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1 SUMMARY 

Nucleocytoplasmic exchange is essential for eukaryotic cells. It proceeds through 

nuclear pore complexes and is largely mediated by Importin β-like nuclear 

transport receptors (Impβ-like NTRs). According to the direction of the transport, 

Impβ-like NTRs are classified as importins or exportins. Exportin 4 (Xpo4) is a 

bidirectional receptor that can function both as importin and exportin. Xpo4 

mediates export of the eukaryotic translation initiation factor 5A (eIF5A) and 

Smad3 as well as import of transcription factors such as Sox2 and SRY. So far, it 

has been unclear how Xpo4 facilitates transport of structurally diverse cargoes to 

opposing compartments. 

In order to understand the mechanisms of Xpo4-dependent bidirectional transport, 

in my PhD work, I aimed at crystallizing the cargo-bound and unbound complexes 

of Xpo4. Here I present the crystal structure of the RanGTP•Xpo4•eIF5A export 

complex. The structure shows that Xpo4 recognizes not just a linear peptide, but 

the two folded domains of eIF5A at the same time. eIF5A contains hypusine, a 

unique amino acid with two positive charges, that is essential for cell viability and 

for eIF5A function in translation. The hypusine docks into a deep, acidic pocket of 

Xpo4. The interactions at the acidic pocket are essential for export complex 

formation and eIF5A export by Xpo4. Therefore, hypusine is a critical element of 

eIF5A’s complex export signature. The structure also reveals that Ran promotes 

eIF5A binding through conformational changes in Xpo4, including the stabilization 

of a conserved acidic loop. Similar acidic loops in unidirectional importins have 

critical function in cargo assembly and disassembly processes. Therefore, this 

detail also gives mechanistic hints about how Xpo4 can act as a bidirectional 

transport receptor. 

In a parallel project, I aspired to identify novel transport substrates for exportin 7 

(Xpo7). To address this, I employed an Xpo7 affinity chromatography to enrich 

Xpo7 interaction partners from a cytoplasmic extract. This revealed not only further 

Xpo7 export substrates but also several potential import cargoes. The results 

suggest that in addition to its characterized role in nuclear export, Xpo7 could 

function as a nuclear import receptor. Therefore, similar to Xpo4, Xpo7 can be 

another bidirectional nuclear transport receptor. 
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2 INTRODUCTION 

2.1 Nucleus 

The compartmentalization of the eukaryotic cell into membrane-bound organelles 

is the main difference between eukaryotes and prokaryotes. The most prominent 

organelle and the defining feature of the eukaryotes, as their name implies (eu, 

“true” and karyo, “kernel”), is the cell nucleus. The nucleus is enclosed by the 

nuclear envelope (NE), a double membrane structure that separates the genome 

from the cytoplasm.  

The nucleocytoplasmic compartmentation offers numerous advantages to the 

eukaryotes. Firstly, the confinement of the genome into the nucleus protects it 

from mechanical and metabolic damages and therefore contributes genomic 

stability, which allows eukaryotes to handle considerably larger genomes (Görlich 

and Kutay, 1999). Secondly, the nucleus separates nuclear processes like DNA 

replication, transcription and mRNA splicing from the translation in the cytoplasm. 

It hereby provides spatiotemporal regulation of gene expression. Moreover, the 

spatial separation of transcription from translation allows eukaryotes to easily 

handle intron-containing genes to exploit alternative mRNA splicing. As a result, 

eukaryotes increased the coding potential of their genomes in respect to a given 

number of genes. Finally, the possibility to control the localization of specific 

molecules such as transcription factors adds another layer of regulation. 

Regardless of the numerous benefits, the separation of the nucleus and the 

cytoplasm necessitates a nucleocytoplasmic exchange of materials. Since 

translation takes place only in the cytoplasm, all proteins that are needed in the 

nucleus, such as the components of DNA repair and replication machinery have to 

be imported from the cytoplasm. Conversely, translation depends on nuclear 

products such as the mRNAs, tRNAs and the ribosomal subunits which need to be 

exported to the cytoplasm. In fact, more than a million macromolecules per second 

are actively transported between the nucleus and the cytoplasm (Ribbeck and 

Görlich, 2001). 
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2.2 Nucleocytoplasmic Transport 

Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport. NPCs are 

proteinaceous channels that are embedded in the NE and formed at the sites 

where the inner and outer nuclear membranes meet (Watson, 1954). With 

molecular weights of ~66 MDa in yeast (Rout and Blobel, 1993) and ~125 MDa in 

vertebrates (Reichelt et al., 1990), NPCs constitute one of the largest complexes 

in the cell. Despite such gigantic sizes however, NPCs are assembled only by ~30 

different proteins, called nucleoporins (Nups). Individual Nups can occur in 

different copy numbers per NPC (Ori et al., 2013). Given the eight-fold symmetry 

of NPCs (Gall, 1967), these copy numbers are usually assumed to be multiples of 

eight. The NPC scaffold encloses a large aqueous channel (see e.g. Eibauer et 

al., 2015), which is guarded by a permeability barrier formed by cohesive 

phenylalanine-glycine (FG) domains (Frey and Görlich, 2007; Patel et al., 2007; 

Hulsmann et al., 2012) 

The permeability barrier allows efficient passive diffusion of small molecules and 

proteins up to 5 nm in diameter (or 20-40 kDa in mass) whereas becomes limiting 

as the size exceeds the passive diffusion limit (Bonner, 1975; Mohr et al., 2009). In 

contrast, larger macromolecules depend on nuclear transport receptors (NTRs) for 

facilitated transport (reviewed in Görlich and Kutay, 1999). 

2.2.1 Importin β-like nuclear transport receptors 

Most of the facilitated transport is mediated by the NTRs of the Importin β (Impβ) 

family (occasionally also referred to as β-karyopherins), which have the ability to 

interact with the FG repeats of the NPC and overcome the size limit of the 

permeability barrier. NTRs constantly shuttle between the cytoplasm and the 

nucleus, bind to their cargoes on one side of the NE, pass through the NPC as 

complexes and release them on the other side. Despite their poor sequence 

homology (8-15% identity), Impβ-like NTRs show similar domain organization (see 

below). In addition to their large size (90-130 kDa), these receptors are 

characterized by their acidic isoelectric point (pI 4.6-6.0), their affinity for phenyl-

sepharose, and their ability to bind Ran (Görlich and Kutay, 1999; Ribbeck and 

Görlich, 2002). 
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Ran (Ras-related nuclear protein) is a member of the small ras-like GTPases 

(Bischoff and Ponstingl, 1991a). It was the first identified nuclear transport factor 

(Melchior et al., 1993; Moore and Blobel, 1993). Its function in nucleocytoplasmic 

transport is best explained by the RanGTP gradient model (Görlich et al., 1996b; 

Izaurralde et al., 1997). GDP-bound Ran (inactive state, from now on referred to 

as RanGDP) is found predominantly in the cytoplasm, while the GTP-bound Ran 

(active state, referred to as RanGTP) is present exclusively in the nucleus. The 

differential localization of Ran species is maintained by the asymmetric distribution 

of Ran effector proteins. The guanine nucleotide exchange factor RCC1 (regulator 

of chromosome condensation 1), which facilitates GDP to GTP exchange on Ran 

(Bischoff and Ponstingl, 1991b; Klebe et al., 1995) is bound to chromatin (Ohtsubo 

et al., 1989), therefore RanGTP is produced only in the nucleus. On the other 

hand, the Ran GTPase activating protein 1 (RanGAP1) is exclusively cytoplasmic 

(Hopper et al., 1990; Matunis et al., 1996; Mahajan et al., 1997). RanGAP1 

stimulates the intrinsic GTPase activity of Ran, decreasing the RanGTP levels in 

the cytoplasm (Bischoff et al., 1994; Becker et al., 1995; Klebe et al., 1995). 

Notably, when RanGTP is bound to NTRs, RanGAP1 alone cannot act on Ran, 

instead it requires the assistance of a special class of Ran-binding proteins, 

RanBP1 (Coutavas et al., 1993) or RanBP2/Nup358 (Yokoyama et al., 1995), to 

activate the RanGTPase in NTR complexes (Bischoff and Görlich, 1997; Kutay et 

al., 1997). 

Impβ-like NTRs bind RanGTP at least 1000-fold stronger than RanGDP (Görlich et 

al., 1996b). RanGTP binding acts like a switch, altering the cargo binding behavior 

of the NTR. Therefore, the RanGTP gradient across the NE drives the 

directionality of the transport (Görlich et al., 1996b; Izaurralde et al., 1997). 

According to the direction they carry their cargoes, Impβ-like NTRs are classified 

as exportins and importins. Figure 2-1 illustrates their transport cycles. Exportins 

bind their cargoes in the nucleus, where the RanGTP level is high. Export 

complexes traverse NPCs as trimeric RanGTP–exportin–cargo complexes and are 

dissociated upon hydrolysis of Ran-bound GTP in the cytoplasm. Free exportin 

goes back to the nucleus for another round of export. Importins, on the other hand, 

function in the opposite manner. Importins bind their cargoes in the cytoplasm, 

where the RanGTP level is low, and traverse the NPCs as dimeric import 



 6 

complexes. In the nucleus, RanGTP binding to the importin dissociates the import 

complex, releasing the import cargo into the nucleus. The newly formed importin–

RanGTP complex travels back to the cytoplasm, where the RanGTP effectors 

disassemble it from the importin, allowing the importin to perform another import 

cycle. Although these transport processes use the metabolic energy supplied by 

RanGTP, the translocation across the NPC per se is energy-independent (Kose et 

al., 1997; Schwoebel et al., 1998; Nachury and Weis, 1999; Ribbeck et al., 1999). 

 
Figure 2-1 Overview of the nucleocytoplasmic transport cycles 

Importins and exportins are abbreviated as Imp and Xpo, respectively. See text for the details. Adapted from 
Görlich & Kutay, 1999. 



 7 

Each round of import and export removes one RanGTP molecule from the 

nucleus. Another small NTR, nuclear transport factor 2 (NTF2), counteracts the 

depletion of Ran by shuttling RanGDP back to the nucleus (Figure 2-1; (Ribbeck et 

al., 1998). Based on its structure (Bullock et al., 1996) and sequence (Moore and 

Blobel, 1994), NTF2 is not a member of Impβ family. NTF2 is a 15 kDa protein and 

found in the cell as homodimer, which transports two RanGDP molecules. 

Dissociation of RanGDP from NTF2 occurs after the conversion of GDP to GTP by 

RCC1 (Ribbeck et al., 1998). 

The Impβ family is the largest NTR class and comprises 21 members in 

vertebrates and 14 members in Saccharomyces cerevisiae. While most of these 

receptors transport cargoes only in one direction, some can mediate both import 

and export. The functionally characterized vertebrate NTRs and a selection of their 

respective cargoes are summarized in Table 2-1. 

NTR Adapter Cargoes Selected references 
Importins    
Importin β (Impβ)  Ribosomal proteins (Jakel and Görlich, 1998) 
  HIV Rev, HIV Tat (Truant and Cullen, 1999) 
  Histones (Mosammaparast et al., 

2001; Muhlhausser et al., 
2001) 

 Importin α Classical NLS-cargoes (Görlich et al., 1995) 
 Snurportin1 m3G-capped U-snRNPs (Huber et al., 1998) 
 Importin 7 Histone H1 (Jakel et al., 1999) 
Transportin 1+2 (Trn, 
Impβ-2) 

 hnRNP proteins (Pollard et al., 1996) 

  Ribosomal proteins (Jakel and Görlich, 1998) 
  TAP/NXF1 (Truant and Cullen, 1999) 
  Histones (Muhlhausser et al., 2001) 
  c-FOS (Arnold et al., 2006) 
Transportin SR 1+2 
(TrnSR, Trn3) 

 SR proteins (Kataoka et al., 1999) 

Importin 4  Ribosomal proteins (Jakel et al., 2002) 
  Histones (Mosammaparast et al., 

2001; Muhlhausser et al., 
2001) 

Importin 5  Ribosomal proteins 
Histones 

(Jakel and Görlich, 1998) 

Importin 7  Ribosomal proteins (Jakel and Görlich, 1998) 
  ERK2, SMAD3, MEK1 (Chuderland et al., 2008) 
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NTR Adapter Cargoes Selected references 
Importin 8  Argonuate proteins (Weinmann et al., 2009) 
  SRP19 (Dean et al., 2001) 
Importin 9  Ribosomal proteins (Jakel et al., 2002) 
  Histones (Mosammaparast et al., 

2001; Muhlhausser et al., 
2001) 

Importin 11  UbcM2 (Plafker and Macara, 2000) 
  rpL12 (Plafker and Macara, 2002) 
Exportins    
CRM1 (Exportin 1)  Leu-rich NES cargoes (Fischer et al., 1995; Wen 

et al., 1995; Fornerod et 
al., 1997) 

 HIV Rev HIV genomic RNA (Fischer et al., 1995) 
  Snurportin1 (Paraskeva et al., 1999) 
 NMD3 60S pre-ribosomal 

subunit 
(Ho et al., 2000; Thomas 
and Kutay, 2003) 

 PHAX/CBC m7G-capped UsnRNAs (Izaurralde et al., 1995; 
Ohno et al., 2000) 

CAS (Exportin 2)  Importin αs (Kutay et al., 1997) 
Exportin-t (Xpot)  tRNAs (Arts et al., 1998; Kutay et 

al., 1998) 
Exportin 5   tRNAs, eEF1A (Bohnsack et al., 2002; 

Calado et al., 2002) 
  dsRNAs (Brownawell and Macara, 

2002) 
  Pre-miRNAs (Yi et al., 2003; Bohnsack 

et al., 2004; Lund et al., 
2004) 

  60S pre-ribosomal 
subunit 

(Wild et al., 2010) 

Exportin 6   Actin–profiling complex (Stuven et al., 2003) 
Exportin 7   p50RhoGAP, 14-3-3σ (Mingot et al., 2004) 
Bidirectional NTRs    
Importin 13  UBC9, MagoY14 

(import) 
(Mingot et al., 2001) 

  eIF1A (export) (Mingot et al., 2001) 
Exportin 4  eIF5A (export) (Lipowsky et al., 2000) 
  SMAD3 (export) (Kurisaki et al., 2006) 
  Sox2, SRY (import) (Gontan et al., 2009) 

Table 2-1 Functionally characterized vertebrate NTRs of the Impβ family and their selected cargoes 
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2.2.2 Impβ-like nuclear export receptors 

To date, eight Impβ family exportins have been identified in vertebrates (Table 

2-1), however, only four of them (CAS, Exportin-t, Exportin 5 and CRM1) have 

functional orthologues in other eukaryotes. CAS (Exportin 2) is a specialized 

exportin and exports only one type of protein: Importin α (Impα; Kutay et al., 1997). 

Impα, the import adaptor of Impβ, recognizes nuclear localization signals (NLSs, 

see below) and confers nuclear import of NLS-containing proteins. After each 

import cycle, Impα is recycled back to the cytoplasm by CAS for another import 

cycle. Similarly, Exportin-t (Xpot) is a dedicated exportin and mediates the nuclear 

export of tRNAs that are properly processed and modified (Kutay et al., 1998; 

Lipowsky et al., 1999). Exportin 5 (Xpo5) also exports tRNAs (Bohnsack et al., 

2002). Moreover, Xpo5 transports additional RNAs, such as doubled stranded 

RNAs (dsRNAs) and precursor microRNAs (pre-miRNAs), from the nucleus to the 

cytoplasm (Brownawell and Macara, 2002; Bohnsack et al., 2004; Lund et al., 

2004). Finally, in vertebrates, Xpo5 functions in the export of 60S pre-ribosomal 

subunits (Wild et al., 2010). Similarly, CRM1 (Xpo1) also supplies the cytoplasm 

with the RNA-based cargoes, including UsnRNAs, signal recognition particles 

(SRPs) as well as the 40S and 60S ribosomal subunits (Ciufo and Brown, 2000; 

Ohno et al., 2000; Thomas and Kutay, 2003). Moreover, unlike the above-

mentioned exportins, CRM1 exports a wide variety of cargoes that are structurally 

unrelated and thus it is involved in many cellular processes (reviewed in Hutten 

and Kehlenbach, 2007; Güttler and Görlich, 2011; Ishizawa et al., 2015 and see 

below). 

In summary, Xpot, Xpo5 and CRM1 deliver the nuclear products to the cytoplasm, 

while CAS recycles Impα and contributes to the Impβ-dependent nuclear import. 

Therefore, all of these conserved exportins fulfill functions that are necessitated by 

the compartmentalization of the eukaryotic cells. Furthermore, exportins perform 

an additional fundamental function: they preserve the identity of the nucleus by 

constantly exporting the cytoplasmic factors from the nucleus, to confine their 

localization and therefore their activity to the cytoplasm. As described before, the 

NPCs are not absolute barriers and allow free diffusion of proteins smaller than the 

passive diffusion limit (20-40 kDa). In fact, even far larger objects can diffuse 

through the NPCs when the sufficient time is provided. Consequently, proteins 
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whose functions have to be restricted to the cytoplasm, e.g. the components of the 

translation machinery or whose access to the nucleus needs to be dependent on a 

stimulus, e.g. transcription factors can enter the nucleus and give rise to 

undesirable outcomes. In order to counteract the leakage of such proteins, 

exportins continuously depletes them from the nucleus. CRM1 and Xpo5, for 

example, export most of the essential translation factors from the nucleus to limit 

their activity to the cytoplasm and therefore play an essential role in separating the 

transcription from the translation (Bohnsack et al., 2002). By recognizing hundreds 

of cytoplasmic proteins, CRM1 is the major actor of this task. However, higher 

eukaryotes employ additional exportins, Exportin 4, Exportin 6, Exportin 7, and 

Importin 13, to deplete additional cytoplasmic factors from the nucleus. 

So far, only one export cargo has been identified for Exportin 6 (Xpo6) and 

Importin 13 (Imp13), which transport actin and eIF1A, respectively, to the 

cytoplasm (Mingot et al., 2001; Stuven et al., 2003). Exportin 4 (Xpo4) and 

Exportin 7 (Xpo7) will be the focus of this dissertation and therefore will be 

presented in the following sections. 

Exportin 4 (Xpo4) 

Xpo4 was initially identified as an export receptor of eIF5A (eukaryotic translation 

initiation factor 5A), and later was shown to export Smad3 as well (Lipowsky et al., 

2000; Kurisaki et al., 2006). Moreover, Xpo4 mediates the nuclear import of Sox-

type transcription factors, i.e. Sox2 and SRY (Gontan et al., 2009). In other words, 

Xpo4 transports distinct cargoes into opposite compartments and is the third 

characterized bidirectional NTR after Imp13 (Mingot et al., 2001) and Msn5p, the 

Xpo5 orthologue in S. cerevisiae (Yoshida and Blobel, 2001). In addition, Xpo4 

acts as a co-regulator of Sox9, another Sox-type transcription factor, by 

suppressing the Sox9-mediated transcription without affecting its cellular 

localization (Tsuchiya et al., 2011). Xpo4 has recently been characterized as a 

tumor suppressor protein in murine model of hepatocellular carcinoma (HCC) 

(Zender et al., 2008).  

Xpo4 orthologues can be found in all vertebrates and arthropods as well as in 

some plants and even in slime mold Dictyostelium discoideum but not in 

Drosophila melanogaster and in fungi. The closest relative of Xpo4 within the Impβ 
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superfamily is Xpo7, which together form a separate subgroup in the phylogenetic 

tree (Kutay et al., 2000). 

Exportin 7 (Xpo7) 

Xpo7 was isolated from HeLa cells via affinity chromatography on immobilized 

RanGTP and referred as RanBP16 (Ran-binding protein 16; Kutay et al., 2000). 

Subsequently, RanBP16 was shown to export p50RhoGAP and 14-3-3σ from 

human and X. laevis nuclei and therefore characterized as the last member of the 

Impβ-like exportins (Mingot et al., 2004). The same study revealed the translation 

initiation factor eIF4AI and the subunits of the endosomal retromer (Vps35, Vps26 

and Vps29) as additional Xpo7 binders. Predominant cytoplasmic localization of 

these proteins and their RanGTP-dependent interaction with Xpo7 suggested that 

these proteins could also be export substrates of Xpo7 (Mingot et al., 2004). 

Additionally, Xpo7 mediates export of the serine/threonine kinase LKB1 via the 

adapter STRADα (Dorfman and Macara, 2008). Identification of several 

structurally distinct proteins as export substrates and the lack of a common signal 

sequence suggested that Xpo7, similar to CRM1, might be a broad-spectrum 

exportin (Mingot et al., 2004; Dorfman and Macara, 2008). 

Xpo7 is conserved in vertebrates and also exists in several other higher 

eukaryotes including D. melanogaster, C. elegans and even in some plants such 

as cotton and rice (Kutay et al., 2000). Xpo7 is ubiquitously expressed in all 

human tissues (Kim et al., 2014). The erythroid-specific isoform of Xpo7, Xpo7B, is 

highly expressed at the onset of the terminal erythroid differentiation and is 

required for the erythroid nuclear condensation (Hattangadi et al., 2014). 

