATCTCGAGTGCTTTTCTTG3’ Cox26 lysate 

pML37 5’GTGACCTAGTATTTAATCCAAATAAAATTCAAACAAA

AACCAAAACTAACATGCGTACGCTGCAGGTCGAC3’ 

PEP4 deletion 

pML38 5’CTAGATGGCAGAAAAGGATAGGGCGGAGAAGTAAGA

AAAGTTTAGCTCAATCGATGAATTCGAGCTCG3’ 

PEP4 deletion 

pML31 5’TACTGTTGTTGTTCGGAAAGTACTTCTTTTATTTTCTTT

TATACATCATGCGTACGCTGCAGGTCGAC3’ 

ATG11 deletion 

pML32 5’GATACATAATTAAAATCTTGTCATTTGTGACAAACGT

TTAGCACTGTTCAATCGATGAATTCGAGCTCG3’ 

ATG11 deletion 

pML07 5’GAAGTCCTAATCACAAAAGCAAAAAAAATCTGCCAG

GAACAGTAAACATATGCGTACGCTGCAGGTCGAC3’ 

ATG32 deletion 

pML08 5’GTAAAAAAGTGAGTAGGAACGTGTATGTTTGTGTATA

TTGGAAAAAGGTTAATCGATGAATTCGAGCTCG3’ 

ATG32 deletion 

pJD12 5’TTTGACAATTTTTCTTATCAGTTGTGACTTCTCTTATCG

ATAAGCAATATTGAAGTCCTAGGAATACGAATTCGAGC

TC3’ 

ATG32 N-terminal 

tagging 

pJD13 5’AGGTGGCATGCTTTTAGATGAGGATCCTTTACCTTCCC

TTTGTTGGTATTCCAAAACCATCACGTCACTCATACCCT

GA3’ 

ATG32 N-terminal 

tagging 
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pJD41 5’GAAATGCCCCAAGTGAACCAGCTCGTGAAGAACTTCT

GCTTCTTCACGTCACTCATACCCTGA3’ 

ATG32 N-terminal 

truncation 

 

All plasmids generated for this study are listed in Table 11. pTNTTM vector (Promega), 

pGEM®-4Z vector (Promega), and pETDuetTM-1 vector (Novagen) were used for cloning. 

Plasmids were propagated in E. coli XL1-Blue cells. 

Table 11 Plasmids. 

Plasmid Backbone Insert Purpose Reference 

pYM2.1 – – C-terminal FLAG tag D. Mick 

pYM10   C-terminal TEV-ProA-

His7 tag 

Knop et al., 

1999 

p1417 – – N-terminal TEV-ProA-

His7 tag with NOP1 

promoter 

N. Wiedemann 

pFA6a-

NATMX6 

– – Gene deletion  

NATR marker 

Janke et al., 

2004 

pFA6a-

HIS3MX6 

– – Gene deletion  

HIS3 marker 

Longtine et al., 

1998 

C21 pTNT COX5a Cox5a lysate Rehling lab 

pML1 pGEM-4Z ATG32 Atg32 lysate This study 

pJD51 pETDuet-1 ATG32(1-343)-

His10 

Atg32CYT expression  

in E. coli  

J. Dudek 
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2.2 Methods 

2.2.1 Handling of biological material 

2.2.1.1 Cultivation of Escherichia coli 

E. coli were grown according to standart protocols (Sambrook and Russel, 2001). E. coli 

strains BL21, XL1-Blue and Rosetta(DE3)pLysS were cultivated at 37°C in liquid LB 

medium with vigoruos shaking (220 rpm). For solid media preparation 1.5% agar was 

added to the medium prior to autoclaving. To select for plasmids containing AmpR marker, 

LB was supplemented with 0.1 g/L ampicillin. Liquid cultures were inoculated with 

biomass from solid medium or from pre-culture with 1:100 to 1:1000 dilutions. Growth of 

E. coli was monitored by measuring optical density at 600 nm (OD600; OD600 of 1 ~ 8x108 

cells/ml). For long-term storage cryostocks were prepared by adding 15% sterile glycerol 

to the liquid E. coli culture and freezing the mixture at -80°C. 

2.2.1.2 Preparation of chemically competent E. coli cells 

Competent E.coli were prepared according to the RbCl method (Hanahan, 1983). In brief, 

a liquid pre-culture was inoculated with cryostock material and propagated overnight. Pre-

culture was diluted 1:100 and grown until OD600 reached 0.6, corresponding to mid-log 

phase. Cells were chilled on ice for 15 min and harvested by centrifugation at 5,000 rcf for 

10 min at 4°C. Pellet was re-suspended in 100 ml/g cold TfB1 buffer and incubated on ice 

for 15 min. Cells were pelleted as previously described and re-suspended in 20 ml/g cold 

TfB2 buffer. For storage 100 l aliquotes of competent cells were flash-frozen in liquid 

nitrogen and kept at -80°C. 

2.2.1.3 Transformation of E. coli 

For transformation 100 l of competent cells were thawed on ice, mixed with 200 ng of 

plasmid DNA or 10 l ligation reaction, and incubated 20 min on ice. E. coli were heat-

shoked at 42°C for 45 sec and left to recover on ice for 2 min. 1 ml LB medium was added 

to the cells and the culture was grown for 1 hour at 37°C under strong agitation. Cells were 

pelleted for 5 min at 1,000 rcf, plated on solid LB medium with antibiotic for selection, 

and grown at 37°C until single colonies were visible.  
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2.2.1.4 Cultivation of Saccharomyces cerevisiae 

Yeast Saccharomyces cerevisiae were grown according to standart procedures (Curran and 

Bugeja, 2006). Media compositions are listed in Table 7. All media and solutions used for 

yeast handling were either autoclaved or filter-sterilized. Solid medium plates were 

prepared by adding 2.5% agar to the liquid medium prior to autoclaving. Yeast were plated 

on solid medium from cryostocks and grown for 2-3 days at 30°C. Liquid cultures were 

inoculated from plates or a pre-culture (1:10 or 1:20) and incubated at 30°C while shaking 

(220 rpm). Cell growth was monitored by OD600 measurements (OD600 of 1 ~ 1x107 

cells/ml). In general rich YP medium was used for yeast cultivation. Antibiotic resistant 

strains were grown on solid YP media with 0.2 g/L geneticin or 0.1 g/L nourseothricin 

added after the autoclaving. Synthetic medium (SM) lacking the appropriate metabolite 

was used to select for genetic markers and propagate strains containing plasmids. Full 

synthetic medium was used to culture cells for microscopy studies. All media were 

supplemented with 2% glucose (YPD), 2% galactose (YPGal), 3% glycerol (YPG), or 3% 

lactate (YPL, pH 5.0 with NaOH) as fermentable (glucose, galactose) or non-fermentable 

(glycerol, lactate) carbon sourse. For GAL1 promoter induction 2% galactose was added to 

the medium. Yeast cryostocks were prepared by re-suspending biomass from solid medium 

in 1 ml YPD medium with 0.3% adenine hemisulfate and 15% glycerol. Cryo vials were 

frozen and stored at -80°C. 

2.2.1.5 Mitophagy induction 

Mitophagy was induced with different stimuli as previously described (Kissova et al., 

2004; Kanki and Klionsky, 2008; Aoki et al., 2011). For starvation-induced mitophagy 

yeast were cultured in liquid non-fermentable medium until OD600 reached 2-4, and either 

washed once with sterile water, and incubated in nitrogen starvation medium supplemented 

with glucose for 2-6 hours, or directly treated with rapamycin at concentration of 1 g/ml 

medium for indicated time periods. Post-log phase mitophagy was triggered by culturing 

yeast in YPL medium for 36-72 hours. 

2.2.1.6 S. cerevisiae growth test 

Growth rates of yeast strains were compared in a dilution assay. An overnight preculture in 

YPD medium was used to inoculate a fresh culture, which was propagated until it reached 

an OD600 of 0.8, corresponding to mid-log phase. Cells were pelleted at 1,000 rcf, 5 min, 
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washed once with sterile water and diluted in water to an OD600 of 0.3. Serial 10-fold 

dilutions of yeast cells were prepared (0.3 to 0.0003 OD600) and 5 l of each dilution was 

spotted on solid YP medium plates with fermentable (YPD) and non-fermentable (YPG) 

carbon sourse. Plates were incubated at various temperatures (24°C, 30°C, or 37°C) for 2-4 

days. To address H2O2 sensitivity of the mutants, corresponding yeast strains were cultured 

in YPD medium until reaching an OD600 of 1. Cultures were treated with various 

concentrations of 30% stock H2O2 solution for 2 hours at 30°C while shaking. Serial 

dilutions prepared as described above were plated onto solid YPD medium incubated for 2 

days at 30°C.  For documentation plates were scanned with Perfection V750 Pro scanner. 

2.2.1.7 S.cerevisiae transformation 

Competent yeast cells were prepared with lithium acetate/PEG method as descibed in 

literature (Gietz and Schiestl, 2007) with some modifications. S. cerevisiae were 

precultured overnight in 2x YPD with 0.6% adenine hemisulfate (YPAD), diluted to OD600 

of 0.1 next day and grown until OD600 of 1-1.5. Cells were harvested at 1,000 rcf, 5 min, 

washed once with sterile water, and with sterile 0.1 M LiAc. Cell pellet from 50 ml culture 

was re-suspended in 2 ml of 0.1 M LiAc and aliquoted at 100 l. Competent cells were 

frozen at -80°C or used directly for transformation procedure. 

To transform competent cells herring sperm (carrier) DNA was denatured for 5 min at 

95°C and rapidly cooled on ice. Cells were incubated with 120 g of carrier DNA together 

with 200 ng plasmid DNA or 2 g of purified PCR product at 30°C for 30 min with 

agitation (700 rpm). Afterwards 600 l of yeast transformation solution was added and the 

cells were grown at 30°C for 90 min while shaking vigorously (1,400 rpm). Yeast were 

heat-shocked for 15 min at 42°C after adding 68 l of DMSO to the mixture. Cells were 

harvested by centrifugation at 1,000 rcf for 2 min, re-suspended in sterile 1.2 M sorbitol, 

plated onto appropriate selection medium, and grown for 2-3 days at 30°C. When 

antibiotics were used as selection markers, cells were grown for additional 4 hours at 30°C 

in 2x YPAD medium prior to plating. Single colonies were picked and transferred to fresh 

plates for a second selection round. Integration of exogenous DNA was confirmed by 

colony PCR (section 2.2.3.2) or at the protein level by Western blotting of yeast whole cell 

extracts (section 2.2.2.2). 
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2.2.2 Cellular assays 

2.2.2.1 Preparation of cryo powder from yeast cells 

Yeast cells were grown as described in 2.2.1.4. If necessary, mitophagy was induced as 

described in 2.2.1.5. For grinding cells were pelleted at 7,000 rcf for 15 min at 18°C, 

washed once with sterile water, once with solubilization buffer for yeast powder without 

detergent, and all liquid was removed. Cell pellet was then transferred to a syringe and 

pressed into a container with liquid nitrogen. Frozen cells were then ground with CryoMill 

in a 50 ml grinding jar with a 25 mm ball for 20 min at 25 Hz. Prepared powder was stored 

at -80°C until further use. 

2.2.2.2 Cell extracts of S. cerevisiae 

Whole cell extracts were prepared as descibed (Yaffe and Schatz, 1984). Yeast were grown 

in appropriate liquid medium and biomass corresponding to 3 OD600 was taken for 

analysis. Cells were pelleted for 5 min at 4,000 rcf and re-suspended in yeast cell lysis 

solution. Mixture was incubated for 10 min on ice and 15% TCA was added for protein 

precipitation. After additional 10 min on ice precipitate was spun down at 16,000 rcf for 2 

min at 4°C. Pellet was taken up into 50 l of SDS loading buffer containing 0.1 M Tris 

(pH 11.5) for neutralization. Samples were boiled for 5 min at 95°C prior to SDS-PAGE 

loading. 

2.2.2.3 Subcellular fractionation and mitochondrial isolation 

Mitochondrial isolation from yeast cells was performed according to published protocols 

(Meisinger et al., 2006). Yeast were grown in appropriate liquid medium as described in 

2.2.1.4 until OD600 reached 1.5 – 2. Typically to promote mitochondrial proliferation non-

fermentable medium containing 3% glycerol was used. Respiratory-deficient strains were 

cultured in fermentable medium with 2% galactose. Yeast cells were then harvested at 

7,000 rcf for 15 min at 18°C, washed once with sterile water and incubated in 2 ml/g yeast 

pellet of DTT buffer for 30 min at 30°C with mild agitation (90 rpm). Following DTT 

treatment, cells were pelleted at 3,000 rcf for 10 min at 18°C, washed once with 1.2 M 

sorbitol and re-supended in 7 ml/g yeast pellet of zymolyase buffer supplemented with 4 

mg/g yeast pellet of Zymolyase®-20T enzyme to digest the cell wall and convert cells to 

spheroplasts. Zymolyase treatment was done for 60 min at 30°C with mild agitation (90 
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rpm). Spheroplasts were collected at 1,600 rcf for 10 min at 18°C and washed once with 

zymolyase buffer without enzyme. Subsequently, cell pellet was placed on ice and re-

suspended in 7 ml/g yeast weight of ice-cold homogenization buffer. Plasma membrane 

was disrupted with 20 strokes in Potter S homogenizer at 700 rpm. Mitochondria were 

isolated by differential centrifugation. First centrifugation step at 1,600 rcf for 5 min at 4°C 

followed by the second step at 3000 rcf for 10 min at 4°C pelleted unopened cells, cellular 

debris, and nuclei. Mitochondria were sedimented after centrifugation at 17,500 rcf for 15 

min at 4°C. Obtained mitochondrial pellet was washed with SEM buffer with 1 mM PMSF 

and re-suspended in 200 l/g yeast pellet of SEM buffer. Protein concentration was 

determined by Bradford assay and mitochondrial suspension was adjusted to 10 mg/ml 

with SEM buffer. Mitochondria were aliquoted into single-use aliquots, flash frozen in 

liquid nitrogen, and stored at -80°C. 

2.2.2.4 Fluorescent microscopy for protein localization analysis  

Microscopy analysis of yeast cells was done according to previous publications (Alkhaja et 

al., 2012). Proteins tagged with GFP were visualized by in vivo fluorescent microscopy 

using a DeltaVision microscope. Yeast cells were cultured in full synthetic medium 

supplemented with glycerol to OD600 of 1-2 as described in section 2.2.1.4. Mitochondria 

were additionally stained with 0.2 µg/ml MitoTracker® Orange CMTMRos during 15 min 

incubation at 30°C. Cells were then directly used for microscopy with FITC and TRITC 

filters used to detect fluorescence of GFP and MitoTracker dye respectively. Whole cells 

were visualized with differential interference contrast microscopy. Collected images were 

deconvoluted with softWoRx. 

