
 

Plasticity-dependent modulation of 

mitochondrial biogenesis determining motor 

neuron function and vulnerability 

 
 

 

 

Dissertation 

 

for the award of the degree 

“Doctor of Philosophy”  

Division of Mathematics and Natural Sciences 

within the doctoral program Molecular Physiology of the Brain 

of the Georg-August University School of Science (GAUSS) 

 

 

submitted by 

Camille Lancelin 

 

 

 

 

 

 

 

from Paris, France 

 

 

 

Göttingen 2015 

 



 

 

 

 

 

 

 

 

 

Members of the Thesis Committee 
 
Dr. Till Marquardt, Supervisor 

Developmental neurobiology 

European Neuroscience Institute, Göttingen 

 
Pr. Nils Brose, reviewer 

Dept. of Molecular Neurobiology  

Max Planck Institute for Experimental Medicine, Göttingen 

 
Dr. Judith Stegmüller 

Dept. of Cellular & Molecular Neurobiology 

Max Planck Institute for Experimental Medicine, Göttingen 

 
 
 
Members of the Examination Board 
 
Referee: Camin Dean, PhD 

Trans-synaptic Signaling  

European Neuroscience Institute, Göttingen 

 
2nd Referee: Prof. Dr. Michael Hörner 

Dept. of Cellular Neurobiology  

Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Göttingen 

 
3rd referee: Prof. Dr. Ralf Heinrich 

Dept. Cellular Neurobiology 

Schwann-Schleiden Research Centre, Göttingen 

 
 
 
Date of oral examination: 29th September, 2015 



 
 
 
 
 
 
 
 
 

Affidavit 

 

 

I hereby, declare that this PhD thesis “Plasticity-dependent modulation of 

mitochondrial biogenesis determining motor neuron function and vulnerability” has 

been written independently with no other aids or sources than quoted. 

 

 

 

 

Camille Lancelin 

 

September, 2015  

Göttingen, Germany 

 
 

  



Table of content 

 

Acknowledgements .................................................................................................... 1 

Abbreviations .............................................................................................................. 3 

List of figures .............................................................................................................. 6 

I Abstract .................................................................................................................... 8 

II Introduction .............................................................................................................. 9 

2.1 The neuromuscular system ............................................................................... 9 

2.1.1 Spinal motor neurons and motor neuron diversity .................................... 10 

2.1.2 Skeletal muscles and skeletal muscle diversity ........................................ 12 

2.1.3 Organization of the motor system and types of motor units ...................... 15 

2.1.4 The neuromuscular junction ..................................................................... 17 

2.2 Neuromuscular adaptations to exercise .......................................................... 19 

2.2.1 Whole-body adaptations to exercise ......................................................... 19 

2.2.2 Skeletal muscle adaptations to exercise ................................................... 21 

2.2.3 Modifications in spinal motor neurons upon physical training ................... 24 

2.2.4 Changes in the neuromuscular junction induced by exercise ................... 26 

2.3 Aim of the study .............................................................................................. 30 

III Material & Methods ............................................................................................... 31 

3.1 Laboratory reagents ........................................................................................ 31 

3.2 Animal procedures .......................................................................................... 33 

3.2.1 Mouse lines .............................................................................................. 33 

3.2.2 Training: Voluntary wheel running ............................................................ 34 

3.2.3 Sample collection ..................................................................................... 35 

3.3 Procedures for histological analysis ................................................................ 36 

3.3.1 Tissue sectioning and staining ................................................................. 36 

3.3.2 Imaging, 3-D reconstruction and statistical analysis ................................. 37 

3.4 Procedures for transcriptomic analysis ........................................................... 39 

3.4.1 Tissue preparation – RNA isolation .......................................................... 39 

3.4.2 RNA sequencing and data analysis .......................................................... 40 

 

 

 



IV Results ................................................................................................................. 42 

4.1 Endurance training in wild type mice ............................................................... 42 

4.2 Chronic training induced a shift towards a slower type in slow and fast-

intermediate muscles ............................................................................................ 43 

4.3 Remodeling of NMJ mitochondrial network by exercise .................................. 45 

4.3.1 Characterization of NMJs from slow and fast muscles ............................. 46 

4.3.2 Exercise-induced adaptations of mitochondrial network in NMJs ............. 47 

4.4 Transcriptional changes in muscle and MNs following long-term voluntary 

wheel running ........................................................................................................ 51 

4.4.1 Assessing sample quality and reliability ................................................... 52 

4.4.2 Common transcriptional changes in muscle and spinal cord .................... 53 

4.4.3 Transcriptional changes in the soleus ...................................................... 56 

4.4.4 Transcriptional changes specific to the neuromuscular synapse .............. 57 

V Discussion ............................................................................................................. 60 

5.1 Physical training – exercise paradigm ............................................................. 60 

5.2 Exercise-induced specific adaptations in muscles .......................................... 61 

5.3 Neuromuscular system adaptation to training, the common changes ............. 62 

5.4 Changes at the NMJ – synapse assembly and mitochondrial network ........... 66 

VI Conclusion and outlook ........................................................................................ 71 

VII References .......................................................................................................... 73 

Curriculum vitae ........................................................................................................ 87 

  



 

 1 

Acknowledgements 

 

First of all, I would like to thank my thesis supervisor Dr. Till Marquardt for giving me 

the opportunity to work in the stimulating environment of his lab. There is no doubt 

that this “long-term endurance training” experience has durably changed my outlook 

on life.  

I wish to express my sincere thanks to my thesis committee members Pr. Nils Brose 

and Dr. Judith Stegmüller for sharing their valuable comments and suggestions on 

the occasion of my thesis committees.  

I also want to thank both Judith and Till for giving me the chance to develop an 

interesting and fruitful collaboration. In this regard, I would like to acknowledge the 

friendly working atmosphere that Siv Vingill and Chaitali Mukherjee created during 

our collaboration. 

I thank all the members of the Marquardt lab, past and present, for sharing the lab 

with me: Dr. Pitchaiah Cherukuri, Dr. Lukas Cyganek, Dr. Piotr Fabrowski, Mudassar 

Khan, Pierre Klein, Alexandra Klusowski, Dr. Jacqueline Kueh, Dr. Tsung-I Lee 

(Veltine), Dr. Daniel Müller, Dr. Chor Hoon Poh (Anne), Nidhi Subhashini, Dr. Liang 

Wang, and Beate Weith, as well as our great students Yehan Bian, Luisa Heyer and 

Eric Schoger. Particularly, I would like to express my enormous gratitude to Alex and 

Pitchaiah whom support has been crucial along the four years of my PhD. Thanks 

Alex for the your moral support in difficult times and your logistic support at any time. 

Thanks Pitchaiah for your enthusiasm, your wisdom, your endless support. Life in the 

lab is not the same when you’re not around. Many thanks also to Jacque for your 

friendship and the nice chats “around the cryostat”. And a big thank to Beate for all 

the genotyping and to Pierre for excellent technical support. 

I also want to acknowledge my collaborators Pr. Stefan Jakobs and Lena Grosse for 

their advice regarding mitochondria in general and their work on the STED analysis. 

Many thanks to the members of Dr. Stefan Bonn’s and Pr. André Fischer’s labs for 

the nice atmosphere they contributed to spread all over ENI’s third floor. Special 

thanks go to Susanne Burkhardt, Anna-Lena Schütz, Vincenzo Capece and Dr. 

Cemil Kerimoglu for their great help on the RNAseq experiment. And thanks very 



 

 2 

much to Dr. Tonatiuh Pena Centeno for our interesting and stimulating discussions 

on statistical methods and strategies. 

Sincere thanks also to our microscopy specialists Dr. Nils Halbsgut and Dr. Peter 

Wehner for their help and advice. 

Special thank to Dr. Nicolas Stifani and Dr. Katia Burk for their proofreading, 

corrections and comments on the manuscript introduction. 

I thank all my friends around the world, in Germany, in France, in Canada, or in 

Singapoure for keeping me in touch with the world, the one outside the lab. Particular 

thanks go to Elsa, Julien, Séverine, Lydia, Johanne and Vincent for not forgetting me. 

Finally, I would like to thank my family, my parents, my brothers Nicolas and Benoît 

(the R magician), and my wonderful boyfriend Pierre. I owe you so much that I can’t 

find the words to express my gratitude. Je suis tellement chanceuse de vous avoir. 

Merci d’être là, toujours, et de croire en moi.  

 

  



 

 3 

Abbreviations 

 

Genes & proteins 

αBtx  Bungarotoxin subunit A 

AChR (Chrn) Acetylcholine receptor 

AChE (Ache) Acetylcholinesterase 

ABI2 (Abi2) Abl-interactor 2 

AKT (Akt1/2)  Thymoma viral proto-oncogene 1/2 / protein kinase B 
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Mitofusin-2 (Mfn2) Mitofusin-2 



 

 4 
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Myosin Heavy Chain IIb / Myosin, heavy polypeptide 4, skeletal muscle 

MyHC IIx / Myosin-1 

(Myh1) 

Myosin Heavy Chain IIx  / Myosin, heavy polypeptide 1, skeletal muscle, 

adult 

NFAT (Nfat) Nuclear factor of activated T-cells 
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I Abstract 

 

Axon terminals are likely the compartments of highest energy demand in the 

particularly active and polarized cells that are motor neurons. Paradoxically, although 

the particularly high-energy demand of motor neurons could make them more prone 

to energetic stress, endurance exercise appears to mediate the strengthening of the 

neuromuscular synapse. Moreover, tight regulation of mitochondrial biogenesis is of 

utmost importance for meeting elevated energy demands in neurons, and thus 

mitochondrial plasticity may adapt pre-synaptic motor neuron metabolic properties to 

increased energetic stress. While mitochondrial biogenesis and function have been 

extensively studied in muscle, much less is known regarding mitochondrial network 

remodeling at the neuromuscular junction upon exercise. In this study, exercise-

induced changes at the neuromuscular junction were directly observed and 

measured using mice expressing genetically tagged mitochondria specifically in 

motor neurons, followed by 3D-reconstruction of synaptic structures. In addition, RNA 

sequencing of muscle as well as dorsal and ventral spinal cord samples from both 

control and long-term voluntary trained mice, enabled the identification of genes 

which expression was regulated upon physical activity. Thus, the present study 

provides insights on the regulations in gene expression that may modulate 

mitochondrial biogenesis and stress pathways upon physical exercise and how these 

changes may impact motor neuron function and ultimately mediate exercise 

beneficial effects. 
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II Introduction 

 

 “The human body has more than 300 bilateral pairs of muscles containing more 

than 100 million muscle fibers, which are innervated by more than 120,000 motor 

neurons in the spinal cord alone” (Kanning et al., 2010). A well-defined organization 

of the entire motor system is an essential requirement in order to maintain proper 

body posture, elicit complex motor behaviors and allow performance of fine and 

precise movements. The architecture and functional connections between the 

numerous elements of the motor network are acquired during development (see 

Stifani, 2014, for review). All components of the motor system, including motor 

neurons and muscle fibers, not only follow a precise scheme of distribution 

throughout the brain and the spinal cord, but also mature into multiple cellular 

identities (see Lu et al., 2015, for review). This diversity is fundamental for the regular 

function of the motor system as well as for its adaptation to different usage or health 

states. 

 

2.1 The neuromuscular system 

 The generation of all behavior programs in the central nervous system and their 

conversion into body movements is enabled by a specialized class of neurons: the 

motor neurons (MNs). Motor commands are generated in the pre-motor and primary 

motor cortex by upper MNs and transmitted through descending motor pathways to 

spinal MNs (lower MNs), which directly synapse on limb skeletal muscle fibers. The 

spinal MNs receive and integrate these supra-spinal inputs together with intra-spinal 

and sensory inputs to control the contraction of muscles and thus enable locomotion. 

Sherrington therefore described the spinal MNs as the “final common path” of motor 

control to skeletal muscle (Sherrington, 1904). The connections between MNs and 

muscles are organized in three architectural levels, where the localization of the MNs 

in the spinal cord correlates with the position of their target muscle in the body. Along 

the rostro-caudal axis of the spinal cord, MNs are arranged into motor columns 

supplying distinct muscle groups (figure II.1.; Romanes, 1951; Landmesser, 1978; 

Vanderhorst & Holstege, 1997). Further, each muscle is innervated by a distinct and 



 

 

 

 

 

Figure II.1. Segmental organization of spinal motor columns at cervical (A), brachial/lumbar (B) 

and thoracic (C) levels. The medial motor column (MMC, brown) is present all along the rostro-

caudal axis; MMC MNs are located medially and connect to the axial musculature (Epaxial) (A-C). The 

spinal accessory column (SAC, purple) is restricted to the five first cervical segments (C1–C5); SAC 

MNs exit the CNS via the lateral exit point (LEP) and connect to mastoid and neck muscles (A). The 

phrenic motor column (PMC, red) is confined between C3 and C5 PMC MNs have an inter-medio-

lateral position and connect to the diaphragm (A). The preganglionic column (PGC, orange) extends 

through the thoracic segments until the second lumbar segments (L2) as well as between sacral 

segments S2 and S4; PGC MNs are positioned dorso-laterally and innervate the sympathetic chain 

ganglia (SCG) and the chromaffin cells of the adrenal gland (AdrG) (B). The hypaxial motor column 

(HMC, blue) is exclusive to the thoracic segment whereas the lateral motor column (LMC, green) is 

located at limb levels: brachial (C5-T1) and lumbar segments (L1–L5); HMC MNs are located in the 

medio-lateral region and connect to the body wall and intercostal muscles (Hypaxial) (B). LMC MNs 

(green) are divided into two divisions medial (m, dark green) and lateral (l, light green); LMCm MNs 

connect to the ventral (v) part of the limb whereas LMCl MNs innervate the dorsal (d) region (C). 

(adapted from Stifani, 2014) 
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 specific cluster of spinal MNs forming a discrete nucleus, termed motor pool 

(McHanwell and Biscoe, 1981). Finally, within a motor pool, a single MN and the 

multiple muscle fibers it innervates constitute a motor unit, the functional unit of the 

motor system (Buchthal and Schmalbruch, 1980).  

 

2.1.1 Spinal motor neurons and motor neuron diversity 

 The cell bodies, or somata, of the lower MNs are located in lamina IX in the 

ventral horn of the spinal cord (Rexed, 1952). From here, their axons exit the CNS 

and project alongside sensory and sympathetic axons via the peripheral nerves to 

eventually synapse onto skeletal muscle fibers. MNs belong to different classes, 

defined by the nature of their target fibers. Gamma MNs (γMNs) connect intrafusal 

muscle fibers, while alpha MNs (αMNs) innervate extrafusal muscle fibers, and the 

less well characterized beta MNs (βMNs) innervate both intra- and extrafusal fibers 

(figure II.2.; Manuel and Zytnicki, 2011).  

 The different muscle fiber types are described in more details in section 2.1.3. 

γMNs do not contribute to overall muscle force generation, but are essential for 

generating muscle tone and for maintaining muscle proprioception during 

movements. They can be subdivided into dynamic and static γMNs based on the 

discharge they elicit at the spindle sensory endings (Bessou et al., 1962). The more 

abundant αMNs can be further divided into four subtypes, namely slow (S), fast 

resistant (FR), fast intermediate (FI) and fast fatigable (FF) MNs (Burke et al., 1973). 

This classification is based on particular combinations of physiological and 

histochemical characteristics of the motor unit supplied by MNs (Burke et al., 1973). 

The MNs associated with these motor units appear to form a continuous population 

based on electrophysiological properties alone (Zengel et al., 1985). However, the 

combination of certain biophysical parameters together with morphological and 

molecular characteristics allowed the precise identification of motor unit type 

affiliation of individual MNs. 

 On one end of the spectrum, S MNs have small cell bodies and axons. S MNs 

also have a specific structure of the dendritic tree, with less profuse branching but 

more dendritic bundles compared to fast MNs (Cullheim et al. 1987; Westerga and 

Gramsbergen, 1992). At the other end, FF MNs are larger in size, with large-diameter 



 

 

 

      

 

 

   

 

Figure II.2. Schematic representation of the different types of motor neurons. FF-type αMNs are 

the biggest MNs (in terms of soma size and axon diameter), and innervate a large number of type IIb 

extrafusal muscle fibers. FR αMNs are slightly smaller and innervate type IIa extrafusal muscle fibers. 

S-type αMNs are the smallest of the αMNs, they innervate fewer type I muscle fibers. βMNs are 

skeleto-fusimotor: they innervate both extrafusal and intrafusal muscle fibers. Static βMNs innervate 

either type IIa or IIb extrafusal fibers and the intrafusal bag2 fiber. Dynamic βMNs innervate type I 

extrafusal muscle fibers and the intrafusal bag1 fiber. γMNs innervate exclusively intrafusal muscle 

fibers and are the smallest of the MNs. Static γMNs innervate the intrafusal bag2 fiber and/or the 

nuclear chain fibers. Dynamic γMNs innervate the intrafusal bag1 fiber. Note that in a muscle, the 

various types of large extrafusal muscle fibers are mingled together and organized in a mosaic, while 

the intrafusal muscle fibers are much smaller and are ensheathed in the spindle capsule. Primary and 

secondary endings of the spindle encode parameters of the muscle stretches that are sent to the 

central nervous system via afferent fibers Ia and II. (from Manuel and Zytnicki, 2011) 
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fast-conducting axons, more axonal and dendritic branches and more neuromuscular 

terminals (Celichowski et al., 1996). Due to their smaller size, S MNs have higher 

input resistance combined with a low rheobase (minimum amount of current required 

to elicit an action potential). S MNs therefore require less synaptic activation to 

initiate action potentials. Hence, upon increasing the presynaptic input to a motor 

pool, the more easily excitable small MNs reach threshold before large MNs (Bakels 

and Kernell, 1993; Gardiner, 1993). S MNs show repetitive firing (tonic discharge) 

that can persist even after the presynaptic excitatory drive has ceased (Tansey and 

Botterman, 1996), while FF MNs show a phasic discharge. Another physiologic 

difference between αMN subtypes is that FF MNs have a shorter post-spike after-

hyperpolarization than S MNs, so that the firing frequency of each subtype is speed 

matched to the contractile frequency of the target muscle fiber (Bakels and Kernell, 

1993; Gardiner, 1993). Different expression profiles of ion channels in the MN types 

probably underlie the specificity of their physiological properties, although their 

identities remain to be defined. The principal differences between MN subtypes are 

summarized in the review from Kanning et al., 2010 (figure II.3.).  

 MNs are the only cholinergic neurons in the ventral spinal cord, at the exception 

of a few interneurons lateral to the central canal, the medial partition neurons, which 

also release the neurotransmitter acetylcholine (ACh). Thus, their identification in 

spinal cord sections is usually done by immunohistochemistry against the ACh 

synthetizing enzyme ChAT (choline acetyltransferase; see figure IV.12.B. ChAT 

staining paraffin sections) or the ACh transporter VAChT (vesicular acetylcholine 

transporter). Recent studies have begun to identify putative molecular markers for 

fast and slow MNs. Fast MNs can be identified at the postnatal stage by their 

expression of DLK1 (Delta-like homolog 1) and at the adult stage by CGRP-1 

(calcitonin gene-related peptide 1), Chondrolectin and MMP9 (matrix 

metalloproteinase 9), while slow MNs express SV2A (synaptic vesicle glycoprotein 

2a) and SIL1 (endoplasmic reticulum chaperone SIL1 homolog) (Mueller at al., 2014; 

Forsgren et al., 1993; Piehl et al., 1993; Enjin et al., 2010; Kaplan et al., 2014; 

Chakkalakal et al., 2010; Filézac de L’Etang et al., 2015). Finally, αMNs have a well-

established differential vulnerability towards aging and degenerative conditions 

(figure II.3.; Hegedus et al., 2007; Hegedus et al., 2008). For instance, in the deadly 

human motor neuron disease amyotrophic lateral sclerosis (ALS), FF MNs invariably 



 

 

 

 

 

 

 

 

Figure II.3. Summary of principal differences between motor neuron subtypes. The table 

summarizes the functional and molecular differences discussed in the text between fast and slow, and 

between alpha and gamma, motor neurons. The descriptors are for some comparisons relative trends 

rather than absolute rules and apply only within a given pairwise comparison, not across the whole 

table. This is because absolute values vary between species and at different ages. Abbreviations: 

ALS, amyotrophic lateral sclerosis; EPSP, excitatory postsynaptic potential; NMJ, neuromuscular 

junction. (from Kanning et al., 2010) 
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undergo degeneration first, followed by FR MNs, whereas S MNs are well preserved 

until late stages of the disease (Frey et al., 2000; Pun et al., 2006). Some of the 

molecular markers for MN types, such as MMP9 and SIL1 have been implicated in 

contributing to the differential susceptibility of MN types to disease. 

 The diversity of αMNs in terms of morphological, electrical and molecular 

properties is presumably further matched by different metabolic properties. 

Vertebrate MNs have a large soma, compared to other spinal neurons and are highly 

polarized cells with an extensive dendritic profile and a considerably long axon 

extending far away from the cell body (Mayhew and Momoh, 1974). Moreover, the 

MNs innervating the postural skeletal muscles are constantly recruited, meaning that 

they continuously fire and that there is regular neurotransmitter release at the axon 

terminals, also termed endplates. Thus energy demand in MNs is high in the soma 

but also in cell compartments very distant from the cell body. However, MN metabolic 

diversity still remains largely unknown.  

