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ABSTRACT 

 

Since the 1950s, glucocorticoids (GCs) have been the most widely employed drugs in the treatment 

of inflammatory and autoimmune disorders, such as multiple sclerosis (MS). Short-time application 

of high-dose GCs is the first line therapy for acute relapses of MS. Several clinical studies even 

suggest that prolonged GC pulsed therapy may slow down MS disease progression as well. However, 

a plethora of GC-associated side effects derived from the ubiquitous expression of the glucocorticoid 

receptor (GR) restricts the use of these drugs. Therefore, to assess the full potential of GCs new 

pharmacological formulations and more insights about their mechanisms of action are needed. 

For many years, T cells were proposed to be major targets of GCs in the treatment of 

neuroinflammation. In contrast, the relevance of myeloid cells for GC therapy is highlighted in this 

doctoral thesis. Using experimental autoimmune encephalomyelitis (EAE) as a mouse model of CNS 

autoimmunity, we directed GC therapy to the myeloid compartment by means of state-of-the-art 

inorganic-organic hybrid nanoparticles (IOH-NPs). Although IOH-NPs loaded with betamethasone 

(BNPs) modulated both T cell survival and macrophage activation in vitro, in vivo BNPs selectively 

targeted myeloid cells. Moreover, BNPs achieved a therapeutic efficacy comparable to free GCs in 

the treatment of EAE. In this study BNPs were also proposed as an alternative to circumvent GC-

derived side effects, however our data did not provide conclusive information in this respect yet. 

Additionally, the roles of the two different GC-responsive nuclear receptors, the GR and the 

mineralocorticoid receptor (MR), were investigated in myeloid cells. In this cell compartment, GCs 

can act either via the GR in a deactivating manner, or via the MR promoting a pro-inflammatory 

state. Hence, we hypothesized that altering the balance between the GR and the MR might influence 

the course of EAE. Indeed, mice selectively devoid of MR in myeloid cells developed a milder EAE 

disease course compared to their littermate controls, and presented with a lower degree of 

demyelination. Consistent with these results, monocytes/macrophages exhibited a M2 phenotype in 

both the CNS and the periphery, and the proportion of reactive microglia in the spinal cord was 

reduced as well. Furthermore, our experiments revealed that, in consequence of the general myeloid 

anti-inflammatory state, Treg cell numbers increased in secondary lymphoid organs, where cytokine 

release by effector T cells was consequently impaired. 

Taken together, this study provides evidence of the important implications of myeloid cells in the 

response to GCs during autoimmune inflammation, and supports the targeted delivery to the 

myeloid compartment as an alternative to improve the therapeutic features of synthetic GCs.  
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1 INTRODUCTION 

 

 

1.1 Multiple Sclerosis: the paradigm of CNS autoimmunity 

In the beginning of the 20th century, Paul Ehrlich (awarded in 1908 with the Nobel Prize for 

his work in immunology) described for the first time the responses of the immune system to 

its own organism, what he defined as 'horror autotoxicus'. His observations set the basis of 

the concept of autoimmunity (Ehrlich P. and Morgenroth J. 1957).  

Autoimmune responses arise as a consequence of the breakdown of self-tolerance, a 

process tightly regulated in the lymphoid organs. Once self-reactive lymphocytes escape 

central tolerance in the thymus or bone marrow, the mechanisms of peripheral tolerance, 

like regulatory immune cells, become crucial to prevent exacerbated immune responses 

against self antigens. Failure of these regulatory mechanisms due to genetic factors or 

external triggers alters innate immunity and results in the development of autoimmune 

diseases.  

Certain organs, defined as immune privileged, lack conventional lymphatic vasculature and 

are delimited by functional and anatomical barriers that restrict the access of immune cells. 

One example of immune privileged organ is the central nervous system (CNS), which is 

surrounded by the blood-brain barrier (BBB). Although nowadays the view of the CNS as 

immune privileged is in question (Carson et al. 2006; Iliff et al. 2015), for many years this 

organ was believed to be exempt from immune responses (Medawar 1948; Barker and 

Billingham 1972). However, in some cases the brain also becomes target of auto-reactive 

immune cells. CNS antigens are constantly released to induce peripheral tolerance (Harris et 

al. 2014), but if antigen-specific lymphocytes recognize them as non-self and get activated, 

these antigens are able to induce changes in the BBB permeability to enter the CNS, thereby 

starting an inflammatory process that may result in autoimmunity. This situation is clearly 

reflected by the autoimmune pathology in multiple sclerosis (MS). 
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1.1.1 Multiple Sclerosis 

MS is the most common inflammatory disease of the CNS and is characterized by focal 

myelin loss and axonal damage within the white matter. This neurodegenerative process 

leads to severe motor, sensory and cognitive deficits. The disorder affects around 2.5 million 

people worldwide (Compston and Coles 2002), with a particularly increasing prevalence in 

North America and Europe, where >100/100.000 inhabitants suffer from it (Leray et al. 

2016). The first symptoms, which include blurred vision and muscle weakness, normally 

appear between 20 and 40 years of age, and the disease is two times more prevalent in 

females than in male individuals.  

It was Jean Martin Charcot who in 1868 first described the symptomatology associated with 

sclerotic plaques in patients with neurologic dysfunction, although those neuroanatomic 

observations had already been depicted years before by Robert Carswell (1838) and Jean 

Cruveilhier (1842). MS lesions are defined by four histopathological features: inflammation, 

astrogliosis, demyelination and axonal loss, the latter being the direct cause of the 

neurological disabilities in MS patients. Nevertheless, depending on the patient and the 

disease stage the lesions can present with different demyelination patterns, and the 

contribution of distinct immune infiltrates may vary (Lucchinetti et al. 2000; Lassmann et al. 

2007). This complexity is also reflected by the high inter-individual variability of symptoms 

and disease progression. Based on that, patients can be grouped in four different modalities 

of MS (Hauser and Goodwin 2008): 

o Relapsing-remitting MS (RRMS): this is the most prevalent form of MS (85% of the cases), 

in which patients suffer from sporadic episodes of neurological impairment with full or 

partial recovery. In this phase of the disease, inflammatory infiltrates are the major 

component of the lesion. 

o Secondary progressive MS (SPMS): also characterized by a relapsing fashion but with 

persistence of disability after each relapse with periods of no remission. It often develops 

in patients with a previous history of RRMS, and at this stage inflammation gives its 

leading role up to a more prominent demyelinating pathology and the subsequent 

axonal damage. 
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o Primary progressive MS (PPMS): affects 10% of MS patients and is the most severe 

variant due to its unresponsiveness to conventional therapies. These patients 

accumulate deficits progressively from the beginning of the disease, and no remission 

phases occur. 

o Progressive relapsing MS (PRMS): this rare form of MS shares the progressive course of 

PPMS with flare-ups that lead to acute worsening of the symptoms.  

Despite the efforts made to determine the causes of MS, little is known about the etiology of 

the disease. As other autoimmune disorders, MS is believed to arise from a combination of 

genetic and environmental factors. Among all possible environmental triggers, 

epidemiological studies show that high-salt diet, Vitamin D deficiency and smoking are most 

relevant (Kleinewietfeld et al. 2013; Hedström et al. 2015; Hucke et al. 2016; Mimura et al. 

2016). Some bacterial and viral infections have also been linked to MS, particularly infection 

with Epstein-Barr virus (Fernández-Menéndez et al. 2016). Apart from the external factors, 

the higher incidence of MS among relatives suggests a genetic component of the disease 

(Sadovnick 1993). Different polymorphisms of genes involved in immune responses have 

been identified as risk factors in genome-wide association studies. The strongest association 

with a higher MS susceptibility was found in the DRB1*15:01 allele of the human leukocyte 

antigen (HLA) complex (Sawcer et al. 2011), but also specific allelic variants of genes coding 

for cytokines receptors (IL2RA and IL7R) or co-stimulatory molecules (CD58, CD80 and CD86) 

have been reported to increase the predisposition to MS (Hafler et al. 2007; Sawcer et al. 

2011; Traboulsee et al. 2014). 

 

1.1.2 Animal models of MS - Experimental autoimmune encephalomyelitis 

The complexity and the wide heterogeneity of MS make it a difficult matter of study. 

Nevertheless, throughout the years several rodent and non-human primate models 

resembling different aspects of MS pathology have provided useful information for the 

understanding of the disease, and have been essential tools for the development of the 

current MS therapies.  
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Damage of the myelin sheaths of the nerves followed by only partial re-myelination is a 

hallmark of MS. To study the mechanisms involved in myelin loss and regeneration, there 

are several animal models available based on toxic or viral agents. Toxic-induced 

demyelination is achieved with lysolecithin or cuprizone, a copper chelating compound that 

induces oligodendroglial cell death, affecting almost exclusively this cell type (Matsushima 

and Morell 2001). As an alternative, neurotropic viral infection with Theiler's murine 

encephalitis virus (TMEV) has the advantage of including the inflammatory component 

typical from MS, as CNS infiltrates are found in the TMEV-infected mice (Tsunoda et al. 

2006). 

Despite not being the model of choice for demyelination studies, experimental autoimmune 

encephalomyelitis (EAE) is most extensively employed and mimics more aspects of the 

autoimmune pathology from MS patients. This model was developed by Rivers and 

colleagues using monkeys that were immunized with rabbit brain extracts, which resulted in 

paralysis associated with perivascular infiltrates and demyelination (Rivers et al. 1933). 

Nowadays, the immunogens used for EAE induction in rodents and non-human primates are 

components of the myelin sheaths, mostly myelin basic protein (MBP), proteolipid protein 

(PLP), myeloid oligodendrocyte glycoprotein (MOG), or peptides derived from the latter one. 

The disease course is characterized by progressive paralysis from the tail up to the forelimbs 

(Berard et al. 2010), and can be induced in different mouse and rat strains either via active 

immunization or adoptive transfer of encephalitogenic T cells. Similarly to the human 

disease, the progression pattern is highly variable: depending on the genetic background and 

the immunizing agent, EAE can follow a relapsing-remitting course (Lublin et al. 1981) or 

develop in a chronic-progressive way (Tuohy et al. 1989).  

Noteworthy, EAE cannot be properly induced without the help of adjuvants. Complete 

Freund's Adjuvant (CFA), an oily solution containing heat-inactivated M. tuberculosis (Freund 

et al. 1947), induces Th1 responses thereby providing an immunological environment that 

favors the initiation of the disease (Smith et al. 2011).  Additionally, Pertussis toxin facilitates 

the permeabilization of the BBB, and has other boosting effects like increasing adhesion 

molecules in lymphocytes, inducing maturation of dendritic cells (DCs) and suppressing 

regulatory T cells (Treg cells) (Hou et al. 2003; Kerfoot et al. 2004; Chen et al. 2006). 
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The EAE model has been a valuable tool to study MS pathomechanisms, nevertheless EAE is 

an artificially generated entity that differs in many aspects from human MS (Procaccini et al. 

2015). First of all, the use of inbred strains does not reflect the complex human 

heterogeneity. Furthermore, disease initiation is controlled and induced under the effect of 

strong adjuvants, thus we cannot obtain information about the natural causes of MS. 

Another limiting factor is that inflammation and demyelination in EAE are restricted to the 

spinal cord white matter, while MS lesions are mostly found in the brain and cerebellar 

cortex. And moreover, EAE is mainly driven by CD4+ T cells, and little information about the 

role of CD8+ T cells or B cells can be obtained. Some of these issues were addressed in the 

recent years thanks to alternative EAE models with transgenic animals and different 

induction protocols (Litzenburger et al. 1998; Ford and Evavold 2005; Bettelli 2007); 

nevertheless, new approaches are still needed to answer these questions. 

 

1.2 The cellular players of CNS autoimmune inflammation 

Although the mechanisms that initiate MS in humans remain elusive, many years of study on 

EAE models have provided a quite accurate picture of how the disease starts in rodents. In 

rough outlines, myelin peptides derived from the immunizing agents are presented by DCs in 

the lymph nodes and stimulate auto-reactive T cells that have escaped negative selection in 

the thymus. Afterwards, the autoantigen-specific activated T cells proliferate quickly and 

circulate until they encounter their cognate antigen in the CNS. Once there, they promote 

the open up of the BBB and secrete cytokines and chemokines that attract subsequent 

waves of immune cells, including more T cells, B cells and myeloid cells. The chronic 

inflammatory response established in the spinal cord damages the myelin cover of the 

nerves and, in some EAE models, eventually disrupts axonal structures. All this leads to the 

described symptomatology in the animals. 

In summary, MS and EAE are complex entities where the interplay of different immune cells, 

belonging to both the innate and the adaptive immune system, determines their progression 

and final outcome (Figure 1.1). The specific roles of the key cell mediators of these CNS 

autoimmune reactions will be described below in more detail. 
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Figure 1.1⎹ Immune cells participating in MS and EAE pathology. In the initial stages of EAE, soluble 

mediators secreted by auto-reactive T cells facilitate the opening of breaches in the BBB, allowing the access of 

different immune cell types to the CNS. These cells can be subdivided into three groups according to their 

contribution to the disease. The first group consists of effector cells, with the mission of promoting 

inflammation, and includes Th1, Th17, antibody-secreting plasma cells and M1 macrophages. Another group of 

cells fulfill regulatory functions, important to control the exacerbation of the immune response; to this section 

belong Th2 cells, Treg cells, and M2 macrophages. Finally, the third part of this classification refers to cells with 

both inflammatory and regulatory activities, the roles of which in the context of EAE have not been fully 

elucidated yet: these are CD8
+
 cells, NK cells and B cells. Beyond infiltrating leukocytes, also cells residing in the 

CNS, like microglia, astrocytes and oligodendrocytes, contribute to MS and EAE progression. Adapted from 

Duffy et al. 2014. 
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1.2.1 T cells functions in MS and EAE 

MS and EAE have always been described as T cell-driven diseases. Evidence for this is that 

adoptive transfer of encephalitogenic T cells isolated from immunized mice is capable of 

inducing a strong disease course in healthy animals (Ben-Nun et al. 1981; Zamvil et al. 1985). 

T cells are, together with B cells, the major effectors of the adaptive immune response. 

Depending on the class of the MHC molecules encountered during thymic selection, naïve T 

cells can adopt two major phenotypes. On the one hand, T cells expressing the CD4 co-

receptor, denominated T helper (Th) cells, are in charge of modulating immune responses 

via expression of membrane-bound molecules and secretion of cytokines and chemokines. 

Upon encounter with their cognate antigen (phenomenon defined as priming), signals 

provided by the antigen-presenting cell (APC) will determine their further differentiation into 

the Th1, Th2 or Th17 subsets, each one with specific effector functions (Mosmann et al. 

1986; Langrish et al. 2005). On the other hand, CD8+ T cells are specialized in eliminating 

harmful target cells, e.g. virally-infected cells, via direct cytotoxicity. Although both T cell 

types can be found in the CNS of animals with EAE, apparently CD4+ T cells are the main 

mediators of the disease. In contrast, in human MS CD8+ T cells are generally more abundant 

in the CSF of the patients (Koh et al. 1992; Babbe et al. 2000).  

Since interferon gamma (IFNγ)-secreting cells were present in the CNS of mice after 

immunization with MBP (Ando et al. 1989; Renno et al. 1994), EAE was initially considered a 

Th1-mediated pathology. In agreement with the Th1/Th2 dichotomy, Th2 cells 

(characterized by the production of IL-4, IL-5 and IL-13) were then proposed to protect from 

EAE (Adorini et al. 1996). This notion was confronted by other publications showing that 

TCR-engineered Th2 cells were also capable of inducing autoimmune CNS responses (Lafaille 

et al. 1997). Th1 cells secrete a cytokine profile that includes tumor necrosis factor alpha 

(TNFα) and IFNу. Despite the active participation of these cytokines during 

neuroinflammation, their contribution to EAE and MS is under debate. Certain experiments 

performed with TNFα-deficient mice showed a delayed EAE onset and reduced infiltration 

into the CNS parenchyma (Körner et al. 1997), whereas other investigations pointed to a 

dispensable role of TNFα for EAE initiation and severity (Kassiotis et al. 1999; Batoulis et al. 

2011). The contribution of IFNу to EAE and MS is equally controversial. Blockade of IFNу, but 
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not TNFα, reduced the number of active lesions in patients with SPMS (Skurkovich et al. 

2001). Additionally, MS treatment with IFNу resulted in disease exacerbation (Panitch et al. 

1987). However, in the late 90s several studies showed that IFNу deficiency aggravated the 

course EAE, suggesting a protective effect of the molecule (Ferber et al. 1996; Krakowski and 

Owens 1996; Chu et al. 2000). This hypothesis was further investigated with similar outcome 

in mice devoid of IL-12, the cytokine responsible of Th1 differentiation, or its different 

subunits (Becher et al. 2002; Gran et al. 2002; Zhang et al. 2003). But surprisingly, the 

deletion of the IL-12p40 subunit rendered the mice resistant to EAE, revealing the essential 

role of a new cytokine: IL-23 (Oppmann et al. 2000; Becher et al. 2003; Cua et al. 2003). IL-23 

shares with IL-12 the p40 subunit and is responsible for the stability of a different Th 

phenotype, the Th17 subset (Langrish et al. 2005). These findings drastically changed the 

view of EAE as a Th1-driven disease and established the new lines of EAE research. 

Th17 cells are now believed to be the initiators of EAE (Korn et al. 2007a). These cells are 

defined by the production of cytokines from the IL-17 family, especially IL-17A and IL-17F, 

although they secrete IL-6, IL-22, TNFα and GM-CSF as well. IL-17 exerts different activities 

during the early phases of EAE. First, it acts locally on the near tissues inducing the 

expression of cytokines and chemokines that are important for the mobilization and 

migration of myeloid cells to the inflamed CNS (e.g. CCL-7 and CCL-2). Moreover, IL-17 has a 

direct impact on the integrity of the BBB by disorganizing tight-junctions, inducing reactive 

oxygen species (ROS) and increasing the expression of adhesion molecules, such as ICAM-1, 

by endothelial cells (Huppert et al. 2010). Deletion of IL-17 or its receptor has been reported 

to significantly improve disease progression (Komiyama et al. 2006), however, it does not 

result in resistance to EAE (Haak et al. 2009; Kroenke and Segal 2011).  

Noteworthy, Th17 cells have the ability to switch their phenotype to the Th1 subtype once 

they reach the CNS, and this plasticity appears to be controlled by IL-23 (Kurschus et al. 

2010; Hirota et al. 2011). Hence, Th1 and Th17 responses complement each other rather 

than competing during EAE (Stromnes et al. 2008), and therefore the simultaneous secretion 

of IFNу and IL-17 can be found in the CNS of animals with EAE (Abromson-Leeman et al. 

2009). The common denominator between these two T helper subsets is GM-CSF, a cytokine 

produced downstream to IL-23 that has been identified as the only molecule produced by T 
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cells strictly necessary for the development of EAE (Codarri et al. 2011; El-Behi et al. 2011). 

Probably the importance of this cytokine resides in its function as link between T cells and 

myeloid cells, since it promotes the release of myeloid progenitors from the bone marrow 

and influences the differentiation and polarization of cells from both immune cell types. 

But not all T cell activities are detrimental for the CNS. The balance between effector and 

regulatory functions is essential to prevent autoimmune disorders, and to maintain this 

balance the adaptive immune system relies on Treg cells. This additional T cell 

subpopulation is originated either by thymic selection (naturally occurring Treg cells, nTreg 

cells) or in peripheral lymphoid organs during priming of naïve T cells (inducible Treg cells, 

iTreg cells). Induction of iTreg cells is strongly influenced by the cytokine milieu, and TGFβ is 

necessary for this differentiation. Importantly, TGFβ in combination with IL-6 also 

participates in the induction of Th17 cells, meaning that presumably the presence or 

absence of IL-6 determines the differentiation of naive CD4+ T cells into either the Th17 or 

the Treg cell compartment (Xu et al. 2007; Korn et al. 2009). Moreover, the local 

environment may direct the conversion between both cell types (Xu et al. 2007; Koenen et 

al. 2008) and, in fact, some publications claimed that part of the Treg cells found in the CNS 

of mice with EAE originated from encephalitogenic T cells (Liu et al. 2006). 

Treg cells are generally characterized by the expression of the phenotypic markers CD4, IL-2 

receptor α-chain (CD25) and the transcription factor FoxP3. Their potent suppression of 

immune effector functions is achieved via different mechanisms: first, indirect suppression 

via secretion of regulatory cytokines, such as IL-10, IL-35 and TGFβ, and second, cell-to-cell 

contact  with effector T cells resulting in disrupted TCR-induced proliferation and reduced IL-

2 secretion (Groux et al. 1997; Thornton and Shevach 2000; Sakaguchi et al. 2008).  

Given the importance of Treg cells for the maintenance of tolerance, it was not surprising to 

find dysfunctional Treg cells in MS patients and mice with EAE (Viglietta et al. 2004; Haas et 

al. 2005). Treg cells have been shown to prevent the development of CNS inflammation and 

ameliorate EAE disease course (Kohm et al. 2003). Additionally, it has been described that 

during the remission phase of MS and EAE the number of Treg cells increases (Korn et al. 

2007a; O’Connor et al. 2007), which highlights their participation in disease resolution. 
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1.2.2 The role of myeloid cells in CNS autoimmunity 

The inflammatory activities of T cells would not be possible without the help of myeloid cells. 

Myeloid cells constitute the first line of defense against infections and moreover, establish 

the connection between innate and adaptive immune responses. These cells are especially 

relevant in EAE, since they recognize components of the adjuvants employed for 

immunization via pattern recognition receptors (PRRs), e.g. Toll-like receptors (TLRs) and 

provide a pre-activated cytokine milieu that is necessary for disease induction (Imrich and 

Harzer 2001).  

All myeloid cells derive from a pluripotent common myeloid progenitor in the bone marrow, 

and differentiate into the different lineages (DCs, monocytes/macrophages and 

granulocytes) in response to signals from peripheral tissues. In the context of MS and EAE 

the three subsets of myeloid cells fulfill essential functions in the sequence of events leading 

to CNS inflammation. DCs, defined by the expression of CD11c and considered professional 

APCs, are the first ones to present myelin antigens to naïve T cells in the lymph nodes. Thus, 

fully functional DCs are strictly required for EAE initiation (Greter et al. 2005; Hertzenberg et 

al. 2013). After activation and migration of Th17 cells, neutrophils (a granulocyte subtype 

characterized by the surface expression of Ly6G) are the next line of immune mediators. In 

SJL and Balb/C mice, impaired neutrophil migration to the CNS or treatment with neutrophil-

depleting antibodies (Abs) resulted in delayed EAE onset and attenuated disease severity 

(McColl et al. 1998; Carlson et al. 2008). In the MOG35-55-induced EAE model, abundant 

Ly6G+ infiltrates were found in the perivascular space during the asymptomatic phase of the 

disease (Soulika et al. 2009). It is known that just before the onset of clinical symptoms, 

neutrophils are able to permeabilize the BBB via secretion of matrix metalloproteinase 

(MMPs) (Folgueras et al. 2008; Soulika et al. 2009) and are neurotoxic in a contact-

dependent and paracrine manner (Dinkel et al. 2004). In addition, because of their 

production of pro-inflammatory cytokines, neutrophils promote DC and monocyte 

maturation within the CNS, thereby supporting APC functions (Steinbach et al. 2013).  