2.2.3 Molecular biology methods 

2.2.3.1 DNA isolation from E. coli 

Plasmids were isolated from 5 ml overnight culture of E. coli inoculated with a single 

colony after transformation or from the cryostock. DNA isolation was carried with 

Wizard® Plus SV Minipreps DNA Purification System according to manufacturer’s 

instruction. Concentration of isolated DNA was measured with a NanoVue 

spectrophotometer monitoring the absorbance at 260 nm. DNA solution was stored in 

water at -20°C. 
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2.2.3.2 Genomic DNA isolation from S. cerevisiae 

Genomic DNA was isolated from 200 l yeast culture grown until OD600=1.5 in YPD 

medium. Cells were pelleted at 3,000 rcf for 5 min, re-suspended in 200 l PBS, and 

treated with 5 g Zymolyase®-20T for 30 min at 37°C. DNA isolation was done with High 

Pure PCR Template Preparation Kit, according to manufacturer’s specifications. DNA was 

stored in elution buffer at -20°C. For quick genotyping (colony PCR) DNA was extracted 

as described previously (Looke et al., 2011). One yeast colony was re-suspended in 100 l 

yeast cracking buffer for DNA extraction and incubated for 10 min at 70°C. Sample was 

mixed with 300 l of 100% ethanol and vortexed. DNA and cell debris were pelleted for 3 

min at 15,000 rcf and the pellet was washed with 300 l of 70% ethanol. Residual ethanol 

was removed by drying the sample for 20 min at 30°C and the pellet was dissolved in 100 

l dH2O. Cell debris was pelleted as described above. For subsequent PCR 1 l was used 

as a template. 

2.2.3.3 Polymerase chain reaction (PCR) 

DNA fragments for molecular cloning and yeast transformation were amplified with KOD 

Hot Start DNA polymerase according to manufacturer’s instructions. For amplification of 

integration cassettes containing natMX6 resistance marker 2-4% DMSO and 0.1% Triton 

X-100 were added to the reaction. To check for genomic integration DNA was amplified 

with USB® Taq DNA Polymerase following manufacturer’s protocol. PCR products were 

then analyzed by agarose gel electrophoresis (section 2.2.3.5). For purification Wizard® 

SV Gel and PCR Clean-Up System was used according to manufacturer’s specifications.  

2.2.3.4 Enzymatic manipulation of DNA 

Cloning was done according to published protocols (Sambrook and Russel, 2001). Plasmid 

DNA and PCR products were digested with Fast Digest restriction enzymes following 

manufacturer’s specifications. DNA fragments were analyzed by agarose gel 

electrophoresis and extracted from the gel using Wizard® SV Gel and PCR Clean-Up 

System. Digested plasmid and insert were mixed at a 1:2 ratio and ligated with a Rapid 

DNA Ligation Kit for 1 hour at 22°C. Cloned constructs were verified by analytical 

restriction and sequencing. 
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2.2.3.5 Agarose gel electrophoresis 

Agarose gel electrophoresis was used for DNA visualization and purification. Gel solution 

was heated until the agarose dissolved. Ethidium bromide (1 g/ml) was added to the 

cooled gel solution and the gel was left to solidify. DNA samples were mixed with 4x 

DNA loading dye. Electrophoresis was done in TAE buffer at 120 V in Mini-Sub® Cell 

GT system. GeneRuler DNA Ladder Mix was used as a standard. DNA was visualized 

upon UV exposure using UVsolo TS transilluminator. If necessary, DNA fragments were 

excized from the gel for purification. 

2.2.3.6 DNA Sequencing 

Sequencing of DNA was done by Seqlab according to comany’s instructions. Sequencing 

data was analyzed with Geneious Pro 5.3.6. 

2.2.4 Biochemical methods 

2.2.4.1 Determination of protein concentration 

Protein concentration was determined using Bradford assay (Bradford, 1976) using Roti®-

Quant reagent according to manufacturers instructions. For mitochondrial protein 

determination bovine IgG was used as a standard to establish a calibration curve. 

Mitochondrial suspension in SEM buffer was diluted 1:10 with water. For the 

measurement 5, 10, and 20 l of mitochondrial dilution were used. Standard and 

mitochondrial samples were incubated for 5 min at 25°C in 2 ml of 1x Roti®-Quant 

reagent. Absorbance at 595 nm was measured with Eppendorf® BioPhotometer. Protein 

concentration was calculated based on the calibration curve. 

Concentration of purified recombinant proteins was determined with Bio-Rad protein assay 

using BSA as a protein standard. Standard and samples were re-suspended in 800 l of 

water and 200 l of 5x Roti®-Quant reagent was added to the mixture. After incubation at 

25°C for 5 min, 100 l of the mixture was pipetted in duplicate into a 96-well plate. 

Absorbance at 595 nm was measured with iMarkTM microplate absorbance reader. Protein 

concentration was calculated based on the calibration curve. 
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2.2.4.2 Affinity chromatography 

Protein complexes carrying ZZ tag (Chen et al., 2006) were isolated using IgG affinity 

chromatography method (Nilsson et al., 1987; Rehling et al., 2003). 

For complex purification isolated yeast mitochondria were defrosted on ice, re-isolated by 

centrifugation at 16,100 rcf for 10 min at 4°C and re-suspended in solubilization buffer for 

mitochondria with appropriate detergent (1% digitonin or 0.6% DDM) at 1 mg/ml by 

pipetting (20 times). Yeast powder prepared with cryo grinding (section 2.2.2.1) was 

solubilized at 0.1 mg/ml in solubilization buffer for yeast powder. After 30 min incubation 

on ice unsolubilized material was removed by centrifugation at 16,100 rcf for 15 min at 

4°C. Input sample was taken after solubilization. Solubilized sample was mixed with 

affinity matrix at various concentrations to ensure maximal depletion.  

IgG affinity matrix was made by coupling cyanogen bromide activated Sepharose 4B to 

human IgG according to manufacturer’s instructions. IgG sepharose was washed twice 

with acetate buffer, twice with 2x solubilization buffer, and once with 1x solubilization 

buffer with appropriate detergent prior to binding. Washing was done in spin columns 

Mobicol „classic“ at 100 g for 1 min at 4°C with 10 bed volumes of buffer.  

After binding for 90 min at 4°C with mild agitation, unbound fraction was removed, and 

the resin was washed 10 times with corresponding washing buffer as described above.  

For SDS PAGE analysis bound proteins were eluted with 2x bed volume of 1x SDS 

loading buffer without β-mercaptoethanol. Alternatively beads were incubated with 0.1 M 

glycine/HCl pH 2.8 for 5 min at 25°C. Elution was done for 2 min at 200 g at 25°C. Low 

pH of the glycin elution was neutralized with 0.1 M Tris base.  

Native protein complexes were released from the resin upon ZZ tag cleavage with 0.4 

mg/ml tobacco etch virus (TEV) protease (self-made). Cleavage was done at 4°C 

overnight. TEV protease carrying a polyhistidine tag was removed after 60 min incubation 

at 4°C with Ni-NTA resin pre-equilibrated with wash buffer. The cleaved native 

complexes were eluted by centrifugation at 4°C for 2 min at 100 g and subsequently 

analysed by SDS or BN PAGE. 
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2.2.4.3 SDS PAGE 

Denaturing protein electrophoresis, originally developed by Laemmli (1970), was 

performed using polyacrylamide gels with 0.1% SDS (SDS PAGE), to separate proteins of 

interest according to their molecular weight (Chakavarti and Chakavarti, 2008). Gels were 

prepared with 30% acrylamide stock solution. For stacking 4% polyacrylamide gel 

buffered with Tris/HCl pH 6.8 was used. Resolving gels of different percentages (8-16%), 

depending on molecular weight of the proteins to be separated, were buffered with 

Tris/HCl pH 8.8. Both sections of the gel were polymerized with 0.1% ammonium 

persulfate and 0.05% TEMED. Prior to gel loading protein samples were mixed with 4x 

SDS loading buffer and boiled for 5 min at 95°C. Mini-PROTEAN Tetra cell or custom-

made gel chambers were used for gel running. Electrophoresis was performed in SDS 

PAGE running buffer at 30 mA/gel. To estimate protein molecular weight, Serva 

Unstained SDS PAGE Protein Marker (6.5 – 200 kDa) was used as a standard.  

2.2.4.4 Urea SDS PAGE 

To increase protein separation in low molecular range (5 – 15 kDa) urea was added to SDS 

PAGE gels (Summer et al., 2009). Resolving gel and stacking gel were polymerized as 

described for SDS PAGE. Urea PAGE running buffer was used for electrophoresis. 

Electrophoresis conditions were similar to SDS PAGE. Urea containing gels were run at 50 

mA/gel. 

2.2.4.5 BN PAGE 

Native protein complexes were separated using Blue Native polyacrylamide gel 

electrophoresis (BN PAGE) as previously described (Schägger and von Jagow, 1991; 

Wittig et al., 2006). Gradient gels of desired percentage with 4% stacking gel were 

prepared in a SE 600 Ruby Standard gel system (GE Healthcare) using custom-made 

gradient mixer. Gel solutions were prepared with BN acrylamide and BN gel buffer. 20% 

glycerol was added to the higher percentage gel solution. Solubilized mitochondria (section 

2.2.5.2) or purified protein complexes mixed with 10x BN loading buffer were loaded on 

the gel. BN anode and BN cathode buffer were used for electrophoresis. BN cathode buffer 

was supplemented with 0.02% Coomassie Brilliant Blue G-250 (blue cathode buffer) or 

was used directly (clear cathode buffer). Electrophoresis was done at 600 V and 15 mA/gel 

at 4°C. To increase subsequent blotting and enzymatic staining efficiency blue cathode 
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buffer was replaced by clear cathode buffer after samples had entered the resolving gel. 

This step was omitted if the gel was later stained with Coomassie (section 2.2.4.8). High 

molecular weight calibration kit was used as a marker to estimate molecular weigth of 

protein complexes. 

2.2.4.6 Western blotting 

After separation by gel electrophoresis proteins were transferred to polyvinylidene fluoride 

(PVDF) membranes by semi-dry blotting (Gallagher et al., 2004). Membranes were 

activated upon brief incubation in methanol and soaked in blotting buffer together with the 

blotting paper. Membrane was assembled beneath the gel, between the three layers of 

blotting paper. Transfer was done at 250 mA for 2 hours. 

2.2.4.7 Immunodecoration 

Immunodecoration was done according to standard procedures (Gallagher et al., 2004). 

After the transfer the membrane was stained with Coomassie staining solution (section 

2.2.4.8) to visualize protein bands and marker. Membrane was cut to decorate for proteins 

of various sizes and Coomassie dye was removed with methanol. For immunodecoration 

the membrane was briefly rinsed with TBST and incubated in blocking solution for 1-2 

hours at room temperature or at 4°C overnight. Afterwards, the membrane was decorated 

with primary antibodies diluted in blocking solution (1:200-1:2,000) for 1 hour at room 

temperature or at 4°C overnight. The blot was washed 3x for 10 min with TBST buffer and 

decorated with secondary antibodies coupled with HRP (1:10,000 in blocking solution) for 

1 hour. After washing the membrane as described, the signals were detected after 

incubation with Pierce® ECL Western Blotting substrate on MEDIX X-ray films. After 

exposure films were developed with Curix 60 processor. For detection of ZZ tag 

Peroxidase Anti-Peroxidase Soluble Complex antibody, diluted 1:500 in blocking solution, 

was used as a primary antibody, and no secondary antibody was applied. 

2.2.4.8 Coomassie staining 

Proteins in polyacrylamide gels and on PVDF membranes were visualized with Coomassie 

staining solution after incubation for 1 min (membranes) or 2 hours (gels). Background 

staining was removed with Coomassie destaining solution until protein bands became 

clearly visible. Membranes were dried to label the molecular weight marker and destained 
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completely with methanol. Polyacrylamide gels were placed on two sheets of blotting 

paper and covered with a plastic bag. Drying was done for 2 hours at 65°C with a vacuum 

gel drier. 

2.2.4.9 In-gel enzyme activity staining 

The catalytic activities of mitochondrial OXPHOS complexes were visualized after BN 

PAGE according to published protocols (Wittig et al., 2007). Gel stripes were cut after the 

run, equilibrated in the corresponding buffer (equilibration solution for complex IV or 

complex V) for 15 min, and stained at 25°C with the staining solution until the colored 

complexes became visible. 

2.2.5 Assays with purified mitochondria 

2.2.5.1 Steady state analysis 

To analyze mitochondrial protein levels by SDS PAGE, isolated yeast mitochondria were 

pelleted at 16,100 rcf for 10 min at 4°C and re-suspended in 1x SDS loading buffer at 1 

mg/ml. Mitochondrial dilutions were prepared to load identical volumes per gel lane.  

2.2.5.2 Solubilization of mitochondria for BN-PAGE 

Mitochondrial samples for BN PAGE were prepared according to published procedure 

(Dekker et al., 1997). Isolated yeast mitochondria were defrosted on ice, re-isolated by 

centrifugation at 16,100 rcf for 10 min at 4°C and re-suspended in BN solubilization buffer 

with appropriate detergent (1% digitonin or 0.6% DDM) at 1 mg/ml by pipetting (20 

times). After 15 min incubation on ice unsolubilized material was removed by 

centrifugation at 16,100 rcf for 10 min at 4°C. Cleared supernatant was then mixed with 

BN loading buffer. 

2.2.5.3 Submitochondrial protein localization 

To assess protein association with mitochondrial membranes carbonate extraction was 

performed as described (Fujiki et al., 1982; Mick et al., 2007). Isolated mitochondria were 

treated with carbonate buffer at 0.5 mg/ml to release proteins periferally bound to the 

membrane. Alternatively mitochondria were solubilized in SEM buffer with 0.4 M KCl 

and 0.1% Triton X-100. After 20 min incubation on ice sample of the input was taken and 
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the rest was subjected to centrifugation at 100,000 rcf in a TLA-55 rotor for 1 hour at 4°C 

to separate soluble proteins from membrane fraction. Pellets were re-suspended in SEM 

buffer and proteins from all fractions were precipitated with 15% TCA for 1 hour on ice. 

The precipitate was pelleted at 16,000 rcf for 30 min at 4°C. Pellets were dissolved in SDS 

loading buffer and analyzed by SDS PAGE and immunoblotting. 

