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Preface 
 

General motivation and the objectives of current studies  

 

This work was aimed to reconstruct the past vegetation patterns and environment conditions on land 

and in the marine realm with regard to their responses to climate, fire and land use changes in Java 

and Southern Kalimantan (Indonesia). As natural vegetation communities of the study area has 

experienced some hundred years of human activity, main focus of current investigation was set on 

the reflection of human related factors controlling changes in the region. Two sites were chosen for 

comparison: heavily populated Java with some 5000-7000 yr long (Whitmore, 1984a) history of the 

human activity and Kalimantan with its relatively thin population and much less changed vegetation.  

The principal question of our research was: How had all mentioned changes been reflected by the 

vegetation in Java and Kalimantan and by coastal dinocysts communities in the Java Sea during the 

Late Holocene?  In order to respond this question, the following hypotheses were approached: 

 

(1) Different vegetation patterns on Java and Kalimantan are well reflected in pollen in the 

sediments.  

(2) Natural environmental changes have nowadays a smaller impact on ecosystems then 

anthropogenic   environmental changes.  

(3) Changes in land use (specifically changes in vegetation) increased during the Late Holocene 

and particularly during the Anthropocene. 

(4) Environmental changes are reflected both in pollen/spores and dinoflagellates assemblages. 

(5) Anthropogenic environmental changes give the stronger signal from the island of Java then 

from the island of Kalimantan. 

 
Brief description of the content of present studies is provided below.  

 
 



15 

 

Structure of the thesis and chapters outline 

 

This thesis consists of seven chapters prefaced by the synopsis given in English (Summary), German 

(Zusammenfassung) and Indonesian (Rezume) languages that briefly describe principal research 

questions, work steps and the main outcomes. The first chapter (Chapter 1) gives an introduction 

into the subject of marine palynology, describes material and research methods and provides an 

overview of the study area.  

 

In Chapter 2, the state-of-the-art of marine palynology in SE Asia is addressed and a scholar 

retrospective is given in terms of pollen and dinoflagellate cyst studies. Additionally, modern 

investigations are observed.   

 

Next four chapters (Chapters 3-6) build a main part of this thesis and are based on the synthesis of 

the following manuscripts. Chapter 3 (manuscript one) describes a pilot study on the abundance and 

taxa composition of modern pollen and spores collected by the sediment trap in the Indian Ocean off 

SW Java. It discusses factors, which control deposition of the settling particles, and compares pollen 

assemblages collected under different monsoon conditions over one year. This chapter gives 

information on the pollen transport required for further interpretation of marine fossil pollen 

records. 

 

In Chapter 4 (manuscript two), outcome of the organic-walled dinoflagellate cysts and pollen 

assemblages in marine sediments is presented. The study based on the comparison of two marine 

cores from the Java Sea off S Kalimantan (Jelai River mouth) and off NE Java (Solo River mouth). This 

chapter describes the last ca 3500 yr of past vegetation changes and peculiarities of environment 

dynamics in the marine realm in high resolution, allowing detailed reconstruction of the 

vegetation/sea environment response to the human-induced environmental changes. 

 

Chapter 5 (manuscript three) discusses results of the multiproxy study of a marine sediment core 

from the mouth of Pembuang River (SE Kalimantan) and presents outcomes from the dinocyst and 

geochemical sediment analysis. History of the environmental changes between ca 2850 and 990 cal 

yr BP in the Java Sea is presented. 

 
Chapter 6 (manuscript four) deals with the pollen diversity in marine sediments. It describes the 

spectra of fossil pollen from the Java Sea and the spectra of modern pollen from one-year sediment 

trap deployed in the Indian Ocean off SW Java. In this chapter, we provide a brief analysis of the 
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pollen taxa list and support it with the light microscopic photos of pollen and spores at different focal 

levels.  

 

In Chapter 7 the most important outcomes of this research are synthesized, response to the research 

hypotheses is given and overall conclusions are drawn. Furthermore, the issue of open questions is 

addressed and finally, some perspectives for marine palaeoecological research in Indonesia are 

envisioned.  

 

The thesis contains Appendix, where complete lists and photographs of all identified pollen, spores 

(Appendix A) and organic-walled dinocysts types (Appendix B) are presented. Appendix C presents 

full pollen, spore and microcharcoal records that are referred to in the text, and in Appendix D 

stratigraphy of the four marine sediment cores relevant to this study and radiocarbon dating is 

provided. 
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Summary 
 

Detailed analysis of past environmental, climate and land use history in the Indonesian region is 

essential to obtain better understanding of human-environment relationships and to prevent 

uncertainties in future development of the region. Indonesia is one of the world biodiversity hot-

spots and at the same time it is one of the most heavily populated areas of the planet. Over historical 

time, the influence of the human activity in the region became more and more intensive. To assess 

human contribution to the environment change, this project (SPICE III – CAFINDO, subproject 5) was 

established.   

Our work was focused on reconstruction of the past vegetation patterns, environment changes and 

human-environment interactions as they are reflected in marine sediments of Indonesian waters. 

Two types of independent proxies were taken for this study: pollen, that originate from land and give 

diverse information on the vegetation and land use dynamics, and organic-walled dinocysts, that 

originate from marine environment and reflect changes of both quantitative (e.g. SST, SSS) and 

qualitative (e.g. trophic state in terms of main macroelements and dissolved water oxygen) water 

parameters. Moreover, microcharcoal was studied to get insight into the fires history in the region 

and to obtain additional support for interpretation of pollen and dinocyst data.  

Two sites were chosen for comparison: the first, heavily populated Java with its long history of the 

human activity resulted in widespread agricultural landscapes, and the second, less densely 

population South Kalimantan less changed by human activity and still, at least partly, barring natural 

primary vegetation.  

Marine palynology as a method requires close attention to the interpretation of data. Factors 

controlling pollen deposition are of particular importance, especially for the areas with the strong 

influence of wind and marine currents like the Indonesian region, where the whole climate system is 

driven mostly by the monsoon reversal. To get some ideas of the sediment transportation in the 

region, we studied and discussed in detail the differences in pollen assemblages collected under 

different monsoon conditions as well as during intermonsoon time. Abundance and taxa composition 

of modern pollen and spores collected by the sediment trap in the Indian Ocean off SW Java became 

an object of our first manuscript. The results were used in the further interpretation of marine fossil 

pollen records. 

History of the land use intensifications and vegetation change over the last ca 3500 yr revealed from 

dinoflagellate cysts and pollen assemblages in marine sediments are presented in the second and the 

third papers. The studies are based on the comparison of two marine cores from the Java Sea off 

West Kalimantan (Jelai River mouth) and North-East Java (Solo River mouth). In the third manuscript, 

these records are compared to the more offshore sediment core taken from the mouth of the River 
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Pembuang. This study discussed the results of biogeochemical and dinocyst analysis in terms of 

palaeoecology and palaeoenvironment.  

The next study gave us some additional understanding of the pollen flora diversity in the region and 

how adjacent vegetation is reflected by the diversity of pollen and spores. The fifth manuscript deals 

with the pollen diversity in marine sediment cores from the Indonesian region. It summarizes our 

knowledge obtained during the work on four sediment cores from the Java Sea and from the Indian 

Ocean sediment trap study. In a form of pollen atlas, we provide a list of the all registered pollen taxa 

and supply it with the microphotographs at different focal levels. The overall result of this work will 

contribute to the knowledge on the ecosystem dynamics and natural history of the Indonesian region 

and may help for future detailed palaeoecological and palaeclimatological investigation in the area.  
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Zusammenfassung 
 
Die detaillierte Analyse der Umwelt-, Klima- und Landnutzungsgeschichte in der indonesischen 

Region ist unumgänglich, um ein besseres Verständnis der Beziehungen zwischen Mensch und 

Umwelt zu erlangen und desweiteren Ungewissheiten in der zukünftigen Entwicklung der Region 

vorzubeugen. Indonesien ist einer der Biodiverstitäts-Hotspots und zugleich eines der 

bevölkerungsreichten Gebiete dieser Erde. Seit historischen Zeiten wurde der Einfluss der 

menschlichen Aktivität in dieser Region immer intensiver. Daher wurde dieses Projekt ins Leben 

gerufen, um den Beitrag des Menschen zu den Veränderungen der Umwelt einschätzen zu können.  

Unsere Arbeit konzentrierte sich auf die Rekonstruktion vergangener Vegetationsmuster, 

Umweltveränderungen und Wechselwirkungen zwischen Mensch und Umwelt, so wie sie sich im 

marinen Bodensediment der Gewässer Indonesiens wiederspiegeln. Es wurden zwei unabhängige 

Vertreter für diese Studie verwendet: Pollen, die vom Land stammen und unterschiedlichste 

Informationen über die Vegetation und  die Dynamik der Landnutzung liefern und Dinozysten mit 

organischer Wandung, die aus mariner Umwelt stammen und den Wandel sowohl der quantitativen 

(z. B. SST, SSS) als auch der qualitativen (z. B. trophischer Zustand, hinsichtlich der 

Hauptmakroelemente und in Wasser gelösten Sauerstoffs) Wasserparameter wiederspiegeln. Zudem 

wurde Mikroholzkohle untersucht, um Erkenntnisse über die Brandhistorie in der Region zu erlangen 

und zusätzlich Unterstützung zur Interpretation der Pollen- und Dinozystendaten zu erhalten. 

Zwei Untersuchungsgebiete wurden zum Vergleich ausgewählt: zum Einen das bevölkerungsreiche 

Java, dessen Landschaft, resultierend aus seiner langen Geschichte menschlicher Aktivität, durch 

Agrikultur geprägt ist, und zum Anderen das dünner besiedelte Süd-Kalimantan, das durch 

menschliche Tätigkeiten  weniger verändert wurde und nach wie vor die natürliche Primärvegetation 

beheimatet. 

Marine Palynologie als Untersuchungsmethode erfordert besondere Aufmerksamkeit bei der 

Dateninterpretation. Dabei sind Faktoren, die die Pollenablagerung kontrollieren, wie starker Wind 

oder Meeresströmungen, von besonderer Bedeutung. Dies ist bei Gebieten, wie Indonesien, wo das 

gesamte Klimasystem durch den wiederkehrenden Monsun bestimmt wird, besonders zu beachten.  

Um Einblick in den Sedimenttransport in der Region zu erlangen, wurden die Unterschiede der 

Pollenansammlungen, die unter verschiedenen Monsunbedingungen, sowie in der 

Zwischenmonsum-Periode gesammelt wurden, untersucht und diskutiert. 

Die Zusammensetzung und Abundanz der Taxa der modernen Pollen und Sporen, die durch eine 

Sedimentfalle im indischen Ozean südwestlich von Java gesammelt wurden, war Thema unseres 

ersten Manuskriptes. Die Ergebnisse wurden für die weitere Interpretation mariner fossiler 

Pollenaufzeichnungen verwendet. 
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Die Geschiche der Landnutzungsintensivierung und des Vegetationswandels über die vergangenen 

ca. 3500 Jahre, die durch die Dinoflagellatenzysten und Pollenansammlungen in marinen Sedimenten 

aufgezeigt wurden, werden im zweiten und dritten Paper vorgestellt. Diese Studien basieren auf dem 

Vergleich zweier mariner Bohrkerne aus der Javasee bei West-Kalimantan (Fluss Jelai) und Nordost-

Java (Fluss Solo). Im dritten Manuskript werden diese Aufzeichnungen mit einem Sedimentbohrkern 

aus der Mündung des Pembuang Flussen verglichen, der küstenferner entnommen wurde. Diese 

Studie diskutierte die Ergebnisse der geochemischen Analyse der Dinozysten hinsichtlich der 

Paläoökologie und der Paläoumwelt. 

Die nächste Studie gewährte zusätzlichen Einblick in die Pollenflora und Vegetationsdiversität der 

Region und wie diese sich in der Diversität der Pollen und Sporen wiederspiegeln. Das fünfte 

Manuskript beschäftigt sich mit der Pollendiversität mariner Bohrkerne aus der indonesischen 

Region. In diesem werden die Erkenntnisse, die während der Arbeit mit den Sedimentbohrkernen aus 

dem Javasee und der Sedimentfallenstudie aus dem Indischen Ozean erworben wurden, 

zusammengefasst. 

In Form eines Pollenatlas, wird eine detaillierte Analyse der Liste der Pollentaxa vorgestellt, die mit 

Mikrophotographien verschiedener Ebenen ergänzt wurde. Das Gesamtergebnis dieser Arbeit trägt 

zu den Erkenntnissen über die Dynamiken des Ökosystems und der Naturgeschichte der 

indonesischen Region bei und kann bei zukünftigen detaillierten paläoökologischen und 

paläoklimatischen Untersuchungen behilflich sein. 
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Rezume 
 

Analisa yang terperinci mengenai  lingkungan di masa lalu, iklim dan sejarah penggunaaan lahan di 

wilayah Indonesia sangat penting untuk memperoleh pemahaman yang lebih baik mengenai 

hubungan manusia-lingkungan dan untuk mencegah ketidakpastian perkembangan wilayah tersebut 

di masa depan.  Indonesia merupakan salah satu wilayah yang memiliki keanekaragaman terbesar, 

dan pada saat yang bersamaan juga merupakan salah satu Negara yang mempunyai jumlah 

penduduk terpadat di dunia. Seiring dengan sejarah, pengaruh dari aktivitas manusia pada suatu 

daerah menjadi semakin kuat. Penelitian ini dilakukan untuk mengakses peranan manusia terhadap 

perubahan lingkungan. 

Penelitian kami difokuskan pada rekonstruksi pola vegetasi di masa lampau, perubahan lingkungan 

dan interaksi antara manusia dan lingkungan yang tercermin dalam sedimen laut di perairan 

Indonesia. Dua macam pendekatan yang digunakan dalam studi ini adalah: polen (serbuik sari), yang 

berasal dari darat dan diharapkan bisa memberikan informasi yang beragam tentang vegetasi dan 

dinamika penggunaan lahan, dan organic dinoflagelata yang berasal dari lingkungan laut dan 

merefleksikan perubahan parameter air secara kuantitatif (misal. SST, SSS) dan kualitatif (mis: kondisi 

tropic dilihat dari segi makro-elemen  utama dan oksigen terlarut dalam air). Selain itu, arang mikro 

dipelajari untuk mendapatkan data mengenai sejarah kebakaran di wilayah tersebut dan untuk 

memperoleh data tambahan untuk interpretasi polen dan data dinoflagelata. 

Penelitian dilakukan di dua situs sebagai perbandingan: pertama, di wilayah Jawa yang padat 

penduduk dengan sejarah panjang dari dampak aktivitas manusia yang menghasilkan lanskap 

pertanian yang  luas, dan yang kedua, di wilayah Kalimantan Selatan dengan kepadatan penduduk 

yang tidak terlalu tinggi dan tidak banyak perubahan akibat  pengaruh aktivitas manusia dan masih 

merupakan vegetasi alami. 

Metode yang digunakan, palinologi laut memerlukan perhatian khusus dalam interpretasi data. 

Faktor pengendapan polen adalah sangat penting, terutama untuk daerah-daerah dengan pengaruh 

kuat dari angin dan arus laut seperti wilayah Indonesia dimana sistem iklim secara keseluruhan 

didorong sebagian oleh pergantian musim. 

Untuk mendapatkan beberapa pemikiran mengenai transportasi sedimen di wilayah ini, kami 

mempelajari dan membahas secara rinci perbedaan jumlah polen yang dikumpulkan pada kondisi 

musim hujan yang berbeda serta selama waktu perpindahan musim. Subyek manuskrip pertama 

kami adalah kemelimpahan dan komposisi taksa modern polen dan spora yang didapat dari sedimen 

yang terakumulasi di Samudera India sebelah barat daya Jawa. Hasil yang diperoleh digunakan untuk 

interpretasi lebih lanjut dari fosil polen laut. 
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Sejarah  intensifikasi penggunaan lahan dan  perubahan vegetasi lebih dari 3500 tahun yang lalu yang  

diperoleh dari dinoflagelata dan kumpullan polen dari sedimen laut dipresentasikan dalam jurnal 

yang kedua. Studi ini didasarkan pada perbandingan dua core laut dari lepas Laut Jawa dekat 

Kalimantan Barat (Sungai Jelai) and bagian timur laut Jawa (Sungai/Bengavan Solo). Pada manuskrip 

yang ketiga, hasil ini diperbandingkan dengan sedimen core dari  lepas pantai yang diambil dari 

bagian hulu sungai Pembuang. Studi ini membahas mengenai hasil analisa geokimia dan analisa 

dinoflagelata dalam cakupan paleoekologi dan paleoenvironment.  

Manuskrip kelima membahas tentang  keragaman polen dalam core sedimen laut dari wilayah 

Indonesia. Studi ini merangkum  pengetahuan yang diperoleh selama meneliti  core sedimen dari 

Laut Jawa dan dari studi perangkap sedimen di Samudera Hindia. Dalam bentuk atlas polen, kami 

memberikan hasil analisis secara rinci dari daftar taksa polen dan dilengkapi  dengan foto mikro pada 

tingkat fokus yang berbeda.  Hasil keseluruhan dari penelitian ini akan memberikan kontribusi pada 

pengetahuan tentang dinamika ekosistem dan sejarah alam di wilayah Indonesia dan dapat 

membantu investigasi paleoekologi dan paleo-iklim di masa depan secara lebih rinci. 
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CHAPTER  1 
 

Introduction 
 

1.1. Marine palynology. Pollen transportation and translocation in marine realm 

 

Pollen analyses of marine sediments contributes to reconstructions of the vegetation and climate, 

particularly in regions where long continuous terrestrial records are scarce or problematic (e.g. 

Sánchez Goñi et al., 1999; Mudie et al., 2002; Heusser and Oppo, 2003; Moss and Kershaw, 2007). 

First, because the vegetation patterns can well reflect rapid or abrupt climate change events, rather 

than showing a lagged response as had been widely assumed previously (Harrison and Sánchez Goñi, 

2010). Second, due to the fact that pollen signals in marine records may directly correlate with 

terrestrial sequences and therefore can provide a basis for transferring marine age-models directly to 

terrestrial records (Hope et al., 2004; Ryan et al., 2012) and can help to establish a correlation of the 

changes in marine and terrestrial realm. 

Additionally, marine palynological records, unlike terrestrial ones, provide broad regional pictures of 

vegetation on adjacent landmasses, often collecting pollen from a number of different biomes. They 

are suitable for the investigation of large shifts in vegetation over long periods, while pollen data 

from terrestrial deposits give much more detailed information of local or regional vegetation 

patterns (Dupont, 1999).  

Marine pollen diagrams, however, cover often more than one climatic cycle that makes them not 

always suitable for tracing short-scale climatically induced vegetation change. Careful interpretation 

of this kind of diagrams places emphasis on transport and sedimentation processes, as these have a 

strong impact on the results (e.g. Sun, 2002). In the interpretation of pollen data, several aspects 

must be taken into account: these include source of production of pollen, its transport to the sea and 

through the water column, displacement by ocean currents, sedimentation processes, fossilization 

and accumulation in the sediment. Production of pollen grains varies strongly between different 

species. After pollen and spores reach the sediments, they still can be displaced by sedimentological 

processes such as bioturbation or sediment movement. Embedded within very slowly accumulating 

sediments at great water depths, pollen and spores may decay if bottom waters over the site are rich 

in oxygen and therefore corrosive, or the pollen and spore content may become enriched by the 

dissolution of calcium out of the sediment (Keil et al., 1994). 
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The distribution of many pollen types in the modern marine surface sediments reflects the average 

course of the trajectory of the major wind belts (Hooghiemstra et al., 1986). Transport of pollen and 

spores from their source areas to the marine sediments involves several steps. After pollen grains are 

released by the plants they disperse into the air and are transported by winds, or the grains fall into a 

lake or a river and are then carried by the river into the ocean. Aeolian transport of pollen and spores 

predominates in deep-sea sediments located far from the coast and along arid areas with no or small 

river discharge into the ocean (Heusser and Morley, 1985; Hooghiemstra et al., 1986). In contrast to 

desert margins, fluvial transport of pollen and spores is high in the humid tropical areas. The role of 

fluvial transport has been shown by an increased pollen concentration in sediments sampled from 

the vicinity of river mouths (Muller, 1959; Heusser and Balsam, 1977; Davey and Rogers 1975; 

Heusser, 1988; Bengo, 1997).  

Pollen that has eventually got into the upper layers of the ocean has to be transported down through 

the water column to the sea floor. Pollen grains are too small and too light to have an effective sink 

velocity by themselves. However, pollen is caught in larger aggregates - in faecal pellets or large 

filamental aggregates - that can have sink velocities of 100 m per day or more (Schrader, 1971; Silver 

et al., 1978; Honjo, 1980; Wefer, 1991, 1993; Wefer and Fischer 1993). The transport through the 

water column is more efficient in areas with a high marine surface productivity where the 

incorporation of palynomorphs in the food chain is enhanced (Ratmeyer et al., 1999). The increased 

sink velocity reduces drifting by ocean currents. However, along continental slopes, strong boundary 

currents may displace pollen and spores (Heusser and Balsam, 1985; Dupont and Agwu, 1991).  

The importance of transport processes from the continent into the ocean varies from region to 

region (Dupont, 1999). Palynological studies on modern sediments of continental shelves reflect the 

influence of both river input and sorting of particles, whereby the sedimentation of pollen and spores 

can be compared to that of the medium to fine silt fraction, because of their size and density 

(Rossignol, 1961; Davey, 1971). Because pollen grains from marine sediments are typically 

transported over long distances, the evaluation of transport agents is always part of the 

interpretation of marine pollen diagrams (Dupont, 1999). The marine record also provides valuable 

chronological control for the terrestrial record (Hope et al., 2004). Morover, pollen grains can be 

used as tracers for the origin of organic matter (Wagner and Dupont, 1999). 

 

1.2. Material and research methods   

 
This study is based on the analysis of four marine sediment cores (Table 1.1; Fig 1.1) taken from the 

Java Sea during the scientific cruises of the RV “Baruna Jaya” and unknown RV in 1995-1998 off South 
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Kalimantan (Jelai and Pembuang rivers) and off North-East Java (Solo River). The age schemes of the 

marine sediment cores are presented in the Fig. 1.1.  

 

Table 1.1. Summarized information on the sites and sediment material studied. 

 

 1412-19 1612-23 1612-26 1609-30 JAM-2 

Type of material Sediment core Sediment core Sediment core Sediment core Sediment 
trap 

Core site Off Jelai River,  
SW 

Kalimantan; 
Java Sea 

Off Pembuang 
River,                   

S Kalimantan;     
Java Sea 

Off Pembuang 
River,                  

S Kalimantan;     
Java Sea 

Off river Solo,       
E Java; Java Sea 

off SW 
Java;        

SE Indian 
Ocean 

Core 
position 

Latitude S3° 15' 28.8" S3° 35' 21.84" S3° 47' 39.48" S6° 29' 49.729" S 08° 17' 
30" 

Longitude E110° 38' 
59.399" 

E112° 44' 
13.56" 

E112° 34' 
6.96" 

E112° 28' 
31.328" 

E 108° 02' 
00" 

Water depth, m 9.7 20 56,3 50 2200 

Core length, cm 91.5 134 100 96 ----------- 

Year(s) of collection 1998 1995 1998 1995 2001-2002 

Approximate age, cal 
yr BP 

1200 2850 6500 3600 modern 

Proxies studied Pollen, 
dinocysts, 

microcharcoal 

Pollen, 
dinocysts, 

microcharcoal 

Pollen, 
dinocysts 

Dinocysts, 
biogeochemical 

parameters 

Pollen 

Chapter 4, 6,7  5, 6,7 6,7 4, 6, 7 3, 7 

 

 
 
Fig. 1.1. Age scheme of the 
marine sediment cores used 
for the present study. 
Radiocarbon dating (Stuiver 
and Polach, 1977) and 
calibration (CALIB 7, marine 
13: Stuiver and Reimer, 
1993) considering a 
reservoir age of 90 yr 
(Southon et al., 2002).  
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Fig. 1.2. Marine time-series sediment trap Parflux Mark 7G-21 (A) general view, from 

http://www.mbari.org/expeditions/Smith2011/logbook/day4.htm; (B) scheme of the trap mooring, slightly 

modified after: https://depts.washington.edu/soundcit/about/oceanographic-equipment/sediment-trap-

schematic; (C) principal scheme of the time-series sediment trap, from: Gallery of common sediment sampling 

devices, http://woodshole.er.usgs.gov/openfile/of2005-1001/htmldocs/sediment_traps. 

  

Besides, in the second chapter was used the material collected with help of the sediment trap JAM-2 

that was moored in the Indian Ocean off SW Java (scheme of trap is given above, see Fig. 1.2) 

between December 2001 and November 2002 and collected in 2005 during the cruise SO-184, 

PABESIA, of the research vessel SONNE.  Trap mooring water depth was about 2200 m; sampling 

intervals were 16 days each. 

 

1.2.1. Laboratory methods 

 
 

After subsampling the core material, 3 g of each sample, was dried overnight at 60°C and afterwards 

weighted to determine the dry bulk density. The material was brought into suspension in distillate 

water and sieved over a 100-150 μm sieve. In order to remove carbonate, cold hydrochloric acid (HCL 

10%) was applied in amounts depending on the intensity of the reaction. To determine concentration 

and/or accumulation rate, one Lycopodium clavatum tablet with known number of spores (20,848 ± 

1546) was added to each sample (Stockmarr, 1971). At the next step, hydrofluoric acid (HF 72%) was 

added to the washed and centrifuged (5 min, 3200 rpm) samples for one day in order to remove 

silicate.  

After decantation and washing (X2 times) with distillate water, the residue was centrifuged again and 

transferred to 1.5 ml Eppendorf tubes. The fraction smaller than 10 μl were removed sieving over a 

nylon filter. In order to avoid damage to the dinocysts no acetolysis and other oxidation treatments 
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was applied. The material was embedded in glycerin gelatin and isolated from air by transparent nail 

polish. Pollen, spores and dinocysts were counted under a light microscope (Zeiss Axiostar Plus) at 

X400 and X1000 magnification. In case of the core material, counting kept up to 200 identified pollen 

grains and 100 dinocysts, relative abundance of taxa were calculated on the basis of the total sum of 

pollen grains and dinocysts respectively, excluding indeterminate grains/cysts, fern spores and other 

algae, which have been also counted.  

In case of sediment trap material, each sample was counted to a minimum of 100 identified pollen 

grains. For the charcoal analysis, all black organic particles were counted. Charcoal concentration was 

calculated on the base of bulk dry weight (particles per g). 

 

1.2.2. Methods of data analysis 

 

The percentages diagrams for pollen/spore and dinocysts were created in TILIA/TGView and 

subdivided into local zones, which were established empirically by comparing dynamics of the 

principal taxa, supported by the results of constrained cluster analysis by sum-of-squares using 

CONISS for TILIA (Grimm, 1987). The stability of the classification and the sharpness of the clusters 

were checked with the help of bootstrap resembling performed in MULTIV (Pillar and Orlóci, 1996; 

Pillar, 1999). 

To study relationship between pollen taxa and dinocysts, multivariate data analysis with the 

programs CANOCO and CanoDraw (ter Braak and Šmilauer, 1997; Leps and Šmilauer, 2003) was 

carried out. If a detrended correspondence analysis (DCA) had revealed a gradient length less or 

equal to 2.0 for the first PCA axis, principle component analysis (PCA, chapter 3) or redundancy 

analysis (RDA, chapter 4) was carried out as recommended by Leps and Šmilauer (2003) for data sets 

with short environmental gradients. If not state otherwise, standardization and logarithmic 

transformation was applied to species and palaeorelevé data.  

To obtain insight into the similarity/dissimilarity of the pollen and dinocyst datasets and to estimate 

how well the two datasets match to each other in terms of compositional gradients, Procrustes 

analysis (PA, chapter 3) (Jackson, 1995) was applied using the CANOCO 5 software package (Gower, 

1975; Peres-Neto and Jackson, 2001; Šmilauer and Lepš, 2014). In order to evaluate the significance 

of the RDA axes (chapter 4), the null hypothesis test was applied using the nonparametric Monte 

Carlo permutation test (Manly, 1992).  
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1.2.3. GIS Methods 
 

This thesis presents a number of original maps created in order to show present patterns of the most 

important sea water parameters in the Java Sea (Fig. 1.3), winds and marine currents in the area (Fig. 

1.4) and geospatial distribution of main vegetation types (Fig. 1.5) in Indonesia as well as the 

peculiarities of modern tree-cover and burnt vegetation (Fig. 1.7). Environmental data were derived 

from the World Ocean Atlas (2009) and The Giovanni Ocean Colour Radiometry Portal 

(http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cginstance_id=ocean_8day). Maps presenting 

oceanographic information were created using World Ocean Atlas (2009) and Ocean Data View 

software (Schlitzer, 2014). Maps of vegetation (Fig. 1.5) and tree cover/burnt vegetation patterns 

(Fig. 1.7) were created in Quantum GIS (http://qgis.osgeo.org). Data were partly derived from 

GEONETWORK open source (http://geonetwork-opensource.org) and partly from Stibig et al. (2002). 

All data were standardized and divided into classes. 

 

1.3. Overview of the study area 

1.3.1. Geography of the Java Sea 

 

The Java Sea is a large (310,000 km2) sea on the Sunda Shelf which lies between the islands of Borneo 

to the north, Java to the south, Sumatra to the west, and Sulawesi to the east (Fig. 1.4). In its western 

part, it is connected with the Indian Ocean by the Sunda Strait, and northward to the South China Sea 

by the Karimata Strait. The eastern part is connected with the Flores Sea and the Makassar Strait 

(Durand and Petit, 1995; Genia et al., 2007). Because of its geographical position, the Java Sea is 

strongly influenced by the tides from both the Pacific and Indian Ocean through the Malaka and the 

Makassar Straits respectively (Wrytki, 1961; Genia et al., 2007).  

Being shallow (average depth is about 40 m), the Java Sea allows a good mixing of water masses, 

creating homogenous layer from the surface to the bottom. Sea surface temperature (SST, Fig. 1.4A) 

has a small variation during the year, about 2°C (Wrytki, 1961). Sea surface salinity (SSS, Fig. 1.4B) is 

relatively constant throughout the year as well, with the average minimum salinity being 31.8 from 

January to June and maximum average salinity being about 34 in September (Veen, 1953). As a result 

of local evaporation, in the eastern part salinity varies between about 30.8 to 34.3 (Durand and Petit, 

1995).  

In the western part of the sea, where a number of the rivers discharge from Sumatra (e.g. Asahan, 

Rokan, Kampur, Batangan, Musi), Java (e.g. Bengawan Solo, Brantas, Citarum) and Kalimantan (e.g. 

Pembuang, Seruyan, Mendawai, Barito), SSS is lower, from 30.6 to 32.6. The average minimum of 

http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cginstance_id=ocean_8day
http://qgis.osgeo.org/
http://geonetwork-opensource.org/
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salinity is near 32 occurring from January to June, while the maximum is about 34 and taking place in 

September (Veen, 1953). 

Fig. 1.3. Schematic map of the study area. Positions of marine sediment cores and a sediment trap are shown 
with red dots.   

 

Whole water mass of the Java Sea is well oxygenated (Fig. 1.4C). Measured water dissolved oxygen is 

about 4.5-4.7 ml l-1 near by the bottom and up to 5 ml l-1 at the surface (Doty, 1963; Boely et 

al.,1991). The water is relatively rich in nutrients. According to the World Ocean Atlas (2009), the 

average content of nitrates is 0.27-0.75 ml l-1 with relatively high concentrations off S Kalimantan 

(Fig. 1.4D). The phosphates concentration varies from 0.2 ml l-1 in the central part to 0.4 ml l-1 

between the coastal lines of W Java and E Sumatra (Fig. 1.4E). The highest concentrations of the 

chlorophyll a are observed in the eastern part of the sea between Java and Madura as well as off S 

Sulawesi (Fig. 1.4F).  
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Fig. 1.4. Annual see surface temperature, SST (A), annual sea surface salinity, SSS (B), and concentrations of the 
oxygen (C), nitrates (D), phosphates (E), and chlorophyll-a concentration (F) in the surface waters of Java Sea. 
Environmental data (SST, SSS, oxygen, nitrate and phosphate concentrations) are derived from the World 
Ocean Atlas (2009); data on chlorophyll-a concentration derived from The Giovanni Ocean Colour Radiometry 
Portal). 
 

1.3.2. Modern climate and marine currents  

 

The region has a typical monsoon climate marked by a reversal of the winds. This phenomenon is 

caused by differences in temperature between the continental and oceanic areas. The NW monsoon 

reaches its peak in December to February and it is usually characterized by frequent rainfall and 

windy period, when the rate of precipitation in some areas is up to 3000 mm. In contrast, the SE 

monsoon occurs in June to August and it is usually characterized by low rainfall, sometimes less than 

50 mm. The rate of precipitation is strongly influenced by the climate anomaly known as ENSO (El 

Niňo Southern Oscillation), with its two extreme faces, El Niňo and La Niňa, it can respectively 

decrease and increase precipitation rates over Indonesia (Ropelewski and Halpert, 1987).  

The ocean currents in the Java Sea show the same directions (Writky, 1961). From November to 

March, the water flows eastwards (Fig. 1.5A). Oppositely from May to September, it flows westwards 

(Fig. 1.5B). Waters are spiced by the Karimata Strain Throughflow (KMST) that has its origin in the 

South China Sea (Fig. 1.5). In the most eastern part of the Java Sea, additional inflow comes from the  
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Fig. 1.5. Schematic map showing main forest types in Indonesia (after Stibig, et al., 2002) main oceanic currents 
and winds in the source area during the NW (upper picture) and SE monsoon (lower picture). Patterns of winds 
are followed Black (2002) and P. Wang et al. (2000, 2005); directions of currents are modified after Schott and 
McCreary (2001), Zheng et al. (2006), Fang et al. (2009). The abbreviations stand for the following: ITF, 
Indonesian Throughflow; ECC, Equatorial Counter Current; KSTF, Karimata Strait Throughflow; LG, Luzon Gyre; 
MSTF, Makassar Strait Throughflow; NG, Nansha Gyre; VOC, Vietnam Offshore Current. 
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north in form of the Makassar Strait Throughflow (MTSF). These waters mix with the KMST and leave 

the basin through the Flores Sea. During the period of SE monsoon (May-September) their direction 

changes and waters go western direction (Fig. 1.5B). Waters of the Java Sea are then formed by MTSF 

waters that leave the Sea through the Karimata Strait. During the intermediate months (April and 

October) when the current direction changes numerous eddies are formed. In these months the 

currents off the coast of Java generally flow in easterly direction whereas at the same time a western 

current is present off the coast of Kalimantan (Genia et al., 2007).  

