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Introduction 

Motivation and overview of this thesis 
Visual attention is the key feature for the visual system to filter relevant 

information that enters the system via the retina. Scientific interest in visual 

attention has increased within the last 25 years. Especially within the last 

decade, the information gained from multiple studies has broadened the 

horizon of attention-induced influences on a physiological and psychophysical 

level. However, the source of attentional control is to a large extent unknown 

and reported effects of attention are ambiguous. 

This thesis aims to shed light on the mechanisms of spatial attention, a selective 

process allowing prioritizing spatial locations in the visual field, on a 

psychophysical as well as on a perceptual level.  

The first and the second manuscript address the psychophysical aspects of 

spatial attention. Here, I investigated the influence of varying magnitudes of 

spatial attention on human subjects’ performance in discriminating visual 

motion directions. With the chosen stimuli I aim to target area MT, an area in 

the extrastriate cortex thought to underlie the perception of linear motion. As 

area MT is involved in early stages of cortical processing, I was targeting 

bilateral vs. unilateral visual field differences in the first manuscript. In the 

second manuscript I was interested to equate the effects of attention with the 

effects of signal strength and to measure their individual as well as their 

interactive influence on perceptual performance. 
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The third and the fourth manuscript address physiological aspects, in particular 

the neuropharmacology of spatial attention. The focus of the third manuscript 

lies on the methodological approach of pressure injection. This method allows a 

reversible pharmacological manipulation of the direct vicinity of the recording 

electrode and therefore exerts temporary influence on the local 

neurotransmitter network. Using this method, I investigated the cholinergic 

contribution to spatial attention modulation in the macaque monkey medial 

temporal area MT. The study described in manuscript four is the first study 

investigating the cholinergic involvement in attentional modulation in area MT 

of an awake, performing macaque monkey.  

Overview of the introduction 
This introduction provides a global overview of the main components of this 

thesis. It introduces the visual area of interest, mechanisms of spatial attention 

with regard to physiological and psychophysical effects, and the 

neuromodulator acetylcholine, a candidate for regulating the selective process 

of attention. 

In detail, the first part will give an introduction to visual information processing 

by highlighting its hierarchical organization. Motion processing is here of 

particular interest.  

Attention will be introduced in a second step, especially the psychophysical as 

well as physiological characteristics of visual attention directed toward spatial 

locations.  

In the third part of the introduction the neuromodulator acetylcholine is 

described. The anatomy of the cholinergic system in the central nervous system 

is introduced, including its topographically organized projections to the cortex. 
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The variety of cholinergic receptor types is highlighted, as well as their 

distribution in the pre- and post synapse and the variety of effects these 

receptors can trigger in the cortex. Additionally, the most recent models 

explaining the action of acetylcholine in the central nervous system are 

introduced, as well as the cholinergic hypothesis of several brain functions and 

dysfunctions. 

The fourth section will describe and discuss various studies reporting different 

aspects of cholinergic involvement in attention and highlight their limitations to 

directly link attentional modulation to specific cholinergic contribution. 

Specifically, recordings from striate cortex of macaque monkeys, which 

measured the direct relationship between acetylcholine and attentional 

modulation for the first time, will be described. In the last part of the 

introduction I will motivate the main study of this thesis, investigating the 

neuropharmacology of attentional modulation in area MT in the context of 

visual motion processing. 
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Motion processing in the visual system 

The hierarchical organization of the primate visual 

cortex 

Visual information processing in primates is achieved via a hierarchy of visual 

cortical areas, which show individual specifications to analyze certain features. 

For the visual system, two main anatomically separated, complementary 

processing streams, the ventral and the dorsal stream, have been hypothesized 

to be involved in processing different aspects of the visual scene (Ungerleider 

and Mishkin, 1982). The ventral stream is anatomically organized along the 

occipito-temporal cortical pathways originating in primary visual cortex and 

projecting via V2, V4 to IT and TEO. The dorsal stream also arises in the 

primary visual cortex and is located along the occipito-parietal pathway, where 

information is forwarded via V2 and V3 to area MT and MST (Van Essen and 

Maunsell, 1983). Higher areas of the dorsal stream are area FST, LIP and VIP.  

In addition to an anatomical segregation, the two processing streams can be 

distinguished based on their functional specificity. The ventral stream subserves 

recognition and distinction of object features like color and shape, whereas the 

dorsal stream shows highest specificity for the spatial aspects of visual scenes 

and plays therefore a major role in visual motion processing. Although the 

dorsal and ventral streams are anatomically and functionally distinctive and this 

two-streams hypothesis is widely accepted, there are additional anatomical 

interconnections linking areas of both streams (Ungerleider and Desimone, 

1986). This supports a functional connectivity that goes beyond the two-stream 

model of neural processing.  
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Although there are clear distinctions between the two processing streams, they 

also share common features. The early visual cortical areas in each of the two 

streams process simple and localized visual information, whereas higher visual 

cortical areas respond to more complex aspects of visual information (DeYoe 

and Van Essen, 1988).  

In addition to an increasing preference for stimulus complexity, the neuronal 

receptive fields show continuous enlargement with every successive stage in the 

hierarchy (Van Essen and Maunsell, 1983). A receptive field of a neuron is 

defined as a region in the visual field, in which a stimulus elicits a response of 

that neuron. Neurons in early visual area V1 have very small receptive field sizes 

of one visual degree, whereas receptive fields of neurons in late visual areas, like 

IT, cover a relatively large area of the visual field including the fovea (Gross et 

al., 1972).  

As the main focus of this thesis lies on the dorsal stream and especially on 

processing of visual motion it will be described here in more detail. 

Visual motion processing 

As motion perception is an essential feature of every organism in order to 

navigate through the environment and to detect mates, prey and predators, it is 

no surprise that visual areas exist, that are specialized for encoding motion. In 

the macaque monkey, the main areas involved in motion processing are the 

medial temporal area MT, the medial superior temporal area MST and the 

fundal superior temporal area FST, all being part of the dorsal stream (Zeki, 

1974, Orban et al, 1995, Boussaoud et al., 1990).  

However, it is also known that in macaque neocortex, the origin of motion 

selective processing is layer 4B of the primary visual cortex V1 (Hubel and 

Wiesel, 1968, Mishkin and Ungerleider, 1982). In 1968, it was first 
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demonstrated by Hubel and Wiesel that neurons in area V1 of the macaque 

monkey show directional selectivity: an increase in response to a specific 

direction of motion, while showing little or no response to the opposite motion 

direction (Hubel and Wiesel, 1968).  

There is a direct connection from area V1 to area MT via a subset of highly 

specialized, directionally selective, spiny stellate neurons (Maunsell and van 

Essen, 1983). These V1 neurons already show direction tuning. Thus MT doesn’t 

appear to compute the directional information exclusively de novo (Movshon 

and Newsome, 1996). In addition, there is also an indirect input from pyramidal 

neurons in area V1 to MT via the thick stripes of area V2 and through area V3 

(Ponce et al., 2008). This indirect input mainly serves for binocular-disparity 

segregation (Hubel and Livingstone, 1987), whereas propagation of motion 

processing to area MT is merely secondary. Figure 1 depicts the main visual 

areas being involved in motion processing in the macaque monkey.  

However, it was demonstrated that available motion information in area MT 

does not solely arise from area V1, as it was demonstrated that area MT showed 

residual motion responses after a V1 lesion (Rodman et al., 1989). Motion 

information is thought to additionally originate from the colliculo-cortical 

pathway and a combined lesion of the superior colliculus and V1, in contrast, 

completely abolishes directional responses in MT (Rodman et al., 1990).  
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Figure 1: A schematic view of the main visual cortical areas involved in motion processing in 

the macaque monkey. The superior temporal sulcus, intraparietal sulcus, lunate sulcus and 

inferior occipital sulcus are presented open (grey shaded areas) in order to provide a better view 

of the areas of interest. V1-V3: early visual areas, V3v: ventral part of V3 area, MT: medial 

temporal area, MST: medial superior temporal area, FST: fundal superior temporal area, VIP: 

ventral intraparietal area, LIP: lateral intraparietal area. Adapted from Parker et al. 2007. 

Visual motion information is directly transmitted from area MT to MST 

(Maunsell and van Essen, 1983), where even more complex aspects of motion 

are computed. Area MT is sensitive for linear movement direction and speed 

components (Albright, 1984), whereas the dorsal region of MST demonstrates 

selectivity to rotating, expanding and translational constituents of optic flow 

motion stimuli (Duffy and Wurtz, 1991). Additional higher-level areas that are 

involved in motion processing are the ventral intraparietal area VIP, lateral 

intraparietal area LIP, and the fundal superior temporal area FST (Colby et al., 

1993, Fanini and Assad, 2009, Rosenberg et al., 2008).  
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Area MT 

The medial temporal area MT with its location in the posterior bank of the 

superior temporal sulcus (STS) was first described more than 40 years ago 

(Dubner and Zeki, 1971). Anatomically, it can be clearly defined based on its 

heavily myelinated structure (Hof and Morrison, 1995). Functionally, it can also 

be distinguished from other visual areas based on the sensory properties of its 

neurons (Dubner and Zeki, 1971).  

Decades of experiments have contributed to this area being one of the best-

understood areas in terms of its sensory properties. Attributes like speed 

selectivity (Maunsell and van Essen, 1983), selectivity for motion in depth 

(Albright et al., 1984) as well as sensitivity to chromatic signals (Dobkins and 

Albright, 1994) have been ascribed to MT. The medial temporal area is present 

in each hemisphere and contains the representation of the entire contralateral 

visual field. It inherits its retinotopic organization from visual area V1 and 

thereby shows a highly systematic topography (Dubner and Zeki, 1971, Albright 

and Desimone, 1987). The receptive field size of MT neurons growths as a linear 

function of eccentricity and is 10-fold larger compared to the receptive fields of 

the direct input visual area V1 (Gattass and Gross, 1981, Albright and Desimone, 

1987). 

The majority of neurons in area MT (60-100% depending on the chosen stimuli) 

show strong tuning for the direction of visual motion in their receptive field, 

whereas fewer V1 neurons show a response to moving stimuli as well as a 

narrower tuning bandwidth (Albright et al., 1984, Albright, 1984). Interestingly, 

MT neurons form a columnar structure for direction of motion, similar to the 

columnar organization for orientation in area V1 (Newsome and Salzman, 1993, 

Albright, 1984). In Figure 2, a cartoon visualizes the columnar structure of area 

MT.  
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Figure 2: A cartoon showing the simplified columnar structure of a section of the medial 

temporal area (MT). Neurons in each column show highest response to one motion direction, 

illustrated by arrows. This preferred motion direction changes systematically within one row 

covering angles from 0 - 360 degree. Across rows, neighboring columns show opposite direction 

preference. The height represents the cortical depth. This diagram is based on data and the 

corresponding figure in Albright et al. (1984). 

Despite the central role of area MT in the encoding of the sensory properties of 

visual motion stimuli, the activity of MT neurons also reflects a number of other 

influences, that modulate the firing rate of a given MT neuron to a moving 

stimulus, even if that stimulus remains unchanged in its motion parameters.  

The three main classes of such modulatory influences are stimulation history, 

bottom-up and top-down influences. The stimulation history determines the 

level and type of adaptation (Saul & Cynader, 1989), whereas the bottom-up 

influence describes a change in firing rate of a neuron due to changes in the 
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physical characteristics of the stimulus e.g. luminance contrast (Skottun, 1987). 

The main top-down influence on neural activity is the allocation of attention. 

Here voluntary allocation of attention to a certain feature or a specific location 

in the visual field leads to a change in firing rate (Treue and Maunsell, 1996). 

Each one of the three classes has been shown to exert a multiplicative effect, i.e. 

a gain change on neuronal responses in area MT. In the next section I will focus 

on the top-down influence of attention.  

Attention 
Why do we need attention? We are surrounded by and have to deal with a huge 

amount of sensory information, but our resources are limited. It was calculated, 

that the amount of information entering our optic nerves is in the range of 10 

Million bits/second (Koch et al., 2006). This is comparable with the 

transmission rate of an Ethernet connection. Processing this entire amount of 

information would exceed the possible energy consumption of the brain and 

would go beyond the limits of cognitive resources. For that reason a selective 

process in the brain is required to decide which information is behaviorally 

relevant and should be processed further.  

What is attention? Although the word “attention” is an integral component of 

our vocabulary and is used by us on a daily basis in different contexts, we are 

often not aware of its importance and detailed meaning. Attention cannot be 

easily described by a simple definition or explained by synonyms as it has a 

manifold impact on all sensory processes. This is reflected by the vast amount of 

adjectives, which are used to classify attention, such as visual, auditory, 

complex, focused, split, overt, covert, top-down, bottom-up, object-based, 

feature-based, space-based, voluntary, involuntary, limited, sustained, 

transient... 
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However, William James formulated the best applicable definition describing 

attention in 1890: “Everyone knows what attention is. It is taking possession of 

the mind, in clear and vivid form, of one out of what may seem several 

simultaneously possible objects or trains of thoughts… It implies withdrawal 

from some things in order to deal effectively with others, and is a condition 

which has a real opposite in the confused, dazed, scatterbrained state which in 

French is called distraction, and Zerstreutheit in German.”  

Today, one definition, which captures the essence of William James’ words, 

would be that attention is a selective modulation of sensory information 

processing, guided by behavioral relevance. More detailed information 

regarding the involvement of attention in the visual system will be given in the 

following section. 

Visual attention 

Visual attention is the key feature for the visual system to filter relevant 

information that enters the retina and enhances its processing. Interest in 

studying visual attention has increased within the last 25 years and has 

improved our understanding (Carrasco, 2011). This success is due to the 

availability of new and improved imaging methods like functional magnetic 

resonance imaging (fMRI), magnetoencephalography (MEG), event-related 

potentials (ERP) or steady-state visual evoked potentials (SSVEP). All those 

methods pave the way to an insight into the brain, while it is involved in a task 

that demands attentional deployment. Other approaches like human 

psychophysics have also been improved with the availability of high-resolution 

eye trackers, allowing precise monitoring of eye movements, pupil diameter etc., 

that have been shown to be correlates of attention (Lisi et al., 2015). This made 

it possible to reliably disentangle eye movements from attentional deployment 

(Cornelissen et al., 2002). Electrophysiological recordings in the macaque 
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monkey (Treue, 2001) and computational modeling (Itti and Koch, 2001) add 

the missing components to a wide-ranging approach to visual attention.  

The effects of visual attention are measurable on various levels. On a behavioral 

level, it was shown that paying attention to a stimulus reduces reaction time 

(Posner et al., 1980), improves accuracy (Carrasco and McElree, 2001), alters 

appearance (Carrasco et al., 2004), enhances spatial resolution (Anton-

Erxleben and Carrasco, 2013) and alters perception of spatial properties such as 

size, shape and spatial frequency of an object (Anton-Erxleben et al., 2007, 

Fortenbaugh et al., 2011, Abrams et al., 2010). Additionally, with the usage of 

imaging techniques, it was shown that attention causes a consistent and 

systematic increase in brain activity of visual areas (Gandhi et al., 1999), as it 

was shown to add a baseline shift to fMRI responses (Runeson et al., 2013). 

Furthermore, seminal neurophysiological studies investigating visual attention 

have enabled the identification of various brain areas involved in the process of 

attention, showing an increase in firing rate, when a behaviorally relevant 

stimulus is presented in the receptive field of the recorded neuron (Treue and 

Maunsell, 1996).  

Where in the visual cortex is attentional modulation present? Attention leads to 

a change in neuronal response in every visual cortical area examined (Maunsell 

and Cook, 2002). For a long time it was believed that only high-level visual 

areas can be attentionally modulated, whereas others were ascribed as purely 

sensory. Within the last two decades this assumption could be disproved, as it 

was demonstrated that also neurons in early visual areas such as area MT 

(Treue and Maunsell, 1996) as well as the primary visual cortex V1 (Gandhi et 

al., 1999) showed attentional modulation. Therefore, it is assumed that a ‘pure’ 

sensory processing area does not exist in the primate visual cortex (Treue, 

2003). In addition, it was shown that an even earlier brain area – the first relay 

between the eye and the cortex, the lateral geniculate nucleus (LGN) – shows 
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attention-induced increase in response (McAlonan et al., 2008). Although every 

component of the visual cortex is influenced by attention, it could be shown that 

the higher the visual area is located in the cortical hierarchy, the bigger the 

average response enhancement by attention (Maunsell and Cook, 2002). The 

magnitude of attentional modulation doesn’t solely depend on the involved 

visual areas, as it additionally depends on the type of visual attention that is 

executed. There are various distinctive, but not exclusive (Soto and Blanco, 

2004), forms of visual attention including spatial attention, object-based 

attention, and feature-based attention.  

In feature-based attention a certain stimulus feature, e.g. movement direction 

or color, is behaviorally relevant, independent of its location. Object-based 

attention describes a selection process that is guided by object content, whereas 

in spatial attention the attentional selection targets spatial locations in the 

visual field. The concept of spatial attention will be described in more detail, as 

it is the form of visual attention investigated in this thesis. 

Spatial attention 

Perceptual characteristics of spatial attention 

Spatial attention is a selective process allowing subjects to prioritize spatial 

locations in the visual field and therefore enhance their processing. 

Psychophysically, spatial attention has been shown to enhance behavioral 

performance. Behavioral responses to an attended location are faster (e.g. 

Posner, 1980); vision is of higher spatial resolution (Yeshurun and Carrasco, 

1998) and has enhanced sensitivity for fine changes (Carrasco et al, 2004). 

Unattended stimuli in turn appear to be lower in contrast or might not be 

noticed at all (Carrasco, 2006, Reynolds & Chelazzi, 2004). In psychophysical 

tasks, pre-cues provide information about the behaviorally relevant location. 

This information in turn is known to drive attentional mechanisms (Carrasco, 
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2011; Pashler and Johnston 1998). When this information is diminished or not 

provided at all, meaning that no location is selected for preferential processing, 

a behavioral cost is observed in the form of a decrement in perceptual 

performance (Posner, 1980). This phenomenon is often attributed to the limited 

capacity of spatial attention (Kahneman, 1973, Broadbent, 1971). However, 

several psychophysical studies were not able to distinguish whether the 

measured improvement in behavioral performance is ascribed to a reduction in 

stimulus uncertainty or to an actual improvement in information processing 

(Pashler, 1994, Pashler and Johnston, 1998). These studies may therefore fail to 

detect the true attention effect (Lou and Maunsell, 2015). In the case of simple 

visual performance, such as direction discrimination, the tasks are seen to have 

low attentional cost (Braun and Julesz, 1998). It is assumed, that there is some 

amount of visual awareness outside the attentional spotlight, permitting the 

subject to perform at both locations, inside and outside of the spotlight, with 

equal performance for stimuli with low attentional cost (Braun and Julesz, 

1998). This observed lack in attentional improvement for simple movement 

discrimination is contradictory to the physiologically measured improvement on 

a cellular level (Luo and Maunsell, 2015). In this thesis, I designed an 

innovative paradigm in order to be able to investigate true spatial attention 

effects and circumvent the effects of stimulus uncertainty on to our results. 

Additionally, I gradually manipulated the deployment of spatial attention, by 

introducing pre-cues of varying validity. Details about the task design are 

described in manuscript one and two of this thesis.  

Furthermore, spatial attention was attributed with various metaphors aiming to 

illuminate its underlying mechanism. The ‘spotlight’ metaphor, proposed by 

Michael Posner in 1980, describes a cone of light targeting one specific area in 

space, while all the remaining areas are kept in ‘darkness’. He conducted a 

spatial cuing paradigm to guide the subjects’ spatial attention, independent of 

eye movements, called covert spatial attention. He showed that information on 

spatial position improves reaction time, whereas detection of stimuli located 
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outside of the spotlight incurs a temporal cost. In addition, he demonstrated 

that this spotlight could be shifted independent of eye movements (Posner, 

1980). In general, this spotlight of attention allegory implies that only one 

region in space can be attended at one time, is fixed in its diameter and 

therefore has to be shifted across the visual field when more than one spatial 

location should be attended. A variation of the ‘spotlight’ metaphor is the ‘zoom 

lens’ metaphor implying adaptable mechanisms that act like a zoom lens, 

increasing or decreasing in diameter based on perceptual demands (Eriksen and 

St James, 1986). One important hypothesis shared by both models is, that there 

is only one attentional focus. Pylyshyn and Storm challenged the assumption of 

one spotlight by convincingly showing continuous tracking of multiple 

independently moving targets (Pylyshyn and Storm, 1988). Over the years more 

and more evidence has arisen challenging the assumption of one attentional 

spotlight in favor for multiple non-continuous attentional foci (Morawetz et al., 

2007, Castiello and Umiltà, 1992, Cavanagh and Alvarez, 2005).  

In addition, multiple studies aim to investigate even more specific 

characteristics relating time and location of spatial attention. For example it 

could be demonstrated that an additional sudden distractor onset destroys the 

goal-directed focus of attention (Kramer and Hahn, 1995). Alvarez and 

Cavanagh proposed, that spatial attention distribution, in the context of 

attentional tracking, is independently limited in the left and right visual 

hemifield (Alvarez and Cavanagh, 2005). They could show, that twice as many 

targets can be tracked when the targets are presented across hemifields, as 

when they are presented only in one hemifield.  

Both psychophysical experiments, conducted within this thesis, support the 

multifocal distribution of spatial attention in the context of linear movement 

discrimination. The results gained in the second study additionally support the 

notion of two independently active attentional resources, one being active in 

each hemifield. 
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 Physiological characteristics of spatial attention 

Physiologically, spatial attention leads to an increase in neuronal firing rate 

when the attentional focus matches a neuron’s receptive field (Treue and 

Maunsell, 1999). In a classical physiological setup, single unit activity from 

macaque visual cortex is measured and compared while the monkey either 

deploys attention to a stimulus placed inside the neuron’s receptive field or to a 

similar stimulus outside of it. The deployment of attention is done covertly, 

requiring the monkey to fixate a centrally presented spot and to switch its 

attentional deployment in the absence of eye movements. The stimuli presented 

are chosen to match the known feature selectivity of the recorded neuron, e.g. 

coherently linearly moving dots for area MT. Neuronal response is then 

characterized with the neural tuning curve, a plot of the average firing rate as a 

function of diverse values of a certain stimulus feature (Butts and Goldmann, 

2006)(see Figure 3). Early studies investigating the attentional modulation on 

tuning curves describe sharpened selectivity for attended stimuli (Spitzer et al., 

1988), whereas later studies do not confirm attention-induced change in 

selectivity (Treue and Martinez-Trujillo, 1999, McAdams and Maunsell, 1999). 

They reported a multiplicative change in neural tuning curve, showing a 

proportional neuronal response enhancement for all values presented, without 

affecting the width of the tuning curve (see Figure 3), termed response gain 

model.  
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Figure 3: Multiplicative effect of attention in area MT. The cartoon depicts a Gaussian shaped 

tuning curve of an MT neuron with highest response to upward stimulus direction. When 

attention is directed into the neurons receptive field (att in, red curve), the neuron’s response is 

enhanced by a fixed factor for all stimuli directions relative to when attention is directed outside 

of receptive field (att out, blue curve). 

In distinction to the response gain model stands the contrast gain model, 

describing attentional effects on stimuli with different contrast values. This 

model proposes a leftward shift of the contrast response function towards lower 

contrast values when attention is deployed (Reynolds et al., 2000, Martinez-

Trujillo and Treue, 2002). It could be shown that the activity pattern of the two 

models is not exclusive. Based on their results, Hermann and colleagues 

proposed, that depending on stimulus size and attention field size, attention 

modulates the activity in visual cortex, resembling either a change in response 

gain or contrast gain (Hermann et al., 2010).  
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Acetylcholine 
In 1936, Otto Loewi and Sir Henry Dale were awarded the Nobel Prize for their 

explorations on chemical neurotransmission and especially for the discovery of 

the vagusstoff acetylcholine (Rubin, 2007). Beside the initially found activity in 

the frog’s vagus nerve (Loewi, 1924) and the exhibition of physiological activity 

in vertebrate organs (Dale, 1929), acetylcholine (ACh) is highly involved in a 

broad spectrum of activities in the central nervous system. Below I will focus on 

the action of ACh in the brain, as it is the main emphasis of my thesis. 

Acetylcholine – a neuromodulator 

Based on studies on the peripheral nervous system at neuromuscular junctions 

and on the autonomic nervous system, ACh is seen as a classic, fast-acting 

neurotransmitter. However, this activity pattern could rarely be shown in the 

central nervous system (Changeux, 2010), where acetylcholine’s activity is 

mostly seen in a neuromodulator fashion. A neuromodulator is understood as a 

neurotransmitter that can diffuse over long distances, having influence on 

multiple neurons and synapses on a timescale of seconds, minutes or even 

hours. Neuromodulators mainly act on G-protein coupled receptors and alter 

excitatory as well as inhibitory transmission. This type of neural communication 

is termed volume or diffuses transmission (Zoli et al., 1999).  

This slow action in the CNS is in contrast to the extremely fast-acting 

mechanisms of the enzyme acetylcholinesterase (AChE), located at the synaptic 

cleft. AChE functions to terminate synaptic transmission by catalyzing the 

breakdown of ACh. It is seen as an ideal enzyme in terms of timing properties as 

it approaches the upper limit allowed by diffusion of the substrate ACh as well 

as for catalytic mechanisms (Tougu, 2001, Taylor and Radic, 1994).  
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Although the neuromodulatory characteristics of ACh in the CNS support the 

cholinergic action to be in a timescale of minutes or even hours, studies 

additionally support fast-acting characteristics of ACh in the CNS (Herrero et 

al., 2008). The distinctive activity pattern can be partly clarified by the existence 

of different receptor types with different subunit configurations, that are located 

at different positions in the synaptic cleft and in different brain areas (Dani and 

Bertrand, 2007, Picciotto et al., 2012). The following sections give an insight 

into the complexity of the cholinergic system, covering its anatomy, connectivity 

pattern, and functional components. 

Cholinergic receptor types 

Already in 1914, Henry Dale reported two types of cholinergic actions that vary 

independently (Dale, 1914). Later it was proven that acetylcholine indeed acts 

via two functionally different classes of receptors: metabotropic muscarinic 

receptors (mAChRs) and iontotropic nicotinic receptors (nAChRs) (Tatsuya, 

1993, Picciotto et al., 2000). The muscarinic type, classically named after its 

activator muscarine (agonist), acts via second messenger cascades and therefore 

mediates a slow response. Within the central nervous system, five muscarinic 

receptors subtypes (M1-M5) have been identified. The subtypes M1, M3, and M5 

are coupled to G(q/11) and activate phospholipase C, whereas the subtypes M2 

and M4 are coupled to G(i/o) and inhibit adenylyl cyclase activity, regulating a 

variety of fundamental functions (Picciotto et al., 2000).  

Nicotinic receptor subtypes, on the other hand, comprise five subunit 

polypeptides that can occur in heteromeric or homomeric congregations. Those 

receptors, named after their affinity to the tobacco alkaloid nicotine, are ligand-

gated ion channels and therefore mediate fast synaptic transmission. So far 16 

types of genetically distinct receptor subunits have been identified, again being 

clustered in sub-families. There are nine alpha subunits (α1-9), four beta 
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subunits (β1-4), one gamma (γ), one delta (δ) and one epsilon subunit (ε) (Lukas 

et al, 1999).  

Muscarinic and nicotinic receptor types are located pre- and postsynaptically 

and can elicit heterogeneous effects based on their variation in location and 

molecular composition (see Figure 4).  

Figure 4: Nicotinic and muscarinic acetylcholine receptor distribution in pre- and post 

synapse. Inhibitory muscarinic AChRs are mainly found presynaptically, providing a negative 

feedback loop in signal transduction. Postsynaptically, inhibitory as well as excitatory 

muscarinic AChRs are found. Presynaptic nicotinic AChRs predominantly trigger activations of 

other neurotransmitters and ACh itself. Postsynaptic and nonsynaptic nicotinic AChRs increase 

a neuron’s firing rate when activated and participate in synaptic plasticity.  This figure is based 

on Picciotto et al., 2012. 
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Presynaptic mAChRs, M2 (predominantly found in cortex) and M4, are mainly 

inhibitory, serving as a negative feedback loop in signal transduction. 

Muscarinic AChRs located at the post-synapse can be either inhibitory (M2, 

M4) or excitatory (M1, M3, M5) (Wess, 2003). Presynaptic nAChRs in contrast 

can trigger the activation of other neurotransmitters like GABA, glutamate, 

dopamine, serotonin etc., as well as ACh itself (McGehee et al., 1995, Picciotto et 

al., 2012), whereas postsynaptic or nonsynaptic nAChRs participate in synaptic 

plasticity, mediate excitation and activity-dependent modulation (Dani and 

Bertrand, 2007). 

The distribution of different receptor types was shown to differ across visual 

cortex areas in the macaque monkey. For example, in V1 inhibitory neurons 

strongly express m1 muscarinic receptors, whereas cells in MT mainly express 

the m1 type on excitatory neurons (Disney et al., 2014). 

The anatomy of the cholinergic system 

In the central nervous system, ACh is released from two main neuronal groups 

of projections, innervating a broad range of cortical and subcortical sites, named 

the basal forebrain cholinergic system and the brainstem cholinergic system 

(see Figure 5). The basal forebrain cholinergic system plays an important role in 

aspects of attentional function, whereas the brainstem cholinergic system is an 

important component in regulating the sleep/wake cycle (Everitt and Robbins, 

1997). 

In the 1980s, with the help of histochemistry and immunohistochemistry, 

Mesulam and colleagues were able to subdivide the cholinergic neurons within 

the basal forebrain cholinergic system of the macaque monkey and the human 

into four, partially overlapping, major cell groups based on their connectivity 

pattern. The nomenclature Ch1-4 was introduced to label the choline-
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acetyltransferase-positive neurons within these four cell groups (Mesulam et al. 

1983a, Mesulam and Geula, 1988).  

Figure 5: Cholinergic system of the human brain. Two main cholinergic sources of the central 

nervous system: Basal forebrain cholinergic system (red/magenta) and the brainstem 

cholinergic system (blue/purple). Each system is subdivided into certain cell groups, that target 

different brain areas and provide them with acetylcholine (arrows). For the basal forebrain 

cholinergic system three groups are defined: MS: medial septal nucleus, DB: ventral and 

horizontal nucleus of the diagonal band, nBM: nucleus Basalis of Meynert. For the brainstem 

cholinergic system two cell groups are defined: PPN: pedunculopontine nucleus, LDT: 

laterodorsal tegmental gray of the periventricular area. Based on Picciotto et al., 2012. 

The Ch1 cholinergic group is located in the medial septal nucleus (MS) mainly 

projecting to the hippocampus (see Figure 5). Ch2 and Ch3 mostly correspond 
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to the vertical and horizontal nucleus of the diagonal band (DB), targeting the 

hippocampus and hypothalamus or the olfactory bulb, respectively. The Ch4 

group, located in the nucleus Basalis of Meynert, plays a distinct role in this 

context, as it forms the greatest quantity of cholinergic neurons compared to all 

other cholinergic sources and provides the major cholinergic resource for the 

entire cortex as well as additionally targeting the amygdala. 

For the brainstem cholinergic system two cholinergic groups were defined (Ch5 

and Ch6), based on their connectivity pattern (Mesulam et al., 1983a). The Ch5 

cholinergic group is mainly found in the pedunculopontine nucleus (PPN) 

whereas the Ch6 group has its origin in the laterodorsal tegmental gray of the 

periventricular area (LDT). Both sectors provide the main cholinergic input for 

the thalamus, but additionally target the basal forebrain region as well as 

providing a minor component of the corticopetal cholinergic innervation 

(Mesulam et al. 1983b). Furthermore, they deliver ACh to the cerebellum and 

the brainstem (Perry et al., 1999). 

Cholinergic projections to the cortex 

The nucleus basalis of Meynert, as part of the basal forebrain cholinergic system 

(see Figure 5), is a highly differentiated, relatively large area and can be 

topographically subdivided into six main sectors: anterior-medial, anterior-

lateral, anterior-intermediate, intermediate-dorsal, intermediate-ventral and 

posterior sub-areas (Mesulam et al. 1983b). The cortical cholinergic, 

acetylcholine-esterase-rich fibers provide a major cholinergic projection to the 

entire cortex and thereby form a topographical organization (Bigl et al., 1982; 

Henderson, 1981; Johnston et al., 1981) (see Figure 6). In detail, 

neuroanatomical studies of the monkey brain show, that anterior-medial parts 

of the nucleus basalis deliver the main source of ACh to the medial cortex as 

well as in the cingulate gyrus. Anterior-lateral parts of the nucleus mainly target 
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frontal and parietal opercular regions as well as the amygdaloid nuclei. Both 

intermediate areas project similarly to ventrolateral orbital, insular, peristriate, 

inferotemporal and parahippocampal areas and to inferior parietal areas. The 

posterior parts of the nucleus basalis of Meynert mainly form the cholinergic 

source for superior temporal cortex and the temporal pole (Mesulam et al., 

1983b).  

Figure 6: Cholinergic projections from the nucleus basalis of Meynert to the cortex in the 

human brain are highly topographically organized. Anterior areas of the nucleus basalis of 

Meynert (Ch4am, Ch4al) are shown in blue color, intermediate areas (Ch4id, Ch4iv) in green 

and the posterior part (Ch4p) in pink. The projections from the anterior part Ch4ai (light blue) 

are unknown. The targeted cortical areas are colored correspondingly. For a detailed description 

see text. This Figure is based on Mesulam et al., 1983 a,b and Liu et al, 2015. 
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The cholinergic projection neurons form clusters providing a widespread but 

topographically organized network of cholinergic innervation and can thus be 

seen as analogous to the organization of serotonin neurons in the dorsal raphe 

nucleus (Van Bockstaele et al., 1993) or to the nucleus locus coeruleus (Loughlin 

et al., 1986).  