Moreover, in these cells, the cytoplasmic migration of the nuclear proteins prior to 

enucleation is inhibited upon Xpo7 knockdown, which suggests that Xpo7 is 

necessary for the nuclear export of these proteins. 

2.2.3 Nuclear transport signals 

Nucleocytoplasmic transport of cargoes is a highly controlled process and requires 

specific interaction between the cargo and the NTR. Whether a cargo is 

recognized and transported by an NTR is determined by the presence of nuclear 

transport signals on the cargoes. Whereas some of these transport signals are 
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quite complex and involve three-dimensional features of the cargo, some other 

transport signals are as simple as a few amino acid-short peptides that the fusion 

of these signals direct any protein to the corresponding compartment. Such 

transport signatures are termed as nuclear import and nuclear export signals. 

The very first examples of the nuclear localization signals (NLSs) were identified in 

the large T-antigen of simian virus 40 (SV40), which consisted a short patch of 

basic amino acids (PKKKRKVE; Kalderon et al., 1984) and in Xenopus laevis 

nucleoplasmin, where the basic patch was separated by a short spacer (Robbins 

et al., 1991). The SV40 type (monopartite) and the nucleoplasmin type (bipartite) 

signals are referred as the classical nuclear localization signals (cNLSs) and form 

the major NLS class of the Impβ-dependent nuclear import. However, cNLSs are 

not recognized directly by Impβ. Instead, Impα binds to cNLS (Görlich et al., 

1994), which, in turn, is recognized by Impβ via its Impβ-binding (IBB) domain 

(Görlich et al., 1996a). Nevertheless, not all Impβ import cargoes require Impα. 

The proteins that contain non-classical NLSs (ncNLSs) interact directly with Impβ. 

A 29 amino acid peptide from the parathyroid hormone-related protein (PTHrP; 

Lam et al., 1999) and the highly basic (pI 12.2) beta-like import receptor-binding 

(BIB) domain of rpL23a (Jakel and Görlich, 1998) are the well-known examples of 

ncNLSs. 

As described before, CRM1 is the most versatile exportin and transports hundreds 

of proteins to the cytoplasm. The simplest nuclear export signals (NESs) are the 

so-called leucine-rich export signals of the CRM1-dependent export pathway. 

These NESs were initially identified as the short peptides comprising four 

interspersed hydrophobic residues. The first examples of this kind were 

characterized in the protein kinase A inhibitor (PKI) and HIV Rev (Fischer et al., 

1995; Wen et al., 1995). Later, the PKI type (LALKLAGLDI) and the Rev type 

(LPPLERLTL) NESs have been identified in several other CRM1 cargoes, and 

these two have formed the major NES classes. A comprehensive study by Güttler 

and his colleagues (2010) redefined the NES consensus to be 

x-Φ-x2-Φ-x3-Φ-x2-3-Φ-x-Φ (where Φ is hydrophobic and x is any amino acid) for 

PKI type and Φ-Φ-x-Φ-x-Φ-x-Φ for Rev type. 
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2.3 The structural features of Impβ-like NTRs 

All NTRs of the Impβ family share a common architecture and are composed of 

the so-called HEAT repeats (Görlich et al., 1997; Chook and Blobel, 1999; 

Cingolani et al., 1999; Vetter et al., 1999a), named after the four proteins of this 

class: huntingtin, elongation factor 3, the PR65/A subunit of protein phosphatase 

2A (PP2A) and the lipid kinase TOR (Andrade and Bork, 1995). HEAT repeats are 

~40 amino acid motifs, which made up of two antiparallel α-helices (called A and 

B) that are connected by a short linker. In Impβ-like NTRs, about 20 of these 

repeats pack side by side, generally with a clockwise rotation between the 

successive repeats. This gives rise to a uniform right-handed superhelical 

structure with the A helices forming the outer convex surface and the B helices 

forming the inner concave surface (Figure 2-2a). This repetitive organization 

confers flexibility to the Impβ-like NTRs, which leads to diverse shapes from a 

closed ring to an open supercoil (Figure 2-2b). In addition, the flexibility of the 

structure contributes to cargo binding and cargo release (Conti et al., 2006). 

The helices of the HEAT repeats contain hydrophobic amino acids that make 

intra- and inter-repeat contacts and form a continuous hydrophobic core. These 

continuous blocks are sealed by the first and last helices. Moreover, the 

successive A helices form hydrophobic pockets necessary for the interaction with 

the FG repeats of the NPC components (Bayliss et al., 2002). In contrast, the B 

helices usually establish the interaction interfaces with Ran and the cargo (see 

below). 
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Figure 2-2 Architecture of Impβ-like NTRs 

A) HEAT repeat structure of Impβ (from the Impβ•RanGTP structure, PDB ID 2BKU, Lee et al., 2005) is 
shown in two different orientations. HEAT repeats are numbered according to Lee et al., 2005. A and B 
helices are highlighted in blue and orange, respectively, while the loops and non-HEAT helices are colored in 
grey. N- and C-termini of the molecule are indicated. See text for further details B) The structures of 
Transportin (2OT8, Cansizoglu and Chook, 2007), Exportin-t (3ICQ, Cook et al., 2009) and CRM1 (3GJX, 
Monecke et al., 2009) are depicted to illustrate the conformational flexibility of NTRs. The transport receptors 
are shown with a color gradient from blue (N-terminus) to red (C-terminus). 
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2.3.1 The regulator of NTR•cargo interaction: Ran 

As described above, RanGTP drives the directionality of the transport by 

mediating either cargo release (for importins) or cargo binding (for exportins) and 

therefore plays a central role for the nucleocytoplasmic transport. For this reason, 

in this section, I will briefly introduce the structures of the nucleotide-bound Ran. 

To date, several structures of Ran alone or in complex with Ran-binding proteins 

have been solved (Vetter and Wittinghofer, 2001). Figure 2-3 shows 

representative structures of Ran bound to GDP and GTP (Scheffzek et al., 1995; 

Vetter et al., 1999b; Partridge and Schwartz, 2009). The structure of Ran 

resembles the so-called the G domain of the Ras-like small GTPases, which is 

composed of six β-strands surrounded by five α-helices (Scheffzek et al., 1995). 

Nucleotide recognition is mediated by the loops of the G domain, which involves 

several hydrogen bonds as well as a Mg2+ ion. In addition to the G domain, Ran 

has a characteristic C-terminal extension (Scheffzek et al., 1995).  

Comparison of GDP- and GTP-bound Ran structures reveals conformational 

differences at three regions, referred as “switch regions” (Figure 2-3; Scheffzek et 

al., 1995; Vetter et al., 1999b). RanGDP adopts more compact folding, where the 

C-terminal helix (Switch III) fold onto the “back” of the Ran. In addition, the acidic 

DEDDDL motif at the very extreme C-terminus (residues 211-216), which is not 

resolved in the crystal structure, probably contacts the so-called “basic patch” 

(Vetter et al., 1999b). Upon nucleotide exchange, the switch regions reorganize 

markedly. Switch I adopts almost a new shape and packs against the GTP, now 

making extensive contacts with it. In addition, switch I clashes with the loop of 

switch III, forcing it to reorganize. Now, switch III has an extended conformation 

and does not contact the G domain, and thus the basic patch of the Ran becomes 

free. The change in switch II is minor but functionally important. Switch II contains 

the Gln69 residue, which is crucial for GTPase activity (Bischoff et al., 1994). In the 

GTP state, Gln69 is brought to close proximity to the γ-phosphate of GTP. 

Moreover, the position and the coordination of the Mg2+ ion change as well.  
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Figure 2-3 Comparison of GDP- and GTP-bound structures of Ran 

The structures of Ran bound to GDP (left) and GTP (right) are shown in ribbon representations. Mg2+ ions 
and the nucleotides are shown as spheres and sticks, respectively. The core of the protein (G domain) is 
colored in green, while the parts that undergo drastic conformational changes are colored in cyan (switch I, 
residues 30-47), magenta (switch II, residues 65-80), red (switch II, residues 177-216) and yellow (basic 
patch, residues 139-142) and indicated accordingly. In the lower panel, models were rotated 180° to view the 
“back” of Ran. Residues of the basic patch were shown in yellow sticks, while nitrogens in blue. DEDDDL 
motif (residues 211-216) at the very end of the molecule is not resolved in the crystal structures, however, it 
likely folds onto the basic patch of Ran. RanGDP and RanGTP were taken from the structures with PDB ID 
3GJ0 (Partridge and Schwartz, 2009) and 1RRP (Vetter et al., 1999b), respectively. 

2.3.2 Interaction of RanGTP with Impβ-like NTRs 

Impβ-like NTRs make use of the RanGTP gradient across the NPCs by 

discriminating RanGTP from RanGDP. However, they do not directly contact the 

bound GTP, instead they perceive the regions that are different between the GDP- 

and GTP-bound states, the switch I and II. In addition, NTRs interact with Ran at 

its basic patch and at the invariant loops, which contact the bound nucleotide. 
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The structures of RanGTP bound to Impβ and Transportin had showed how 

importins recognize the GTP state of Ran (Chook and Blobel, 1999; Vetter et al., 

1999a). N-terminal HEAT repeats, which are the most conserved among the 

NTRs; (Görlich et al., 1997), form the first interaction interface and contact 

switch II as well as the back of Ran (Figure 2-4). Second interaction interface is 

formed by HEAT repeats (HEAT 7 and 8) at the middle portion of the importins. 

The so-called acidic loop at HEAT 8 interacts with, among others, the basic patch. 

In RanGDP, this region is shielded by the switch III, and therefore would not be 

accessible by importins. Finally, B helices of the C-terminal repeats (HEAT 12-15) 

establish the third interaction interface, which contacts the loops of Ran that hold 

guanine base. While, Impβ also interacts with switch I of Ran via its C-terminal 

repeats, no such interaction has been described for Transportin so far. It should be 

noted that the switch III of Ran does not contribute to RanGTP binding. Indeed, it 

is disordered in the NTR structures solved to date. 

 
Figure 2-4 Interaction of RanGTP with Impβ 

The figure (adapted from Güttler and Görlich, 2011) shows the recognition of Ran by Impβ. Ran is shown in a 
tube representation and colored in green. Important parts of Ran are colored and indicated accordingly. The 
helices of Impβ are depicted as cylinders and colored in black. Those HEAT repeats that are involved in 
RanGTP recognition are numbered and highlighted in orange. Ran-binding regions are labeled as encircled 
numbers. 
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Figure 2-5 Interaction of exportins with RanGTP and respective cargoes 

Export complex structures of CAS, Exportin-t, Exportin 5 and CRM1 are shown in two different views. Left: 
Exportin–RanGTP interactions are illustrated as described in Figure 2-4. Structures were aligned according to 
Ran. Right: Similar view as in left. To show the exportin–cargo interactions, RanGTP is removed and surface 
or ribbon representation of respective cargoes are shown in blue, while the regions contact Ran are colored in 
green. The figure was adapted from Güttler and Görlich, 2011. 
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So far, the structures of several exportins (CRM1, CAS, Xpot, Xpo5 and Imp13) in 

cargo-bound form have been elucidated. Although the general principles of 

RanGTP recognition by exportins appear somehow similar to the importins, 

specific aspects are different and exclusive to the exportins (Matsuura and 

Stewart, 2004; Cook et al., 2009; Monecke et al., 2009; Okada et al., 2009; 

Grunwald et al., 2013). All exportins contain an additional C-terminal Ran-binding 

interface (HEAT 17-19), which (except Xpo5) always contacts switch I of Ran 

(Figure 2-5, region four). In the case of Xpo5, switch I is recognized by the 

N-terminal repeats. Consequently, Ran is wrapped by the exportins from two 

sides. Exportins also differ from importins in terms of the acidic loop and the 

interaction with the basic patch of Ran. With the exception of CRM1, exportins do 

not contact the basic patch. Indeed, CAS does not even posses an acidic loop 

(Figure 2-5). 

2.3.3 Cargo recognition by Impβ-like nuclear export receptors 

Unlike importins, which either bind to the cargo or Ran, exportins couple Ran 

binding to cargo loading. In other words, exportins accommodate the cargo and 

Ran at the same time. The recruitment of the cargo and Ran occurs in a 

cooperative manner where the binding of one increases the affinity of exportin 

towards the other one. Structures of the exportins in the cargo-bound (nuclear) 

form as well as in the cargo-free (cytoplasmic) form revealed that such 

cooperativity is achieved by direct interactions of Ran with the cargo or by the 

conformational changes throughout the exportin (reviewed in Güttler and Görlich, 

2011). 

As mentioned before, CAS recycles the import adaptor Impα back to the 

cytoplasm. In the export complex, both Ran and Impα are hold by the N- and 

C-terminal HEAT repeats and accommodated on the inner surface of CAS such 

that a negatively charged C-terminal part of Impα binds the basic patch of Ran 

(Figure 2-5, Matsuura and Stewart, 2004). 

Xpot and Xpo5 are the two RNA-specific exportins of the cell. While Xpot 

specifically exports mature tRNAs, Xpo5 mediates export of additional RNAs such 

as pre-miRNA and dsRNAs. With respect to the cargo-binding mode, Xpot and 

Xpo5 export complex structures resemble that of CAS (Figure 2-5, Cook et al., 
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2009; Okada et al., 2009). Both exportins wrap the cargo and Ran. In addition, 

similar to CAS, the basic patch of Ran engages interactions with negatively 

charged portions of the cargoes. Both exportins recognizes different RNAs in a 

sequence-independent manner. They accomplish this by probing the phospho-

ribose backbone of the RNAs. Although the overall charges of Xpot and Xpo5 are 

negative, positively charged residues on the inner surface mediate the interaction 

with the cargo in both cases. In spite of all the similarities, the shapes of these 

exportins differ in the export complexes: Xpot assumes relatively circular 

arrangement whereas Xpo5 forms a U-shaped structure.  This difference might 

explain how Xpo5 can recognize diverse RNAs (Güttler and Görlich, 2011). 

With respect to the shape of the receptor and the recruitment of the cargo, CRM1 

export complexes differ from the exportins described above. While CAS, Xpot and 

Xpo5 utilize mostly the B helices to hold the cargo at the inner surface of the 

exportin, this mechanism does not exist in CRM1; instead the cargo is recruited to 

the outer surface (Figure 2-5, Monecke et al., 2009). In the export complex, CRM1 

forms a toroid-like structure, where C-terminal helices touch the inter-repeat loops 

of the N-terminal repeats (see also Figure 2-2). Similar to the other Impβ-like 

receptors, Ran is positioned on the inner surface of CRM1. Indeed, CRM1 almost 

completely encircles Ran: N- and C-terminal HEAT repeats of Ran interact with 

switch II and I, respectively; HEAT 7 and 8 shield the basic patch of Ran; the 

acidic loop in HEAT 9 interacts with the loops holding the nucleotide base and 

locks Ran to the N- and C-terminal repeats (Figure 2-5). Such a recognition 

topology leaves no space for the cargo binding. Therefore, the export cargo binds 

to outside of the toroid, far away from the Ran-binding region, which represents a 

special case where Ran and the cargo do not interact. This kind of cargo 

recognition mode does not enforce any size limitation onto the cargoes, which 

allows CRM1 to carry cargoes as large as ribosomal subunits (Güttler and Görlich, 

2011). 

Structures of CRM1 export complexes with different NESs revealed how CRM1 

exports a large number of structurally diverse cargoes (Dong et al., 2009; 

Monecke et al., 2009; Güttler et al., 2010). The A helices of the HEATs 11 and 12 

form a hydrophobic cleft, which the hydrophobic Φ residues of the NES dock into. 

NESs that differ in their Φ spacing docks into the same pocket by adopting 
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different backbone conformations. While, for instance, Snurportin1 NES is mostly 

α-helical in the hydrophobic cleft, HIV Rev NES adopts an almost linear 

conformation. As a result, these studies showed that any protein could be a CRM1 

cargo as long as it has an accessible peptide, which can adopt certain 

conformation to place its Φ residues into the hydrophobic cleft. 

It would be an elegant mechanism for the eukaryotic cell to append an NES to all 

proteins that must be exclusively cytoplasmic. Although, in the cell, most of the 

proteins are exported in this way, several other proteins require the assistance of 

different exportins. Presence of four additional exportins in the higher eukaryotes 

might even indicate a different aspect of the export mechanism, which would not 

be provided by the CRM1-dependent export pathway. How the bidirectional 

transporter Xpo4 mediates export of eIF5A will be the main focus of this study. 

2.4 eIF5A 

The eukaryotic translation initiation factor 5A (eIF5A) is a small (17 kDa), 

abundant, highly conserved and essential protein found in all eukaryotes and 

archaea (Gordon et al., 1987; Park et al., 1993; Chen and Liu, 1997). Its bacterial 

ortholog, elongation factor P (EF-P), also exists in all bacteria; therefore, 

eIF5A/EF-P is a universally conserved protein (Kyrpides and Woese, 1998; Saini 

et al., 2009). 

eIF5A is the only protein known to contain the unusual amino acid hypusine 

[Nε-(4-amino-2-hydroxybutyl)lysine] (Park et al., 1993). Hypusine 

(hydroxyputrescine-lysine) was first found in bovine brain tissue by Shiba et al. 

(1971) and later identified in all animal tissues both in free form and in protein 

(Imaoka and Nakajima, 1973) yet brain having the highest amount of free 

hypusine (Nakajima et al., 1971). In addition to hypusine, brain contains hypusine 

derivatives like γ-aminobutyrylhypusine and β-alanylhypusine that might act as 

neurotransmitter (Park et al., 1993). To date, no biosynthetic pathway has been 

identified for the formation of free hypusine; therefore, degradation of eIF5A has 

been suggested as the source of free hypusine (Park et al., 1993). Finally, 

observation of hypusine in the excreted urine by Nakajima et al. (1971) led to the 

hypothesis that the hypusine might be the end product of lysine metabolism. 
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Hypusine is indispensible for eIF5A function (Schnier et al., 1991) as well as for 

cell viability and cell proliferation. It is produced post-translationally in two 

consecutive reactions called hypusination (Figure 2-6). First, deoxyhypusine 

synthase (DHS) transfers the 4-aminobutyl group from spermidine (using NAD+ as 

cofactor) to a specific lysine residue (K50 in human, K51 in yeast) of eIF5A to yield 

deoxyhypusine. Later, second carbon of the aminobutyl moiety is hydroxylated by 

deoxyhypusine hydroxylase (DOHH) to form hypusine. Inhibition of either 

deoxyhypusine synthesis by spermidine analogs or deoxyhypusine hydroxylation 

by chelators prevents growth in mammalian cells (Hanauske-Abel et al., 1994; Lee 

et al., 1995). Moreover, eIF5A-K51R mutant that prevents hypusination does not 

replace wild type eIF5A, indicating the essential function of hypusine in the cell 

(Schnier et al., 1991). Interestingly, although both DHS and DOHH are essential in 

mammalian cells, only DHS is required for cell viability in yeast (Park, 2006).  

 
Figure 2-6 Posttranslational modification of eIF5A 

 

On the contrary, EF-P lacks hypusine. Nonetheless, another unique 

posttranslational modification, referred to as lysinylation, occurs on a specific 
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lysine (K34) residue of EF-P (Yanagisawa et al., 2010; Peil et al., 2012). However, 

unlike eIF5A, the lysine is not conserved in all bacteria, instead an arginine is 

found in most of EF-P, which was recently shown to be modified by a reaction 

called rhamnosylation (Lassak et al., 2015). 