From all myeloid cells, the monocyte/macrophage compartment (defined by the expression 

of the phenotypic marker CD11b) is particularly interesting for MS and EAE, since it 

participates in all stages of disease progression either in an inflammatory or regulatory way. 
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Furthermore, they are the only immune cells with permanent representation within the CNS, 

where perivascular macrophages (PVMs), meningeal macrophages (MMs) and microglia are 

located.  

Produced under the effect of GM-CSF in the bone marrow, monocytes circulate in blood and 

secondary lymphoid organs, and express chemokine receptors and adhesion molecules that 

mediate their infiltration into the inflamed tissue. There, they can differentiate into 

macrophages or DCs depending on the cytokine environment and the activation of PRRs. 

Monocytes can be subdivided into two different groups, CCR2+ Ly6Chigh inflammatory 

monocytes, and CX3CR1+ Ly6Clow resting ones (Geissmann et al. 2003). It has been shown 

that deletion of CCR2 from these myeloid cells strongly ameliorates EAE clinical symptoms, 

which reveals a crucial role of inflammatory monocytes in CNS autoimmunity (Mildner et al. 

2009). 

Macrophages, due to their prominent phagocytic capacity, are essential elements of the 

host defense against pathogens, but also fulfill important homeostatic functions by clearing 

cellular debris allowing tissue remodeling (Mosser and Edwards 2008). Hence they function 

in a dual manner in the context of MS as well, contributing to both tissue injury and repair. 

Macrophages derive from blood monocytes (van Furth et al. 1972) that migrate to 

inflammatory sites following chemokine-traced paths. Some monocytes also replenish 

tissue-resident macrophages, populations that function as immune sentinels in specific 

niches. The main feature of macrophages is their remarkable plasticity. They have the 

appropriate receptor machinery to sense a wide diversity of signals and dynamically change 

their phenotype accordingly. Mirroring the Th1/Th2 classification, initially these phenotypes 

were divided into classically activated macrophages (M1) and alternatively activated ones 

(M2). This terminology, however, didn't reflect the real heterogeneity of macrophage 

activation. Nowadays, a full spectrum of polarization states ranging from M1 to M2 has been 

proposed, and every intermediate state should be independently defined depending on the 

specific activating stimuli (Mosser and Edwards 2008; Martinez and Gordon 2014; Hume 

2015). In a simplified way (Figure 1.2), M1 polarization is primarily induced by INFγ, TNFα 

and GM-CSF coming from Th1 cells, NK cells or macrophages themselves. Recognition of 

bacterial elements by PRRs, e.g. LPS through TLR4, can also trigger macrophage classical 
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activation. These stimuli promote elimination of pathogens by increasing phagocytosis and 

antigen presentation, a process that involves up-regulation of MHC class II and the co-

stimulatory molecules CD80 and CD86. M1 macrophages also enhance their expression of 

the inducible nitric oxide synthase (iNOS, NOS2) and secrete pro-inflammatory cytokines 

such as IL-1β, IL-6, IL-12, IL-23 and TNFα. Conversely, alternative macrophage activation by 

IL-4 and IL-13 supports clearance of parasites via expression of the mannose receptor 

(CD206), an important mediator of endocytosis, and secretion of polyamines. Additional 

markers of this macrophage phenotype are Arginase-1 (Arg-1), Fizz1 and Ym1 (Rőszer 2015). 

In parallel, IL-10 and glucocorticoids (GCs) have the ability to induce a different alternative 

phenotype involved in immune regulation and tissue remodeling, defined by Mantovani as 

M2c or deactivated state (Mantovani et al. 2004; Kleiman et al. 2012; Rőszer 2015). This 

phenotype is characterized by the expression of IL-10, TGFβ, CD206 and CD163. 

 

Figure 1.2⎹ Macrophage polarization induced by different stimuli. Classification of macrophage 

activation states according to Mantovani et al. The figure depicts the specific inducing stimuli, typical markers 

and cytokines, as well as immune functions of each macrophage phenotype. Adapted from Mantovani et al. 

2004. 
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The participation of different subsets of macrophages during MS and EAE has been 

extensively reported. It is known that the number of monocyte-derived pro-inflammatory 

macrophages increases progressively in the CNS until the peak of the disease (Mikita et al. 

2011). In this stage of CNS inflammation, however, macrophages are difficult to be 

distinguished from microglia, their counterparts in the CNS parenchyma. Microglia, in 

contrast to infiltrating monocyte-derived macrophages, derive from myeloid precursors 

originating in the yolk sac that populate the CNS during embryonic development (Kierdorf 

and Prinz 2013). After birth, these populations are self-sustained by local progenitor cells 

(Ajami et al. 2011). All in all, activated macrophages/microglia play an important detrimental 

role at disease onset and are a prominent component of active demyelinating MS lesions 

(Barnett and Prineas 2004). In the first place, microglia are the major source of chemokines 

for T cell recruitment. Peripheral macrophages do not seem to be involved in this T cell 

chemoattraction, since their depletion with clodronate liposomes does not impair T cell 

migration (Tran et al. 1998). However, in mice where macrophages were depleted, T cells 

could not access the CNS parenchyma and EAE induction was abrogated (Huitinga et al. 

1990; Tran et al. 1998), probably due to the lack of MMPs (Toft-Hansen et al. 2004). 

Additionally, macrophages/microglia up-regulate MHC II molecules and secrete pro-

inflammatory cytokines during neuroinflammation, thereby collaborating in the reactivation 

of T cells (Murphy et al. 2010). These cytokines, in combination with ROS, NO and glutamate 

are also neurotoxic, leading to axonal damage and oligodendroglial death (Shijie et al. 2009).  

Nevertheless, the alternatively-activated variants of these myeloid cells have a regulatory 

function during MS and EAE. The presence of M2 macrophages/microglia has been 

associated with disease resolution (Mikita et al. 2011), and these cells have been shown to 

contribute to neuronal regeneration via secretion of neurotrophic factors (Elkabes et al. 

1996; Batchelor et al. 1999). These cells also participate in the removal of myelin debris, 

which are known to be neurotoxic and to inhibit re-myelination (Kotter 2006). Moreover, 

several publications correlate the benefits of M2 polarized macrophages with increased Treg 

cell-mediated immunosuppression (Weber et al. 2007; Keating et al. 2009) 
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1.3 Immunomodulatory therapies for MS: glucocorticoids 

Up to now there is no cure for MS. Nevertheless, in the past 20 years the better 

understanding of the disease pathomechanisms provided by animal models has led to the 

development of different therapies approved by the Food and Drug Administration (FDA) 

and the European Medicines Agency (EMA). Most of these drugs, so called disease-

modifying therapies (DMTs), are immunomodulatory compounds that have proven to 

successfully reduce MS relapse rate and slow down the development of neuronal damage 

associated with disease progression, especially in the early phases of RRMS. Classical first 

line therapies for RRMS patients are IFNβ (Paty and Li 1993) and glatiramer acetate (GA) 

(Johnson et al. 1995); in the case of patients not responding to these drugs, the use of the 

monoclonal antibodies Natalizumab (Polman et al. 2006) and Alemtuzumab (Brown and 

Coles 2013) is recommended. Despite the efficacy of IFNβ and GA, their application via 

subcutaneous (s.c.) or intramuscular (IM) injection often affects patient compliance; to solve 

this problem, in recent years new oral drugs like dimethyl fumarate (Gold et al. 2012), 

teriflunomid (Papadopoulou et al. 2012) and fingolimod (Kappos et al. 2010) have been also 

approved by the FDA and are currently in use, although the latter just as second line 

treatment. Unfortunately, finding the appropriate therapy for the progressive forms of the 

disease is still a challenge for the clinicians. In these cases, the immunosuppressive drug 

Mitoxantrone is often the treatment of choice in spite of its associated side effects (Boster et 

al. 2008). 

 

1.3.1 Glucocorticoid treatment in MS patients 

Complementary to the approved DMTs, high-dose GCs are the first line therapy to treat 

acute exacerbations of MS. Cortisol, the natural GC in humans, is a steroid hormone 

produced by the adrenal glands that participates in many different physiological processes, 

such as embryonic development, response to stress or glucose metabolism. It also has 

effects on the immune system, e.g. controlling the differentiation and survival of leukocytes. 

Due to their potent immunosuppressive properties, natural and synthetic GCs have been 

extensively used during decades for the treatment of numerous inflammatory and 
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autoimmune disorders (Hench et al. 1950), like rheumatoid arthritis, allergic asthma, 

inflammatory bowel disease, MS and psoriasis. Still nowadays, GCs are the most commonly 

prescribed anti-inflammatory drugs. 

Administration of 1 g/day intravenous (i.v.) methylprednisolone (IVMP) for 3-5 days is the 

standard treatment for acute relapses of RRMS (Goodin 2014). Acute relapses are defined as 

episodes longer than 24h of neurological impairment caused by active inflammatory 

demyelinating lesions (McDonald et al. 2001). These episodes are mostly followed by 

resolution of the symptoms, but unfortunately this is not always the case, and an incomplete 

recovery is often associated with a worse prognosis (Renoux 2011). Hence, on time and 

efficient management of the relapses is critical for the patients. Different clinical trials have 

confirmed the benefits of GCs in terms of relapse recovery (Milligan et al. 1987; Filippini et 

al. 2000; Miller et al. 2000). Moreover, the results of the “Optic Neuritis Treatment Trial” 

(Beck et al. 1993) showed that optic neuritis patients receiving high-dose IVMP appeared to 

have a lower risk of developing MS than the placebo controls, suggesting that GCs might 

have long-lasting immunosuppressive effects. To shed light on this question some studies 

tested the administration of GCs over longer time periods. In one of these studies, prolonged 

administration of low-dose oral GCs did not appear to influence relapse rate or progression 

of disability (Miller et al. 1961). However, a second trial using similar doses indicated 

improved neuronal deterioration after 18 months daily treatment (Tourtellotte and Haerer 

1965). Using an alternative approach, pulsed high-dose IVMP treatment in patients with 

RRMS significantly prevented the accumulation of disability (Zivadinov et al. 2001). In 

accordance with these results, another clinical trial showed that a single monthly dose of 

500mg IVMP reduced the number of lesions for 12 months (Then Bergh et al. 2006), and also 

studies on SPMS patients have reported an improvement in the disease progression with 

pulsed GC therapy (Goodkin et al. 1998). None of these treatments seemed to influence the 

frequency of relapse, but in another trial in 2009 this positive effect was indeed observed 

when pulsed IVMP was applied as an add-on to IFNβ therapy (Sorensen et al. 2009). 

Collectively, these studies indicate that pulsed GC therapy might also offer an alternative to 

interfere with the natural history of the disease, but further research is required to confirm 

this hypothesis.  
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1.3.2 Molecular and cellular basis of GCs immunosuppression 

The immunosuppressive properties of GCs rely on a complex molecular mechanism. GCs 

diffuse through the plasma membrane and act predominantly by binding to the GR, which is 

located in the cytosol in association with chaperones and immunophillins that keep it in an 

inactive state (Hutchison et al. 1996). After GC binding, the GR is released from these 

proteins and translocates into the nucleus, where it can act both as a monomer or a dimer. 

GR homodimers recognize DNA palindromic sequences in promotor or enhancer regions 

called GC-responsive elements (GREs) (Chandler et al. 1983). GC-activation of these GREs 

modulate the transcription of genes either positively, e.g. IL-10, GILZ and Bcl-XL (D’Adamio et 

al. 1997; Hodge et al. 1999; Gascoyne et al. 2003), or negatively, e.g. IL-1β, osteocalcin and 

prolactin (Sakai et al. 1988; Strömstedt et al. 1991; Zhang et al. 1997). In contrast, in its 

monomeric form the GR binds to transcription factors, such as AP-1 or NFκB, that participate 

in inflammatory signaling cascades, resulting in the trans-repression of pro-inflammatory 

genes via tethering interactions. Studies with GRdim mice, in which dimerization of the 

receptor is impaired (Reichardt et al. 1998), revealed that both mechanisms act separately 

and fulfill different functions depending on the cell type and the physiological context 

(Kleiman et al. 2012; Reichardt et al. 2012). In addition, GCs have also rapid non-genomic 

effects mediated by non-specific interactions with cellular membranes, or with membrane-

bound GRs (Bartholome et al. 2004). However, the consequences of these interactions are 

still not well understood (Strehl et al. 2011). 

Regarding the activities of GCs in the context of MS and EAE, five different 

immunosuppresive mechanisms have been proposed:  

1) GCs have a pro-apoptotic effect on immune cells, especially T cells, involving members of 

the Bcl-2 family and caspases (Leussink et al. 2001; Tuckermann et al. 2005).  

2) Furthermore, they alter the overall inflammatory cytokine milieu. GCs are known to 

reduce the expression of several pro-inflammatory cytokines, such as TNFα, IFNу and IL-2 

(Almawi et al. 1996). Apart from direct genomic effects, this inhibition can be partially 

explained by the simultaneous down-regulation of IL-12 and IL-6 in myeloid cells, hindering 

Th1 and Th17 differentiation (Blotta et al. 1997). In contrast, higher levels of IL-10, an 
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important cytokine for the negative control of autoimmune responses, were found in MS 

patients after MP treatment (Gayo et al. 1998).  

3) In EAE models, GCs have also been reported to influence T cell chemotaxis via modulation 

of chemokines like CXCL12 and its receptor CXCR4 (Schweingruber et al. 2014).  

4) GCs have the ability to partially restore the BBB, preventing the extravasation of 

leukocytes into the CNS. These benefits derive from the up-regulation of molecules such as 

occludine and claudine (Kashiwamura et al. 2011), and down-regulation of adhesion 

molecules both in leukocytes (LFA-1) and endothelial cells (ICAM-1, VCAM-1) (Pitzalis et al. 

2002). The reduced expression of MMPs also contributes to the maintenance of the BBB 

stability (Rosenberg et al. 1996).  

5) Finally, GCs diminish the release of NO and ROS by macrophages and microglia (Lim et al. 

2007), directly preventing neurotoxicity. Furthermore, additional positive effects resulting 

from M2 polarization of these cells have been described (Kiefer and Kreutzberg 1991; Varga 

et al. 2008). 

 

1.3.3 Mineralocorticoid receptor-mediated activities of GCs 

It is known that, in certain situations, GCs also activate the mineralocorticoid receptor (MR) 

via similar molecular mechanisms as the GR. The MR and the GR share 57% homology in 

their ligand-binding domain, 94% in the DNA-binding domain (Funder 1997), and have 

similar affinities for cortisol (Funder 1993). But in contrast to the ubiquitously present GR, 

MR expression is confined to certain epithelial tissues such as kidney and colon, some non-

epithelial tissues like hippocampus and heart, and specific immune cell subsets, mostly 

myeloid cells. Furthermore, some of these tissues co-express the 11β-hydroxysteroid 

dehydrogenase type II (11β-HSD II), an enzyme that locally inactivates GCs, making the MR 

mostly sensitive to aldosterone instead of cortisol and costicosterone. Aldosterone-

mediated effects of the MR are, for instance, the regulation of electrolyte homeostasis in the 

kidney epithelium (Funder 1997); in the heart, MR signaling leads to hypertrophy and 

fibrosis. Therefore MR antagonists are commonly used for the treatment of hypertension 

and other cardiovascular diseases (Pitt et al. 1999). However, since GCs circulate in the 

organism at a much higher concentration than mineralocorticoids do, in cells devoid of 11β-
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HSD II expression, e.g. macrophages and microglia, the MR is preferentially occupied by GCs 

rather than by aldosterone. This means that in myeloid cells both the GR and the MR are 

responsible for GC activities.  

Importantly, the two receptors drive macrophage/microglia polarization in opposite 

directions. While GR-GC binding triggers a deactivating phenotype in macrophages (see 

Figure 1.2), GC binding to the MR has been associated with M1 macrophage polarization. 

Various experimental evidences support this hypothesis. Aldosterone treatment of 

peritoneal macrophages cultured in steroid-depleted medium resulted in increased 

expression of the pro-inflammatory markers TNFα, MCP-1 or IL-12, effect that could be 

reverted by MR-blockade using eplerenone (Usher et al. 2010). Moreover, in vitro LPS 

stimulation of MR-deficient macrophages induced lower mRNA levels of M1 genes and 

higher expression of M2 markers compared to the wild type (wt) controls (Usher et al. 2010). 

In another study, MR activation by aldosterone in a microglial cell line also potentiated LPS 

induction of TNFα and IL-6, in line with the previous data. Additionally, it was shown that 

aldosterone binding to the MR activated NFκB, whereas the GR repressed it (Chantong et al. 

2012). All in all, the balance between MR and GR appears to play a relevant role in 

macrophage polarization. Whether this is also the case for other immune cells, like T cells or 

B cells, remains unclear and needs to be further investigated (Bene et al. 2014). 

 

1.3.4 Side effects of GC therapies 

A major drawback of GCs is the concurrence with adverse side effects (Moghadam-Kia and 

Werth 2010; Weinstein 2012; Ciriaco et al. 2013; Hunter et al. 2014a; Hwang and Weiss 

2014). This problem derives from the ubiquitous expression of the glucocorticoid receptor 

(GR) (Rhen and Cidlowski 2005), that makes GCs important players in numerous homeostatic 

and metabolic processes. Although GC side effects in MS patients are rare due to the short 

duration of the treatment, in some clinical trials that tested pulsed long-term IVMP certain 

symptoms derived from the treatment were reported (Zivadinov et al. 2001). In fact, in other 

pathologies where regular GC application is the conventional therapy, this is a critical 

negative aspect that can even force the withdrawal of the treatment. 
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One important side effect of GC therapy is hyperglycemia. This complication, defined as an 

abnormal increase in post-prandial and basal blood glucose, affects almost 50 % of GC-

treated patients and can lead to type II diabetes. GCs increase glucose levels via promotion 

of gluconeogenesis in the liver and reduction of glucose uptake in the skeletal muscle. They 

also affect pancreatic β cells, diminishing insulin secretion, and can act as insulin antagonists 

leading to insulin resistance (Kuo et al. 2015). Another complication observed after GC 

therapy is skeletal muscle atrophy. Steroid myopathy is characterized by a reduction in the 

diameter of type II muscle fibers and lower myofibrillar protein content, due to a 

deregulation between protein synthesis and proteasomal degradation (Schakman et al. 

2013; Braun and Marks 2015). Additionally, the occurrence of gastric ulcers in patients under 

GC therapy is also frequently reported. Recent studies demonstrated that dexamethasone 

(Dex) administration to mice leads to gastroparesis.  This effect appears to be a result of a 

decreased production of NO, which is essential for gastric motility (Reichardt et al. 2014). As 

a consequence, stomach emptying is impaired and the weight of the filled stomach 

increases. Last but not least, the reduction in bone mineral density leading to osteoporosis is 

possibly the most severe GC-derived adverse symptom. Just a few weeks after low dose GC-

treatment, the risk of bone fractures can increase up to 75%, especially in post-menopausic 

women (Steinbuch et al. 2004). The GR is expressed in osteoblasts, osteocytes and 

osteoclasts, and can therefore alter bone production and re-sorption. However, studies 

using cell type-specific GR knock-out mice revealed that osteoblasts were the major targets 

of GCs in the context of osteoporosis, whereas the role of osteoclasts was of minor 

importance (Rauch et al. 2010). Among other effects, GCs diminish the production of new 

osteoblast progenitors interfering with the Wnt-signaling pathway, and induce premature 

osteoblast apoptosis, leading to a reduction of bone density.  

Because of these and others clinical symptoms, GCs must be prescribed carefully, and the 

balance between the benefits and the disadvantages of the therapy must always be 

evaluated. 
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1.3.5 Emerging GC therapies: from dissociating ligands to nanoparticles 

As mentioned above, GCs are a mainstay for the treatment of MS as well as other 

inflammatory and autoimmune conditions, but their widespread effects are an important 

limiting factor for their clinical use. In recent years, big efforts have been made to improve 

the pharmacological features of GCs, and although many of the alternatives have shown 

good results in animal models, none of these formulations reached the market so far. 

The results obtained from GRdim studies pointed to the trans-activation mechanism of the GR 

as the responsible mechanism for some of the metabolic adverse effects following GC 

treatment. Thus, taking advantage of the dual molecular pathway employed by the GR, 

different dissociating ligands were designed to act predominantly via the GR trans-

repression mechanism, among them, AL-438 (Coghlan et al. 2003) or Compound A (CpdA) 

(Louw et al. 1997). CpdA was shown to be effective in the treatment of EAE, however, its 

neurotoxic effects at high concentrations discarded it as a suitable drug for patients (Wüst et 

al. 2009). 

In the design of drug delivery systems for the treatment of MS, the CNS compartment poses 

an additional challenge, since the formulation must be able to cross the BBB. This obstacle 

can be circumvented using biocompatible micro-/nanoparticles such as liposomes. 

Liposomes do not only cross the BBB due to their lipophilic character, but also have the right 

size to be taken up by phagocytic immune cells, such as macrophages and DCs, that will carry 

the drug to the CNS achieving a local therapeutic effect. The safety and tolerability of 

liposome-encapsulated drugs have been successfully evaluated in several clinical trials 

(Gordon et al. 2001; Alberts et al. 2004). In fact, liposomal doxorubicin is currently approved 

for the treatment of certain cancers and seems to overcome the signs of cardiopathy 

associated with the free drug (Tahover et al. 2015). Regarding GCs, some studies confirmed 

the therapeutic potential of liposomal corticosteroids in animal models of autoimmune 

inflammatory disorders, such as arthritis and MS (Metselaar et al. 2003; Linker et al. 2008; 

Schweingruber et al. 2011). Furthermore, liposomal encapsulation of GCs was shown to 

significantly increase the potency of the drug in the EAE mouse model (Schweingruber et al. 

2011). 
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As an alternative delivery system, current research focuses on the development of state of 

the art biocompatible nanoparticles with sizes ranging from 10 to 100 nm. Due to this 

feature, nanoparticles are preferentially pinocytosed by inflammatory monocytes and 

macrophages, allowing the specific targeting of these immune cells. Larger particles, on the 

contrary, accumulate in the lungs and the liver and are phagocytosed mainly by peripheral 

DCs (Weissleder et al. 2014). Nanoparticles can be obtained from different organic materials, 

such as poly(lactic-co-glycolic acid), chytosan, alginate or silica, and can be additionally 

coated with antibodies (Abs) or other targeting molecules (Tabansky et al. 2015). Recently, a 

new modality of inorganic-organic hybrid nanoparticles (IOH-NPs) for the delivery of 

corticosteroids was developed (Heck et al. 2015). From a molecular point of view, IOH-NPs 

are composed of an inorganic bivalent cation reacting with equimolar amounts of an organic 

functional anion. In this case, betamethasone (BMZ) phosphate constitutes the organic part 

of the compound, and zirconium oxide (ZrO2) was chosen as cation due to its stability and 

lack of physiological activity. In solution, this compound crystalizes in particles with a 

diameter of 40 to 90 nm, and moreover, the combination with flavin mononucleotide (FMN) 

provides a fluorescent signal that allows their detection via flow cytometry or fluorescence 

microscopy. Preliminary in vitro experiments with these nanoparticles showed a good cell 

tolerability and proper delivery of the drug, however their therapeutic potential has not 

been evaluated in detail yet (Heck et al. 2015; Ring, unpublished data). 