The Indonesian Throughflow (ITF) flows through the Lombok Strait and neutralizes lower sea surface 

temperatures off Java during the upwelling season (Romero, 2009). The Indonesian region is referred 

to as ‘a key area along the return branch of the global conveyor belt’ and the only low-latitude 

pathway between the Pacific and Indian Ocean basins, with major climatic importance on a global 

scales (Gordon, 2005). Advection of fresher Java Sea waters through the Sunda Strait and run-off 

from Sumatra and Java are responsible for the low-salinity ‘tongue’ in the South Java Current (Qu et 

al., 2005). 

 

1.3.3. Bottom sediments  

 

The most of bottom sediments of the Java Sea is represented by silt and formed by highly dense mud 

layer, with large muddy bed in the North-East and central area where it is mixed with coral and shell 

debris (Emery, 1972; Boely et al., 1991; Sadhatomo, 1996). North of Madura and near the coast of 

Java, rocky outcrops associated with coral formations are observed (Boely el al., 1991). A line 

extending from east to west through the Java Sea roughly divides the bottom sediments of the 

region into two distinct groups: sediments to the north are largely derived from the non-igneous 

formations of Borneo, while those to the south were derived from the volcanic rocks of Java. Coarse 

quartz sand is found in the vicinity of the several entrances to the sea, but the great central basin is 

mainly composed of soft mud that is rich in calcium carbonate originated from the coral reefs (Genia 

et al., 2007). 

 

1.3.4. Geography and natural conditions of Java and Kalimantan 

 

The island of Java is of about 130,000 km2 supporting 136,563,000 inhabitants with the average 

density of 862 people/km2 (2010, http://www.bps.go.id; Whitten et al., 1996). Java is the world's 

most populous island, and one of the most densely-populated places in the world. It is the home of 

60% of the Indonesia population.  
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Kalimantan (539,760 km2, http://www.geohive.com) in English, is the name for the Indonesian part 

of Borneo, while in Indonesian the term "Kalimantan" refers to the whole island of Borneo 

(MacKinnon et al., 1997). It is the largest island in Indonesia, 73% of the country lies within its 

territory. Non-Indonesian territories of the island consist of the states of Sarawak and Sabah forming 

together East Malaysia and independent sultanate Brunei Darussalam (http://www.bps.go.id). The 

climate on both of islands is tropical: hot and humid. Kalimantan is situated on the equator, within 

the wettest part of the Indonesian archipelago, and mostly its climate has less seasonal variability, 

than on Java. 

 

1.3.5. Relief and Geology 

 

On its origin, Java is a volcanic island with some 155 centers of active volcanism. Together with Bali, 

Java is the most volcanically active place on the Earth. The relief of Java is not uniform. Two large 

chains of mountains are found which are up to 3200 m high. In the north of the island, Karang, Dieng 

and Muria volcanic complexes are situated. Lowlands in the north of Java are represented by 

northern foothills and alluvial plains. Although volcanic rocks on Java dominate, the rocks in northern 

lowlands are almost entirely sedimentary in origin (Whitten et al., 1996). The basic lithography of the 

region is one of young, mixed volcanic and calcareous marine sediments lying on the southern flank 

of series of young volcanic piles aligned along the centre of the islands (Van Bemmelen, 1970). The 

island's main rivers flowing into the Indian Ocean are the Cimandiri, Cibuni, Ciwulan, Citanduy, 

Serayu, Progo, and Opak (after Whitten et al., 1996). 

In contrast to Java, Kalimantan is rather flat and has vast areas of low costal and river plains, 

especially in the south (MacKinnon et al., 1997). Over half of the island lies below 150m in altitude. 

Moreover, Kalimantan Kalimantan has no active volcanoes, although its main mountains are igneous 

of origin and are mainly concentrated in the northern and in the central part of the island. Southern 

Kalimantan is in great part swampy lowland, stretching from around Banjarmasin and Aluh-Aluh in 

the south to around Amuntai in the north (Sumawinata, 1998a, 1998b). Only highland area can be 

found in Kalimantan, the Meratus Mountains (highest point Gunung Besar, 1892 m) which extends 

along the coast and separates Central and East Kalimantan. Much of island consists of consolidated 

and semi-consolidated rocks, including Quaternary limestones, old volcanic rocks and Tertiary 

sediments. Large areas of Southern Kalimantan are composed of sedimentary rocks such as 

sandstones and shales. Loosely consolidated sands and gravel terraces, often overlain by yang, 

superficial deposits of peat and alluvial fans deposited by flooding rivers can be found almost in all 

http://en.wikipedia.org/wiki/Indonesian_language
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area. The most important rivers in the south part of the island are the Pembuang, Barito, Mendawai, 

and Jalai. 

 

1.3.6. Soils 

 

Soil conditions are important in affecting the development and diversity of the vegetation. Soils of 

Java vary from undeveloped, soft muddy hydraquents and sandy tropopsamments to vitradepts, 

slightly weathered volcanic ash soils with dominantly coarse textures and thick, black topsoil, and 

highly productive tropical mature soils. Most of soils in the hilly parts of Java are relatively immature, 

however, and because they retain moisture, mineral nutrients, organic matter and phosphorus, they 

are potentially very productive. Exceptions are the soil over limstones and marls (Whitten et al., 

1996).  

The majority of Kalimantan soils have developed on rolling plains and dissected hills on sedimentary 

and old igneous rocks. These soils range from strongly weathered and acid ultisols to yang 

inceptisols. In the south, extensive alluvial plains and peat soils extend into the Java Sea. Accretion is 

still occurring on the shallow shelf of southern Kalimantan, with alluvial sediments building up behind 

coastal mangroves. Weathering is very strong in the humid tropics, favored by both warmth and 

moisture. High levels of weathering, leaching and biological activity, e.g. degradation of organic 

material, are characteristic of many soils in both islands (Burnham, 1984; MacKinnon et al., 1997). 

The soils of Kalimantan are generally much less fertile than the rich volcanic soils of Java.  

 

1.3.7. Flora and vegetation 

 

Floristically, Java and Kalimantan are among of the richest sites on earth. Taxa from East Asian and 

Austral-Antarctic floristic regions can be found in mountains, while Indo-Malaysian elements are 

reviling and are rich in species in the hot lower altitudes (e.g. Dipterocarpaceae), East Asiatic taxa 

(e.g. Fagaceae) progressively become more diversified upslope to mid altitudes. Austral-Antarctic 

taxa (e.g. Ranunculus, Dacrycarpus, and Leptospermum) are found at higher elevations (Hotta, 1974). 

Forest types of the area include mangroves, peat swamp and freshwater swamp forests, extensive 

heath forests, lowland dipterocarp forests, ironwood, forests on limestone and ultrabasic soils, hill 

forest and various montane formations (e.g. Flenley, 1979; Whitten et al., 1996; Collins et al., 1991) 

(Fig. 1.5). Other plant communities are represented by beach vegetation, grassy shrublands, 

grasslands, estates and agricultural ecosystems (MacKinnon et al., 1997). 
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The vegetation of Java can be classified in a number of different ways (Campion and Seth, 1968; 

Whitmore, 1984; MacKinnon et al., 1982; MacKinnon and MacKinnon, 1986; Whitten et al., 1996). 

Natural forests include several forest subtypes, i.e. extensive evergreen rainforest (monsoon forest), 

semi-evergreen rainforest, moist deciduous forest along the northern coast, and dry deciduous 

forest. The differences are mostly related to the seasonality of rainfall. No single tree family 

dominates the forests of Java, as is the case with the dipterocarps in Kalimantan (Whitten et al., 

1996). The most common species in the rainforests of Java are Artocarpus elasticus (Moraceae), 

Dysoxylum caulostachyum (Meliaceae), Lansium domesticum (Meliaceae) and Planchonia valida 

(Lecythidaceae). Semi-evergreen rain forest differs from evergreen rain forest by being slightly more 

seasonal, with two to four dry months each year (Whitten et al., 1996). 

Java's deciduous forests generally are lightly closed, with few trees exceeding 25 m. Borassus and 

Corypha palms are good indicators of the seasonal climates that generate deciduous forests in the 

region. Moist deciduous forests have 1500 to 4000 mm of rainfall annually, with a four- to six-month 

dry season. Dry deciduous forests have less than 1500 mm of annual rainfall and more than six dry 

months. Common lowland deciduous trees found in eastern Java and Bali are Homalium 

tomentosum, Albizia lebbekoides, Acacia leucophloea, A. tomentosa, Bauhinia malabarica, Cassia 

fistula, Dillenia pentagyna, Tetrameles nudiflora, Ailanthus integrifolia, and Phyllanthus emblica. 

Many herbaceous plants are confined to the deciduous forests (Whitten et al., 1996). Patches of 

freshwater swamp forest found throughout the ecoregion are relatively poor in species (Whitten et 

al., 1996). Rawa Danau, Banten in west Java is the largest remaining area of swamp forest in Java and 

Bali, and it contains many tree species now nearly extinct elsewhere in Java, such as Elaeocarpus 

macrocerus, Alstonia spathulata, wild mango (Mangifera gedebe) and Stemonurus secundiflora.  

According to Stuijts (1993) and Stuijts et al. (1988), mountain vegetation of Java has a distinct belt 

structure and can be described it is shown at the scheme (Fig.  1.4). Submontane forest is closed, 

with little moss and poor ground flora. It is represented by seasonal mountain forest, growing above 

1000-1400 m following evergreen or semi-evegreen forest, and mountain aseasonal forest, at the 

same elevation above monsoon forest. Common trees are Celtis, Altingia and Myrtaceae. Lower 

montane forest differs from the previous forest type by very rich ground flora and lower number of 

tree species. It is observed at the level of 1400-1800 m. This zone is often caller ‘Lauro-fagaceous 

belt’ as Castanoptis together with Quercus and Lauraceae predominant. Many lowland families no 

longer appear (Backer et al., 1963, 1968), more temperate genera, including Lonicera, Nertera, 

Gaultheria appear (Whitmore, 1975). Mountain vegetation is upper mountain forest growing at the 

elevation of 1800-2400 m is described as closed, high-stem, floristically rich mossy mesophyll forest 

with Podocarpus, Dacrycarpus, Engelhardia being characteristic trees. Ericoid montane forest can be 
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found on the level of 2400-3000 m. It is mossy microphyll forest, consisting of a single low canopy 

with rich ground flora and few lianas. Device Ericaceae, Rapanea and on volcanic soils Myrica can be 

found there. Subalpine ericoid scrub appeared when elevation riches 3000-3600 m. Herbs and low 

microphyll shrubs, dwarf forms of trees found in below vegetation are recognized there. In the 

uppermost sites alpine rock-desert occurs.  

 

Fig. 1.6. Vertical zonation of Javanese (based on Stuijts, 1993 and Stuijts et al., 1988) and Kalimantan (based on 
Whitmore, 1984a and MacKinnon et al., 1997) mountains with the characteristic taxa and vegetation belts.  

 

The vegetation of Java has been strongly changed by humans during the last few hundred years. Over 

the half the original area has been turned into grassy shrubland with Trema, Malotus, Melastoma, 

Lantana, and Eupatorium. Extensive palm plantations and rice fields as well as abandoned estates 

and aquaculture land occupy nowadays large territories. Strongly reduced area of mangroves is now 

limited to the stands along the northern coasts of Java (e.g. around Ujung Kulon), in Segara Anakan 

lagoon (White et al., 1989; Yani et al., 2004; Hinrichs, 2006; Noor et al., 2006; Hinrichs, et al., 2009; 

Geist, 2007, Geist et al., 2012;) and in Grajagan Bay, Segoro Anak (White et al., 1989; Whitten et al, 

1996). The most important families in mangrove forest of Northern Java are Rhizophoraceae with 

Rhizophora, Bruguiera, Ceriops followed by Avicenniaceae (Avicennia) and Sonneratiaceae 

(Sonneratia).  

Kalimantan supports some of the largest expanses of tropical rainforest is SE Asia, providing some of 

the most spices-rich habitat on earth. Most of Kalimantan is covered by species-rich closed-canopy 

forests with high endemism (e.g. Whitmore, 1984; Jacobs, 1988; MacKinnon et al., 1997) very high 

productivity (Ashton, 1982; MacKinnon et al., 1997), long history (Muller, 1970) and a great diversity; 

there are as many as 240 different species of trees growing within a hectare (Kartawinata et al., 
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1981; Ashton, 1989). Main types of lowland rainforest of southern Kalimantan are Dipterocarp forest, 

heath forest (Kerangas), ironwood forests predominating by Eusideroxylon zageri as well as forests 

on limestones and ultrabasic rocks.  The general characteristics of these forests are canopies 24-36 m 

high with emergents reaching up to 65 m. Dipterocarpaceae is a dominant family in the emergent 

stratum. In the richest forests, up to 80% of the emergent trees are dipterocarps: Dipterocarpus, 

Dryobalanops, Shorea, Hopea and Vatica together with species from Berseraceae and Sapotaceae are 

usually found in the main canopy as well. A third layer occurs below the canopy of shade-tolerant 

species, adorned with lianas, orchids, and epiphytic ferns. This layer includes many species from the 

Euphorbiaceae, Rubiaceae, Annonaceae, Lauraceae, and Myristicaceae families. In some cases 

Euphorbiaceae is more common than dipterocarps, being the second most common family in 

Kalimantan. On the forest floor, herbs, seedlings, and shade-tolerant palms exploit the few places 

that receive sunlight.  

In mountains of Kalimantan Whitmore (1984) described five altitudinal floristic zones (Fig. 1.6). These 

are already described lowland dipterocarp zone (less than 300 m), the hill dipterocarp zone (300-800 

m), the upper dipterocarp zone (800-1200 m), the oak-chestnut zone with Fagaceae and Lauraceae 

predominant (1200-1500 m), and the montane ericaceous zone (higher than 1500 m). Upper 

montane forests share many species and features of the structure and appearance with heath forests 

(Eugenia, Rhododendron, Vaccinium), yet none of the heath forest dipterocarps expends above 1,500 

m. Only few plants span the complete altitudinal range from lowlands to upper montane forest, e.g. 

Dacrydium (MacKinnon et al., 1997). The highest altitudes of Southern Kalimantan bare closed-

canopy scrubs.   

Mangroves fringe most of Kalimantan coastline. They occur almost in all bays and lagoons, along the 

deltas of major rivers, with particularly extensive stands at mouths of the Kapuas, Mahakam and 

Sebuku. The most important taxa in mangroves of Southern Kalimantan are Rhizophora, Bruguiera 

and Xilocarpus. In older stands they may be an understory of Ceriops tagal (Soegiarto and Polunin, 

1980). Sonneratia alba, Avicennia alba and A. marina and are important for pioneer communities. 

Dryer areas are colonised by Bruguera, Lumnitzera, Aegiceras, Exocoecaria, and Osbornia. Acantus 

ilicifolius can appear along the edge of estuarine mangroves. Along tidal rivers Sonneratia caseolaris 

grows. Stands of Nypa fruticans, only mangrove palm, flourish inland, along tidal creeks and 

estuaries; a few leans may occur (e.g. Derris), and ferns, grasses and sedges sometimes colonise 

openings (Chapman, 1977). In sites where mangroves have been disturbed, the giant fern 

Acrostichum aureum may form dense undergrowth, so thick that the mangrove trees cannot 

regenerate. Main agricultural landscapes of the Kalimantan are oil palm plantations with minor rice 

field development compare to Java.  



38 

 

1.3.8. Anthropogenic Impact 

 

Very small areas of natural habitats remain in Java (MacKinnon and MacKinnon, 1986). 

Anthropogenic fires are common (Fig. 1.7), and over the centuries burning has resulted in 

monospecific stands of fire-resistant species in some areas, usually Tectona grandis (FAO, 1981) and 

Casuarina. In many annual cropping systems, soils are left exposed, resulting in extensive erosion.  

In freshwater swamp forests, the exotic Mimosa pigra has the potential to become a very serious 

pest because it is fire-resistant and capable of forming impenetrable thickets. Plans to construct a 

dam at the outlet of the Cidanau River will potentially destroy Rawa Danau, the only remaining 

extensive area of freshwater swamp in Java (Whitten et al., 1996). Illegal farming and logging (Fig. 

1.7) even within protected areas are widespread, and an important timber tree Altingia excelsa has 

been nearly eliminated from the lowland forests (Whitten et al., 1996).  

Reforestation takes place on Java since the colonial time period, while in Kalimantan tree gain is 

going on due to a natural recover (Fig. 1.8). Planted species include Swietenia macrophylla, Pinus  

 

Fig. 1.7. Tree cover in Indonesian archipelago in comparison with shrub/grass cover, secondary/planted 

vegetation and burnt vegetation. 

merkusii, Agathis damara and some native taxa, such as Altingia excelsa, Schima noronhae, and 

Quercus sp. (Smiet, 1990). These plantations are established mostly in areas where restoration of 

forest cover was deemed essential for the reason of watershed protection (Whitten et al, 1996).  
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In Kalimantan, rapid logging, fires and periodical droughts, that take place due to the warm phase of 

the El Niño Southern Oscillation (ENSO), cause a problem of deforestation (Goldammer and Seibert, 

1989; Cleary and Priadjati, 2005), although, in pristine forests fire rarely escape the ground 

vegetation because of the high humidity. 

 

Fig. 1.8. Forest cover lost in Indonesia in total, Kalimantan and Java from 2001 and 2013 (A) and comparison 
between tree cover lost and tree cover gain (B). Data are derived from Margono et al., 2014; 
http://nfms.dephut.go.id/ipsdh. 

 

However, tropical rainforests that have been previously logged are fire-prone because large amounts 

of wood are left on the forest floor, and the forest canopy is opened, drying out the ground 

vegetation. Oil and sugar palm plantations development as well as aquaculture (shrimp and fish 

ponds) are also the drivers of deforestation in the Kalimantan contributing directly and indirectly. 

About half of all presently productive plantations (over 6 million ha) were established in secondary 

forest and bush areas. Protection laws are in ‘effect throughout Borneo but are often inadequate or 

are violated, usually without any consequences‘ (Fatawi and Mori, 2000).  
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CHAPTER  2 
 

Marine palynology in SE Asia: State of knowledge 
 

2.1. Studies on fossil pollen  
 
 
Marine palynology in general, is a yang branch of research. Jan Muller was probably the first in 

science who linked pollen and spore distribution in marine surface sediment samples to the modern 

vegetation in his study on sediments from the Orinoco delta (Muller, 1959). In Indonesia, compared 

to the terrestrial studies, the number of publications on marine sediment records is still limited; 

especially it is true for the studies related to the Anthropocene and investigations of the pattern of 

modern pollen distribution.  

In the study area, the first work on the marine palynomorphs apparently was the study undertaken 

by I. Van Waveren (1989) who focused on the palynological residues of the surface sediments from 

the Banda Sea. In that paper, ‘a series of 27 palynomorph types are described and informally 

categorized’ (Van Waveren, 1989). The author indicated a high plankton production and high 

sedimentation rate, although the paper does not contain any analysis of palynomorphs.  

First analytical works and reconstruction of the past vegetation and climate for Indonesian region 

were published just in the beginning of 90s (Van der Kaars, 1991, 1989; Barmawidjaja et al., 1993; 

Van Waveren, Visscher, 1994). The authors indicated the practicality of marine palynology in the 

reconstruction of the history of this region.  

 

2.1.1. Mid-Holocene (ca 7000 – 4000 cal yr BP) 

 

Warmer periods from 6300 to 6000 yr and after 4000 yr, were evidenced in the coral records from 

the southern periphery of the IPWP, along with evidence for freshening after 4000 yr, indicating a 

stronger monsoon (Gagan et al., 1998; Stott et al., 2004; Abram et al., 2009). The Banda Sea records, 

including pollen and coccoliths, show a significant shift in the position of the monsoon around 6000 

yr, suggesting low-latitude insolation forcing (Beaufort et al., 2010). Wang et al. (2007) indicated the 

warm phase between 7000 and 3600 yr BP as well.  
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Reeves et al. (2013) in their review on the vegetation and climate change of the region also referred 

to the thermal maximum of IPWP 6800-5500 yr BP and less extreme El Niño at about 5500-4300 yr 

Peak wet conditions achieved about 5000 yr in Borneo. Additionally, some drier conditions were 

indicated there. 

  

2.1.2. Late Holocene (ca 4000 cal yr BP to the present) 

 

Ganssen et al. (1989) indicated increased monsoonal intensity at about 2700 yr, while later, between 

2500 and 1700 yr; at about the same time extreme and longer El Niño events were recorded 

(Tudhope et al., 2001; Moy et al., 2002; Woodroffe et al., 2003; McGregor and Gagan, 2004; Gagan 

et al., 2004; Reeves, 2013). Coral reconstructions of ENSO for the past 1100 yr demonstrate the links 

between ENSO and changes in the mean climate of the Pacific region (Cobb et al., 2003). For Borneo, 

warmer and fresher period are indicated (Reeves et al., 2013) up to 2500 yr with some more extreme 

El Niño 2300-1700 yr, compared with present.  

 

2.2. Palynological studies of marine surface sediments 

 

According to the study on modern pollen distribution pattern in the surface sediments in the South 

China Sea off Borneo, we learned that pollen is mainly transported by rivers from the south islands, 

e.g. Borneo (Sun et al., 1999; Sun et al., 2003). Because of the long distance from the coast, pollen 

amount deposited in the modern South China Sea is very little (Wang, 2007). 

Palynological analysis of box-core samples collected from surficial deep-sea sediments along three 

transects in the Banda Sea (Van Waveren and Visscher, 1994), demonstrated that ‘associations of 

palynomorphs, palynodebris and diffuse organic aggregates are mainly composed of terrigenous and 

zooplanktonic constituents’. Organic remains of phytoplankton and benthos attributed a subordinate 

role in the study area.  

Pollen analysis on box-core sediment form the south-eastern Indonesian waters were presented by 

S. Van der Kaars (2001). The author described general trends in pollen transport and indicated that 

pollen and, at a lower rate, Pteridophyta spore tend to decrease with increasing distance from the 

shore line. Despite the complex nature of vegetation and pollen transport in the region patterns, it 

was evidenced during the research, that the onshore distribution of individual taxa and major 

vegetation types are well reflected in marine sediments. Low values of mangroves were indicated as 
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their values within the source area tend to decrease with distance to shore (Muller, 1959; 

Hooghiemstra et al., 1986; Sun et al., 1999; van der Kaars et al 2000, 2001; Sun et al., 2002). In our 

studies (Chapter 2) we described the similar trend. 

 

2.3. Studies on dinocysts  

 

Within the SE Asian region, a number of studies exists that dill with the composition of dinocyst 

assemblages in marine surface sediments. Some publications are available from the northern part of 

the Philippine Sea (Matsuoka, 1981), Bay of Bengal (Kumar, 1996), Manila Bay, the Philippines 

(Azanza, 2004), coastal waters of Sabah, Malaysia (Furio et al., 2006) along  transect in oligotrophic 

tropical waters of the South China Sea (Kawamura, 2004).  

In Indonesia, a number of studies on dinocysts are limited to only three studies. The investigation of 

in surface sediments of Jakarta Bay (Matsuoka et al., 1999) focused mainly on the patterns of the red 

tide dinoflagellates.  The study on the stratigraphic distribution of dinocysts in the Tertiary of 

Indonesia, described two Oligocene surface sections in West Java. The first is the Batuasih Formation 

located near Cibadak, and the second is a section close to Padalarang where dinocysts were 

‘abundant in phosphatic nodules, but are heavily affected by thermal metamorphism, past 

overheating of the section, in the claystones and sandstones’ (Morgenroth et al., 2011). 

The most modern study was focused on the relationship between the spatial distribution of dinocysts 

and modern local environmental conditions (e.g. SST, SSS and productivity) in the eastern Indian 

Ocean (Hessler et. al., 2013). According to the composition of dinocysts, three environmental and 

oceanographic regions were described as a result of the last study. The first region located in western 

and eastern Indonesia and controlled by high SST and a low nutrient content of the surface waters. 

The second, Indonesian Throughflow (ITF) region, is dominated by heterotrophic dinocyst species 

reflecting the region's high productivity. The third region is located offshore north-west and west 

Australia which is characterized by low STT, high SSS and high oxygen content in the water.   
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Abstract 

 

 
Settling particles collected in a sediment trap 60 km off SW Java in the Indian Ocean at a 2200m deep 

site, about 830 m above the sea floor, between December 2001 and November 2002 (intervals of 16 

days for 11 months) were analyzed for the abundance and taxa composition of pollen and spores. 

Several factors control their deposition such as the monsoon-driven reversal of the wind directions 

and ocean currents as well as flowering periods. Long distance transport plays a particular role during 

the monsoon seasons. During the NW monsoon (mid-December-beginning of March), maxima of 

Picea type, Alnus, Pinus and Quercus pollen occur in the trap samples, which correspond to wind and 

marine currents coming from the north, probably the Equatorial Counter Current and Southern Java 

Current, transporting pollen from the southern part of continental Asia and Sumatra to the research 

area. During the SE monsoon (end of July-mid-November), an increase of pollen originating from 

southeast Indonesia and Australia was observed. Pollen grains were probably transported by the 

South Equatorial Current and partly by the Leeuwin Current. Casuarina and, in part, Eucalyptus are 

most abundant during this period. During the intermonsoon period, assemblages are mainly 

composed of pollen originating from West Java. Maxima of some pollen taxa, such as Elaeocarpus, 

Myrica, Dacrycarpus type, Casuarina, Eucalyptus and Podocarpus type probably reflect their 

flowering periods. The transportation time from the pollen source area to the sediment trap is about 

1–2 months. The extrapolated pollen accumulation rate of the marine sediment trap would be about 

1670 grains/cm2/yr. The trap collected low concentrations of mangrove pollen, which might be the 

result of the strong destruction of the mangrove belt in Java during recent decades. High values of 

Poaceae pollen are probably related to the land use, forest canopy opening and development of the 

secondary vegetation in West Java. The majority of the pollen and spores collected by the sediment 

trap reflects the vegetation of SW Java, but long distance transport, in particular by the marine 

currents during the SE and NE monsoons, needs to be considered when interpreting marine pollen 

records off SW Java in the eastern Indian Ocean. 

 

3.1. Introduction 
 
In order to better understand and interpret marine fossil pollen records, studies on modern pollen 

and spore transportation and deposition in the ocean are needed. Sedimentary pollen records can 

provide crucial information on vegetation, human impact and climate change as well as on past 

changes of ocean circulation. In particular, these studies can help in understanding seasonal 

variations of modern pollen distribution patterns related to plant-specific factors such as source 

vegetation distribution and flowering periods as well as transport specific factors, e.g. winds and 

ocean currents. Valuable data can be obtained from the sediment trap studies.  

Several papers have been published on the palaeovegetation and palaeoecology of the Java region 

including terrestrial (e.g. Polhaupessy, 1980, 1981; Semah, 1984; Stuijts, 1984, 1993; Stuijts et al., 

1988; van der Kaars and Dam, 1995, 1997; Wang, et al., 1999; Pudjoarinto and Cushing, 2001; van 

der Kaars and De Deckker, 2002; Van der Kaars and van den Bergh, 2004; Yulianto et al., 2005) and 

marine archives  (e.g. van der Kaars, 1991, 1998; Van der Kaars et al., 2000; Van der Kaars, 2001; Sun 

et al., 2002; Kershaw et al., 2011). Studies on modern pollen sedimentation are rare for the 

Indonesian region (Stuijts, 1993; Beuning, 1996; Buschman et al., 2011). Data on modern pollen 

distribution in marine sediments are available from the South China Sea (Sun et al., 1999), the Banda 

Sea and Seram Sea (Van Waveren, 1989; van der Kaars, 1998) and from waters of eastern Indonesia 
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(van der Kaars, 1991). A number of publications on continuous sediment trap series in the Indian 

Ocean waters are available (e.g. Rixen et al., 2006a, 2006b; Mohtadi et al., 2009; Romero et al., 

2009). However, no studies on pollen assemblages in sediment trap recordings have been carried out 

for Indonesia. For the first time, studies on pollen and spores from a sediment trap off SW Java are 

presented in this paper. 

The main objectives of this study are to compare the abundance and composition of pollen deposited 

in the deep Indian Ocean margin under different monsoon conditions during an 11 months period, 

and to identify the factors that can influence temporal changes in pollen assemblage composition. 

This study also provides knowledge on the seasonal patterns of pollen and spore sources, fluxes and 

composition. 

 

3.2. Environmental setting 
 
3.2.1. Study region 
 
The site of the sediment trap (8° 17.5′ S, 108° 02.0′ E) is located in the eastern part of the Indian  

Ocean, 60 km south off SW Java, Indonesia (Fig. 3.1). Bathymetric data suggest that sea bottom 

morphology of the study area is characterized by many submarine canyons cutting the shelf and 

extending down into the deeper parts of the basin. The landward flank of the fore arc basin off Java 

forms a smooth slope. The outer-arc ridge is 2000–3000mdeep,with isolated highs of approximately 

1000 m (Moore et al., 1980).  

On Java, two large mountain chains are found up to 3200mhigh. The island's main rivers flowing into 

the Indian Ocean are the Cimandiri, Cibuni, Ciwulan, Citanduy, Serayu, Progo and Opak (Whitten et 

al., 1996). 

 
3.2.2. Marine currents 
 
The ocean currents in the study area move according to the seasonal wind regime (e.g. Wijffels et al., 

1996, 2002). During the NW monsoon season (mid-December–beginning of March, Fig. 3.1A) the 

South Java Current (SJC), derived from the Indian Ocean Equatorial Countercurrent (ECC), moves 

towards the southeast to meet the saline waters of the Leeuwin Current (LC), which originates in the 

eastern part of the Indonesian Archipelago (Tomczak and Godfrey, 1994). The mixing of the SJC and 

the LC produces the South Equatorial Current (SEC), which then moves further westward. During the 

SE monsoon season (end of July–mid-November, Fig. 3.1B), the SJC takes an opposite direction, 

flowing northwestward and feeding the SEC without a significant contribution of the LC. The high 

precipitation rates during this season lead to an increased run-off from Sumatra and Java. The 

Indonesian region is “a key area along the return branch of the global conveyor belt and the only 

low-latitude pathway between two ocean basins”, with major climatic importance on a global scale 

(e.g. Gordon, 2005). 

 

3.2.3. Climate 
 
According to the Koppen-Geiger classification, the climate in the study region is tropical: hot and 

humid. The climate is dominated by the monsoon circulation (Whitten et al., 1996). During the 

austral summer (December-April), the NW winds transport large masses of moist air from the Asian 

high-pressure belt, which causes heavy rains on the archipelago. The annual precipitation ranges 

from 1500-2000 mm in the lowland up to 6000 mm on the upper slopes of the central mountains of  
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 Fig. 3.1. Schematic map showing main oceanic currents and winds in the study area during the 
(January) southern summer (NW monsoon) and (July) southern winter (SE monsoon) with the 
position of the sediment trap JAM2 off SW Java (dark-grey dot). Wind patterns according to Wyrtki, 
1957; Black (2002) and Wang et al. (2000, 2005); directions of currents are modified after Schott, 
McCreary (2001); Zheng et al. (2006); Fang et al. (2009). The abbreviations stand for the following: 
ITF, Indonesian Throughflow; HE, Halmahera Eddy; ECC, Equatorial Counter Current; KSTF, Karimata 
Strait Throughflow; LC, Leeuwin Current; LG, Luzon Gyre; ME, Mindanao Eddy; MSTF, Makassar Strait 
Throughflow; NEC, North Equatorial Current; NG, Nansha Gyre; SEC, South Equatorial Current; SJC, 
Southern Java Current; VOC, Vietnam Offshore Current. Dashed arrows show temporal flows. 
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West Java (Sijatauw, 1973; Whitten et al., 1996). During the austral winter (June-October) dry and 

cool winds are predominating. The precipitation during the SE monsoon is relatively low. The rainfall 

distribution in the western part of Java has a strong south–north gradient, from more than 3000 mm 

to about 1000–1500 mm per year (Richards, 1952; Sijatauw, 1973; Monk et al., 1997). The rate of 

precipitation is strongly influenced by the El Niňo Southern Oscillation (ENSO), with its two extreme 

phases, El Niňo and La Niňa, which respectively lead to low and high precipitation rates over 

Indonesia (Ropelewski and Halpert, 1987). 

 

3.2.4. Vegetation 
 
The vegetation of Indonesia (Fig. 3.2) includes mangroves, lowland forest and submontane/mountain 

forest (Burbidge, 1960; Flenley, 1979; Van Steenis, 1984; Collins et al., 1991; Whitten et al., 1996). 

The natural forests in the lowlands are composed of extensive evergreen and semi-evergreen 

rainforests as well as moist deciduous and dry deciduous forests. Differences are mostly related to 

the seasonality of rainfall. There are also small areas of azonal limestone and freshwater swamp 

forests. The original lowland vegetation has been heavily changed by humans during the last few 

hundred years. Large areas of the lowlands have been cultivated for rice, palm plantations and have 

been partly changed to aquaculture ponds. In the areas of secondary forest Elaeocarpus 

(Elaeocarpaceae), Moraceae and a variable number of re-growth taxa occur (Whitten et al., 1996) 

such as Acalypha (Euphorbiaceae), Ficus (Moraceae), Macaranga/Mallotus (Euphorbiaceae), Trema 

(Cannabaceae), Pandanus (Pandanaceae) and others (Van Steenis, 1984; Whitmore, 1984).  

 

 

Fig. 3.2. Main vegetation types of 
Indonesia. Modified after 

http://bioval.jrc.ec.europa.eu 
(Continental Southeast Asia - 
Forest cover map, 1998-2000 and 
Insular Southeast Asia - Forest 
Cover Map, 1998-2000; Stibig and 
Malingreau, 2003; Stibig et al., 
2003, 2004). 
 