 
Figure 2-7 Multiple sequence alignment of eIF5A from different species 

eIF5A sequences from archaeal (Methanocaldococcus jannaschii, Hyperthermus butylicus) and eukaryotic 
(Dictyostelium discoideum, Leishmania Mexicana, Arabidopsis thaliana, Saccharomyces cerevisiae, 
Drosophila melanogaster, Gallus gallus and Homo sapiens) organisms. The arrow marks the lysine residue 
that is converted to hypusine. The amino acid residues identical throughout archaea and eukaryotes are 
highlighted in red, completely conserved in eukaryotes are highlighted in orange and highly conserved in 
eukaryotes are highlighted in green. 

eIF5A is a highly conserved protein. Multiple sequence alignment of eIF5A amino 

acid sequences from different species reveals high degree of conservation (Figure 

2-7, Figure 2-8c). Remarkably, the amino acid sequence of the region surrounding 

the lysine that undergoes hypusination is identical in all eukaryotes, which might 

suggest the importance of this region for recognition by the enzymes or for the 

function of eIF5A (Park et al., 1993). The sequence analysis also shows that the 

conservation is higher in the N-terminus and the sequence similarity decreases 

towards the C-terminus. In addition, N-terminus is shorter in archaea than in 

H. sapiens

G. gallus

D. melanogaster

D. discoideum

S. cerevisiae

A. thaliana

L. mexicana

H. butylicus

M. jannaschii

H. sapiens

G. gallus

D. melanogaster

D. discoideum

S. cerevisiae

A. thaliana

L. mexicana

H. butylicus

M. jannaschii

H. sapiens

G. gallus

D. melanogaster

D. discoideum

S. cerevisiae

A. thaliana

L. mexicana

H. butylicus

M. jannaschii

MPG--------------------TKQVNVGSLKVGQYVMIDGVPCEIVDISVSKPGKHGGAKAR

MS---------------------VTYATLGELKVGSYIVIDGEPCRIVEMSKAKTGKHGSAKAH

MSDED----HDFAHQGGGDNASKTYPMAAGALKKGGYVCINGRPCKVIDLSVSKTGKHGHAKVS

MSDEE----HHFESSDAG--ASKTYPQQAGTIRKNGYIVIKNRPCKVVEVSTSKTGKHGHAKCH

MSDEE----HTFETADAG--SSATYPMQCSALRKNGFVVIKSRPCKIVDMSTSKTGKHGHAKVH

MSDNEALDVEDYAQAGSG--ASLTFPIQCSALRKNGFVVIKGFPCKIVDMSTSKTGKHGHAKVN

MAELD----DQFETTDSG--ASTTYPMQCSALRKNGFVMLKSRPCKIVEMSTSKTGKHGHAKVH

MAD-D----LDFETGDAG--ASATFPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVH

MAD-D----LDFETGDAG--ASATFPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVH

VVGIGIFEKVKKEFVAPTSSKVEVPIIDRRKGQVLAIMGD-MVQIMDLQTYETLELPIP-----

VVAVCLFSGNKKTLTAPVDARVEVPIIDKRIGQVIADMGD-MVQIMDMETYETFEVEKPKD---

IVATDIFTGNRLEDQAPSTHNVEVPFVKTFTYSVLDIQ-------------PNEDPSLP-----

FVAIDIFTSKKLEDIVPSSHNCDVPHVNRTDYQLIDISEDGYVSLLTDNGSTKDDLKLPNDDTL

LVAIDIFTGKKLEDLSPSTHNMEVPVVKRNEYQLLDID-DGFLSLMNMDGDTKDDVKAP-EGEL

ITAIDIFTGKKYEEICPSTHNIDVPNVSRKEYTVMDVQDG-YLSLLDAGGEVKEDLALP-EDDI

MVGIDIFSNKKYEDICPSTHNMDVPNVKREDLQLIAISDDSFLTLMTESGDLREDLKVP-EGEL

LVGIDIFTGKKYEDICPSTHNMDVPNIKRCDFQLIGIQDG-FLSLLQDSGEVREDLRLP-EGEL

LVGIDIFTGKKYEDICPSTHNMDVPNIKRNDFQLIGIQDG-YLSLLQDSGEVREDLRLP-EGDL

-EGIEG-LEPGGE--VEYIEAVGQYKITRVIGGK----

-EDLKSKLQPGVE--VEYWVVMGRYMITRVRGAPKS--

-SHLSLMDDEGE-------SRE----------------

LQQIKSGFDDGKDLVVSVMSAMGEEQINALKDIGPK--

GDSLQTAFDEGKDLMVTIISAMGEEAAISFKEAARTD-

GKEITQMLKEGKEPLVSVISALGKEGVVSVKVSNN---

GEQLRLDFDSGKDLLCTVLKACGEECVIAIKTNTALDK

GREIEQKYDCGEEIITIHGARFTTS-------------

GKEIEQKYDCGEEILITVLSAMTEEAAVAIKAMAK---

44

43

60

58

58

62

58

57

57

101

100

124

116

115

119

116

114

114

132

136

166

158

157

159

159

144

154



 24 

eukaryotes. Moreover, eIF5A from human, slime mold and alfalfa can substitute 

yeast eIF5A (Magdolen et al., 1994) indicating the functional conservation.   

 

 
Figure 2-8 Structure of eIF5A 

A) 3D structure of yeast eIF5A (PDB ID 3ER0) as ribbon representation with two orientations. N and C 
represent N-terminus and C-terminus, respectively. Lysine that is converted to hypusine is marked with arrow 
and shown as stick. B, C) eIF5A is depicted as surfaces in the same orientation as in (A). The surfaces are 
colored according to electrostatic potential (B) with a color gradient from red (negatively charged) to blue 
(positively charged) and according to conservation (C) with a gradient from cyan (variable) to maroon 
(conserved). Images were generated using UCSF Chimera. 

Although eIF5A gene is encoded by one gene in archaea, many eukaryotic 

organisms have two or more eIF5A genes (Schnier et al., 1991; Jenkins et al., 

2001; Wang et al., 2001; Thompson et al., 2004). These genes are differentially 

transcribed and the products of these genes are thought to play different roles in 

the cell. The human eIF5A is encoded by EIF5A1 and EIF5A2 genes. EIF5A1 is 

constitutively expressed in all tissues, while EIF5A2 is expressed in testis, brain 

and highly expressed in certain cancer tissues and tumor cell lines (Park et al., 

2010). Likewise, in yeast, two genes (TIF51A and TIF51B) encode eIF5A proteins 

that are 90% identical and their expression is regulated according to the presence 

of oxygen as TIF51A is transcribed in aerobic conditions (Schnier et al., 1991). 

Nonetheless, both of these proteins can replace each other without having any 

effect on the growth rate and the protein content suggesting a functional similarity 
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of these proteins. Interestingly, some plants contain more than two eIF5A genes; 

Arabidopsis thaliana has three and tomato (Lycopersicon esculentum) has four 

eIF5A isoforms that are expressed in different tissues (Thompson et al., 2004). 

So far, the crystal structures of eIF5A orthologues from several species including 

archaea, yeast, human and plants have been elucidated (Figure 2-8, Kim et al., 

1998; Peat et al., 1998; Yao, 2003; Teng et al., 2009; Tong et al., 2009). They 

show that eIF5A is composed of two globular domains connected by a flexible 

hinge region. N-terminal domain is formed by six β-strands and resembles the 

SH3-like domains of other proteins related to translation. In addition, N-terminal 

domain contains the hypusine in an extended, flexible, and highly conserved loop 

(Figure 2-8). Moreover, most of the basic residues are localized to the N-terminal 

domain (Figure 2-7 and Figure 2-8), which gives rise to relatively positively 

charged region. In contrast, the C-terminal domain is almost entirely acidic and 

consists of an oligonucleotide-binding (OB)-fold found in nucleic acid-binding 

proteins. In fact, eIF5A was shown to bind certain RNAs (Xu and Chen, 2001). 

Same study also revealed that in addition to the C-terminal domain, the hypusine 

is essential for sequence-specific interactions with RNAs. 

2.4.1 Identification of eIF5A and its role in translation 

eIF5A (formerly IF-M2Bα or eIF4D) was initially purified from rabbit reticulocytes 

as a component of translation initiation system and was shown to stimulate 

translation in the model methionyl-puromycin synthesis assay (Kemper et al., 

1976). Later, Benne and Hershey (1978) showed that unlike other initiation factors, 

eIF5A was not necessary for the formation of 80S ribosomal complexes and had 

no effect on globin synthesis. Similarly, eIF5A did not stimulate poly(U)-dependent 

phenylalanine synthesis in the assay with the purified 80S initiation complexes and 

elongation factors EF-1 and EF-2, eliminating the role of eIF5A as an elongation 

factor (Benne and Hershey, 1978). Therefore, eIF5A was suggested to stimulate 

the first peptide bond between the methionine and puromycin. However, 

subsequent studies in yeast revealed that the loss of eIF5A had slight impact on 

the global protein synthesis (Kang and Hershey, 1994; Zuk and Jacobson, 1998). 

Based on this and the observation that the depletion of eIF5A led to the 

accumulation of cells in G1 phase, it was suggested that eIF5A may function in 
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translation of certain proteins like those involved in G1 to S phase transition 

(Hanauske-Abel et al., 1994; Kang and Hershey, 1994). 

Although the exact role of eIF5A in translation had remained as a mystery for 

decades, recent studies demonstrated a specific role in translation elongation 

instead of initiation. In 2006, eIF5A was shown to bind the translating 80S 

ribosomes in a hypusine-dependent manner (Jao and Chen, 2006; Zanelli et al., 

2006), restoring its possible function in translation. Afterwards, two independent 

groups illustrated eIF5As function in translation elongation (Gregio et al., 2009; 

Saini et al., 2009). Later, EF-P was shown to be essential for translation of 

polyproline-containing proteins (Doerfel et al., 2013; Ude et al., 2013). These 

studies suggested a similar role for eIF5A due to the sequence and structural 

similarity between eIF5A and EF-P. Shortly after, Gutierrez and his colleagues 

(2013) showed that eIF5A was also required for the translation of polyproline 

motifs. Hydroxyl radical mapping experiments revealed that eIF5A localized to the 

E site of ribosome and interacted with the acceptor arm of tRNA on the P site, 

stimulating the peptidyl-transferase activity of the ribosome (Gutierrez et al., 2013). 

Therefore, instead of being a global translation factor, eIF5A acts during 

translation of specific proteins. Taken together, these results revealed that eIF5A 

in fact was a functional homolog of EF-P. 

eIF5A has been associated with several other cellular processes like vesicular 

trafficking, cell cycle progression, apoptosis and mRNA degradation. It is not yet 

clear if these are independent functions of eIF5A. Based on its recently 

characterized role in translation, where eIF5A can act as a regulator of gene 

expression of specific proteins, all of these suggested functions might be 

secondary effects of translation. For the sake of simplicity, I would like to refer the 

reader to recent reviews discussing these functions (Zanelli and Valentini, 2007; 

Park et al., 2010; Caraglia et al., 2013). 

2.4.2 Nucleocytoplasmic distribution of eIF5A 

As for the function, the subcellular distribution of eIF5A had remained controversial 

for very long time. Throughout the years, several groups reported different 

subcellular localizations for eIF5A (Ruhl et al., 1993; Shi et al., 1996; Rosorius et 

al., 1999; Jao and Yu Chen, 2002). However, a recent study demonstrated that 
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these discrepancies were due to the overexpression of eIF5A (Lee et al., 2009). 

The study showed that endogenous eIF5A is localized exclusively to the 

cytoplasm, whereas exogenous (overexpressed) eIF5A displayed both nuclear 

and cytoplasmic localization. They discovered that overexpressed eIF5A was not 

completely modified by the endogenous DHS and DOHH. Upon overexpression of 

these two enzymes, overexpressed eIF5A showed cytoplasmic localization. These 

results also revealed the importance of the hypusine on subcellular localization of 

eIF5A. 

With its 17 kDa molecular weight, eIF5A is well below the passive diffusion limit of 

the NPCs, and therefore can diffuse into the nucleus very fast. The exclusive 

cytoplasmic localization of eIF5A is provided by an active export mechanism. 

Although initially CRM1 was suggested to be the export factor of eIF5A (Rosorius 

et al., 1999), Xpo4 was identified as the export receptor of eIF5A (Lipowsky et al., 

2000). Xpo4 exports hypusinated as well as deoxyhypusinated and non-modified 

eIF5A. However, the affinity of Xpo4 to the non-modified eIF5A is ~35 fold less 

than its affinity to the hypusinated-eIF5A (Lipowsky et al., 2000). These results 

might explain why overexpressed eIF5A shows mixed localization. 

Although, the active import of eIF5A to the nucleus has not been characterized so 

far, eIF5A was shown to enrich in the nucleus upon induction of apoptosis by 

TNF-α (Taylor et al., 2007). Moreover, acetylation of eIF5A was recently shown to 

stimulate nuclear accumulation (Ishfaq et al., 2012). Interestingly, in another study, 

the nuclear accumulation of eIF5A gave rise to cell proliferation, which can be 

averted by introduction of Xpo4 (Zender et al., 2008). These results might indicate 

a yet undiscovered nuclear function of eIF5A. Alternatively, these results could be 

experimental artifacts. 

2.5 About this work 

This thesis addresses different aspects of two Impβ-like NTRs, namely Xpo4 and 

Xpo7 and therefore the results will be presented in two sections. The first section 

describes the structural and biochemical investigation of cargo recognition by 

Xpo4 and forms the major part of my PhD project. The second part constitutes a 

smaller part of my PhD work where I searched for additional interaction partners of 

Xpo7. 
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In one transport cycle, bidirectional NTRs can carry two cargoes (one import and 

one export cargo) in the expense of one RanGTP, which makes them very 

economic compared to the unidirectional NTRs. How Xpo4 (also Imp13 and 

Msn5p) could work both as importin and exportin was not known at the beginning 

of my PhD. In order to understand the molecular details of bidirectional transport 

and to identify the structural aspects of bidirectional NTRs that allow them to 

operate different than the unidirectional ones, it was necessary to elucidate the 

cargo-bound as well as cargo-free structures of bidirectional NTRs. For this 

project, we aimed to solve the structures of RanGTP•Xpo4•eIF5A, RanGTP•Xpo4, 

and Sox2•Xpo4 complexes and the structure of Xpo4 alone by X-ray 

crystallography. During the course of this project, I have successfully crystallized 

and solved the structure of the export complex (RanGTP•Xpo4•eIF5A). For this, I 

first established an in vitro system for the production of high amounts of very pure 

hypusinated eIF5A. Then, I engineered Xpo4 to obtain diffraction quality crystals. 

After solving the structure, I validated these findings with biochemical and 

functional assays. Last part of the first section explains the crystallization trials of 

the other complexes of Xpo4. 

Xpo7 has been suggested to be a broad range exportin like CRM1, however, only 

three export cargoes have been identified so far. Recent studies by our lab and 

others have revealed that Xpo7 is required for erythrocyte maturation suggesting 

that its complete function has not been deciphered. As a result, we decided to 

elucidate the complete set of Xpo7 binders. By using an optimized affinity 

chromatography method in combination with mass spectrometry analysis, I have 

found novel Xpo7 export cargoes. Astonishingly, I also identified several import 

cargo candidates, which indicated that Xpo7 could be another bidirectional NTR. 
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3 RESULTS 

3.1 Structural and Biochemical Analysis of Cargo Recognition by 
Xpo4 

Crystallization of proteins and protein complexes is only possible in a narrow 

range of multi-dimensional parameters. This necessitates an exhaustive screening 

for various conditions such as temperature, buffer, precipitant and requires large 

amounts of proteins or protein complexes. For this project, we needed Xpo4, 

RanGTP, eIF5A as well as Sox2 and decided to produce these proteins 

recombinantly in E. coli. 

For an initial investigation, we used full-length constructs of Xpo4, eIF5A and 

Sox2. Ran was truncated to contain residues 5–180, excluding the parts that were 

not structured in the previous NTR–RanGTP structures (Vetter et al., 1999a; Cook 

et al., 2007). Deletion of C-terminus (residues 181–216) also stabilizes the GTP-

bound form of Ran and increases the affinity between NTR and RanGTP 

(Richards et al., 1995; Nilsson et al., 2002). In addition, the Gln69Leu mutation 

was inserted to prevent GTPase activity of Ran and to stabilize it in GTP-bound 

form (Bischoff et al., 1994). This construct, RanQ69L5-180, will be referred to as 

RanGTP throughout this section. 

Expression and purification of Xpo4, RanGTP and Sox2 had been established in 

our lab. I further optimized the expression and purification of Xpo4 and RanGTP to 

improve the solubility as well as purity and to increase the final yield. Details of the 

latest protocols are described in 5.2.2. 

In contrast, there was no established protocol for the production of hypusine-

containing eIF5A. Since all of the existing eIF5A in eukaryotic cells has hypusine, 

cellular extracts could be used as a source to purify hypusine-containing eIF5A.  

Lipowsky et al. (2000) used 300 mL cytoplasmic HeLa extract to obtain 3 mg 

eIF5A. With a similar efficiency, we would have needed tens of liters of cell culture. 

As a result, this would not have been a cost-efficient method. Moreover, having 

only the wild type eIF5A, use of eukaryotic extracts would not allow the production 

of truncated or mutated eIF5As, which might be required in the later stages of this 
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study. These reasons prompted us to use the bacterial expression systems. 

Nevertheless, recombinantly produced eIF5A does not contain hypusine due to 

lack of DHS and DOHH in E. coli. Hypusine can be introduced in vivo by 

co-expressing eIF5A with DHS and DOHH or in vitro by enzymatic reaction. 

However, it was not clear whether all the produced eIF5A would contain hypusine 

and whether fully modified eIF5A could be separable from non-modified and semi-

modified eIF5A species. Consequently, we decided to establish an in vitro system 

that allows rapid detection of the modification state of eIF5A and separation of fully 

modified eIF5A from the other species.  

3.1.1 In vitro eIF5A hypusination 

eIF5A is posttranslationally modified by DHS and DOHH in two consecutive 

reactions, deoxyhypusination and hydroxylation, as described in section 2.4 and 

depicted in Figure 2-6. The deoxyhypusination and the hydroxylation reactions 

have been studied by many groups; therefore, the details of these reactions are 

well known (reviewed by Park et al., 2010). The deoxyhypusination and the 

hydroxylation can be used to produce deoxyhypusine-containing eIF5A 

(eIF5A(Dhp)) or hypusine-containing eIF5A (eIF5A(Hpu)) from a bacterially 

expressed eIF5A. However, these reactions reach equilibrium before completion, 

in other words the efficiency of these reactions, in vitro, is not 100%. As a result, 

the final reaction mixture contains fully modified, semi-modified as well as 

non-modified eIF5A (eIF5A(Lys)). Consequently, it is crucial to separate these 

differently modified, but otherwise identical proteins. In the following sections, I will 

explain the methods that led us to separate and purify differently modified eIF5As. 

The deoxyhypusination 

The deoxyhypusination reaction converts eIF5A(Lys) to eIF5A(Dhp). There are 

protocols that employ this reaction in order to produce eIF5A(Dhp). The key step is 

the use of cation exchange chromatography to separate eIF5A(Dhp) from 

eIF5A(Lys).  Since deoxyhypusination introduces an additional positive charge, 

eIF5A(Dhp) binds  the cation exchangers stronger and elutes later in an increasing 

salt concentration. In order to test this, recombinantly produced eIF5A(Lys) was 

incubated with DHS in the presence of its cofactor NAD and the butylamine donor 

spermidine in 200 mM glycine (pH 9.0). As a negative control, I performed the 
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same reaction omitting DHS.  After 4 h at 37 °C, the proteins were bound to an SP 

sepharose column and eluted with a salt gradient. Figure 3-1a shows the elution 

profiles of different reactions. When DHS was excluded, eIF5A was eluted at 

~400 mM NaCl. When DHS was present, bound proteins were eluted in two 

peaks. The first and smaller peak was at ~400 mM NaCl and the second and 

larger peak was at ~500 mM NaCl. Both peaks represented eIF5A (Figure 3-1b). 

Therefore, we concluded that the second peak emerged, as predicted, due to the 

deoxyhypusination and the eluate was eIF5A(Dhp). We calculated the efficiency of 

the reaction to be 90-95%. With this method, we were able to prepare large scale 

pure eIF5A(Dhp). 

 
Figure 3-1 in vitro deoxyhypusination of eIF5A 

20 µM eIF5A(Lys) was incubated with 2 mM NAD, 2 mM spermidine, 2 mM DTT in 500 µL of 0.2 M glycine pH 
9.0 buffer in the absence or presence of 2µM DHS for 4 h at 37 °C. After buffer exchange, the samples were 
loaded to 1 mL HiTrap SP sepharose column equilibrated with 20 mM potassium phosphate pH 6.0, 25 mM 
NaCl and 2 mM DTT. Bound proteins were eluted with a linear gradient ending at 50 mM potassium 
phosphate pH 6.0, 0.8 M NaCl and 2 mM DTT (A). Flow through (FT) and peak fractions (Peak1 and Peak2) 
were collected and analyzed by SDS-PAGE followed by Coomassie blue staining (B). Dashed line and 
straight line in (A) represent absence and presence of DHS, respectively. 

The reversal of the deoxyhypusination and the hydroxylation 

The hydroxylation reaction can be used to convert eIF5A(Dhp) to eIF5A(Hpu). 

Unlike the previous situation, there is no chromatographic method that can 

separate these proteins as they are identical except for an oxygen atom in the 

eIF5A(Hpu). 
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In cells, DHS uses spermidine as the butylamine donor and eIF5A(Lys) as the 

butylamine acceptor. In their 2003 study, Park and his colleagues showed that 

DHS, in vitro, could use deoxyhypusine and other polyamines (i.e. 

homospermidine) as butylamine donors in the presence of putrescine or 

1,3-diaminopropane (DAP), suggesting the reversibility of the deoxyhypusination. 

A striking result of the study was that the DHS was not able to use eIF5A(Hpu) as 

a donor. I wanted to exploit this specific activity to convert any remaining 

eIF5A(Dhp) after the hydroxylation reaction back to eIF5A(Lys), which would leave 

only eIF5A(Hpu) and eIF5A(Lys) in the reaction mixture. These can be separated 

via cation exchange chromatography due to the charge difference between the 

hypusine and the lysine. 

