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Abstract

We develop a theory of secondary invariants associated to complete Riemannian metrics
of uniformly positive scalar curvature outside a prescribed subset on a spin manifold.
We work in the context of large-scale (or “coarse”) index theory. These invariants
can be used to distinguish such Riemannian metrics up to concordance relative to the
prescribed subset. We exhibit a general external product formula for partial secondary
invariants, from which we deduce product formulas for the p-invariant of a metric with
uniformly positive scalar curvature as well as for the coarse index difference of two
metrics with uniformly positive scalar curvature.

Our methods yield a new conceptual proof of the secondary partitioned manifold
index theorem and a refined version of the delocalized APS-index theorem of Piazza—
Schick for the spinor Dirac operator in all dimensions. We establish a partitioned
manifold index theorem for the coarse index difference. Moreover, we reprove the
existence of a transformation from the positive scalar curvature sequence of Stolz to
the analytic surgery sequence of Higson—Roe for real K-theory.

As applications of our theory, we construct several complete metrics of uniformly
positive scalar curvature on non-compact spin manifolds which can be distinguished
up to concordance relative to certain subsets. Moreover, we establish variants of
obstructions to existence and concordance of positive scalar curvature metrics via index
invariants on submanifolds.

From a technical standpoint, the central novelty of this thesis is that we use Yu’s
localization algebras in combination with the description of K-theory for graded C*-
algebras due to Trout. This formalism allows direct definitions of all the invariants we
consider in terms of the functional calculus of the Dirac operator and enables us to
give concise proofs of the product formulas. It also allows us to consistently work in
the setting of real K-theory.
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Introduction

A major theme in differential geometry and geometric topology is the study of
Riemannian metrics of positive scalar curvature (psc). The fundamental questions in
this area are both ezistence, that is, whether a given smooth manifold admits a metric
of psc, and classification, that is, if it does, how many different ones there are with
respect to a suitable equivalence relation.

The most successful approach to these problems has been through index theory of
the spinor Dirac operators on spin manifolds. The main ingredient is the Schrodinger—
Lichnerowicz formula,
scal

4 )

which shows that in the presence of uniformly psc, the spinor Dirac operator @
of a spin manifold is invertible. In particular, a closed spin manifold where the
Fredholm index of @ is non-zero does not support a metric of psc. This fact was first
established by Lichnerowicz [Lic63], who used it together with the Atiyah—Singer index
theorem to provide topological obstructions to the existence of psc metrics on high-
dimensional closed manifolds. Later, this method was expanded in different directions
via refined versions of the index, notably by Hitchin [Hit74], Gromov and Lawson [GL83],
Rosenberg [Ros83], and Roe [Roe96]. These refined indices lie in different K-theory
groups. All have the common feature that they vanish in the presence of psc and hence
provide information on the existence problem. Hitchin [Hit74] also constructed an index
difference associated to two metrics of psc, a secondary index whose non-vanishing is
an obstruction to concordance of positive scalar curvature metrics.

In this thesis, we approach the whole subject from the point of view of Roe’s coarse
index theory, which was designed to deal with non-compact manifolds. The coarse
index of the Dirac operator on a complete spin manifold X, possibly endowed with a
suitable action of a discrete group I, resides in the K-theory group K, (Cf (X)), where
Ck (X) is the equivariant Roe algebra of X. The latter is a certain C*-algebra that
encodes information both about the group action and the large-scale geometry of X.
There is a long exact sequence of abelian groups,

D = V'V +

o K (G (X)) D 85(X) o KE(X) M K (R (X)) e, (1)

where KL (X) is equivariant analytic K-homology and SL(X) is the analytic structure
group of Higson and Roe. From this abstract point of view, the coarse index is
obtained by applying the index map Ind": KI'(X) — K,,(C% (X)) to the K-homological
fundamental class [X] € KL (X). If the I'-invariant Riemannian metric g on X has
uniformly positive scalar curvature (upsc), then there is a secondary invariant, the
p-invariant p''(g) € SL(X) which depends on the metric g and lifts the fundamental
class to the structure group. By exactness, this shows that the index is zero, but
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more so, a quantitative reason for its vanishing. Two psc metrics with different p-
invariants cannot be bordant in a suitable sense. For two uniform psc metrics g,
g1, there is a secondary index inspired by Hitchin’s index difference, the coarse index
difference Indhig (g0, 91) € Kpy1(C (X)). This is related to the p-class via the formula
A (Ind%ig (90, 91)) = p" (go) — p* (g91). These secondary invariants have been the focus
of intensive study in the recent past, see for instance [HR10; Siel2a; XY14a; PS14;
WY13; XY14b; XY13].

In the framework of coarse index theory, the index difference of two upsc metrics
9o, g1 can be defined as a “localized” index associated to a metric on X x R which
interpolates between go and g; (but does not necessarily have upsc along the way),
see Subsection 2.2.4. This has led us to consider complete Riemannian metrics which
have upsc outside a given I'-invariant subset Z C X and develop a secondary index
theory adopted to such situations. In fact, Roe has already shown that if the metric has
upsc outside Z, then the coarse index can be “localized” to the subset Z by constructing
an index class in K, (Cf (Z C X)), see [Roe96; Roel6]. Here Cf (Z C X)) denotes the
ideal in the Roe algebra generated by operators supported near Z. Based on this
observation, we introduce and study partial secondary invariants associated to metrics
which have upsc outside a given subset Z C X. This includes the construction of a
partial structure group SL (X )/ Z) together with partial p-classes p%(g) € St (X ) Z)
for Riemannian metrics g which have upsc outside the subset Z. The partial structure
group interpolates between the Higson—Roe structure group and K-homology: There are
identifications ST (X /) = SL (X) and SL (X /X) = KL (X) such that pj(g) = p"(g)
and p (g9) = [X]".

The partial structure group fits into a long exact sequence

Cx) ok I, Ci (X)
Kot (c; Zc X)) = SU(X)2) =5 KD(X) — 5 K (crfch)) :
@)

If a metric g has upsc outside Z, so that p%(g) € SL (X /Z) exists, then we have
qE,X(pg(g)) = [X]'. In particular, the index class Ind?Z([X}F) is an obstruction to
the existence of a metric of upsc outside Z. Moreover, given two metrics gg, g1 of upsc
outside Z, we introduce a partial index difference,

Cr(X
Indiq (90,91 / Z) € Kppa (C}‘(FZ(C)X)> ) (3)
which satisfies
)y (Indyigr (90,91 [ 2)) = pz(90) — P (91)- (4)

We will now explain in which sense the partial p-class and the index difference
can distinguish metrics of psc. Since the receptacles of the coarse indices as well as
the (partial) p-classes are sensitive to the coarse type of the manifold, coarse index
theory cannot be used to compare two arbitrary complete Riemannian metrics on a
non-compact manifold. We need to restrict the large-scale structure of the metrics we
allow in our considerations. Our approach to this is to fix a proper reference metric on
X and consider only those Riemannian metrics that uniformly dominate the chosen



reference metric (see Section 1.3 for details). Given an implicitly fixed reference metric,
we then denote by R (X)) the set of all those Riemannian metrics on X. The subset of
R (X) of those metrics with upsc outside Z is denoted by R, (X). If X is endowed

with a T-action, we denote the subset of invariant metrics by RY (X )"

Definition 1.3.5. Let go,g1 € R}, (X)". We call gy and g1 concordant relative to Z
if there exists a Riemannian metric h € RY,, p (X x R)" such that

(i) b1 X x (—00,0] = go ® dt?,
(i) h | X x [1,00) = g1 & dt2.
If Z =0, go and gy are called concordant.

For closed manifolds and Z = 0, this reduces to the usual notion of concordance for
metrics of psc.

The partial index difference Indgiﬂ: (g0, g1) vanishes if g and g1 are concordant relative
to Z in the sense of the following definition. So, the partial p-class is an invariant of
relative concordance.

One of our initial motivations for the partial p-classes was to use them as a formal tool
to deal with the index difference and Atiyah—Patodi-Singer-type indices. However, they
are also of intrinsic interest in the study of certain positive scalar curvature phenomena
on non-compact manifolds. Indeed, as will be explained below, using these invariants
we are able to construct examples of Riemannian metrics of upsc on non-compact
manifolds which are not concordant relative to certain subsets.

Outline of main results

In Chapter 2, the main part of this thesis, we develop the theory of secondary invariants
for Riemannian metrics of partial positive scalar curvature. We prove all results for
complete spin manifolds endowed with a proper and free (but not necessarily cocompact)
action of a discrete group. Moreover, all our constructions consistently work in all
dimensions and irrespective of whether we choose to work with real or complex K-
theory. This is in contrast to much of the previous literature on the subject such
as [PS14; XY14b], where only the complex case is treated by considering even- and
odd-dimensional manifolds separately.

Product formulas

The central principle of our theory is the following external product formula for partial
p-classes.

Theorem 2.3.1. Fori € {1,2}, let X; be a complete spin manifold endowed with a
free and proper action of a discrete group I';. Let Z1 C X1 be some I'1-invariant subset.

SetXZ:X1XX2 andZ::leXQ andF::I’lxI‘g.
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Then for all g; € R"Z'l (X)) and gy € R(X2)"™ with g := g1 & g € R (X), the
following product formula holds:

p7(9) = Pz (g1) B [Xo]"2. (2.3.1)

The external product SL* (X7 /Z1) @ KL2 (X3) — SL (X /Z) we use here is defined
in Subsection 2.1.4.

For Z = X, this theorem reduces to the classical product formula for fundamental
classes in K-homology. For Z = (), it yields a new proof of the product formula for the
p-class,

P (1) B [Xo]"2 = p" T2 (g1 @ ga). (5)

The formula (5) was proved in the thesis of Siegel [Siel2a], where a construction of the
structure group in terms of a customized notion of Kasparov cycles is used. However,
in Siegel’s construction the compatibility between the exterior product and the Mayer—
Vietoris boundary map appears to be not straightforward. Siegel’s approach has also
been studied by Zenobi [Zen14] with a focus on the signature operator and secondary
invariants associated to homotopy equivalences. Moreover, the product formula (5)
can be deduced using the geometric picture of the structure group due to Deeley—
Goffeng [DG15]. Another discussion of (5) is implicit in the work of Xie-Yu [XY14b,
pp. 838-839] using Yu’s localization algebras.

Our approach is a variant of Xie—Yu’s, entailing technical simplifications in the
construction of the invariants and in the proof of the product formula. Indeed, similarly
as in [XY14b], we use variants of Yu’s localization algebra to construct the partial
structure groups and realize the Higson—-Roe exact sequence (1) as well as the generalized
version (2). The main novelty is that we combine Yu’s localization algebra with the
description of K-theory for graded C*-algebras due to Trout [Tro00]. This formalism
allows tautological definitions of the fundamental classes and of the (partial) p-classes
in terms of the functional calculus of the Dirac operator, see Section 2.2. In order
to treat all dimensions at once, we consider a Cl,,-linear variant of the localization
algebras (see Section 1.4) and consistently work with the Cl,-linear Dirac operator. In
particular, our approach also works straightforwardly in the setting of real K-theory.
Using this setup we give a concise and self-contained proof of the product formulas,
see Section 2.3.

Secondary partitioned manifold index theorems

It is crucial for applications that the external product is compatible with Mayer—Vietoris
boundary maps. In our construction, this is the case because the external product we
use is induced by the external product in K-theory, where compatibility with boundary
maps can be checked abstractly. Together with the product formula we obtain a
partitioned manifold index theorem for the partial p-class as follows:

Let W be a complete spin manifold. Let X C W be a closed submanifold of
codimension one with trivial normal bundle. We suppose that W\ X has two connected
components and denote the closures of the connected components of W\ X by Wy. If
W is endowed with a I'-action, we additionally require that X, W_ and W, are all



T'-invariant subsets. In this situation, we say that W is partitioned by X. Moreover, a
Riemannian metric h € R (W) is partitioned by g € R (X) if near X the metric h can
be written as g @ dt? with respect to a tubular neighborhood of X.

Theorem 2.4.6. Let W be a complete spin manifold endowed with a free and proper I'-
action and suppose that it is partitioned by X. Let Z C W be a closed I'-invariant subset
that is admissible with respect to W and suppose that h € R} (VV)F is partitioned by

g€ R (X)P. Then the Mayer—Vietoris boundary map
Ohv: STy (W) 2) = ST (X 201 X)
associated to the cover W = W, U W_ satisfies

v (pZ(h) = pnx(9)-

Here the subset Z is called “admissible” if it satisfies a suitable large-scale condition,
see Definition 2.4.2. Valid choices include Z = X, Z =0 and Z = W_ \ (X X (—¢,0])
(with respect to a tubular neighborhood).

In the case Z = ), we obtain a new proof of the secondary partitioned manifold
index theorem of Piazza—Schick [PS14, Theorem 1.22] for all dimensions. We also have
a partitioned manifold index theorem for the index difference (see Corollary 2.4.9).

Coarse APS-index theory

The other main index theorem of [PS14], the “delocalized Atiyah—Patodi-Singer (APS)
index theorem”, is a consequence of our partitioned manifold index theorem for partial
secondary invariants. Before explaining this, we first state the theorem and some gener-
alizations. Consider a complete spin manifold Y with boundary Y = X endowed with a
free, proper I'-action. Suppose that the inclusion X < Y is a coarse equivalence. Then
for every g € R (X)", there is an APS-type index Ind., . (Y, X, g) € K, ;1(Cs (X))
whose non-vanishing is an obstruction to extending g to a metric of upsc on Y. This
index has already been studied in [PS14; XY14b]. In addition, we construct in Def-
inition 2.4.13 a “p-invariant of the null-bordism Y as an element p'' (V) € SL (X)
which maps to the fundamental class [X]" € KL (X). In particular, the index Ind" (X)
vanishes; this is a variant of bordism invariance for the coarse index, compare [Wull2].
These invariants are related in the following way:

Corollary 2.4.16. For every g € RT (X)F the following identity holds:

" (Indgps (Y7 X, g)) = pF(g) - pF(Y> € Sg (X) :

This is a refinement of the original delocalized APS-index theorem ([PS14, Theorem
1.14]) because we have an equality in SL (X) instead of merely in SL (V). In fact,
the element p' (Y') vanishes after pushing it forward to S (Y'), and thus the original
result is recovered. As a further generalization, we also construct an APS-index
Ind,,. (Y,X / Z,9) € Kny1(Ch(X)/Ch(Z C X)) for Riemannian metrics of upsc

outside a subset Z on the boundary, that is, g € R}, (X)F, see Subsection 2.2.3. We
then establish the following coarse APS-index theorem for partial upsc:
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Theorem 2.4.15. For every g € R}, (X)F the following identity holds:
0z (s (V. X [ Z,9)) = p(9) = db.2 (0" (V) € S5 (X ) 2).

Here ¢f ; is a natural map S} (X) — SI (X /Z), and the boundary map is the one
appearing in the generalized Higson—Roe sequence (2). The proof of Theorem 2.4.15 (and
hence Corollary 2.4.16) applies the partitioned manifold index theorem (Theorem 2.4.6)
to the partitioned manifold Y, := Y Ux X X R3¢ obtained by gluing an infinite
cylindrical end to Y along its boundary.

The index difference (3) can be realized as a special case of the coarse APS-index
(see Subsection 2.2.4). Then formula (4) follows from Theorem 2.4.15 (see Corol-
lary 2.4.19). In addition, Theorem 2.4.15 implies that the partial p-class is a coarse
bordism invariant in a suitable sense (see Corollary 2.4.20).

Applications

As a sample application, we recall the coarse-geometric construction of higher secondary
invariants associated to metrics of psc on compact spin manifolds. This is done by
passing to the universal covering and considering equivariant p-classes, APS-indices
and index differences with respect to the deck-transformation action of the fundamental
group. More precisely, let M be a closed spin manifold together with a continuous
map u: M — BT. Let M — M be the I-covering classified by u. Then for every
Riemannian metric g on M of psc, we define the higher p-invariant p*(g) € S(I") as the
push-forward of p''(§) € St (]\Zf ) to the universal structure group for T via @: M — EI.
Since M is T-cocompact, there is a canonical isomorphism K, (C5 (M)) = K.(CT),
where CIT' denotes the reduced group C*-algebra. Hence we may consider a*(M) :=
Ind" (M) € K, (C:T) and alg (9o, 91) = Indiig (G0, 51) € Knp1(CIT), the latter for
90,91 € R (M). If u is the classifying map of the universal covering, we just write
p"(g), o (M) and afig (9o, 91)-

The most conceptual approach to these invariants is via a transformation from Stolz’
positive scalar curvature sequence to the universal Higson-Roe sequence associated to
some discrete group I', as it has been established by Piazza—Schick and Xie—Yu:

Theorem 3.1.13 ([PS14; XY14b]). We have a well-defined commutative diagram:

Q5PN (BT) —s RSP (BI) — PP (BT — QP (BT) — RSP (BT
*+1 x+1

J{[ ] J{OtAPs J{P ) [] J/(IAPS

K1 (D) — Kot (CT) —25 S,() —% 5 K, (1) —2 K, (C:T)

In Section 3.1, we reprove this result based on the secondary coarse index theory we
have established in Chapter 2. In particular, this includes a proof of bordism invariance
of the higher APS-index based solely on methods from coarse index theory. Since all
our methods are designed to work with real K-theory, our approach to Theorem 3.1.13



also establishes the transformation from the Stolz sequence to the real Higson-Roe
sequence.

The main application of secondary invariants for positive scalar curvature is to
distinguish metrics of upsc up to concordance or bordism. Of course, this is only
interesting if there indeed exist pairs of metrics of upsc which are distinguished by the
p-class or the index difference. If M is a closed spin manifold that admits a metric of psc
and I := 71 (M) has torsion and satisfies the analytic Novikov conjecture, then there
always exist metrics go, g1 € RT (M) with p''(go) # p' (g1) € Sn(T'). This statement
follows, for example, from work of Weinberger—Yu [WY13], where a more quantative
version based on the amount of torsion in I is established. Since such examples exist for
closed manifolds, our structural results like the product formulas and the partitioned
manifold index theorems can be utilized to construct further examples of upsc metrics
that can be distinguished by our secondary index invariants. In the following, we
present several incarnations of this idea.

The first result is a corollary of the secondary partitioned manifold index theorem,
Theorem 2.4.6.

Corollary 3.3.1. Let M be a closed spin manifold together with a map u: M — BT
and go,g91 € RT (M) such that p“(go) # p“(g1)- Let W be a complete spin manifold
with hg,h1 € RT (W) such that W is partitioned by M and h; is partitioned by g;,
it = 0,1 (see Definition 2.4.1). Suppose that u extends to a map W — BI'. Then
ho and hy are not concordant relative to W_ (or W), where Wy are the connected
components of W\ M.

Before stating a further corollary, we recall a geometric notion due to Gromov [Gro93].
A complete Riemannian manifold Y is called hypereuclidean if it admits a proper
Lipschitz map Y — R? of degree 1 into some Euclidean space R? (if this is the case,
then ¢ = dimY"). We say that Y is stably hypereuclidean if Y x R¥ is hypereuclidean
for some k > 0.

Corollary 3.3.6. Let M be a closed spin manifold together with a map uw: M — BI
and go, g1 € R (M). Moreover, let Y be a complete spin manifold, gy € R(Y) and
Z CY some subset. Suppose that

(i) agig (90,91) # 0 € Kypa (CIT),

(i) gi®gy e RT (M xY) fori=0,1,
(iii) (Y,gy) is stably hypereuclidean,
iv)

(iv

Then the metrics go ® gy and g1 ® gy are not concordant on M XY relative to M X Z.

Z is coarsely negligible in Y .

Here we say that a subset Z C Y is coarsely negligible if the inclusion map coarsely
factors through a flasque space (see Definition 3.3.2). Examples of coarsely negligible
subsets include compact subsets of complete Riemannian manifolds and half-spaces in
Euclidean spaces.
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By a result of Dranishnikov [Dra06, Theorem 3.5], the universal covering of an
aspherical manifold is stably hypereuclidean if the fundamental group has finite asymp-
totic dimension. We use this to conclude the following product result for the higher
p-invariant for closed manifolds.

Corollary 3.2.2. Let M; be closed spin, u;: M; — BT and g; € RT (M;), i = 0,1,
such that p“o(go) # p“(g1). Let N be a closed aspherical spin g-manifold such that
A = 71(N) has finite asymptotic dimension. Let gy € R (N) such that g; ® gn €
RT (M x N) fori=0,1. Then p*I(go & gn) # p* >N (g1 © gn ).

Going in a slightly different direction, we apply our methods to obtain obstructions
to concordance on closed manifolds via secondary index invariants on submanifolds.
To understand the context of this, note that Hanke-Pape—Schick [HPS15] have shown
that, under suitable conditions, the a-invariant of a codimension two submanifold is
an obstruction to positive scalar curvature on an ambient closed spin manifold. We
establish a variety of modifications of this result. For instance, we have a secondary
codimension two obstruction as follows.

Theorem 4.1.3. Let M be a closed spin manifold and N C M a closed submanifold of
codimension two with trivial normal bundle. Fix a tubular neighborhoodt: N xD. — M.
Suppose that the inclusion induces an injection A :== m N — myM =: T and a surjection
moN — mM. Let go,g1 € RT (M) such that t*(g;) = gn.i ® gp.i, where gp,; is
cylindrical near the boundary for i € {0,1}. If p*(gn.0) # p*(gn1) in Sn_2(A), then
go and g1 are not concordant on M.

The proof of this statement relies on the secondary partitioned manifold index
theorem and the language of partial p-classes. Moreover, we attempt to generalize both
primary and secondary obstructions to codimensions other than two. The picture is
most complete for codimension one:

Theorem 4.1.1. Let M be a closed spin manifold and T' = myM. Let N C M
be a closed submanifold of codimension 1 with trivializable normal bundle. Suppose
that the inclusion induces an injection myN =: A — T'. Fizx a tubular neighborhood
t: N x (—e,e) < M. There exists a commutative diagram,

SU' (M) —— K, (M) — K,(CiT)

*

SA L (N) — Kio1 (N) —— K,_1(CiA),

with the following properties:
(i) m([M]) = [N],
(ii) a(al (M)) = o™ (N),

(iii) 75(p"(9)) = p™(gn) for all grr € RT (M) with producture structure 1*g = gn ©dt?
on the tubular neighborhood of N,



(iv) Ta(ozgiff (90,01)) = o‘[d\iff (gn0,9N1) for all go, g1 € R (M) with product structure
t*g;i = gni ®dt?, i = 0,1, on the tubular neighborhood of N.

Corollary 4.1.2. Suppose that the hypotheses of Theorem 4.1.1 hold. Then:

e Ifa®(N) #0 in K. (C:A), then of (M) # 0 and M does not admit a metric of
positive scalar curvature.

Fori € {0,1} given g; € RT (M) with product structure g; = gn; ® dt?, i = 0,1, near
N, we deduce:

o If afi\iff (gn.0,9n.1) # 0, then alig (9rr.0, 9m.1) # 0 and go is not concordant to g
on M.

o If p(gnyo) # p*(gn,1), then pF(go0) # p" (1)

Finally, for arbitrarily high codimensions, we obtain a primary obstruction for fiber
bundles over certain aspherical manifolds based on a new variant of the primary multi-
partitioned manifold index theorem, see Section 4.2. In Section 4.3, we demonstrate
that, for codimensions greater than two, there cannot exist a general secondary multi-
partitioned manifold index theorem that is naively analogous to the partitioned manifold
index theorem.

Organization of the thesis

In Chapter 1 we exhibit some prerequisites for the following chapters. In particular, we
review the spectral picture of K-theory, discuss Yu’s localization algebras and establish
some technical conventions pertaining to the comparison of Riemannian metrics of psc
on non-compact manifolds.

Chapter 2, which is the core part of this thesis, develops our secondary index theory
for metrics of partial positive scalar curvature. In particular, this includes the product
formulas, the secondary partitioned manifold index theorem and the coarse APS-index
theorem. In Chapter 3, we discuss applications of the theory to closed manifolds and
then how to use them to construct interesting examples on non-compact manifolds.
Chapters 2 and 3 grew out of the author’s article [Zeil6] published in the Journal of
Topology.

Finally, in Chapter 4, we discuss our applications to primary and secondary ob-
structions via submanifolds. The primary multi-partitioned manifold index theorem,
its consequences on fiber bundles, and the primary codimension one result have been
previously made available on the arXiv [Zeil5].






1 Preliminaries

This chapter serves as a technical preparation for the rest of this thesis to recall requisite
facts and set up the notation. We discuss the spectral picture of K-theory, elements
of spin geometry, concordance of Riemannian metrics on non-compact manifolds, and
Yu’s localization algebras. Proofs in this chapter are usually abridged or replaced with
references to the relevant literature.

1.1 K-theory of C*-algebras

1.1.1 Graded C*-algebras

We use the approach to K-theory for graded C*-algebras due to Trout [Tro00] following
the exposition in the lecture notes [HG04].