Mitochondrial protein localization was determined in a proteinase K protection assay 

(Mick et al., 2007). Isolated mitochondria were left intact, converted to mitoplasts, or lysed 

with detergent. Intact mitochondria were re-suspended in 1 mg/ml SEM buffer. Mitoplasts 

were generated by osmotic swelling to disrupt the outer membrane. Swelling was done in 1 

mg/ml EM buffer after thorough re-suspension (20 times). Alternatively after swelling 

mitoplasts were treated with 0.2% Triton X-100. After 20 min incubation on ice samples 

were split and treated with increasing concentrations of proteinase K (0, 100, 200 g/ml) 

for 10 min on ice. Proteinase K was inhibited with 2 mM PMSF for 10 min at 4°C, and the 

samples were precipitated with 15% TCA for 1 hour on ice with subsequent centrifugation 

at 16,100 rcf for 30 min at 4°C. Pellets were dissolved in SDS loading buffer with 2 mM 

PMSF and analyzed by SDS PAGE and Western blotting. 

2.2.5.4 Synthesis of radiolabelled proteins and their import into isolated mitochondria 

For the in vitro protein synthesis mRNA was synthesized with SP6 mMESSAGE 

mMACHINE® Kit according to the manufacturer’s instructions. PCR products amplified 

from yeast genomic DNA served as templates for transcription reaction. SP6 polymerase 

binding site was introduced with the forward primer. For Cox26 transcription three C-

terminal methionine residues were added to the template with the reverse primer. The open 

reading frame of ATG32 was cloned into pGEM®-4Z vector under control of SP6 

promoter for RNA synthesis. In this case plasmid DNA directly served as a template. 

Proteins of interest were translated in the presence of [35S] methionine from synthesized 

mRNA using Flexi® Rabbit Reticulocyte Lysate System according to manufacturer’s 

instructions. Cox5a lysate was produced with the TnT® SP6 Quick Coupled 

Transcription/Translation System using COX5A ORF in a pTNTTM vector, as a template. 

Translation reaction was started by addition of [35S] methionine (4 µCi/µl). After 

incubation at 30°C for 90 min the reaction was quenched with 16 mM cold methionine for 

2 min and 0.5 M saccharose was added to the lysate prior to storage at -80°C. 
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Radiolabeled proteins were imported into mitochondria according to published procedures 

(Wiedemann et al., 2006). Isolated yeast mitochondria were re-suspended in 1 mg/ml 

import buffer. If import reactions longer that 15 min were performed, 6.25 mM creatin 

phosphate and 125 µg/ml creatin kinase were added as the energy regeneration system 

(Wrobel et al., 2013). In control samples membrane potential was dissipated with 1% AVO 

mix. Import reaction took place at 25°C with mild agitation after addition of 10% lysate for 

indicated time points. Import was stopped with 1% AVO mix on ice. After the import, if 

not indicated otherwise, mitochondria were treated with 0.1 mg/ml Proteinase K (PK) for 

10 min on ice to digest unimported precursor. PK was inhibited by addition of 2 mM 

PMSF for 10 min on ice. Mitochondria were re-isolated by centrifugation at 16,100 rcf for 

10 min at 4°C, and washed twice with SEM buffer supplemented with 2 mM PMSF. 

Prepared samples were then re-suspended in 1 mg/ml SDS loading buffer for SDS PAGE 

analysis, or solubilized for BN PAGE as described in section 2.2.5.2. After run SDS and 

BN gels were stained with Coomassie, dried and exposed to Storage Phosphor screens for 

detection of radiolabeled proteins. Signals were detected with Storm 820 Gel Scanner. 

Quantification was done with the ImageQuant TL Software with rolling ball background 

substruction. 

2.2.5.5 Mitochondrial oxygen consumption measurements 

Oxygen consumption rates (OCR) were assessed in isolated yeast mitochondria with the 

Oxygraph 2k. Measurements were done at 30°C with stirring (750 rpm) with 10 µg of 

mitochondria in 2 ml MAS buffer. The state III respiration was induced afer addition of 

1 mM NADH and 1 mM ADP (Barrientos et al., 2009). OCR was calculated using a 5 min 

slope and expressed as nmol/ml/min/mg of mitochondrial protein. The measurement was 

repeated 4 times and the mean values were taken. 

2.2.5.6 Mitochondrial enzyme activity assays 

Enzymatic activities of mitochondrial complexes were determined spectrophotometrically 

with Cary® 50 UV-Vis spectrophotometer as described previously (Vukotic et al., 2012). 

Malate dehydrogenase (MDH) activity was assesed as oxaloacetate dependent NADH 

oxidation at 340 nm with NADH extinction coefficient of 6.3 mM-1cm-1. The measurement 

was done in 1 ml MDH activity assay buffer after addition of 25 µg of mitochondria. 

Activity of NADH-cytochrome c reductase (complex III) and cytochrome c oxidase 
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(complex IV) was determined as the rate of cytochrome c reduction and oxidation, 

respectively. The measurement was done at 550 nm in 1 ml activity assay buffer. For 

oxidase activity cytochrome c was reduced with sodium dithionite. As an electron donor 

for the complex III 0.5 mM NADH was added to the buffer. The measurement was started 

upon addition of 50 µg of mitochondria. For the reductase activity measurement the 

mitochondria were treated with 10 mM KCN to inhibit complex IV activity. The extinction 

coefficient of reduced cytochrome c at 550 nm was 21.84 mM-1cm-1. The activity was 

determined as the rate of absorbance change. Each measurement was repeated five times 

and the mean values were taken. 

2.2.5.7 Measurement of mitochondrial ROS production 

Mitochondrial ROS production was assessed with 2',7'-dichlorodihydrofluorescein 

diacetate (H2DCFDA), a compound that becomes fluorescent upon ROS oxidation 

(Giorgio et al., 2005). Fluorescence of 200 µM H2DCFDA upon incubation with 100 µg 

of isolated yeast mitochondria was measured in 500 µl ROS assay buffer using F-7000 

fluorescence spectrophotometer. Excitation and emission wavelength was set to 495 nm 

and 525 nm, respectively. Data was collected at 0.5 s intervals during 10 min.  

2.2.6 Recombinant protein techniques 

2.2.6.1 Recombinant protein expression in E. coli 

Cytosolic domain of Atg32 (amino acids 1-343) under control of lacZ promoter in 

pETDuetTM-1 vector was recombinantly expressed in E. coli. A C-terminal polyhistidine 

tag containing 10 histidine residues was inserted for downstream purification. Competent 

cells of Rosetta(DE3)pLysS strain were transformed with the obtained construct 

(Atg32CYT-His10) as described in section 2.2.1.3. For protein expression cultures 

propagated as described in section 2.2.1.1 were grown to OD600 of 0.5, and induced with 1 

mM IPTG at 30°C for 4 hours under constant shaking. Cells were pelleted for 15 min at 

4,000 rcf, washed once with H2O and frozen at -20°C for storage. 

2.2.6.2 Solubility test for recombinant proteins 

For solubility check of recombinant proteins expressed in E. coli, 20 ml of culture before 

and after induction with IPTG was taken. Cells were pelleted for 5 min at 4,000 rcf, re-
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suspended in 1 ml E. coli cracking buffer, and incubated at 4°C for 30 min with constant 

shaking. Cells were opened using Sonicator Cell Disruptor W-220F during three pulses of 

30 sec with incubations on ice for 1 min between the pulses. Obtained sample was 

centrifuged at 16,000 rcf for 10 min at 4°C and divided into supernatant and pellet. The 

pellet was then re-suspended in 1 ml H2O. Samples of 100 µl were taken for SDS PAGE 

analysis before (total), and after the centrifugation (soluble, pellet). Samples were mixed 

with 4x SDS loading buffer, and analyzed by SDS PAGE and Coomassie staining. 

2.2.6.3 Preparation of E. coli lysates for protein purification 

To lyse E. coli cells expressing the protein of interest, frozen cell pellet was re-suspended 

in 10 ml/g cracking buffer and the cells were opened with EmulsiFlex C5 at 1,000 bar. 

Passage was repeated three times until cell suspension became clear. Insoluble material 

was removed by centrifugation at 18,000 rcf for 20 min at 4°C, and the cleared supernatant 

was filtered through 0.2 µm cellulose acetate filters.  

2.2.6.4 Metal affinity chromatography for purification of recombinant proteins 

Recombinant proteins bearing histidin tag were purified with 1 ml HisTrap HP column 

using ÄKTA Purifier 10. Filtered cell lysate was loaded on the column at 0.5 ml/min flow 

rate. The column was equilibrated with 10 column volumes of HisTrap buffer prior to 

loading. The column with bound protein was washed with approximately 20 column 

volumes of HisTrap buffer until a stable base line of UV absorbance at 280 nm was 

reached. Proteins were eluted from the column with a 0-100% linear gradient of HisTrap 

buffer containing 500 mM imidazole at 1 ml/min flow rate. Peak fractions with highest UV 

absorbance at 280 nm were analyzed with SDS PAGE and Coomassie staining. The 

cleanest fractions were combined and dialyzed in the MonoS buffer stirring overnight at 

4°C. For dialysis the elution fractions was transferred to 7K MWCO SnakeSkinTM dialysis 

tubing. 

2.2.6.5 Ion exchange chromatography 

For purification proteins were loaded on 5 ml Resourse S column, pre-equilibrated with 

MonoS buffer at the flow rate of 0.5 ml/min. The column was washed with 10 column 

volumes of MonoS buffer at 1 ml/min until the base line of UV absorbance at 280 nm was 

reached. Bound proteins were eluted in 10 column volumes with a 0-50% linear gradient of 
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MonoS buffer with 1 M NaCl. The buffer was then exchanged on a 5 ml HiTrap Desalting 

column to MonoS buffer. Fractions containing purified protein were analyzed by SDS 

PAGE and Coomassie staining for impurities, combined, and concetrated with Amicon® 

Ultra-4 centrifugal filter unit with 10 kDa MWCO according to manufacturers 

specifications. Protein concentration was measured with Bradford assay and 20% glycerol 

was added to the samples. After aliquoting the protein was flesh-frozen in liquid nitrogen 

and stored at -80°C. 

2.2.7 Bioinformatics tools 

Mitochondrial targeting signals were predicted using the MitoProt Server (Claros and 

Vincens, 1996). Protein transmembrane regions were predicted by TMpred (Hofmann and 

Stoffel, 1993). Molecular weight of proteins was calculated with Protein Molecular Weight 

(http://www.bioinformatics.org/sms/prot_mw.html) on the basis of a protein sequence. 

Homology search was done with nucleotide BLAST (Altschul et al., 1990). 
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3 Cox26 is a novel subunit of the yeast cytochrome c 

oxidase  

3.1 Biogenesis of the respiratory supercomplexes 

Although the composition of respiratory chain supercomplexes has been intensively 

studied, little is known about their biogenesis. Pulse-chase experiments suggest that the 

supercomplexes are established through direct interaction of respiratory chain complexes 

during their assembly (Acin-Perez et al., 2008). In human cells, sequential incorporation 

of supercomplex components was observed, starting with an intermediate of complex I, to 

which subunits and subassemblies of complexes III and IV are added. Integration of the 

complex I catalytic core finishes respirasome formation (Moreno-Lastres et al., 2012).  

A search for specific supercomplex assembly factors lead to the discovery of the yeast 

Rcf1 and Rcf2 proteins that mediate supercomplex formation (Vukotic et al., 2012; Chen 

et al., 2012; Strogolova et al., 2012). A mammalian factor, SCAF1 protein, has also 

recently been identified (Lapuente-Brun et al., 2013). Another component required for 

supercomplex assembly and stability is cardiolipin, a hallmark phospholipid of the inner 

mitochondrial membrane (Zhang et al., 2002; Pfeiffer et al., 2003; Zhang et al., 2005; 

Brandner et al., 2005; McKenzie et al., 2006). 

3.2 Identification of Cox26 as a novel protein associated with 

supercomplexes in yeast Saccharomyces cerevisiae 

Recently, an uncharacterized protein, Cox26 (YDR119W-A), was described as a putative 

supercomplex component. Its supercomplex association was suggested based on co-

migration studies using BN PAGE (Helbig et al., 2009) and proteomic analysis of isolated 

respirasomes (Vukotic et al., 2012). Since Cox26 function was not characterized in any of 

the previous studies, the goal of this thesis was to address its role with regard to 

supercomplex formation. 
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3.3 Cox26 is a mitochondrial inner membrane protein 

3.3.1 Cox26 co-localizes with mitochondria 

Cox26 was previously found in the mitochondrial proteome (Helbig et al., 2009). The 

protein consists of 66 amino acids with the calculated molecular mass of 7 kDa. A 

homology search using BLAST (NCBI) did not retrieve any promising candidates among 

mammal or fungal species. Cox26 sequence analysis using MitoProt (Claros and Vincens, 

1996) suggested a putative presequence with a 99% probability. In addition, the protein 

contains a predicted transmembrane span deduced from the primary sequence (Figure 8). 

 

Fig. 8 Schematic representation of the Cox26 protein. Numbers indicate amino acid residues; 

grey box represents the putative presequence (PS); black box represents the predicted 

transmembrane span (TM). 

To confirm the mitochondrial localization of Cox26, its C-terminus was endogenously 

tagged with GFP. Mitochondria of the yeast strain expressing Cox26GFP were stained with 

the fluorescent dye MitoTracker® Orange CMTMRos and the cells were analyzed by 

microscopy. The GFP signal could be superimposed with the stained mitochondrial 

membranes (Figure 9), indicating that Cox26 is targeted to mitochondria. 

 

Fig. 9 Cox26 localizes to mitochondria. Yeast expressing Cox26GFP were cultured to mid-log 

phase in synthetic medium containing 2% galactose. Mitochondria were visualized with the 

MitoTracker® Orange probe. Representative images were obtained by fluorescence microscopy. 

Microscopy analysis was performed by Dr. L. Juris in the Institute of Cellular Biochemistry, 

Göttingen. 
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3.3.2 Mitochondrial topology of Cox26 

To confirm the membrane association of Cox26, it was chromosomally tagged with a C-

terminal FLAG peptide. Mitochondria were subsequently isolated and subjected to 

carbonate extraction. Upon alkaline treatment, a peripheral inner membrane protein Tim44 

detached from the membrane, and was recovered in the soluble fraction. In contrast, 

Cox26FLAG remained in the pellet, similar to the integral inner membrane protein Tim21 

(Figure 10.A). 