 

2.1.2 Skeletal muscles and skeletal muscle diversity 

 To understand MN biology, one must understand muscle fiber diversity. Skeletal 

muscles are anchored by tendons to bone and are used to effect skeletal 

movements. Proper function of skeletal muscles is ensured by the combined action 

of intrafusal and extrafusal muscle fibers, or myofibers. On the one hand, the short 

and thin intrafusal muscle fibers that are dually innervated by γMNs and sensory 

neurons are implicated in maintaining muscle proprioception and in generating 

muscle tone (Kuffler et al. 1951). A few intrafusal fibers innervated by both sensory 

neurons and γMNs, wrapped by a capsule derived from terminal Schwann cells of 

sensory axons, constitute a muscle spindle. The spindles act as stretch-sensitive 

mechanoreceptors able to monitor changes in muscle length. On the other hand, 

force results from the contraction of the extrafusal muscle fibers innervated by αMNs 

(figure II.2.; Manuel and Zytnicki, 2011). The role of skeletal muscles is to generate 

force for maintaining body posture against gravity, as well as for moving the skeleton. 

In physiological conditions, the same muscle is usually used for various tasks. For 

example, the Soleus muscle displays a continuous low-intensity activity for 

maintaining the posture, whereas the Tibialis anterior exhibits repeated submaximal 
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contractions for driving locomotion. But Tibialis anterior is also recruited for powerful 

actions such as jumping or kicking, which needs fast and strong maximal 

contractions. To allow this flexibility, most skeletal muscles are heterogeneous in 

their fiber composition (for extended review see Schiaffino and Reggiani, 2011).  

 Muscle fibers are traditionally classified as fast-twitch or slow-twitch fibers, 

based on their time to peak tension or half-relaxation time (Close, 1967). The power 

and velocity of contraction of a fiber correlates with its myosin heavy chain (MyHC) 

isoform composition. In extrafusal fibers of mammalian limbs, four different adult 

MyHC isoforms can be expressed that range from “slow - low force” to “fast - high 

force”: I, IIa, IIx, IIb. These profiles are not exclusive as some fibers co-express two 

isoforms together, generating hybrid fibers: I-IIa, IIa-IIx or IIx-IIb (Bottinelli et al., 

1994). The myosin types of fibers also determine their size, with a smaller mean 

diameter in slow fibers compared to fast fibers (Delp and Duan, 1996). Given the 

central role of myosin in determining the contractile performance and ATP 

consumption of fibers, and the convenience of myosin expression profile 

determination by immunostaining, MyHC is the marker of preference to determine the 

type of a fiber. However, this simplification masks the actual complexity of fiber 

identities. Indeed, muscle fibers exhibit a large panel of physiological and mechanical 

properties including membrane excitability, intracellular calcium signaling, contractile 

response, and energy supply (Pette and Staron, 1990). Fiber types results from the 

preferential combinations of all these specific properties in order to match with the 

functional requirements of the fibers, for instance energy production with energy 

consumption or calcium release with calcium uptake (Schiaffino and Reggiani, 2011).  

 In response to ACh binding its receptor at the neuro-muscular synapse, the 

membrane of the muscle fibers depolarizes, leading to muscle contraction. The 

muscle fiber membrane, or sarcolemma, of fast fibers shows higher ionic 

conductance at rest and during activity than slow fibers (Bretag, 1987; Milton and 

Behforouz, 1995; Tricarico et al., 2006). As a consequence, fast fibers have a rapid 

repolarization and a short refractory period, when slow fibers are able to compensate 

the accumulation of ions induced by continuous stimuli. These differences in 

transmembrane ionic fluxes directly impacts intracellular calcium signaling (Baylor 

and Hollingworth, 2003). Compared with slow-twitch, fast-twitch fibers are 

characterized by the generation of fast and large calcium transients, which work 
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together with a responsive contractile machinery (Carroll et al., 1997). The calcium 

kinetics and calcium sensitivity of the myofibrils controls the availability of the actin 

binding sites and thus plays a switch ON-switch OFF role on the contraction 

mechanism. The myofibrillar cytoskeleton scaffold differs in fast and slow muscle 

fibers, consistent with the properties of the contractile machinery and specifically 

correlates with the mechanical tension generated by contraction (Pette and Staron, 

1990). Slow fibers have longer and more extensible titin and nebulin isoforms 

(sarcomeric giant proteins), as well as longer actin filaments resulting in longer 

sarcomeres. Thus continuously active slow fibers can withstand passive elongation 

with less mechanical resistance. Moreover, slow fibers have thicker Z-discs and M-

band, a feature that is probably related to the ability to withstand active force 

(Schiaffino et al., 1970). As a consequence, maximal force is higher in fast fibers, but 

active forces are generated for longer time in slow fibers.  

 These mechanical properties have a counterpart in energy metabolism and the 

metabolic diversity among muscle fibers, which directly correlates with their 

contractile activity. Slow fibers contract more slowly and generate less mechanical 

power but also spend less ATP, particularly in relation to tension development 

(Bottinelli et al., 1994). On the other hand, fast fibers can produce higher mechanical 

power and contract more quickly, but have a higher ATP expenditure. In addition to 

differences in ATP expenditure, fast and slow fibers also diverge in their strategies 

for ATP regeneration. Different enzymatic mechanisms between slow and fast fibers 

cause greater activation of glycogenolysis in fast fibers, while resulting in greater 

glucose uptake and beta-oxidation in slow fibers, due to the greater mitochondrial 

density (Schiaffino et al., 1970; Peter et al., 1972). Diversity is also present in the 

regulation of mitochondrial activity between slow and fast fibers, with a more effective 

stimulation due to ADP in fast fibers, and a stimulation due to creatine that is more 

effective in slow fibers (Spamer and Pette, 1977). Importantly, once mitochondrial 

respiration and ATP regeneration are activated, consumption is covered by 

regeneration in slow fibers. Such condition of complete energy balance is never 

achieved in fast fibers. Finally, based on electrical activity and ATP consumption 

during contraction, the overall daily energy expenditure in a slow oxidative muscle 

was estimated to be 10 to 20 times greater than that of a fast glycolytic muscle 

(Schiaffino and Reggiani, 2011). This implies another important diversity between 
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slow and fast fibers: slow fibers are able to take up 20 times more substrates 

(glucose, fatty acids, amino acids and lactate) than fast fibers. At the scale of the 

whole organism, fast and slow muscles contribute differently to the global energy 

economy. 

 It is appreciated that under physiological conditions, muscle fiber types show a 

continuum of maximum force, twitch speed, and endurance (Kernell et al. 1999). On 

one side of the spectrum are the historically named “red” muscles like the Soleus 

muscle for example. They are constituted by slow-twitch fibers, rich in myoglobin and 

oxidative enzymes and specialized for low-intensity continuous activity. On the other 

side are the so-called “white” muscles, which Tibialis anterior is a typical example. 

They are composed of fast-twitch fibers, characterized by glycolytic metabolism and 

specialized for short and strong contractile performance. 

 

2.1.3 Organization of the motor system and types of motor units 

 A single MN and the multiple muscle fibers it innervates constitute a functional 

unit: the motor unit (Lidell and Sherrington, 1925; Buchthal and Schmalbruch, 1980). 

There is a high degree of correlation between the different parts of a same unit. Two 

conditions are necessary to establish a full congruence between MN and muscle 

fibers. First, the MN connects a bunch of muscle fibers with similar, if not identical, 

structural and functional properties (Edstrom and Kugelberg, 1968). The second 

condition is that muscle fiber electrophysiological properties are compatible with the 

discharge pattern of the motor neuron (Bakels and Kernell, 1993; Schiaffino and 

Reggiani, 2011). Knowing the electrophysiological properties of a MN allows 

predicting with high accuracy the type of motor unit it forms and the muscle fiber 

types it innervates (Gardiner, 1993). The establishment of the functional coupling of 

MNs and the respective muscle fibers they innervate led to the classification of motor 

units in different types: a S MN innervating type I muscle fibers constitute a slow-

twitch fatigue-resistant (S) motor unit, FR MN with type IIa fibers is a fast-twitch 

fatigue-resistant (FR) motor unit, FI MN and type IIx fibers is a fast-twitch 

intermediate (FI) motor unit, and finally a FF MN connecting type IIb fibers constitute 

a fast-twitch fatigable (FF) motor unit (Burke et al., 1973; McDonagh et al., 1980 and 

figure II.4). 



 

 

        

 

Figure II.4. Morphological characteristics and spatial organization of motor neuron classes and 

subtypes. (a) Distinct motor units within skeletal muscle. αMNs innervate extrafusal muscle fibers to 

form three subtypes of motor unit: Slow-twitch (S) units control Type I fibers, fast-twitch fatigue-

resistant (FR) units control Type IIa fibers, and fast-twitch fatigable (FF) units control Type IIb/x fibers. 

Intrafusal (IF) muscle fibers are innervated by γMNs and also by βMNs (not shown). (b) The size and 

morphological complexity of αMNs diminish progressively from FF through FR to S motor units. Most 

αMNs receive direct Ia innervation from VGLUT1+ (vesicular glutamate transporter 1) proprioceptive 

sensory neurons (red filled circles). γMNs are smaller still and do not receive Ia innervation. At 

postnatal stages, α- and γ-MN cell bodies can be distinguished by their size, connectivity, and the 

indicated molecular markers. (from Kanning et al., 2010) 
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 Motor unit functional diversity is a necessity for the precise and smooth 

execution of movements because it facilitates the automated gradation and task-

dependent application of force by each muscle (Kernell, 2003). Two distinct 

mechanisms regulate the gradation of muscle force: the alteration of the MN firing 

pattern and the recruitment of additional motor units (Milner-Brown et al., 1973a; 

Milner-Brown et al., 1973b). The hierarchy of motor unit recruitment is based on the 

Henneman “size principle” from which it follows that during muscle contraction S MNs 

reach activation threshold first, while large MNs are activated last. As a 

consequence, during postural tasks such as standing, or activities requiring low force 

levels over short periods of time such as normal walking, only the slowest motor units 

are active (Zajac and Faden, 1985). As a corollary, the later-recruited fast motor units 

are mainly employed in short-lasting bouts of forceful contraction such as jumping. 

This control provides a greater economy of force generation during most normal 

functional daily activities (De Luca and Contessa, 2012). Whether MN firing rate 

coding or motor unit recruitment is the dominating mechanism at a given level of 

muscular activation can be predicted from a principle of minimum-energy expenditure 

in which motor units are activated according to their energy requirements (Hatze and 

Buys, 1977). The recruitment begins with units of smallest energy expenditure (S 

units), followed by intermediate units (FR and FI units), the FF units only being called 

in when almost all of the intermediate ones have been activated. Recruitment 

dominates at low force levels, while at higher forces rate coding becomes 

increasingly more important (Hatze and Buys, 1977). 

 At a higher level of organization, all the motor units of the same muscle form a 

motor pool (McHanwell and Biscoe, 1981). Patterned contraction of several muscles 

(e.g. synergistic or antagonistic) is critical for eliciting accurate movements. Distinct 

classes of spinal premotor interneurons coordinate motor pool activities driving 

different muscle groups (Goulding, 2009). The heterogeneity of motor units is also 

reflected by systematic differences in their susceptibility to degenerative conditions 

and aging (Kanning et al., 2010 and figure II.3.). In motor neuron diseases such as 

amyotrophic lateral sclerosis (ALS) or spinal muscular atrophy (SMA), FF motor units 

degenerate early, whereas S motor units are preserved until a late stage of the 

disease. Despite the variety of neuromuscular diseases, it now established that an 

increase in muscle use by the practice of physical exercise is beneficial in 
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degenerative conditions, including motor neuron diseases (Grondard et al., 2005; 

Deforges et al, 2009; Anziska and Sternberg, 2013).  

 

2.1.4 The neuromuscular junction 

 In the motor system, MNs and muscle fibers directly communicate through a 

unique synapse, namely the neuromuscular junction (NMJ). During muscle use, the 

excitation of the MNs elicits a precise sequence of events, which in turn leads to the 

contraction of the connected fibers. First, a given spinal MN receiving supra-

threshold input fires action potentials that pass down the axon and axon terminal 

branches to the motor endplates. As a result of the MN membrane depolarization, 

vesicles containing the neurotransmitter fuse with the presynaptic membrane. The 

ACh released in the synaptic cleft then binds its receptors (AChRs) on the post-

synaptic membrane (sarcolemma). The activation of the AChRs initiates a cascade 

leading to the depolarization of the sarcolemma. This allows the attachment of 

myosin heads to the thin actin filaments, which can finally slide over the thick myosin 

filaments resulting in muscle contraction (Schiaffino and Reggiani, 2011). At the 

same time, the acetylcholinesterase (AChE) released from the nerve in the synaptic 

cleft, hydrolyzes the neurotransmitter ACh to terminate the synaptic transmission 

(figure II.5). NMJs are subject to mechanical stress arising from muscular contraction 

and the efficacy of the system is based on the efficiency and reliability of this neuro-

muscular connection. In the mammalian NMJ, both the amount of ACh released at 

each nerve impulse and the number of subsequently activated AChR exceed the 

amount required to trigger sarcolemma depolarization. This allows a margin of safety 

to guarantee neuromuscular transmission under multiple conditions ranging from fast 

high-frequency bursts to prolonged low-frequency activation of muscles (Wood and 

Slater, 2001; Meriney and Dittrich, 2013).  

 NMJs exhibit certain diversity to coordinate MN and muscle activities and 

maintain the homogeneity of the motor unit. NMJs are “giant” synapses, which areas 

varie in proportion to the size of the muscle fiber. Absolute areas of endplates 

progressively increase from type I, IIa, IIx, to IIb fibers; however, when normalized for 

fiber diameter, the areas of nerve terminals are largest in type I fibers (Prakash et al., 

1996). Further, the fast and slow motor nerve terminals also differ in synaptic vesicle 



 

 

 

 

 

 

 

Figure II.5. The architecture of a neuromuscular junction: the synaptic interface between a 

branch of a motor neuron and muscle cells. (A, B) The neuromuscular junction is composed of 

three elements: pre-synaptic (motor nerve terminal), intra-synaptic (synaptic basal lamina), and post-

synaptic component (muscle fiber and muscle membrane). When an action potential reaches the 

motor nerve terminal, voltage-dependent calcium channels open allowing calcium to enter the neuron 

and trigger the delivery of acetylcholine (ACh) in the synaptic cleft.  (C) Acetylcholine triggers nicotin 

acetylcholine receptors (nAChR) located in the sarcolemma to produce an action potential, which in 

turn, activates voltage-gated dihydropyridine receptors (DHPRs) located in the sarcolemma and by 

induction, ryanodine receptors (RyRs). Of note, the post-synaptic membrane presents folds that 

expand its area. Calcium released from the sarcoplasmic reticulum through the RyRs binds to troponin 

C and allows cross-bridge cycling and force production. (from Gonzalez-Freire et al., 2014) 
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dynamics. At the onset of stimulation, transmitter release is greater in fast fibers than 

in slow fibers (Reid et al., 1999). Accordingly, the amplitude of the muscle action 

potential is greater in fast fibers (Wood and Slater, 1997), which also have higher 

density of postsynaptic voltage-gated sodium channels within their postsynaptic folds 

(Milton et al., 1992). Finally, the content of AChE in slow fibers is about one-fourth of 

that in fast fibers and changes in relation to electrical activity and load (Pregelj et al., 

2007). Taken together, the pre- and postsynaptic specializations are likely aimed to 

achieve a greater safety of transmission in NMJs of fast motor units and to resist 

synaptic depression during prolonged repetitive stimulation in NMJs of slow motor 

units (Schiaffino and Reggiani, 2011). 

 The transmission of the signal from the MN to the muscle at the NMJ requires 

presynaptic mechanisms including membrane depolarization and vesicle cycling 

(exocytosis and endocytosis) (Takamori, 2012). These processes involve ion 

channels to produce large fluxes of ions as well as a variety of enzymes to maintain 

metabolite production and recycling at the neuronal terminal. Thus, MNs require 

protein synthesis and turnover very far away from the cell body. For this reason, MNs 

possess local mechanisms for control of RNA translation to allow synthesis of new 

proteins in a spatially and temporally restricted manner (Liu-Yesucevitz et al., 2011). 

mRNA binding proteins (RBPs) have emerged as one of the major mechanisms to 

help neurons meeting the challenge of preventing synthesis of synaptic proteins 

during mRNA transport, yet quickly allowing synthesis upon demand in response to 

synaptic activity (Martin and Ephrussi, 2009). RBPs, microRNAs (miRNA) and/or 

ribosomal subunits reversibly aggregate in the cytoplasm to form RNA granules. The 

RNA granules work in concert with motor proteins and microtubules to regulate i) the 

distribution, transport and storage of mRNA transcripts throughout the neuron, ii) the 

translation of mRNA transcripts by either the sequestration of specific transcripts 

(repression) or the oligomerization of translation factors (activation), and iii) the 

regulation of mRNA degradation (Kiebler and Bassell, 2006; Thomas et al., 2011). A 

deficiency in the mechanisms of protein synthesis at the MN terminals would greatly 

deteriorate its ability to release neurotransmitter vesicles. Synaptic transmission at 

the NMJ is impaired in different neuromuscular diseases and mutations in RBPs in 

particular are frequently associated with motor neuron diseases (Liu-Yesucevitz et 

al., 2011). Thus, a better understanding of these processes is essential to fully 
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comprehend NMJ function in healthy conditions, NMJ malfunction in disease 

conditions, as well as NMJ adaptation to increased synaptic activity as it occurs 

during physical exercise. 

 

2.2 Neuromuscular adaptations to exercise 

 As early as the Greco-Roman period, exercise and proper nutrition were known 

to improve mental and physical health: “It is exercise alone that supports the spirits, 

and keeps the mind in vigor” — Marcus Tullius Cicero. The ideal association of a 

healthy mind in a healthy body remained largely celebrated in the modern times: 

“True enjoyment comes from activity of the mind and exercise of the body; the two 

are ever united.” — Wilhelm von Humboldt. It is thus well known that the organism is 

able to undergo different changes in response to increased physical activity, which 

result in improved body condition and cognitive performances. The adaptive 

capabilities of the system to both internal and external stimuli, such as regular 

physical activity, are termed “plasticity”. 

 

2.2.1 Whole-body adaptations to exercise 

 It is well established that physical activity not solely impacts muscles, but has 

multiple and various benefits on general health and performance. The systemic 

effects of exercise include greater general body fitness in healthy subjects and a 

better quality of life in older adults that results in increased average life expectancy 

(Mitchell and Barlow, 2011; Hollmann et al., 2007). Exercising was shown to delay 

typical age-associated impairments by reducing sarcopenia and increasing bone 

density, which are very important for the prevention of falls and osteoporosis in the 

elderly (Hollmann et al., 2007). Increased muscle use also reduces inflammation by 

the positive regulation of the immune system and prevents development of many 

chronic diseases (Perdersen and Hoffman-Goetz, 2000; Handschin and Spiegelman, 

2008). It ameliorates glucose metabolism and gastro-intestinal function, which are 

severely impaired in type II diabetes mellitus for instance (Stanford and Goodyear, 

2014; Aoi et al., 2013). In particular, these improvements are associated with a 

reduced risk of colon cancer development. Moreover, exercise is used as an adjunct  



 

 

 

 

 

 

   

 

Figure II.6. An Omics approach to decipher the molecular basis of exercise adaptation. The 

integrated biology of the acute and adaptive response to endurance and strength exercise training 

requires the involvement of multiple organs to achieve physiological improvements in work 

performance. Future challenges will be the integration of an individual’s genetic and epigenetic 

background, with the tissue-specific gene expression, proteome, and metabolomic profiles to predict 

improvements in whole-body glucose homeostasis, strength, and aerobic capacity. (from Zierath and 

Wallberg-Henriksson, 2015) 
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in different cancer therapies (Brown at al., 2012). Cardiorespiratory fitness is another 

benefit of physical activity. Cardiovascular remodeling includes enhanced myocardial 

contractility and changes in arteries wall thickness and constrictor tone (Wilson et al., 

2015). Further, physical activity was shown to positively impact different brain 

functions. It is associated with lower risks of cognitive impairment, Alzheimer’s 

disease and dementia in general (Cotman and Berchtold, 2002). In addition, exercise 

enhances learning, contributes to maintain cognitive functions during aging and 

increases resistance to brain insult. Exercise-induced brain plasticity includes the 

promotion of neuronal survival and the stimulation of neurogenesis, the reduction of 

synapse hypotrophy and the development of brain vascularization (Cotman and 

Berchtold, 2002). Finally, specific training can ameliorate symptoms of 

neuromuscular diseases including myopathies and motor neuron diseases (Anziska 

and Sternberg, 2012). For example, appropriate physical training ameliorates motor 

skills and cognition, and has a positive psychological impact on Parkinson’s disease 

patients (Petzinger et al., 2013). Exercise is particularly beneficial in slowly 

developing degeneration such as in spinal muscular atrophy or Charcot-Marie-Tooth, 

or at the early stage of ALS or Parkinson’s disease (Ansizka and Sternberg, 2012). 

 Exercise cannot only be defined in terms of skeletal muscle contraction 

because it challenges the whole-body homeostasis. Every organ system is involved 

in coordinated response to increased muscular mechanical, metabolic and 

thermoregulatory demands associated with the increased workload (Hawley et al., 

2014 and figure II.6). The diverse but synergistic mechanisms underlying the benefits 

of physical activity have started to be elucidated. Some of the exercise beneficial 

‘‘whole-body’’ effects were shown to be mediated by the skeletal muscle itself. 

Indeed, upon contractile activity skeletal muscle communicates with other organs 

including adipose tissue, liver, pancreas, bone and brain, by the release of various 

peptides and cytokines (Pedersen and Febbraio, 2012). The so-called myokines 

exert various autocrine, paracrine, or endocrine effects. For example, interleukin-6 

can modify glucose metabolism (Pedersen et al., 2003), meteorin-like induces 

browning of white fat (Rao et al., 2014), kynurenic acid acts on brain depressive 

centers (Agudelo et al., 2014) and SPARC (also known as osteonectin) is implicated 

in the susceptibility to colon cancer (Aoi et al., 2013). In response to myokine-

induced remodeling, the target tissues may also release endocrine factors. For 
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instance, upon muscle release of Irisin, subcutaneous adipose tissue adopts 

characteristics of beige adipocytes (Boström et al., 2012). In turn, new beige 

adipocytes release a systemic factor that enhances glucose uptake in oxidative 

skeletal muscle and brown fat tissue (Stanford et al., 2015). Although the molecular 

and cellular mechanisms remain incompletely described, the field of exercise science 

has a long history and the health-promoting benefits of exercise are now well 

appreciated. It has become evident that mitochondrion is a key element of exercise 

biology that has the potential to impact every tissue of the organism. As an example, 

it has been recently demonstrated that endurance exercise induces systemic 

mitochondrial rejuvenation that rescues progeroid symptoms in mitochondrial DNA 

(mtDNA) mutator mice (Safdar at al., 2011). 