Unless stated otherwise, we work with Real C*-algebras by default. However, the
reader may “complexify” everything simply by ignoring the Real structure. A Real
C*-algebra is a complex C*-algebra A together with an involutive conjugate-linear
x-automorphism A — A, a — a. We require *-homomorphisms ¢: A — B between
Real C*-algebras to preserve the Real structure, that is, p(a) = ¢(a) for all a € A.

A grading on a (Real) C*-algebra A is a Real x-automorphism a: A — A such
that o®> = id. A C*-algebra together with a grading is called a graded C*-algebra.
Alternatively, a grading may be viewed as a direct sum decomposition A = A® g A1)
into selfadjoint Real subspaces such that A®AU) C AG+)) where A® is the (—1)-
eigenspace of o, i € Zg. All ¥-homomorphisms ¢: A — B between graded C*-algebras
will be assumed to preserve the grading in the sense that poa = aop. Any C*-algebra
can be trivially graded by setting o = id.

The Real C*-algebra of continuous functions on the real line which vanish at infinity
admits a grading defined by the reflection map f — (z +— f(—z)). We will denote this
graded Real C*-algebra by S.

Let # = H® @& HW be a fixed graded Real Hilbert space, where H(® = HW) is
countably infinite-dimensional. Let K denote the Real C*-algebra of compact operators
on H, graded by the decomposition into diagonal and off-diagonal matrices. Such a
grading is known as a standard even grading.

Given two graded C*-algebras A and B, we denote their maximal graded tensor
product by A ® B. We will always use mazimal tensor products unless specified
otherwise.

A central feature of this thesis is the use of Clifford algebras. See [ABS64; LM&9|
for general references. We use the following notation. The Clifford algebra Cl,, ,, is
the Real C*-algebra generated by real, odd generators {e1,...,en,1,...,Em} subject
to the relations e;e; + eje; = —20y5, exer + €16k = +20k1, €ici +exe; =0, e = —e;y,
€ = €k. As shorthands we denote Cl,, o by Cl,, and Cly,, by Cl;,. There is a canonical

11



1 Preliminaries

isomorphism Cl, ,, ® Cly/ ' = Clptn/ m+m’- In cases where we do not use the Real
structure, we will denote the Clifford algebras by Cl,,. Moreover, Cl,, ,, is isomorphic
to the matrix algebra My (C). Here “C” denotes the Real algebra C endowed with
the standard complex conjugation. For n > 0, the algebra Cl, , is endowed with a
standard even grading using an identification Cl,, ,, = Man (C) = My(Man-1(C)). In
particular, we have an isomorphism Cl,, ,, QK=K for all n > 0.

Let A, B be graded Real C*-algebras. Let [A, B] be the set of homotopy classes
of *-homomorphisms A — B (with respect to homotopies preserving the given Real
structure and grading). In other words, [A4, B] = mo(Hom(A, B)), where Hom(A4, B)
denotes the space of x-homomorphisms A — B endowed with the point-norm topology.
The homotopy class of a *-homomorphism ¢: A — B will be denoted by [¢].

Definition 1.1.1. Let A be a graded Real C*-algebra. For n > 0, we define the group
K (A) := m (K(4)),
where K(A) := Hom(S, A ® K) with the zero map as base-point.

One can verify that the n-fold loop space of K(A) is canonically homeomorphic to
K(X"A). Here X" A denotes the n-fold suspension of A, that is, 2" A = Co(R") & A,
where Co(R™) is endowed with the trivial grading. In particular, we have K, (A) =
To(K(574)) = Ko(S"A) = [8, 5" A B K].

The direct sum induces a map K(A4) x K(4) — K(A), taking a pair (¢,9) €
K(A) xK(A) to the composition S “2 (ABK)®(ABK) = A®(K®K) € ASK, where
we use an embedding K@ K C K coming from the diagonal embedding K® K C My (K)
and an even unitary isomorphism H @& H = H. The choice of such a unitary does not
matter up to homotopy. It can be shown that this defines a commutative H-group
structure on K(A), thereby turning K,,(4) = 7,(K(A)) into an abelian group for all
n > 0. By a general principle in homotopy theory, this agrees with the homotopy
group structure on 7, for n > 1. It is possible to turn K(A) into a spectrum so that its
homotopy groups are precisely the K-theory groups we have just defined, see [Del+11].

Remark 1.1.2. Any graded s-homomorphism ¢: & — A defines an element [p] :=
[ ® e11] € Ko(A), where e;; is an even rank 1 projection in K.

1.1.2 External Product

There is a comultiplication A: S - S® S, f — f(x® 1+ 1& x), given by the
functional calculus of the unbounded multiplier x ® 1 + 1 ® x. The comultiplication A
is coassociative and counital (with counit n: & — C, n(f) = f(0)).

On the generators {e™",xe "} of S the comultiplication satisfies
A(e*XQ) —e ™ ® e*"z, A(Xe*"Q) —xe X Be X 4+ @xe ¥, (1.1.1)

We now present an explicit construction of A avoiding the use of unbounded multi-
pliers. We have a Banach space isomorphism S ® S 2 Cy(R) ® Co(R) = Cy(R?), which is
determined by f® g+ ((x,y) — f(z)g(y)). Clearly this is not an algebra isomorphism

12



1.1 K-theory of C*-algebras

since the graded tensor product algebra S ® S is not commutative. However, we
can easily graft the algebra structure of S ® S onto Cy(R?). In order to do that, let
ax, ay : Co(R?) — Co(IR?) denote the reflection automorphisms f — ((z,y) — f(—x,y))
and f — ((z,y) — f(x,—y)), respectively. Define

i (R?) = {f €Co(R?) | ax(f) = (—1)'f and ay(f) = (=1)7 f}.

Since ay and ay are commuting involutions, there is a direct sum decomposition,
Co(R?) = C5™" (R?) @ 5"V (R?) @ C5 ) (R?) @ ¢V (R).

This defines a (Zy @ Z2)-grading on Co(R?) in the sense that Céi’j)(R2) : Cék’l)(Rz) C
Cé”k’j H)(R2). Considering the first two summands together as the even component
and the latter two as the odd component defines an ordinary (Zs-)grading on Co(R?)
(in other words, use the grading operator cy o ¢y,).

Using the above decomposition, we define a new product and star operation on
Co(R?) by setting
fogi=(—1Y*f-g. fr=(-1)Yf  for feCy (R, g€ Ci (R,
and extending linearly (the dot - denotes the usual pointwise product of functions).
These operations have been constructed in such a way that f® g — ((z,y) — f(x)g(y))
induces a graded *-isomorphism S ® S = (Co(R?),8).

Now we aim to construct A. Let r: R2 — R be the Euclidean norm, that is,
r(z,y) = \/m, and define the function

&SR (G y):{r?”iZ) it (2.5) # (0,0),

1 otherwise.

Since £ is globally bounded and continuous everywhere except at (0,0), the pointwise
product £ - g is an element of Co(IR?) for every g € Co(R?) which satisfies g(0,0) = 0.
We define linear maps,

A 5Oy c00(R2) ¢y (R?),

fr for (1.1.2)
AW sM M (R?) @ ¢V (R?) € Co(R?),
f—=&(for), (1.1.3)

and let A := A ¢ A S — Cy(R?). Direct calculation shows that A is a graded
*-homomorphism S — (Co(R?), ®) which satisfies

A(e_"Z) = e_xz_yz7 A(Xe_xz) = (x+ y)e_xz_yz. (1.1.4)
As (1.1.4) agrees with (1.1.1) up to the identification S ® S 5 (Co(R?), ), we conclude

that A is really an implementation of A.
Let € > 0 and let S(—¢,¢) be the graded ideal in S consisting of those functions
which vanish outside the interval (—¢,€).

13



1 Preliminaries

Corollary 1.1.3. The comultiplication A\ preserves S(—e, ) in the sense that
A (S(—¢,2)) C S(—¢,e) ® S(—¢,¢).

Proof. Since S(—¢,¢) ® S(—¢,¢) = (Co ((—¢,2)?) ,8), this follows from the explicit
construction of A given in (1.1.2) and (1.1.3 O

We explicitly note the following elementary lemma and a direct corollary because
both are essential to our discussion of secondary invariants in Subsection 2.2.2.

Lemma 1.1.4. The inclusion maps S(—r,7) < S and S(—r,r) ® S(-r,r) - S® S
are graded homotopy equivalences for all r > 0.

Proof. Let 0 < v’ < r and choose an odd, monotonically increasing homeomorphism
9: (—=r,r) — R which satisfies ¥(s) = s for all s € (—r',7’). Then 9*: S — S(—r,r) is
a graded *-homomorphism which is a graded homotopy inverse to ¢: S(—r,r) — S.
Indeed, the identity map on S(—r,r) is graded homotopic to a s*-homomorphism
¢: S(—r,r) = S(—r,r) the range of which is contained in S(—r/,7’). The map ¥*
acts as the identity on S(—r',r’) and thus we have ¥* o 10 ¢ = ¢. This implies
P or~09*or0o¢p=¢~id, that is, ¥* is a homotopy left-inverse to «.

To find a right-inverse, fix again an odd and monotonically increasing homeomorphism
v: (=1,1) = R, and let hs: S(—1,1) = S(=1,1), s € [1, 0], be defined as

Fa7)(6) = {g s

1
s?
1
<

Then consider the homotopy of graded *-homomorphisms hg := (7_1)* 0%507* S =S,

€ [1,00). Clearly, hy = id and the range of hy is contained in S(—r,rs) for s > 1
where ry = 7y (%) Since rs \, 0 as s — oo, we have that hs: S — S(—rs,7rs) is a
homotopy right-inverse to the inclusion ¢ for sufficiently large s. Finally, to obtain a
homotopy inverse to S(—r,7) ® S(—r,7) < S ® S, just use ¥* & V*. O

Corollary 1.1.5. Let ©: § — S(—r,7) be a graded *-homomorphism such that the
composition with the inclusion S(—r,r) — S is graded homotopic to the identity on S.
Then the following diagram of x-homomorphisms commutes up to graded homotopy.

S v S(—r,r)
A a
S @ S % 8(—7"7 ’I") @ S(_T7 T)
YY

Proof. Follows immediately from Lemma 1.1.4 because Aotp: S — S(—7,7) @ S(—r,7)
and Y ® 1o A: S — S(—r,7) ® S(—r,r) are both homotopic to A: S — S & S after
composition with the inclusion S(—7,7) @ S(—r,r) = S® S. O

14



1.1 K-theory of C*-algebras

Definition 1.1.6 ([HG04, Section 1.7]). The external product

K, (4) ® Kin(B) = Kpym(A® B)
is induced by the map K(A) A K(B) — K(A® B), taking a pair (¢,1) € K(A) x K(B)
to the composmon8—>S®S¢®wAQA§KQA§B®K2A@B@(K@K) ~A®B®K.

Here we implicitly use a fixed isomorphism K ® K = K coming from an even unitary
isomorphism H ® H = H. As in the case of the direct sum, the choice of such an
identification does not matter up to homotopy.

Remark 1.1.7. If z = [¢] € Ko(A) and y = [¢] € K((B) are represented by homo-
morphisms ¢: § — A and ¥: § — B as in Remark 1.1.2, then = X y is represented
by ¢ @1 o/ A: S - A® B (the rank 1 projections take care of themselves because
e11®en e KK 2K is again an even rank 1 projection).

1.1.3 Bott periodicity

In this subsection, we briefly sketch a variant of the “Dirac—dual-Dirac” approach to
Bott periodicity using Clifford algebras. For more elaborations and proofs we refer to
[HGO04, Section 1.10], [Dum05, Lemma 4.3].

The dual Dirac element or Bott element is the class b, € K (Co(R") ® Cl;) defined
by the graded *-homomorphism

Pn: 8 = Co(R™,CL),  B(f) = (v f(v),

where “f(v)” denotes the application of f on v € R™ C CI, via the functional calculus
in CI,.

We will occasionally use asymptotic morphisms and ideas from E-theory. For general
references see [GHT00; HGO04]. This first surfaces in the following, where we use that an
asymptotic morphism a: S® A --» B induces a map on K- theory o, : K, (4) - K.(B),
see [HG04, Remark 1.11]. There is an asymptotic morphism a: S®Co(R") --» KR Cl,,
Called the Dirac element. Indeed «a is defined using the Dirac operator Dgn = Zz 16"
6—9% on L2(R",Cl,), au(f ® g) = f(3Dgn)g. It is the inverse of the dual Dirac element
in the sense that the induced homomorphism e, : Ko(Co(R") & CI) — Ko(K) = Ko(C)
maps b, to the unit element 1 € K(C). A variant of Atiyah’s rotation trick shows
that the Bott map,

Ko(A) = Ko(AR Co(R™) ® CI%), x> x X by,

is an isomorphism for any graded C*-algebra A and all n € N. In particular, there is a
natural isomorphism

Ko(A® Cl,) 2 Ko (A® Co(R") ® Cl, ® CL;) 2 Ko (8"A) = K, (4), (1.1.5)

where the second isomorphism follows because Cl,, ® Cl;, = Cl,,n, = M. (C) with
a standard even grading. Moreover, Clg & M;s(C) with a standard even grading,
which together with (1.1.5) implies 8-fold periodicity of real K-theory. Similarly, in the
complex case, we get 2-fold periodicity because Cly = Ma(C).
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1.1.4 Long exact sequences

Let 0 » I — A — A/I — 0 be a short exact sequence of graded C*-algebras. Then
the induced map K (A) — K(A/I) is a Serre fibration with fiber K(I). Thus, there is a
long exact sequence of homotopy groups, which yields the natural long exact sequence
in K-theory,

o Ky 1 (A1) B Ko (1) = K (A) = Kn(A/I) — - — Ko(A/I).

Using Bott periodicity, one can also define K-theory for negative degrees and extend
the exact sequence to the right. In fact, it then becomes the 24 term (respectively 6
term in the complex case) cyclic exact sequence.

If B is another graded C*-algebra, then the sequence 0 - I ® B — A® B —
AJT ® B — 0 is exact,! and the boundary map is compatible with the external product,
that is, d(z) x y = Iz x y) for x € K, (A/I),y € K, (B).

In addition, there is a Mayer—Vietoris sequence for the K-theory of graded C*-
algebras. Here we consider a graded C*-algebra A and two closed two-sided graded
ideals I, Is < A such that I; + I = A. Then the long exact Mayer—Vietoris sequence
reads as follows:

o K (A) MY K (I N ) = Ko (I) ® K (L) = Kn(A) = -+ (1.1.6)

To construct this sequence, consider the auxiliary C*-algebra Q(A; I, Is) which consists
of paths f: [—00,00] = A such that f(—o0) € I} and f(+o00) € Is. The inclusion
LN = Q(A; I, 1) sending b € I1NI5 to the constant path at b is a K-isomorphism, see
for instance [Sie12b, Lemma 3.1]. The short exact sequence 0 — LA — Q(A4; Iy, ) =5
I, & I, — 0 induces a long exact sequence

which is precisely of the form (1.1.6). The Mayer—Vietoris sequence is compatible with
external products. In particular, there is a commutative diagram

Knp1(A) ® K (B) -2E9% K (1 0 1) @ Ko (B)

Ix Ix
Knimi1(A® B) 25 K, (I ® B) N (I & B)).

Here we use the natural identification (I; ® B)N (I ® B) = (I; N I,) ® B.

Remark 1.1.8. There is an alternative description of the Mayer—Vietoris boundary
map in terms of the boundary map of some short exact sequence. Indeed, the in-
clusion induces an isomorphism ¢: I; /I NIy =& A/I5. Consider the boundary map
812 K*(Il/Il n IQ) — K*,l(Il N IQ) associated to 0 = I1 NIy — I; — Il/Il Nl =0
and the canonical projection my: A — A/I5. Then

aMV(.T) = 81(fl o ’/TQ)*(.%) c K*_l(Il n IQ)
for all z € K.(A).

1Recall that we use the maximal tensor product.
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1.2 Spin geometry

1.2 Spin geometry

In this section, we briefly discuss essential facts from spin geometry. For a comprehensive
introduction we refer the reader to [LM89].

1.2.1 Spin structures

All the manifolds and related structures (such as bundles over manifolds and their
sections) we consider are smooth. Let (X, g) be an oriented Riemannian n-manifold. Let
Par+(TX) and Pso(TX) denote the oriented and the special orthogonal frame bundles,
respectively. A spin structure on X is a principal Spin(n)-bundle Pgpin(TX) together
with a two-sheeted covering £: Pgpin(TX) — Pso(TX) such that {(pg) = &(p)&o(g) for
all p € Pgpin(TX) and g € Spin(n), where &: Spin(n) — SO(n) is the (connected, if
n > 2) two-sheeted covering of SO(n).

Spin structures are in one-to-one correspondence with two-sheeted coverings of
Pso(TX) which are non-trivial over the fibers (if n > 2)2. Let ¢’ be some (other)
Riemannian metric on X and Pgo/(TX) the corresponding special orthogonal frame
bundle. Then we have inclusions Pgo(TX) < Pgr+(TX) <= Pso/(TX) which are both
fiberwise homotopy equivalences. Therefore, every spin structure on (X, g) induces a
unique spin structure on (X, ¢’) and vice versa.

In view of the previous discussion, the concept of a spin structure on X makes sense
independently of the choice of the Riemannian metric g. A spin manifold is an oriented
manifold together with a spin structure.

1.2.2 The spinor Dirac operator

Let I: Spin(n) — GL(Cl,,) denote the representation by left multiplication of Spin(n)
viewed as a subgroup of the multiplicative units of the Clifford algebra.

Let X be a spin manifold. Then the Cl,-linear spinor bundle associated to a
Riemannian metric g is the associated bundle

69 = Pspin(TX) X1 Cln

The right-multiplication action of Cl,, on itself turns & 4 into a bundle of free graded
right-Cl,-modules of rank one. Moreover, the Cl,,-valued inner product Cl, 3 a,b —
(a|b) := a*b on Cl, induces a Cl,-valued fiberwise inner product on @,, thereby
turning it into a bundle of graded Hilbert Cl,-modules. Its compactly supported
smooth sections, denoted by T'S°(X, $g), are also endowed with a Cl,-linear inner
product:

(s]|ty:= /X (s | t)volg, 5,teTX(X,B,).

The space of L2-sections L?(X, $g) of $g is the completion of I'>° (X, $g) with respect

to this inner product; it is a graded Real Hilbert-Cl,-module.
There exists a unique grading-preserving connection V9 on &

properties for all @ € Cl,,, £,n € T°(X,TX), s,t € FOO(X,$9):

¢ with the following

2For n = 1, a spin structure is simply a two-fold covering of X.
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() Vi(sa) = (V) a,
(i) Vi(e(n)s) = ¢ (Vlgc’gn) s+ ¢(n)Vis, where V9 is the Levi-Civita connection,

(it) & (s |t) = (Vis|t) + (s | Vi)

The spinor Dirac operator associated to g is the following composition:
o0 vg o0 * o0
D, (X, 6, 5TX,TX0¢,) 5>TX,&,),

where ¢ denotes the Clifford multiplication action of the cotangent bundle.

1.3 Metric considerations on non-compact manifolds

Although the notion of a spin structure does not depend on the Riemannian metric,
in our subsequent applications of large-scale index theory to positive scalar curvature
problems on non-compact manifolds some global restrictions on the Riemannian metric
will become necessary. Instead of looking at all Riemannian metrics on a given manifold
at once, we will only study classes of Riemannian metrics at a time which are uniformly
controlled by a fixed reference metric. Moreover, if the manifold has a boundary, we
need to make some restrictions to ensure that the metrics we consider are well-behaved
near the boundary. The conventions we set up in this section will be used implicitly
throughout this thesis.

1.3.1 Admissible metrics on manifolds with boundary

Let X be a manifold with boundary. A collar of 9X is an embedding ¢: 90X x (—1,0] —
X such that the following diagram commutes:

X x (—1,0) —— X
0X.

Collar neighborhoods always exist, see for example [Hir94, Chapter 4].

We say that a Riemannian metric g on X has product structure near X with respect
to the collar c if there exists € > 0 such that c¢*g | X x (—¢,0] = dg ® dt?, where dg
denotes the restriction of g to 0.X.

Given a Riemannian metric g on X, we denote the induced distance function by
dg: X x X — Ryg. If g has product structure near the boundary with respect to some
collar, then there exists a § > 0 such that for all z,y € 90X and t,s € (—4,0] with
dg(c(z,t),c(y, s)) <8, we have

dy(c(z, ), ey, 8)) = \[dog(z,y)? + |t — s[2.
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In particular, d,(z,y) = dag(x,y) for all z,y € 0X with dy(z,y) < §. Moreover, it is
always true that dg(z,y) < dag(z,y) for all x,y € 0X.

Usually, the distance functions on manifolds we consider are induced by Riemannian
metrics. However, when working with manifolds that are obtained by attaching a
cylindrical end to a manifold with boundary, we will modify the distance function
slightly (see Subsection 1.3.3 below). To treat both cases in a uniform way, we introduce
the following auxilliary concept. We say that a metric dx (in the sense of a distance
function) on X is admissible if it generates the manifold topology, is proper, and is of
product structure near the boundary in the sense that there exists § > 0 such that for
all z,y € 90X and t, s € (—4,0],

dx(c(,t),c(y,5) <6 = dx(c(z,t),c(y,s)) = Vdx(2,9)* + [t — s

for some fixed collar neighborhood c. In addition, we require an admissible distance
function to be uniformly dominated by a Riemannian metric, that is, there exists a
Riemannian metric g with id: (X,dy) — (X, dx) uniformly continuous. A distance
function induced by a Riemannian metric with product structure near the boundary is
always admissible by the discussion in the previous paragraph.

Definition 1.3.1. Let X be a manifold, possibly with boundary and, if so, with an
implicitly fixed collar. Fix an admissible distance function dx. We define R (X, dx) to
be the set of all Riemannian metrics g on X such that

(i) it has product structure near X with respect to the fixed collar,
(ii) the identity map (X, d,) — (X, dx) is uniformly continuous.

The set R (X, dx) only depends on the uniform equivalence class of dx. If the choice
of the uniform equivalence class of the distance function dx is implicit in the context,
we will simply write R (X). Since the distance function associated to a Riemannian
metric is a length metric, it follows that the identity (X, dy) — (X, dx) is a large-scale
Lipschitz map for all g € R (X,dx), see [Roe03, Lemma 1.10].

Remark 1.3.2. Given (X,dx) and (Y, dy ), we endow X X Y with the Euclidean product
metric

dx sy ((x1,91)s (T2, 92)) = Vdx (21, 22)% + dy (y1, y2)2.

For many arguments it is crucial that one can use convex combinations to interpolate
between any two Riemannian metrics. Given the importance of this fact, we include
the following elementary lemma to show that this is still possible in our present context.

Lemma 1.3.3. Let go,g1 € R(X,dx), to < t1 €R, and let x: R — [0,1] be a smooth
function with x(t) =0 fort < tg and x(t) =1 fort > t1. Then the Riemannian metric
on X X R defined as follows,

Bty == (1= x(£))(g0)z + x(£)(91)2) ® dt?

belongs to R (X x R,dxxR)-
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Proof. Let € > 0. Fix € > ¢ > 0 such that for all t < s € R with s — ¢ < d, we have
x(7) € (1/4,1] for all T € [t, s] or x(7) € [0,3/4) for all T € [¢, s].

Now let a = (x,t), b = (y,5) € X x R with ¢ < s and dp(a,b) < §. Note that
pry: X x R — R is distance non-increasing. Hence s — ¢ < §. Without loss of
generality, we may assume that x(7) € (1/4,1] for all 7 € [t,s]. Let v: [0,1] = X xR
be a piecewise smooth path with v(0) = a and (1) = b such that its length with
respect to the Riemannian metric h is less than dj(a,b) + . We may assume that
(pry 0v)([0,1]) C [t,s] and hence (x o pryoy)([0,1]) C (1/4,1]. We may compute as
follows:

1
2¢ > lengthy, (y / VA, %) \/(Xoprzov)gl(prm,prﬁ)
1
\/ 1(pry ¥, pry ) length (pryoy) > ngl(%y)-

We deduce dg, (z,y) < 4e. If x(7) € [0, 3) for all 7 € [t, s], then an analogous argument
shows dg, (x,y) < 4e.

Hence for all a = (z,t), b = (y,s) € X x R with dp(a,b) < 0, we always have
|t—s| < e and dg, (2, y) < 4e or dg, (z,y) < 4e. Since the identity map (X, d,,) = (X, d)
is uniformly continuous for ¢ € {0,1}, this shows that the identity (X x R,dy) —
(X X R,dx«r) is uniformly continuous. O]

1.3.2 Concordance of positive scalar curvature metrics

We now introduce some notation which will be convenient for discussing positive scalar
curvature phenomena.

Definition 1.3.4. Let X be a manifold together with an admissible distance function
and let Z C X be some subset. We say that g € R (X) has uniformly positive scalar
curvature (“upsc”) outside Z if

inf{scalg(z) |z € X \ Z} > 0.