 

1.4 Objectives 

T cells were for a long time believed to be major targets of the GC-therapy for acute relapses 

of MS (Wüst et al. 2008). However, myeloid cells like macrophages and microglia are 

affected by endogenous and therapeutic GCs as well, and their importance for the 

maintenance of tolerance and the pathogenesis of MS has gained attention over the years. 

Macrophage/microglia phenotypes are highly dynamic, and changes in their polarization 

state may determine the course of MS and EAE. In these myeloid cells, GCs can act either via 

the GR in a deactivating manner, or via the MR promoting a pro-inflammatory state (Usher 

et al. 2010), and this dual role of GCs makes the myeloid compartment particularly 
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interesting in the context of neuroinflammation. In this doctoral thesis I aimed to define the 

roles of the GR and the MR in myeloid cells for the response to GCs during EAE. 

Furthermore, I propose that targeting GC therapy specifically to these immune cells might 

represent a strategy to improve the therapeutic features of the drug. To address these 

issues, two different approaches were employed: 

o The first part of the project aimed to evaluate the in vitro and in vivo effects of BMZ-

phosphate ZrO2 IOH-NPs (BNPs) (Heck et al. 2015). BNPs are expected to 

preferentially target myeloid cells due to their size, therefore their effects on 

different cell types and their in vivo cell specificity were analyzed. Furthermore, the 

therapeutic potential of the BNPs in the MOG35-55-induced EAE mouse model and 

possible GC-derived side effects were studied. 

 

o The second part of the project dealt with the role of the MR in myeloid cells in the 

context of CNS autoimmunity. Since MR-mediated responses counteract the 

immunosuppressive effect that GCs induce via the GR, the blockade of the MR might 

potentiate macrophage polarization towards a deactivated phenotype, thereby 

reducing CNS inflammation during EAE. To test this hypothesis, mice harboring a 

myeloid-specific MR deletion were studied after disease induction, and the different 

cellular events involved in disease initiation and progression were investigated. 
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2 MATERIAL AND METHODS 

 

2.1 Material 

2.1.1 General equipment 

Table 1.1⎹ General equipment   

Instrument Model Manufacturer 

Blood glucose meter Ascensia CONTOUR Bayer, Leverkusen 

Centrifuges 5417R for reaction tubes Eppendorf, Hamburg 

 5804 for FACS tubes Eppendorf, Hamburg 

 Multifuge 4 KR for Falcon tubes Heraeus, Hanau 

 Sigma 2-5 for 96-well plates 
Sigma Laborzentrifugen GmbH, 

Osterode am Harz 

Dehydration system TP1020 Leica Microsystems, Nussloch 

Electrophoresis chamber  Peqlab Biotechnology, Erlangen 

Electrophoresis power 

supply 
EPS 301 Amersham Biosciences, Freiburg 

FACS machines BD FACS Canto II 
Beckton Dickinson Biosciences, 

Heidelberg 

 BD FACS Sorter FACSAria  
Beckton Dickinson Biosciences, 

Heidelberg 

Gel imager Chemostar Intas GmbH, Goettingen 

Incubator HERACell 240 Heraeus, Hanau 

Infrared Lamp Balance 100W Philips, Amsterdam, Netherlands 

Laminar airflow cabinet HERASafe Heraeus, Hanau 

 Interactive Safe Change station 
Tecniplast GmbH, 

Hohenpeissenberg 

MACS AutoMACS 
Miltenyi Biotech, Bergisch 

Gladbach 
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Micropipettes  2.5, 20, 200 and 1000 µL 
Gilson, Middleton, Wisconsin, 

USA 

Microscopes Primo Star Zeiss, Jena 

 Telaval 31 Zeiss, Jena 

 Olympus  BX51 Olympus, Tokio, Japan 

Microtome Leica SM2000R Leica Microsystems, Nussloch 

Microwave oven R-212 Sharp, Osaka, Japan 

Neubauer improved 

haemacytometer 
 

Henneberg-Sander  GmbH, 

Giessen 

Ph-meter 766 Calimatic 
Knick Elektronische Messegeräte 

GmbH, Berlin 

Photometers Nanodrop 2000 ThermoScientific, Erlangen 

 
BioTek®Power Wave 340 plate 

reader 
BioTek, Bad Friedrichshall 

Pipette controller Accu-jet® pro Brand GmbH, Wertheim 

Refrigerators Freezer Hera -80ᵒC Heraeus, Hanau 

 Freezer Liebherr Comfort -20ᵒC 
Liebherr International  GmbH, 

Biberach an der Riss 

 Freezer VIP plus -150ᵒC 
Sanyo Electric Co. Moriguchi, 

Osaka 

Scale TE313S Sartorius AG, Göttingen 

Shaker 3006 
Gesellschaft fuer Labortechnik, 

Burgwedel 

Tuberculin glass/metal 

syringes (1, 2 ml) 
 Hartenstein 

Thermocyclers Thermocycler Heraeus, Hanau 

 7500 Real-Time PCR 
AB Applied Biosciences, Applera 

GmbH, Darmstadt 

 Thermomixer Comfort Eppendorf, Hamburg 

Tissue Embeding System EG1160 Leica Microsystems, Nussloch 

UV system camera and gel 

imager 
 Intas GmbH, Göttingen 

Vortex mixer Vortex Genie2 Bohemia , NY, USA 

Water bath W12 Labortechnik Medigen, Dresde 
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Water purification system Arium®611 Sartorius AG, Göttingen 

 Millipore purification system Millipore GmbH, Schwalbach 

Unless otherwise indicated, all companies are located in Germany 

2.1.2 Consumables 

Table 1.2⎹ Consumables 

Product description  Manufacturer 

96-well Optical Reaction Plates  
Applied Biosystems, Foster City, 

California, USA 

Gavage cannula  Cadence Science, Cranston, USA 

Cell Culture Plates  4 cm, 10 cm Sarstedt, Nümbrecht 

 
6-well, 24-well, 48-well, 

96-well flat bottom 

Greiner bio-one GmbH, 

Frickenhausen 

 96-well round bottom 
Greiner bio-one GmbH, 

Frickenhausen 

Cell strainer  20 µm, 40 µm BD Biosciences, Heidelberg 

ELISA plates 
Nunc Maxisorb flat 

bottom 96 well plate 
eBioscience, San Diego, USA 

FACS tubes  BD Biosciences, Heidelberg 

Microscope slides SuperFrost Plus Menzel Glaeser, Braunschweig 

Needles  
24G 1”, 20G 1½”, 

27G¾”, 25G 1” 
B. Braun Melsungen AG, Melsungen 

Optical adhesive covers  
Applied Biosystems, Foster City, 

California, USA 

Pasteur pipettes 3 mL Th. Geyer GmbH, Renningen 

Pipettes  
Cellstar® 5 mL, 10 mL, 

25 mL 

Greiner bio-one GmbH, 

Frickenhausen 

Pipette tips  10 µL, 200 µL, 1000 µL 
Greiner bio-one GmbH, 

Frickenhausen 

Reaction tubes  0.5 mL Sarstedt, Nümbrecht 

 1.5 mL, 2 mL 
Greiner bio-one GmbH, 

Frickenhausen 

 15 mL, 50 mL 
Greiner bio-one GmbH, 

Frickenhausen 
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Syringes  1 mL Henke Sass Wolf, Tuttlingen 

 2 mL, 5 mL, 60 mL BD Biosciences, Heidelberg 

Serum separation tubes STT™ BD Microtainer®  BD Biosciences, Franklin Lakes, USA 

Tissue cassettes MacrOfFlow Microm International, Waldorf 

Unless otherwise indicated, all companies are located in Germany 

 

2.1.3 Chemicals and reagents 

Table 1.3⎹ Chemicals and reagents 

Chemical Manufacturer 

2-β-Mercaptoethanol Invitrogen, Paisley, UK 

Acetic acid glacial 100% Carl Roth, Karlsruhe 

Agarose UltraPure Sigma-Aldrich, Taufkirchen 

Betamethasone phosphate (Celestan®) MSD Sharp and Dohme GmbH, Haar 

Bovine Serum Albumin (BSA) Carl Roth, Karlsruhe 

CaCl2 x 2 H2O Merk, Darmstadt 

Carboxyfluorescein succynimidyl ester (CFSE) Life Technologies, Darmstadt 

Citric acid Merk, Darmstadt 

Complete Freund's Adjuvant (CFA) Difco Laboratories, Detroit, USA 

Dexa-ratiopharm® 100mg Injektionlösung Ratiopharm GmbH, Ulm 

D-Glucose Merk, Darmstadt 

3,3´-Diaminobenzidine tetrahydroclhoride (DAB) Sigma-Aldrich, Taufkirchen 

Dimethyl sulfoxide (DMSO) Carl Roth, Karlsruhe  

DNA ladder 1kb Fermentas GmbH, St. Leon-Rot  

dNTPs Genaxxon bioscience, Ulm 
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Entellan Merck, Darmstadt 

Ethanol ≥ 99,8% Carl Roth, Karlsruhe 

Ethylendiaminetetraacetic acid (EDTA) Sigma-Aldrich, Taufkirchen 

Ethidium Bromide Carl Roth, Karlsruhe 

10% stripped Fetal Calf Serum (FCS) Invitrogen, Paisley, UK 

H2O2 30% Carl Roth, Karlsruhe 

H2SO4 Merk, Darmstadt 

4-(2-hydroxyethyl)-1-piperacinethane-sulfonic acid 

(HEPES) 
Merk, Darmstadt 

iScript Reaction Mix BIO-Rad, USA 

Ketamine 10% MediStar, Aschenberg 

KCl Merk, Darmstadt 

KH2PO4 Merk, Darmstadt 

Na2HPO4 x12H2O Merk, Darmstadt 

Na3C6H5O7 Carl Roth, Karlsruhe 

NaCl Carl Roth, Karlsruhe 

Na2HPO4 x H2O Merk, Darmstadt 

NaN3 Carl Roth, Karlsruhe 

Myelin Oligodendrocyte Glycoprotein 35-55 

peptide (MOG35-55) 
Charité, Berlin 

Orange G  Sigma-Aldrich, Taufkirchen 

Optilyse® Immunotech, Marseille, France 

Paraformaldehyde Histofix 4% Carl Roth, Karlsruhe 

Penicillin/ Streptomycin GIBCO® Invitrogen, Paisley, UK 

Percoll® Sigma, St. Louise, USA 

Sodium dodecyl sulfate (SDS) SERVA GmbH, Heidelberg 

3,3´,5,5´-Tetramethylbenzidin (TMB) Sigma-Aldrich, Taufkirchen 
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Thioglycolate Sigma-Aldrich, Taufkirchen 

Tris Carl Roth, Karlsruhe 

Trypan blue Sigma Aldrich, Taufkirchen 

Tween 20 Carl Roth, Karlsruhe 

Xylariem® (Xylazine 2%) Riemser, Greifswald-Insel Riems 

Xylol Carl Roth, Karlsruhe 

Unless otherwise indicated, all companies are located in Germany 

 

2.1.4 Media, buffers and solutions 

Table 1.4⎹ Media 

Medium Composition or additives Manufacturer 

DMEM+GlutaMAX™ + 10% FCS GIBCO® Invitrogen, 

Paisley, UK  + 0.01% Penicillin/Streptomycin 

RPMI Medium 1640 + GlutaMAX™ + 10% FCS GIBCO® Invitrogen, 

Paisley, UK  + 0.01% Penicillin/Streptomycin 

Re-stimulation medium (ReMed) RPMI Medium 1640 

GIBCO® Invitrogen, 

Paisley, UK 

 + 5% FCS 

 + 0.01% Penicillin/Streptomycin 

 + 1% Sodium pyruvat 

 + 0.2% β-mercaptoethanol 

Unless otherwise indicated, all companies are located in Germany 
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Table 1.5⎹ Buffers and solutions 

Buffer or solution Composition  

Alsevers 27 mM NaCl 

 125 mM D-Glucose 

 3 mM Citric Acid 

 30 mM Na3C6H5O7                            in ddH2O 

Annexin binding buffer 10 mM HEPES/NaOH pH7.4 

 140 mM NaCl 

 2.5 mM CaCl2                                   in ddH2O 

Citrate buffer pH 6  109 mM Citric Acid                         in ddH2O 

ELISA Assay diluent 10% FCS                                            in PBS 

ELISA Carbonate coating buffer pH 9.5 0.1M Na2CO3                                    in ddH2O 

ELISA Phosphate coating buffer pH 6.5 0.1M Na2HPO4                                     in ddH2O 

ELISA Substrate buffer 0.1M Citric Acid 

 0.2M Na2HPO4                                 in ddH2O 

ELISA Developing  solution Substrate buffer 

 1% TMB in DMSO 

 0.2% H2O2                        

FACS buffer 0.1% BSA 

 0.01% NaN3                                       in PBS 

MACS buffer  0.5% BSA 

 2mM EDTA                                        in PBS 

Phosphate Saline Buffer pH 7.4 (PBS) 137 mM NaCl 

 2.7 mM KCl 

 10 µM Na2HPO4 

 2.0 mM KH2PO4                                in ddH2O 
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PBS/BSA 0.1% BSA                                           in PBS 

PBS/Tween 0.1% Tween 20                                 in PBS 

Percoll diluent 0.1% BSA 

 1% Glucose                                        in PBS 

Spinal cord suspension buffer 0.1% BSA 

 

1% Glucose 

100 µg/mL DNase                             in PBS 

Sulfite wash 1% HCl 

 0.4% K2S2O5                                        in ddH2O 

TAC buffer pH 7.2 155 mM NH4Cl 

 20mM Tris                                          in ddH2O 

Tail buffer 1% SDS 

 100 mM NaCl 

 100 mM EDTA 

 5 mM Tris                                            in ddH2O 

 

2.1.5 Enzymes and commercial kits 

Table 1.6⎹ Enzymes and commercial kits 

Product Manufacturer  

Cytometric Bead Array (CBA) 

Mouse Th1, Th2, Th17 cytokine kit 
BD Bioscience 

Easy Sep™ Mouse T cell Isolation Kit StemCell™ Technologies 

Intracellular FACS Staining Kit  eBioscience, San Diego USA 

iScript cDNA Synthesis Kit Bio-Rad Laboratories, Munich 

Mouse IFNу ELISA MAX™ Standard Set BioLegend, San Diego, USA 
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Mouse TNFα ELISA MAX™ Standard Set 

Mouse IL-17A ELISA MAX™ Standard Set 

Mouse Insuline ELISA RayBiotech Inc., Heidelberg 

Osteocalcin ELISA R&D Systems, USA 

Mouse Renin ELISA RayBiotech Inc., Heidelberg 

Mouse GM-CSF ELISA reagents 
R&D Systems, USA 

Mouse IL-17A ELISA reagents 

Pan T cell isolation Kit II, Mouse Miltenyi Biotech, Bergisch Gladbach 

Phusion® DNA Polymerase and 5x Reaction 

Buffer HF 
Thermo Scientific, Waltham, USA 

Power SYBR® Green PCR Master Mix Applied Biosystems, Foster City, USA 

RNeasy Mini Kit Qiagen, Hilden 

Proteinase K AppliChem GmbH, Darmstadt 

Quick-RNA MiniPrep Zymo Research, Irvine, USA 

Unless otherwise indicated, all companies are located in Germany 

 

2.1.6 FACS Antibodies 

Table 1.7⎹ Antibodies for flow cytometry 

Specificity Clone Fluorochrome Isotype Manufacturer 

CD3ε 17A2 
PerCP 

Rat IgG2b, κ BioLegend 
APC 

CD4 RM4-5 
PerCP 

Rat IgG2a, κ BD Biosciences 
APC-Cy7 

CD8α 53-6.7 PE Rat IgG2a, κ BioLegend 

CD11b M1/70 PE-Cy7 Rat IgG2b, κ BioLegend 
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CD11c N418 bio 
Armenian 

Hamster IgG 
BD Biosciences 

CD25 PC61 APC-Cy7 Rat IgG1, λ BioLegend 

CD45.2 104 APC Mouse IgG2a, κ BD Biosciences 

CD45R/B220 RA3-6B2 PE Rat IgG2a, κ BD Biosciences 

CD86 GL-1 PE Rat IgG2a, κ BioLegend 

CD206 C068C2 APC Rat IgG2a, κ BioLegend 

Ly6C HK1.4 FITC Rat IgG2c, κ BD Biosciences 

Ly6G 1A8 PE Rat IgG2a, κ BD Biosciences 

I-Ab (MHC-II) AF6-120.1 PE 
Mouse (BALB/c) 

IgG2a, κ 
BioLegend 

FoxP3 FJK-16s APC FJK-16s eBioscience 

Annexin V  Cy5  BD Biosciences 

CD16/CD32 (Fc-block) 2.4G2  Rat IgG2a, λ BioLegend 

 

2.1.7 IHC Antibodies 

Table 1.8⎹ Antibodies for immunohistochemistry 

Specificity Clone Isotype Manufacturer 

Human CD3 CD3-12 Rat IgG1 AbD Serotec® 

Mouse MAC3 M3/84 Rat IgG1 BD Pharmigen® 

Rat IgG  (biotinilated)  Rabbit Vector Laboratories 
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2.1.8 Oligonucleotides 

Table 1.9 ⎹ Primers for qRT-PCR 

Target gene  Sequence (5' - 3') 

mHP-1 
fwd 

rev 

GCC CAA GAT GGA CGC AAT C  

CCG AGG CGC CAG TCT TC 

mFKBP51 
fwd 

rev 

GAA CCT GGC CAT GTG CTA CCT 

GTC CAG TCC AAG GGC CTT GT 

mPEPCK 
fwd 

rev 

AAA GCA TTC AAC GCC AGG TT 

TGC TGA ATG GGA TGA CAT ACA TG 

mTAT 
fwd 

rev 

CCT CTG GAA GCT AAG GAT GTC ATT 

AAC ACG GCT AGA CAC AGC TCA A 

 

2.1.9 Software 

Table 1.10⎹ Software 

Software Developer 

analySISB Olympus, Tokio, Japan 

BD FACSDiva Software v6.1.2 BD Biosciences, Heidelberg 

FCAP Array Software v3.0.1 BD Biosciences, Heidelberg 

FlowJo Software v 7.6 Tree Star, Inc., Ashland, Oregon, USA 

Gen5 v1.09.8 BioTek Instruments, Bad Friedrichshall 

GraphPad Prism for Windows v5.04 GraphPad Software, La Jolla, CA, USA 

ImageJ 1.46r Wayne Rasband Nat. Inst. Of Health, USA 

Intas GDS Intas, Göttingen 

Unless otherwise indicated, all companies are located in Germany 
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2.2 Animal experimentation 

All the mice used during this project had a C57BL/6 background and were either purchased 

from Charles River Laboratories (Sulzfeld, Germany) or bred in the breeding facilities of the 

University Medical Center in Göttingen. The animals were housed in individually ventilated 

cages (IVC) under specific pathogen-free conditions (SFP) with 12 hours day/night cycle, and 

water and food were given ad libitum. The mice used for experimentation were at least 10 

weeks old. All experiments were approved by the responsible authorities of Lower Saxony 

and conducted in accordance to the ethical standards of humane animal care. 

 

2.2.1 Mouse strains 

o C57BL/6: wt, background strain (Charles River Laboratories, Wilmington, USA). 

o GRfl : Nr3c1tm2Gsc (Tronche et al. 1999). This mouse strain contains loxP sites flanking exon 

3 of the nuclear receptor subfamily 3, group C, member 1 (Nr3c1) gene, coding for the 

GR. 

o GRlck : Nr3c1tm2GscTg(Lck-cre)548Jxm/J. Generated by crossing Nr3c1tm2Gsc mice with 

Tg(Lck-cre)548Jxm/J mice (Baumann et al. 2005). These mice express the Cre 

recombinase under the control of the lymphocyte protein tyrosine kinase (Lck) 

promoter, which mediates T cell-specific excision of the GR sequence. 

o GRLysM : Nr3c1tm2GscLyz2tm1(cre)lfo/J. Generated by crossing Nr3c1tm2Gsc mice with 

Lyz2tm1(cre)lfo/J mice (Clausen et al. 1999). In these mice, the Cre recombinase is 

expressed under the control of the lysozyme 2 gene promoter (lyz2), mediating the 

targeted deletion of the GR in monocytes, mature macrophages and granulocytes.  
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o GRLck/LysM : Nr3c1tm2GscTg(Lck-cre)548Jxm/J Lyz2tm1(cre)lfo/J. This mouse strain expresses 

the Cre recombinase under both the Lck and the Lyz2 promoters, mediating the excision 

of the GR in T cells and cells from the myeloid lineage.  

o MRfl : Nr3c2tm2Gsc (Berger et al. 2006). This mouse strain contains loxP sites flanking exon 

3 of the nuclear receptor subfamily 3, group C, member 2 (Nr3c2) gene, coding for the 

MR. 

o MRLysM : Nr3c2tm2GscLyz2tm1(cre)lfo/J. Generated by crossing Nr3c2tm2Gsc mice with 

Lyz2tm1(cre)lfo/J mice (Rickard et al. 2009). In these mice, the Cre recombinase is 

expressed under the control of the lysozyme 2 gene promoter (lyz2), mediating the 

targeted deletion of the MR in monocytes, mature macrophages and granulocytes.  

o GRSLCO1C1: Nr3c1tm2GscTg(Slco1c1-icre/ERT2)1Mrks. Generated by crossing Nr3c1tm2Gsc mice 

with Tg(Slco1c1-icre/ERT2)1Mrks mice (Ridder et al. 2011). These mice carry a tamoxifen-

inducible gene to express the Cre recombinase in brain endothelial cells, but not in other 

endothelial cells, mediating the deletion of the GR in this cell type. 

o 2D2 RFP: (Tcra2D2,Tcrb2D2)1Kuch/J (Bettelli et al. 2003). Transgenic mouse strain 

expressing a fully competent, MOG35-55 specific TCR. This strain was back-crossed with 

RFP mice (Gt(ROSA)26Sortm1Hjf, Luche et al. 2007), expressing the red-fluorescent protein 

to confer red fluorescence to the carrying cells.  

 

2.2.2 Mouse genotyping 

In order to assess the genotype of the newborns from our inbred transgenic strains, tail 

biopsies were collected four weeks after birth and DNA was isolated and used for PCR with 

the correspondent primers (see 2.7.1). Generally, Cre negative animals were used as a 

control to their respective knock-out for our experiments. 
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2.2.3 Tamoxifen-induction of SLO1C1 knockout mice 

The deletion of the GR from endothelial cells of the BBB was achieved via tamoxifen 

treatment 4 weeks prior to starting the experiment. Tamoxifen was dissolved in sunflower 

oil and left overnight (O/N) at 37ᵒC. Three consecutive doses of 3 mg of tamoxifen were 

administered every other day via oral gavage with a bulb-tipped gastric gavage needle. 

 

2.2.4 Anesthesia 

Mice subjected to EAE experiments were anesthetized before subcutaneous injection of the 

immunizing agent. A preparation of 1% Ketamine and 0.01% Xylazine (Xylariem®) diluted in 

0.9% NaCl solution was injected i.p. at a dose of 10 µl per gram of body weight. Mice under 

anesthesia were kept warm to prevent hypothermia and a moistening balm was applied over 

the eyes to maintain hydration.  