 

2.2.2 Skeletal muscle adaptations to exercise 

 Besides muscle communication with other organs, skeletal muscle fibers 

themselves undergo multiple changes in order to adapt their properties to the 

increased demand in energy and oxygen. Altered motor nerve activity patterns can 

cause muscle structural and functional remodeling during adult life. Cross-innervation 

experiments have shown that innervating an adult fast muscle with a slow nerve 

converts it to slow. Conversely a fast nerve transformed a slow muscle into fast 

(Buller et al., 1960). Later, chronic nerve stimulation experiments reproducing either 

fast or slow nerve frequency patterns were used to induce contraction in fast or slow-

twitch muscles. Fast muscles receiving slow-like stimulation acquired slow properties 

and vice-versa (Pette at al., 1985; Gordon et al., 1997). The transformations included 

complete change in myofibrillar protein expression, sarcoplasmic reticulum function, 

energy metabolism or transcriptional activity. Moreover, chronic low frequency 

stimulation of fast muscle lead to biochemical and ultra-structural changes in muscle 

mitochondria, coupled with an increase in the oxidative enzyme levels (Reichmann at 

al., 1985). 

 Although artificial electrical stimulation of skeletal muscle triggers intracellular 

pathways with putative roles in training adaptation, voluntary exercise involving the 

whole body induces a variety of additional physiological responses. Exercise has 

been shown to induce profound muscle remodeling (Bassel-Duby and Olson, 2006; 



 

 

 

 

 

 

 

 

Figure II.7. Scheme of the signaling pathways and transcriptional factors and co-regulators 

involved in the control of slow gene program and oxidative gene program. The scheme 

highlights the major role of the calcineurin-NFAT pathway in the regulation of the slow gene program 

and the role of PPARβ/γ and PGC-1α and -1β in the regulation of the oxidative gene program. Dotted 

lines indicate less established pathways. (from Schiaffino et al., 2007) 

Protein functions and abbreviations. Protein phosphatase: Calcineurin; protein kinases: ERK1/2 () 

MAPKs, CaMKII, AMPK (AMP-activated protein kinase), p38 MAPK; transcription factors: NFAT 

(nuclear factor of activated T cells), NRF1/2 (nuclear respiratory factors), mtTFA (mitochondrial 

transcription factor A), MEF2 (myocyte enhancer factor-2), PPAR β/δ (peroxisome proliferator-

activated receptor β/δ); transcriptional co-activator PGC-1α (peroxisome proliferative activated 

receptor-γ coactivator 1α), other enzyme: HDAC (histone deacetylase). 
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Schiaffino et al., 2007). However, the nature and the range of these modifications 

largely depend on both the characteristics of the training and the type of the muscle 

fibers. First, the frequency, intensity and duration of exercise determine the adaptive 

response of the muscle in terms of endurance and strength (Baar, 2009). A 

repetitive, low load exercise such as endurance training increases aerobic capacity, 

while resistance training that impose a high load on the muscle increases muscle 

mass and force production. Second, the exercise-induced transformations in a given 

fiber are limited by the intrinsic properties of this fiber (Talmadge et al., 2004). The 

fast-to-slow shift in muscle fiber type composition (MyHC isoforms and metabolic 

properties) were shown to be more pronounced in fast compared to slow muscles, 

which already contain a larger proportion of type I oxidative fibers. Endurance 

training drives the adaptation towards slow fatigue resistance fiber type. Fast 

muscles have the capacity to adapt in the range IIb ↔ IIx ↔ IIa, while slow muscle 

range is I ↔ IIa ↔ IIx (Ausoni et al., 1990). 

 Muscle fiber plasticity in response to increased physical activity involves 

multiple signaling pathways, many of which converge on each other (Bassel-Duby 

and Olson, 2006; Schiaffino et al., 2007). The cumulative activation and/or repression 

signals precisely adjust the expression of a myriad of genes involved in myogenesis, 

glucose metabolism, lipid metabolism, angiogenesis or transcription of mitochondrial 

genes. Several molecules can act as activation signal of remodeling pathways. Upon 

MN activity, ACh is released at the NMJ and binds to the AChRs. This in turn induces 

a release of calcium from the sarcoplasmic reticulum. The elevation of intracellular 

calcium concentration is necessary for muscle contraction but also activates 

calcineurin and CaMKII (calcium/calmodulin-dependent protein kinase), two enzymes 

involved in myosin gene expression program (Crabtree, 2009; Rose et al., 2006). 

Activation of calcineurin also induces expression of myoglobin, which is important in 

maintaining oxygen consumption and tension generation in muscle (Cole, 1982). 

Moreover, in response to workload, metabolic stress is increased because of ATP 

depletion. AMPK (AMP-activated protein kinase) senses the increase in AMP-to-ATP 

ratio and regulates muscle metabolic profile by initiating muscle mitochondrial 

biogenesis (Zong et al., 2002). Mitochondrial biogenesis is further promoted by the 

activation of MAPK (mitogen-activated protein kinase) pathway through yet unknown 

messenger(s) (Akimoto et al., 2005). Finally, increased delivery of free fatty acids 



 

 

 

 

 

 

   

 

Figure II.8. Signaling pathways in hypertrophy and atrophy. In response to IGF, the Akt/mTOR 

signaling pathway is activated. Phosphorylated Akt phosphorylates FOXO, inhibiting FOXO nuclear 

entry. Activation of mTOR by Akt promotes protein synthesis and increases muscle mass, resulting in 

hypertrophy. In disease states, Akt is not activated, and unphosphorylated FOXO enters the nucleus 

and induces the atrogin-1/ MAFbx expression gene, promoting muscle atrophy. Abreviations: IGF 

(insulin-like growth factor), Akt/mTOR (protein kinase B/ mammalian target of rapamycin), FOXO, 

MAFbx (muscle atrophy F-box). (from Bassel-Duby and Olson, 2006) 
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during exercise drives activation of PPARs (peroxisome proliferator activator 

receptors) that leads to the expression of muscle genes promoting selective 

utilization of lipid substrates (Muoio et al., 2002). The mechanisms underlying 

skeletal muscle remodeling in response to physical activity are reviewed in details in 

Bassel-Duby and Olson, 2006 and Schiaffino et al., 2007. These pathways induce a 

vast remodeling of the skeletal muscle mitochondria proteome. Many subunits of the 

electron transport chain, enzymes of the tricarboxylic acid cycle, phosphotransfer 

enzymes, and regulatory factors in mitochondrial protein synthesis, oxygen transport, 

and antioxidant capacity are altered after exercise training (Egan et al., 2011 and 

figure II.7). 

 Skeletal muscle can further adapt to workload by activating the insulin-like 

growth factor 1 (IGF-1) pathway that promotes increase in myofiber size (Bassel-

Duby and Olson, 2006). During hypertrophy, the PI3K/AKT/mTOR 

(phosphatidylinositol 3-kinase/ protein kinase B/ mammalian target of rapamycin) 

signaling pathway is activated (Bodine et al., 2001). Direct and indirect targets of 

AKT include mTOR and GSK3β (glycogen synthase kinase 3). mTOR is a kinase, 

sensitive to rapamycin, whose downstream targets increase protein translation 

initiation and elongation, promoting protein synthesis (figure II.8). Another important 

remodeling signal is the regulation of glucose uptake via GLUT4 (glucose transporter 

4) (Stanford and Goodyear, 2014). Both insulin and exercise increase skeletal 

muscle glucose uptake by the translocation of GLUT4 to the plasma membrane, but 

through distinct signaling mechanisms. On one hand, insulin signaling involves rapid 

phosphorylation of the insulin receptor and IRS-1/2 (insulin receptor substrate-1/2) on 

tyrosine residues, and the activation of PI3K (Goodyear et al., 1995). On the other 

hand, increased insulin sensitivity and responsiveness in skeletal muscle induced by 

contractile activity does not require tyrosine phosphorylation of molecules involved in 

the initial steps of insulin signaling (Goodyear et al., 1995 and figure II.9). Finally, 

there is increasing evidence of microRNAs implication in exercise-mediated skeletal 

muscle remodeling (Safdar et al., 2009).  

 To summarize, the possibility of adjusting the relative proportions of the fiber 

types present in a muscle, together with the principle of minimum-energy expenditure 

in motor unit recruitment, constitutes an optimal adaptation of the neuromuscular 

system for practically all types of muscular performances normally encountered 



 

 

 

 

 

 

 

 

 

Figure II.9. Exercise and insulin regulation of glucose transport. A proposed model for the 

signaling pathways mediating exercise- and insulin- induced skeletal muscle glucose transport is 

shown. IRS-1, insulin receptor substrate-1; PAK, p21 protein (Cdc42/Rac)-activated kinase 1; LKB1, 

liver kinase B1; PI3K, phosphatidylinositol 3-kinase; CaMK, Ca2+/calmodulin-dependent protein 

kinase; SNARK, sucrose nonfermenting AMP-dependent protein kinase (AMPK)-related kinase; NRG, 

neuroglian; aPKCs, atypical PKCs; GLUT, glucose transporter; TBC1D1, Tre-2/USP6, BUB2, cdc16 

domain family member 1; AS160, Akt substrate of 160 kDa; CBD, calmodulin-binding domain. (from 

Stanford and Goodyear, 2014) 
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(Hatze and Buys, 1977). 

 

2.2.3 Modifications in spinal motor neurons upon physical training 

 The motor unit has a dynamic nature (Edstrom and Grimby, 1986). As 

discussed earlier, skeletal muscle exhibits high degree of plasticity and exercise 

training elicits various fiber type transformations. Because the properties of the MNs 

are matched to the properties of the muscle fibers they synapse with, it is reasonable 

to hypothesize that MN undergo transformations when the muscle fibers change 

properties (Kernell et al., 1999). Indeed, chronic electrical stimulation of motor nerves 

following a slow-like pattern not only shifted muscle fiber from fast to slow phenotype, 

but also changed MN properties in the same direction (Munson et al., 1997). MNs 

become more excitable under these conditions, exhibiting decreased rheobase, 

increased input resistance, as well as altered after-hyperpolarization duration. 

However, the extent of changes observed in MNs appeared to be limited compared 

to the muscle fibers. In addition, although exercise-induced changes have been 

extensively studied, less is known about neurons and MNs adaptation to increased 

activity. 

 MNs are large and active cells, which have a high energy demand far from the 

cell body. Exercise has a cost in terms of energy expenditure and thus can be seen 

as a supplemental energetic stress for the cell. Surprisingly, studies suggest that 

exercise is beneficial for brain health and can be neuroprotective (Cotman and 

Berchtold, 2002). More interestingly, appropriate physical training in a mouse model 

of ALS, a neuromuscular degenerative disease, was shown to promote MN survival, 

which delayed the onset of motor deficits (Carreras et al., 2010; Deforges et al., 

2009). The mechanisms by which exercise confers neuroprotection still remain 

unclear. However, a few processes have been identified that may underlie part of the 

observed neuroprotective effects. For example in the spinal cord, exercise was 

shown to induce metallothioneins (scavengers of reactive oxygen species) and limit 

astrogliosis in ALS (Hashimoto et al., 2009; Deforges et al., 2009).  

 Elucidating the mechanistic basis of neuromuscular plasticity in response to 

elevated muscular activity is therefore of great importance in understanding many 

diseases, and potentially develop new therapies. Various factors can influence the 
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properties of MNs, including neurotrophic factors, neuromodulatory inputs and 

exercise (Gonzalez and Collins, 1997; Heckman et al., 2009; Gardiner et al., 2006). 

Alike muscles, MNs underdo different changes depending on the type of exercise as 

well as on their intrinsic properties. Generally, voluntary running induces greater 

changes in slow compared to fast MNs, while forced treadmill running induces more 

changes in fast MNs as compared to voluntary training (Beaumont and Gardiner, 

2002; Beaumont and Gardiner, 2003). Literature reports a large variability in the 

findings, which can be attributed to the use of different species, and different 

intensities and types of exercise. 

 The motor unit displays changes in its recruitment behavior upon physical 

training. Chronic moderate endurance exercise of fast muscle resulted in less 

variable firing rates of motor units, while force training resulted in increased 

recruitment thresholds and reduced firing frequencies of motor units at percentages 

of maximal voluntary contraction (Gardiner et al., 2006). Such an adaptation would 

allow more precise and accurate control of increments in muscle force. Consistent 

adaptations of the biophysical properties of MNs were measured with increased 

activity. Long-term intense endurance training resulted in hyperpolarized resting 

membrane potential, hyperpolarized voltage threshold, faster action potential rise 

time, and, in fast MNs, increased estimated capacitance (Beaumont and Gardiner, 

2003). Upon voluntary wheel running, similar adaptations were found in resting 

membrane potential and voltage threshold, with the addition of increased after-

hyperpolarization amplitude. However, these adaptations were restricted to slow MNs 

(Beaumont and Gardiner, 2002). Moreover, results from a chronic muscle overload 

experiment suggested higher excitability of fast-type MNs innervating the overloaded 

muscle, and a shift towards slow-type electrophysiological properties (Krutki et al., 

2015). The response to the increased level of chronic activation of MNs was shown 

to be relatively quick and stable. Together, the studies suggest that adaptations in 

MNs with exercise training may involve alterations in ion conductances.  

 Further, MNs exhibit changes in their morphological characteristics and 

functional adaptations upon exercise. With increased voluntary activity, several 

studies have shown a slight, although statistically significant, increase in volume of 

the MN soma and size of the dendritic arborization. In contrast, contradictory 

conclusions were reported on changes in axon diameter in peripheral nerves. These 
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findings generally indicate minor morphological changes in MNs as a result of 

increased chronic neuromuscular activity (Gardiner et al., 2006). Trained MNs also 

showed increase in axonal transport in both orthograde and retrograde directions 

(Jasmin et al., 1988). This transport is most likely important for the delivery of 

substances to and from the periphery. Following endurance training an increase in 

the concentration of the synaptic protein CGRP (calcitonin gene-related peptide) was 

reported in the soma and axon of MNs (Gharakhanlou et al., 1999). 

 Finally, MNs present evidences of metabolic/biochemical changes in response 

to exercise. Like in the muscle, exercise regulates expression of metabolic enzymes 

in the spinal cord, although changes may differ between the two tissues. In one 

study, the mitochondrial enzyme SDH (succinic dehydrogenase) was found to have 

an increased activity in slow but not fast MNs, corresponding to the different levels 

observed in slow versus fast muscle fibers (Nakano et al., 1997). However, another 

study found no difference in SDH activity after training. So it is still unclear whether 

exercise elicits modifications of MN mitochondrial content (Seburn et al., 1994). 

These findings may reflect differential adaptation of distinct types of MNs to specific 

types of training. Further, a brain-derived neurotrophic factor (BDNF)-mediated 

mechanism was reported to promote neuroplasticity in both the hind limb muscles 

and the lumbar spinal cord following acute voluntary exercise (Gomez-Pinilla et al., 

2002). Moreover, transcriptional changes in MNs following prolonged voluntary and 

treadmill training were shown to be consistent with the previously reported 

electrophysiological results and demonstrated a transition toward MNs that innervate 

slower muscle fibers (Woodrow et al., 2013). Taken together, all these findings 

indicate that MNs do undergo adaptive plastic changes in response to endurance 

training. 

 Few MN markers have been identified yet and only some of them where shown 

to be associated with MN differential susceptibility to degeneration (MMP9, SIL1). 

MN subtype differential adaptation to exercise and the mechanisms underlying its 

potential protective effect remains to be elucidated. 

 

2.2.4 Changes in the neuromuscular junction induced by exercise 

 Exercise induces multiple changes in muscle as well as in MNs. As a 



 

 27 

consequence, the neuromuscular synapse is also submitted to remodeling upon 

physical activity (Nishimune et al., 2014). The rate of remodeling may differ 

depending on the type of muscle, e.g. slow- versus fast-twitch, and the type and 

intensity of exercise, e.g. endurance versus resistance training (Andonian and Fahim, 

1988; Waerhaug et al., 1992; Deschenes et al., 1993). Exercise was shown to impact 

fast and slow presynaptic terminals differently. For instance, after endurance training, 

the absolute nerve terminal area and length were increased in slow but not in fast 

muscles, whereas the density of nerve terminal varicosities was reduced in fast but 

not in slow muscles (Waerhaug et al., 1992). In a high intensity running paradigm, 

the nerve terminal area was increased in slow muscles and to a greater extend in 

fast muscles. Fast muscles also had enhanced nerve terminal branching and 

complexity (Andonian and Fahim, 1988). In addition, the rate of change in a given 

muscle was shown to depend on exercise intensity. For example, nerve terminal 

branching and complexity was increased in the NMJs of a slow muscle, but the 

change was more pronounced in the high-intensity compared to the low-intensity 

trained animals (Deschenes et al., 1993). Further, remodeling also occurs at the 

postsynaptic membrane of NMJs. For example, training induces hypertrophy of the 

post-synapse in slow muscles (Deschenes et al., 1993). This exercise-induced 

increase in NMJ size correlates with the hypertrophy of the fibers in slow muscles, 

which suggests that part of these adaptive changes of NMJs is probably a secondary 

effect of muscle fiber change in diameter induced by exercise (Waerhaug et al., 

1992; Deschenes et al., 1993; Balice-Gordon et al., 1990).  

 In addition to the NMJ morphological changes, exercise was also reported to 

alter synaptic transmission. Endurance training improves neuromuscular 

transmission efficacy in slow as well as in fast muscles (Desaulniers et al., 2001; 

Argaw et al., 2004). The elevated safety factor of the synaptic transmission in trained 

muscles is due to increased transmitter release (Dorlöchter et al., 1991). In response 

to the presynaptic changes, AChE content and AChR number are increased in 

muscle fibers resulting in the strengthening of the synapse (Jasmin et al., 1987; 

Desaulniers at al., 1998). The molecular mechanisms that mediate exercise benefits 

on NMJs have not yet been fully elucidated. However, many lines of evidence 

indicate an increase in motoneuronal protein synthesis, axon transport, and secretion 

of trophic substances that influence gene transcription in muscles (Gardiner et al., 
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2006). For example, SNAP25 (synaptosomal-associated protein 25), a protein 

important for the docking of the transmitter vesicles to the presynaptic membrane, is 

selectively transported in higher quantities in axons of trained MNs (Kang et al., 

1995). Exercise increases the phosphorylation and proteolytic processing of the 

signaling molecule neuregulin-1 in skeletal muscle (Lebrasseur et al., 2003). 

Neuregulin signaling is known to induce expression of synaptic genes in muscles and 

may also play a role on the presynaptic side of NMJs (Sandrock et al., 1997; 

Wolpowitz et al., 2000). Physical training induces expression of a muscle-specific 

splice variant of IGF-1 that was shown to preserve NMJs in an ALS mouse model 

(Hameed et al., 2003; Dobrowolny et al., 2005). These results suggest that IGF-1 

could also play a role in the beneficial effects of exercise on NMJs. Increased activity 

also upregulates transcription of several other neurotrophic factors, which have 

beneficial effects on NMJs. For instance, electrical stimulation of the sciatic nerve 

was shown to increase expression of neurotrophin 4 in rat skeletal muscles, which 

induced the sprouting of intact adult motor nerves (Funakoshi et al., 1995). Similarly, 

BDNF (brain-derived neurotrophic factor) and GDNF (glial cell line-derived 

neurotrophic factor) are upregulated by exercise in the rat soleus muscle (Dupont-

Versteegden et al., 2004). These neurotrophic factors increase the survival of MNs 

(Henderson et al., 1994; Koliatsos et al., 1993). Furthermore, neurotrophins induce 

continuous synaptic remodeling and modulate the synaptic transmission efficiency of 

adult NMJs (Keller-Peck et al., 2001; Mantilla et al., 2004; Pousinha et al., 2006). 

Other signaling proteins are also regulated by physical training such as the 

scaffolding protein Homer, a postsynaptic protein that has a role in controlling the 

TRP (transient receptor potential) channel activity in skeletal muscles (Yuan et al., 

2003). Exercise increases skeletal muscle levels of Homer, which binds directly to 

the transcription factor NFATc1 (nuclear factor of activated T cells, cytoplasmic, 

calcineurin dependent 1) that in turn upregulates the expression of the synaptic 

proteins AChE and utrophin in skeletal muscles (Salanova et al., 2011; Cohen and 

Randall, 2004; Angus et al., 2005; figure II.10). 