We let R, (X) denote set of all g € R (X) such that g has upsc outside Z.
Furthermore, we set R (X) := Ry (X).

In the following, we suppose that X is endowed with an isometric (with respect to
dx), proper, and free action of a discrete group I" by diffeomorphisms. If Z C X is
a T-invariant subset, we will denote the subset of I-invariant metrics in R}, (X) by

Ry (X)".

Definition 1.3.5. Let gg, g1 € R+ (X )F We call gg and g1 concordant relative to Z
if there exists a Riemannian metric h € RZXR (X x R)F such that

(i) A1 X x (~00,0] = go @ dt?,
(i) A | X x [1,00) = g1 @ dt>.
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1.4 Yu’s localization algebras and K-homology

If Z =0, go and ¢, are called concordant.

Remark 1.3.6. Lemma 1.3.3 shows that if go, g1 € R}, (X)F are equal outside Z, then

they are concordant relative to Z. In particular, any two Riemannian metrics in R (X)"
are concordant relative to X.

1.3.3 Attaching a cylindrical end

Let X be a manifold with boundary endowed with a proper metric dx. Let dyx denote
the restriction of dx to 0X and endow X x Ry with the Euclidean product metric

doX xR -

Definition 1.3.7. Let
Xoo = X Upgx (6X X R}O)’

where we identify 90X with the subset 0X x {0} of X x Rsg. We endow X
with the metric dx_ obtained by gluing dx and ds X xR along 0X. More precisely,
dx., | X =dx, dx_ | (0X xRxg) := dox xRso, and for z € X and y € 0X x Ry we
set

dx, (z,y) = zle%fX (dx(z,2) + dox xrso(2,9)) -
Remark 1.3.8. One can endow X, with a smooth structure via the (implicitly fixed)
collar of X, compare [Hir94, Section 8.2]. Using this smooth structure, any Riemmanian
metric g € R (X, dx) extends uniquely to a Riemannian metric goo € R (X0, dx_,) on
X which restricts to g on X and to the product metric g @ dt? on dX x Rxg.

Remark 1.3.9. If X is endowed with a group action as in the previous subsection, then
this induces a group action on X, with the same properties.

1.4 Yu'’s localization algebras and K-homology

Yu [Yu97] has introduced the localization algebra C*L (X) to provide an alternative
model for the analytic K-homology of a proper metric space X. Indeed, there is an
isomorphism K, (X) 5 K, (C*L (X)), called the “local index map”, under which the
coarse index map Ind: K, (X) — K,(C* (X)) can be implemented by a canonical
s-homomorphism; see Theorem 1.4.20 for a precise statement. Here C* (X) denotes
the Roe algebra of X.

1.4.1 Localization algebras

In this subsection, we review the definition of the localization algebras and introduce a
Cl,,-linear version of them.

Let X be a proper metric space endowed with an isometric, free and proper action
of a countable discrete group I'.

A T-equivariant X -module, or simply (X,T')-module, is a Hilbert space H together
with a s-representation p: Co(X) — B(H) and a unitary representation U: I' — % (H)
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such that U, p(f)UX = p(vy- f) for ally € T and f € Co(X), where (y- f)(z) = f(y'x).
If T is the trivial group we refer to it just as an X -module.

A Cl,-linear T'-equivariant X -module, or simply (X, T, Cl,,)-module, is defined ana-
logously, but we replace the Hilbert space H by a graded Hilbert Cl,-module $ and
require that the representations are by even bounded Cl,-linear operators.3

An (X,T')-module H is called ample if the representation p is non-degenerate and
p(f) is not a compact operator for any non-zero f € Co(X). In the Cl,-linear setting,
we call an (X, T, Cl,)-module ample if it is isomorphic to H & Cl,,, where H is an
ample (X, T")-module.

Henceforth, we will simplify the notation and suppress the representation p: Co(X) —
B(H) by identifying f € Co(X) with p(f) € B(H).

In the remainder of this subsection, X, Y, Z will be proper metric spaces endowed with
free and proper I-actions, and )y will be ample (W, T", Cl,,)-modules for W € {X,Y, Z}.
Given two Hilbert Cl,-modules E, F; we write B(E, F') for the bounded Cl,,-linear
operators E — F. If E is a graded Hilbert Cl,,-module, then B(E) = B(E,E) is a
graded C*-algebra.

Definition 1.4.1. The support of £ € $Hx is the subset supp(§) € X such that
x ¢ supp(€) if and only if there exists f € Co(X) such that f€ =0 and f(x) # 0.

Definition 1.4.2. The support of T € B($x,9y) is the subset supp(T) C Y x X
such that (y,z) & supp(T) if and only if there exist f € Cy(X) and g € Co(Y) such

that ¢7'f = 0 and f(z) # 0 # g(y).
Definition 1.4.3. The propagation of T € B($)x) is
prop(T') := sup{dx (y,z) | (y,z) € supp(T)}.

Definition 1.4.4. Let A C X be a subset. We say that T € B()x) is supported near
A if there exists R > 0 such that supp(T) C Ur(A) x Ur(A), where Ur(A) denotes the
open R-neighborhood of A in X.

Remark 1.4.5 (Calculus of supports, see [HR00, Lemma 6.3.6]). For subsets A C X,
BCY x X and C CZ xY, we write

B-A={y|3zeX: (y,x)eB, x€ A} CY
CoB:={(z,z)|yeY: (z,y) €B, (y,x) e A} CZxX,
B* :={(z,y) | (y,z) € A}} CX x Y.

Let T € B(f_)x,f_)y). Then
supp(T™) = supp(T)*. (1.4.1)

Furthermore, supp(7) is the smallest closed subset B CY x X such that supp(7T€) C
B - supp(€) for all £ € $Hx with supp(§) compact. Now suppose that T is proper in

3In the case of Cl,, an operator is bounded and Cly,-linear iff it is an adjointable Hilbert-module
map.
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1.4 Yu’s localization algebras and K-homology

the sense that supp(T€) is compact for all £ € Hx with supp(§) compact. Then for all
S € B(9y, Hz) the following inclusion holds:

supp(S o T') C supp(S) o supp(T). (1.4.2)

Since operators of finite propagation over a proper metric space are always proper, it
follows that
prop(S o T) < prop(S) + prop(T) (1.4.3)

for all bounded operators T, S € B(Hx).

Before introducing the Roe and localization algebras, we review some more prelimi-
nary concepts of operators on X-modules.

Definition 1.4.6. Let T € B($x). We say that T is
(i) locally compact if fT € K(Hx) > Tf for all f € Co(X),
(ii) pseudo-local if fT —Tf € K(Hx) for all f € Co(X).

Definition 1.4.7 (Roe and localization algebras). Let A C B C X be T'-invariant
subsets and let B be closed.

(1) Let C[X; Cln]F denote the set of all I'-equivariant, bounded, Cl,,-linear operators
on Hx which are locally compact and of finite propagation. The Cl,-linear
I'-equivariant Roe algebra, denoted by Cf (X;Cl,), is the closure of C [X; Cln]F
in the norm topology.

(2) Let C[A C X;Cl,]" denote the set of all T € C[X; Cl,]" such that T is supported
near A. Its closure in the norm topology is denoted by Cf (A C X;Cl,).

(3) Let CL[X;Cl,]" denote the set of all bounded and uniformly continuous functions
L:[1,00) = C[X; Cln]F such that the propagation of L(t) tends to zero as t — oo.
The Cl,-linear I'-equivariant localization algebra, denoted by CfL (X), is the

completion of CL [X; Cln]F with respect to the uniform-norm topology.
(4) Let CL[B C X;Cl,]" be the set of those L € CL[X;Cl,]" such that
supp(L(t)) C Us(r)(B) x Us(r)(B)

for some function S: [1,00) = R>o with S(r) — 0 as r — occ.

Let C{L (B C X;Cl,) be the closure of CL [B C X; cL]'.

(5) Evaluation at 1 yields a surjective *-homomorphism
evi: CL[X;CL)" — C[X; 0" .

Let CLg [X; Cln]F be its kernel. More generally, let CL 4 [X; Cln]F be the preim-
age of C[A C X; Cln]r under evy. Let CyLo (X;Cl,) and CfLy4 (X; CL,) be the
closures of CLg [X; Cln]F and CL4 [X; Cln]F, respectively.
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(6) Let CL4 [B C X;Cl,]" be the intersection CL4 [X;Cl,]" N CL[B c X;ClL,]".
Let CiLy4 (B C X;Cl,) be its closure.

Remark 1.4.8. The relations (1.4.1) and (1.4.3) imply that C[A C X; Cln]r and
CL4 [B C X; Cln]F are graded *-subalgebras of the graded C*-algebras B($)x) and
Cb([1,00),B(Hx)), respectively. Hence Cf (A C X;Cl,) and CiL4 (B C X;Cl,) are
graded C*-algebras.

Remark 1.4.9. The algebras C[A C X Cln]r, CL,s [B C X; Cln]F7 CL(AcCX;(ClL,),
and CiL4 (B C X;Cl,) include all others as special cases for appropriate choices of
the subsets A and B.

Remark 1.4.10 (Notation). If we wish to emphasize which (X,T', Cl,)-module is used,
we will write (for example) CiL (X, Hx; Cl,,). However, since the K-theory of these
algebras does not depend on the choice of the ample module (see Subsection 1.4.2),
we will usually not do so. There are also simpler versions of the Roe and localization
algebras where there is no group action or no Clifford algebra present (take I' =1 or
n = 0). We denote these variants by dropping the group or the Clifford algebra in our
notation, for instance C*L (X;Cl,), C;L (X), C*L(X), C*L (X, H), ...

Lemma 1.4.11. The subsets C[A C X;Cl,]" and Ct (A C X;Cl,) are selfadjoint
ideals in C[X; Cln]F and C} (X; Cl,), respectively. Similary, CLa [B C X Cln]F and
CiLa (B C X;Cl,) are selfadjoint ideals in CL [X;Cln]F and CiL (X;Cl,), respec-
tively.

Proof. Let T € C[AC X;Cl,]" and S € C[X;Cl,]". Then T* € C[A C X;Cl,]"
by (1.4.1). Let R > 0 and R’ > 0 be such that supp(T) C Ur(A) x Ur(A) and
prop(S) < R’. We deduce from (1.4.3) that

supp(ST) C supp(S) o (Ur(A) x Ur(A)) CUr+r (A) x Ur(A). (1.4.4)

Hence ST € C[A C X;Cl,])". Moreover, TS = (§*T*)* € C[A C X;Cl,]". This
shows that C[A C X;Cl,]" is a selfadjoint ideal in C [X;Cl,]". An analogous argu-
ment using (1.4.1) and (1.4.4) shows that CL, [B C X;Cl,]" is a selfadjoint ideal in
CL[X; Cln]r. The remaining statements follow by passing to the completions. O

Remark 1.4.12. Evaluation at 1 extends to a surjective *-homomorphism
evi: CiL(X;Cl,) — Cf (X;Cl,) .
An approximation argument shows:
CiLa (X;Cl,) =evi ' (Ch (A C X;CL,)).
Remark 1.4.13. Due to the favourable properties of closed ideals in C*-algebras, it is

usually straightforward to evaluate intersections of ideals in the Roe- and localization
algebras. The following calculation illustrates what we mean:
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We will show that CjLa (B C X;Cl,) = C{La (X;Cl,) N C{L(B C X;Cl,). It
follows directly from the definitions that CjLy (B C X;Cl,) C CiLa (X;Cl,) N
CiL (B C X;Cl,). Conversely,

- (CLA X Cln]F) (CL B C X; Cln]F) C CL,[X:CL]"NCL[B c X;CL,]"

= CLy4 [B C X;ClL,)" =CiL, (B C X;CL,,).

Here we have used that the intersection of two closed ideals in a C*-algebra equals its
product (see for example [Mur90, p. 82]).

The most important feature of the ideals such as C*L (B C X) is that their K-theory
agrees with the K-theory of the corresponding algebra associated with the subspace B,
see Lemma 1.4.18 below.

In addition, we will sometimes need the structure algebra D} (X), which is defined
to be the C*-algebra generated by all I'-equivariant, pseudo-local operators of finite
propagation. We also have the corresponding localization algebra version, DEL (X),
see also [QR10].

1.4.2 Functoriality of localization algebras

The K-theory of the localization algebra is functorial with respect to uniformly contin-
uous and coarse maps. In the context of Roe algebras (and similarly, in the Paschke
duality picture of K-homology), the induced map on the algebra level is given by
conjugation with an isometry which in a suitable sense “covers” the original map on
the space level. In this section, we review these ideas in a way that is adapted to the
Cl,,-linear setting and all the different versions of the localization algebra introduced in
the previous subsection. However, we will only sketch the proofs in this subsection since
they are straightforward modifications of constructions that appear in the standard
literature on analytic K-homology and coarse index theory. Indeed, detailed treatments
for the Roe algebra can be found in [HR00, Chapters 5 and 6], [Roe96; Siel2b] and for
the localization algebras in [Yu97; QR10].

Let X and Y be proper metric spaces endowed with free and proper I'-actions. A
proper map f: X — Y is uniformly continuous and coarse (“ucc”) if and only if there
exists a non-decreasing function S: R>g — R which is continuous at 0 with S(0) =0
such that dy (f(x1), f(z2)) < S(dx(z1,22)) for all 1,25 € X.

Definition 1.4.14. Let f: X — Y be a I'-equivariant ucc map. Fix an (X, T, Cl,)-
module $Hx and a (Y, T, Cl,)-module $y. We say that a uniformly continuous family
of T'-equivariant Cl,,-linear even isometries V(t): Hx — Ny, t € [1,00), covers f if
sup {d(y, f(2)) | (y,z) € supp(V'(t))} — 0 as t — oo.

In [Yu97; QR10] functoriality is discussed only with respect to proper Lipschitz maps,
but the construction generalizes directly to the case of ucc maps.
From now on we fix an ample (X, T", Cl,,)-module $ x and an ample (Y, T, Cl,,)-module

Ny -

25



1 Preliminaries

Lemma 1.4.15. Let f: X = Y be a I'-equivariant coarse map. Then there exists a
family of isometries V(t): Hx — Ny © Hy, t € [1,00), that covers f as in Defini-
tion 1.4.14.

Proof. Since an ample (X, I", Cl, )-module $)x is by definition isomorphic to Hx ® Cl,
for an ample (X, T')-module Hx, we can ignore the Clifford algebra coefficients without
loss of generality. A T'-equivariant variant of the proof of [HR00, Proposition 6.3.12]
and [HR0O, Claim 6.3.14] shows that for every uniformly bounded countable open cover
(Ui)ien of Y, there exists an isometry V: Hx — Hy such that

supp(V) € |J U x £~ ().
leN

By choosing the open cover so that each U; has sufficiently small diameter, we deduce
that for each k € N, there exists an isometry Vi : Hx — Hy such that

1

sup {d(y, f(z)) | (y,2) € supp(Vie) } < .

The proof will be complete if we manage to find a family of isometries that suitably
interpolates between the Vj,. This is achieved by the construction from [Yu97, p. 313]:
Define for k € N, t € [0,1], £ € Hx:

[ cos(Z) sin(Z)\ (Vi O cos (Z) —sin (%)Y (¢
Vik+1)§ = (— sin (Q%t) cos (%) 0 Vig1) \sin (%Zt) coS (%tz) 0/ -
Proposition 1.4.16. Let f: X — Y be a I'-equivariant ucc map and V(t): Hx —

Ny ® Hy be a family of isometries that covers f. Then conjugation by V induces a
x-homomorphism

Ady: CiL(X;ClL) — Ma(CEL (Y CLy)), L (£ VLV (E)).

The induced map (Ady), : K. (CiL (X;Cl,)) = K. (CEL (Y Cl,)) does not depend on
the choice of the family of isometries V' covering f. In particular, the K-theory of
CLL(X;Cl,) does not depend on the choice of the ample (X,T',Cl,)-module up to
canonical isomorphism.

Proof. We only show that the propagation of Ady (L) tends to zero as ¢ — oo for all
L € CL[X; Cln]F. The rest of the proof proceeds along the same lines as in [Yu97;
QR10], see also [HR00, Chapters 5-6]. Remark 1.4.5 shows

supp(Ady (L)(£)) C supp(V/()) o supp(L(t) o supp(V(£))".  (1.4.5)
Let € > 0. Find 6 > 0 and R > 1 such that:

Vi'ix e X: dx(z,z) <d = dy(f(2), f(z)) <e,
Vt > R: prop(L(t)) < 0,
Vt>R: sup{dy(y, f(2)) | (y;2) € supp(V (1))} <e.
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Fix t > R and let (v, y) € supp(Ady (L)(t)). By (1.4.5), there exists 2’,2 € X with
(y',2') € supp(V (1)), (2',x) € supp(L(t)), (y,x) € supp(V(¢)). We deduce

dy (v, y) < dy (Y, f(2") + dy (f(2), f(2)) + dy (f(2),y) < 3e. N

Therefore, f induces a well-defined map on the K-theory of the localization algebras.
We will incorporate this in our notation by writing

fi = (Ady).: Ki(CEL (X Cl,)) — Ky (CEL (Y5 Cly)).

If AC X and B C Y are I'-invariant subsets with f(A) C B, then Ady takes
CiLa (X;Cl,) to CiLp (Y;Cl,). Hence the same procedure yields a well-defined
induced map

f: Ku(CiLa (X;CL,)) = K (CrLp (Y5 Cl,))
and shows that K,(CfLa (X;Cl,)) does not depend on the choice of the ample
(X, T, Cl,)-module up to canonical isomorphism. Moreover, for a family of isometries
V(t) which covers a ucc map f, the isometry V(1) covers f in the coarse sense, and
hence the maps on K-theory of the localization algebras are compatible with the induced
maps on the K-theory of the Roe algebras as they are defined in [HR00, Chapter 6].
Remark 1.4.17. Let H be an ample (X, T')-module. Using the ample (X, T", Cl,,)-module
$ = H ® Cl,, one can directly verify that C5iL (X, $;Cl,) = C:L (X, H) & Cl,,. This
means that we have a canonical identification on the level of K-theory,

Ko(CrL (X; Cly)) = Ko(CFL (X) ® Cl,) = K (CEL (X)),
where the latter identification is due to the Bott map from Subsection 1.1.3.

Lemma 1.4.18. Let B C X be a closed T-invariant subset. Let V(t): Hgp — Hx
be a family of isometries which covers the inclusion B — X, where Hy is an ample
(Y, T)-module for Y € {X, B}. Then conjugation by V determines x-homomorphisms
as follows:

Ady : C;LO (B) — C;LO (B C X) s
Ady: CIL(B) —» C{L(B C X),
Ady: CL(B) - Ci(BC X).
These x-homomorphisms induce (canonical) isomorphisms on K-theory.

Moreover, if A C B is a further I'-invariant subset, then Ady: CiLy (B) —
CtLa (B C X) induces a canonical isomorphism on K-theory.

Proof. This has been proved for the Roe algebra in [HRY93]. For the localization
algebra C*L (B), this has been directly established in [Yu97] in the special case of
metric simplicial complexes. However, one can reduce the general case for C;L (B) to
the corresponding statement in (equivariant) K-homology. Indeed, if we suppose that
Hp and Hy are both very ample?, it is shown in [QR10] that we have isomorphisms,

K11 (D} (B) /Cf (B)) € Kus1 (DEL (B) /CiL(B)) = K. (CEL (B)).

4That is, each is a countably infinite direct sum of an ample module.
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Similarly, we obtain isomorphisms

K, (D (B C X)/Ch(BC X)) & Kyy1 (DEL(B C X) /CEL (B C X))
S K. (C:L(B C X)),

where the ideals D}. (B C X) and D{L (B C X) are defined analogously as their coun-
terparts in the setting of Roe algebras, however, with the additional condition that all
operators should be locally compact on the complement of B. Furthermore, we observe
that Ady intertwines these two sequences of isomorphisms, so it would suffice if

Ady, : Dj. (B) /Ci (B) = Dj (B C X) /Ci. (B C X)

induced isomorphisms on K-theory. This, however, is just the corresponding statement
in the Paschke duality picture of K-homology, which is proved in [HR00, Chapter 5],
see also [Siel2b, Proposition 3.8].

Having established the isomorphisms for C§ (B) and C{L (B), one can deduce from
the Five Lemma that the map Ady: CiLo (B) — CiLo (B C X) must also be an
isomorphism on K-theory. Finally, the last statement follows similarly from a Five
Lemma argument by considering the short exact sequence

0— CiLo(BC X)— CiLa(BC X)— Ch(AC X) = 0. O

1.4.3 Analytic K-homology

We will use the notation KL (X) to denote the (equivariant) analytic K-homology of a
locally compact space X endowed with a proper and free group action. In terms of
bivariant K-theory for C*-algebras, this group is defined as KL (X) := KK (Co(X), C).
For a standard treatment of analytic K-homology, we refer to [HR00].

Since we have assumed the group action to be free and proper, we have an identifica-
tion

KE (X) =K, (N\X),

see for instance [HR00, Lemma 12.5.4] and [Siel2b, Subsection 2.4].

To avoid confusion, we note that, from a topological point of view, analytic K-
homology on locally compact spaces is a locally finite homology theory; in particular,
it is functorial with respect to proper continuous maps. Indeed, as can for instance be
seen in the Paschke duality picture [HR00, Chapter 5], the group K. (X) is the same as
the reduced K-homology group of the one-point compactification of X.

Remark 1.4.19. The group KL (X x Rg) always vanishes if T acts freely and properly
on X and trivially on R>o. This follows because the one-point compactification of
(T"\X) x Rxq is contractible; it is simply the cone over the one-point compactification
of '\ X. Alternatively it can be proved directly in the analytic setup via an Eilenberg
swindle (see also Subsection 2.1.3 for a similar statement in the coarse category).

Moreover, as previously mentioned, Yu’s localization algebras provide an alternative
approach to the K-homology of proper metric spaces:
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Theorem 1.4.20 ([Yu97; QR10]). Let X be a proper metric space endowed with a
proper and free isometric action by a discrete group I'. Then there exists an isomorphism

Ind] : KU (X) 5 K. (C{L (X)) such that the equivariant coarse index map is described
by the following commutative diagram:

%, KL (CRL (X))

m yevo*

K. (Cr (X))

K. (X)

In further chapters of this thesis, we will use Theorem 1.4.20 implicitly by suppressing
the isomorphism Ind} and simply identifying KL (X) with K. (C:L (X)) whenever it is
appropriate and convenient.
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2 Secondary large-scale index theory for psc

This chapter grew out of the author’s article [Zeil6] and constitutes the core part of
this thesis. Here we develop our theory of secondary invariants for Riemannian metrics
of positive scalar curvature outside a given subset and study the receptacles of these
invariants.

2.1 Partial structure groups

In this section, we introduce and study the partial structure groups from an abstract
point of view. These groups will serve as the receptacles for secondary invariants
associated to metrics of uniformly positive scalar curvature outside a given subset.

Definition 2.1.1. Let X be a proper metric space endowed with a free and proper
T'-action by isometries. Let A C X be a I'-invariant subset. The partial structure group
of X relative to A is defined as

SC(XJA) =K, (CiL4 (X)).

In the special case of A = (), we write SL (X) := SL (X /0) = K.(Cj:Lo (X)); this agrees
with the analytic structure group of Higson—Roe (compare [XY14b, Section 6]).

Moreover, as indicated in Subsection 1.4.3 and justified by Theorem 1.4.20, we
identify

K. (X) =S} (X /X) = K.(CFL (X)),
Remark 2.1.2. Remark 1.4.17 implies that for all n € N there is a canonical identification
Sn (X A) = Ko (CrLa (X;Cly)) -

We will use this heavily in our construction of secondary invariants.

2.1.1 Generalized Higson—Roe sequences

A main feature of the analytic structure group is that it fits into a long exact sequence
with the coarse index map (see for instance [HRO05]), the so-called Higson—Roe se-
quence. The following long exact sequences involving the partial structure groups are
straightforward generalizations of the Higson—Roe sequence:
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2 Secondary large-scale index theory for psc

Proposition 2.1.3. In the setup of Definition 2.1.1, let A C B C X be I'-invariant
subsets. Then there is a long exact sequence:

qr, Ind% C*(B
Sy (X A) 22 ST,y (X B) 28 Ko (o5 )
y (2.1.1)
ﬁ 812’//A
q

) IndL} «
B 5 CL(B
SE (X A) 5 ST (x ) B) 0 K (S

Proof. The sequence is the long exact sequence in K-theory associated to the following
short exact sequence:

roev; Cp (B C X)

0 — CFLA (X) — CFLB (X) — m — 0,

where 7: Cf (BC X) — % is the canonical quotient map. We also use
r

Lemma 1.4.18. O

We explicitly note the following important special cases:

Corollary 2.1.4. In the situation of Definition 2.1.1, there are long exact sequences

r
Ind,

ST,y () 0 ST (xya) 2 K (O (4)

D (2.1.2)
<, %

do Indl;l

ST (X) —= SU(X [ A) —= K. (C}.(4)),

and

a4 Ind} .
Shir (X[ A) =% Koy (X) — Kita (LX))

Ci(ACX)
R (2.1.3)
<
r ah.x r Indy

n¢ya CrL(X)
K. (o)

2.1.2 Mayer—Vietoris sequences

Let X = X; U X, be a cover of a proper metric space by two closed subspaces. We wish
to construct Mayer—Vietoris sequences relating the K-theory groups of the localization
algebras (and hence of the partial structure groups) of the spaces X, X;, X, and
X1 N X5. To do this, the general principle is to employ the ideals associated to
subspaces from Definition 1.4.7 and then apply the abstract Mayer—Vietoris sequence
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2.1 Partial structure groups

we have discussed in Subsection 1.1.4. For the Roe algebra this has been implemented in
[HRY93]. A recent treatment,which also deals with the structure algebra, can be found
in [Sie12b]. In this section, we sketch how to carry out this program for localization
algebras, compare [Yu97].