 

2.2.5 Blood sample processing 

Blood was obtained either from the tail of living mice, or via heart puncture on CO2-

sacrificed animals when higher blood volumes were needed.  

Blood samples analyzed by FACS were collected directly on Alsevers, centrifuged 5 min at 

350 x g, and stained for surface markers with the correspondent fluorescent-labeled 

antibodies (Abs). After washing with FACS buffer (350 x g, 5 min), cells were incubated with 

100 µl Optilyse® for 12 min. Then, 1 ml ddH2O was added and samples were kept for at least 

2 h in the dark before they could be analyzed in the FACS device. 

For serum extraction, at least 200 µl blood obtained by heart puncture were left to clot in a 

Microtainer™ serum collection tube for 20 min. Then tubes were centrifuged at 350 x g for 2 

min, and serum was removed with the help of a pipette. Serum samples were stored at -

20ᵒC.  



Material and Methods 

 
 
 

 

37 

2.3 In vivo assays 

2.3.1 EAE induction 

For all the experiments described here, EAE was induced by active immunization with 50 µg 

MOG35-55 peptide. First, an emulsion of 1 mg/ml MOG35-55 in 1 mg/ml CFA at a 1:1 ratio was 

prepared and left for 1 h at 4ᵒC. Once the mice were anesthetized, 50 µl of the antigen-

containing emulsion were injected s.c. in each flank at the beginning of the tail. Additionally, 

200 ng of Pertussis toxin diluted in 200 µl of a 0,9% NaCl solution were i.p. injected to help 

disrupting the BBB and boost immunization. Two days later, a second dose of Pertussis toxin 

was applied (Figure 2.1). 

From day 9 on following immunization, mice were weighted daily and disease progression 

was monitored. EAE symptoms were evaluated according to the following 0 to 10 scoring 

scale: 0= Healthy; 1= Reduced tone of the tail; 2= Total paralysis of the tail; 3= Gait 

disturbance; 4= Gait ataxia in hind limbs; 5= Mild paresis of the hind limbs; 6= Moderate 

paraparesis; 7= Severe paraparesis or paraplegia; 8= Tetraparesis; 9= Moribund; 10= Death 

(Linker et al. 2008). Due to ethical reasons, mice with score 6 or higher were provided with 

special bedding and wet food, and mice reaching a score over 7 were sacrificed. 

 

 

 

Figure 2.1⎹ EAE induction protocol. The timeline for EAE induction in C57BL/6 mice considers the day of 

immunization as day 0. Pertussis toxin is given as an adjuvant on days 0 and 2 after immunization, and the first 

symptoms of the disease typically appear from day 9 on, reaching the peak of disease around day 14-16. 

 

Day 0 Day 2 Day 10 

Immunization 
+ Pertussis Pertussis Onset Peak 

Day 14-16 
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2.3.2 In vivo T cell priming and proliferation 

To test the ability of MRlysM APCs to prime T cells and promote their proliferation during the 

early phases of EAE the following protocol was carried out. T cells were purified from 

lymphoid organs of RFP 2D2 mice and labeled with CFSE as described below (see 2.4.5). 

1·106 CFSE-labeled RFP 2D2 T cells were then i.v. injected into either MRfl (control) or MRlysM 

mice. Two days later, mice were immunized according to our standard protocol (see 2.3.1). 

At day 3 and 5 after immunization the mice were sacrificed and lymphoid organs were 

isolated to analyze the proliferation cycles of the previously injected T cells via flow 

cytometric analysis of the RFP+ CSFE+ cells.  

 

2.3.3 GC treatment 

Mice were injected i.p. daily on three consecutive days with 10 mg/kg of Dex, a 

corticosteroid 25 more potent than cortisol with minimal mineralocorticoid activity. In 

exceptional cases, BMZ was used at the same dose parallel to Dex. The equivalent volume of 

PBS was injected as a vehicle control.  

One of the aims of this thesis work was to evaluate a novel corticoid drug where the 

corticosteroid, in this case BMZ, is delivered by an inorganic compound (ZrO2) in the form of 

nanoparticles (BNPs). To test the efficacy of BNPs, 100 µl of the nanoparticle suspension, 

equivalent to 10 mg/kg of BMZ, were injected i.p. during either one or three consecutive 

days. The same volume of nanoparticles without betamethasone (ENP) was used as a 

control.  

When applied therapeutically on animals with EAE, the treatment was started once the 

animals showed the first symptoms (score ≥ 1). 
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2.3.4 In vivo T cell apoptosis 

The potential of the BNPs to induce T cell apoptosis in vivo was evaluated treating wt 

B57BL/6 mice for one and three days with PBS, Dex, ENPs and BNPs. One day after the last 

injection, spleens were removed and total splenocyte numbers were determined under the 

microscope. Additionally, cells were stained with fluorophore-coupled Abs against CD3, CD4 

and CD8 and analyzed via FACS (Figure 2.2). 

 

Figure 2.2⎹ FACS gating strategy for different T cell subsets. First, living cells were identified in the 

FSC/SSC panel. T cells were defined as CD3
+
 cells, and within this population Th cells could be distinguished 

from cytotoxic T cells by the expression of the co-receptors CD4 and CD8, respectively. 

 

2.3.5 Analysis of glucose metabolism 

To analyze the effects of Dex and BNPs in glucose release and metabolism, mice were 

treated with PBS, 10 mg/kg Dex, ENPs and 10 mg/kg BNPs i.p. on four consecutive days. 

Following the last treatment, food pellets were removed O/N. Fasting blood sugar levels 

were determined in the morning with an Ascensia CONTOUR glucose-meter in blood 

droplets obtained via tail puncture. 

Following glucose measurement, mice received an additional dose of the correspondent 

drug; 2.5 h later mice were sacrificed and plasma, serum and liver samples were obtained 
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and snap frozen. Circulating insulin levels were analyzed via ELISA, and expression of 

gluconeogenetic enzymes in the liver via qRT-PCR 

 

2.4 Cellular methods 

2.4.1 Cell isolation from secondary lymphoid organs 

Mice were sacrificed via CO2 inhalation. Afterward, spleens and cervical, axillary, mesenteric, 

inguinal and lumbar lymph nodes were removed and placed on a Petri dish with PBS/BSA. 

Single cell suspensions were obtained by homogenizing the tissue with the help of a syringe 

plunger and passing it through a 40 µm cell strainer to avoid cell clumps. Cells were washed 

in PBS/BSA and centrifuged at 300 x g, 4ᵒC for 7 minutes. In the case of splenocytes, 

erythrocytes were additionally lysed by incubation with 6 ml TAC buffer/ml of cell 

suspension for 12 min, followed by centrifugation at 300 x g, 4ᵒC for 7 min. Pellets were re-

suspended in 1-2 ml PBS/BSA or the corresponding buffer. Subsequently, 10 µL of the cell 

suspension were diluted in a Trypan-blue solution and living cell numbers were determined 

under the microscope using a Neubauer haemocytometer.  

 

2.4.2 Mononuclear cell isolation from the spinal cord 

Mice were euthanized with CO2 and perfused with 20 ml of saline solution to clean vessels 

from blood. Then, the spine of the mice was removed and vertebrae were cut open in order 

to obtain the spinal cords, which were homogenized with a syringe plunger in spinal cord 

suspension buffer. The suspension was washed and centrifuged at 350 x g, 4ᵒC for 10 min, 

and the pellet was re-suspended in 6 ml of 30% Percoll. Mononuclear cells were separated 

on a three-phase Percoll gradient (70%, 40%, 30% Percoll) by centrifugation at 350 x g, 4ᵒC 

for 20 min without stopping break, and collected with the help of a syringe. Cells were 

washed with PBS (350 x g, 4ᵒC, 10 min) and re-suspended in 1 ml PBS or the corresponding 

buffer.  
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2.4.3 T cell purification 

2.4.3.1 EasySep™ kit 

CD3+ T cells were purified by negative selection using the Easy Sep™ Mouse T cell Isolation 

Kit according to the manufacturer’s instructions. In brief, the volume of the single cell 

suspension was adjusted to a concentration of 1·108 cells/ml with PBS/2% FCS supplemented 

with 2% normal rat serum and placed in a 5mL polystyrene tube. Per ml of cell suspension, 

50 µl T cell enrichment cocktail were added and incubated for 15 min at 4ᵒC. Then, cells 

were incubated for 15 min with 100 µl of the biotin selection cocktail at 4ᵒC, followed by a 

last incubation step of 5 min with 75 µl of magnetic beads. The cell suspension was brought 

to a volume of 2.5 ml with PBS/2% FCS, and the tube was placed into an Easy Sep™ magnet. 

After 5 min, the liquid content of the tube was decanted without removing it from the 

magnet. The collected suspension, corresponding to the negative fraction containing the 

purified T cells, was washed with PBS (300 x g, 4ᵒC, 7 min) and the pellets were re-suspended 

in the corresponding buffer to determine cell numbers.  

 

2.4.3.2 Magnetic Activated Cell Sorting (MACS) 

For MACS separation, single cell suspensions were washed with MACS buffer and the Pan T 

cell isolation Kit II was employed according to the manufacturer's instructions. For 1·107 total 

cells, suspensions were incubated for 10 min at 4ᵒC with 10 µl of Biotin-Antibody Cocktail in 

40 µl MACS buffer. Without washing, 30 µl of MACS buffer and 20 µl of anti-biotin magnetic 

beads were added and incubated for 15 more min. After incubation, cells were washed in 

2ml MACS buffer (300 x g, 4ᵒC, 7 min), re-suspended in 600 µl MACS buffer and filtered to 

avoid cell clusters. The negative cell fraction, corresponding to T cells, was collected with the 

AutoMACS device, and the purified T cells were subsequently washed (300 x g, 4ᵒC, 7 min) 

and re-suspended in PBS. 
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2.4.4 Macrophage isolation and culture 

2.4.4.1 Induction of Bone Marrow-Derived Macrophages (BMDMs) 

BMDMs were obtained by culturing bone marrow extracted from mouse tibiae and femur in 

the presence of macrophage colony-stimulating factor (M-SCF), a lineage-specific growth 

factor responsible for differentiation of committed myeloid progenitors into cells of the 

monocyte/macrophage lineage. M-SCF is secreted by L929 cells, and therefore L929-

conditioned medium (LCCM) can be used to achieve macrophage maturity. In order to 

produce LCCM for our experiments, L929 cells were cultured in DMEM in a 5% CO2 

atmosphere at 37 °C. Cells were split once they reached confluence, and the culture medium 

was collected, filtered and stored at -20°C. 

 

Bone Marrow isolation. Mice were sacrificed with CO2 and the muscle tissue from the hind 

limbs was removed using a scalpel to obtain clean femur and tibiae. Both ends of the bone 

were cut and the bone marrow was flushed with ice-cold PBS/BSA using a 5 ml syringe and 

collected in a Petri dish. Bone marrow cells were homogenized with the help of the syringe 

in order to obtain a single-cell suspension, which was filtered through a 40 µm nylon 

strainer.  

 

Macrophage culture and maturation. The cell suspensions were washed with PBS/BSA (300 x 

g, 4ᵒC, 7 min). The pellet was re-suspended in pre-warmed DMEM at a density of 1·106 

cells/ml and the bone marrow hematopoietic precursors were incubated O/N on cell culture 

dishes to allow fibroblasts and stromal cells to adhere. Non-adherent cells were collected in 

the morning, washed and plated in LCCM at a concentration of 2·106 cells/ml in 10 cm Petri 

dishes. The myeloid progenitors were incubated at 37°C and 5% CO2 for 7-9 days, and 4 ml of 

fresh LCCM was added at day 4 to boost maturation. When macrophage differentiation was 

complete (mature macrophages can be recognized under the light microscope by their 

spindle shape), the cells were harvested by incubating them with 2 ml PBS/BSA + 2mM EDTA 

for 20 min at 4°C. Afterwards, macrophages were washed and re-suspended in DMEM for 

further culturing or FACS analysis. 
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2.4.4.2 Induction and isolation of peritoneal macrophages 

Another source of macrophages for FACS analysis and cell culture is the peritoneum. 

Peritoneal macrophages were elicited by i.p. injection of 1 ml of thioglycolate, a 

monosaccharide frequently used to induce neutrophil and macrophage responses in vivo. 4 

days after injection, a peritoneal lavage with PBS/BSA was performed with the help of a 

Pasteur pipette. The collected cell suspension was washed in PBS via centrifugation (300 x g, 

4ᵒC for 7 min) and pellets were re-suspended in 8 ml DMEM and plated in 10 cm plates to let 

macrophages adhere. After 1 h incubation at 37ᵒC in a 5% CO2 atmosphere, the plates were 

washed twice with PBS in order to remove non-adherent cells and debris, and 2 ml of 

PBS/EDTA were added to promote macrophage detachment. Plates were incubated for 20 

min and macrophages were collected and washed with PBS (300 x g, 4ᵒC for 7 min). Pellets 

were re-suspended in 1 ml PBS/BSA or the corresponding buffer, and cell numbers were 

determined as previously described. 

2.4.4.3 In vitro macrophage stimulation 

When a pre-activated state of macrophages was needed, M1 polarization was induced on 

naive BMDMs incubating them for 24 h in DMEM supplemented with 20 ng/ml LPS and 50 

ng/ml IFNу. Afterwards, cells were washed once with PBS/BSA and prepared for further use. 

 

2.4.5 CFSE staining 

CFSE is a fluorescent dye that covalently binds to lysine residues and other amines, cross-

linking to intracellular proteins. Due to its high stability, it serves to track cell proliferation by 

FACS, since every cell division halves the fluorescence in the daughter cells. For the T cell 

proliferation experiments described in this thesis, purified T cells were diluted in PBS at a 

concentration of 1·106 cells/ml and incubated in a water bath at 37ᵒC with 0.25 µM of CSFE 

for 10 min. Every minute, cells were gently mixed by inverting the tubes. The reaction was 

stopped by adding FCS till a final concentration of 2%. Subsequently, cells were washed 

twice (300 x g, 4ᵒC for 7 min) and re-suspended in PBS or the corresponding medium. 
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2.4.6 Flow cyotometry (FACS) 

2.4.6.1 Extracellular staining 

Single cell suspensions subjected to FACS analysis were prepared at an approximate 

concentration of 5·105 cells/ml in FACS buffer. Cells were firstly incubated with Fc Block™ 

(anti-mouse CD16/CD32) for 20 min to prevent unspecific binding. Subsequently, cells were 

incubated with the respective fluorescence-labeled Abs for 20 min in the dark. After 

incubation, cells were washed with 3 ml FACS buffer (350 x g, 5 min) and analyzed in the 

FACS machine.  

 

2.4.6.2 Intracellular staining 

For nuclear staining of FoxP3 the Intracellular Staining Kit from eBioscience was employed. 

First, 1·106 cells were stained with the surface Abs (CD3, CD4 and CD25) following the above-

mentioned protocol. Afterwards, cells were incubated for 30 min at 4 ᵒC with 100 µl of cold 

Fix/Perm buffer and washed with 2ml PBS (7 min, 350 x g). Two more washing steps with 2 

ml of freshly diluted Perm Wash buffer were done before incubation with the anti-mouse 

FoxP3 Abs (30 min, 4 ᵒC in the dark). Finally, cells were washed once more with Perm Wash 

buffer and analyzed in the FACS machine. 

 

2.4.6.3 Annexin V apoptosis staining 

Apoptotic cells were detected by an additional incubation step after normal surface antigen 

staining. Cells were washed in FACS buffer (350 x g, 5 min) and incubated for 15 min with 

100 µl of 1x Annexin-buffer containing 1 µl of fluorescent-labeled Annexin V, a protein which 

binds to phosphatidylserine residues that are exposed on the surface of early apoptotic cells. 

Cells were then analyzed in the FACS device without any additional washing. 
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2.5 In vitro assays 

2.5.1 In vitro T cell apoptosis 

1·105 splenocytes from wt C57BL/6 mice were cultured in 96 well plates in the presence of 

PBS, 1·10-6 M and 1·10-7 M Dex, ENPs or 1·10-6 M and 1·10-7 M BNPs.  Cells were collected 5 h, 

10 h and 20 h post-treatment and the percentage of apoptotic T cells was determined via 

FACS analysis gating on CD3+ / AnnexinV+- population. 

 

2.5.2 In vitro nanoparticle distribution in mixed cultures 

The cell distribution of the BNPs was analyzed in vitro in cultures of splenocytes and lymph 

node cells. 1·105 cells were plated in 96 well plates and treated with 1·10-6 M BNPs. 6 h, 24 h 

and 48 h later, cells were collected and nanoparticle uptake was determined in different cell 

subsets (CD3+, B220+ and CD11b+ cells) by FACS analysis via quantification of the FITC 

fluorescence emitted by each population.  

 

2.5.3 Ex vivo re-stimulation of MOG-specific effector T cells 

MRfl (control) and MRlysM mice were immunized and at day 10 after immunization the mice 

were sacrificed to obtain single cell suspensions from spleens and lymph nodes. 6·105 

splenocytes and 3·105 lymph node cells were incubated in ReMed in the presence of 20 µM 

MOG35-55 for 72 h (37ᵒC, 5% CO2; 96-well U-bottom plates in a total volume of 110 µl). After 

that, the supernatants were collected, centrifuged to remove cell debris (300 x g, 4ᵒC for 7 

min) and stored at -20ᵒC to be used for ELISA. 
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2.5.4 BMDM-mediated activation of MOG-specific T cells 

The antigen presenting capacity of MRlysM macrophages was evaluated with the following 

experimental setting. BMDMs from MRfl (control) and MRlysM mice at day 7 of their 

maturation state were plated in 96 well plates at 1·105 cells/well. Afterwards, 1·105 CSFE-

labeled T cells, freshly isolated from 2D2 RFP mice, were added. Both cell types were co-

cultured in Re-Med in the presence or absence of 20 µM MOG35-55, and T cells were 

harvested after 24 h, 48 h and 72 h to analyze their proliferation by FACS. Cell culture 

supernatants were stored at -20ᵒC for cytokine quantification.  

With a similar setup regarding BMDMs culture and stimulation, additional experiments using 

in vitro re-stimulated RFP Th17 MOG-specific cells were also performed in order to analyze 

the IL-17A secretion potential upon MRlysM BMDM activation. RFP Th17 MOG-specific cells 

were kindly provided by Judith Strauβ, from the IMSF in Göttingen. 

 

2.6 Histology 

2.6.1 Isolation and fixation of spinal cords 

Mice were euthanized with CO2 and perfused with 20 ml of saline solution to clean vessels 

from blood. Then, 4% PFA was circulated throughout the body to fix the tissue. Spinal cords 

were isolated, kept in 4% PFA for 48 h and stored in PBS at 4ᵒC. 

Whole spinal cords were cut in smaller sections, mounted in a grid in PBS and dehydrated 

O/N. Then the tissue was embedded in paraffin blocks and 3 µm sections of the spinal cord 

were cut with the microtome. 
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2.6.2 Immunohistochemistry (IHC) 

IHC staining of the sections was performed as follows: first, sections were re-hydrated 

immersing the slides through a decreasing alcohol gradient (xylol, ethanol 99%, ethanol 96%, 

ethanol 70% and ddH2O). For antigen retrieval, the slides were then boiled in citrate buffer 

for 15 min, washed with ddH2O and PBS, and endogenous peroxidase activity was blocked 

with 3% H2O2 for 15 min at 4ᵒC. Subsequently, another blocking step with PBS/FCS was 

performed at RT, and the slides were incubated O/N at 4ᵒC with the primary Abs (1:200 in 

PBS/FCS). After washing with PBS, the slides were incubated 1 h at RT with the secondary 

Abs (anti-rat-IgG-biotin, 1:200 in PBS/FCS) and afterwards with Streptavidin-peroxidase 

(1:1000 in PBS/FCS) for one more hour. Then, the slides were developed with DAB at RT for 

1-2 min, and the reaction was stopped with ddH2O. Finally, the sections were dehydrated 

again in an increasing alcohol gradient and the slides were covered with Entellan.  

 

2.6.3 Luxol fast blue Periodic acid-Schiff (LFB-PAS) 

To determine the de-myelination grade in the spinal cord of mice with ongoing EAE, LFB-PAS 

staining was performed. Firstly, the spinal cord sections were immersed in decreasing 

alcohol concentrations and the gradient was stopped at 96% ethanol. The slides were then 

incubated O/N at 56ᵒC in a 0.1% LFB solution. LFB stains the myelin in blue. After washing 

the slides with 96% ethanol and ddH2O, excess of LFB was removed immersing them in 0.1% 

Li2CO3 for 30 s, followed by washing in 70% ethanol and ddH2O. Then, slides were incubated 

during 10 min in 0.8% Periodic Acid, washed in ddH2O, and 20 more min in Schiff's reagent, 

the excess of which was washed away with a sulphite wash. Finally, the cuts were washed 10 

min in tap water, dehydrated and mounted as previously described. 
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2.6.4 Bielschowsky silver staining 

Silver impregnation was performed to stain axonal fibers using a modified protocol based on 

Litchfield and colleagues (Litchfield and Nagy 2001). Slides were first de-parafined in a 

decreasing alcohol gradient and immersed for 15 min in a 20% AgNO3 solution at 4ᵒC. Then, 

slides were collected in ddH2O and 25% NH3 solution was added drop by drop to the AgNO3 

until the brown precipitate disappeared. Slides were then incubated for 20 min at 4ᵒC in the 

newly formed silver hydroxide solution, and washed in ammonium water for 5 min. The 

staining was then developed immersing the slides in the previously used ammoniacal silver 

solution with the developer (50 µl developer / 25 ml Ag solution). When the nerve fibers got 

dark, slides were washed with ammonium water and ddH2O. Finally, cuts were incubated 5 

min in sodium thiosulfate at 4ᵒC, dehydrated in an increasing alcohol gradient, and covered 

with Entellan.  

All reagents needed for the various histological staining protocols were kindly provided by 

the IMSF in Göttingen. 

 

2.7 Molecular methods 

2.7.1 DNA isolation from biopsies 

Tail samples were digested O/N by incubation at 56 ᵒC in 750 µL of Tail buffer with 20 µL 

proteinase K. After vortexing, 300 µL from a saturated NaCl solution were added, incubated 

for 5 min at RT and the samples were centrifuged for 10 min at 20.800 x g. The upper phase 

of each sample was removed and mixed with 600 µL isopropanol, incubated for 3 min at RT 

and again centrifuged for 10 min at 20.800 x g. The supernatant was discarded and 500 µL of 

70% EtOH were added, followed by further centrifugation for 5 min. The pellet was dried 

and dissolved in 100 µL TE buffer. The samples were stored at 4 ᵒC. 
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2.7.2 Polymerase chain reaction (PCR) 

DNA samples from newborn transgenic mice were subjected to PCR amplification with 

specific primers in order to determine their genotypes.  

 

Table 1.11⎹ PCR reagents and thermocycler program.  

PCR reaction mix PCR program 

0.5 µL DNA 1 min 98.5 °C Activation 

4  µL High Fidelity buffer 20 s 98.5 °C Denaturation 

1  µL dNTPs 5mM 15 s 64  °C Annealing 

1  µL Primer mix 20 s 72  °C Elongation 

0.3  µL PhuS 2 min 72  °C  

13.2  µL dH2O    

 

Amplification products were run together with 7 µL of the DNA loading dye Orange G on a 

1.5% agarose gel at 120 V, 230 mA for 25 min.  