 

 

 

 

 

 

 

 

Starting at 1000–1500 m elevation, submontane forest occurs, which is dominated by Castanopsis, 

Quercus (Fagaceae) and Lauraceae. At higher elevations (1500–1800 m) it changes to mountain 

forest, which is characterized by a distinct vertical zonation rich in ground flora and with an 

important role of coniferous trees (e.g. Dacrycarpus and Podocarpus), as well as Engelhardia 

(Juglandaceae), Myrica (Myricaceae), Weinmannia (Cunoniaceae), Myrsinaceae, Ericaceae and others 

(e.g. Van Steenis, 1984; Van der Kaars and Dam, 1995). Due to excessive land use, only a few remote 
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spots of natural plant communities have remained in Java and, in general, only the tops of mountains 

still bear original vegetation (Stuijts, 1993).  

The area of mangroves on Java has been highly reduced as well (Collins et al., 1991; Hutomo and 

Moosa, 2005; Food and Agricultural Organisation, FAO Report, 2007). The remaining pockets of 

mangroves can be found along the coast of South and Northwest Java (Whitten et al., 1996). 

 

3.3. Material and methods 

 

3.3.1. Sediment trap 

 

Sediment trap JAM2 (ParfluxMark 7G-21, Honjo and Doherty, 1988) was deployed at 2200 m water 

depth; samples were collected between December 2001 and November 2002. The trap was located 

about 830m above the seafloor. The sampling interval of the trap was 16 days (Table 3.1). Before 

installation, sample bottles were filled with seawater from 1800 m water depth. To prevent 

degradation of trapped material, mercury(II)-chloride (3.3 g/l) was added to the cup water. 

Recovered samples were stored at 2–4 °C.  

 

Table 3.1. Number of samples and 
sampling periods of trapped material 
off SW Java in the tropical SE Indian 
Ocean. The abbreviations indicate the 
following: NW - northwest monsoon; 
non (light-grey shading) - 
intermonsoon period; SE (dark-grey 
shading), southeast monsoon.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. Pollen analysis 

 

Pollen analysis was undertaken on 25% of the collected material. Pollen was concentrated from the 

settling particle matrix by the method described by Faegri and Iversen (1975). Calcium carbonate was 

dissolved with hydrochloric acid (HCI 10%). Silicates were dissolved with hydrofluoric acid (HF 72%). 

The samples were sieved over a nylon filter to remove particles b10 μm. The identification of pollen 

and spores was done using the department's reference collections including about 300 Indonesian 

Sample No. Cups open Cups close Monsoon 
conditions 

D1 14 Dec 2001 30 Dec 2001 NW 

D2 30 Dec 2001 15 Jan 2002 NW 

D3 15 Jan 2002 31 Jan 2002 NW 

D4 31 Jan 2002 16 Feb 2002 NW 

D5 16 Feb 2002 4 Mar 2002 NW 

D6 4 Mar 2002 20 Mar 2002 non 

D7 20 Mar 2002 5 Apr 2002 non 

D8 5 Apr 2002 21 Apr 2002 non 

D9 21 Apr 2002 7 May 2002 non 

D10 7 May 2002 23 May 2002 non 

D11 23 May 2002 8 Jun 2002 non 

D12 8 Jun 2002 24 Jun 2002 non 

D13 24 Jun 2002 10 Jul 2002 non 

D14 10 Jul 2002 26 Jul 2002 non 

D15 26 Jul 2002 11 Aug 2002 SE 

D16 11 Aug 2002 27 Aug 2002 SE 

D17 27 Aug 2002 12 Sep 2002 SE 

D18 12 Sep 2002 28 Sep 2002 SE 

D19 28 Sep 2002 14 Oct 2002 SE 

D20 14 Oct 2002 30 Oct 2002 SE 

D21 30 Oct 2002 15 Nov 2002 SE 
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taxa and with the help of palynological literature (e.g. Moore and Webb, 1978; Wang et al., 1995; 

Fujiki et al., 2005; Mao et al., 2012). Furthermore, the online database “The Australasian Pollen and 

Spore Atlas” (Weng et al., 2007) was used.  

All identified pollen and spore types were photographed with a digital camera through an optical 

microscope. Photos of identified pollen and spores are available upon request at the Department of 

Palynology and Climate Dynamics (University of Göttingen, Germany). Samples were counted to a 

minimum of 100 pollen grains. Pollen and sporepercentages were calculated on the basis of a total 

pollen sum that excluded indeterminate pollen and Pteridophyta spores. To determine pollen 

accumulation rates (PAR) a Lycopodium tablet (Stockmarr, 1971) with a known number of spores 

(20,848 ± 1546) was added to each sample before processing. The PAR was calculated for each of the 

time intervals. The annual PAR was extrapolated and is based on the 11 months record. 

Pollen taxa were grouped into the main vegetation types of West Java such as mangrove, lowland 

trees, montane trees (according to their most common source), herbs and Pteridophyta. Grouping 

was done according to Whitmore (1990) and Van der Kaars (2001). Pollen taxa that do not belong to 

the natural vegetation of West Java are summed up as “long distance component” (LDC) and were 

divided into two subgroups. The “northern” subgroup included pollen types typical for lower 

latitudes of the northern hemisphere (e.g. Alnus, Pinus, Picea, Quercus and Ulmus). The “southern” 

subgroup of pollen represents plants that are more characteristic for the Australian continent (i.e. 

Eucalyptus and Casuarina). Some of these pollen types may also originate from exotic taxa planted in 

West Java (e.g. Pinus, Alnus and Eucalyptus) or from locally grown taxa (e.g. Casuarina).  

Relative pollen diagrams (Figs. 3.3 and 3.4) were prepared using TILIA software (Grimm, 1988). Local 

pollen zones have been established visually by comparing the temporal dynamics of the principal 

taxa, supported by the results of stratigraphically constrained cluster analysis by sum-of-squares 

using CONISS for TILIA (Grimm, 1987). 

 

3.4. Results 

 

In total, 21 trap samples were analyzed for pollen and spores. For each sample, the diagram shows 

the percentages of most common taxa (Fig. 3.3), vegetation groups, mean counts for pollen and 

spores, as well as the pollen accumulation rate (PAR) for 16 days (Fig. 3.4). Pollen and spore types 

with a minor contribution are not included in the diagram. In total, 64 pollen types and 17 

Pteridophyta spore types were identified (see Appendix A). Trees and shrubs make up around 78% of 

pollen taxa (50 pollen types) while herbs account for the remaining 22% (14 pollen types). The PAR 

varies between 30 and 178 grains/cm2/16 days or between 2 and 11 grains/cm2/day. Average PAR is 

about 73.2 grains/cm2/16 days or about 4.5 grains/cm2/day. The extrapolated annual PAR is about 

1670 grains/cm2/yr. Based on a cluster analysis, three groups of samples could be recognized, which 

succeed each other in time and reflect changing monsoon conditions as displayed in Table 3.1. 

Description of the groups is given below. 

 

3.4.1. Samples D1–D5 (December 14, 2001–March 4, 2002; NW monsoon period) 

 

Mangroves are only represented by Rhizophora (~1%, Fig. 3.3). The amount of lowland pollen taxa is 

high (on average 49% of the pollen sum), with Macaranga/Mallotus (~18%) and Elaeocarpus (about 

13%) being the dominant pollen types. Pollen of Acalypha contributes some 2%. 
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Fig. 3.3. Pollen diagram showing percentage of main pollen and spore types under changing monsoon conditions in the Indian Ocean off SW Java. 
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Values of Moraceae/Urticaceae slightly increase at the end of the NW monsoon (mid-February–

beginning of March). Arecaceae, Ficus type and Myrtaceae are constantly present. Montane taxa 

account for approximately 10%, and are dominated by Myrica, Podocarpus type and Dacrycarpus 

type (Fig. 3.3). On average, herb pollen accounts for 23% and is composed of Poaceae (~16%), 

Cyperaceae (~5%) and Amaranthaceae/Chenopodiaceae (~2%). The long distance component (LDC) 

amounts to ~17% (from 10% to 24%). The contribution of “northern” pollen types varies from7% to 

17% and is composed mainly of Pinus and the Picea type (~6% and ~2%, respectively) with some 

grains of Alnus, Quercus, Ulmus and Thymelaeaceae type. Pollen of Ranunculaceae type occurs only 

in this period. The portion of “southern” pollen types is about 3–9% with average values of Casuarina 

of about 3% and values of Eucalyptus of about 2% (Fig. 3.3). Pteridophyta spores are not very 

frequent in this period, around 20% (except sample D3 where ferns make up about 43%). Mean 

values of Cyathea show minimum values (~2%), while Huperzia spores with the same percentages 

have maximum values during this period. PAR is relatively low, between 45 and 98 grains/cm2/16 

days with an average of 65 grains/cm2/16 days. 

 

3.4.2. Samples D6–D14 (March 4–July 10, 2002, intermonsoon period) 

 

Values of mangrove pollen remain at the same level. The pollen contribution of lowland trees 

decreases to about 37% (Fig. 3.4) and the composition of taxa changes. Values of Elaeocarpus and 

Macaranga/Mallotus decrease to ~6% and ~9%, respectively, while percentages of 

Moraceae/Urticaceae (~7%) and Acalypha (~6%) increase (Fig. 3.3). Arecaceae and Ficus type are 

common. Sapotaceae pollen occurs for the first time. Among the montane taxa (increase to ~13%), 

Myrica (~8%) dominates, Engelhardia and Dacrycarpus type are common and Ericaceae are absent. 

Herb pollen accounts for about 40%, which is more than in the previous period. LDC stays at about 

9% (from 4% to 13%). The portion of “northern” pollen types amounts to ~3–7%. Pinus, Picea type 

and Ulmus pollen are common whereas Alnus, Quercus and the Thymelaeaceae type are represented 

by single grains. Ranunculaceae are not found. The contribution of “southern” pollen types is about 

1–7% (Casuarina mainly). Average Pteridophyta spore values are slightly higher (~28%, Fig. 3.3) than 

during the NW monsoon while Selaginella spores decrease markedly and Huperzia is absent. The PAR 

varies between 47 and 178 grains/cm2/16 days with an average of about 107 grains/cm2/16 days, 

which is much more than in the previous period. 

 

3.4.3. Samples D15–D21 (July 10–November 15, 2002, SE monsoon period) 

 

Mangrove pollen remains at same low values, about 1% of the pollen sum (Fig. 3.4). The value of 

lowland tree pollen is around 45%. The group is composed mainly of Macaranga/Mallotus (~12%) 

and Acalypha (~10%) pollen (Fig. 3.3). Pollen percentages of Elaeocarpus (~3%) and 

Moraceae/Urticaceae (~6%) are lower. Arecaceae are frequent. Pollen of the Alchornea type occurs 

in the samples D19–D21 (Fig. 3.3). Values of montane taxa are about 14%. Percentages of the 

Podocarpus type strongly increase (~6%), while those of Myrica decrease (~5%). Percentages of 

almost all herb taxa decrease, except for Poaceae, which remain stable, while 

Amaranthaceae/Chenopodiaceae increase. The mean value for herb pollen is about 33%. LDC occurs 

at slightly lower amounts (from 3% to 10% with the average of about 7%), and only 5 out of 9 taxa 

are found. The portion of “northern” pollen types amounts to about 1% (Fig. 3.3). Pinus is frequent at 

the beginning of the period (samples D14–D17) but is not found at the end of the SE monsoon 
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(samples  D20-D21). The Picea type and Alnus are represented by single grains only. The contribution 

of “southern” pollen types is about 3–8%. Values of Casuarina pollen are ~4%, and Eucalyptus 

accounts to ~2%. Pteridophyta spores reach their maximum value of about 42%. PAR decreases to an 

average of 43 grains/cm2/16 days and varies between 30 and 69 grains/cm2/16 days. 

 
 

Fig. 3.4. Diagram showing pollen percentages of mangroves, lowland and montane trees, herbs, long 
distance component (LDC), indeterminate pollen sum as well as Pteridophyta sum and pollen 
accumulation rate (PAR) under changing monsoon conditions in the Indian Ocean off SW Java. The 
abbreviations indicate the following: NW-northwest monsoon; non (light-gray shading) - 
intermonsoon period; SE (dark-gray shading) - southeast monsoon. 
 
 
3.5. Interpretation and discussion 
 

3.5.1. Factors controlling pollen dispersal in the ocean 

 

Several factors need to be considered for interpreting the pollen and spore assemblages deposited in 

the sediment trap off SW Java, such as the pollen source area, flowering periods, distance to the 

pollen producing vegetation, river discharge, wind fields, marine currents and the time for pollen and 

spore transportation. Throughout the whole recorded period, the pollen and spore spectra generally 

reflect the vegetation of SW Java well. The lowland forest is represented by pollen of Elaeocarpus, 

Moraceae/Urticaceae, Sapotaceae, Myrtaceae, Alchornea and others. High values of re-growth taxa 

(e.g. Macaranga/Mallotus, Acalypha, Ficus and Trema) point to the wide occurrence of secondary 

forest. Montane forest is represented by Podocarpus, Dacrycarpus, Myrica, Engelhardia and 

Ericaceae. 
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Relatively frequent Arecaceae pollen and Arenga occur in the trap samples, reflecting the imprint of 

palm plantations, which have increased markedly in Java during the last few decades (e.g. Whitten et 

al., 1996). This signal evidence for the forest disturbance as it has been shown for Rawa Danau (West 

Java) where land clearance and cultivation of crops from around AD 1770 ± 80 was indicated by a 

markedly higher abundance of Arenga and Cocos nucifera pollen and an increased charcoal to pollen 

ratio (Van der Kaars and van den Bergh, 2004). For Danau Padang (West Java), Stuijts (1993) referred 

to the marked decline in pollen of forest taxa (e.g. Altingia, Castanopsis, Nauclea) that occurred after 

ca. 2500 BP. During approximately the same time she pointed to the findings of Arenga pollen as a 

possible indicator of the sugar palm cultivation. 

High values of Poaceae pollen are probably also related to land use and to the formation of open 

grasslands in SW Java. It is conceivable that both winds from the land to the ocean and the discharge 

by several rivers of SW Java (in particular, the Ciwulan, Citanduy and Serayu) contribute to pollen and 

spore deposition in the trap. The same assumption was made by Sun et al. (2002), who suggested 

that herbaceous pollen taxa may extend their distribution patterns into the Southern China Sea due 

to the combined effects of wind, marine currents and rivers. 

In our record, mangrove vegetation is reflected mainly by Rhizophora pollen. The values of 

mangroves are low. The same was reported by van der Kaars (2001) for marine surface samples from 

southern Indonesia which contained less than 5% of mangrove pollen, while mangroves were 

represented by 2–3 times higher values (about 10 to 15%) in samples obtained close to the coast of 

New Guinea and to the north of Lombok, Sumbava and Flores. In marine core samples from the late 

Holocene, Rhizophoraceae contributes about 12 to 20% of the pollen and spore sum on the Sunda 

Shelf (Sun et al., 2002). 

Mangrove taxa often show the highest values within their source area (Muller, 1959; Hooghiemstra 

et al., 1986; Sun et al., 1999) with decreasing values with distance from shore (van der Kaars, 2001; 

Sun et al., 2002). The low percentages of mangrove pollen in our data could be the result of the 

excessive destruction of the mangrove belt in Java during the last few decades. For comparison, in 

1981 the area of mangroves on Java was reported to occupy about 500 km2 (Choong et al., 1990; 

Sukardjo, 1990), by 2000 it had declined to about 293 km2 (Food and Agricultural Organisation, FAO 

Report, 2010). 

Fern spores are relatively frequent in the record and are likely linked to river discharge, as 

Pteridophyta grow mainly under moist conditions. Van Waveren (1989) and Dai and Weng (2011) 

indicate that it is hardly possible for fern spores to travel by air over long distances, as it is difficult 

for the wind to take them from the wet soil, while water can easily wash them out. 

 

3.5.2. Seasonal variation in pollen fluxes and composition 

 

3.5.2.1. NW monsoon (December 14, 2001–March 4, 2002) 

 

Pollen from exotic plants such as Picea, Alnus, Pinus and Quercus contributes up to 17% to the total 

pollen assemblage and has apparently been transported over a long distance. Picea and Alnus pollen 

do not occur naturally south of 20° N in Asia (Muller, 1972; Whitmore, 1984). The closest regions 

where these trees grow naturally lie within the Malay Peninsula, Thailand, Cambodia and South 

China (Fig. 3.2). A few trees of Alnus have been cultivated in the mountainous regions of West Java as 

a garden ornamental or in trails by the Forestry Service (Backer and van den Brink, 1965). Only the 

occasional Alnus pollen is known from palaeoecological records in East Java (Beuning, 1996) and from 
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higher elevated sites in West Java (Stuijts, 1993). Therefore, it can be assumed that most of the 

deposited Alnus pollen are transported over a long distance from continental Asia. 

Pollen of Pinus can originate both from continental Asia highlands and from montane and 

submontane pine plantations of Sumatra and Java. Plantations of Pinus have existed since 1935; pine 

trees have been used for reforestation and wood production (Backer and van den Brink, 1965; 

Whitten et al., 1996). Despite the fact that pine trees are not indigenous in Java, both in studies of 

modern pollen rain and in lake surface sediment samples from West Java and Sumatra, pollen of 

Pinus was regularly found (Stuijts, 1993). In the marine realm they can be observed close to areas 

where pine trees have never been planted or grow naturally, e.g. in hemipelagic surface sediments 

north of Borneo, where Sun et al. (1999) reported more than 20% pine pollen of the pollen and spore 

sum. Pinus is known to be a prolific pollen producer. Additionally, its vesiculate pollen grains can 

easily get translocated by aeolian and fluvial transport (Heusser, 1988; Heusser and Balsam, 1977). It 

is therefore difficult to interpret the origin of the Pinus pollen in the sediment trap, but taking into 

account all the above mentioned points, we hypothesize that most of it was also transported over a 

long distance. This is supported by the fact that higher amounts of pine pollen were collected during 

the NW monsoon compared to the following periods when the winds from the north were almost 

absent. 

Quercus is not indigenous in Java (Whitten et al., 1996). Pollen of the oak tree may come, in 

particular, from the mountains of Sumatra, where Quercus is native. Some pollen grains may also be 

transported from continental Asia, but this amount can be expected to be low as the distance 

between the sediment trap and its pollen source area is relatively large. Ulmus is considered in the 

literature (Backer and van den Brink, 1965) as not indigenous in Java as well. Nevertheless, the pollen 

of Ulmus was found in studies of the modern pollen rain in West Java (Stuijts, 1993) and from 

Sumatra (Maloney, 1985).  

We assume that pollen of exotic plants is mainly transported from continental Asia by trade winds 

and/or to some extent by marine currents such as the Equatorial Counter Current and Southern Java 

Current (Fig. 3.1). 

Apart from information about transport ways, comparing the occurrence of pollen of region specific 

plants in the traps with their flowering time can provide information about the transport duration. 

We found high values of Elaeocarpus pollen during the NW monsoon period that can be related to its 

flowering season (from October to December, Table 3.2). The calculated delay between the 

maximum tree bloom and the maximum accumulation of Elaeocarpus pollen in the trap suggests a 

transportation time of about one month. 

 

3.5.2.2. Intermonsoon period (March 4–July 10, 2002) 

 

During the intermonsoon period, pollen assemblages are mainly composed of regionally produced 

pollen. Wind masses and marine currents from NW influence the region much less at this time. This is 

reflected by a lower amount of pollen of the “northern” taxa such as Alnus, Pinus and Picea in the 

trap samples. The pollen percentage of Pinus in this period is two times lower (3%) compared to the 

NW monsoon season (6%) and is considered to be mostly of regional origin, probably from the 

highlands of SW Java. Maxima of Myrica pollen in April-beginning of June and maxima of Dacrycarpus 

in June-July correlate with the flowering periods of these trees in Java (Table 3.2). About 1 to 2 

months delay is noticed between flowering time and pollen accumulation in the sediment trap. PAR 

increases in April (sample D8) and at the end of May-beginning of June (sample D11). The increased 
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amount of fern spores at the end of June-beginning of July (sample D13) could be a consequence of 

the increased rainfall and associated high river discharges during the late NW monsoon season 

(Milliman et al., 1999; Rixen et al., 2006a, 2006b).  

According to the wind regime, the intermonsoon period lasts until the end of July and the next 

sample (D14, July 10–26) should be included in this period, as it has been done by Mohtadi et al. 

(2009). However, the composition of the pollen assemblages and the results of constrained cluster 

analysis suggest that it belongs to the next pollen zone. 

 

Table 3.2. Flowering 
periods of selected 
taxa in Southeast 
Asia and Australia. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.2.3. SE monsoon (July 10–November 15, 2002) 

 

Samples collected during the SE monsoon are relatively enriched in Casuarina pollen, that are on 

average 5% higher than in the previous period. Casuarina is a characteristic tree of the Australian 

vegetation (Beadle, 1981; Johns, 1982; van der Kaars, 1991). However, it has to be considered that 

one species, Casuarina junghuhniana, is native on Java and occurs in littoral areas and in highlands, 

e.g. mountain forests to the east of Mt. Lawu on the border between Central and East Java, as well as 

on Krakatoa (Whitmore, 1990). These sites might form additional source areas of the trapped 

Casuarina pollen. During the NW monsoon, when pollen transport from the South is almost absent, 

the portion of Casuarina pollen is about 3% on average. Therefore, we conclude that some of the 

trapped pollen of Casuarina (up to about 7%) originate from the South, in particular from northern 

Australia, and may be transported to the area by marine currents (e.g. the South Equatorial Current, 

Southern Java Current and partly by the Leeuwin Current, Fig. 3.1).  

Eucalyptus has been planted on Java since 1800, especially in the mountainous areas of Central Java 

such as the Dieng plateau, Mount Sumbing and Mount Sundoro (Pramono and Pudjiharta, 1996), at 

Pasuruan (East Java) and at a number of experimental stations (Food Agricultural Organisation, FAO 

Report, 1979; Webb et al., 1984). Another source area for Eucalyptus pollen may be northern 

Australia, where this tree is very common (Specht, 1970; Pryor, 1976; Soerianegara and Lemmens, 

1993). However, during the NW monsoon, when input from the south is likely to be absent, 

Taxa Flowering period 
 

Reference 

Casuarina In Australia April - June, Casuarina 
equisetifolia February - April and 
September - October 

Morton (1980) 

Dacrycarpus In Thailand January - May Lemmens et al. 
(1995)  

Elaeocarpus 2-3 times a year, often after dry season, 
November - January, in Malaysia August - 
October and March - May 

Sosef et al.(1998); 
Boomsma(1972) 

Eucalyptus In Indonesia all months, Eucalyptus  
urophylla during the rainy season. In 
Australia most species March - April 
(often till June) 

Soerianegara and 
Lemmens (1993) 

Myrica In Java March - May, in Sulawesi and in 
Australia May - June and October - 
November  

Lemmens  et al. 
(1995) 

Podocarpus In Java October - December Lemmens  et al. 
(1995) 
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Eucalyptus accounted for up to 4% (sample D3) of the total pollen. Values of Eucalyptus pollen during 

the SE monsoon period are of the same rate (up to 3–4%). This suggests that only small amounts of 

Eucalyptus pollen are transported into the area during the SE monsoon (some 2%). Most Eucalyptus 

pollen during that period are considered to reflect regional production.  

In Australia, the maximum flowering period for both Eucalyptus and Casuarina occurs from April to 

June (Table 3.2). The calculated delay between flowering time in Australia and the accumulation of 

Casuarina pollen in the trap suggests a transportation time of roughly 1 to 2 months. In the case of 

Eucalyptus, the assumption is difficult to make as in Indonesia it can have flowers throughout the 

year (Soerianegara and Lemmens, 1993). The maximum pollen percentages of Podocarpus, which is a 

characteristic tree in the mountain forest of West Java, correspond with the flowering period (Table 

3.2). 

 

3.5.3. Pollen accumulation rate in comparison to the accumulation rates of other proxies in the 

sediment trap studies off SW Java 

 

The extrapolated PAR of 1670 grains/cm2/yr for the recorded period is rather high compared to the 

data obtained from the eastern Indonesian marine sediment cores (van der Kaars, 1991), in which 

pollen and spore fluxes varied during the Holocene from1.6 grains/cm2/yr and 2.9 spores/cm2/yr in 

the Lombok Ridge core to 55 grains/cm2/yr and 183 spores/cm2/yr in the Weber Deep core. In the 

Malluca Sea before the Late Glacial Maximum, pollen influx rates show comparable values, of less 

than 100 grains/cm2/yr (Barmawidjaja et al., 1993). Approximately the same low pollen influx values 

are reported for the Sunda Shelf (Wang et al., 2007). 

Other proxies from the same trap, such as diatoms, showed the highest fluxes during the SE 

monsoon in September 2001, during the NW monsoon in February/March 2003 and during early SE 

monsoon in 2003 (Romero et al., 2009). In the case of foraminifera (the sediment trap JAM1–JAM3 

series including our trap JAM2), both total and species specific fluxes, as well as measured opal and 

organic carbon, were highest during the late SE monsoon (Rixen et al., 2006a,2006b; Mohtadi et al., 

2009). 

In our study, the reason for the increasing PAR during the intermonsoon period compared to the 

monsoon periods is yet unclear, but may be a late consequence of the increased rainfall and the high 

discharge of the associated rivers during the late NW monsoon season (February–April). It might also 

be related to the rainout of the wind transported component. The latter scenario is however more 

unlikely as it would induce an increase in “northern” pollen concentrations in the association which 

we do not observe. Another reason for the increased PAR during the intermonsoon period might be 

related to the generally high local pollen input from Java and the absence of monsoon influence, 

transporting low concentrations of pollen from the long distance to the trap and blowing/washing 

away the high concentrations of regionally produced pollen. 

 

3.6. Conclusions 

 

Marine sediment trap samples, collected from December 2001–November 2002 (at 16 days 

intervals), at a water-depth of about 2200 m, 60 km off SW Java in the Indian Ocean in Indonesia, 

have been investigated for pollen abundance and composition. We draw the following conclusions: 
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(1) Accumulated pollen and spores reflect the present-day vegetation of SW Java well. Both fluvial 

and aeolian fluxes, as well as transport by ocean currents, play a role in transportation of pollen and 

spores to the trap site. 

(2) The abundance of pioneer taxa pollen, such as Macaranga/Mallotus, Acalypha, Ficus and Trema, 

as well as high values of Poaceae, indicates the occurrence of secondary forest and isrelated to the 

intensification of land use. 

 

(3) Mangroves are represented by only a few pollen grains. We assume that this is a result of the 

widespread destruction of the mangrove belt on Java during the last decades. 

 

(4) During the NW monsoon (mid-December–beginning of March) the pollen assemblages are 

strongly influenced by transport of pollen from continental Asia and Sumatra, whereas pollen from 

northern Australia arrives at the trap site during the SE monsoon (end of July–November). 

 

(5) Pollen assemblages collected during the intermonsoon period (beginning of March–end of July) 

originate mainly from SW Java.  

 

(6) Long distance transport plays a marked role for pollen accumulation during the monsoon seasons 

(10–24% during NW monsoon and 3–10% during the SE monsoon). 

 

(7) The pollen record suggests that maxima of Elaeocarpus, Myrica, Dacrycarpus, Casuarina and 

Podocarpus in the sediment trap may be related to their flowering periods. In the case of 

Elaeocarpus, a one month difference between flowering time and pollen accumulation in the 

sediment trap has been recorded. For Myrica, Dacrycarpus and Casuarina the offset time is about 1–

2 months. 

 

(8) Pollen and spore accumulation rates increase during the intermonsoon period compared to the 

monsoon periods. The reason might be related to a stronger input of pollen from SW Java as a late 

consequence of the increased rainfall and associated high river discharges at the end of the NW 

monsoon season (February-April) and\or to the absence of the monsoon influence blowing/washing 

the local pollen away. 
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Appendix A. List of identified pollen and spore types from marinesediment trap JAM2 

 

Mangrove Avicennia  
Nypa 
Rhizophora 

 
Lowland trees Acalypha 

Acanthaceae 
Alchornea 
Anacardiaceae 
Arecaceae 
Arenga 
Bignoniaceae type 
Caryota type 
Celtis 
Clethra 
Cunoniaceae 
Elaeocarpus 
Euphorbiaceae 
Ficus type 
Lamiaceae 
Loranthaceae 
Macaranga / Mallotus 
Mimosaceae 
Moraceae / Urticaceae 
Myrtaceae 
Oleaceae 
Oleaceae 4-porate 
Oncosperma 
Pometia 
Rosaceae type 
Rubiaceae  
Rutaceae type 
Sapindaceae / Meliaceae 
Sapotaceae 
Trema type 

 
Montane trees Allophylus 

Combretaceae / Melastomataceae 
Dacrycarpus type 
Engelhardia 
Ericaceae 
Ilex 
Lithocarpus / Castanopsis 
Myrica 
Myrsinaceae 

 Podocarpus type 
Herbs Amaranthaceae / Chenopodiaceae 

Asteraceae 
Caryophyllaceae 
Cichorium 
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Cucurbitaceae type 
Cyperaceae 
Iridaceae / Liliaceae 
Malvaceae 
Oryza type 
Plantago  
Poaceae 
Zea mais type 

 
Long distance component 
(northern subgroup) 

Alnus 
Picea type 
Pinus 
Quercus 
Ranunculaceae type 
Thymeliaceae type 
Ulmus 

 
Long distance component  
(southern subgroup) 

 Casuarina 
 Eucalyptus 

Pteridophyta  Cyathea  
 Davallia type  
 Huperzia type 
 Lycopodium  
 Ophioglossum type 
 Osmunda type 
 Selaginella 
 Polypodiaceae monolete baculate type 
 Polypodiaceae monolete echinate type 
 Polypodiaceae monolete psilate type 
 Polypodiaceae monolete reticulate type 
 Polypodiaceae monolete verrucate type 
 Polypodiaceae trilete echinate type 
 Polypodiaceae trilete reticulate type      
 Polypodiaceae trilete psilate type  
 Polypodiaceae trilete scabrate type 
 Polypodiaceae trilete verrucate type  
 

 
 

Appendix B. Supplementary data 

 

Supplementary data to this article can be found online at http://dx. 

doi.org/10.1016/j.marmicro.2014.06.006. These data include Google maps of the most important 

areas described in this article. 
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Abstract 

 

The pollen, spore and organic walled dinoflagellete cyst associations of two marine sediment cores from the 

Java Sea off the mouths of Jelai River (S Kalimantan) and Solo River (E Java) reflect environment and 

vegetation changes for the last ca 3500 years. A decline in primary forest taxa (e.g. Agathis, Allophylus, 

Dacrycarpus, Dacrydium, Dipterocarpaceae, Phyllocladus and Podocarpus) suggest that the major change in 

vegetation is caused by forest canopy disturbance possibly as a consequence of human activity. The 

successive increase in pollen of pioneer tress/shrubs and herb taxa (e.g. Acalypha, Ficus, 

Macaranga/Mallotus, Trema, Pandanus) indicate the development of secondary vegetation. In Java these 

changes started much earlier (ca at 2950 cal yr BP) than in Kalimantan (ca at 910 cal yr BP) and seem to be 

more severe. Changes in the marine realm, reflected by the dinoflagellate cyst association, correspond to 

the changes in vegetation on land. They reflect a gradual change from relatively well ventilated to more 

hypoxic bottom/pore water conditions in a more eutrophic environment. Near the coast of Java, the shift of 

the water trophic status took place between ca 820 and 500 cal yr BP, while near the coast of Kalimantan it 

occurred as late as at the beginning of the 20th century. We observe an increasing amount of the cysts of 

Polykrikos schwartzii, P. kofoidii, Lingulodinium machaerophorum, Nematosphaeropsis labyrinthus and 

Selenopemphix nephroides at times of secondary vegetation development on land, suggesting that human 

induced terrestrial changes possibly affected the marine environment as well, most likely through increased 

eutrophication and pollution. 

 

4.1. Introduction 

 

The concern about the effects of human activities on environment and climate has increased considerably 

during the last decades. It is essential to know to what extent environments are affected not only by human 

activity, but also by natural e.g. climatic and ecosystem’s variability. Such information can be achieved by 

studying natural archives that cover time intervals previous to and during major anthropogenic influences. 

Marine sediment archives from high deposition areas have the potential to provide this information as they 

contain continuous sequences with high temporal resolution. Pollen and spores are valuable proxies for 

reconstructing vegetation change on the continent because of their good preservation, abundant presence 

in most terrestrial and marine sediments (Dupont, 1999; Anshari et al., 2001; Donders et al., 2005; Willard et 

al., 2007). Their content in marine sediments can reflect both natural and anthropogenic induced vegetation 

changes as well variations in runoff rates (Donders et al., 2008). The sedimentary charcoal content can be 

used to provide information about the fire history of an area or region (Higuera et al., 2010). The fire-

ecology can be studied when this is compared to palynological based vegetation reconstructions (e.g. 

Colombaroli et al., 2007, Conedera et al., 2009, Daniau et al., 2010, Kaltenrieder et al., 2010).  

Associations of organic walled dinoflagellate cysts (dinocysts) reflect changes in upper water conditions in 

detail. Therefore they are suitable to reconstruct marine environmental conditions such as sea surface 

temperature (SST), sea surface salinity (SSS) trophic state and the redox state of bottom/sediment-pore 

water environments (e.g. De Vernal et al., 1997; Marret et al., 2001; Dale et al., 2002; Sangiorgi et al., 2002; 

Zonneveld, 2003; Pospelova et al., 2006; Van der Meer et al., 2008; Chen et al., 2011). Furthermore, they are 

very useful to distinguish anthropogenic disturbances in marine ecosystems (e.g. Pospelova et al., 2002, Shin 

et al., 2010, Zonneveld et al., 2012). 

Tropical regions are very sensitive to climate fluctuations and to spatial gradients in SST. Minor changes in 

the sea level or in SST may largely modify tropical climate (Chiang and Koutavas, 2004). This has a direct 

effect on the vegetation on the continent. Apart from natural factors influencing vegetation composition, 

the forest ecosystems in Indonesia have experienced a long history of the anthropogenic impact which is 

increasing annually (FAO, 2010; 2012). 