In order to test if the reversal of the deoxyhypusination reaction works, I incubated 

eIF5A(Dhp) with NAD and DAP in the presence or absence of DHS. Then, the 

products were subjected to cation exchange chromatography. As depicted in 

Figure 3-2a, eIF5A(Dhp) was successfully converted to eIF5A(Lys). In the 

absence of DHS, eIF5A(Dhp) was eluted at ~500 mM NaCl (similar to Figure 3-1).  

Addition of DHS resulted in elution of eIF5A at the same salt concentration as 

eIF5A(Lys) would do. Unlike the deoxyhypusination, the efficiency of the reaction 

was ~100%. This can be explained by ~150 fold higher transfer rate of butylamine 

moiety from eIF5A(Dhp) to DHS compared to that from spermidine to DHS (Park 

et al., 2003). 

 
Figure 3-2 The reversal of the deoxyhypusination assays with eIF5A(Dhp) and eIF5A(Hpu) 
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20 µM eIF5A was incubated with 2 mM NAD, 2 mM DAP, 2 mM DTT in 500 µL of 0.2 M glycine pH 9.0 buffer 
in the absence or presence of 2µM DHS for 4 h at 37 °C. After buffer exchange, the samples were loaded to 
1 mL HiTrap SP sepharose column equilibrated with 20 mM potassium phosphate pH 6.0, 25 mM NaCl and 2 
mM DTT. Bound proteins were eluted with a linear gradient ending at 50 mM potassium phosphate pH 6.0, 
0.8 M NaCl and 2 mM DTT. 
(A) eIF5A(Dhp) was subjected to the reversal of the deoxyhypusination assay. (B) 20 µM eIF5A(Dhp) was 
incubated with 20 µM DOHH and 2 mM DTT in 500 µL of 25 mM Tris/HCl pH7.5 buffer for 4 h at 37 °C. The 
reaction products were split into two and used in the reversal of the deoxyhypusination assay. Dashed lines 
and straight lines represent absence and presence of DHS, respectively. 

After observing that the reversal of the deoxyhypusination reaction works, the next 

was to test the products of the hydroxylation reaction. I first carried out the 

hydroxylation reaction with eIF5A(Dhp) and DOHH. Then, the products were split 

into two and only one of the samples was incubated with DHS for reversal. The 

products were analyzed by cation exchange chromatography as used before. The 

elution profile of the portion that did not have the DHS was similar to that of 

eIF5A(Dhp) (Figure 3-2b), as expected eIF5A(Dhp) and eIF5A(Hpu) were not 

separated. In contrast, another peak emerged (~40 mS/cm) in the DHS containing 

sample corresponding to eIF5A(Lys). Given that the efficiency of the reversal of 

the deoxyhypusination reaction was 100%, we concluded that the peak at 50 

mS/cm resembled only eIF5A(Hpu). 

After confirming that the hypusine could be introduced in vitro and hypusinated 

eIF5A can be separated from the others effectively, I used the system depicted in 

Figure 3-3 to produce large scale eIF5A(Hpu). Briefly, recombinant eIF5A was 

modified by DHS and DOHH to form deoxyhypusine and hypusine. Non-modified 

eIF5A was separated from the rest by cation exchange chromatography. 

Afterwards, the deoxyhypusine was converted to the lysine and eIF5A(Lys)–

eIF5A(Hpu) mixture was subjected to cation exchange chromatography to obtain 

pure hypusinated eIF5A. 
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Figure 3-3 Scheme for large scale eIF5A(Hpu) purification 

Assessing the effect of the modifications on Xpo4 binding 

Although the hypusination is not absolutely essential for the eIF5A Xpo4•RanGTP 

interaction, each modification increases the affinity of the eIF5A to Xpo4•RanGTP 

complex (75 nM, 25 nM, and 2 nM respectively from lysine to hypusine; Lipowsky 
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et al., 2000). I performed the following experiment to test the binding strength of 

different eIF5A variants to Xpo4•RanGTP. First, each eIF5A variant was allowed to 

form export complexes with RanGTP and Xpo4 in solutions containing various salt 

concentrations. Then, complexes were recovered on phenyl sepharose beads via 

Xpo4. Finally, the bound proteins were eluted with SDS sample buffer and 

analyzed by SDS-PAGE (Figure 3-4). Although the amount of the bound eIF5A 

gradually decreased in all samples as the salt concentration increases, the bound 

eIF5A was significantly higher in the hypusinated version and the effect of salt was 

less prominent in eIF5A(Hpu) compared to the other two variants. 

 
Figure 3-4 Salt sensitivity of the eIF5A variants 

The samples were prepared by mixing 0.75 µM eIF5A variants with 0.75 µM RanGTP and 0.5 µM Xpo4 in 
350 µL of 50 mM Tris/HCl, 2 mM Mg(OAc)2 buffer with various salt concentrations (50, 100, 150, 200, and 250 
mM NaCl). After 2 h incubation at 4 °C, Xpo4 was immobilized to phenyl sepharose beads.  Unbound proteins 
were removed by washing with buffer of the corresponding salt concentration. Xpo4 and bound proteins were 
eluted with SDS. The eluates were analyzed by SDS-PAGE followed by Coomassie blue staining. ‘MW’ 
stands for molecular weight marker, and protein sizes are marked on the left. 
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3.1.2 Crystallization of the eIF5A export complex 

Reconstitution of eIF5A export complex 

After producing the hypusinated eIF5A, I proceeded to form the eIF5A export 

complex. I mixed eIF5A(Hpu) and Xpo4 with H14-ZZ-bdSUMO tagged RanGTP in 

near stoichiometric ratio, eIF5A(Hpu) being in excess in order to saturate the 

RanGTP. After incubating the mixture at 4 °C for 3 h, the complex was pulled 

down via H14-ZZ-bdSUMO RanGTP by immobilizing to anti-Z affibody dimer 

coupled beads. Afterwards, unbound proteins were removed by washing and the 

complex was eluted with bdSUMO protease. The eluate was analyzed by size 

exclusion chromatography followed by SDS-PAGE (Figure 3-5a, b). Injected 

proteins were eluted as a single peak and this peak contained all the components 

of the export complex. In order to determine the absolute mass and the 

stoichiometry of the complex, peak fractions of the gel filtration were pooled, 

concentrated and subjected to a Superdex 200 10/30 gel filtration column coupled 

to a multi angle light scattering (MALS) detector (Figure 3-5c). The detected 

molecular mass of ~167 kDa was fully consistent with a 1:1:1 stoichiometric 

RanGTP•Xpo4•eIF5A(Hpu) complex. The theoretical mass of the export complex 

is also 167 kDa (20 kDa (Ran) + 130 kDa (Xpo4) + 17 kDa (eIF5A)). 

In the crystallization facility of MPI-BPC, I tried to crystallize the eIF5A export 

complex using commercially available crystallization screens and tested ~2500 

different conditions. Nevertheless, none of the tested conditions gave rise to 

crystals or crystalline-like substances. 

Flexible regions in the proteins have been considered to be one of the reasons for 

failures in crystallization. Therefore, I tried to find out possible flexible/disordered 

regions in the proteins. I was already using the truncated version of Ran that was 

missing the flexible regions both in the N- and C-termini. Prediction algorithms 

identified N-terminal of eIF5A to be disordered (Figure 3-6). In fact, first 14 amino 

acid residues were not visible in the crystal structure of yeast eIF5A, and these 

residues (and the last three amino acids) had to be removed in order to crystallize 

the human eIF5A (Tong et al., 2009). 
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Figure 3-5 Reconstitution of eIF5A export complex 

(A) Gel filtration profile of the export complex on Superdex 200 16/60 column equilibrated with 15 mM Tris/HCl 
pH 7.7, 18 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT. Proteins were collected in 1.5 mL fractions, pooled and 
concentrated to 12 mg/mL (Complex). (B) 5 µL of the fractions and 3 µg of the “input” and the “complex” were 
analyzed by SDS-PAGE followed by Coomassie blue staining. (C) Complex was diluted to 2 mg/mL and 
analyzed by Superdex 200 10/30 column coupled to MALS detector. Theoretical molar mass of a 1:1:1 
stoichiometric complex is 167 kDa that matches exactly with the detected mass. 
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Figure 3-6 Disorder prediction of eIF5A 

Primary sequence of eIF5A was analyzed by IUPred website using the settings to search for short disordered 
regions. Predicted disorder score of each amino acid was plotted against the amino acid position in the 
primary sequence. Values greater than 0.5 indicates unstructured regions. 

 

 
Figure 3-7 Binding of truncated eIF5A to Xpo4•RanGTP 

The samples were prepared by mixing 0.5 µM eIF5A(Hpu) with 0.6 µM RanGTP and 0.5 µM Xpo4 in 350 µL of 
50 mM Tris/HCl, 30 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT. After 2 h incubation at 4 °C, 300 µL of the 
samples was incubated with phenyl sepharose beads to precipitate Xpo4 and bound proteins. Unbound 
proteins were removed; Xpo4 and the bound proteins were eluted with SDS sample buffer. The eluates were 
analyzed by SDS-PAGE followed by Coomassie blue staining. For competition assay, 0.5 µM of each of the 
full-length and truncated eIF5A(Hpu) were mixed with RanGTP and Xpo4. ‘MW’ and ‘fl’ stand for molecular 
weight marker and full-length, respectively. 
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I created a truncated version of eIF5A (eIF5A15-154) and wanted to test if a complex 

composed of eIF5A15-154 would crystallize. However, I first had to check if the 

truncated version would be hypusinated and form complex with Xpo4 and 

RanGTP. In vitro hypusination system that I established for full-length eIF5A 

effectively worked for eIF5A15-154 as well. After producing hypusinated eIF5A15-154, 

I assessed its ability to bind Xpo4 and RanGTP. Figure 3-7 shows the result of the 

binding assay of the full-length and the truncated eIF5A(Hpu) as well as a 

competition experiment. eIF5A15-154 was able to form a complex with Xpo4 and 

RanGTP. The remarkable result was that the shorter version was able to compete 

out the full-length version in the competition assay (Lane 3 in Figure 3-7) indicating 

that the truncation did not cause any decrease in the affinity of eIF5A to 

Xpo4•RanGTP. 

I prepared an export complex with eIF5A15-154, Xpo4 and RanGTP the same way I 

did for the full-length eIF5A, and analyzed the complex by size exclusion 

chromatography, SDS-PAGE and MALS (Figure 3-8). All proteins were present in 

the eluate of the protease elution and ran together in the gel filtration. MALS 

analysis showed that the absolute mass of the complex was ~163 kDa confirming 

the shortening of the eIF5A. 

I set crystallization drops with the new complex and tested ~1200 different 

conditions. Unfortunately, I did not get any three dimensional crystals. 

Nevertheless, I obtained needle like crystals or sea urchin like needle clusters in 

three different conditions (Figure 3-8 and Table 3-1). 

Screen 
name 

Drop 
position Precipitant composition Incubation 

temperature 
Protein 
concentration 

PEG II A2 
0.1 M MES pH 6.5 
15% PEG 400 

20 °C 12 mg/ml 

Nucleix E7 

0.05 M Succinic acid pH 5.5 
10% 2-Propanol 
0.01 M MgCl2 
0.002 M CoCl2•6H2O 

4 °C 12 mg/ml 

Nucleix A10 
0.05 M MES pH 6.0 
5% PEG 4000 
0.01 M MgSO4 

20 °C 12 mg/ml 

Table 3-1 Crystallization conditions of the initial hits 
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Figure 3-8 Reconstitution of eIF5A15-154 export complex and the crystallization hits 

(A) Gel filtration profile of the truncated eIF5A-containing export complex on Superdex 200 16/60 column 
equilibrated with 15 mM Tris/HCl pH 7.7, 18 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT. Proteins were 
collected in 1.5 mL fractions, pooled and concentrated to 12 mg/mL (Complex). (B) 5 µL of the fractions and 
2 µg of the “input” and the “complex” were analyzed by SDS-PAGE followed by Coomassie blue staining. 
(C) Complex was diluted to 2 mg/mL and analyzed by Superdex 200 10/30 column coupled to MALS detector. 
Theoretical molar mass of a 1:1:1 stoichiometric complex is 165 kDa. (D, E, F, G) Export complex crystals in 
various crystallization conditions. (D) PEG II-A2, (E) Nucleix-E7, (F) Nucleix A10. For drop compositions see 
Table 3-1. (G) 0.1M MES pH 6.5, 13.5% PEG400. This was the most promising crystallization condition after 
the initial refinement screen. Sea urchin-like needle clusters appeared after 12 h and grew full size in 3 days. 
This condition was used as basis for further refinements. 

Clusters or small needles are not suitable for data collection in the synchrotron. 

Consequently, I tried to optimize the crystallization conditions to obtain diffraction 

quality crystals. I initially tested conditions with varying pH and precipitant 

concentration (Figure 5-1). Later, I assessed the effects of different salts, 

precipitants, buffers, incubation temperatures and protein concentrations. 

Additionally, I tested additive screens and silver bullets. Although I observed 

crystals (needle clusters) as soon as 12 h (Figure 3-8g), none of the tested 

conditions improved the shape of the crystals. 

Identification of unstructured regions of Xpo4 

Formation of the needle like crystals and the failure of the optimization led us to 

hypothesize that the removal of the N-terminus of eIF5A allowed the complex to 

make stable crystal contacts in one dimension; nonetheless, other flexible regions 

were blocking additional crystal contacts that would turn the needles to 2D or 3D 

crystals. At this stage, we were using the minimal RanGTP and eIF5A that lack 

any flexible regions; thus, Xpo4 would have been the only source of the flexibility. 

As described in section 2.3, NTRs are made up of successive alpha helices that 

are connected by loops in different sizes. We suspected, as in the case of yeast 

CRM1 (Koyama and Matsuura, 2010), Xpo4 might have long insertions that have 

to be removed to improve the crystals. To test this idea, I decided to employ the 

limited proteolysis technique. The principle of the technique is that the protein or 

protein complex is incubated with trace amount of proteases (endopeptidases) so 

that the partly folded or flexible regions are cleaved while the folded domains 

remain intact. After the incubation, the samples are analyzed by SDS-PAGE and 

the emergence of lower molecular weight fragments imply digestions of the full-

length protein, and hence the presence of flexible loops. 
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In vitro limited proteolysis 

I performed in vitro limited proteolysis experiments with the export complexes 

consisting of either full-length or truncated eIF5A. I used three proteases; namely 

trypsin, chymotrypsin and GluC to cover a broad range of amino acids. Trypsin 

cleaves after the positively charged residues, GluC after the negatively charged 

residues (preferentially glutamic acid) and chymotrypsin after the bulky 

hydrophobic residues. 

I prepared digestion mixtures (consisting of the protease and the export 

complexes) with various protease concentrations. The mixtures were incubated for 

1 h at 20 °C. The reactions were stopped by mixing the samples with EDTA and 

PMSF supplemented SDS sample buffer and incubating 5 min at 95 °C. The 

samples were analyzed by SDS-PAGE (Figure 3-9). 

 
Figure 3-9 in vitro limited proteolysis of eIF5A export complexes 

3 µg of the export complexes were incubated with increasing concentrations (1:2500, 1:500, 1:100 and 1:20 
w/w protease to substrate ratio, respectively) of trypsin, chymotrypsin and gluC for 1 h at 22 °C. The samples 
were analyzed by SDS-PAGE followed by Coomassie blue staining. As a control (input), 3 µg from each 
complex was prepared and incubated together with the digestions. MW stands for molecular weight marker. 
(*) marks the fragment that is the only difference in the digestion patterns of different complexes. 

Xpo4, although at varied extents, was susceptible to all of the tested proteases. 

Digestion pattern of Xpo4 was similar for both complexes, suggesting that the 

removal of N-terminus of eIF5A did not have any conformational change in Xpo4. 

The only difference between the digestion pattern of both complexes was the 

presence of a ~16 kDa band in the GluC digestion of the full-length eIF5A export 
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complex (Figure 3-9 red asterisk). The loss of the same band in the other complex 

suggested that it belonged to eIF5A; and since similar low molecular weight 

product was missing in the shorter complex, I assumed that the digestion 

happened in the N-terminal region of eIF5A. Finally, it should be noted that among 

the tested proteases trypsin was the most efficient while the GluC was the least. 

The remarkable outcome of the experiment was the appearance of Xpo4 

fragments at ~25 kDa and ~100 kDa in all proteases. This implied that Xpo4 had 

one or more of the flexible loops that were prone to cleavage by the tested 

proteases. There were at least two prominent bands between 20 and 25 kDa in 

trypsin and chymotrypsin digestions, on the other hand, there was a single band in 

GluC. This might be due to lower activity of GluC compared to the others or Xpo4 

might have two flexible loops that only one of them is the target of GluC. After 

discovering that Xpo4 might have flexible or partially folded regions, I performed 

in situ limited proteolysis in order to test whether the disruption of these loops 

would improve the quality of the crystals. In the following section, I will explain the 

identified protease cleavage sites in order to make the subsequent sections 

comprehensible. 

Identification of the protease cleavage sites by mass spectrometry 

The aim of titrating the protease concentrations in the limited proteolysis 

experiment was to observe the possible digestion intermediates. It was possible to 

observe such intermediates in trypsin and chymotrypsin digestions (Figure 3-9). 

The bands corresponding to Xpo4 fragments were excised (including the ~16 kDa 

band in GluC digestion) from the polyacrylamide gel and analyzed by mass 

spectrometry. 

We were able to identify the composition and the protease cleavage sites of the 

indicated fragments in Figure 3-10. The peptide sequences that are used to locate 

the protease cleavage sites are displayed in Table 6-2. We identified that Xpo4 

was cleaved by trypsin at Arg245 and Arg947; by chymotrypsin at Tyr247, Phe518 

and Phe936; and by GluC at Glu934. As can be recognized, different proteases 

cleaved very close regions implying that Xpo4 had at least three unstructured 

regions or large loops. These were at the N-terminus (~250 residue), C-terminus 

(~940 residue) and at the middle (~520 residue) of Xpo4 (Figure 3-10b). 
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Figure 3-10 Identification of the protease cleavage sites 

(A) Digestion fragments that were analyzed by MS are marked with bold letters. (B) Schematic representation 
of Xpo4 (cyan) and eIF5A (orange). The regions that are susceptible to proteases are highlighted and the 
corresponding sequences are shown beneath. Red, green and blue arrows mark the positions of the cut sites 
of trypsin, chymotrypsin and GluC, respectively. Underlined residues in eIF5A represent the amino acids that 
were deleted to obtain the needle clusters. 

Moreover, as predicted, fragment ‘n’ belonged to eIF5A. We identified eIF5A 

peptides after the Glu8, suggesting this was the GluC cut site. This result showed 

that N-terminal of eIF5A, in fact, was not structured in the export complex and 

nicely correlated with the previous findings. 
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Protease Identified peptide Corresponding fragment 
in Figure 3-10a 

Trypsin 230ANQVLSNFLPPNLGR245 b 
Trypsin 246HYIAMFESSQNVLKPTESWR265 a 
Trypsin 948SVSAADVVLY957 d 
Chymotrypsin 925EFIDFSGTDEVF936 e 
Chymotrypsin 937RGHEPGQAAGR948 f 
Chymotrypsin 248IAMFESSQNVLLKPTESWR266 o 
Chymotrypsin 236SWNFLPPNLGR246 k 
Chymotrypsin 520ASPGSSTIDNKML532 h 
Chymotrypsin 508HGQLQRHQQQF518 i 
GluC 925EFIDFSGTDE934 l 
GluC 935VFRGHEPGQAAGR947 m 
GluC 9TGDAGASATFPMQCSALR27 n (eIF5A) 

Table 3-2 Identified peptides that are used to determine the protease cleavage sites 

Identified peptides at the very N- or C-termini of the corresponding fragments are shown. These peptides were 
used to identify the protease cleavage sites and can be used as a reference for Figure 3-10b.  

In situ limited proteolysis 

After discovering that Xpo4 had flexible or partially folded regions, I performed in 

situ limited proteolysis in order to test if the disruption of these loops would 

improve the shape of the crystals. I first determined the rate of the proteolysis in 

the precipitant (0.1 M MES pH 6.5, 13% PEG 400) and found that the activity of 

the enzymes was ~10 times slower. Later, I adjusted the amount of the proteases 

such that all enzymes would digest similar amount of Xpo4 after certain time. 

Subsequently, I mixed different proteases with the eIF5A15-154 export complex 

solution and set crystallization plates at 20 °C. After 10 days, diamond shape 

crystals appeared in trypsin and chymotrypsin containing export complexes in 

0.1 M MES pH 6.26, 10-12% PEG 400 (Figure 3-11). These crystals diffracted 

around 4-5 Å (the best diffraction was at 3.8 Å). The crystals belonged to trigonal 

space group P3121 (or its enantiomorph P3221) with unit cell dimensions 

a=b= 95.9 Å, c= 379 Å and contained one complex per asymmetric unit. 
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Figure 3-11 Crystallization drops of in situ limited proteolysis 

1 µL of either the complex buffer, trypsin (5.26 µg/mL), chymotrypsin (52.6 µg/mL) or gluC (100 µg/mL) was 
mixed with 11 µL of the export complex (12 mg/mL) and crystallization plates were set. Images of buffer (A), 
trypsin (B), chymotrypsin (C) and gluC (D) containing drops of 0.1 M MES pH 6.26, 10.75% PEG 400 are 
shown. The images were taken after 10 days. 