 

2.7.3 RNA isolation  

RNA extraction from frozen tissue was performed with the help of the RNeasy plus Universal 

Kit (Quiagen). The tissue samples were homogenized in 900 µL Quiazol using an Ultra-Turrax 

mixer, then 100 µL DNA Eliminator solution and 180 µL chloroform were added before 

centrifugation at 20.800 x g, 4°C for 15 min. The upper phase was mixed with 600 µL 70% 

EtOH by pipetting and poured into a RNA-separation column which was centrifuged for 15 s. 

Subsequently, 700 µL RWT buffer were added to the column, which was centrifuged for 20 s 

at 20.800 x g. The process was repeated with 500 µL RPE buffer for 2 min, plus 1 additional 

min to dry the membrane. The RNA was eluted from the membrane with 70 µL ddH2O. The 

RNA concentration was quantified with the Nanodrop. Additionally, 1 µg RNA was run on a 

1% agarose gel to check its purity on the basis of the 18s and 28s rRNA bands. 

X 30 
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In the case of RNA purification from cell cultures, cells were directly lysed on the wells with a 

lysing solution and the Quick-RNA MiniPrep kit (Zymo Research), with comparable steps as 

the above described, was used according to the manufacturer´s instructions.  

 

2.7.4 cDNA synthesis 

In order to quantify gene expression 1 μg RNA was reversely transcribed with the iScript 

Reaction Mix kit. 4 μl of iScript buffer and 0.25 μl Reverse Transcriptase were added per 

reaction tube, and volume was adjusted to 20 μl. The cDNA synthesis was performed in a 

thermocycler with a three-step incubation program: 5 min at 25°C, 30 min at 42°C and 5 min 

at 85°C. 

 

2.7.5 Quantitative real-time PCR (qRT-PCR) 

 qRT-PCR was performed to determine the gene expression levels of certain genes (primers 

in Table 1.9) with the Power SYBR Green polymerase according to manufacturer's 

instructions. 

Table 1.12⎹ qRT-PCR reagents and thermocycler program 

qRT-PCR reaction mix qRT-PCR program 

1 µL cDNA 2 min 50 °C Activation  

12.5  µL SYBR Green 10 min 95  °C Denaturation 

11  µL ddH2O 15 s 95  °C Denaturation 

0.5  µL Primer mix 1 min 60  °C Annealing + Elongation 

 15 s 95  °C  

 1 min 60  °C Dissociation stage 

 15 s 95  °C  

 

X 40 
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2.7.6 Enzyme-linked immuno-absorbent assay (ELISA) 

ELISA was performed on appropriately diluted supernatants from re-stimulated T cell, 

macrophage or mixed cell cultures according to the manufacturer's instructions. In brief, 96-

well optic plates were coated O/N with 100 µl capture antibody (1:200 dilution in coating-

buffer). Between incubation steps, wells were washed 4 times with 200 µl PBS/Tween.  

The following morning, plates were blocked with Assay Diluent for 1 h. Then, serial dilutions 

of the standard provided by the kit and the corresponding samples were loaded on the wells 

and incubated for 2 h (100 µl/well, all samples were run in triplicates). Afterwards, wells 

were incubated 1 h with the detection Abs (1:200 in Assay Diluent) and after subsequent 

washing steps, additionally 30 min with Horse Radish Peroxidase (HRP, 1:1000 in Assay 

Diluent). Finally, 100 µl/well of substrate solution were added and a blue color with an 

intensity proportional to the protein concentration developed along 20 min in the dark. To 

stop the reaction, 100 µl/well of 2N H2SO4 were added and the plate was measured in the 

photometer. Final concentration of the protein in the samples was calculated via 

extrapolation of the absorbance values from the standard dilutions.  

 

2.7.7 Cytometric Bead Array (CBA) 

Th1, Th2 and Th17 cytokines were quantified in undiluted cell culture supernatants with a 

CBA. This method allows the simultaneous detection of different cytokines thanks to bead 

populations with different PerCP-intensities coated with specific capture antibodies for each 

cytokine. All reagents used were provided by the kit. First, the capture beads for each 

cytokine were mixed in equal proportions, and standards were prepared performing 1:2 

serial dilutions from the top standard. Then, a 96 well plate was pre-wet with 100 µl/well of 

wash buffer, and 20 µl/well of the mixed capture beads, together with 20 µl of the samples 

and 20 µl of the PE detection reagent were incubated for 2 h at RT in the dark. Then the 

plate was washed, samples were re-suspended in wash buffer and acquired in the FACS 

device. Data analysis was performed using the FCAP Array software v.3.0.1 (BD Bioscience). 
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2.8 Statistical analysis 

Data was analyzed by two-tailed Student’s t test for unpaired groups using GraphPad Prism 

5.03 (San Diego, California, USA). The Mann Whitney test with the Wilcoxon correction was 

used in the case of the EAE scoring curves. Results are depicted as mean values ± SEM; p 

values above 0.05 were considered as non-significant (n.s.); *, p <0.05; **, p <0.01; and ***, 

p <0.001.  
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3 RESULTS 

 

 

3.1 EAE therapy with betamethasone nanoparticles 

In recent years, the use of new carriers for the selective delivery of drugs to treat cancer and 

inflammatory diseases, such as MS, has attracted widespread attention. Previous research 

from our group revealed that liposomal encapsulation altered the mechanism of action of 

GCs, now targeting macrophages to a larger extent than T cells (Schweingruber et al. 2011). 

In addition, the potency of the drug in the treatment of EAE was increased. It is against this 

background that we investigated IOH-NPs (Heck et al. 2015) as an alternative vehicle for the 

delivery of GCs specifically to myeloid cells. Hence, the first part of this work was aimed to 

explore the features of BNPs in different cellular contexts, their therapeutic efficacy and 

mechanism of action in the treatment of EAE, and potential side effects.  

 

3.1.1 BNPs are preferentially taken up by myeloid cells 

Initial work from our group on this topic showed that the efficacy of the BNPs in 

macrophages was similar to the one of the free GC Dex in terms of expression of pro-

inflammatory cytokines and molecules involved in antigen presentation (Ring, unpublished 

data). These experiments confirmed that BNPs were well tolerated in vitro and taken up by 

myeloid cells. Unexpectedly, however, they also induced T cell apoptosis to the same extent 

as free Dex, indicating that their effect in vitro was not limited to phagocytic cells. Thus I 

started to compare the uptake of BNPs by different cell types in vitro using 2-photon 

microscopy (2-PM) and FACS, taking advantage of the fact that the fluorescent dye FMN has 

been incorporated into the nanoparticles. 
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BMDMs, peritoneal lavage cells, splenocytes and lymph node cells were treated with BNPs 

for up to 48 h in vitro, and the uptake of the BNPs was monitored in different cell types. 

Analysis by 2-PM revealed the intracellular presence of the fluorescent nanoparticles in 

BMDMs, distributed in a homogeneous fashion (Figure 3.1 A). FACS analysis allowed to 

further distinguish the uptake efficacy between individual cell types. Although T cells, B cells 

and macrophages increasingly accumulated the fluorescent dye over time, CD11b+ myeloid 

cells were the brightest, indicating that they took up the BNPs more efficiently than T and B 

cells (Figure 3.1 B,C,D). These data collectively indicate that the nanoparticles in vitro are 

able to target various types of immune cells albeit with different efficacy. 

 

Peritoneal cells

0 h 24 h 48 h
0

500

1000

1500

2000

T cells

B cells

MPh

B
F

M
N

 (
M

F
I)

Spleen

0 h 24 h 48 h
0

500

1000

1500

2000

T cells

B cells

MPh

F
M

N
 (

M
F

I)

       Lymph Nodes

0 h 24 h 48 h
0

500

1000

1500

2000

MPh

T cells

B cells

F
M

N
 (

M
F

I)

C D

 

Figure 3.1⎹ BNPs are efficiently but differentially taken up by immune cells in vitro. (A) Analysis of 

BMDMs treated O/N with BNPs by 2-PM (in collaboration with Judith Strauβ, IMSF Göttingen). (B,C,D) 

Peritoneal lavage cells, splenocytes and lymph nodes cells were isolated from wt C57BL/6 mice (n=6) and total 

cell suspensions were cultured in the presence of 10
-6

M BNPs. Cells were harvested after 24 h and 48 h, 

A 



Results 

 
 
 

 

55 

incubated with monoclonal Abs against CD3, B220 and CD11b and analyzed by FACS. After electronic gating on 

the three subpopulations, nanoparticle uptake was quantified on the basis of the mean fluorescence intensity 

(MFI) of the FMN dye. Values are depicted as mean ± SEM.  

 

3.1.2 BNPs are more potent in modulating macrophages than T cell activity 

in vivo 

Previous in vitro analyses suggested that BNPs equally modulated T cell and macrophage 

function in a similar manner. However, in a competitive situation such as mixed cultures, the 

nanoparticles were preferentially internalized by myeloid cells. Thus we hypothesized that 

BNPs might exert a stronger anti-inflammatory effect on macrophages as compared to T 

cells when applied in vivo.  

First, surface expression of molecules involved in antigen-presentation was studied on 

peritoneal macrophages by FACS (Figure 3.2 A). In all experiments, the same dose of free 

Dex and BNPs was employed (10 mg/kg) and administered on three consecutive days. PBS or 

empty nanoparticles without the drug (ENPs) served as controls. Expression of MHC class II 

and CD86 were both strongly reduced by Dex and BNPs compared to their respective 

controls. To confirm the efficacy of the BNPs, peritoneal macrophages were isolated from 

mice treated with Dex, BNPs, PBS or ENPs for three days, and subsequently stimulated in 

vitro with IFNу and LPS. Secretion of TNFα was then analyzed in the supernatants by ELISA 

(Figure 3.2 B). Similar to the results of the FACS analysis, in vivo applied Dex and BNPs 

resulted in a suppression of TNFα release compared to the controls. Taken together, BNPs 

and free Dex have a comparable immunomodulatory efficacy in macrophages in vivo.  
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Figure 3.2⎹ BNPs exert potent immunosuppressive activity on peritoneal macrophages in vivo. 

Thioglycolate-elicited macrophages were obtained by peritoneal lavage from wt C57BL/6 mice that received a 

daily injection of PBS (n=5), 10 mg/kg Dex (n=6), ENPs (n=8) or 10 mg/kg BNPs (n=6) for three consecutive days. 

(A) Cells were incubated with monoclonal Abs against CD11b, IA
b
 (MHC II) and CD86 and analyzed by FACS. 

Cells expressing MHC II and CD86 were determined after gating on CD11b
+ 

cells. (B) 2∙10
5 

peritoneal 

macrophages/ml (n=3 per group) obtained from mice treated as in panel A were cultured in DMEM medium 

and half of the wells were stimulated with LPS and IFNγ. After 48 h, cell culture supernatants were collected 

and the concentration of TNFα was determined by ELISA. Statistical significance was calculated using the 

unpaired Student´s t-test and values are depicted as mean ± SEM; *, p <0.05; **, p <0.01; and ***, p <0.001. 

 

Having demonstrated the in vivo anti-inflammatory activity of the BNPs on macrophages, we 

wondered whether BNPs had a comparable effect regarding T cell apoptosis. Following the 

same protocol as for the analysis of macrophages, mice were injected daily up to three times 
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i.p. with the vehicles (PBS/ENPs) or 10 mg/kg GCs (Dex/BNPs). On day 0, 1 and 3 after 

treatment, total splenocytes were counted, stained for T cell markers and analyzed by FACS 

(Figure 3.3). In vitro it was shown that BNPs and Dex exerted a similar effect on T cell 

apoptosis as free GCs. In vivo, Dex induced a reduction of total splenocytes as well as CD4+ 

and CD8+ T cell numbers by almost 100% the third day of treatment. However, BNPs 

achieved only a 20% decrease in splenocyte numbers and a reduction around 30% in CD4+ T 

cell numbers. The amount of CD8+ cells was even unaffected. Unexpectedly, ENPs appeared 

to moderately increase total splenocyte numbers, in particular the CD8+ T cell subset (Figure 

3.3 A). The reason and implications of this observation, however, remain unclear. 
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Figure 3.3⎹ BNPs do not efficiently induce T cell apoptosis in vivo. PBS, 10 mg/kg Dex, ENPs or 10 mg/kg 

BNPs were injected i.p. once per day into wt C57BL/6 mice during a three day period. On day 0 (n=5), 1 (n=3) 

and 3 (n=6) after treatment, total splenocytes were isolated, counted and stained with monoclonal Abs against 

CD3, CD4 and CD8. CD4
+
 and CD8

+
 populations were gated on total CD3

+
 T cells. Total cell numbers were 

multiplied with the percentages of each cell population, and are presented either as absolute cell numbers (A) 

or referred to the corresponding vehicle controls (B). Statistical significance was calculated using the unpaired 

Student´s t-test and values are depicted as mean ± SEM; (n.s.), p ≥ 0.05; *, p <0.05; **, p <0.01; and ***, p 

<0.001. 

 

 

3.1.3 BNPs modulate macrophage and T cell functions via the GR 

Although the findings up to this point indicated that BNPs were in principle able to modulate 

macrophage and T cell function, the mechanism was still unknown. It is generally accepted 

that free GCs exert their anti-inflammatory effects mostly through binding to the GR, but it is 

known that selective GC activities might also be mediated by some other receptors (Funder 

1997). To corroborate that the activity of BNPs was GR-dependent, the GC-nanoparticles 

were tested in mice with specific deletions of the GR either in macrophages or T cells. 

First, GR-deficient peritoneal macrophages were analyzed for MHC class II expression after in 

vivo treatment using a similar protocol as in Figure 3.2. Application of Dex or BNPs to GRlysM 

mice had no effect on the surface levels of MHC class II, whereas the same treatments 

induced a reduction by 50% of this surface molecule in GRfl control animals, similarly to the 

previously shown experiments performed in mice with a wt phenotype (Figure 3.4). This 

indicates that the presence of the GR in macrophages is required for the function of BNPs. 
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Figure 3.4⎹ BNPs do not reduce MHC class II expression on GRlysM macrophages in vivo. Thioglycolate-

elicited macrophages were obtained by peritoneal lavage from GR
fl 

(A) and GR
lysM

 (B) mice that had received a 

daily injection of PBS (n=3/3), 10 mg/kg Dex (n=3/3), ENPs (n=3/4) or 10 mg/kg BNPs (n=6/4) during three 

consecutive days. The cells were incubated with monoclonal Abs against CD11b and IA
b
 (MHC class II). Cells 

expressing MHC class II were gated within the CD11b
+ 

subpopulation. Statistical significance was calculated 

using the unpaired Student´s t-test and values are depicted as mean ± SEM; **, p <0.01; and ***, p <0.001. 

 

Furthermore, induction of T cell apoptosis was analyzed in vitro and in vivo. GRfl control 

splenocytes treated in vitro with 10-7M BNPs underwent apoptosis to the same levels as Dex-

treated ones, whereas the pro-apoptotic effect was abolished on splenocytes from the GRlck 

mice, with GR-deficient T cells, when they were treated with either Dex or BNPs (Figure 3.5 

A,B). A similar effect was observed when Dex and BNPs were applied in vivo using a similar 

protocol as in Figure 1.3. The reduction in splenic T cell numbers by Dex and BNPs was more 

pronounced in GRlck mice compared to GRfl mice (Figure 3.5 C,D), indicating that their pro-

apoptotic effect is partially abolished. The slight drop in T cells in the mutant mice after 

treatment might be due to the effect of GCs in other cell types in the spleen, such as B cells, 

thus causing a collateral decrease in T cell numbers. 

Taken together, our data confirmed that not only free GCs but also BNPs require the GR in 

order to exert their immunomodulatory effects in T cells and macrophages. 
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Figure 3.5⎹ BNPs depend on the presence of the GR for the induction of T cell apoptosis. The activity 

of BNPs in GR-deficient T cells was evaluated in vitro and in vivo. (A, B) Total splenocytes isolated from GR
fl
 

(n=6, A) and GR
lck

 (n=6, B) mice were cultured in vitro with PBS, 10
-7

M Dex, ENPs or 10
-7

M BNPs, and harvested 

5 h, 10 h and 20 h after treatment. Cells were stained with an anti-CD3 Ab and Annexin V, and analyzed by 

FACS. The percentage of surviving T cells was referred to the values obtained for freshly isolated splenocytes, 

which were set to 100%. (C, D) Splenocytes were isolated from GR
fl
 (n=6, C) and GR

lck
 (n=6, D) mice that had 

been treated with PBS, 10 mg/kg Dex, ENPs and 10 mg/kg BNPs once per day during a three day period. To 

determine total T cell numbers, the splenocytes were counted and the T cells were identified by FACS analysis 

of the CD3
+
 subpopulation. Statistical significance was calculated using the unpaired Student´s t-test and values 

are depicted as mean ± SEM; (n.s.),p ≥ 0.05; *, p <0.05; and ***, p <0.001; ****, p <0.0001. 
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3.1.4 BNPs efficiently ameliorate EAE in mice 

Having proven the anti-inflammatory properties of BNPs both in vitro and in vivo, we 

investigated their therapeutic potential in the context of EAE. The disease was induced in 

C57BL/6 wt mice by immunization with 50 µg of MOG35-55. This form of EAE is characterized 

by a chronic progressive disease course that peaks at around day 14-16 post-immunization 

with hind limb paralysis (score 6-7), followed by partial resolution of the symptoms. C57BL/6 

mice received daily doses of PBS, 10 mg/kg Dex, ENPs or 10 mg/kg BNPs on three 

consecutive days, starting on the day when the first clinical signs appeared (score 2-3). In 

order to exclude a potential difference in therapeutic efficacy between Dex and BMZ, which 

is contained in the nanoparticles, an additional group was treated with free BMZ. The 

disease curves representing the progression of clinical symptoms of EAE showed that all 

three GC treatment protocols (Dex, BNPs and BMZ) were equally potent in ameliorating EAE 

(Figure 3.6 A). Noteworthy, ENPs did not influence EAE, confirming that the vehicle had no 

effect in the observed phenotypes. 

In order to determine the range of clinical efficacy, the amount of BNPs was titrated in the 

treatment of EAE. While 5 mg/kg BNPs were still able to ameliorate clinical symptoms, this 

was no longer the case for 2 mg/kg. (Figure 3.6 B). Thus, these data show the potent 

therapeutic effect of BNPs at 10 mg/kg, and confirm a comparable efficacy to free GCs when 

they are applied at similar doses.    
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Figure 3.6⎹ The therapeutic efficacy of BNPs in the treatment of EAE is similar to free GCs. EAE was 

induced by active immunization on C57BL/6 wt mice with 50 µg MOG35-55 in CFA according to our standard 

protocol (see 2.3.1). (A) Having reached a disability score of 2-3, the mice received three consecutive daily i.p. 

injections of PBS (n=5), 10 mg/kg Dex (n=5), 10 mg/kg BMZ (n=5), ENPs (n=9) or 10 mg/kg BNPs (n=6) (black 

arrows). The severity of the disease was scored daily and is depicted on a scale from 0 to 10. Day 0 represents 

the day of the first treatment in each individual mouse. (B) To titrate the amount of BNPs, different doses were 

administered i.p.: 2 mg/kg (n=4), 5 mg/kg (n=6) and 10 mg/kg (n=18). Treatment with PBS served as a control 

(n=10). Statistical analysis of the scoring curve was performed using the Mann-Whitney test. Values are 

depicted as mean ± SEM; (n.s.),p ≥ 0.05; *, p <0.05; **, p <0.01. 

 

The EAE model not only mimics the clinical symptoms of ascending paralysis, but also the 

demyelinating pathology typical for MS at the spinal cord level. This feature can be used as 

an independent readout of the efficacy of GC therapy. Hence, the extent of demyelination 

was determined in the spinal cord of mice treated with BNPs or ENPs (as control) three days 

after starting the therapy (Figure 3.7). Although no statistically significant difference was 

observed, there was a tendency towards reduced demyelination in mice treated with BNPs 

based on the LFB-PAS staining of the spinal cord sections. This supports our previous 

conclusions that BNPs are suitable for the treatment of EAE. 
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Figure 3.7⎹ BNPs improve myelin pathology during EAE. C57BL/6 wt mice suffering from EAE were 

treated three times with BNPs on consecutive days once they had reached a clinical score of 2-3 (n=6). Control 

mice received the same volume of ENPs (n=5). One day after the third injection, the mice were sacrificed and 

perfused with 4% PFA. Spinal cords were isolated, embedded in paraffin, 3 µm sections prepared, and 

subjected to LFB-PAS staining (A). Quantitative analysis of the demyelinated areas was made using the ImageJ 

1.46r Software (B). Values are depicted as mean ± SEM. 
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3.1.5 Myeloid cells are essential targets of BNPs in EAE therapy 

In the past years, several publications showed that T cells are major targets of GCs in the 

treatment of EAE (Wüst et al. 2008; Schweingruber et al. 2014). Nevertheless, alternative 

formulations might alter the mechanism of action of a drug, and previous data from our 

group revealed that liposomal encapsulation conferred an alternative cell-type specificity to 

GCs (Schweingruber et al. 2011). So far BNPs appeared to have a preference for myeloid cells 

over T cells. Therefore, we wanted to find out which cell type was the target of these 

nanoparticles in the context of EAE therapy. 

First, we performed immunohistochemical characterization of the CNS infiltrates in 

immunized mice treated with ENPs or BNPs. The histological study did not reveal changes in 

T cell infiltration into the spinal cord after BNP treatment, however, the area occupied by 

macrophages was significantly reduced in the group of mice treated with BNPs as compared 

to the control mice receiving ENPs (Figure 3.8). These results provide first evidence that 

nanoparticles act via myeloid cells in the therapy of EAE, as hypothesized.  
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Figure 3.8⎹ BNPs reduce macrophage infiltration during EAE therapy. C57BL/6 wt mice suffering from 

EAE were treated three times on consecutive days with BNPs once they reached a clinical score of 2-3 (n=6). 

Control mice received the same amount of ENPs (n=5). One day after the last injection, the mice were 

sacrificed and perfused with 4% PFA. Spinal cords were isolated, embedded in paraffin, and 3 µm sections were 

stained with monoclonal Abs against CD3 (A) or MAC3 (B). Counting of CD3
+
 cells and quantification of 

macrophage infiltration were performed with the ImageJ 1.46r software (C). Statistical significance was 

calculated using the unpaired Student´s t-test and values are depicted as mean ± SEM; *, p <0.05. 

 

In the previous in vitro and in vivo experiments it had been found that the presence of the 

GR was necessary for the immunomodulatory effects of the BNPs, regardless of the cell type 

(see Figure 3.4, Figure 3.5). Based on this observation we hypothesized that the therapeutic 

effect of the BNPs should be abrogated when the GR is deleted from any cell type being 

essential for the therapeutic efficacy of this treatment. 
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To address this issue, EAE was induced in several cell type-specific GR knock-out mice. GRlck 

mice lack the GR specifically in T cells; GRlysM are GR-deficient in myeloid cells; GRlck/lysM have 

a GR deletion simultaneously in T cells and macrophages; and GRSLCO1C1 carry an inducible GR 

knock-out construct in endothelial cells of the BBB. GRfl littermates serve as controls in each 

case. Once the mice reached a clinical score of 2-3, they were treated with 10 mg/kg BNPs or 

the same amount of the empty vehicle according to our standard protocol (see Figure 3.6). 