 

72 

 

Nowadays a large amount of information is available from late Holocene terrestrial deposits on Java (Semah, 

1982, 1984, 2004; Stuijts, 1984, 1993; Stuijts et al., 1988; Grindrod et al., 2002) and Kalimantan (e.g. 

Anderson and Muller, 1975; Morley, 1981; Caratini and Tissot, 1988; Anshari et al., 2001; Gusti et al., 2001; 

Weiss, 2002; Anshari et al., 2004; Yulianto et al., 2005) as well as in the southern Indonesia (e.g. Dubois et 

al., 2014).  A number of publications on the late Holocene marine environment are available from the Banda 

Sea (Van der Kaars, 1991, 1997; Van der Kaars et al., 2000; Ahmad et al., 1995; Van der Kaars, 2000; Van 

Waveren, 1989; Spooner et al., 2005), Celebes Sea (van der Kaars, 1991), Sulu Sea (Beaufort et al., 2003), 

Molucca Sea (Barmawidjaja et al., 1993), Mahakam Delta, Kalimantan (Caratini and Tissot, 1988), the 

Makassar Strait (Yulianto, 2004; Visser et al., 2004), for the western (e.g. Kuhnert et al., 2014; Niedermeyer 

et al., 2014) and eastern Indian Ocean (Wang, et al., 1999, Baumgart et al., 2010; Mohtadi et al., 2010, 2011; 

Hessler at al., 2013; Chen et al., 2014) and off Sumatra (van der Kaars et al., 2010, 2012). Information of the 

Java Sea is almost missing (Emery, 1972; Boely et al., 1991; Suryantini et al., 2011) and palynological studies 

from the Java Sea are absent. Little attention is paid to the relationship between sea and land, although they 

are crucial for such areas with monsoon climate as in Indonesia . With this paper, we would like to 

contribute in filling this gap. We use marine palynology to obtain better understanding of the relations 

between climatic vs. the human activity related changes on land and in the marine realm during the last 

3500 years. To obtain insight into the relationship between natural and anthropogenic processes affecting 

both the marine and terrestrial environment, we establish detailed reconstructions of environmental 

changes that contemporaneously took place on the continent as well as in the adjacent marine 

environment. This is achieved by comparing information data inferred from pollen/spore and dinocyst 

associations in marine sediments off S Kalimantan and E Java. 

 

4.2. Regional settings 

 

The Java Sea is a large (310,000 km2) shallow sea (in general between 40 - 100 m water depth) on the Sunda 

Shelf which lies between the islands of Kalimantan (Borneo) to the north, Java to the south; Sumatra to the 

west and Sulawesi to the east (Fig.4.1). In the west it is in open to the Indian Ocean, the Andaman Sea and S 

China Sea by the Sunda Strait, the Malacca Strait and the Karimata Strait, respectively. In the east it has an 

open connection to the Flores Sea and to the Celebes Sea through the Makassar Strait (Durand and Petit, 

1995; Genia et al., 2007).  

 

Fig.4.1. Schematic 
map of the study area. 
Position of cores 1412-
19 and 1609-30 is 
shown with red circles. 
The map has been 
created using the 
Ocean Data View 
software (Schlitzer, 
2014). 
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4.2.1. Modern climate  

 

The region has a typical monsoon climate marked by a reversal of the wind regimes (Fig. 4.2) (Durand and 

Petit, 1995). During the Northwest (NW) monsoon (December to February; Fig. 4.2, left picture) strong 

western winds bring frequently heavy rainfall (precipitation of up to 300 mm/month; Writky, 1961). During 

the Southeast (SE) monsoon (June to August; Fig. 4.2, right picture) the winds are reversed and blow from 

east to west, resulting in drier weather conditions (precipitation can be as little as 50 mm/month; Durand 

and Petit, 1995). The average annual rate of precipitation is about 1880 mm. During the transitional months 

precipitation rates increase (decrease) gradually. Usually during the NW monsoon the highest temperatures 

are found in the eastern part of the sea (e.g. Durand and Petit, 1995) and the lowest ones in the west part of 

the region along the coasts of Sumatra. During the SE monsoon this gradient is reversed and highest 

temperatures are then found in the west (Potier et al., 1989; Genia et al., 2007). The rate of precipitation is 

strongly connected to the climate anomaly known as ENSO (El Niňo Southern Oscillation), with its two 

extreme phases, El Niňo and La Niňa, reflecting decreases and increases in precipitation rates over Indonesia 

(Ropelewski and Halpert, 1987; Aldrian and Susanto, 2006).  

 

 

Fig.4.2.Main types of modern vegetation in Indonesia (after Stibig, et al., 2002), principal oceanic currents 
and winds in the source area during the NW (left picture) and SE monsoon (right picture) with the position 
of the sediment cores 1412-19 and 1609-30 (red dots). Patterns of winds are drawn following Black (2002) 
and P. Wang. et al. (2000, 2005); directions of currents are modified after Schott and McCreary (2001), 
Zheng et al. (2006), Andruleit (2007), Fang et al. (2009). The abbreviations stand for the following: ITF, 
Indonesian Throughflow; ECC, Equatorial Counter Current; KSTF, Karimata Strait Throughflow; LG, Luzon 
Gyre; MSTF, Makassar Strait Throughflow; NG, Nansha Gyre; VOC, Vietnam Offshore Current.  

 

4.2.2. System of marine currents  

 

As a result of the shallowness of the basin, the water column of the Java Sea is well mixed. The main driving 

force of the water current direction is the prevailing wind (Writky, 1961). During the time period covering 

the NW monsoon (Fig. 4.2) the main currents have an eastern direction. Waters of the Java Sea are 

appended by the Karimata Strait Throughflow (KSTF) which has its origin in the S China Sea. In the most 

eastern part of the Java Sea, additional inflow comes from the north by the Makassar Strait Throughflow 

(MTSF). These waters mix with the KMST and leave the basin through the Flores Sea. During the period of SE 
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monsoon (May-September) its direction changes and waters flow in the western direction (Fig. 4.2). Waters 

of the Java Sea are then formed by MTSF waters which leave the Sea through the Karimata Strait. During the 

intermediate months (April and October), the current direction changes and numerous eddies are formed. 

In these months the currents off the coast of Java generally flow in easterly direction, whereas at the same 

time a western current is present off the coast of Kalimantan (Genia et al., 2007). The Indonesian 

Throughflow (ITF) flows through the Lombok Strait and neutralizes lower sea surface temperatures off Java 

during the upwelling season (Romero et al., 2009).  

 

4.2.3. Vegetation 

 

The vegetation of Java and Kalimantan is represented by mangrove, lowland rainforests, including peat 

swamp and freshwater swamp forests, submontane (1000 - 1500 m), lower montane (1500 - 2400 m) and 

upper montane (2400 - 3000 m) forest (Fig. 4.2) (Backer and van den Brink, 1965; Van Steens, 1984; Whitten 

et al., 1996; Burbidge, 1960; Collins et al., 1991; MacKinnon et al., 1997). Mangroves are composed mainly 

of Avicennia (Acanthaceae), Nypa (Arecaceae), Rhizophoraceae and Sonneratiaceae. Lowland vegetation is 

represented by a high-stemmed mesophyll forest with closed canopy and incredible floristic diversity with 

Alchornea (Euphorbiaceae), Elaeocarpus (Elaeocarpaceae), Moraceae and Urticaceae (Backer and van den 

Brink, 1965; Van Steenis, 1984).  At the forest edges and in canopy openings light-demanding Acalypha 

(Euphorbiaceae), Ficus (Moraceae), Macaranga, Mallotus (Euphorbiaceae), Trema (Cannabaceae), Pandanus 

(Pandanaceae) and other pioneer taxa can be found (Van Steens, 1984; Whitmore, 1984). Submontane 

forest is dominated by Fagaceae: Castanopsis, Lithocarpus and Quercus with some Myrtaceae and Myrica 

(Myricaceae). Montane forest is characterised by relatively strong vertical zonation and represented by 

Engelhardia (Juglandaceae), Podocarpaceae (Dacrycarpus, Podocarpus), Ericaceae, Myrica (Myricaceae), 

Myrinaceae and Weinmannia (Cunoniaceae) (Van Steenis, 1984; Kaars and Dam, 1995). 

Most of Kalimantan is still covered by species-rich closed-canopy forests with high endemism and very high 

productivity (e.g. Ashton, 1982). The natural forests in the lowlands of Kalimantan are grouped by 

MacKinnon et al. (1997) mixed Dipterocarpus forest, semi-evergreen rainforest, moist deciduous and dry 

deciduous forests. The differences are mostly related to the seasonality of rainfall. The peat swamp 

vegetation association is generally similar to lowland dipterocarp forest, which has a bit lower plant diversity 

(Barber et al., 2002). These forests are dominated by Gonystylus (Thymelaeaceae), Dactylocladus 

(Crypteroniaceae), Shorea (Dipterocarpaceae), diverse Anacardiaceae, Euphorbiaceae and Engelhardia with 

some Ilex and opportunistic taxa like Trema, Terminalia (Combretaceae), Pandanus (Pandanaceae) 

(MacKinnon et al. (1997). There are also small areas of extrazonal forests on limestone and some 

communities in littoral areas, where Casuarina (Casuarinaceae) occurs (Whitmore, 1990). Extensive 

mangroves occur along the coasts lines, in deltas of big rivers and estuaries (Collins et al., 1991; MacKinnon 

et al., 1997). 

Unlike in Kalimantan, the original vegetation of Java has been strongly changed by human activity during the 

last few hundred years. Only a few remote spots and tops of mountains still bear the original vegetation on 

Java (Stuijts, 1993); small areas of secondary forests occur in the lowlands (Whitten et al., 1996). Periodical 

droughts and connected with them fires together with excessive logging, agriculture (e.g. rice and maize 

cultivation, oil palm plantations) and aquaculture cause a problem of deforestation. The area covered by 

mangroves on Java has been strongly reduced as well.  

 

4.3. Material and methods 

 

This study is based on the analysis of two sediment cores obtained from the Java Sea. Core 1412-19 (3.258° 

S; 110.649833° E, water depth 9.7 m; length 91.5 cm) has been retrieved about 25 km off the distal end of 
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the Jelai River plume (S coast of Kalimantan, Fig. 4.1). The length of the river is ca 100 km and the drainage 

area is about 300 km2 (http://wetlands.or.id/). Sediments of the core consist of homogeneous pale-brown 

clayish silt with numerous black particles. By visual observation no clear stratification or lamination can be 

observed. The sample resolution in the upper 30 cm and lower 11 cm of the core is one sample per every 2 

cm. In the intermediate part (30-80 cm) it is one sample per every 5 cm. 

The core 1609-30 (6.497147° S; 112.475369° E, water depth 56.3 m; length 96 cm) has been collected about 

50 km off the Solo River mouth (E coast of Java, Fig. 4.1). The length of the river is ca 600 km and the 

drainage area is 15,400 km2 (Whitten, 1996).  The core consists of dark grey to pale-grey silt sediments 

containing fragments of shells and coarse siliceous material. The lower part between 70 and 96 cm of the 

core is more compact than the upper part. Sampling resolution is one sample per every 5 cm along the core. 

The upper 20 cm and the lower 5 cm where sampled every 1 cm.   

 

4.3.1. Age control 

 

The age control for both investigated sediment cores is based on accelerator mass spectrometry (AMS) 

radiocarbon dating that has been conducted at the Keck Carbon Cycle Accelerator Mass Spectrometry 

Facility at the University of California in Irvine, USA. The results have been corrected for isotopic 

fractionation with δ13C values according to the method described by Stuiver and Polach (1977) and 

calibrated to calendar years with the online version of CALIB 7, marine 13 (Stuiver and Reimer, 1993) 

considering a reservoir age of 90 yr (Southon et al., 2002). Only the two youngest ages in core 1412-19, 

being outside the range of the CALIB 7 calibration, have been calibrated using the CALPAL2007-Hulu 

calibration (Weninger et al., 2007). For each core five radiocarbon dates obtained from bivalve shells or 

from mixed benthic foraminifera are available (Table 4.1). The ages of the record are discussed in this work 

as time-windows in order to minimize the error due to the uncertainty of the age-depth model. 

 

Table 4.1. Radiocarbon dates obtained from the two sediment cores 1412-19 and 1609-30 retrieved from 

the Java Sea. * The shell dated is considered to be reworked and, therefore, the date was omitted.  

 

Core  
 

Depth, 
cm 

UCIAMS 
lab no. 

14C age, 
yr BP 

± error 
 

calendar age, 
cal yr BP 
(P=1950) 

2σ range, 
-95% 

dated 
material 
 

1412-19 0-1 145981 515 25 -23 -23 bivalve shell 

1412-19 16-17 123477 530 20 -18 -18 bivalve shell 

1412-19 41-42 145980 730 25 288 172-411 bivalve shell 

1412-19 71-72* 145982 1890 25 1344 1260-1470 bivalve shell 

1412-19 79-80 123478 1520 20 979 888 -1098 bivalve shell 

        
1609-30 1-2 133823 790 20 351 266-444 bivalve shell 

1609-30 7-8 123491 1365 20 821 717-916 
benthic 
foraminifera 

1609-30 41-42 133824 2120 20 1598 1484-1721 
benthic 
foraminifera  

1609-30 77-78 133825 2815 25 2436 2315-2613 
benthic 
foraminifera 

1609-30 90-91 123492 3500 20 3279 3153-3388 
benthic 
foraminifera 

 

4.3.2. Pollen and dinocyst analysis  
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For pollen, spore and dinoflagellate cyst analysis 3 g of dry sediment was taken. Samples were prepared 

following the standard palynological technique as is described by Faegri and Iversen (1975) and Zonneveld 

et al. (2009). Cold hydrochloric acid (HCl 10%) was added for the removal of carbonate in amounts 

depending on the intensity of the reaction. Siliceous component of the samples was removed by adding of 

hydrofluoric acid (HF 72%). To remove all macro-remains, sieving at 150 µm sieve was applied. To remove 

small organic particles the samples were sieved over a 10 µm nylon filter. In order to avoid damage to the 

dinocysts, no acetolysis and other oxidation treatments were applied. The samples were mounted in 

glycerine gelatine and examined under the light microscope at a magnification of 400 and 1000 times.  

Per sample, 200 pollen grains and 100 dinocysts were counted. Relative abundances of taxa were calculated 

on the basis of the total sum of pollen grains and sum of dinocysts respectively, excluding indeterminable 

grains/cysts, fern spores, and green algae. To determine pollen/spores/dinocyst concentration (in 

grains/spores/cells per ml) one Lycopodium clavatum tablet (Stockmarr, 1971) with known number of 

spores (20,848 ± 1546) was added to each sample before processing. All identified pollen and cyst types 

were photographed with a digital camera. Photos of identified pollen and spores are available on request at 

the Department of Palynology and Climate Dynamics (University of Göttingen, Germany). 

 

4.3.3. Pollen taxonomy and groups 

 

Taxonomy of pollen and spores is based on Moore and Webb (1978), Wang et al. (1995), Kodela (2006), 

Fujiki et al. (2005), Stevenson (1998) and Mao et al., (2012), online database “The Australasian Pollen and 

Spore Atlas” (Weng et al., 2007) as well as on our own pollen reference collection including about 300 

Indonesian taxa. Determination of large Poaceae (i.e. Oryza and Zea mays) was based on Chaturvedi et al. 

(1998), Maloney (1990), Tweddle et al. (2005) and Atahan et al. (2008).  

Pollen taxa are divided into 6 groups according to the main vegetation types of Java and Kalimantan, i.e. 

mangrove, lowland rainforest, submontane and montane forest. Additionally, sums of herbaceous taxa and 

sum of Pteridophyta was calculated. 

 

4.3.4. Dinoflagellate cyst taxonomy and groups 

 

Dinocysts were identified based on Matsuoka (2009), Fensome et al. (1993), Zonneveld (1997), Zonneveld et 

al. (2013), Zonneveld and Pospelova (2015, Fensome and Williams (2004), Kawamura (2004). Echinidinium 

spp. includes all spiny brown cysts that could not be identified on species level. Brigantedinium spp. includes 

all smooth-walled spherical brown cysts (RBC).  

Dinoflagellate cysts are grouped according to their ecological characteristics based on the global geographic 

distribution (Marret and Zonneveld, 2013). The post-depositional degradation of dinoflagellate cysts is 

estimated using the dinoflagellate degradation index “kt” according to Versteegh and Zonneveld (2002) and 

Liang et al. (2011). Separation between phototrophic (PT), heterotrophic (HT), oxidation-sensitive (OST) and 

oxidation resistant (ORT) dinocyst types is based on Zonneveld et al., 2008 and Mertens et al. (2009). 

Identification of tropical (TT), temperature tolerant (TTT), fully marine (FMT) and low salinity tolerant (LST) 

dinocyst types is based on Zonneveld et al. (2013).  

 

4.3.5. Pollen and dinocyst diagrams 

 

The percentages diagrams for pollen and spores are based on the total pollen sum which includes all pollen 

types and excludes indeterminate pollen and fern spores. Relative abundances of ferns are calculated on the 

base of total pollen sum. The percentage diagrams for dinocysts are based on the total sum of all identified 

cysts. Pollen, spore and dinocyst types contributing less than 2% on average are not included into the 
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diagrams. The whole lists of pollen/spore and dinocyst types as well as raw counts are available under the 

name of the corresponding author at the PANGAEA server (www.pangaea.de). Pollen and dinocyst diagrams 

(Figs. 4.4-4.6) were prepared using TILIA and TILIAGRAPH software (Grimm, 1990). The diagrams are 

subdivided into local zones, which were established visually by comparing dynamics of the principal taxa and 

groups, supported by the results of the depth-constrained cluster analysis by sum-of-squares implemented 

with CONISS for TILIA (Grimm, 1987). 

 

4.3.6. Microcharcoal analysis  

 

For microcharcoal analysis all black and completely opaque with sharp edges and a size 10-150 μm were 

counted. The total of at least 200 items was counted per unit of volume, as it was recommended by 

Finsinger and Tinner (2005). Microcharcoal concentrations were plotted against depth and accompany the 

pollen diagrams of the respective marine core. 

 

4.3.7. Multivariate data analysis  

 

To study the ecological structure of the datasets of both pollen and dinocysts, two multivariate ordination 

analyses based on relative abundance of pollen and dinocysts have been carried out, using the CANOCO 5 

and CanoDraw software package (ter Braak and Šmilauer, 1997; Lepš and Šmilauer, 2003, Šmilauer and Lepš, 

2014). After a detrended correspondence analysis (DCA; Hill and Gauch, 1980) which had revealed a 

gradient length of 1.3 (core 1412-19) and 2.0 (core 1609-30) for the first axis, principle component analysis 

(PCA) was applied as recommended by Lepš and Šmilauer (2003) for data sets with short environmental 

gradients. All taxonomic data were standardized and logarithmic transformed.  

To obtain insight into the similarity/dissimilarity of the pollen and dinocyst datasets and to estimate how 

well the two datasets match to each other in terms of compositional gradients, Procrustes analysis (PA, 

Jackson, 1995) has been applied using the CANOCO 5 software package (Gower, 1975; Peres-Neto and 

Jackson, 2001; Šmilauer and Lepš, 2014). The similar ordination methods for both data-sets were used to 

overcome the problem that differences detected by PA may result from using different ordination methods. 

The PA errors reflecting the difference in sample ordination scores are depicted with arrows. The length of 

the arrows indicate the magnitude of similarity between paired ordination diagrams, i.e. sample scores of 

the pollen and dinocyst analyses with short arrows suggesting high similarity between the outcome of both 

PCA and long arrows suggesting low similarity. 

 

4.4. Results 

 

4.4.1. Cores stratigraphy 

 

The age models for both cores are based on five radiocarbon dates each (Table 4.1). For core 1412-19 the 

uppermost three dates show a coherent sequence of increasing age with depth. However, the two ages 

obtained further downcore (71-72 cm and 79-80 cm, respectively) are reversed. Both ages are obtained on 

single bivalve shells. However, as reworking can put older material in a younger sequence but not vice versa, 

we consider the shell dated taken from 71-72 cm core depth to be reworked and, thus, omitted it from the 

further interpretation. The age difference of eight years between the two uppermost dates (0-1 cm and 16-

17 cm core depth) places this entire uppermost section of the core into the late 20th century. Consequently, 

the final age model for this core is based on the three dates in 16-17 cm, 41-42 cm and 79-80 cm core depth 

giving it a stratigraphic range covering the last ~1200 yr with sedimentation rates varying between 5 to 8 cm 

http://www.pangaea.de/
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Table 4.2. Core 1412-19:  Results of pollen, dinocyst and microcharcoal analysis. 
Palynological 

zone, age 
(cal yr BP), 
core depth 

(cm) 

Pollen zone characteristics Dinocyst 
zone, age 

(cal yr BP), 
core depth 

(cm) 

Dinocyst zone characteristics 

 
Micro-charcoal 
concentrations, 

~particles/g 

KP-1, 

1200 – 910, 
91-75  

Mangrove pollen form about 34% of the total pollen sum with ~29% of 

Rhizophora and ~4% of Avicennia. Lowland rainforest (up to 29%) is the most 
diverse group (17 pollen types) and is dominated by pollen of 

Macaranga/Mallotus (~11%), Acalypha (~7%), Moraceae/Urticaceae (~4%). 

Dipterocarpaceae form up to 5%) which is their max. Submontane forest 
contributes ~18%; it is represented by 11 taxa and strongly dominated by 

Lithocarpus/Castanopsis (~11%). Montane taxa add ~5% being represented 

mainly by Podocarpus and Dacrycarpus (about 4% together). Herbs are ~14% 
with Poaceae (~9%) contributing the most. The values of Pteridophyta are 

~39%.Pollen concentration is about 1053 grains/g; spore concentration is about 

893 spores/g. 

KD-1, 

1200-980, 
91-80 

Almost equal contribution of PT (~45% of total dinocyst sum) and HT (~55%). Low 

values of RBC (~25%), very low values of Lingulodinium machaerophorum (~1.5%) and 
Nematosphaeropsis labyrinthus (~1.3%). The group of PT is mainly represented by 

Operculodinium israelianum (~9%), Spiniferites spp. (~8%), Spiniferites ramosus (~6%) 

and Spiniferites mirabilis (~6%). Among HT spiny brown cysts, Echinidinium granulatum 
(~9%), Echinidinium delicatum (~7%) and Echinidinium zonneveldiae (~6%) are the most 

abundant. Relative abundance of cysts of Polykrikos kofoidii is about 4%. Contribution of 

TT is about 23%, while TTT form up to 15%. Percentages of FMT are about 30% and 
percentages of LST ~9%. OST (~55%) dominate over ORT (~3%). Average dinocyst 

concentration is ~1030 cysts/g. 
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KP-2, 
910 – -20, 

75-15  

Average values of mangrove declined to about 21%. Lowland rainforest taxa 
increase both their sum (~38%) and diversity (28 taxa). Values of 

Macaranga/Mallotus increase from about 14% at the beginning of the zone (75-60 

cm) to ~31% at the end (20-15 cm). Percentages of Moraceae/Urticaceae stay at 
about 3%. Submontane forest contributes ~24% and is still dominated by 

Lithocarpus/Castanopsis (~16%). Engelhardia is represented by single grains at 

the beginning of zone and increase its values up to 10% at the end. Montane taxa 
reduce their values from ~5% (75-55 cm) to 2% (25-15 cm). Percentages of herbs 

are ~12%. From about 30-25 cm Caryophyllaceae and Asteraceae are constantly 

present. At the depth of 16 cm first grain of Oryza type is found. Pteridophyta form 

around 58%. Pollen concentration is about 1150 grains/g, spore concentration is 

about 670 spores/g.  

 
Zone KP-2 has been divided into two subzones. Subzone KP-2a (50-15 cm) is 

clearly separated from subzone KP-2b (75-50 cm) by the decrease of 
Dipterocarpaceae, Agathis, Allophyllus and Dacrycarpus pollen, by more frequent 

findings of Quercus and by increasing values of Acalypha (up to ~7%) and Trema 

(up to ~4%). 

KD-2, 
980 – 10, 

80-20 

Between zones KD-1 and KD-2 a characteristic decrease in PT (~34%) occurs. By 
contrast, values of Brigantedinium spp. reached their highest amount (~50%). 

Lingulodinium machaerophorum with reduced processies and Votadinium calvum are 

registered. The group of PT is dominated by Spiniferites spp. (~6%) with some 
contribution of S. ramosus and S. pachydermus (both ~5%). Values of Operculodinium 

israelianum decreased to ~4%, values of O. centrocarpum fluctuate between 1% and 3%. 

Percentages of L. machaerophorum are about 3%, while concentrations of 
Nematosphaeropsis labyrinthus are similar compared to the previous zone. Contribution of 

HT is about 66%. Percentages of all Echinidinium species decrease markedly. Relative 

abundances of cysts of Polykrikos kofoidii are a bit higher than in the previous zone (~5%). 

Values of TT are about 15%; TT contribute ~8%. Percentages of FMT are about ~18%. 

Rate of OST increased up to ~66%, while the rate of ORT stays about the same (~3%). 

Dinocyst concentration is about 1170 cysts/g.  
 

240 

KP-3, 
-20 – -23, 

15-0 

The values of mangrove decrease to about 10% with up to ~9% of Rhizophora. 
Lowland rainforest taxa remains the highest contributing (~55%) and most diverse 

group (21 pollen types) dominated by Macaranga/Mallotus (~30%). Acalypha 

forms ~10% and Moraceae/Urticaceae ~6%. Trema reaches its max. (~5%). 
Submontane forest is dominated by Engelhardia (~7%). Herbs are at their 

maximum (~19%) and composed by 11 taxa with Poaceae making up to 12%. 

Single grains of Oryza type, Zea mays and Pinus are found. Montane taxa 
contribute ~3% only. The values of Pteridophyta have their lowest rate 

(~46%).Pollen concentration is about 1230 grains/g; spore concentration is ~560 

spores/g.  

KD-3, 
10 – -23, 

20-0 

 
  

High percentages of Lingulodinium machaerophorum (~8%), Nematosphaeropsis 
labyrinthus (~5%), cysts of Polykrikos kofoidii (~4%) and increased relative abundances of 

Selenopemphix nephroides (~4%) and cysts of Polykrikos schwartztii (~2%). Cysts of the 

Impagidinium group occur regularly in this zone unlike in the two previous zones. Rates of 
PT and HT are almost equal (both about 50%). PT are mainly represented by Spiniferites 

spp. (~9%) and Operculodinium israelianum (~7%). Among HT, Brigantedinium spp. 

contributing ~28% and Echinidinium transparantum makes up ~6%. TT and TTT 
contribute ~19% and 10%, respectively. Percentages of FMT are about 19%. Abundances 

of OST (~48%) decrease in contrast to ORT cysts which increase (~9%). Dinocyst 

concentration is the highest for the entire record (~1300 cysts/g). 
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Fig. 4.3. Pollen diagram for the core 1412-19 showing relative frequencies of selected pollen and spore types, main vegetation groups and concentration. Pollen 

types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles (beginning). 
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Fig. 4.3. Pollen diagram for the core 1412-19 showing relative frequencies of selected pollen and spore types, main vegetation groups and concentration. Pollen 

types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles (end). 
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per century. For core 1609-30 the age/depth relationship shows a coherent sequence of increasing age with 

the depth (Table 4.1). This core covers stratigraphically the last ~3500 yr with sedimentation rates varying 

between 1 and 4 cm per century. For both cores, age assignments between the considered dates are based 

on linear interpolation, with extrapolation beneath the oldest obtained ages. 

 

4.4.2. Pollen stratigraphy 

 

Pollen diagrams for the cores 1412-19 and 1609-30 are presented in Fig. 4.3 and 4.4, respectively. In 

samples from S Kalimantan (core 1412-19), 71 pollen types of pollen, 8 types of fern spores were identified. 

Descriptions of 4 local pollen zones established based on the results of the constrained cluster analysis as 

well as dynamics of the key pollen/spore types are presented in the Table 4.2.  

In samples from E Java (core 1609-30), 73 pollen types, 7 types of fern spores and 29 types of dinoflagellate 

cysts were recorded. Additionally, 12 indeterminate pollen types and 10 indeterminate spore types were 

distinguished. The descriptions of 3 local pollen zones are given in the Table 4.3.  

The pollen and spore preservation is sufficient and relatively stable throughout both records. Percentages of 

fern spores in both records prevail over percentages of pollen, while the arboreal sum prevails over the sum 

of herbs. The most abundant pollen types in both records relate to lowland rainforest. Signals from upper 

montane forest were generally weak. 

 

4.4.3. Dinocyst stratigraphy 

 

For both cores, dinocyst stratigraphy almost repeats a pollen-based one. Dinocyst diagrams for the cores 

1412-19 and 1609-30 are presented in Fig. 4.5 and 4.6 respectively. The preservation state of the 

pollen/spores and dinocysts in both cores is good, although the proportions of damaged and broken cysts 

increase with depth. For the core 1412-19 kt varied from 1.0 to 2.9, for the core 1609-30 from 0.1 to 2.7. HT 

prevailed in both records, RBC mainly. As for PT, Spiniferitus ssp. and Echinidinium ssp. are common for the 

core 1412-19, while for the core 1609-30 Echinidinium granulatum and Operculodinium israelianum are 

frequent. The descriptions of dinocyst zones are provided given in the tables 4.2 (core 1412-19) and 4.3 

(core 1609-30).  

 

4.4.4. Results of multivariate data analysis 

 

The PCA revealed the relationships between samples and taxa (Fig. 4.7). Only taxa with the highest 

explanatory values are displayed. For both cores, the PCA diagrams (Fig. 4.8) show a clear division of the 

samples into two groups: left and right parts of the plot. Samples that are characterized by high relative 

abundances of primary forest pollen types (i.e. Agathis, Allophylus, Dacrycarpus, Dacrydium, 

Dipterocarpaceae, Phyllocladus and Podocarpus) occupy the left sector. In contrast, the right sector 

comprises samples that are positively correlated with high the percentages of pioneer taxa, such as 

Acalypha, Ficus, Macaranga/Mallotus, Trema and Pandanus. In core 1412-19, these samples belong to the 

depths below 25 cm (upper part of pollen subzone KP-2b and zone KP-3). In case of core 1609-30, samples 

positively correlated with secondary taxa belong to pollen zone JP-4, which is the uppermost one. 

Results of the PCA of the dinocyst data are depicted in Fig. 4.9. Cosmopolitan dinocyst species that are 

characteristically present in eutrophic waters (i.e. cysts of Polykrikos schwartzii, P. kofoidii, Lingulodinium 

machaerophorum, Nematosphaeropsis labyrinthus, Selenopemphix nephroides) are ordinated for both cores 

in the right sector of the diagram comparable to the ordination scores of the pioneer vegetation pollen 

types (Fig.  4.9).  
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Fig. 4.4. Pollen diagram for the core 1609-30 showing relative frequencies of selected pollen and spore types, main vegetation groups and concentration. Pollen 

types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles (beginning). 
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Fig. 4.4. Pollen diagram for the core 1609-30 showing relative frequencies of selected pollen and spore types, main vegetation groups and concentration. Pollen 

types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles (end). 
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The PA comparison of the sample ordination scores of both PCAs reveals a high similarity between both 

datasets with similar samples ordinated on highly similar positions in both PCA spaces (Fig. 4.9). Sample 

scores of both PCAs show a very strong correlation of about 0.98 and disagreement measure value of about 

0.004. The small PA errors reflected by the length of the short arrows indicate a high magnitude of similarity 

between paired diagrams. Based on PA, the differences between the results of PCA for pollen and dinocyst 

datasets collected off Kalimantan as well as off Java can be described as minimal. 

 

4.5. Interpretation and discussion 

 

The combination of pollen, spore and dinocyst data allows the reconstruction of changes on land and in the 

marine realm during the last 3500 years. For both core sites, the PCA applied to pollen data (Fig. 4.8) shows 

clear stratification: the lowermost samples contain predominantly pollen of timber tree taxa, whereas the 

uppermost samples contain greater amounts of pollen of the pioneer trees. The high similarity of the PCA 

outcomes for the pollen and dinocyst records (Fig. 4.8-4.9) from both locations suggest that changes in the 

terrestrial and marine assemblages are influenced by similar driving mechanisms. This is also reflected in the 

relatively uniform separation of samples in the zones as a result of the depth-constrained cluster analyses 

CONISS. These driving mechanisms may include both climatic and anthropogenic induced factors. 

 

4.5.1. Pollen spectra and their relations with the source vegetation 

 

Pollen assemblages from core 1412-19, S Kalimantan, show more diverse arboreal flora (29 woody taxa) 

with higher values for lowland trees and lower values for herbs than those from core 1609-30, E Java (22 

woody taxa). Pollen can be transported to these locations by either aeolian or fluvial transport. Long 

distance aeolian transport may contribute, for instance, to the values of vesiculate pollen of montane 

coniferous taxa in marine sediments, e.g. Dacrycarpus, Dacrydium, Podocarpus and Phyllocladus (Heusser 

and Balsam, 1977; Heusser, 1988; Sun, 1999). For both sites, wind patterns are controlled by the monsoonal 

system and are very similar as wind directions are synchronous at both locations. Consequently, differences 

in wind directions cannot account for the different pollen assemblages in the two core sites.   

The main river systems that discharge in the vicinity of the core sites are the River Jelai in Kalimantan and 

the River Solo with its tributary the Dengkeng in Java. The River Jelai originates in the Schwaner Mountains 

that are situated on the border between West Kalimantan and Central Kalimantan and have altitudes from 

150 m up to 2278 m above sea level. The River Solo also has its sources in the high mountains, namely the 

volcano of Mount Lawu (3265 m) and Mount Kidul (700 m in average). The Dengkeng River starts in Mount 

Merapi (2800 m, Whitten et al., 1996, http://wetlands.or.id/). These settings allow to expect to some extend 

high values of montane taxa in the pollen assemblages. However, the montane vegetation in E Java, where 

annual droughts take place (Stuijts, 1993) is regularly affected by fire, both natural and anthropogenic 

induced, and forest gives way to secondary vegetation and to grasslands (Stuijts, 1993). As a result, montane 

pollen percentages are lower in the Solo River discharge compared to that of the Jelai River.  