 On one hand, although synaptic terminals are optimized to maximize 

information transmission at minimum energy cost, most brain energy is used on 

synapses (Harris et al., 2012). On the other hand, axon terminals in general are 

characterized by their remarkable concentration of mitochondria (Palay, 1956). Thus, 



 

 

 

 

 

 

 

Figure II.10. Genes and proteins controlled by exercise at the vertebrate neuromuscular 

junction. Solid arrows represent an upregulation or enhancement of RNAs or proteins by exercise. T-

shaped arrows represent a suppression of RNAs or proteins by exercise. A motor neuron and its 

presynaptic terminal are indicated in green. The green arrow indicates hypertrophy or sprouting of the 

motor nerve terminal induced by exercise. Synaptic vesicles and voltage-dependent calcium channels 

accumulate near the active zone indicated using a black triangle, which depicts the electron dense 

material of the active zones detected by electron microscopy. A muscle fiber is indicated in pink with 

acetylcholine receptors indicated in red and synaptic extracellular matrix indicated in orange at the 

synaptic cleft. A junctional fold is indicated as a trough on the postsynaptic membrane. (from 

Nishimune et al., 2014) 
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given the large size of the neuromuscular synapses, motor endplates are likely to be 

the compartment of highest energy demand in the MNs. Although there is clear 

evidence of mitochondrial remodeling in muscles and MNs upon exercise, 

mitochondrial network dynamics have not yet been described at the particular site of 

the meuromuscular synapse in the context of increased physical activity. Thus, 

whether NMJ adaptations to exercise imply mitochondrial remodeling still remains to 

be elucidated. 
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2.3 Aim of the study 

 The generation of all behavior programs in the central nervous system and their 

conversion into body movements is enabled by a specialized class of neurons: the 

motor neurons. Motor neurons control skeletal muscle contractions through direct 

neuromuscular synapses, the neuromuscular junctions. Thus, motor neurons are 

particularly active cells with a high energetic demand at locations distant from the cell 

body. Paradoxically, although the particularly high-energy demand of motor neurons 

could make them more prone to energetic stress, endurance exercise appears to be 

beneficial in specific neurodegenerative conditions. Moreover, tight regulation of 

mitochondrial biogenesis is of utmost important for meeting elevated energy 

demands in neurons, and thus mitochondrial plasticity may adapt motor neuron 

metabolic properties to increased energetic stress.  

 Since axon terminals are likely the compartments of highest energy demand in 

the motor neurons, and that mitochondria are thought to undergo the most visible 

changes, the present study investigated exercise-induced changes in mitochondrial 

network size and organization as direct readout for the adaptations of neuromuscular 

junctions to exercise. The use of mice expressing genetically tagged mitochondria in 

motor endplates allowed direct measurements from the 3D-reconstructed structures.  

 Further, in order to identify the mechanisms underlying the observed 

adaptations, RNA sequencing was carried out on muscle, as well as dorsal and 

ventral spinal cord samples. Changes in the transcriptome following long-term 

endurance training were specifically screened for expression of genes implicated in 

the regulation of mitochondrial function, organization and localization, as well as 

genes playing a role in the regulation of synaptic transmission and morphology. 

 The study is designed to ultimately provide insights into mechanisms 

modulating mitochondrial biogenesis and stress pathways and their contribution to 

motor neuron function and vulnerability. 
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III Material & Methods 

 

3.1 Laboratory reagents 

The following table lists the solutions, chemicals and reagents, enzymes, 

antibodies and kits used in the protocols described below (sections 3.2 to 3.4). 

 

Primary antibodies & toxins 

Antigen Host Supplier # 

Choline acetyltransferase (ChAT) Goat Millipore AB144P 

Myosin heavy chain isoform l (MyHC l) Mouse DSHB * BA-F8 

Myosin heavy chain isoform lla (MyHC lla) Mouse DSHB * SC-71 

Myosin heavy chain isoform llb (MyHC llb) Mouse DSHB * BF-F3 

* Developmental Studies Hybridoma Bank    

 

 

Secondary antibodies  

Target Conjugate Host Supplier # 

Goat IgG Alexa Fluor 555 Donkey Invitrogen A-21431 

Mouse IgG2b Alexa Fluor 647 Goat Invitrogen A-21242 

Mouse IgG1 Alexa Fluor 488 Goat Invitrogen A-21121 

Mouse IgM Alexa Fluor 555 Goat Invitrogen A-21426 

 

 

Toxins  

Toxin Conjugate Host Supplier # 

α-Bungarotoxin  Alexa Fluor 555 Bungarus multicinctus Invitrogen B35451 
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Chemicals & reagents & enzymes 

Chemical / Reagent / Enzyme Supplier 

Ketamine 10% Medistar 

Xylazine 2% Riemser 

Ethanol 99.9% Carl Roth 

Isopropanol (2-propanol) Carl Roth 

Chloroform (Trichloromethane) Carl Roth 

Phenol-Chloroform-Isoamyl alcohol Carl Roth 

Na-acetate pH 5.2 PanReac AppliChem 

QIAzol Lysis Reagent Qiagen 

Glycoblue (15 mg/ml) Ambion  

10X DNase Incubation Buffer  Ambion 

DNase I, RNase-free (2U/µl) Ambion  

RNaseOUT, Recombinant ribonuclease inhibitor (40U/µl) Invitrogen  

RNase-free water Invitrogen 

RNase AWAY Thermo Scientific 

PBS (10X) pH 7.2 Gibco 

Triton X-100 Carl Roth 

D-Sucrose (D-Saccharose) Carl Roth 

D-Glucose Sigma 

Paraformaldehyde (PFA) Carl Roth 

Bovine Serum Albumin Fraction V (BSA) Carl Roth or Roche 

Normal goat serum Gibco 

Normal donkey serum Gibco 

Isopentane (2-methylbutane) Carl Roth 

Tissue-Tek O.C.T. Compound Sakura Finetek 

Mowiol 4-88 Carl Roth 
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Solutions 

Solution Content 

Ethanol 75% RNase-free water; 75% [v/v] Ethanol 99.9% 

Anesthetic solution 1X PBS pH 7.2; 10% [v/v] ketamine 10%; 5% [v/v] xylazine 

2% 

Perfusion - glucose solution  1X PBS pH 7.2; 0.2% [w/v] D-Glucose - pH 7.2-7.4 

Perfusion - PFA fixation 

solution  

1X PBS pH 7.2; 8% [w/v] Paraformaldehyde - pH 7.2-7.4 

Low sucrose solution 1X PBS pH 7.2; 10% [w/v] D-Sucrose 

High sucrose solution 1X PBS pH 7.2; 20% [w/v] D-Sucrose 

Blocking solution  1X PBS pH 7.2; 4% [w/v] BSA; [w/v] 0.5% Triton-X 

Mounting solution - Mowiol prepared according to supplier’s protocol 

 

 

3.2 Animal procedures 

All procedures were performed by experienced experimenters and according 

to protocols approved by the Lower Saxony State Office for Consumer Protection 

and Food Safety. Animals were maintained under the control of a veterinarian in the 

animal facilities of the Max-Planck Institute for Biophysical Chemistry and of the 

European Neuroscience Institute in Göttingen. Light-dark cycle was maintained as 

12-12 hours, except during the training period of the C57BL/6J animals, where the 

light accidentally remained continuously switched on between week 7 and week 9. 

The temperature of the room was regulated and the room properly ventilated. 

Animals had ad libitum access to food and water for the entire duration of the 

experiment. 

 

3.2.1 Mouse lines 

C57BL/6J inbred wild type males (Charles River) were used for the 

transcriptomic analysis. For the confocal analysis, it was taken advantage of the Cre-

LoxP system in order to allow direct visualization of mitochondria in MNs of the mice. 

The conditional reporter line B6;129S-Gt(ROSA)26Sortm1(CAG-COX8A/Dendra2)Dcc/J 

(MGI:5318240; Jackson Laboratory stock #018385) was used to label mitochondria.



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          
 
 
 
Figure lll.1. Strategy to genetically tag mitochondria in mouse motor neurons. “Olig2-Cre” mice 
carry an insertion of the Cre recombinase gene expressed under the control of the Olig2 promoter. In 
the “Mito-Dendra2-flox” animals, the mitochondrial-targeting signal (MTS) of Cox8a is fused with 
Dendra2 and knocked-in to the ROSA26 locus downstream of a CAG (CMV-βactin) promoter and a 
loxP-flanked Stop sequence. The Olig2-Cre mouse line is crossed with the Mito-Dendra2-flox to 
generate double heterozygous Mito-Dendra2lox/wt; Olig2cre/wt. Cre-mediated selective excision of the 
floxed termination signal, leads to strong expression of Mito-Dendra2 in the mitochondria of Olig2 
expressing motor neuron progenitors.  
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 In this strain, the Dendra2 fluorescent protein derived from octocoral 

Dendronephthya sp. is fused with the mitochondrial-targeting signal of subunit VIII of 

cytochrome c oxidase to generate “Mito-Dendra2”. Mito-Dendra2 is knocked-in to the 

ubiquitously-expressed Gt(ROSA)26Sor gene downstream of a CAG (CMV-βactin) 

promoter and a loxP-flanked Stop sequence to create a conditionally-expressed 

allele “Mito-Dendra2-flox” (figure lll.1.). In the absence of Cre recombinase, no 

Dendra 2 signal is detected. The Cre driver line Olig2tm1(cre)Tmj (MGI:3774124; gift 

from T.M. Jessell (Dessaud et al., 2007)) was used to specifically restrict the 

expression of Mito-Dendra2 to the lineage of OLIG2-expressing motor neuron 

progenitors. “Olig2-Cre” mice carry an insertion of the Cre recombinase gene 

expressed under the control of the Olig2 promoter (figure lll.1.). Homozygous Mito-

Dendra2lox/lox females were mated with heterozygous Olig2cre/wt males to give birth to 

double heterozygous Mito-Dendra2lox/wt;Olig2cre/wt (figure lll.1.). In these double 

heterozygotes, later referred to as “MDO” mice, the Cre-mediated recombination 

selectively excises the floxed termination signal, leading to strong expression of Mito-

Dendra2 (figure lll.2.). Both males and females MDO mice were used for the 

experiment.  

The animals were genotyped using the following PCR primers:  

Mito-Dendra2-flox (full protocol available on the supplier’s website *) 

forward common 5’-CCA AAG TCG CTC TGA GTT GTT ATC-3’ 
reverse wild type 5’-GAG CGG GAG AAA TGG ATA TG-3’ 
reverse mutant 5’-TCA ATG GGC GGG GGT CGT T-3’ 
 
Olig2-Cre 

forward 5’-TAAAGATATCTCACGTACTGACGGTG-3’ 
reverse 5’-TCTCTGACCAGAGTCATCCTTAGC-3’ 

 

* https://www2.jax.org/protocolsdb/f?p=116:5:0::NO:5:P5_MASTER_PROTOCOL_ID,P5_JRS_CODE:8527,018385 

 

 

3.2.2 Training: Voluntary wheel running 

P21 (postnatal day 21) C57BL/6J or MDO weaned animals were acclimatized 

to the room for one week (week -1). Each animal was housed in an individual cage 

for the entire duration of the experiment. At P28, mice were randomly assigned to 



 

 

 
 
 
 
 
 
 

         
 
 
Figure lll.2. Conditional expression of the Dendra2 fluorescent protein in the mitochondria of 
spinal motor neurons. Endogenous Dendra2 fluorescence in MNs of an adult MDO mouse (Mito-
Dendra2lox/wt;Olig2cre/wt). (0.9µm single confocal slice of a 30µm spinal cord cryo-cross section)  
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one of the following two groups: control sedentary group (ctrl) and voluntary running 

group (run). The two groups had comparable average body weight at the start of the 

training (week 0). All cages had rigorously the same size and half of them were 

implemented with an individual external running wheel (Panlab - Harvard Apparatus 

Spain). The running mice had unrestricted access to their wheel throughout the entire 

experiment. The mice were acclimatized to the wheel for one week (week 0) and the 

performance of each animal was recorded from P35 (week 1) for 12 weeks. The 

recordings consisted of the sum of complete wheel turns every 30min, 24h/day, 

7days/week, for the whole training duration. The body weight of each animal was 

recorded at the beginning of every week. The histological analysis of NMJs was 

conducted on 4 sedentary and 4 trained MDO mice. Each of the ctrl and run MDO 

groups contained 3 females and one male. The transcriptomic analysis was 

conducted on 6 sedentary and 6 trained C57BL/6J males. Animals were selected 

based on their running performance, with a minimum cutoff set at 30 000 wheel turns 

per week. 

 

3.2.3 Sample collection  

All samples were collected on week 13 after completion of training. For 

subsequent confocal imaging, samples from MDO animals were collected after 

transcardial perfusion fixation, and prepared for cryosectioning. Mice were deeply 

anesthetized by intraperitoneal injection of anesthetic solution (10µl/g) before they 

were perfused with the following 37°C pre-warmed solutions: glucose solution for 

4min, followed by PFA fixation solution for 8min. Soleus and tibialis anterior (TA) 

muscles were collected from the hindlimbs directly after fixation. The samples were 

additionally post-fixed overnight in PFA fixation solution at 4°C. All samples were 

washed overnight in PBS at 4°C before they were incubated in low sucrose solution 

for 3h, followed by 3h in high sucrose solution. Muscles were then equilibrated for 

5min in O.C.T. compound and placed into an embedding mold filled with O.C.T. 

compound. Finally the molds were snap frozen in liquid nitrogen-cooled isopentane 

and stored at -80°C until cryosectioning.  

For subsequent RNA analysis, all the following steps were carried out under 

RNase free conditions. C57BL/6J mice were humanely killed by cervical dislocation. 
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Following dissection, the lumbar region of the spinal cord was cut into half and the 

ventral and dorsal regions were collected separately. The spinal samples and the 

soleus muscle of one hindlimb were immediately kept in 300µl QIAzol lysis reagent 

for subsequent RNA extraction. The soleus and plantaris muscles from the second 

limb were snap frozen in O.C.T. compound with liquid nitrogen-cooled isopentane. All 

samples were stored at -80°C.  

 

3.3 Procedures for histological analysis 

In the following procedures, “RT” refers to room temperature, comprised 

between 22 and 25°C. 

 

3.3.1 Tissue sectioning and staining 

The O.C.T. blocks were mounted on a cryostat (CM 1510S, Leica) maintained 

at -20°C. The fixed muscle samples from MDO animals were cut into 30µm thick 

longitudinal sections for further high-resolution confocal imaging, while the flash-

frozen muscles from C57BL/6J mice were cut into 10µm cross-sections for 

subsequent confocal imaging. All sections were collected on Superfrost Plus 

microscope slides (Thermo Scientific) and air-dried for 15min before they were stored 

at -20°C. 

MDO animals constitutively and selectively express the Dendra2 fluorescent 

protein in mitochondria of MNs and NMJs. Thus, the endogenous fluorescence in 

mitochondria of the pre-synapse was directly used for confocal imaging and 

subsequent 3D-reconstruction. The post-synapse was labeled according to the 

following procedure. The slides were taken out of -20°C freezer and allowed to thaw 

for 2min. Then the slides were incubated with a fluorophore-conjugated α-

bungarotoxin in blocking solution for 1h at RT°C in a humidified chamber. The slides 

were washed 3 times 10 min with PBS before they were mounted in Mowiol with high 

precision cover slips (Marienfeld-Superior, thickness No. 1.5H (0.170 mm ± 0.005 

mm)). 

Staining of the C57BL/6J mouse muscle followed the procedure described in 
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(Bloemberg and Quadrilatero, 2012). The mouse primary and goat secondary 

antibodies were used as follows:  

 

 Primary antibodies Secondary antibodies 

      
Reactivity Antibody name Dilution Antibody name Fluorophore Dilution 

      

MyHC I BA-F8 1:50 anti-mouse IgG2b 
Alexa Fluor 

647 
1:500 

MyHC IIa SC-71 1:600 anti-mouse IgG1 
Alexa Fluor 

488 
1:500 

MyHC IIb BF-F3 1:100 anti-mouse IgM 
Alexa Fluor 

555 
1:500 

 

At the end of the staining procedure, the slides were mounted in Mowiol as described 

for the NMJ analysis samples. 

Note: The choline acetyltransferase (ChAT) staining on figure IV.12B was obtained 

from a paraffin-embedded spinal cord cross-section of a C57BL/6J mouse. It was 

stained using a goat anti-ChAT polyclonal primary antibody at the dilution 1:200, 

followed by an Alexa Fluor 555-conjugated donkey anti-goat IgG secondary antibody 

at the dilution 1:1000. 

 

3.3.2 Imaging, 3-D reconstruction and statistical analysis  

 The soleus is a small predominantly slow fiber type-containing muscle, mainly 

constituted by type I and type IIa fibers. In contrast, the tibialis anterior (TA) is a large 

predominantly fast fiber-type containing muscle, mainly constituted of type IIb, but 

also IIx and IIa fibers. To account for the size and heterogeneity in fiber type (and 

hence in NMJs), 10 NMJs of the soleus muscle and 15 NMJs of the TA muscle were 

analyzed for each animal. High-resolution image stacks of the NMJs were acquired 

with a laser scanning confocal microscope (LSM 710, Zeiss). All image stacks were 

acquired according to the Nyquist criterion for optimal resolution, using a Plan-

Apochromat 63x/1.40 Oil DIC M27 objective (Zeiss). A maximum cutoff value for the 

gain in the Dendra2 channel was set in order to ensure high quality images for 

subsequent 3-D reconstruction. NMJs presenting too low expression of Dendra2 

were not acquired. 
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 The 3D reconstruction of the entire synaptic structures was performed with 

Imaris 7 software (Bitplane). Surface objects were created to visualize the 3D 

structures of the pre-and post-synaptic compartments. The Imaris Filament Tracer 

module was used to measure the branch length of the post-synapse. All 

measurements were automatically exported as spreadsheets from the Imaris 

MeasurementPro module. Statistical comparison of soleus and TA muscle NMJs in 

control situation and after 12 weeks of voluntary wheel running was performed using 

a 2-way ANOVA followed by post-hoc pair-wise comparisons using Tukey’s honest 

significance test for multiple comparisons. The groups compared are “soleus ctrl” 

with n=40 NMJs, “TA ctrl” with n=60 NMJs, “soleus run” with n=40 NMJs and “TA 

run” with n=60 NMJs. The test results with a p-value<0.05 were considered 

statistically significant. For each group, the sample distribution is represented as a 

dot plot. The overlaid box plot displays the median as a horizontal bar and the mean 

as a diamond shape. The notch shows the 95% confidence interval for the median 

for each group. The R software was used for the statistical calculations as well as for 

plotting (R Core Team (2015). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria). 

The C57BL/6J muscles were imaged on a single layer with a laser scanning 

confocal microscope (LSM 710, Zeiss). Fiber type quantification of the cross sections 

was performed with Fiji (Schindelin et al., 2012) using the Cell Counter plugin (Kurt 

De Vos). Only three MyHC types could be stained at the same time, and therefore 

only the MyHC type I, IIa and IIb described in section 3.3.1 were labeled in the 

experiment. MyHC type IIx fibers remained unlabeled. I-IIa hybrid fibers could be 

reliably counted as double positive fibers (here grey and green). However, IIa-IIx 

(green and black) and IIx-IIb (black and red) hybrid fibers could only be identified by 

a variation in the intensity of either IIa or IIb staining. Therefore, IIa-IIx and IIx-IIb 

hybrids were counted as IIa and IIb positive fibers respectively. As a consequence, 

the IIx fiber count only represents the pure unlabeled IIx fibers. Student’s T-tests 

were performed on each of the 5 fiber types to compare MyHC isoform expression 

between control and running animals. The test results with a p-value<0.05 were 

considered statistically significant. 
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3.4 Procedures for transcriptomic analysis 

In the following procedures, “RT” refers to room temperature, comprised 

between 22 and 25°C. 

 

3.4.1 Tissue preparation – RNA isolation 

All the following steps were conducted under a fume hood in RNase free 

conditions. To this end, surfaces and instruments were decontaminated using RNase 

AWAY. Samples were taken out of the -80°C freezer and briefly thawed. 10 to 15 

ceramic beads of 1.4-1.6mm were added to each tube. Samples were homogenized 

using an Omni Bead Ruptor (Omni International) as follows: soleus muscle at the 

speed 6.60 for 30s and ventral and dorsal spinal cord at the speed 3.40 for 15s. 

700µl of QIAzol lysis reagent was added to the samples, which were then incubated 

5min at RT. Subsequently, 200μl chloroform was add to the tubes before vigorous 

shaking for 15s and incubation at RT for 5min. Samples were centrifuged at 12000g 

at 4°C for 15min. Aqueous phase was transferred into a fresh tube where 500μl 

isopropanol and 1.5μl of Glycoblue. Samples were incubated at -20°C for at least 

30min, then centrifuged at 12000g at 4°C for 30min. The supernatant was discarded 

and the RNA pellet washed with 1ml of chilled 75% ethanol before a new 

centrifugation at 12000g at 4°C for 5 min. The supernatant was discarded before 

proceeding with DNase treatment. 5μl 10X Incubation Buffer, 1μl DNase I, 0.5μl 

RNaseOUT and 43.5μl RNase-free water were subsequently added to the pellet. 

Samples were incubated on a thermomixer (Eppendorf) at 37°C for 20min at 550rpm. 

150μl RNase-free water was added followed by 200μl Phenol-Chloroform-Isoamyl 

alcohol. Tubes were vortexed and centrifuged at 16000g at RT for 2min. Upper 

phase was collected in a new tube where 20μl 3M Na-acetate pH 5.2, 200μl chilled 

isopropanol and 1μl Glycoblue were added. Tubes were vortexed and spun before 

30min incubation at -20°C. Samples were centrifuged at 16000g at 4°C for 30 min. 

The supernatant was removed, while the pellet was washed with 1ml of chilled 75% 

ethanol and centrifuged at 16000g at 4°C for 5min. The washing step was repeated 

once. After removal of the supernatant, the pellet was air-dried at RT. Finally, the 

RNA pellet was dissolved in 50-100μl RNase free water and stored at -80°C. 
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3.4.2 RNA sequencing and data analysis 

RNA sequencing was performed in collaboration with the laboratory of Pr. 