The deletion of the GR in T cells did not affect the capacity of the BNPs to improve EAE, 

suggesting that they were not essential targets in this context (Figure 3.9 A). In contrast, 

GRlysM mice not only presented with a more severe disease course, but were also completely 

refractory to the treatment with BNPs (Figure 3.9 B). In line with these findings, the double 

knock-out mice neither responded to BNP treatment (Figure 3.9 C). Finally, GRSLCO1C1 mice 

responded to the therapy with BNPs, confirming that modulation of brain endothelial cells 

was dispensable for the beneficial effect of the GC-nanoparticles (Figure 3.9 D). 
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Figure 3.9⎹ Myeloid cells are essential targets of BNPs in the treatment of EAE. EAE was induced by 

active immunization with MOG35-55 in four different GR knock out mouse strains: (A) GR
lck

 (n= 7,6,8,8), (B) 

GR
lysM

 (n= 8,3,6,5), (C) GR
lck/lysM

 (n=7,6,7,8) and (D) GR
SLO1C1

 (n=6,5,5,5). GR
fl
 littermates were used as controls in 

each experiment. 10 mg/kg BNPs and a similar amount of ENPs were applied i.p. once per day for three 

consecutive days starting once individual mice reached a clinical score of 2-3. The disease severity was 

evaluated daily for 6 days after the beginning of the treatment. Statistical analysis of the scoring curves was 

performed using the Mann-Whitney test; values are depicted as mean ± SEM; (n.s.), p ≥ 0.05; *, p <0.05. 

 

These data clearly demonstrate that BNPs act mainly via modulation of myeloid cells in the 

treatment of EAE, whereas T cells and brain endothelial cells play only a minor role for their 

therapeutic efficacy.  

 

3.1.6 BNPs and Dex act synergistically in the treatment of EAE 

This study so far demonstrated that the use of the ZrO2 nanoparticles directed GCs to the 

myeloid compartment, while conventional therapies using free GCs mainly target T cells. 

Since both cell types participate in EAE progression, a combination of both delivery methods 

might cause a synergy via targeting distinct cell types, thereby potentiating the anti-

inflammatory properties of GCs even at lower drug concentrations.  

In order to explore this possibility, C57BL/6 wt mice suffering from EAE were treated with 

suboptimal doses of Dex or BNPs, and an additional group received a combination of both 

with the total amount of GCs being equal to the individual treatments. As observed 

previously (see Figure 3.6 B), a suboptimal dose of BNPs did not achieve therapeutic efficacy. 

However, mice injected with suboptimal doses of both BNPs and Dex presented with a 

slightly, but significantly, milder EAE than the mice treated with Dex alone. This supports our 

hypothesis regarding a synergy between BNPs and free Dex.  
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Figure 3.10⎹ Combined treatment with BNPs and Dex synergistically improves EAE. EAE was induced 

by active immunization on C57BL/6 wt mice with 50 µg MOG35-55. When mice reached a disability score >1, 

three consecutive daily injections of PBS (n=4), 2 mg/kg Dex (n=4), 2 mg/kg BNPs (n=4) or 1 mg/kg Dex + 1 

mg/kg BNPs (n=4) were applied i.p. (black arrows). Statistical analysis of the scoring curves was performed 

using the Mann-Whitney test. Values are depicted as mean ± SEM; (n.s.),p ≥ 0.05; *, p <0.05. 

 

3.1.7 BNPs partially circumvent GC-associated side-effects 

A negative aspect of GC therapies is the frequent occurrence of adverse side effects. 

(Moghadam-Kia and Werth 2010; Weinstein 2012; Ciriaco et al. 2013; Hunter et al. 2014; 

Hwang and Weiss 2014). This problem derives from the ubiquitous expression of the GR 

(Rhen and Cidlowski 2005), that makes GCs important players in numerous homeostatic and 

metabolic processes. By targeting GCs to the myeloid compartment, we aimed to overcome, 

at least partially, these side effects. Therefore experiments were set up to determine the 

effect of BNPs in the context of undesired GC activities. 
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3.1.7.1 Glucose metabolism 

To find out whether the use BNPs circumvented GC-associated hyperglycemia we treated 

healthy C57BL/6 wt mice on four consecutive days with 10 mg/kg Dex, 10 mg/kg BNPs, or 

their respective vehicles. One day after the last injection, glucose and insulin levels, as well 

as the expression of typical gluconeogenetic enzymes in the liver were measured after O/N 

fasting. The increase in blood glucose levels was minimal, presumably due to the moderate 

dose of the drug (Figure 3.11 A). Consistent with the little increase in glucose, insulin 

concentrations in the serum were unaltered (Figure 3.11 B).  Surprisingly, the nanoparticles 

appeared to lower insulin levels, regardless of whether they contained BMZ or not. The 

reason and relevance of this effect is not known. Regarding gluconeogenesis, the expression 

levels of the three analyzed hepatic enzymes were significantly increased by Dex and BNPs 

(Figure 3.11 C).  
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Figure 3.11⎹ Short treatment with BNPs affects glucose metabolism similarly to Dex. C57BL/6 wt 

mice were treated i.p. with PBS (n= 12), 10 mg/kg Dex (n=13), ENPs (n=10) or 10 mg/kg BNPs (n=10) once per 

day for four consecutive days. Subsequently, the food pellets were removed O/N. In the morning (9 AM), 

glucose levels were measured in blood obtained via tail puncture (A). Afterwards, the mice received an 

additional injection of the corresponding drug, and 2.5 h later blood serum and liver samples were collected. 

Insulin levels were determined in serum samples by ELISA (B). The liver samples were used to extract RNA 

which, after reverse transcription, was used to analyze the expression levels of gluconeogenetic enzymes by 

qRT-PCR. Expression of the housekeeping gene HP-1 was used as reference (C). Values were analyzed using the 

unpaired Student´s t-test and are depicted as mean ± SEM; ****, p <0.0001. 

 

Since hyperglycemia could hardly be observed, even after application of free GCs, no definite 

conclusions about the properties of BNPs in this respect could be drawn at this point. To 

address this, further experiments with modified experimental protocols will be performed in 

the future. 

 

3.1.7.2 Muscle wasting 

Another complication observed after GC therapy is skeletal muscle atrophy. To investigate 

this effect of BNPs, changes in muscle mass were measured in mice treated with Dex or 

BNPs for four days. On the day after the last injection, the hind limb muscles of the mice 

were removed, weighted and the values were normalized to the total body weight. Despite 

the short duration of the corticoid therapy, a slight but non-significant decrease in tibialis 

anterior and gastrocnemius mass was found in the Dex-treated mice, and to a minor extent 

also in BNP-treated animals (Figure 3.12). As for glucose and insulin levels, the GC dose used 

in this experimental setup appears to be too low to induce meaningful metabolic side-effects 

in mice. 
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Figure 3.12⎹ Short treatment with BNP hardly affects muscle wasting. C57BL/6 wt mice were treated 

i.p. with PBS (n=10), 10 mg/kg Dex (n=10), ENPs (n=10) and 10 mg/kg BNPs (n=10) once per day for four 

consecutive days. The mice were weighted and sacrificed on the day after the last treatment. Skin was 

removed from the hind limbs to expose the muscle, and tibialis anterior and gastrocnemius were dissected. 

The weight of the muscles was determined and referred to the total body weight in each individual mouse. 

Values were analyzed using the unpaired Student´s t-test and are depicted as mean ± SEM; (n.s.), p ≥ 0.05. 

 

3.1.7.3 Stomach emptying 

It has been demonstrated that GC treatment alters NO metabolism in the stomach, slowing 

down gastric motility (Reichardt et al. 2014). As a consequence, stomach emptying is 

impaired resulting in an increased weight of the filled stomach. To address this issue, mice 

were treated with PBS, 10 mg/kg Dex, ENPs or 10 mg/kg BNPs and the weight of the 

stomach was determined. In both groups receiving GCs, a small but non-significant increase 

in stomach weight was observed (Figure 3.13). This preliminary data indicates that BNP 

therapy might impair stomach emptying in a similar manner as free Dex and therefore the 

use of the nanoparticles might not circumvent this GC-associated side-effect. 
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Figure 3.13⎹ Short treatment with BNPs and Dex has a mild effect on gastric emptying. C57BL/6 wt 

mice were treated i.p. with PBS (n=5), 10 mg/kg Dex (n=5), ENPs (n=5) and 10 mg/kg BNPs (n=5) once per day 

for four consecutive days. One day after the last treatment the mice were weighted and sacrificed. The full 

stomach was dissected, weighted and the obtained values were normalized to the total body weight in each 

individual mouse. Values were analyzed using the unpaired Student´s t-test and are depicted as mean ± SEM; 

(n.s.), p ≥ 0.05. 

 

3.1.7.4 Bone re-sorption 

An important side effect of GC therapy is the decrease in bone mineral density. To evaluate 

whether BNPs improved this symptom or not, osteocalcin was used as a surrogate marker of 

GC-induced osteoporosis, since it is quickly reduced after GC application (Leclerc et al. 2005). 

The concentrations of osteocalcin in the serum of mice treated with PBS, 10 mg/kg Dex, 

ENPs or 10 mg/kg BNPs for four consecutive days were determined by ELISA. With this 

treatment protocol, no significant changes in osteocalcin levels could be detected between 

any of the experimental groups. 

 



Results 

 
 
 

 

73 

Osteocalcin

PBS Dex ENP BNP
0

20

40

60

n
g

/m
l

 

Figure 3.14⎹ Short treatment with BNPs does not affect the osteoporosis marker osteocalcin. Blood 

was obtained via heart puncture from C57BL/6 wt mice receiving a 4-day treatment with PBS (n=10), 10 mg/kg 

Dex (n=10), ENPs or 10 mg/kg BNPs (n=10). Serum was separated in a STT Microtainer™ tubes by 

centrifugation. The levels of osteocalcin were determined on the serum samples by ELISA. Values were 

analyzed using the unpaired Student´s t-test and are depicted as mean ± SEM; (n.s.), p ≥ 0.05. 

 

Collectively, our data indicates that the experimental protocol used in the analysis of GC-

associated side symptoms needs to be optimized in order to obtain reliable information 

about the potential of the BNPs to avoid the appearance of unwanted effects. 
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3.2 Role of the MR in myeloid cells in EAE 

The previous results of this thesis confirmed the crucial role of myeloid cells for the response 

to GCs in EAE, and showed that this modulation is mediated by the GR. However, the GR is 

not the only receptor sensitive to GCs in this cell compartment. The MR is also expressed in 

myeloid cells and is known to promote a pro-inflammatory state in mouse peritoneal 

macrophages after GC binding (Usher et al. 2010). Hence, we assumed that the deletion of 

the MR in myeloid cells might potentiate the anti-inflammatory activities of GCs via the GR. 

Therefore, the aim of the second part of this thesis was to characterize the CNS autoimmune 

responses in MRlysM mice, a knock-out mouse strain harboring a MR deficiency specifically in 

the myeloid compartment.  

 

3.2.1 MRlysM mice develop a milder EAE disease 

This project is based on the previous work of Li and Schweingruber, two former colleagues of 

the Reichardt's group, who performed extensive in vitro analyses of macrophages derived 

from MRlysM mice. MR-deficient macrophages expressed lower levels of pro-inflammatory 

genes compared to cells from MRfl controls (Li 2013). In line with these results, their capacity 

to secrete TNFα and NO was diminished as well. Analysis of EAE in MRlysM mice showed a 

milder disease course (Figure 3.15), which was reproducible in our current experiments. 

Furthermore, both peripheral and CNS-infiltrating macrophages from the affected mice 

adopted a M2 phenotype, confirming a correlation between EAE severity and myeloid cell 

phenotype (Li 2013). 
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Figure 3.15⎹ MRlysM mice develop a milder EAE phenotype. EAE was induced in MR
fl
 and MR

lysM 
mice by 

active immunization with 50 µg of MOG35-55 emulsified in CFA. Mice were weighted and scored daily from day 9 

post-immunization on. (A) Cumulative disease curve as determined in experiments performed by Li and 

Schweingruber (Li 2013). Statistical analysis was performed using the Mann-Whitney test; values are depicted 

as mean ± SEM; **, p <0.01. 

 

The aim of this part of my thesis was to continue and complete the characterization of EAE in 

MRlysM mice. Since the clinical signs of disability in EAE generally mirror neuronal pathology, 

we aimed to corroborate the milder disease course observed in the MRlysM group via 

histological analysis of the spinal cord in those mice. These experiments were performed in 

collaboration with Li and Schweingruber, and the preliminary histological data was already 

included in the thesis of Li (Li 2013).  

First, CNS infiltration by immune cells was determined. Once T cells have been primed by 

antigen-specific APCs in the periphery, they proliferate and acquire effector functions. 

Several days later, they migrate to the CNS to encounter their cognate antigen again and 

become re-stimulated, therefore infiltration of antigen-specific T cells is considered a major 

hallmark of EAE pathogenesis (Schweingruber et al. 2014). The histological analysis of MRlysM 

mice revealed that, in spite of the milder disease course in the MRlysM mice, infiltration by 

CD3+ cells into the spinal cord was largely similar in both genotypes (Figure 3.16 A). Besides 
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T cell migration, a massive infiltration of monocytes is observed at the onset of EAE and 

during MS relapses (Huitinga et al. 1990). Once in the CNS, these monocytes differentiate 

into macrophages that process and present myelin antigens, thereby contributing to the 

secretion of cytokines and other soluble mediators which cause oligodendroglial death and 

neuronal damage. Since MR-deletion might affect different features of 

monocytes/macrophages including migration, the presence of monocytes and macrophages 

in the CNS was also investigated by IHC using an anti-MAC3 Ab. Indeed, the infiltration of the 

spinal cord by MAC3+ cells in MRlysM mice was significantly lower compared to the MRfl 

control animals (Figure 3.16 B). 

 

 

Day 0 Day 2 Day 10 

Pertussis Onset 
Immunization 
+  Pertussis 

 Day 14-16 

EAE Peak 



Results 

 
 
 

 

77 

CD3+ infiltration

MRfl MRlys
0

50

100

150

C
C

D
3

+
 c

e
ll
s
 /

 m
m

2

MRfl MRlys
0.00

0.05

0.10

0.15
*

MAC3+ infiltration

M
A

C
3

+
 i

n
fi

lt
ra

te
d

 a
re

a
 (

%
)

 

Figure 3.16⎹ Macrophage infiltration into the spinal cord is reduced in MRlysM mice during EAE.  

MR
fl
 (n=5) and MR

LysM
 (n=7-6) mice were immunized according to our standard protocol (see 2.3.1) and spinal 

cords were isolated and fixed in PFA at the peak of the disease (in collaboration with Li and Schweingruber). 

After paraffin embedding, 3 µm sections were cut and mounted on microscopic slides. IHC staining was 

performed with Abs against CD3 (A) and MAC3 (B). The number of CD3
+
 cells per mm

3
 of total spinal cord area 

and the area infiltrated by MAC3
+
 cells in relation to the total white matter area were determined with the help 

of the ImageJ 1.46r software (C). Values were analyzed using the unpaired Student´s t-test and are depicted as 

mean ± SEM; *, p <0.05. 

 

Additionally, the extent of neurodegeneration in these mice was evaluated. To this end, 

histological analysis of demyelination and axonal loss were performed on spinal cord 

sections from MRfl and MRlysM mice at the peak of EAE disease. In agreement with the milder 

EAE score, the average number and size of demyelinated lesions was significantly reduced in 

the myeloid-specific knock-out mice. Furthermore, axonal density in MRlysM mice was 

partially preserved (Figure 3.17).  
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Figure 3.17⎹ Demyelination and axonal damage in MRlysM mice during EAE are not as severe as in 

MRfl mice.  MR
fl
 (n=5-4) and MR

LysM
 (n=7-5) mice were immunized according to our standard protocol (see 

2.3.1) and spinal cords were isolated and fixed in PFA at the peak of the disease (in collaboration with Li and 

Schweingruber). After paraffin embedding, 3 µm sections were cut and mounted on microscopic slides. 

Bielschowsky silver staining was performed to visualize axonal fibers (A), and myelin was stained according to 

the LFB/PAS protocol (B). Quantification of the axonal densities and the percentage of myelin lost were carried 
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out with the ImageJ 1.46r software (C). Values were analyzed with the unpaired Student´s t-test and are 

depicted as mean ± SEM; *, p <0.05. 

 

Taken together, deletion of the MR in myeloid cells markedly ameliorates EAE in terms of 

clinical symptoms, monocyte infiltration into the spinal cord and demyelination. 

 

3.2.2 MR deletion alters the activation state of circulating and CNS-

infiltrating monocytes 

In search of mechanisms that could explain the reduced presence of monocytes and 

macrophages in the CNS of MR-deficient mice, the activation state of peripheral and CNS-

infiltrating monocytes was analyzed at the onset and peak of EAE. Blood circulating 

monocytes were defined as CD11b+ Ly6G- cells, whereas in the CNS they were distinguished 

from other resident myeloid cells on the basis of their CD11b+ CD45high phenotype. The 

numbers of inflammatory monocytes, which can be distinguished from resting ones due to 

an increased expression of Ly6C on their surface, were determined by FACS analysis using a 

monoclonal Ab against Ly6C (Figure 3.18). Based on this systematic we observed that the 

percentage of inflammatory monocytes in blood and spinal cord was significantly reduced in 

mutant mice. Thus, a reduction in the number of activated monocytes could be one of 

factors contributing to the ameliorated EAE observed in MRlysM mice.  
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Figure 3.18⎹ The percentage of inflammatory monocytes in blood and spinal cord of MRlysM mice is 

reduced during EAE. EAE was induced according to our standard protocol (see 2.3.1) in MR
fl
 and MR

lysM
 mice. 

(A) At day 10 after immunization, the mice were sacrificed and blood was collected in Alsevers solution to avoid 

clotting (n=6,4). The cells were stained with Abs against CD11b, Ly6C and Ly6G, treated with Optilyse to 

remove erythrocytes and analyzed 2 h later by FACS. Inflammatory monocytes were defined according to the 

systematic of Perlmann and colleagues (Rose et al. 2012). Ly6G
+
 cells were excluded from the CD11b

+
 

population, and then inflammatory monocytes were distinguished from resting monocytes based on their 

higher Ly6C expression. (B) Spinal cords from the mice with ongoing EAE were obtained at the peak of the 

disease (day 14-16), and homogenized to separate mononuclear cells on a Percoll gradient (n=16,15). The cells 

were stained with Abs against CD11b and CD45.2 to differentiate monocytes/macrophages from microglia 

(Prinz et al. 2011). Subsequently, the monocytes were subdivided into inflammatory and resting ones on the 

basis of the Ly6C expression levels. (C) The quantification of the data was performed with GraphPad Prism. 

Values were analyzed using the unpaired Student´s t-test and are depicted as mean ± SEM; *, p <0.05. 
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3.2.3 Monocytes and neutrophils in secondary lymphoid organs are not 

affected by the MR deletion 

Up to this point, we have found that the MR deletion affected circulating monocytes and 

infiltrating monocyte/macrophages during EAE. However we had no information about the 

activated state of macrophages in peripheral lymphoid organs, where they fulfill an 

important task shaping the environment for T cell priming and differentiation. Therefore, 

using the same FACS gating strategy as for blood samples (Figure 3.18 A), monocyte 

activation was analyzed in the spleen and the lymph nodes of MRlysM mice at disease onset. 

In these organs we could not find changes between knock-out and control mice in the 

proportion of Ly6Chigh monocytes (Figure 3.19 A). 

It has to be taken into account that in MRlysM mice the cre recombinase does not only delete 

floxed genes in 83-98% of macrophages, but also in nearly 100% of neutrophils (Clausen et 

al. 1999). Neutrophils are a major component of the spinal cord infiltrates in C57BL/6 mice, 

especially in the early phases of the disease (Soulika et al. 2009; Wu et al. 2010). Hence, to 

exclude any potential alterations in this cell compartment, the proportion of CD11b+ cells 

expressing Ly6G was determined in immunized mice at the onset of the disease. The FACS 

data revealed that the number of Ly6G+ cells was similar for both genotypes (Figure 3.19 B). 

We therefore believe that it is very unlikely that neutrophils contribute to the EAE 

phenotype observed in MRlysM mice. 

 

 

 

 

Day 0 Day 2 Day 10 

Pertussis Onset 
Immunization 
+  Pertussis 

 
Day 14-16 

EAE Peak 



Results 

 
 
 

 

82 

 

Spleen

MR
fl

MR
lysM

0

10

20

30

40

50

%
L

y
6
C

h
ig

h
 i

n
 C

D
1
1
b

+
 c

e
ll
s LN

MR
fl

MR
lysM

0

5

10

15

20

25

%
 L

y
6
C

h
ig

h
in

 C
D

1
1
b

+
 c

e
ll
s Spleen

MR
fl

MR
lysM

0

5

10

15

20

%
L

y
6
G

+
C

D
1
1
b

+
 i

n
 t

o
ta

l 
c
e
ll
s LN

MR
fl

MR
lysM

0.0

0.5

1.0

1.5

%
 L

y
6
G

+
C

D
1
1
b

+
in

 t
o

ta
l 
c
e
ll
s

Inflammatory Monocytes NeutrophilsA B

 

Figure 3.19⎹ Inflammatory monocytes and neutrophils are unaffected in secondary lymphoid 

organs of MRlysM mice during EAE. Spleens and lymph nodes from MR
fl
 (n=9) and MR

lysM
 (n=7) mice were 

analyzed at day 10 after EAE induction (see 2.3.1). Single-cell suspensions were obtained and stained with 

monoclonal Abs against CD11b, Ly6G and Ly6C. The percentages of CD11b
+
 Ly6C

high 
cells, corresponding to 

inflammatory monocytes (A), and 
 
CD11b

+
/ Ly6G

+
 cells, corresponding to neutrophils (B), were determined by 

FACS. Values were analyzed using the unpaired Student´s t-test and are depicted as mean ± SEM. 

 

3.2.4 T cell interactions with MRlysM macrophages 

It is generally accepted that MS and EAE are T cell-driven diseases. In the MRlysM mouse 

model T cells neither express Cre nor the MR, thus there should not be any direct effect of 

the MR deficiency on T cells. Nevertheless, macrophages present antigens and secrete 

cytokines that influence T cell differentiation, participating both in the activation of T cells in 

the periphery and their re-activation in the CNS. Therefore, MR deletion from myeloid cells 

might impact EAE indirectly via this mechanism as well. To test this hypothesis the 

interaction between T cells and MRlysM myeloid cells was investigated. 
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3.2.4.1 The cytokine secretion profile is altered in MR-deficient BMDMs 

Soluble factors released by macrophages strongly influence T cell differentiation. Hence, we 

analyzed selected cytokines secreted by BMDMs obtained from MRfl and MRlysM mice. 