Beside the cholinergic projection neurons, a second group of cholinergic 

neurons has been discovered: the cholinergic interneurons. Those intrinsic 

cholinergic neurons are tonically active. They are located in the striatum and the 

nucleus accumbens (Eckenstein and Baughman, 1984; Benagiano et al., 2003; 

Doig et al., 2014). Additionally, they have been found in the cortex as small 

bipolar neurons, predominantly in cortical layer 2 and 3 (Houser et al., 1985). 

Anatomical studies show high similarity across species, including the macaque 

monkey (Disney et al., 2006).  

Independent of cholinergic cell type, acetylcholine is synthesized in the 

cytoplasm by choline acetyltransferase (CAT) and transported into vesicles by a 

vesicular acetylcholine transporter. ACh vesicles can be found throughout the 

whole neuron of cholinergic neurons, but show the highest concentration in 

axon terminals, where ACh is released via exocytosis to perform 

neurotransmission in the target areas (Witthaker, 1988). 

Cholinergic feedback projections to the cortex 

The whole cortex receives its cholinergic input mainly from cholinergic neurons 

located in the nucleus basalis of Meynert, called Ch4 neurons (Mesulam, 

1983a). Tracer studies in monkeys show that not all cortical areas project back 

to Ch4. For example there are no projections found from parietal cortex, 

peristriate cortex, lateral temporal cortex and dorsolateral prefrontal targeting 

the Ch4 complex (Mesulam, 2013). In addition, projections from the 

hypothalamus and the amygdala enter the feedback circuit by targeting Ch4 
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cholinergic neurons (Mesulam and Mufson, 1984, Price and Amaral, 1981). 

Cortical cholinergic transmission can be potentially locally regulated via these 

anatomically defined circuitries, providing a putative regulative mechanism for 

attentional modulation.  

Although there is a detailed anatomical picture present from rodent, rhesus 

monkey as well as from human, the underlying regulating mechanisms 

triggering the release and action of acetylcholine in the central nervous system 

are still only poorly understood. 

Models to explain acetylcholine action in the cortex 

Several models aim to account for the actions of ACh in the central nervous 

system and especially in the cortex. For example Yu and Dayan proposed that 

the neuromodulator ACh interacts synergistically and antagonistically with 

norepinephrine and plays a major role in the brain’s implementation of 

uncertainty computations (Yu and Dayan, 2005). In their model, ACh is thought 

to signal expected uncertainty, with increases proposed to predict the 

unreliability of a predictive cue in a known context.  

Another model describes the involvement of ACh in the enhancement of signal 

processing mediated by attention. It proposes that cortical cholinergic activity is 

a result of two interacting recruitment mechanisms: the ‘signal-driven 

modulation of detection’ and the ‘top-down modulation of detection’ (Sarter et 

al., 2005). Based on experimental data it is hypothesized that the cortical 

cholinergic system is a mandatory component in mediating healthy attentional 

performance, as it has been shown to be active when attention is deployed 

(Arnold et al., 2002, Passetti et al., 2000). In addition, an increase in cortical 

cholinergic activation could be correlated with sensory input processing (Chiba 

et al., 1999). Sarter and colleagues aim to incorporate these two cholinergic 

recruitment modes into one model. Their model is based on the assumption that 
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the prefrontal cortex regulates the activity of cortical cholinergic inputs to the 

cortex. It is proposed that the prefrontal efferent projections either directly or 

indirectly target the posterior parietal cortex via the basal forebrain cholinergic 

system, thereby forming the ‘top-down modulation of detection’. It is 

consequently proposed, that the cholinergic recruitment of ascending 

projections is modulated by attention. The signal-driven modulation of 

detection is seen to solely originate from basal forebrain projection.  

Another model focuses on the prefrontal cortex (PFC) as a central coordinating 

point, mediating signal detection by glutamatergic-cholinergic interaction 

(Hasselmo and Sarter, 2011). The main components of this model are visualized 

in Figure 7. This model further proposes two separate populations of cholinergic 

neurons with distinct influences on the PFC. The first group of cholinergic 

neurons (ACh1) triggers the release of glutamate from neurons located in the 

medial dorsal thalamic nucleus to the PFC. These glutamatergic neurons in turn 

activate the second group of cholinergic neurons (ACh2), whose transient 

release of ACh is proposed to lead to enhanced attentional orientation and cue 

detection. In more detail, they propose that pre-attentive information about the 

signal is propagated via glutamatergic neurons originating in the medial dorsal 

thalamic nucleus (MD) targeting the PFC. The origin of this information is 

proposed to be in sensory areas and is propagated via the thalamic reticular 

nucleus (TRN) to the MD (Guillery et al., 1998). The exact mechanisms biasing 

information processing of MD projections are not yet understood, but it is 

known, that the basal forebrain cortical cholinergic system influences MD 

glutamatergic input to PFC and thereby triggering cue detection (Hallanger et 

al., 1987). The induced glutamatergic transient is seen to target ionotropic 

glutamatergic receptors located at cholinergic terminals of ACh2 neurons in 

PFC, triggering a cholinergic transient.  
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Figure 7. Global cholinergic recruitment model.  In this model, the prefrontal cortex is seen as 

the main coordination point, which is influenced by two types of cholinergic cells (ACh1 and 

ACh2), both originating in the basal forebrain cholinergic system. ACh1 cells trigger the release 

of glutamate from glutamatergic neurons (Glu) located in the medial dorsal thalamic nucleus. 

The released glutamate in turn binds to the second group of cholinergic neurons (ACh2) in 

prefrontal cortex, inducing a transient release of acetylcholine. Acetylcholine binds to 

muscarinic receptor types located on glutamatergic neurons and induces an increased 

cholinergic release in sensory areas, such as area MT.  For a more detailed description see text. 

This figure is based on Hasselmo and Sarter, 2011. 

In addition, based on experimental data, the model assumes that different 

receptor types trigger different mechanisms. Whereas nicotinic receptors are 

seen to be involved in glutamatergic-cholinergic interactions, mediating 

attentional orienting and cue detection, the muscarinic type is seen to be 

involved in top-down controlled situations like attentional performance. For 
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example it could be demonstrated that a stimulation of muscarinic AChRs in the 

PFC increased ACh release in parietal cortex (Nelson et al., 2005).  

Although this model already incorporates many specific cholinergic effects, such 

as specific cholinergic projections and various receptor subtypes, it only 

provides a coarse and global picture of the cholinergic involvement in 

attentional modulation. The activity pattern of the cholinergic system in the 

cortex seems to be much more complex than initially thought, showing very 

specific, highly localized and fast regulating mechanisms on the one hand, and 

long term and global changes on the other hand. 

Our understanding of the cholinergic system, with its regulative and functional 

mechanisms, is rudimentary and the models proposed therefore cover just a 

subset of its mechanisms. 

The cholinergic hypothesis 

As cholinergic neurotransmission plays a central role in cognitive abilities (Paul 

et al., 2015), the “cholinergic hypothesis” was formulated for several brain 

functions and dysfunctions, including depression, schizophrenia, and Down 

syndrome (Mineur and Picciotto, 2010, Tani et al., 2015, Fodale et al., 2006). 

In particular, the cognitive deficits characterizing Dementia and Alzheimer’s 

disease have been linked to a diminished amount of cholinergic fibers from 

basal forebrain to cortex and hippocampus, and an associated loss of cholinergic 

neurotransmission (Francis et al., 1999). This down-regulation in cholinergic 

fibers was shown to be correlated with neuronal loss in nucleus basalis of 

Meynert. The greatest loss was found in the intermediate and posterior part 

(80-88%), which provides the main cholinergic source for the visual cortex 

(Mesulam, 1988). Additionally, a strong relationship between nAChRs 

expression and neuropathological key features was reported for Alzheimer’s 
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disease (Wevers et al., 2000). Further support comes from the successful 

treatment of cognitive deficits with acetylcholine esterase inhibitors in animals 

and humans. Those medications stop the activity of the fast-acting enzyme in 

the synaptic cleft, hydrolyzing ACh. The induced increase in ACh could be 

shown to reduce cognitive deficits (Bentley et al., 2003).  

Although it is still under discussion whether cortical cholinergic neurons 

constitute the most significant contribution to the cognitive decline seen in 

various diseases, it is accepted that the cholinergic system plays at least a 

subpart (Auld et al., 2002, Geula et al., 1989) in the context of mediating 

specific cognitive functions like memory (Hasselmo and Stern, 2006), learning 

(Yu and Dayan, 2002) and attention (Sarter et al, 2005, Hasselmo and Sarter, 

2010).  
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Attentional modulation and 

Acetylcholine 
Attention induces an increased representation of attended objects on a neuronal 

level (Treue and Maunsell, 1996). This effect is highly consistent and reliable 

across studies, but the exact neurotransmitter contribution triggering this effect 

is largely unknown.  

Cholinergic enhancement is signal-driven but has additionally been shown to be 

involved in top-down driven modulation like attention (for more details see 

section “Models to explain ACh action in cortex”). Several studies highlight the 

prefrontal cortex as a top-down regulator inducing either direct or indirect 

cholinergic release in cortical regions via the basal forebrain cholinergic system 

(Sarter et al., 2005). 

Although both, the anatomical circuit of acetylcholine and attentional effects on 

a cellular level, are separately well studied, it remains a challenge to link these 

two components to create a full picture describing the local cholinergic 

mechanism of attention. Reliably manipulating attentional deployment in a 

suitable animal model, like the macaque monkey, requires a reliable task. In 

order to observe a clear and strong effect of attention on a neuronal level, it is 

furthermore a clear advantage to record from a mid-level visual area. 

Additionally, the cholinergic manipulation should fulfill certain requirements: it 

should be precise in spatial as well as temporary aspects. In this thesis, I aim to 

fulfill these criteria by choosing a spatial attention task that has previously been 

shown to elicit strong responses and attentional modulation of single unit 

activity in area MT. In addition, I used pressure injection (see manuscript 3 for 

details) to mimic cholinergic cortical release in a local manner. 
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Linking attentional modulation to cholinergic 

function - technical limitations 

Investigating the role of ACh release in complex cognitive behaviors is still 

challenging, given the limitations of the available techniques. 

Functional magnetic resonance imaging in human has been used to link a 

nicotine-induced increase in response in cortical areas with attention-related 

cortical enhancement (Kumari et al., 2003). Due to the coarseness of the spatial 

and temporal resolution of this method, a direct link between attentional 

modulation and cholinergic function still cannot be assessed in detail, especially 

because the nicotinic manipulation was systemic. 

Studies in rodent show that induced cell loss in the nucleus basalis of Meynert – 

the main cholinergic source for the cortex – results in reduced cholinergic efflux 

in the medial frontal cortex, as measured by in-vivo microdialysis. This 

cholinergic reduction could be induced in a gradual manner by targeting 

different amounts of cells, and also correlated with a gradual attentional deficit 

in the rodents (McGaughy et al., 2002). In addition, studies performed by 

Arnold and colleagues support the high correlation between attention and ACh 

as they could show that demands on attentional performance selectively activate 

the basal forebrain cholinergic system (Arnold et al., 2002). Moreover, 

increased activity in prefrontal areas can increase the cholinergic concentration 

in other cortical areas such as posterior parietal cortex (Nelson et al., 2005). The 

parietal cortex is involved in spatial (Posner et al., 1987) and temporal (Koenigs 

et al, 2009) aspects of attention. These results support the regulative 

component of posterior parietal cortex and prefrontal areas in attention-

dependent ACh release. Especially the prefrontal cortex is thought to perform 

“top-down” cholinergic regulation (Sarter et al., 2005, Parikh and Sarter, 2008). 

The results just mentioned rely on microdialysis, a method used to continuously 

measure the concentration of endogenous molecules like neurotransmitters in 
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the extracellular fluid. The low temporal resolution of ACh microdialysis 

measures (minutes) presents difficulties in linking cortical cholinergic release to 

the fast effects of attentional modulation. A final limitation is that most of the 

related pharmacological research has been performed on rodents, while the 

main relevant results and models of attention arise from research in non-human 

primates and humans. 

Attentional modulation can be directly linked to 

acetylcholine function 

Studies performed by Thiele and colleagues directly link attentional modulation 

and cholinergic function in awake, behaving macaque monkeys. They refined 

the relatively old method of iontophoresis, producing a novel three-barrel 

electrode-micropipette. Here, the application of a small current controls the 

release of a current-dependent amount of charged agonist or antagonist into the 

tissue surrounding the micropipette in a highly localized manner, while single-

unit activity is simultaneously recorded (Thiele et al, 2006). The study was 

performed to shed light on the underlying cellular mechanisms of the well-

discovered effects of spatial attention on firing rates in the early visual area V1 

(Herrero et al., 2008). While the monkey performed a top-down spatial 

attention task (attending inside the neuron’s receptive field or outside of it), 

Herrero and colleagues performed a block-wise pharmacological manipulation 

in the direct vicinity of the recorded neuron in area V1 using acetylcholine, 

scopolamine (a muscarinic antagonist) or mecamylamine (a nicotinic 

antagonist). They could show that a moderate increase of ACh led to an increase 

in attentional modulation of firing rates. In addition, they found muscarinic, but 

surprisingly not nicotinic, receptor contribution to attentional modulation in 

area V1 of macaque monkey.  
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However, it still remains an unanswered question how the fast and local effects 

of spatial attention can be associated with the coarse temporal and spatial 

activation pattern of ACh. One possible explanation is an interaction of the 

cholinergic system with the glutamatergic and GABAergic system. It is known 

that glutamatergic as well as GABAergic neurons express muscarinic AChRs 

(McCormick and Prince, 1985, Disney et al., 2006), and their fast activation can 

therefore be triggered by ACh. Another possible source for the highly localized 

action of spatial attention is cholinergic cortical bipolar interneurons (von 

Engelhardt et al., 2007). These interneurons are predominantly found in layer 

2-3 in almost every cortical area (Eckenstein and Thoenen, 1983). They follow a 
columnar orientation (von Engelhardt et al., 2007) and therefore constitute a 

locally restricted cholinergic source, influencing only small cortical units. 

V1 vs. MT  - receptor contribution to attentional 

modulation 

Based on anatomical studies it is questionable whether the primary visual cortex 

V1 serves as a suitable model for cholinergic modulation of visual cortical 

circuits in the macaque, as it has been shown that the percentage and subtype 

composition of inhibitory neurons in V1 differs from other cortical areas 

(DeFelipe et al., 1999). There are, however, similarities between V1 and other 

cortical areas like the extrastriate area MT. Muscarinic receptors of the subtype 

M1 were found to be equally expressed by inhibitory neurons showing a fast-

spiking physiological phenotype (Disney et al., 2014) in area V1 and MT. This 

muscarinic subtype is therefore a possible global candidate to mediate spike-

rate by attention, assuming the muscarinic type is the main mediator. Although 

a nicotinic receptor contribution in V1 could not be shown, Disney and 

colleagues suggest a homomeric nicotinic receptor contribution in extra striate 

areas, whereas a heteromeric receptor contribution is virtually impossible due 

to its low occurrence (Disney et al., 2014). 
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As mentioned earlier, the magnitude of visual attention effects increases 

throughout the visual hierarchy. Combining the highly representative 

cholinergic receptor distribution with the strong attentional effect on motion 

processing, area MT is a perfect candidate to link attentional modulation with 

cholinergic contribution and serves as a good model for cholinergic modulation 

of visual cortical circuits in the macaque. A recent study done in area MT of 

anesthetized monkeys investigated the effect on neuronal tuning curves by ACh 

injection, and whether these effects are similar to attentional modulation 

(Thiele et al., 2012). By showing a cholinergic induced increase in firing rate 

with unchanged directional tuning, as well as reduced noise correlations, they 

support the idea that ACh has an important contribution to attentional 

modulation. However, the study was done in anesthetized monkeys and the 

anesthesia used is known to interact with the cholinergic system (Thiele et al., 

2012). For that reason a study in awake, behaving monkey is crucial to directly 

link attention-induced changes in neuronal response to cholinergic activity.  
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Original manuscripts 
The following chapter contains the following manuscripts: 

Human linear visual motion direction discrimination thresholds: 

Graded deployment of spatial attention shows hemifield dependent 

resources 

Vera Katharina Veith, Stefan Treue; prepared for submission 

Author contribution: VKV and ST designed the experiment. VKV, Jan Lause and 

Vighneshvel Thiruppathi collected the data. VKV analyzed the data. VKV 

produced the plots and corresponding scripts. VKV wrote the manuscript.  

Human linear visual motion direction discrimination thresholds: 

Effects of graded deployment of spatial attention and signal strength 

Vera Katharina Veith, Stefan Treue; prepared for submission 

Author contribution: VKV and ST designed the experiment. VKV, Philipp 

Ulbrich and Farina Bubert collected the data. VKV analyzed the data. VKV 

produced the plots and corresponding scripts. VKV wrote the manuscript. 
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A pressure injection system for investigating the 

neuropharmacology of information processing in awake behaving 

macaque monkey cortex  

Vera Katharina Veith, Cliodhna Quigley, Stefan Treue; J. Vis. Exp. (109), 

e53724, doi: 10.3791/53724 (2016). 

Author contribution: VKV implemented the injection technique. VKV and CQ 

collected the data. VKV and CQ analyzed the data. VKV and CQ produced the 

plots and corresponding scripts. Johannes Veith made the picture. VKV and CQ 

wrote the manuscript. ST edited the manuscript. All authors discussed the 

results and commented on the manuscript. 

The role of the cholinergic system in attentional modulation in area 

MT of the primate visual cortex 

Vera Katharina Veith, Cliodhna Quigley, Stefan Treue; prepared for submission 

Author contribution: VKV trained one monkey.  VKV and CQ trained the second 

monkey. VKV and CQ collected the data. VKV and CQ analyzed the data. VKV 
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Human linear visual motion direction 

discrimination thresholds: Graded 

deployment of spatial attention shows 

hemifield dependent resources 

Vera Katharina Veith1, Stefan Treue1,2

1Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany 

2Bernstein Center for Computational Neuroscience, Goettingen, Germany 

Abstract 
Attending to one location in the visual field, guided by a pre-cue, leads to 

enhanced processing of the stimuli presented at that location, resulting in better 

performance and reduced reaction time (Treue & Maunsell, 1996; Posner, 

1980). When the information about the subsequent target location is 

diminished or not provided at all, a behavioral cost is observed, in terms of a 

decrement in perceptual performance (Posner, 1980). Several psychophysical 

studies are not able to distinguish, whether the measured improvement in 

behavioral performance is ascribed to a reduction in stimulus uncertainty or to 

an actual improvement in information processing (Pashler, 1994; Pashler and 

Johnston, 1998). In this study, with the use of a novel task design, we are able to 

measure the pure influence of varying magnitudes of spatial attention on human 
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subjects’ performance in discriminating visual motion directions. An 

endogenous cue was used to gradually guide spatial attention to two stimuli, 

either placed across the two hemifields or within the left hemifield. Therefore 

we were additionally able to measure hemifield dependence on spatial attention 

capacities. 

In the classical stimulus arrangement (across hemifield), observers were as 

good in simultaneously monitoring two spatial locations, than monitoring just 

one location. Even if deployed spatial attention was further diminished (25% 

attentional deployment), subjects’ performance was not significantly influenced. 

In contrast, when spatial attention was distributed within one hemifield, 

behavioral performance was deteriorated. This suggests that the decrement in 

performance is due to common processing resources, that the two stimuli are 

competing for when they are placed within one hemifield (Sereno and Kosslyn, 

1991). These attentional capacity limitations seem to underlie anatomical 

constraints (Alvarez and Cavanaugh, 2005). 
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Introduction 
Spatial visual attention is a mechanism that upon deployment improves 

perceptual performance. Vision at an attended location is faster (e.g. Posner, 

1980), more accurate, of higher spatial resolution (Yeshurun and Carrasco, 

1998) and enhances sensitivity for fine changes (Carrasco et al, 2004). Not 

attended stimuli appear to have lower contrast or (if they are objects embedded 

in complex scenes) might not be perceived at all (Carrasco, 2006, Reynolds & 

Chelazzi 2004).  

Physiologically, attention has been reported to enhance neuronal responses in 

visual cortex to stimuli, when they are attended (Treue & Maunsell, 1996). Such 

a gain increase can increase neuronal performance and therefore offers a 

possible mechanism of attentional perceptual enhancement (Cook & Maunsell, 

2002). Nevertheless, while the neuronal response enhancement to visual 

motion stimuli has been well-investigated and documented in area MT - an 

extrastriate cortical area thought to underlie the perception of linear motion - it 

remains controversial if and how much attention enhances the perception of 

basic visual features, such as visual motion (Liu, Fuller & Carrasco, 2006; Braun 

& Julesz, 1998).  

Additionally, it is still under debate how spatial attention is deployed in the 

visual field. In contrast to early studies showing the existence of only one 

spotlight of attention eliciting enhanced performance at that location (Posner et 

al., 1980, Eriksen & St. James, 1986), an increasing amount of recent studies 

argue in favor for the existence of (at least) two non-continuous regions in space 

that can be attended simultaneously (Awh & Pashler, 2000; Mueller et al., 

2003). Moreover, it was reported that information of intervening regions could 

be ignored (Shaw & Shaw, 1977; Shaw, 1978; Awh & Pashler, 2000). Neuronal 

evidence supports this notion, showing that two spatially separated stimuli elicit 
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higher fMRI signal at the two corresponding retinotopic regions (McMains & 

Somers, 2004, Morawetz et al., 2007).  

As proposed by the hypothesis of the bilateral advantage of attentional 

distribution, attention can be deployed to two locations across the two 

hemifields without any cost being involved, whereas splitting attention within 

one hemifield uncover attentional resource limitations (Reardon et al., 2009; 

Sereno and Kosslyn, 1991). The inter-hemispheric advantage is ascribed to the 

anatomical and functional independence of the two cerebral hemispheres, also 

showing full functionality, when the inter-hemispheric communication is 

disrupted by a surgical transection of the corpus callosum (Liederman, 1998, 

Luck et al., 1989). This means, when the two stimuli are presented in an across-

hemifield arrangement, it is suggested that each stimulus is processed 

independently, whereas when both stimuli are placed within one hemifield, they 

seem to access the same source. However, visual field representations of extra 

striate cortical areas for the lower and upper part of the visual field are also 

often found to be anatomically segregated (Van Essen, 1985).  

Here we investigate the effects of spatial attention on performance in a 

direction-discrimination task, using two moving dot patterns placed either 

across both hemifields or within the left hemifield. The overall aim of our study 

is to investigate the effects of various levels of spatial attention onto the two 

stimuli in dependence of their spatial configuration. Therefore, we aim to extent 

the bilateral attentional advantage, as previously shown for higher-level tasks 

(Alvarez and Cavanagh, 2005,) as well as for elementary visual tasks (Reardon 

et al., 2009), to the linear motion discrimination task. 

In many cases, divided attention tasks suffer from larger stimulus uncertainty 

rather than the corresponding undivided attention (Posner et al., 1980; Pashler, 

1994). We controlled for such effects, by using a four alternative forced choice 

(4AFC) task, allowing us to determine those trials in which performance 

suffered from errors due to stimulus uncertainty. We manipulated the validity 
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of the cue in our paradigm across three values. This allowed us a fine-grained 

analysis of the effect of graded attention (100-25%) onto our stimuli. The effect 

of attention on performance is investigated by comparing subjects’ performance 

when various proportions of attention were allocated to a given stimulus.  

With our chosen stimuli, we aim to target area MT, an extrastriate cortical area 

thought to underlie the perception of linear motion. As area MT is involved in 

early stages of cortical processing (Vanni et al., 2004), we were targeting 

bilateral vs. unilateral differences.  

We demonstrate, that subjects can attend to two spatial locations across the two 

hemifields simultaneously without showing any cost in linear movement 

discrimination when spatial attention is gradually diminished. When stimuli 

were shown unilateral, splitting attention to two stimuli incorporates a cost and 

subjects showed a reduction in performance. Based on our results, we can 

support the notion of two independent attention systems, one being active on 

each hemifield, as we found bilateral attention advantage for linear motion 

direction discrimination tasks.  

Material and Methods 

Observers 

12 observers (9 females), including the author (VV), accomplished the across-

hemifield task. All observers, except VV, were naïve concerning the purpose of 

the experiment. All subjects have normal or corrected to normal vision. They 

gave a written informed consent and were paid for their contribution (except for 

VV).  
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Setup and stimuli 

The visual stimuli were presented in a dark room on a 22’’ widescreen TFT 

monitor (Syncmaster 2233RZ, Samsung, Seoul, South Korea), with 1680 x 1050 

pixels resolution and a refresh rate of 120 Hz. Viewing distance of the observer 

to the monitor was kept constant at 57 cm using a chinrest. A commercial 

gamepad (Logitech International S.A., Switzerland) was used for answering. Eye 

position was recorded using an eye tracker (EyeLink, SR research). 

The stimuli were generated and presented using MWorks, an open source 

application, built for real time experiments. Used stimuli were white random 

dot patterns (RDP) presented on a uniform black background. Each dots’ size 

was 0.0564 deg and they were shown with a density of 10 dots/deg2. Each patch 

had a diameter of 5 deg moving with a speed of 8 deg/s within stationary 

apertures. Always two patches were shown simultaneously, being centered at a 

constant eccentricity of 5 deg either left or right on horizontal meridian (across-

hemifield experiment) or up or down in the left hemifield (within-hemifield 

experiment). 

In both experimental conditions, a centrally located white square (side length 

0.2 deg, luminance 72 cd/m2) was used as a fixation point. A red isosceles 

triangle (side length 0.4 deg), serving as a endogenous pre-cue, was presented 

centrally instead of the fixation point, pointing either to the left or the right 

location (across-hemifield condition) or pointing leftward tilted upwards or 

downwards (within-hemifield condition). All stimuli were presented on a black 

background with a luminance of 0.3 cd/m2. 

Task design 

Within this experiment, two spatial configurations of stimuli were tested; either 

two stimuli were presented across the two hemifields or within the left 
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hemifield. The temporal structure as well as the stimuli attributes stayed 

constant across the two experimental conditions. The detailed trial sequence for 

both experimental conditions is depicted in Figure 1. 

Figure 1. Trial sequence for both experimental tasks. Subjects’ spatial attention was guided by 

an endogenous pre-cue with block wise changing validity. Spatial attention was either deployed 

across both hemifields (right) or within the left hemifield (left). Subjects were instructed to 

report the linear motion direction of the target dot pattern (up or down) by pressing one of four 

buttons on the gamepad (4-alternative forced choice design). 

Subjects were asked to maintain fixating the centrally presented fixation point 

throughout the whole trial, which was controlled by an eyetracker. Each trial 

sequence was initiated by pressing the start button on the gamepad. 
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Immediately after button press the centrally presented fixation point was 

displaced for 200 ms by the endogenous pre-cue. After an inter stimulus 

interval of 300ms, two RDP stimuli were shown either at a left and right 

position on horizontal meridian with respect to the central fixation point 

(across-hemifield condition) or up and down within the left hemifield (within-

hemifield condition). One RDP contained the task-relevant stimulus (target), a 

brief coherent linear motion signal (75 ms), moving towards the fixation point. 

The second RDP contained fully incoherent linear motion (distractor) moving to 

all possible directions. The target stimulus was immediately followed by a 

random motion mask for 75 ms to stop information uptake. At distractor 

location a static dot pattern was shown for the same duration, acting as a post-

cue. For the across-hemifield condition, subjects were asked to indicate the 

location (left or right) and to discriminate the motion direction (up or down 

relative to horizontal) of the target stimulus by pressing one out of four buttons 

on a gamepad, e.g. left upper button should be pressed for a linear movement 

above the horizontal line within the left RDP. Regarding the within-hemifield 

experiment, subjects were asked to indicate the location (upper left or lower 

left) by pressing one of two buttons and then to discriminate the motion 

direction (up or down relative to horizontal) by giving a second answer, pressing 

one of two buttons. The subjects were asked to report as accurate as possible the 

perceived direction of the target RDP without receiving any feedback about their 

decision. 

Endogenous attention was manipulated for both experimental conditions by 

presenting three different levels of pre-cue validity (100%, 75% and 50%) in a 

block wise manner. Each block consisted of 320 trials. The 75% cue validity 

condition was performed twice (640 trials in total), in order to achieve an 

appropriate amount of repetitions for the invalid trials. Observers were 

informed about the depict pre-cue validity condition in advance of every block.  
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Training of observers 

In order to avoid learning effects in recording sessions, subjects were trained 

intensively within three training sessions (1.5 h duration) performed on three 

consecutive days. In total, subjects performed all possible condition 

combinations with at least 3840 trials within the whole training procedure. 

After training session, a minimum criterion of performance (4 deg 

discrimination threshold in 100% cue validity condition) had to be reached in 

order to be included in the following recording sessions. Final data recording 

was performed on two or three consecutive days for the two experimental 

conditions. Across experimental sessions the order of experimental blocks was 

randomized. 

Staircase procedure 

For both experimental conditions the shown linear motion direction in the 

target dot pattern was varied dynamically using interleaved staircases achieving 

a rational amount of repetitions close to the point of subjective equality (PSE).  

In total, four randomly interleaved staircases were used per RDP, starting at a 

fixed levels of 5 deg above and below of horizontal (0 deg), changing with a 

factor of 1.25. In detail, two staircases were active on one RDP when a valid pre-

cue was shown, whereas two independent staircases acted when there was an 

invalid trial. All staircases followed a 2 to 1 rule, converging when observers’ 

answer was twice consecutive consistent with shown direction and diverging 

when the answer was inconsistent.  
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Data analysis 

The task was designed to gradually manipulate the distribution of spatial 

attention either across both hemifields or within one hemifield. By using block 

wise different cue validity the subjects were instructed to change behavior 

accordingly.  

Figure 2. Three levels of pre-cue validity, shown in a block wise manner, were used in this study. 

They led to four levels of attentional deployment (100%, 75%, 50%, and 25%).  

Depending on cue validity the level of attention was calculated (see Figure 2). 

For example for 75% cue validity, subjects were instructed to gradually deploy 

their attention to the two spatial locations, attending the cued locations 

proportionally more than the uncued location. Therefore the cued location was 

seen as 75% attended and the uncued location as 25% attended.  

With this 4AFC task design we were able to distinguish between two different 

error types. Only trials where the observer indicated the correct stimulus 

position (e.g. pressing one of the two left buttons for the target stimulus being 

left) where included in further analysis, whereas responses to the distractor 

100% 0% 75% 25% 50% 50%

cue validity

attentional
deployment
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were seen as location errors and rejected. Hence, with this task design we are 

able to eliminate the spatial uncertainty as a critical factor from our results. 

Therefore, we are able to measure changes in performances solely based on 

attentional deployment. 

Psychometric functions were fitted for data collected at both target dot pattern 

locations and for valid and invalid trials separately using a maximum likelihood 

procedure combined with bootstrap sampling (Palamedes Toolbox, Kingdom & 

Prins). A cumulative normal function was used to model psychometric data.  

The Cumulative Normal distribution is given as: 

𝑭𝑵 𝒙;𝜶,𝜷 = 𝜷
𝟐𝝅

𝒆𝒙𝒑 − 𝜷𝟐(𝒙!𝜶)𝟐

𝟐
𝒙
!! ,

where parameter 𝑥 is the signal strength,  𝛼 corresponds to the threshold and 𝛽 

corresponds to the reciprocal of the standard deviation of the normal 

distribution and determines the slope. 

The discrimination threshold, here defined as the first deviation of the fitted 

psychometric function, was estimated for the two spatial locations, for every 

experimental condition, as well as for cue validity separately and served as a 

measure of the change in performance. The discrimination thresholds 

calculated were merged for the left and right stimulus position (across-

hemifield) or for the upper and lower stimulus (within-hemifield) for every 

attentional condition separately by calculating the weighted mean. The inverse 

of the 95% confidence interval served as a weight factor. 

Across subjects, the weighted arithmetic mean was again calculated for the 

corresponding experimental condition. The weighted direction discrimination 

thresholds were compared with a repeated-measures ANOVA using Statistica 

software (Statistica 12, StatSoft).  Effects of different attentional levels and 

different stimulus positions were compared with a 4 x 2 repeated measures 
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ANOVA with the factors attention and stimulus position. Post-hoc comparison 

was performed using Fisher’s Least Significant Difference. 

Data simulation 

In order to confirm the involvement of spatial attention for task solving, the 

discrimination thresholds for the four different attentional levels were 

simulated and compared to mean discrimination thresholds for the recorded 

data. Simulated data was generated assuming that the subjects were not able 

guide the spatial attention based on the pre-cue and therefore treated the cue 

always as 100% valid, independent on task instruction. Performance at the 

uncued location was therefore calculated based on answers given in a random 

fashion. For example, when one of the two locations is randomly cued (50% 

attention condition), in one half of the trials the target stimulus is cued and the 

performance is therefore similar to the 100% attention condition. In the other 

half of the trials, the target stimulus is untracked and therefore answered in a 

random fashion. 

Results 
The aim of this experiment was to gradually manipulate the deployment of 

spatial attention to two locations in the visual field. The two locations were 

either placed across both hemifields or within the left hemifield. 

Thus, we compared direction discrimination thresholds for three different cue 

validity conditions that guide attentional deployment to investigate the impact 

of spatial attention on performance. In a first step we investigated the gradual 

deployment of attention for the classical stimulus arrangement (across-
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hemifield). Figure 3 depicts the effect of cue validity on performance for a 

sample subject for the left random dot pattern in an across-hemifield stimulus 

placement. 