For core 1412-19, the pollen associations observed in the upper core samples reflect the modern vegetation 

in the drainage areas of the Jelai River quite well. Core 1609-30, where the uppermost sample is dated at 

about 270 cal yr BP, the pollen assemblages are composed of high amounts of pioneer and submontane 

arboreal taxa as well as of diverse and highly abundant herbs. In Kalimantan where the River Jelai is going 

through some open areas with shrubs and wide grasslands, particularly on the Central Kalimantan side 

(http://wetlands.or.id/), sediments are also characterised by relatively high values of herb pollen.  Along the 

eastern bank of the River Jelai, a broad and more or less uninterrupted belt of riparian forest is present. On 

the western bank, a mosaic of forest and clearings is found. The main water catchment area for this river, 

however, is the peat swamp forest of Gambut and Mendawai, which is ‘the only remaining peat swamp 

http://wetlands.or.id/
http://wetlands.or.id/
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Table 4.3. Core 1609-30: Results of pollen, dinocyst and microcharcoal analysis. 
Palynological 

zone, age 
(cal yr BP), 
core depth 

(cm) 

Pollen zone characteristics Dinocyst 
zone, age 

(cal yr BP), 
core depth 

(cm) 

Dinocyst zone characteristics 

 
Micro-charcoal 
concentrations, 

~particles/g 

JP-1,  
3600 – 3215, 
95-89 

Mangrove pollen forms ~12% of pollen sum and is dominated by Rhizophora 

(~11%). Lowland rainforest taxa contribute ~54% and are composed of 15 taxa, 
mainly of Elaeocarpus (~29%) and Macaranga/Mallotus (~12%). Values of 

Acalypha are ~4%. Single grains of Dipterocarpaceae occur. Submontane forest 

(~25%) is represented mostly by Lithocarpus/Castanopsis (~22%). Montane taxa 
contribute only 2%. Percentages of herbaceous taxa are at their minimal values, 

~7%. This group is represented by 5 taxa with Poaceae (~6%) contributing most. 

Sum of Pteridophyta spores exceeds pollen sum (~150%). Pollen concentration is 
~3910 grains/g, spore concentration is ~5860 spores/g.  

JD-1,  

3600 – 3215, 
95-89 

 

High values of Echinidinium species (~25% of total dinocyst sum), 
max.contribution of Echinidinium zonneveldiae (~6%) and low values of 
Spiniferites ramosus (~2%). Values of PT (~29%) are much lower than those of 
HT (~71%) and composed mainly of Operculodinium israelianum and 
Spiniferites pachydermus (both ~6%). HT are dominated by Brigantedinium 
spp. (~45%) and Echinidinium transparantum (~12%). The amounts of ORT is 
very low (~4%), while those of OST is ~71%. TT and TTT contribute ~23% and 
~77%, respectively. Percentages of FMT are ~20%; values of LST are only 
~1%. Dinocyst concentration is at its highest value, ~2500 cysts/g. 

930 

JP-2, 
3215 – 2390, 
89-75 

Values of mangrove slightly increase compared to the previous zone (~15%) while 

the lowland rainforest taxa decrease values (~41%). The diversity of pollen types 

increase (21 taxa) at the same time. Amounts of Macaranga/Mallotus decrease 
(~10%) as well as the values of Elaeocarpus (~22%). Pollen of 

Moraceae/Urticaceae contributes ~5% and Acalypha almost vanish at the end of 

this zone (80 cm). Single grains of Dipterocarpaceae occur sporadically. 
Contribution of submontane forest taxa is ~30% with Lithocarpus/Castanopsis 

forming ~19% and Myrtaceae up to ~8%. Montane taxa are represented mainly by 

Podocarpus and Dacrydium. Values of herbs are higher (~11%) due to the higher 
contribution of Poaceae (~9%). Values of Pteridophyta are ~137%. Pollen 

concentration is ~4060 grains/g; spore concentration is ~5590 spores/g.  

JD-2, 

3215 – 2275,  

89-70  

Higher values of Brigantedinium spp. (~49% of the dinocyst sum) and Spiniferites 

ramosus (~5%). Tuberculodinium vancampoae and Stelladinium stellatum occur 

regularly. Relative abundances of Echinidinium zonneveldiae (~2%) decrease. 
Abundances of PT form ~32% of the association. Relative abundances of 

Operculodinium israelianum (~5%) are slightly lower than in the previous zone and 

almost equal to the values of Operculodinium centrocarpum. Amounts of Spiniferites 
pachydermus remain stable. HT contribute ~68% to the association. The brown spiny 

cyst group is dominated by Echinidinium transparantum (~10%). Values of ORT/OST 

as well as those of FMT (~18%)/LST (~2%) remain stable. Percentages of TT and TTT 
are ~21% and ~79%, respectively. Dinocyst concentration is a bit lower, ~2310 cysts/g. 

350 

JP-3, 

2390 – 870, 

75-9 

Pollen of mangrove contributes ~13%. Percentages of lowland rainforest are 

slightly higher (~45%), taxa diversity increases as well (26 taxa). Values of 

Macaranga/Mallotus are notably higher than before (from 20% to 25%). Amounts 

of Elaeocarpus decline to ~14%. Acalypha is absent at the beginning of zone, but 
from 20 to 10 cm it reaches a mean value of ~2%. Submontane taxa contribute 

~30% to the pollen sum. Values of Lithocarpus/Castanopsis markedly increase 

(~25%). Montane taxa are represented by only ~2%. Values of herbs are ~10%; 
values of Poaceae decrease to ~8%, other 10 taxa are of minor contribution. 

Amounts of Pteridophyta reduce to ~120%. Pollen concentration is ~2960 

grains/g; spore concentration is between ~3580 spores/g.  

JD -3, 

2275 – 910, 

70-11 

 

Contribution of Brigantedinium spp. (~46%) and Echinidinium transparantum (~8%) 

decreased, while Spiniferites ramosus and Echinidinium zonneveldiae increase their 

values (both up to ~6%). This zone is characterized by the first occurrence of 

Bitectatodinium spongium, Lingulodinium machaerophorum, Nematosphaeropsis 
labyrinthus, the cysts of Polykrikos kofoidii and Stelladinium robustum type. PT form 

~34%. Operculodinium israelianum and Operculodinium centrocarpum stay 

unchanged. Values of HT are ~66%. Amounts of ORT are ~65% and amounts of OST 
are ~5%. Percentages of TT slightly decreased (~19%), while those of TTT increased 

slightly (~81%). FMT and LST taxa make up ~15% and ~2% respectively. Dinocyst 

concentration decreases further (~170 cysts/g). 

1800 

JP-4, 

870 – 270, 

9-0 

Values of mangrove pollen strongly decrease (~8%), while the amounts of 
lowland rainforest taxa are much higher (~50%). Percentages of 
Macaranga/Mallotus and Acalypha increase up to ~31% and ~6%, 
respectively, while values of Elaeocarpus dramatically decrease in 
comparison to the previous zone (~3%). Pollen of the Ficus type and 
Arecaceae are constantly represented. The portion of submontane taxa 
gets reduced (~22%). Values of Lithocarpus/Castanopsis are ~17%. 
Montane taxa form only ~2%. Percentages of herbs are at the highest 
(~18%) with Poaceae ~12%, Cyperaceae ~2% and 
Amaranthaceae/Chenopodiaceae (~2%). The sum of Pteridophyta spores 
is the lowest for the entire record, ~91%. Pollen concentration is ~3040 
grains/g; spore concentration is ~2770 spores /g.  

JD-4, 

910 – 270, 

11-0 
 

Being very low at the beginning of zone, values of Nematosphaeropsis labyrinthus and 

Lingulodinium machaerophorum – (both less than ~1%), reach ~7% and ~18% at the 

top of the core, respectively. PT decreased to ~30%; the curve of Operculodinium 
israelianum rises (~8%). Amounts of HT are ~70% with Brigantedinium spp. Up to 

~44% and Echinidinium transparantum ~7%. Cysts of Polykrikos kofoidii are regularly 

present with the highest values of ~4%. Cysts of Polykrikos schwartzii are registered 
for the upper most part of this zone. ORT fluctuate around 70% and OST reach their 

max. value of ~7%. Values of TT are ~20%. Amounts of TTT stay without changes 

(~80%). FMT form their min. (~4%), while LST reach their max. (~96%). Dinocyst 
concentration is ~1730 cysts/g. 

2240 
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Fig. 4.5. Dinocyst diagram for the core 1412-19 showing relative frequencies of individual taxa, main groups and cyst concentration (beginning).  
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Fig. 4.5. Dinocyst diagram for the core 1412-19 showing relative frequencies of individual taxa, main groups and cyst concentration (end).  
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forest at the south part of West Kalimantan’ (http://wetlands.or.id/). The riparian vegetation and vegetation 

of peat swamp forest in the sediments of core 1412-19 were represented by 12 pollen types of woody taxa, 

e.g. Anacardiaceae, Dipterocarpaceae, Elaeocarpus, Engelhardia, Euphorbiaceae, Macaranga/Mallotus), 

although, most of these taxa could also originate from other vegetation types: pioneer growths 

(Macaranga/Mallotus), lowland rainforest (Anacardiaceae, Dipterocarpaceae, Elaeocarpus, Euphorbiaceae) 

and submontane forest (Engelhardia). Other taxa observed in the pollen association that might originate 

from peatland forests are Celtis, Myrsine and Ilex. However, all these taxa represented less than ~3% of the 

total pollen sum and were therefore not specifically depicted in the pollen diagram. We assume not to have 

observed unequivocal evidence of a peatland and/or riparian forest in core 1412-19. 

To date, the estuary of the river Jelai is reported to have an approximately 10 m wide Nypa belt only 

(http://wetlands.or.id/) and almost no mangrove vegetation. Nonetheless, pollen of Nypa was surprisingly 

absent in the most recent pollen zone of the sequence 1412-19, while observed values of other types of 

mangrove pollen (i.e. Avicennia, Sonneratia and Rhizophora) off S Kalimantan were higher compared to E 

Java, where mangrove contribute to the total pollen sum not more than 13-14% through the record with 

exception of the last zone where its contribution drops to ~8%. The reason could be connected to the 

extensive destruction of the mangroves belt on Java during the recent time as it was shown by e.g. Sukardjo 

(1980, 1993), Whitten et al. (1996), Reeves et al. (2013) as well as in our recent work on the modern pollen 

in the Indian Ocean (Poliakova et al., 2014). Moreover, mangrove pollen often show the highest values 

within their source area (e.g. Hooghiemstra et al., 1986; Sun et al., 1999) with decreasing values with 

distance from shore (van der Kaars, 2001; Sun et al., 2002; Poliakova et. al., 2014). 

 

4.5.2. Dinocyst assemblages: preservation and translocation 

 

Dinocyst assemblages found in the sediment sequence 1412-19 are characterized by relatively low values of 

the degradation index (kt) that does not exceed 2.9. This suggests that cyst degradation or differential 

preservation for this core is negligible and the palaeoenvironmental signal of the OST (round brown and 

spiny brown cysts especially) was not altered by oxygen-induced degradation (Versteegh and Zonneveld, 

2002). Another factor that can alter the fossil dinocyst association is the relocation of the settling material 

(Dale, 1992; Zonneveld, 2001). Core site 1412-19 is not affected by any significant currents. For the core site 

1609-30 the most relevant current that might have caused relocation of cyst material is the Karimata Strait 

Throughflow (KSTF) which flows along the S coast of Kalimantan (Fig. 4.2). At present, KSTF has a flow speed 

of about 12-25 cm/sec (10 - 22 km/day) with a strength being strongly depended on the monsoon strength 

(Wyrtky, 1957). However, taking into account the relatively high sinking rates of dinocysts of about 274 

m/day (Zonneveld and Brummer, 2000; Zonneveld et al., 2010a) and a water depth at the core site (56.3 m), 

we suppose that the influence of lateral drift in the study area is minor. This assumption is supported by the 

presence of the coastal taxa Tuberculodinium vancampoae (Marret and Zonneveld, 2003). This species is 

rarely observed in open marine environments and it is a typical species for coastal shallow water 

environments (Rochon et al., 1999; Marret and Zonneveld, 2003). This suggests that for both studied cores 

dinocysts associations reflect conditions of local marine environment without significant input of the 

material from other areas or washing away locally produced cysts.  

 

http://wetlands.or.id/
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Fig. 4.6. Dinocyst diagram for the core 1609-30 showing relative frequencies of individual taxa, main groups and cyst concentration (beginning).  
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Fig. 4.6. Dinocyst diagram for the core 1609-30 showing relative frequencies of individual taxa, main groups and cyst concentration (end).  
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4.5.3. Environmental reconstructions 

4.5.3.1. East Java  

 

Late Holocene from ca 3600 to 3215 cal yr BP (pollen zone JP-1) and from ca 3600 to 3215 cal yr BP 

(dincyst zone JD-1) 

 

Mangrove vegetation flourishes along the coast of E Java off the river Solo mouth during this period. 

Increasing Rhizophora may be linked to a slight sea level drop between 6000 and 1000 BP after the 

Holocene maximum as it is proposed by Yulianto et al. (2005) for Batulicin (S Kalimantan). 

Alternatively, mangroves expansion can be the consequence of a somewhat higher offshore 

sediment accumulation, e.g. an increased input of sediments due to the enchased discharge of the 

river Solo which in turn, may be related to increased precipitation in the drainage area. Wet 

conditions are also suggested by very high relative abundances of the Cyathea and various other 

types of Polypodiaceae spores. Lowland rainforest with an important role of Elaeocarpus, 

Macaranga/Mallotus and a certain distribution of opportunistic taxa like Acalypha and 

Moraceae/Urticaceae at the forest border and in canopy openings was probably the dominant 

vegetation type developing behind mangroves at that time. Other pioneer as well as herbaceous taxa 

show very low values, so, despite human activity most likely was involved in the vegetation change 

from ca 3000-3800 yr BP in the highlands of West Java (Stuijts, 1993) and in Rava Danau (Kaars et al., 

2001), in our study area anthropogenic impact had a limited or at least a constant moderate 

influence at the regional vegetation before 2950 yr BP (85-75 cm). The most important trees in 

submontane areas along the river Solo at that time were Fagaceae (Lithocarpus/Castanopsis) with a 

more prominent role of Quercus and Myrtaceae in the canopy. Montane taxa palynologically are 

represented by coniferous, Podocarpus mainly.  

In zone JD-1 that is fully corresponded to the pollen zone JP-1, the dinocyst associations are 

characterised by a high abundance of TT and/or FMT (e.g. Bitectatodinium spongium, Spiniferites 

pachydermis, Spiniferites mirabilis) that may point to stable environmental conditions with no abrupt 

events and high SST and SSS. 

 

Late Holocene from ca 3215 to 2390 cal yr BP (pollen zone JP-2) and from ca 3215 to 2275 cal yr BP 

(dincyst zone JD-2) 

 

Zone JP-2 is characterised by a reduced role of Acalypha and Ficus in the lowlands as well as by the 

declining of Moraceae/Urticaceae that might point to a more closed canopy forest. A marked role of 

Engelhardia (till ca 1480 cal yr BP) and Myrtaceae in submontane forest suggests relatively stable 

conditions in the river Solo coachmen at this time, whereas an increasing persentages of herb pollen 

suggests the presence of openings in the canopy. Dinocyst associations from zone JD-2, which well 

corresponds with the related pollen zone having approximated time difference of 115±20 yr, 

suggests unchanged marine environmental conditions similar to the previously described. 

 

Late Holocene from ca 2390 to 870 cal yr BP (pollen zone JP-3) and from ca 2275 to 910 cal yr BP 

(dincyst zone JD-3) 

 

Not much changes in vegetation and environmental conditions could be inferred before about ca 

1590 cal yr BP (middle part of pollen zone JP-3, Fig. 4.6), where the clear evidences of the forest 
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disturbance are observed. The reduction in Elaeocarpus corresponds with an increase of 

Macaranga/Mallotus which suggest a change to a much more open forest canopy. This is supported 

by increasing abundance of herbs (10% to 6% in the previous zone). In submontane forest, excessive 

logging is likely to have taken place as an abrupt reduction of Engelhardia is observed which finds no 

support in natural environmental dynamic (e.g. climate fluctuation) in the study area. The reduced 

abundances of ferns might suggest a change to somewhat drier conditions compared to the previous 

period. Alternatively and more likely, it could be a result of the general reduction in the environment 

suitable for fern growth, i.e. additional evidence for reduction in afforested land. The constant 

occurrence of Arecaceae and Arenga after ca 1000 cal yr BP may be coupled with cultivation of sugar 

palm and coconut plantations on Java as Stuijts (1993) and Van der Kaars, van den Bergh (2004) 

supposed. 

In the corresponding dinocyst zone JD-3, which is shifted from pollen zone JP-3 at 40±20 yr, cyst 

associations show increased role of the ORT and occurrence of such dynotypes as Lingulodinium 

machaerophorum, Nematosphaeropsis labyrinthus, cyst of Polykrikos kofoidii and Selenopemphix 

nephroides those suggest a change to more eutrophic conditions in the marine environment of the 

Java Sea compared to the previous time period.  

 

 

 
 
Fig. 4.7. Extraction from the ordination diagram of the principle component analysis (PCA) for pollen 
types from (A) core 1412-19 and (B) core 1609-30 (B). Only scores for timber trees pollen and pollen 
of the pioneer taxa are shown. The percentage values on the axes indicate the explained variation. 
 

 

Late Holocene from ca 870 to 270 cal yr BP (pollen zone JP-4) and from ca 910 to 270 cal yr BP 

(dincyst zone JD-4) 

 

Since ca 870 cal yr BP (zone PJ-4, Fig. 4.6), the character of vegetation in E Java has changed 

dramatically. Pioneer taxa (e.g. Macaranga/Mallotus, Trema, Ficus, Acalypha and, from ca 500 cal yr 

BP, Pandanus) dominate in the forest which is of secondary origin as the primary close-canopy forest 
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has been gradually replaced by more open and less diverse communities. The same is suggested by 

the reduction of ferns and the strong increase of herbs (especially by Poaceae, Cyperaceae and 

Amaranthaceae/Chenopodiaceae). The upper three samples in pollen zone PJ-4 (430 - 270 cal yr BP) 

are characterised by the least abundant arboreal pollen (e.g. pollen of Elaeocarpus and 

Lithocarpus/Castanopsis) and evidence a strong decline in timber trees accomplished by increasing 

role of herbs and pioneer taxa. For the top sample (ca 270 cal yr BP) crop cultivation is evidenced 

(pollen of Zea mays and Oryza type are found) and, apparently, pine plantation establishment as it 

can be concluded from occurrence of Pinus pollen. 

Main change in the taxonomical composition of dinocysts took place after ca 820 cal yr BP (middle 

part of zone JD-4) and is coupled with the increasing in abundances of the taxa indicating river 

discharge (e.g. Echinidinium transparantum and Lingulodinium machaerophorum). This shift is also 

indicated by the increasing values of species indicating both high phosphate (cysts of 

Pentapharsodinium dalei) and high nitrate concentration (Nematosphaeropsis labyrinthus, cysts of 

Polykrikos kofoidii and P. schwartzii) as well as by high values of the ORT. In contrast, percentages of 

salt water species (e.g. species of Spiniferitus) slightly decrease between ca 600 and 350 cal yr BP. 

About the same time S. mirabilis, which is restricted to salty waters, eliminates. This could reflect an 

increase of the fresh water input from the river Solo that changes both the salinity budget and the 

trophic state of the surface waters at the core 1609-30 site. Alternatively, this change might be 

related to the construction of a canal from the port of Surakarta to the Java Sea that has been 

executed by the Dutch during this time (Dick, 2003). Thus, independently of the source of the 

nutrient rich waters (the river Solo or the canal), the consequences can be described as the same: 

logging is accompanied with increased soil wash-off and enhanced coastal water pollution that 

changes its trophic state and leads to development of pollution-resistant and tolerant to fresh water 

dinocyst types. 

 

 

 
 

Fig. 4.8. Extractions from the ordination diagram of the principle component analysis (PCA) for 

dinocyst types from (A) core 1412-19 and (B) core 1609-30. Only scores for P- and N-sensitive 

dinoflagellate cysts are shown. The percentage values on the axes indicate the explained variation.  
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4.5.3.2. South Kalimantan 

 

Late Holocene from 1200-910 cal yr BP (pollen zone KP-1) and from ca 1200-980 cal yr BP (dinocyst 

zone KD-1)  

 

Pollen deposited in this period indicates a marked role of mangrove in the coastal area off the river 

Jelai in S Kalimantan. The same was suggested by Yulianto et al. (2005) who studied a coastal swamp 

forest at Batulicin (S Kalimantan) and found that extensive mangroves have been continuously 

present there since the early Holocene. Behind the mangrove stands, typical for the study area fern-

rich mixed lowland rainforest developed that, according to the high portion and high diversity of 

related pollen taxa in our record, was a species-rich Dipterocarpaceae rainforest, the main type of 

vegetation which presently occurs in S Kalimantan (MacKinnon et al., 1997). As our age-depth model 

suggests, it was established at least 1200 years ago. The high values of Macaranga/Mallotus, 

Elaeocarpus, Moraceae/Urticaceae and Acalypha however, may indicate some opening in the forest 

canopy already at that time. The high frequency of Pteridophyta may point to stable wet conditions 

and a high level of effective precipitation during this period (e.g. Yulianto et al., 2005).  

The pollen composition of submontane and montane taxa suggests that at higher elevations 

upstream along the Jelai River, mixed lowland forest seems to be followed by Fagaceae forest 

dominated by Lithocarpus/Castanopsis. Palynologically, Quercus and Myrica were less important taxa 

in submontane forest during this period. As for montane forest, it is reflected poorly, mostly by the 

coniferous taxa that have vesiculate pollen and are widely dispersed (i.e. Podocarpus, Dacrycarpus 

and Phyllocladus). Their pollen can easily become a subject of aeolian transport that suggests some 

contribution of a long distance aeolian component to the amount of montane pollen.  

Dinoflagellate cyst assamblages between 1200 and 980 cal yr BP (dinocyst zone KD-1) is formed by 

typically warm water and FMT (e.g. Bitectatodinium spongium, Echinidinium transparantum, 

Operculodinium israelianum, Polysphaeridium zoharyi, Spiniferites mirabilis and S. pachydermus) that 

suggests rather stable tropical marine environment within the Java Sea which does not contradict to 

pollen-based reconstruction. Relatively high abundance of Lingulodinium machaerophorum in this 

zone suggests continuous and high discharge of fresh water reaching the deposition site.  

 

 
 

Fig. 4.9. Procrustes analysis errors in two-dimensional ordination space between pollen and dinocysts 

for the comparison of PCA ordinations of (A) core 1412-19 and (B) core 1609-30. The length of the 
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arrows indicate the magnitude of similarity between paired sites with short arrows suggesting high 

similarity and long arrows suggesting low similarity.  

 

 

Late Holocene from ca 910 – -20 cal yr BP (pollen zone KP-2) and from ca 980 – 10 cal yr BP  (dincyst 

zone KD-2) 

 

During this period pollen data indicate in the lowland rainforest an increase of Macaranga/Mallotus, 

Acalypha, Trema and Arenga and a decrease of important timber trees such as Dipterocarpaceae and 

submontane Agathis and Allophyllus. This reflects an expansion of the secondary forest and pioneer 

taxa in the lowland rainforest that can be typically subscribed as evidence of logging (e.g. Stuijts, 

1993; Yulianto et al., 2005). This assumption is supported by the observation of the increasing 

abundances of herbaceous taxa and the significant decrease or disappearance of pollen of such 

important timber trees such as Dacrycarpus (becoming absent at around 530 cal yr BP) and 

Phyllocladus (becoming much less frequently present after 380 cal yr BP). Engelhardia trees may 

possibly increase their abundance due to the further development of peatland forest in the S 

Kalimantan as it has been stated by Anshari et al. (2001) and Yulianto et al. (2005). Another possible 

reason for higher occurrence of Engelhardia at this time could be the occupation of canopy gaps by 

Engelhardia in the submontane forest due to logging. We do not connect these changes with  

climatic fluctuations as neither any additional indicators for these fluctuations in any other 

vegetation groups are evident. Marked reduction in mangroves (most clearly reflected by the 

Rhizophora record), in Lithocarpus/Castanopsis as well as in Elaeocarpus pollen that are typical for 

canopy openings where a lot of light is available (Whitten et al., 1996), suggests intensification of the 

land use and forest disturbance since ca 500 cal yr BP. Changes on land at this time correspond to a 

small alteration in the dinocyst taxonomic composition. At about ca 360-275 cal yr BP (zone KD-2, 41-

45 cm) a slight increase in ORT occurred that may point to somewhat less ventilation in the marine 

environment.  

 

Late Holocene from ca -20 – -23 (pollen zone KP-3) and from ca 10 – -23 cal yr BP (dincyst zone KD-3) 

 

Further reduction in mangroves accompanied by a marked decline in montane taxa and in pollen of 

timber trees was followed by an increasing diversity and abundance of herbs, e.g. Poaceae, 

Cyperaceae and Amarantaceae/Chenopodiaceae especially. This suggests the reduction of closed-

canopy forests along the river Jelai and high occurrence of open fields during the last decades. All this 

corresponds in time with the increase of human population in the area and establishing of 

permanent settlements. Small reduction in the tree fern Cyathea and the increasing occurrence of 

Lycopodium, if it is not an additional evidence of the disturbance, may be explained by some drier 

conditions or at least to some more pronounced difference in rainy and dry periods of the year as it is 

suggested by Anshari et al. (2001). Reeves et al. (2013a; 2013b) in their discussion also referred to an 

increasing variability of the environment and enhanced drier overall conditions of the Australasian 

subregion during this time. The authors connect this variability to the intensification of ENSO in the El 

Niño mode. First findings of pollen grains of Oryza type and Zea mays in this zone are related to the 

beginning of 20th century and evidence a crop breeding. Additionally to the change in vegetation, the 

dinocyst composition has altered by an increase in relative abundance of HT (in particular, 

Selenopemphix nephroides, cyst of Polykrikos kofoidii and P. schwartzii). This may suggest changes in 

marine environment to more nutrient-rich conditions that could have stimulated development of 
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prey organisms and, as a result, increasing in abundance of their predators (e.g. Harland et al., 2006; 

Dale, 2009, Zonneveld et al., 2013 and references therein). Furthermore, at this time enhanced 

abundance of L. machaerophorum occurs, which can be explained either again by the increased 

nutrient supply, or by the intensification of the river input (e.g. as the result of the increased 

precipitation) because this dinocyst type is common both in river plume areas and in nitrogen-rich 

waters (e.g. Zonneveld et al., 2012 and references therein). Until now there is no evidence from 

literature of increased precipitation in the area that could have resulted in enhanced river discharge. 

On the contrary, some drier conditions have been suggested during this time (e.g. Anshari et al., 

2001). This stays in agreement with our conclusions done for the previous time period and most 

likely suggests that enhanced fresh water input at this time is not the cause of the increased 

presence of L. machaerophorum. Moreover, the sum of FMT slightly increased at this time pointing 

to an increase of SSS rather than to a decrease. We, therefore, assume that the increase in L. 

machaerophorum is the result of the eutrophication and connect is to the intensification of the 

human activity.   

 

4.6. General comparison of the study sites and conclusion 

 

Pollen, spore and dinocyst assemblages from two marine cores, retrieved off S Kalimantan and off E 

Java have been used to reconstruct the terrestrial and marine environmental changes during the last 

3500 years. Pollen and dinocyst content were sufficient to produce reliable results. This first 

palynological study from the Java Sea inferred that environmental and vegetation changes in the 

region during the late Holocene were mostly related to human activity. This was clearly reflected by 

both studied sequences and, despite they are overlapped only minimally (see Table 4.2), general 

trends observed at each site are similar although occured at different time periods: forest canopy 

opening, decline in primary forest taxa, development of secondary vegetation with an increasing role 

of pioneer taxa and herbs. These shifts in both sequences are associated with an increase in the 

concentration of micro-charcoal (Fig. 4.5 and 4.6) suggesting that the occurrence of fires corresponds 

to the changes in forest canopy and can possibly be accounted as additional indicator of human 

activity, especially because of a traditional slash-and-burn technique.  

In Java, with its long history of agriculture and human settlements, changes took place much earlier 

starting at ca 2950 cal yr BP than in Kalimantan staring at ca 910 cal yr BP and were much more 

intensive. A strong decline in timber trees, associated with an increase in herbs and pioneer taxa, is 

dated for Java (1609-30 core) back to at least 870 yr BP, while for Kalimantan (core 1412-19) such 

processes are evidenced only in modern times since about 1940 AD when increased population and 

intensification of human activity started in Kalimantan. A similar early, opening and disturbance of 

the forest in Java started at about 3500 cal yr BP in the highlands of Central Sulawesi according to 

Kirleis et al. (2011).  

Changes in the marine costal realm of the Java Sea evidenced from the dinocyst analysis are highly 

corresponded to those on land (correlation is about 0.90 with disagreement measure value of 

~0.004). They could be described as a gradual change from relatively well ventilated to more hypoxic 

and somewhat eutrophic conditions. Dinoflagellate associations off both the river Jelai at ca 1200 – 

ca 910 cal yr BP and river Solo before 2275 yr BP are composed of warm water and fully marine taxa. 

Near the coast of Java, the shift in the trophic status of water took place between ca 820 and 500 cal 

yr BP, while near the coast of Kalimantan it occurred as late as at the beginning of the 20th century. 

The occurrence of certain types of dinocysts (i.e. cyst of Polykrikos schwartzii and P. kofoidii, 

Lingulodinium machaerophorum, Nematosphaeropsis labyrinthus and Selenopemphix nephroides) 



 

97 
 

were strongly positively correlated with the increase in pioneer taxa and negatively correlated with 

the increase in pollen taxa related to the primary forest (e.g. to Agathis, Allophylus, Dacrycarpus, 

Dacrydium, Dipterocarpaceae, Phyllocladus and Podocarpus) which are excessively logged for timber. 

This suggests that those dinocyst types react strongly on human induced changes in the marine 

environment and may potentially be used as palaeoecological indicators of anthropogenic activity. 

Statistical correlation of the dinocyst and pollen data was very high. The comparison of pollen and 

dinocyst data and their CONISS-based clustering (Fig. 4.3-4.6) provided interesting insights on 

environmental changes in terrestrial and marine realm. For Java, between 3600 and 3215 cal yr BP 

changes on land occurred at the same time as the changes in coastal waters of the Java Sea 

(beginning of pollen zone JP-2 and dinocyst zone JD-2) or were earlier (pollen zone JP-3 started about 

115±20 years before than the dinocyst zone JD-3, Fig. 4.4 and Fig. 4.6). The uppermost pollen zone 

(JP-4, Fig. 4.4) started at ca 870 cal yr BP which is about 40±20 years later than the related dinocyst 

zone JD-4 which started at ca 910 cal yr BP (Fig. 4.6). For Kalimantan, time differences between 

pollen and dinocyst zones were 70±25 yr for KP-2 and KD-2 and 40±20 yr for KP-3 and KD-3 (Fig. 4.3 

and Fig. 4.5). To explain this time difference between pollen and dinocyst zones one needs to 

consider that the secondary vegetation requires some time to develop, while the dinoflagellates 

being unicellular organisms may respond much faster. The observed 40-70 year difference between 

the beginning of dinocyst and pollen zones is about the time required for establishing a pioneer 

community in a disturbed area and a complete re-organization of the vegetation (Whitmore, 1975; 

Stuijts, 1993).  
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Abstract 

To obtain insight into the natural variability of the coastal ecosystems off southern Kalimantan, late 

Holocene environmental conditions between ca. 2850 and 990 cal yr BP in the Java Sea were 

investigated. A 134-cm-long sediment core collected ~50 km off the Pembuang River mouth was 

analysed for organic-walled dinoflagellate cysts, pollen/spores and biogeochemical parameters, e.g. 

organic carbon (Corg), total nitrogen (N) and calcium carbonate (CaCO3) as well as carbon and 

nitrogen stable isotope composition (d13C, d15N). Sediments consist of mixed terrestrial as well as 

marine organic matter, are characterised by low nutrient uptake and suggest generally low river 

discharge that is supported by very low pollen and spore concentrations (256 pollen grains cm-3 and 

20 spores cm-3 at maximum, respectively). Foraminifera and coccolithophores dominated the 

plankton over cyst-producing dinoflagellates and diatoms. Dinoflagellate cyst assemblages are 

composed mainly of oxidation-resistant species of the genera Operculodinium and Spiniferites with a 

minor contribution of Impagidinium (mainly I. strialatum). The percentages of round brown and 

peridinioid cysts are low and decrease from the bottom of the core to the top. Palynological and 

biogeochemical data appear well correlated and synchronously reflect changes in the marine 

environment. It is reconstructed that after ca. 2480 cal yr BP, bottom waters became increasingly 

ventilated. A typical open-water dinoflagellate cyst association is gradually replaced by a more 

coastal association between ca. 2480 and 1530 cal yr BP that is most likely attributed to El Niňo-

induced seasonal differences between dry and wet periods of the year. After 1530 cal yr BP, a more 

pronounced influence of the Pembuang River is indicated by an increase in d15N and decreased d13C 

which is supported by the occurrence of nutrient-sensitive Lingulodinium machaerophorum and 

Nematosphaeropsis labyrinthus. The overall results indicate short-scale local environment 

fluctuations attributed to abiotic factors. 

 

5.1. Introduction 

Over the last decades, coastal regions in the tropics have become increasingly influenced by 

anthropogenic activities. Since these regions are of major economic and environmental importance, 

it is essential to maintain their sustainability. One of the regions where anthropogenic pressure has 

increased strongly during the last decades is the Java Sea, Indonesia. However, apart from 

anthropogenic forcing, obviously also natural factors influence the coastal ecosystems in this region. 