Following stimulation with IFNу and LPS, the cytokine profile of the activated MRlysM BMDMs 

was shifted towards the M2 phenotype (Figure 3.20). More specifically, mutant BMDMs 

secreted less TNFα and IL-6, considered to be pro-inflammatory, but higher amounts of the 

regulatory cytokine IL-10. In the absence of IFNу/LPS stimulation, all three cytokines were 

barely detectable in the supernatant (data not shown).  
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Figure 3.20⎹ MR-deficient BMDMs secrete less M1 cytokines, whereas M2 cytokine release is 

increased. BMDMs were generated from MR
fl
 (n=6) and MR

lysM
 (n=6) mice and seeded in 96-well plates at a 

concentration of 1∙10
5 

cells/well. Then, they were stimulated for 24 h with 20 ng/ml LPS and 50 ng/ml IFNу. The 

concentration of TNFα, IL-6 and IL-10 in the supernantant was determined by CBA. Values were analyzed using 

the unpaired Student´s t-test and are depicted as mean ± SEM; n.s., p ≥0.05; *, p <0.05. 

 

3.2.4.1 MRlysM macrophages are potent APCs in vitro 

It is known that macrophages can act as APCs in different situations. Since the phenotypic 

changes observed in the MR-deficient BMDMs might alter their capacity to present antigens 

to T cells and to activate them, this feature was evaluated in vitro. MRfl and MRlysM BMDMs 

were co-cultured with 2D2 T cells in the presence of MOG35-55 and the proliferation rate of 

the T cells was determined by FACS. BMDMs efficiently stimulated T cell proliferation 

regardless of the genotype (Figure 3.21 B).  
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Figure 3.21⎹ MRlysM BMDMs stimulate MOG35--55-specific stimulation of 2D2 T cell proliferation in 

vitro. BMDMs were generated from MR
fl
 (n=6) and MR

lysM
 (n=6) mice. (A,B) 1∙10

5 
BMDMs/well were plated in 

triplicates and the same numbers of CFSE-labeled T cells purified from 2D2 RFP mice were added together with 

20 µg/ml MOG35-55. Non-adherent cells were collected after 24 h, 48 h and 72 h, stained with an anti-CD4 Ab 

and analyzed by FACS. Cell proliferation was determine based on the sequential dilution of the CFSE staining 

after gating on the CD4
+
 RFP

+
 cell population. (C) After 72 h, the supernatants were collected and analyzed by 

CBA to determine the levels of selected cytokines. (D) 1∙10
5 

BMDMs generated from the bone marrow of MR
fl
 

(n=11) and MR
lysM

 (n=11) mice were plated in 96 well plates and 1∙10
5 

Th17 2D2 cells (kindly provided by Judith 

Strauß, IMSF Göttingen) were added to the cultures. 72 h later the supernatants were collected and IL-17A 

concentrations were determined by ELISA. Values were analyzed using the unpaired Student´s t-test and are 

depicted as mean ± SEM. 

 

Since the changes in the cytokines produced by the MRlysM BMDMs might have an effect on T 

cell activation, the cytokine secretion of different BMDM/2D2 T cell co-cultures was 

additionally analyzed by CBA. IFNγ release was slightly lower when MR-deficient BMDMs 
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were used, whereas TNFα secretion was similar in both genotypes (Figure 3.21 C). IL-17A 

was hardly detected in the culture medium, therefore we chose another experimental 

setting to analyze this cytokine. Th17 polarized 2D2 effector T cells were co-cultured with 

BMDMs from the MRlysM and MRfl to test whether IL-17 levels were altered after re-

stimulation with MOG35-55. In this setting, IL-17 production induced by MR-deficient BMDMs 

was comparable to the control situation (Figure 3.21 D).  

 

3.2.5 The role of T cells in the pathogenesis of EAE in MRlysM mice 

3.2.5.1 MR-deficiency does not impair MOG-specific T cell priming in vivo 

Having tested T cell priming by MRlysM macrophages in vitro we took a closer look at the in 

vivo situation and analyzed the priming of adoptively transferred 2D2 T cells in MRlysM mice 

after immunization. In line with the in vitro experiments, no major changes in T cell 

proliferation were observed in the spleen and the inguinal lymph nodes, although, for 

unknown reasons, T cells proliferated somewhat faster in the axillary lymph nodes of the 

mutant mice compared to the MRfl littermates (Figure 3.22). 
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Figure 3.22⎹ T cell priming in MRlysM mice in the early phases of EAE is unaffected. MOG-specific T 

cells were purified from RFP
+
 2D2 mice and subsequently labeled with CFSE. 1∙10

6
 of these T cells were i.v. 

injected into MR
fl
 (n=3) and MR

lysM
 (n=3) mice. Two days later EAE was induced by active immunization with 

MOG35-55 . 3 and 5 days after immunization, spleens, draining (inguinal) lymph nodes and non-draining (axillary) 

lymph nodes were analyzed by FACS to determine the proliferation rate of the injected RFP
+
 2D2 T cells. Values 

were analyzed using the unpaired Student´s t-test and are depicted as mean ± SEM; **, p <0.01. 

 

3.2.5.2 Secretion of Th1 and Th17 cytokines during EAE is impaired in MRlysM mice  

Up to this point it appeared that T cell priming and migration to the CNS were not relevant 

for the attenuation of EAE in MRlysM mice. However, MR-deficiency in myeloid cells might 

alter the phenotype of effector T cells. Therefore, the capacity of antigen-specific peripheral 

T cells to produce pro-inflammatory cytokines was studied. Total splenocytes and lymph 

node cells from immunized mice were isolated briefly before the onset of EAE and re-

stimulated with MOG35-55 in vitro. Subsequently, secretion of Th1 and Th17 cytokines was 

determined by ELISA as a measure of T cell effector functions. The results showed that 

antigen-specific effector T cells from MRlysM did not secrete pro-inflammatory cytokines as 

efficiently as the ones from MRfl mice. Importantly, secretion was impaired for IL-17A, IFNу, 

TNFα and GM-CSF, the main pro-inflammatory cytokines involved in the pathogenesis of EAE 

(Figure 3.23). 
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Figure 3.23⎹ Secretion of pro-inflammatory cytokines by effector T cells is reduced in the 

secondary lymphoid organs of MRlysM mice before the onset of EAE. MR
fl
 and MR

lysM
 mice were 

immunized with MOG35-55 (see 2.3.1) and spleens and lymph nodes were removed at the onset of the disease 

(day 10 after immunization). Single cell suspensions were prepared and 3∙10
5 

lymph node cells or 6∙10
5 

splenocytes were re-stimulated in vitro by adding 20 µg/ml of MOG35-55 for 72 h (4 independent experiments). 

The supernatants were analyzed by ELISA to quantify the amounts of IL-17A (n=8,10), GM-CSF (n=9,9), IFNу 

(n=10,9) and TNFα (n=8,7). The mean value of the MR
fl
 control group in each individual experiment was set to 1 

and the values obtained from MR
lysM

 mice were normalized to the controls. Values were analyzed using the 

unpaired Student´s t test and are depicted as mean ± SEM; (n.s.), p ≥ 0.05; *, p <0.05; **, p <0.01. 

 

3.2.5.3 MR deficiency in myeloid cells leads to increased numbers of peripheral Treg 

cells 

Treg cells play an important role in the control of autoimmune responses such as EAE (Kohm 

et al. 2003), although their exact mechanisms have been a matter of debate for many years 

(Zhang et al. 2004; McGeachy et al. 2005; Tischner et al. 2006; O’Connor et al. 2007; Korn et 

al. 2007b). Furthermore, a close relationship between M2 macrophages and the increased 
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appearance of Treg cells in the context of CNS inflammation has been proposed (Keating et 

al. 2009; Zhang et al. 2009). Therefore, and in view of the reduced cytokine expression by 

peripheral encephalitogenic T cells, we decided to analyze the frequency of Treg cells in 

spleen and lymph nodes briefly before the onset of the disease. In line with the previously 

observed polarization of macrophages to the M2 phenotype, we also found higher numbers 

of Treg cells in the spleen and the lymph nodes of MRlysM mice compared to MRfl controls 

(Figure 3.24 B). This was true not only for immunized mice, but also for naïve ones, and 

reached significance in the spleen. In addition, the spinal cord was analyzed at the peak of 

the disease. However, in this case the frequency of Treg cells among all infiltrating CD4+ T 

cells was similar in MRfl and MRlysM mice (Figure 3.24 C).  
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Figure 3.24⎹ The frequency of Treg cells in peripheral lymphoid organs is increased in MRlysM mice. 

(A,B) Single-cell suspensions from spleens and lymph nodes of MR
fl
 and MR

lysM
 mice were obtained either 

under healthy conditions (n=4, 4) or at day 10 after EAE induction (n= 3, 3). (C) To analyze the percentage of 

Treg cells in the CNS, spinal cords from MR
fl
 (n=11) and MR

lysM
 (n=12) mice at the peak of EAE were 

homogenized and mononuclear cells were separated via Percoll gradient. The cells were first stained with Abs 

against CD4 and CD25 and then permeabilized to allow access of the anti-FoxP3 Ab to its target antigen. Total 

living cells were first gated on the CD4
+
 cell population, among which the CD25

+
 FoxP3

+
 cells were defined as 

Treg cells. Values were analyzed using the unpaired Student´s t-test and are depicted as mean ± SEM; (n.s.), p ≥ 

0.05; *, p <0.05. 

 

Taken together, the M2 polarized macrophages in MRlysM mice appear to foster the 

generation of Treg cells in peripheral lymphoid organs. These cells act locally rather than 

migrating to the spinal cord. Furthermore, MR-deficient myeloid cells within the CNS are also 

not able to induce Treg cells locally. 

 

3.2.6 The phenotype of microglia during EAE is altered in MRlysM mice  

The myeloid compartment is composed of both circulating and resident cells, with the latter 

ones being mostly derived from common myeloid precursors that migrate to the different 

tissues during the early development. Within the CNS microglia represents the population of 

myeloid cells that are in charge of responding to inflammatory insults, and of surveillance 

and homeostasis in the absence of inflammation. Microglial cells share many features with 

peripheral resident macrophages, including their response to GCs. Several earlier in vitro 

studies revealed that GCs inhibit microglia proliferation (Ganter et al. 1992), NO production 

(Jun et al. 1994) and cytokine release (Chao et al. 1992). Moreover, microglia also expresses 

the GR as well as the MR, and it has been suggested that the two receptors might mediate 

opposite effects of GCs (Tanaka et al. 1997). It is noteworthy that previous studies had 

confirmed that LysMCre transgenic mice were a suitable tool to disrupt genes in microglial 

cells (Schweingruber et al. 2011). Therefore, we aimed to investigate whether the deletion 

of the MR in microglia had any influence on their properties and whether these potential 

changes might contribute to the ameliorated disease in MRlysM mice.  
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Mononuclear cells were eluted from the spinal cord of MRlysM and MRfl mice at the peak of 

EAE and analyzed by FACS. The activation state of microglial cells, defined as 

CD11b+CD45.2low, can be distinguished by FACS analysis on the basis of Ly6C surface levels. 

The frequency of reactive microglia, characterized by higher Ly6C surface levels, was 

reduced in MR-deficient animals as compared to controls (Figure 3.25 B). This indicates that 

the activation of microglial cells was impaired in the absence of the MR, which might 

contribute to the amelioration of the disease in the mutant mice.  
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Figure 3.25⎹ The frequency of reactive microglia in the spinal cord of MRlysM mice is reduced. Spinal 

cords from MR
fl
 (n=20) and MR

lysM
 (n=21) mice were removed at the peak of EAE, homogenized and the 

mononuclear cells were separated using a Percoll gradient. The cells were incubated with Abs against CD11b, 

CD45.2 and Ly6C and analyzed by FACS. Following the gating strategy published by Prinz et al., microglial cells 

were distinguished from infiltrating myeloid cells by their lower expression levels of CD45.2, and reactive 

microglial cells were identified by their high Ly6C expression levels. Values were analyzed using the unpaired 

Student´s t-test and are depicted as mean ± SEM; *, p <0.05; **, p <0.01. 
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4 DISCUSSION 

 

4.1 EAE therapy with betamethasone nanoparticles 

The popularity of nanoparticles for diagnostic and therapeutic applications is gaining ground 

over the years, and this is reflected by the increasing number of publications dealing with 

this topic. In MS research, the use of nanoparticles has several advantages compared to 

conventional methods. Magnetic nanoparticles improve the contrast and the image 

resolution in MRI studies, and allow the tracking of phagocytic cells in the affected brain 

areas of rats suffering from EAE (Merodio et al. 2000; Rausch et al. 2004; Mikita et al. 2011; 

Hunger et al. 2014). Furthermore, the benefits of nanocarriers for the delivery of therapeutic 

drugs have also been studied. For instance, encapsulation in PEG-liposomes increases the 

circulation time of the contained drug and promotes accumulation in inflamed target organs. 

An increased brain bioavailability of the antioxidant tempamine was reported in mice 

suffering from EAE when they were treated with nanoliposomes (Kizelsztein et al. 2009). 

Moreover, since phagocytic immune cells engulfing the nanoparticles function as APCs, 

different nano-carriers have been tested to deliver tolerogenic peptides together with 

adjuvant molecules to establish T cell tolerance (Büyüktimkin et al. 2012; Yuan et al. 2014; 

Hunter et al. 2014b). In this project, we exploited the advantages of these delivery systems 

to improve the properties of GCs. Liposomal formulations of GCs have already been used 

before in different animal models of autoimmunity with promising results (Metselaar et al. 

2003; Schmidt et al. 2003; Linker et al. 2008; Schweingruber et al. 2011). However, this 

doctoral thesis evaluates for the first time the therapeutic potential of an innovative 

nanomaterial which combines inorganic carrier molecules with the therapeutic organic 

compound in its crystallized structure (Heck et al. 2015). The in vitro and in vivo experiments 

presented here showed that the used IOH-NPs, composed of ZrO2 and BMZ-phosphate, 

efficiently delivered the GC resulting in the consequent immunomodulation. Moreover, the 

present study revealed that myeloid cells were specific targets during the treatment of EAE.  
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4.1.1 BNPs are anti-inflammatory in different immune cell types, albeit 

with different efficacy 

Among the plethora of effects that GCs exert on the immune system (see 1.3.2), induction of 

T cell apoptosis and alternative polarization of macrophages are well characterized and have 

been proposed as mechanisms involved in the immunomodulation by GCs (Tuckermann et 

al. 2005; Varga et al. 2008). Therefore, these two cellular events were analyzed and served 

as parameters to assess the efficacy of the BNPs. Previous unpublished data of our group 

indicated that, when used at similar concentrations as Dex in vitro, the effect of BNPs was 

comparable to the free GC. Both GC formulations led to a similar reduction of pro-

inflammatory molecules in macrophages, and induced T cell apoptosis to the same extent. 

With the present study I corroborated these results and additionally confirmed that these 

effects were mediated by the GR, as shown by the abrogation of GC modulation in the 

absence of the receptor (Figure 3.5). Furthermore, the consequences of nanoparticle 

administration in vivo were evaluated. 10 mg/kg of i.p.-injected BNPs decreased the 

expression of MHC class II and the co-stimulatory molecule CD86 on the surface of 

macrophages isolated from the peritoneum. Moreover, these macrophages were not able to 

respond to LPS/INFу stimulation to the same extent as macrophages from mice receiving 

only vehicle (Figure 3.2). In line with the in vitro experiments, the phenotype of peritoneal 

macrophages isolated from mice receiving BNPs did not differ from the one of mice treated 

with free Dex. However, the analysis of T cell apoptosis in vivo revealed differences between 

both treatments. While Dex efficiently reduced T cell numbers already 24 h after injection, 

BNPs barely affected T cell survival 72 h later (Figure 3.3). This was a first sign of the 

specificity of the nanoparticles, the efficacy of which appeared to change depending on the 

cell type in vivo but not in vitro. This is not surprising considering that, due to their size 

between 40-90 nm, BNPs are expected to be pinocytosed by macrophages and inflammatory 

monocytes rather than by T cells (Weissleder et al. 2014). Evidence for this is provided by the 

fact that in cell cultures of splenocytes, lymph node cells or peritoneal lavages, CD11b+ cells 

appeared to incorporate higher amounts of BNPs than T cells or B cells (Figure 3.1). In line 

with this finding, previous data from our group had revealed that the pro-apoptotic effect of 

the BNPs on T cells in vitro is attenuated at lower BNP concentrations, a tendency that was 
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not observed with free GCs. This indicates that at high drug concentrations various immune 

cells are potentially targeted by the BNPs, but at reduced dosage the different cell types 

compete for the uptake of the nanoparticles, and in that case myeloid cells are the preferred 

target of BNPs. 

 

4.1.2 Myeloid cells are major targets of BNPs in EAE therapy 

Our group and others had already demonstrated that nanoformulations such as liposomes 

are suitable vehicles to treat autoimmune diseases with GCs (Metselaar et al. 2003; Schmidt 

et al. 2003; Linker et al. 2008; Schweingruber et al. 2011). Schweingruber and colleagues 

showed that liposomes loaded with prednisolone (PL) are more potent than free GCs in 

reducing paralysis symptoms in mice with EAE, even at a reduced dosage and application 

frequency (Schweingruber et al. 2011). In the present study, BNP i.p. injection on three 

consecutive days during disease onset had a significant and sustained effect on EAE 

progression, diminishing the clinical score by at least 3 points in a scale from 1 to 10 (Figure 

3.6). Titration of BNPs in subsequent EAE experiments showed that this therapeutic effect 

was concentration-dependent. Furthermore, when different GCs were applied in parallel, 

the efficacy of the BNPs was comparable to Dex and BMZ. However, in contrast to PL, BNPs 

did not appear to have a superior potency. This differential effect between the two nano-

compounds is surprising considering that BMZ is almost six times more potent than 

prednisolone when tested as a free GC (Van Rensburg 2011). Thus, the mechanisms of action 

employed by liposomes and ZrO2 nanoparticles might not be the same. Regarding the effect 

of the inorganic structure of the particles, ENPs neither improved nor worsened the EAE 

symptoms of the mice, which indicates that BNP therapy is well tolerated, at least in this 

disease model. 

Mirroring MS, demyelination and massive leukocyte infiltration into the spinal cord are 

major histopathological hallmarks of chronic progressive EAE in C57BL/6 mice (Berard et al. 

2010). It is known that GC therapies hamper the entry of immune cells into the CNS via 

restoration of the BBB (Rosenberg et al. 1996; Pitzalis et al. 2002), re-direction of T cells 



Discussion 

 
 
 

 

95 

(Fischer et al. 2013) and induction of apoptosis in diverse immune cell subsets (Leussink et 

al. 2001; Tuckermann et al. 2005). The reduced number of immune infiltrates, in 

combination with the M2-polarizing effect of GCs on both CNS resident and migrating 

myeloid cells, helps improving the demyelinating pathology. The present study shows that 

BNP treatment prevented demyelination to some extent and significantly reduced 

monocyte/macrophage infiltration into the CNS (Figure 3.7, Figure 3.8). However, T cell 

numbers within the spinal cord were unaffected. The decrease in T cell infiltrates after Dex 

treatment has been reported in the past (Schweingruber et al. 2014), hence our histological 

data indicates once again that BNPs might not act efficiently on T cells when applied in vivo.  

It was previously shown in this work that the anti-inflammatory effects of the BNPs required 

the GR both in vitro and in vivo (Figure 3.4, Figure 3.5). Thus, to elucidate the cellular target 

of the BNPs in the treatment of EAE, different cell type-specific GR knock-out mice strains 

were employed. GRlck mice, devoid of the GR in T cells, responded to the BNP therapy 

similarly to GRfl controls (Figure 3.9 A). In other words, the presence of the GR in T cells was 

dispensable for the treatment, and therefore this cell type is probably not the major target 

of the BNPs. The same was the case for GRSLO1C1 mice, where the GR is absent in endothelial 

cells of the BBB (Figure 3.9 D). It is worth to mention that Dex application in those mice led 

to similar results as BNP treatment (data not shown). This suggests that the well-known 

protective role of GCs regarding BBB integrity (Paul and Bolton 1995; Engelhardt 2000) might 

not be essential for their therapeutic effect during EAE, but rather an indirect consequence 

of the therapy (as already postulated in Wüst et al. 2008). The third genotype tested was the 

GRlysM mouse strain, where the Cre-mediated excision of the GR affects only myeloid cells. In 

contrast to the other studied genotypes, these mice were completely refractory to the BNP 

therapy and presented with a disease progression identical to mutant mice receiving only 

vehicle (Figure 3.9 B). In view of these data, it can be stated that myeloid cells are preferred 

targets of the BNPs in the treatment of EAE.  

Since T cells are known to be major mediators of conventional GCs during EAE (Wüst et al. 

2008; Fischer et al. 2013; Schweingruber et al. 2014), we can also conclude from our 

experiments that BNPs employ a different route of action than free GCs. This change in cell 
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specificity had already been observed by Schweingruber and colleagues using PL, the 

liposomal formulation of GCs (Schweingruber et al. 2011). However, PL treatment in GRlysM 

mice led to a mild therapeutic effect, meaning that, in contrast to BNPs, PL had a residual 

effect in other cell types besides myeloid cells. Considering the undesirable consequences of 

GCs´ off-target effects, the tighter specificity of BNPs might represent an advantage of IOH-

NPs over liposomes. 

 

4.1.3 Are BNPs a potential solution to GC-derived side effects? 

Short-time high-dose GCs are a mainstay for the treatment of acute relapses of MS, but 

whether a sustained GC treatment would decrease the relapse rate or prevent the 

worsening of brain lesions remains controversial (Zivadinov et al. 2001; Then Bergh et al. 

2006; Sorensen et al. 2009; Ravnborg et al. 2010; Ciriaco et al. 2013). The promising 

therapeutic potential of this approach claims for more clinical studies, but the broad 

spectrum of GC-associated side effects is an important limiting factor for the use of 

prolonged high dose pulsed GCs (Moghadam-Kia and Werth 2010; Weinstein 2012; Ciriaco et 

al. 2013; Hunter et al. 2014; Hwang and Weiss 2014). Responsible for these side effects is 

the fact that the GR is ubiquitously expressed (Rhen and Cidlowski 2005), and therefore GCs 

modulate not just immune responses, but also salt-water homeostasis, glucose metabolism, 

bone re-adsorption and mood variations, among others. In order to circumvent these 

consequences of GCs several strategies have been tested, for instance dissociating ligands 

that act only via the trans-repressing mechanism of the GR (Wüst et al. 2009). However, 

none of these compounds could be translated into a successful therapy with clinical use so 

far. In this doctoral thesis we propose the targeting of GC therapy to the myeloid cell 

compartment as a means to solve this issue.  

As a first approach, the occurrence of side effects was analyzed in the context of the 

experimental protocol used for the EAE experiments, consisting in short-time daily i.p. 

injection of a moderate dose of GCs (10 mg/kg). A small increase in fasting glucose levels was 

observed in both Dex- and BNP-treated animals compared to their respective controls, 
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although this increase was not significant (Figure 3.11 A). Furthermore, a marked induction 

of hepatic enzymes involved in gluconeogenesis was observed shortly after Dex or BNP 

injection (Figure 3.11 C), indicating that both Dex and BNPs act similarly on hepatocytes 

increasing the production of glucose. However, it could also be expected that Kupfer cells, 

the phagocytic liver-resident macrophages, incorporated a considerable proportion of the 

injected nanoparticles. Then, hypothetically, BMZ loaded in the BNPs might polarize Kupfer 

cells to a M2-like state, reported to prevent insulin resistance (Odegaard et al. 2008; Huang 

et al. 2010), thereby counteracting the elevated blood glucose levels. This and other possible 

compensatory mechanism should be evaluated in the future with different experimental 

conditions. Similarly to the results observed regarding glucose levels, no considerable 

changes in stomach weight occurred (Figure 3.13). For the analysis of GC-derived 

osteoporosis, serum levels of the hormone osteocalcin were measured. Osteocalcin is a 

promising cognate marker, since it is strongly reduced shortly after GC application and has 

been shown to be a link between GC-induced bone remodeling and energy metabolism 

(Brennan-Speranza and Conigrave 2015). However, no differences in osteocalcin were found 

in the serum of mice treated with Dex or BNPs (Figure 3.14). The last side effect analyzed 

was muscle wasting. We found that mice receiving Dex presented with a slightly reduced 

muscle weight, whereas in the BNP-treated ones the difference was hardly perceptible 

(Figure 3.12). In any case, none of those values were statistically significant, and probably a 

longer duration of the GC treatment will be needed to identify changes in muscle mass.  