Interestingly, the trypsin-digested crystals diffracted better than the chymotrypsin 

digested ones (approximately 1 Å). In order to check the content of the crystals, I 

picked single —trypsin- or chymotrypsin-digested— crystals and analyzed them by 

SDS-PAGE (Figure 3-12). The results had two important indications. First, the 

crystals were not homogenous. There were several Xpo4-like fragments similar to 

the in vitro limited proteolysis experiment. The intensity of the bands indicated that 

Xpo4 was not completely digested. Rather, the crystals contained full-length as 

well as partially digested Xpo4. Second, RanGTP was missing in the 

chymotrypsin-treated crystals. The band intensities of the Ran and eIF5A were 

similar and stoichiometric in the trypsin-treated crystals. On the other hand, Ran 

was underrepresented in the chymotrypsin-treated one. This might imply the 

disruption of the complex by chymotrypsin treatment. 
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Figure 3-12 SDS-PAGE analysis of the trypsin and chymotrypsin digested crystals 

Crystals obtained after the in situ limited proteolysis were fished out of the crystallization drop using Nylon 
loops, resuspended in SDS sample buffer and analyzed by SDS-PAGE followed by Coomassie blue staining. 
‘Mw’ stands for molecular weight marker and protein sizes are marked on the left. 

The loss of RanGTP and the heterogeneity of the crystals led us to reveal the fate 

of the complex after the protease digestions. I performed an in vitro limited 

proteolysis experiment followed by size exclusion chromatography. First, 

eIF5A15-154 export complex was digested with trypsin or chymotrypsin at room 

temperature for 90 min. Then, the digestions were subjected to a Superdex 200 

10/30 gel filtration column. Finally, fractions of the peaks were analyzed by SDS-

PAGE. Figure 3-13 and Figure 3-14 demonstrate the elution profiles of the 

chromatography and the results of the SDS-PAGE analysis of trypsin and 

chymotrypsin digestions, respectively. 

Trypsin

Mw MwChymotry
psin

200
150
120

100
85

70
60

50

40

30

25

20

15

10

kDa

full length Xpo4

Ran

eIF5A15-154(Hpu)

Xpo4
fragments



 48 

 
Figure 3-13 in vitro limited proteolysis with trypsin coupled to size exclusion chromatography 

Limited proteolysis experiment was performed with trypsin and eIF5A15-154 export complex (1:500 w/w trypsin 
to complex ratio) for 90 min at room temperature. The digestion was analyzed on a Superdex 200 10/30 gel 
filtration column equilibrated with 15 mM Tris/HCl pH 7.7, 18 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT 
(upper panel). Eluted proteins were collected in 200 µL fractions, precipitated with 10% TCA and resuspended 
in 25 µL SDS sample buffer (supplemented with 10 mM Tris base). 2 µg of the export complex immediately 
after the protease addition (Start) and after 90 min incubation (End) and 10 µL of the resuspended fractions 
were analyzed by SDS-PAGE followed by Coomassie Blue staining (lower panel). ‘Mw’ stands for molecular 
weight marker and protein sizes are marked on the left. (Modified from Aksu et al., 2016) 
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Figure 3-14 in vitro limited proteolysis with chymotrypsin coupled to size exclusion chromatography 

Limited proteolysis experiment was performed with chymotrypsin and eIF5A15-154 export complex (1:100 w/w 
chymotrypsin to complex ratio) for 90 min at room temperature. The digestion was analyzed on a Superdex 
200 10/30 gel filtration column equilibrated with 15 mM Tris/HCl pH 7.7, 18 mM NaCl, 2 mM Mg(OAc)2 and 
2 mM DTT (upper panel). Eluted proteins were collected in 200 µL fractions, precipitated with 10% TCA and 
resuspended in 25 µL SDS sample buffer (supplemented with 10 mM Tris base). 2 µg of the export complex 
immediately after the protease addition (Start) and after 90 min incubation (End) and 10 µL of the 
resuspended fractions were analyzed by SDS-PAGE followed by Coomassie Blue staining (lower panel). ‘Mw’ 
stands for molecular weight marker and protein sizes are marked on the left. 
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Both of the digestions were eluted as a single peak and at the same elution 

volume of the native complex. SDS-PAGE analysis showed that although Xpo4 

was cleaved at several positions by both of the proteases, all the fragments 

copurified and the digestions did not immediately disrupt the export complex. The 

results provided evidence that the proteases nicked the solvent-exposed loops of 

Xpo4 without affecting the stability of the complex. 

Since the products of the in situ limited proteolysis were heterogeneous, I wanted 

to test if the relatively homogenous preparations would improve the quality of the 

crystals. I carried out preparative scale in vitro limited proteolysis using trypsin and 

chymotrypsin, subjected the digestions to size exclusion chromatography and set 

crystallization drops with the previously identified conditions. Remarkably, the 

digested complexes did not form crystals. In spite of all the efforts, I couldn’t obtain 

any diffraction quality crystal. At best, some conditions gave needle like clusters. 

These results suggested that the in vitro limited proteolysis might have removed 

some of the additional loops of Xpo4 that might necessary for crystal contacts. 

Generation of loop deletions and crystallization 

So far, we were able to obtain diffracting quality crystals with the export complex, 

however, couldn’t improve the resolution of the crystals. The limited proteolysis 

experiments and crystallization trials suggested that the removal of certain regions 

of Xpo4 was crucial for crystallization whereas the removal of other regions 

prevented crystallization. The heterogeneity of the Xpo4 in the crystals seemed to 

be the primary reason for relatively poor resolution. It may have been challenging 

to find out the conditions that would have homogenous Xpo4 digestions as well as 

give rise to well diffracting crystals. Therefore, we decided to create an engineered 

Xpo4 that lacks the solvent-exposed loops and test if the complex (containing loop 

deleted Xpo4) would form crystals in the absence of proteases. 

This task had two important questions to be resolved: What were the exact 

positions of the loops and how many of these loops had to be removed for crystal 

formation? To answer these questions, I made use of bioinformatics tools and 

combined the obtained information with biochemical assays. 
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Figure 3-15 Secondary structure prediction of Xpo4 
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Figure 3-16 Sequence alignment of Xpo4 homologues 

The alignment includes Xpo4 from M. musculus (mouse), D. rerio (zebrafish), O. Hannah (king cobra), 
Z. mays (maize), and D. discoideum. The conserved residues are highlighted in dark red boxes, whereas the 
residues that are present in four out of five sequences are in light red boxes. Identified protease cleavage 
sites are marked with arrows and indicated accordingly. (Modified from Aksu et al., 2016) 

I used online secondary structure prediction algorithms to find out the predicted 

positions of the HEAT repeats. One example from PSIPRED server is shown in 

Figure 3-15. In parallel, I examined the conservation of Xpo4 homologues from 

different organisms. Figure 3-16 shows the sequence alignment of Xpo4 

homologues from five different organisms. 

ChymotrypsinTrypsin

Chymotrypsin TrypsinGluC
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Consistent with the flexible loops, the residues surrounding the protease cleavage 

sites (residues 240–260 and 930–950) are poorly conserved among Xpo4 

homologues and even missing in some organisms (Figure 3-16). Moreover, these 

regions reside in long loops, or in helices with low confidence value, which are 

surrounded by helices with high confidence value (possibly the helices of the 

HEAT repeats) (Figure 3-15).  

I wanted to remove as many amino acids as possible without disturbing the 

structure of Xpo4. In order to determine the number of residues that can be 

deleted from Xpo4, I made use of the following approach. Based on the secondary 

structure prediction, I set the borders and therefore the maximum size of the loops 

that can be deleted. Later, I constructed several Xpo4 deletion mutants lacking 

different size of loops. Next, assuming that the solubility of a protein reflects the 

proper folding, I compared the solubility of these mutants with full-length Xpo4. 

Finally, I checked the ability of these mutants to bind RanGTP and eIF5A, picked 

the best and combined different loop deletions. Accordingly, I identified the loop at 

the N-terminus to be the residues between 241 and 260, and the loop at the 

C-terminus to be the residues between 931 and 948; and created the mutants 

depicted in Figure 3-17. 

 
Figure 3-17 Schematic representation of the Xpo4 loop mutants 

The sequences of the characterized loops are shown in Xpo4 (the full-length). The protease cleavage sites 
are marked with arrows and shown above the corresponding sequence. ΔLoopC, ΔLoopN&C and ΔLoopN 
represent Xpo4Δ931-948, Xpo4Δ241-260&931-948, Xpo4Δ241-260, respectively. (Adapted from Aksu et al., 2016) 

I formed eIF5A export complexes with these mutants using the protocol 

established for the full-length Xpo4, analyzed them by size exclusion 

chromatography and SDS-PAGE (Figure 3-18). All complexes eluted nearly at the 

same volume and contained all the components of the export complex. SDS-

PAGE analysis showed that all the mutants formed stoichiometric complexes with 

RanGTP and eIF5A(Hpu). Later, I subjected these complexes to limited 

PKLGRHYIAMFESSQNVLLK DTDEVFRGHEPGQAAGRS...NFLP PTES... ...IDFS VSAA...

240 261 930 949

Xpo4

DTDEVFRGHEPGQAAGRS...NFLP PTES... ...IDFS VSAA...∆LoopN

...NFLP PTES... ...IDFS VSAA...∆LoopN&C

PKLGRHYIAMFESSQNVLLK...NFLP PTES... ...IDFS VSAA...∆LoopC

ChymotrypsinTrypsin Chymotrypsin TrypsinGluC
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proteolysis with trypsin. Confirming our previous biochemical data, ΔLoopN&C 

mutant was resistant to proteolytic degradation at the N- and C-terminal regions 

(Figure 3-18b). 

 
Figure 3-18 eIF5A export complex formation with Xpo4 loop mutants 

(A) Overlay of the size exclusion chromatograms of the export complexes consisting Xpo4 or Xpo4 loop 
mutants. Export complexes were formed in solution using near stoichiometric amounts of eIF5A(Hpu), 
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RanGTP and Xpo4 or Xpo4 mutants. Each complex was analyzed on a Superdex 200 16/60 gel filtration 
column equilibrated with 15 mM Tris/HCl pH 7.7, 18 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT. (B) Left Peak 
fractions were collected, pooled and concentrated to 12mg/ml. 2 µg from each complex was analyzed by 
SDS-PAGE followed by Coomassie staining. Right The export complexes were incubated with trypsin (1000:1 
w/w) for 1 h at 22 °C and digestion pattern (1µg from each complex) was analyzed by SDS-PAGE followed by 
Coomassie staining. (Adapted from Aksu et al., 2016) 

I set crystallization drops with these complexes using the previously identified 

crystallization conditions. Export complexes consisting of either ΔLoopN or 

ΔLoopN&C were crystallized without any protease treatment (Figure 3-19). In 

addition, in situ trypsin- or chymotrypsin-treated ΔLoopC containing export 

complex also formed similar crystals with the same crystallization condition. 

Overall, these results suggested that the removal of N-terminal loop of Xpo4 was 

required for proper crystal contacts. Remarkably, crystals obtained from the 

full-length Xpo4 containing complex could be used as seeds for both ΔLoopN and 

ΔLoopN&C complexes suggesting that new crystals had similar unit cell properties 

as the full-length. 

 
Figure 3-19 Crystallization of the export complexes consisting Xpo4 loop mutants 

1 µL of 12 mg/ml export complex was mixed with 1 µL of the precipitants with various pH and PEG 
concentrations. Export complexes consisting either ΔLoopN (A) or ΔLoopN&C (B) were crystallized in 0.1 M 
MES pH 6.26, 8-10% PEG 400. Note that the crystallization condition is almost identical to that of in situ 
protease treated full-length Xpo4 containing export complexes. 

These crystals diffracted to around 3.5 Å. We tested several crystals and collected 

a data set at 3 Å resolution from the ΔLoopN&C containing export complex. The 

crystals belonged to trigonal space group P3121 with unit cell dimensions a=b= 

98.6 Å and c= 726.8 Å and contained two complexes per asymmetric unit. 

Interestingly, the size of the unit cell in one dimension (c) was double compared to 

the old crystals, possibly to accommodate the second complex in the asymmetric 

unit. For phasing, I purified selenomethionine-labeled ΔLoopN&C, formed ternary 

export complex, crystallized with the same crystallization condition and collected a 

data set at 3.5 Å resolution, where the anomalous signal extended beyond 5 Å 

resolution. 

A B
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3.1.3 Structure of eIF5A export complex 

Structure determination 

All data collection was done at beamline X10SA at the Swiss Light Source 

(Villigen, Switzerland) together with Dr. Sergei Trakhanov from our lab. High 

redundancy of the collected data was necessary for phase determination. For 

phasing information, the dataset was indexed, integrated and scaled with XDS. 

Positions of the 56 selenium sites (out of 66) were located by SHELXD. Both the 

steps were carried out by Dr. Trakhanov. Later, I obtained the initial phases by 

molecular replacement (MR) using RanGTP (PDB ID 3GJX; Monecke et al., 2009) 

as the search model. The resulting information and the position of selenium atoms 

were used to obtain the electron density map. Initial helix and strand search 

revealed the ring like structure of Xpo4 as well as the position of Ran. Remaining 

electron density at this point clearly demonstrated the position of eIF5A. Crystal 

structure of human eIF5A (PDB ID 3CPF; Tong et al., 2009) was later manually 

placed to the electron density. Automated model building was performed using 

AutoBuild Wizard in Phenix. Later, Coot was used for manual model building and 

PHENIX Refine was used for refinement. The quality of the final model was 

assessed by MolProbity as well as by the validation server of PDB. In the final 

stages, the model was refined against the data set at a resolution of 3.2 Å to an 

Rwork of 23.3% and Rfree of 29.9%. The model has good stereochemistry, with 

96.4% of the residues in the most favored region of the Ramachandran plot and 

only two residues in the disallowed region. Data collection and refinement 

statistics are shown in Table 3-3 and a sample of the quality of the electron density 

for the interaction interfaces is provided in Figure 3-20. The crystal structure 

contains two ternary complexes in the asymmetric unit, which are very similar 

(r.m.s.d. of 1 Å over 904 atom pairs). Complex 1 has better electron density than 

complex 2, therefore I will refer to complex 1 unless otherwise stated. The final 

model includes residues 7 to 176 of Ran and 16 to 151 of eIF5A. I modeled 1025 

of 1113 residues of Xpo4, missing few residues at the very N- and C-termini as 

well as several disordered loop regions between the HEAT repeats. Due to weak 

electron density at the C terminus of Xpo4, last two HEAT repeats were modeled 

mostly as polyalanine. 
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 Native SeMet 
Data collection   
Space group P3121 
Cell dimensions     
    a, b, c (Å) 98.616, 98.616, 726.864 98.477, 98.477, 725, 678 
    α , β , γ (°)  90, 90, 120 90, 90, 120 
Resolution (Å) 49.41-3.2 (3.31-3.20)* 49.33-3.40 (3.61-3.48) 
Rsym 0.08 (0.95) 0.15 (1.96) 
I / σI 22.42 (2.26) 18.0 (1.40) 
Completeness (%) 99.91 (99.79) 99.7 (97.10) 
Redundancy 9.90 (10.20) 18.7 (15.10) 
   
Refinement   
Resolution (Å) 49.41-3.20  
No. reflections 69829  
Rwork / Rfree (%) 23.3/29.9  
No. atoms   
    Protein 18644  
    Ligand/ion 66  
   Water 0  
B-factors   
    Protein 102.7  
    Ligand/ion 84.1  
    Water   
R.m.s deviations   
    Bond lengths (Å) 0.006  
    Bond angles (°) 0.81  

Table 3-3 Data collection and refinement statistics for RanGTP•Xpo4•eIF5A complex 

* Values in parentheses are for highest-resolution shell 
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Figure 3-20 Stereo views of the electron density of the export complex structure 

The electron density of the refined 2Fo-Fc map (contoured at 1.0 σ) is shown as blue mesh, with the stick 
representation of the final model superimposed. (A) Stereo view of the switch II region of Ran (carbon atoms 
in green) interacting with Xpo4 (carbon atoms in grey). (B) Stereo view showing the hypusine-containing loop 
of eIF5A (carbon atoms in orange) docking into Xpo4’s acidic pocket. (Adapted from Aksu et al., 2016) 

  

A

B
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Overall structure of Xpo4 

The structure of the export complex is shown in Figure 3-21. Before explaining the 

details of the export complex structure, I would like to devote this section to 

describing the structure of Xpo4. 

 
Figure 3-21 Structure of the RanGTP•Xpo4•eIF5A export complex 

(A) View of the export complex in two different orientations. Ran (green) and eIF5A (orange) are shown in a 
ribbon representation, whereas Xpo4 is shown as cylinders. GTP (black) is shown as sticks. Xpo4 is depicted 
with a color gradient from blue (N terminus) to grey (C terminus). (B) The export complex is rendered as 
surface representation with same color-coding and view as in (A). 
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Figure 3-22 Structure of Xpo4 in the export complex and HEAT repeat organization 

Upper. Xpo4 in the export complex is shown in a ribbon representation (RanGTP and eIF5A are removed for 
clarity). A and B helices of the HEAT repeats are colored in blue and yellow, respectively. Long inter-repeat 
insertions mentioned in the text are colored in dark pink, whereas the acidic loop is in brown. Bottom. 
Schematic representation of the Xpo4 secondary structure. Coloring is same as in the upper panel. Green and 
orange dots represent the Xpo4 residues interacting with RanGTP and eIF5A, respectively. (Adapted from 
Aksu et al., 2016) 

Xpo4, as all members of importin β family, is an all α-helical protein and is made of 

consecutive HEAT repeats (Figure 3-22). As mentioned in the introduction, HEAT 

repeats are ~40 amino acid motifs which consist of two consecutive α-helices (A 

and B) that pack in an antiparallel orientation against each other (Andrade et al., 

2001). The repeats pack side by side to form a superhelical structure. The A 

helices form the outer convex surface and the B helices form the inner convex 

surface (Figure 3-22). Xpo4 consists of 19 canonical HEAT repeats and 3 α-

helices (termed as HEAT 20) at the very C-terminus sealing the superhelix. 

Superhelical arrangement of Xpo4 is interrupted by three anticlockwise kinks 

(between HEATs 3 and 4, HEATs 9 and 10, and HEATs 13 and 14) that convert 

superhelical structure into a toroid-like shape, with HEAT 20 touching the loop 

between HEATs 2 and 3. 

Xpo4 contains several insertions either between the A and B helices of the same 

HEAT repeat (intra-repeat) or between successive HEAT repeats (inter-repeat). 

Most of the intra-repeat insertions are short loops and in some cases contain small 

helices. An exception is the ~30 amino acid long loop in between HEAT 9A and 

9B. This loop contains mostly acidic residues and resembles the so-called ‘acidic 

loop’ of CRM1 (Monecke et al., 2009). The inter-repeat insertions, on the other 

hand, vary in length and topology. Noteworthy insertions are between HEATs 10 

and 11 and HEATs 11 and 12.  The insertion between HEATs 10 and 11 is ~50 

amino acid long and folds into two α-helices, one of them packing against the A 

helices of HEATs 10 and 11. Similarly, the insertion between HEATs 11 and 12 is 

a long loop (~30 amino acids) with a hydrophobic α helix folding against the 

α helices of the previous insert. 
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Figure 3-23 Complexes at the asymmetric unit and Xpo4 contact sites 

On the left, the components of the asymmetric unit are shown in ribbon representation. Ternary complexes 
are colored in blue and yellow. On the right, the magnified view shows the portions of Xpo4 that interact with 
each other around the deleted N-terminal loop (red). In general, HEATs 5-7 Xpo4 from complex1 are in close 
proximity to the same region of Xpo4 from complex 2. Additional 20 residues into the loop shown in red would 
prevent the proper contact, validating our initial work. 

 
Figure 3-24 Conformational differences between the Xpo4 molecules in the asymmetric unit 

Xpo4 from complex 1 (blue) is superimposed to that from complex 2 (yellow) via HEATs 10-13. 
Conformational differences between the Xpo4 molecules indicate possible hinge regions for the movement of 
N- and C-terminal HEAT repeats, which divide Xpo4 into 3 rigid bodies: HEATs 1–9, 10–13, and 14–20. 
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As previously identified, two regions of Xpo4 were sensitive to certain proteases 

and the deletion of the N-terminal loop was crucial to obtain crystals. The 

N-terminal and C-terminal deletions reside in the loops between HEATs 5 and 6 

and HEATs 16 and 17, respectively. In the asymmetric unit, the residues in the 

loop between HEATs 5 and 6 contact the same residues of the second Xpo4 

molecule, providing a rationale for the necessity of the deletion (or the protease 

treatment in the initial case) to obtain the diffraction quality crystals (Figure 3-23). 