Definition 2.1.5. A cover X = X; U X5 by two subsets X7, X5 is coarsely excisive if
there exists a function S: Rsg — R<( such that

Z/{R(Xl) ﬁZ/{R(Xg) - L{S(R)(Xl N Xg) for all R > 0.

If, in addition, the function S can be chosen such that S(¢) — 0 as ¢t — 0, then we say
that the cover is uniformly excisive.

If the cover X = X7 U X is coarsely excisive with X7, X5 closed and X; N X, I'-
cocompact, then a compactness argument shows that it is uniformly excisive. Moreover,
if X is a geodesic metric space, then any cover by two closed subsets is automatically
uniformly excisive.

The following notation will be used in the proofs below: For a subset A C X
we denote by 14 the projection on an X-module corresponding to the characteristic
function of A.

Lemma 2.1.6 (compare [HRY93]). Let X = X; U X5 be a cover and let A C X be a
subset such that the cover of A by AN Xy and AN Xy is coarsely excisive. Then:

CF(AﬂXlCX)QC;(AQXQCX):C;(AﬁXlﬂXQCX),
Ch(ANX, C X)+Ch(ANXs C X) = Ch (A C X).

Proof. To show the first equality, we proceed as in Remark 1.4.13. Since the cover is
coarsely excisive, we observe

CIAnX, cX]'nClAnX,cX]' CC[ANX,NX,C X]".
We conclude that
Ct(ANX; CcX)NCr(ANX, CcX)=Cr(ANX; CX)Cr(ANX, C X)
=C[AnX;cX]"Cl[AnX, c X]"

gC[AﬂX1mX2CX]F
:CF(AﬂXlﬂXQCX).

The converse inclusion of the first equality is straightforward.
To show the second equality, it suffices to prove that

ClAcx]'cclAnX, cX]"+C[AnX, c X]".

Indeed, let T € C[A C X]" and choose R > 0 such that prop(T) < R and supp(T) C
Ur(A) x Ur(A). Now set T := 1y, anx)T and Ty :=T —T;. Then

supp(T1) C supp(T) N (Ur(AN X)) X X) CUR(AN X)) X Usr(AN X)),
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2 Secondary large-scale index theory for psc

where the second inclusion follows from prop(T) < R. Hence T} € C[AN X; C X",
Moreover, To e C[AN Xo C X ]F as the following calculation shows:

T

—~

D

(X \Ur(AN X1) x X)

(Ur(A) x Ur(A)) N (X \ Ur(AN X1) x X)
(Ur(AN X2) x Ur(A))

2) X Us (AN X)),

supp(72) C supp

supp

G
D)

&
s
=,
3
D)

IN 1N 1N 1N
E W

=

N

|

S

Hence T=Ty + T, e C[ANX; C X]' + C[AN X, Cc X]". O

Lemma 2.1.7. Let X = X, U X5 be a uniformly excisive cover and A C X a subset
such that the cover of A by AN X1 and AN Xy is coarsely exicive. Then

C;LAﬂXl (Xl C X) QCF‘LAQXQ (Xg C X) = C;LAﬁXlﬁXz (Xl NXy C X),
C;LAﬁXl (X1 C X) +C;LAHX2 (X2 C X) = C;LA (X)

Proof. The proof of the first equality can be carried out as in Lemma 2.1.6. To show
the second equality, we need to extend the idea somewhat.

Since the sum of two closed ideals in a C*-algebra is always closed, it suffices to
show that CLanx, [X1 C X]" + CLanx, [X2 € X]" is dense in CL4 [X]" (and hence
in CfL4 (X)). Solet L € CL4 [X]" and set T := L(1). We may assume that there
exists an 1 > ¢ > 0 such that L(t) = T for all 1 <t < 14 ¢; this is because the set of all

such L is dense in CL [X ]F by continuity and a linear interpolation argument. Choose
R > 0 such that prop(T") < R and supp(T) C Ur(A) x Ur(A). Let L1 (t) := P(t)L(t),
where

(e =D)ypxna + (= Dlgygxy) tel 14l
P(t) := ¢ 7= ((2 = ) 1ypx) + (=1 —e)1x,) tel+e,2],
1X1 t e [2700)

Moreover, we set Ly := L — Ly. Then Ty := Li(1) = ly,(x,na)T and Ty :=
Ly(1) = 1x\up(x,na)T. Hence it follows from the proof of Lemma 2.1.6 that

T,eClANX;Cc X" and T, e C[AN X, C X\
It follows from the definition of L that

supp(L1(t)) € Ur(X1) X Uryprop(ry)(X1) t € [1,2],
supp(L1(t)) € X1 X Uprop(r1)) (X1) t € [2,00).

Since prop(L(t)) — 0 as t — oo, we deduce that L € CLanyx, [X; € X]".

Furthermore, for ¢ € [1,1+¢], the support of 1 — P(¢) is contained in X \Ur(ANX;).
Therefore supp(Lz(t)) C supp(T) N (X \Ur(X1 N A) x X) for ¢t € [1,1 + €] and the
same argument as for T in Lemma 2.1.6 shows that

Ly(t) e C[XonAcC X' forte(l, 1+

34



2.1 Partial structure groups

Finally, since the support of 1 — P(t) is contained in X5 for ¢ € [1 + ¢, 00), an analogous
argument as for L; shows that

supp(La(t)) € Xo X Uprop(rn))(X2) for t € [1+4¢€,00)

and hence Ly € CLanx, [X2 € X]". O

In view of Lemmas 2.1.6, 2.1.7 and 1.4.18, the abstract Mayer—Vietoris sequence
from Subsection 1.1.4 yields (compatible) Mayer—Vietoris sequences for the K-theory of
the Roe algebra and the partial structure groups. We summarize this in the following
propositions:

Proposition 2.1.8 ([HRY93]). Let X = X; U X3 be a cover and let A C X be a
T-invariant subset. Suppose that A = (AN X1)U (AN Xy) is a coarsely excisive cover.
Then there is a long exact Mayer—Vietoris sequence as follows:

K41 (Cr(ANX1))
K1 (Cr (AN X1 N X)) — & — K1 (Cr (4))
Kit1(CE(ANX2)) g
( v
K. (Cr(ANX1))
Ki(CE(ANXiNXy)) — e — K. (Cf (A4)).
K. (C5(ANX3))

Proposition 2.1.9 (compare [Siel2b] for A = ). Let X = X; U X3 be uniformly
excisive and let A C X be a closed T'-invariant subset. Suppose furthermore that
A= (AN X1)U (AN Xy) is a coarsely excisive cover. Then there is a long exact
Mayer—Vietoris sequence as follows:

T S£+1(X1//A0X1) r
Sip1 (i NXo /AN X1 N X2) — @ — SL (X /A)

ST, 1 (X2fANX>) y
? omv
ST (X1/ANX 1)

SE(XlﬂXQ//AﬂXlﬂXQ)H ©® HSE(X//A)
SE(XQ//AOX2)

Moreover, the index maps Indy.y: SL (Y JANY) — K.(CL(ANY)) where Y
ranges over {X, X1, Xo, X1 N X} intertwine this sequence with the sequence from
Proposition 2.1.8.

Under an additional condition, there is also a Mayer—Vietoris sequence for the K-
theory of the quotient algebras Cf (X) /Cf (A C X). We start with a technical lemma
before stating the result.
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2 Secondary large-scale index theory for psc

Lemma 2.1.10. Let X = X3 U X5 be a coarsely excicive cover and let A C X be a
subset such that

VR>035>0: Ur(ANX2)NUR(X1NXs) CUs(AN X NX>). (2.1.4)
Then the cover of A by X1 N A and X5 N A is coarsely excicive and

VR>03S>0: Ur(A)NUr(X1) CUs(AN X7). (2.1.5)

Proof. Let R > 0. Choose S > R such that Ur(X1) NUR(X2) C Us(X; N X3). By

(2.1.4), there exists S > S such that Us(A N X2) NUz(X1 N Xa) C Us(AN X N Xy).
We deduce

Ur(A) NUR(X1) C (UR(AN X)) UUR(AN X)) NUR(X71)
CUR(ANX1)U Ur(AN X2) NUR(X1))
CUR(ANX1) U Ur(ANX2) NUR(X2) NUR(X1))
CUR(ANX1) U Us(ANX2) NUz (X1 N X3))
CUR(AN X)) UUs(AN Xy N Xs)
C Us(ANXy).

Similarly,

Z/[R(A n Xl) OZ/[R(A n Xz) - Z/[R(Xl) ﬂuR(XQ) QUR(A N XQ)
- Ug(Xl N XQ) ﬂng(A N Xg)
CUs(AN XN Xo). O

Proposition 2.1.11. Let X = X; U X5 be a coarsely excicive cover and let A C X be
a I'-invariant subset such that

VR>03S>0: Ur(A)NUR(X1NXs) CUs(AN X1 N X3). (2.1.6)
Then there is a long exact Mayer—Vietoris sequence as follows:
5 (
Kit1 (%)

Ch(X1NX2) Ch(X)
Kita (c;(m;?lmlczc;cmxz)> - © — Kia (C;(FACX))

K CL(X2)
1 CE(AnX,CXa)

Cr.(X1)
r
K. (C;(Amxlcxl))

Cr(X1NXa2) Cr(x)
K. (C;(Amxmxzcxmxz) C@(Xz) K. Ci(ACX) ) -
I
K. (c;(AmXQCXz))
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2.1 Partial structure groups

Proof. Condition (2.1.6) implies both (2.1.4) itself and (2.1.4) with the roles of X; and
X5 swapped. Thus the cover of A by AN X; and AN X, is also coarsely excicive and
for i € {1,2}

VR>035>0: Ur(A)NUr(X;) CUs(ANX;).

Thus Lemma 2.1.6 implies:
Ct(ACX)NCr(X1iNXe CX)=Cr(ANnX1NnX, C X),
CLACX)NCE(X; cX)=CLr(ANnX; C X),
Hence there are injections for i € {1,2} as follows

C;(AﬁXlﬂXQCX) CF(AﬂXlCX) C;(ACX)

Now Lemma 2.1.6 implies

Ci (X, € X) Ci(X2CX) _ Ci(X)
Cr(ANX;CcX) Cr(AnX,CcX) Ci(AcX)

Ch(XhicX)  Cr(XcX)

Ct(AnNX;CX) CrAnXiCX)
( Ci(X;CX) Ch(XhCcX) | Cr(XinX.cCX)
_<C;(A0X1cX)>(C;:(AlecX)>_C;(Amxmxch)'

The existence of the stated Mayer—Vietoris sequence follows again from the abstract
Mayer—Vietoris sequence from Subsection 1.1.4 and Lemma 1.4.18. O

2.1.3 Flasque spaces and suspension isomorphisms

Definition 2.1.12. A proper metric space X endowed with a free and proper I'-action
is called (T-equivariantly) flasque if there exists a I'-equivariant coarse map s: X — X
such that

(i) s is coarsely equivalent to idx,

(i) for every compact subset K C X, there exists [y € N such that s'(X)N K = ()
for all I > I,

(iii) for all R > 0, there exists S > 0 such that dx(s!(x),s'(z')) < S for all [ > 0 and
z,2’ € X with dx(z,z") < R.

By definition, X x Y is flasque if X is flasque and Y is an arbitrary proper metric
space.
An Eilenberg swindle argument implies the following:

Proposition 2.1.13 (see [Roe96, Proposition 9.4], [HR00, Lemma 6.4.2])). If X is
I-equivariantly flasque, then K, (Cy (X)) = 0 in all degrees.
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2 Secondary large-scale index theory for psc

Corollary 2.1.14. Let X be a proper metric space endowed with a free and proper
T-action. Then the K-theory groups K. (C} (X X Rxg)) and K. (Cf (X x Rgg)) vanish
in all degrees. In particular, the Mayer—Vietoris boundary map

Oty Kui1 (CF (X x R)) = K, (CF (X))
associated to the cover X x R =X xRy U X X Rgq is an isomorphism.

It is also possible to define suitable notions of flasqueness that imply vanishing of the
K-homology and (partial) structure groups. The following will suffice for our purposes:

Proposition 2.1.15. Let X be a proper metric space endowed with a free and proper
T-action and A C X some T-invariant subset. Then SL (X x Rs¢//A x Rxq) and
ST (X x R<o/ A x Rgo) vanish. In particular, the Mayer—Vietoris boundary map

Omv:SL (X xRJAXR) — ST (X /A)
associated to the cover X x R =X xRy U X X Rgq is an isomorphism.

Proof. The statement holds for A = X because KL (X x Rs() vanishes by an Eilen-
berg swindle (or see Remark 1.4.19 for a topological explanation). Together with
Corollary 2.1.14 and the exact sequence

Kat1(Ch (X x Rsg)) — SL (X x Rsg) — KL (X x Rxp),

this implies that SL (X x R>) vanishes (this is the statement for A = (}). Using this
and Corollary 2.1.14 again, we deduce the result for a general subset A from the exact
sequence

SE (X X Rgo) — S£ (X X R}O//A X Rgo) — K*(CF (A X R}O)). O

2.1.4 External products

Let X; be proper metric spaces endowed with proper and free I';-actions for i = 1, 2.
Suppose that 9; is a I';-equivariant Cl,,-linear ample X;-module for i = 1,2. Then
1= $H1 @ Hy is an ample [-equivariant Cl,-linear X-module for I := I'; x 'y and
n :=ny + ng. Then there is a canonical x-homomorphism

tx,, X, CF‘lL(XhleU) @ CFQL (XQ; Clnz) - Cf‘lezL(Xl X Xa; Cln)u
tx,,x, (L1 ® Lo)(t) = L1 (t) ® La(t), L; € C;.L(X;;Cly,)), t € [1,00].

If Z; C X; is a I'i-invariant subset, then tx, x, restricts to a map
tx,,x, 0 Cf, Lz, (X15CLy,) ® Cf L (X5 Cly,) — Ch o r, Ly xx, (X1 X X23Clyy).

Combining this with the external product in K-theory, we obtain the following external
product for the partial structure group:

Sh (X1 ) Z0) @ KLz (X1) B shxle (X, x X, ) 7y x Xa), (2.1.7)

ni+na
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2.2 Definition of secondary invariants

where for each z € Ko(Cf, Lz, (X1;Cly,)) and y € Ko(Cf, L (X2;Cly,)), we define

T g Y= (tXth)*(‘r X y)
The external product is functorial, that is, (f1 X fo)«(x Ky) = (f1)«(z) K (f2)«(y)
for ucc maps f;: X; = Y;, 1 =1,2.
Restricting the construction to t = 1 yields
tXhXZ: C;l (Xl) ® Cik‘g (X2) — Cltl ><F2 (X1 X X2)7
and we obtain the external product for Roe algebras,
* * X *
Knl (CF1 (Xl)) Y Kﬂz (CFQ (X2)) — Kn1+n2 (CF1 xTy (Xl X XQ)) .

Let Z; C X7 be a I'j-invariant subset. Then

tXhX? (Ci‘:l (Zl - Xl;Clnl) @ Cl*“z (X2§ Clng))
< Cltlxl"Q (Z1 x X3 C X1 x X5;Cly,).

Thus we also get an external product as follows:
Ct (X1)
Kny | 5—/————— K., (Ch, (X
1 (Ca i c x| @ Ko (O ()

HK yxr, (X1 X X2) (2.1.8)
ni+ng Clepz (Z1 % X2 C X1 % XQ) . .

2.2 Definition of secondary invariants

In this section, we combine the Cl,-linear localization algebras with the picture of
K-theory from Section 1.1 in order to construct the (equivariant) fundamental classes
and partial secondary invariants on complete spin manifolds. Indeed, an element
of Ko(C*L (X;Cl,)) may be defined by a *-homomorphism § — C*L (X;Cl,). Our
definition of the fundamental class is essentially the x-homomorphism given by the
functional calculus of the Cl,,-linear spinor Dirac operator, see (2.2.1) below. A slight
modification of this idea allows to define the (partial) secondary invariants in almost
the same fashion in case the underlying Riemannian metric has uniformly positive
scalar curvature, see Subsection 2.2.2. In Subsection 2.2.3, we then discuss a coarse
version of the Atiyah—Patodi-Singer index for manifolds with (partial) positive scalar
curvature at the boundary.

We will use the following conventions and shorthands to simplify the statements of
several results:

Conventions. Manifolds are without boundary unless explicitly stated otherwise.
A “complete spin manifold” X is a spin manifold together with a fixed admissible
proper distance function dx in the sense of Section 1.3.
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2 Secondary large-scale index theory for psc

A “complete spin manifold endowed with a T'-action” is a complete spin manifold
together with a proper and free action of a discrete group I' which preserves the spin
structure and the fixed admissible proper distance function.

Although we allow greater generality in our definition, the only cases of proper
distance functions we have in mind come from complete Riemannian metrics or the
construction of attaching a cylindrical end (compare Subsection 1.3.3).

2.2.1 The fundamental class via localization algebras

Let X be a complete spin n-manifold endowed with a T-action. Fix g € R (X)". Let
Co(X) act on sections of the spinor bundle (5,] by multiplication operators. This turns
L?(&,) it into an (X,T, Cl,)-module (compare Subsection 1.2.2). Using a measurable
trivialization of @, one can show that L2(g,) is isomorphic to L?(X) & Cl,,, hence it is
ample. In the following, we consider the localization algebra to be formed with respect
to the distance function dx on the ample (X, T, Cl,)-module L?(X, &,).

For f € S and t € [1,00), define

ag(f)(@t) = f <1@g) €B(L*(X,&,)). (2.2.1)

By [HRO00, Proposition 10.5.2], f(%ﬁg) is locally compact for each t. Moreover, if

A

the (distributional) Fourier transform of f € Co(R) satisfies supp(f) C [-R, R] for
some R > 0, then it follows from the unit propagation speed property of Dirac wave
operators that prop(f(iiﬁg)) < R, see [HRO0, Chapter 10.3]. In this case, if we set

fi(x) == f(t~'z), then fi(s) = tf(ts) and hence supp(f;) C [— £, &]. This demonstrates

that prop(f(%iﬁg)) — 0 as t — oo whenever f is compactly supported. We deduce

that a4(f) € CL[X; Cln]F for all f € S with compactly supported Fourier transform.
Since those functions are dense in S, we conclude that a4(f) € CiL (X;Cl,) for all
f €S. Thus o4 defines a *-homomorphism

ag: S = CiL(X;Cl,),
which preserves the grading since P, is an odd operator (use [HR00, Lemma 10.6.2]).

Definition 2.2.1. The equivariant fundamental class of X is the K-theory class
represented by the *-homomorphism a4 above,

[X]" = [ag] € Ko (CFL (X; Cly)) = Ky, (CRL (X)) = Ky (X).
Definition 2.2.2. The (equivariant) coarse indezx of X is
Ind"(X) := Ind" ([X]F)

where Ind" = (evy).: KL (X) = K,,(CLL (X)) — K, (Ct (X)).
More generally, for a I-invariant subset Z C X, the (equivariant) coarse index modulo
Z is defined by

40



2.2 Definition of secondary invariants

where we use the map Indl/;Z from Corollary 2.1.4.

Remark 2.2.3. The fundamental class (and hence the coarse index) does not depend on
the choice of the Riemannian metric. In our framework, this will become apparent in
Proposition 2.2.11.

Remark 2.2.4 (JQR10, Section 4], [Dum05, Section 3]). There is an asymptotic morphism
v: CiL(X) ® Co(X) -+ K, 3(L ® f) = L(t)f. Using a suitable product in E-theory,
this induces a map 7. : K, (CiL (X)) — K5 *(Co(X)) = KL (X). The class v, ([X]") is
represented by the I-equivariant asymptotic morphism a: S ® Co(X) --» K(L?(¢ g) =
K ® Cly, ae(f @ g) = f(+D,)g. Specializing to X = R"™, we observe that 7. ([R"]) is
precisely the Dirac element from Subsection 1.1.3.

2.2.2 The partial p-invariant and the localized coarse index

In addition to the setup of the previous subsection, let Z C X be some I'-invariant
subset. We will now define secondary invariants associated to Riemannian metrics
gERL (X )F. We will use the following analytic fact.

Lemma 2.2.5 ([Roel6, Lemma 2.3],[HPS15, Proposition 3.15]). Let g € RS (X)".
Choose € > 0 such that scaly(z) > 42 for allz € X \ Z. Then (evyoay)(f) = f(D,) €
Ci(Z C X;Cl,) forall f € S(—¢,¢).

In other words, the restriction of ay to S(—¢,¢) takes values in C{Lz (X;Cl,).
Since the inclusion of S(—¢,¢) < S is a homotopy equivalence, this means that the
fundamental class [X]" can be lifted to an element of K,,(CiLz (X)). To make this
precise, we fix a graded *-homomorphism 1: & — S(—¢, ) which is homotopy inverse
to the inclusion S(—¢,¢) — S, see Lemma 1.1.4.

Definition 2.2.6. The equivariant partial p-invariant of g € R}' (X) is defined as
follows:

pz(9) = lag oy] € Ko (CiLz (X; Cly)) = K, (CiLz (X)) =S, (X / Z),

where ¢: & — S(—¢,¢) and € > 0 are chosen as above.
For Z = () we write p*(g) € SL (X).

Here we have included g in the notation of the partial secondary invariant to emphasize
that this class may indeed depend on the metric. However, since 1 is unique up to
homotopy as a homotopy inverse to the inclusion S(—¢,¢) — S, the partial p-invariant
p%(g) does not depend on the particular choices of € and .

The following proposition is immediate from the construction:

Proposition 2.2.7. Let Z C B C X be I'-invariant subsets and g € RJZr (X)F -
RE (X)F. Using the notation from Subsection 2.1.1, the following equality holds:

az.5 (Pz(9)) = P5(9)-

In particular, we have q%X (P%(9)) = [X]" and pi (9) = [X]".
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2 Secondary large-scale index theory for psc

By the exact sequence from Corollary 2.1.4, we conclude:

Corollary 2.2.8. If Indl/;Z(X) # 0, then RS, (X)F is empty.

Definition 2.2.9. Let g € R}, (X)". The (equivariant) localized coarse index of (X, g)
is defined as follows:

Indy (X, g) :=Indy (p7(9)) € Ku(CF (2)).

Moreover, if A C Z is another I-invariant subset, then we define the (equivariant)
localized coarse index modulo A as

C:(Z
IndY )4 (X, g) :=IndY 4 (pg(g))eKn< r(4) )

Ci(AC 2)

Here we have again used the maps Indy and Ind} sa from Corollary 2.1.4 and Proposi-
tion 2.1.3.

This localized coarse index has been previously introduced and studied by Roe,
see [Roe96, Proposition 3.11] and [Roel6].
Remark 2.2.10. If the I'-action on X is cocompact, then any non-empty I'-invariant
subset Z is coarsely equivalent to X and so S! (X /Z) = KL (X) for all Z # 0.
Moreover, note that it is a consequence of the Kazdan-Warner theorem [KW75] that
on a closed manifold (such as I'\ X if the action is cocompact) of dimension > 3 there
are no obstructions to positive scalar curvature outside a subset of non-empty interior.
We conclude that partial secondary invariants for subsets other than Z = X or Z =)
are only interesting if X is not I'-cocompact.

The partial p-invariant is a concordance invariant in the following sense:

Proposition 2.2.11. Let go,g1 € R} (X)F be concordant relative to Z as in Defini-
tion 1.3.5. Then p%(g0) = p5(g1).