Figure 3. Behavioral results of a sample subject. The percentage of upward-button press is 

plotted for every shown linear movement direction of the stimulus. Data was fitted using 

cumulative normal distribution for all attentional levels separately. The direction discrimination 

threshold was defined as the first deviation of the fitted psychometric function. The small 

numbers indicate the 95% confidence interval. 

For this sample subject, a stepwise reduction in attentional deployment guided 

by the cue validity led to a stepwise increase in direction discrimination 

threshold diagramed by the steepness of the psychometric functions. The effects 

for 75% and 50% of attentional deployment (2.5±0.03 and 2.6±0.07 deg) led to 

a mild increase in direction discrimination compared to the full-attended 

condition (2.2±0.04). 25% of attentional deployment showed strongest impact 

on direction discrimination (3.3±0.07 deg). 
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In total, 12 subjects were included in final data analysis as they fulfilled the 

initial inclusion criterion.  

Repeated measures ANOVA with main factors attention and stimulus position 

revealed significant main effect of attention (F= 4.53, p< 0.01) and stimulus 

position (F= 11.11, p< 0.001) on direction discrimination, whereas the 

interaction of both factors did not show significance (F= 2.16, p= 0.1). This data 

suggests that the direction discrimination thresholds vary dependently as a 

function of proportion of attention and stimulus position. 

Figure 4 depicts the weighted mean direction discrimination thresholds across 

all subjects according to attentional allocation for the classical stimulus 

arrangement (across-hemifield) and for the within-hemifield stimulus 

arrangement. On average, subjects were able to discriminate a direction change 

of 2.65±0.23 (Standard error of mean, SEM) degrees when fully attending one 

spatial location, when objects were distributed across both hemifields. 
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Figure 4. Weighted mean direction discrimination threshold. For each attentional condition the 

averaged discrimination threshold was plotted across 12 subjects. Stimuli were either placed 

across both hemifields (grey) or within one hemifield (black). Error bars indicate the standard 

error of mean. 

The weighted mean across subjects increased marginally with decreasing 

amount of deployed spatial attention, 2.92±0.23, 2.93±0.29 and 3.1±0.43 for 

75%, 50% and 25% attentional condition respectively, when both stimuli are 

displayed across both hemifields. However, no significant change was observed 

using repeated measure with Fischer LSD post-hoc test (100vs75: F=4.86, 

p=0.87; 100vs50: F=4.86, p=0.72; 100vs25: F=4.86, p=0.44; 75vs50: F=5.06, 

p=0.84; 75vs25: F=5.06, p=0.55; 50vs25: F=5.31, p=0.69).  
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Secondly we were interested, whether stimuli placement within one hemifield 

shows impact on direction discrimination. Again, we compared the direction 

discrimination thresholds for the different values of attentional deployment. 

When deploying full attention to one stimulus within the left hemifield, 

performance was not significantly different to 100% attentional deployment in 

the across-hemifield stimulus configuration, showing an average discrimination 

threshold of 3.7±0.36 degree (F= 4.45, p= 0.64). Even if deployed attention was 

further diminished to a level of 75%, the averaged discrimination threshold of 

4.1±0.54 did not show significant difference to across-hemifield stimulus 

configuration (p= 0.56, F= 6.26). Remarkably, when subjects were instructed to 

simultaneously attend two spatial locations within the left hemifield, a strong 

decline was observed compared to full attentional deployment. Here subjects 

were able to discriminate a linear movement when an angle of 4.8±0.87 degrees 

was shown. This decrease in performance shows trend towards significance 

compared to 100% attentional deployment (F = 6.26, p= 0.06). This is 

equivalent to a decline in performance of 27%, compared to full spatial 

attention. With a further reduction of spatial attention within one hemifield, 

performance was further reduced. Here the discrimination threshold was on 

average 6.8±1.8 deg, equivalent to an increase of more then 84% compared to 

full attention condition discrimination threshold. This value is significantly 

different to value with 100% of attentional deployment (F=10.1, p<0.001). Also 

compared to the other two levels of attentional deployment, the difference is 

significant (25vs50: F=10.1,p=0.49; 25vs75: F=10.1,p<0.001). 

With the 4AFC task design used, we were able to distinguish between two 

different error types; answering at distractor location (location error) vs. 

answering at target location but indicating wrong linear movement direction. 

Only trials where the observer indicated the target stimulus position (e.g. 

pressing one of the two left buttons for the target stimulus being left) were 

included in further analysis, whereas responses to the distractor were seen as 

location errors and were therefore rejected. 
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Figure 5. Averaged percentage of ignored trials across 12 subjects. Trials were considered being 

ignored, when subjects answered at distractor location. Error bars indicate the standard error of 

the mean. 

Figure 5 depicts the averaged percentage of ignored trials among subjects for all 

attentional conditions and spatial configurations separately. Overall, the 

percentage of ignored trials is extremely low; being always below 1% of all 

performed trials and can be therefore neglected. 

As the task used in this study requires voluntary deployment of spatial 

attention, it is mandatory to confirm that subjects follow task instructions and 

adjust their behavior accordingly. In order to control for comprehension of the 

endogenous pre-cue and to confirm the involvement of spatial attention for task 

solving, subjects behavior was simulated to the effect that the cue was always 

treated as 100% valid, independent of task instruction. In valid trials the subject 

would therefore answer with its known performance, whereas in invalid trials, 

the subject would answer on chance level. This simulation consequently would 
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assume that a simultaneous deployment of attention to two spatial locations 

would not be possible.  

Figure 6. Comparison of simulated data and measured data (across-hemifield stimulus 

arrangement). Subject’s behavior was simulated (pink) to the assumption, that two spatial 

locations cannot be attended simultaneously. Invalid trials are therefore simulated to be 

answered at chance level. For a detailed description of the simulation see text. Errors indicate 

standard error of the mean. 

As shown in Figure 6 this strategy would lead to a significant increase in 

discrimination threshold for all attentional conditions (post-hoc comparison 

simulated vs. measured data; 75% attention: F=4.92, p= 0.004; 50% attention: 

F=5.1, p< 0.001; 25% attention: F=5.34, p< 0.001). Simulated discrimination 

thresholds were 3-fold higher than the measured data for the 50% attentional 

deployment or even 10-fold higher for 25% of attentional deployment.  
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Discussion 
With our paradigm we aim to gradually manipulate spatial attention to two 

spatial locations, either placed across both hemifields or within one hemifield. 

The task design used, allowed to measure the pure attention effects on to the 

two stimuli. The effect of graded attention on performance was measured, 

calculating the direction discrimination threshold for linear motion for every 

spatial stimulus configuration separately. We found bilateral attention 

advantage for linear motion direction discrimination. Simultaneous attendance 

of two stimuli, placed across the two hemifields, did not seem to involve any 

attentional cost, whereas splitting attention within one hemifield led to a 

deterioration in performance for linear movement judgment.  

In many cases, divided attention tasks suffer from larger stimulus uncertainty 

than the corresponding undivided attention task. We controlled for such effects 

by using a 4AFC task, allowing us to distinguish between two types of errors 

(wrong location vs. wrong linear movement judgment) and therefore to measure 

the pure attention effect. Additionally, most task designs, investigating divided 

attention, are planned as dual-tasks, requiring two consecutive answers 

(Pashler, 1994). Those task designs suffer from the dual-task interference also 

known as psychological refractory period, showing a decrement in reaction time 

or performance for the second answer, when the two stimuli are presented 

simultaneously or with a short stimulus onset asynchrony (Pashler, 1994, 

Pashler and Johnston, 1998). We further reduced stimulus uncertainty by 

presenting a post-cue, indicating the non-target location. The subsequent 

information about the non-target location does not interfere with the linear 

movement judgment, as this information is only previously available.  

We carefully selected a target stimulus duration, which makes the task 

perceptually demanding. We therefore ensure a severe decimation in 
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performance when only half of the duration is provided, as it would be the case 

in the splitted attention condition. Furthermore, we perceptually masked the 

target stimulus to ensure the information uptake to be equivalent to target 

presentation. Due to the short stimulus presentation time of 75 ms, attentional 

shifting across the two stimuli can be excluded, as prior studies have discovered 

a minimum time of several hundred milliseconds to switch spatial attention 

locations (Reeves and Sperling, 1986, Duncan et al., 1994).  

In the classical stimulus arrangement (across-hemifield), observers were as 

good in simultaneously monitoring two spatial locations than monitoring just 

one location. This indicates that dividing attention to two spatial locations, 

which are placed across the two visual hemifields, can be executed without any 

measurable cost in our task. A possible explanation could be, that the 

attentional capacity is not at its limits, especially as it could be shown that 

motion detection has a low attentional demand (Braun and Julesz, 1998). It is 

assumed, that there is some amount of visual awareness outside the attentional 

spotlight, permitting the subject to perform at both locations, inside and outside 

of the spotlight, with equal performance for stimuli with low attentional cost 

(Braun and Julesz, 1998). In addition to a comparison between full attention 

and split attention condition, we manipulated the validity of the cue in our 

paradigm across three values, allowing us a fine-grained analysis of the 

attentional effect (100, 75%, 50%, 25%) onto our stimuli. In our across-

hemifield stimulus arrangement, we couldn’t observe any significant stepwise 

decrement in performance. Even for the lowest level of attentional deployment 

(25%), no significant difference was observed compared to full attentional 

deployment. This result led assume, that a judgment of linear movement 

direction only requires a very low amount of attentional deployment or is even 

feasible in absence of attention. 

However, this assumption does not hold true, when stimuli are placed within 

one hemifield. Here, a simultaneous attendance of two stimuli led to a strong 
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decrease in performance. In this stimulus arrangement, a further reduction of 

deployed spatial attention (25%), led to a further decrease in performance, 

showing significant differences to all other values of attentional deployment. 

Again, as we used a very short presentation time, we can exclude a serial 

processing of the two stimuli. Therefore we can conclude, that attentional 

splitting is also possible within one hemifield, but it shows major costs even for 

a task, that was attributed with low attentional demand (Braun and Julesz, 

1998). 

An additional explanation is the existence of two independent resources of 

attention, one being active in one hemifield. Therefore no decrease in 

performance was observed, when just one stimulus was placed in one hemifield. 

Other behavioral studies confirm this notion, showing that twice as many 

targets could be tracked when they are places across two hemifields (Alvarez 

and Cavanagh, 2005, Malinowski et al., 2007, Chakravarthi and Cavanagh, 

2009) or showing no impairment in performance when subjects had to identify 

digits in sequences of digits and letters either on one location or on two 

locations that are bilaterally arranged (McMains and Somers, 2004). With the 

results gained in this study, we can confirm a bilateral distribution advantage 

for linear motion stimuli that was already demonstrated for other stimuli used 

in spatial attention tasks (Sereno and Kosslyn, 1991, Maertens and Pollmann, 

2005, Pollmann, Zaidel, von Cramon, 2003, Reardon et al., 2013).  

Physiologically, cells having receptive fields in the same hemifield, are not as 

clearly anatomically segregated as compared to cells with receptive fields in the 

opposite hemifield. However, it is known for extrastriate cortical areas, like area 

MT, the area we aim to target with our stimuli, that there is still a distinction 

across cells regarding their visual field representation, even if their receptive 

fields share the same hemifield (Van Essen, 1985). Magnetic resonance imaging 

confirms this notion, by showing two separate spots of higher activity within 

one cortical hemisphere, when two spatially distinct locations are attended 
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within the corresponding hemifield (McMains and Somers, 2004). Although we 

are therefore very likely triggering two different neuronal populations with our 

two stimuli displayed in one hemifield, attentional enhancement of those 

groups seem to underlie one central source. 

Additionally, we applied a simple model simulating performance, when only one 

stimulus can be attended at one time. We therefore simulated subject’s behavior 

for all attentional conditions in that sense, that performance at the cued spatial 

location is equivalent to the 100% attention condition, whereas at uncued 

locations performance is at chance level. Simulated data exceeded measured 

data for all attentional levels in the classical stimulus placement. The data 

simulation indicates, that more than one spatial location must be attended 

simultaneously, in order to achieve the performance measured in our data.  

Conclusion 

In the present experiment, splitting spatial attention across both hemifields did 

not incorporate any cost, whereas splitting attention within one hemifield 

showed a decrement in performance. Gradual diminution of spatial attention 

had no effect on performance for linear motion direction discrimination for all 

levels of spatial attention (100%, 75%, 50%, 25%), when stimuli were placed in a 

classic task design (across-hemifield). In contrast, when stimuli are located 

within one hemifield, lower level of attentional deployment (50% and 25%) 

showed a gradual influence on performance. This suggests that the decrement 

in performance is due to common processing resources that the two stimuli are 

competing for, when placed within one hemifield (Sereno and Kosslyn, 1991). 

These results extent the bilateral attentional advantage, as previously shown for 

higher-level tasks (Alvarez and Cavanagh, 2005,) as well as for elementary 

visual tasks (Reardon et al., 2009), to the linear motion discrimination task. 
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Abstract 
Simultaneously monitoring of two spatially segregated objects was shown to be 

challenging compared to monitoring a single object and therefore involves a 

cost (Bonnel & Miller, 1994; Bonnel & Prinzmetal, 1998; Duncan, 1984). Such 

cost is thought to be a consequence of limited attentional resources (Kahneman, 

1973; Broadbent, 1971). In this study we gradually guided visual attention 

towards two spatial locations, distributed across both hemifields, using 

endogenous pre-cues of variable validity. Additionally, we manipulated the 

stimulus’ signal strength by varying the percentage of linearly moving dots in 

the target dot pattern. This allowed for a direct comparison of the influence of 

attention and signal strength on perceptual performance. As expected, signal 
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strength had a significant impact on subjects’ performance, with performance 

improving with increasing signal strength. On the other hand, subjects’ 

performance was not significantly influenced by altering cue validity 

(attentional influence). The two variables, cue validity and signal strength, both 

seem to have an independent influence on observers’ performance, with no 

interaction found. 

Introduction 
Simultaneous judgment of certain features of two objects has been shown to be 

challenging compared to the judgment of a single object (Bonnel & Miller, 1994; 

Bonnel & Prinzmetal, 1998; Duncan, 1984). As a result a cost is observed, in the 

form of a decrement in perceptual performance. This phenomenon is often 

attributed to the limited capacity of spatial attention (Kahneman, 1973; 

Broadbent, 1971). Information about the behavioral relevance of a forthcoming 

spatial location is known to drive attentional mechanisms, which in turn lead to 

an improvement in behavioral performance (Carrasco, 2011; Pashler, 1998) as 

well as to a perceptual enhancement (Britten, Shadlen, Newsome & Movshon, 

1992; Carrasco, 2011; Liu, Fuller, & Carrasco, 2006). However, the magnitude of 

this attentional driven enhancement is still unclear. Moreover, it seems that 

different feature dimensions claim different levels of attentional demands, as it 

was suggested, for example, that letter discrimination requires an higher degree 

of attentional focus, compared to objects’ orientation discrimination (Braun, 

1994; Braun, 1998). Here we investigate the effects of spatial attention on 

perceptual performance in a direction-discrimination task using moving 

random dot patterns (RDP). We chose linear motion stimuli for our study, as 

most of our visual information contains motion and is therefore of high 

relevance. Additionally, with our chosen stimuli we aim to target area MT, an 
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electrophysiologically well-described visual area, showing to be strongly 

influenced by attention (Treue & Maunsell, 1996). Other studies showed the 

causality between attentional deployment and linear motion discrimination 

(Bosworth, Petrich & Dobkins, 2012; Liu, Fuller & Carrasco, 2006; Verghese, 

Anderson & Vidyasagar, 2013). However, theses studies only cover two states of 

attention, full and poor attention. 

In this study we used pre-cues of different validity in order to achieve a fine-

grained deployment of spatial attention on to two spatial locations, placed 

across both hemifields, resulting in four levels of attentional deployment (100%, 

75%, 50%, 25%). The general task design chosen, is identical to the one used in 

the former psychophysical study. The main advantage of this task design is that 

errors caused by stimulus uncertainty can be eliminated and we are therefore 

able to measure pure attentional effects on performance. Assuming the limited 

capacity of attention in parallel processing of visual stimuli and assuming a 

correct incorporation of the spatial information provided by the cue, a gradual 

improvement in performance with increasing cue validity is expected.  

Additionally, signal enhancement hypothesis reveals that attention leads to an 

enhancement in stimulus strength (e.g. Posner, 1980; Luck, Hillyard, Mouloua, 

Woldorff, Clark & Hawkins, 1996) such as an improvement in spatial resolution 

(Yeshurun and Carrasco, 1998). We manipulated the signal strength of the 

target dot pattern by varying the percentage of linearly moving dots in the target 

dot pattern. This allowed us to equate the effects of attention with the effects of 

stimulus coherence and to measure their individual as well as their interactive 

influence on perceptual performance. A gradual reduction in signal strength is 

also expected to progressively diminish subjects’ performance as the inherent 

information is successively reduced and the linear motion is therefore less 

salient. We concluded if spatial attention increases the apparent motion 

coherence, it is expected to induce an improvement in performance especially 

for weak motion signals. 
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Material and Methods 
Subjects 

16 subjects (9 females), including the first author (VV), with normal or corrected 

to normal vision, participated in this study. All subjects gave written informed 

consent. All subjects, except for the author, were naïve to the purpose of this 

experiment and were paid for their participation. 

Visual Stimuli 

All stimuli were generated and presented using MWorks, an open source 

application, built for real time experiments. The stimuli were presented in a 

dark room on a 22’’ widescreen TFT monitor (Syncmaster 2233RZ, Samsung, 

Seoul, South Korea), with 1680 x 1050 pixels resolution and a refresh rate of 120 

Hz.  

A centrally located white square (side length 0.2 dva, luminance 72 cd/m2) was 

used as a fixation point. The endogenous pre-cue, drawn as a red isosceles 

triangle (side length 0.4 dva), pointing either to the left or to the right, was 

presented centrally replacing the fixation point. The stimuli used were white 

random dot patterns (RDP) with a density of 10 dots/dva2, moving with a speed 

of 8 dva/sec. Each patch had a diameter of 5 dva centered at an eccentricity of 5 

dva left or right on horizontal meridian. The dots’ size was approx. 0.0564 dva. 

The coherence of the RDP was controlled by the proportion of the dots moving 

coherently in one direction. The remaining dots moved to all other directions 

with the same speed of 8 dva/sec. All stimuli were presented on a black 

background with a luminance of 0.3 cd/m2. 
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Design and Procedure 

Seated in a dark room, 57 cm from the monitor, the subjects were asked to 

initiate every trial by fixating the fixation point and pressing the start button on 

a commercial gamepad (Logitech International S.A., Switzerland). The trial 

sequence is shown in Figure 1a. Immediately after button press, the centrally 

presented fixation point was replaced by the endogenous pre-cue, pointing 

either to the left or to the right side, for 200 milliseconds (ms). After an inter 

stimulus interval of 300 ms, two RDP stimuli were shown left and right with 5 

dva eccentricity respectively to the central fixation point on the horizontal 

meridian. At any given trial, one of the two RDP contained the task-relevant 

event (target), a brief coherent linear motion signal (75 ms), moving towards the 

fixation point. Depending on experimental condition, the motion coherence of 

the target stimulus was manipulated. The second RDP contained fully 

incoherent linear motion (distractor) moving to all possible directions. At target 

stimulus position, a random motion mask was shown for 75 ms to stop 

information uptake. At distractor location a static dot pattern was shown for the 

same duration, acting as a post-cue. Subjects were asked to indicate the location 

(left or right) and to discriminate the motion direction (up or down relative to 

horizontal) of the target stimulus by pressing one out of four buttons on a 

gamepad. The subjects were asked to report as accurate as possible the 

perceived direction of the target RDP without receiving any feedback about their 

decision.  
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Figure 1. a) Experimental protocol. The time course of one trial in the experimental task is 

shown. An endogenous pre-cue, shown for a duration of 200 ms, pointing either to the left or to 

the right and guides subject’s spatial attention. After a delay of 300 ms, target and distractor 

RDP appeared. In the target RDP dots move linearly towards the centrally presented fixation 

point. In the distractor RDP dots move to all possible directions. The target RDP was followed 

by a mask stimulus, whereas the distractor RDP was followed by a static dot pattern, serving as 

a post-cue. Subjects were instructed to report the position of the target dot pattern (left or right) 

and its linear motion direction (up or down based on horizontal meridian) by pressing one of 

four buttons on the gamepad (4-alternative forced choice design). b) 3 different validities 

(100%, 75%, and 50%) of the endogenous pre-cue were shown in a block wise manner. This 

leads to 4 levels of spatial attention (100%, 75%, 50% and 25%). 

Eye position of both eyes was monitored during the whole experiment, using an 

eye tracker (EyeLink, SR research). Each trial was aborted when subjects did 

not maintain fixation at the fixation point during stimulus presentation. 

Endogenous spatial attention was manipulated by presenting three different 

levels of pre-cue validity (100%, 75% and 50%) in a block-wise manner. The 

subjects were informed about the cue-validity prior to each block and were 

asked to change their behavior accordingly. The three levels of cue validity 

resulted in four levels of spatial attention. Invalid trials in the 75% pre-cue 

validity condition are considered as an attentional deployment of 25%. 
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Additionally, the strength of the target’s motion signal was block wise 

manipulated by varying the percent of coherently moving dots, resulting in four 

levels of motion coherence (40%, 60%, 80%, 100%). 

All cue validity conditions and motion coherence conditions were combined, 

resulting in a total amount of 12 blocks. Each block comprised 320 trials. The 

blocks with 75% pre-cue validity were performed twice, in order to collect an 

appropriate amount of data points for the invalid trials (25% of spatial 

attention).  

Subjects underwent three practice sessions followed by four experimental 

sessions, all performed on consecutive days. Within one session four blocks 

were performed. Across experimental sessions the order of experimental blocks 

was randomized. 

Training of observers 

Subjects ran through an intensive training, consisting of at least three training 

sessions (1.5 h duration), performed on three consecutive days. They performed 

all condition combinations, 12 blocks in total, with at least 3840 trials. The 

purpose of the training was to familiarize the subjects with the different 

conditions of the task design as well as to judge their performance and avoid an 

improvement in performance due to learning effects for the following 

experimental sessions. After the training sessions the subjects had to reach a 

minimum criterion of performance (4 deg discrimination threshold in 100% cue 

validity and 100% motion coherence condition) in order to be included in the 

following experimental sessions. Data collected in the training sessions were 

excluded from the main analysis. 
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Staircase procedure 

The shown linear motion direction in the target dot pattern was varied 

dynamically using interleaved staircases, achieving a rational amount of 

repetitions close to the point of subjective equality (PSE). In total, four 

randomly interleaved staircases were used to manipulate linear motion 

direction in the target dot pattern. They always started at a fixed level of 5 deg 

above and below horizontal (0 deg), changing with a factor of 1.25. In detail, 

four staircases were active for one RDP. Two staircases acted when a valid pre-

cue was shown, whereas two independent staircases acted when there was an 

invalid pre-cue. All staircases followed a 2 to 1 rule, converging when observers’ 

answer was twice consecutive consistent with shown direction and diverging 

when the answer was inconsistent. An example action of the four randomly 

interleaved staircases across one experimental block is shown in supplementary 

Figure 1.  

Data analysis 

The task was designed to gradually manipulate the allocation of spatial 

attention of the subject when various stimulus strengths were used. By using 

block wise different cue validity levels the subjects were instructed to change 

behavior accordingly.  

Psychometric functions were fitted for behavioral data recorded at both spatial 

locations (left and right) and for valid and invalid trials separately, using a 

maximum likelihood procedure combined with bootstrap sampling (Palamedes 

Toolbox, Kingdom & Prins, version 1.8.1). A Cumulative Normal function was 

used to model the psychometric data.  
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The Cumulative Normal distribution is given as: 

𝑭𝑵 𝒙;𝜶,𝜷 = 𝜷
𝟐𝝅

𝒆𝒙𝒑 − 𝜷𝟐(𝒙!𝜶)𝟐

𝟐
𝒙
!! ,

where parameter 𝑥 is the signal strength,  𝛼 corresponds to the threshold and 𝛽 

corresponds to the reciprocal of the standard deviation of the normal 

distribution and determines the slope. 

The direction discrimination threshold was defined as the first deviation of the 

fitted psychometric function and calculated for every experimental condition as 

well as for cue validity separately. It served as a measure of the change in 

performance with changing cue validity and motion coherence. The 

corresponding confidence interval for each slope parameter was calculated 

using parametric bootstrapping (Palamedes Toolbox, Kingdom & Prins, version 

1.8.1). Direction discrimination thresholds for left and right position were 

merged for each experimental condition by calculating the weighted mean, 

using the inverse of the 95% confidence interval as a weight factor. Across 

subjects, the weighted mean was again calculated. 

Four subjects were excluded, because bootstrap parametric did not converge for 

individual experimental conditions and therefore the direction discrimination 

threshold could not be reliably calculated. The direction discrimination 

thresholds for the remaining 16 subjects were compared with a repeated-

measures ANOVA using Statistica software (Statistica 12, StatSoft).  Effects of 

different attentional levels and different stimulus coherence levels were 

compared with a 4 x 4 repeated measures ANOVA with attention and stimulus 

coherence as main factors. Post-hoc comparison was performed using Least 

Significant Difference- Bonferroni Test, correcting for multiple comparisons. 

With our task design we were able to distinguish between two types of errors, 

location errors and discrimination errors. In the case where the subjects 

answered at distractor location, it is assumed that the linear movement at target 
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location was not perceived at all. Therefore these trials were excluded from 

further analysis. In the other case, where the subjects answered at the correct 

location (target), all trials were incorporated in further analysis. 

Results 

With our task design we aim to gradually manipulate spatial attention across 

two locations. Spatial attention was manipulated by presenting three different 

levels of pre-cue validity. Additionally, we manipulated the signal strength of 

the target dot pattern by varying the percentage of coherently moving dots. The 

direction discrimination threshold serves as a measure of the change in 

performance with changing cue validity and motion coherence. 

In a first step, we investigated the impact of spatial attention on performance 

when the signal strength was at its maximum (100% coherence). In Figure 2 the 

weighted mean of the direction discrimination thresholds across 16 subjects is 

shown for all four attentional conditions.  
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Figure 2. Individual and average result of 16 subjects of the spatial attention task, when target 

dot pattern had maximum signal strength. The weighted mean of the direction discrimination 

threshold was calculated across subjects with the inverse of the 95% confidence interval serving 

as the weight factor. Error bars indicate the standard error of mean. 

When fully attending one spatial location, subjects were able to discriminate a 

change of 2.8±0.19 deg (standard error of mean, SEM) in linear movement. The 

weighted mean across subjects increased marginally with decreasing amount of 

deployed spatial attention, 3.0±0.23, 2.8±0.29 and 3.2±0.43 for 75%, 50% and 

25% attentional condition respectively, showing no significant change 

(repeated-measures ANOVA with post-hoc least significant Difference-

Bonferroni Test; main effect of attention F(3, 45) = 17.8, p = 0.099). The result 

is in line with the result attained in the previous manuscript, showing no effect 
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on performance when various amounts of attention are deployed to two 

locations distributed across the two hemifields. 

In contrast to the absent influence of cue validity on performance, the change in 

target stimulus coherence had a significant effect on subjects’ direction 

discrimination (rmANOVA, F(3, 45) = 7.86, p < 0.001). The first series of figure 

3 (black bars) depicts the influence of signal strength when spatial attention was 

at its maximum.  

Figure 3. Weighted averaged direction discrimination thresholds for all attention and motion 

coherence conditions. Error bars indicate the standard error of the mean. 
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Here, a gradual decrease in signal strength induced a gradual increment in 

discrimination threshold, resulting in a 2-fold bigger discrimination threshold 

for the weakest signal strength (40% coherence) compared to full signal 

strength (100% coherence). A decrement of 20% in signal strength, from 100% 

to 80% coherence, did not lead to a significant change in performance (p= 0.61). 

A further reduction in signal strength, however, influenced the performance in 

direction discrimination significantly (60% and 40% coherence, both 

p<0.0001). Overall, the reduction from 60% of coherently moving dots to 40% 

showed strongest effect on perceptual performance (4.4 deg to 6.7 deg).  

In addition to an individual influence of the two main factors, stimulus strength 

and spatial attention, we were interested in their collective influence on 

perceptual performance. Therefore all attentional conditions were combined 

with all stimulus coherence conditions. Figure 3 summarizes the effect sizes for 

all experimental conditions, showing the weighted mean with the corresponding 

SEM for all possible task combinations. No interaction was found between the 

two main factors on direction discrimination (F(9, 135) = 1.67, p = 0.19), 

suggesting that the direction discrimination threshold varies independently as a 

function of attention and stimulus strength.  

In order to further investigate the influence of attention for the different 

stimulus strengths, we normalized the direction discrimination thresholds to 

the thresholds in 100% attention condition to compensate for inter-subject 

variability. 
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Figure 4. Normalized direction discrimination threshold. All direction discrimination thresholds 

were normalized to the 100% attention condition for all four stimulus coherence levels 

separately. Error bars indicate the standard error of the mean. 

Figure 4 depicts the relative change of direction discrimination with respect to 

the 100% attention condition for all stimulus coherence levels separately. 

Independent of signal strength, the direction discrimination was influenced in 

the same manner, showing no significant difference across attention conditions 

(rmANOVA, F(3, 240) = 0.16, p = 0.92). 

With our task design we are able to eliminate the spatial uncertainty as a critical 

factor from our results as we are able to distinguish location errors from 

discrimination errors. Therefore, only answers at the target location were 
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incorporated in previously described analysis and answers at distractor location 

were excluded. 

Figure 5. Percentage of ignored trials for all experimental conditions. Trials were considered as 

ignored, when the answer was given at distractor location. 

Figure 5 shows the percentage of location errors for all experimental conditions. 

Although the location errors emerged more often for lower attentional 

conditions, their magnitude never exceeded 2% of all trials. 

As we aim to motivate the usage of weighted values in order to deal with 

variances and to avoid erroneous conclusions, we calculated and compared the 

arithmetic means for all experimental conditions (see Figure 6). 
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Figure 6. Arithmetic means of the direction discrimination thresholds across 16 subjects. Error 

bars depict standard error of means. 

The analysis model, based on a repeated-measures ANOVA, showed a 

significant effect of the two main factors, attention (F(3,45)= 5.8, p= 0.01) and 

coherence (F(3,45)= 23.1, p< 0.01), on to the direction discrimination 

threshold, whereas no interaction was found (F(9,135)= 0.47, p= 0.89). Overall, 

the mean discrimination thresholds were considerably higher compared to the 

weighted mean values. Especially the lowest level of attentional deployment 

(25%) was remarkably higher when calculating the arithmetic mean, e.g. 18 deg 

for 40% coherent stimuli compared to 8 deg for the weighted mean. Post-hoc 

comparison revealed significant difference between 25% of attentional 

deployment compared to 75% and 100% of attentional deployment. This effect 
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was eliminated, when the mean was weighted with the inverse of the 95% 

confidence interval serving as the weight factor, indicating that is effect is 

strongly influenced by extreme values having big uncertainties.  

Discussion 
Here we investigate the effects of spatial attention on performance in a direction 

discrimination task using moving random dot patterns of various signal-to-

noise ratios. This allowed us to equate the effects of attention with the effects of 

stimulus coherence on perceptual performance. We gradually manipulated the 

relevance of one spatial location with respect to a second spatial location by 

varying the validity of an endogenous pre-cue, resulting in four level of spatial 

attention (100%, 75%, 50% and 25%). Additionally, the signal strength of the 

target dot pattern was varied by controlling the proportion of the dots moving 

coherently in one direction, achieving four levels of motion coherence (100%, 

80%, 60% and 40%). The effect on performance of both factors, attention and 

stimulus coherence, were measured calculating the discrimination threshold for 

linear motion. 

Observing graded behavioral improvements in correlation with spatial 

specificity would support the existence of limited attentional resources, that 

would need to be partitioned in order to optimally process stimuli at multiple 

locations (Kahneman, 1973; Broadbent, 1971). In our task design performance 

wasn’t significantly affected when one stimulus was fully attended, compared to 

when attention needed to be split across two spatial locations. In other words, 

judging a linear movement at two locations at the same time did not incorporate 

a noteworthy cost compared to a judgment at just one location. Surprisingly, 

even when the amount of deployed spatial attention was further diminished to a 

level of 25%, no significant decrement in performance was observed. This 
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observation is in accordance with the results of the first psychophysical study. 

But this result does not support results gained in other psychophysical studies, 

showing an improvement in motion processing with provided spatial 

information (Liu, Fuller & Carrasco, 2006; Verghese, Anderson & Vidyasagar, 

2013). However, there are also other studies showing that attention had little or 

no effect on performance when the subjects had to perform motion 

discrimination (Lee et al., 1997, Lee et al., 1999). These studies claim that the 

attentional demands for motion discrimination are fairly low, compared to 

other tasks such as letter discrimination (Braun, 1994; Braun & Julesz, 1998). It 

can be therefore argued, that the judgment of linear motion is possibly 

performed in absence of attention. Alternatively, it is assumed that there is 

some amount of visual awareness outside the attentional spotlight, permitting 

the subject to perform a task with low attentional cost equally well for stimuli at 

locations inside and outside of the attentional spotlight (Braun and Julesz, 

1998).  

We deliberately chose stimuli parameters to comprise attentional demands. 

Consequently we chose a very short stimulus presentation of 75 ms, followed by 

a mask to stop information uptake. Additionally, we dynamically varied the 

shown linear motion direction in the target dot pattern depending on subject’s 

performance, in order to target small angles of linear motion direction. We can 

further exclude that subjects perform a serial shift of spatial attention across the 

two locations, as our short task design timing doesn’t allow for such changes 

(Reeves & Sperling, 1986, Duncan et al., 1994).  