For adequate planning of maintenance measurements, it is essential to have insight into the natural 

forcing as well. This can be achieved by studying ecosystem variability at times of relatively pristine 

conditions, hence prior to the major industrial/agricultural revolution. This requires detailed high-

temporal-resolution information about environmental change in the last few millennia as well as the 
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relations between land and ocean. Coastal sediments are well-known archives that can preserve 

signatures of high temporal resolution environmental change. By studying the sediments with a 

multi-proxy approach combining marine palynological (study of marine dinoflagellate cysts and 

pollen/spores) and biogeochemical techniques, information about past changes in the marine system 

as well as its relations with changes on the surrounding land can be obtained. Here we use this 

approach to gain insight into the natural variability of a coastal ecosystem of the Java Sea off 

southern Kalimantan.  

Several palaeoenvironmental studies have been conducted in the Java Sea and in the surrounding 

islands since the end of the last century. Probably the first scientific paper dedicated to the marine 

environment of the region was published by Emery et al. (1972). These authors studied the physical 

water characteristics of the Java Sea and adjacent continental shelf. Detailed descriptions of the 

climate, marine currents, bottom sediments and biota of the Java Sea are given by Boely et al. (1991) 

and Durand & Petit (1995). Since then, several studies have focused on the history of ocean current 

systems, sea level change, and sediment composition (e.g. Gingele et al. 2002; Hanebuth et al. 2000; 

Horton et al. 2007; Suryantini et al. 2011). Others focused on palaeoenvironmental changes on the 

surrounding land such as the reconstruction of the palaeoenvironment of Kalimantan (e.g. Anderson 

& Muller 1975; Morley 1981; Caratini & Tissot 1988; Anshari et al. 2001; Weiss 2002; Anshari et al. 

2004; Griffiths et al. 2009; Dommain et al. 2014 and Poliakova et al., 2014, 2015). Until now no 

comprehensive high temporal resolution land-sea correlation of the region is available. For the 

Indonesian region, a few studies on the modern organic-walled dinoflagellate cyst associations have 

been published (Lirdwitayaprasit 1997, 1998; Azanza et al. 2004). Most of these studies focus on 

toxic algal blooms (Gonzales 1989; Wiadnyana et al. 1994; Bajarias 1995; Matsuoka et al. 1999; 

Mizushima et al. 2007; Reotita et al. 2008; Furio 2006, 2012 and references therein). In addition, 

dinoflagellate cysts diversity and spatial distribution in relation to modern local environmental 

conditions in the eastern Indian Ocean off SE Indonesia and N Australia were presented by Hessler et 

al. (2013). This work documents three environmental and oceanographic regions characterized by 

differences in annual sea surface temperature (SST) patterns and nitrogen supply.  

To date, palaeoecological studies based on dinoflagellate cyst associations from the Indonesian 

region are not available. Here we present the first comprehensive study of the dinoflagellate cyst 

succession during the late Holocene for the time interval between 2850 and 990 cal yr BP. By 

combining these results with biogeochemical information, we establish a detailed land-sea 

correlation with decadal resolution of the coastal Java Sea ecosystem, off SE Kalimantan during the 

late Holocene and estimate the natural and human induced impact on this system.  

5.2. Study site  
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The Java Sea is a large (310,000 km2) shallow sea (in general between 100 - 40 m water depth) on the 

Sunda Shelf which lies between the islands of Kalimantan (Borneo) to the north, Java to the south; 

Sumatra to the west and Sulawesi to the east (Figure 1). In the west, it is open to the Indian Ocean, 

the South China Sea by the Sunda Strait and the Karimata Strait, respectively. In the east, it has an 

open connection to the Flores Sea and to the Celebes Sea through the Makassar Strait (Durand & 

Petit 1995; Genia et al. 2007).  

The Pembuang (Seruyan) River is one of the peat draining rivers in Indonesia (see map in 

Couwenberg et al. 2009) and is one of the longest among the rivers of the Indonesian province of 

Central Kalimantan that flows into the Java Sea. It stretches over 350 km draining a catchment of 

about 200 km2 (http://eyeglobe-indonesiaku.blogspot.de/2009/11/central-kalimantan.html). 

At the present time, the area has a tropical monsoon climate characterized by a reversal of the wind 

and marine current regimes (Writky 1961; Durand & Petit 1995) with an eight-month rainy season 

and four-months of a drier season. The rate of precipitation varies from 2,776 to 3,393 mm with 

about 145 rainy days per year (http://eyeglobe-indonesiaku.blogspot.de/2009/11/central-

kalimantan.html). It is strongly influenced by the climate anomaly known as El Niňo Southern 

Oscillation (ENSO), with its two extreme faces, El Niňo and La Niňa that can respectively decrease and 

increase precipitation rates over the Indonesian Archipelago. These phenomena cause heavy rainfall 

during the NW monsoon between December and March and may cause severe droughts occurring 

during the SE monsoon season between June and October (e.g. Ropelewski & Halpert 1987; Aldrian 

& Susanto 2003). The summer monsoon is relatively weak compared to the winter monsoon (Liu & 

Xie 1999). 

The annual average sea surface temperature (SST) in the Java Sea is about 28 °C with some small 

variation of 2°C (Wrytki 1961). Sea surface salinity (SSS) in the study area varies from relatively low 

values of 30.6-32.0 in the near-shore areas where the rivers of Kalimantan (e.g. Pembuang, 

Mendawai, Barito) discharge to about 34 in the more offshore regions.  

The Java Sea water dissolved oxygen is about 4.5-4.7 mg l-1 near the bottom and about 5 mg l-1 at the 

surface (Boely et al. 1991; Sadhatomo 2006). According to the World Ocean Atlas (2009), the waters 

off the south-eastern cost of Kalimantan are slightly less well ventilated compared to the waters in 

more western parts of the sea. However, this difference in the dissolved oxygen does not exceed 0.2-

0.5 µmol l-1 and is too small to form a distinct environmental gradient. Distribution of the chlorophyll-

a has a clear pattern within the study area: off Kalimantan it is relatively low (1.5 mg m-3) while in the 

eastern part of the sea it is comparably high and may reach 3 mg m-3. 

 

5.3. Material and Methods 

5.3.1. Sediment core 
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Sediment material for this study (core 1612-23; S3° 35' 21.84" E112° 44' 13.56", Figure 1) was 

collected about 50 km off the Pembuang River mouth, from a water depth of 20 m. The core is 134 

cm-long and is composed of relatively dry pale-grey silt sandy sediments, slightly brownish towards 

the upper part and containing many irregular fragments of shells and siliceous material that ranges in 

size from angular blocky pieces up to 1.5 cm in length to small (1-2 mm) sand-sized particles.  

 

 

Figure 1. Study area with main water depths, land orography (delivered from the World Ocean Atlas 
2009) and a position of the study site (marked with a dot). The map was created using the Ocean 
Data View software (Schlitzer 2014). 

 

5.3.2. Age control 

The age control for the investigated sediment core is based on accelerator mass spectrometry (AMS) 

radiocarbon dating that has been conducted at the Keck Carbon Cycle Accelerator Mass 

Spectrometry Facility at the University of California (Irvine, USA). Five radiocarbon dates obtained 

from mixed benthic foraminifera and are presented in Table 1. The results have been corrected for 

isotopic fractionation with δ13Corg values according to the method described by Stuiver & Polach 

(1977) and calibrated to calendar years with the online version of CALIB 7, marine 13 (Stuiver & 

Reimer 1986, 1993; Stuiver et al. 1998, 2005; nhttp://calib.qub.ac.uk/calib) considering a reservoir 

age of 90 yr (Southon et al. 2002).  To create an age-depth model, a linear extrapolation approach 

was used.  

Table 1. Radiocarbon dates obtained from the sediment core 1612-23. 

Depth, 
cm 

UCIAMS 
lab no. 

14C age, 
yr BP 

± error, 
yr BP 

calendar age, 
cal yr BP (P=1950) 

dated material 

7-8 123503 1605 20 1071 benthic foraminifera 
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31-32 133821 1895 20 1357 epibenthic foraminifera 

51-52 145985 2025 25 1485 epibenthic foraminifera 

81-82 133822 2275 20 1778 epibenthic foraminifera 

106-107 145986 2760 25 2379 epibenthic foraminifera 

127-128 123483 3060 20 2748 benthic foraminifera 

 

5.3.3. Marine palynological analysis 

Samples for marine palynological analysis were collected at 2 cm intervals along the core. Three 

grams of dry sediment were processed following a slightly modified palynological technique 

(Erdtman 1960; Faegri & Iversen 1975; Moore et al. 1999; Zonneveld et al. 2009). Samples were dried 

at 60°C for 24 h and weighed. In order to remove all macro-remains, material was wet sieved over a 

150 µm mesh sieve. Prior to chemical treatments, a Lycopodium clavatum tablet (Stockmarr 1971) 

with a known number of spores (20,848 ± 1546) was added to each sample.  For the removal of 

carbonate, cold hydrochloric acid (HCl 10%) was added in amounts depending on the intensity of the 

reaction. The siliceous component was removed by adding cold hydrofluoric acid (HF 72%). When 

samples contained high amounts of sand that could not be removed with a single HF treatment, this 

step was repeated. After chemical treatment, samples were washed with distilled water and 

centrifuged for 5 min at 3500 rpm. Each residue was sieved over a nylon 10 µm filter in order to 

remove smaller fractions. No acetolysis or ultrasonic treatment was applied in order to avoid any 

potential damage of the dinoflagellate cysts and pollen/spores (e.g. Marret et al. 2009). Microscope 

slides were prepared by embedding the residue in glycerine jelly and isolated from air by a 

transparent nail polish.  Dinoflagellate cysts and pollen/spores were counted using a light microscope 

(Zeiss Axiostar Plus) at x400 to x1000 magnifications until 150 identified dinoflagellate cysts had been 

registred.  

The taxonomy of dinoflagellate cysts is based on Zonneveld (1997), Fensome & Williams (2004), 

Kawamura (2004) and Zonneveld & Pospelova (2015). Echinidinium spp. includes all spiny brown 

cysts that could not be identified to species level. Brigantedinium spp. includes all smooth-walled 

spherical brown cysts without processes (RBC). Spiniferitus hyperacanthus was grouped with 

Spiniferites mirabilis s.l., cysts of Protoperidinium nudum are grouped with Selenopemphix quanta.  

A cumulative dinoflagellate cyst diagram (Figure 2) was created using the TILIA/TILIAGRAPH (Grimm 

1987) software. It presents relative abundances of individual dinoflagellate cyst types that were 

calculated on basis of the total sum of dinoflagellate cysts excluding indeterminate cysts. Cyst groups 

were established based on their common ecological characteristics and modern geographic 

distribution patterns (Zonneveld et al. 2013): offshore cysts, costal-water cysts and cosmopolitan 

cysts. Group sums as well as sums of phototrophic (Figures 3-4) and heterotrophic cysts (Figure 5) 
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accompany the relative abundance profiles of single dinoflagellate cyst types. Furthermore, 

dinoflagellate cysts and pollen/spores concentrations (palynomorphs per gram dry sediment) are 

given (Figure 2).  

 

Figure 2. Organic-walled dinoflagellate cyst diagram showing relative abundances of the individual 
dinoflagellate cysts, sums of cosmopolitan, offshore, coastal-water cysts, phototrophic and 
heterotrophic species, dry bulk concentrations of dinoflagellate cysts, pollen and fern spores, 
sedimentation rates and a CONISS cluster-diagram based on total sum of squares. Presence of cysts 
types contributing to the dinoflagellate cyst total sum less than 2% on average depicted as black 
dots.  
 

 

Figure 2. (continuation) 
 

The dinoflagellate cyst record was subdivided into zones that contain successive samples with a 

common cyst association. Definition of the zones was established by combining empirical 

observations with the results of constrained cluster analysis by sum-of-squares using CONISS for 
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TILIA (Grimm 1987). The stability of the classification and the sharpness of the clusters were tested 

using the bootstrap resembling performed in MULTIV (Pillar & Orlóci 1996; Pillar 1999). 

 

Plate 1. Light microscope photographs of selected phototrophic taxa found in the sediment sequence 
1216-23: 1 - Ataxodinium choane Reid 1974; 2 - Bitectatodinium spongium (Zonneveld 1997) 
Zonneveld et Jurkschat 1999 ; 3 - Impagidinium strialatum (Wall 1967) Stover et Evitt 1978; 4 - 
Impagidinium aculeatum  (Wall 1967) Lentin et Williams 1981 ; 5 - Nematosphaeropsis labyrinthus 
(Ostenfeld 1903) Reid 1974; 6 - Operculodinium centrocarpum sensu Wall et Dale 1966; 7 - 
Operculodinium israelianum (Rossignol 1962) Wall 1967; 8 - Trinovantedinium applanatum (Bradford 
1977) Bujak et Davies 1983; 9 - Tuberculodinium vancampoae (Rossignol 1962) Wall 1967. Scales 
bars: 20 μm. 

 

5.3.4. Biogeochemical parameters  

For biogeochemical analyses, sediments of a layer in 1-3 cm resolution were dried at 40 °C and 

ground to a fine homogenous powder in a Retsch planetary ball mill PM 100. Samples were analyzed 

for total carbon (Ctot) and total nitrogen (Ntot) by high-temperature combustion in a Euro EA 3000 

elemental analyzer. Organic carbon (Corg) was determined the same way after removal of carbonate 

by acidification with 1N HCl and subsequent drying at 40°C. Calcium carbonate contents (CaCO3) 
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were calculated from inorganic carbon (Cinorg = Ctot - Corg). Measurements had a precision of 0.02% for 

Ctot, 0.02% for Corg and 0.003% for Ntot, based on repeated measurements of a standard. The carbon 

and nitrogen stable isotope composition (δ13Corg, δ
15N) was determined with a Thermo Finnigan Delta 

Plus gas isotope ratio mass spectrometer after high temperature combustion in a Flash 1112 EA 

elemental analyzer. Carbonates were removed prior to the δ13Corg analysis by adding 1N HCl and 

subsequent drying at 40 °C. Values of δ13Corg and δ15N are given as ‰-deviation from the carbon 

isotope composition of the PDB standard and the nitrogen isotope composition of atmospheric air, 

respectively. The analytical precisions of the methods determined by repeated measurements of 

internal standards were 0.07‰ for δ13Corg and 0.09‰ for δ15N. Biogenic silica was extracted from 15 

mg ground sediment subsamples by a method modified from Mortlock & Froelich (1989) and 

detected using a Spectro Ametek Ciros Vision ICP-OES (inductively coupled plasma optical emission 

spectrometry). Raw data of the dinoflagellate cyst counts and biogeochemical data are stored in the 

PANGEA database: http://pangaea.de 

 

Figure 3. Depth-related 

changes in total nitrogen 

content (Ntot), organic 

carbon (Corg), stable 

carbon (δ
13

Corg) and 

nitrogen (δ
15

N) isotopes, 

calcium carbonate 

(CaCO3) and biogenic 

opal throughout the core 

1612-23.  

 

 

5.3.5. Statistical analysis 

To study the relations between the dinoflagellate cyst relative abundances and the biogeochemical 

parameters, redundancy multivariate analysis (RDA, Rao 1964) was applied using the CANOCO 5 and 

CanoDraw software package (ter Braak & Šmilauer 2002; Šmilauer & Lepš 2014). All taxonomic data 

were standardized and logarithmically transformed. The length of the variance gradient was 

estimated by means of a preliminary detrended correspondence analysis (DCA, Hill and Gauch, 

1980). In order to evaluate the significance of the RDA axes, the null hypothesis was tested using the 

nonparametric Monte Carlo permutation test (Manly 1992). The null hypothesis expects that no 

relations exist between the variation in relative abundance of the dinoflagellate cyst taxa and 

biogeochemical sediment parameters. Biogeochemical parameters were tested for linear regressions 

with depth and correlations with each other using the Spearman test. 
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Plate 2. Light microscope photographs of selected phototrophic taxa found in the sediment sequence 
1216-23: 1 - Spiniferites ramosus (Ehrenberg 1838) Mantell 1854; 2 - Spiniferites mirabilis (Rossignol 
1964) Sarjeant 1970; 3 - Spiniferites pachydermus (Rossignol 1964) Reid 1974; 4, 5 - Spiniferites spp.; 
6 - Lingulodinium machaerophorum (Deflandre & Cookson 1955) Wall 1967. Scales bars: 20 μm. 
 

5.4. Results 

5.4.1. Age-depth model and sedimentation rate 

Extrapolation of the dates suggests that the base of the core (at 133-134 cm) is as old as about 2850 

cal yr BP. The uppermost layer (0-1 cm) dates back to 990 cal yr BP. Estimated sedimentation rates 

vary along the core from low rates of 0.4 - 0.5 mm yr-1 (between 134 and 81 cm) to relatively high 

rates of ~1 mm yr-1 (between 81 and 51 cm) and ~1.6 mm yr-1 (between 52 and 32 cm) decreasing to 

~0.8 mm yr-1 in the upper part of the core (32-0 cm). From 90 to 50 cm, the sand content increases, 

whilst after 50 cm towards the top it slightly decreases again.  

 

5.4.2. Dinoflagellate cyst stratigraphy 

5.4.2.1. General patterns 

 

Based on the taxonomic composition of the dinoflagellate cyst association supported by CONISS 

analyses, four distinct dinoflagellate zones are described (Pem-1 to Pem-4, Figure 2). Despite being 

suggested by the cluster analysis, no additional subzones in Pem-1 and Pem-3 are derived as the 

species composition change of these subzones is not significant (p>0.05) and the probability (P; 

1≤P>0) for two given sub-clusters was low: P=0.45 (Pem-1) and P=0.3 (Pem-3; Pillar, 1999). These 
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sub-zones are, therefore, not presented in the diagrams and are not considered for the further 

analysis.  

 

 

Plate 3. Light microscope photographs of selected heterotrophic taxa found in the sediment 
sequence 1216-23: 1 - Brigantedinium sp. (RBC) Reid 1977 ex Lentin et Williams 1993; 2 - 
Echinidinium transparantum Zonneveld 1997; 3 - Stelladinium robustum Zonneveld 1997; 4 - 
Selenopemphix quanta (Bradford 1975) Matsuoka 1985; 5 - Votadinium calvum Reid 1977; 6 - 
Selenopemphix nephroides (Benedek 1972) Benedek et Sarjeant 1981. Scales bars: 20 μm. 

 

Most of the dinoflagellate cyst association is composed of warm water and fully marine cysts, 

predominantly by the transparent oxidation-resistant species of the genera Operculodinium and 

Spiniferites with minor contributions of Impagidinium (mainly Impagidinium strialatum) and brown 

coloured oxidation-sensitive cysts, both round (i.e. Brigantedinium spp.) and spiny (Echinidinium 

spp.) as well as various other but not well preserved peridinoid dinoflagellate cysts. The amount of 

pollen and fern spores is low, 256 pollen grains g-1 and 20 spores g-1 at maximum, respectively.  

 

5.4.2.2. Zone description 

 

Zone Pem-1 (134-91 cm; 11 samples) 

Sediments of this zone were deposited between ca 2850 and ca 2480 cal yr BP (Figure 2). The 

dinoflagellate cyst association is dominated by oxidation-resistant species (~70%) with 

Operculodinium centrocarpum contributing almost a half of the total amount (about 50%). 

Spiniferites mirabilis forms about 12% of the association. Spiniferites pachydermus and Spiniferites 

ramosus contribute 3% each. Impagidinium strialatum and Tuberculodinium vancampoae occur 
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regularly but contribute less than 1%. Values of the oxidation-sensitive cysts are generally low but 

compared to the other zones form the highest for the entire record (~10%) with round brown cysts 

(Brigantedinium spp.) being most dominant (~5%). Echinidinium species are restricted to this zone 

where they are constantly present. At the depth interval between Quinquecuspis concreta occurs 

between 120 and 110 cm. The concentration of dinoflagellate cysts is about 242 cysts g-1; pollen 

concentration is very low, ~12 pollen g-1. 

 

Zone Pem-2 (91-55 cm; 17 samples)  

Sediments were deposited between ca 2480 and ca 1530 cal yr BP. The cyst association displays a 

slight increase in oxidation-resistant cysts (~75%, Figure 2) due to the increase in the proportions of 

S. pachydermus (~10%) and Impagidinium species (~3%). Values of O. centrocarpum, S. mirabilis and 

S. ramosus stay almost unchanged, being about 50%, ~10% and ~2% of the association respectively. 

In this zone, occurrences of T. vancampoae are rare. Trinovantedinium applanatum as well as the 

cysts of Pentapharsodinium dalei contribute together ~2% of the association. Oxidation-sensitive 

cysts contribute ~3% only and are almost exclusively formed by Brigantedinium spp. (~2%). Some 

single specimens of peridinioid cysts are registered sporadically in the samples. The concentration of 

dinoflagellate cysts is ~235 cysts g-1; pollen concentration increases to about 20 pollen g-1. 

 

Zone Pem-3 (55-21 cm; 11 samples) 

Sediments were deposited between ca 1530 and ca 1250 cal yr BP. In this zone, again an increase in 

oxidation-resistant cysts (~78%) is observed. Values for O. centrocarpum (~60%, Figure 2) and S. 

mirabilis (~15%) slightly increase, while the proportions of S. pachydermus (~4%) decrease markedly. 

Above 50-45 cm, O. israelianum, P. zoharyi and T. vancampoae occur regularly as compared to 

Impagidinium species which are seldom observed. The heterotrophic species T. applanatum is not 

seen in this zone. The proportion of oxidation- sensitive cysts decreases to ~1% due to the decrease 

in Brigantedinium spp. The concentration of dinoflagellate cysts decreases to ~218 cysts g-1, whilst 

pollen concentration slightly increases (~28 pollen g-1). 

 

Zone Pem-4 (21-0 cm; 11 samples) 

Sediments were deposited between ca 1250 – 990 cal yr BP. They are characterized by a strong 

dominance of oxidation-resistant cysts (up to 80%, Figure 2) with a high abundance of O. 

centrocarpum (about 60%) and S. mirabilis (~17%). Values for S. pachydermus decrease to ~2%; S. 

ramosus and T. vancampoae occur regularly unlike T. applanatum, which is only sporadically present. 
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Impagidinium species contribute less than 1% to the association. From a depth of 15 cm upwards, 

Lingulodinium machaerophorum is constantly present. Oxidation-sensitive cysts contribute only ~2% 

to the association and have a disruptive profile in this zone. The concentration of dinoflagellate cysts 

is ~240 cysts g-1; pollen concentration is ~20 pollen g-1. 

 

5.4.2.3. Biogeochemical profiles  

 

 Contents of Ntot and Corg in the sediments (Figure 6) is overall relatively low (mean ± SD Ntot: 

0.07±0.02%; Corg: 0.55 ± 0.09%). Contents of Ntot decrease with depth (r²=0.34, p<0.0001). At 60 cm, 

78 cm, 90 cm and 114 cm, Corg contents are elevated and Ntot contents decrease. The molar C/N 

ratios, which are usually around 10, increase to values between 14 and 18 (Figure 6);  δ13Corg values 

are usually around -22‰ and are lower (-23 to -24‰) at the depths mentioned above as well as at 12 

cm and 36 cm. There are strong negative correlations of δ13Corg with the C/N ratios (Spearman, r²=-

0.71, p<0.001) and with Corg contents (Spearman, r²=-0.78, p<0.001); δ15N displays only small 

variability (mean ± SD: 4.5 ± 0.1‰). Carbonate contents are mostly around 15% with exception of 

those at 60 cm and 78 cm (Figure 6), where they amounted to 30% and 20%, respectively. Biogenic 

opal contributes usually 7-8% and displays a slight increase towards the top (linear regression 

analysis: r²=0.27, p<0.001). Biogenic opal contents were always lower than CaCO3 contents. 

 

5.4.2.4. Results of multivariate analysis 

After DCA had revealed a gradient of 1.5 standard deviation (SD), RDA redundancy analysis (RDA) 

was applied as recommended by Šmilauer & Leps (2014) for data sets with short environmental 

gradients (i.e. environmental gradients less than 2 SD). The first two dimensions of the RDA (Figure 7) 

account for 48% and 12% of the total variance of dinoflagellate cyst taxa and biogeochemical data. 

The ratio λ1+λ2 / total variance, a measure of the goodness of fit equivalent to R2 (Jongman et al. 

1987), is 0.84. The relative distance between samples explains the differences in dinoflagellate cyst 

composition.  

As it is shown (Figure 7A), most of brown-coloured heterotrophic dinoflagellate cysts (e.g. 

Brigantedinium spp., Echinidinium granulatum, Echinidinium transparantum, Echinidinium 

zonneveldiae) are positively correlated with δ13Corg and are negatively correlated with opal content 

and most of the abundant phototrophic cysts. Operculodinium centrocarpum, Operculodinium 

israelianum, Polysphaeridium zoharyi, Spiniferites mirabilis and Tuberculodinium vancampoae are 

correlated with Ntot and δ15N. Impagidinium species, Spiniferites pachydermus, Spiniferites spp., and 

Trinovantedinium applanatum are in accordance with Ctot, CaCo3 and C/N ratio that are strongly 

correlated between each other, whereas Spiniferites ramosus turn out to be strongly correlated with 
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Corg. All others (Figure 7A) are weakly correlated to other species and presented low abundances in 

the dinoflagellate cyst assemblages throughout the sequence. 

 

 

 

Figure 7. Results of RDA analysis illustrating dinotypes in relation to biogeochemical environmental 
variables. Biogeochemical parameters are abbreviated as indicated in text. Dinoflagellate cyst types 
are indicated as following: At.choan - Ataxodinium choane, Brig -  Brigantedinium spp. (RBC), 
Bt.spong - Bitectatodinium spongium, c.P.koff - Cyst of Polykrikos kofoidii, c.Pent.dal - cyst of 
Pentapharsodinium dalei, c.P.schw -  cyst of Polykrikos schwartzii, Ech.gran - Echinidinium 
granullatum, Ech.trans - Echinidinium transparantum, Ech.zonn - Echinidinium zonneveldiae, Im.str - 
Impagidinium strialatum, Im.acul - Impagidinium aculeatum, Im.plc - Impagidinium plicatum, In.sph - 
Impagidinium sphaericum, Ling.mach - Lingulodinium machaerophorum, Lj.oliv - Lejeunecysta oliva, 
Lj.sab - Lejeunecysta sabrina, Nem.lab - Nematosphaeropsis labyrinthus, Op.cent - Operculodinium 
centrocarpum, Op.izr - Operculodinium israelianum, Op.spp - indeterminate Operculodinium spp., 
Pol.zh - Polysphaeridium zoharyi, Q.conc - Quinquecuspis concretum, Sel.np - Selenopemphix 
nephroides, Sel.rb - Stelladinium robustum, Sp.mir - Spiniferites mirabilis, Sp.pach - Spiniferites 
pachydermus, Sp.ram - Spiniferites ramosus, Sp.spp - indeterminate Spiniferites spp., Tr. appl  - 
Trinovantedinium applanatum, Tub.vn - Tuberculodinium vancampoae, Vot.calv - Votadinium calvum. 

 

Monte Carlo permutations with specific restrictions for time-series analysis were used for both tests 

concerning only the first RDA axis and a second test including all eigenvalues. Both tests reject the 

null hypothesis implying that no relation exists between species and the environmental variables at 

3.5% level of significance. 

Figure 7B shows a positive relations for the most of samples from the lowest dinoflagellate cyst zone 

(Pem-1, 134-92 cm) to δ13Corg with exception of samples collected from the core depths 116-118 cm 

and 128 -132 cm. These samples have a high percentage of damaged, broken and therefore 

undistinguished Operculodinium spp., sample from 96 cm because of its high content of Corg and 

samples from the depths 94-92 cm probably due to their increased opal content. Samples from the 
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dinoflagellate cyst zone Pem-2 (90-56 cm) are heterogeneous and show poor correlation with the 

geochemical parameters. Samples from the dinoflagellate cyst zone Pem-3 (55-21 cm) are correlated 

with CaCo3 and C/N ratio, and samples from the dinoflagellate cyst zone Pem-4 (20-0 cm) with the 

opal content, Ntot and δ15N. Moreover, samples from the lowest and the highest dinoflagellate cyst 

zones are correlated negatively with each other.  

5.5. Interpretation and Discussion 

5.5.1. Taxonomic composition of dinoflagellate cyst assemblages 

The organic-walled dinoflagellate cyst assemblages observed in this study are typical for tropical 

open marine and shallow water environments that are characterized by a relatively low productivity 

and strong water ventilation (e.g. Marret & Zonneveld 2003; Zonneveld 2013). It is comparable to 

assemblages observed in other coastal waters in Indonesia, intercontinental shelves and estuaries in 

other tropical regions of the world such as e.g. the Caribbean Sea, the Yucatan channel, the 

Bahamas, the Mississippi Sound, Tampa Bay, Gulf of Mexico and a few estuaries in Vietnam 

(Deflandre & Cookson 1955; Wall & Dale 1977; Head & Westphal 1999; Matsuoka et al. 1999; 

Edwards & Willard 2001; van Soelen et al. 2010; Limoge 2013).   

Our results are mainly in agreement with the “Checklist of dinoflagellate cysts found in the surface 

sediment samples from the Gulf of Thailand and the East Coast of Peninsular Malaysia” and with 

species list made for upper Sabah, Sarawak and Brunei Darussalam waters (Lirdwitayaprasit 1997, 

1998). It is also in consonance with the dinoflagellate cyst species list compiled for surface sediments 

of the tropics and Southeast Asian waters by Furio et al. (2012). We observed, however, two to three 

times lower diversity along the heterotrophic species. Registrations of so-called causative species of 

paralytic shellfish poisoning or harmful algal blooms in this study are doubtful as the result of the 

preservation state of cysts in the downcore sediments, with cell content being degraded hampering 

detailed determination. For instance, for downcore material it is impossible to distinguish between 

different toxic Alexandrium species as the discriminating criteria focus on cell organelles and 

structures. An exception is the paralytic shellfish poisoning species Polysphaeridium zoharyi (theca-

based name is Pyrodinium bahamense var. compressum (Böhm) Steidinger, Tester et Taylor). This 

species is reported by Matsuoka et al. (1999) in sediment surface samples from Jakarta Bay (Java), 

Larantuka (Flores) and Ujung Pandang (Sulawesi). In our samples, P. zoharyi is observed only in 

sediments deposited after ca 1485 BP which might suggest the introduction of this species in the 

research area at this time. Although, abundances of this species never exceed 1-2% of the total 

dinoflagellate cyst sum (i.e. concentrations of less than 20 cells g-1) which makes it unlikely that this 

species might have induced water poisoning events in the study area. 
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In surface sediments along the coast of northwest to Western Australia and Indonesia, the 

occurrence of relatively high relative abundances of O. centrocarpum and Impagidinium species is 

typical for open marine water sites (Hessler et al., 2013). The high relative abundances of these 

species in the 1612-23 core sediments throughout the studied time interval suggest an open marine 

environmental setting of the core site. 

Hessler et al. (2013) document high relative abundances of Spiniferites spp., S. mirabilis and S. 

ramosus in surface sediments of western and eastern Indonesia characterized by high surface water 

temperatures and low nutrient concentrations. A predominant role of Spiniferites species from 10 kyr 

ago was indicated by Murgese et al. (2008) for relatively shallow waters of the Sunda Shelf 

(Kawamura 2004) and for the coastal waters of Sabah, Malaysia (Furio et al. 2006). These species are 

among the most abundant species in core 1612-23, suggesting warm upper water-column 

temperatures at the study site throughout the studied time interval. 

 

5.5.2. Primary production and aerobic decomposition of dinoflagellate cysts  

The slight increase in bulk dry concentrations of dinoflagellate cysts and in opal concentrations may 

point to development of favorable conditions for maintaining high primary production in the Java Sea 

between ca 2850 and 990 cal yr BP. This would result in a better food base for heterotrophic 

dinoflagellates and it can therefore be expected that a trend of increase in abundance of cyst of 

heterotrophic species (e.g. peridinoid cysts, Echinidinium species and in Brigantedinium spp.) should 

occur over time. However, we do no observe this. On the contrary, we observe a decreasing diversity 

trend of heterotrophic dinoflagellate cyst species followed by sharp decrease of their total absolute 

and relative abundances (Figure 2).   

Organic-walled dinoflagellate cysts have a remarkable physical and chemical resistance (Kokinos et 

al. 1998). However, recent studies have shown that the macromolecular wall composition of the cyst 

is species-specific with some species being extremely sensitive to aerobic degradations, whereas 

others are extremely resistant (e.g. Versteegh 2012; Bogus et al. 2012, 2014). It has been shown that 

that cyst concentrations of many peridinioid species, Echinidinium spp., and Brigantedinium spp. can 

vary not only as the result of change in upper water-column primary production, but also from post-

depositional selective preservation, which is related to bottom/pore water oxygen concentrations 

(e.g. Versteegh & Zonneveld 2002; Zonneveld et al. 2007; Zonneveld & Brummer 2000). Hence, the 

decrease in abundances of Brigantedinium spp., Echinidinium spp. and peridinioid dinoflagellate cysts 

in our samples from 2350 cal yr BP (105 cm) onwards, might have been a consequence of aerobic 

dinoflagellate cyst decomposition rather than changes in upper water bio-productivity.  
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5.5.3. Reconstruction of changes in the marine environment 

Pem-1: ca 2850 - 2480 cal yr BP 

This phase is characterized by a dinoflagellate cyst association that is mainly composed of 

cosmopolitan species (i.e. Operculodinium centrocarpum, Spiniferites ramosus, S. pachydermus, 

Spiniferites spp. and Operculodinium spp.). To date, these species are found in regions where surface 

water has a broad range of SST, SSS and trophic conditions (Zonneveld et al. 2013). High values of 

Spiniferites mirabilis suggest warm water and fully marine conditions at the core site throughout this 

time interval (Marret & Zonneveld 2003; Zonneveld et al. 2013). The occurrences of the typically 

open water species Impagidinium strialatum suggest that waters from open marine environments 

reached the core site (e.g. Edwards & Andrle 1992; Zonneveld et al. 2009).  

A very low pollen concentration and the almost absence of fern spores in sediments of this zone 

suggest a limited terrestrial input from the river Pembuang between ca 2850 and 2480 cal yr BP. The 

C/N ratio is usually around 10, exceeding somewhat that of plankton (6.6) but is lower than that of 

suspended organic matter carried by peat draining rivers into the Java Sea (16.6) (Baum & Rixen, 

2014). This suggests that although the organic material at the sea floor contains of a mixture of 

terrestrial and marine produced organic matter, the majority of OM found in the sediments has a 

marine origin. This is corroborated by δ13Corg values that vary around -22‰, which are at the lower 

end of the range of values typical for tropical marine phytoplankton (-18 to -22‰; e.g. Fischer et al. 