We defer the proof of Proposition 2.2.11 to Subsection 2.4.1, where it will be a
consequence of the partitioned manifold index theorem for partial p-invariants.
We deduce the following result (see Remark 1.3.6):

Corollary 2.2.12. Let go,g1 € R}, (X)" be equal on X \ Z. Then p5(90) = p5(g1)-

Under the hypotheses of Proposition 2.2.11 (respectively Corollary 2.2.12), we
also have Ind%(X,go) = Indy(X,g1). Moreover, if A C Z and g € R} (x)" ¢

RS (X )', then Ind} ya(X, g) vanishes, as follows from exactness of the sequence in
Proposition 2.1.3. We deduce:

Corollary 2.2.13. Letg € R}, (X)" with Indg//A(X7 g) # 0. Then g is not concordant
relative to Z to an element of R (x)".
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2.2.3 The coarse APS-index for partial psc at the boundary

In the work of Piazza—Schick [PS14] and Xie-Yu [XY14b], a crucial role falls upon
a “higher Atiyah—Patodi-Singer index” for manifolds with positive scalar curvature
at the boundary. In these articles, its construction is based on Roe’s localized coarse
index. This is also the approach that we will take here. A discussion that this agrees
with other constructions of this APS-type index can be found in [PS14, Subsection
2.2]. Following our pattern of generalizing all constructions to partial positive scalar
curvature, we will construct a coarse APS-index for positive scalar curvature on the
boundary outside a prescribed subset.

In this subsection, we fix Y to be an (n + 1)-dimensional complete spin manifold
endowed with a I'-action and with boundary 0Y = X. Moreover, we suppose that Y
has finite Hausdorff distance to its boundary, that is, sup,cy dy (y, X) < oo. In other
words, the inclusion X — Y is a coarse equivalence.

We will freely use the conventions from Subsection 1.3.3. In particular, let Y, be
the spin manifold obtained from Y by attaching a cylindrical end X x Rx.

Let Z C X be some I'-invariant subset and define Zo, :=Y U (Z x R>g) C Y.

Lemma 2.2.14. The inclusions X — Y — Y, induce isomorphisms as follows:

e (CE) Yo (0D Ny CiZaCYa)
"\ C:(Z CX) "\Cr(ZcCY) "\CL(ZxRs0 CYo) /)
Proof. The first isomorphism is a consequence of the assumption that the inclusion
X < Y is a coarse equivalence. For the second isomorphism, it suffices to show that

Ci(Zoo CYoo) =Ch(Y CYoo) + CF (Z xRy C Yoo),
Ci (Y CYso)NCL(Z xRxo CYy)=Ch (Z CYy).

This follows from Lemma 2.1.6. ]

Denote the inverse of the isomorphism from Lemma 2.2.14 by

o (gEimmem) " (Gzen)

Definition 2.2.15. Let g € R}, (X)". Choose an arbitrary h € RS (V)" with Oh = g.
We then have ho, € R}w (Yoo ). We define the coarse APS-index of Y with respect to

g€RE(X)" by

Cr (X)
IndEPS(KX // Z7 g) = C (Indgw//zwg;o (mehoo)) S Kn+1 <C;(FZC)()> . (222)

Remark 2.2.16. If Z = (), this yields an index Ind} . (Y, X, g) € K41 (Ci (X)) for all
g € RT(X)"; this is the index that is studied in [PS14; XY14Db).
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Remark 2.2.17. Concordance invariance (Proposition 2.2.11) implies that the coarse
APS-index Ind. (Y, X // Z, g) does not depend on the choice of the particular h €

APS

R} (V)" with &h = g. This is the case because Z,, 2 Y and Indgw//ZXR>O(YOO, heo)
does not depend on the values of h on Z,, see Corollary 2.2.12.
Remark 2.2.18. This construction also yields an APS-index if we do not make any psc
assumptions whatsoever on the boundary (that is, take Z = X). However, in this case,
the receptacle of the index is the zero group K. (Cj (X) /Cf (X)) and hence contains
no information.

The following proposition says that non-vanishing of the APS-index is an obstruction

to the existence of extensions of g to Y which have positive scalar curvature outside a
subset that is coarsely equivalent to Z.

Proposition 2.2.19. Let g € RJZF (X)F. Suppose that there exists a TI'-invariant
subset A C'Y such that sup,., d(z,A) < oo and h € R}, ()" with Oh = g. Then
nd, (Y, X ) Z,g) =0.

Proof. Let Asw := AU (Z x Ryp). Then Indgoc (Yoo, hoo) € Kiu(Ct (Zoo C Yoo))
can be lifted to Indg&(Yoo,hoo) € K.(Cf (Ao C Yx)). The assumption on A im-
plies Cf (As C Yoo) = Cf(Z X Ry C Yo ). Hence the image of Indgoc (Yoo, hoo) in
K. (Cf (Zoo C Yoo) /CF ((Z X Rxg) C Y )) vanishes. Consequently, by the definition
of the coarse APS-index, Ind}_.(Y, X / Z, g) also vanishes. O

Corollary 2.2.20 (Z =0). Let g € RT (X)". IfInd (Y, X, g) # 0, then there exists
no h € R* (V)" with oh = g.

2.2.4 The index difference

Hitchin [Hit74] constructed a secondary index invariant (taking values in KO~"71(x))
associated to two positive scalar curvature metrics. Variants of this “index difference”
or “relative index” have been used extensively in the recent literature to study dif-
ferent topological aspects of the space of positive scalar curvature metrics, see for
example [HSS14; BER14; XY14a; WY13; XY13]. In this subsection, we briefly present
the construction of such an invariant by defining a “coarse index difference” of two
Riemannian metrics in R} (X) based on the coarse APS-index from the previous sub-
section. The non-vanishing of this invariant is an obstruction to concordance relative
to Z.

Definition 2.2.21. Let go, g1 € R} (X). The index difference of go and g; is
Indgiff (90791 // Z) = (er)* IndI;PS (X X [0’ 1]7X X {Oa 1} // Z % {07 1}790 l—lgl)
Cr (X)
eK, L :
(gizem)

where pry: X x {0,1} — X is the projection onto the first coordinate.
In the case of Z = ), we have IndYig (9o, 91) € Kni1 (Ch (X)).
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Corollary 2.2.22. If gy and g1 are concordant relative to Z, then the index difference
Indig (90, 91/ Z) vanishes.

Proof. The Riemannian metrics gy and g; are concordant relative to Z if and only if
there exists an extension of gy Ll g1 to a Riemannian metric h € R;X[O 1 (X x [0,1)".
Therefore, the statement follows from Proposition 2.2.19. O

2.3 Product formulas for secondary invariants

Suppose that X;, i € {1,2}, are n;-dimensional complete spin manifolds endowed with
T';-actions. Their product X = X; X X5 is an n := n; + no-dimensional spin manifold.

Fix Riemannian metrics g; € R (X;)", i € {1,2} and set g := gy ®go € R(X)". A
principal Spin(n)-bundle covering the SO(n)-frame bundle of X may be obtained as the
bundle associated to Pgpin (X1) X2z, Pspin(X2) via the inclusion Spin(nq) Xz, Spin(ng) <
Spin(n). In view of the isomorphism Cl,, ® Cl,, = Cl,,, we may identify the Cl-spinor
bundles as follows: (239 = prj $g1 ® prs $gl, where pr;: X; x Xo — X, are the
canonical projection maps. On the level of L2-sections, this means that we may
identify L2(X1,&,,) ® L?(Xo, @,,) = L?(X,&,). Hence we can use the description
of the external product from Subsection 2.1.4 in this context. The Cl-linear Dirac
operators P, and D, on &,, and &, i € {1,2}, respectively, satisfy the relation
159 = z591 ®id+id @’@gz'

Theorem 2.3.1. Fori € {1,2}, let X; be a complete spin manifold endowed with a
free and proper action of a discrete group I';. Let Z1 C X1 be some I'1-invariant subset.
Set X =X xXoand Z: =71 x Xy and T : =11 xT's.

Then for all g1 € ’RJZrl (Xl)r1 and g € R(XQ)F2 with g == g1 ® g2 € R (X), the
following product formula holds:

py(g) = Pgll (g1) B [X,]"2. (2.3.1)

The external product we us here has been defined in Subsection 2.1.4. Before turning
to the proof, we discuss two straightforward corollaries. Firstly, by setting Z; = X; or
Z1 =), we deduce:

Corollary 2.3.2. In the situation of Theorem 2.3.1

9gi

(X' = (X" K [Xo]2. (2.3.2)
Ifg € RT (Xl)Fl and g € R(XQ)F2 with g == g1 ®go € RT (X)F, then
ph(g) = p"(g1) B [Xo]2. (2.3.3)
Secondly, applying the index map to (2.3.1) yields:

Corollary 2.3.3. In the setup of Theorem 2.3.1, the product formula for the localized
index
Ind} (X, g) = Ind}! (X1,91) K Ind"(X>) (2.3.4)

holds for all g1 € RZ (X)) and gy € R(X2)"™ with g := g1 & g € R (X).
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2 Secondary large-scale index theory for psc

The main part of the proof of Theorem 2.3.1 consists of some standard computations
which we indicate in the following two lemmas for the convenience of the reader.

Lemma 2.3.4 ([HKT98, Appendix A.4]). Let D;: H; 2 dom(D;) — H; be odd,
(unbounded) self-adjoint operators on graded Hilbert spaces H;, i € {1,2}. Then we
have the equality (of bounded operators on Hi ® Hs),

exp(—(Dy @ id+id 8D,)%) = exp(—D}) ® exp(—D3). (2.3.5)

Proof. If both operators D, and Ds are bounded, then the result follows immediately by
the functional equation for the exponential function. The general case can be reduced
to the bounded case using the spectral theorem and an approximation argument. [

Lemma 2.3.5. In the setup of Theorem 2.3.1 the following diagram commutes:

Qg

S CiL(X;Cl,)
lA ~ txq, x5
~ gy Qog, ~
SpSs = C, L (X15Cl,,) ® Cf L (X2; Cly,)

where the x-homomorphisms agy, oy, are defined according to (2.2.1).

Proof. The statement and proof are essentially the same as, for example, in the proof
of [Dum05, Theorem 4.1]. It suffices to check commutativity for the generators e’
and xe™ of 8. Indeed, we have a,(e™ )(t) = e #P) = o (1712, BB D,,)’
and tx, x, (g ® a,, (Ae™)MN)(t) = e #%5 & e #®5. Thus Lemma 2.3.4 with
D; = 19, implies that ag(e_xz) = tx, x5 (g, ® g, (A(e™™))), as required. A similar
computation shows commutativity on the generator xe %", O

Proof of Theorem 2.3.1. The assumptions allow to find € > 0 such that o, maps
S(—¢,¢) to Cf Lz, (X1;Cl,,) and o, maps S(—¢,¢) to CiLz (X;Cl,). Choose a
graded #-homomorphism ¢: § — S(—¢,¢) that is homotopy inverse to the inclusion
t: §(—e,e) — S (as in Definition 2.2.6).

We then have p3(g) = [ag 0 ¥] € Ko(CiLz (X;Cl,) and pgll (g1) = [ag, 0 Y] €
Ko(Cf, Ly (X15Cloy)) and [X]T= = [ay,] = [ag, 0t4] € Ko(Cf, L (Xa; Cl,,)). Thus, to
prove the product formula, we need to show that the following diagram commutes up
to homotopy:

Qg

S— L S(-ee) CiLy (X;Cl,)
lA o txy,xT

SBS L S(—2,6) & S(—e,6) “1EM O Ly (X33Cl,,,) & Cf,L (Xa;Cly,)

Indeed, the left square commutes up to homotopy by Corollary 1.1.5. The right square
strictly commutes as it is a restriction of the diagram from Lemma 2.3.5. O
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Corollary 2.3.6. In addition to the setup of Theorem 2.3.1, let X1 = Y7, where
Y1 is a complete spin manifold endowed with a I's-action. Set' Y := Y, x Xy, then
oY = X1 X X2 =X.

Then for all g1 € RJZFI (Xl)Fl and g € 72(X2)F2 with g == g1 ® g2 € R (X), the
following product formula holds:

Ind!

APS

(Y, X /) Z,g) = Ind}}

APS

(Y1, X1 /) Z1, 1) ®Ind">(Xs), (2.3.6)

where the external product (2.1.8) is used.

Proof. We have a canonical identification

Yoo = YUX (X X R}O) = (Yi X XQ) Ux (Xl X X2 X R;O)
= (Y1 UX1 (Xl X R;Q)) X X2
= (Yl)oo X XQ.
Let Zoo ;=Y U(Z x Rxp) and (Z1)s0 := Y1 U (Z1 X Rxg) as in Subsection 2.2.3. Then

Zso = (Z1)o X X5 under the above identification. Let hy € R (Y1)"" with Ohy = g3
and set h:=hy &gy € R(Y)". Then (7)o i= h1 Ux, (g1 @ dt?) € i, (X1)"™" and

hoo :=hUx (g@®dt?) = (h1)oo D g2 € R}w (Yao)'. Corollary 2.3.3 implies that

Indy_ (Yeos hioo) = Ind{ ) ((Y1)oo, (h1)oo) B Ind"2 (X5)
€Kni1(Cr (Zoo C Ya)). (2.3.7)

Then Ind . (V,X /) Z,g) and Ind L. (Y1,X) / Zi,g1) are defined by ap-
plying the isomorphism from Lemma 2.2.14 to Indgw//ZXR>O(YOO7hOO) and

Ind(rzl)oo//zlxR>o((Y1)oo, (h1)oo), respectively. Therefore, we can deduce (2.3.6) from

(2.3.7) using naturality of the external product (2.1.8).
O

Corollary 2.3.7. In the setup of Theorem 2.3.1, let gx,.0,9x,1 € RJZFI (Xl)r1 such
that gx j == gx,; D g2 € R} (X)F for j € {0,1}. Then:
Indgig (95,1, 9x,0 / Z) = Indiy (91,1, 9x1.0 / Z1) B Ind"™ (Xa).

Proof. The statement follows from Corollary 2.3.6 by applying it to Y1 = X7 x[0,1]. O

2.3.1 “Boundary of Dirac is Dirac”

The following lemma is a standard fact. However, we include a proof so as to demonstrate
that it can be verified directly in our present setup.

Lemma 2.3.8. The boundary map oy : K1(C*L (R)) — Ko(C*L ({0})) associated to
the Mayer—Vietoris sequence of the cover R = R5o URgo maps [R] € K1 (C*L (R)) to
the unit element 1 € Ko(C) = Ko(C*L ({0})).
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Proof. In our setup, we identify [R] € K;(C*L (R)) with [ar] xb € Ko(C*L (R)®Co(R)),
where b = b; € Ko (CO(R) ® Cl’{) is the dual Dirac element, see Subsection 1.1.3, and

ag: S — C*L(R) ® Cl; is defined as in Subsection 2.2.1. The following diagram

comimutes:
lar]x_

K, (Co(R) ® Cl}) —— K., (C*L(R) ® Co(R))

b
K. (C). h
Here a: S ® Co(R) --» K ® Cl; and v: C*L (R) ® Co(R) --» K are the asymptotic
morphisms mentioned in Subsection 1.1.3 and Remark 2.2.4. In particular, we obtain
7.([R]) = . (b) = L.
The Mayer—Vietoris boundary map is induced by the inclusion

C'L(R) ® Co(R) = Co(R,C*'L(R)) — 2 (C*'L(R); C*L (R>p C R),C*L (R¢p C R)).
We will use the symbol ) as a shorthand to denote the latter C*-algebra. It is equal to
the following sum of ideals inside C*L (R) ® C([—o0, 00]):

Q=C"'L(Rxp CR)®Cy([—00,0)) + C*L (Rgo C R) ® Cop((—00, ¢]). (2.3.8)
Moreover, v extends to an asymptotic morphism
7: C'L(R) ® C([~00,00]) --» B(L*(R)), %e(L® f) = L(t)f,
which, by (2.3.8), restricts to an asymptotic morphism 7:  --» K(L?(R)). We obtain

the following commutative diagram of (asymptotic) morphisms:

C*L (R) ® Co(R) Q C*L ({0} C R)

oy s -

RN v =" Tev

K (L*(R))) .

All asymptotic morphisms above induce isomorphisms on K-theory. By definition, the
Mayer—Vietoris boundary map is the map Oy : K1 (C*L (R)) = Ko(C*L (R)®Co(R)) —
Ko(C*L ({0} C R)) 2 Ko(C*L ({0})) = Ko (C) induced by the upper row of the diagram
composed with ev. This finishes the proof since we already know that v, ([R]) = 1. O

Theorem 2.3.9 (Suspension isomorphism). Let X be a proper metric space endowed
with a free and proper I'-action and Z C X some closed I'-invariant subset. Then the
map

SS(X)Z) = Si, (X xRJZxR), =z~ zK[R]

s an tsomorphism. Its inverse is given by the Mayer—Vietoris boundary map
omv: S (X xRJZxR)—SL(X)Z)

associated to the cover X x R =X x Ry U X x Rgo.
If X is a complete spin manifold and g € R}, (X)F, then

v (P xr(g®dt?))) = p5(g).
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Proof. The Mayer—Vietoris boundary map Oyry is an isomorphism by Proposition 2.1.15.
Therefore, it suffices for the first statement to show that dyv(z X [R]) = z for all
x € Ky (CfLz (X)). Let W := X xR. From the discussion of Mayer—Vietoris sequences
in Subsection 1.1.4, we obtain a commutative diagram as follows:

Kn (CiLz (X)) @ K1 (C'L(R)) 3552, Kn (ChLz (X)) ® Ko (C°L ({0} C R))) +—=— Ka (CLz (X)) @ Ko (C7L ({0}))

dx Ix Ix
Kop1 (CiLz (X) & CL(R)) —2 K, (CiLy (X) & C*L ({0} C R)) +——— K, (CjLz (X) ® C*L ({0}))
Lt Lt =

Omv

Knt1 (CiLizur (W) —"—— Ky (CiLizx oy (X x {0} € W)) ¢——%—— K, (CfLz (X))

In view of this diagram, it is enough that Omv ([R]) € Ko (C*L ({0} C R)) agrees with
the unit element 1 € Ko(C) =2 K, (C*L ({0})) = Ko (C*L ({0} C R)), which is precisely
the content of Lemma 2.3.8. Thus dyy and taking the external product with [R] are
mutually inverse isomorphisms.

Theorem 2.3.1 implies pY (g & dt?) = p%(g) ® [R]. Hence the second statement is
a direct consequence of the first. O

There are analogous results concerning the APS-index and index difference:

Proposition 2.3.10. Let X be a proper metric space endowed with a proper and free
T-action and Z C X some closed I'-invariant subset. Then the map

Clﬁ(X) C;(XXR)
K (crch)> = Ko (cwachR) » T o RInd(R),

18 an isomorphism. Its inverse is given by the Mayer—Vietoris boundary map from
Proposition 2.1.11,

. Cr (X x R) Cr (X)
aMV'K*“(C;(ZchXxR)> _>K*<C§(ZCX) ’

associated to the cover X x R=X xRy U X x Rgp.

Proof. By Corollary 2.1.14, K, (Cf (X x Rx¢)) and K, (Cf (Z x Ryp C X X R3y)) van-
ish and hence K, (m> vanishes, and similarly for X x R¢g. This implies
that vy is an isomorphism. Hence it suffices to observe that dyv(z B Ind(R)) = z.
Indeed, as in the proof of Theorem 2.3.9, we obtain:

Omv(z ¥ Ind(R)) = 2 K Oyy (Ind(R)) = z,

where the latter is the Mayer—Vietoris boundary map associated to R = R>9 URgg
and we use that an(Ind(R)) = Ind(an([R])) =1€ Ko(c* ({0})) = Ko(C) O

Corollary 2.3.11 (see Corollary 2.3.6). Let Y be a complete spin manifold endowed
with a free and proper T'-action and with boundary 0Y = X. Let Z C X be a I'-invariant
subset and g € R}, (X)". Then

v (Indips (Y xR X xR/ ZxR,g® dt2)) —nd.,, (Y,X | Z,g).
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Corollary 2.3.12 (see Corollary 2.3.7). Let X be a complete spin manifold endowed
a free and proper I'-action. Let Z C X be a I'-invariant subset and gg, g1 € R}' (X).
Then:

v (ndhyg (g0 @ dt2, 91 @ dt? | Z x R) ) = Indli (90,91 // Z)

2.3.2 Hypereuclidean manifolds

By the results in the previous subsection, secondary invariants can still distinguish
metrics of positive scalar curvature after taking products with the real line, and by
iteration, even after taking products with Euclidean space of any dimension. We
can push this idea a little bit further by considering the following concept, which is
originally due to Gromov [Gro93].

Definition 2.3.13. A complete Riemannian manifold Y is called hypereuclidean if
it admits a proper Lipschitz map Y — R? of degree 1 into some Euclidean space R?
(if this is the case, then of course ¢ = dimY’). Furthermore, we say that Y is stably
hypereuclidean if Y x R¥ is hypereuclidean for some k > 0.

The following result of Dranishnikov provides many examples of stably hypereuclidean
manifolds:

Theorem 2.3.14 ([Dra06]). Let B be a closed aspherical manifold and suppose that
m1(B) has finite asymptotic dimension. Then the universal covering B is stably hyper-
euclidean.

Products with stably hypereuclidean manifolds are split-injective on the partial
structure groups:

Proposition 2.3.15. Let X be a proper metric space endowed with a proper and free
T-action, Z C X a I'-invariant subset. Suppose that'Y is a q-dimensional complete
spin manifold that is stably hypereuclidean and endowed with a A-action. Then the map

SC(X)Z) = SIMNX XY )ZxY), z—aR[Y],
1s split-injective. Moreover, the retraction can be chosen to be natural in X.

Proof. It is enough to give a proof for the case that Y is hypereuclidean and A is the
trivial group. This is because for each k > 0 we have a canonical map

SIIMX XY JZxY) =Sl (X XY xRFJZ x Y x RF),

which forgets A-equivariance and takes the external product with [R¥].

Now suppose that f: Y — R? is a proper Lipschitz map of degree 1. Then the
induced map on K-homology takes the fundamental class of Y to the fundamental
class of R7. Thus the map (idx xf).: SL, , (X x Y /Z xY) =S, (X xR?/Z x RY)
takes elements of the form x X [Y] to « K [R?]. So, it even suffices to prove the claim
for Y = R?. However, for Y = RY, the result follows from (an iterated application of)

Theorem 2.3.9. O
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An analogous argument yields:

Proposition 2.3.16. Let X be a proper metric space endowed with a proper and free
T-action, Z C X a T-invariant subset. Suppose that Y is a q-dimensional complete
spin manifold that is stably hypereuclidean and endowed with a A-action. Then the map

Cr (X) Ch (X xY) A
K*<CI’Z(ZCX))_>K*+q<Clt(Z><YCX><Y) » @ RndA(Y),

is split-injective. Moreover, the retraction can be chosen to be natural in X.

2.4 Secondary index theorems

2.4.1 Partitioned manifold index theorems

In this subsection, we establish a new partitioned manifold index theorem for partial
secondary invariants, which generalizes the secondary partitioned manifold index
theorem [PS14, Theorem 1.22].

Definition 2.4.1. Let W be a complete spin manifold. Let X C W be a submanifold
of codimension one with trivial normal bundle and a fixed tubular neighborhood
c: X x [-1,1] — W. We suppose that W \ X has two connected components and
denote the closures of the connected components of W\ X by W_ and W, so that
(X x {£1}) € Wx. Then W, are submanifolds of W with common boundary
OWy = X. We require that the cover of W by W, and W_ is uniformly excisive with
respect to the implicitly fixed proper metric dy . If W is endowed with a I'-action, we
additionally require that X, W_ and W, are all I'-invariant subsets.

In this situation, we say that W is partitioned by X. Moreover, we say that a
Riemannian metric h € R (W) is partitioned by g € R (X) if ¢*h | X x (—¢,¢) = g®dt?
for some ¢ > 0.

Definition 2.4.2. Let W be partitioned by X. Let Z C W be a closed subset. We
say Z is admissible with respect to W if

(i) the subset Z is of product structure near X with respect to the fixed tubular
neighborhood, that is, c™1(Z) N (X x (—¢,¢)) = (ZNX) x (—¢,¢) for some & > 0.

(ii) for every R > 0 there exists S > 0 such that

Ur(Z N W) NUR(X) CUs(Z N X). (2.4.1)

Ezample 2.4.3. T W, = X x[0,00) and ZNW, = ZNX x [0,00), then Z is admissible
with respect to W.

Remark 2.4.4. Tt follows from Lemma 2.1.10, that if Z is admissible with respect to
W, then for all R > 0 there exists S > 0 such that

Ur(Z)NUr(W_) C Us(Z NW_), (2.4.2)
UR(ZQW,)HZ/{R(ZOWJF) QZ/[S(ZQX). (2.4‘3)
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Figure 2.1: Illustration of a subset admissible with respect to W but not W_
W_ W,

In fact, (2.4.3) says that the cover of Z by ZNW_ and Z N W, is also coarsely
excisive.

Remark 2.4.5. As will become apparent in Lemmas 2.4.10 and 2.4.11, admissibility
with respect to W, is the condition that is needed to be able to replace the other half,
W_, by something else without changing the image of the partial p-invariant under the
Mayer—Vietoris boundary map. This idea will be key to the proof of the main theorem
below.

We have the following partitioned manifold index theorem for partial secondary
invariants.