Based on results gained in the former study, a possible explanation for the lack 

of attentionally guided improvement is that the two attended locations are 

distributed along the horizontal line, thus targeting independently working 

attentional resources or mechanisms for the two stimuli (Alvarez and Cavanagh, 

2005).  
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Moreover, we were especially interested in whether varying spatial attention 

would have an equivalent influence on behavior compared to varying the signal 

strength. Physiological studies suggested already, that attentional deployment 

leads to a multiplicative change in neuronal response without influencing the 

neuron’s stimulus selectivity (Treue & Martinez- Trujillo, 1999; McAdams & 

Maunsell, 1999). Therefore the same neuronal response can be elicited by 

increasing the stimulus strength such as motion coherence (Sclar & Freeman, 

1982). However, a recent study contrasting attentional influence on behavioral 

performance with attentional influence on neuronal response did not report any 

correlation and suggests that attention acts as a regulatory component. In this 

framework, attention is thought to alter the relationship of neuronal response 

and behavioral performance and therefore limits the neuronal response’s power 

in predicting the behavior (Cook & Maunsell, 2002).  

In this study we observed no influence of attention onto behavioral 

performance, whereas the signal strength showed strong and graded influence. 

We therefore cannot support in our task design, that attention would act in a 

manner similar to varying stimulus strength. 

Our paradigm allowed us additionally to measure the interactive influence of 

both factors on perceptual performance. As earlier behavioral studies revealed 

that attention enhances the subjective appearance of motion coherence (Liu et 

al., 2006), we expected to observe an interaction of both factors onto perceptual 

performance. However, we did not find such interaction. We could demonstrate, 

that a reduction in signal strength did not increase the attentional demand.  On 

the basis of these results, we claim that either spatial attention and signal 

strength co-act as independent systems on the subjects’ perception of linear 

motion, or due to the absence of attentional influence in this task design a 

correlation could not be determined.  

As attentional capacity limits were possibly not reached with this across 

hemifield task design, it would be of interest to investigate the influence of 
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signal strength and attentional deployment on behavioral performance when 

both stimuli are placed within one hemifield.  
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Supplementary figures: 

Suppl. Figure 1. Activity pattern of staircases across an experimental block. For each stimulus 

position (left and right) and for each validity condition (valid and invalid), two independent 

staircases (dark blue and light blue) were active. The upper plot depicts the staircase values 

(linear movement directions in deg) for the two staircases for the left valid stimulus; the lower 

plot depicts the two staircases for the right valid stimulus. Staircases always started at a fixed 

level of 5 deg above and below horizontal (0 deg), changing with a factor of 1.25. All staircases 

followed a 2 to 1 rule, converging when observers’ answer was twice consecutive consistent with 

shown direction and diverging when the answer was inconsistent. Interleaved staircases were 

used in order vary dynamically the shown linear motion direction in the target dot pattern, 

achieving a rational amount of repetitions close to the point of subjective equality (PSE).  
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Abstract 

The top-down modulation of feed-forward cortical information processing is functionally important for many cognitive 
processes, including the modulation of sensory information processing by attention. However, little is known about 
which neurotransmitter systems are involved in 
such modulations. A practical way to address this question is to combine single-cell recording with local and temporary 
neuropharmacological manipulation in a suitable animal model. Here we demonstrate a technique combining acute 
single-cell recordings with the injection of neuropharmacological agents in the direct vicinity of the recording electrode. 
The video shows the preparation of the pressure injection/recording system, including preparation of the substance to 
be injected. We show a rhesus monkey performing a visual attention task and the procedure of single-unit recording 
with block-wise pharmacological manipulations. 

Video Link 

The video component of this article can be found at http://www.jove.com/video/53724/ 

Introduction 

In cortical and subcortical areas, neuronal activity is affected by various neuromodulators, for example acetylcholine1. 
These modulatory effects on neuronal responses have been reported in in vitro studies2, as well as in 
electrophysiological recordings from anesthetized animals3 and systemic pharmacological manipulations in humans4. 
Nevertheless, the exact role of different neuromodulators and the involvement of various receptor subtypes are largely 
unknown. To measure the effects of specific neuromodulators on the activity of single neurons, it is desirable to induce 
a temporary neuromodulator change as close as possible to the recording electrode. Furthermore, it is important that 
those 
manipulations are done in awake animals, as cognitive functions are only present in the absence of anesthesia. 
Additionally, anesthesia interacts with cholinergic and GABAergic systems5,6 and can lead to changes in neural 
activity3. 

Within the last decades, two main methods of local drug delivery have been developed and refined: iontophoresis and 
pressure injection. In both methods drugs are delivered through micropipettes made of either glass or steel. With 
iontophoresis, an electrical current regulates the release of the drug7. Additionally, there is a significant contribution of 
electro-osmosis to the total amount of ejected molecules8, correlating with the tip diameter9 of the micropipette as well 
as with the concentration8 of the substance used. Iontophoresis is a powerful tool to quickly and precisely manipulate 
small volumes of nervous tissue. For iontophoretic injections, multi-barrel micropipettes are usually used10, with one 
acting as a recording device while the other positions serve as delivery pipettes. A limitation of this method is that only 
charged molecules can be used, severely limiting the selection of drugs. 
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Pressure injection uses either air compression or mechanical pressure to eject a substance from a micropipette. Using 
this method any soluble substance, charged or uncharged, can be used, including large molecules. The method of 
pressure injection was first described by Reyniers
in 1933 and further refined in the 1950s (see Lalley11 for a review). In the 1980s the method was further refined to
allow delivery of amounts in 
the nanoliter range (mainly lidocain12) to a defined brain area13 while simultaneously performing single-cell recording.
The ejected volume was usually monitored by observing the movement of a marker, such as the meniscus in the 
upper part of the pipette13. Pressure injection was first used in the 1990s in awake animals, both extracellularly14 and
intracellularly15,16. Based on the cumulative expertise gained in these studies it is now possible to reliably record
from different brain structures in combination with pharmacological manipulation (see17 for a comparison of recent
pressure injection systems). 

An enduring open issue for both drug delivery methods is the difficulty in determining the precise volume injected. This 
is an even bigger challenge for experiments with awake, behaving rhesus monkeys where the animal performs the 
experimental task in a separate room. This can be alleviated by the use of a software-controlled system instead of 
relying on a visual marker to continuously monitor an injection. 

The system described here is an extension of a well-established electrophysiological recording system (Mini Matrix 
System) and combines an injection pipette with multiple parallel-oriented recording electrodes at defined distances in 
a customizable arrangement. Pharmacological  

manipulation of the tissue near the recording electrode is possible using only a small amount of substance, ensuring a 
fast recovery and allowing multiple blocks of injection and control/recovery within the limited time window offered by 
the behavioral task of the animal. 
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 Protocol 

Animal care and all experimental procedures were conducted in accordance with German laws governing animal care 
and approved by the district government of Braunschweig, Lower Saxony, Germany. 

Note: As the experiment is performed in vivo, it is crucial to maintain the highest possible hygiene standards. 
Whenever possible, work under sterile conditions. 

1. Preparing the injection/recording system

1. Sterilize the tube that connects the micropipette with the syringe. Use the shortest length of tube possible in the
experimental set-up between injection pump and electrophysiological recording system.

2. Clean the guide tubes of the recording system using cleaning wires. Dip them in sterile silicon oil and feed them
through the individual guide tubes several times.

3. Insert the quartz glass micropipette into one guide tube of the recording system. See Figure 1a.
4. After fixing the micropipette in the recording system, attach the sterile tube to the metal pin of the micropipette.

Take care; although the micropipette is fixed in the system it can easily break when attaching the tube. Use two
sterile tweezers to apply equal pressure on pin and tube.

5. Use liquid super glue to seal the junction between tube and micropipette. Wait at least 3 hours for the glue to
harden before filling the micropipette with liquid.

6. Insert microelectrodes (e.g. quartz glass insulated platinum tungsten) into the other positions of the recording
system before or after micropipette insertion.

2. Preparing the substance

1. Sterilize 1.5 mL microcentrifuge tubes for later storage of injection solutions using an autoclave or other reliable
procedure.

2. Weigh the corresponding substance scopolamine hydrochloride to prepare 5 mL of a 0.1 molar solution. Dissolve
in sterile saline (0.9% NaCl).

3. Under sterile conditions in a fume hood, filter the solution using a syringe filter with sufficiently large pore diameter,
e.g. 0.2 µm.

4. Under the fume hood, aliquot the solution into volumes sufficient for a single experiment, e.g. for scopolamine, 500
µL in sterile 1.5 mL microcentrifuge tube. Use dark tubes to protect the substance from light; alternatively, wrap
tubes in aluminum foil. For scopolamine, store the solution for up to 14 days at 4 °C.

3. Daily preparation of the injection/recording system

Note: When mounted in the recording system, the electrodes and micropipette are stored in an enzyme solution 
(Tergazyme, 1% solution with deionized water) between recordings. The following steps must be performed before 
every recording. 

1. Collect a tube of the substance to be injected. Allow it to reach room temperature if refrigerated.
2. Remove the injection/recording system from the enzyme solution and rinse electrodes and micropipette with

deionized water to clean completely of enzyme solution.
3. Remove the front cover of the recording system in order to visually check the seal between micropipette and tube.
4. Apply sterile silicon oil to the guide tube gap (see Figure 1a) and tips of electrodes and micropipette in order to

lubricate the system for smooth movement.
5. Check tips of electrodes and micropipette using a microscope to ensure they are intact. Align the electrodes and

the micropipette under the microscope so that they extend out of the guide tubes with the same length. Drive them
into the guide tubes, stopping as soon as they are no longer visible. This is defined as electrode position zero. Set
the depth of the electrodes and micropipette to 0 in the software.

6. Fill a sterile syringe with sterile saline and insert the needle into the tube, taking care not to pierce the wall of the
tube. Drive the micropipette out of the guide tube for visual control of substance flow.

7. Flush at least 2 mL sterile saline through the tube and micropipette to ensure no air remains in the syringe or in the
tube. Do not apply too much pressure to the plunger of the syringe. Ensure the junction between tube and
micropipette is sealed. If leakage is visible, re-glue the junction (see step 1.5) and postpone recording.

8. Fill a new sterile syringe with the solution to be injected and exchange it with the barrel of the saline syringe, i.e.
keep the needle of the saline-filled syringe in the tube. Make sure that no air is transferred into the system. This is
best achieved by filling the needle hub with saline after removing the saline-filled barrel.

9. Flush the system with 250 µL of the solution to be injected, in order to completely remove the saline from the tube.
10. Using the motor control software, retract electrodes and micropipette into the guidetubesto a depth of at

least -500 µm.
11. Lower the guide tube ring (Figure 1a) to the bottom of the guide tubes to maintain their fixed relative position.
12. Clean the base of the system with ethanol, in particular where it will touch the monkey's recording chamber.
13. Close the recording system by replacing the front cover and tightening the screws.
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4. Validation of the injection system

Note: Although the company calibrates the system, it is recommended to validate the ejected volumes with the materials used 
in the experimental set-up (tubes, syringes etc.). 

1. Prepare the system as described in step 3, keeping electrodes and micropipette extended out of the guide tubes. A depth of
at least 7000 µm is recommended to avoid loss of measurement volume due to adhesion along the outer surface of the
micropipette and electrodes.
2. Place the recording system in the position it will be used in during the experiment and put the syringe into the microinjection

pump. Fix the syringe in place using the rubber band and adjustable grip (see Figure 1a). Slide the movable part of the
pump until it is firmly in place behind the plunger of the syringe.

3. Using the software-controlled motor unit, eject a volume large enough to be measured precisely, e.g. 1000 nL. It is
preferable to use one single step to eject the total volume in order to avoid effects of capillary action along the micropipette
surface. Very low velocities (1 nL/s) can also lead to this effect during the validation procedure.

4. Collect the total volume in a container placed under the micropipette, or carefully collect the ejected drop directly from the
tip of the micropipette. Estimate the ejected volume using a pipette or by weighing with a precision scale.

5. Repeat the procedure several times to confirm measurements.

5. Acute recordings

1. Set the x-y position of the recording system. This defines the point at which the guide tubes reach the dura mater within the
chronically implanted recording chamber. Make sure the guide tubes are retracted completely (guide tube z position 0).

2. Bring the recording system into position and place the syringe in the microinjection pump. Fix the syringe in place using the
rubber band and adjustable grip (see Figure 1a). Slide the movable part of the pump until it is firmly in place behind the
plunger of the syringe. If a drop of substance is visible at the tip of the guide tubes, carefully remove it using a sterile cotton
bud.

3. Prepare the animal for recording according to the laboratory's procedure (see18 for example guidelines).
4. Securely mount the recording system on the recording chamber of the monkey.
5. Slowly manually lower the guide tubes into the recording chamber until the dura is reached, then drive the electrodes using

the motor control software.
6. As it is not possible to measure impedance of the micropipette, first drive with electrodes and check their impedances

regularly at different depths. After a penetration of the dura is successfully performed without damaging the electrodes,
advance the micropipette.

7. Drive the electrodes and the micropipette to the target electrode depth at which the brain area of interest is expected to be
found. Slowly advance the electrode until it is close enough to record the activity of a single unit, as evidenced by a good
signal-to-noise ratio in the recorded signal. Importantly, position the recording electrode and the micropipette at the same
depth to ensure the minimum distance between electrode and micropipette.

1. If possible, keep the electrodes and micropipette at this depth for the entire recording. However, if the only way to maintain
signal quality of the recorded cell is to move the electrodes, then drive the electrodes and the micropipette simultaneously to
maintain the distance between them.

6. Spatial attention task

1. In a series of trials, present two moving dot patterns on the screen, one positioned within the receptive field of the recorded
neuron and the other outside of it, together with a centrally presented fixation point that the animal has to foveate throughout
each trial19,20.

Note: The monkey is trained to respond to a direction change in the cued dot pattern (the target event) while ignoring any 
direction change in the other dot pattern, and is rewarded with a drop of liquid for every successful completion of a trial19,20. As a 
sensory control condition, the monkey has to report a luminance change of the fixation point while ignoring both moving dot 
patterns (see Figure 2 for a more detailed description of the task). 
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7. Pharmacological manipulation while recording

Note: While the monkey is performing the task, inject the substance in a block-wise manner. Three consecutive blocks 
are defined: control, which acts as a baseline; injection, during which a substance is ejected; and recovery, during 
which the cells targeted by the injection return to baseline. 

1. During an injection block, inject a predefined amount of the substance at regular intervals e.g. 2 nL every minute
at a rate of 2 nL/s. For this example, use scopolamine hydrochloride. The injection process is controlled using
software which provides various options. For example, use the step function to define injection volume, and press
the injection button every minute according to the clock of the recording software. Note: The exact duration of the
injection block is substance and experiment dependent, e.g. for scopolamine use 2 nL injections each minute for
10 minutes (20 nL in total). It is preferable not to advance the electrodes and micropipette during the injection
block.

2. Note the time and the trial during which the substance is injected, the depth of the electrodes and micropipette, as
well as the amount of ejected substance.

3. Follow the injection block with a recovery block, in which no substance is injected. The duration of the recovery
block is substance specific and needs to be defined in pre-tests. Monitor and maintain the recording quality of the
selected single units until the end of the recovery block.

4. Repeat the three blocks for as long as the recording quality and motivation of the monkey allow.

8. Post recording procedures

1. After data recording, retract electrodes and micropipette into the guide tubes and then manually retract the guide
tubes. Remove the recording system from the recording chamber of the monkey. Release the syringe from the
injection pump and transfer the system to the preparation area for cleaning.

2. Handle the animal (including cleaning of the recording chamber18) according to the standard procedures of the
laboratory and return it to the housing facility.

3. Rinse the outside of the guide tubes with hydrogen peroxide (3%) and then with deionized water. Drive electrodes
and micropipette out of the guide tubes, rinse with hydrogen peroxide and then deionized water.

4. Exchange the barrel of the syringe with a barrel of a syringe filled with sterile saline, keeping the needle in the
tube. Flush the tube and the micropipette with 1-2 mL of saline. After flushing, remove the barrel and fill it with air. 
Reinsert the barrel into the needle and dry the tube and the micropipette from the inside by gently pushing air
through.

5. Store the guide tubes, extended electrodes and micropipette immersed in the enzyme solution to avoid drying as
well as to ensure the breakdown of organic material.

9. Post recording procedures

1. After data recording, retract electrodes and micropipette into the guide tubes and then manually retract the guide
tubes. Remove the recording system from the recording chamber of the monkey. Release the syringe from the
injection pump and transfer the system to the preparation area for cleaning.

2. Handle the animal (including cleaning of the recording chamber18) according to the standard procedures of the
laboratory and return it to the housing facility.

3. Rinse the outside of the guide tubes with hydrogen peroxide (3%) and then with deionized water. Drive electrodes
and micropipette out of the guide tubes, rinse with hydrogen peroxide and then deionized water.

4. Exchange the barrel of the syringe with a barrel of a syringe filled with sterile saline, keeping the needle in the
tube. Flush the tube and the micropipette with 1-2 mL of saline. After flushing, remove the barrel and fill it with air. 
Reinsert the barrel into the needle and dry the tube and the micropipette from the inside by gently pushing
air through.

5. Store the guide tubes, extended electrodes and micropipette immersed in the enzyme solution to avoid drying as
well as to ensure the breakdown of organic material.
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 Representative Results 

Figure 2 depicts the spatial attention task the monkey performed while the injection process was conducted. The monkey was 
trained to attend to either the stimulus located within the receptive field of the recorded neuron (attend-in), the stimulus located 
outside of the receptive field (attend- out) or the fixation point (attend-fix). These conditions allow a comparison of neuronal 
activity in different attentional states. 

Figure 3 shows a peri-stimulus time histogram of a sample neuron in an experiment using scopolamine, a muscarinic cholinergic 
antagonist. The plot demonstrates the response suppression during scopolamine injection versus no injection, when a pattern 
moving in the cell's preferred direction is presented inside the neuron's receptive field and is attended by the animal. The two first 
peaks represent the neuron's response 
to the on- and offset of the spatial cue, which appears inside its receptive field. This is followed by the response to the moving 
pattern which appears on the screen 500 ms after cue onset. The gray shaded area depicts the analysis period used to calculate 
the average firing rate for every trial. The green area highlights the suppressive influence of scopolamine injection on the cell's 
firing rate. The dark green region shows the suppression within the analysis period. 

Figure 4a shows the effect of scopolamine on the average firing rate of the sample neuron in each of the three attentional 
conditions. The neuron's firing rate for the two spatial attention conditions (attention inside or outside of the receptive field of the 
recording neuron) as well as for the sensory condition (attention at fixation point) dropped shortly after the first injection of the 
injection block (grey shaded area) and during the recovery block increased after a delay to the same level as before the injection. 

Figure 4b shows a control recording from a second sample neuron in which saline (0.9% NaCl) was injected, using the same 
protocol as for the scopolamine injection. During the injection block no change in the neuron's firing rate was observed compared 
to the control block. 

Figure 1. Set-up used for pharmacological manipulation while recording. (A) Depicts the microinjection pump and 

the electrophysiological recording system equipped with electrodes and micropipette. The guidetube gap, into which silicon oil is 
inserted to lubricate the electrodes and micropipette, is shown enlarged. (B) Displays an example micropipette (above) and 
recording electrode (below). For size comparison, a euro cent (diameter: 16 mm) is placed underneath.  
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Figure 2. Task design to guide spatial attention. Monkeys were trained to detect a motion direction change in the 
cued dot pattern. The cue was either placed within the neuron's receptive field (attend-in), as shown in the figure, or 
outside of it (attend-out). As a sensory control, the monkey was trained to detect a luminance change of the fixation 
point (attend-fix).  

Figure 3. Influence of antagonist scopolamine on firing rate. The peri-stimulus time histogram for a sample 
neuron is shown for the attend- in condition (attention inside the receptive field of the recorded neuron) during the 
injection block and during the control block. The x-axis depicts the time in milliseconds after cue onset and the y-
axis shows the firing rate in spikes/sec. The grey area depicts the analysis period (300-800ms after stimulus onset) 
used to calculate the trial-averaged firing rate. The green shaded area shows the suppression in firing rate across 
the two conditions. The dark green color highlights the suppression within the analysis period 
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Figure 4. Effect of scopolamine and saline on firing rate. (A) Antagonist scopolamine injection. The trial-averaged firing 
rate of the sample cell from Figure 3 over the course of the experiment is shown for the preferred stimulus for all three 
attentional conditions. The x-axis depicts the trial start time in minutes and the y-axis shows the unit's firing rate in spikes per 
seconds. Symbols attend-in,  attend-fix,  attend-out) represent the neuron's firing rate within the analysis period in 
every successfully performed trial, and horizontal lines (solid line: attend-in, dotted line: attend-fix, dashed line: attend-out) 
show average firing rate for the three different experimental blocks (control, injection, recovery). The grey shaded area 
shows the injection block, beginning with the first injection and ending one minute after the last injection. During the injection 
block 2 nL of 0.1 molar scopolamine were injected every minute with an injection velocity of 2 nL/s. (B) Saline injection. The 
firing rate of a sample cell over the course of the control experiment is shown for the preferred stimulus for all three 
attentional conditions. Grey shaded area visualizes the block of saline injection.  
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 Discussion 

Here we have illustrated in detail how to perform reliable and precise injections and high quality single-cell 
recordings with an "off-the-shelf" pressure injection system. While this method of drug delivery has previously been 
used in behaving monkeys (reviewed in17), the system presented here has advantages, reviewed below. 

As illustrated in Figure 4a, the system described here can provide stable measurement of single neuron activity 
with and without pharmacological injections in the direct vicinity of the recording site. As shown in Figure 4b, the 
injection of a control substance, saline, did not lead to a change 
in firing rate. This control demonstrates that the injection process itself has no measurable influence on the firing 
properties of the recorded neurons. 

The spatial configuration of neuron, recording electrode, and micropipette is of crucial importance in these 
experiments. Although a precise measurement of their relative positions in the tissue during recording is not 
possible, we can consider and control for possible sources of variance. First, during volume injection there is a risk 
that the neuron of interest may be displaced away from the recording electrode, affecting the stability of recorded 
signals. For that reason it is prudent to compare the firing rate before and after the injection block to verify signal 
stability. Second, the guide tube configuration of the recording system defines the distance between electrodes 
and micropipette (e.g. 305 µm in the concentric 3-channel system used in this experiment). As the system 
provides precise position control for the depth of electrodes and micropipette in the tissue, the distance between 
them can be minimized by carefully calibrating relative depth before recording (step 3.5), and keeping them at a 
common depth during recordings. 

Potential limitations 
In addition to in-house quality control by the manufacturer, the system needs to be validated under lab conditions, 
as different brands of tubes, syringes etc. can be used and could lead to differences in ejected volumes. Although 
the system can be used to inject very small volumes as in the experiment shown here, these are below the 
minimum volume that can be validated due to practical measurement limits in a normal laboratory environment. 
However, larger injection volumes can be used to infer the relation between the software-defined volume and the 
volume ejected by the hardware. If transparent tubes are used, an additional visual check of the injection process 
is possible by measuring the displacement of a visual marker. 

Inserting the micropipette into the system is more demanding than electrode insertion, as the diameter of the 
micropipette is slightly larger and the material is more fragile. In addition, joining the tube to the pin of the 
micropipette is challenging as it entails a high risk of breaking the upper part of the micropipette. However, the 
lifetime of a successfully loaded micropipette is several months, even with daily use. 

In practice, we have not yet encountered a blockage in the injection system during post-recording cleaning of the 
system. Nevertheless, no "online" check is possible, and there is a risk that a physical blockage (such as tissue at 
the micropipette tip) might prevent substance injection. It might therefore be advisable to analyze the data 
conservatively, such as including only those cells in further analysis that show significant changes in firing rates 
between control and injection blocks of the experiment. 

Despite their small diameter, microelectrodes and pipettes will displace brain tissue and may cause some local 
tissue damage. This can be minimized by manually positioning the tip of the guide tubes just above the dura 
mater. The electrodes then penetrate the dura and their intactness is inferred by measuring their impedances 
online. Afterwards, the micropipette is inserted. When using this approach, regular removal of tissue above the 
dura is recommended to further reduce the risk of electrode or pipette breakage. 

Comparison to alternative methods 
The system used here shows clear advantages compared to other pressure injection systems. One strong 
advantage is the diameter of the micropipette (approximately 100 µm), which is half the size of other available 
probes17 and therefore minimizes neural tissue damage. In contrast to previous designs, the current system 
employs spatially separated recording electrode and micropipette. Although other systems provide a smaller 
distance between electrode and pipette, the system described here allows independent depth changes of 
electrodes and pipette, thus permitting variable relative distances within a recording session. Importantly, no 
compromise regarding recording quality needs to be made, 
as the injection system is an extension of an established recording device. While only one micropipette and thus 
one substance is used in this protocol, it is possible to inject several substances within one experimental 
procedure. To achieve this, several micropipettes can be threaded into separate guide tubes and connected to 
syringes mounted in individual injection pumps. Finally, controlling the system is easy, as only one computer 
program is needed to advance the electrodes and micropipette, and to perform the pressure injection during the 
experiment. 

Comparing pressure injection to iontophoresis, there are relative advantages and disadvantages. For example, 
pressure injection requires greater volumes to be introduced into the tissue than iontophoresis, thus increasing the 
risk of neuronal displacement. The current protocol used volumes in the nL range, and we rarely experienced 
noticeable changes in a recorded cell's signal quality. The system also allows larger 
volumes to be injected, which is potentially useful for behavioral manipulations but could impact stability of 
neuronal recording. A clear advantage of pressure injection over iontophoresis is the larger variety of useable 
substances as there is no requirement to use charged substances. 
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However, pH values should be checked and compared between experimental and control substances (e.g. saline). 

The question might arise why to use the long-established method of pressure injection instead of newer techniques such as 
optogenetics for manipulating neural activity. Although well established in rodents, optogenetics is not yet reliably established 
in rhesus monkeys. In particular, it does not yet allow the local manipulation of cells selective for a particular neurotransmitter 
type. In the longer run, we see great potential for the combination of the advantages of pharmacological manipulations with the 
advantages of optogentic manipulations in elucidating the neural basis of cognitive functions. 

Here we have shown how pressure injection can be used to pharmacologically manipulate a locally restricted area in the brain 
of awake, behaving rhesus monkeys. We hope that this method inspires other scientists to investigate neuromodulatory 
contributions to the dynamics of neuronal activity. 

96 Original  manuscripts



 Disclosures 

The authors have nothing to disclose. 

 Acknowledgements 

This work was supported by grants of the Deutsche Forschungsgemeinschaft through the Collaborative Research 
Center 889 "Cellular Mechanisms of Sensory Processing" to S.T. (Project C04). We thank Sina Plümer, Leonore 
Burchardt, Dirk Prüsse, Klaus Heisig and Ralf Brockhausen for technical and animal-related support and our 
collaborators in the Stem Cell Unit of the German Primate Center, Dr. Katharina Debowski and Anna Magerhans, 
for technical assistance in the filtration process. 

 References 

1. Noudoost, B., Moore, T. The role of neuromodulators in selective attention. Trends Cogn Sci. 15(12), 585-591
(2011).

2. Jochems, A., Reboreda, A., Hasselmo, M., Yoshida, M. Cholinergic receptor activation supports persistent
firing in layer III neurons in the medial entorhinal cortex. Behav Brain Res. 254,108-115 (2013).

3. Thiele, A., Herrero, J.L., Distler, C., Hoffmann, K.P. Contribution of cholinergic and GABAergic mechanisms to
direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle
temporal area. J Neurosci. 32(47):16602-16615 (2012).

4. Thienel, R., et al. Muscarinic antagonist effects on executive control of attention. Int J Neuropsychopharmacol.
12(10), 1307-1317 (2009).

5. Anthony, B.L., Dennison, R.L., Aronstam, R.S. Disruption of muscarinic receptor-G protein coupling is a
general property of liquid volatile anesthetics. Neurosci Lett. 99(1-2), 191-196 (1989).

6. Yamakura, T., Bertaccini, E., Trudell, J.R., Harris, R.A. Anesthetics and ion channels: molecular models and
sites of action. Annu Rev Pharmacol Toxicol. 41, 23-51 (2001).

7. Herr, N.R., Wightman, R.M. Improved techniques for examining rapid dopamine signaling with iontophoresis.
Front Biosci. 5, 249-257 (2013).

8. Bevan, P., Bradshaw, C.M., Pun, R.Y., Slater, N.T., Szabadi, E. The relative contribution of iontophoresis and
electro-osmosis to the electrophoretic release of noradrenaline from multi barrelled micropipettes
[proceedings]. Br J Pharmacol. 67(3), 478-479 (1979).

9. Herr, N.R., Kile, B.M., Carelli, R.M., Wightman, R.M. Electroosmotic flow and its contribution to iontophoretic
delivery. Anal Chem. 80, 8635-8641 (2008).

10. Thiele, A., Delicato, L.S., Roberts, M.J., Gieselmann, M.A. A novel electrode-pipette design for simultaneous
recording of extracellular spikes and iontophoretic drug application in awake behaving monkeys. J Neurosci
Meth. 158(2-4), 207-211 (2006).

11. Lalley, P.M. Microiontophoresis and Pressure Ejection: Modern Techniques in Neuroscience (eds. Windhorst
U., & Johansson H.) 193-209, (1999).

12. Malpeli, J.G., Schiller, P.H. A method of reversible inactivation of small regions of brain tissue. J Neurosci
Meth. 1(2), 145-59 (1979).

13. Malpeli, J.G. Reversible inactivation of subcortical sites by drug injection. J Neurosci Meth. 86(2), 119-28
(1999).

14. Dias, E.C., Segraves, M.A. A pressure system for the microinjection of substances into the brain of awake
monkeys. J Neurosci Meth. 72 (1), 43-47 (1997).

15. Szente, M.B., Baranyi, A., Woody, C.D. Effects of protein kinase C inhibitor H-7on membrane properties and
synaptic responses of neocortical neurons of awake cats. Brain Res. 506 (2), 281-286 (1990).

16. Woody, C.D., Bartfai, T., Gruen, E., Nairn, A. lntracellular injection of cGMP-dependent protein kinase results in
increased input resistance in neurons of the mammalian motor cortex. Brain Res. 386 (1-2), 379-385 (1986).

17. Noudoost, B., Moore, T. A reliable microinjectrode system for use in behaving monkeys. J Neurosci Meth. 194
(2), 218-23 (2011).

18. Association of Primate Veterinarians. Cranial Implant Care Guidelines for Nonhuman Primates in Biomedical
Research, http://
www.primatevets.org/Content/files/Public/education/Cranial%20Implant%20Care%20Guidelines.pdf (2015).

19. Treue, S., Martinez-Trujillo, J.C. Feature-based attention influences motion processing gain in macaque visual
cortex. Nature. 399, 575-579 (1999).

20. Martinez-Trujillo, J.C., Treue, S. Feature-based attention increases the selectivity of population responses in
primate visual cortex. Curr Biol.

14 (9), 744-751 (2004). 

97Original  manuscripts

http://www.primatevets.org/Content/files/Public/education/Cranial Implant Care Guidelines.pdf


Original manuscripts 98 
_______________________________________________________ 

The role of the cholinergic system in 

attentional modulation in area MT of 

the primate visual cortex 

Vera Katharina Veith1, Cliodhna Quigley1, Stefan Treue1,2

1Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, 

Germany 

2Bernstein Center for Computational Neuroscience, Goettingen, Germany 

Abstract 
Attentional modulation of sensory responses in extrastriate visual cortex of 

primates is characterized by gain changes, which are multiplicative changes of 

firing rates for a given combination of stimuli in the receptive field and the 

attentional state of the animal. There is evidence that the cholinergic system 

may be responsible for such changes. In this study, we aim to directly link 

attention-induced changes in neuronal response in macaque area MT to local 

cholinergic activity. While the monkey performed a task requiring top-down 

spatial attention, we induced local neuropharmacological manipulations 

targeting the cholinergic system while recording single cell activity. Local 

enhancement of the neuromodulator acetylcholine led to increased attentional 

modulation. A blockage of the muscarinic receptor type showed a significant 
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increase in attentional modulation, an effect opposite to that found in area V1 

(Herrero et al., 2008). These results suggest a visual area dependent difference 

in the mechanistic role of the cholinergic system in visual attention processes.  

Introduction 
Attention induces an increased representation of attended objects on a neuronal 

level (Treue and Maunsell, 1996). This effect was reported to be very consistent 

across studies investigating different visual areas (Roelfsema et al., 1998; 

Reynolds et al., 1999). However, the exact neurotransmitter contribution 

triggering this effect is to a big extent ambiguous. There is ample evidence of 

cholinergic participation in attentional modulation, primarily gained in rodent 

studies (Sarter et al., 2005; Parikh and Sarter, 2008; Fournier, 2004). 

Additionally, cognitive deficits characterizing Dementia and Alzheimer’s disease 

were ascribed to cholinergic cell loss in the basal forebrain, the main cholinergic 

source for the cortex, in human (Wevers et al., 2000; McGaughy et al., 2002). 

However, these studies often lack a link between the fast effects of attentional 

modulation and local cortical cholinergic release, as the studies either measure 

global cholinergic effects using fMRI (Kumari et al., 2003) or have a slow 

temporal resolution using microdialysis (Arnold et al., 2002). Consequently, the 

precise nature of the cholinergic contribution to attentional modulation is still 

ambiguous.  

A study performed in macaque visual area V1 was the first to shed light on the 

underlying cellular mechanisms of the well-discovered effects of spatial 

attention on firing rates in an early visual area (Herrero et al., 2008). Here a 

cholinergic agonist or antagonist was iontophoretically injected in the direct 

vicinity of the recording electrode while the macaque monkey performed a 

spatial attention task. A correlation was found between a moderate increase of 
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acetylcholine and an increase in attentional modulation. In addition, the 

authors found muscarinic, but not nicotinic, receptor contribution in attentional 

modulation in V1 of macaque monkey.   