To address the mitochondrial sub-localization of Cox26, protease protection experiments 

were performed. The FLAG tag on the C-terminus of Cox26 remained stable in intact 

mitochondria upon protease treatment, unlike Tom40, a protein of the outer mitochondrial 

membrane. However, Cox26 was degraded in mitoplasts after outer membrane disruption, 

similar to the inner membrane protein Tim21 (Figure 10.B). Finally, a matrix protein 

Tim44 could only be digested after solubilization with triton X-100 (Figure 10.B). 

 

Fig. 10 Cox26 is an integral protein of the inner mitochondrial membrane. (A) Carbonate 

extraction of Cox26FLAG mitochondria. Total (T), pellet (P), and supernatant (S) samples after 

extraction with carbonate buffer (pH 10.8) or solubilization with triton X-100 (TX-100) were 

analyzed by SDS PAGE and immunoblotting. (B) Submitochondrial localization of Cox26FLAG. 

Intact, swollen (mitoplasts), or triton X-100 lysed (TX-100) mitochondria were treated with 

indicated amounts of proteinase K (PK). The asterisk (*) indicates a degradation product of Tim21. 

In conclusion, Cox26 is an integral protein of the mitochondrial inner membrane, with its 

C-terminus exposed to the IMS, and the N-terminus localized to the matrix. 
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3.3.3 Import analysis of Cox26 

Since Cox26 contains a predicted N-terminal presequence, its import into the mitochondria 

was assessed. The Cox26 protein was synthesized in vitro using rabbit reticulocyte lysate 

in the presence of 35S methionine for radioactive labeling. The first and only methionine 

residue of Cox26 is presumably removed after translation, or as a result of presequence 

processing (Li and Chang, 1995; Yang et al., 1988). Hence, three additional methionine 

residues were added for labeling to the C-terminus of Cox26. The obtained construct was 

imported into isolated yeast mitochondria, followed by proteinase K (PK) treatment to 

remove non-imported precursor (Figure 11). An accumulation of radiolabeled protein with 

increasing import times could be observed, indicating protein translocation into the 

organelle. Import of Cox26 was independent of the membrane potential (Δψ).  

 

Fig. 11 Cox26 is imported into the mitochondria. Cox26 labeled with [35S] methionine was 

imported into isolated mitochondria for the indicated times in the presence or absence of membrane 

potential (Δψ). After the import mitochondria were treated with proteinase K (PK) as indicated. 

Reticulocyte lysate with radiolabelled Cox26 protein was loaded as a control. 

The presequence in precursor proteins is typically removed by the matrix processing 

peptidase (MPP), generating a faster-migrating mature form. After Cox26 import, no size 

shift due to presequence removal was detected, despite the predicted cleavage site. A 

smaller fragment was present after PK digestion, however it could also be found in the PK-

treated lysate, indicating a PK-resistant form of the protein rather than a processing event. 

3.4 Cox26 is associated with respiratory chain supercomplexes 

3.4.1 Cox26 co-isolates supercomplex components 

A proteomic approach identified Cox26 as a protein putatively associated with 

respiratory supercomplexes (Vukotic et al., 2012). To confirm the mass spectrometry 

results, Cox26 was chromosomally tagged with a C-terminal ZZ tag (Cox26ZZ). Cox26ZZ 
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was isolated together with its binding partners from digitonin-solubilized mitochondria 

using IgG affinity chromatography. Digitonin is a mild detergent that preserves even 

weak protein interactions within respirasomes. Cox4ZZ, a structural subunit of the 

cytochrome c oxidase (COX), was used as a positive control. Eluates were then analyzed 

by SDS PAGE and Western blotting.  

Subunits of complex III (Rip1, Qcr8), and complex IV (Cox1, Cox4, Cox5a, Cox13) 

were co-purified with Cox26ZZ in similar amounts, when compared to the Cox4ZZ 

isolation (Figure 12). At the same time Atp2, a component of F1Fo ATP synthase, was 

not detected in the eluted fraction. This finding confirmed the interaction of Cox26 with 

respiratory chain supercomplex components. 

 

Fig. 12 Cox26 interacts with the supercomplexes. Complexes containing Cox26ZZ and Cox4ZZ 

were isolated from digitonin-solubilized mitochondria using IgG chromatography and analyzed by 

SDS PAGE and immunoblotting. Total (10%), eluate (100%). 

3.4.2 Cox26 co-migrates with respiratory chain supercomplexes on BN 

PAGE 

To analyze Cox26-containing complexes, Cox26ZZ mitochondria were solubilized with 

digitonin and subjected to BN PAGE and Western blotting. OXPHOS components were 

visualized using antibodies directed against complex III (Qcr8), complex IV (Cox4), and 

complex V (Atp5) subunits. Cox26ZZ was detected using the peroxidase anti-peroxidase  

(PAP) antibody. As a result, Cox26ZZ was present in two high molecular weight 
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assemblies, co-migrating with the supercomplexes (Figure 13). Supporting this 

observation, respirasomes in Cox26ZZ mitochondria appeared shifted on BN PAGE when 

compared to the wild type, presumably due to the size difference caused by addition of the 

ZZ-tag. 

 

Fig. 13 Cox26 is a supercomplex component. Digitonin-solubilized wild type (WT) and Cox26ZZ 

mitochondria were analyzed by BN PAGE and Western blotting.  

After a long exposure, several complexes containing Cox26ZZ could be observed between 

230 and 440 kilodaltons (kDa). These complexes could correspond to the monomeric 

forms of complex IV (Vukotic et al., 2012), suggesting that Cox26 is a part of cytochrome 

c oxidase within the respirasomes. No complexes matching the dimer of complex III could 

be detected after PAP decoration. Moreover, the dimer did not appear shifted in size in the 

Cox26ZZ strain, unlike the supercomplexes. This indicates that the Cox26 interaction with 

complex III components, detected previously (Figure 12), is mediated through association 

of complex III and complex IV in the supercomplexes. 
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3.5 Cox26 is a subunit of the cytochrome c oxidase (COX) 

3.5.1 Cox26 dissociates from the respiratory chain upon DDM 

solubilization 

To verify the association of Cox26 with cytochrome c oxidase, dodecylmaltoside (DDM) 

was used for mitochondrial solubilization. This detergent leads to dissociation of 

respirasomes into individual respiratory complexes (Schägger and Pfeiffer, 2000). 

Following solubilization, Cox26ZZ was isolated and in these conditions no interaction of 

Cox26ZZ with the components of complex III or complex IV was detected, although 

Cox4ZZ retained its association with the COX. To support this observation, BN PAGE 

analysis of DDM-solubilized Cox26ZZ mitochondria was performed. Intact complex IV 

monomer and complex III dimer could be seen on the gel, however Cox26ZZ was not 

present in any high molecular weight assemblies (Figure 14). 

 

Fig. 14 Cox26 is lost from the respiratory chain after solubilization with DDM. (A) Complexes 

containing Cox26ZZ and Cox4ZZ were isolated from DDM-solubilized mitochondria using IgG 

chromatography and analyzed by SDS PAGE and immunoblotting. Total (10%), eluate (100%). 

(B) DDM-solubilized wild type (WT) and Cox26ZZ mitochondria were analyzed by BN PAGE and 

Western blotting. 
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This poses the question as to whether Cox26 is a supercomplex-specific subunit that does 

not interact with individual complexes, or whether DDM treatment releases Cox26 from 

the respiratory chain. 

3.5.2 Cox26 isolates monomeric COX, but not the dimer of complex III 

To confirm that Cox26 is primarily a COX subunit, Cox26-associated complexes were 

isolated from digitonin-solubilized Cox26ZZ mitochondria. Complexes were eluted 

natively from the IgG sepharose matrix by TEV protease treatment and analyzed by BN 

PAGE and Western blotting. Eluate fractions were decorated for subunits of complex III 

(Rip1) and complex IV (Cox1). Cox26ZZ was visualized in the input with a PAP antibody. 

After elution, untagged Cox26 could not be detected due to the lack of an antibody. 

Supercomplexes containing both Cox1 and Rip1 could be observed in the elution (Figure 

15). They appeared to be shifted in size compared to the input samples due to the loss of 

ZZ-tag. 

 

Fig. 15 Cox26 associates with cytochrome c oxidase within the supercomplexes.  Complexes 

containing Cox26ZZ were isolated from digitonin-solubilized mitochondria using IgG 

chromatography and eluted natively upon cleavage with TEV protease. Total and elution samples 

were analyzed by BN PAGE and immunoblotting. Total (3%), eluate (100%).  
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In addition to the supercomplexes, Cox1 was also present in several complexes in the 

range of 220-440 kDa, which represent the monomeric forms of COX. However, the 

complex III dimer was not detected in the elution. This finding demonstrates that Cox26 

directly associates with complex IV and not complex III within the respirasomes. 

3.5.3 Cox26 assembly requires Cox4 but not the Cyt1 protein 

To further support Cox26 association with complex IV, Cox26 assembly after import was 

monitored in mutant mitochondria. Complexes containing radiolabeled Cox26 were 

separated by BN PAGE and detected by autoradiography. For this experiment, 

mitochondria were isolated from either cyt1∆ or cox4∆ yeast strains. In the absence of Cyt1, 

complex III formation is abolished, while Cox4 absence prevents formation of mature 

complex IV. 

In wild type mitochondria Cox26 assembles into two protein complexes of high molecular 

weight (Figure 16). These complexes correspond to respirasomes, as confirmed by Western 

blotting analysis using the Cox4 antibody. In contrast, Cox26 was present in two smaller 

complexes in the range of 230 to 440 kDa in the cyt1∆ mitochondria. These complexes co-

migrate with the monomeric forms of complex IV, as visualized by Western blot analysis. 

Despite similar import efficiency, Cox26 assembly was abrogated in cox4∆ mitochondria. 

This proves that Cox26 is a part of the supercomplexes and a cytochrome c oxidase subunit 

in yeast. 

3.5.4 Cox26 assembly does not require presence of the late COX 

subunits 

Formation of the cytochrome c oxidase is an intricate process, during which COX 

components are incorporated in a sequential manner. To analyze at which point Cox26 

joins the complex, the radiolabelled protein was imported into mutant mitochondria 

lacking COX subunits and mitochondrial complexes were analyzed by BN PAGE. Upon 

deletion of Cox4, the association of Cox26 with complex IV is abolished. Therefore, yeast 

strains deficient in Rcf1, Cox13, and Rcf2, which succeed Cox4 during cytochrome c 

oxidase assembly, were used in this experiment. These proteins are incorporated 

consecutively, with Rcf1 assembling first, followed by Cox13, and finally Rcf2 (Vukotic et 

al., 2012). 



 

 68 

 

Fig. 16 Cox26 is a component of the cytochrome c oxidase. Radiolabeled Cox26 was imported 

into wild type (WT), cyt1Δ, and cox4Δ mitochondria in the presence or absence of membrane 

potential (Δψ) for indicated times. Samples were treated with Proteinase K (PK), solubilized in 1% 

digitonin buffer, and analyzed by BN PAGE and digital autoradiography. For comparison, 

solubilized mitochondria from corresponding strains were analyzed by BN PAGE, followed by 

western blotting and immunodecoration. 

In the rcf1Δ background Cox26 was assembled with a wild type efficiency, however it 

showed a different complex distribution (Figure 17). This is due to the fact that Rcf1 is 

required for supercomplex formation, and there are less III2IV2 and more III2IV complexes 

in the rcf1Δ mutant (Vukotic et al., 2012). Wild type-like assembly of Cox26 into the 

supercomplexes was observed in the Rcf2-deficient mutant. The absence of Cox13 resulted 

in a reduced incorporation of Cox26 into the respirasomes, but did not lead to a complete 

assembly block. Cox26 import levels were comparable in all tested strains, as can be 

inferred from the SDS PAGE analysis.  

In conclusion, Cox26 is integrated into the supercomplex either prior to, or independent 

from Rcf1, Cox13, and Rcf2 proteins. 
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Fig. 17 Cox26 is incorporated into COX independent from Rcf1, Rcf2, and Cox13. 

Radiolabeled Cox26 was assembled (A) in wild type (WT), rcf1Δ, rcf2Δ, and (B) in cox13Δ 

mitochondria in the presence or absence of membrane potential (Δψ) for the indicated times. Non-

imported protein was removed with Proteinase K (PK), and mitochondria were solubilized in 1% 

digitonin buffer, and analyzed by BN PAGE and digital autoradiography. 

(min)
∆ψ

[35S]Cox26

WT cox13∆

+
5

+
15

+
30

–
30

+
1530

+
5
+

30
–

66

669

440

232

160

III
2
IV

2

III
2
IV

(min)
∆ψ

[35S]Cox26

WT

+
5

+
15

–
3030

+

rcf1∆

+
30

+
155

+
30
–

rcf2∆

+
30

+
155

+
30
–

III
2
IV

2

III
2
IV

66

669

440

232

160

A

B

kDa

kDa



 

 70 

3.6 Cox26 deletion affects supercomplex formation 

3.6.1 cox26Δ mutant does not display a growth defect on non-

fermentable medium 

As Cox26 associates with the supercomplexes and is a part of the cytochrome c oxidase, 

the lack of Cox26 could affect oxidative phosphorylation. To characterize Cox26 function, 

a COX26 deletion strain was generated. Dysfunction of the respiratory chain in yeast can 

result in a growth defect when cells are forced to respire. Thus, growth of the cox26Δ 

mutant was assessed on fermentable (YP Glucose) and non-fermentable (YP Glycerol) 

medium at various temperatures. As a control, a respiratory-deficient cox4Δ strain was 

used. 

COX4 deletion resulted in the strong growth defect on non-fermentable media at all 

temperatures. However, the absence of Cox26 did not compromise respiratory growth in 

these conditions (Figure 18). 

 

Fig. 18 Cox26 is not essential for respiratory growth in yeast. Wild type (WT), cox4Δ, and 

cox26Δ yeast cells were spotted in serial 10-fold dilutions on plates containing YP medium, 

supplemented with glucose or glycerol, and grown at the indicated temperatures for 2–5 days. 

3.6.2 Mitochondrial protein levels remain unaltered in cox26Δ  

To determine whether COX26 deletion affects protein levels of respiratory chain 

supercomplex constituents, the steady state abundance of mitochondrial proteins in the 
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cox26Δ mutant was analyzed by SDS PAGE and immunoblotting. No significant 

differences between WT and cox26Δ mitochondria could be detected for any of the tested 

proteins (Figure 19). 

 

Fig. 19 Steady state protein levels of cox26Δ mitochondria are similar to wild type. Isolated 

wild type (WT) and cox26Δ mitochondria were subjected to SDS PAGE and analyzed by Western 

blotting. 