Two Xpo4 molecules in the asymmetric unit are identical and superimpose with an 

r.m.s.d of 1 Å in their Cα atoms (Figure 3-24). However, the r.m.s.d is lower if 

superposition is carried out using only HEAT repeats 1–9 (0.5 Å), HEAT repeats 

10–13 (0.4 Å) or HEAT repeats 14–20 (0.7 Å), indicating a slight movement of 

both termini with respect to each other. This might also reflect the flexibility of 

Xpo4. 

RanGTP recognition by Xpo4 

Xpo4 wraps around Ran and has four distinct interaction sites. The details are 

shown in Figure 3-25 and Figure 3-22 (lower panel). The first interaction site 

involves the N-terminal region of Xpo4 and is formed by the HEATs 1 to 3. This 

region interacts with switch II region of Ran (residues 65 to 80) as well as α helix 

3. The interaction occurs mainly via hydrophobic contacts, which is very similar to 

what has been seen for other NTRs. In fact, N-terminal is the most conserved 

region among the importin β superfamily (Görlich et al., 1997). HEATs 7 and 8 

form the second interaction site and contact the basic back of Ran involving the 

so-called ‘basic patch’, β strand 6 and α helix 5. In particular, Asp395, Asp396 and 

Glu401 of Xpo4 interact with His139, Arg140, Gln145, Trp163 and Arg166 of Ran. 

Overall this interaction resembles the interaction between Ran and the conserved 

acidic insertion of importin β and transportin (Chook and Blobel, 1999; Vetter et 

al., 1999a). The third interaction site of Xpo4 is formed by the acidic loop within 

HEAT 9, which engages contacts with the loops of Ran involved in guanine 

recognition. A similar Ran-binding interface is found in most of the exportins. 

However, in CAS, Xpot and Xpo5, the interactions are mediated by the loops 

within the C-terminal HEAT repeats (Matsuura and Stewart, 2004; Cook et al., 

2009; Okada et al., 2009). Therefore, this mode of Ran-binding is analogous to 
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that of CRM1 as the interaction site is also formed by the acidic loop within HEAT 

9 (Monecke et al., 2009). However, it is noteworthy to mention that unlike CRM1, 

which contacts Ran mostly via electrostatic interactions, interaction of Xpo4 occurs 

via hydrophobic contacts centered at Leu466 of Xpo4. The last Ran-binding 

interface involves the C-terminal repeats (HEATs 16 and 17), which contacts 

switch I of Ran (residues 30 to 47). Other exportins (except Xpo5) also contact 

switch I of Ran by the C-terminal HEAT repeats. 

 
Figure 3-25 Recognition of RanGTP by Xpo4 

On the left, Xpo4 and eIF5A are rendered as surface representation. Xpo4 is shown with a color gradient from 
blue (N terminus) to grey (C terminus), while acidic loop is shown in brown. eIF5A is colored in orange and 
Ran in green. Switch I and II regions of Ran are shown as cyan and pink, respectively. GTP (black) is shown 
as sticks. On the right, the magnified view shows the interacting residues of Xpo4 and RanGTP. (Adapted 
from Aksu et al., 2016) 

The structure of Ran in the export complex is almost identical (with an r.m.s.d of 

0.5 Å) to that in the other NTR–RanGTP complexes. Although the details of the 

interactions of Xpo4 with Ran differ at certain regions, the overall recognition 

mechanism is similar to that seen in other exportins. Xpo4 contacts switch I and 

switch II of Ran, hence directly sensing its nucleotide-bound state. These regions 

have different conformations in GDP-bound Ran; therefore, the interactions 

described for these regions would not occur. Indeed, if RanGDP structure is 

overlaid with RanGTP in the export complex, switch I and II regions of RanGDP 

would clash with HEAT 1 and HEATs 1 to 3, respectively (Figure 3-26). 

Additionally, switch III region of RanGDP, which is disordered in GTP-bound form, 
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would clash with HEAT 8 and the acidic loop of Xpo4. Overall, these 

conformational differences make RanGDP incompatible for Xpo4 binding. 

 
Figure 3-26 RanGDP is incompatible for Xpo4 binding 

On the left, the structure of the export complex is shown (eIF5A is removed). Structure components were 
colored as in Figure 3-25. On the right, structure of GDP-bound Ran (PDB ID 3GJ0, Partridge and Schwartz, 
2009) is superimposed to the export complex. Ran is shown in dark green, switch III region in red and GDP in 
orange. Xpo4 residues that would clash with Ran are colored in yellow. 
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Interactions of eIF5A with Xpo4 

The structure of unmodified human eIF5A has been previously solved (Tong et al., 

2009). eIF5A consists of two domains, an N-terminal SH3-like domain and a C-

terminal oligonucleotide-binding (OB)-fold domain, connected by a short linker 

(Figure 3-27). In the export complex, the structure of each domain is essentially 

similar (with an r.m.s.d of 0.6 Å for each) to that in the previous structure. The only 

difference is a 15° anticlockwise rotation of the C-terminal domain relative to the 

N-terminal domain, which is most probably enforced by the Xpo4 as it would 

otherwise clash. Consistent with our biochemical data, the very N-terminus of 

eIF5A is solvent-exposed (Figure 3-28b lower panel).  

 
Figure 3-27 Structure of the export complex and domains of eIF5A 

The structure of the export complex is depicted as in Figure 3-21 (right panels), with the structural domains of 
eIF5A colored and indicated accordingly. 

Xpo4 interacts extensively with both domains of eIF5A (Figure 3-27), burying a 

total surface of 2169 Å2 on eIF5A. This is consistent with the biochemical data that 

revealed contributions from both domains for Xpo4 binding (Lipowsky et al., 2000). 

Xpo4 does not wrap its cargo; instead eIF5A sits on the intra-repeat loops of 

HEATs 11 to 16, while inserting the basic hypusine-containing loop into an acidic 

pocket made up of HEATs 8 to 11 (Figure 3-27 and Figure 3-22 bottom panel). 

Several negatively charged residues of Xpo4 form the interaction interface, which 

are complemented with conserved positively charged residues of eIF5A (Figure 

3-28c). 
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Figure 3-28 Binding of eIF5A to RanGTP•Xpo4 

Docking of the N-terminal (A) and C-terminal (B) domains of eIF5A on Xpo4•RanGTP. Xpo4 and Ran are 
depicted as surface representations whereas eIF5A is shown in a ribbon representation (upper panels). The 
magnified views (bottom panels) show the interacting residues. (C) Xpo4 and eIF5A are rendered as surface 
representations (RanGTP is removed for clarity) and colored according to the electrostatic potential with a 
color gradient from red (negatively charged) to blue (positively charged). Rotation of eIF5A is indicated. 
(Adapted from Aksu et al., 2016) 
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The N-terminal SH3-like domain of eIF5A constitutes the larger interaction 

interface and contacts several residues on HEATs 8 to 16 of Xpo4. Most of the 

interactions are governed by a number of salt bridges and hydrogen bonds. The 

basic tip of eIF5A, composed of β strand 3 (β3), the hypusine-containing loop and 

β strand 4 (β4) forms the center of the interactions (Figure 3-28a). The acidic loop 

of Xpo4 aligns next to β3 and makes backbone hydrogen bonds with the residues 

of β3 as if it were an antiparallel β sheet and locks the basic tip of eIF5A. In 

addition, Glu462 and Glu465 of the Xpo4 acidic loop contact Thr45, Thr48 and 

Lys55 on the basic tip of eIF5A and further stabilize this interaction. Similarly, the 

hypusine-containing loop engages in direct interactions with the residues of 

HEATs 8 to 11.  The hypusine (Hpu50) side chain bends in an L shape and seems 

to hook into the acidic loop (Figure 3-27 and Figure 3-29). This hook is positioned 

by several acidic residues of Xpo4. In particular, the amine nitrogen (terminal 

nitrogen) and hydroxyl oxygen of the butylamine moiety of hypusine interact with 

Xpo4Glu390 and Xpo4Asp470, respectively. In addition, the side chain nitrogen (ε 

nitrogen) of hypusine is stabilized by Xpo4Asp470 and Xpo4Glu537. Likewise, 

eIF5AHis51 of the loop contacts Xpo4Glu537 and Xpo4Ser631 via nitrogens of imidazole 

side chain. Finally, β4 of the basic tip is positioned by polar interactions between 

the intra-repeat loops of HEATs 11 and 12 Figure 3-28. 

 
Figure 3-29 Details of the interactions in the acidic pocket 

Docking of hypusine-containing loop into the acidic pocket of Xpo4 is shown. eIF5A is shown as orange 
ribbon, while the hypusine (Hpu) and histidine (H51) are shown as sticks. Xpo4 is colored in grey and depicted 
as surface representation on the left and as ribbon on the right. The Xpo4 residues that interact with the 
hypusine and the histidine are shown as sticks. Nitrogen and oxygen atoms are shown as blue and red 
spheres, respectively. (Adapted from Aksu et al., 2016) 
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The C-terminal OB-fold domain of eIF5A forms the smaller interaction surface, but 

engages in extensive interactions with Xpo4. C-terminal domain sits on a concave 

surface made up of the intra-repeat loops of HEATs 14 to 16 (Figure 3-28b). Intra-

repeat loop of HEAT 16 runs in the opposite direction to β strand 11 (β11) and 

makes backbone hydrogen bonds as well as hydrophobic contacts via eIF5AIle149. 

Several residues of the intra-repeat loops of HEATs 14 and 15 approach eIF5A 

and interact with β strand 7 and 10 (β7 and β10, respectively) via polar contacts. 

Finally, eIF5A does not only interact with Xpo4 but also with Ran. Glu42 of eIF5A 

contacts Ran via Arg29 (Figure 3-28a). 

Analysis of the structure with biochemical and functional assays 

As described in the previous sections, Xpo4 has very large and different 

interaction interfaces with both Ran and eIF5A. To analyze the importance of 

these interfaces, I designed Xpo4 mutants that would block either Ran or eIF5A 

binding. 

Xpo4 mutants that block RanGTP binding 

I analyzed the three Ran-binding interfaces of Xpo4, by creating the following 

Xpo4 mutants: Y110R (interface 1); D395R, D396R and D401R (interface 2); 

E905R and E906R (Interface 4), including double and quadruple mutations at the 

interface 2 and 4 (Figure 3-30). Wild type Xpo4 and arginine mutants were 

incubated with ZZ-NEDD8 tagged RanGTP. After Ran was recovered on anti-Z 

affibody dimer beads, Ran and bound proteins were eluted with bdNEDD8 

protease. The sample from inputs and eluates were analyzed by SDS-PAGE 

(Figure 3-31a). Despite slight differences on bound Xpo4, none of the interface 2 

and 4 mutations (including the quadruple mutation) blocked Xpo4 binding. On the 

contrary, the Xpo4Y110R mutation significantly impaired Ran binding. To rule out the 

possibility that this result was due to the side effects like impaired folding, I 

performed a binding assay with an import cargo, Sox2. Wild type Xpo4 and 

arginine mutants were incubated with Sox2. After Xpo4 was recovered on phenyl-

sepharose beads, Xpo4 and bound proteins were eluted with SDS and analyzed 

by SDS-PAGE (Figure 3-31b). All mutants were able to bind the phenyl-sepharose 

beads and co-purified Sox2, indicating that a proper folding of Xpo4 was retained 

in these mutants.  
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Figure 3-30 Ran-binding interfaces of Xpo4 

Two images show the molecular details of RanGTP recognition by Xpo4. The export complex is shown in 
same color-coding as in Figure 3-25, with the mutated residues of Xpo4 shown in yellow. 
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Figure 3-31 N terminal interaction interface of Xpo4 is essential for RanGTP binding 

(A) 0.75 µM ZZ-Nedd8 tagged RanGTP was mixed with 1 µM wild type or mutant Xpo4 in 350 µL at 100 mM 
NaCl. After 2 h incubation at 4 °C, 300 µL of the samples was incubated with anti-Z affibody dimer beads to 
capture RanGTP and bound proteins. After another 2 h incubation, unbound proteins were removed, RanGTP 
and bound proteins were eluted by incubating the beads with 250 nM bdNEDD8 protease. Both inputs and 
eluates were analyzed by SDS-PAGE followed by Coomassie staining. (B) The samples were prepared by 
mixing 2 µM Sox2 fragment with 0.75 µM wild type or mutant Xpo4 in 350 µL buffer at 100 mM NaCl. After 2 h 
incubation at 4 °C, 300 µL of the samples was incubated with phenyl-sepharose beads to recover Xpo4 and 
bound proteins. Unbound proteins were removed; Xpo4 and the bound proteins were eluted with SDS sample 
buffer. The inputs and eluates were analyzed by SDS-PAGE followed by Coomassie blue staining. A sample 
without Xpo4 served as negative control for Sox2 binding to the beads. 
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binding experiment in the presence of hypusinated eIF5A (Figure 3-32). The 

double mutation at the second interface (Xpo4D395R,D396R, interacting with the back 

of Ran) impaired eIF5A binding. Moreover, the quadruple mutation 

(Xpo4D395R,D396R,E904R,E905R, interacting with the back and the switch I of Ran) 

further weakened eIF5A binding, indicating that correct positioning of the Ran-

binding interfaces are required for efficient eIF5A binding. 

 

 
Figure 3-32 Ran-binding interface 2 and 4 are required for proper eIF5A binding 

1 µM wild type or mutant Xpo4 was mixed with 1 µM hypusinated eIF5A and 0.75 µM ZZ-Nedd8 tagged 
RanGTP in 350 µL at 100 mM NaCl. After 2 h incubation at 4 °C, 300 µL of the samples was incubated with Z-
affibody dimer beads to capture RanGTP and bound proteins. After another 2 h incubation, unbound proteins 
were removed, RanGTP and bound proteins were eluted by incubating the beads with 250 nM bdNEDD8 
protease. Both, inputs and eluates were analyzed by SDS-PAGE followed by Coomassie staining. Note that 
the binding strength of Xpo4 variants (including Y110R mutant) to RanGTP increases in the presence of 
eIF5A (when compared to Figure 3-31), beautifully demonstrating the positive influence of an export cargo on 
the affinity of an exportin to RanGTP. 

 

Xpo4 mutants that block eIF5A binding 

The recognition of eIF5A by Xpo4 is complex and includes three-dimensional 

features of eIF5A. Especially, the basic tip of eIF5A extensively interacts with 

Xpo4. To test the requirements of these interactions, I created another set of Xpo4 

mutants and tested their ability for RanGTP-dependent eIF5A binding (Figure 

3-33). 
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Figure 3-33 N terminal docking of eIF5A is crucial for Xpo4 binding 

Upper panel. Xpo4 eIF5A interaction interface is shown in a similar view and color-coding as in Figure 3-28, 
with the mutated residues of Xpo4 shown in yellow. The residues of eIF5A and Ran that are mentioned in the 
text are colored in orange and green, respectively. Lower panel. 1 µM Xpo4 wild type or mutants was 
incubated with 0.75 µM ZZ-brNEDD8 tagged RanGTP and 1.25 µM hypusinated eIF5A in a buffer containing 
100 mM NaCl. Experiment was performed essentially similar to Figure 3-32. (Adapted from Aksu et al., 2016) 
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the binding experiments the other way around using eIF5A mutants (eIF5AK50A, 

eIF5AK50R, eIF5AH51A; Figure 3-34). Likewise, none of the mutants bound to Xpo4. 

These results indicated that the interaction of the hypusine-containing loop is 

essential for eIF5A binding to Xpo4•RanGTP. 

 
Figure 3-34 Hypusine-containing loop is essential for Xpo4 binding 

0.75 µM wild type or mutant His14-ZZ-SUMO tagged non-hypusinated eIF5A was mixed with 1 µM Xpo4 and 
RanGTP in 350 µL at 50 mM NaCl. After 2 h incubation at 4 °C, 300 µL of the samples was incubated with Z-
affibody dimer beads to capture RanGTP and bound proteins. After another 2 h incubation, unbound proteins 
were removed, RanGTP and bound proteins were eluted by incubating the beads with 250 nM bdSUMO 
protease. The inputs and eluates were analyzed by SDS-PAGE followed by Coomassie staining. 

The above-described experiments showed that the N-terminal docking of eIF5A 

into the acidic pocket was necessary for eIF5A binding. However, the Xpo4E390R 

mutation, which would block the N-terminal insertion, did not completely impaired 

eIF5A binding (Lane 3 in Figure 3-33). There were two possible reasons for this 

observation. First, the tip of the hypusine or R390 residue could be flexible, which 

would allow binding of eIF5A by adopting a different conformation. Second, model 

building of the hypusine might be wrong. To test these two hypotheses, I 

performed an experiment where eIF5A variants (hypusine, deoxyhypusine or 

lysine) were tested for Xpo4E390R binding. As positive and negative controls, I 

included wild type and D470N mutant Xpo4. Figure 3-35 shows that the binding 

strength of eIF5A variants to wild type Xpo4 correlates with the modification state 

of eIF5A; on the other hand, independent of the modification state, the D470N 

mutation prevented binding of all eIF5A variants. The binding of hypusine-

containing eIF5A to Xpo4 decreased in the E390R mutant. The decrease was 

more prominent in the case of deoxyhypusine-containing eIF5A. Remarkably, the 

binding was restored in lysine-containing eIF5A. Taken together, these results 
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proved that the butylamine moiety of hypusine resides in close proximity to the 

E390 residue of Xpo4. 

 
Figure 3-35 Interaction of E390 with the hypusine 

Experimental setup is essentially similar to Figure 3-33. Hpu, Dhp and Lys denote hypusine, deoxyhypusine 
and lysine, respectively. 

Finally, I investigated the functionality of the Xpo4 mutants with a nuclear export 

assay. For the assay, I used digitonin-permeabilized HeLa cells. Digitonin 

treatment permeabilizes the plasma membrane while keeping the nuclear 

membrane intact (Adam et al., 1990) and therefore allows introduction of probes 

into the cells. Moreover, since most of the soluble nuclear transport factors are 

washed away during the permeabilization process, active transport depends on 

addition of the soluble components back to the permeabilized cells. As a result, 

this assay allows examination of individual components, such as nuclear transport 

receptors. Additionally, the permeabilized cells are stable and functional for hours 

in the presence of Xenopus egg extract (Stuven et al., 2003). In the assay, I used 

an egg extract that had been depleted of NTRs by phenyl sepharose (Ribbeck and 

Görlich, 2002). The assay made use of the fact that the small size of eIF5A 

allowed a fast passive diffusion into the nuclei. eIF5A has one surface-exposed 

cysteine residue, which is not in an interface with Ran and Xpo4 and therefore 

does not affect Xpo4 binding. As a result, eIF5A can be quantitatively labeled with 

maleimide dyes. As seen in Figure 3-36, fluorescently-labeled eIF5A diffused into 

the nuclei and got enriched in the nucleoli after 15 min incubation. These 

incubations were split and further incubated with wild type Xpo4 or with Xpo4 

mutants. Wild type Xpo4 efficiently exported the diffused eIF5A and cleared the 

nucleolar signal. The mutations (Xpo4E390R, Xpo4E462R and Xpo4E465R, orange 

labels in Figure 3-33) that reduced eIF5A binding did not eliminate the export 

activity, suggesting that Xpo4 could function efficiently even if the binding strength 

was reduced. On the contrary, the mutations (Xpo4D470N, Xpo4E537Q and Xpo4S631A, 
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red labels in Figure 3-33) that completely abolished eIF5A binding also blocked 

the export activity of Xpo4. 

 
Figure 3-36 N terminal docking of eIF5A is also essential for export activity of Xpo4 

Alexa567-labelled hypusinated eIF5A was allowed to diffuse into the nuclei of permeabilized HeLa cells in the 
presence of an energy-regenerating system and a Xenopus egg extract that importin β-like transport receptors 
had depleted. After 15 min, the mixture was split and 2 µM Xpo4 variant was added. After 30 min, the 
distribution of eIF5A was recorded by confocal fluorescence microscopy. (Adapted from Aksu et al., 2016) 

3.1.4 Crystallization trials of the Sox2 import complex 

Crystallization of the Sox2 import complex, composed of Sox2 and Xpo4, was the 

second task of this project.  In spite of the extensive effort, we were not able to 

solve the structure of this complex. However, the knowledge gained from Xpo4 

during the crystallization of the export complex led us to obtain import complex 

crystals. In this section, I will briefly summarize the results that guided us to the 

crystals. 

Bacterial expression and reconstitution of full-length Xpo4 and Sox2 resulted in a 

stoichiometric complex. The import complex was stable up to 500 mM salt 

concentration (data not shown, see Figure 3-4 for comparison with the export 

complex). MALS analysis indicated that the molecular weight of the import 

complex was 167 kDa, suggesting a 1:1 stoichiometry (Figure 3-37). MALS 

analysis also revealed an interesting feature of the import complex. Although the 

molecular weights of the import and the export complexes were almost identical, 

the import complex eluted from the gel filtration column earlier. This suggested 

that the export complex was more compact than the import complex. 
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Figure 3-37 MALS analysis of Xpo4 complexes 

Gel filtration-purified complexes of Sox2–Xpo4 (black), RanGTP–Xpo4–eIF5A15-154 (blue) and Xpo4 (red) were 
concentrated to 2 mg/mL and analyzed by Superdex 200 10/30 column coupled to MALS detector. Theoretical 
molar masses of the complexes are 166 kDa for Sox2–Xpo4, 165 kDa for RanGTP–Xpo4–eIF5A15-154, and 
130 kDa for Xpo4 alone. 