However, it has also been shown that visual area V1 has specific anatomical 

characteristics that distinguish it from other visual areas, such as a reduced 

amount of inhibitory neurons as well as an altered quantity of cholinergic 

receptor subtypes (DeFelipe et al., 1999, Disney et al., 2006). This suggests a 

diverse role for cholinergic contribution, and therefore area V1 is of limited 

suitability to serve as a model for cholinergic modulation of visual cortical 

circuits in the macaque.  

In this study we recorded neuronal activity in visual area MT, a well understood 

mid-level visual area in terms of its sensory properties and its attentional 

modulation characteristics (Treue and Maunsell, 1996). We recorded from 

single cells in two awake, behaving rhesus monkeys while they performed a 

spatial attention task. We compared firing rates when the stimulus in the 

receptive field was attended vs. unattended to quantify gain changes by spatial 

attention. During recordings, we used pressure injection to pharmacologically 

manipulate the direct vicinity of the recorded neuron in a block-wise fashion 

(Veith et al., 2016). We used the antagonist scopolamine or mecamylamine to 

block the muscarinic or nicotinic cholinergic receptor subtype respectively, or 

the agonist acetylcholine to increase its extracellular concentration. The pattern 

of attentional modulation during injection was compared to baseline blocks 

recorded before injection.  

The aim of this study is to investigate whether there is an interactive effect of 

spatial attention and neuropharmacological manipulation on neuronal response 

in area MT in the macaque monkey, thereby shedding light on local cholinergic 

mechanism of attention. 
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Material and Methods 
Monkey surgery 

Two male macaque monkeys (macaca mulatta) were implanted with custom-

made titanium head holders to circumvent movement during the recording 

procedure. Additionally, they were implanted with a recording chamber (Crist 

Instruments, Hagerstown, MD, USA or 3DI, Jena, Germany) over the left or 

right hemisphere. The position of the recording chamber was planned based on 

anatomical fMRI scans using a MATLAB-based (TheMathworks, Inc.) software 

(Ohayon and Tsao, 2012). All surgeries were performed aseptically under 

balanced anesthesia using Sevofluran, Propofol and Remifentanil.  

Apparatus 

During recordings, monkeys were seated in a custom-made primate chair in a 

dark cabin with a distance of 57 cm from the computer monitor (Quato Display 

240 m). Visual stimuli were presented with a refresh rate of 60 Hz and a 

resolution of 1920 x 1200 pixel. Eye position was recorded using an eyetracker 

(ET49, Thomas Recording, Giessen, Germany) with a frame rate of 230 Hz. 

Acute recording/injection was performed using a multielectrode manipulator 

equipped with a pressure injection system (MiniMatrix, Thomas Recording, 

Giessen, Germany). Details about preparation, handling and care of this system 

can be gleaned from the prior methods paper (Veith et al., 2016). Recording of 

neuronal signals and real-time spike sorting was performed with a data 

acquisition system (MAP, Plexon Inc., Dallas, USA). All stimuli were generated 

and presented using custom-made software built for real-time visual 

experiments running on an Apple Macintosh PowerPC. In addition, the software 
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monitored the eye position, controlled fluid reward release and collected 

behavioral as well as electrophysiological data.  

Stimuli 

Used stimuli were white random dot patterns (RDP) presented on a uniform 

grey background (luminance 27 cd/m2). Each RDP consists of small bright dots 

(luminance: 38 cd/m2, size 0.1 deg), coherently moving linearly within a 

circular, stationary aperture. One RDP was placed at the most responsive part of 

the receptive field (RF), the second RDP was placed opposite the RF in the other 

hemifield with the same relative distance to the centrally presented fixation 

point. The speed of the moving dots was adjusted to the recorded cell’s 

preferences, but always lay between 4 and 12 deg/sec. Preferred movement 

direction of the recorded cell was defined based on results gained in previously 

performed tuning sessions. The radius of the dot pattern was increased when 

stimuli had to be placed very eccentrically in order to stay detectable for the 

monkey (range of 2 – 3 deg).  

Substances 

In order to manipulate the cholinergic system, we used the general agonist 

acetylcholine, the muscarinic antagonist scopolamine, and the nicotinic 

antagonist mecamylamine in various concentrations and volumes (Sigma-

Aldrich, St.Louis, Missouri, USA). All substances were diluted in saline (NaCl, 

BBraun, Melsungen, Germany). For acetylcholine, concentrations of 0.1, 0.15 

and 0.2 mol/l were used and volumes of 2, 3, and 4nl/minute were injected. 

Scopolamine was injected with concentrations of 0.01, 0.05 and 0.1 mol/l and 

volumes of 1, 2, and 4 nl/minute. Mecamylamine was used in a concentration of 

0.1 mol/l and a volume of 6 nl/minute. For a control, saline was injected with a 
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volume of 2, 4, and 6 nl/minute in order to mimic the influence of different 

volumes onto the recorded neuron. Supplementary figure 2 shows the 

concentration and volume combinations used in this study. Measured pH values 

stayed at approx. 5 for all substances used. Different concentrations of the 

substances used had only weak influences on pH values. 

Behavioral task 

This task was designed to guide the monkeys' spatial attention to various 

locations on the monitor. Therefore the two monkeys were trained to detect a 

motion direction change in the cued dot pattern. The cue was either placed 

within the neuron’s receptive field (attend-in) or outside of it in the other 

hemifield (attend-out). As a sensory condition the monkeys had to detect a 

slight luminance change in the fixation point (attend-fix). 

Monkeys initiated every trial by holding a lever and fixating the centrally 

presented fixation point. In the attend-in and attend-out conditions, the 

centrally presented fixation point remained red (square with side length: 0.16 

deg; luminance: 14 cd/m2) during the entire trial. After a delay of 150 ms a static 

dot pattern, serving as an exogenous cue, was presented for 150 ms at the future 

stimulus position either within the neuron's receptive field (attend-in) or 

outside of it (attend-out). An inter-stimulus interval of 350 ms followed, where 

only the fixation point was shown. Subsequently, two RDPs were presented on 

the screen, one placed within the neuron’s receptive field, the other in the 

opposite hemifield. They both moved linearly in the same direction, either in the 

preferred direction of the recorded neuron or in its null direction (+180 deg). 

Monkeys had to respond to a slight direction change (duration 130 ms) at the 

cued location (target) and had to ignore a direction change at the uncued 

location (distractor). The angle of direction change varied from 25 to 35 deg, 

depending on the stimulus position. The aim was to adjust the task difficulty 
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depending on stimulus position, choosing bigger angles for more eccentric 

stimuli. The direction change could occur in a time window of 200-2500 ms 

after stimulus onset. In 1/10th of the trials no direction change happened at the 

target position and monkeys were rewarded for not responding until the trial 

ended.  

Figure 1. Schematic trial structure of the spatial attention task. The three attention conditions, 

attend-fix, attend-in, and attend-out, were shown in a random order. In the attend-fix trials the 

monkey had to respond to a luminance change of the centrally presented fixation point. In 

attend-in and attend-out trials, the monkey had to respond to a direction change of the cued dot 

pattern. (ISI = inter stimulus interval). 

In the sensory condition (attend-fix) the monkeys had to respond to a slight 

luminance change of the fixation point and had to ignore direction changes of 

the two shown RDPs. Here, the fixation point changed from red to gray color 

immediately after the monkeys started the trial. The behaviorally relevant 

luminance change (from 85 to 52 cd/m2) of the fixation-point could occur in a 

time-window of 200-2500ms. Additionally, we had a baseline condition, where 

only the fixation point was shown on the screen and the monkeys had to detect a 

luminance change of it. 

Attend-out

time course of the trial

RF

150ms 350ms 200-2500ms
after stimulus onset

150ms

Attend-in

Attend-fix

fixation cue ISI analysis period target event
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In all conditions, monkeys had to respond by releasing a lever within a time 

window of 550 ms after target onset and were rewarded with a drop of juice. 

Trials of all attentional and sensory conditions were presented in a random 

fashion. Each trial was aborted when eye fixation was interrupted or eye gaze 

moved outside of the fixation window (1.2 deg radius around the fixation spot).  

Experimental procedure 

At the beginning of a recording session, guide tubes were manually lowered to a 

position in the recording chamber at which they just penetrated the dura with 

their tip. Subsequently the electrodes were mechanically ejected into the cortex 

while simultaneously monitoring the impedances to avoid physical damage to 

tissue and electrodes. When electrodes were successfully lowered, the 

micropipette was ejected to the same level. From there on, all electrodes and the 

micropipette were driven with the same speed to the same depth. More details 

can be found in the previous methods paper (chapter 2.3). 

Single unit activity was recorded using two single tungsten electrodes of two 

different impedances (0.2-0.5 MΩ or 1-2 MΩ) placed in a multielectrode 

recording system (Thomas Recording, Giessen, Germany). Data were filtered 

(150Hz-5kHz) and amplified (gain range 1000-32000). Isolation of single units 

was performed using online window discrimination (RASPUTIN, Plexon Inc., 

Dallas, Texas, USA). 

Characterization of isolated cells 

Based on their response properties, isolated cells were ascribed to area MT, the 

target cortical area in this study. Therefore a mapping and a tuning experiment 

were conducted at the start of a recording session. In the mapping experiment, 
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the RF size was determined as well as its hotspot, where visual stimulation 

elicited the highest response. This was done by manually moving a static dot 

pattern on the monitor. When the defined RF size matched the size of an 

average MT cell (diameter approx. 5 deg) we continued with the tuning task. 

Here one stimulus (RDP) was placed at the previously defined hotspot. While 

the monkeys performed a luminance detection task, where a slight luminance 

change of the centrally presented fixation point had to be detected, the dots of 

the RDP performed a coherent linear movement to one out of 12 direction in 

steps of 30 deg with various speeds (2,4,8, and 12 deg/s). Each trial had a 

sequence of randomly chosen speed and direction combinations of a single pair 

of opposing directions (0/180; 30/210; etc.). Based on the tuning profile of the 

neuron the preferred direction and speed were defined for the subsequent 

attentional task. When recording several units, the stimulus properties were 

chosen to activate all neurons. 

Main experiment with pharmacological manipulations 

With the information gained in the mapping and tuning tasks, we generated the 

main experimental task with stimulus properties targeting the isolated 

neuron(s).  

The main experiment is subdivided into three blocks: control, injection, and 

recovery (see Figure 2).  
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Figure 2. Experimental design. One full cycle of the main experiment consists of control, 

injection, and recovery blocks. The cycle can be performed several times during one experiment. 

The exact definition of the three blocks is described in the text. The grey horizontal bar depicts 

the analysis period for the control condition. The green horizontal bar depicts the analysis 

period for the injection. 

During all blocks, the monkeys preformed all attentional task conditions in a 

random fashion. The injection block was started after sufficiently many hit trials 

in the initial control block (at least 11 repetitions of each conditions). During the 

control condition, neuronal activity was measured in the absence of 

pharmacological influence. In the subsequent injection block a specific amount 

of a substance was injected every minute, or twice a minute, using pressure 

injection. In total, 3 different substances were used in this study: acetylcholine 

(general agonist), scopolamine (muscarinic cholinergic antagonist) and 

mecamylamine (nicotinic cholinergic antagonist). As a control substance saline 

was injected. Supplementary Figure 2 depicts all concentrations and volumes 

used in this study. 

A recovery block followed the injection block, where no substance was injected. 

In this block the neurons' activity should recover, if affected during the injection 

block, to the same value as in the control period. In most of the experiments one 

full cycle, covering control, injection and recovery block, were performed. In 

other rare cases an additional or even a third cycle of pharmacological 

manipulation was recorded.  
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Data analysis 

With our custom-made software we were able to analyze the behavioral data as 

well as the spike train of the isolated cells online during the recording session. 

This helped us gain an initial impression of the data quality while recording. 

Final data analysis was performed offline using custom scripts written in 

MATLAB (The MathWorks, Natick, MA). 

For the main analysis, only the response to the preferred direction of each 

neuron was used. Firing-rates were averaged in an analysis window of 300-800 

ms after stimulus onset for every trial. 

We compared firing rates in the absence (control block) and presence of a drug 

(injection block). The analysis period for the control block started from the 

beginning of the data file until the first injection was performed. Control blocks 

for second and third injections are defined as periods immediately preceding 

start trial of injection (no shift in time) with duration equal to the duration of 

the corresponding injection period. 

The analysis period for the injection block started one minute after the first 

injection and ended 2 minutes after the last injection was performed (see Figure 

2). 

Inclusion criteria 

The first three inclusion criteria examined firing characteristics independent of 

injection and attention influences (see suppl. Figure 1). Therefore only data files 

were included that contained enough trial repetitions (a minimum of 5 trials) 

for every task condition. Additionally, recorded cells had to respond with certain 

strength to a stimulus on the screen, showing a minimum firing rate of 10 

spikes/sec for the preferred direction condition in order to be included. A 
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responsiveness check was also performed comparing the sensory conditions for 

preferred and null direction and fix-only during the control block. Cells were 

included in further analysis if they showed significant differences between the 

three fixation conditions (Kruskal-Wallis test, p<0.05). 

In the separate inclusion criterion applied to the substances with sufficiently 

many cells, a subset of cells was defined showing significant injection effects on 

firing rates in sensory conditions. These cells were therefore analyzed 

separately. 

Of 128 well-isolated MT single units of two monkeys, 100 fulfilled the first three 

inclusion conditions when using the muscarinic antagonist scopolamine. 28 of 

44 units were used for saline control. 30 out of 54 were used to analyze the 

effect of general agonist acetylcholine, and 5 out of 8 were used for nicotinic 

antagonist mecamylamine.  

An injection modulation index (IMI) was used to quantify the influence of 

injection on firing-rates. It was defined as the difference in firing rate for two 

blocks, divided by the sum. 

𝐼𝑀𝐼 =   
𝑅!−𝑅!
𝑅! + 𝑅!

 

where R1 is the respective firing rate in the control block and R2 in the injection 

block. Therefore, a positive IMI indicated a response enhancement due to 

injection. The IMI was calculated separately for all attentional conditions: 

attend-fix, attend-in, attend-out. 

In order to test for injection effects on attentional modulation, an attentional 

modulation index (AMI) was calculated and compared for control and injection 

blocks.  

The AMI was used to measure the effect of attention on firing rate and was 

defined as: 
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𝐴𝑀𝐼 =   
𝑄!−𝑄!
𝑄! + 𝑄!

where Q1 is the respective firing rate in attend-out trials and Q2 in attend-in 

trials. Positive values indicate an increase in response by attention, whereas 

negative values denote suppression. 

The AMI and the IMI were also used to define the percentage change (percAMI) 

in firing rate modulated by attention or injection.  

𝑝𝑒𝑟𝑐𝐴𝑀𝐼 =
2𝑥𝐴𝑀𝐼
1− 𝐴𝑀𝐼 𝑥  100% 

The percentage change for the IMI was calculated in the same manner as for the 

AMI. 

Additionally, the difference in AMI or IMI between two conditions was 

calculated to compare the relative change in modulation and was therefore 

defined as: 

∆𝐴𝑀𝐼 = 𝐴𝑀𝐼! − 𝐴𝑀𝐼! 

AMI2 and AMI1 are respective attentional modulation indices for two 

experimental blocks, injection and control. Positive values indicate an increase 

in attentional modulation with injection, whereas negative values indicate 

suppression. 
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Behavioral results 

In addition, we were interested whether the local application of agonist or 

antagonist induced a behavioral change.  

The monkeys were either cued to attend a spatial location inside the receptive 

field of the recorded neuron, outside of the receptive field in the other hemifield, 

or the centrally presented fixation point. The three attentional conditions were 

randomly shown on a trial-by-trial basis. We calculated and compared the 

reaction times for control and injection blocks in order to investigate the 

influence of the injected substances on the behavioral performance for all 

attentional conditions separately. Supplementary figure 3 illustrates the median 

reaction times for all attentional conditions for control and scopolamine 

injection for both monkeys separately. 

Additionally, we correlated the change in median reaction time (injection minus 

control) with the corresponding injection modulation index, in order to directly 

link changes in neuronal response with behavior. We calculated a linear 

regression to statistically quantify the relationship between these two factors. 
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Results 
In order to investigate the neuronal spiking dynamics for every attentional 

condition, we calculated the peristimulus time histograms (PSTH) during the 

control block, where no substance was injected. As illustrated in figure 3, both 

monkeys show clear attentional enhancement of their firing rate, as the firing 

rates for attend-in condition are clearly elevated compared to firing rates in 

attend-out or attend-fix conditions (red vs. dark blue lines in figure 3). As both 

monkeys show a similar effect of spatial attention on their firing rate, we pooled 

the data from the two monkeys. Subsequent analysis is based on firing-rates in 

the time window of 300-800 ms after stimulus onset (grey shaded area in 

Figure PSTH_sco). 

Figure 3. Effect of spatial attention on neuronal firing rate across trial time course. Peristimulus 

time histograms were calculated for the control condition for the scopolamine cell population of 

each monkey separately. The analysis period is defined as 300-800ms after stimulus onset (grey 

shaded area). 
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Muscarinic effects on firing rate 

As a previous investigation of cholinergic effects on attentional modulation in 

visual area V1 reported the muscarinic antagonist scopolamine to have the 

strongest influence (Herrero et al., 2008), we first focused on its effects in the 

medial temporal area MT. In total, 128 single units from two monkeys were 

recorded, of which 100 cells fulfilled the initial criteria regarding data quality 

(see material and methods for the inclusion criteria). 

Our first aim was to quantify the influence of the substance on the measured 

firing rates. Consequently, we calculated the injection modulation index (IMI) 

in order to contrast the firing rates during the control block with the firing rates 

during injection block. The injection modulation index was calculated for all 

attentional conditions (att-in, att-out, att-fix) separately. In order to test for 

statistical significance of the injection modulation index (IMI) across 

conditions, the Wilcoxon signed-rank test was used. 

Figure 4 depicts the distribution of the injection modulation index across the 

recorded cells and highlights the median injection modulation. During the 

fixation condition, scopolamine reduced the median injection modulation, but 

this did not reach significance (Wilcoxon signed rank test, signedrank=2491, 

zval=0.2321, N=100, p=0.82). Additionally, during attend-in and attend-out 

conditions, scopolamine also did not influence firing rates on average, as the 

median injection modulation did not significantly diverge from 0 (attend-in: 

signedrank=2041, zval=-0.72, N=100, p=0.47; attend-out: signedrank=1864, 

zval=-1.23, N=100, p=0.22).  
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Figure 4. Distribution of injection modulation indices (IMI) for all attention conditions. IMI is 

defined as the difference in firing rate for two injection blocks (control and injection), divided by 

the sum. Shown data contains neuronal responses of single units from two monkeys for the 

preferred stimulus only. The left histogram depicts the IMI distribution for all fixation trials, 

whereas the right histograms shows the injection effect for attend in (red) and attend out (blue) 

trials. Red vertical bars indicate median injection modulation. 

As several units of both monkeys show an injection modulation index close to 

zero during the fixation condition (see figure 4) it is unclear whether the 

injected substance reached the recorded neuron. In order to be able to 

investigate the influence of the substance on attentional modulation of the 

recorded cell more closely, we selected in a next step only those neurons that 

showed a significant influence of injection on the firing rate during the fixation 

condition (see figure 5, left histogram). Interestingly, only 17 out of 100 

recorded neurons showed a significant influence by scopolamine. 
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Figure 5. Distribution of injection modulation indices (IMI) during the fixation condition (left) 

and for attend-in and attend-out task condition (right) for all effected cells by scopolamine 

injection for two monkeys. 

As scopolamine is a non-specific cholinergic antagonist it binds to all types of 

muscarinic receptor subtypes. Muscarinic receptor types are known to elicit 

heterogeneous effects (inhibitory or excitatory) based on their variation in 

location and molecular composition (Wess, 2003). We also observed this 

heterogeneity in our subpopulation as some cells (N=10) showed an increase in 

firing rate with scopolamine injection, and some showed a decrease (N=7).  

On average, the firing rate was increased by 19.2% (red vertical bar in left 

histogram of figure 5), but showed no significant difference to zero (Wilcoxon 

signed rank test: signedrank=110, zval=1.59, N=17, p=0.11). 

During attend-in and attend-out conditions, the median modulation by 

injection of this subpopulation did not diverge from 0 (Wilcoxon signed rank 

test; attend-in: signedrank=97, zval=1.50, N=17, p=0.13; attend-out: 

signedrank=65, zval=-0.16, N=17, p=0.88). Nevertheless, as shown in the right 

histogram of figure 5, median injection modulation during attend-in condition 

showed a significant difference to injection modulation in attend-out condition 

in a paired test (two-sided Wilcoxon signed rank test; signedrank=111, 

zval=2.22, N=17, p=0.026). 
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As we observed diverging effects of scopolamine on firing rates, we further 

divided the subgroup based on whether scopolamine increased or decreased the 

firing rate during fixation trials. For these subpopulations we again calculated 

the influence by injection for attend-in and attend-out conditions (see Figure 6).  

Figure 6. Injection modulation distributions in attend-in and attend-out condition for two 

subgroups of scopolamine effected cells. a) Cells that showed reduced firing rate with 

scopolamine injection during fixation condition; b) cells that showed enhanced firing rate with 

scopolamine. 

The subpopulation of cells which each showed a significant decrease in firing 

rate at the single-cell level during the fixation condition also showed a decrease 

of 9% in firing rate due to injection during attend-in condition (Wilcoxon signed 

rank test; signedrank=4, N=7, p=0.11). In attend-out condition the negative 

influence by scopolamine is again more prevailing, showing approximately the 

same decrement of 17% in firing rate as in the fixation condition compared to 0 

(Wilcoxon signed rank test; signedrank=1 N=7, p=0.03). 
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The other subpopulation, showing an increase in firing rate with scopolamine 

injection in fixation condition, was much stronger but not significantly 

influenced by scopolamine during the attend-in condition. Here cells show a 

median increase of 35% on firing rate. (Wilcoxon signed rank test; 

signedrank=45, N=10, p=0.11). When the monkeys deploy spatial attention 

outside of the receptive field, average influence by scopolamine dropped to 15 % 

(Wilcoxon signed rank test attend-out vs. 0; signedrank=35, N=7, p=0.16; 

attend-out vs. attend-in: signedrank=10, N=7, p=0.16).  

Muscarinic effects on attentional modulation 

In order to test for cholinergic effects on attentional modulation, an attentional 

modulation index (AMI) was calculated and compared for control and injection 

blocks. Figure 7 compares the attentional modulation distribution of the 

recorded cells fulfilling the first criteria (sufficiently high firing rate, sufficiently 

many trials, direction selectivity).  

Figure 7. Distribution of attentional modulation index (AMI) for control and scopolamine 

injection block (left). The paired difference of attentional modulation indices for the two blocks, 

control and injection, is shown in the right histogram. Red vertical bars indicate median 

attentional modulation. 
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During the control block the cells were significantly influenced by spatial 

attention, showing a median modulation of 13.6% (Wilcoxon signed rank test; 

signedrank=3981, zval=5.26, N=100, p<10-7). During the block of scopolamine 

injection the median attentional modulation decreased to 12.2% attentional 

modulation but remained significantly different to zero (signedrank=3031, 

zval=4.21, N=100, p<10-5). In order to compare the attentional modulation 

during the control block with the injection block, we calculated the difference of 

attentional modulation (delta AMI), subtracting cell-wise the attentional 

modulation during injection block with attentional modulation during control 

block. The median delta AMI is slightly reduced by scopolamine injection, 

however it did not reach significance (paired, two-sided Wilcoxon signed rank 

test; signedrank=2186, zval=0.18, N=100, p=0.8).  

In a next step, we again selected only those cells showing a significant influence 

by the injection of the muscarinic antagonist scopolamine at the single-cell level 

in the fixation condition. With this subpopulation, the modulatory effect of 

attention was significant, with a median increase of 12.2% observed in firing-

rates due to attention (Wilcoxon signed rank test; signedrank=124, zval=2.25, 

N=17, p=0.02). When scopolamine was injected, a significant increase in 

attentional modulation to a value of 17% was observed (paired, two-sided 

Wilcoxon signed rank test; signedrank=25, zval=-2.2, N=100, p=0.03). 
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Figure 8. Histogram of attentional modulation index for control and scopolamine injection 

block for cells showing significant influence by injection at the single-cell level. The difference of 

these two experimental blocks is illustrated in the right histogram. Red vertical bars indicate the 

median change of the population. 

 If we again divide the subgroup based on increasing or decreasing influences of 

scopolamine (see Figure 9), it become apparent that the cell group showing a 

stronger influence by scopolamine injection (histogram b in Figure 9) are 

stronger modulated by attention.  

Figure 9. Histograms of the subpopulation significantly modulated cells by scopolamine, 

grouped by whether they showed a scopolamine-mediated decrease (left) or increase (right) in 

firing rate during the fixation condition. Red vertical bars show median change of the 

subpopulation. 
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However, also the subgroup showing decreased firing rate due to scopolamine 

injection in the control block, showed on average a positive shift of the attention 

modulation index during the injection block (paired, two-sided Wilcoxon signed 

rank test; signedrank=2, N=7, p=0.047). 

To summarize the effects of local scopolamine injection, we can report that on 

average, local application of scopolamine did not lead to any change in 

attentional enhancement. However, the subpopulation of cells affected by 

scopolamine in the fixation condition showed a significant increase in 

attentional modulation when scopolamine was injected.  

Muscarinic effects on reaction time 

We were interested whether the local application of scopolamine induced a 

behavioral change. We calculated and compared reaction times during control 

and scopolamine injection blocks for all attentional conditions (attend-fix, 

attend-out, attend-in). For both monkeys separately, a repeated-measures 

ANOVA with main factors injection and attention was performed to investigate 

the overall influence of scopolamine injection and experimental condition on 

reaction time. For both monkeys the injection of scopolamine had no significant 

effect on reaction time (monkey p: F(1, 50)=0.106, p=0.746, 𝜂! =0.00212; 

monkey o: F(1, 48)=1.48, p=0.23, 𝜂! =0.0299). Figure 10 depicts the 

distribution of the reaction time change when scopolamine is injected.  
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Figure 10. Reaction time difference distribution when scopolamine is injected for the attend-in 

condition. The vertical bar depicts the median change of reaction time. 

The experimental conditions had a main effect on reaction times for both 

monkeys (monkey p: F(2, 100)=23.6, p=2.66e-05, 𝜂!=0.32; monkey o: F(2, 

96)=257, p=0, 𝜂!=0.843). No interaction was found for the two main factors 

(monkey p: F(2, 100)=0.0855, p=0.815, 𝜂!=0.00171; monkey o: F(2, 96)=0.966, 

p=0.331, 𝜂!=0.0197 ). 

Additionally, we were interested whether there is a relationship between 

scopolamine-induced change in firing rate and behavioral performance. 

Therefore a linear regression model was fitted (𝑦 =   𝛼 + 𝛽χ). Here we tested for 

significant linear regression relationship between the response variable and the 

predictor variables by performing the test statistic for the F-test on the 

regression model. The p-value of the F-test on the model indicates significance.  

Figure 11 shows this correlation for the full population (a) and for the 

subpopulation (b) of scopolamine injection. 
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Figure 11. Correlation of neuronal firing rate and reaction time for a) full population and b) 

subpopulation of the sig. affected cells. Dots represent the averaged reaction time difference 

plotted against the average injection modulation index for every recorded cell. Slope: estimate of 

the slope for the linear regression; adj rsq: adjusted R-squared. 

We did not find a significant linear regression relationship between the 

response variable and the predictor variables (F-statistic vs. constant model: 

0.465, p-value=0.497). We also failed to find a significant linear relationship in 

the subpopulation showing significant influence by injection (F-statistic vs. 

constant model: 0.942, p-value=0.35). 

The effect of acetylcholine on single unit activity 

In order to investigate a general cholinergic involvement in attentional 

modulation, we injected acetylcholine in the direct vicinity of the recorded 

neuron. We performed the same analysis for this substance as for the 

muscarinic antagonist scopolamine. Therefore we calculated in a first step the 

PSTH for both monkeys separately, during the control block, where no 

substance was injected. As illustrated in Figure 12, both monkeys show clear 

attentional enhancement of their firing rate, as the firing rates for attend-in 
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condition are clearly elevated compared to firing rates in attend-out or attend-

fix conditions (red vs. blue lines in Figure 12). As both monkeys show a similar 

effect of spatial attention on their firing rate, we pooled the data from the two 

monkeys. Subsequent analysis is based on firing-rates in the time window of 

300-800 ms after stimulus onset (grey shaded area).

Figure 12. Effect of spatial attention on neuronal firing rate across trial time course. 

Peristimulus time histograms were calculated for the control condition for the acetylcholine cell 

population of each monkey separately (left: monkey p; right: monkey o). The analysis period is 

defined as 300-800ms after stimulus onset (grey shaded area). 

We calculated in a second step the injection modulation index (IMI) to 

investigate the influence of the substance on the measured firing rates. The IMI 

is calculated for every attentional condition separately. 

Figure 13 shows the effect of acetylcholine injection on the firing rate at 

population level in the fixation condition for the preferred direction. During the 

fixation condition, in which the monkeys performed a task at fixation while 

ignoring stimuli with the cell’s preferred direction, the median firing rate was 

not significantly affected by acetylcholine injection (Wilcoxon signed rank test; 

zval=0.52, signedrank=226, N=30, p=0.6). When the monkey attended inside 

the neurons’ receptive field, the neuronal response increased on average when 

acetylcholine was injected, reaching a median modulation of 10.7%. However, 
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this effect is not significantly different to zero (Wilcoxon signed rank test; 

zval=1.2, signedrank=291, N=30, p=0.2). When monkeys attended outside the 

receptive field, the neurons were not affected by injection, showing a median 

injection modulation of 0.4% (Wilcoxon signed rank test; zval=0.6, 

signedrank=215, N=30, p=0.5). 

Figure 13. Distributions of injection modulation indices (IMI) during the fixation condition (left) 

and attend-in/ attend-out (right) for all effected cells by acetylcholine injection for two 

monkeys. Red vertical bars indicate the median modulation by injection.  

As we did not observe significant effects of acetylcholine injection on average, 

we selected only cells that showed a significant effect by injection, in order to 

confirm that the substance reached the recorded neuron. Only 6 out of 30 cells 

showed a significant injection effect during fixation condition (see figure 14). 

Also with this subset of neurons, acetylcholine had on average no influence on 

firing rate during fixation condition (Wilcoxon signed rank test; signedrank=11, 

N=6, p=1). Similar to the effect seen in fixation condition, the subpopulation of 

neurons did not show a significant median effect of acetylcholine injection 

during attend-in and attend-out conditions (Wilcoxon signed rank test; attend-

in vs. 0: signedrank=9, N=6, p=0.8; attend-out vs. 0: signedrank=9, N=6, 

p=0.8; attend-out vs. attend-in: signedrank=9, N=6, p=0.8).  
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Figure 14. Injection modulation distributions in attend-fix (left), attend-in (right top) and 

attend-out (right bottom) condition for the subgroup of cells affected by acetylcholine injection 

at the single-cell level. Red vertical bars indicate the median modulation by injection.  

Cholinergic effects on attentional modulation 

In a next step we investigated the influence of local acetylcholine injection on 

attentional modulation. Therefore, we calculated the attention modulation 

index (AMI) and compared control with injection blocks. During the control 

block the cells were significantly influenced by spatial attention, showing a 

median modulation of 19.6% (Wilcoxon signed rank test; signedrank=395, 

zval=3.34, N=30, p<10-4).  

Figure 15. Distribution of attentional modulation index (AMI) for control and acetylcholine 

injection block (left). The paired difference of attentional modulation indices for the two blocks, 

control and injection, is shown in the right histogram. Red vertical bars indicate median 

attentional modulation. 
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When the general agonist acetylcholine was injected, the attentional modulation 

increased to a median modulation of 26.8%, still being significantly different to 

zero (Wilcoxon signed rank test; signedrank=317, zval=3.08, N=30, p=0.002). 

Although the acetylcholine induced increase in attentional modulation is 

relatively strong, it did not reach significance (Wilcoxon signed rank test; 

signedrank=159, zval=-0.72, N=30, p=0.47). 

Again, we selected only those cells, which showed a significant influence by 

acetylcholine injection during fixation. As shown in Figure 16, the median 

attention modulation index stays constant at a level of approximately 22 % for 

control and injection block.  

Figure 16. Distribution of attentional modulation index (AMI) for control and acetylcholine 

injection block (left) of the significantly effected cells. The paired difference of attentional 

modulation indices for the two blocks, control and injection, is shown in the right histogram. 

Red vertical bars indicate median attentional modulation. 

However, due to the low number of cells it is not significantly different to zero 

(Wilcoxon signed rank test; control vs. 0: signedrank=20, N=6, p=0.6; injection 

vs. 0: signedrank=17, N=6, p=0.2; control vs. injection: signedrank=11, N=6, 

p=1). Because the total amount of significantly affected cells is very small, we 
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did not further subdivide into positively and negatively affected cells, as we did 

for the scopolamine injection.  

Behavioral effects of acetylcholine injection 

Repeated-measures ANOVA with main factors injection and attention were 

performed to investigate the overall influence of acetylcholine injection and 

experimental condition on reaction times. 

Acetylcholine injection had no significant main effect on reaction times (F(1, 

29)=0.133, p=0.718, 𝜂!=0.00457), whereas spatial attention revealed significant 

influence (F(2, 58)=26, p=0.000126, 𝜂!=0.472). No interaction was found 

between the two main factors (F(2, 58)=2.51, p =0.134, 𝜂! 0.0797). 