3.6.3 BN PAGE analysis of cox26Δ mitochondria shows decreased levels 

of supercomplexes 

Despite the fact that the steady state levels of supercomplex-associated proteins were not 

altered in the absence of Cox26, the protein could be important for supercomplex 

formation or stability. Thus, the supercomplex organization was analyzed in cox26Δ 

mitochondria by BN PAGE and immunoblotting. Indeed, the amount of III2IV2 complexes 

was lower in the absence of Cox26, as visualized using antibodies against complex IV 

(Cox1, Cox4) and complex III (Rip1, Qcr8) subunits (Figure 20.A). Simultaneously, 

accumulation of monomeric COX and free complex III2 could be detected in the mutant 

strain. F1Fo ATP synthase levels remained unaffected, as observed upon Atp5 decoration. 

To test whether the decreased levels of supercomplexes were caused by the lack of 

individual respiratory complexes, a BN PAGE of DDM-solubilized mitochondria was 

performed. Immunoblotting did not reveal any significant alterations of complex III, 

complex IV, or complex V amounts between the wild type and cox26Δ mitochondria 

(Figure 20.B).  
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Fig. 20 COX26 deletion leads to the loss of supercomplexes. (A) Digitonin- or (B) DDM-

solubilized wild type (WT) and cox26Δ mitochondria analyzed by BN PAGE and immunoblotting. 
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3.6.4 Decreased supercomplex assembly and accumulation of COX in 

cox26Δ mitochondria 

The loss of supercomplexes upon COX26 deletion could be explained either by decreased 

stability or by inefficient production of the respirasomes. To monitor supercomplex 

biogenesis, assembly of radiolabeled Cox13 and Rcf1 after import was assessed by BN 

PAGE and autoradiography. Both Cox13 and Rcf1 are nuclear-encoded COX subunits that 

join the holo-enzyme at the late stage of COX maturation (Vukotic et al., 2012). Both Rcf1 

and Cox13 were assembled to a lesser extent into the supercomplexes in the absence of 

Cox26, despite similar import efficiency (Figure 21). Interestingly, accumulation of Cox13 

in low molecular weight complexes (250 – 400 kDa) was observed in cox26Δ 

mitochondria. These complexes could correspond to the mature monomeric COX or its 

sub-assemblies. 

 

Fig. 21 COX26 deletion impairs supercomplex formation and leads to the accumulation of 

mature COX. Radiolabeled Rcf1 and Cox13 were assembled in isolated wild type (WT) and 

cox26Δ mitochondria in the presence or absence of membrane potential (Δψ) for the indicated 

times and treated with proteinase K (PK) to remove the non-imported precursors. Digitonin-lysed 

samples were analyzed by BN PAGE or SDS PAGE and digital autoradiography. 
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In conclusion, although the steady state levels of individual respiratory complexes are not 

affected, the absence of Cox26 clearly disturbs supercomplex formation. 

3.7 COX assembly intermediates accumulate in the absence of 

COX26 

The current model describes separate assembly lines for the mitochondria-encoded 

subunits Cox1, Cox2, and Cox3, which together constitute the catalytic core of COX 

(McStay et al., 2013). Previous studies suggest that Cox1 maturation is a starting point for 

COX formation, while Cox2 and Cox3 are incorporated into the enzyme at the later stages 

(Bestwick et al., 2010). During synthesis of the holoenzyme, these subunits progress 

through several intermediates, which accumulate if the downstream biogenesis step is 

blocked (Mick et al., 2010). Therefore, the increased levels of free complex IV observed 

previously (Figure 20.A and Figure 21) could result from alterations in COX biogenesis or 

could represent an accumulation of early assembly intermediates 

Cox5a is a part of the Cox1 assembly pathway, involved in formation of an early assembly 

intermediate – the COA complex (Wielburski and Nelson, 1983; Herrmann and Funes, 

2005; Fontanesi et al, 2006; Mick et al., 2011). To distinguish between the accumulation of 

early assembly intermediates and mature complex IV in cox26Δ, assembly of radiolabeled 

Cox5a after import was monitored by BN PAGE and autoradiography. While import rates 

were similar in the wild type and mutant mitochondria, Cox5a assembly was greatly 

enhanced in cox26Δ (Figure 22.A). Cox5a accumulated in two complexes of 

approximately 230 – 400 kDa that represent the COA complexes.  

Prior to its association with Cox5a, Cox1 interacts with the Cox14 and Coa3 assembly 

factors, (Mick et al., 2010). Later on, Shy1 is included into the complex (Mick et al., 

2007). To analyze the early steps of Cox1 biogenesis, COA complexes were visualized by 

immunodecoration for Cox1 assembly factors (Cox14, Coa3, and Shy1) after BN PAGE. 

Accumulation of COA complexes was observed in cox26Δ mitochondria, consistent with 

the previous result (Figure 22.B).  

In summary, respirasome formation is compromised in the absence of COX26, leading to 

the accumulation of mature COX and its early assembly intermediates. 
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Fig. 22 Lack of Cox26 leads to an increase in COA complex levels. (A) Radiolabeled Cox5a was assembled in isolated wild type (WT) and cox26Δ 

mitochondria in the presence or absence of membrane potential (Δψ) for the indicated times and treated with proteinase K (PK) to remove the non-imported 

precursors. Digitonin-lysed samples were analyzed by BN PAGE or SDS PAGE and digital autoradiography. (B) Wild type (WT) and cox26Δ mitochondria 

were lysed in 1% digitonin buffer, subjected to BN PAGE, and analyzed by Western blotting. 
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3.8 Cox26 absence does not alter respiratory efficiency 

3.8.1 Supercomplexes in cox26Δ exhibit decreased COX activity 

Supercomplexes promote efficient respiration (Vukotic et al., 2012), thus a decrease in 

respirasome amounts can be associated with reduced enzymatic activity. To test this 

assumption, in-gel activity staining of OXPHOS complexes was performed. Isolated 

mitochondria from wild type and cox26Δ strains were solubilized in digitonin, and 

mitochondrial complexes were separated by BN PAGE. Active complexes were visualized 

by formation of the colored reaction products. Oxidation of the cytochrome c by COX is 

coupled to reduction of diaminobenzidine, a red-colored compound that precipitates on the 

active complexes. F1Fo ATP synthase activity is reflected in the accumulation of the white-

colored Pb3(PO)4, generated due to the ATP hydrolysis. To ensure equal loading, total 

protein amounts were compared after Coomassie staining. 

COX activity staining was significantly lower in the III2IV2 supercomplex of cox26Δ 

mitochondria (Figure 23.A). Concurrently, the mutant showed increased amounts of active 

COX monomers, which appeared to be shifted in size. On the contrary, complex V activity 

remained unaltered in the mutant. 

Both complex III and complex IV contribute to the activity of the respirasomes. Thus, 

activity reduction of the individual complexes could explain the observed decrease in 

supercomplex activity. To address this in more detail, supercomplexes were dissociated by 

DDM solubilization and activity staining was performed. Monomeric COX was stained 

with the same efficiency in the mutant and the wild type mitochondria (Figure 23.B). 
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Fig. 23 Less active COX associates with the supercomplexes in the cox26Δ mutant. In-gel 

activity staining of cytochrome c oxidase (Complex IV) or F1Fo ATP synthase (Complex V) in (A) 

digitonin- or (B) DDM-solubilized mitochondria from wild type (WT) and cox26Δ strains resolved 

by BN PAGE. Samples were stained with Coomassie as a loading control.  

3.8.2 Activity of the respiratory enzymes in cox26Δ mitochondria is 

slightly reduced 

Since in-gel activity staining is a semi-quantitative method, specific enzyme activities of 

respiratory chain complexes were determined in a spectrophotometric approach using 

isolated mitochondria.  

Activities of complex III (cytochrome c reductase) and complex IV (cytochrome c oxidase) 

were identified as a change in absorbance due to cytochrome c reduction and oxidation, 

respectively.  Malate dehydrogenase (MDH) was chosen as an internal control, because its 

activity should not be affected by alterations of the respiratory chain complexes. NADH 

oxidation upon conversion of oxaloacetate to malate was monitored in this assay.   

Activity of the respiratory chain complexes in the cox26Δ mutant was slightly lower, while 

MDH activity was similar to the wild type (Figure 24). 
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Fig. 24 Cox26-deficient respiratory complexes exhibit lower enzymatic activity. Enzyme 

activities of NADH-cytochrome c reductase, cytochrome c oxidase, and malate dehydrogenase 

were measured in the isolated wild type (WT) and cox26Δ mitochondria. The averages of five 

replicate measurements are given (SEM, n=5). 

3.8.3 Reduction of the oxygen consumption rate is observed in Cox26-

deficient mitochondria 

The impaired supercomplex formation in cox26Δ observed previously (Figure 20.A and 

Figure 21), could affect electron transfer efficiency and have a more profound outcome on 

mitochondrial respiration. 

To assess the respiration efficiency of the cox26Δ mutant its O2 consumption rate (OCR) 

was compared to that of the wild type. OCR depends on respiratory chain activity since 

substrate oxidation is coupled to O2 reduction by complex IV. For OCR measurements, 

isolated mitochondria in phosphate-containing buffer are introduced into the oxygraph 

chamber. After addition of the substrate (NADH) and excess ADP, mitochondria enter 

state 3 respiration, leading to a rapid increase in O2 uptake (Barrientos et al., 2009). OCR 

of isolated wild type and cox26Δ mitochondria was monitored with an OROBOROS-2k 

oxygraph after addition of ADP and NADH. Mutant OCR was 90% of that of the wild type 

(Figure 25). This finding is in accordance with the mild decrease in enzymatic activity of 

the respiratory chain complexes.  

Taken together, our results suggest that the absence of Cox26 does not have a dramatic 

effect on respiration and enzymatic activity of the respiratory chain despite inadequate 

supercomplex formation. 
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Fig. 25 Lack of Cox26 leads to a modest decrease in the oxygen consumption rate. Oxygen 

consumption of wild type (WT) and cox26Δ mitochondria was monitored with the OROBOROS 

oxygraph. The graph represents an average of four replicate measurements (SEM, n=4). 

3.8.4 Cox26 absence leads to decreased ROS levels without affecting 

hydrogen peroxide-sensitivity of the cells 

In the course of oxidative phosphorylation, electrons are transferred by the different 

complexes of the respiratory chain in a series of redox reactions. Electron leak from 

reduced cofactors and their subsequent interaction with molecular oxygen leads to the 

production of reactive oxygen species (ROS), mainly represented by the superoxide. 

Within the electron transport chain, complexes I and III are considered to be the major 

supply of superoxide anions, generating ROS during their catalytic cycles (Kowaltowski et 

al., 2009; Brand, 2010). Inefficient supercomplex formation can lead to increased ROS 

levels (Vukotic et al., 2012; Maranzana et al., 2013). Therefore mitochondrial ROS 

production was monitored fluorometrically using the H2DCFDA 

(dichlorodihydrofluorescein diacetate) probe that becomes fluorescent upon oxidation. 

Compared to the wild type, cox26Δ mitochondria had a slightly reduced rate of ROS 

generation (Figure 26.A). To address whether this decrease was significant for cellular 

function, wild type and mutant strains were treated with hydrogen peroxide and evaluated 

for growth. This peroxide is deleterious to mutants with high ROS production, such as 

rcf1Δ (Vukotic et al., 2012). Thus the lower ROS levels in cox26Δ cells could potentially 

lead to increased survival upon peroxide treatment. Yet, growth rates of the mutant and the 

wild type strains appeared to be similar (Figure 26.B). In contrast, rcf1Δ cells were unable 

to grow after peroxide exposure.  
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Fig. 26 COX26 deletion is associated with a lower rate of ROS production but does not 

influence H2O2 sensitivity. (A) Mitochondrial ROS was monitored fluorometrically in wild type 

(WT) and cox26Δ mitochondria. The average of four replicate measurements is shown (SEM, n=4). 

(B) Growth test of wild type (WT), cox26Δ, rcf1Δ strains, treated with increasing concentrations of 

H2O2 (0 mM, 2.5 mM, 5 mM) for 2 hours at 30°C. Cells were plated onto YP medium 

supplemented with glucose and incubated for 2 days at 30°C. 

These results indicate that deletion of COX26 does not lead to increase in mitochondrial 

ROS levels due to supercomplex dissociation. 
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4 Dissecting the interaction network of the yeast 

mitophagy receptor Atg32  

4.1 Composition of mitophagic signaling assemblies 

In the yeast S. cerevisiae, mitophagy is known to be triggered by external stimuli, such as 

starvation, but the role of intra-mitochondrial pathways in mitophagy has not been 

addressed. It is plausible that the yeast mitophagy receptor Atg32 acts as a mitochondrial 

sensor, activating mitophagy in response to physiological changes within the organelle. 

Despite ongoing research in this area, it is not well understood, how both internal and 

external mitophagic cues are conveyed to the receptor and what are the major players in 

the mitophagic signaling cascade. To address this problem I wanted to identify Atg32 

interaction partners by purification of receptor complexes, combined with mass 

spectrometry analysis of the complex composition. 

4.2 Isolation of Atg32 receptor complexes from yeast cells 

4.2.1 Establishing an Atg32 isolation procedure from cryolysed yeast 

powder 

Atg32 is localized on the mitochondrial surface, spanning the width of the outer 

mitochondrial membrane. Thus it can potentially interact not only with the autophagic 

machinery in the cytosol, but also with mitochondrial proteins within the IMS that relay 

mitophagic signals from the organelle. To investigate receptor assemblies, which consist of 

both cytosolic and mitochondrial components, an isolation procedure from whole cells was 

established. For this purpose, Atg32 was chromosomally tagged with a ZZ tag. Tag 

addition can impede protein interactions due to steric hindrance. To account for this, two 

yeast strains with ZZ tag fused to either the N- or C-terminus of Atg32 (ZZAtg32 or 

Atg32ZZ) were created for downstream applications. Additionally, a truncated Atg32 

variant, lacking the cytosolic domain (ZZAtg32IMS), was included in the analysis to 

specifically pull down mitochondrial interaction partners. To enable chromosomal 

integration of an N-terminal tag, a constitutive NOP1 promoter was introduced upstream 

of the protein sequence (Figure 27.A). 
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Signaling complexes are often transient and unstable. To shorten handling time and 

preserve complex integrity, a fast cell disruption method using a cryogenic mill was 

devised. During this procedure, samples are pulverized at liquid nitrogen temperatures, 

thus inhibiting proteolytic turnover. After grinding, ZZ-tagged Atg32 was purified, 

together with its binding partners, from digitonin-solubilized yeast powder using IgG 

affinity chromatography. Eluates were then analyzed by SDS PAGE and Western 

blotting. A wild type strain was used as a negative control for purification.  