André Fischer, Epigenetics in Neurodegenerative Diseases, German Center for 

Neurodegenerative Diseases (DZNE) and the DZNE Next Generation Sequencing 

Facility, Göttingen, Germany. Prior to sequencing, the quantity of purified RNA in 

each sample was measured using the NanoDrop 2000 spectrophotometer (Thermo 

Scientific), and further quality-controlled using the 2100 Bioanalyzer system (Agilent 

Technologies).  All the 12 samples for each tissue – soleus muscle, dorsal spinal 

cord and ventral spinal cord – showed RNA integrity numbers above 8.50. Library 

preparation and cluster generation for RNA sequencing was performed according to 

Illumina standard protocols (TruSeq technology, Illumina). Libraries were quality-

controlled and quantified using the NanoDrop 2000 spectrophotometer (Thermo 

Scientific), the 2100 Bioanalyzer system (Agilent Technologies) and the Qubit 

fluorometer (Invitrogen). Base calling from raw images and file conversion to FastQ 

files was achieved by Illumina pipeline scripts.  

The subsequent biostatistical analysis was performed in collaboration with the 

laboratory of Dr. Stefan Bonn, Computational Analysis of Biological Networks, 

German Center for Neurodegenerative Diseases (DZNE) and the DZNE Next 

Generation Sequencing Facility, Göttingen, Germany. The analysis included the 

following steps: quality control using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), mapping to reference 

genome using STAR aligner v2.4.1 (Dobin et al., 2013) and read counting on genes 

using HTSeq v0.6.1 (Anders et al., 2015). Finally, the differential gene usage was 

analyzed in pairwise comparisons using the DESeq2 v1.8.0 R-package (Love et al., 

2014; R Core Team (2015). R: A language and environment for statistical computing. 

R Foundation for Statistical Computing, Vienna, Austria). The change in expression 

between two conditions for each gene entry is defined by an adjusted p-value 

representing the statistical significance of the change, and a log2(fold-change) value 

(amplitude of the change for up- or down-regulated genes). 

Gene set overlaps were calculated using Venny 

(http://bioinfogp.cnb.csic.es/tools/venny/).  
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A functional annotation of gene products was carried out in R using the FUNC 

package (Prüfer et al, 2007). This ranking method allows identifying significant 

associations between gene sets and ontological annotations such as provided by the 

Gene Ontology Consortium (Ashburner et al., 2000). The ranking is based on a Pi 

value calculated for each gene: Pi= log2(fold-change) x (-log10(p-value)). A 

refinement algorithm enabled to identify the Gene Ontology categories enriched in 

the experimental samples compared to the control. The subsequent interpretation of 

the data was based on the Gene Ontology categories presenting a p-value after 

refinement <0.05. 
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IV Results 

 

Physical activity increases energy expenditure of the body and elevates 

energetic stress across cell types and organs. The neuromuscular system has 

particularly high energy requirements and physical activity increases muscle 

contraction and motor neuron (MN) firing. Since tight regulation of mitochondrial 

biogenesis is of utmost importance for meeting elevated energy demands – and 

conversely dysregulation of mitochondrial biogenesis can cause cellular demise – 

mitochondrial remodeling was investigated in the mouse neuromuscular system 

(MNs and muscles) in response to increased energetic stress caused by exercise. To 

achieve this, mice were trained for long-term voluntary endurance running. Specific 

and common adaptive mechanisms were studied in terms of modifications of the 

mitochondrial web organization in the neuromuscular junction (NMJ), the interface 

between muscles and MNs. Then, differential gene expression levels were assessed 

in order to identify molecular changes that accompany or underpin muscle and spinal 

cord adaptations to exercise. 

 

4.1 Endurance training in wild type mice 

Two lines of wild-type animals were submitted to 12 weeks of voluntary wheel 

running. A group of six C57BL/6J male running mice was selected for transcriptomic 

analysis (fig. IV.1A, C and E), and a group of four MDO (Mito-Dendra2lox/wt;Olig2cre/wt) 

running mice were selected for histological analysis (fig. IV.1B, D and F). During the 

training, the C57BL/6J animals were accidentally exposed to continuous light for a 

brief period, which hampered the running performances of the mice. However, after 

return to a 12-12 light-dark cycle, mice recovered a level of activity close to that 

expected at this point of the training, and thus experiment was continued. This period 

was excluded from the evaluation of the running performances. 

In the C57BL/6J group, the average daily running distance ranged from 2.1 up 

to 3.6 km/day (fig. IV.1A). The individual maximum running distance reached 4.5 

km/day, while the lowest performance was 1.4 km/day. In the MDO group, the 

average daily running distance ranged from 3.1 to 4.7 km/day (fig. IV.1B). The best 



 

 

 
 

 
 
Figure IV.1. Running performances among the animals. A group of six C57BL/6J running mice (A, 
C and E) and a group of four MDO running mice (B, D and F) were selected for transcriptomic and 
histologic analysis respectively. A-B. The average distance run daily slowly declined over the course 
of the experiment in both mouse lines. C-D. The average intensity of running during the one hour of 
the mouse maximal daily activity also slowly decreased over the 12 weeks of voluntary wheel running. 
E-F. The body weight increased in both mouse lines along the training duration and the gain in weight 
was similar between the control and the running groups (C57BL/6J n=6; MDO n=4; mean ± SD). 
[Between week 7 and 9: 2 weeks of accidental constant light in the animal facility hampered the 
running performance of mice.] 
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individual performance was a maximum of 6.6 km/day, while the shortest running 

distance was 2.1 km/day. The mice were mainly active during the dark period of the 

day with a peak of running within the six hours following the light switch-off. The 

maximal running intensity of the mice was recorded over one of these six hours (fig. 

IV.1C and D). The intensity of running over the 12 weeks of voluntary wheel running 

ranged from 8.1 to 10.7 m/min in the C57BL/6J group, and from 8.1 to 11.7 m/min in 

the MDO group. Although absolute values for the two groups cannot be directly 

compared because of genotype and gender differences, the MDO mice performed 

generally better compared to the C57BL/6J animals. However, the running distances 

and velocities displayed a similar slope in C57BL/6J and MDO mice. In both mouse 

lines the average daily running distance, as well as the maximal running intensity, 

were maximal at the beginning of the training and slowly declined over the course of 

the experiment. The body weight of trained as well as sedentary animals was 

recorded weekly and increased in both mouse lines along the duration of the training 

(fig. IV.1E and F). The parallel curves indicate that the gain in weight was similar 

between the control and the running groups.  

 

4.2 Chronic training induced a shift towards a slower type in slow 
and fast-intermediate muscles  

In skeletal muscles, endurance training is known to induce a shift towards 

properties characteristic for slow fiber types (Bassel-Duby and Olson, 2006; 

Schiaffino et al., 2007). In order to assess the impact of the 12-week voluntary 

running exercise on muscles, fiber type characterization of the soleus and plantaris 

muscles was performed on four out of the six running C57BL/6J mice and 

corresponding sedentary control animals selected for the transcriptomic analysis. 

Both soleus and plantaris are shank muscles, whose contraction leads to the 

extension of the foot. At the same time, the soleus is a predominantly slow fiber-

containing and anti-gravity muscle, while the plantaris is enriched in fast and 

intermediate muscle fiber types.  

Exercise-induced changes in fiber type in slow and fast muscles were 

investigated using immunolabeling of the myosin heavy chain (MyHC) isoforms 

predominantly expressed in each individual muscle fiber of soleus and plantaris 

muscles. MyHC type I, IIa and IIb fibers were labeled, while type IIx fibers were left 



 

 

 
Figure IV.2. Fiber type distribution in the predominantly slow soleus muscle of sedentary and 
trained mice. Immunolabeling of the myosin heavy chain (MyHC) isoforms I, IIa and IIb predominantly 
expressed in soleus muscle fibers. Note: the unlabeled MyHC type IIx fibers remain black on the 
overlay picture. (Representative images of n=4 C57BL/6J mice for each paradigm; scale bars: 250µm) 
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unlabeled (fig. IV.2 and  IV.3). I-IIa hybrid fibers could be reliably counted as double 

positive fibers (here grey and green). However, IIa-IIx (green and black) and IIx-IIb 

(black and red) hybrid fibers could only be identified by a variation in the intensity of 

either IIa or IIb staining. Therefore, IIa-IIx and IIx-IIb hybrids were counted as IIa and 

IIb positive fibers respectively. As a consequence the IIx fiber count only represents 

the pure unlabeled IIx fibers. Soleus muscle fibers were only positively labeled for 

MyHC I and IIa, while showing a few fluorescent-negative fibers likely expressing 

MyHC IIx (fig. IV.2 and table IV.1). In contrast, plantaris was enriched in fast fiber 

types IIa, IIx and IIb (fig. IV.3 and table IV.1). 

The quantification of fiber type distribution following long-term endurance 

training revealed a small, but significant shift towards slower MyHC types in soleus, 

as well as in plantaris in the running mice (table IV.1). After training, the soleus 

displayed an increase in slow type I and a reciprocal decrease in fast types IIa and 

IIx fibers (table IV.1). However, the increased proportion of hybrid I-IIa fibers in 

running animals was the only statistically significant change. Similarly in the plantaris, 

a decrease in IIb fibers in favor of IIx fibers was observed. No obvious change in the 

number of IIa fibers was noticed. However, none of these trends were statistically 

significant. 

 

Table IV.1. Muscle fiber type distribution in trained and sedentary C57BL/6J mice. 

      

Soleus fiber type         ctrl %  ± SD         run % ± SD p-value 

I 28.96  ± 1.14 34.26 ± 5.19 0.093 

l-IIa   0.74  ± 0.46 2.12 ± 0.96 0.041 

IIa and IIa-IIx 66.16  ± 3.18 60.82 ± 5.92 0.163 

IIx   4.11  ± 4.10 2.80 ± 3.29 0.637 

IIb and IIx-IIb   0.03  ± 0.05 0        0.213 

  

  

  Plantaris fiber type         ctrl %  ± SD run % ± SD p-value 

I   0.49  ± 0.56 0.10 ± 0.15 0.235 

l-IIa        0         0 
 

- 

IIa and IIa-IIx 35.79  ± 6.69 37.62 ± 5.74 0.692 

IIx 15.66  ± 4.00 23.64 ± 6.72 0.088 

IIb and IIx-IIb 48.06  ± 9.88 38.64 ± 12.46 0.281 

      

(two-tailed unpaired Student’s T-test with CI=0.95; n=4 C57BL/6J mice in each group) 



 

 

 
Figure IV.3. Fiber type distribution in the fast-intermediate plantaris muscle of sedentary and 
trained mice. Immunolabeling of the myosin heavy chain (MyHC) isoforms I, IIa and IIb predominantly 
expressed in plantaris muscle fibers.  Note: the unlabeled MyHC type IIx fibers remain black on the 
overlay picture. Some muscle spindles expressing MyHC I are labeled on these sections. 
(Representative images of n=4 C57BL/6J mice for each paradigm; scale bars: 250µm)  



 

 45 

The total number of fibers in both soleus and plantaris remained unchanged 

after the 12-week training period. Although there was a trend in favor of a larger total 

number of fibers in both soleus (+6.4%) and plantaris (+1.2%) muscles in trained 

mice compared to control, the difference was not statistically significant (table IV.2).  

 

Table IV.2. Total number of fibers in muscles of trained and sedentary C57BL/6J 
mice 

fiber count ctrl mean  ± SD run mean  ± SD p-value 

Soleus 968.34  ± 50.44 1030.75  ± 57.33 0.153 

Plantaris 823.42  ± 158.75 832.92  ± 31.29 0.910 

(two-tailed unpaired Student’s T-test with CI=0.95; n=4 C57BL/6J mice in each group) 
 

Together, these results suggest that the long but of moderate intensity training 

induces a slight shift towards slower fiber types in slow as well as in fast muscles. 

However, the rate of change appeared to be higher in soleus compared to plantaris, 

which is likely due to the preferential recruitment and thus higher activity of the 

soleus muscle fibers during treadmill running. This slow-to-fast muscle fiber shift was 

eventually confirmed by RNA sequencing of the soleus from control and trained mice, 

which will be described further below (see fig. IV.27). 

 

4.3 Remodeling of NMJ mitochondrial network by exercise 

Because MN properties tightly match the properties of the muscle fibers they 

innervate, if exercise elicits changes in muscle fiber type composition, MNs are 

expected to correspondingly adapt their properties (Kernell et al., 1999). MNs are 

particularly large and active cells with a high energetic demand at locations distant 

from the cell body. Indeed, motor axon terminals are likely the compartments of 

highest energy demand of the MN (Harris et al., 2012; Palay, 1956). Since tight 

regulation of mitochondrial biogenesis is generally important for meeting elevated 

energy demands in neurons, mitochondrial plasticity at the NMJ may adapt MN 

metabolic properties to increased energetic stress. In order to elucidate whether NMJ 

adaptations to exercise entail mitochondrial biogenesis, the modifications of the 

mitochondrial network organization was investigated in NMJs of MDO mice. MDO 

(Mito-Dendra2lox/wt;Olig2cre/wt) mice constitutively and selectively express the Dendra2 



 

 

–– 
 
Figure IV.4. Soleus NMJs of sedentary and voluntary running MDO animals. Representative 
images of soleus NMJs of sedentary (A-C and A’) and trained (D-F and D’) mice. A and D. Pre-
synaptic mitochondria are identified by endogenous fluorescence in MDO mice, which constitutively 
and selectively express Dendra2 in NM mitochondria. A’ and D’. Closer views from the boxes in A and 
D show the highly dense and interconnected mitochondrial network in both control and running soleus 
NMJs. B and E. The post-synapse was labeled with the fluorophore-conjugated α-Bungarotoxin on the 
soleus muscle membrane. C and F. The overlay of the pre-and post-synaptic compartments highlights 
the homogenous distribution of mitochondria in soleus endplates of both control and running animals. 
(Maximum intensity projections from confocal image stacks, scale bars: 10µm) 
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fluorescent protein in mitochondria of MNs, which allows direct investigation of the 

mitochondrial network in the different MN compartments. Thus Dendra2-labeled 

mitochondria were directly used as readout for MN adaptation to exercise. The post-

synaptic compartment was identified using the labeling of the acetylcholine receptors 

(AChRs) on the muscle membrane by the fluorophore-conjugated non-toxic alpha 

subunit of the Bungarotoxin (αBtx).  

Exercise was previously shown to have a different impact depending on the 

intrinsic properties of the motor unit component considered (Talmadge et al., 2004; 

Beaumont and Gardiner, 2002; Beaumont and Gardiner, 2003; Andonian and Fahim, 

1988; Waerhaug et al., 1992; Deschenes et al., 1993). Therefore, different muscles 

and thus different motor-neuronal terminals were investigated. On the one hand, 

soleus muscle and the soleus motor pool are mainly constituted by slow and fast 

fatigue-resistant (S-FR) motor units, on the other hand, tibialis anterior (TA) muscle 

and the TA motor pool contain a majority of fast fatigable (FF) motor units, completed 

by fast resistant and fast intermediate (FR-FI) motors units. 

 

4.3.1 Characterization of NMJs from slow and fast muscles 

Figures IV.4 and IV.5 display representative images of soleus and TA NMJs 

from control and running MDO animals, obtained by maximal intensity projection of 

the initial confocal image stacks. In the soleus, NMJs of sedentary and trained mice 

occupied the same overall muscle fiber surface (fig. IV.4). However, the αBtx staining 

reveals more complex NMJ structures in running mice. They exhibited more, as well 

as longer or wider branches, which increased the area covered by the αBtx labeling 

(fig. IV.4B and E). Moreover, a closer view of the neuronal pre-synaptic mitochondria 

shows the highly dense and interconnected mitochondrial network in the soleus 

NMJs of both control and running mice (fig. IV.4A’ and D’). The overlay of the pre-

and post-synapse compartments highlights the homogenous distribution of 

mitochondria in both soleus endplates (fig. IV.4C and F). Qualitatively, an increase in 

the intensity of Dendra2 fluorescence was observed in the running compared to the 

control samples, possibly reflecting higher biosynthetic activity in the former NMJs 

(fig. IV.4A and D). 

 In the TA, NMJs of trained mice globally occupied a larger surface on the 

muscle fiber than NMJs of sedentary animals (fig. IV.5). In addition, NMJ structural 



 

 

 
 
Figure IV.5. Tibialis anterior NMJs of sedentary and voluntary running MDO animals. 
Representative images of tibialis anterior NMJs of sedentary (A-C and A’) and trained (D-F and D’) 
mice. A and D. Pre-synaptic mitochondria are identified by endogenous fluorescence in MDO mice, 
which constitutively and selectively express Dendra2 in NM mitochondria. A’ and D’. Closer views from 
the boxes in A and D show the fragmented mitochondrial network in the control NMJ and the 
interconnected mitochondrial network in the running NMJ of MDO mice. B and E. The post-synapse 
was labeled with the fluorophore-conjugated α-Bungarotoxin on the TA muscle membrane. C and F. 
The overlay of the pre-and post-synaptic compartments highlights the scattered distribution of 
mitochondria in the control endplate and the more uniform distribution of mitochondria in the running 
synapse. (Maximum intensity projections from confocal image stacks, scale bars: 10µm) 
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complexity appeared to be similar in both control and running animals (fig. IV.5B and 

E). However, a closer view of the neuronal pre-synaptic mitochondria showed a shift 

from a fragmented mitochondrial network in the control NMJ towards a more 

interconnected mitochondrial network in the running NMJs (fig. IV.5A’ and D’). Unlike 

soleus NMJs, TA NMJs did not exhibit an obvious variation in the Dendra2 

fluorescence intensity between the control and running samples (fig. IV.5A and D). 

The high-resolution confocal image stacks of NMJs were reconstructed in 

three dimensions (3D). The reconstruction allowed to have a complete view of the 

NMJ structure and to have a precise and direct measurement of the pre- and post-

synaptic NMJ components that took into account the curvature of the NMJ around 

the near-cylindrical portion of the muscle fibers. Only the Dendra2 signal that co-

localized with the αBtx staining was considered for quantification. The Dendra2-

positive mitochondria that belong to the motor axon, but not to the NMJ itself, were 

removed from the 3D structures. Figure IV.6 presents the reconstruction of the 

representative synapses displayed in figure IV.4 and IV.5. In soleus of control and 

running animals, the NMJ mitochondria filled almost entirely the axon terminal in 

direct contact with the sarcolemma (fig. IV.6A and B). In contrast, the mitochondria 

clusters of TA NMJs appeared “scattered” when juxtaposed to the post-synaptic 

membrane (fig. IV.6C and D), confirming the observations from the projection images 

(see fig. IV.4 and IV.5). In control mice, soleus NMJs had few separate clusters, 

while larger numbers of disconnected clusters were identified in TA NMJs (fig. IV.6E 

and G). In running mice, few clusters were observed in soleus NMJs, while there 

were still many clusters in TA NMJs although they appeared less numerous than in 

control TA NMJs (fig. IV.6F and H). Endurance training resulted in the broadening of 

the cluster size range due to higher largest volumes of mitochondria clusters in NMJs 

of trained animals (fig. IV.6E-H).  

 

4.3.2 Exercise-induced adaptations of mitochondrial network in NMJs 

In order to describe NMJ morphology and characterize mitochondrial network, 

nine variables were measured and calculated from the reconstructed NMJs. The 

overall size of the NMJ was measured as the area of the αBtx staining on the 

sarcolemma. It represents the surface occupied by the synapse on the muscle fiber 

membrane. To further define the NMJ shape, the length of the NMJ branches were 



 

 

 
 
 

 
 
Figure IV.6. 3D reconstruction of soleus and tibialis anterior NMJs of sedentary and voluntary 
running animals enables precise measurements. A-D. The pre- and post-synaptic compartments of 
the soleus and tibialis anterior NMJs presented in fig.4 and fig.5 are reconstructed in 3D. E-H. A color-
coding of the pre-synapse is used to visualize the volume of the different mitochondria clusters. (Color 
scale: red indicates the highest volume, purple indicates the lowest volume, the absolute extreme 
values (µm3) are reported for each depicted NMJ; scale bars: 10µm) 
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measured. The area and the length measures were used to calculate the branch-

width index as the ratio of the total αBtx area to the total branch length. The absolute 

volume of mitochondria in the pre-synaptic compartment was measured from the 

endogenous Dendra2 MN-specific mitochondrial labeling in the axon terminals. The 

mitochondrial volume was then normalized to the size of the NMJ. The ratio of the 

total mitochondrial volume to the total αBtx area gives an estimation of the 

mitochondria concentration in the NMJ. In the same way, the absolute number of 

distinct mitochondria clusters was automatically counted from the 3D reconstruction 

of the Dendra2 signal. The number of mitochondria clusters was also normalized to 

the size of the NMJ by dividing the total number of clusters by the total αBtx area. 

The average volume of individual mitochondria clusters was calculated as the ratio of 

the total mitochondria volume to the total number of clusters. Because a fragmented 

network implies more clusters of rather smaller volumes, the average cluster volume, 

together with the normalized number of clusters, gives an indication on the 

distribution of the mitochondrial network in the NMJ, i.e. fragmented or connected. 

Finally, the average sphericity index of the mitochondria clusters was automatically 

calculated from the reconstructed NMJ structures. The index value results from the 

comparison of the cluster to a sphere of identical volume. The index ranges from 1 to 

0, indicating whether the cluster is close (tends to 1), or far (tends to 0) from a 

spherical shape. This last variable completes the description of the mitochondrial 

network by telling about the shape of the clusters, i.e. spherical or elongated/tubular. 

Changes in the post-synapse were first investigated. In control mice, soleus 

NMJs were smaller than TA NMJs (p<0.001) (fig. IV.7A). This was due to the shorter 

branch length in soleus (p<0.001), although branch width was larger (p<0.001) 

compared to TA NMJs (fig. IV.7B and C). Exercise induced the hypertrophy of soleus 

NMJs but the atrophy of TA NMJs. The post-synaptic surface was enlarged in soleus 

(p<0.001), while it reduced it in TA NMJs (p<0.001) (fig. IV.7D). This was paralleled 

by an increase in length of the post-synapse branches in soleus NMJs (p<0.001) and 

a decrease in TA NMJs (p=0.003) (fig. IV.7E). However, training did not affect the 

width of the post-synaptic branches in soleus (p=0.910) nor in TA NMJs (p=0.714) 

(fig. IV.7F). As a result, after the 12-week training, the NMJ area was larger in soleus 

compared to TA muscle (p=0.001), due to larger branches (p=0.001) but same 

branch length (p=0.997) (fig. IV.7A, B and C). 