Figure 17. The distribution of reaction times (injection-control) across all recording sessions for 

attend–in task condition. The vertical bar illustrates the median reaction time for all recording 

sessions. 
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separately (see Figure 17). Although the distribution is relatively broad, the 

median change in reaction time is significantly affected by acetylcholine 

injection (Wilcoxon signed rank test; signedrank= 465, zval= 4.8, N= 30, p<10-

5), showing an increase in reaction time with injection.  

We further explored the change in behavioral performance with respect to the 

change in firing rate. Therefore we calculated the correlation between 

acetylcholine-induced change in firing rate and change in reaction time, by 

fitting a linear regression model (𝑦 =   𝛼 + 𝛽χ). Figure 18 shows this correlation 

for the full population (a) and for the subpopulation of significantly affected 

cells (b) of acetylcholine injection for both monkeys together.  

We did not find significant linear regression relationship between the response 

variable and the predictor variables (F-statistic vs. constant model: 1.02, p-

value=0.322). Also with the subpopulation showing significant influence by 

injection, we did not find significant linear relationship (F-statistic vs. constant 

model: 0.931, p-value=0.38). 
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Figure 18. Correlation of neuronal firing rate and reaction time for a) full population and b) 

subpopulation of the sig. affected cells. Dots represent the averaged reaction time difference 

plotted against the average injection modulation index for every recorded cell. Red line depicts 

the linear regression. Values of the slope and the adjusted Rsquare are shown in the right 

corner. 

Nicotinic involvement in attentional modulation 

As the muscarinic receptor type showed only weak or no influence on 

attentional modulation, we were interested whether the nicotinic receptor type 

is involved in attentional modulation. Therefore we injected mecamylamine, a 

nonselective nicotinic antagonist, in the direct vicinity of the recording 

electrode. Data collection is ongoing and so far we have only manipulated a few 

cells pharmacologically with this substance. Figure 19 depicts three example 

cells and shows the variety of mecamylamine action on firing rate for the 

different attentional conditions over the course of the experiment. The grey 

shaded area shows the block of mecamylamine injection, beginning with the 

first injection and ending one minute after the last injection. Averaged firing 

rates for the different attentional conditions during the three experimental 

blocks (control, injection, recovery) are shown as horizontal bars of different 

color. In example cells a and b an injection of mecamylamine led to an increase 
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in median firing rate for most attentional conditions. But we additionally 

observed a contradictory effect, in which firing rates dropped dramatically 

during the injection period and no recovery was observed (see Figure 19 c). It is 

noticeable that all cells showed an increase in firing rate for the attend-in 

condition (pink horizontal bar). This indicates already that the nicotinic 

receptor might be involved in processes of attentional modulation, but this 

needs to be confirmed on a population level.  

Figure 19. Three example cells are shown with mecamylamine injection. The trial-averaged 

firing rate of three sample cells over the course of the experiment is shown for the preferred 

stimulus for all three attentional conditions plus the condition where only a fixation point is 

shown. The x-axis depicts the trial start time in minutes and the y-axis shows the unit's firing 
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rate in spikes per seconds. Symbols (  attend-in,  attend-fix,  attend-out,  att-fix (noRDP)) 

represent the neuron's firing rate within the analysis period in every successfully performed 

trial, and horizontal lines (pink: attend-in, light blue: attend-fix, dark blue: attend-out, black: 

att-fix (noRDP)) show average firing rate for the three different experimental blocks (control, 

injection, recovery). The grey shaded area shows the injection block, beginning with the first 

injection and ending one minute after the last injection. During the injection block 6 nl of 0.1 

molar mecamylamine were injected every minute with an injection velocity of 2 nl/s. 

Control experiments - saline injection 

In order to exclude an influence of the injection process per se on the neuronal 

firing rate, we injected saline as a control substance, following the same protocol 

as the other injections. On average the firing rates of the 28 recorded neurons of 

two monkeys were not significantly altered by injection during fixation 

condition (Wilcoxon signed rank test; zval=0.34, signedrank=218, N=28, 

p=0.7). Additionally, we could exclude the influence of the injection process on 

attentional enhancement, as the attention modulation index was not 

significantly changed with saline injection (paired two-sided Wilcoxon signed 

rank test; zval=0.24, signedrank=199, N=28, p=0.8). 
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Figure 20. Attentional modulation for the control and the saline injection block. The histogram 

shows the distribution of spatial attention. The comparison of the two blocks is illustrated by the 

difference of the corresponding distributions. 

As a last step we investigated the influence of the injection process on monkey 

behavior. RmANOVA revealed a significant main effect of attention on the 

reaction time, whereas the injection had no significant effect on behavior. No 

interaction was found (injection: F(1, 23)= 0.591, p=0.45, 𝜂!= 0.025; attention: 

F(2, 46)=19.9, p=0.000774, 𝜂!=0.464, injection x attention: F(2, 46)=2.29, 

p=0.151, 𝜂!=0.0904).  
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Figure 21. Correlation of saline induced firing rate change and reaction time change. Red line 

indicates the linear regression. Slope: estimate of the slope for the linear regression; adj rsq: 

adjusted R-squared. 

As shown in figure 21, the fitted linear regression model revealed only a weak 

relationship between behavior and injection induced firing rate (slope=-0.0001, 

r2=0.004) and did not reach significance (F-statistic vs. constant model:0.0937, 

p-value=0.762).

Discussion 
The aim of this study was to investigate the local cholinergic influence on 

attentional modulation in the medial temporal area (MT) of the macaque 

monkey. Therefore, the general agonist acetylcholine, a muscarinic antagonist, 
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electrode, while the monkey performed a task that required top-down spatial 

attention. 

With our task design we could confirm an increase in neuronal response in area 

MT when spatial attention was deployed within the neurons’ receptive field. The 

obtained attention-induced increase in neuronal response ranged from 12-22% 

and therefore replicates the average achieved enhancement of approx. 20% in 

area MT (Treue and Maunsell, 1999).  

Although this attention-induced effect on neuronal response is a well-known 

and well-studied effect, the underlying neuromodulatory involvement triggering 

these effects is largely unspecified. Acetylcholine was shown to elicit a 

multiplicative increase in neuronal gain in area V1 (Disney et al., 2007) and area 

MT in anesthetized macaques (Thiele et al., 2012) and is therefore, among other 

reasons, proposed as a main regulative neurotransmitter of selective attention 

(Klinkenberg et al., 2011). But the exact involvement is still unclear as the 

above-mentioned studies were performed in anesthetized monkeys. 

Muscarinic receptor influence on firing rate 

In a first step, we investigated the effect on firing rate for the whole cell 

population during the injection of the muscarinic antagonist scopolamine and 

compared it to the averaged firing rate measured before the injection was 

performed (control block). On average, we did not observe a change in firing 

rate due to injection. As scopolamine is a non-specific muscarinic antagonist, it 

binds to all types of the muscarinic receptor subtype. Muscarinic receptor types 

are therefore known to elicit heterogeneous effects (inhibitory or excitatory) 

based on their variation in location and molecular composition (Wess, 2003). 

When we selected only cells significantly affected by scopolamine, we also 

observed this heterogeneity in our subpopulation as some cells showed an 

increase in firing rate with scopolamine injection, and some showed a decrease.  



Original manuscripts 
_______________________________________________________ 

    135 

Muscarinic receptor contribution to attentional modulation 

Although the cholinergic projection neurons, originating in the nucleus basalis 

of Meynert (Mesulam et al., 1983), form clusters providing a topographically 

organized network of cholinergic innervations in the cortex, the spatial 

distribution of acetylcholine is thought to be widespread. Thus, the specific 

involvement of acetylcholine in attentional modulation is likely triggered by a 

selective expression of ACh receptors (AChRs) within the sensory areas targeted 

by top-down attention. We primarily investigated the muscarinic receptor’s 

involvement in attentional modulation, as it was shown to be strongly involved 

in attentional modulation in V1 (Herrero et al., 2008). 

Although we detected a strong influence of spatial attention on the neuronal 

firing rate, the attentional modulation was only marginally diminished by 

injection of the muscarinic antagonist scopolamine for the full data set, and this 

effect did not reach significance.  

In primary visual cortex (V1), it was shown that the muscarinic receptor type is 

involved in attentional modulation (Herrero et al., 2008), as a blockage of the 

muscarinic receptor subtype led to a reduction in attentional modulation. This 

result suggests that the attentional effect on neuronal response is either directly 

modulated by the muscarinic receptor type, which is predominantly found on 

inhibitory cells in V1 (Disney et al., 2006), or is more indirectly mediated 

through subsequent changes in the local cortical microcircuit. As spatial 

attention effects on neuronal responses are thought to increase in magnitude 

with every successive step up the visual hierarchy (Maunsell and Cook, 2002), a 

stronger and more direct influence of the muscarinic receptor type would then 

be expected in area MT compared to area V1. However, for the total population 

of recorded cells, it was not observed in area MT. 

It could be argued, that this observed lack of muscarinic involvement in 

attentional modulation is due to an unsuccessful injection process, resulting in 
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an absence of scopolamine close to the recorded neuron. In order to elude this 

constraint, we examined only those cells that showed a significant influence on 

firing rate by scopolamine injection during the fixation condition. 

Approximately one half of the significantly affected cells showed an increase in 

their firing rate when the muscarinic receptor type was blocked, whereas the 

other half showed reduced firing. This result is in line with anatomical results 

showing that the muscarinic receptor type m1, which is proposed to be involved 

in attentional modulation, is located on inhibitory and excitatory neurons in 

area MT (Disney et al., 2014). 

On average, the significantly affected subpopulation showed a significant 

increase in attentional modulation with scopolamine injection, an effect 

opposite to that found in area V1 (Herrero et al., 2008). This effect could be 

partially explained by the competitive binding characteristics of scopolamine. 

This means that the available acetylcholine, which would have otherwise bound 

to the pharmacologically blocked muscarinic receptors, is now available in the 

synaptic cleft and can bind to other receptors. This in turn can lead to an 

increased activity of nicotinic receptors and can convey a misleading impression 

regarding the contribution of the receptor targeted by the pharmacological 

manipulation. However, other scenarios are also plausible, which are described 

below in the section ‘Speculations on local cholinergic effects’. 

Cholinergic receptor influence on firing rates 

We report that our pharmacological manipulation, which increased the 

concentration of the neuromodulator acetylcholine in the local circuitry, showed 

heterogeneous effects, as some neurons showed an increase and some a 

decrease in firing rate. Based on results, showing an increase in GABA release 

with iontophoretic acetylcholine injection in area V1 (Disney et al., 2012), it is 

expected that a cholinergic boost would lead to an inhibitory tone in V1 (Disney 
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et al., 2014). In contrast to this observation, it has been suggested, that the 

release of acetylcholine induces an increased release of glutamate, the main 

excitatory neurotransmitter in the brain, in the visual cortex, which in turn 

leads to an increase in firing rate (Herrero, 2011).  

Cholinergic effect on attentional modulation 

With the current data set, we observed an enhancement in attentional 

modulation with acetylcholine injection. Although the median attentional 

modulation increased by 35% with acetylcholine injection, this effect did not 

reach significance. We expect this effect to become significant with more cells 

recorded. This result suggests that acetylcholine is involved in attentional 

modulation throughout the visual system. However, among the cells that are 

significantly influenced by acetylcholine injection, we did not observe an altered 

attentional modulation during injection. The observed weak influence is 

possibly due to the low number of significantly affected cells. 

The basal forebrain is considered to be the main cholinergic source, providing 

all cortical areas with acetylcholine via topographically organized but rather 

broad innervations with acetylcholine (Bigl et al., 1982; Henderson, 1981; 

Johnston et al., 1981). In top-down processes such as sustained attention, the 

cholinergic supply is proposed to be regulated via direct connections from 

prefrontal areas either to the basal forebrain or to posterior attention systems 

(Sarter et al., 2000). This regulatory mechanism with its broad cholinergic 

innervation and slow temporal resolution is challenging to reconcile with the 

fast local mechanism of spatial attention.  

However, an additional intracortical cholinergic source is provided by intrinsic 

bipolar cholinergic interneurons (Levey et al., 1984; Houser et al., 1985). As 

their spatial expansion goes along with the columnar orientation of the cortex, 
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they are suited to modulate fast attentional effects on small cortical units (von 

Engelhardt et al., 2007).  

Another possible explanation of the cholinergic involvement in attentional 

modulation is that the coarse release of acetylcholine is locally triggers a non-

cholinergic mechanism and is therefore indirectly involved in attentional 

modulation. However, a study performing neuropharmacological manipulations 

in area V1 in awake, behaving monkeys, reported an increase in attentional 

modulation with acetylcholine injection (Herrero et al., 2008), similar to our 

observation.  

Nicotinic receptor contribution in attentional modulation 

As acetylcholine additionally acts on nicotinic receptors, they might also 

contribute to attentional modulation in area MT. As data collection is ongoing, 

we presented only sample cells, which were pharmacologically targeted using 

the general nicotinic antagonist mecamylamine. The effects on the cells' firing 

rates were ambiguous, showing either an increase or a total shutdown in firing 

rate during injection. However, the amount of recorded cells is not sufficient to 

draw strong conclusions. 

In general, the nicotinic antagonist mecamylamine is not competitive in its 

binding abilities and therefore constitutes in that sense a good antagonist. 

However, it shows voltage dependent binding characteristics and inhibits 

NMDA receptors at high concentrations (MacLeod et al., 1984, O’Dell and 

Christensen, 1988). So far only one concentration (0.1 mol/l) has been tested 

within this study, which is possibly too high, leading to the observed shutdown 

in firing rate. Further manipulations are needed to investigate the exact 

involvement in attentional modulation in area MT, but the observed effects on 

single cell level, may lead to the assumption, that the nicotinic receptor plays a 
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modulatory role in attention guided change in firing rate. In area V1, it was 

shown that the nicotinic receptor type is not involved in attentional modulation.  

Behavioral effects 

As we assume to affect only a few hundred micrometers with our injection 

(Herrero, 2011), we did not expect to observe any change in behavior. Indeed, 

none of the injected substances had a significant main influence on reaction 

time. Even when we analyzed only those data files in which the recorded cells 

showed a significant influence of injection, no effect on reaction time was 

observed. In contrast, in area V1 a faster reaction time was observed when low 

doses of acetylcholine were injected (Herrero et al., 2008). Additionally, no 

linear relationship was found in the current results between injection-induced 

change in firing rate and task performance, measured as a change in reaction 

time. The overall lack of injection-induced changes in reaction time suggests 

that we are indeed only manipulating a very local area in MT and therefore our 

manipulation is not sufficient to influence a global behavior pattern.  

The attentional task (attention inside or outside the receptive field or at fixation 

point), on the other hand, always showed strong effects on reaction time. The 

difference is very likely driven by the task difference in attend-in/attend-out vs. 

attend fixation. We wouldn’t expect a difference between attend-in and attend-

out task condition, because they are essentially the same task for the monkey, 

whereas responding to a luminance change of the fixation point (attend-

fixation) is easier and the response of the monkey is therefore faster. 
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Selection of substance for a more specific blockage 

The antagonists and agonist used in this study are known for their broad 

binding characteristics. On the one hand, this broad influence allows the 

investigation of a general involvement of one receptor type and they are 

therefore used as standard antagonists in many studies investigating influences 

on a cellular level as well as in cognitive tasks (Herrero et al., 2008, 

Aggelopoulos et al., 2011). But on the other hand, the broad blockage of a 

receptor type could lead to misleading results. Ideally, specific antagonists are 

additionally used, which only bind to one type of receptor. For example, if a 

more specific muscarinic antagonist had been used, its use would leave the 

other muscarinic receptors unrestricted in their binding ability and an 

unadulterated contribution to attentional modulation could be investigated. 

Although some specific antagonists have been proposed in the pharmacology 

literature, most of these specific antagonists are not sufficiently tested in vivo. 

Of highest interest would be the muscarinic subtype m1, as it is proposed to be 

involved in attentional modulation (Disney et al, 2014).  

Also for the nicotinic receptor type, various specific receptors are of particular 

interest. The homomeric alpha7 subunit-containing receptor is a possible 

mediator of attentional modulation (Disney et al., 2014), but also alpha5 and 

beta2 are promising candidates (see Proulx et al., 2014 for a review). 

Heteromeric nicotinic receptors on the other hand are very unlikely to be 

involved in attentional modulation processes, as they are not strongly expressed 

in macaque area MT (Disney et al., 2007). 

Local cholinergic effects 

Acetylcholine acts as a neuromodulator in the brain and is therefore seen to 

have limited influence on local and fast attention-mediated effects. An 

interaction with other neurotransmitter systems is therefore very likely. 
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Glutamate is the major excitatory and fast-acting neurotransmitter in the brain 

(see for a review Meldrun, 2000). It is released from visual cortical neurons 

when they are visually stimulated (bottom-up process). It is proposed that this 

bottom-up process interacts with top-down influences such as spatial attention, 

mediated by cholinergic release. This synergistic effect is therefore proposed to 

enhance signal detection (Yu and Dayan, 2002 and 2005). As well as the 

neurotransmitter glutamate, other neurotransmitters are also likely to be 

involved in attentional modulation, such as the inhibitory neurotransmitter γ-

Aminobutyric acid (GABA). 

In area MT, we found that spatial attention was increased when muscarinic 

receptor action was blocked. The following scenarios are possible explanations 

for this effect. As shown in Figure 22a, due to depolarization of glutamatergic 

neurons, a release of glutamate is induced. Glutamate binds on AMPA/NMDA 

receptors, located on the post-synaptic cortical neuron, inducing an increased 

firing rate. The glutamatergic neuronal endings are equipped with nicotinic 

cholinergic receptors. If acetylcholine is now additionally available in the 

synaptic cleft, it binds to the nicotinic receptors and induces a further increase 

in glutamate release. This leads to a further increase in available glutamate in 

the synaptic cleft and the firing rate of the postsynaptic cortical neuron is 

further increased. The cholinergic neuron itself is equipped with a muscarinic 

receptor (mAChR). Presynaptic mAChRs of subtype m2 are predominantly 

found in cortex and are mainly inhibitory, serving as a negative feedback loop in 

signal transduction (Wess, 2003). If the muscarinic receptor type is now 

blocked, for example by introducing the antagonist scopolamine, as we did in 

this experiment, more acetylcholine is released in the synaptic cleft. This in turn 

results in an increased release of glutamate and therefore in an increased 

activity of the cortical neuron.  

Another possible inhibitory scenario, involving the neurotransmitter GABA, is 

illustrated in Figure 22b. GABA is released, acting on other cortical neurons, 
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inducing a reduction in firing rate. If acetylcholine is now additionally available 

in the synaptic cleft, it binds to muscarinic receptors – very likely of type m1 

(Disney et al., 2014) – located on GABAergic-cells. This leads to an increased 

release of GABA, resulting in a reduction of firing rate. 

Figure 22. Two possible cholinergic effects having excitatory (a) and inhibitory (b) influence on 

local cortical circuitry. a) A release of acetylcholine enhances glutamatergic release, via the 

nicotinic receptor type. Cholinergic release is self-regulated via a negative feedback-loop, 

mediated by the muscarinic receptor type. A blockage of the muscarinic receptor type increases 

the release of acetylcholine and therefore mediates further glutamate release, resulting in an 

increase in firing rate. b) γ-Aminobutyric acid (GABA) is released in the synaptic cleft, binding 

on GABAergic neurons and inducing a decrease in firing rate. A release of acetylcholine induces 

a further release of GABA, as it binds on muscarinic receptor subtype M1, located on GABAergic 

cells. 

Outlook 

It could be argued that the weak effect of injection observed in this study is due 

to the marginally larger distance between recording electrode and micropipette 

(inter-tip distance: 305 µm) compared to other injection set-ups (approx. 30 µm 

in Thiele et al., 2006). In order to exclude this constraint, we plan to measure 

the effect of our pharmacological manipulations using modified recording 

equipment, that will diminish the distance between electrode and micropipette 

tips (approx. 100 µm). Additionally, it is a high priority to continue collecting 

negative
feedback-loop
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acetylcholine
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data to further investigate the involvement of nicotinic receptors. Further work 

could also target specific cholinergic neurotransmitter subtypes in attentional 

modulation or investigate the interplay with other neurotransmitter systems 

such as the glutamatergic (Herrero et al., 2013) or the GABAergic system 

(Disney et al., 2014). 
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Supplementary figures: 
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Sup.Fig.1: Histograms of the included cells for the first inclusion criteria for the 

data recorded with scopolamine injection for monkey o (left column) and monkey 

p (right column). Red vertical bars indicate the threshold for data inclusion. a) Data files 

were included, when they contained a minimum of 5 repetitions of every task condition. b) The 

isolated cells had to fire with a minimum firing rate of 10 spikes/second to be included in 

further analysis. c) A responsiveness check was performed comparing the sensory conditions for 

preferred and null direction during the control block. Cells were included in further analysis 

showing significant differences between direction conditions (Kruskal-Wallis test, p= 0.05). 
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Sup.Fig.2: Overview of the number of recording sessions for every substance 

injected. The x-axis depicts the various concentrations used (mol/l), whereas the y-axis depicts 

the different volumes (nl) injected within one minute. Mecamylamine was only injected with a 

concentration of 0.1 mol/l and an injection rate of 6 nl/minute and is therefore not presented in 

a table. 
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Sup.Fig.3: Median reaction times for the three attention conditions and three 

substances. Median firing rates during the control block (light grey), where no substance was 

injected, were compared to the injection block (dark grey). Either the muscarinic antagonist 

scopolamine (first row), or the agonist acetylcholine (middle row), or the control substance 

saline (lower row) was injected. For each substance used, three spatial attention conditions 

(attention inside the receptive field (attend-in), attention outside of the receptive field (attend-

out) or attention at the fixation point (attend-fix)) were contrasted. Error bars show standard 

deviation. 

Supplementary tables: 

The tables incorporate information about the recorded data files when injection 

was performed. Tables are shown separated by monkey and substance injected. 

Abbreviations of the column descriptions are explained below: 

no. - number of the recorded file 

date – recording date 

filename – filename of the recorded data 

eparUsed – name of the experimental script used generating the stimuli 

mclabUnitNo – channel number used within our recording software; lfp = 
local field potentials, mu = multiunit activity 

electrodeNo – the number of the electrode used to record the data 

depth – depth of the recording electrode  and micropipette tip in mm when 
data streaming was started 

noDirectionsUsed – number of linear movement directions used; 2= 
preferred direction and null direction 

stim radius – radius of the stiumulus (random dot pattern) 

prefDir – preferred direction to linear movement of the isolated main single 
unit 

xStimulus – x position of the stimulus within the neuron’s receptive field on 
the screen (deg)  
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yStimulus - y position of the stimulus within the neuron’s receptive field on 
the screen (deg) 

degreeOfResponseEvent – direction change of the stimulus (deg), the 
monkey has to respond to 

substanceInjected – substance used in this data file; sco= scopolamine, 
ACh= acetylcholine, MM = mecamylamine, NaCl = saline 

concentration - concentration of substance used in mol/l 

amountOfCycles – the number of injection blocks  

injectionrate – the amount of nl injected every minute 

trialBegin1 – trial number when the first injection was performed within the 
first injection block; 2 and 3 indicate the first injection of the second and the 
third injection block 

trialEnd1 – trial number one minute after the last injection of the first 
injection block; 2 and 3 indicate the second and the third injection block 

plexStart1 – the time in the Plexon data file when the first injection was 
performed within the first injection block; 2 and 3 indicate the second and the 
third injection block 

plexEnd1 – the time in the Plexon data file one minute after the last injection 
was performed in the first injection block; 2 and 3 indicate the second and the 
third injection block 

cut after or between trial num – trial number of the experiment after which 
the isolation of the recorded cell is not trustworthy. Data file needs to be cut 
after this trial. When two trial numbers are shown, the data file needs to be cut 
between those trials. 



Acetylcholine	
  monkey	
  O

no. date filename eparUsed mclabUnitNo
1 15.04.15 vecl-­‐spANP2-­‐osk-­‐077-­‐01+01 15-­‐Apr-­‐2015a 1
2 16.04.15 vecl-­‐spANP2-­‐osk-­‐078-­‐01+01 16-­‐Apr-­‐2015a lfp
3 21.04.15 vecl-­‐spANP2-­‐osk-­‐080-­‐01+01 21-­‐Apr-­‐2015a 1,	
  mu
4 23.04.15 vecl-­‐spANP2-­‐osk-­‐082-­‐01+01 23-­‐Apr-­‐2015a 2
5 24.04.15 vecl-­‐spANP2-­‐osk-­‐083-­‐01+01 24-­‐Apr-­‐2015a 2
6 28.04.15 vecl-­‐spANP2-­‐osk-­‐084-­‐01+01 28-­‐Apr-­‐2015a 1
7 29.04.15 vecl-­‐spANP2-­‐osk-­‐085-­‐01+01 29-­‐Apr-­‐2015a 1
8 30.04.15 vecl-­‐spANP2-­‐osk-­‐086-­‐01+01 30-­‐Apr-­‐2015a 1
9 06.05.15 vecl-­‐spANP2-­‐osk-­‐088-­‐01+01 06-­‐May-­‐2015a 1,	
  2
10 12.05.15 vecl-­‐spANP2-­‐osk-­‐089-­‐01+01 12-­‐May-­‐2015 lfp
11 07.10.15 vecl-­‐spANP-­‐osk-­‐090-­‐01+01 07-­‐Oct-­‐2015-­‐a 2,	
  10
12 09.10.15 vecl-­‐spANP-­‐osk-­‐091-­‐01+01 09-­‐Oct-­‐2015-­‐a 2
13 13.10.15 vecl-­‐spANP-­‐osk-­‐092-­‐01+01 13-­‐Oct-­‐2015-­‐a 2
14 14.10.15 vecl-­‐spANP-­‐osk-­‐093-­‐01+01 14-­‐Oct-­‐2015-­‐a mu
15 15.10.15 vecl-­‐spANP-­‐osk-­‐094-­‐01+01 15-­‐Oct-­‐2015a 1
16 16.10.15 vecl-­‐spANP-­‐osk-­‐095-­‐01+01 16-­‐Oct-­‐2015a 2,	
  10
17 22.10.15 vecl-­‐spANP-­‐osk-­‐096-­‐01+01 22-­‐Oct-­‐2015a 1a,	
  MU
18 30.10.15 vecl-­‐spANP-­‐osk-­‐098-­‐01+02 30-­‐Oct-­‐2015a offlineSort
19 06.11.15 vecl-­‐spANP-­‐osk-­‐100-­‐02+01 06-­‐Nov-­‐2015a offlineSort
20 12.11.15 vecl-­‐spANP-­‐osk-­‐102-­‐01+01 12-­‐Nov-­‐2015a 1a
21 25.11.15 vecl-­‐spANP-­‐osk-­‐104-­‐01+01 25-­‐Nov-­‐2015a offlinesort	
  2a,2b
22 01.12.15 vecl-­‐spANP-­‐osk-­‐106-­‐01+01 01-­‐Dec-­‐2015-­‐a 1a,	
  2a(mua)
23 02.12.15 vecl-­‐spANP-­‐osk-­‐107-­‐01+02 02-­‐Dec-­‐2015b 1a
24 02.12.15 vecl-­‐spANP-­‐osk-­‐107-­‐02+01 02-­‐Dec-­‐2015b 1a
25 03.12.15 vecl-­‐spANP-­‐osk-­‐108-­‐01+01 03-­‐Dec-­‐2015b lfp
26 08.12.15 vecl-­‐spANP-­‐osk-­‐109-­‐01+01 08-­‐Dec-­‐2015b 1a(offline	
  sorting)
27 08.12.15 vecl-­‐spANP-­‐osk-­‐109-­‐02+01 08-­‐Dec-­‐2015b 1a(offline	
  sorting)
28 09.12.15 vecl-­‐spANP-­‐osk-­‐110-­‐01+01 09-­‐Dec-­‐2015b 1a(offline	
  sorting)
29 15.12.15 vecl-­‐spANP-­‐osk-­‐112-­‐01+01 15-­‐Dec-­‐2015b 1,9
30 16.12.15 vecl-­‐spANP-­‐osk-­‐113-­‐01+01 16-­‐Dec-­‐2015a 1,9(msu)
31 17.12.15 vecl-­‐spANP-­‐osk-­‐114-­‐01+01 17-­‐Dec-­‐2015a 1
32 18.12.15 vecl-­‐spANP-­‐osk-­‐115-­‐01+01 18-­‐Dec-­‐2015a 1,9
33 19.12.15 vecl-­‐spANP-­‐osk-­‐116-­‐01+01 19-­‐Dec-­‐2015a 1(offlinesorting)
34 20.12.15 vecl-­‐spANP-­‐osk-­‐117-­‐01+01 20-­‐Dec-­‐2015a 1

Acetylcholine	
  	
  monkey	
  P

no. date filename eparUsed mclabUnitNo
1 29.01.14 vecl-­‐spANP2-­‐pie-­‐082-­‐01+01 24Jan-­‐b 1,	
  2
2 30.01.14 vecl-­‐spANP2-­‐pie-­‐083-­‐02+01 30Jan-­‐a 1
3 05.02.14 vecl-­‐spANP2-­‐pie-­‐085-­‐01+02 5Feb-­‐a 2
4 06.02.14 vecl-­‐spANP2-­‐pie-­‐086-­‐04+01 6Feb-­‐a 1
5 12.02.14 vecl-­‐spANP2-­‐pie-­‐089-­‐02+01 12Feb-­‐a 1
6 13.02.14 vecl-­‐spANP2-­‐pie-­‐090-­‐01+02 13Feb-­‐a 2



Acetylcholine	
  monkey	
  O

no. Plexon_SU_number electrodeNo depth noDirectionsUsed stim	
  radius prefDir prefSpeed xStimulus yStimulus
1 1a,	
  2a 1 4719 2 2,4 180 12 -­‐11,4 7,9
2 1,	
  2 4000 2 2 90 12 -­‐12 7,9
3 1 5500 2 2 210 12 -­‐2,4 6,2
4 2a 2 3285 2 2,2 180 12 -­‐12 6,2
5 1a,	
  2a 2 3324 2 2,4 150 12 -­‐15 8
6 1a,	
  2a 1 3809 2 2 0 8 -­‐12,2 7,5
7 1a,	
  2a 1 3163 2 2 150 8 -­‐12,4 1,5
8 1a 1 5021 2 2 270 8 -­‐2,3 7,6
9 1a,	
  2a 1,	
  2 4361 2 2 330 12 -­‐8,4 6,7
10 1,	
  2 5387 2 2 60 12 -­‐4,9 6,8
11 2a,	
  2b,	
  2c 2 6990 2 2 130 2 8,5 3,5
12 2a 2 6129 2 2,1 180 4 9,5 4,5
13 2a 2 7421 2 2,5 200 12 9,6 3,6
14 1a,	
  1b,	
  2a 1,2 8535 2 2,5 120 12 14 3,5
15 1a 1 8496 2
16 2a,	
  2b 2 8538 2 2,5 130 6 10,7 3,6
17 1a 1,	
  2 6935 2 2 235 12 9,9 7,8
18 1a,	
  2a 1,	
  2 5212 2
19 1a,	
  2a 1,	
  2 4896 2
20 1a 1 6877 2 3 300 8 14,6 -­‐0,9
21 2c 2 6094 2 2,5 170 12 10,6 9,2
22 1a,	
  2a 1,2 6766 2 2,5 85 12 11,9 7,4
23 1a,	
  1b 1 8674 2 2,60 0 6 14,4 2,7
24 1a 1 8366 2 2,60 0 6 14,4 2,7
25 1,2 6500 2 2,5 0 6 12,5 -­‐0,4
26 1a,	
  1b 1 8455 2 2,5 250 12 13,2 7,1
27 1a 1 8615 2 2,5 250 12 13,2 7,1
28 1a 1 8009 2 2 180 8 10,5 6,3
29 1a 1 8689 2 2,5 170 12 13,9 5,1
30 1a,	
  1b 1 6983 2 2,5 30 8 13,5 6
31 1a 1 8058 2 2,6 245 8 16,1 5,8
32 1a 1 8044 2 2,5 280 12 14,7 5,7
33 1a,	
  1b 1 5753 2 2 30 8 9,5 6,8
34 1a 1 6128 2 2 270 8 8,4 7,2

Acetylcholine	
  	
  monkey	
  P

no. Plexon_SU_number electrodeNo depth noDirectionsUsed stim	
  radius prefDir prefSpeed xStimulus yStimulus
1 1a,	
  2a 1,	
  2 6816 2 2 60 12 -­‐1,1 -­‐5,3
2 1a 1 2456 2 2,5 330 12 -­‐2,5 -­‐4,8
3 1a,	
  1b,	
  2a 2 5800 2 2 60 12 -­‐3,9 -­‐3,3
4 1a,	
  1b 1 5700 2 2 250 12 -­‐2,8 -­‐5
5 1a,	
  2a,	
  2b 1 5221 2 2 30 8 -­‐3,6 -­‐4,7
6 2a,	
  2b 2 6964 2 2,5 25 12 -­‐8 0