Atg32 was successfully isolated from yeast cells of all tagged strains that were tested in 

this experiment (Figure 27.B). Despite similar expression levels of the three constructs, the 

truncated Atg32 variant was much more abundant in the eluate. This could potentially be 

explained by different receptor degradation rates during the isolation procedure. 

Proteolysis is possibly prevented in the absence of Atg32 cytosolic domain, thereby 

resulting in higher amounts of the purified ZZAtg32IMS. 

 

Fig. 27 Isolation of Atg32 signaling complexes. (A) Schematic representation of tagged Atg32 

constructs. ZZ tag (ZZ) with a TEV protease cleavage site (TEV) was fused to a C- or N-terminus 

of Atg32. OM – outer membrane; IMS – intermembrane space; TMD – transmembrane domain. 

(B) Atg32 purification from yeast powder. ZZ-tagged Atg32 and its truncated version were isolated 

from cryolysed yeast powder by IgG chromatography. Samples were analyzed by SDS PAGE and 

Western blotting with the α-PAP antibody. * indicates unidentified Atg32 bands due to degradation 

or processing. Arrow indicates a possible modification product. Total and unbound (6%), eluate 

(100%). 
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4.2.2 Production of an anti-Atg32 antibody 

To enable native elution for complex analysis, the ZZ tag can be cleaved from the protein 

using TEV protease. However, untagged Atg32 could not be detected due to the lack of 

specific antibody.  

In order to generate an anti-Atg32 antibody, a corresponding antigen has to be produced for 

animal immunization. For this purpose, the cytosolic domain of Atg32 was cloned into a 

bacterial expression vector with a C-terminal His tag for downstream purification. The 

obtained construct (Atg32CYT-His10) was expressed in E. coli after IPTG induction, 

generating a soluble protein (Figure 28.A). His-tagged Atg32CYT was subsequently isolated 

via metal affinity chromatography and the resulting elution fractions were analyzed by 

SDS PAGE and Coomassie staining. In addition to the protein of interest, several other 

bands were detected on the gel, indicating the presence of contaminating proteins from the 

bacterial host (Figure 28.B). Therefore, the major elution fractions containing Atg32CYT 

were pooled together and further purified by ion exchange chromatography (Figure 28.C). 

The resulting sample was relatively pure and was used for immunization. 

After antigen injection, serum was collected at different time points and used to prepare a 

primary antibody solution, which was tested for reactivity via immunoblotting. The pre-

immune serum was used as a negative control. Anti-Atg32 serum recognized a protein in 

the expected size range in whole cell extracts from the wild type strain. The corresponding 

protein band was absent in the atg32∆ strain and was not detected by the pre-immune 

serum (Figure 28.D). Thus we have generated a specific antibody that is reactive against the 

cytosolic domain of Atg32. 
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Fig. 28 Generation of Atg32-specific antibody. (A) Solubility test of the Atg32 cytosolic domain. 

Expression of the His10-Atg32CYT was induced by treatment with 1 mM IPTG at 25°C. Samples 

were taken at 0 (–) and 4 hours (+) following induction. (B) Metal affinity chromatography and (C) 

ion exchange chromatography of Atg32CYT-His10. In – input, FT – flow-through. Numbers indicate 

elution fractions. Arrow indicates Atg32CYT-His10. (D) Antibody test for α-Atg32 serum. Whole 

cell extracts of wild type (WT) and atg32∆ strains decorated with α-Atg32 antibody. PI – 

preimmune serum. 

  

66

45

29

kDa

In FT 1 2 3 4 5 6 7 8 9 10

B

66

45

29

kDa

In FT 1 2 3 4 5 6 7 8 9 10

C

97

66

kDa

Atg32

W
T

a
tg

3
2
∆

W
T

a
tg

3
2
∆

PI Bleed #1

kDa

Soluble PelletTotal
_

+
_

+
_

+Induction

66

45

29

21

A

D



 

 85 

4.2.3 Detection of Atg32 receptor complexes 

The obtained anti-Atg32 antibody could now be used to visualize Atg32 assemblies and to 

monitor changes in their composition during the course of mitophagy. Receptor complexes 

were purified from cryolysed yeast cells grown under normal and mitophagy-inducing 

conditions. In the latter case, yeast were cultured to post-log phase, which is a known 

mitophagy trigger (Tal et al., 2007). Atg32ZZ assemblies were isolated by IgG affinity 

chromatography, natively eluted via TEV protease cleavage, and analyzed by BN PAGE 

and immunoblotting. Atg32 could be successfully isolated together with its degradation 

and/or processing products (Figure 29.A). Since Atg32 could not be detected on the native 

gel (not shown), a second dimension (2D) SDS PAGE was performed. In this case, protein 

complexes resolved by BN PAGE in the first dimension were further separated using SDS 

PAGE in the second dimension. A complex of around 230 kDa was visible on a 2D PAGE 

in non-inducing conditions. When mitophagy was induced, complexes of smaller size (app. 

140 kDa) could be detected, together with the free protein (around 66 kDa) (Figure 29.B). 

This suggests that Atg32 is part of a protein complex that dissociates upon mitophagy 

induction. 

 

Fig. 29 Atg32 mitophagic signaling assemblies.  Yeast cells were cultured in YPL medium for 12 

hours (non-induced) or 72 hours (induced). Complexes containing Atg32ZZ were isolated from 

digitonin-solubilized yeast powder using IgG chromatography and eluted natively upon cleavage 

with TEV protease. * indicates unidentified Atg32 bands due to degradation or processing. 

Immunoblots were decorated with α-Atg32 antibody. (A) SDS PAGE of elution fractions. (B) 2D 

BN PAGE/SDS PAGE of elution fractions. A fraction of the eluate, prior to BN PAGE, was taken 

as an input sample.  
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4.2.4 Atg32-associated assemblies in mitochondria 

To further support Atg32 complex formation and to specifically focus on mitochondrial 

Atg32 receptor complexes, the assembly of radioactively labeled Atg32 after its import 

into mitochondria was analyzed. Atg32 was translated in the presence of 35S methionine 

using the cell-free rabbit reticulocyte lysate system and imported into isolated wild type 

yeast mitochondria. Protein translocation into the organelle could be monitored by 

visualizing an increase in radioactive signal over time. Atg32 import as expected was 

independent of membrane potential (Figure 30.A). After import, complexes containing 

radiolabeled Atg32 were resolved by BN PAGE and detected with autoradiography. 

Consistent with previous results (Figure 30.B), formation of a 230 kDa complex (C1) could 

be observed (Figure 30.B). Signal intensity of the complex declined during import, together 

with an increased formation of a high molecular weight complex (C2). The C2 complex was 

especially pronounced in mitochondria devoid of membrane potential (Figure 30.B). 

 

Fig. 30 Atg32 assembles into distinct complexes after mitochondrial import. Atg32 labeled 

with [35S] methionine was imported into isolated mitochondria for the indicated times in the 

presence or absence of membrane potential (Δψ). Reticulocyte lysate with radiolabelled Atg32 

protein was loaded as a control. Autoradiogram of SDS PAGE (A) and BN PAGE (B) analysis. C1 

and C2 indicate different complexes of Atg32. 
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4.2.5 Atg32 isolation specificity 

These findings confirmed the presence of a mitochondrial Atg32 receptor complex, 

however, its composition remained unknown. To address this, the isolation specificity of 

Atg32 complex components was tested with the aim of further analysis by mass 

spectrometry. Signaling complexes, containing ZZ tagged Atg32, were purified from 

digitonin-solubilized yeast powder using IgG affinity chromatography. After native 

elution by TEV protease treatment, samples were analyzed by SDS PAGE and Western 

blotting. To test the specificity of the isolation procedure, part of the elution was stained 

with Coomassie after the gel run.  

Despite successful purification, Atg32 could not be detected after Coomassie staining. 

Moreover, the elution contained many unspecific bands, which appeared both in the 

Atg32ZZ and in the control samples (Figure 31). This shows that this technique does not 

provide sufficient isolation specificity and further optimization is required prior to mass 

spectrometry analysis. 

 

Fig. 31 Low specificity of Atg32 isolation procedure. Complexes containing Atg32ZZ were 

isolated from digitonin-solubilized yeast powder using IgG chromatography and eluted natively 

upon cleavage with TEV protease. * indicates unidentified Atg32 bands due to degradation or 

processing. 
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4.3 Atg32 complex purification from isolated mitochondria 

4.3.1 Overexpressed Atg32 is not detectable in mitochondria 

Cell fractionation can decrease the high background of the isolation procedure, thus Atg32 

was purified from isolated mitochondria. Since a band corresponding to the Atg32 protein 

was not visible following Coomassie staining of the elution fraction, it was hypothesized 

that the expression level of Atg32 was too low for detection. To increase expression, the 

endogenous promoter of ATG32 was replaced by the inducible GAL1 promoter. A triple 

hemagglutinin (HA) tag was chromosomally fused to the N-terminus of Atg32 for 

purification purposes. To address the role of the intra-mitochondrial module of Atg32, a 

HA-tagged construct, lacking the cytosolic domain (3HA-Atg32IMS), was included in the 

analysis. 

To determine sufficient levels of Atg32 expression, a time-course expression test was 

performed. The GAL1 promoter was induced by addition of galactose to the culture 

medium. Whole cell extracts were prepared from samples collected after 0, 1, 2, and 3 

hours after induction and analyzed by SDS PAGE and immunoblotting. Both full-length 

and truncated Atg32 were successfully induced after the first hour of galactose addition 

(Figure 32.A). An induction period of two hours was chosen for subsequent studies.  

To test the extent of Atg32 overexpression, whole cell extracts from atg32∆, wild type and 

3HA-Atg32 strains were probed with anti-Atg32 antibody after SDS PAGE and Western 

blotting. The truncated Atg32 construct was not included in this test due to the lack of the 

antigenic region. As can be seen from the blot, Atg32 under control of the GAL1 promoter 

was highly overexpressed after induction, when compared to the wild type strain (Figure 

32.B). 

To isolate mitochondria for receptor complex purification, yeast cells were treated with 

galactose and subjected to cell fractionation. The obtained mitochondrial fraction was 

analyzed by SDS PAGE and Western blotting. Surprisingly, and in contrast to Atg32IMS, 

overexpressed full length Atg32 could not be detected, presumably due to protein 

degradation (Figure 32.C). 
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Fig. 32 Atg32 is not detectable in isolated mitochondria after overexpression. (A) Expression of HA-tagged Atg32 under control of GAL1 promoter was 

induced by addition of 2% galactose to the culture medium. Whole cell extracts were prepared from samples collected at the indicated times. (B) Whole cell 

extracts were prepared after 2 hours of induction with 2% galactose. (C) Mitochondria were isolated from corresponding strains after 2 hours of induction with 

2% galactose. All samples were analyzed by SDS PAGE and Western blotting with α-HA antibody (A and C) or α-Atg32 antibody (B). * indicates 

unidentified Atg32 bands due to degradation or processing. Arrow indicates a possible modification product. WT – wild type. 
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4.3.2 Endogenous Atg32 is not detectable in mitochondria 

The overexpression of Atg32 could be deleterious for mitochondrial function, or lead to an 

increased mitophagy rate. The latter would result in mitochondrial removal and receptor 

degradation. 

Therefore, the presence of the endogenous Atg32 protein on isolated mitochondria was 

tested using the anti-Atg32 antibody. Whole cell extracts from wild type and atg32∆ cells 

were used as a positive control for immunoblotting. No specific band corresponding to 

Atg32 was observed in wild type mitochondria (Figure 33). This result could have two 

possible explanations; either Atg32 levels in the mitochondria were insufficient for 

detection, or Atg32 is degraded during mitochondrial isolation.  

 

Fig. 33 No Atg32 is detected in mitochondria. Whole cell extracts (Cells) and isolated 

mitochondria (Mito) of the wild type (WT) and atg32∆ strains were analyzed by SDS PAGE and 

Western blotting. The blot is decorated with α-Atg32 antibody. 

4.3.3 Cell fractionation causes Atg32 degradation 

To test the hypothesis that Atg32 is removed from the mitochondrial surface during cell 

fractionation, samples were taken at each step of the procedure and analyzed by SDS 

PAGE and immunoblotting. The total sample was prepared prior to mitochondrial isolation 

from crude cell extracts. First, the cell wall was removed by enzymatic treatment and the 

resulting spheroplasts were re-suspended in the lysis buffer (before homogenization, BH). 

After homogenization (AH) and pelleting of large debris and unbroken cells (UC), cleared 

homogenate was obtained (CH). Finally, the enriched mitochondrial fraction was obtained 

by high-speed centrifugation step (Mito), while the cytosol, together with ribosomes and 
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small vesicles, remained in the post-mitochondrial supernatant (PMS). Each sample 

corresponds to the same starting amount of cells, estimated by optical density at 600 nm 

(OD600).  

Atg32, although present in whole cells, was visibly degraded in spheroplasts after cell wall 

lysis and homogenization (BH and AH samples). No traces of Atg32 could be detected in 

the homogenate (CH), while it remained stable in the unbroken cells (UC). Only a very 

weak signal could be seen in the gel lane with mitochondrial fraction (Figure 34). Thus, 

Atg32 is a highly unstable protein, sensitive to proteolysis during cell fractionation. 

 

Fig. 34 Atg32 is digested during mitochondrial isolation. Samples taken at different points of the 

isolation procedure were analyzed by SDS PAGE and Western blotting with the α-PAP antibody. 

WT – wild type, BH – before homogenization, AH – after homogenization, UC – unbroken cells, 

CH – cleared homogenate, Mito – crude mitochondrial fraction, PMS – post-mitochondrial 

supernatant. 

4.3.4 Search for Atg32 stabilizing mutations 

In order to prevent rapid digestion of Atg32, I exploited yeast strains deficient in major 

cellular degradation pathways. Atg32 stability was monitored in the yeast proteasome 

mutant (pre1-1 pre2-2), and in a deletion mutant with impaired vacuolar degradation 

(pep4∆). Pre1 and Pre2 proteasome subunits are required for chymotrypsin-like activity of 

the proteasome complex (Heinemeyer et al., 1991). Proteinase A, encoded by PEP4, is a 

major hydrolase of the yeast vacuole, responsible for maturation of other vacuolar 

proteases (Jones et al., 1982).  