Initial crystallization screenings with the full-length Xpo4–Sox2 complex failed. 

After the identification of the flexible loops in Xpo4, I tested binding of the Xpo4 

deletion mutants (Xpo4Δ241-260, Xpo4Δ931-948 and Xpo4Δ241-260&931-948) to Sox2. All of 

the proteins bound to Sox2 and formed stable import complexes. Nevertheless, I 

was not able to identify suitable crystallization conditions for the import complexes 

in spite of exhaustive screening. 

The failure in the crystallization and the gel filtration profile again pointed out 

additional unstructured regions in the export complex. The aforementioned 

observation in the MALS experiment could be the result of Xpo4 adopting a more 

open conformation in the import cargo-bound state. Alternatively, possible 

unstructured regions of Sox2 might have led to the larger apparent size of the 

import complex. Intrinsically disordered regions are highly abundant in the 

eukaryotic transcription factors (Liu et al., 2006). In fact, secondary structure 

prediction algorithms find large regions of Sox2 to be disordered. Therefore, I 

aimed at finding the flexible region(s) of Sox2 in the import complex. In vitro limited 

proteolysis experiments were not successful. As a result, I used the following 

approach to find out the minimal Xpo4-binding region of Sox2. 

Sox2 is prone to degradation when expressed in E. coli (Figure 3-38a). Normally, 

Sox2 was expressed with N- and C-terminal tag so that a pure full-length protein 
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could only be obtained after tandem affinity purification. As seen in Figure 3-38a, 

after purification only with C-terminal tag, full-length protein as well as several low 

molecular weight proteins were acquired. To find out the minimal Xpo4-binding 

region, I co-expressed Sox2 with H14-bdSUMO tagged Xpo4 and purified the 

receptor and bound proteins by immobilizing Xpo4 to a Ni (II) chelate matrix 

followed by protease elution. The eluate was analyzed by size exclusion 

chromatography to identify the fragments that would co-migrate with Xpo4. 

Although the injected proteins eluted in a single peak, SDS-PAGE analysis 

revealed that there were at least two different populations (Figure 3-38). In 

addition to the full-length Sox2, there was one major ~15 kDa protein co-migrating 

with Xpo4. MS analysis revealed this protein to be a Sox2 fragment, comprising of 

residues 1–122 (these were the residues between trypsin cleavage sites, actual 

boundary might be slightly different). This region corresponded to the high-mobility 

group box (HMG-box) domain (DNA-binding domain) of Sox2. 

 
Figure 3-38 Identification of minimal Xpo4-binding region of Sox2 

 (A) N- and C- terminal tagged Sox2 was expressed in E. coli. Soluble lysate was loaded to Ni (II) chelate 
matrix. After removal of the unbound proteins, Sox2 fragments were eluted with imidazole. Many Sox2 
fragments including a 85 kDa chaperone were purified. The eluate was immobilized to anti-Z affibody dimer 
coupled beads and eluted with SDS. (B) Co-expressed proteins were purified via Xpo4 and subjected to size 
exclusion chromatography. Fragments corresponding to 62 to 77 ml were analyzed by SDS-PAGE followed by 
Coomassie staining. 

The HMG-box domain of Sox2 (residues 41–120) has been crystalized (Reményi 

et al., 2003). In addition, the residues 1–40 were disordered. Moreover, Gontan et 
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al. (2009) revealed residues 38–113 to be part of the Xpo4-dependent import 

signal. Based on these studies and the result of MS analysis, I created a 

truncation construct of Sox2, consisting of residues 37–122. This fragment formed 

a stable import complex with Xpo4 (Figure 3-39). However, I again failed to identify 

any crystallization condition. Later, I also formed complexes with previously 

described Xpo4 deletion mutants. Nevertheless, the tested import complexes did 

not yield crystals. 

After working with a minimal Sox2 fragment, I ascribed the failure in crystallization 

to Xpo4. We considered two possibilities for the failure. Either Xpo4 had additional 

unstructured loops that have to be removed or Xpo4 was so flexible that it 

prevented suitable crystal contacts. Analysis of the Xpo4 structure in the export 

complex did not indicate any further possible loops that can be removed. Due to its 

regulatory role in the export complex, we did not take the acidic loop into account. 

Therefore, we focused on the second possibility. 

 
Figure 3-39 Reconstitution of the import complex with Sox2 fragment 

(A) Gel filtration profile of the import complex. Xpo4 was mixed with Sox2 fragment, Sox2 being in excess. 
The complex was allowed to form in solution for 3 h at 4 °C. Complex was separated from the excess Sox2 by 
SEC on Superdex 200 16/60 column equilibrated with 20 mM Tris/HCl pH 7.7, 100 mM NaCl. Elutions were 
collected in 1.5 mL fractions. (B) 10 µL of each fraction was analyzed by SDS-PAGE followed by Coomassie 
staining. 

Crystallization requires the formation of well-ordered crystals. On the contrary, 

Impβ-like NTRs are flexible due to their HEAT repeat structure. Two Xpo4 

molecules in the asymmetric unit have already demonstrated the flexibility of Xpo4 

(Figure 3-24). Further analysis of the Xpo4 structure revealed that the temperature 

40 50 60 70 80 90
Elution volume (mL)

Ab
so

rb
an

ce
 a

t 2
80

 n
m

 (a
.u

.)

0

200

400

600 200
150
120

100
85

70
60

50

40

30

25

20

15

10

kDa

Fractions (65-75 ml) of
SEC of co-expressed Xpo4 and Sox2 Complex

Xpo4

Sox237–122

BA



 80 

factor (B-factor) of the C-terminal region was higher than that of the rest of the 

structure (Figure 3-40). B-factor represents the uncertainty of an atom in the 

structure. Higher B-factors might be caused either by defects in the diffraction data 

or due to the different positioning of the atom in different unit cells of the crystal, 

which reflects the flexibility. Consequently, I decided to truncate Xpo4 from the 

C-terminus to obtain a relatively rigid structure. 

 
Figure 3-40 Surface of Xpo4 colored by B-factor 

As described in the introduction (section 2.3), HEAT repeats form a continuous 

hydrophobic core, which is sealed by the terminal repeats. Therefore, the 

presence of the terminal repeats is required for proper folding of the NTR. Even 

removal of the last helix of the HEAT 20 (20C) resulted in complete insolubility of 

Xpo4 (see below). To obtain soluble proteins, I created several truncation 

constructs where the last helix was designed such that it ended with three or four 

hydrophobic residues, which could pack against the previous HEAT repeat and 

complete the folding of the molecule. The created Xpo4 truncations and their 

features are summarized in Table 3-4.  

Xpo4 boundary Last helix Xpo4 solubility Sox2 binding Crystal formation 
1–625 H11A + No  
1–691 H12A ++ Yes Yes 
1–759 H13B + Yes  
1–967 H17A –   
1–993 H17B –   
1–1069 H19A –   
1–1120 H20B –   
1-1145 Full-length ++++ Yes No 

Table 3-4 Mapping of Xpo4 boundaries for stable Sox2 binding 

See also Figure 3-22 on page 61 for corresponding positions of the truncations. 
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The constructs were expressed in E. coli. Soluble ones were tested for Sox237-122 

binding. Among three soluble Xpo4 truncations, two of them bound to Sox2 

fragment. The result implied that the HEAT repeat helices 11B or 12A could be 

part of the Sox2 recognition motif.   

I formed an import complex with the minimal Xpo4 (Xpo41-691) and minimal Sox2 

fragment (Sox237-122). The minimal import complex was separated by size 

exclusion chromatography and analyzed by SDS-PAGE and MALS (Figure 3-41). 

Final preparation was concentrated to 6 and 12 mg/ml and used for crystallization 

trials in the crystallization facility. Needle-like crystal clusters were observed in 

several conditions. These crystals resembled the initial crystals that we obtained 

from the export complex where the removal of the N-terminus gave rise to 

diffracting quality crystals. Although, these needle-like crystals require further 

optimization, it was motivating to show that the import complex can be crystallized 

as well. 

 
Figure 3-41 Reconstitution of the import complex with truncated Xpo4 and initial crystallization hits 

(A) SDS-PAGE analysis of SEC of the minimal import complex. Xpo41-691 was mixed with Sox2 fragment, 
Sox2 being in excess. Complex was allowed form in solution for 3 h at 4 °C. The complex was separated from 
the excess Sox2 by SEC on Superdex 200 16/60 column equilibrated with 20 mM Tris/HCl pH 7.7, 100 mM 
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NaCl. Elutions were collected in 1 mL fractions. 10 µL of each fraction was analyzed by SDS-PAGE followed 
by Coomassie staining. Similar protocol was followed for RanGTP-Xpo41-691 and Xpo41-691 preparation. (B) 
Gel filtration-purified complexes of Sox2–Xpo4 (black), RanGTP–Xpo4 (green) and Xpo4 (red) were 
concentrated to 2 mg/mL and analyzed by Superdex 200 10/30 column coupled to MALS detector. Theoretical 
molar masses of the complexes were 89 kDa for Sox2–Xpo4, 98 kDa for RanGTP–Xpo4, and 79 kDa for 
Xpo4 alone. All values are for truncated constructs. (C) After confirming the sample homogeneity by dynamic 
light scattering, protein samples were concentrated to 6 and 12 mg/ml and screened for crystallization hits. In 
several conditions, needle-like crystals or needle clusters were observed. One example for each protein 
sample is shown. Crystallization conditions of the drops were 100 mM HEPES pH 7.5, 8% PEG 4000, 
100 mM NaCl, and 50 mM MgCl2 for Sox2–Xpo4; 16% PEG 8000 20% Glycerol, and 40 mM KH2PO4 for 
RanGTP–Xpo4; and 100 mM NaH2PO4•H2O, 12% PEG 8000 for Xpo4. 

 

3.1.5 Crystallization trials of Xpo4 and Xpo4–RanGTP complex 

Crystallization of the eIF5A export complex and Sox2 import complex required 

preparation of highly pure samples of Xpo4 and RanGTP. I used this opportunity 

to crystallize Xpo4 either alone or in complex with RanGTP. Complex formation of 

Xpo4–RanGTP was straightforward and similar to the protocol of the reconstitution 

of the export complex. Briefly, Xpo4 was mixed with H14-ZZ-bdSUMO tagged 

RanGTP in near stoichiometric ratio, Xpo4 being in excess in order to saturate the 

RanGTP. After the proteins were allowed to form complexes in solution, they were 

immobilized to the anti-Z affibody coupled matrix. Unbound proteins were removed 

and complex was eluted with protease elution. The eluate was analyzed by size 

exclusion chromatography followed by SDS-PAGE (Figure 3-42a, b). Injected 

proteins ran on the gel filtration as a single entity. The purity of Xpo4–RanGTP 

complex, as well as Xpo4, was high quality as judged by SDS-PAGE (Figure 

3-42b, c) and by dynamic light scattering (data not shown). I used commercially 

available sparse matrix screens and set crystallization plates in the crystallization 

facility. By setting drops both at 4 °C and 20 °C, I tested approximately 2500 

crystallization conditions. However, I couldn’t detect any promising condition for 

the crystallization of Xpo4 or the Xpo4–RanGTP complex. 
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Figure 3-42 Reconstitution of RanGTP–Xpo4 complex 

(A) Gel filtration profile of the RanGTP–Xpo4 on Superdex 200 16/60 column equilibrated with 15 mM Tris/HCl 
pH 7.7, 18 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT. Proteins were collected in 1.5 mL fractions, pooled and 
concentrated to 12 mg/mL (Complex). Chromatogram of the export complex (Figure 3-5) was overlaid for 
comparison (B) 5 µL of the fractions and 3 µg of the “input” and the “complex” were analyzed by SDS-PAGE 
followed by Coomassie blue staining. (C) Full-length Xpo4 (2 µg), which was used in the preparation of the 
complexes and for crystallization, was analyzed by SDS-PAGE and Coomassie blue staining. 

After every new Xpo4 construct created for the import and export complexes, I 

used the same Xpo4 (also Xpo4–RanGTP) for crystallization trials. All the tested 

Xpo4 constructs throughout this study are summarized in Table 3-5.  

Xpo4 Solubility Binding to Crystal 
formation RanGTP eIF5A Sox2 

1–460 ++ Yes No No  
1–625 + Yes No No  
1–691 ++ Yes No Yes Yes 
1–759 + Yes No Yes  
Δ241–260 ++++ Yes Yes Yes No 
Δ931–948 ++++ Yes Yes Yes No 
Δ241–260& 
931–948 

+++ Yes Yes Yes No 

Δ559–600 –     
Δ575–600 + Yes Yes ?  
Δ654–668 ++++ Yes Yes Yes  
Full-length ++++ Yes Yes Yes No 

Table 3-5 Mapping of Xpo4 boundaries for ligand binding 
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Xpo41-460 represents the N-terminal fragment up to the acidic loop, Xpo4Δ559–600 and Xpo4Δ575–600 are the 
deletions of the insertion between HEATs 10 and 11, whereas Xpo4Δ654-668 is that of the insertion between 
HEATs 11 and 12. Note that the second insertion was dispensable for Xpo4.  

Although the crystallization trials for most of the constructs failed, biochemical 

analysis with eIF5A, Sox2 and RanGTP revealed the essential parts of Xpo4 that 

were required for recognition of different interaction partners. In the end, similar to 

the import complex, promising crystallization conditions were obtained from 

Xpo41-691 and Xpo41-691–RanGTP complexes (Figure 3-41).   
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3.2 Exploring the Cargo Range of Xpo7 

As described in the introduction, Xpo7 is a member of the importin β superfamily 

that mediates export of several structurally unrelated proteins and is therefore 

thought to have broad substrate specificity. Although, only three export cargoes 

have been characterized (Mingot et al., 2004; Dorfman and Macara, 2008), the 

work of our lab and the others have revealed that Xpo7 is required for the export of 

histones during erythroid maturation (Hattangadi et al., 2014), suggesting that the 

complete role of Xpo7 has not been fully elucidated. Therefore, we decided to 

investigate the function of Xpo7 by identifying the complete set of interaction 

partners of Xpo7. 

3.2.1 Identification of Xpo7 binders 

We decided to enrich Xpo7 interaction partners from a cellular extract via Xpo7 

affinity chromatography. I designed and optimized an affinity chromatography 

method for reduced non-specific binding and therefore improved the possibility of 

identification of new interaction partners. 

Bacterially expressed ED-SUMOvera-His12 tagged Xpo7 was immobilized to 

anti-Z affibody beads. Then, these beads were incubated with a buffer or with a 

cytoplasmic HeLa cell extract in the absence or presence of RanGTP. After 

unbound proteins were washed away, His12-Xpo7 and bound proteins were eluted 

by incubating the beads with a SUMOvera protease. This step ensured that the 

binding that was specific to the matrix was eliminated. Next, the eluates were 

immobilized to a Ni (II) chelate matrix and Xpo7 binders were eluted with SDS. 

SDS can disrupt the interaction between His12-Xpo7 and the bound proteins but 

not the interaction between the matrix and His12; therefore, only bound proteins 

were recovered. Finally, the proteins were analyzed by SDS-PAGE. As shown in 

Figure 3-43, known Xpo7 interacting proteins were enriched in the presence of 

RanGTP. Surprisingly, several proteins bound to Xpo7 strongly only in the 

absence of RanGTP, and hence behaved like potential import cargoes. We 

identified some of these proteins by mass spectrometry as NAMPT, CutC, and the 

RBBP7 and HAT1 subunits of the type B histone acetyltransferase (HAT) complex 

(details will be discussed in the following sections). Nuclear localization of these 

proteins suggested that Xpo7 might import them to the nucleus. Overall, these 
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results provided evidence for the presence of additional Xpo7 interaction partners 

that needed to be elucidated. 

 

 
Figure 3-43 Xpo7 affinity chromatography with cytoplasmic HeLa extract 

ED-SUMOvera-His12 tagged Xpo7 was immobilized to anti-Z affibody dimer coupled beads and incubated 
with a buffer (as a negative control) or with a cytoplasmic HeLa extract in the absence or presence of 5 µM 
RanGTP. His12-Xpo7 and bound proteins were recovered by protease elution and immobilized to Ni (II) 
chelate beads. Xpo7 bound proteins were eluted with SDS, analyzed by SDS-PAGE followed by Coomassie 
staining. Labeled bands were analyzed by mass spectrometry. ED is an affinity tag consisting E and D 
domains of protein A. SUMOvera is a protease cleavage site that is not recognized by eukaryotic SUMO 
protease. 

Discovery of novel binders via Xpo7 affinity chromatography 

So far, the identification of new interaction partners has depended on the visibility 

of a protein on the gel so that it can be excised and analyzed by mass 

spectrometry (MS). The result of the initial affinity chromatography suggested that 

Xpo7 might function as an importin in addition to its previously characterized role 

in nuclear export. This necessitates the enrichment of export cargoes and a 

release of import cargoes in the presence of RanGTP. For this reason, instead of 

analyzing the single bands, we decided to compare the protein levels in the 
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sample containing RanGTP (+Ran) to the sample where RanGTP is absent 

(-Ran). Additionally, in order to increase the quantification sensitivity, and hence 

the identification efficiency, we decided to use the SILAC (stable isotope labeling 

by amino acids in cell culture) approach as a quantitative MS method (Ong et al., 

2002). 

SILAC relies on the use of two cell populations that are grown in identical 

conditions except the supplemented amino acids. In particular, one cell population 

is grown in a media containing natural amino acids (light), while the other one is in 

a media containing 2H, 13C, or 15N labeled forms of the amino acids (heavy). When 

the light and the heavy extracts are analyzed on MS, they can be easily 

distinguished due to their mass shift. Therefore, the relative signal intensities are 

used to determine the protein abundances in different cell populations. 

We obtained such heavy and light cytoplasmic HeLa extracts from Dr. Miroslav 

Nikolov from Mass Spectrometry Research Group, MPI-BPC and performed Xpo7 

affinity chromatography in the absence or presence of 5 µM RanGTP. As shown in 

Figure 3-44, both extracts performed similar in the affinity chromatography and 

gave identical results. Moreover, the results were similar to Figure 3-43. 

Equal amounts of –Ran sample from the light extract and +Ran sample from the 

heavy extract (forward experiment), and +Ran sample from the light extract 

and -Ran sample from the heavy extract (reverse experiment) were mixed and 

analyzed by MS. The benefits of such an analysis are numerous. Firstly, as 

mentioned above, the relative intensity of a protein is easily determined by 

comparing light and heavy peptides. Secondly, errors that can be caused due to 

sample handling or instrumental processing are equalized for both samples. 

Thirdly, the forward and reverse experiments form experimental replicates, and 

therefore increases identification of false positives. MS analysis was performed by 

Samir Karaca from Mass Spectrometry Research Group, MPI-BPC. 
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Figure 3-44 Xpo7 affinity chromatography using cytoplasmic HeLa extracts prepared with SILAC 
method 

Affinity chromatography on immobilized Xpo7 was performed using cytoplasmic HeLa extracts labeled with 
light or heavy amino acids in the absence or presence of 5 µM RanGTP. Bound proteins were analyzed by 
SDS-PAGE followed by Coomassie staining. Molecular weight markers were loaded left and right side of the 
gel and indicated accordingly on the left side.  

MS analysis of the eluates 

We analyzed the forward and reverse experiments together and identified 

approximately 750 proteins. The RanGTP enrichment level of each protein was 

calculated by dividing the signal intensity of the protein in +Ran sample to that of 

in –Ran sample, and the results were plotted as log2 values (Figure 3-45). 

Logarithmic depiction allowed us to observe the fold change in the relative protein 

amounts upon RanGTP addition. Positive values indicate RanGTP dependent 

binding, whereas negative values indicate RanGTP sensitive binding. In other 

words, the binding of a protein to Xpo7 is higher in the absence of RanGTP. 
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Figure 3-45 MS analysis of forward and reverse experiments 

Ratios of protein levels obtained from forward (horizontal axis) and reverse (vertical axis) experiments are 
plotted as log2 values. The forward experiment contained –Ran sample from the light extract and +Ran 
sample from the heavy extract, whereas the reverse experiment contained –Ran sample from the heavy 
extract and +Ran from the light experiment 

We classified the identified proteins into four groups (Figure 3-46). The first group 

was formed by the proteins whose level in the –Ran and +Ran samples was not 

significantly altered. This group consisted of 90% of the proteins (grey circles). 