Acetylcholine	
  monkey	
  O

no. degreeOfResponseEvent substanceInjected concentration  	
  amountOfCycles velocity(nl/s) injectionrate(nl/min)   trialBegin1 trialEnd1 trialBegin2 trialEnd	
  2
1 35 Ach 0,1 1 2 4 124 204
2 40 Ach 0,1 1 2 4 127 242
3 30 Ach 0,1 1 2 4 193 322
4 35 Ach 0,1 1 2 2 143 263
5 35 Ach 0,1 1 2 2 145 336
6 35 Ach 0,1 2 2 2,	
  4 167 282 520 696
7 35 Ach 0,1 1 2 2 164 305
8 25 Ach 0,1 2 2 2,	
  4 147 320 553 671
9 30 Ach 0,1 2 2 2,	
  4 128 243 487 598
10 30 Ach 0,1 1 2 2 148 275
11 30 Ach 0,1 1 2 2 327 560
12 45 Ach 0,1 1 2 2 162 342
13 30 Ach 0,1 1 4 4 181 290
14 30 Ach 0,1 2 4 4 160 277 478 594
15 Ach 0,1 1 4 4 179 248
16 30 Ach 0,1 1 4 4 133 239
17 30 Ach 0,1 1 4 4 167 227
18 Ach 0,2 1 4 4 131 249
19 Ach 0,2 1 4 4 140 256
20 30 Ach 0,2 1 4 4 141 238
21 30 Ach 0,15 1 4 4 123 207
22 30 Ach 0,15 2 4 4 126 229 366 480
23 30 Ach 0,15 1 4 4 132 187
24 30 Ach 0,15 1 4 4 149 265
25 30 Ach 0,15 1 4 4 260 360 510 553
26 30 Ach 0,15 1 4 4 209 305
27 30 Ach 0,15 1 4 4 179 298
28 30 Ach 0,15 1 4 4 138 255
29 30 Ach 0,15 1 4 4 193 311 499 579
30 30 Ach 0,15 1 4 4 285 490
31 30 Ach 0,15 1 4 4 134 252 402 521
32 30 Ach 0,15 1 4 4 117 228
33 30 Ach 0,15 1 4 4 129 243
34 30 Ach 0,15 1 4 4 119 240 431 600

Acetylcholine	
  	
  monkey	
  P

no. degreeOfResponseEvent substanceInjected concentration	
  amountOfCyclesinjectionrate(nl/mi n)injectionrate(nl/min) trialBegin1 trialEnd1 trialBegin2 trialEnd	
  2
1 25 ACh 0,1 1 3 4 197 325
2 25 ACh 0,1 1 3 4 168 296
3 25 ACh 0,1 1 3 4 122 243
4 25 ACh 0,1 1 3 4 115 262

25 ACh 0,1 2 3 4 114 256         5 669
6 25 ACh 0,1 1 3 4 122 249



Acetylcholine	
  monkey	
  O

no. trialBegin3 trialEnd	
  3 plexStart1 plexEnd1 plexStart2 plexEnd2 plexStart3 plexEnd	
  3 cut	
  after	
  or	
  between	
  trail	
  num
1 00:11:00 00:18:00
2 00:12:00 00:22:00
3 00:17:00 00:27:00
4 00:13:00 00:23:00
5 00:13:00 00:33:00 330,	
  370-­‐380
6 00:15:00 00:25:00 00:45:00 01:00:00
7 00:14:00 00:27:00 241-­‐268,	
  285-­‐291
8 00:13:00 00:28:00 00:48:00 00:58:00
9 00:11:00 00:21:00 00:44:00 00:54:00
10 00:13:00 00:23:00
11 00:34:00 00:54:00
12 00:15:00 00:30:00
13 00:19:00 00:29:00
14 00:14:00 00:24:00 00:44:00 00:54:00
15 00:17:00 00:27:00
16 00:12:00 00:22:00
17 00:15:00 00:25:00
18 00:12:00 00:22:00
19 00:12:00 00:22:00
20 00:13:00 00:23:00
21 00:11:00 00:20:00
22 00:11:00 00:21:00 00:36:00 00:46:00
23 00:12:00 00:18:30
24 00:18:00 00:28:00
25 00:23:00 00:33:00 00:48:30 00:58:30
26 00:20:00 00:30:00
27 00:18:00 00:28:00
28 00:14:00 00:24:00
29 00:19:00 00:29:00 00:45:00 00:56:30
30 00:25:00 00:45:00
31 687 786 00:13:00 00:23:00 00:38:00 00:48:00 01:03:00 01:13:00
32 00:10:00 00:20:00
33 00:12:00 00:22:00
34 746 865 00:10:00 00:20:00 00:35:00 00:50:00 01:05:00 01:15:00

Acetylcholine	
  	
  monkey	
  P

no. trialBegin3 trialEnd	
  3 plexStart1 plexEnd1 plexStart2 plexEnd2 plexStart3 plexEnd	
  3 cut	
  after	
  or	
  between	
  trail	
  num
1 00:16:00 00:26:00
2 00:13:00 00:23:00
3 00:10:00 00:20:00
4 00:09:00 00:20:00
5 00:09:00 00:20:00 00:42:00 00:52:00
6 00:10:00 00:20:00



Scopolamine	
  monkey	
  O

no. date filename eparUsed mclabUnitNo electrodeNo depth
1 17.10.14 vecl-­‐spANP2-­‐osk-­‐009-­‐02+01 17-­‐Oct-­‐2014-­‐a 1 1 2545
2 22.10.14 vecl-­‐spANP2-­‐osk-­‐010-­‐02+01 22-­‐Oct-­‐2014-­‐a 2 2 4109
3 29.10.14 vecl-­‐spANP2-­‐osk-­‐013-­‐03+02 29-­‐oct-­‐2014a 1,	
  2,	
  mu 1,	
  2 4091
4 30.10.14 vecl-­‐spANP2-­‐osk-­‐014-­‐03+01 30-­‐Oct-­‐2014-­‐a 1,	
  2 1,	
  2 3853
5 31.10.14 vecl-­‐spANP2-­‐osk-­‐015-­‐01+01 31-­‐Oct-­‐2014-­‐a 1,	
  2 1,	
  2 3893
6 04.11.14 vecl-­‐spANP2-­‐osk-­‐016-­‐03+01 04-­‐Nov-­‐2014-­‐a 1,	
  mu 1,	
  2 4033
7 06.11.14 vecl-­‐spANP2-­‐osk-­‐018-­‐03+01 06-­‐Nov-­‐2014-­‐d 1,	
  2 1,	
  2 4808
8 07.11.14 vecl-­‐spANP2-­‐osk-­‐019-­‐01+01 07-­‐Nov-­‐2014-­‐a 1,	
  2 1,	
  2 4380
9 11.11.14 vecl-­‐spANP2-­‐osk-­‐020-­‐02+01 11-­‐Nov-­‐2014-­‐c 10,	
  2 2 4494
10 12.11.14 vecl-­‐spANP2-­‐osk-­‐021-­‐02+01 12-­‐Nov-­‐2014-­‐a 2 2 4062
11 13.11.14 vecl-­‐spANP2-­‐osk-­‐022-­‐02+01 13-­‐Nov-­‐2014a 10,	
  2,	
  1 1,	
  2 4365
12 25.11.14 vecl-­‐spANP2-­‐osk-­‐023-­‐01+01 25-­‐Nov-­‐2014a 1 1 4429
13 27.11.14 vecl-­‐spANP2-­‐osk-­‐025-­‐01+01 27-­‐Nov-­‐2014a 2 2 4882
14 28.11.14 vecl-­‐spANP2-­‐osk-­‐026-­‐01+01 28-­‐Nov-­‐2014a 1,	
  2 1,	
  2 4533
15 03.12.14 vecl-­‐spANP2-­‐osk-­‐028-­‐01+01 03-­‐Dec-­‐2014a 9 1 5050
16 04.12.14 vecl-­‐spANP2-­‐osk-­‐029-­‐01+01 04-­‐Dec-­‐2014a 2 1,	
  2 4402
17 04.12.14 vecl-­‐spANP2-­‐osk-­‐029-­‐02+01 04-­‐Dec-­‐2014a 2 1,	
  2 4083
18 10.12.14 vecl-­‐spANP2-­‐osk-­‐030-­‐01+01 10-­‐Dec-­‐2014a 1 1 4087
19 11.12.14 vecl-­‐spANP2-­‐osk-­‐031-­‐01+01 11-­‐Dec-­‐2014b 1 1,	
  2 5097
20 12.12.14 vecl-­‐spANP2-­‐osk-­‐032-­‐01+01 12-­‐Dec-­‐2014a 1 1,	
  2 4786
21 18.12.14 vecl-­‐spANP2-­‐osk-­‐034-­‐01+01 18-­‐Dec-­‐2014 1 1 4678
22 06.01.15 vecl-­‐spANP2-­‐osk-­‐035-­‐01+01 06-­‐Jan-­‐2015a 1 1 7721
23 07.01.15 vecl-­‐spANP2-­‐osk-­‐036-­‐01+01 07-­‐Jan-­‐2015a 1,	
  mu 1,	
  2 3998
24 08.01.15 vecl-­‐spANP2-­‐osk-­‐037-­‐02+01 08-­‐Jan-­‐2015b mu,	
  2 1,	
  2 4671
25 09.01.15 vecl-­‐spANP2-­‐osk-­‐038-­‐01+01 09-­‐Jan-­‐2015a 1 1,	
  2 4145
26 09.01.15 vecl-­‐spANP2-­‐osk-­‐038-­‐02+01 09-­‐Jan-­‐2015a 1 1 3829
27 13.01.15 vecl-­‐spANP2-­‐osk-­‐039-­‐01+01 13-­‐Jan-­‐2015a 2 2 4266
28 15.01.15 vecl-­‐spANP2-­‐osk-­‐041-­‐02+01 15-­‐Jan-­‐2015b 1,	
  9 1 4930
29 16.01.15 vecl-­‐spANP2-­‐osk-­‐042-­‐01+01 16-­‐Jan-­‐2015a 1,	
  2 1,	
  2 4684
30 16.01.15 vecl-­‐spANP2-­‐osk-­‐042-­‐02+01 16-­‐Jan-­‐2015b mu,	
  2 1,	
  2 4621
31 28.01.15 vecl-­‐spANP2-­‐osk-­‐048-­‐01+01 28-­‐Jan-­‐2015a 1,	
  mu 1 5427
32 29.01.15 vecl-­‐spANP2-­‐osk-­‐049-­‐01+01 29-­‐Jan-­‐2015a 1,	
  2 1,	
  2 5361
33 03.02.15 vecl-­‐spANP2-­‐osk-­‐050-­‐01+01 03-­‐Feb-­‐2015a 1 1 6039
34 04.02.15 vecl-­‐spANP2-­‐osk-­‐051-­‐01+01 04-­‐Feb-­‐2015a 2 2 5993
35 05.02.15 vecl-­‐spANP2-­‐osk-­‐052-­‐01+01 05-­‐Feb-­‐2015a 2 2 6155
36 06.02.15 vecl-­‐spANP2-­‐osk-­‐053-­‐01+01 06-­‐Feb-­‐2015a 1 1 7059
37 10.02.15 vecl-­‐spANP2-­‐osk-­‐054-­‐02+01 10-­‐Feb-­‐2015b 2 2 7052
38 11.02.15 vecl-­‐spANP2-­‐osk-­‐055-­‐01+01 11-­‐Feb-­‐2015b 1 1,	
  2 7663
39 24.02.15 vecl-­‐spANP2-­‐osk-­‐057-­‐01+01 24-­‐Feb-­‐2015a 2 2 4891
40 25.02.15 vecl-­‐spANP2-­‐osk-­‐058-­‐01+01 25-­‐Feb-­‐2015b lfp 1,	
  2 7000
41 27.02.15 vecl-­‐spANP2-­‐osk-­‐060-­‐02+01 27-­‐Feb-­‐2015a 2 1,	
  2 7771
42 03.03.15 vecl-­‐spANP2-­‐osk-­‐061-­‐01+01 03-­‐Mar-­‐2015a lfp 1,	
  2 7250
43 04.03.15 vecl-­‐spANP2-­‐osk-­‐062-­‐01+01 04-­‐Mar-­‐2015a 2 1,	
  2 7039
44 04.03.15 vecl-­‐spANP2-­‐osk-­‐062-­‐03+01 04-­‐Mar-­‐2015a 1 1,	
  2 7088
45 05.03.15 vecl-­‐spANP2-­‐osk-­‐063-­‐01+01 05-­‐Mar-­‐2015a 1 1 6429
46 06.03.15 vecl-­‐spANP2-­‐osk-­‐064-­‐01+01 06-­‐Mar-­‐2015a lfp 1,	
  2 7500
47 10.03.15 vecl-­‐spANP2-­‐osk-­‐065-­‐01+01 10-­‐Mar-­‐2015a 2 2 6259
48 25.03.15 vecl-­‐spANP2-­‐osk-­‐070-­‐01+01 25-­‐Mar-­‐2015a 1 1 5800
49 26.03.15 vecl-­‐spANP2-­‐osk-­‐071-­‐01+01 26-­‐Mar-­‐2015a 2 2 7087
50 26.03.15 vecl-­‐spANP2-­‐osk-­‐071-­‐02+01 26-­‐Mar-­‐2015a 1 1 7177
51 27.03.15 vecl-­‐spANP2-­‐osk-­‐072-­‐01+01 27-­‐Mar-­‐2015a 1 1 6812
52 31.03.15 vecl-­‐spANP2-­‐osk-­‐073-­‐01+01 31-­‐Mar-­‐2015a 2 2 7337
53 31.03.15 vecl-­‐spANP2-­‐osk-­‐073-­‐01+01 31-­‐Mar-­‐2015a 10 2 7337



Scopolamine	
  monkey	
  O

no. noDirectionsUsed prefDir prefSpeed xStimulus yStimulus degreeOfResponseEvent substanceInjected concentration	
  amountOfCycles
1 2 80 12 -­‐18 6,2 35 sco 0,05 1
2 2 330 12 -­‐6,2 4,8 30 sco 0,05 1
3 2 30 8 -­‐7,9 4,3 30 sco 0,05 2
4 2 30 12 -­‐10,7 4,3 30 sco 0,05 1
5 2 30 12 -­‐9,7 1,7 30 sco 0,05 1
6 2 30 12 -­‐8,6 4,8 30 sco 0,05 1
7 2 230 8 -­‐8 3,1 30 sco 0,05 1
8 2 90 12 -­‐7,4 3,4 30 sco 0,05 1
9 2 90 8 -­‐7,5 3,4 30 sco 0,05 1
10 2 10 12 -­‐8,7 4,9 30 sco 0,05 1
11 2 90 12 -­‐10,9 3,4 30 sco 0,05 1
12 2 150 8 -­‐9,9 3,4 30 sco 0,05 1
13 2 240 12 -­‐7,4 4,4 30 sco 0,05 2
14 2 120 12 -­‐6,1 3,8 30 sco 0,05 3
15 2 210 12 -­‐6,9 7,9 30 sco 0,1 1
16 2 90 12 -­‐9,5 3,8 30 sco 0,1 1
17 2 90 12 -­‐9,5 3,8 30 sco 0,1 1
18 2 120 12 -­‐11 6,4 30 sco 0,1 2
19 2 135 12 -­‐7,3 6,3 30 sco 0,1 1
20 2 140 12 -­‐7,8 4 30 sco 0,1 1
21 2 90 8 -­‐10,5 2,9 30 sco 0,1 1
22 2 280 12 -­‐6,3 6,2 30 sco 0,1 1
23 2 200 12 -­‐9 3,3 30 sco 0,1 1
24 2 160 4 -­‐7,1 5,3 30 sco 0,1 1
25 2 240 8 -­‐8,5 4,3 30 sco 0,1 1
26 2 60 8 -­‐8,5 4,3 30 sco 0,1 1
27 2 200 8 -­‐5,7 5,5 30 sco 0,1 1
28 2 240 12 -­‐6,2 5,9 30 sco 0,1 1
29 2 140 12 -­‐12,7 5,3 30 sco 0,1 1
30 2 140 12 -­‐8,3 4,5 30 sco 0,1 2
31 2 300 12 -­‐8,7 7,8 30 sco 0,1 2
32 2 270 12 -­‐9,3 6,7 30 sco 0,1 2
33 2 215 12 -­‐3,6 5,9 30 sco 0,1 1
34 2 255 12 -­‐6,2 7,2 30 sco 0,1 3
35 2 250 12 -­‐6,4 7,5 30 sco 0,1 2
36 2 0 8 -­‐5,4 7,7 30 sco 0,1 1
37 2 300 12 30 sco 0,1 1
38 2 90 12 -­‐1,5 6,7 25 sco 0,1 2
39 2 120 12 -­‐8,6 4,4 30 sco 0,1 1
40 8 0 8 -­‐2,4 4,9 30 sco 0,1 1
41 2 155 12 -­‐4,5 7,7 30 sco 0,1 1
42 8 12 -­‐2 5 30 sco 0,1 2
43 2 0 12 -­‐3,5 7,5 30 sco 0,1 1
44 2 0 12 -­‐3,5 7,5 30 sco 0,1 1
45 2 190 8 -­‐1,8 7,4 30 sco 0,1 1
46 8 8 -­‐1,5 4,6 30 sco 0,1 2
47 2 sco 0,1 1
48 2 sco 0,1 1
49 2 sco 0,1 1
50 2 sco 0,1 1
51 2 sco 0,1 1
52 2 sco 0,1 2
53 2 sco 0,1 2



Scopolamine	
  monkey	
  O

no. velocity(nl/s) injectionrate(nl/min) trialBegin1 trialEnd1 trialBegin2 trialEnd	
  2 trialBegin3 trialEnd	
  3
1 1 2 243 356
2 1 2 162 285
3 1 2 129 250 485 604
4 1 2 198 359
5 1 2 157 262
6 1 2 263 436
7 1 2 275 457
8 1 2 124 237
9 1 2 257 430
10 1 2 163 163
11 1 2 239 300
12 1 2 284 508
13 1 2 160 282 614 738
14 1 2 131 237 480 599 901 1021
15 1 2 200 310
16 1 2 152 269
17 1 2 136 257
18 1 2 239 412 680 797
19 1 2 184 298
20 1 2 135 253
21 1 2 149 270
22 1 2 196 319
23 1 2 190 306
24 1 2 274 444
25 1 2 170 290
26 1 2 176 360
27 1 2 178 355
28 1 2 238 411
29 1 2 280 446
30 1 2 126 310 524 644
31 1 2 182 360 609 727
32 1 2 135 259 591 704
33 1 2 313 419
34 2 2 178 349 643 761 994 1115
35 2 2 203 364 629 725
36 2 2 176 352
37 2 2 196 374
38 2 4 315 437 630 751
39 2 4 329 416
40 2 4 352 468
41 2 4 192 370
42 2 4 358 473 707 886
43 2 4 160 270
44 2 4 217 339
45 2 4 279 351
46 2 4 372 549 990 1109
47 2 4 181 242
48 2 4 138 312
49 2 4 157 280
50 2 4 145 283
51 2 4 162 339
52 2 4 216 337 633 778
53 2 4 216 337 633 778



Scopolamine	
  monkey	
  O

no. plexStart1 plexEnd1 plexStart2 plexEnd2 plexStart3 plexEnd	
  3 exclude	
  cells
1 00:21:00 00:31:00
2 00:15:00 00:25:00
3 00:11:00 00:21:00 00:41:00 00:51:00
4 00:17:00 00:32:00
5 00:16:00 00:25:00
6 00:23:00 00:38:00
7 00:24:00 00:39:00
8 00:11:00 00:21:00
9 00:22:00 00:37:00
10 00:14:00 00:24:00
11 00:22:00 00:29:00
12 00:26:00 00:46:00
13 00:13:00 00:23:00 00:57:00 01:07:00
14 00:11:00 00:21:00 0:41:00 0:51:00 01:20:00 01:30:00
15 00:20:00 00:30:00
16 00:13:00 00:23:00
17 00:12:00 00:22:00
18 00:21:00 00:36:00 01:00:00 01:10:00
19 00:16:00 00:26:00
20 00:12:00 00:22:00
21 00:13:00 00:23:00
22 00:18:00 00:28:00
23 00:16:00 00:26:00
24 00:25:00 00:40:00
25 00:15:00 00:25:00
26 00:15:00 00:30:00
27 00:15:00 00:30:00
28 00:21:00 00:31:00 525:567,	
  
29 00:26:00 00:41:00
30 00:11:00 00:26:00 00:44:00 00:54:00
31 00:16:00 00:31:00 00:54:00 01:04:00
32 00:12:00 00:22:00 00:50:00 01:00:00
33 00:26:00 00:38:00 393:end
34 00:16:00 00:31:00 00:57:00 01:07:00 01:27:00 01:37:00
35 00:20:00 00:35:00 01:00:00 01:10:00
36 00:17:00 00:32:00 368:end
37 00:18:00 00:33:00
38 00:27:30 00:37:30 00:58:00 01:08:00
39 00:30:00 00:40:00
40 00:30:00 00:40:00
41 00:16:00 00:31:00
42 00:30:00 00:40:00 01:00:00 01:15:00
43 00:15:00 00:25:00
44 00:20:00 00:30:00
45 00:25:00 00:35:00
46 00:32:00 00:47:00 01:25:00 01:35:00
47 00:16:00 00:24:00 234:end
48 00:12:00 00:27:00
49 00:13:00 00:23:00
50 00:12:00 00:27:00 340:end
51 00:16:00 00:31:00 0:42,	
  
52 00:22:00 00:32:00 00:57:00 01:12:00
53 00:22:00 00:32:00 00:57:00 01:12:00 680:end



Scopolamine	
  	
  monkey	
  P

no. date filename eparUsed mclabUnitNo electrodeNo
1 01.08.12 vecl-­‐spANPtc-­‐pie-­‐001-­‐01+01 1Aug-­‐a 2 2
2 01.08.12 vecl-­‐spANPtc-­‐pie-­‐001-­‐01+02 1Aug-­‐b 10 2,3
3 02.08.12 vecl-­‐spANPtc-­‐pie-­‐002-­‐01+01 2Aug-­‐a 2 2
4 02.08.12 vecl-­‐spANPtc-­‐pie-­‐002-­‐01+02 2Aug-­‐a 2 2
5 07.08.12 vecl-­‐spANPtc-­‐pie-­‐003-­‐01+01 16th	
  May lfp 2,3
6 09.08.12 vecl-­‐spANPtc-­‐pie-­‐005-­‐01+01 09Aug-­‐a 11 3
7 10.08.12 vecl-­‐spANPtc-­‐pie-­‐006-­‐01+01 10Aug-­‐a 11 3
8 14.08.12 vecl-­‐spANPtc-­‐pie-­‐007-­‐01+01 16May lfp 2,3
9 16.08.12 vecl-­‐spANPtc-­‐pie-­‐008-­‐01+01 16May lfp 2,3
10 17.08.12 vecl-­‐spANPtc-­‐pie-­‐009-­‐01+01 17Auga 11 3
11 17.08.12 vecl-­‐spANPtc-­‐pie-­‐010-­‐01+02 17Auga lfp 2,3
12 23.08.12 vecl-­‐spANPtc-­‐pie-­‐012-­‐01+01 23Aug-­‐a 11 3
13 28.08.13 vecl-­‐spANPtc-­‐pie-­‐013-­‐01+01 28Aug-­‐b lfp 2,3
14 29.08.12 vecl-­‐spANPtc-­‐pie-­‐014-­‐01+01 29Auga 2 2,3
15 29.08.12 vecl-­‐spANPtc-­‐pie-­‐014-­‐01+03 29Aug-­‐b 2 2
16 05.09.12 vecl-­‐spANPtc-­‐pie-­‐015-­‐01+01 5Sep-­‐a 1 1
17 06.09.12 vecl-­‐spANPtc-­‐pie-­‐016-­‐01+01 6Sept-­‐a 1 1
18 07.09.12 vecl-­‐spANPtc-­‐pie-­‐017-­‐01+01 07Sep-­‐a 11 3
19 11.09.12 vecl-­‐spANPtc-­‐pie-­‐018-­‐01+01 11Sep-­‐a 11 3
20 12.09.12 vecl-­‐spANPtc-­‐pie-­‐019-­‐01+01 16May lfp 2,3
21 13.09.12 vecl-­‐spANPtc-­‐pie-­‐020-­‐01+01 13Sep-­‐a 1 1
22 13.09.12 vecl-­‐spANPtc-­‐pie-­‐020-­‐01+02 13Sep-­‐b 1 1
23 18.09.12 vecl-­‐spANPtc-­‐pie-­‐021-­‐01+01 18Sep-­‐a 1 1
24 19.09.12 vecl-­‐spANPtc-­‐pie-­‐022-­‐01+01 16May lfp 1,3
25 20.09.12 vecl-­‐spANPtc-­‐pie-­‐023-­‐01+01 20Sept-­‐a 1,	
  11 1,3
26 20.09.12 vecl-­‐spANPtc-­‐pie-­‐023-­‐01+02 20Sept-­‐a 1,	
  11 1,3
27 16.10.12 vecl-­‐spANPtc-­‐pie-­‐026-­‐01+01 16Oct-­‐a 11 3
28 18.10.12 vecl-­‐spANPtc-­‐pie-­‐028-­‐01+01 18Oct-­‐a 1 1
29 22.11.12 vecl-­‐spANPtc-­‐pie-­‐036-­‐01+01 25Oct-­‐a lfp
30 27.11.12 vecl-­‐spANPtc-­‐pie-­‐037-­‐01+01 27Nov-­‐a 11 3
31 22.05.12 vecl-­‐spANP1-­‐pie-­‐014-­‐01+02 22May-­‐a mu 2,	
  3
32 22.05.12 vecl-­‐spANP1-­‐pie-­‐014-­‐01+03 22May-­‐a 2 2,	
  3
33 23.05.12 vecl-­‐spANP1-­‐pie-­‐015-­‐01+01 23May-­‐a 2 2,	
  3
34 26.06.12 vecl-­‐spANP1-­‐pie-­‐022-­‐01+01 26Jun-­‐a 11 3
35 28.06.12 vecl-­‐spANP1-­‐pie-­‐023-­‐01+02 28Jun-­‐b 2 2
36 29.06.12 vecl-­‐spANP1-­‐pie-­‐024-­‐01+02 29Jun-­‐a 11 2,3
37 29.06.12 vecl-­‐spANP1-­‐pie-­‐024-­‐01+03 29Jun-­‐a 11 2,3
38 03.07.12 vecl-­‐spANP1-­‐pie-­‐025-­‐01+01 3Jul-­‐a 2 2
39 04.07.12 vecl-­‐spANP1-­‐pie-­‐026-­‐01+01 4Jul-­‐b 11 3
40 04.07.12 vecl-­‐spANP1-­‐pie-­‐026-­‐01+02 4Jul-­‐b 11 3
41 05.07.12 vecl-­‐spANP1-­‐pie-­‐027-­‐01+01 5Jul-­‐a 11 3
42 10.07.12 vecl-­‐spANP1-­‐pie-­‐030-­‐01+01 10Jul-­‐b 2 2
43 11.07.12 vecl-­‐spANP1-­‐pie-­‐031-­‐01+01 11Jul-­‐a 2 2
44 11.07.12 vecl-­‐spANP1-­‐pie-­‐031-­‐01+02 11Jul-­‐a 2 2
45 12.07.12 vecl-­‐spANP1-­‐pie-­‐032-­‐01+01 12Jul-­‐aneeds	
  trials	
  excluded 2
46 13.07.12 vecl-­‐spANP1-­‐pie-­‐033-­‐01+01 13Jul-­‐a 2 2
47 19.07.12 vecl-­‐spANP1-­‐pie-­‐035-­‐01+01 19-­‐Jul-­‐a 2 2
48 31.07.12 vecl-­‐spANP1-­‐pie-­‐037-­‐01+02 31Jul-­‐a 2 2
49 23.07.13 vecl-­‐spANP2-­‐pie-­‐010-­‐01+01 23Jul-­‐a mu 1,	
  2
50 24.07.13 vecl-­‐spANP2-­‐pie-­‐011-­‐01+01 24Julb mu 1,	
  2
51 25.07.13 vecl-­‐spANP2-­‐pie-­‐012-­‐01+01 26Jul_a mu 1,	
  2
52 26.07.13 vecl-­‐spANP2-­‐pie-­‐013-­‐01+01 30Jul_a mu 1,	
  2
53 30.07.13 vecl-­‐spANP2-­‐pie-­‐014-­‐01+01 25Jul_a mu 1
54 01.08.13 vecl-­‐spANP2-­‐pie-­‐015-­‐01+02 1Aug-­‐a mu 1
55 08.08.13 vecl-­‐spANP2-­‐pie-­‐017-­‐02+01 8Aug-­‐b 2 2
56 09.08.13 vecl-­‐spANP2-­‐pie-­‐018-­‐01+01 09Aug-­‐d 2 1,	
  2
57 09.08.13 vecl-­‐spANP2-­‐pie-­‐018-­‐01+02 09Aug-­‐d 2 2
58 14.08.13 vecl-­‐spANP2-­‐pie-­‐019-­‐01+01 14Aug-­‐a 1 1
59 29.08.13 vecl-­‐spANP2-­‐pie-­‐020-­‐01+02 29Aug-­‐a 1 1
60 29.08.13 vecl-­‐spANP2-­‐pie-­‐020-­‐01+03 29Aug-­‐a 1 1
61 30.08.13 vecl-­‐spANP2-­‐pie-­‐021-­‐02+02 30Aug-­‐a 2 2
62 04.09.13 vecl-­‐spANP2-­‐pie-­‐023-­‐01+03 04Sept-­‐a 1 1
63 05.09.13 vecl-­‐spANP2-­‐pie-­‐024-­‐01+02 05Sept-­‐a 2,	
  10 2
64 05.09.13 vecl-­‐spANP2-­‐pie-­‐024-­‐02+02 05Sept-­‐b 1 1
65 25.09.13 vecl-­‐spANP2-­‐pie-­‐034-­‐01+02 25Sept-­‐a 9 1
66 27.09.13 vecl-­‐spANP2-­‐pie-­‐035-­‐01+02 27Sept-­‐a 1 1
67 27.09.13 vecl-­‐spANP2-­‐pie-­‐035-­‐01+03 27Sept-­‐a 1 1
68 27.09.13 vecl-­‐spANP2-­‐pie-­‐035-­‐01+04 27Sept-­‐a 1 1
69 08.10.13 vecl-­‐spANP2-­‐pie-­‐039-­‐01+02 08Oct-­‐a 1 1
70 10.10.13 vecl-­‐spANP2-­‐pie-­‐041-­‐02+02 10Oct-­‐a exclude	
  trials 2
71 16.10.13 vecl-­‐spANP2-­‐pie-­‐044-­‐01+03 16Oct-­‐a exclude	
  trials 2
72 17.10.13 vecl-­‐spANP2-­‐pie-­‐045-­‐01+03 17Oct-­‐a mu 1,	
  2
73 17.10.13 vecl-­‐spANP2-­‐pie-­‐045-­‐02+03 17Oct-­‐b 1,	
  	
  2,	
  10 1,	
  2
74 19.11.13 vecl-­‐spANP2-­‐pie-­‐058-­‐01+02 19Nov-­‐a 1,mu 1
75 19.11.13 vecl-­‐spANP2-­‐pie-­‐058-­‐02+01 19Nov-­‐a 1 1
76 20.11.13 vecl-­‐spANP2-­‐pie-­‐059-­‐01+02 20Nov-­‐a 1,	
  9	
   1
77 25.11.13 vecl-­‐spANP2-­‐pie-­‐060-­‐01+02 25Nov-­‐a 1	
  mu 1
78 26.11.13 vecl-­‐spANP2-­‐pie-­‐061-­‐02+02 26Nov-­‐a 1 1
79 21.12.13 vecl-­‐spANP2-­‐pie-­‐067-­‐03+01 21Dec-­‐b 2 2
80 08.01.14 vecl-­‐spANP2-­‐pie-­‐071-­‐02+01 8Jan-­‐a 2 2
81 16.01.14 vecl-­‐spANP2-­‐pie-­‐075-­‐01+01 16Jan-­‐a 1 1
82 17.01.14 vecl-­‐spANP2-­‐pie-­‐076-­‐01+01 17Jan-­‐a exclude	
  trials 2