Theorem 2.4.6. Let W be a complete spin manifold endowed with a free and proper I'-
action and suppose that it is partitioned by X. Let Z C W be a closed I'-invariant subset
that is admissible with respect to W and suppose that h € R} (VV)F is partitioned by

g€ R (X)F. Then the Mayer—Vietoris boundary map
omv: St (W)Z)— St (X)zZnX)
associated to the cover W = W, U W_ satisfies

v (pZ(h) = pnx (9)-

Remark 2.4.7. There is an apparent asymmetry between W, and W_ due to the
admissibility condition. This is resolved by observing that the proof of the partitioned
manifold index theorem also works with the roles of W_ and W, exchanged; so the
theorem also holds if the subset is admissible with respect to W_ but not with respect
to W. For the proof of the delocalized APS index theorem in Subsection 2.4.2 it will
be crucial that we do not need simultaneous admissibility with respect to both halves
of the partition.
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2.4 Secondary index theorems

Before turning to the proof of Theorem 2.4.6, we discuss a few consequences. Firstly,
taking Z = 0, this recovers the secondary partitioned manifold index theorem of Piazza—
Schick [PS14, Theorem 1.22] in all dimensions. Moreover, we obtain a partitioned
manifold index theorem for the coarse APS-index as in the corollary below.

Corollary 2.4.8. Let V' be a complete Riemannian spin manifold endowed with a free
and proper I'-action and with boundary OV = W. Suppose that V is partitioned by a
manifold Y with boundary 0Y = X such that X CW and W is partitioned by X. Let
Z C W be a closed I'-invariant subset that is admissible with respect to both W, and
W_. Let h € R}, (W)F be partitioned by g € R« (X)F. Then the Mayer—Vietoris
boundary map

Oy Koo ( Ct (W) Ch (X) )

1\ 7 Kn
C;(ZcW)) = Bt <C§(ZHXCX)

associated to the cover W = W, U W_ satisfies
Oy (Indlp (V,W ) Z,0)) = Tndl (Y, X ) 20 X, g).

Proof. Granted Theorem 2.4.6, this is a straightforward generalization of Corol-
lary 2.3.11. The fact that Z is admissible with respect to both W and W_ is equivalent
to the condition in Proposition 2.1.11; so the Mayer—Vietoris boundary map mentioned
in the statement exists. Let Voo := V Ugy (W x Rxg) and Yo :=Y Uy (X X Ry)
as in the definition of the coarse APS-index, see Subsection 2.2.3. Let hy € R} (V)
such that Ohy = h. We may assume that hy is partitioned by hy € R}y (X) with
dhy = g. Then (hy)s € R} (Vao)' is partitioned by (hy ) € R?_Zmy)m (Yaoo)" and
it follows from Theorem 2.4.6 that

Oy (Indl_ (Voo, (hy)oo) ) = Iy, (Yoo, (B )oo),

where Oy Kp12(Ch (Zoo € Vo)) = Kn1(Cf (Zoo N Yoo C Yoo)). As in the proof of
Corollary 2.3.11, this suffices to prove the statement by the definition of the coarse
APS-index. O

Corollary 2.4.9. Let W be a complete spin manifold endowed with a free and proper
T-action which is partitioned by X C W. Let Z C W be a closed I'-invariant subset
that is admissible both with respect to Wy and W_. Fori=0,1, let h; € R}, (W)" be

partitioned by g; € RJZFOX (X)F. Then the Mayer—Vietoris boundary map

Cx (W) Cr (X)
c;(FZc W)> = Kn (c;:(z?wx CX))

omv: Kpya <
associated to the cover W = W, U W_ satisfies

Oy (Indiy (ho, b1/ 2)) = Indi (90,91 / 20 X).
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2 Secondary large-scale index theory for psc

Furthermore, Theorem 2.4.6 implies the concordance invariance of partial secondary
invariants which is still open from Subsection 2.2.2.

Proof of Proposition 2.2.11. Let gg,g1 € R} (X)F be concordant relative to Z as in
Definition 1.3.5. Let h € R} (W) with W := X x R such that the conditions of
Definition 1.3.5 are satisfied. We identify X with (say) X x {—1} € W and view (W, h)
as being partitioned by (X, go) with W_ = (—o0,—1] x X and W, = [-1,00) x X.
Thus by Theorem 2.4.6 implies

vy xr(h) = pz(90)-

Then Theorem 2.3.9 implies

pzxr(h) = p(g0) X [R].

However, we can also identify X with X x {2} C W and apply the same argument
again to show that

Py r(h) = piz(g1) K [R].

By Theorem 2.3.9, these two facts imply that p%(g0) = p%(g1)- O

We now proceed with technical lemmas needed for the proof of Theorem 2.4.6. If W is
partitioned by X, then a (W,T, Cl,,41)-module $) can be restricted to a (W, T, Cl,41)-
module $)4 := ran(ly, ) using the projection in § corresponding to the characteristic
function of W,.. This will be used implicitly in the following.

Lemma 2.4.10. Let Z C W be a closed T'-invariant subset that is admissible with
respect to W,.. Then for all p € N:

(i) The inclusion H1 C 9 induces x-isomorphisms:

CiLzow, (W4;Cly)
CiLlznx (X C W;Cly)

CFLZ0W+ (W+ c W, Clp)
CltLZmX (X C W; Clp)

R

CiLz (W;Cly,)
C;LZOW, (W, c W, Clp) '

R =

If Z is also admissible with respect to W_, then the inverse of these isomorphisms
is induced by the expectation

®: Cp (W;Cl,) = Cr (W3 Cl,), T 1w, Tlw,.

(ii) The following *-homomorphism is injective:

CFLZﬂWJr (I/I/+7 Clp) CFL (W+, Clp)
Cilznx (X C W43CL)  CiL(X C Wi;CL)’
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2.4 Secondary index theorems

Proof. To simplify the exposition, we drop the Clifford algebra and the group I' from
the notation during this proof.

The map j in (i) is an isomorphism by Lemma 2.1.7. To show that the map ¢ in (i)
is also an isomorphism, we need,

C(ZNW, CW)NC (ZNX CW)=C*(ZNX CW,), (2.4.4)
CL (W) NCL(X C W) = C*L(X € W), (2.4.5)
C*LZmVVJr (W+) + C*Lznx (X - W) = C*LZQVVJr (W+ C W) . (246)

Indeed, consider the expectation ®: C* (W) — C* (W), T +— 1w, T1w, . Note that
supp(®(T)) C supp(T) N (W4 x W) for all T € C* (W). In particular, ® extends
to an expectation C*L (W) — C*L(W,), which we also denote by ®. We have
B(C(ZNX CW)) = C*(ZNX C W) and B(C*L(X C W)) = CL(X C W),
which proves (2.4.4) and (2.4.5). To prove (2.4.6), let L € C*Lznw, (W C W). Then
®(L) € C*'Lzaw, (W4) and L — ®(L) € C*L (X C W). Moreover, we have evy (L) —
O(evi(L)) e C*(ZNWL CW)NC* (X CW). In addition, using the admissibility
condition (2.4.1), we obtain (compare Lemma 2.1.6):

C*(ZNW, CW)NC* (X CW)=C*(ZNX CW). (2.4.7)

Thus the decomposition ®(L) + (L — ®(L)) = L proves (2.4.6) and shows that the
inverse of ¢ is always induced by ® (even if Z is not admissible with respect to W_).

It does not hold in general that ®(C*Lzaw_ (W_ C W)) C C*Lznx (X € W) and
O(C*Lyz (W)) € C*Lzaw, (W4 C W). However, if Z is also admissible with respect
to W_, then these statements are in fact true and one can verify that ® is inverse to
j (as follows from an argument using (2.4.1) to (2.4.3) with the roles of W, and W_
reversed).

Statement (ii) is a consequence of a version of (2.4.7) restricted to W, which also
follows from (2.4.1). O

The main ingredient to prove Theorem 2.4.6 is the following “swapping lemma”, which
implies that we can modify one half of a partitioned manifold without changing the
image of the Mayer—Vietoris boundary map. Hence it reduces the general partitioned
manifold index theorem to the product situation. This idea originated in a proof of
Roe’s partitioned manifold index theorem due to Higson [Hig91].

Lemma 2.4.11 (Compare [Hig91, Lemma 3.1]). Let W and W be both partitioned

by X. Suppose W = W, and that the restrictions of dw and dj; agree on W,.. Let

ZCW, 7Z C W be admissible with respect to W, = WJF with ZNW, = A W+. Let
~ __\T

h e R} (W)F, h e R}L (W) agree on W, and be partitioned by some metric on X.

Then

v (o5 () = Oy (o5 (R)) € 8L (X ) ZN X).
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2 Secondary large-scale index theory for psc

Proof. Lemma 2.4.10 (i) (applied to Z = W), implies isomorphisms

CiL (W; Clyga) 2 CiL(W4;Clyy1) @ CrL (W§ Cln+1)
CiL(W_ € WiCluy1) " CRL(X € WiiCluy) (W, W CIM) :
(2.4.8)

where the maps ¢ and ® are induced by T+ 1w, T'1ly, . Consider
a:=ap: S = CLL (W;Cl,uqq),
d=a;: 8 — CiL (W; CLM) :

which have been defined in Subsection 2.2.1. Let

CEL (W Closs)

: CEL ; Cly
m Cl" (W,C +1)*>C;L(W7Cw;01n+1)

be the canonical quotient map and define 7 analogously. Some propagation speed
estimates which we postpone until the end of this proof show that

1 1
1w, f (ti)h> 1w, — 1w, f (t@z) 1w, € CfL(X C W;Clyyq). (2.4.9)

Thus the following *-homomorphisms are equal:

CiL (Wy; Clyusy)

P —doFoa:S — .
PTeaTRemeaiS T (X C Was Clur)

By Lemma 2.4.10 we also obtain isomorphisms,

CiLz (W;Cly1) 2 CiLzaw, (Wi;Clyy1)
CiLzaw. W_ C W;Cl,uy1)  CiLzax (X C Wy;Clyga)
- CiLx (W;Clyis
EN a Z(N - ) . (2.4.10)
Cilgg (W € WiCluy)
and the map
- CtLzrw, (W;Clygr) CLL (W, ;Clyyr)

. —
CF‘LZﬂX (X C W+, Cln+1) C;L (X C W+, Cln-‘,—l)

induced by inclusion is injective. Choose an appropriate homotopy equivalence
: S — S(—¢,¢e) such that @ o9 and & o ¢ take values in CiLz (W;Cl,4+1) and

Cl”iLE (W, ClnH), respectively. We also consider the quotient map

R CiLz (W;Clyqa)
CiLzaw. (W- C W;Clyq1)’

Tz C;LZ (W, Cln+1)
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2.4 Secondary index theorems

and define 7z analogously. We then have
koj_lo7TZo<po'(/):@owowoqﬁ:&)o%o@ow:ko}_lO%Zoﬁow.
Since k is injective,

CiLzaw, (Wi;Clyya)
CiLzax (X C Wy;Clyga)

jlomzopop =4 toTz0p0th: S —

This proves that

(G omz)upz(h) = (G 0 Fn)epZ(h)
c K C;LZQW+ (W+)
" CiLgnx (X € Wy

ow
)> =" K, (CiLzax (X ¢ W4)).

This implies the desired statement, since the Mayer—Vietoris boundary maps can be
computed by composing (77! o myz). (respectively (=1 o 7z).) with the boundary map
Ow, displayed above, see Remark 1.1.8.

Finally, to complete the proof we need to verify (2.4.9). We proceed similarly as
in [PS14, p. 992]. Let u € $H, = L2(W,,&,) = LQ(W+,$7;) such that supp(u) N
U:(X) = 0 for some £ > 0. Since the Dirac wave operators have unit propagation speed
and @, = Dj, on Wy, it follows that

Pny = iy € (2.4.11)

for all |t| < e, compare [HR0O, Corollary 10.3.4]. Now let f € S with compactly
supported Fourier transform f. Choose R > 0 such that supp(f) C [-R,R]. Set
fe(z) == f(t~'z), then supp(f;) C [— £, K] Using the Fourier inversion formula &
la [HROO, Proposition 10.3.5] together with (2.4.11), we obtain

R/t R ) R/t R ]
r(390)u= [ foeruas= [ e uas = 1 (19:) w

3 —R/t R/t

whenever supp(u) N Ur/(X) = 0. Let N € CL [W,4;ClL,]" denote the family of
operators defined by (2.4.9). We have just shown that supp(N(t)) € W x Ug/(X) for
all t > 1. Since prop(N(t)) — 0 as t — oo, this already proves N € CL[X C W,;CL,]".
Therefore (2.4.9) holds for all f € S with compactly supported Fourier transform. The
general statement follows since those functions are dense in S. O

Proof of Theorem 2.4.6. Applying Lemma 2.4.11 twice reduces the theorem to the
product situation: Indeed, we consider a new partitioned manifold W with W, = W, ,
W_=Xx(-00,0,, ZNW, =ZNWy, ZNW_ =ZNX x (—00,0] and h = g & d?
on W_. We also need to construct a distance function dy. To obtain that, we just
glue the Euclidean product distance function on X x (—o0,0] to the metric on W
(where we use the restriction of dy) as in Definition 1.3.7. Then, by Lemma 2.4.11 it
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2 Secondary large-scale index theory for psc

suffices to show the partitioned manifold index theorem for W instead of . However,
in this case Z is also admissible with respect to W_, so we can swap the roles of W
and W_ in Lemma 2.4.11 to also replace W, by X x [0,00). Thus we only need to
consider W =X xR, Z=2NX xR, h=g®dt?. This special case of the theorem
was already proved in Theorem 2.3.9. O

2.4.2 The coarse APS-index theorem

In this subsection, we derive an index theorem that relates the coarse APS-index with
the partial p-invariant at the boundary together with a new p-invariant associated to a
“coarse null-bordism”. This constitutes a generalization of the “delocalized APS-index
theorem” due to Piazza—Schick [PS14].

To begin, we suppose that we are in a geometric setup as in the definition of a coarse
APS-index, see Subsection 2.2.3. That is, fix Y to be an (n + 1)-dimensional complete
spin manifold with boundary dY = X endowed with a I'-action. Moreover, we assume
that X <— Y is a coarse equivalence.

Lemma 2.4.12. The K-theory of C}. (Yoo) vanishes in all degrees. In particular, there
exists a unique element p''(Ya.) € SL (Yo.) which maps to [Yoo]' € KL (Yo.).

Proof. By assumption, Y, is coarsely equivalent to X x R> and thus the first statement
follows from Corollary 2.1.14. The second statement is due to exactness. O

Definition 2.4.13. We define
P" (V) = duv(p' (Yao)) € S, (X)),

where pl'(W4,) is as in Lemma 2.4.12 and we use the Mayer—Vietoris boundary map
associated to the cover W, = W U (X x Rxg).

Remark 2.4.14. Theorem 2.4.6 (applied to Yo, with Z = Y,,) and naturality of the
Mayer—Vietoris sequence show that p'(Y) maps to [X]!' € KL (X). Since the K-
homology fundamental class of a spin manifold does not vanish (see for instance [HRO0O,
Lemma 12.2.4]), p' (V) € SE (X) never vanishes either. However, Ind" (X) vanishes
by exactness. This constitutes a variant of bordism invariance for the coarse index,
compare [Wull2].

We may think of the element p*'(Y) € S (X) as a secondary invariant which is
associated to Y viewed as a null-bordism for X.

For each g € R} (X)', there is a secondary invariant p%(g) € SL (X /Z). In the
following, we will identify the difference between pL (gx) and p'(Y) as determined by
the coarse APS-index from Subsection 2.2.3.

Theorem 2.4.15. For every g € R} (X)F the following identity holds:

0z (s (V. X ) Z,9)) = b (9) = db.2 (0" (V) € S5 (X ) 2).

Here we have used the notation from Corollary 2.1.4. In particular, for Z = §):
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2.4 Secondary index theorems

Corollary 2.4.16. For every g € R™ (X)F the following identity holds:

0 (ndis (V. X.9)) = o7 (9) = p"(Y) € ST (X).

Proof of Theorem 2.4.15. As a minor deviation from the setup of Subsection 2.2.3, we
redefine Z, as

Zoo 1= (V' \ (X x (—£,0])) U(Z x (—&,00)) C Yoo,

where we implicitly use the fixed collar neighborhood of X and some sufficiently small
€ > 0. This does not change any of the invariants since it is coarsely equivalent to the
variant of Z., defined in Subsection 2.2.3 but has the advantage that it is admissible
with respect to X x R>¢ in the partitioned manifold Yo = Y U X x Ry¢. In particular,
we will be able to apply Theorem 2.4.6 to this situation.

Choose h € R}, (Y)F with Oh = g. Lemma 2.4.12 gives maps

1 ST (Ve | Zoo) = KL (Yao) 2 ST (Vao)

O (Yao) > ST (Vi [ Zo0) s

K, (CF (Zoo ) U i AC.L VA
K (2 € W) = K (G (5

where § = 8};200. By construction, 7(p%_(heo)) = p' (Yoo) and Indgoo (p5_(hoo)) =
Indgoc (Yoo, hoo). Let i := qg)Zx: ST (Yao) = SL (Yoo / Zo) and j := qg’Z: SU(X) —
S (X Z). We are in the following situation:

Kl (Yoo Kit2(Cr (Yoo) /CF (Zoo C Yoo))

1N 5

s
S£+1 (YOO) T> S£+1 (YOO//ZOO) T K*+1(C1f (Zoo - YOO))

ndy
J{afvw J{an J{f

S () —— SU(X/2) 5 Kena(C (X) /C} (2 € X))

Here § := ( o mzxRr.,, Where mzxr., is induced by the quotient map Cf (Zo) —
Ct (Zx) /CE(Z xRz C Zso) and ( is defined as in Subsection 2.2.3.
One can verify that

roi=id, Indgocos:id7 ros=0.

Hence s (respectively r) splits the long exact sequence SL (Vo) — SL (Yoo [ Zo0) —
K.(C} (Zs C Yx)). In particular, ior +so Indgoo = id and thus

pg& (hoo) = i(p" (Yoo)) + S(Indgm (Yoo, hioc)).-
Additional diagram chases show that

v 0 = j o Ay,
v os =)y o0&, (2.4.12)
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2 Secondary large-scale index theory for psc

Figure 2.2: Diagram needed to verify (2.4.12)

* * Cr (ZOCCYOO)
Cilz (X CY) ———— CiL(X C Ya) CF(FZX]R}O%)
| | !
CH(XXR>9CYs0
CiLzxrs, (X X Ry C Yoo) — CEL(X xRy C Yoo) — —Cigzjﬂézcy ;
inl = oo
l l !
CiLzy (Yoo CPL(Yeo) C(Yec)
CiL(YCYso) CiL(YCY) Ci(Z0oCYo0)

where the latter can be proved using the grid of exact sequences displayed in Figure 2.2.
Hence

Orev (P (hee)) = (0 Bha) (07 (Yec)) + (9] 0 €) (Indl] (Yoo, P )
= (0" (V) + 0 (Ind} (Y. X [ Z.9)).

Finally, we apply Theorem 2.4.6 to Y., partitioned by X and with Z = Z, to obtain
v (Y (heo)) = P (gx). This concludes the proof. O

Corollary 2.4.17. Let .: X — Y denote the inclusion map. Then
1)z (Indy (Y, X ) Z,9)) = 1ply(9) €5, (Y | Z) .

Proof. By construction, p''(Y) lies in the kernel of ¢, : SL (X) — SL (V) and thus the
corollary is a consequence of Theorem 2.4.15. O

Corollary 2.4.18 ([PS14]). Suppose that Z = () and let .: X < Y denote the inclusion
map. Then:
L*ar(lndgr’s (Y, X,9)) = L*pr(g) € SZ (Y).

Corollary 2.4.19. Let go,g1 € R}, (X)'. Then
8y (Indyygs (90,91 | 2)) = pz(90) — p5(91) € SL(X ) Z).
Proof. Tt follows from the definition of the index difference that
Indbig (90,91 /) Z) = (pry)sts IndL L (X % [0,1], X x {0,1} / Z x {0,1}, 90 L g1) .
Hence Corollary 2.4.17 gives
8g{//z Indgiﬁ (90,91 / Z)
= (er)*L*ag(x{O,l}//Zx{O,l} (IndEPS (X X [Oa 1}7X X {Oa 1} // Z % {07 1}790 U gl))

= (prx)wtep gy 0.1y (90 U g1) = pz(g0) — pz(gr). O
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The next corollary shows that the partial p-invariant is a bordism invariant in a
suitable sense.

Corollary 2.4.20. In the situation of Theorem 2.4.15, suppose that there exists a
I-invariant subset A C'Y such that sup,c, dy(z, A) < 0o and h € R} M) with
Oh =g. Then

Lpz(9) =0€ S, (Y[ Z).

Proof. This is an immediate consequence of Proposition 2.2.19 and Corollary 2.4.17. [

2.5 Explicit descriptions in terms of projections and unitaries

In this section, we focus on the complex case. We now use the notation KU;(A),
j € Zs, to denote “ordinary” complex K-theory of an ungraded complex C*-algebra A
defined in terms of projections and unitaries (as a reference see for example [Weg93]).

We describe the partial p-invariants in KUy (CiLz (X)) and KU;(CiLz (X)). This
is done in essentially the same way as Xie—Yu [XY14b] define the “local index class” and
the p-invariant. We show that this agrees with the elements defined in Subsection 2.2.2
up to a sign and a natural isomorphism Ko(A ® Cl,,) = KU, (A) for ungraded C*-
algebras A.

We drop the group action to simplify the notation, but it would not entail any
additional technical difficulties to include it.

2.5.1 K-theory of trivially graded C*-algebras

We need an explicit isomorphism between (the complex version of) the picture of
K-theory explained in Section 1.1 and complex K-theory for trivially graded algebras
defined in terms of projections and unitaries.

Proposition 2.5.1 ([HG04, p.1491]). For every trivially graded C*-algebra A there are
natural isomorphisms Ogy: Ko(A ® Clog) — KUy(A) and Ogpr1: Ko(A ® Clogr1) —
KU, (A) such that the following diagram of isomorphisms commutes,

Ko(A ® Clypi1) —2 Ko(Co(R) ® A ® Clyy,)
12611 102y,
KUy (A) —2—— KUp(Co(R) ® A),

where § is the standard suspension isomorphism in K-theory and xb is the Bott
isomorphism from Subsection 1.1.3.

Proof. Since by (formal) periodicity Ko(A ® Cly;,) = Ko(A) and Ko(A ® Clgyy ;) =
Ko(A ® Cly), we can restrict ourselves to the case k = 0. Let ¢: S - A ® K be given
and consider the unitary,

(X Syt
Uy, =¢ (x—l—i)e(A@K) ,
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2 Secondary large-scale index theory for psc

where (A ® K)* denotes the unitization of A ® K. Observe that U, is equal to the
identity modulo A ® K. Since A is trivially graded, the ungraded tensor product A ® K
coincides with A ® K when we neglect the grading. We will use the symbol A ® K if
we wish to consider it as an ungraded algebra, and A ® K if we want to emphasize the
grading. Using this convention, the graded C*-algebra A ® K can be identified with
the matrix algebra My (A ® K), where the grading automorphisms is conjugation with

the multiplier
(1 0
e=lo _1)-

eUgye = U;. (2.5.1)

In particular, €U, is a self-adjoint unitary in My ((A ® K)*) eqal to € modulo A ® K.
As a consequence, P, := 1 (1+ €U,,) is a projection in My ((4A ® K)*) equal to P :=
1 (14 ¢€) modulo A ® K. We define O¢([¢]) := [P,] — [P.] € KUy(A® K) = KUy(A).

Similarly, if we have a s-homomorphism ¢: S — A ® (Cl; ® K), we again form the
unitary U, = gp*(i—;ﬁ) € (A®Cl; ® K)*. Using the explicit description of the Clifford
algebra Cl; 2 C @ C, we may consider U, ; = pri (U,), a unitary in (A @ K)*. We
define ©1([¢]) := [U, 1] € KU1 (A® K) = KU (A).

The maps ©; defined above are well-defined because if ¢ and 1 are homotopic, then
so are U, and Uy. Since the additive structure on Ky is essentially defined by block
sum inside A ® K, the maps ©,, are additive. Moreover, it follows from [HG04, Lemma
1.4] that these maps are isomorphisms.