Collectively, the analysis of short-term BNPs side effects did not provide clear information, 

since not even the free GC induced significant changes in the studied parameters. Published 

data from our group and others showed strong metabolic effects derived from prolonged 

Dex treatment (Waddell et al. 2008; Reichardt et al. 2014). Therefore further experiments 

will be performed with longer GC exposure periods or higher concentrations. Only applying 

this alternative protocol we will be able to determine whether BNPs are better tolerated 

than conventional GC therapies. 
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4.1.4 BNP therapy: open questions and perspectives 

The data presented here show that BNPs, in spite of modulating both macrophage 

phenotype and T cell responses in vitro, specifically target the myeloid compartment in vivo. 

This targeted delivery of GCs opens the path to new therapeutic options. One alternative 

that was tested in this thesis was the combination of free GCs and BNPs in order to obtain an 

additive effect of both T cell suppression and macrophage M2 polarization. Indeed, the 

administration of suboptimal doses of Dex and BNPs together showed a superior potency in 

the treatment of EAE than the same amounts of the individual drugs alone (Figure 3.10). 

Hence, combined therapy with BNPs and free GCs might increase the therapeutic efficacy of 

the drug allowing the use of reduced dosage, with the consequent advantages regarding side 

effects and patient compliance.  

An important factor for the therapeutic success of the nanoparticles is their biodistribution. 

Generally, particles with a size of 10-100 nm tend to accumulate in organs where 

macrophages are present, like spleen, liver, lymph nodes and bone marrow (Weissleder et 

al. 2014). Moreover, the delivery route via inflammatory monocytes should lead to higher 

concentrations of the drug at the site of inflammation, meaning that the use of BNPs may 

achieve not only cell type-specificity, but also direct targeting of the damaged tissue. 

Evidence of this phenomenon was provided by Metselaar and colleagues, who showed that 

rats receiving PL recovered from adjuvant-induced experimental arthritis (AIA) thanks to 

delivery of the GC in the inflamed joint (Metselaar et al. 2003). Also Merodio and colleagues 

observed CNS localization of albumin nanoparticles in a rat model of EAE, and suggested that 

macrophages and microglia were involved in this distribution (Merodio et al. 2000). 

Unfortunately, we were not able to determine whether BNPs specifically targeted the 

injured spinal cord in the treatment of EAE. The presence of the fluorescent molecule FMN 

in the BNPs allowed their identification by FACS in different cell subsets in culture, however 

the attempts to track the particles in different organs after i.p. injection were unsuccessful. 

Noteworthy, in vivo analyses by intra-vital 2-PM after either i.v. or stereotactic injection 

could not trace the BNPs, meaning that at tolerable doses for the mice the FMN signal of the 

nanoparticles does not reach the limit of detection. Since ZrO2 has already been coupled to 

other fluorescent compounds for cell imaging in the past (Heck et al. 2015), the 
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biodistribution of the BNPs could be elucidated by means of those alternative nanoparticles 

in the future.  

Questions regarding the BNPs´ pharmacokinetics and pharmacodynamics are also important 

for the success of the therapy. Until now it is unknown whether BNPs bind to albumin or 

other proteins in the blood, or how long they remain in the circulation before they are 

cleared from the organism. Something else to take into account is whether the nanoparticles 

are leaky and release the drug before reaching their target. In the present study, the 

inefficacy of the BNP treatment in the GRlysM knock-out mice indicates that, if there was 

some hypothetical circulating free BMZ, the amount was so low that no therapeutic effect 

derived from it.  With regard to their behavior intracellularly, it is known that medium size 

nanoparticles, like BNPs, are taken up via micro-/macro-pinocytosis (Weissleder et al. 2014). 

In theory, the drug would become active in the cytoplasm by enzymatic or spontaneous 

hydrolysis. However, how the remaining ZrO2 is metabolized and/or excreted is still 

unknown, and potential toxic effects have to be evaluated. According to the results 

presented here, the apparent promotion of CD8+ T cell proliferation induced by ENPs in 

splenocytes (Figure 3.3) suggests that the nanoparticles might not be completely innocuous. 

Several publications report that ZrO2 particles are hemocompatible and well tolerated by 

HEK-293 cells and the macrophage cell line RAW-264.7. Moreover, they present low 

genotoxicity in vitro and after oral administration in larvae of Drosophila melanogaster 

(Demir et al. 2013; Karunakaran et al. 2013; Saxena et al. 2013). Nonetheless, other studies 

described a certain immunogenic potential, and showed that ZrO2 may increase the 

expression of TNFα, IL-6 and IL-1β in macrophages (Obando-Pereda et al. 2014). The in vitro 

experiments on BMDMs and peritoneal macrophages included in this thesis are discrepant in 

that regard. However, previous data showed that in some cases IL-6 and IL-1β expression 

were slightly increased after ENP exposure in BMDMs (Ring, unpublished data). Hence, it is 

conceivable that the observed net anti-inflammatory potential of BNPs represents in fact a 

combination of an even stronger anti-inflammatory effect of BMZ and a mild pro-

inflammatory effect of ZrO2. If this premise was true, it would also explain why BNPs are not 

as potent as PL in the treatment of EAE. After all, ENPs did not appear to affect EAE severity, 

which speaks in favor of the general biocompatibility of BNPs at therapeutic concentrations. 
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Actually, current studies with BNPs and other variants of IOH-NPs are showing promising 

results for the analysis and therapy of different autoimmune disorders, such as allergic 

asthma and acute Graft-versus-Host Disease (Markus et al. 2015; our unpublished data). We 

therefore believe that this delivery system has the potential to be a successful and better 

tolerated vehicle for drugs in the future. 

 

 

4.2 The role of the MR in myeloid cells during EAE 

The here presented results showing the attenuation of EAE by BNPs provide additional 

evidence that the different macrophage phenotypes play a crucial role in EAE and MS. But 

beyond treatment with synthetic GCs, there are other ways to bias macrophage polarization 

into a deactivating state. A distinctive feature of myeloid cells is that they co-express the GR 

and the MR, but not 11β-HSD II, a situation that allows GCs to access both nuclear receptors 

(Funder 1997). Interestingly, despite the structural similarities between the GR and the MR 

(Funder 1997), their activation by GCs has been shown to induce opposing polarization 

states on macrophages and microglia (Usher et al. 2010; Chantong et al. 2012). This is 

particularly important for the response to endogenous GCs in mice. Unlike cortisol (the 

human endogenous GC), corticosterone binds to the MR with 10-fold higher affinity than to 

the GR. In vitro studies showed that, due to this property, low concentrations of 

corticosterone had immunostimulatory effects via MR signaling, whereas increased amounts 

of this GC strongly reduced pro-inflammatory genes acting via the GR (Tanaka et al. 1997; 

Lim et al. 2007; Chantong et al. 2012). These observations suggest that at physiological GC 

concentrations a great part of the response of myeloid cells to GCs is mediated by the MR. 

Therefore, we wondered whether the absence of the MR would potentiate the anti-

inflammatory effects of endogenous GCs via the GR. In the second part of this project the 

phenotype of mice with MR-deficient myeloid cells was studied in the context of CNS 

autoimmunity using a cell type-specific knock-out mouse strain, the MRlysM mice.  
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4.2.1 MR deficiency in myeloid cells promotes M2-like polarization and 

causes a milder EAE phenotype 

It is well known that classically activated macrophages contribute to EAE pathology by 

presenting myelin antigens to T cells (Almolda et al. 2011), secreting pro-inflammatory 

cytokines (Hendriks et al. 2004) and exerting direct neurotoxicity (Reynolds et al. 2007; Shijie 

et al. 2009). Other groups have also reported that an imbalance of the M1/M2 equilibrium 

has important consequences for EAE disease progression (Mikita et al. 2011). Therefore, we 

hypothesized that, since the MR promotes M1 polarization, the deletion of the MR from 

myeloid cells might alleviate clinical symptoms in mice with EAE. Indeed, when MRlysM mice 

were immunized with MOG35-55 they developed a milder form of the disease compared to 

their littermate controls (Figure 3.15). In a rat model of relapsing EAE, Mikita and colleagues 

found that M2 macrophages accumulated in the CNS before relapse resolution, and that 

administration of ex vivo polarized M2 monocytes suppressed EAE symptoms (Mikita et al. 

2011). Schweingruber and Li had previously shown that, at the peak of EAE, mononuclear 

cells isolated from the spinal cord of MRlysM mice express higher levels of typical M2-

markers, mainly Arg-1, whereas the expression of the M1-gene iNOS is markedly down-

regulated (Li 2013). In these mice, the constitutively increased proportion of M2-polarized 

macrophages, which results from the exclusive GR binding of endogenous corticosterone, 

appears to stop disease progression earlier than in wt mice, although it is not enough to 

completely abrogate EAE.  

In line with the ameliorated EAE clinical course, the histopathological characteristics of 

MRlysM mice also differed from the ones of MRfl controls. Similarly to the above described 

effects of BNP treatment, spinal cord infiltration by CD3+ T cells was comparable in both 

groups, whereas MAC3+ infiltrates were significantly reduced in the knock-out mice (Figure 

3.16). It is worth to mention that the nature of those MAC3+ cells is hard to determine on 

the histological basis, since this surface marker is shared by infiltrating 

monocytes/macrophages, PVMs and activated microglia (Giulian and Baker 1986). The FACS 

analysis of spinal cord mononuclear cells corroborates that, at the peak of EAE, the 

proportion of reactive microglia is indeed reduced in MRlysM mice (Figure 3.25). 
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Furthermore, the percentage of inflammatory monocyte/macrophages infiltrating the spinal 

cord was reduced as well (Figure 3.18). However, with the current data we cannot 

definitively conclude that there was less macrophage infiltration into the spinal cord. It can 

only be stated that those myeloid cells within the CNS, which are pro-inflammatory in 

nature, were less frequent. In accordance with this phenotype, a significantly lower 

percentage of demyelination and partially preserved axonal density were observed (Figure 

3.17). Previous data from Li showing decreased NO release and increased phagocytic 

capacity in MRlysM BMDMs support these results (Li 2013). NO has neurotoxic effects (Aboul-

Enein et al. 2006; Zindler and Zipp 2010) and M2 macrophages and microglia are known to 

promote neuronal regeneration via clearance of myelin debris (Neumann et al. 2009). 

Therefore, a direct connection between the clinical course of EAE and the altered phenotype 

in the MR-deficient monocyte/macrophages can be drawn. Moreover, we suspect that the 

reduced proportion of reactive microglia also contributes to the observed phenotype. 

Microglia, since they originate from myeloid precursors in the yolk sac, have also been 

reported to be a target of the LysMCre mediated gene deletion in mice (Prinz et al. 2008; 

Schweingruber et al. 2011). It has been shown that blockade of the MR with the antagonist 

spironolactone counteracts pro-inflammatory effects induced by aldosterone or 

corticosterone in a mouse microglia cell line, which confirms a role of the MR in microglia 

activation as well (Chantong et al. 2012). However, it cannot be assured yet whether the 

reduction in reactive microglia was due to the MR deficiency or just a secondary effect of the 

anti-inflammatory CNS milieu. To shed light on this question, in vitro experiments with 

primary microglia cells from MRlysM mice should be performed.  

 

4.2.2 MR deletion in myeloid cells alters T cell responses during EAE 

The altered polarization state of MR-deficient myeloid cells could partially explain the 

improved clinical disease course in the MRlysM mice, but it was not clear yet whether other 

cell types contributed to this phenotype. Although the deletion of the MR in MRlysM mice is 

restricted to the myeloid compartment, myeloid cells act in close collaboration with T cells at 

different stages of EAE progression. It is actually known that T cells are the most important 
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players in the pathomechanisms leading to EAE, therefore potential changes in T cell 

responses were also investigated. 

Some myeloid cells, including macrophages, act as professional APCs, and efficient 

presentation of myelin epitopes is crucial for EAE. This process is involved in the initial 

priming of T cells, as well as in the maintenance of the CNS inflammatory response in the 

chronic phase of the disease. As it was previously shown in this thesis, GCs down-regulate 

MHC class II and co-stimulatory molecules acting via the GR. Therefore we wondered 

whether antigen presentation was impaired in MR-deficient macrophages. Co-culture of 

BMDMs with naïve 2D2 T cells in the presence of MOG35-55 demonstrated that MRlysM 

BMDMs were able to present antigens and induced T cell proliferation as efficiently as MRfl 

cells (Figure 3.21). Next, T cell priming was studied in vivo by adoptive transfer of CFSE-

labeled 2D2 T cells in MOG35-55 immunized mice. Three days after immunization part of the 

adoptively transferred 2D2 T cells were already proliferating in the spleen and the lymph 

nodes (Figure 3.22) However, surprisingly, there was a tendency towards increased T cell 

proliferation in the MRlysM mice, reaching significance in the axillary lymph nodes. Since the 

in vitro experiments on BMDMs indicated that T cell activation by MRlysM macrophages was 

neither impaired nor increased, it could be hypothesized that other cell types rather than 

macrophages are responsible for the apparently enhanced T cell proliferation in vivo. DCs 

are the major cell type involved in T cell priming during EAE (Greter et al. 2005). However, it 

is not known whether they express significant levels of MR and furthermore, LysMCre 

transgenic mice do not appear to target any type of DC with high efficiency (Prinz et al. 

2008). Therefore, the question why the proliferation rate in the axillary lymph nodes was 

increased remains to be answered. In any case, the presumed differences in T cell priming 

did not lead to changes in T cell infiltration between MRlysM and control mice. Hence we 

believe that this effect was of minor importance for the observed EAE alleviation.  

During EAE, macrophages have also the task of shaping T cells responses by providing a 

specific cytokine environment. This study showed that in vitro BMDM activation induced the 

release of inflammatory cytokines such as IL-6 and TNFα, however this induction was milder 

in BMDMs from MRlysM mice. On the contrary, IL-10 secretion by MRlysM BMDMs was 
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increased compared to the controls (Figure 3.20). Thus, we wondered whether the altered 

cytokine profile in macrophages would lead to changes in the T cell activation pattern. Co-

culture of 2D2 T cells with MRlysM BMDMs led to a reduced secretion of IFNу by T cells, 

whereas TNFα release, in contrast, was unaffected (Figure 3.21). Levels of other T cell 

cytokines such as IL-4, IL-17, IL-2 and IL-10 were barely detectable. These data suggest that, 

although T cell priming and T cell migration appeared to be unaltered, the activated state of 

the primed T cells might be milder once they reach the CNS. Previous data from Li, however, 

refute this hypothesis. In his experiments the expression levels of IL-17A and IFNу in the 

spinal cord of MRlysM mice was comparable to the one in MRfl mice (Li 2013). In the present 

work, we did find changes in the functionality of T cells during EAE, but they were restricted 

to the periphery. Ex vivo re-stimulation of splenocytes and lymph node cells revealed that T 

cells from the knock-out mice secreted less pro-inflammatory cytokines than the controls 

shortly before disease onset (Figure 3.23). IFNу, TNFα and IL-17A levels were significantly 

reduced, indicating that Th1 and Th17 responses might be impaired in the MRlysM mice. 

Importantly, GM-CSF, the only T cell cytokine known to be essential for EAE development 

(Codarri et al. 2011; El-Behi et al. 2011), was also significantly lower in both the spleen and 

the lymph nodes of MRlysM mice. One of the roles of GM-CSF is promoting the release of 

myeloid progenitors from the bone marrow, therefore the reduction of this cytokine might 

account for the lower percentages of circulating inflammatory monocytes found in MRlysM 

mice (Figure 3.18), and might explain the presumably reduced monocyte infiltration into the 

spinal cord. 

Having demonstrated that peripheral T cells of MRlysM mice produced lower amounts of pro-

inflammatory cytokines during EAE, we analyzed whether MR-deficient myeloid cells were 

directly inducing this phenotype on T cells. In vitro re-stimulation of MOG-specific Th17 cells 

co-cultured with MRlysM BMDMs did not affect the protein levels of IL-17A in the culture 

medium (Figure 3.21). Furthermore, no changes in the proportion of inflammatory 

monocytes or granulocyte numbers were observed in the spleens and lymph nodes of the 

MRlysM mice (Figure 3.19). Altogether, these data exclude a direct connection between the 

knock-out myeloid cells and the altered T cell functionality in the periphery. One of the 

major mechanisms of T cell suppression is mediated by Treg cells. Hence, this cell 
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compartment was additionally analyzed. An elevated percentage of Treg cells was found in 

the spleen and lymph nodes of MOG35-55-immunized MRlysM mice shortly before EAE onset 

(Figure 3.24). Interestingly, this increased Treg cell population was also found in healthy 

mice before immunization. Furthermore, it appeared that these peripheral Treg cells did not 

migrate to the CNS, indicating that their suppressive function might not be antigen-specific. 

Evidence of this is the comparable proportion of Treg cells in the spinal cords of MRfl and 

MRlysM mice, in line with the unaltered T cell infiltration and cytokine secretion observed in 

the CNS. All in all, these results point to Treg cells as secondary mediators of the milder EAE 

phenotype in the MRlysM mice.  

 

4.2.3 MR deletion in myeloid cells partially restores peripheral tolerance 

Summing-up, the presented data suggest that the improved EAE clinical symptoms observed 

in the MRlysM mice are the result of two distinct regulatory mechanisms that, moreover, are 

separately compartmentalized. On the one hand, myeloid-targeted deletion of the MR 

promotes a deactivating state in microglia and monocytes/macrophages infiltrating the 

spinal cord. These M2 polarized myeloid cells establish a milder pro-inflammatory milieu 

within the CNS that prevents tissue damage and supports myelin regeneration. On the other 

hand, Treg cells act together with M2-monocytes in the periphery restraining effector T cell 

responses in secondary lymphoid organs, which also contribute to the overall reduced 

inflammatory response.    

This synchronized intervention of M2-like macrophages and Treg cells has been extensively 

reported in different contexts. Hu and colleagues showed that adoptive transfer of CD4+ 

CD25+ Treg cells reduced the pro-inflammatory state of peritoneal macrophages, down-

regulating MHC class II molecules and CD86 expression, increasing phagocytosis and IL-10 

expression and altering the Arg1/iNOS balance (Hu et al. 2012). The macrophage phenotype 

described by Hu and colleagues, noteworthy, strongly resembles to the one induced by GCs. 

Conversely, human anti-inflammatory monocytes have been also shown to induce CD25+ 

FoxP3+ Treg cells with a potent suppressive activity (Savage et al. 2008).  The same authors 
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proposed the production of ROS by macrophages as the link between these monocytes and 

the increased Treg induction (Kraaij et al. 2010). In agreement with the results of this thesis, 

GC-induced M2-like macrophages have also been reported to promote the generation of 

Treg cells. In a rat model of experimental autoimmune neuritis, Zhang and colleagues 

showed that Compound A, a GR agonist that just acts via the trans-repression mechanism, 

induced M2-like macrophages in vivo and in vitro. Furthermore, treatment with Compound A 

reduced disease severity and increased the numbers of Treg cells in the lymph nodes, where 

Th1 and Th2 cytokines were strongly suppressed (Zhang et al. 2009). Another study closely 

related to ours demonstrated that repetitive stimulation of naive splenic T cells with 

monocytes that had been matured in the presence of Dex yielded higher proportions of 

FoxP3+ Treg cells in vitro (Varga et al. 2014). Moreover, when these GC-induced monocytes 

were injected in mice with severe colitis the clinical symptoms rapidly improved, and clusters 

of FoxP3+ cells were found in the damaged colon. In line with Varga and colleagues, the 

MRlysM model, via deletion of the MR from myeloid cells, achieves a sustained M2-like 

polarization throughout the lifetime of the mouse, which would be equivalent to the 

repetitive stimulation of naïve T cells to increase the proportion of Treg cells. Unfortunately, 

Varga and colleagues could not identify the mechanism used by the GC-induced monocytes 

to induced Treg differentiation, and neither could we yet.  

In a way, this effect could be interpreted as a reinforcement of the peripheral tolerance 

throughout lifetime. As example supporting this notion, a recent report proposed that 

during pregnancy, fetal tolerance was partly induced by generation of M2-macrophages and 

Treg cells via soluble factor secreted by the placenta (Svensson-Arvelund et al. 2015). This 

study highlights the importance of this combined regulatory mechanism, linking innate and 

adaptive immunity, to prevent potentially harmful immune responses, such as MS and other 

autoimmune disorders. The data presented in this thesis, moreover, provides evidences of 

the participation of GCs in the establishment of tolerance via myeloid cells, and opens new 

paths for alternative therapeutic strategies based on this principle.  
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4.3 Conclusions 

For many years T cells have been considered the major therapeutic targets of GC treatment 

in neuroinflammatory diseases. However, the experimental data presented in this doctoral 

thesis show that when GC modulation is restricted to myeloid cells it is also able to change 

the course of the model disease EAE. This supports the already existing literature that 

postulate an important role of monocytes/macrophages in the therapy of autoimmune 

disorders with GCs (Metselaar et al. 2003; Mikita et al. 2011; Schweingruber et al. 2011; 

Varga et al. 2014). In view of the successful therapeutic effect of the myeloid-targeted 

therapy and the tight cell specificity of the system, BNPs were proposed as an alternative to 

overcome GC-associated side effects, but the obtained data did not provide conclusive 

information in this respect yet. 

Furthermore, this study contributes to the understanding of the distinct participation of the 

GR and the MR in CNS autoimmunity. GR deletion from myeloid cells aggravated the clinical 

symptoms of EAE and rendered the mice resistant to the BNP therapy, whereas MR ablation 

in MRlysM mice had a beneficial effect in terms of disease severity. Additional unpublished 

data from our group indicates that systemic application of an MR antagonist also 

ameliorates EAE disease progression, although not to the same extent as the myeloid-

specific knock-out. In our view, combining both experimental approaches, namely the 

delivery of the MR antagonist via nanoparticles, might increase the effective concentration 

of the drug in myeloid cells improving its efficacy. This and other potential variants of the 

strategies described in this thesis should be further investigated in the future. 

Last but not least, we identified an involvement of M2-polarized monocytes/macrophages, 

and indirectly of endogenous GCs, in the establishment of peripheral tolerance. Under this 

new perspective, the above described low-dose pulsed GC protocols gain relevance. 

Sustained exposure of myeloid cells to GCs, either by synthetic GC application or targeted 

blockade of the MR, might assist the peripheral regulatory mechanisms in charge of 

maintaining tolerance; this could lead to a reduced relapse rate or improved recovery in MS 

patients, as it did in the mouse model of chronic-progressive EAE employed for this study.  
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