Cellular Atg32 levels were assessed after induction of mitophagy with rapamycin, which 

mimics the starvation response. Whole cell extracts were prepared at different time points 

after rapamycin treatment from the indicated yeast mutants expressing ZZ-tagged Atg32. 
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Upon mitophagy induction, Atg32 was almost completely degraded within the first hour of 

treatment, whereas another mitochondrial protein, Tim50, remained relatively stable. 

Atg32 degradation was not prevented in mutants with reduced proteasomal or vacuolar 

proteolytic activity (Figure 35).  

 

Fig. 35 Atg32 is degraded during mitophagy in mutants with impaired proteasomal and 

vacuolar proteolysis. Corresponding yeast strains were treated with 1 μg/ml rapamycin for the 

indicated time periods. Resulting whole cell extracts were analyzed by SDS PAGE and 

immunoblotting with the α-PAP and α-Tim50 antibody. WT – wild type, pre* – pre1-1 pre2-2 

mutant. Arrows indicate modification products.  

Interestingly, Atg32 was present in several higher molecular weight bands, which 

potentially represent modified forms of the protein. One of these bands, with an estimated 

size of 100 kDa, specifically accumulated during mitophagy in the PEP4 deletion mutant. 

This result shows that inhibition of vacuolar proteolysis does not stabilize Atg32, but 

prevents degradation of its modified form. 
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4.4 Atg32 is modified in response to mitophagy induction 

4.4.1 Atg32 modification is mitophagy specific 

Rapamycin treatment, used in the previous experiment, promotes general autophagic 

response by inhibition of TOR signaling (Heitman et al., 1991). Accordingly, the Atg32 

modification could occur independent of mitophagy. 

Atg11 is an adaptor protein for selective autophagy, acting early in the mitophagic 

signaling cascade. To investigate whether Atg32 modification was mitophagy-specific, an 

Atg11-deficient mutant was included in the study. Whole cell extracts of corresponding 

yeast strains expressing ZZAtg32 were prepared after rapamycin treatment and analyzed 

by SDS PAGE and Western blotting. No higher molecular weight band of Atg32 could be 

detected in the absence of Atg11. Moreover, it was missing in pep4∆ cells after ATG11 

deletion (Figure 36). Hence, a block in mitophagy prevents Atg32 modification. 

 

Fig. 36 Atg32 modification requires Atg11. Whole cell extracts of corresponding yeast strains 

were prepared after 0 or 60 min of 1 μg/ml rapamycin treatment and analyzed by SDS PAGE and 

immunoblotting with the α-PAP antibody. WT – wild type, ∆∆ – double deletion mutant atg11∆ 

pep4∆. Arrow indicates a modification product. 

Selective mitochondrial degradation is highly active after respiratory growth, however 

cells cultured on fermentable medium mostly upregulate general macroautophagy in 

response to starvation (Kissova et al., 2007).  

To address the role of selective and non-selective autophagy in receptor modification, the 

Atg32 immunostaining pattern upon rapamycin treatment was compared after growth on 

different carbon sources. Modified forms of Atg32 were only present after rapamycin 

addition in glycerol-grown cells (YPG) and not in glucose-grown cells (YPD) (Figure 37). 
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Thus, mitochondrial proliferation due to respiratory growth is a prerequisite for receptor 

modification. Taken together, these results support the hypothesis that receptor 

modification is a part of mitophagy process. 

 

Fig. 37 Respiratory growth is a prerequisite for Atg32 modification. Whole cell extracts of 

corresponding yeast strains were prepared after 0 or 60 min of 1 μg/ml rapamycin treatment and 

analyzed by SDS PAGE and immunoblotting with α-PAP antibody. WT – wild type, ∆∆ – double 

deletion mutant atg11∆ pep4∆. Arrows indicate modification products. 

4.4.2 Atg32 is modified in response to different mitophagy triggers 

Mitophagy in yeast can be induced by different stimuli. Mitochondrial degradation occurs 

in respiratory medium when cells reach stationary growth phase. Alternatively, it can be 

triggered by nitrogen starvation after mitochondrial proliferation. Rapamycin treatment 

promotes a cellular response, which is similar, but non-identical, to the one occurring 

under starvation (Hardwick et al., 1999; Cox et al., 2004). 

To test whether Atg32 modification depends on the type of mitophagy, whole cell extracts 

were prepared either after shifting cells from rich non-fermentable medium to starvation 

medium, or after culturing yeast in rich lactate medium for a prolonged period of time. 
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As in the case of rapamycin treatment, Atg32 formed a higher molecular weight band 

during starvation and in post-log phase, although in the latter case, Atg32 was modified to 

a lesser extent (Figure 38). In conclusion, receptor modification is independent from the 

mode of mitophagy induction. 

 

Fig. 38 Atg32 modification occurs under different modes of mitophagy induction. Whole cell 

extracts of corresponding yeast strains were prepared at the indicated times after (A) culturing 

yeast in YPL medium; or (B) after shift to SD-N starvation medium. Samples were analyzed by 

SDS PAGE and immunoblotting with the α-PAP antibody. WT – wild type, ∆∆ – double deletion 

mutant atg11∆ pep4∆. Arrows indicate modification products. 

4.4.3 Atg32 modification depends on autophagic machinery 

Mitophagy exploits the core autophagic machinery for the generation of mitophagosomes. 

Components of the Atg1 kinase complex, Atg1 and Atg13, initiate the signaling cascade 

and recruit downstream autophagy players. Atg14 is necessary for PI3K complex targeting 

and thus PI3P synthesis at the site of autophagosome formation. This in turn promotes 

docking of other autophagy components. The morphology of the isolation membrane is 

determined by the covalent binding of the Atg8 protein to lipids. Atg8 conjugation 
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the autophagic vesicle is completed, it fuses with the vacuole. Inside the vacuolar lumen 

the autophagosomal membrane is lysed with the help of the Atg15 lipase, while the cargo 

is degraded by various hydrolases, including Pep4. 

To assess involvement of the autophagic machinery in Atg32 modification, deletions of 

various autophagic components were made in the pep4∆ background expressing ZZAtg32. 

Whole cell extracts of resulting strains were prepared after rapamycin treatment. Atg32 

modification appeared to be unperturbed in the absence of Atg15 and Atg14, while all other 

proteins tested were essential for the modification to occur (Figure 39).  

 

Fig. 39 Requirement of autophagy-specific genes for Atg32 modification. Whole cell extracts 

of corresponding yeast strains were prepared after 60 min of 1 μg/ml rapamycin treatment and 

analyzed by SDS PAGE and immunoblotting with the α-PAP antibody. Arrows indicate 

modification products. 

4.4.4 The cytosolic domain of Atg32 is required for modification  

The Atg32 protein contains two domains, differentially involved in the mitophagy process. 

The cytosolic domain of Atg32 is essential for mitophagy. It interacts with Atg8 and 

Atg11, and when fused to an artificial tether, initiates pexophagy in yeast (Kondo-

Okamoto et al., 2012). On the other hand, the IMS domain is cleaved within the 

mitochondria by the Yme1 protease. This processing step is necessary for mitophagy 

induction, however the IMS domain itself appears to be dispensable for the process (Wang 

et al., 2013). 
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mitophagy induction with rapamycin. The double mutant, lacking both Pep4 and Atg11, 

was used as a negative control. 

Immunostaining of Atg32IMS revealed several higher molecular weight bands, potentially 

representing the modification. One of the bands was stabilized in the absence of the Pep4 

protease. However, this band was also present when mitophagy was blocked by ATG11 

deletion (Figure 40). Thus the IMS domain of Atg32 is not sufficient for the mitophagy-

specific modification. This suggests that the modification takes place on the cytosolic 

domain of Atg32, or that the cytosolic domain is required for the modification to occur. 

 

Fig. 40 The cytosolic domain of Atg32 is essential for modification. Whole cell extracts of 

corresponding yeast strains were prepared after 0 or 60 min of 1 μg/ml rapamycin treatment and 

analyzed by SDS PAGE and immunoblotting with the α-PAP antibody. Arrows indicate 

modification products. 

In conclusion, Atg32 is modified during the course of mitophagy. This modified version of 

the receptor is delivered to the vacuole, where it is degraded by Pep4. Meanwhile, the 

unmodified form is removed from the mitochondrial surface by a Pep4-independent 

mechanism. The nature of this modification remains elusive and further studies are 

required to identify the modification and the modifier. 
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5 Discussion  

5.1 Cox26 is a novel subunit of the cytochrome c oxidase 

The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain, 

transferring electrons from ferrocytochrome c to molecular oxygen. It is functionally 

conserved in pro- and eukaryotes, however its composition became more complex 

throughout evolution. The oxidase monomer is composed of three mitochondria-encoded 

subunits involved in catalysis and proton pumping, as well as several nuclear-encoded 

subunits, varying between different species (Pierron et al., 2012). The role of these 

supplementary subunits is still a matter of ongoing research. They are involved in multiple 

processes, from complex assembly and stability, to regulation of its enzymatic activity. 

Novel components of the cytochrome c oxidase have been described in recent years, 

adding yet another function to this array. In the mitochondria the cytochrome c oxidase 

does not act as a single entity. Together with other complexes of the ETC it forms higher 

oligomer structures – supercomplexes. This oligomerization requires specific factors, such 

as Rcf1, a conserved subunit of complex IV (Vukotic et al., 2012). While the impact of 

lipid environment on supercomplexes is well established (Zhang et al., 2002; Pfeiffer et 

al., 2003; Zhang et al., 2005; Brandner et al., 2005; McKenzie et al., 2006), Rcf1 is so far 

the only known protein factor in yeast that specifically affects supercomplex formation. 

Thus a mechanistic basis of respiratory chain oligomerization remains ill defined. 

In this study I have identified Cox26 protein as a novel cytochrome c oxidase subunit, and 

characterized its function in cytochrome c oxidase and supercomplex biogenesis. Cox26 

was previously suggested to associate with respiratory chain supercomplexes (Helbig et al., 

2009; Vukotic et al., 2012). Therefore the first goal of this thesis was to confirm this 

interaction.  

Cox26 association with respiratory chain supercomplexes was supported both by BN 

PAGE analysis as well as by immunoprecipitation of the tagged Cox26. Further 

investigation assigned Cox26 as a complex IV component. Cox26 is associated with the 

cytochrome c oxidase in the absence of complex III, and co-isolates the COX monomer but 

not the complex III dimer. Thus Cox26 is not a supercomplex-specific subunit, but rather 

interacts with the supercomplexes via the complex IV. 
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The observation that Cox26 co-purifies COX subunits in amounts similar to Cox4 isolation 

let us to conclude that Cox26 is a stoichiometric subunit of the complex. Moreover, 

mobility shift of supercomplexes in Cox26ZZ mitochondria visible on the BN PAGE 

indicates that Cox26 is present in every respiratory chain supercomplex, rather than a 

specific sub-population of respirasomes. The fact that Cox26 was not identified as a 

cytochrome c oxidase component in previous studies is probably due to the labile 

association of Cox26 with the complex IV, illustrated by its loss upon DDM treatment  

(Taanman and Capaldi, 1992). Besides Cox26 does not appear to have homologues in 

higher eukaryotes, explaining the lack of Cox26 in the homology model of the yeast 

cytochrome c oxidase (Marechal et al., 2012). However, one should note that the amino 

acid sequence among the nuclear-encoded COX subunits is relatively low conserved, in 

some cases comprising as little as 10% between mammals and yeast species (Das et al., 

2004). For such cases the homology is mostly supported by the common function, or the 

presence of conserved domains, which are difficult to predict for small proteins like 

Cox26. 

5.2 Cox26 facilitates assembly of supercomplexes and 

cytochrome c oxidase 

Further studies suggested that Cox26 is required for efficient formation of respirasomes. 

The absence of Cox26 led to a decrease in supercomplex amounts and conversely to 

accumulation of free complex IV and complex III dimer. This decrease was supercomplex-

specific, as levels of individual complexes were not affected. Partial reduction of 

supercomplexes, rather than their complete loss, suggests that Cox26 is important but not 

essential for supercomplex assembly, and that other factors may be involved in this 

process. 

Observed loss of supercomplexes was mainly caused by a defect in biogenesis, opposite to 

dissociation due to reduced stability. In favor of this hypothesis assembly of several COX 

subunits into the supercomplexes was compromised. Moreover, if supercomplexes fall 

apart in the absence of Cox26, one would expect an upturn of mature complex IV. 

However, not only the mature form of the cytochrome c oxidase, but also its early 

assembly intermediates (COA) accumulate in Cox26-deficient cells. These assemblies 

depict Cox1-containing subcomplexes of the COX biogenesis pathway, rather than 
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dissociation products (Mick et al., 2007). One could envisage a model, where loss of 

Cox26 detains supercomplex formation, shifting the kinetic equilibrium of COX assembly. 

The COX is produced faster than it can be included into the supercomplexes, therefore it 

accumulates together with its early assembly intermediates. Enhanced formation of COA 

complexes upon deletion of COX26 suggests that it influences not only respirasomes, but 

also complex IV maturation. However its exact role in this process remains unclear. Cox26 

was only present in the mature oxidase, but not in the COA complexes (data not shown). 

Moreover, no interaction of Cox26 with Cox1 assembly factors, acting in the first steps of 

COX biogenesis, could be observed. Thus it is unlikely that Cox26 would directly affect 

early stages of complex IV formation. Often the block in assembly leads to increased 

turnover of unassembled proteins in order to prevent their aggregation (Nakai et al., 1994; 

Nijtmans et al., 1995). However the steady state levels of all tested complex IV 

constituents remained unaltered in cox26Δ cells. 

Few possible mechanism of Cox26 function can be assumed. The influence of Cox26 on 

Cox2 or Cox3 assembly lines was not tested in this thesis. Alternatively, Cox26 deficiency 

could compromise late steps of COX biosynthesis, leading to accumulation of a preceding 

COA complex. To dissect which point of the COX assembly line is affected in the absence 

of Cox26, it would be important to know when it is incorporated into the maturing enzyme. 

Cox26 retained its interaction with the complex IV in the absence of late subunits, such as 

Rcf1, Cox13, and Rcf2. On the other hand, despite decreased efficiency, Rcf1 and Cox13 

were integrated into the COX in cox26Δ strain. This suggests that their assembly is 

reciprocally independent, leaving the exact stage of Cox26 addition undetermined. Thus 

further studies are required to determine Cox26 function in the respiratory chain 

biogenesis. 