1991). Biogenic opal contents are lower than contents of CaCO3 that indicates that the plankton is 

dominated by foraminifera and coccolithophores, rather than by diatoms and dinoflagellates. This 

suggests that a quite low productivity regime has existed at the core site during this time interval. 

 
Pem-2: ca 2480 – 1530 cal yr BP 
 
Compared to the previous phase, the composition of the dinoflagellate cyst association has changed 

notably. The decrease in values of heterotrophic peridinioid, Echinidinium and Brigantedinium 

species suggests increased organic matter degradation which can be interpreted as being the result 

of a better ventilation of the bottom waters. Increased abundance of Trinovantedinium applanatum 

that ‘in the region and other parts of the world has its maximal occurrences in upwelling areas and in 

river plumes regions where large inter-annual variability in the upper water trophic state can occur’ 

(Zonneveld et al. 2009) suggest that more coastal waters reached the core position. This is also in 

consistence with the somewhat higher pollen concentrations found in this zone.  

Sea-level reconstructions by Griffiths et al. (2009; see Figure 2) based on Red Sea benthic 

foraminifera and Barbados and Tahiti coral reef studies indicate that sea-level fluctuated remarkably 
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in the region after ca 4000 cal yr BP. Particularly between ca 2000 and 3000 cal yr BP, a slight 

decrease in sea-level is reconstructed that might suggest that the core site might have become more 

neritic and surface waters became under influence of more coastal water masses.  The presence of 

relatively high abundances of Impagidinium species throughout this zone implies that the core site 

was influenced by open sea waters as well. These waters might have been flowing to the core site 

through the Karimata Strait Throughflow that is the strongest surface current in the area connecting 

the South China Sea and the Java Sea (e.g. Wirtki 1961; Fang 2010; He et al. 2015). Contemporaneous 

with increased relative and absolute abundances of Trinovantedinium applanatum, three events of 

distinctly higher C/N ratios and lower δ13Corg values are observed. This suggests a higher contribution 

of allochthonous organic matter at these intervals. It is likely that this is caused by enhanced 

discharge of terrestrial organic matter from the Pembuang River, due to e.g. floods or short wet 

periods.  

 
Pem-3: ca 1530 - 1250 cal yr BP 
 
In this period an increased contribution of typically lagoon and shallow waters species can be 

observed in the dinoflagellate cyst association (notably Operculodinium israelianum, Polysphaeridium 

zoharyi and Tuberculodinium vancampoae, e.g. Wall & Dale 1969; Limoges 2013). This suggests that 

coastal waters more pronouncedly influenced the core site. This is in agreement with the decline in 

abundances of the typical offshore species Impagidinium aculeatum and I. strialatum as well as the 

somewhat higher concentrations of pollen/spores found in this zone. A stronger influence of coastal 

water might have enhanced the trophic conditions in the surface waters and as such bio-productivity. 

This is reflected by higher biogenic opal contents and δ15N values around 1350 cal yr BP. A stronger 

influence of coastal waters on the study site might have been the result of either increased river 

discharge on the nearby island, or a sea level lowering.  

Holocene sea-level reconstructions in SE Asia are limited and fragmentary and often controversial 

(Woodroffe and Horton, 2005). It is suggested that one (e.g. Geyh & Kudrass 1979; Woodroffe and 

McLean 1990; Scoffin & Le Tissier 1998; Hanebuth et al. 2000) to three (Tija 1996) Holocene high 

water stands occurred. However, all these events were subscribed for much earlier time intervals 

(from 8000 to 2700 14C yr BP the latest) compared to the changes observed here. Griffiths et al. 

(2009) postulated a slight increase in sea level between ca 2000 and 1500 cal yr BP followed by a 

small decrease until the modern level was reached. However, all these studies indicate sea level 

fluctuated during the time frame of this zone only between 0.5 - 1 m, which is not enough to explain 

the differences in palynological and biogeochemical signals observed at the study site.  

For the nearby Banda Sea (core G5-2-56P), Ganssen et al. (1989) reconstructed that productivity in 

their study area decreased after 1500 cal yr BP and concluded it to be a result of a weakening of the 
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monsoonal regime. Additionally, Reeves et al. (2013a and related references; 2013b) indicated 

increasing changes in the environment and enhanced drier overall conditions of the Australasian 

region between 5000 and 0 cal yr BP, indicative of ENSO in El Niño mode with more extreme El Niño 

events compared with present. We therefore assume that changes in composition of dinoflagellate 

cyst assemblages in the Java Sea after ca 1530 cal yr BP are likely to be forced by change in 

precipitation changes, probably related to short-scale seasonal differences between dry and wet 

periods, rather than by the sea level change.  

 
Pem-4: ca 1250 - 990 cal yr BP 

The occurrence of nutrient-sensitive Lingulodinium machaerophorum and Nematosphaeropsis 

labyrinthus and the typical coastal species Tuberculodinium vancampoae suggest that an increased 

amount of coastal and/or river plume waters reached the study site. This might be related to an 

increased Pembuang River discharge. This is corroborated by biogeochemical data. Lower δ13Corg 

values indicate higher inputs of terrestrial organic matter. This also makes slightly higher nutrient 

discharge from the Pembuang River likely. Elevated contents of biogenic opal indicate a temporarily 

enhanced contribution of diatoms in the phytoplankton suggesting higher productivity during this 

period. Moreover, increased primary productivity also resulted in a slight increase in the 

dinoflagellate cyst concentrations. Slight increases in δ15N values point to more efficient nutrient 

uptake and enhanced productivity, hence less isotopic fractionation. 

5.6. Summary and conclusions 

 

This study provides a reconstruction of palaeoenvironmental conditions in the Java Sea between ca 

2850 and 990 cal yr BP. Study of marine palynomorphs and biogeochemical analysis as two 

independent methods were used to study a sediment core 1612-23 obtained off the Pembuang River 

mouth (SE Kalimantan, Indonesia). A low sedimentation rate throughout the sequence (0.8 – 1.6 mm 

yr-1) together with a low Corg content (0.4-0.9%) and very low pollen and spore concentrations (256 

pollen grains g-1 and 20 spores g-1 at maximum) suggest open marine conditions with relatively low 

terrestrial input throughout the studied time period (Schulz & Zabel 2000).  

The sedimentary sequences reveal four major units corresponding to distinct environmental changes. 

For the first unit, dinoflagellate cyst assemblages suggest stable warm water conditions between ca 

2850 and 2480 cal yr BP, which are similar to the present day environment in the study area. In the 

second zone, after 2480 cal yr BP, stronger water ventilation was evidenced. The third zone is 

characterized by the increase in more coastal water masses reaching the core position between 1530 

and 1250 cal yr BP. This might have been the result of El Niño-induced seasonal differences between 

dry and wet periods of the year. In the latest zone between ca 1530 - 990 cal yr BP, a slight increase 
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in primary productivity was reconstructed that is probably related to an increased Pembuang River 

discharge.  
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Abstract 

Fossil pollen and spore diversity in marine sediment cores from the coasts off SW Kalimantan and NE Java 

(Java Sea) as well as modern pollen assemblages collected off West Java in the SE Indian Ocean in a 

marine sediment trap are documented in this paper. In total, photographic images of 138 pollen and 41 

spores including 14 pollen and 32 unidentified spore types are presented in morphological order. 

Illustrated pollen and spore taxa list may help pollen and spore identification of future palynological 

investigations focused on the reconstruction of past vegetation, climate and environment dynamics in SE 

Asia. 

 

6.1.  Introduction 

 

With the development of palynology as an applied method in micropalaeontology, palaeoecology and 

palaeoclimatology and an increased interest in the vegetation-pollen deposition relationship, a number of 

continental and subcontinental pollen atlases (e.g. list from Hooghiemstra and van Geel, 1998) and 

databases have been established since the late 1970’s (Rowe, 2006): the North American Pollen Database 

(Grimm, 2000), incorporating the datasets from Canada (Gajewski, 2005), Alaska (Anderson and Brubaker, 

1986), eastern North America (Webb and McAndrews, 1976) and the southwestern United States (Davis, 

1995); the European Pollen Database (Cheddadi, 2002), PalDat – a palynological dataset based in Austria 

(Buchner and Weber, 2000), Cambridge University Palynological Online Database (QPG, 2008) and a 

database for the Northwest European Pollen Flora (Punt et. al., 2003); the Africa Pollen Database (Lézine, 

2005); the image collections of Latin American Pollen Database (Marchant et al., 2002) and of the 

Neotropical Pollen Database (Bush and Weng, 2007).  

For Southeast (SE) Asia, only a few sources of the information on pollen are available, such as the 

Australasian Pollen and Spore Atlas (APSA, 2007), an online accessible database that contains a large 

collection of pollen and spores images (details on about 15,000 species) and morphological 

descriptions from the Australasian region. The database deals not only with Australia itself, but also 

provides information on pollen from tropical India, tropical China, New Guinea, New Zealand, the 

Hawaiian Islands, Oceania and the Southeast Asia (SE), including the continental (Malay Archipelago) 

and maritime subregions. The last subregion refers to the vast group of islands located between 

mainland SE Asia and Australia (Rowe, 2006). Collection of Indonesian fossil and modern pollen 

photos of Department of Palynology and Climate Dynamics is being developed recently and is also 

available (Albrecht-von-Haller-Institute for Plant Sciences, the University of Göttingen, Germany: 

http://www.gdvh.uni-goettingen.de/). 

Additionally, a specific GIS atlas provides data on the fossil and modern records of Ficus and related 

species of island SE Asia, Australasia, and the Western Pacific (Jago and Boyd, 2003). The pollen atlas 

of Malaysia (Kiew and Muid, 1991) describes pollen of 95 species in 84 genera and 43 families with 

http://www.cabdirect.org/search.html?q=au%3A%22Kiew%2C+R.%22
http://www.cabdirect.org/search.html?q=au%3A%22Kiew%2C+R.%22
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regard of beekeeping. For each species a photograph of the whole plant, the flower, and pollen grain 

is presented, as well as provided information on pollen size/colour, plant habit (crop, weed or forest 

taxa) and distribution. 

Furthermore, a modern palynoflora of the Philippines (Jagudilla-Bulalacao, 1997) is published. The 

atlas contains light and SEM microphotographs as well as the morphological key and descriptions of 

45 species related to 264 genera and 63 families.  

Several papers on pollen morphology are available for Taiwan (Huang, 1972, 1981) and tropical Asia 

in general (Guinet, 1962; Tilak, 1989). For Malaysian Borneo a paper on the pollen diversity of the 

Kelabit Highlands (Jones, 2014) presenting microphotographs from pollen grains of about 200 species 

with a morphological key has been recently published in addition to older pollen studies by Anderson 

and Muller (1975) on a Holocene peat near Marudi (Sarawak) and a Miocene coal near Berakas 

(Brunei). Additionally, publications on pollen morphology of selected plant families are available, e.g. 

by Adam and Wilcock (1999) on Bornean Nepenthes, and by Sofiyanti and Yen (2012), who described 

pollen grains of Malaysian and Indonesian Rafflesia. 

Specifically on pollen diversity in Indonesia, since the early 1990s are provided only two publications, 

a study on the Late Pleistocene and Holocene vegetation of West Java (Stuijts, 1993) and a pollen 

morphology overview of the main taxa from the SE Asian archipelago (Van der Kaars, 1993). 

Concerning the pollen and spores in marine sediments in the Indonesian Archipelago, available 

amount of information is still very limited. Marine palynology started to develop in the region only in 

recent decades. The first work on the marine palynomorphs in the region was the study on the 

palynological residues from surface sediments in the Banda Sea (Van Waveren, 1989) where ‘a series 

of 27 palynomorph types are described and informally categorized’, although the paper does not 

contain any analysis of palaeomorphs. First pollen analytical works for the Indonesian region were 

published at the beginning of 1990s (Van der Kaars, 1991; Barmawidjaja et al., 1993) and indicated 

the potential of marine palynology in the reconstruction of the vegetation of this region. A number of 

papers were published for the Banda Sea (e.g. Van der Kaars et al., 2000; Ahmad et al., 1995; 

Spooner et al., 2005), Celebes Sea (van der Kaars, 1991), Sulu Sea (Beaufort et al., 2003), Molucca Sea 

(Barmawidjaja et al., 1993), Mahakam Delta, Kalimantan (Caratini and Tissot, 1988), Makassar Strait 

(Yulianto, 2004; Visser et al., 2004), eastern Indian Ocean (Wang, et al., 1999) and southern Indian 

Ocean (Poliakova et al., 2014), off Sumatra (van der Kaars et al., 2010, 2012).  

In this paper, we would like to contribute in filling an important knowledge gap with pollen diversity 

in the region. We summarize our knowledge gained from the work on marine sediments from the 

Java Sea and SE Indian Ocean with the aims (1) to provide a documentation of modern and fossil 

pollen and spores recorded in the last ~3500 yr and (2) to compare pollen diversity indicating 
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different vegetation types described for South Kalimantan and East Java. This work will be relevant to 

research involving pollen and spore identification and/or focused on the fossil pollen diversity, it may 

also help in future palynological investigations focused on the reconstruction of past vegetation, 

climate and environment dynamics in Indonesia as well as in SE Asia in general. 

 

6.2.  Modern vegetation as a source for  pollen and spore in the Java Sea 

 

Most of pollen and spores found in the marine sediment deposits off Jelai, Pembuang and Solo rivers 

were transported by wind and river systems and have their main source from the vegetation of South 

Kalimantan and East Java, respectively. Modern vegetation is briefly described below. However, it 

needs to be considered that a certain amount of pollen and spores can also be transported over 

longer distance by wind and in particular by the oceanic circulation (for details see Poliakova et al., 

2014). 

 

6.2.1. East Java 

 

River Solo is the longest river in Java (ca. 600 km) with the broad catchment area (15,400 km2, 

Whitten, 1996) transporting great amount of the sediments to the Java See. The river has two 

sources in high mountains, the volcano of Mount Lawu (3265 m elevation) and the Kidul Highlands 

(ca. 500 m), as well as the early tributary Dengkeng River which has its source in Mount Merapi (2800 

m, Whitten et al., 1996, http://wetlands.or.id/).  

Modern vegetation of the drainage area is mainly represented by the secondary lowland forest, 

some freshwater swamp forests, submontane (1000-1500 m), lower montane (1800 and 2400 m), 

and upper montane (2400-3000 m) forest (Fig. 1) (e.g. Whitten et al., 1996; MacKinnon et al., 1997). 

Mangroves are represented by only small numbers of individual Sonneratia and Rhizophora trees. 

Lowland forest along the coasts of the River Solo is virtually absent; most of its area has been turned 

into agricultural/aquacultural landscapes. Some remains of the secondary lowland vegetation are 

characterised by presence of Acalypha (Euphorbiaceae), Ficus (Moraceae), Macaranga, Mallotus 

(Euphorbiaceae), Trema (Cannabaceae), Pandanus (Pandanaceae) and other pioneer taxa (e.g. 

Backer et al., 1965;  Van Steenis, 1984; Whitmore, 1984).  

Submontane forest in the East and Central Java is dominated by Castanopsis, Lithocarpus and 

Quercus (Fagaceae). Mountain forest is characterised by relatively strong vertical zonation and 

represented mainly by Engelhardia (Juglandaceae), Podocarpaceae (Dacrycarpus, Podocarpus), 

Ericaceae, Myrica (Myricaceae), Myrsinaceae, and Weinmannia (Cunoniaceae) (Van Steenis, 1984; 

http://wetlands.or.id/
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Kaars and Dam, 1995). Mountain vegetation is regularly suffering from fire, and forest gives way to 

grasslands (Stuijts, 1993). 

 

6.2.2. South Kalimantan 

 

In Borneo, the Jelai River (ca. 100 km long) separates the Indonesian provinces of Central and South 

Kalimantan and has the source in the SE slopes of the Schwaner Mountain Range (average height – 

500 m; the highest point – Mt. Bukit Raya, 2278 m) and is draining mainly through open areas with 

shrubs and grasslands particularly at the Central Kalimantan side (http://wetlands.or.id/). At this 

eastern bank of the Jelai River, a broad and more or less uninterrupted belt of riparian forest occurs 

(Fig. 1). On the western bank, there is a mosaic of forest and clearings. Although, the main water 

catchment area for the River Jelai is a peat swamp forest on Gambut and Mendawai land systems, 

‘the only remaining peat swamp forest occur at the south part of West Kalimantan’ 

(http://wetlands.or.id/) with Anacardiaceae, diverse Dipterocarpaceae, Elaeocarpus, Engelhardia, 

Euphorbiaceae, Macaranga and Mallotus.  

 

 

Figure 1. Schematic map of the study area with distribution patterns of main vegetation types. 
Marine sediment cores and a sediment trap are shown with red dots. Data on the vegetation 
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distribution are derived from OSGeo website (http://geonetwork-opensource.org) and partly from 
Stibig et al. (2002). 
 

The River Pembuang (ca. 300 km long) has its source near the Bikit Tikung (1175 m elevation) in 

the Schwaner Mountain Range. Mangroves in the area of the mouth of River Pembuang are 

composed of Avicennia (Avicenniaceae), Nypa (Arecaceae), Rhizophoraceae, Sonneratiaceae, and 

other taxa. The eastern side of the river contains dense lowland forest down to Sembulu (Belajau) 

lakes (Rijksen and Meijaard, 1999). 

The lowland rainforest of South Kalimantan Borneo has a great diversity (e.g. Whitmore, 1984; 

Jacobs, 1988; Whitten et al., 1987a, 1987b, Rubeli, 1986; MacKinnon, 1986, 1992; MacKinnon et al., 

1997); there are as many as ~240 different species of trees growing within a hectare (Kartawinata et 

al., 1981; Ashton, 1989). Main types of lowland rainforest of southern Kalimantan are dipterocarp 

forest, heath forest (in Indonesian: Kerangas), ironwood forests predominating by Eusideroxylon 

zageri, or Belian, a common and commercially valuable species, as well as forests on limestones and 

ultrabasic rocks.  The general characteristics of these forests are canopies 24-36 m high with 

emergents reaching up to 65 m. Dipterocarpaceae is a dominant family in the emergent stratum. In 

the richest forests, up to 80% of the emergent trees are dipterocarps: Dipterocarpus, Dryobalanops, 

Shorea.  Hopea and Vatica together with species from Berseraceae and Sapotaceae families are 

usually found in the main canopy as well.  

A third layer occurs below the canopy of shade-tolerant species, adorned with lianas, orchids, and 

epiphytic ferns. This layer includes many species from the Euphorbiaceae, Rubiaceae, Annonaceae, 

Lauraceae, and Myristicaceae families. In some cases Euphorbiaceae is more common than 

dipterocarps, being the second most common family in Kalimantan (MacKinnon et al., 1997).  

In submontane and montane areas of Borneo, Whitmore (1984) described five altitudinal floristic 

zones. These are already described lowland dipterocarp zone (less than 300 m), the hill dipterocarp 

zone (300-800m), the upper dipterocarp zone (800-1200m), the oak-chestnut zone with Fagaceae 

and Lauraceae predominant (1200-1500m), and the montane ericaceous zone (higher than 1500m). 

Upper montane forests share many species and features of the structure and appearance with heath 

forests (Eugenia, Rhododendron, Vaccinium), yet none of the heath forest dipterocarps expends 

above 1,500m. Only few plants span the complete altitudinal range from lowlands to upper montane 

forest, e.g. Dacrydium (Whitmore, 1984; MacKinnon et al., 1997). The highest altitudes of South 

Kalimantan bare closed-canopy scrubs.   

 

6.3.  Material and methods 

6.3.1. Sediment material  

 

http://geonetwork-opensource.org/
http://en.wikipedia.org/w/index.php?title=Bikit_Tikung&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Schwaner_Mountain_Range&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Sembulu&action=edit&redlink=1
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This work was based on the modern pollen and spore material collected with the help of an ocean 

sediment trap, as well as on the fossil material available from the four short marine sediment cores 

(Fig. 1) that were obtained from four shallow water bore holes drilled in the northern and south-

eastern parts of the Java Sea. Core 1412-19 (S3° 15' 28.8"; E110° 38' 59.399"; length 91.5 cm) was 

taken from the mouth of the Jelai River, SW Kalimantan. Cores 1612-23 (S3° 35' 21.84"; E112° 44' 

13.56"; length 134 cm) and 1612-26 (S3° 47' 39.48"; E112° 34' 6.96"; length 100 cm) were retrieved 

off the Pembuang River plume, South Kalimantan. Core 1609-30 (S6° 29' 49.729"; E112° 28' 31.328"; 

length 96 cm) was recovered from the mouth of the River Solo, East Java.  Age schemes are given in 

Fig. 2.  

 

Figure 2. Age schemes of the 
marine sediment cores used 
for the present study. 
Radiocarbon dating (Stuiver 
and Polach, 1977) and 
calibration (CALIB 7, marine 
13: Stuiver and Reimer, 1993) 
considered a reservoir age of 
90 yrs (Southon et al., 2002).  
 

 

 

 

Additionally, modern pollen and spores from the samples collected with sediment trap JAM-2 (Honjo 

and Doherty, 1988) (Fig. 1) were studied. Sediment trap had been installed in the SE Indian Ocean (S 

08° 17' 30"; E 108° 02' 00") at 2200 m water depth and sampled between December 2001 and 

November 2002 about 830 m above the seafloor. The sampling interval of the trap was 16 days 

(Poliakova et al., 2014). 

 

6.3.2. Marine sediments and sample preparation 

 

For pollen and spore analysis, per sample 3 g of sediment was taken from the marine cores. The 

samples were treated following the standard palynological technique as is described by Faegri and 

Iversen (1975). First, the samples were filtered using a sieve with a mesh size of 150 μm to remove 

the larger fraction. Cold hydrochloric acid (HCl 10%) was added for the removal of carbonate in 

amounts depending on the intensity of the reaction. Siliceous component of the samples was 

dissolved by adding of hydrofluoric acid (HF 72%). Afterwards, the staining processes known in 

palynology as the acetolysis (Erdtman, 1952, 1969), was applied. To avoid the dangerous and highly 
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exothermic reaction of the acetolysis mixture with water, dehydration with acetic acid (CH3COOH) 

was applied. At the next step, a 9:1 mixture of acetic anhydride [ (CH3CO)2O 20% ] and concentrated 

sulphuric acid (H2SO4  90%) was added and the samples were kept for 10 minutes in the water bath 

(ca. 90°C). To remove small organic particles (<10 µm), the samples were sieved at a nylon filter at 

the final stage. 

 

6.3.3. Microscopic photo-documentation 

 

For pollen slides preparation glycerine gelatine was used. The photo documentation was done with 

the light microscope (Zeiss Axiostar Plus) and ocular magnifications between x200 and x1000 µm 

dependent on the size of objects. Microphotographs were taken, processed and scaled with the Leica 

DM 6000 B - CTR 6000B photomicroscope using Leica DFC 320 camera and Leica QWin software 

adjusted to auto-white-balance, continuous exposure measurement and increased contrast settings. 

Each pollen and spore type, where it was possible to obtain images, was photographed from both 

equatorial and polar view, with different focus, from high to low.   

 

6.3.4. Pollen and spore determination and nomenclature 

 

Taxonomy of pollen and spores is based on Moore and Webb (1978), Wang et al. (1995), Jagudilla-

Bulalacao (1997), Kodela (2000), Fujiki et al. (2005), Stevenson (2005), APG III (2009) and Mao et al., 

(2012). In each case, cross-checking with APSA (2007) and with our own reference collection for 

Indonesia and/or, if applicable, for other tropical areas was applied. Pollen was identified to the 

genera/species level when possible. In most cases, the family was indicated and if only, “indet.” was 

added (e.g. Ericaceae indet.). If the definitive specification of the pollen/spore type was some 

doubtful, the sign “Cf.” was used prior the name.  The word “type” was used when including several 

other taxa, i.e. more than two different genera (e.g. Dacrycarpus type).  If from the point of view of 

the morphology two identification possibilities were likely, both taxa was indicated (e.g. 

Moraceae/Urticaceae). Different morphological types within the same identification were 

distinguished by different numbers (e.g. Arecaceae indet., type 1 and Arecaceae indet., type 2). In 

cases when due to the bad preservation of the pollen/spore or because of some other objective 

reasons, further differentiation was not possible or ambiguous, the name ‘indet. type’ with number 

was used. Orhiza type was distinguished by careful morphological comparison with reference slides 

from modern Indonesian plants and measuring morphological parameters, i.e. both diameters of a 

grain, width of annulus and thickness of exine. Furthermore, the literature was used, i.e. Chaturvedi 

et al. (1998), Maloney (1990), Atahan et al. (2008). Photos of all identified pollen and spores as well 
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as the original slides are available on request at the Department of Palynology and Climate Dynamics 

(Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Germany). Pollen 

terminology is followed Lang (1994) and Punt et al. (2007). 

 

6.4.  Results and discussion 

 

In total, 124 pollen and 9 spore types were identified. Additionally, 14 undetermined pollen and 32 

spore types were described. They are presented in 179 plates, following the morphological order 

(see Table). The analysed samples showed a good preservation of pollen and spores in the sediment 

material. Most of the pollen types belong to dicotyledonean angiosperms which is equal to 99 (80%, 

here and further percentage is given based on the total number of identified pollen types, excluding 

spores and unknown palynomorphs). The number of basal and monocotyledonean angiosperms is 16 

(13%). Gymnosperms are represented by 9 types (7%).  

 

Table of spore and pollen types according to their morphology (after Lang, 1994 with additions). Only 

identified types are included. 

Morphological type 
 

Taxa Plate 

Monolete spores  Davallia 1 

Schizaea 2 

Trilete spores 
 
 

Cf. Anthocerus  19 

Cyathea 20 

Dicksonia 21 

Huperzia 22 

Lycopodium 23 

Ophioglossum  24 

Selaginella 25 

Vesiculate, saccate 
grains 

Dacrycarpus type 42 

Dacrydium type 43 

Phyllocladus 44 

Picea type 45 

Pinus type 1 46 

Pinus type 2. Cf. P. sylvestris 47 

Podocarpus 48 

Tsuga type 49 

Polyade grains Acacia 50 

Albizia 51 

Tetrade grains Annona 52 

Ericaceae indet. 53 

Mimosaceae indet. type 54 

Inaperturate grains  
 

Agathis 
 
 

55 
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Monosulcate grains Areca 56 

Arecaceae indet., type 1 57 

Arecaceae indet., type 2 58 

Arecaceae indet., type 3 59 

Arenga 60 

Calamus 61 

Caryota 62 

Chloranthaceae indet. 63 

Iridaceae/Liliaceae indet. 64 

Nypa 65 

Oncosperma 66 

Pinanga 67 

Dicolporate grains 
 
 
 

Cunoniaceae indet. 68 

Tricolpate grains 
 
 

Acanthaceae indet. 69 

Cf. Brassicaceae indet. type 70 

Clematis 71 

Durio 72 

Oleaceae indet., type 1 73 

Plumbaginaceae indet. 74 

Ranunculaceae indet. type 75 

Heterocolpate grains 
 
 

Arceuthobium 76 

Combretaceae/Melastomataceae indet., type 1 77 

Combretaceae/Melastomataceae indet., type 2 78 

Monoporate grains Oryza type 79 

Pandanus 80 

Poaceae indet. 81 

Typha 82 

Zea mais 83 

Diporate grains Ficus 84 

Trema 85 

Triporate grains 
 
 

Allophylus, type 1 86 

Bignoniaceae indet., type 1 87 

Casuarina 88 

Celtis 89 

Cucurbitaceae indet. 90 

Engelhardia  91 

Fabaceae indet., type 1 92 

Myrica 93 

Moraceae/Urticaceae indet. 94 

Onagraceae indet. 95 

Pometia 96 

Sonneratia  97 

Tetraporate grains 
 
 
 
 

Alnus, type 1 98 

Allophylus, type 2 99 

Dysoxylum 100 

Garcinia 101 
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4-6-porate, 
Stephanoporate 
grains 

Alnus, type 2 102 

Ulmus 103 

5-colpate  
  
 

Quintinia  104 

6-colpate grains   Cf. Bignoniaceae indet., type 2/Cf. Lamiaceae 
indet. 

105 

Periporate grains 
 
 
 

Altingia  106 

Amaranthaceae indet. 107 

Caryophyllaceae indet. 108 

Cyperaceae indet. 109 

Hibiscus 110 

Juglandaceae indet. 111 

Malvaceae indet., type 1 112 

Malvaceae indet., type 2 113 

Plantago 114 

Thalictrum 115 

Thymeliaceae indet. type 116 

Tricolporate grains Acalypha  117 

Aglaia 118 

Ailanthus 119 

Alchornea 120 

Anacardiaceae indet. 121 

Apiaceae indet. 122 

Artemisia 123 

Asteraceae indet., type 1 124 

Asteraceae indet., type 2 125 

Asteraceae indet., type 3 126 

Avicennia 127 

Barringtonia 128 

Bombacaceae indet. 129 

Bruguiera 130 

Castanopsis/Lithocarpus 131 

Centauria  132 

Clethra type 133 

Dillenia 134 

Dipterocarpaceae indet. 135 

Elaeocarpus 136 

Eucalyptus 137 

Euphorbiaceae indet. 138 

Fabaceae indet., type 2 139 

Hopea 140 

Ilex 141 

Ixora 142 

Loranthaceae indet., type 1 143 

Loranthaceae indet., type 2 144 

Loranthaceae indet., type 3 145 

Lythraceae indet. 146 

Macaranga/Mallotus 147 
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Malpighiaceae indet 148 

Myrtaceae indet. 149 

Polygonaceae indet.  150 

Quercus 151 

Rhizophora 152 

Rosaceae indet. type 153 

Rubiaceae indet. 154 

Rutaceae indet. 155 

Salix type 156 

Sapindaceae indet. 157 

Sapotaceae indet. 158 

Symplocos 159 

Verbenaceae indet. type 160 

Vitaceae indet. type 161 

Weinmannia 162 

4-colporate grains Meliaceae type 163 

Oleaceae indet., type 2 164 

Fenestrate grains Asteraceae subfamily Cichorideae indet. 165 

 

In terms of the size, the largest of pollen grains (larger than 50 µm) were recorded for Annona 

(Annonaceae, Appendix, Fig. 54), Malvaceae (Appendix, Fig. 114-115) including Hibiscus (Appendix, 

Fig. 112), Onagraceae (Appendix, Fig. 97), Picea type (Appendix, Fig. 47) and Tsuga type (Appendix, 

Fig. 49) (Pinaceae) some of Poaceae, e.g. Zea mays (Appendix, Fig. 85), while rather small grains 

(about 10 µm and less) are represented by, for example, Aglaia (Meliaceae, Appendix, Fig. 120), 

Elaeocarpus (Elaeocarpaceae, Appendix, Fig. 137), some of Ficus (Moraceae, Appendix, Fig. 86) and 

Weinmannia (Cunnoniaceae, Appendix, Fig. 164).  

Pollen diversity reflects regional vegetation sufficiently well; most of vegetation types could be 

inferred from pollen and spore assemblages both in Kalimantan and in Java. Among pollen, arboreal 

types estimate 99 (80% of all identified pollen types), while non-arboreal pollen types account 25 

(20%). Additionally, two tree ferns, i.e. Dicksonia (Appendix, Fig. 23) and Cyathea (Appendix,Fig. 22), 

as well as one spore type of mosses (Cf. Anthocerus, Appendix, Fig. 21) were represented. Wet 

lowland evergreen forest is indicated by 69 pollen types (57% of all identified pollen types), while dry 

lowland forest is reflected by 4 (3%); 7 pollen types (6%) are related to the submontane and/or lower 

montane forest and 11 (9%) to the upper montane forest. Some 4-5 of pollen taxa (about 3%) are 

related to the specifically tropical dipterocarp group, all found in samples off the Jelai and Pembuang 

rivers flowing through the large peat swamp areas in Kalimantan. Additionally, Engelhardia 

(Appendix, Fig. 93), Myricaceae (Appendix, Fig. 151), Ilex (Appendix, Fig. 142), Pandanus (Appendix, 

Fig. 82), and Durio (Appendix, Fig. 74) may point to this specific type of the vegetation.  
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No evidences of dipterocarp forest were obtained for Java as this forest type is virtually absent from 

most of the island. Mangroves were reflected by 5 pollen types (4 %), all with the sufficient 

abundance. In the most modern samples, abrupt decrease in mangrove pollen abundance may point 

to the human activity induced destruction of mangrove belt, on Java especially. Aquatic vegetation 

was also reflected poorly, by Typha (Appendix, Fig. 84) and Cyperaceae indet. (Appendix, Fig. 111) 

only.  

About the half of all pollen types were found both in the sediment core samples and in the samples 

from a sediment trap. The most abundant pollen types both for pollen trap and for sediment cores 

were those typical for the lowland rainforest, e.g. Elaeocarpus (Appendix, Fig. 137), 

Moraceae/Urticaceae (Appendix, Fig. 96), Euphorbiaceae (Appendix, Fig. 139) and submontane 

forest, e.g. Castanopsis/Lithocarpus (Appendix, Fig. 144), Quercus (Appendix, Fig. 153), Engelhardia 

(Appendix, Fig. 93), Myrica (Appendix, Fig. 93). High values (up to 60%) of secondary vegetation taxa, 

e.g. Macaranga/Mallotus (Appendix, Fig. 149), Acalypha (Appendix, Fig. 119), Ficus (Appendix, Fig. 

86), and Trema (Fig. 87) point to the wide occurrence of secondary forest and is supported by the 

modern pattern of lowland vegetation distribution (Appendix, Fig.1).  

Montane forest is reflected by Podocarpus (Appendix, Fig. 50), Dacrycarpus (Appendix, Fig.44), 

Phyllocladus (Appendix, Fig. 46), Dacridium (Appendix, Fig. 43), Myrica, Engelhardia, and Ericaceae 

(Appendix, Fig. 55). For all vesiculate pollen long-distance transport cannot be excluded. Relatively 

frequent are Arecaceae pollen (Appendix, Fig. 58-64 and Fig. 68), particularly Arenga (Appendix, Fig. 