Scopolamine	
  	
  monkey	
  P

no. depth noDirectionsUsed prefDir prefSpeed xStimulus yStimulus degreeOfResponseEvent substanceInjected
1 5021 2 30 12 2,5 5,1 30 sco
2 4407 2 150 12 2,5 5 30 sco
3 4200 2 30 8 2,2 3,8 30 sco
4 4200 2 30 8 2,2 3,8 30 sco
5 5000 8 30 sco
6 4000 2 30 sco
7 4353 2 90 12 3,8 4,6 30 sco
8 4500 8 30 sco
9 4500 8 30 sco
10 4048 2 270 4 3 2,6 30 sco
11 4500 8 30 sco
12 4248 2 120 12 4,3 4,4 30 sco
13 5000 2 60 12 4,9 4,2 30 sco
14 4031 2 90 8 3 5,7 30 sco
15 4043 2 330 12 3,3 5,5 30 sco
16 4989 2 60 8 1,2 6,6 30 sco
17 4081 2 180 12 2,5 5 30 sco
18 4000 2 0 8 4,2 3,9 30 sco
19 4174 2 240 12 3,1 4,4 30 sco
20 5800 8 30 sco
21 4558 2 300 8 5 4,2 30 sco
22 5038 2 180 12 6,1 1 30 sco
23 4756 2 270 8 6 5 30 sco
24 6000 2 30 sco
25 4367 2 90 8 6,2 5,8 30 sco
26 4254 2 90 8 6,2 5,8 30 sco
27 4644 2 30 12 1,9 5,8 30 sco
28 4991 2 90 12 3,8 7 30 sco
29 4600 8 25 sco
30 6200 2 6 5,5 5,8 25 sco
31 2683 8 8 6,5 6,5 30 sco
32 2683 8 8 6,5 6,5 30 sco
33 3472 8 6 2,2 5,5 30 sco
34 3384 2 330 8 1,9 2,4 30 sco
35 3633 2 8 4,2 3,2 30 sco
36 2 8 3,5 4,6 30 sco
37 2 8 3,5 4,6 30 sco
38 3531 2 60 8 2,5 5 30 sco
39 3405 2 330 12 1,9 5,5 30 sco
40 3385 2 120 12 1,9 5,5 30 sco
41 3055 2 270 12 1,1 4,1 30 sco
42 3575 2 270 12 2,4 5,3 30 sco
43 3754 2 330 12 3,3 4,3 30 sco
44 3540 2 330 12 3,3 4,3 30 sco
45 3054 2 210 12 2,3 4,9 30 sco
46 4141 2 0 12 1,8 4,4 30 sco
47 3675 2 180 12 4,1 5,2 30 sco
48 4874 2 180 12 1,7 5,4 30 sco
49 5813 8 8 -­‐5,7 -­‐2,2 25 sco
50 5658 8 8 -­‐5,5 -­‐5,2 25 sco
51 6375 8 -­‐4,4 -­‐3,5 25 sco
52 7050 8 -­‐4,7 5,2 25 sco
53 6500 8 25 sco
54 8 25 sco
55 7371 2 240 12 -­‐0,1 -­‐5,4 25 sco
56 7245 2 120 8 -­‐1,2 -­‐4,6 25 sco
57 7104 2 120 8 -­‐1,2 -­‐4,6 25 sco
58 8353 2 120 4 -­‐2,1 -­‐4,5 25 sco
59 7000 2 60 12 -­‐2,3 -­‐3,9 25 sco
60 6893 2 60 12 -­‐2,3 -­‐3,9 25 sco
61 8257 2 20 8 -­‐1,4 -­‐5,3 25 sco
62 6885 2 0 12 -­‐4,2 -­‐4,3 25 sco
63 7346 2 90 8 -­‐1,7 -­‐6,8 25 sco
64 7065 2 0 12 -­‐2,9 -­‐6 25 sco
65 7455 2 200 12 -­‐3,8 -­‐8,3 35 sco
66 8633 2 0 12 -­‐7,6 -­‐6,6 30 sco
67 8633 2 0 12 -­‐7,6 -­‐6,6 30 sco
68 8442 2 0 12 -­‐7,6 -­‐6,6 30 sco
69 7499 2 185 12 -­‐9,1 -­‐3 30 sco
70 7656 2 75 12 -­‐3,8 -­‐7,3 25 sco
71 7411 2 0 12 -­‐2 -­‐6,6 25 sco
72 7785 2 60 12 -­‐0,9 -­‐5,7 25 sco
73 7200 2 50 12 -­‐3,5 -­‐8,5 25 sco
74 5419 2 300 12 -­‐1,1 -­‐7,1 25 sco
75 5494 2 300 12 -­‐1,1 -­‐7,1 25 sco
76 5765 2 130 2 -­‐4,2 -­‐6,9 35 sco
77 6494 2 105 12 -­‐2,3 -­‐7,7 25 sco
78 6196 2 250 12 -­‐2,3 -­‐6,3 25 sco
79 6208 2 210 12 -­‐7,1 1,7 25 sco
80 4898 2 160 4 -­‐7,1 -­‐4,5 30 sco
81 3400 2 130 12 -­‐3,5 -­‐5,2 25 sco
82 3261 2 80 8 -­‐8,2 -­‐4,3 25 sco



Scopolamine	
  	
  monkey	
  P

no. concentration	
   amountOfCycles injectionrate(nl/min) trialBegin1 trialEnd1 trialBegin2 trialEnd	
  2 trialBegin3 trialEnd	
  3
1 0,01 1 1 126 252
2 0,01 2 1 148 273 474 591
3 0,01 1 2 114 237
4 0,01 1 2 180 302
5 0,1 1 2 353 475
6 0,1 1 2 173 300
7 0,1 1 2 149 282
8 0,1 1 2 267 381
9 0,01 1 2 262 357
10 0,01 1 2 196 315
11 0,01 1 2 63 186
12 0,01 2 2 118 245 506 626
13 0,1 2 2 241 368 589 710
14 0,1 1 2 176 301
15 0,1 2 2 231 356 568 674
16 0,1 1 2 263 384
17 0,1 2 2,4 168 283 530 655
18 0,1 1 4 225 350
19 0,1 3 4,4,2 137 263 537 658 892 1010
20 0,1 2 4 273 395 640 762
21 0,1 1 4 131 256
22 0,1 1 4 130 255
23 0,05 1 2 158 278
24 0,05 2 2,4 300 419 758 880
25 0,05 2 1,2 197 322 598 723
26 0,05 1 4 228 352
27 0,05 1 4 197 318
28 0,05 1 4 180 302
29 0,05 1 4 320 446
30 0,05 1 4 322 445
31 0,1 1 0,5 270 379
32 0,1 1 1 158 379
33 0,1 3 1 505 726 1078 1305 1522 1619
34 0,1 3 1 201 365 523 663 798 963
35 0,1 2 1 188 349 485 645
36 0,1 1 1 198 388
37 0,1 2 1 168 323 481 634
38 0,1 1 1 190 268
39 0,1 2 1 142 322 543 724
40 0,1 1 1 35 203
41 0,1 1 1 243 465
42 0,1 1 1 167 322
43 0,1 1 1 227 427
44 0,1 1 1 208 393
45 0,1 2 1 251 428 741 910
46 0,1 3 1 277 412 683 850 1033 1188
47 0,1 3 1 210 320 432 574 856 1099
48 0,01 1 1 114 237
49 0,05 2 2 360 608 836 981
50 0,05 2 2 444 701 1118 1237
51 0,05 1 2 417 605
52 0,05 1 2 498 747
53 0,05 1 2 774 891
54 0,05 1 2 137 319
55 0,05 2 2 138 268 458 586
56 0,05 1 2 134 260
57 0,05 1 2 113 240
58 0,05 2 2 124 255 516 644
59 0,05 1 2 127 255
60 0,05 1 2 99 225
61 0,05 1 2 127 255
62 0,05 1 2 179 279
63 0,05 1 2 157 278
64 0,05 1 2 249 378
65 0,05 1 2 206 320
66 0,05 1 2 209 334
67 0,05 1 2 212 333
68 0,05 1 2 195 315
69 0,05 1 2 193 316
70 0,05 1 2 132 261
71 0,05 2 2 127 256 499 576
72 0,05 1 2 130 257
73 0,05 1 2 140 270
74 0,05 1 2 184 308
75 0,05 1 2 237 361
76 0,05 2 2 136 264 441 561
77 0,05 1 2 107 230
78 0,05 1 2 136 265
79 0,05 1 2 230 407
80 0,05 1 2 138 269
81 0,05 1 2 130 258
82 0,05 1 2 193 380



Scopolamine	
  	
  monkey	
  P

no. plexStart1 plexEnd1 plexStart2 plexEnd2 plexStart3 plexEnd	
  3
1 00:15:00 00:25:00
2 00:16:00 00:26:00 00:46:00 00:56:00
3 00:14:00 00:24:00
4 00:15:00 00:28:00
5 00:30:00 00:41:00
6 00:21:00 00:32:00
7 00:12:00 00:23:00
8 00:23:30 00:33:30
9 00:31:00 00:41:00
10 00:16:00 00:26:00
11 00:05:30 00:15:30
12 00:10:00 00:20:00 00:45:00 00:55:00
13 00:22:00 00:32:00 00:58:00 01:08:00
14 00:14:00 00:24:00
15 00:23:00 00:33:00 00:51:00 01:01:00
16 00:24:00 00:34:00
17 00:13:00 00:23:00 00:45:30 00:55:30
18 00:21:00 00:31:00
19 00:17:00 00:27:00 00:55:00 01:05:00 01:25:00 01:35:00
20 00:25:00 00:35:00 00:56:00 01:06:00
21 00:13:00 00:23:00
22 00:11:00 00:21:00
23 00:13:00 00:23:00
24 00:24:30 00:34:30 01:04:30 01:14:30
25 00:16:00 00:26:00 00:55:30 01:05:30
26 00:24:00 00:34:00
27 00:21:00 00:31:00
28 00:16:00 00:26:00
29 00:25:00 00:35:00
30 00:26:30 00:36:30
31 00:27:00 00:37:00
32 00:17:30 00:37:30
33 01:00:00 01:21:00 01:58:00 02:19:00 02:47:00 02:57:00
34 00:21:00 00:36:00 00:51:00 01:04:00 01:16:00 01:31:00
35 00:22:30 00:37:30 00:51:00 01:06:00
36 00:18:30 00:35:30
37 00:18:00 00:31:00 00:44:30 00:57:30
38 00:27:00 00:35:00
39 00:14:00 00:29:00 00:51:30 01:07:30
40 00:03:00 00:17:00
41 00:19:30 00:37:30
42 00:16:00 00:29:00
43 00:24:00 00:42:00
44 00:20:00 00:36:00
45 00:25:00 00:40:00 01:08:00 01:22:00
46 00:36:00 00:48:00 01:12:00 01:26:00 01:42:00 01:55:00
47 00:18:00 00:27:00 00:39:00 00:51:00 01:19:00 01:39:00
48 00:16:30 00:26:30
49 00:28:00 00:48:00 01:06:00 01:18:00
50 00:35:00 00:55:00 01:28:00 01:38:00
51 00:33:00 00:48:00
52 00:42:00 01:02:00
53 01:04:00 01:15:00
54 00:12:00 00:27:00
55 00:11:00 00:21:00 00:42:00 00:52:00
56 00:11:00 00:21:00
57 00:10:00 00:20:00
58 00:10:00 00:20:00 00:40:00 00:50:00
59 00:10:00 00:20:00
60 00:08:00 00:18:00
61 00:10:00 00:20:00
62 00:15:00 00:25:00
63 00:13:00 00:23:00
64 00:21:00 00:31:00
65 00:17:00 00:27:00
66 00:17:00 00:27:00
67 00:18:00 00:28:00
68 00:16:00 00:26:00
69 00:16:00 00:26:00
70 00:11:00 00:21:00
71 00:10:00 00:20:00 00:40:00 00:50:00
72 00:11:00 00:21:00
73 00:12:00 00:22:00
74 00:15:00 00:25:00
75 00:21:00 00:31:00
76 00:12:00 00:22:00 00:37:00 00:47:00
77 00:10:00 00:20:00
78 00:11:00 00:21:00
79 00:20:00 00:35:00
80 00:11:00 00:21:00
81 00:10:00 00:20:00
82 00:15:00 00:30:00



Mecamylamine	
  	
  	
  monkey	
  P

no. date filename eparUsed mclabUnitNo electrodeNo
1 25.02.14 vecl-­‐spANP2-­‐pie-­‐093-­‐01+02 25Feb-­‐a 1 1
2 26.02.14 vecl-­‐spANP2-­‐pie-­‐094-­‐01+02 26Feb-­‐a 2 2
3 27.02.14 vecl-­‐spANP2-­‐pie-­‐095-­‐02+02 27Feb-­‐a 1,2 1,2
4 10.03.14 vecl-­‐spANP2-­‐pie-­‐098-­‐01+04 10Mar-­‐a 1,2,9,10 1,2
5 17.03.14 vecl-­‐spANP2-­‐pie-­‐102-­‐01+01 17Mar 1 1
6 18.03.14 vecl-­‐spANP2-­‐pie-­‐103-­‐01+04 18Mar-­‐a 1,2 1,2
7 18.03.14 vecl-­‐spANP2-­‐pie-­‐103-­‐02+02 18Mar-­‐b 1,2 1,2
8 20.03.14 vecl-­‐spANP2-­‐pie-­‐104-­‐03+02 20Mar-­‐c 1 1



Mecamylamine	
  	
  	
  monkey	
  P

no. depth noDirectionsUsed prefDir prefSpeed xStimulus yStimulus degreeOfResponseEvent  substanceInjected

1 5019 2 165 4 -­‐8,1 5,5 30 MM
2 6045 2 310 12 -­‐6,9 -­‐4,7 25 MM
3 6296 2 280 12 -­‐2,6 -­‐4,2 25 MM
4 8503 2 280 12 -­‐2,6 -­‐4,2 25 MM
5 6980 2 300 8 -­‐5,1 -­‐0,5 25 MM
6 6760 2 40 8 -­‐2,5 -­‐3,4 25 MM
7 6276 2 200 8 -­‐3,3 -­‐4,5 25 MM
8 4297 2 40 8 -­‐2,5 -­‐3,5 24 MM



Mecamylamine	
  	
  	
  monkey	
  P

no. concentration	
   amountOfCycles injectionrate(nl/min) trialBegin1 trialEnd1 plexStart1 plexEnd1
1 0,1 1 6 168 291 00:14:00 00:24:00
2 0,1 1 6 161 291 00:13:00 00:23:00
3 0,1 1 6 151 277 00:12:00 00:22:00
4 0,1 1 6 233 340 00:21:00 00:31:00
5 0,1 1 6 161 287 00:13:00 00:23:00
6 0,1 1 6 151 280 00:12:00 00:22:00
7 0,1 1 6 146 269 00:12:00 00:22:00
8 0,1 1 6 160 280 00:12:30 00:22:30



Saline	
  monkey	
  O

no. date filename eparUsed mclabUnitNo electrodeNo
1 08.10.14 vecl-­‐spANP2-­‐osk-­‐006-­‐02+01 08-­‐Oct-­‐2014-­‐c 1,	
  9 1
2 09.10.14 vecl-­‐spANP2-­‐osk-­‐007-­‐01+02 09-­‐Oct-­‐2014a 2 1,	
  2
3 09.10.14 vecl-­‐spANP2-­‐osk-­‐007-­‐02+01 09-­‐Oct-­‐2014b 2 2
4 14.10.14 vecl-­‐spANP2-­‐osk-­‐008-­‐01+01 14-­‐Oct-­‐2014-­‐a 2 2
5 24.10.14 vecl-­‐spANP2-­‐osk-­‐011-­‐02+01 24-­‐Oct-­‐2014-­‐a 2 2
6 17.12.14 vecl-­‐spANP2-­‐osk-­‐033-­‐01+01 17-­‐Dec-­‐2014b 2 2
7 21.01.15 vecl-­‐spANP2-­‐osk-­‐044-­‐01+01 21-­‐Jan-­‐2015a 2,	
  1 1,	
  2
8 21.01.15 vecl-­‐spANP2-­‐osk-­‐044-­‐02+01 21-­‐Jan-­‐2015a 2,	
  mu 2
9 21.01.15 vecl-­‐spANP2-­‐osk-­‐044-­‐03+01 21-­‐Jan-­‐2015b 2 2
10 22.01.15 vecl-­‐spANP2-­‐osk-­‐045-­‐01+02 22-­‐Jan-­‐2015a 1,	
  mu 1,	
  2
11 23.01.15 vecl-­‐spANP2-­‐osk-­‐046-­‐01+01 23-­‐Jan-­‐2015a 2,	
  mu 1,	
  2
12 11.03.15 vecl-­‐spANP2-­‐osk-­‐066-­‐01+01 11-­‐Mar-­‐2015a 9 1
13 11.03.15 vecl-­‐spANP2-­‐osk-­‐066-­‐02+01 11-­‐Mar-­‐2015a 1 1
14 11.03.15 vecl-­‐spANP2-­‐osk-­‐066-­‐03+01 11-­‐Mar-­‐2015a 2,	
  10 2
15 12.03.15 vecl-­‐spANP2-­‐osk-­‐067-­‐01+01 12-­‐Mar-­‐2015a 1 1
16 12.03.15 vecl-­‐spANP2-­‐osk-­‐067-­‐02+01 12-­‐Mar-­‐2015a 1 1
17 13.03.15 vecl-­‐spANP2-­‐osk-­‐068-­‐01+01 13-­‐Mar-­‐2015a mu 1
18 24.03.15 vecl-­‐spANP2-­‐osk-­‐069-­‐01+01 24-­‐Mar-­‐2015a 1 1

Saline	
  monkey	
  P

no. date filename eparUsed mclabUnitNo electrodeNo
1 30.05.13 vecl-­‐spANP2-­‐pie-­‐001-­‐01+01 30May-­‐a 1,	
  2,	
  10 1,2
2 17.07.13 vecl-­‐spANP2-­‐pie-­‐007-­‐01+01 17Jula 2 2
3 18.07.13 vecl-­‐spANP2-­‐pie-­‐008-­‐01+01 18Jula 1,	
  2 1,	
  2
4 19.07.13 vecl-­‐spANP2-­‐pie-­‐009-­‐01+01 19Jula 2,	
  mu 1,	
  2
5 13.09.13 vecl-­‐spANP2-­‐pie-­‐027-­‐01+02 13Sept-­‐a 2 2
6 18.09.13 vecl-­‐spANP2-­‐pie-­‐030-­‐01+02 18Sept-­‐a mu 1,2
7 19.09.13 vecl-­‐spANP2-­‐pie-­‐031-­‐02+01 19Sept-­‐a mu 1,2
8 20.09.13 vecl-­‐spANP2-­‐pie-­‐032-­‐02+02 20Sept-­‐b 2 2
9 04.10.13 vecl-­‐spANP2-­‐pie-­‐037-­‐01+01 04Nov-­‐b 1
10 07.10.13 vecl-­‐spANP2-­‐pie-­‐038-­‐01+02 7Oct-­‐a mu 1,2
11 21.10.13 vecl-­‐spANP2-­‐pie-­‐046-­‐01+03 21Oct-­‐a 2 2
12 23.10.13 vecl-­‐spANP2-­‐pie-­‐048-­‐01+04 23Oct-­‐a 1,	
  2,	
  mu 1,2
13 04.11.13 vecl-­‐spANP2-­‐pie-­‐052-­‐01+02 4Nov-­‐a 1,	
  9 1
14 06.11.13 vecl-­‐spANP2-­‐pie-­‐054-­‐01+02 6Nov-­‐a 2 2
15 07.11.13 vecl-­‐spANP2-­‐pie-­‐055-­‐01+02 7Nov-­‐a 1,	
  9 1
16 07.11.13 vecl-­‐spANP2-­‐pie-­‐055-­‐02+02 7Nov-­‐b 1,	
  9 1
17 29.11.13 vecl-­‐spANP2-­‐pie-­‐063-­‐03+01 29Nov-­‐a 1 1
18 02.12.13 vecl-­‐spANP2-­‐pie-­‐064-­‐02+01 2Dec-­‐a 2 2
19 20.12.13 vecl-­‐spANP2-­‐pie-­‐066-­‐02+01 20Dec-­‐a 1 1
20 24.01.14 vecl-­‐spANP2-­‐pie-­‐080-­‐01+02 24Jan-­‐a 1 1
21 10.03.14 vecl-­‐spANP2-­‐pie-­‐099-­‐02+01 10-­‐Mar-­‐a 1,	
  mu 1,	
  2



Saline	
  monkey	
  O

no. depth noDirectionsUsed prefDir prefSpeed xStimulus yStimulus degreeOfResponseEvent substanceInjected
1 3080 2 240 12 -­‐9,7 -­‐0,7 30 NaCl
2 3000 2 30 12 -­‐8,3 3,50 30 NaCl
3 2768 2 NaCl
4 5184 2 330 8 -­‐8,3 3,5 30 NaCl
5 4614 2 60 12 -­‐9,5 5 30 NaCl
6 5124 2 0 12 -­‐10,5 4,5 30 NaCl
7 5000 2 180 12 -­‐9,3 4,8 30 NaCl
8 4857 2 180 12 -­‐9,3 4,8 30 NaCl
9 4724 2 120 8 -­‐9,3 4,8 30 NaCl
10 5469 2 240 8 -­‐7,5 6,7 30 NaCl
11 5679 2 100 12 -­‐7,7 5,7 30 NaCl
12 6794 2 NaCl
13 6644 2 NaCl
14 6605 2 NaCl
15 7321 2 NaCl
16 6889 2 NaCl
17 5379 2 NaCl
18 5521 2 NaCl

Saline	
  monkey	
  P

no. depth noDirectionsUsed prefDir prefSpeed xStimulus yStimulus degreeOfResponseEvent substanceInjected
1 5000 8 300 12 -­‐3 6,8 25 NaCl
2 7000 8 8 -­‐7 2,2 25 NaCl
3 5600 2 NaCl
4 5300 2 NaCl
5 6262 2 60 12 -­‐5,6 -­‐2,7 25 NaCl
6 5110 8 0 8 -­‐6,1 -­‐1,8 25 NaCl
7 5257 2 235 12 -­‐6,1 -­‐1 25 NaCl
8 7250 2 145 8 -­‐3,7 -­‐8,3 35 NaCl
9 6904 2 NaCl
10 7496 8 8 -­‐3,3 -­‐7,5 30 NaCl
11 7218 2 250 12 -­‐0,5 -­‐6 25 NaCl
12 8247 2 125 8 -­‐2,2 -­‐10,3 40 NaCl
13 6029 2 150 12 -­‐1,9 -­‐7,8 25 NaCl
14 7209 2 95 8 -­‐3,2 -­‐6,6 25 NaCl
15 7238 2 80 8 -­‐2,3 -­‐8,1 25 NaCl
16 7238 2 120 8 -­‐2,3 -­‐8,1 25 NaCl
17 6321 2 110 8 -­‐1,7 -­‐7,7 25 NaCl
18 5576 2 110 4 -­‐1,5 -­‐5,3 25 NaCl
19 6830 2 120 8 -­‐10,8 2,6 25 NaCl
20 5838 2 60 12 -­‐5,1 -­‐6,2 25 NaCl
21 8282 2 NaCl



Saline	
  monkey	
  O

no. concentration	
   amountOfCycles velocity(nl/s) injectionrate(nl/min) trialBegin1 trialEnd1 trialBegin trialEnd	
  2
1 0,9 2 1 2 164 282 657 775
2 0,9 1 1 2 158 276
3 0,9 1 1 2 449 555
4 0,9 1 1 2 186 300
5 0,9 1 1 2 385 496
6 0,9 1 1 2 274 392
7 0,9 1 1 2 160 274
8 0,9 1 1 2 203 321
9 0,9 1 1 2 196 369
10 0,9 2 1 2 124 237 496 614
11 0,9 2 1 2 114 236 484 658
12 0,9 1 2 4 149 239
13 0,9 1 2 4 171 268
14 0,9 1 2 4 157 217
15 0,9 1 2 4 147 257
16 0,9 1 2 4 125 220
17 0,9 1 2 4 168 284
18 0,9 1 2 4 170 290

Saline	
  monkey	
  P

no. concentration	
   amountOfCycles velocity(nl/s) injectionrate(nl/min) trialBegin1 trialEnd1 trialBegin trialEnd	
  2
1 0,9 1 2 2 618 725
2 0,9 1 2 2 294 456
3 0,9 1 2 2 431 563
4 0,9 1 2 2 365 500
5 0,9 2 2 2 142 273 400 499
6 0,9 2 2 2 305 415 665 759
7 0,9 1 2 2 171 296
8 0,9 2 2 2 145 266 511 617
9 0,9 1 2 2 150 318
10 0,9 1 2 2 378 499
11 0,9 1 2 2 173 282
12 0,9 1 2 2 186 304
13 0,9 1 2 2 300 412
14 0,9 1 2 2 112 243
15 0,9 1 2 2 132 256
16 0,9 1 2 2 160 284
17 0,9 1 2 2 120 247
18 0,9 1 2 2 180 300
19 0,9 1 2 2 248 437
20 0,9 1 2 2 116 248
21 0,9 1 2 6 115 178



Saline	
  monkey	
  O

no. plexStart1 plexEnd1 plexStart2 plexEnd2
1 00:15:00 00:25:00 00:58:00 01:08:00
2 00:16:00 00:26:00
3 00:40:00 00:50:00
4 00:17:00 00:27:00
5 00:35:00 00:45:00
6 00:28:00 00:38:00
7 00:14:00 00:24:00
8 00:22:00 00:32:00
9 00:17:00 00:32:00
10 00:12:00 00:22:00 00:45:00 00:55:00
11 00:10:00 00:20:00 00:42:00 00:57:00
12 00:13:00 00:21:00
13 00:17:00 00:27:00
14 00:14:00 00:19:00
15 00:15:00 00:25:00
16 00:11:00 00:21:00
17 00:15:00 00:25:00
18 00:15:00 00:25:00

no. plexStart1 plexEnd1 plexStart2 plexEnd2
1 0:55:00 01:05:00
2 00:23 0:37:00
3 00:34 0:45:00
4 00:30 0:41:00
5 00:12:00 00:22:00 00:32:00 00:39:00
6 00:25:00 00:35:00 00:59:00 01:09:00
7 00:16:00 00:26:00
8 00:12:00 00:22:00 00:45:00 00:55:00
9 00:12:00 00:26:00
10 00:30:00 00:40:00
11 00:13:30 00:23:30
12 00:15:30 0:25:00
13 00:25:00 00:35:00
14 00:09:00 00:19:00
15 00:11:00 00:21:00
16 00:14:00 00:24:00
17 00:10:00 00:20:00
18 00:15:00 00:25:00
19 00:20:00 00:35:00
20 00:09:00 00:19:00
21 00:10:00 00:20:00
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Summary and Conclusion 
This thesis contributes to the understanding of spatial visual attention in the 

medial temporal area MT. The experiments described in the first part cover 

perceptual characteristics of spatial attention in humans, investigating 

hemifield dependence as well as the influence of signal strength on to the 

gradual deployment of spatial attention. In the second part, I aimed to shed 

light on the cholinergic involvement of attentional modulation on firing rate in 

macaque MT, performing single-cell recording while executing local 

neuropharmacological manipulations. 

Spatial visual attention is a selective process, allowing subjects to prioritize 

spatial locations in the visual field and therefore enhance their processing. 

Physiologically, spatial attention leads to an increase in neuronal firing rate 

when the attentional focus matches a neuron’s receptive field (Treue and 

Maunsell, 1999). Although our knowledge about visual spatial attention has 

advanced significantly during the last two decades and led to the above-

mentioned definitions, important pieces are still missing from a complete 

understanding. Spatial attention is typically investigated from two perspectives, 

behavioral and neurophysiological. Here, both of these approaches were used to 

allow broad insights into the characteristics of spatial visual attention. 

Additionally, pharmacological manipulations were conducted during 

neurophysiological measurements to investigate the cholinergic contribution to 

attention-induced change in neuronal firing rate.   

The mid-level visual area MT is the cortical area of interest in this thesis. It 

serves as an ideal visual area to study visual spatial attention, as it is one of the 

best-understood areas in terms of its sensory properties, and is strongly 

influenced by top-down processes such as spatial attention.  
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The first two manuscripts in this thesis cover perceptual aspects of spatial 

attention in humans, using linear motion stimuli to target area MT. The novel 

task design used in the two psychophysical studies allowed the measurement of 

pure spatial attention effects on the perception of two stimuli. The effect of 

graded attention was investigated, with the direction discrimination threshold 

for linear motion used as a measure of performance.  

In the first study, I found that simultaneously attending to two linear motion 

stimuli did not seem to involve attentional cost when stimuli were distributed 

across the two hemifields. Splitting attention within one hemifield led to 

deterioration in performance. With this within-hemifield stimulus placement, 

decreasing the amount of spatial attention allocated to a stimulus led to a 

gradual decrement in performance. In the case of simple visual performance, 

such as direction discrimination, the tasks are seen to have low attentional cost 

(Braun and Julesz, 1998). It is consequently assumed that there is some amount 

of visual awareness outside the attentional spotlight, permitting the subject to 

perform a task with low attentional cost equally well for stimuli at locations 

inside and outside of the spotlight (Braun and Julesz, 1998). This theory does 

not seem to hold true when stimuli are distributed within one hemifield. 

Alternatively, this result could be explained by the existence of two parallel 

active attentional channels that independently process visual information. The 

results of this study extent the bilateral attentional advantage, as previously 

shown for higher-level tasks (Alvarez and Cavanagh, 2005,) as well as for 

elementary visual tasks (Reardon et al., 2009), to the linear motion 

discrimination task. 

The second psychophysical study also supports the bilateral processing 

advantage for linear motion direction discrimination observed in the first study. 

Additionally, the signal strength of the target dot pattern was manipulated by 

varying the percentage of coherently moving dots. This allowed to equate the 

effects of attention with the effects of signal strength and to measure their 
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individual as well as their interactive influence on perceptual performance. 

Spatial attention, when split or gradually diminished across both hemifields, did 

not significantly influence performance, whereas signal strength showed a 

strong and graded influence. As earlier behavioral studies revealed that 

attention enhances the subjective appearance of motion coherence (Liu et al., 

2006), an interaction between the two factors was expected. However, no 

interaction of these two factors was found, suggesting that spatial attention and 

signal strength co-act as independent systems in the subjects’ perception of 

linear motion when stimuli are distributed across both hemifields. As 

attentional capacity limits were possibly not reached with this across-hemifield 

task design, it would be of interest to investigate the interactive influence of 

signal strength and attentional deployment on behavioral performance when 

both stimuli are placed within one hemifield.  

Additionally, it would be of particular interest whether the demonstrated 

hemifield dependence is even more prevalent in pathological conditions. It was 

shown that spatial attention performance is in general diminished in Alzheimer 

patients (Rizzo et al., 2000), including mechanisms of divided spatial attention 

(Parasurman and Haxby, 1993). But how is this pathologically diminished 

performance in attentional tasks correlated with anatomical or functional 

deficits? The cholinergic system is supposed to play a major regulative role in 

the context of visual attention. The cognitive deficits characterizing Dementia 

and Alzheimer’s disease have been linked to a diminished amount of cholinergic 

fibers from basal forebrain - the main cholinergic source - to cortex and 

hippocampus, and an associated loss of cholinergic neurotransmission (Francis 

et al., 1999). Additionally, a strong relationship between specific cholinergic 

receptor-type expression and neuropathological key features was reported for 

Alzheimer’s disease (Wevers et al., 2000). Although the relationship between 

perceptual deficits in spatial attention and a reduction of the cholinergic activity 

in visual cortex has been demonstrated, the precise nature of the cholinergic 

contribution to attentional modulation is still ambiguous.  



Summary and Conclusion 176 
_______________________________________________________ 

The aim of the second part of this thesis was to investigate whether there is an 

interactive effect of spatial attention and local cholinergic manipulations on 

neuronal response in area MT in the macaque monkey. The local 

neuropharmacological manipulation was performed using the method of 

pressure injection. The implementation of the pressure injection system was 

part of this thesis and is described in detail in manuscript three. Using this 

method, the area around the recording electrode could be modulated in a 

spatially local and temporally restricted fashion. This allowed to influence the 

local cholinergic system by either blocking the muscarinic or nicotinic receptor 

type, or enhancing the neuromodulator acetylcholine in the extracellular space. 

Manuscript four in this thesis is the first study describing a pharmacological 

manipulation in area MT of an awake, behaving monkey. I found evidence that 

the cholinergic system is involved in attentional modulation in area MT, as an 

increase in attentional modulation was observed when acetylcholine was 

injected. However, before a strong statement can be made, more data is needed 

to validate this effect.  Although a strong influence of spatial attention on the 

neuronal firing rate was observed, the attentional modulation was only 

marginally diminished by injection of the muscarinic antagonist scopolamine 

for the full data set. When selecting only those cells whose firing rate was 

significantly influenced by scopolamine injection, it was shown that the 

blockage of the muscarinic receptor type in area MT also led to a significant 

increase in attentional modulation. In contrast, in area V1 of the macaque, a 

blockage of the muscarinic receptor type led to reduction in attentional 

modulation (Herrero et al., 2008). This diverse contribution of the same 

receptor types across visual areas supports an area-dependent change in 

neurotransmitter contribution on attentional modulation in the visual system 

(Disney et al., 2014). Visual area V1 has specific anatomical characteristics, such 

as a reduced amount of inhibitory neurons as well as an altered quantity of 

cholinergic receptor subtypes, that distinguishes it from other visual areas such 

as area MT (DeFelipe et al., 1999, Disney et al., 2006). This suggests a different 

role for cholinergic contribution, implying that area V1 is of limited suitability as 

a model for cholinergic modulation of visual cortical circuits in the macaque.  
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It is of interest to bring the observed local cholinergic effect in area MT into the 

context of the global attention-induced cholinergic activity of the whole cortex. 

Top-down visual processes, such as spatial attention, have been shown to be 

predominantly mediated by the lateral prefrontal and the parietal cortex 

(Kastner & Ungerleider, 2000). The prefrontal cortex is also seen as a central 

coordinating point of acetylcholine release, targeting the main cholinergic 

source for the cortex, the basal forebrain cholinergic system (Sarter et al., 

2005). It is further proposed that prefrontal efferent projections either directly 

or indirectly target the sensory cortex, via the basal forebrain cholinergic 

system, thereby forming the ‘top-down modulation of detection’ (Sarter et al., 

2005). Acetylcholine acts as a neuromodulator in the brain and is therefore seen 

to have limited influence on local and fast attention-mediated effects. An 

interaction with other neurotransmitter systems is therefore very likely. 

Glutamate is the major excitatory and fast-acting neurotransmitter in the brain 

(see for a review Meldrun, 2000). It is released from visual cortical neurons 

when they are visually stimulated (bottom-up process). It is proposed that this 

bottom-up process interacts with top-down influences such as spatial attention, 

mediated by cholinergic release. This synergistic effect is therefore proposed to 

lead to enhance signal detection (Yu and Dayan, 2002 and 2005). As well as the 

neurotransmitter glutamate, other neurotransmitters are also likely to be 

involved in attentional modulation, such as the inhibitory neurotransmitter γ-
Aminobutyric acid (GABA). In area MT, it was demonstrated that muscarinic 

cholinergic receptors are located on GABA-ergic neurons, mediating inhibitory 

effects (Disney et al., 2012). These opposing cell- and receptor-specific effects 

lead to the assumption of a highly specialized neurotransmitter network in 

which the neuromodulator acetylcholine is embedded, leading to an optimal 

response enhancement in attentional conditions. Further pharmacological 

studies are consequently needed to clarify the involvement of acetylcholine in 

attentional modulation. 
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