5.3 Cox26 is not essential for respiratory chain activity 

Despite Cox26 role in the supercomplex formation, it had relatively minor impact on 

respiration-related processes. cox26Δ cells appeared to be respiratory proficient, and 

displayed a 10% reduction of mitochondrial oxygen consumption rate (OCR). Lower OCR 

was consistent with a mild decrease of enzymatic activity of the respiratory chain 

complexes. Thus Cox26 appeared to be non-essential for the cytochrome c oxidase activity 

despite affecting its biogenesis. There could be several reasons for this discrepancy. One 
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possibility is occurrence of a suppressor mutation in cox26Δ background that alleviates 

Cox26-mediated phenotypes. To verify this hypothesis a suppressor screen can be 

performed, searching for genes that have a synthetic defect together with COX26 deletion.  

Another option is that Cox26 is a regulatory subunit of the cytochrome c oxidase, which 

modulates its activity in response to environmental changes. It was proposed that the 

addition of nuclear-encoded subunits in the course of evolution was not to create a more 

efficient COX. It apparently imposes a higher level of control on the mitochondria-

encoded components, based on cellular energy demand (Pierron et al., 2012). Thus Cox26 

could have a more profound outcome on mitochondrial respiration only under certain 

conditions. For example, Cox13-deficient cells display a COX activity defect only at high 

ionic strength and perform even better than the wild type, if the ionic strength is low 

(Taanman and Capaldi, 1993). In this case it would be interesting to see whether various 

environmental stresses could have a different impact on cox26Δ cells and their respiration 

efficiency. Finally, some nuclear subunits seem to function specifically in assembly. For 

instance, Cox12 is required for efficient COX formation, but can be removed from the 

mature enzyme without any effect on activity (LaMarche et al., 1992). Regulation of 

assembly pathway and complex stability is an important control mechanism, which acts 

through increasing or limiting the amount of COX. Cox26 could be responsible for fine-

tuning the rate of complex IV biogenesis or its inclusion into the respiratory chain 

supercomplexes, thus adjusting the organization of the respiratory chain to the current 

cellular requirements. 

It has been postulated that supercomplexes play a role in optimizing mitochondrial 

respiration by substrate channeling (Bianchi et al., 2003; Bianchi et al., 2004). However, 

several other conflicting reports disprove this notion (Lenaz and Genova, 2007; Trouillard 

et al., 2011; Blaza et al., 2014). Results presented in this thesis argue along the same lines 

and suggest that supercomplex organization of the respiratory complexes does not affect 

catalytic activity of individual assemblies, but rather influences their formation and 

stability. 

In conclusion, Cox26 is a novel constituent of the yeast cytochrome c oxidase, necessary 

for its assembly and subsequent supercomplex formation, but dispensable for 

mitochondrial respiration. Its discovery broadens the arsenal of accessory COX subunits. 

Nonetheless, further investigation is required to understand the physiological significance 

of Cox26 function. 
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5.4 Mitophagic signaling complexes in mitochondria  

OXPHOS function in energy metabolism is important for the cell. However, besides ATP 

mitochondria also produce ROS and heat, while consuming oxygen and nutrients. 

Imbalance between substrates and products favors generation of ROS over antioxidant 

defense mechanisms and thus can lead to oxidative stress, toxic for cells and mitochondria 

themselves. Such imbalance is especially pronounced under harsh conditions, such as 

starvation, when cells cannot efficiently cope with increased ROS levels because of limited 

biosynthetic capacity (Deffieu et al., 2009). Damage induced by ROS decreases the 

efficiency of the respiratory chain, generating a positive feedback loop of enhanced 

mitochondrial ROS production and resulting mitochondrial malfunction. In this case 

mitochondrial network has to be trimmed by mitophagy to selectively remove impaired 

organelles. Yet the mechanistic details of “healthy versus damaged” differentiation remain 

unknown. PINK1-Parkin pathway represents one example of mitochondrial damage 

sensor. It discriminates defective mitochondria based on membrane potential reduction, 

(Koh and Chung, 2012). However, mitochondrial depolarization is not the only cellular cue 

leading to mitochondrial degradation. Mitochondrial calcium overload, unfolded protein 

response, increased ROS levels, iron depletion, and hypoxia can trigger mitophagy (Byrne 

et al., 1999; Kim and Lemasters, 2011; Liu et al., 2012; Allen et al., 2013; Jin and Youle, 

2013). In some cases mitophagy happens even without membrane potential loss in the 

targeted mitochondria, and it is not clear whether significant mitochondrial depolarization 

regularly occurs in vivo (Jin and Youle, 2013). Moreover, in contrast to mammalian 

systems, CCCP-induced membrane potential loss does not result in mitophagy in yeast 

(Kissova et al., 2004; Kanki et al., 2009a; Mendl et al., 2011). Damage-induced mitophagy 

has been described for S. cerevisiae, however how mitochondrial defects trigger 

mitophagic response is not known. Thus, despite extensive research in this area, exact 

pathways involved in mitochondrial damage sensing and mitophagy signaling are not fully 

characterized. In yeast S. cerevisiae Atg32 protein fulfills mitophagy receptor function. It 

was shown to bind components of the autophagy machinery, such as Atg8 and Atg11, 

however its mitochondrial interaction partners remain to be discovered. Our initial 

hypothesis proposed formation of mitochondrial signaling complexes in response to 

mitophagy. Therefore, the first aim of this project was to isolate Atg32-associated receptor 

assemblies and determine their composition. 
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Analysis of Atg32 receptor complexes showed that it was present in a 230 kDa assembly 

(Atg32230 kDa). Post-log phase mitophagy promoted Atg32230 kDa dissociation, and as a 

consequence a smaller complex of 140 kDa could be observed. One explanation is that 

Atg32 is negatively regulated in physiological conditions, to prevent excessive 

mitochondrial degradation. When yeast age, they progressively increase ROS production 

and accumulate mitochondrial damage (Laun et al., 2001; Lam et al., 2011). This 

presumably induces mitophagy and leads to de-repression of Atg32, allowing its 

interaction with downstream autophagy components. A similar 230 kDa complex could be 

seen after import of Atg32 into isolated mitochondria, supporting the initial observation. 

Interestingly, Atg32 shifted from the Atg32230 kDa complex towards a high molecular 

weight assembly (Atg32700 kDa) with increasing import times. This Atg32700 kDa complex 

was not detected in the previous experiment presumably due to a different setup. 

Considering that formation of the 700 kDa complex was greatly enhanced upon membrane 

potential loss, it could provide a physiological link between mitochondrial damage and 

mitophagy signaling. It is tempting to speculate that once mitochondria become 

depolarized, mitophagy receptor is shifted to another signaling complex, allowing 

mitophagy induction. Although, according to the literature, mitochondrial membrane 

potential loss does not trigger mitophagy in yeast, the CCCP treatment commonly used to 

dissipate the Δψ impairs mitophagy and vacuolar protein turnover (Padman et al., 2013). 

Alternatively, Atg32 engages into this 700 kDa complex to perform a mitophagy-

independent function. One cannot exclude that observed complexes result from protein 

aggregation during import procedure. Established protocol requires protease treatment to 

remove non-imported protein, which otherwise could form aggregates. Since Atg32 is an 

outer membrane protein it would be at least partially digested by protease treatment, which 

therefore had to be omitted. However, the fact that a complex of comparable size was 

detected after Atg32 isolation argues against this hypothesis and in favor of a specific 

complex formation.  

It would be interesting to know if other mitophagy cues, such as nitrogen starvation and 

rapamycin treatment, result in similar complex formation. Another question is whether 

receptor complexes detected after mitochondrial import would differ between mitophagy-

induced and non-induced samples. This would let us compare the impact of cytosolic 

effectors on Atg32 assemblies. Of course, the most intriguing issue is the complex 

composition. However, I was unable to address this question due to technical difficulties, 
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such as receptor instability and low isolation specificity. It is however conceivable that the 

Atg32230 kDa complex could be stabilized in the absence of autophagic machinery 

components, such as Atg8 or Atg11, allowing its purification. It remains to be tested 

whether deletion of these proteins would thus influence Atg32 complex formation, and its 

dissociation upon mitophagy induction. Atg33 was described as a mitophagy sensor 

specific for stationary phase mitophagy (Kanki et al., 2009a). It is one of the possible 

candidates to associate with Atg32 to trigger mitophagy under these conditions. Its 

requirement for Atg32 complex formation can thus be evaluated in future experiments. 

5.5 Atg32 is a highly unstable protein 

As already mentioned, Atg32 has proven to be profoundly unstable even under conditions, 

which do not induce mitochondrial degradation. Proteolysis of Atg32 seemingly depends 

on the presence of its cytosolic domain, since the Atg32IMS construct was not digested 

during isolation procedure and remained stable during cell fractionation.  

Two major degradation pathways exist in the cell. Both the proteasome and the lysosome 

(vacuole in yeast) mediate cellular proteolysis. Surprisingly, inhibition of either pathway 

did not prevent rapid digestion of Atg32 upon mitophagy induction. Moreover, Atg32 was 

degraded even more rapidly when proteasomal activity was decreased. This could be 

attributed to enhanced autophagy in proteasomal mutants. Such compensatory increase was 

previously reported for quiescent yeast cells (Takeda et al., 2010). Unexpectedly, also 

deletion of PEP4, a major vacuolar peptidase essential for degradation of autophagic 

cargoes (Takeshige et al., 1992), did not stabilize Atg32. This result suggests that Atg32 is 

digested by a yet unknown protease, which specifically recognizes its cytosolic domain. A 

screen for an increase in receptor stability among protease deletion mutants could help to 

identify the enzyme responsible for Atg32 proteolysis. This would broaden our 

understanding of the mitophagic pathway and provide a useful tool for future studies. 

Atg32 is removed from mitochondrial surface rather quickly, within the first hour of 

rapamycin treatment, while other mitophagy cargos take several hours to be broken down 

(Eiyama et al., 2013). This could represent a safety mechanism, which prevents an 

overactivation of the mitochondrial degradation pathway. Mitochondria are essential for 

the cell, and only a portion of them is targeted to the vacuole during mitophagy (Kanki et 
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al., 2009b). The downregulation of mitophagy receptor on certain organelles could provide 

a mechanism to selectively trim mitochondrial network without detrimental consequences.  

5.6 Mitophagy leads to modification of Atg32 receptor 

Interestingly, the absence of Pep4 stabilized a high molecular weight form of Atg32, which 

potentially represents covalent protein modification. This form appeared only upon 

induction of mitophagy, and thus could serve as a regulatory mechanism in mitophagic 

signaling. This is a robust response, occurring under different mitophagy triggers. The 

most baffling question is the nature of the modifying moiety. Atg32 is known to be 

phosphorylated (Aoki et al., 2011), however phosphorylation usually produces only a 

minor shift in protein SDS PAGE mobility. Thus an increase of 25 kDa, observed for 

Atg32, is possibly due to a different modification type. This statement, however, had to be 

supported by experimental evidence. Atg32 was tested for several possible modifications, 

including phosphorylation and ubiquitination (not shown). Nonetheless, obtained results 

remained inconclusive. Due to receptor instability, purification of its modified form for 

mass spectrometry analysis was of insufficient quality. It remains to be elucidated whether 

observed modification occurs within the cytosolic or within the IMS domain of Atg32. My 

results strongly suggest that the cytosolic domain of Atg32 is modified in the course of 

mitophagy. First, it is essential for modification; second, autophagic machinery required 

for modification is localized in the cytosol; third, the IMS domain was shown to be 

dispensable for mitophagy (Wang et al., 2013). However, we cannot exclude that the 

cytosolic domain recruits a modifying agent, while the IMS domain itself gets modified. 

To differentiate between these possibilities one should test the presence of modification in 

the absence of Atg32 IMS domain. 

Respiratory growth and mitochondrial proliferation are a prerequisite for Atg32 

modification, since rapamycin treatment of glucose-grown cells did not produce a mobility 

shift for Atg32. It is noteworthy that the degradation of mitochondria is inhibited under 

mitophagy-inducing conditions if mitochondria are essential for metabolism of the 

available carbon source (Kanki and Klionsky, 2008). It thus remains to be tested whether 

Atg32 modification occurs during starvation on non-fermentable medium. 

The modified form of Atg32 accumulated in the first 15 min of rapamycin treatment. 

Therefore it is a fast reaction, possibly modulating receptor activity. Since modified Atg32 
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was only stabilized in the absence of Pep4, it is logical to assume that in wild type cells it 

is degraded by a Pep4-dependent mechanism within the vacuole. The unmodified Atg32 

was quickly degraded, while the levels of the modified version increased during the first 

hour. It seems that the receptor is modified in response to the mitophagy stimuli and 

recruited along with its cargo to the vacuole. Meanwhile, mitochondria that are spared 

from degradation remove Atg32 from their membranes. It is interesting whether 

mitochondrial malfunction could lead to receptor modification, and whether defects in 

mitochondrial physiology could stabilize Atg32 in a manner similar to PINK1 

stabilization. 

The requirement of autophagic machinery for Atg32 receptor modification was also 

addressed in this thesis. The initial aim was to dissect at which point of the autophagy 

pathway Atg32 gets modified. As Atg32 modification is unperturbed in the absence of the 

vacuolar lipase Atg15, it should happen prior to vacuolar fusion. On account of Atg11 

being essential for the modification, one would expect that the modification occurs really 

early in the signaling cascade. Nevertheless, this assumption does not fit very well with the 

requirement of Atg8 conjugation machinery, which acts downstream from Atg11. Most 

unexpected finding was however dispensability of Atg14. In the absence of Atg14 PAS 

recruitment of autophagy components, including Atg8, is disturbed. Taken together these 

results can be justified by autophagy-independent role of Atg8 at the mitochondria. 

Interestingly, Atg32 is capable of binding free Atg8, not conjugated to the lipids of 

autophagic membrane (Kondo-Okamoto et al., 2012). This interaction could provide a 

mechanism for Atg8 recruitment to mitochondrial surface independent from Atg14. 

However it would not explain why the rest of conjugation machinery is required for Atg32 

modification. It would be thus compelling to test, whether the cytosolic terminus of Atg32 

is actually fused to one of the ubiquitin-like proteins during mitophagy. 

Based on the data presented in this thesis, I suggest a revised model of mitophagic process 

in yeast. Under physiological conditions Atg32 is sequestered in a mitochondrial complex, 

preventing it from mitophagy initiation. Upon specific trigger Atg32 is discharged from 

this inhibitory complex and modified by a yet unknown mechanism. I expect receptor 

modification to be the cue for mitophagic degradation of selected organelles, unable to 

remove the unmodified receptor from their surface. Results of this study uncover novel 

aspects of mitophagy pathway and provide direction for future research. 
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