62), in most of the modern samples. In the samples off Jelai River especially, Arecaceae pollen may 

indicate palm plantations. Additional indicator for a large formation of plantations in recent times 

could be the increased abundance of Eucalyptus (Appendix, Fig. 138) and occurrence of Pinus 

(Appendix, Fig. 48) pollen in sediment samples taken off East Java. Increased agricultural activity is 

reflected by a relative increase of large-grained Poaceae, e.g. Orhiza type (Appendix, Fig. 81) as well 

as Zea mays (Appendix, Fig. 85).  

 
6.5.  Conclusion 

 

This paper provides the first documentation of the pollen and spore diversity in marine sediments 

from the Java Sea and SE Indian Ocean and presents microphotographic images of 138 pollen/41 

spore types, including 124/9 identified and 14/32 unidentified types. We consider this set of digital 

photographs taken with a light microscope on different focal levels as a base for the further 

palynological and palaeoecological work. It may help as the comprehensive reference for 

morphology and taxonomy of fossil pollen and spores recovered from marine sediments in Indonesia 

and to be the good start for the future detailed studies on such a rich and diverse pollen flora in 
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Indonesia. However, our knowledge on the pollen and spore flora of the region is still limited, the list 

of pollen and spores is far from being completed and additional investigations are required. 
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CHAPTER  7 

 
 

Overall discussion and synthesis  

 

 

7.1. Main research outcomes and discussion 

 

Our studies presented in the previous chapters evidenced that marine sediment material from the 

Java Sea has a good potential to be used for the palaeoenvironmental reconstruction in Kalimantan 

and Java. The total of four sequences from the mouth of the River Jelai (core 1412-19, SE 

Kalimantan), off the River Pembuang (core 1412-23, S Kalimantan) and from the water plume of the 

River Solo (cores 1609-30, NE Java) contributed to a general picture the of late Holocene 

environment in Indonesia and SE Asia. In order to obtain possibly more detailed information, a 

combination of terrestrially-born proxies, such as pollen/spores and microcharcoal were used 

together with the water-born proxies, i.e. organic-walled dinocysts. This approach helped to enhance 

our overall knowledge of environment dynamics, history of vegetation and land use in the region, 

spanning over the last ca 3500 cal years. This novel data can be compared and contrasted with other 

terrestrial and marine environmental records from the region. In this chapter we derive main 

outcomes of our work, discuss open questions and give an outlook to the further possible 

perspectives of marine palynology in Indonesia.  

 

7.1.1. Relations between vegetation and pollen  

 

The issue of relations between vegetation and pollen was addressed in chapters 3 and 5. Fossil pollen 

and spore diversity in the sediment material from the Java Sea reflected neighboring regional 

vegetation sufficiently; most of vegetation types both from NE Java (the River Solo catchment) and S 

Kalimantan (basins of the rivers Jelai and Pembuang) are well represented in the pollen assemblages 

(chapter 5). The highest pollen diversity and abundance was detected for Kalimantan and was 

corresponded to the wet lowland evergreen rainforest. The most abundant pollen group in Java was 

adjacent to the secondary vegetation and accounted up to 60% of total pollen sum. Pollen from 

mangroves and submontane/lower montane forest reliably show dynamics of these vegetation types 

through the time, whilst dry lowland forest and upper montane forest taxa were underrepresented 
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in pollen from all studied cores. Specific and widely distributed in Kalimantan peat swamp forest 

were evidenced from high abundances of Engelhardia pollen as well as from the presence of 

Myricaceae, Ilex, Pandanus, and Durio pollen. Dipterocarp forest was represented by Hopea, Shorea, 

and indeterminate pollen of Dipterocarpaceae. At present, this forest type is virtually absent from 

Java, this explains why it was not evidenced for the modern sediments collected with the sediment 

trap JAM-2 (chapter 2), although grains of Dipterocarpaceae were found off the River Solo in 

sediments dated back to ca 820 cal yr BP and earlier (chapter 3).  

Aquatic vegetation was reflected poorly, by two pollen types (Typha and Cyperaceae indet.) only. 

Palynologically, herb diversity in Java, where extensive open shrub- and grasslands occur since ca 

500-800 cal yr BP (Chapter 1, Fig. 1.5. and literature cited), were higher and better reflected than in 

Kalimantan. Among the land-use indicators, in most of the modern samples were found an increased 

abundance of Arecaceae pollen, particularly Arenga that could have been started to be cultivated for 

its fiber and as a source of sugar (Stuijts, 1993) since ca 1000 cal yr BP; large-grained Poaceae, e.g. 

Orhiza type and Zea mays help to evidence agriculture. For Java, additional indicator of human 

activity in a form of reforestation could be increased abundance of the Eucalyptus and Pinus pollen 

that may point to plantation development as it was suggested by Van der Kaars and van den Bergh 

(2004).  

As the sediment trap study has shown (chapter 2), marked amount of accumulated pollen could be 

related to the long distance transport from continental part of SE Asia and Sumatra (from 7% to 17% 

of total pollen sum) during NW monsoon season from N Australia (up to 10% of total pollen sum) 

during the SE monsoon. Vesiculate pollen (e.g. Pinus and Picea) as well as Alnus, Quercus and some 

herbaceous pollen types like Ranunculaceae indet. and Thymeliaceae indet. could become a subject 

of aeolian and marine translocation between mid-December and beginning of March, while from 

beginning of July till November pollen of Casuarina and Eucalyptus can contribute. Since all of these 

taxa also naturally grow or are planted in SW Java, it is difficult to make unequivocal conclusions with 

regard to origin of this pollen in marine sediments.  

Maxima of some pollen types (i.e. Elaeocarpus, Myrica, Dacrycarpus, Casuarina, and Podocarpus) are 

connected with the flowering periods of related trees. Our work shown that regional patterns of 

pollen are strongly dependent on the reversal system of winds and marine currents, especially in 

monsoon-induced climate like one in Indonesia.  

 

7.1.2. Late Holocene vegetation, climate and human impact in Kalimantan and Java inferred from 

marine and terrestrial proxies 
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The last ca 3500 years vegetation and land use history of Java (the River Solo catchment) and 

Kalimantan (basin of the River Jelai) were in a focus of our interest in the chapter 3. Main 

environmental changes indicated for both islands were related to human activity. A decline in 

primary forest taxa, as it has been reviled for such commercially important timber tree taxa as 

Agathis, Allophylus, Dacrycarpus, Dacrydium, Dipterocarpaceae, Phyllocladus, and Podocarpus, are a 

subject of logging in the study area. These changes were correspondent to the increase in pollen of 

pioneer (e.g. Acalypha, Ficus, Macaranga/Mallotus, and Trema) and herb taxa indicating openings in 

the canopy and development of secondary vegetation. In Java, these changes started about ca 2950 

cal yr BP that is much earlier than in Kalimantan where the first changes recorded at ca 910 cal yr BP 

and were less intensive.  

 

7.1.3. Late Holocene environment in the Java Sea 

 

Dinocyst and biogeochemical analysis as two independent methods were applied to a set of the 

sediment samples obtained off the Pembuang River mouth (SE Kalimantan, chapter 4) and show 

good correlation. The sedimentary sequences revealed four major units, which were corresponded 

with distinct environmental changes. The first unit (between 2850 and 2480 cal yr BP) indicated 

tropical fully-marine and shallow water environment that is characterized by a relatively low 

productivity and is generally similar to recent conditions. Foraminifera and cocolithophores probably 

dominated the phytoplankton over dinoflagellates and diatoms. After 2480 cal yr BP water 

ventilation apparently enchased as it was reviled from the elimination of the oxygen-degradable 

heterotrophic dinocysts. Typically open-water dinocyst association had been gradually changed by 

neritic one between ca 2040 and 1530 cal yr BP. Afterwards, before ca 990 cal yr BP, more 

pronounced influence of the Pembuang River was suggested by the increase of δ15N and decreased 

δ13Corg values. That is supported by the occurrence of Lingulodinium machaerophorum and 

Nematosphaeropsis labyrinthus, good indicators of fresh water input and increased wash-off from 

land.  

A gradual change from relatively well ventilated to more hypoxic bottom/pore water conditions in a 

more eutrophic environment were also reflected by the dinoflagellate cyst association off the Jelai 

and the Solo rivers (chapter 3), which well corresponds to the changes in vegetation on land. Near 

the coast of Java, the shift of the water trophic status took place between ca 820 and 500 cal yr BP, 

while near the coast of Kalimantan it occurred as late as at the beginning of the 20th century. 

Increasing amount of certain types of dinocysts, e.g. cysts of Polykrikos schwartzii and P. kofoidii, 

Lingulodinium machaerophorum, Nematosphaeropsis labyrinthus, Selenopemphix nephroides at 

times of secondary vegetation development on land, pointed to the enhanced input of nitrogen and 
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phosphorus that may be a result of human induced terrestrial changes such as vegetation cover 

disturbance and soil erosion. Occurrence of these dinocysts were strongly positively correlated with 

the increase in pioneer taxa and negatively correlated with increase in pollen taxa related to the 

primary forest vegetation, suggesting that these taxa may potentially be used as palaeoecological 

indicators of anthropogenic activity. 

The signal of intensive logging on land found about 50-70 years later, than the changes in the 

dinocysts assemblages in the marine realm of the Java Sea. This is in accordance to the time which is 

required for the vegetation changing, establishing a pioneer community in and a complete re-

organization of the vegetation (chapter 2; Whitmore, 1975; Stuijts, 1993). 

 

7.2. Open questions  

 

A number of open questions are still left behind this study, mainly, due to the fact that marine 

palynology in Indonesia is a young area of science and also because of the peculiarities of the study 

area. First of all, a lot more detailed research on the regional patterns of modern pollen spectra in 

the Indonesian waters as well as on factors influencing them are required. As our study reviled it for 

the SE Indian Ocean (Chapter 3), both regionally produced pollen and the one brought from a long 

distances are collected in marine sediments. The proportion of pollen originated from different 

vegetation sources changes due to the seasonal monsoon reversal and, therefore, reversal of marine 

currents. The picture became even more complex because pollen transport is depend not only on 

marine and wind currents, but is also controlled by river regime, local precipitation, vegetation 

specificity (Sun et al., 2002), flowering periods, processes of pollination, pollen production and pollen 

preservation. The role of all these factors and their relationships are still unclear and opens a room 

for further investigations. Moreover, winds/marine currents are not only bringing additional amount 

of pollen from long distance, they obviously also blowing/washing away some of the regionally 

produced pollen. Amount of this taken away pollen is so far uncertain and needs to be accurately 

calculated. This task, however, is not a trivial one, as most of registered taxa do have a broad areas of 

growth and can be found almost everywhere from South China and Malay Peninsula to Indonesian 

archipelago and North Australia. 

With regard to our understanding of the late Holocene (about  the last ca 3500 years BP) vegetation 

patterns in SE Kalimantan and NE Java (Chapter 3), proportion of mountain vegetation, for pollen 

spectrum of Java especially, seems to be overestimated. Most of Javanese natural forests are 

destroyed (e.g. Stuijts, 1993) so that the source vegetation for e.g. Dacrycarpus, Dacrydium, 

Podocarpus and Phillocladus in Java is limited. As this pollen easily travels over long distance, aeolian 

transport can contribute to the presence of vesiculate pollen of montane coniferous in marine 
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sediments (Heusser and Balsam, 1977; Heusser, 1988; Sun, 1999), although the rate of this 

contribution has not been estimated precisely so far.   

Another potential challenge is how to separate riparian and peatland forests species based on pollen 

types (Chapter 4). As the most of riparian and peatland taxa can also grow elsewhere: in lowland 

forest (e.g. Anacardiaceae, Celtis, Dipterocarpaceae, Elaeocarpus, and Euphorbiaceae), submontane 

forest (e.g. Engelhardia and Myrsine) or can originate from the secondary vegetation (e.g. 

Macaranga/Mallotus and Pandanus), it is difficult to say with no doubt which vegetation type do 

they represent.  

As for the fire records, which show enhanced burning since ca 1500 cal yr BP in East Java and since ca 

980 cal yr BP in South Kalimantan, it remains unclear, whether these regional fires were of natural or 

of anthropogenic origin. Even though it is possible that fires can be lit naturally by lightning or during 

the hot days of droughts, it is often that fires are lit by people. Slush-and-burn system of agriculture 

is very popular in Indonesia even nowadays as it is simple, easily available and not only clears the 

land but also improves the soils by means of adding ash. We do not know exactly when this kind of 

agriculture has been started, but it is very old and widely used technique. Other reasons to set fire 

can be e.g. a road construction or a clearing place for a new settlement. Thus, the exact reason for 

relatively high microcharcoal concentrations in late Holocene sediments of the Java Sea is doubtful. 

We do not possess so far any evidences to prove or to discard any of above described versions. 

Being perfect for research on the land use, forest dynamics, eutrophication and other  processes 

related to human activity, cores 1412-19 (South Kalimantan) and 1609-30 (East Java) did not allow us 

to make any concrete and unequivocal conclusions on natural dynamics (e.g. connected to climate 

change or to sea level fluctuations) in the study area. The signals of natural dynamics that we 

discussed in our work were strongly biased by anthropogenic activity.    

In terms on dinocyst analysis, our main uncertainties were connected to cosmopolitan species (i.e. 

Operculodinium centrocarpum, Spiniferites ramosus, Sp. Pachydermus) and indeterminate types of 

Spiniferites and Operculodinium) that occur in a broad range of salinity and trophic conditions and 

build up the most of dinocyst association of the core 1612-23 (Chapter 5). Whilst the most of these 

species are typical for warm waters, interpretation of their dynamics is difficult to conduct in terms 

of regional factors. Furthermore, pollen and dinocyst analysis, alike any other methods of relative 

stratigraphy, are based on a limited sets of radiocarbon data and linear approach in age-depth 

modelling that could require more accuracy.   

In the light microscopy technique as it was used for pollen analysis, the level of taxonomic 

differentiation is restricted. Thus, in most cases determination of pollen grains was possible on the 

genus level or a combination of two or more genera, occasionally even on family level (Birks and 

Birks, 1980; Demske et al., 2013). This restriction can be crucial, for instance, to distinguish with sure 
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crop cultures from other Poaceae (e.g. Orhiza type; Chapter 6). Sometimes one pollen/spore “type” 

can include including several different taxa under the same name, and it is not necessarily that they 

origin from the same vegetation type (e.g. Moraceae/Urticaceae  

and psilate/not well preserved Weinmannia pollen, pollen of Saurauia and Elaeocarpus). In some 

cases, however, inseparable taxa have almost the same biological and ecological characteristics (e.g. 

in case of Lithocarpus/Castanopsis or Macaranga/Mallotus) while for the majority of fern spores light 

microscope determination is almost impossible. Unclear or ambiguous determinations highly 

influence pollen records reducing their accurateness.  

 

7.3. Concluding remarks  

 

The results obtained during this research project give a good illustration to all advantages of a 

combined use of independent proxies for environmental reconstructions in SE Kalimantan and NE 

Java as well as in the Java Sea. Pollen/spore and organic-walled dinocyst records, being applied 

together, allow better and more comprehensive interpretation on palaeoenvironmental conditions 

of the past. If driven by the same group of factors (e.g. related to human activity), they show a good 

correlation as our studies on marine sediment cores  1412-19 (South Kalimantan) and 1609-30 (East 

Java) illustrated. The hypotheses approached at the beginning of these studies can be addressed as 

following: 

 

(1) Main vegetation communities of SE Kalimantan and NE Java as well as their changes in time 

are documented in sediments from the Java Sea, although a roll of pollen transported from a 

long distance (e.g. from the continental Asia, Sumatra, and N Australia) needs to be 

considered. 

(2) Anthropogenic environmental changes play greater role in the dynamics of the past 

communities in SE Kalimantan and NE Java during the last ca 3500 cal yr; the signals of 

natural dynamics are strongly biased by anthropogenic activity.  

(3) Anthropogenic activity related to land use (e.g. logging, agriculture and plantations 

development, aquaculture and/or fires) increased during the Late Holocene/Anthropocene, 

particularly in Java. 

(4)  Environmental changes are reflected both in pollen/spores and dinoflagellates assemblages; 

the pollen-based signal from land is delayed about 50-70 years compared to the dinocysts-

based signal from the sea. 

(5) Anthropogenic environmental changes on the island of Java are evidenced to have started 

about 2000 yr earlier then on the island of Kalimantan. 
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7.4. Further perspective  

 

Marine palynology in Indonesia is a young branch of research with an open future and a broad range 

of perspectives. Many efforts are still can be taken in order to understand all complex of 

relationships between source vegetation and pollen transportation factors that influence a 

composition of pollen assemblages in marine sediments. Our knowledge of ecosystem dynamics and 

climate variability in the region during the late Holocene is still limited by the lack of palaeoecological 

record. Marine sediments as potential palaeoclimate and palaeoenvironment archives are very 

promising, and further high-resolution multiproxy are expected in Indonesia, in particular in 

Kalimantan with its unique ecosystems and long history of vegetation development. We can expect 

increased interest to marine palynology in Indonesia in the nearest future and may look forward to 

improve our overall knowledge about magnificent nature of Palaeotropics with all its unique and 

intricate ecosystems on land and in sea. However, one who dears to come to nature for any, even for 

scientific purposes, should always remember to be as less destructive as one can. 
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Appendix A 
 

 

 
Complete lists of identified pollen, spores and organic-walled 

dinocysts types mentioned in the thesis 

 

 

 

Appendix A1. Complete list of pollen and spore types mentioned in the thesis 

Appendix A2. Microphotographs of all sporeans pollen types mentioned in the thesis 
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Appendix  A1. Complete list of pollen and spore types mentioned in the thesis 

name 
pollen / spore 
type 

plate sediment 
trap 

JAM2 

core 
1412-

19 

core 
1609-

30 

core 
1612-

23 

core  
1612-

26 

Davallia monolate spore 19 
 

* * *  

Schizaea monolate spore 20 
 

* 
 

*  

Cyathea trilate spore 1 * * * * * 

Disconia  trilate spore 21 * 
 

 
*  

Huperzia trilate spore 22 * * * *  

Lycopodium trilate spore 23 * * * * * 

Ophioglossum  trilate spore 24 * * * 
 

 

Selaginella trilate spore 2 * * * * * 

Cf. Anthocerus  trilate spore 25 
 

* 
 

 
 

Acacia polyade 50 
  

 
*  

Acalypha  tricolporate 117 * * * * * 

Acanthaceae indet. tricolporate 69 * * * *  

Agathis inaperturate 55 
 

* * *  

Aglaia tricolporate 118 
 

  
*  

Albizia polyade 119 
 

   

 

Alchornea tricolporate 51 * * * *  

Ailanthus tricolporate 120 
 

  
*  

Allophylus, type 1 tricolporate 86 * * * 
 

 

Allophylus, type 2 tetraporate 99 
    

 

Alnus, type 1 tetraporate 98 * * * 
 

 

Alnus, type 2 5-porate 102 * 
 

* *  

Altingia  periporate 106 
 

  
*  

Amaranthaceae indet. peripor 107 * * * *  

Anacardiaceae indet. tricolporate 121 * * * *  

Annona inaperturate 52 
 

  
*  

Apiaceae indet. tricolporate 122 
 

  
*  

Arceuthobium heterocolp 76 
 

   

 

Areca monosulcate 56 
 

  
*  

Arecaceae indet., type 1 monosulcate 57 * * 
 

* * 

Arecaceae indet., type 2 monosulcate 58 * * * *  

Arecaceae indet., type 3 monosulcate 59 
 

* * *  

Arenga monosulcate 60 * * * *  

Artemisia tricolporate 123 
 

  
*  

Asteraceae indet., type 1 tricolporate 124 * * * *  

Asteraceae indet., type 2 tricolporate 125 
 

 
* *  

Asteraceae indet., type 3 tricolporate 126 
 

 

* *  

Avicennia tricolporate 165 * * * *  

Barringtonia tricolporate 127 
    

 

Bignoniaceae indet., type 2 tricolporate 128 * * * *  

Bignoniaceae indet., type 
2/Cf. Lamiaceae indet. 

peripor 87 * * * 
 

 

Bombacaceae indet. tricolporate 129 
 

  
*  

Cf. Brassicaceae indet. 
type 

tricolpate 130 
 

  
 

 

Bruguiera tricolporate 61 
 

* 
 

*  

Calamus monosulcate 108 
 

  
*  

Caryophyllaceae indet. peripor 62 * * * *  

Caryota monosulcate 131 * * * *  

Casuarina tricolporate 88 * * * *  

Celtis tricolporate 89 * * * *  
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Centauria tricolporate 132 
 

  
*  

Chloranthaceae indet. monosulcate 105 
 

* * *  

Asteraceae subfamily     
           Cichorideae indet. 

fenistrate 70 * * 

 
 

 

Castanopsis/Lithocarpus tricolporate 63 * * * * * 

Clematis tricolporate 71 
 

  
*  

Combretaceae/ 
Melastomataceae indet., 
type 1 

heterocolporate 133 * * * * 
* 

Combretaceae/ 
Melastomataceaeindet., 
type 2 

heterocolporate 77 * * * * 
* 

Clethra type tricolporate 78 * * * *  

Cucurbitaceae indet. triporate 90 * * 
  

 

Cunoniaceae indet. dicolpate 68 * * * *  

Cyperaceae indet. monoporate 109 * * * *  

Dacrycarpus type vesiculate 42 * * * *  

Dacrydium type vesiculate 43 
 

 
* 

 

 

Dillenia tricolporate 134 
 

  
*  

Dipterocarpaceae indet. tricolporate 135 
 

* * *  

Durio tricolporate 72 
 

  
*  

Dysoxylum tetraporate 100 
 

  
*  

Elaeocarpus tricolporate 136 * * * * * 

Engelhardia  triporate 91 * * * *  

Ericaceae indet. tetrade 53 * * * *  

Eucalyptus tricolporate 137 * * * *  

Euphorbiaceae indet. tricolporate 138 * * * *  

Fabaceae  indet., type 1 tricolporate 92 
 

* * *  

Fabaceae indet., type 2 tricolporate 139 
 

* 
 

*  

Ficus diporate 84 * * * *  

Garcinia tetraporate 101 
 

  
*  

Hibiscus peripor 110 
 

  
*  

Hopea tricolporate 140 
 

   

 

Iridaceae/Liliaceae indet monosulcate 141 * * * 
 

 

Ilex tricolporate 64 * * * 
 

 

Ixora  tricolporate 142 
 

   

 

Juglandaceae indet. peripor 111 
 

  
*  

Loranthaceae indet., type 
1 

tricolporate 
143 

 
* * * 

 

Loranthaceae indet., type 
2 

tricolporate 
144 * * 

  

 

Loranthaceae indet., type 
3 

tricolporate 
145 

 
* * 

 

 

Lythraceae indet. triporate 146 * 
   

 

Macaranga-Mallotus tricolporate 147 * * * *  

Malvaceae indet., type 1 periporate 148 * * 
  

 

Malvaceae indet., type 2 periporate 112 
 

 
* 

 

 

Malpighiaceae indet tricolporate 113 
 

 
* 

 

 

Meliaceae type 4-colporate 163 
    

* 

Mimosaceae indet. type polyade 54 * * * *  

Moraceae/Urticaceae 
indet. 

triporate 94 * * * * 
* 

Myrica tricolporate 93 * * * * * 

Myrtaceae indet. tricolporate 149 * * * *  

Nypa monosulcate 65 * * * *  

Oleaceae indet., type 1 tricolporate 73 * * * *  
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Oleaceae indet., type 2 4-colporate 164 * 
 

* 
 

 

Onagraceae indet. triporate 95 
 

  
*  

Oncosperma monosulcate 66 * * * *  

Oryza type monoporate 79 * * * 
 

* 

Pandanus monoporate 80 
 

 
* *  

Phyllocladus vesiculate 44 
 

* * 
 

 

Picea type vesiculate 45 * 
  

 

 

Pinanga monosulcate 67 
 

   

 

Pinus type 1 vesiculate 46 * * * 
 

 

Pinus type 2. Cf. P. 
sylvestris 

vesiculate 47 * 

   

 

Plantago peripor 114 * * * *  

Plumbaginaceae indet. tricolpate 74 
 

  
*  

Poacaeae indet. monoporate 81 * * * * * 

Podocarpus vesiculate 48 * * * *  

Polygonaceae indet.  tricolporate 150 
 

  
*  

Pometia triporate 96 * * * 
 

 

Quercus tricolpate 151 * * * *  

Quintinia  5-porate 104 
 

  
*  

Ranunculaceae indet. type tricolpate 75 * 
 

* 
 

 

Rhizophora tricolporate 152 * * * * * 

Rosaceae indet. type tricolporate 153 * * * *  

Rubiaceae indet. tricolporate 154 * * * *  

Rutaceae indet. tricolporate 155 * * * *  

Salix type tricolporate 156 
 

* * 
 

 

Sapindaceae indet. tricolporate 157 * * * *  

Sapotaceae indet. tricolporate 158 * * * *  

Sonneratia  triporate 97 
 

* * *  

Symplocos tricolporate 159 
 

  
*  

Thalictrum periporate 115 
 

* * *  

Thymeliaceae indet. type inaperturate 116 * * * *  

Trema diporate 85 * * * * * 

Tsuga type vesiculate 49 
 

   
* 

Typha monoporate 82 
 

* 
 

 
 

Ulmus tetraporate 103 * * * 
 

* 

Verbenaceae indet. type tricolporate 160 
 

  
*  

Vitaceae indet. type tricolporate 161 
 

  
*  

Weinmannia tricolporate 162 
 

* * *  

Zea mays monoporate 83 * * * 
 

 
 

Note:  “indet.” stays if more precise identification than a lavel of family for some objective resons is 
not possible; “type” indicates that more than one pollen type can be included; “Cf.” - stays for 
unclear or doubtfull identification; * indicates presence of the pollen/spore type in a sediment core 
or in the sediment trap samples. Empty cell stays for abcence. 
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Appendix A2. Microphotographs of all spore and pollen types mentioned in the thesis 
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Appendix B 
 

Complete list of organic-walled dinocysts types mentioned in the 

thesis 

name core 1412-19 core 1609-30 core 1612-23 

Ataxodinum choanum * 
 

* 

Bitectatodinium spongium * * * 

Bitectatodinium spongium 
  

* 

Brigantedinium spp. (Round Brown Cyst) * * * 

cyst of Polykrikos kofoidii * * * 

cyst of Polykrikos schwartzii * * * 

Dalella chathamensis * 
  Echinidinium delicatus * 
  Echinidinium granullatum * * * 

Echinidinium monospinum * 
  Echinidinium transparantum * * * 

Echinidinium zonneveldiae * * * 

Impagidinium aculeatum * 
 

* 

Impagidinium plicatum  
 

* 

Impagidinium sphaericum  
 

* 

Impagidinium ssp * * 
 Impagidinium strialatum * 

 
* 

Impagidinium variaseptum * * 
 Lejeunecysta oliva * * * 

Lejeunecysta paratenella * 
  Lejeunecysta sabrina * 
 

* 

Lingulodinium machaerophorum, normal 
processies * * * 

Lingulodinium machaerophorum, redusuced 
processies * * 

 Nematosphaeropsis labyrinthus * * * 

Operculodinium centrocarpum * * * 

Operculodinium israelianum * * * 

Operculodinium spp * * * 

Cyst of Pentapharsodinium dalei * * * 

Polysphaeridium zoharyi * * * 

Quinquecuspis concreta  
 

* 

Selenopemphix nephroides * * * 

Selenopemphix quanta * 
 

* 

Spiniferites elongatus type * 
  Spiniferites mirabilis * * * 

Spiniferites pachydermus * * * 
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Spiniferites ramosus * * * 

Spiniferites spp * * * 

Stelladinium robustum type * 
  Stelladinium stellatum * 
  Trinovantedinium applanatum   * 

Tuberculodinium vancampoae * 
 

* 

Votadinium calvum * * * 

Votadinium spinosum * * * 

Xandarodinium xanthum * * 
  

Note: (*) indicates presence of the dinocyst type in the core material. Empty cell stays for abcence. 
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Appendix C 

 

 
Complete Pollen Records 

 

 

 

Appendix C1. Complete pollen record (%) of sediment trap JAM-2 showing percentages of pollen of 
mangroves, lowland and montane trees, herbs and fern spore as well as pollen and Pteridophyta 
sums and pollen accumulation rate (PAR) under changing monsoon conditions in the Indian Ocean 
off SW Java.  
 
Appendix C2. Complete pollen record (%) of the sequence 1412-19 showing relative frequencies of 
pollen and spore types, main vegetation groups, pollen and microcharcoal concentrations. 
 
Appendix C3. Complete pollen record (%) of the sequence 1609-30 showing relative frequencies of 
pollen and spore types, main vegetation groups, pollen and microcharcoal concentrations. 
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Appendix C1. Complete pollen record (%) of sediment trap JAM-2 showing percentages of pollen of mangroves, lowland and montane trees, herbs and fern spore as 
well as pollen and Pteridophyta sums and pollen accumulation rate (PAR) under changing monsoon conditions in the Indian Ocean off SW Java.  
 

 
Notes: The abbreviations indicate the following: NW - northwest monsoon; non (light-grey shading) - intermonsoon period; SE (dark-grey shading), southeast monsoon; LDS 
– long distance component; N - long distance component collected during the northwest monsoon; S - long distance component collected during the southern monsoon. 
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Appendix C1. Complete pollen record (%) of sediment trap JAM-2 showing percentages of pollen of mangroves, lowland and montane trees, herbs and fern spore as 
well as pollen and Pteridophyta sums and pollen accumulation rate (PAR) under changing monsoon conditions in the Indian Ocean off SW Java (continuation). 
 

 

Notes: The abbreviations indicate the following: NW - northwest monsoon; non (light-grey shading) - intermonsoon period; SE (dark-grey shading), southeast monsoon; LDS 
– long distance component; N - long distance component collected during the northwest monsoon; S - long distance component collected during the southern monsoon. 



 

178 
 

Appendix C1. Complete pollen record (%) of sediment trap JAM-2 showing percentages of pollen of mangroves, lowland and montane trees, herbs and fern spore as 
well as pollen and Pteridophyta sums and pollen accumulation rate (PAR) under changing monsoon conditions in the Indian Ocean off SW Java (ending). 
 

 

 

Notes: The abbreviations indicate the following: NW - northwest monsoon; non (light-grey shading) - intermonsoon period; SE (dark-grey shading), southeast monsoon; LDS 
– long distance component; N - long distance component collected during the northwest monsoon; S - long distance component collected during the southern monsoon. 
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Appendix C2. Complete pollen record (%) of the sequence 1412-19 showing relative frequencies of pollen and spore types, main vegetation groups, pollen and 
microcharcoal concentrations. 

 

 

Note: Pollen types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles. Presence of cysts types contributing to the dinocyst total sum 
less than 2% on average depicted as black dots. 
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Appendix C2. Complete pollen record (%) of the sequence 1412-19 showing relative frequencies of pollen and spore types, main vegetation groups, pollen and 
microcharcoal concentrations (continuation). 
 

 

 

Note: Pollen types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles. Presence of cysts types contributing to the dinocyst total sum 
less than 2% on average depicted as black dots. 
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Appendix C2. Complete pollen record (%) of the sequence 1412-19 showing relative frequencies of pollen and spore types, main vegetation groups, pollen and 
microcharcoal concentrations (ending). 

 

 

Note: Pollen types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles.  
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Appendix C3. Complete pollen record (%) of the sequence 1609-30 showing relative frequencies of pollen and spore types, main vegetation groups, pollen and 
microcharcoal concentrations. 
 

 

 

Note: Pollen types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles. Presence of cysts types contributing to the dinocyst total sum 
less than 2% on average depicted as black dots. 
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Appendix C3. Complete pollen record (%) of the sequence 1609-30 showing relative frequencies of pollen and spore types, main vegetation groups, pollen and 
microcharcoal concentrations (continuation). 
 

 

 

Note: Pollen types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles. Presence of cysts types contributing to the dinocyst total sum 
less than 2% on average depicted as black dots.  
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Appendix C3. Complete pollen record (%) of the sequence 1609-30 showing relative frequencies of pollen and spore types, main vegetation groups, pollen and 
microcharcoal concentrations (ending). 
 

 

Note: Pollen types of pioneer taxa have striped profiles; pollen types of timber tree taxa have grey profiles.Presence of cysts types contributing to the dinocyst total sum 
less than 2% on average depicted as black dots. 
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Appendix D 
 

 
Core Stratigraphy and Radiocarbon Dating 

 

 

 

Appendix D1. Stratigraphy of the core 1412-19 and calibrated age model (linear interpolation, cal yr BP vs core 
depth) based on the radiocarbon dates from Table 1 (Chapter 2) and the estimated sedimentation rate. The 
outlet at 71-72 cm is depicted as a point unconnected to other dating points. 
 
Appendix D2. Stratigraphy of the core 1609-30 and calibrated age model (linear interpolation, cal yr BP vs core 
depth) based on the radiocarbon dates from Table 1 (Chapter 2) and the estimated sedimentation rate.  
 
Appendix D3. Stratigraphy of the core 1612-23 and calibrated age model (linear interpolation, cal yr BP vs core 
depth) based on the radiocarbon dates from Table 1 (Chapter 4) and the estimated sedimentation rate.  
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Appendix D1. Stratigraphy of the core 1412-
19 and calibrated age model (linear 
interpolation, cal yr BP vs core depth) based 
on the radiocarbon dates from Table 1 
(Chapter 2) and the estimated 
sedimentation rate. The outlet at 71-72 cm 
is depicted as a point unconnected to other 
dating points. 

 
 
 
 
 

 
 
 
 

 
Appendix D2. Stratigraphy of the core 1609-
30 and calibrated age model (linear 
interpolation, cal yr BP vs core depth) based 
on the radiocarbon dates from Table 1 
(Chapter 2) and the estimated sedimentation 
rate.  
 

 

 
 
 
 
 

 
 
 
 
 

 
Appendix D3. Stratigraphy of the core 1612-23 
and calibrated age model (linear interpolation, 
cal yr BP vs core depth) based on the 
radiocarbon dates from Table 1 (Chapter 4) and 
the estimated sedimentation rate.  
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