 

 

 
 

 
 
Figure IV.7. Upon exercise, the size of the post-synapse of soleus NMJs increases, while it 
decreases in tibialis anterior (TA) NMJs. A-C. Dot plots display individual group distribution. The 
overlaid box plot shows the median as a horizontal bar and the mean as a diamond shape. D-F. 
Interaction plots show the means of the groups to emphazise the effect of exercise on each muscle. A. 
The total area of the post-synapse was larger in TA NMJs of control mice, but was larger in the soleus 
NMJs of running animals. D. After running, the total post-synaptic area was enlarged in soleus NMJs, 
while it was reduced in TA NMJs compared to control. B. The total length of the post-synapse 
branches was shorter in soleus than in TA in NMJs of control but not running animals. E. Following 
training, the length of the post-synaptic branches was increased in soleus NMJs, whereas it was 
decreased in TA NMJs compared to control. C. Post-synaptic branches were larger in soleus than in 
TA NMJs in both control and running mice. F. However, the width of the post-synaptic branches 
remained unchanged after exercise in soleus as well as in TA NMJs compared to control. (ANOVA 
followed by Tukey’s test with CI=0.95; significance: * p-value<0.05, ** p-value<0.01, *** p-
value<0.001, ns: no significance; notches and error bars: CI=0.95; for each paradigm soleus: n=40 
and TA: n=60 NMJs from 4 MDO animals) 
 
 



 

 

 
 

 
 
 
 
 
 
 

 
 
 
Figure IV.8. The presynaptic compartment of soleus NMJs contains a large volume of 
mitochondria that increases with exercise. A-B. Dot plots display individual group distribution. 
Overlaid box plot shows the median as a horizontal bar and the mean as a diamond shape. C-D. 
Interaction plots represent the effect of exercise on each muscle. A. The total mitochondrial volume 
was larger in soleus than in tibialis anterior (TA) NMJs in both control and running animals. C. Soleus 
NMJs had a larger mitochondrial volume in running compared to control mice, while it remained 
unchanged in TA NMJs. B. The total mitochondrial volume normalized to the NMJ size was larger in 
soleus than in TA NMJs in control as well as in running mice. D. However, when normalized to the 
NMJ size, the total mitochondrial volume was not different between running and control mice neither in 
soleus nor in TA NMJs. (ANOVA followed by Tukey’s test with CI=0.95; significance: * p-value<0.05, 
** p-value<0.01, *** p-value<0.001, ns: no significance; notches and error bars: CI=0.95; for each 
paradigm soleus: n=40 and TA: n=60 from 4 MDO animals) 
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It was next examined whether the changes in NMJ size were accompanied by 

the modulation of the pre-synaptic mitochondrial network. The total mitochondrial 

volume was larger in soleus compared to TA NMJs (p<0.001) in control animals (fig. 

IV.8A). Moreover, as soleus NMJs were smaller, the normalized mitochondrial 

volume was even larger in soleus compared to TA NMJs (p<0.001) (fig. IV.8B). Thus 

soleus NMJs had a higher concentration of mitochondria than TA NMJs (1.93 fold). 

After 12 weeks of running, the absolute mitochondrial volume increased in soleus 

NMJs (p<0.001) but not in TA NMJs (p=0.851) (fig. IV.8C). However, when 

normalized to the NMJ size, the total mitochondrial volume was not different between 

running and control mice in soleus (p=0.999) or in TA NMJs (p=0.212) (fig. IV.8D). 

Thus the increase in mitochondrial volume in soleus is proportional to the increase in 

overall NMJ size area. In addition, the decrease in NMJ size in TA was not 

accompanied by an increase in mitochondrial concentration. As a consequence, the 

absolute mitochondrial volume as well as the normalized mitochondrial volume 

remained larger in soleus compared to TA NMJs after exercise (both p=0.001) (fig. 

IV.8A and B). 

Furthermore, in control mice, the absolute total number of mitochondria 

clusters was larger in TA compared to soleus NMJs (p<0.001) (fig. IV.9A), which was 

apparently not merely due to the larger sizes of the TA NMJs. Indeed, when 

normalized to the NMJ size, the number of mitochondria clusters remained larger in 

TA compared to soleus NMJs (p<0.001) (fig. IV.9B). Notably, the training induced a 

decrease in the number of mitochondria clusters of TA NMJs (p<0.001), but not in 

soleus NMJs (p=0.497) (fig. IV.9C). In addition, the normalized number of 

mitochondria clusters was also decreased in TA NMJs after running (p=0.015), 

although there was no change in soleus NMJs (p=0.999) (fig. IV.9D). This result 

indicates that the reduction of mitochondria clusters is not only due to the reduction in 

TA NMJ area with exercise. Accordingly, both the absolute and relative number of 

mitochondria clusters remained larger in TA compared to soleus NMJs in running 

mice (both p=0.001) (fig. IV.9A and B).  

Finally, as described above in control mice, soleus NMJs exhibited a larger 

mitochondrial volume, but a smaller number of clusters (fig. IV.8A and IV.9A). In 

contrast, TA NMJs displayed a smaller mitochondrial volume but a larger number of 

clusters (fig. IV.8A and IV.9A). Thus, on average, mitochondria clusters of soleus 

NMJs had a larger volume compared to TA NMJs (p<0.001) (fig. IV.10A). As shown 



 

 

 
 
 
 
 
 

 
 

 
 

 
Figure IV.9. The presynaptic compartment of tibialis anterior (TA) NMJs contains a large 
number of mitochondria clusters, which decreases with exercise. A-B. Dot plots display individual 
group distribution. Overlaid box plot shows the median as a horizontal bar and the mean as a diamond 
shape. C-D. Interaction plots represent the effect of exercise on each muscle. A. The total number of 
mitochondria clusters was larger in TA than in soleus NMJs in both control and running mice. C. The 
number of mitochondria clusters was decreased in TA NMJs after running, but remained unchanged in 
soleus NMJs. B. The total number of mitochondria clusters normalized to the NMJ size was larger in 
TA NMJs compared to soleus in control as well as in running animals. D. While the total number of 
mitochondria clusters normalized to the NMJ size was decreased in TA NMJs after running, there was 
no change in soleus NMJs. (ANOVA followed by Tukey’s test with CI=0.95; significance: * p-
value<0.05, ** p-value<0.01, *** p-value<0.001, ns: no significance; notches and error bars: CI=0.95; 
for each paradigm soleus: n=40 and TA: n=60 from 4 MDO animals) 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
 
 
Figure IV.10. No modification of mitochondria cluster shape in the pre-synaptic NMJs of 
voluntary running mice. A-B. Dot plots display individual group distribution. Overlaid box plot shows 
the median as a horizontal bar and the mean as a diamond shape. C-D. Interaction plots represent the 
effect of exercise on each muscle. A. On average, mitochondria clusters of soleus NMJs had a larger 
volume than in tibialis anterior (TA) NMJs in both control and running mice. C. The average volume of 
mitochondria clusters was not different after running compared to control in both soleus and TA NMJs. 
B. Mitochondria clusters were more spherical in TA NMJs compared to soleus NMJs in control as well 
as in running animals. D. The average sphericity of mitochondria clusters was not altered by exercise 
neither in soleus nor in TA NMJs. E. Comparison of the relationship between the normalized 
mitochondrial volume and the normalized number of mitochondria clusters between NMJs of control 
and trained mice. (ANOVA followed by Tukey’s test with CI=0.95; significance: * p-value<0.05, ** p-
value<0.01, *** p-value<0.001, ns: no significance; notches and error bars: CI=0.95; for each 
paradigm soleus: n=40 and TA: n=60 from 4 MDO animals) 

  



 

 50 

before, exercise did not alter the normalized mitochondrial volume or the normalized 

number of clusters in soleus NMJs, which correlates with the absence of change in 

the average cluster volume (p=0.993) (fig. IV.10C). This indicates a similar repartition 

of the mitochondrial network between soleus NMJs of control and running animals. 

Upon exercise, TA NMJs had a decreased normalized number of clusters but the 

normalized mitochondrial volume remained unchanged. However, there was no 

increase in average cluster volume (p=0.054) (fig. IV.10C). Thus, on average, 

mitochondria clusters remained larger in soleus than in TA NMJs in running mice 

(p=0.001). These data correlate with the observation of more spherical mitochondria 

clusters in TA NMJs compared to soleus NMJs in control (p<0.001) as well as in 

running (p=0.001) animals (fig. IV.10B). The average sphericity index of mitochondria 

clusters was not affected by running exercise in soleus (p=0.986) or TA NMJs 

(p=0.866).  

The normalized mitochondrial volume and the normalized number of 

mitochondria clusters appear to be the most prominent changes in NMJ 

mitochondrial network morphology upon exercise. Therefore, the relationship 

between these two variables was examined in control animals as well as in running 

animals (fig. IV.10E). NMJs exhibiting a high mitochondrial density had a connected 

network, while NMJs containing a low mitochondrial density displayed a fragmented 

network. Endurance training did not modify this relationship. The data suggest that 

the connectivity of the mitochondrial network is correlated to the density of 

mitochondria. When the mitochondrial volume increases in the endplate, the space is 

reduced and the chance that clusters become interconnected might be increased. 

The relationship between other measured variables was also studied in soleus and 

TA NMJs of sedentary and trained animals. Figure 11 represents the postsynaptic 

area, branch length and branch width index in relation to the mitochondrial volume 

(fig. IV.11A-D) or in relation to the number of mitochondria clusters (fig. IV.11 E-H). 

There was no significant change in the different relationships after exercise. 

However, it is interesting to note that soleus appear to be more affected by the 

modifications of the mitochondrial volume (fig. IV.11A-D), while TA was more 

affected by the change in number of clusters (fig. IV.11 E-H). 

Taken together, these results indicate a fragmented network in TA NMJs, with 

small and spherical clusters. In contrast, in soleus NMJs, which have a higher 

mitochondrial concentration, mitochondria clusters are more elongated and 



 

 

 
 
Figure IV.11. Voluntary running exercise does not strikingly affect the relationship between the 
measured variables in the NMJs of soleus and tibialis anterior (TA) muscles. Scatter plots 
represent the postsynaptic area, branch length and branch width index in relation to the mitochondrial 
volume (A, B, C and D) or in relation to the number of mitochondria clusters (E, F, G and H). (for each 
paradigm soleus: n=40 and TA: n=60 NMJs from 4 MDO animals)  
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interconnected. Further, the data suggest that exercise induces a remodeling of the 

NMJ morphology that presents opposite characteristics between slow and fast 

muscles. Training elicits hypertrophy of slow post-synapses, while fast NMJs are 

reduced in size, due to a respective increase and decrease in branch length. In 

addition, enhanced activity maintains mitochondrial density in the pre-synapse by 

adjusting mitochondrial volume according to the change in the NMJ size. Finally, 

exercise reshapes mitochondrial network in fast NMJs in the direction of a more 

connected system. These results reinforce the idea that the important mitochondrial 

change in soleus NMJs is the increase in volume, whereas the important change in 

TA NMJs is the reduction in cluster number. The data also suggest that these 

changes may not just be adaptations of the pre-synapse to the change in post-

synapse size, but rather specific modifications elicited in MNs in response to 

increased activity. Whether these changes are supported by differences in gene 

expression levels was further assessed using RNA sequencing. 

 

4.4 Transcriptional changes in muscle and MNs following long-term 
voluntary wheel running 

In order to identify gene expression changes accompanying or underlying the 

observed adaptations of muscles or NMJs to exercise, RNA sequencing was 

performed on samples from soleus muscle and lumbar spinal cord. Six trained 

C57BL/6J mice of similar running performance, and six corresponding sedentary 

controls were used for the transcriptomic analysis. During activities requiring low 

force levels only the slowest motor units are predicted to be active (Zajac and Faden, 

1985). Thus, in the rather moderate intensity endurance training used (voluntary 

wheel running), a predominantly slow fiber-containing muscle such as soleus is likely 

much more recruited than the predominantly fast fiber-containing plantaris or tibialis 

anterior (TA) muscles. Therefore, the soleus was chosen for transcriptomic analysis 

after 12-weeks wheel running. As the effector of movements, muscle activity will 

immediately increase with exercise. However, the control of muscle contraction takes 

place in the spinal cord, which can be broadly divided in two different regions 

(Nógrádi and Vrbová, 2000; fig. 12B). The neurons and circuits generating motor 

output to the skeletal muscle, such as the motor neurons, are located in the ventral 

spinal cord. The dorsal spinal cord, in contrast, mainly contains neurons and circuits 



 

 

 
 
 
 
 

 
 
 
Figure IV.12. Accurate separation of the dorsal from the ventral region of the dissected spinal 
cords. A. A large number of genes are differentially expressed between the dorsal and the ventral 
region of the spinal cord (p-value<0.05, fold-change>2), in control as well as in running mice. B. 
Choline-acethyltransferase (ChAT) staining of the cholinergic neurons in a hemi-cross section of a 
mouse spinal cord. The ChAT-positive MNs are specifically located in the ventral region. (The 
horizontal dotted line represents the separation of the spinal cord between the dorsal region at the top 
and the ventral region at the bottom). C-E. Dorso-ventral differential expression of identified neuronal 
markers. C. The dorsal spinal cord samples are highly enriched in genes either implicated in dorsal 
specification during development (Lmx1b, Lbx1), or expressed in differentiated dorsal interneurons 
(Tfap2b, Kcnip2 and Pdyn). D. The ventral spinal cord samples are enriched with genes that play a 
role in ventral early differentiation. E. MN markers are highly expressed in ventral compared to dorsal 
samples. 
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processing and relaying somatosensory information, such as received by 

mechanoreceptors embedded in muscles, tendons or skin. Both ventral motor and 

dorsal sensory networks will experience increased activity upon exercise, which 

however may differ because of their involvement in primarily generating motor output 

or sensory input, respectively. Therefore, the dorsal and ventral regions of the lumbar 

spinal cord were isolated and separately processed for transcriptome analysis via 

RNA sequencing. 

 

4.4.1 Assessing sample quality and reliability 

The expression profile of dorsal versus ventral spinal cord samples were first 

characterized in all 12 mice to confirm the accurate separation of the dorsal from the 

ventral region during sample collection. A large number of genes were differentially 

expressed between the dorsal and the ventral horn of the spinal cord, in control as 

well as in running mice (fig. IV.12A). Among the 16631 genes commonly expressed 

by all four groups of samples, 680 genes were specifically enriched in the dorsal 

samples and 227 were specifically enriched in the ventral samples. These distinct 

pools of genes were then screened for identified neuronal markers. The dorsal spinal 

cord samples were highly enriched in genes such as Lmx1b and Lbx1 that are 

implicated in dorsal horn specification during development (fig. IV.12B; Alaynic et al., 

2011). Dorsal samples also had high expression of markers for differentiated dorsal 

interneuron types, including Tfap2b, Kcnip2 and Pdyn (fig. IV.12C; Wildner et al., 

2013). In contrast, the ventral spinal cord samples were enriched with genes required 

for ventral horn cell type diversification, including Mnx1 (also known as Hb9), Isl2, 

Nkx6-1 and Lhx3 (fig. IV.12D; Alaynic et al., 2011). Furthermore, MN markers were 

expressed at higher levels in the ventral compared to the dorsal spinal cord samples, 

which included Chodl, Calca, Chat, Mmp9 and Esrrb (fig. IV.12E; Forsgren et al., 

1993; Piehl et al., 1993; Enjin et al., 2010; Kaplan et al., 2014; Friese et al. 2009). 

This is illustrated by the labeling of cholinergic MNs and V0c interneurons in the 

ventral spinal cord using an antibody against ChAT (choline-acethyltransferase, the 

Chat gene product) (fig. IV.12B). 

It was next important to assess the efficacy of the training of the mice. Gene 

expression in the soleus muscle and ventral spinal cord was profoundly altered after 

12 weeks of running (fig. IV.13). The 50 most significantly up-regulated genes and 



 

 

 
 
 
 
 
 

 
 
 
Figure IV.13. Long-term voluntary running alters the gene expression profile of the soleus and 
the ventral spinal cord. A-B. The 100 most significantly differentially regulated genes in the ventral 
spinal cord and in the soleus muscle after 12 weeks of endurance training. A. The ventral spinal cord 
gene expression profile is significantly different between sedentary and trained animals. B. Training 
also significantly impacted soleus gene expression profile. (Heat maps: p-value<0.001 and ranking by 
fold-change; color code: red as highest and blue as lowest gene expression level; n=6 C57Bl/6J mice 
per group)  
 
 

  



 

 53 

the 50 most significantly down-regulated genes following exercise – according to the 

p-value – show very different levels of expression between the control and the 

running samples in both the soleus and the ventral spinal cord. 

 

4.4.2 Common transcriptional changes in muscle and spinal cord 

Following the RNA sequencing experiment, a computational functional 

analysis using the Gene Ontology database was performed in order to enable the 

functional interpretation of the experimental data. The Gene Ontology (GO) 

annotations are used to classify functional attributes of gene products as of Biological 

Process, Molecular Function and Cellular Component. 

 

GO taxon what the associated GO terms describe 

Biological Process biological functions in which a gene product is involved  

Molecular Function activities and functions that a gene product executes 

Cellular Component subcellular or extracellular localization of a gene product 

 

 

The analysis is based on the ranking of the genes according to their p-value 

and fold-change of expression, followed by a refinement method to identify the GO 

terms enriched in the data (see Materials and Methods section). Figures IV.14-25 

display the GO terms in each of the three taxonomies, which representation in the 

dataset was significantly altered by chronic endurance exercise. By means of a color 

code, the graphs also indicate whether the effect is positive (e.g. activation of the 

function) or negative (e.g. repression of the process). In all tissues sampled, a broad 

range of functional changes occurred, but the ventral spinal cord showed most 

alterations upon training. The possibility of a common adaptation of the different parts 

of the neuromuscular system to exercise was first investigated. To achieve this, the 

results from the muscle and spinal cord samples were compared in order to identify 

similarly regulated biological processes, molecular functions and cellular components 

across the three tissues (fig. IV.26). Then, the processes, functions and components 

shared by the three tissues were screened for similar changes in the expression of 

particular genes (table IV.3).  

 Training first resulted in enhanced activity in the nucleus as suggested by the 

increased regulation of transcription, spliceosomal assembly and nucleic acid binding 



 

 

 
 
Figure IV.14. Biological processes activated or repressed upon exercise training in the soleus 
muscle. (GO terms enrichment after computational functional analysis; p-value after refinement <0.5) 
  



 

 

 
 
Figure IV.15. Molecular functions activated or repressed upon exercise training in the soleus 
muscle. (GO terms enrichment after computational functional analysis; p-value after refinement <0.5) 
  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure IV.16. Exercise training mainly activated the centrosomal compartment in the soleus 
muscle. (GO terms enrichment after computational functional analysis; p-value after refinement <0.5; 
number of genes expressed in soleus, which product localizes in the compartment) 
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Figure IV.17. Exercise training mainly repressed activity of the mitochondrial compartment in 
the soleus muscle. A. Principal cellular components which activity is repressed upon exercise. B. 
Detail of the mitochondrial sub-compartments. (GO terms enrichment after computational functional 
analysis; p-value after refinement <0.5; number of genes expressed in soleus, which product localizes 
in the compartment) 
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activity (fig. IV.26). For instance, the gene expression of the splicing factor SRSF1 

(serine/arginine-rich splicing factor 1) and of the short isoform of the chromatin-

associated protein PSIP1 (PC4 and SF2 interacting protein 1) were increased. PSIP1 

might act to modulate splicing through its binding to both chromatin and splicing 

factors such as SRSF1, which relocalizes into the cytoplasm in response to stress 

and couples transcription with alternative splicing (table IV.3; Pradeepa et al., 2012; 

Cramer et al., 1999). Exercise also activated the expression of the splicing regulator 

PTBP2-encoding gene (polypyrimidine tract binding protein 2), which inhibits a set of 

adult neuronal exons to promote embryonic neuronal maturation (table IV.3; 

Licatalosi et al., 2012; Li et al. 2014).  

 In addition, training regulated the expression of transcription factors that have 

mitochondrial genes as targets. The up-regulation of Mef2a (myocyte enhancer 

factor-2a) was paralleled by the down-regulation of one of its target gene and 

interactor Hdac5 (histone deacetylase 5), indicating the modulation of the 

transcription of genes implicated in cellular homeostasis (table IV.3; Czubryt et al., 

2003). Notably, the transcription of the transcriptional cofactor PGC-1α (peroxisome 

proliferator-activated receptor γ coactivator-1α), a master regulator of mitochondrial 

biogenesis and fatty acid oxidation, is activated by MEF2 and repressed by HDAC5 

(Czubryt et al., 2003). Moreover, PGC-1α activates the transcription of Esrra 

(estrogen-related receptor α), the gene encoding its coactivator ERR1. The gene 

expression of ERR1, which regulates target genes involved in energy metabolism 

(glycolytic pathway, pyruvate metabolism, and tricarboxylic acid cycle), was down-

regulated after training (table IV.3; Deblois and Giguère, 2011). 