Finally, due to naturality, it suffices to consider the case A = Cy(R) to show that the
diagram in the proposition commutes. The group KUy(Co(R) & Cl,) is generated by
the Bott element b which is represented by the x-homomorphism S: & — Cy(R, Cly) =
Co(R)®Co(R), f+ (z— (f(x), f(—x))). Thus O1(b) is represented by the unitary ’;—jr:
in Cp(R)™ which has winding number +1 and thus represents the standard generator
of KU1(Co(R)). Thus §(01(b)) € KUy(Co(R?)) is represented by the Bott projection.
The element b x b € Ko(Co(IR?)) is represented by the *-homomorphism

Then we have

1 S = Co(RLMz(C)), fro f ((Xoiy XJB”)) .

A direct computation shows that P, is also the Bott projection, hence the diagram
commutes. O

2.5.2 Reduced spinor bundles

So far, we have worked with the Cl,-linear (or n-multi-graded in the terminology
of [HR00]) spinor bundle and Dirac operator. Here we review the equivalent viewpoint
using irreducible Clifford modules. If n is even, there is up to isomorphism only
one irreducible Clifford module, which we denote by $(n). It automatically carries

a grading $(n) = $(O) (n)® $(1)(n). If n is odd, there are two irreducible Clifford
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modules $, (n) and $_(n) which are ungraded. Let X be a spin manifold with
Riemannian metric g. Then the reduced spinor bundle is the associated bundle
$g = Pspin(T*X) Xspin(n) #(n). In the odd-dimensional case the representations of
Spin(n) coming from the two irreducible Clifford modules are isomorphic, so it does
not matter which we choose. We may realize $(n) concretely as a left ideal inside
Cl,, so that $, is a sub-bundle of @(X) which is Cl(T*X)-invariant. In particular,
the Cl,,-linear Dirac operator @ restricts to the spinor Dirac operator ) on § g Let
$H:=L*X,6,) and H :=L*(X,$,). The first is always a graded Hilbert Cl,-module
whereas the latter is a Hilbert space, furnished with a grading if and only if n is even.

Suppose n = 2k > 0. Then Endc($(n)) = Cl,, and there is a one to one correspon-
dence between (possibly unbounded) Cl,,-linear operators on §) and C-linear operators
on H. Indeed, every Cl,-linear operator on §) keeps H invariant and is uniquely
determined by its restiction to . On the level of Roe algebras this yields a canonical
isomorphism (of graded C*-algebras),

C* (X, $; Clo) = C* (X, H) . (2.5.2)

In the odd-dimensional case n = 2k + 1, we have Cl,, = End¢ (8 (n)) ®Endc($_(n)).
A similar argument as above yields,

O (X, 99 Clagsr) = C* (X, H) & C (X, H). (25.3)

The identifications (2.5.2) and (2.5.3) hold analogously for the structure algebra
D* (X) and the all localization algebras and C*Lz (X) and D*L (X).

2.5.3 Local index classes in terms of projections and unitaries

A normalizing function is a continuous odd non-decreasing function x: R — [—1,1]
such that lim, 400 x(2) = +1. Let Ly : [1,00) = D[X, H], L(t) = x (+10), where x
is a normalizing function. Let Z C X be a closed subset (possibly Z = () or Z = X))
such that the scalar curvature function on X is uniformly positive outside Z. Then
Lemma 2.2.5 implies Lfb — 1€ C*Lz (X, H) provided that we have chosen x such that
x% = 1 outside (—¢,¢).

If n > 0 is even, then # is graded and Ly (t) is an odd operator for all ¢, that is,
with respect to the grading H = H© & HM, we have

0 L (t
Ly(t) = (LB o )> |

Let v: H® — %M be a unitary which intertwines the Cy(X)-representations (for
instance, take v to be Clifford multiplication with a measurable unit co-vector field).
Then v*LB € D*L (X, ’H(O)) is a unitary modulo C*Ly (X, H(O)) and hence defines a
class [v*Lz;] € KU;(D*L(X) /C*Lz (X)). We let

Indhz(]ﬁ) = 8[U*L+

m] S KU()(C*LZ (X))
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2 Secondary large-scale index theory for psc

If n is odd, then (1 + Ly) is a projection modulo C*Lz (X, H), and we set
1

Remark 2.5.2. For Z = X (respectively Z = (), the element Indy, z(/)) agrees with
the local index class (respectively the p-invariant) defined in [XY14b]. This can
be proved using that the map D*L (X) /C*L(X) — D*(X)/C*(X) (respectively
D*L(X) /C*Ly (X) — D* (X)) defined by evaluation at 1 € [1,00) is a KU-theory
isomorphism, see [QR10].

Theorem 2.5.3. The isomorphism ©,, from Proposition 2.5.1,
O,: Ko(C*Lz (X;Cl,)) = Ko(C*Lz (X) ® Cl,,) — KU, (C*Ly (X)),
takes p,(g) as defined in Subsection 2.2.2 to —Indy, z (D).

Proof. Let € > 0 such that f(®) and f(P) lie in C*(Z C X) for f € Co((—¢,¢))
and choose a homotopy inverse 1: § — S(—¢,¢) to the inclusion S(—e,e) — S.
Then Indhz(%) = [<p$ o t]. We can choose ¢ in such a way that it extends to
a homotopy equivalence t: C([—o00,0]) — C([—¢,¢]), where we identify C([—¢,¢])
with the subspace of C([—o00,o0]) consisting of those functions which are constant

on [—oo, —¢] as well as on [g,00]. Let x be the normalizing function x(x) := T

We can assume that y := 1/3()2) is still a normalizing‘function which by construction
satisfies x> = 1 outside (—¢,¢). Let 7(z) := Jire then 7(z) = x(x) — T

so X = 7 modulo Cy(R). Set 7 := (), then x = 7 modulo Cy((—e,¢)). The

unitary U := Uy oy from Proposition 2.5.1' is given by @% (72) since 7% = 275, In

particular, U = T2, where T(t) := 7(3+9) is a unitary in D*L (X, $; Cl,,). Furthermore,
T(t)—x(3D) = (T —x)(3D), s0 T — Ly € C*Lz (X, H;Cl,), where Lg(t) = x(+D).
Suppose that n > 0 is even. By (2.5.2), we have C*Ly (X, $;Cl,) = C*Lz (X, H)
and Ly = Ly € DL (X, $;Cl,) = D*L(X,H). Let V := (g”o*) and W := VT ¢
v’ Lt 0
D*L(X,H). Then W is a unitary, which is equal to V Ly = O’D - | modulo
"y
C*Lz (X, #H). The definition of the boundary map in K-theory ([Weg93, Chapter 8.1])

gives

Indy 2(1) = Ov" L] = [W ((1) 8) W*} - K(l) 8)} € KUp(C*Ly (X)). (2.5.4)

Let e = (§ %) be the grading operator on H = H® @ HM and P. = 3(1+¢€) = (}9).
Since the complex conjugate of 7(z) is —7(—x), we have eI' = —T*e. A direct

1We have enough room to carry out the construction of ©,, from the proof of Proposition 2.5.1 inside
C*Lyz (X, 9;Cly,) (without taking the tensor product with the compact operators) and we shall do
so here.
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computation using this fact together with U? = T shows that %(1 +eU) =1—€eTP.T" .
Then we have

Oulloz ovl) =[5 1+ )| - 7]

=[1—€eTP.T"¢| — [P]

= [P.] — [eTP.T"¢]

=[P]— [WPW*] (by conjugation with Ve)
= —0v'Lyl = ~IndLz(P)  (by (2.5.4)).

If n is odd, then (2.5.3) gives C*Lz (X, $;Cl,) = C*Lz (X, H) @ C*Lz (X, H) and
pry(Lg) = Lp. Then

1
2

Indy, 7z () = a{ (1 +Lﬂ,)} = [ef‘zm%(Hprl(L@))} - [pr1+ o (efmm)} _

Here we have used the explicit description of the boundary map in terms of the

exponential function (see [Weg93, Exercise 9.E]). The unitary e~ (%) = —¢=m%(X) i
Co((—¢,e))t = C(S") has winding number —1, whereas 1) (i:) has winding number

+1. Consequently,

“dsoD) = |t o3 (3 (55))] = bt @] =6u(esov).  ©
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3 Secondary invariants on compact manifolds

3.1 Mapping positive scalar curvature to analysis

In this section, we discuss higher secondary invariants of psc metrics on closed spin
manifolds and as a sample application, we demonstrate how to derive the main result
of [PS14; XY14b] using the theory we have developed in Chapter 2.

We begin with some preliminary definitions. Let I" be a countable discrete group and
fix a model for the classifying space BI' as a locally finite simplicial complex. Denote
its universal covering by EI'. By endowing each simplex with the Euclidean metric,
turn BT and ET" into a locally compact geodesic metric spaces, see [BH99]. We will use
this metric structure in our constructions below.

Definition 3.1.1. (1) The K-homology of T is

K.(T) := colimK! (2),
ZCET

(2) the structure group of I is

S.(T") := colim ST (Z) ,
ZCET

where in both cases the colimits range over I'-invariant cocompact subsets of EI.

If X is a cocompact free I'-space, then the K-theory of Ci (X) is canonically isomor-
phic to the K-theory of the reduced group C*-algebra C*T', see [HR00, Lemma 12.5.3].
Thus Corollary 2.1.4 implies that we have a long exact sequence as follows:

S Kt (CT) 5 8. (T) D KL (T) S KL (CIT) = - (3.1.1)

Definition 3.1.2. Let M be a closed n-dimensional spin manifold together with a
continuous map u: M — BI'. Let g € R* (M). Let M — M be the I'-covering
classified by u and denote the lift of g to M by g. The higher p-invariant of g is defined
as follows:

p"(9) = @p" () € Sn(I),

where p''(g) € SL, (M) is the equivariant p-invariant of g.

If ' =m (M) and u the map that classifies the universal covering of M, then we will
write p''(g) for p*(g).

If T is torsion-free, then the Baum—Connes conjecture is equivalent to vanishing of
S.(T). As currently there is no known counterexample to the Baum—Connes conjecture,
we need to work with groups that have torsion in order to find non-zero higher p-
invariants in S, (T"). If I has torsion, then injectivity of the Baum—Connes assembly
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3 Secondary invariants on compact manifolds

map (or even slightly weaker assumptions) can be used to show the existence of
many examples of pairs of psc metrics with different higher p-invariants, see for
instance [WY13; XY13].

Definition 3.1.3. Let W be a compact n+ 1-dimensional spin manifold with boundary
together with a continuous map u: W — BT. Let g € Rt (M). Let W — W be the
I'-covering classified by u and denote the lift of g to M by g. The higher APS-index of
(W, g) is defined as follows:

QZPS (VV, g) = Indzps (Wv Mag) € K’fH-l(C; (M)) = Kn+1(C:F),

where we use the coarse APS-index from Subsection 2.2.3.

Moreover, if M is a closed spin manifold, we will write o* (M) for %, (M,0) =
Ind" (M) (where we view M as a manifold with empty boundary). In this case, if
I'=m (M) and u is the map that classifies the universal covering of M, then we will
write ol (M) for a® (M).

Similarly as in Subsection 2.2.4, we have a higher index difference:

Definition 3.1.4. Let M be a closed n-dimensional spin manifold together with a
continuous map u: M — BI. Let gg,g1 € RT (M). Let M — M be the T'-covering
classified by u and denote the lift of g to M by g. The higher index difference of go
and g; is defined as follows:

agig (90, 91) = ayps (M x [0,1], 9o U g1) € Ky 1 (C7T).

We will briefly review the definition of P$”™ (BI'), a bordism group due to Stolz
consisting of psc metrics on spin manifolds with I'-covering. We will also consider the
group R”™ (BI'), which serves as a relative term for the forgetful map from of P3”™ (BI")
to spin bordism Q"™ (BI'). In addition, the relative group R$P™ (BI') contains all the
information on the existence problem of psc metrics on closed spin n-manifolds with
fundamental group I, and R}P} (BT') contains all the information on the concordance
classification of psc metrics on closed spin n-manifolds with fundamental group I'. For

more details, we refer to the survey article [RS01].

Definition 3.1.5. Given two closed spin manifolds with continuous maps wu;: M; — BT,

endowed with g; € R (M;), i = 0,1, we say that (Mg, ug, go) and (My,u1,g;) are

bordant if there exists a compact spin manifold together with a map v: W — BI" and

boundary OW = My U (—M;) such that there exists h € R* (W) with Oh = go Ll g1.
The group of such bordism classes is denoted by PPt (BT).

Definition 3.1.6. Let W, be a compact (n + 1)-dimensional spin manifold with
boundary together with continuous maps u;: W; — BT and ¢g; € R™ (dW;), i = 0,1,
as in Definition 3.1.3. Then we say that (Wy, go) and (Wi, g1) are bordant if

(i) (OWo,ug | OWh, go) and (W1, uy | OW7,¢g1) are bordant as in Definition 3.1.5
via an n+ 1-spin manifold Y with boundary Y = 0WoU(—9W;) and h € RT (V)
with Oh = g0 (| gi.
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3.1 Mapping positive scalar curvature to analysis

(ii) There exists an (n + 2)-dimensional compact spin manifold V' (possibly with
corners of codimension up to 2) such that 0Z =Y.

The group of such bordism classes is denoted by Riﬂi_nl (BT).

The following statements are direct consequences of the theory developed in Chapter 2:

Corollary 3.1.7 (see Corollary 2.2.22). If go,1 € R* (M) are concordant, then
i (90, 91) = 0.

Corollary 3.1.8 (see Corollary 2.4.18). We have 9" (a4, (W, g)) = p*(g)-
Corollary 3.1.9 (see Corollary 2.4.19). We have 9" (a4 (90, 91)) = p*(g0) — p*(g1)-

Corollary 3.1.10 (see Corollary 2.4.20 for Z = 0). If (Mo, uo,go) and (M, uy,g1)
are bordant, then p“'(g1) = p“2(ga).

Corollary 3.1.11. If (Wy, go) and (W1,g1) are bordant, then a%., (Wo,go) s equal
to ¥, (W1, 91).

Proof of Corollary 3.1.11. Let Y, h and V be as in Definition 3.1.6. For ¢ € {0,1}, set
(Wi)oo := Wi Uaw, OW; x Rsg and Va, := V Uy Y x Rsq. Then 0Va = (—(Wp)oo) U
(W1)oo- We can extend h to ho, € R?} (VOO)F. Let ;0 (W;)oo < Vs be the inclusion.
It follows from Corollary 2.4.20 (applied to (Voo, OVeo J Wo U W1, heo | OV)) that

r
0= (LO)*IOII;VO((WO)OO) - (Ll)*pli;vl((Wl)OO) € R\t (VOO) .
By definition of the APS-index (see Subsection 2.2.3), this implies that

(jo)« Ind} g (Wo,dWo, g90) = (j1)« Indy g (W1, 0W1, g1)
€ Kn-l-l(cl*“ (Y)) = Kn_H(C:F),

where j;: W; < Y are the inclusion maps. By Definition 3.1.3, this completes the
proof. O

Remark 3.1.12. While Corollaries 3.1.8 to 3.1.10 only rely on the version of the
delocalized APS index theorem due to Piazza—Schick [PS14] (that is, Corollary 2.4.18),
the proof of Corollary 3.1.11 utilizes the full power of Corollary 2.4.20 (and hence
Theorem 2.4.15) in its form for partial secondary invariants.

The groups RI”™ (BI') and P3”™ (BT') fit into a long exact sequence, Stolz’ positive
scalar curvature sequence, together with the spin bordism group Q3P (BT"). Corollar-
ies 3.1.8, 3.1.10 and 3.1.11 imply that there exists a transformation from the Stolz
sequence to the Higson—-Roe sequence (3.1.1):

Theorem 3.1.13 ([PS14; XY14b]). We have a well-defined commutative diagram:

QP (BI) — REY (BI) — PIP™ (BI) — Q™ (BI') — RIP™ (BT)

J[ ] J{OtAPS Jp ) J[ ] J{OCAPS

Ko (D) — Kot (C77) 25 S.(1) —%— K. (I) —2 K. (CT)
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3 Secondary invariants on compact manifolds

3.2 Stability of higher secondary invariants

As an application of Proposition 2.3.15, we prove the following results, which say that
if the higher p-invariant can distinguish two psc metrics, then it can still distinguish
them after taking the product with certain aspherical manifolds.

Proposition 3.2.1. Let N be a closed aspherical spin g-manifold such that A = w1 (N)
has finite asymptotic dimension. Let I' be a countable discrete group. Then the
map S«(I') — S.i4(I' X A) given by external product with the fundamental class

[N]A e K& (N) is split-injective.

Corollary 3.2.2. Let M; be closed spin, u;: M; — BT and g; € RT (M;), i = 0,1,
such that p“o(go) # p“(g1). Let N be a closed aspherical spin g-manifold such that
A = m(N) has finite asymptotic dimension. Let gn € R(N) such that g; ® gy €
RY (M x N) fori=0,1. Then p“ X~ (go ® gn) # p"* ™'V (g1 @ gn).

In particular, these assumptions imply that (Mo x N,ug X idy, go @ gn) and (M7 X
N,uy x idy, g1 ® gn) are not bordant.

Proof of Proposition 3.2.1. Since N is aspherical, we may choose E(I" x A) = EI" x N,
where N is the universal covering of N. Then

S.(I' x A) = colim ST"* (X x N).
XCET

Since 71(N) has finite asymptotic dimension, Dranishnikov’s theorem (Theo-
rem 2.3.14) implies that N is stably hypereuclidean. For each X C EI', Proposi-
tion 2.3.15 gives a map rg: SL 2 (X x N) — SL (X) left-inverse to taking the external
product with [N ]*. Moreover, these maps can be chosen to be natural in X and hence

define a left-inverse on the colimit. This proves the proposition. O

Remark 3.2.3. Stability results concerning the index difference a4 (g0, g1) analogous
to Corollary 3.2.2 can be obtained in a similar fashion, for instance, by applying
Proposition 2.3.15 to the partial secondary invariant plj:zx (h) for an appropriate

h€RY oy (M xR).

[0,1]

The manifold N itself does not admit a psc metric because it is aspherical and its
fundamental group has finite asymptotic dimension. In fact, if we take NV to be a psc
manifold, then the analogue of Corollary 3.2.2 is false:

Lemma 3.2.4. Let M and N be closed spin manifolds which both admit psc metrics
individually. Then any two product metrics which have psc on M X N are concordant.

Here we say that a Riemannian metric h on M x N is a product metric if it can be
written as h = gy @ gy for some metrics gpr, gy on M, respectively N.
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Proof. Let gps and gy be psc metrics on M, respectively V. Denote the product metric
by h = gy ® gn. Suppose that h = jas ® Gn is another product metric which has psc
on M x N. We will now show that h and h are isotopic as psc metrics. This is enough
since isotopy implies concordance, see [GL80, Lemma 3]. We have the formula

scaly, (2, y) = scalg,, () + scalgy (y)

for all z € M, y € N. Thus, since h has psc by assumption, either gy or gy has
psc. We assume w.l.o.g. that it is gps. By compactness we may find € > 0 such that
egm @ (tgn + (1 — t)gn) has psc for all ¢ € [0, 1]. By inserting appropriate rescalings
of gar, this implies that gy, @ gy and gy @ gy are isotopic psc metrics. Applying the
same argument again, now gy playing the role of gps, shows that gy; @ gy is isotopic
to g D gn- O

In particular:

Proposition 3.2.5. Let M and N be closed spin manifolds which both admit psc
metrics individually. If ho,hy € RT (M x N) such that ol (ho,h1) # 0 for some
v: M x N — BI', then at least one of hg and hy is not concordant to a product metric.

3.3 From closed manifolds to non-compact complete manifolds

In this section, we demonstrate how the theory we have developed so far can be applied
to construct examples of complete upsc metrics on non-compact manifolds which
are distinguished by certain partial secondary invariants. As input for the following
constructions we will always start with psc metrics on closed manifolds which can be
distinguished by the higher p-invariant. Such examples can be obtained, for example,
from the methods of Weinberger-Yu [WY13] and Xie-Yu [XY13].

We start with a corollary of the secondary partitioned manifold index theorem,
Theorem 2.4.6.

Corollary 3.3.1. Let M be a closed spin manifold together with a map u: M — BT
and go,g1 € RT (M) such that p“(go) # p“(g1). Let W be a complete spin manifold
with hg,h1 € RT (W) such that W is partitioned by M and h; is partitioned by g;,
it = 0,1 (see Definition 2.4.1). Suppose that u extends to a map W — BI'. Then
ho and hy are not concordant relative to W_ (or W), where Wy are the connected
components of W\ M.

Proof. Let W — W be the T-covering of W corresponding to the map W — BT'. Then
W is partitioned by M and h; by g;, where M is the restriction of W to M and h;,
g; are the corresponding lifts of the Riemannian metrics. Theorem 2.4.6 implies that
pl‘%/ (ho) # p%/ (h1) The corollary follows from this and Proposition 2.2.11. O

Of course, this applies in particular to W = M x R. However, using our stability
result about products with hypereuclidean manifolds (Proposition 2.3.15), we can
generalize the product situation to higher codimensions, as will be explained in the
following.
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3 Secondary invariants on compact manifolds

Definition 3.3.2. Let X, Y be proper metric spaces, both of which are endowed with a
free and proper isometric I'-action. We say that a I'-equivariant coarse map f: X — Y
is coarsely negligible if there exist I'-equivariant maps f': X — X', f”: X’ = Y such
that X’ is flasque and f is coarsely equivalent to f” o f’.

We say a subset Z C Y is coarsely negligible in Y if the inclusion map Z < Y is
coarsely negligible.!

If f is coarsely negligible, then it follows from functoriality of the Roe algebra that
the map f.: K.(Cf (X)) = K. (Ct (Y)) is zero. Moreover, if f: Z — Y is coarsely
negligible, then so is idx X f: X x Z — X x Y for any proper metric space X.

Ezxample 3.3.3. If Z CY is a compact subset of a non-compact complete Riemannian
manifold Y, then Z is coarsely negligible in Y. To prove this, one uses that Z is contained
in a bounded neighborhood of some geodesic ray, compare [HPS15, Proposition 3.10].

Example 3.3.4. If Y is an arbitrary proper metric space, then Y x [0, 00) is coarsely
negligible in ¥ x R (since Y X [0, c0) is itself flasque).

Lemma 3.3.5. Let Z C X be a coarsely negligible T'-invariant subset. Then the
following maps are injective:

K. (G (0) =+ K. (& 2 )

8. (X) = SL(X/2).

Proof. Since Z is coarsely negligible, the map K. (C}(Z C X)) — K. (Cf (X)) van-
ishes. Using the long exact sequence associated to 0 — CL(Z C X) — Cf (X) —
Ci(X) /Ct(Z C X) — 0, we conclude that the first map is injective. Moreover, the
boundary map 9% : K.1(Cy (Z C X)) — SL (X) from Corollary 2.1.4 factors through
K.(Ci(Z C X)) — K. (Cr (X)) and therefore vanishes as well. Using exactness again
(of the appropriate sequence from Corollary 2.1.4), we deduce injectivity of the second
map. [

Corollary 3.3.6. Let M be a closed spin manifold together with a map uw: M — BT
and go,g1 € RT (M). Moreover, let Y be a complete spin manifold, gy € R(Y) and
Z CY some subset. Suppose that

Then the metrics go & gy and g1 ® gy are not concordant on M XY relative to M X Z.

1Our notion of a coarsely negligible subset is different and more geometric than the concept of a
“coarsely A-negligible subset” from [HPS15, Definition 3.9].
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Ezample 3.3.7. The theorem applies to Y = R? and Z = [0, 00) x RI~1.

Proof. Suppose without loss of generality that dy = dg,. Let X = M, the covering of M
classified by u. If go® gy and g1 @ gy were concordant on M x Y relative to M x Z, then
the lifted metrics go® gy, g1 ®gy would be concordant on X x Y relative to X x Z. Thus,
due to Corollary 2.2.22, it suffices to show that IndYz (g0 ® gv, 91 ® gy J X x Z) #0.
Indeed, since Y is stably hypereuclidean, Proposition 2.3.16 (applied with Z = ()
shows that Indig (o @ gy, g1 ® gy) # 0. Moreover, since Z is coarsely negligible
in Y, the I'-invariant subset X x Z is coarsely negligible in X x Y. By definition,
Indgi (Go © gy, 51 ® gv) maps to Indgig (Go © gy, g1 & gv) under the map

o).

The proof is complete by Lemma 3.3.5, which states that this map is injective. O
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4 Qbstructions via submanifolds

In [HPS15], Hanke-Pape—Schick have shown that, under suitable conditions, the
a-invariant of a codimension-two submanifold is an obstruction to positive scalar
curvature on the ambient closed spin manifold. In this chapter, we discuss a variety of
generalizations of this result: For instance, in Subsection 4.1.2 we establish a secondary
codimension-two obstruction using the method of proof as in [HPS15] together with the
secondary partitioned manifold index theorem (Theorem 2.4.6). Moreover, we attempt
to generalize both primary and secondary obstructions to codimensions other than
two. In fact, the picture is most complete for codimension one, see Subsection 4.1.1.
For arbitrary codimensions, we obtain a primary result for fiber bundles over certain
aspherical manifolds based on a new variant of the primary multi-partitioned manifold
index theorem, see Section 4.2. The approach to the primary multi-partitioned manifold
index theorem and the primary result on codimension one have been previously made
available on the arXiv [Zeil5]. In Section 4.3, we demonstrate that, for codimensions
greater than two, there cannot exist a general secondary multi-partitioned manifold
index theorem that is naively analogous to the partitioned manifold index theorem.

4.1 Secondary obstructions via submanifolds of low codimension

4.1.1 Codimension one

Theorem 4.1.1. Let M be a closed spin manifold and I' = m M. Let N C M
be a closed submanifold of codimension 1 with trivializable normal bundle. Suppose
that the inclusion induces an injection mN =: A — I'. Fiz a tubular neighborhood
t: N x (—e,e) <= M. There exists a commutative diagram,

ST (M) —— K, (M) —— K,(CiT)

891l (N) — K*%uv) — K“(Jcm,
with the following properties:
(i) m([M]) = [N],
(i) a(al (M)) = o™ (N),

(iii) 75(p"(§)) = p™(gn) for all grs € RT (M) with producture structure 1*g = gn ©dt?
on the tubular neighborhood of N,

(iv) Ta(agiﬁ (90,01)) = o/d\iﬂC (gn0,9N1) for all go, g1 € R (M) with product structure
t*g;i = gni ®dt?, i = 0,1, on the tubular neighborhood of N.
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Proof. We consider the covering M — M such that 7 M = A. With the right choice
of base points it is possible to lift the inclusion N < M to an embedding N < M.
Since N — M has codimension one with trivial normal bundle and is an isomorphism
on my, it follows that M \ N has precisely two connected components.

Let M be the universal covering of M and q: M — M the intermediate covering.
It follows that N := ¢~ '(IN) is the universal covering of N and N is a A-invariant
subset of M. Moroever, each component of M \ N is A-invariant as well. Consider the
following diagram:

S (1) —— KX (31) —— K.(C} (31))

(
| | |
(

S} (M) —— K} (M) —— K.(C} (M)

J/BMV laMV lan

§24 () —— K&, (V) — K.t (G} (V)

Here the top vertical arrows are the maps which forget I'-equivariance and just remember
A-equivariance. The bottom vertical maps are the Mayer—Vietoris boundary maps for
the structure group, K-homology and Roe algebra, respectively, which are associated
to the A-invariant cover of M by the closures of the components of M \ N.

The maps 7, ¢ € {s,t,a}, are defined as the vertical compositions in the diagram
together with the canonical identifications K. (M) ~ K, (M), KX (1\7) =~ K, (N) and
K.(Cp (0T)) = K.(C;T), K. (C}, (V) = K. (CA). S

To prove the properties (i) to (iii), it suffices to show that dyv[M]* = [N]* and
ove™(§) = p(gn). Both of these statements follow from Theorem 2.4.6. For
Property (iv) it suffices to show Ay Indiig (Go, §1) = Ind4ig (9.0, Gnv.1)- This follows
from Corollary 2.4.9. O

Corollary 4.1.2. Suppose that the hypotheses of Theorem 4.1.1 hold. Then:

o Ifa®(N) #0 in K. (C:A), then of (M) # 0 and M does not admit a metric of
positive scalar curvature.

Fori € {0,1} given g; € R* (M) with product structure g; = gn,; ® dt?, i =0, 1, near
N, we deduce:

o If afi\iff (gn.0,9n.1) # 0, then alig (9ar.0,9m.1) # 0 and go is not concordant to g
on M.

o If p*(gn,0) # P (gn,1), then p"(g0) # P (g1).

4.1.2 Codimension two

Theorem 4.1.3 below is a secondary analogue of the main result of [HPS15] involving
the p-invariant. However, we have to add restrictions on the shape of the metrics near
the submanifold which are not necessary for the primary theorem.
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4.1 Secondary obstructions via submanifolds of low codimension

We say that a Riemannian metric on the e-disk D. in R? is cylindrical near the
boundary if in polar coordinates (r,0) € [0,e] x S! it is of the form dr? + df? in a
neighborhood of {e} x S.

Theorem 4.1.3. Let M be a closed spin manifold and N C M a closed submanifold of
codimension two with trivial normal bundle. Fix a tubular neighborhoodt: N xD. — M.
Suppose that the inclusion induces an injection A :== m N — my M =: T and a surjection
mN — mM. Let go,g1 € RT (M) such that t*(g;) = gn.i ® gp.i, where gp,; is
cylindrical near the boundary for i € {0,1}. If p*(gn.0) # p(gn1) in Sn_2(A), then
go and g1 are not concordant on M.

The following technical lemma appears in slightly more general form in [HPS15]; we
exhibit this version here for the convenience of the reader.

Lemma 4.1.4 (compare [HPS15, Theorem 4.3]). Let X be a connected manifold
and let N C X be a connected submanifold of codimension two with trivial normal
bundle. Suppose that the inclusion : N < X is 2-connected, that is, 71(¢) is an
isomorphism and wo (1) is surjective. Fir a tubular neighborhood N x R? C X and let
Y = X\ (N x B1(0)).

Then the map m1(i): 7 (N x SY) — w1 (Y) which is induced by the inclusion of the
boundary i: N x St = 0Y < Y is split-injective. In particular, every continuous map
Y — B(m1(N) x Z) extends to a continuous map Y — B(m N x Z).

Proof. Since ¢ is 2-connected, it follows from the relative Hurewicz theorem that
Hi(X,N) = 0 for 0 < k < 2. By excision, this implies that Hy(Y,0Y) = 0 for
0 < k < 2. In particular, we have an isomorphism Hj (i): Hy(N x S') 5 Hy(Y). We
have the following diagram,

Tl'l(i)

7T1(N X Sl) 7T1(Y)
J})r1 X hur lﬂ—l(j)xhur
1 7T1(L)><H1(i)
7T1(N>XH1(NXS ) 4>7T1(X)XH1(Y)

Here hur denotes the Hurewicz homomorphism. Note that 7 (N x S') = 71 (V) x Z and
H; (N x St) = Hy(N) x Z; we deduce that pr; x hur is injective. The map 71 (¢) x Hy ()
is an isomorphism. Then (1 (¢) x Hy(i)) ™' o (1 (j) x hur) maps 7 (Y) onto the image
of pry x hur in 71 (N) x Hy (N x S'). Hence we can define

rm(Y) = (N x SY), 7= (pr; x hur) "o (w1 (¢) x Hy(d)) " o (71 (j) x hur)
A little diagram chase implies r o 71 (i) = id, which completes the proof. O

Proof of Theorem 4.1.3. Let M — M be the covering of M with 7 M = A. Then the
inclusion N < M can be lifted to an embedding ¢: N < M. Similarly, the tubular
neighborhood of N lifts to t: N x D, < M. By assumption, ¢ is a 2-equivalence.
Define Y := M \ (£(N x B.(0))). Lemma 4.1.4 implies that the universal covering of
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4 Obstructions via submanifolds

N x S' = 9Y extends to a (A x Z)-covering Y — Y of Y. Note that this implies that
Y must be non-compact. Indeed, otherwise it would follow from Corollary 3.1.10 that
P2 (g @ dt?) = pA*2(gn 1 @ dt?) = 0 € S, _2(A x Z). However, Theorem 2.3.9
implies that p*(gn.0) X [R]Z # p"(gn1) X [R]%, a contradiction due to the product
formula and suspension isomorphism.

Let W =Y Upy Y be the double of Y along its boundary and W =Y U,y Y the
corresponding (A x Z)-covering. Denote by W_ =Y \ ((—&,0] x 817) C W, that is,
one half of the double with a collar neighborhood of the boundary removed. Then
there is a Mayer—Vietoris boundary map

omv SQXZ (W//W_) — Sﬁf? (N X R)

associated to the cover W =Y Uy Y.

Let i € {0,1}. Let g; denote the restriction to Y of the lift of g; to M. Due to the
cylindrical shape of g; near N x S!, the lift of g; to M restricts to a metric with product
structure near Y = N x S'. Hence it can be extended to a metric g; € R* (W) which
is partitioned by gn,; ® df? € R (N X Sl) in the sense of Definition 2.4.1. Denote its
lift to W by g;. Now it follows from Theorem 2.4.6 that

v (P%ﬁz(ﬁi)) = p™(gn.) B[R]

for i € {0,1}. We deduce that p%/)iz(go) # p’&vﬁz(gl).

Finally, suppose that gg and g; are concordant on M. Then gy and g; are concordant
on W relative to a bounded neighborhood of Y = N x S in W (we have to avoid a
neighborhood of N x S! because we did not assume that the concordance preserves the
special shape along the way). This implies that jo and §; are concordant on W relative
to a bounded neighborhood of Y = N x R. Since any bounded neighborhood of 9" is

contained in a bounded neighborhood of W_, we conclude that p%lxiz (go) = p/‘}ViZ (q1),

a contradiction. O

4.2 A multi-partitioned manifold index theorem

In this section, we discuss the multi-partitioned manifold index theorem. Variants
of this theorem have been obtained by Siegel [Sie12b] and Schick—Zadeh [SZ13] but
neither provide precisely the level of generality that we need for our application to
obstructions on fiber bundles (Theorem 4.2.9). Therefore, we provide a new proof
in Subsection 4.2.1 below.

In the following we introduce some notation which will feature in our formulation of
the multi-partitioned manifold index theorem. Let I' be a countable discrete group and
fix a model for the classifying space BI" as a locally finite simplicial complex. As usual,
we denote its universal covering by EI'. Let Y be a proper metric space. A closed
subset Z C BI' x Y is Y -proper if the projection onto the second factor pry, [ Z: Z =Y
is proper.
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4.2 A multi-partitioned manifold index theorem

Definition 4.2.1. Define
K, (V) := colZim K. (Z),
Ic.(Y) = colzlm K.(Ct (2)),
where the colimits range over the Y-proper subsets Z C BI' x Y and Z denotes the lift
of Z to EI' x Y.

Roughly speaking, 'K, (Y') behaves like locally finite K-homology in Y and like
ordinary K-homology in the “BI'-slot”.
The equivariant coarse index map (compare Subsection 2.1.1) induces a map in the
limit
Ind": TK,(Y) — T'C.(Y),
which is natural in Y with respect to continuous coarse maps.
Ezample 4.2.2. Taking Y = « to be a point, 'K, (%) = K, (T") and I'C,.(x) =2 K, (C;T).

The external product in K-homology induces an external product,
TK,(X) @ Ka(Y) B TK, (X x Y).

Proposition 4.2.3 (Suspension isomorphism). Let Y be a proper metric space. There
are isomorphisms s and o which make the following diagram commutative,

K. 1 (Y x R) 245 pe,, (Y x R)

slg %a

K, (Y) — 2 pe,(v)

such that s(x X [R]) =« for all x € TK(Y).

Proof. Let Z denote the directed set of all Y x R-proper subsets of BI' x Y x R. Let Z
be the collection of those Z € Z such that there exists an increasing family (K, )nen
of Y-proper subsets of BI' x Y with Z = |J,,cy Kn % [-n,n]. Then Z; is a directed
subset of Z and we will show that it satisfies the following properties:

(i) Zp is cofinal in Z,
(ii) For all Z € Zj, the cover of Z by Zy := Z N (BT xY x Ry) and Z_ :=
ZN (BT xY xRgp) is uniformly excisive with Zy := Z, NZ_ = ZN(BI'xY x{0}).
(iii) For all Z € Zj, the K-homology of Z+ and the K-theory of C;. (Zi) vanishes.

Before verifying these properties, we show how they are used to prove the
lemma: By (i), it suffices to construct isomorphisms sz: K.11 (Z) — K, (Zp) and
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4 Obstructions via submanifolds

o0z Kiy1(Ck (Z)) — K. (Cf (ZO)) for each Z € Z; that are natural in Z and so that
the following diagram is commutative:

Ko1(Z) 295 K, (Cr (2))

Szi% %J{O’Z

K..(Zo) 29 K.(CE (%))

By (ii) and (iii), the respective Mayer—Vietoris boundary maps associated to the cover
Z = Z4 Ug, Z_ do the job. The claim s(z X [R]) = z for all x € TK,(Y) is then a
standard fact of K-homology (see Theorem 2.3.9).

To verify (i), let Z € Z be arbitrary. Then we define for each n € N,

K, :=pr, (Znpry'([-n,n])) = {(b,y) € BT x Y | 3t € [-n,n]: (b,y,t) € Z}.

If L CY is compact, then K, N (BT x L) C pry 5 (ZN (BT x L x [-n,n])) and the
latter is compact since Z is Y x R-proper. This shows that K, is Y-proper for all
n € N. By construction, Z C |J, . Kn X [-n,n] € Zy and so it follows that Z is
cofinal.

To see (i), let Z = {J,,cy Kn X [-n,n] € Zy and observe that Z, =
and Z_ = J,,cy Kn X [-n,0].

For (iii), we will only deal with Z,. If Z € 2y, then (b,y,t) — (b,y,t + 1) yields a
well-defined map 7: Z; — Z which is properly homotopic to the identity on Z,; an
Eilenberg swindle involving this map shows K, (Z,) = 0. Similarly, this idea also shows
that Z, is flasque in the sense of Definition 2.1.12 and hence K,(Cf (Z4)) =0. O

neN

nen K x [0, 7]

Corollary 4.2.4. For every € > 0, we have

q) >~ i q & :
'K, (R?) = %oChBrrFlK*(K x RY) = %OCI%I’FIK*(K x B:(0)),
where the colimit ranges over compact subsets K C BI' and the second isomorphism is
induced by the inclusion of the open ball v: B.(0) — RY.

Proof. Since for a compact subset K C BI' the set K x R? is R%-proper, we obtain
a canonical map J: colimgcpr Ki(K x R?) — 'K, (R?). The g¢-fold iteration of the
suspension isomorphism from Proposition 4.2.3 yields an isomorphism s7: 'K, (R?) =
K._4(BI'). The suspension isomorphism in K-homology yields ¢: colimgpp K. (K %
R?) = colimg cpr Ki—1 (K xRI71). Tteration gives t7: colimgcpr(K xR?) 2 K, _,(BT)
such that ¢ = s% o J. In particular, this shows that J must be an isomorphism.

For each K C BT, the restriction ¢': K,(K x RY) — K, (K x B.(0)) is induced by the
map on K x R? that is the identity on K x B.(0) and takes K x (R?\ B.(0)) to infinity
in the one-point compactification of K x B.(0). Since this map induces a homotopy
equivalence between the one-point compactifications, +': K, (K x R7) — K, (K x B.(0))
is an isomorphism. O
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4.2 A multi-partitioned manifold index theorem

Corollary 4.2.4 implies that classes in T'K, (R?) (and thus their images in I'C,(R?))
depend only on the restrictions to arbitrarily small open subsets. A very similar
localization property was exhibited by Schick—Zadeh [SZ13] and is at the heart of their
approach to the multi-partitioned manifold index theorem. Analogously, our approach
to the theorem in the next subsection crucially relies on Corollary 4.2.4.

4.2.1 Multi-partitioned manifolds

Let f: X — Y be a proper map, let u: X — BT classify a covering p: X — X. Then
the image of (u x f): X — BI' x Y is Y-proper. Hence it induces a map

(ux fe: Ko(X) = TKL(Y).
If f is also coarse, then the I-equivariant map @ x (f op): X — ET' x Y induces a map
(% (fop)): Ku(Ch (X)) = TC.(Y).

Definition 4.2.5. A complete Riemannian manifold X is called g-multi-partitioned by
a closed submanifold M C X via a continuous coarse map f: X — R?if f is smooth
near f~1(0) such that 0 € R? is a regular value with f=1(0) = M.

Definition 4.2.6. Let X be a complete spin m-manifold that is g-multi-partitioned
by M C X via f: X — R?. Fix a I-covering p: X — X which is classified by a
map u: X — BI. Consider the lifted map @: X — ET. Then we define the higher
partitioned manifold index of X to be

ol (X) = (@ x (f 0 p)).(Ind" (X)) € TC,p,(RY).

Theorem 4.2.7 (Multi-partitioned manifold index theorem). In the setup of Defini-
tion 4.2.6 we have

ot (afi(X)) = at (M) € Ky (C7T),

where 0%: T'C, (RY) — K._4(CiT) is the g-fold iteration of the suspension isomorphism
from Proposition 4.2.3.

Proof. We have
o¥(afag(X)) = 0@ x (f o p)).(Ind" (X)) = Ind" (s*(u x f).([X])).
We first deal with the product situation X = M x R? and u = v o pr;. In this special

case, we have [X]| = [M]X [R?], and the statement follows from (an iterated application
of) the product formula from Proposition 4.2.3:

ot (o (X)) = Tnd" (57 (0.([M]) B [R7))) = Tnd” (0. ([M])) = o (M).

In the general case, we may assume (after possibly modifying the metric near
M = f~1(0)) that there exists € > 0 such that f~1(B.(0)) & N x B.(0) isometrically.
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4 Obstructions via submanifolds

Furthermore, we consider the following commutative diagram where we set v := u|s
and make use of Proposition 4.2.3 and Corollary 4.2.4:

(X f)«

K*(X) I'K, (R9)
S(f 1<Bg< 1) % colimp cpr K. (K x B.(0))

[
K. (M x B.(0))
d

IR

IR

K, (M x RY) —xXi9-

K. (R?).

Since f~1(B(0)) = M x B-(0), the class [X] € K,,(X) goes to [M]X[RY] € K,, (M xRY)
following the left vertical maps in the diagram from top to bottom. Thus the diagram
implies (u x f)«([X]) = v« ([M]) W [R?] € TK,,,(R?). This reduces the general case to
the product situation which has already been established. O

Corollary 4.2.8. If al» (M) # 0 in the setup of Definition 4.2.6, then Ind" (X) # 0.

4.2.2 Fiber bundles over aspherical manifolds

Theorem 4.2.9. Suppose that N M5 Bisa fiber bundle of closed spin manifolds,
where B is aspherical and 7, (B) = I'/A has finite asymptotic dimension. If o*(N) #
0 € Ky,—q(CrA), then o' (M) # 0 € K,,(C;T). In particular, M does not admit positive
scalar curvature in this case.

Proof. By Theorem 2.3.14, we may assume that there exists a proper Lipschitz map
g: B — R? of degree 1 (if necessary, replace the entire bundle by its product with the
k-torus St x---x S1). Since g is homotopic to a smooth map by standard approximation
results [Hir94, Chapter 2], we may assume without loss of generality that g is smooth.
By Sard’s theorem [Hir94, Chapter 3], we may further assume that 0 is a regular value.
Now consider the covering M — M with 71 (M) = A = -1 (N). The bundle projection
7: M — B lifts to a I'/A-equivariant smooth map 7: M — B. Let N’ := (go7)~(0).
Then M is g-multi-partitioned by N’ via f := go7. Let u: M — BA be the map
that classifies the A-covering p: M — M, where M is the universal covering of M.
Since ¢ has degree 1 and each fiber of 7 is a copy of N inside M over each of which
p restricts to the universal covering, we have that o/~ (N') = a*(N) € K,,_,(C:A).
Now consider the homomorphism 7: K, (CiT') — K._,(C;A) given by the following
composition

K.(C]T) 2 K. (CF: (M) = K.(CF (31)) 225 A (R7) 25 K. (C7A),
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4.3 The failure of secondary multi-partitioned manifold index theorems

where the second map is induced by the inclusion CY; (M ) cCy (M ) that just forgets
part of the equivariance. We have

r(a" (M) = 0 (a3 (31) ) = ¥ (V') = (),

where the first equality is by definition of_a{;ﬁ(M ) and the second equality is due
to Theorem 4.2.7 applied to f = go7: M — R? and u: M — BA. Since 7 is a
homomorphism this concludes the proof. O

4.3 The failure of secondary multi-partitioned manifold index
theorems

In view of the (primary) multi-partitioned manifold index theorem, Theorem 4.2.7,
and the fact that there exists a secondary (1-)partitioned manifold index theorem,
compare Theorem 2.4.6, we might also expect a secondary multi-partitioned manifold
index theorem to hold. As a simple base case of such a theorem, one would predict the
following localization principle for p-invariants of psc metrics on manifolds of the type
X xR:IfFhe RT (X x Rd)F has product structure on a neighborhood of X x {0},
then the iterated suspension isomorphism SI,, (X x RY) = ST (X) takes p"(h) to
p'(h | X x {0}). However, as the main result of this subsection shows, this property
fails at least for all d > 3. As the proof of the theorem below will show, the reason for
this failure of localization is that R? for d > 3 can support positive scalar curvature on
its own.

Theorem 4.3.1. Let M be a closed manifold and go,g1 € RY(M). Let d €N, d >3
and R > 0. Then there exists a metric h € R (M x R?) such that

(i) the restriction of h to M x B&(0) agrees with go®gra, where gra is the Euclidean
metric;

(ii) for some S > R, the restriction of h to M x (R%\ BZ*¥(0)) agrees with g1 ® gra.
Here B‘g“kl denotes the open ball with respect to the Fuclidean metric.

Before moving on to the proof, we deduce the following corollary:

Corollary 4.3.2. Let M be a closed spin manifold with I' = 71 M and let gg,g1 €
RY(M) be arbitrary. Let d € N, d >3 and R > 0. Then there exists h € Rt (M x R?)
such that h | M x BER(0) = go ® gra but Indyg (h, g1 ® gra) = 0 and pF'(h) =
p"(g1) B [R7].

Proof. Consider h as in Theorem 4.3.1. Then h agrees with g @ gga outside Z :=
M x BE™¥(0). This implies that Indjg (A, §1 @ gre / Z) = 0 and p(h) = p (51 @ gga).
But Z is a coarsely negligible subset by Example 3.3.3. Therefore the result follows
from Lemma 3.3.5. O

By applying the corollary to go, g1 with p''(go) # p'(31) € SL (M), we derive the
failure of the secondary multi-partitioned manifold index theorem that has been alluded
to in the discussion before the theorem.
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4 Obstructions via submanifolds

Lemma 4.3.3. Letd > 3, R > 0 and € > 0. Then there exist real numbers ro,r1,72, S
such that R+ 1 < rg < r9+2 < 19, S > R, together with a smooth function
v: (0,00) — (0,00), satisfying the following conditions.

(i) The warped product metric on (0,00) x S4=1 given by dr? 4+ ¢%gga—1 has scalar
curvature everywhere bounded below by —e¢.

(ii) ¢(r) =7 for allr < R,
(iii) (r) =€ forr €ro— 1,79+ 2],

(iv) p(r)=S+r—ry forr=rs.

Figure 4.1: Schematic plot of ¢ from Lemma 4.3.3

S
0
R
€
0 R R To T2

Proof. The scalar curvature of such a warped product is given by

scal = —2(d — 1)‘f: o d=1)d— 2)1éf/)2, (4.3.1)

see for instance [Pet06, p. 69)].

We begin by setting ¢(r) := r for r € (0, R]. Pick any R’ > R and extend ¢ smoothly
to the intervall (0, R'] such that ¢ is constant in a neighborhood of R’ and 0 < ¢'(r) < 1
and ¢”(r) < 0 for all € (0, R’]. This ensures that scal > 0 on (0, R') x S9=1. It
follows from (4.3.1) that if ¢ is bounded below from zero and both ¢’ and ¢" are
sufficiently small in absolute value, then scal remains positive. Thus, after picking
ro sufficiently large, we may extend ¢ smoothly to the intervall (0,r¢ + 2] such that
(iii) is satisfied and scal > 0 on (0,79 +2) x S¢~L. Finally, we extend smoothly to the
intervall (0,rz] for some ro > rg + 2 such that ¢ is a linear function of slope one in
a neighborhood of ro. If ro is sufficiently large, this can be achieved in such a way
that ¢ > e, 0 < ¢’ <1 and ¢” is arbitarily small in absolute value on (rg 4+ 2,73). In
particular, we can achieve scal > —e. The proof is completed by extending ¢ linearly
on (rg,00) and, if necessary, increasing 79 such that S := ¢(r2) > R. O

Proof of Theorem 4.3.1. Let (g¢)ter be a smooth family of Riemannian metrics on M
such that g, = go for t <0 and g; = g for t > 1. Let g be the resulting metric g; + dt?
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4.3 The failure of secondary multi-partitioned manifold index theorems

on M x R. Let £ > 0 such that _d(gg—;) < scal(g) and 2e < scal(yg;) for i € {0,1} and

choose a function ¢ as in Lemma 4.3.3.
Define a Riemannian metric on M x (0,00) x S4~1 by

h= Gr—rg + dr? + go(r)Qngfl.

Note that & has uniformly positive scalar curvature bounded below by & on M x (0,79) %
S9-1 gince there h is a direct sum of the metrics go on M and dr? + ¢(r)%gga—1 on
5971 the first of which has scalar curvature > 2¢ and the latter > —. An analogous
argument applies on M x (rg + 1,00) x S471. Finally, on M x (rg,79 + 1) x S¢1,
the metric is a direct sum of g on M X (rg,79 + 1), the scalar curvature of which is

bounded below by —d(gg_zl), and the metric e2gga—1 on S9! with scalar curvature
equal to @.

Let ¢: (0,00) — (0,00) be a diffeomorphism such that ¢(r) = r for » < R and
Y(r) =8+ r —ry for r > ry. Define the metric h as the pushforward of h under the

diffeomorphism M x (0,00) x 471 — M x (R%\ {0}), (z,7,&) = (x,9(r)¢). O
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