Furthermore, chromatin remodeling processes such as histone ubiquitination 

or methylation appeared positively regulated in the different tissues, which may also 

impact gene transcription (fig. IV.14-25). Regulators of chromatin compaction, like 

the transcription factors described above, can influence the transcription of metabolic 

genes. For instance, exercise increased the expression of histone demethylase 

KDM5A-encoding gene (lysine (K)-specific demethylase 5A), which plays a role in 

the regulation of oxidation-reduction in mitochondria as direct repressor of metabolic 

regulatory genes (table IV.3; Váraljai et al., 2015). Interestingly, PGC-1α is also a 

coactivator of KDM5A target genes. Conversely, metabolites from the mitochondrial 

oxidation-reduction activity can regulate gene transcription. For example, Tet1 and 

Tet2 (tet methylcytosine dioxygenase 1 and 2) expression was reduced in the 



 

 

 
 
Figure IV.18. Biological processes activated or repressed upon exercise training in the dorsal 
spinal cord. (GO terms enrichment after computational functional analysis; p-value after refinement 
<0.5)  



 

 

 
 
Figure IV.19. Molecular functions activated or repressed upon exercise training in the dorsal 
spinal cord. (GO terms enrichment after computational functional analysis; p-value after refinement 
<0.5) 
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Figure IV.20. Exercise training mainly activated the nuclear compartment in the dorsal spinal 
cord. A. Principal cellular components which activity is enhanced upon exercise. B. Detail of the 
components in the nucleus and cell division apparatus. (GO terms enrichment after computational 
functional analysis; p-value after refinement <0.5; number of genes expressed in dorsal spinal cord, 
which product localizes in the compartment) 
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Figure IV.21. Exercise training mainly repressed activity of the mitochondrial compartment in 
the dorsal horn of the spinal cord. A. Principal cellular components which activity is repressed upon 
exercise. B. Detail of the mitochondrial sub-compartments. (GO terms enrichment after computational 
functional analysis; p-value after refinement <0.5; number of genes expressed in dorsal spinal cord, 
which product localizes in the compartment)  
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experiment (table IV.3). TET1 and TET2 are major enzymes of DNA and histone 

demethylation, which activity is regulated by the metabolites in the Krebs cycle 

(Salminen et al., 2014). Interestingly, exercise appeared to also modify mitochondrial 

functions, which could be linked to the changes described above. 

Firstly, the down-regulation of the mitochondrial membrane organization 

suggests an alteration of the fission-fusion processes and/or mitochondrial 

transmembrane protein transport (fig. IV.26). The balance between mitochondrial 

fusion and fission involves YME1L1 (YME1-like 1 ATPase), which gene expression 

was up-regulated after exercise (table IV.3; Anand et al., 2014). In contrast, the 

expression of the mitochondrial fusion factor Mitofusin 2-encoding gene (Mfn2), 

which participates in mitochondrial fusion, and MUL1-encoding gene (mitochondrial 

E3 ubiquitin protein ligase 1), which promotes mitochondrial fragmentation were both 

down-regulated (table IV.3; Bach et al., 2003; Lokireddy et al., 2012).  

Secondly, several lines of evidence support a repression of the mitochondrial 

respiratory chain activity (hexose catabolic process, fatty acid β-oxidation, oxidation-

reduction process) (fig. IV.26). Interestingly, the repression of Mitofusin 2 notably 

reduces glucose oxidation and cell respiration (Bach et al., 2003). In addition, the 

expression of the gene encoding BCKDHA (branched chain ketoacid dehydrogenase 

E1 α), a mitochondrial enzyme involved in the metabolism of the indispensable amino 

acids leucine, isoleucine and valine, was down-regulated (table IV.3; Hatzawa et al., 

2014). Branched-chain amino acid metabolism may also be impacted by the reduced 

expression of Ethe1 (ethylmalonic encephalopathy 1), which product is implicated in 

mitochondrial oxidative phosphorylation (table IV.3; Hildebrant et al., 2013; Parikh et 

al., 2008). A third down-regulated gene, Mlycd (malonyl-CoA decarboxylase), is 

involved in fatty-acid oxidation (table IV.3; Saha and Ruderman, 2003). Besides, an 

increase in the gene expression of the mitochondrial reductase RRM2B 

(ribonucleotide reductase M2 B) was observed. RRM2B is the rate-limiting enzyme in 

de novo dNTP (deoxyribonucleoside triphosphate) synthesis required for mtDNA 

replication and repair (table IV.3; Pontarin et al., 2012). Further, the down-regulation 

of co-annotated processes such as the generation of precursor metabolites and 

energy, the hydrogen ion transmembrane transport or the cytochrome-c activity, 

support these observations (fig. IV.14-25).  

Finally, the decrease in function of structural constituent of the ribosome 

indicates a reduction of the endoplasmic reticulum activity (fig. IV.26). Interestingly, 



 

 

 
 
Figure IV.22. Biological processes activated or repressed upon exercise training in the ventral 
spinal cord. (GO terms enrichment after computational functional analysis; p-value after refinement 
<0.5) 



 

 

 
 
Figure IV.23. Molecular functions activated or repressed upon exercise training in the ventral 
spinal cord. (GO terms enrichment after computational functional analysis; p-value after refinement 
<0.5) 
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Figure IV.24. Exercise training mainly activated the nuclear compartment in the dorsal spinal 
cord. A. Principal cellular components which activity is enhanced upon exercise. B. Detail of the 
components in the nucleus and cell division apparatus. (GO terms enrichment after computational 
functional analysis; p-value after refinement <0.5; number of genes expressed in ventral spinal cord, 
which product localizes in the compartment) 
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Figure IV.25. Exercise training mainly repressed activity of the mitochondrial and endoplasmic 
reticulum compartments in the dorsal spinal cord. A. Principal cellular components which activity 
is repressed upon exercise. B. Detail of the mitochondrial compartments. C. Detail of the endoplasmic 
reticulum compartments. (GO terms enrichment after computational functional analysis; p-value after 
refinement <0.5; number of genes expressed in ventral spinal cord, which product localizes in the 
compartment) 



 

 56 

BCKDHA appears to be also important for protein synthesis and ETHE1 may have 

implications in post-translational modifications (Hatzawa et al., 2014; Hildebrant et 

al., 2013). Moreover, the expression of Rps4l (ribosomal protein S4-like) and Rpl29 

(ribosomal protein L29) was decreased following training (fig. IV.26). RSP4L is 

possibility involved in selective mRNA recognition and translation, and the deletion 

Rpl29 is accompanied by abnormal assembly of the two ribosomal subunits, which 

decreases the translational capacity of cells and thus reduces protein biosynthesis 

rates (table IV.3; Sugihara et al., 2013; Kirn-Safran et al., 2007). This is further 

supported by the down-regulation of translation and translation elongation, rRNA 

processing or ribosomal complex assembly in individual tissues (fig. IV.14-25).  

Taken together these results indicate a common adaptive response of the 

different components of the neuromuscular system to physical exercise. On one 

hand, the expression regulation of genes involved in the regulation of chromatin 

modification, spliceosomal complex assembly and transcription, suggest an 

enhanced activity in the nucleus. On the other hand, the expression regulation of 

genes that play a role in mitochondrial biogenesis and localization, or implicated in 

ribosomal complex assembly and the regulation of translation suggest a repression 

of the activity in mitochondria and the endoplasmic reticulum. Moreover, many of the 

pathways that appear to change upon exercise are interconnected, with certain 

genes being shared by more than one pathway or cellular process. In particular, the 

nucleus and the mitochondrion appear to undergo changes that can affect each 

other. This suggests a synergistic adaptation of the different cellular compartment 

organization and function.  

 

4.4.3 Transcriptional changes in the soleus  

In order to address exercise-induced adaptation of the muscle more 

specifically, alterations in gene expression levels that could support the adaptations 

observed by immunohistochemistry were investigated. The Myh7 and Myh2 genes, 

encoding the slow isoforms MyHC I and MyHC IIa, respectively, exhibited high 

expression levels, thus reflecting the predominance of type I and IIa fibers shown by 

immunohistochemistry (see fig. IV.2 and table IV.1), whereas Myh1 and Myh4 coding 

for the fastest myosins MyHC IIx and MyHC IIb respectively, had comparatively low 

expression levels (fig. IV.27A). In addition, the slight shift towards “slower” fiber types 



 

 

 
 
Figure IV.26. Common response of dorsal spinal cord, ventral spinal cord and soleus muscle to 
long-term endurance training. Venn diagrams represent in the three tissues the number of GO 
terms identified by computational functional analysis, which have a p-value after refinement <0.5 (A-B, 
D-E, G-H). Some biological processes (A-B), molecular functions (D-E) and cellular components (G-H) 
were similarly up- or down-regulated after exercise in all three tissues. The details of the are shown in 
the bargraphs (C, F, I). Globally, the mitochondrion compartment and function is down-regulated, 
whereas nucleic acid regulation is activated. (color code: blue = repression, red = activation) 



 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Table IV.3. Selected genes from the common response to training, which play a role in the 
regulation of transcription and splicing, in oxidation-reduction processes and in mitochondrial 
membrane organization. The GO terms of the three taxa (biological processes, molecular functions 
and cellular components) similarly regulated in the three tissues, show some overlap with regard to 
the genes involved. The average fold-changes indicate that the rate of change in expression level of 
the selected genes is limited, although the change is statistically significant. GO terms enrichment 
after computational functional analysis; p-value after refinement <0.5; fold-change calculated as 
average of fold-change in the three tissues; color code: blue = down-regulated expression level, red = 
up-regulated expression level) 
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observed by immunohistochemistry in soleus muscles of trained mice (see fig. IV.2 

and table IV.1) was reflected by corresponding changes in gene expression detected 

by RNA sequencing (fig. IV.27). Expression level of Myh7 was significantly increased 

(p-value<0.001, run/ctrl fold-change=1.36), while the expression of Myh2 was 

decreased (p-value=0.035, run/ctrl fold-change=0.87), thus reflecting the increased 

slow type I and reciprocally decreased fast types IIa and IIx in soleus (table IV.1). 

The expression of Myh1 and Myh4 was unaffected by exercise. Moreover, endurance 

training increased the expression of Prox1 (prospero homeobox 1) that is specifically 

implicated in slow fiber-type specification and whose loss promotes a shift towards 

fast fibers (fig. IV.27B; Petchey et al., 2014). These results indicate that although 

extensive fiber-type transition was limited when looking at the histological results, the 

transcriptome data revealed a comprehensive shift towards a slow fiber type gene 

expression signature. 

 

4.4.4 Transcriptional changes specific to the neuromuscular synapse  

Transcriptional changes in the soleus muscle and ventral spinal cord were 

investigated in order to identify specific adaptation of the NMJ that could underpin 

changes in pre- and post-synaptic NMJ observed by immunohistochemistry. The 

results of the histological analysis of NMJs in sedentary and trained animals suggest 

that soleus NMJs adapted through synaptic expansion paralleled by an increase in 

mitochondrial volume, whereas the surface covered by TA NMJs underwent 

contraction, associated with enhanced interconnectivity of the mitochondrial network 

(see fig. IV.4-11). The data also suggest that these changes may not merely reflect 

pre-synaptic arrangements accompanying the change in post-synapse size, but 

rather specific modifications elicited in MNs in response to increased activity. The 

RNA sequencing results in the dorsal and ventral spinal cord, as well as in soleus 

muscle showed that expression levels of genes implicated in synapse remodeling 

and synaptic transmission were altered by 12 weeks of voluntary wheel-running (fig. 

IV.28).  

Two genes from the common response to exercise presented in table 3 are 

involved in the regulation of synaptic genes. The splicing regulator PTBP2 

(polypyrimidine tract binding protein 2) is implicated in regulating pre- and post-

synaptic assembly and synaptic transmission, while MEF2 is implicated in regulating 



 

 

 
 
Figure IV.27. Twelve weeks wheel running induces changes in gene expression in the soleus 
muscle. A. Expression level of the Myh genes encoding the four adult skeletal muscle MyHC isoforms 
Myh7 (MyHC I), Myh2 (MyHC IIa), Myh1 (MyHC IIx) and Myh4 (MyHC IIb) measured by RNA 
sequencing. Soleus predominantly expresses the slow Myh7 and the fast resistant Myh2 isoforms. 
Exercise induces the expression of Myh7 and reduces the expression of Myh2. B. Endurance training 
increases the expression of Prox1 that is specifically implicated in slow-twitch fiber-type specification. 
The expression of Slc2a4, which encodes the GLUT4 glucose transporter protein implicated in insulin 
sensitivity, is down-regulated. (significance: * p-value<0.05, ** p-value<0.01, *** p-value<0.001, ns: no 
significance; error bars: CI=0.95; for each paradigm n=6 C57BL/6J animals) 
 
 
 
 

 
 
Figure IV.28. Endurance training regulates the expression level of genes involved in synaptic 
processes: transmission, morphogenesis and mitochondrial organization. The expression level 
of the selected genes in soleus and ventral spinal cord is expressed as fold-change in the running 
samples compared to control samples. The products of the selected genes play different roles in pre- 
and post-synapse maintenance and signal transduction. Some of the gene products are involved in 
mitochondrion motility, distribution or fission-fusion dynamics. The regulation of the gene expression 
may impact NMJ structure and function to adapt to elevated physical activity. (gene selection criterion: 
p-value<0.5)  
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the transcription of synaptic genes and also plays a key role in post-synaptic 

maturation that condition accurate pre-synaptic active zone localization (see table 

IV.3; fig. IV.28; Zheng et al., 2012; Flavell et al., 2008; Prokop et al., 1996). In 

addition, MEF2 also functions together with FMR1 (fragile X mental retardation 

syndrome 1) to eliminate excitatory synapses during brain development (Pfeiffer et 

al., 2010). Expression of Fmr1 was increased after exercise. FMR1 is also implicated 

in presynaptic long-term potentiation in cortical neurons, as well as in an RNA-editing 

pathway that ensures proper NMJ synaptic architecture (Bhogal et al., 2011; Koga et 

al., 2015). Interestingly, the expression of the ACHE-encoding gene 

(acetylcholinesterase), which deletion causes smaller nerve terminals and diminished 

pre- and post-synaptic surface contacts, was reduced (fig. IV.28; Adler et al., 2011). 

Ache as well as Cacnb4 (calcium channel, voltage-dependent, β4 subunit) null 

mutants, display defects in synaptic transmission. Cacnb4, up-regulated after 

exercise, encodes a regulatory subunit of the voltage-gated calcium channel, which 

association with the α1A subunit increases current amplitude at the motor endplate 

(fig. IV.28; Arikkath and Campbell, 2003). CACNB4 also serves to communicate the 

activity of calcium channels to the nucleus through its nuclear targeting, and possibly 

play a role as scaffolding protein that allows specific downstream effects 

(Subramanyam et al., 2010; Weiss, 2006). Moreover, physical training enhanced the 

expression of genes encoding proteins specifically involved in synapse assembly, 

remodeling and maintenance. For instance, ABI2 (abl-interactor 2) regulates actin 

structure and presynaptic axon guidance, and is a critical mediator of post-synaptic 

assembly and remodeling at the NMJ (fig. IV.28; Finn et al., 2003). Dystrophin (Dmd) 

is required for organizing large AChR aggregates on the post-synapse and the 

calcium sensors HOMER 1 and 2 (homer homolog 1 and 2) have been proposed to 

modulate the activity of various ion channels and of the transcription factor NFAT 

(nuclear factor of activated T cells), that modulates skeletal muscle differentiation (fig. 

IV.28; Kong and Anderson, 1999; Salanova et al., 2011). 

Furthermore, exercise modulated the expression of genes implicated in 

mitochondrial network remodeling, which may account for a part of the adaptive 

mechanisms at the pre-synaptic NMJ. Notably, the products of the up-regulated 

Ranbp2 (RAN binding protein 2) and the down-regulated Kifc3 (kinesin family 

member C3) genes are regulators of mitochondria trafficking (fig. IV.28). RANBP2 

modulates mitochondrial membrane potential and is specifically implicated in the 
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kinesin-dependent transport of mitochondria, while KIFC3 is abundantly expressed at 

neuronal terminals and mediates minus-end directed (retrograde) transport for proper 

subcellular distribution of mitochondria (Cho et al., 2007; Hoang et al., 1999; Dietrich 

et al., 2013). In addition, training also mediated the regulation of genes implicated in 

mitochondrial fission-fusion processes such as Dnm1l (dynamin 1-like, also known as 

Drp1) or Rab7 (RAB7, member RAS oncogene family) (fig. IV.28). The product of the 

up-regulated Dnm1l gene contributes to mitochondrial division in mammalian cells, 

and is required for proper cellular distribution of mitochondria (Smirnova et al., 2001; 

Verstreken et al., 2005). More interestingly, DNM1L appears to be critical for the 

mobilization of reserve pool vesicles at the NMJ and its mutation severely affects 

neurotransmission (Verstreken et al., 2005). The RAB7 protein encoded by the 

down-regulated Rab7 gene is required for normal presynaptic growth and 

postsynaptic organization at the NMJ (Lee et al., 2013). Moreover, RAB7 is 

implicated in mitophagy that relies on the fusion of mitochondria with lysosomes 

(Yamano et al., 2014). 

Taken together, these results indicate that specific synaptic gene expression 

changes are elicited in the soleus muscle and the ventral spinal cord in response to 

exercise. These genes are implicated in synaptic structure maintenance and synaptic 

transmission on one hand, and in mitochondrial morphology and subcellular 

distribution on the other hand.  The regulation of these genes likely accounts for the 

observed adaptation of NMJ morphology and presynaptic mitochondrial networks. 

The regulation of mitochondrial biogenesis and dynamics may thus be tightly linked 

to the adaptation of NMJ structure and function to elevated physical activity.   
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V Discussion 

 

 Physical activity is of major importance in improving the quality of life. Exercise 

can have a considerable impact because it is relevant to the general “healthy” 

population and particularly interesting in preventing the development of pathologies 

and delaying the progression of diagnosed diseases. Unlike drugs, regular physical 

activity is accessible to anybody and does not require any prescription. However, the 

elaboration of an appropriate training is usually recommended when used as part of 

the treatment for a specific impairment. For example, exercise is used as adjunct in 

different cancer therapies, high intensity interval training is recommended to improve 

diabetes symptoms and interestingly, different forms of exercise promote MN 

survival, which delays the onset of motor deficits in ALS model mice (Brown at al., 

2012; Bird and Hawley, 2012; Carreras et al., 2010; Deforges et al., 2009).  

 

5.1 Physical training – exercise paradigm 

 Voluntary wheel running, the exercise paradigm used in this study, can be 

categorized as moderate endurance training, based on oxidative metabolism 

(aerobic). In contrast, strength or resistance training is based on a glycolytic 

(anaerobic) energy system. In muscle, both forms of exercise appear to lead to 

similar increases in mitochondrial abundance and improvements in glycemic control 

(Egan and Zierath, 2013). However, the intensity, frequency and duration of each 

exercise session imply distinct functional adaptations of the organism, with different 

impacts on the metabolic and molecular responses of any given tissue (Hildebrandt 

et al., 2003). It was shown that after 12 weeks of increased daily physical activity, 

physiological adaptations of muscle and cardiovascular systems have reached a 

steady-state level, and that biophysical properties of MNs have adapted (Beaumont 

and Gardiner 2003). Thus, the exercise-induced changes observed in this study are 

long-term stable adaptations of the different organs and tissues.  

 Besides, a common objection to the use of wheel running with laboratory 

animals is that this behavior is an artifact of captivity (Sherwin, 1998). However, a 
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recent study showed that wild mice use running wheels that are placed in nature in a 

similar pattern compared to captive mice in cages equipped with identical running 

wheels (Meijer and Robbers, 2014). This suggests that wheel running is rather an 

elective than a stereotypic behavior. It is worth noting that distances run in wheels 

should not directly be compared with linear planar locomotion. All animals used in the 

present study were of C57BL/6J genetic background and had the same age at the 

start of the training. Moreover the MDO (Mito-Dendra2-flox;Olig2-Cre) mouse line is a 

reporter line and therefore MDO animals also present a wild-type phenotype. Since 

C57BL/6J and MDO males exhibited similar performances on average (data not 

shown), differences in performance in the selected animals were likely due to the 

exclusive use of C57BL/6J males, when both males and females MDO were used 

(see fig. 1). This observation is consistent with the previous demonstration that rat 

females run more than males (Eikelboom and Mills, 1988).  

 

5.2 Exercise-induced specific adaptations in muscles 

 Alterations of the neuromuscular system upon long-term endurance training 

were first investigated in muscles. The fiber type distribution in soleus and plantaris 

suggest that the long but moderate intensity training induces a slight shift towards 

slower fiber types in slow as well as in fast muscles, in line with previously published 

data (see fig. 2 and 3; reviewed in Bassel-Duby and Olson, 2006, and Schiaffino et 

al., 2007). The rate of change appeared to be higher in soleus compared to plantaris, 

possibly due to the fact that only the slowest motor units, enriched in the soleus, are 

active during moderate intensity running (Zajac and Faden, 1985). The RNA 

sequencing experiment confirmed this slow-to-fast fiber-type transition in the soleus, 

where a slow phenotype was specifically promoted by enhancing Prox1 gene 

expression level (see fig. 29; Petchey et al., 2014). Surprisingly, endurance training 

induced the down-regulation of Slc2a4 encoding the GLUT4 glucose transporter that 

plays a role in muscle sensitivity to insulin (fig. 29). Previous studies reported 

transient Slc2a4 transcription after single bouts of exercise (Richter and Hargreaves, 

2013). This suggests that chronic training and acute exercise differentially modulate 

glucose uptake in muscle. However, the present study did not investigate GLUT4 

protein activity, which may be enhanced in a context of prolonged training. In 
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addition, long-term endurance training increased Pten and decreased Akt1 gene 

expression in soleus as well as in the spinal cord (table 3). Since PTEN is an inhibitor 

of the PI3K/AKT/mTOR signaling pathway, both results indicate an inhibition of this 

pathway (Song at al., 2012). Resistance training, but not endurance training, 

activates PI3K/AKTmTOR signaling to induce skeletal muscle hypertrophy, and 

another study suggests that AKT1 signaling may function as a specific mediator of 

type II muscle hypertrophy (Bodine et al., 2001; Nader and Esser, 2001; Izumiya, 

2008). Therefore, inhibition of AKT/mTOR pathway is consistent with the fast-to-slow 

muscle fiber transition induced by endurance training. However, wheel running 

induced an increase in Igf1 gene expression (table 3), consistently with another 

study, which found increased IGF-1 protein levels in the brain after moderate long-

term exercise (Bayod et al., 2011). On the opposite of PTEN, IGF-1 activates 

PI3K/AKT/mTOR signaling pathway and promotes muscle growth (fig. 27; Schiaffino 

and Mammucari, 2011). Thus, in endurance training, IGF-1 may not be implicated in 

muscle growth but possibly exerts one or more of its numerous other roles, including 

the regulation of glucose uptake, inflammation processes, mitochondrial function or 

synaptic plasticity (Spielman et al., 2014).  

 

5.3 Neuromuscular system adaptation to training, the common 
changes 

The transcriptomic analysis showed that soleus gene expression profile was 

significantly altered after 12 weeks of voluntary wheel running (see fig. 13B, fig. 14-

17 and fig. 28). However, important changes in gene expression level also occurred 

in the ventral spinal cord and to a lesser extend in the dorsal spinal cord (see fig. 13A 

and fig. 18-25). Some of these regulations were common to all three tissues, 

whereas other changes were specific to either one of them. This suggests that 

exercise can elicit a common response from different organs and at the same time 

can induce tissue-specific changes in order to adapt individual organ properties and 

functions, and maintain the whole body homeostasis upon elevated activity. For 

instance, the circadian rhythms were positively regulated specifically in the ventral 

spinal cord (see fig. 22). Consistently, it was previously demonstrated that voluntary 

running entrains the circadian clock that can impact energy metabolism through the 
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regulation of food intake or insulin sensitivity (Yamanaka et al., 2013; Marosi and 

Mattson 2014). Further, among the multiple biological processes affected by physical 

training in all three tissues, the cell cycle and cell division apparatus were positively 

regulated (see fig. 14,16,18, 20, 22 and 24). This could reflect the proliferation of 

satellite cells in the muscle, or the addition of myofiber nuclei in order to sustain 

increased protein synthesis (Bruusgaard et al., 2010). Although voluntary exercise 

was shown to promote both postnatal gliogenesis and neurogenesis in brain regions, 

these processes were never described in the spinal cord before (Cotman and 

Berchtold, 2002; Mandyam et al., 2007). Moreover, training increased cytokine 

production and release, and modulated the response to circulating cytokines and 

hormones, thereby regulating the communication between tissues (see fig. 14,18 and 

22). However, in line with other studies, exercise suppressed inflammatory response 

that is usually associated with reduced physical activity (Handschin and Spiegelman, 

2008). Strong evidence suggests that this is the mechanism by which physical 

activity prevents the development or ameliorates the symptoms of chronic diseases. 

Another benefit of training was its ability to counteract damages that were described 

in aging, through enhanced DNA repair and telomere preservation in the spinal cord 

(see fig. 18, 22 and 24; Safdar et al., 2011; Borghini et al., 2015).  

Interestingly, exercise regulated the expression of numerous genes coding for 

RNA binding proteins (data not shown), paralleled by an increased activity in stress 

granules (fig. 16 and 24). This may indicate the activation of a protective mechanism 

able to prevent the formation of protein aggregates toxic for the cell (Kiebler and 

Bassell, 2006; Thomas et al., 2011). Furthermore, training modulated the expression 

of various genes implicated in ALS, Parkinson or Alzheimer disease (data not shown) 

and apoptotic signals were regulated in favor of intrinsic signals over extrinsic signals 

(fig. 18 and 22). Unexpectedly, the gene expression of the pro-survival kinase AKT 

was down-regulated after voluntary wheel-running in muscle as well as in the spinal 

cord (see table 3). Other studies have shown that AKT inhibits autophagy, and 

inhibits apoptosis induced by increased mitophagy in hepatocellular carcinoma 

(Wang et al., 2012; Liu et al., 2014). Thus decreased AKT pathway may be a 

protective mechanism that promotes intrinsic pro-apoptotic signals necessary for 

autophagy, the selective elimination of damaged cellular parts. Consistently with 
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anterior studies, these results suggest the promotion of neuronal survival upon 

training (Cotman and Berchtold, 2002).  

Importantly, the data indicate that nucleic acid regulation was enhanced upon 

endurance training. Notably, chromatin remodeling through histone modifications 

may be linked to the increased regulation of gene transcription (see fig. 14, 15, 18, 

19, 22, 23 and 24; Barrès et al., 2012). Several studies reported epigenetic 

modulations upon physical exercise, which, in turn, control the expression of genes 

involved in metabolic adaptations (reviewed in Pareja-Galeano et al., 2014). For 

example, the down-regulation of histone deacetylase HDAC5-encoding gene coupled 

with the up-regulation of the transcription factor MEF2-encoding gene suggests the 

regulation of diverse metabolic genes, including Pgc-1α, a master regulator of 

mitochondrial biogenesis and fatty acid oxidation (see table 3; Czubryt et al., 2003). 

Moreover, the loss of expression of histone demethylase KDM5A-encoding gene 

increases mitochondrial respiration through the repression of metabolic regulatory 

genes (Váraljai et al., 2015). Thus, the exercise-induced up-regulation of Kdm5a 

correlates with the apparent general reduction in mitochondrial oxidoreductase 

activity (see table 3 and fig. 26). Conversely, metabolic changes during exercise may 

also affect gene expression through epigenetic mechanisms. For instance, the 

balance of tricarboxylic acid cycle (TCA cycle or Krebs cycle) reactions determines 

the abundance of specific metabolites, which differently regulate the activity of the 

major DNA and histone demethylases TET1 and TET2 (Salminen et al., 2014). The 

down-regulation of Tet1 and Tet2 expression combined with the reduced activity of 

the TCA cycle (see fig. 14 and 22) may thus affect the level of DNA and histone 

methylation and thereby control gene expression linked to exercise regulation. 

Further, the expression of transcription factors was also directly modulated upon 

endurance training. The nuclear receptor ERR1 appears to be dispensable for basal 

cellular function; however, its target genes are required for optimal adaptation to 

exercise (Perry et al., 2014). Unexpectedly, the expression of Esrra, the ERR1-

encoding gene, was down-regulated following exercise (see table 3). One could 

speculate that the duration of the training was long enough for the system to adapt so 

that the running condition has become the basal condition and target gene 

transcription by ERR1 is no longer required. Interestingly, PROX1 that is specifically 

implicated in slow fiber-type specification in muscle is a negative modulator of ERR1, 
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which is consistent with the increased Prox1 but decreased Esrra gene expression in 

the present study (table 3 and fig. 27B; Charest-Marcotte et al., 2010). In line with 

enhanced gene transcription regulation, RNA splicing activity appeared increased 

following exercise (see fig. 14-26). 

 Besides, during exercise, both oxidative stress and endoplasmic reticulum (ER) 

stress are increased leading to abnormal mitochondrion and ER functioning. Several 

studies showed that mitophagy, the selective autophagy of damaged mitochondrial 

parts, was promoted by endurance training in the brain, skeletal muscle and other 

peripheral tissues (He et al., 2012b; Grumati et al., 2014; Sanchez et al., 2014). This 

suggests that mitophagy could be a mechanism by which exercise mediates 

mitochondrial turnover and improves resistance to oxidative stress, and one could 

speculate that exercise-induced ribophagy (the specific degradation of ribosomes) 

and reticulophagy (the selective elimination of portions of the ER) may be involved in 

enhanced translation efficiency (Jain et al., 2013). However, surprisingly, following 

voluntary training, gene expression of autophagic markers and oxidative stress 

markers was either not differentially regulated (most of the Atg gene family, or Fos, 

Fosb, Jun and Junb) or down-regulated (Mfn2, Mul1, Rab7 and Atg7, or 

metallothioneins Mt1 and Mt3). Moreover, two major consequences of endurance 

training were the apparent decrease in ER activity, comprising translation and 

ribosomal complex assembly, and repression of the mitochondrion activity that 

notably includes mitochondrial respiration (see fig. 14-25 and fig. 26). It was 

demonstrated that exercise promotes oxidation of BCAAs that are believed to serve 

as energy sources, substrates in the TCA cycle and to promote protein synthesis 

(Shimomura et al., 2004). The catabolism of BCAAs depends on the mitochondrial 

enzymatic complex BCKDH, which activity is activated by endurance exercise and 

which expression is increased by PGC-1α (Hatzawa et al., 2014). However, the gene 

expression of BCKDH E1-α polypeptide was down-regulated following 12 weeks of 

voluntary wheel running (see table 3). Gene expression of ETHE1, a mitochondrial 

dioxygenase that is part of the OXPHOS complex, is positively correlated with the 

percentage of type I fibers in muscle (Parikh et al., 2008). Unexpectedly, Ethe1 

expression was decreased in the present study, although the training induced a shift 

towards increased type I fibers in the soleus (see table 3, fig. 2 and 27). Moreover, 

the expression of Mlycd was down-regulated by voluntary exercise, while another 
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study showed its increase in expression and protein activity upon exercise (see table 

3; Kuhl et al., 2006). Finally, studies indicate that RRM2B activity decreases 

inflammation signals, suppresses the activation of the oxidative stress pathway and 

regulates mitochondrial activity (Chang et al., 2013; Kuo et al., 2012; Cho et al. 

2015). Thus, the increased gene expression of the ribonucleotide reductase RRM2B 

is consistent with the observation of reduced mitochondrial respiration activity and 

decreased response to inflammation signals (see table3 and fig.14-25).  

 Taken together these results suggest that in contrast to what was previously 

reported in exercise studies, exercise may decrease oxidative stress, by up-

regulating the expression of oxidative stress pathway inhibitors, by down-regulating 

the expression of genes involved in mitochondrial oxidoreductase activity, or by 

regulating the expression of genes implicated in the modulation of mitochondrial 

gene programs. In addition, ER stress may also be reduced by a decrease in protein 

synthesis. Further, these results suggest that the changes of the transcriptome 

observed after prolonged endurance training, which are long-term adaptations, may 

therefore contrast with acute responses to shorter training sessions or other types of 

exercise. Moreover, many of the pathways that appear to change upon exercise are 

interconnected, with certain genes being shared by more than one pathway or 

cellular process. For example, in addition to its function in mitochondrial metabolism, 

MEF2 is implicated in the transcription regulation of synaptic genes and also plays a 

key role in post-synaptic maturation that condition accurate pre-synaptic active zone 

localization (Flavell et al., 2008; Prokop et al., 1996). 

 

5.4 Changes at the NMJ – synapse assembly and mitochondrial 
network 

 Studies have shown that endurance training improves neuromuscular 

transmission efficacy in slow as well as in fast muscles due to increased transmitter 

release (Desaulniers et al., 2001; Argaw et al., 2004; Dorlöchter et al., 1991). It is 

also known that synaptic activity is a determinant of mitochondrial shape and 

organization, and reciprocally, changes in mitochondrial shape impact calcium 

signaling, which influences synaptic transmission (Brodin et al., 1999; Szabadkai et 

al, 2004; Billups and Forsythe, 2002). In order to address the characteristics of 
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synaptic mitochondrial network remodeling upon exercise, I performed a histological 

analysis of NMJs in the predominantly slow fiber-containing soleus and the 

predominantly fast fiber-containing tibialis anterior (TA). Soleus NMJs had a larger 

mitochondrial volume and a higher mitochondrial concentration than TA NMJs, 

consistently with the report from crustacean NMJs showing that tonic synapses have 

more mitochondria than phasic synapses (see fig. 8; Nguyen et al., 1997). In 

addition, mitochondria clusters were elongated and connected in soleus NMJs, 

whereas the mitochondrial network of TA NMJs appeared fragmented, with small and 

spherical clusters (see fig. 9 and 10). These characteristics were modified by 12 

weeks of voluntary running. 

 Firstly, the data show that exercise induced a different remodeling of the NMJ 

morphology in slow and fast muscles. While training elicited hypertrophy of slow 

post-synapses, fast NMJs were reduced in size (see fig. 7). Studies reported an 

increase in NMJ size in slow muscles correlated with the hypertrophy of slow muscle 

fibers after exercise (Waerhaug et al., 1992; Deschenes et al., 1993). However, the 

changes observed were only due to modifications of the length but not the width of 

the branches, indicating a specific adaptation rather than the simple stretch of the 

NMJ structure (see fig. 7). The repression of Rab7 gene expression observed 

following training may participate to this phenotype (see fig. 28). Indeed, another 

study demonstrated that a loss of presynaptic RAB7 leads to an increase in NMJ 

length (Lee et al., 2013). In addition, NMJ remodeling also occurs in sedentary 

healthy animals and likely correlates with muscle use, with slow NMJs undergoing 

more changes than fast NMJs (Wigston, 1989; Wigston 1990). Thus, the preferential 

recruitment of slow over fast motor units for endurance running may underpin the 

different adaptations observed between soleus and TA. In addition, since the size of 

the post-synapse was measured by labeling the acetylcholine receptors (AChRs) on 

the muscle membrane, a change in its size may be reflected by a change in number 

of AChRs. In contrast with the report that AChR number is increased in muscle fibers 

following exercise, the present study shows no modification in the expression of 

AChR gene family (data not shown; Desaulniers at al., 1998). However, gene 

expression level of Dystrophin, which is required for organizing large AChR 

aggregates on the post-synapse, was increased in soleus and in the ventral spinal 

cord (see fig. 28; Kong and Anderson, 1999). This suggests that endurance training 
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affects the clustering rather than the number of AChRs and that exercise may 

promote pathways important for the strengthening of the post-synapse. 

 Secondly, enhanced activity maintained mitochondrial density in the pre-

synapse by adjusting mitochondrial volume according to the change in NMJ size (see 

fig. 8). On one hand mitochondria subcellular distribution is dependent on cellular 

needs for ATP production and calcium signaling regulation, on the other hand 

neurotransmitter vesicle release requires high amounts of ATP and calcium 

signaling, and is increased during exercise (Verstreken et al, 2005). This suggests 

that pre-synaptic mitochondrial distribution may be altered by chronic activity, and 

that mitochondria may accumulate at the synapse upon enhanced synaptic activity. 

This hypothesis is consistent with the increased mitochondrial volume observed in 

trained soleus NMJs (see fig. 8). The maintenance of pre-synaptic mitochondria 

density and volume according to the change in NMJ size also suggests that 

mitochondrial biogenesis occurs in the slow NMJs and that elimination or 

redistribution of mitochondria takes place in the fast NMJs. Neurons utilize 

specialized mechanisms to regulate mitochondrial transport and retention near 

synaptic terminals, far away from the cell body (Cai et al., 2011). Interestingly, 

endurance training increased gene expression of Ranbp2, which is specifically 

implicated in the kinesin-dependent mitochondrion transport, but decreased gene 

expression of the kinesin KIFC3 that is present at synapses and mediates 

anterograde transport for proper subcellular distribution of mitochondria (see fig. 28; 

Cho et al., 2007; Hoang et al., 1999; Dietrich et al., 2013). Moreover, another study 

has shown that mitochondrial biogenesis is not limited to the cell body but that 

mitochondria can replicate their DNA, divide, and fuse locally within axons (Amiri and 

Hollenbeck, 2008). This suggests that chronic activity may regulate mitochondrial 

mobility and distribution at the motor endplate to adapt its metabolism to increased 

synaptic activity.  

Thirdly, upon exercise, TA NMJs had a decreased normalized number of 

clusters, while the density of mitochondria remained unchanged (see fig. 9). This 

result indicates that the reduction of mitochondria cluster number is not only due to 

the reduction of TA NMJ size with exercise. Mitochondrial network was reshaped in 

fast NMJs in the direction of a more connected system, which may be the result of an 

increased fusion rate. The transcriptomic results provide evidence for the regulation 
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of the fission-fusion equilibrium as shown by the increased expression of Yme1l1 (fig. 

28; Anand et al., 2014). However, the data did not indicate whether the balance was 

tipped in favor of one or the other, since gene expression of the mitochondrial fusion 

factor Mitofusin-2 and of the promoter of mitochondrial fragmentation MUL1 were 

both down-regulated (table 3; Bach et al., 2003; Lokireddy et al., 2012). It was 

previously demonstrated that the fission/fusion ratio alone is insufficient to explain 

mitochondrial morphology because the rate of fission exceeds the rate of fusion in 

healthy neurons, which is compensated by the growth of mitochondrial organelles 

(Berman et al. 2009). However, there was no increase in average mitochondria 

cluster volume in TA NMJs (see fig. 10). This may be due to the fact that there are 

still many clusters in exercised TA NMJs. The additional volume per cluster may not 

be large enough to be considered significantly higher compared to the control 

condition. 

 Finally, the data indicate that the connectivity of the mitochondrial network is 

correlated to the density of mitochondria. When the mitochondrial volume increases 

in the endplate, the space is reduced and the chance that clusters connect each 

other may increase. In addition, mitochondria morphology and distribution influences 

synaptic morphology and plasticity, and reciprocally, synaptic activity is a determinant 

of mitochondria shape and organization (Berman et al., 2009; Li et al, 2004). The 

computational functional analysis showed that synaptic transmission was positively 

impacted by exercise, which is further supported by the regulated expression of 

various gene implicated in synaptic assembly and function (see fig. 14-25 and fig. 

28). This suggests that the observed changes may not just be adaptations of the pre-

synapse to the change in post-synaptic size, but rather specific modifications elicited 

in MNs in response to increased synaptic activity. Thus neuronal mitochondria may 

play important role in regulating NMJ strength and function upon chronic physical 

activity. Taken together, these results suggest a specific role for mitochondria in 

adapting synaptic organization and transmission to the increase in MN firing and 

muscle contraction elicited by exercise training.  

 

Collectively, the results indicate a common adaptive response of the different 

components of the neuromuscular system to physical exercise. Although enhanced 

chromatin remodeling and regulation of transcription in response to exercise are well 
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established, the impact of exercise on oxidative stress remains controversial. Indeed, 

it is well established that muscle contractions during exercise lead to elevated levels 

of reactive oxygen species, whereas exercise is well known to delay aging 

impairments by the reduction of oxidative stress and inflammation notably 

(Steinbacher and Eckl, 2015; Vincent et al., 2012). The present study provides 

evidence that oxidative stress, and potentially ER stress, may be reduced upon 

exercise in healthy animals. Moreover, interconnection of the pathways suggests that 

this may be mediated by a synergistic adaptation of the different cellular 

compartment organization and function.  

In addition, the results indicate adaptation of NMJ morphology and presynaptic 

mitochondrial network in response to elevated physical activity, which was paralleled 

by specific synaptic gene expression changes in the soleus muscle and the ventral 

spinal cord. These genes are implicated in synaptic structure maintenance and 

synaptic transmission on one hand, and in mitochondrial morphology and subcellular 

distribution on the other hand. The regulation of mitochondrial biogenesis and 

dynamics may thus be tightly linked to the adaptation of NMJ structure and function 

to exercise.   
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VI Conclusion and outlook 

 

Numerous neurological and psychiatric disorders are associated with 

mitochondrial dysfunction, and include motor neuron diseases (Vos et al., 2010). 

Exercise proved to be beneficial in various chronic diseases as well as in 

degenerative conditions, including motor neuron diseases (Deforges et al., 2009; 

Carreras et al., 2010). A better understanding of mitochondrial biology and its 

regulation by physical activity may lead to novel therapeutic approaches and more 

broadly demonstrate the significance of “whole-body” benefits of exercise for society 

at large. The present study proposes that oxidative stress, and possibly ER stress, is 

reduced upon chronic endurance training in healthy mice. Physical activity may 

increase oxidative stress and rapidly elicit defense mechanisms such as mitophagy 

in order to limit cellular damages. Since the control of cellular stress has a cost in 

terms of energy consumption, mechanisms for the optimization of cellular functions 

under minimum energy expenditure may be elicited on the long term. The energy 

saving system may be mediated by decreased mitochondrial respiration and oxygen 

consumption, thus decreasing oxidative stress. 

 

 Exercise perturbs whole-body homeostasis, and ultimately elicits various 

adjustments in every organ. The present study shows that different tissues －muscle 

and spinal cord－  share common mechanisms to adapt to chronic activity. The 

extension of the analysis to other tissues and samples, e.g. blood, heart or liver, will 

allow the identification of novel mechanisms of tissue crosstalk in response to 

exercise training. Organ crosstalk may also be achieved by the release into 

circulation of MicroRNAs (miRNAs) in exosomes for delivery to other tissues (Valadi 

et al., 2007). miRNAs are a class of small non-coding RNAs that regulate gene 

expression at the post-transcriptional level. A study reported the implication of 

miRNAs in exercise-mediated skeletal muscle remodeling (Safdar et al., 2009). Thus, 

future investigation of miRNA expression after exercise will contribute to our 

understanding of organ-organ communication and synchronized adaptation in the 

entire body. It is also important to note that modifications in gene expression cannot 
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account for all the changes that occur in response to chronic activity. Indeed, the 

function of the cell not only depends on the level of gene transcription but also on the 

level of mRNA translation as well as protein function, i.e. activation or repression. In 

addition, protein lifetime and turnover rate may be regulated to minimize energy 

consumption. Therefore, an experimental functional analysis would complement the 

study by translating the observed transcriptional modifications into cellular functions. 

Finally, a study of mitochondrial dynamics, i.e. change in size, shape, and position of 

mitochondria over time within cells, will complete our understanding of the exercise-

induced modulation of the mitochondrial network in NMJs. This will be achieved 

using in vivo 2-photon FRAP (Fluorescence Recovery After Photobleaching) 

experiments in MDO mouse muscles. 

 The combination of these studies will contribute to our comprehension of 

“whole-body” metabolic regulations and mitochondrial function upon neuromuscular 

activity, and may ultimately provide further insights into the mechanisms that underlie 

neuroprotective effects of exercise. 
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