These proteins were considered to be the background binders. The proteins that 

showed an inverse correlation with the presence of RanGTP in the two 

experiments formed the second group (dark grey circles). The protein level of most 

of the proteins in this group was higher in the light extract (in both experiments); 

therefore, these proteins were considered as light contaminants. The proteins that 

were supplied during the experiment like RanGTP and Xpo7 also belonged to this 

group. The third group consisted of the proteins that were enriched (log2>1) in the 

presence of RanGTP in both experiments (green circles). This group contained 

potential export substrates and included all the previously characterized Xpo7 

export cargoes as well as several other cytoplasmic proteins (Table 3-6).  Finally, 
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the proteins that showed RanGTP sensitive binding in both experiments formed 

the last group (red circles) and contained the potential import substrates. The 

group consisted of more than 20 proteins that had not been linked to Xpo7 so far 

(Table 3-7). 

 
Figure 3-46 MS analysis of the SILAC experiments 

Figure 3-45 is depicted with color-coding showing the four regions mentioned in the text. Green represents the 
proteins that are enriched in the presence of RanGTP in both experiments while red represents the proteins 
that bound Xpo7 in the absence of RanGTP. Non-specific binders are shown in grey and contaminants are in 
dark grey. 
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RanGTP dependent Xpo7 binders Gene 
MW 

(kDa) 

Log2 (+Ran/–Ran) 
Forward Reverse 

Vacuolar protein sorting-associated protein 
26A 

VPS26A 38 4.193 4.069 

Tetratricopeptide repeat protein 39C TTC39C 66 3.878 3.756 
Vacuolar protein sorting-associated protein 35 VPS35 92 3.833 5.105 
60 kDa SS-A/Ro ribonucleoprotein TROVE2 61 3.761 3.849 
Vacuolar protein sorting-associated protein 29 VPS29 21 3.726 4.120 
Rho GTPase-activating protein 1 ARHGAP1 50 3.456 2.922 
Geranylgeranyl transferase type-2 subunit 
alpha 

RABGGTA 65 2.930 2.475 

14-3-3 protein sigma SFN 28 2.712 2.406 
Tubulin-specific chaperone A TBCA 14 2.387 2.999 
PCI domain-containing protein 2 PCID2 46 2.279 1.417 
TBC1 domain family member 5 TBC1D5 91 2.214 1.942 
Vacuolar protein sorting-associated protein 
26B 

VPS26B 39 2.169 2.153 

60S ribosomal protein L7a RPL7A 30 2.154 1.610 
GPN-loop GTPase 1 GPN1 42 2.065 1.372 
60S ribosomal protein L19 RPL19 23 1.837 1.208 
Geranylgeranyl transferase type-2 subunit 
beta 

RABGGTB 37 1.645 1.497 

60S ribosomal protein L13 RPL13 24 1.568 1.194 
60S ribosomal protein L14 RPL14 23 1.547 1.312 
Peroxisomal targeting signal 1 receptor PEX5 72 1.486 1.573 
40S ribosomal protein S6 RPS6 29 1.463 1.246 
Spliceosome RNA helicase DDX39B;ATP-
dependent RNA helicase DDX39A 

DDX39B; 
DDX39A 

51 1.272 1.213 

Nuclear pore complex protein Nup153 NUP153 157 1.238 1.375 
Serine/threonine-protein phosphatase 2A 65 
kDa regulatory subunit A alpha isoform 

PPP2R1A 65 1.151 1.535 

Table 3-6 The list of RanGTP dependent Xpo7 cargoes 

The proteins that that showed at least two fold enrichment in the presence of RanGTP are listed. Forward and 
reverse columns show the fold change (log2 (+Ran/–Ran) of proteins in the forward and reverse experiments, 
respectively. Previously characterized Xpo7 export cargoes are highlighted in light green. See Table 7-1 for 
the Uniprot identifiers. 
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RanGTP sensitive Xpo7 binders Gene 
MW 

(kDa) 
Log2 (+Ran/–Ran) 
Forward Reverse 

Single-strand selective monofunctional 
uracil DNA glycosylase 

SMUG1 30 -6.242 -5.007 

Histone-binding protein RBBP7 RBBP7 48 -5.915 -5.010 
Guanosine-3,5-bis(diphosphate) 3-
pyrophosphohydrolase MESH1 

HDDC3 20 -5.623 -5.593 

Ran-binding protein 1 RANBP1 23 -5.437 -3.926 
Copper homeostasis protein cutC homolog CUTC 29 -4.496 -4.915 
Porphobilinogen deaminase HMBS 39 -4.423 -4.933 
Histone acetyltransferase type B catalytic 
subunit 

HAT1 50 -3.963 -5.109 

BTB/POZ domain-containing protein 
KCTD15 

KCTD15 32 -3.608 -3.468 

Bifunctional protein NCOAT;Protein O-
GlcNAcase;Histone acetyltransferase 

MGEA5 103 -3.537 -3.728 

Histone deacetylase 8 HDAC8 42 -3.472 -4.018 
Ribonuclease P protein subunit p40 RPP40 42 -3.391 -3.493 
THO complex subunit 6 homolog THOC6 38 -3.379 -3.294 
GMP synthase GMPS 77 -3.316 -2.467 
Arf-GAP with Rho-GAP domain, ANK repeat 
and PH domain-containing protein 3 

ARAP3 170 -3.280 -2.483 

Selenocysteine lyase SCLY 48 -3.250 -2.832 
ATP-dependent RNA helicase DDX3X; 
ATP-dependent RNA helicase DDX3Y 

DDX3X; 
DDX3Y 

73 -3.093 -2.940 

Queuine tRNA-ribosyltransferase subunit 
QTRTD1 

QTRTD1 47 -3.062 -3.465 

Queuine tRNA-ribosyltransferase QTRT1 44 -2.943 -4.374 
Putative nuclease HARBI1 HARBI1 39 -2.779 -3.670 
Nicotinamide phosphoribosyltransferase NAMPT 56 -2.572 -3.543 
Ran GTPase-activating protein 1 RANGAP1 64 -2.468 -1.658 
Nuclear autoantigenic sperm protein NASP 86 -2.461 -1.843 
LanC-like protein 1 LANCL1 45 -2.310 -2.583 
Exportin-2 CSE1L 110 -1.787 -1.621 

Table 3-7 The list of potential Xpo7 import substrates 

The proteins that that showed at least two fold enrichment in the absence of RanGTP are listed. Forward and 
reverse columns show the fold change (log2(+Ran/–Ran) of proteins in the forward and reverse experiments, 
respectively.. See Table 7-2 for Uniprot identifiers. 

3.2.2 Validation of the interaction of the selected binders with Xpo7 

So far, we identified a new set of proteins that interacted with Xpo7 in a RanGTP 

dependent or RanGTP sensitive manner. The latter suggests that Xpo7 might 

function as an importin, supporting our initial findings with Xpo7 affinity 
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chromatography. Although some of the RanGTP sensitive binders were 

cytoplasmic proteins, most of them were nuclear; therefore, the import of these 

proteins by Xpo7 was an attractive possibility. In order to validate the binding of 

these candidates to Xpo7, I selected nine candidates and performed pull-downs 

and binding assays. Moreover, I included a candidate from the potential export 

cargo list to these assays. A short summary of the selected candidates will follow: 

Single-strand selective monofunctional uracil DNA glycosylase (SMUG1) is a 

glycosylase that removes uracil from preferentially single-stranded DNA and 

therefore functions in base excision DNA repair (Haushalter et al., 1999; Masaoka 

et al., 2003). Histone-binding protein RBBP7 (RBBP7) and histone 

acetyltransferase type B catalytic subunit (HAT1) are the subunits of the type B 

histone acetyltransferase (HAT-B) complex. HAT-B complex acetylates soluble H4 

and is though to play a role in nucleosome assembly (Verreault et al., 1998; 

Makowski et al., 2001). Guanosine-3,5-bis(diphosphate) 3-pyrophosphohydrolase 

MESH1 (MESH1) is a cytoplasmic protein that functions in starvation response 

(Sun et al., 2010). Copper homeostasis protein cutC homolog (CutC) can bind to 

Cu1+ and may function in copper homeostasis (Li et al., 2005). Porphobilinogen 

deaminase (HMBS) is another cytoplasmic protein of the import cargo candidates 

and is involved in the heme biosynthesis by catalyzing the head to tail 

condensation of four porphobilinogen molecules into hydroxymethylbilane 

(UniProt, 2015). Protein O-GlcNAcase (MGEA5) cleaves N-acetylglucosamine 

from O-glycosylated proteins and can function both in the nucleus and cytoplasm 

(Gao et al., 2001). Histone deacetylase 8 (HDAC8) is a member of the class I 

histone deacetylases and plays a role in transcriptional regulation (Buggy et al., 

2000; Hu et al., 2000; Van den Wyngaert et al., 2000). Nicotinamide 

phosphoribosyltransferase (NAMPT) is involved in the NAD biosynthesis and is 

responsible for the production of nicotinamide mononucleotide (Rongvaux et al., 

2002). It might also function as adipokine in the bloodstream (Romacho et al., 

2013). Finally, alpha and beta subunits (RABGGTA and RABGGTB) of the type II 

geranylgeranyl transferase are the only tested export candidates. This enzyme 

transfers the geranylgeranyl moiety to various Rab proteins and directs them to 

the corresponding membrane (Farnsworth et al., 1994). 
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Figure 3-47 Identified candidate proteins enrich Xpo7 from a cytoplasmic extract in a RanGTP 
regulated manner 

0.5 pmol H14-ZZ-Nedd8 tagged candidates were immobilized to Z-affibody dimer beads. Then, the beads 
were incubated with 250 µL cytoplasmic HeLa extract either supplemented with 5 µM RanGTP or same 
volume of buffer. After 3 h incubation, unbound proteins were removed; the immobilized cargoes and bound 
proteins were eluted by incubating the beads with 250 nM bdNEDD8 protease. Both input and eluates were 
separated by SDS-PAGE. One gel was analyzed by Coomassie staining (upper panel). The other one was 
analyzed by western blotting with anti–hsXpo7 antibody (lower panel). The area corresponding to the 
highlighted area in the upper panel is shown in the lower panel. Potential export and import cargoes are 
colored in green and red, respectively. Red asterisks mark the corresponding cargoes. 

I cloned these candidates into a vector containing His14-ZZ-NEDD8 tag. I also 

cloned RhoGAP into a similar construct to use as a positive control for Xpo7 

binding. All of these constructs were expressed in E. coli. RBBP7 and RabGGTA 

were not soluble; therefore I did not include these proteins in the further 

experiments. To validate the specificity of Xpo7 binding, I immobilized these 

proteins to anti-Z affibody beads and then incubated with a cytoplasmic HeLa 

extract either in the absence or presence of 5 µM RanGTP. After the unbound 

proteins were removed and the beads were washed, the immobilized candidates 

and bound proteins were recovered by incubating the beads with bdNEDD8 

protease. The eluates were first separated by SDS-PAGE and then analyzed 

either by Coomassie-staining or by western blotting using an anti-humanXpo7 

–     +              –     +     –     +    –     +      –     +     –     +    –     +     –    +     –     +     –     +     –     + 
Input RhoGAP   CutC MESH1 NAMPT HMBS MGEA5 HDAC8 HAT1 SMUG1RABGGTB

200
kDa

150
120

100
85

70
60

50

40

30

25

20

15

10

RanGTP

*

*

*

*

*

*

* *

*
*

–     +              –     +     –     +    –     +     –     +    –     +      –     +     –    +     –     +     –     +     –     + 
Input RhoGAP   CutC MESH1 NAMPT HMBS MGEA5 HDAC8 HAT1 SMUG1RABGGTB

RanGTP

anti-hs Xpo7



 95 

antibody (Figure 3-47). All of the tested proteins enriched Xpo7 from the extract, 

indicating that these proteins in fact interact with Xpo7.  RhoGAP and RabGGTB 

enriched Xpo7 only in the presence of RanGTP and therefore behaved like export 

cargoes. In contrast, in the other proteins, Xpo7 enrichment significantly reduced 

in the presence of RanGTP, which was a characteristic of the import substrates. It 

should be noted that the Xpo7 binding in MESH1, NAMPT and RabGGTB was 

relatively weaker compared to the other proteins. 

 
Figure 3-48 Binding assay with candidates and recombinant Xpo7 

0.5 µM H14-ZZ-NEDD8 tagged cargoes were incubated with 0.75 Xpo4 in the absence or presence of 1.5 µM 
RanGTP in 500 µL at 50 mM NaCl. After 2 h incubation at 4 °C the samples were incubated with Z-affibody 
dimer beads to capture the cargoes and bound proteins. After another 2 h incubation, unbound proteins were 
removed, RanGTP and bound proteins were eluted by incubating the beads with 250 nM bdNEDD8 protease. 
Eluates were separated by SDS-PAGE and analyzed by Coomassie staining. Potential export and import 
cargoes are colored in green and red, respectively. Red asterisks mark the corresponding cargoes. Cargoes 
on the left and on the right were tested on different dates, as a control RhoGAP was included in both panels. 
Similar experiment at 100 mM NaCl gave identical results. CutCΔNLS represents the construct where the 
classical nuclear localization signal (RKRAR) on CutC was mutated to TGSAT to test if the interaction 
depends on NLS.  

We have found that all of the selected candidates interact with Xpo7, however, this 

interaction could have happened directly or via an adaptor molecule. Therefore I 

wanted to test the direct interaction with recombinantly expressed Xpo7. I followed 

the same experimental procedure described above. Instead of a cytoplasmic 

extract, I used recombinant Xpo7 and tested the Xpo7 binding of these cargoes in 

the absence and presence of RanGTP. Figure 3-48 shows the SDS-PAGE 

analysis of the experiment. Xpo7 binding, although very weak for some proteins, 

was seen in all proteins, indicating that these proteins contain contact sites for 
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Xpo7. RhoGAP and RabGGTB bound to Xpo7 only in the presence of RanGTP. 

Additionally, the potential import cargo HDAC8 also bound to Xpo7 only in the 

presence of RanGTP, and hence behaved like an export cargo in the isolated 

context. Moreover, the Xpo7 binding of HMBS, MGEA5 and SMUG1 was also 

different than the previous experiments. These proteins bound to Xpo7 in a 

RanGTP independent manner. In other words, RanGTP presence did not affect 

Xpo7 binding to these proteins in this given experimental setting. Xpo7 binding to 

CutC and NAMPT was as expected and took place only in the absence of 

RanGTP. Finally, MESH1 and HAT1 also bound to Xpo7, however, the bound 

Xpo7 was fairly low. 

3.2.3 Does Xpo7 form a dimer? 

In the last year of my PhD work, I supervised a lab rotation student, Matthew G. 

Logsdon, who investigated the putative import activity of Xpo7. Although his work 

is not part of this thesis, I will describe one important discovery. 

While characterizing an import cargo–Xpo7 complex, we analyzed Xpo7 on MALS 

and found out that the predicted mass of the molecule was ~255 kDa (Figure 

3-49), which suggested a homodimer. The observation was verified with different 

preparations and with different buffer conditions. Although we did not further probe 

the nature of the dimer, I will discuss structural and functional implications of the 

dimer in the second part of the following section. 

 
Figure 3-49 MALS analysis of Xpo7 

Gel filtration purified Xpo7 was concentrated to 2 mg/ml and analyzed by Superdex 200 10/30 column coupled 
to MALS detector. Theoretical molar mass of Xpo7 construct was 125 kDa, whereas experimental mass was 
255 kDa, suggesting a dimer. 
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4 DISCUSSION 

4.1 Xpo4 mediated nucleocytoplasmic transport 

Structural studies are crucial elements for the comprehensive understanding of 

NTR function at the molecular level (Cook and Conti, 2010). NTRs are built from 

the same architectural units (HEAT repeats) and yet adopt different tertiary 

structures. Even the same NTR can adopt different conformations in its 

cargo-bound and unbound states. Therefore, the three-dimensional architecture of 

an NTR cannot be determined without structural information. NTRs functionalize 

their HEAT repeats in many different forms for cargo (and RanGTP) interactions. 

First of all, importins and exportins respond to RanGTP-binding either with cargo 

loading or unloading. Besides this very characteristic difference, NTRs also have 

their unusual members. Some proteins are cargoes of both an exportin and an 

importin, shuttling continuously. On the other hand, a cargo might be ferried to the 

same destination by more than one NTR to facilitate the transport. Alternatively, 

the same NTR can be the exportin for some proteins and also an importin for 

others. Given all these extraordinary cases, it is impossible for us to foresee the 

molecular mechanism by which the NTRs interact with their cargoes without 

structural information. 

Xpo4 is a bidirectional NTR that exports eIF5A and Smad3 and imports Sox2 and 

SRY. Xpo4 has been recently identified as a tumor-suppressor protein (Zender et 

al., 2008). Having both transcription and translation factors as its cargoes Xpo4 

might act as a tumor-suppressor by confining their localization and therefore their 

activity to certain compartments. This would also give considerable medical 

interest to Xpo4-mediated nucleocytoplasmic transport. Although structures of 

several importins and exportins have been elucidated before, there has been no 

structural information available for Xpo4 and it has been unclear how Xpo4 

mediates transport of distinct cargoes in opposite directions. In my PhD work, we 

have elucidated the structure of the eIF5A nuclear export complex. The structure 

of the complex and the biochemical data presented in section 3.1 provide insights 

into how Xpo4 functions as a bidirectional NTR. 
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Figure 4-1 Comparison of cargo binding by exportins 

All export complexes are aligned with respect to RanGTP and illustrated in a ribbon representation. Exportins 
are depicted as a color gradient from blue (N-terminus) to grey (C-terminus). The respective cargoes are 
shown in orange and Ran is in green. Left and middle: Export complexes are visualized in two orientations. 
Right: Complexes are displayed as in the middle, but Ran was removed. 
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The architecture of Xpo4, despite the sequence variations and relatively larger 

size (for instance, Xpo4 is 129 kDa and Imp13 is 108 kDa; the similarity is 15%), is 

similar to the other exportins and made up of 20 HEAT repeats. Larger size is due 

to the intra-repeat and inter-repeat insertions that bent the overall structure into a 

toroid like shape. Ran is enclosed by this toroid, similar to that observed in CRM1–

Ran interaction, leaving very small area inside the toroid for eIF5A. Xpo4 does not 

recognize a linear export signal but folded domains of eIF5A. Notably, eIF5A is 

recognized by Xpo4 in an unprecedented manner. eIF5A is placed over the toroid 

on a cavity created by the intra-repeat loops of HEATs 11 to 16, while the basic 

hypusine-containing loop is buried in an acidic groove. Interactions at the acidic 

groove are indispensible for eIF5A binding as well as the export activity of Xpo4. 

The binding mode of Xpo4 to its export cargo is different than that observed in 

other exportins (Figure 4-1). In the nuclear export complex structures solved to 

date, the exportins CAS, Xpot, Xpo5 and Ipo13 coil around the cargoes, while the 

basic patch of Ran interacts with acidic residues of the cargoes (Matsuura and 

Stewart, 2004; Cook et al., 2009; Okada et al., 2009; Grunwald et al., 2013). 

CRM1, on the other hand, recruits the cargo to the outer surface of the toroid and 

there is no direct contact between the cargo and Ran (Monecke et al., 2009). Xpo4 

neither coils around nor recruits the cargo to the outer surface; instead, eIF5A is 

positioned above the toroid. Moreover, eIF5A interacts with Ran through a single 

glutamic acid residue (eIF5AGlu42), which is not essential for eIF5A binding (Figure 

3-34). 

The overall shapes of Xpo4, Imp13 and CRM1 in their cargo-bound form are 

almost indistinguishable and yet all of them bind their cargoes differently (Figure 

4-1). What makes these NTRs, or specifically Xpo4 special? The answer is in the 

details. Both, Xpo4 and Imp13 recognize their cargoes by charge and shape 

complementarity. Although the cargoes are acidic translation factors, these 

exportins interact mostly with basic residues of these proteins. Xpo4 and Imp13 

are highly acidic proteins. However, the acidic residues are distributed differently 

in these NTRs such that they interact with their cargoes through different regions. 

At the sequence level, CRM1 is the second closest relative of Xpo4 among the 

Impβ family (after Xpo7). The size and shape of the individual HEAT repeats of 

Xpo4 and CRM1 are also very similar. However, three distinct features of these 
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NTRs lead to different cargo recognition modes. First, similar to Imp13, the charge 

distribution of CRM1 is different. Second, the acidic loop of CRM1 is much longer 

than that of Xpo4. It would clash with eIF5A; therefore, CRM1 would not be able to 

bind eIF5A through the acidic loop. Third, the topology around the nuclear export 

signal (NES) binding site is different in Xpo4. NESs bind the hydrophobic cleft of 

CRM1 created by the HEATs 11 and 12. Corresponding region of Xpo4 is 

occupied by an NES-like fragment in the long insertion between HEATs 10 and 11 

(see Figure 3-22 and the text in page 61). This makes Xpo4 incompatible for NES 

binding. Since Xpo4 emerged later in the evolution, the sequence and structural 

similarity might suggest that Xpo4 was evolved from CRM1 through gene 

duplication. In such a situation, blocking the NES-binding site by an NES-like 

insertion would be an elegant mechanism on the way to acquire a new function. 

4.1.1 Implications for cargo loading and cargo release mechanisms 

RanGTP is essential for export complexes. It increases the affinity of exportin to its 

cargo ≥1000 fold. Ran mediates this either by causing conformational changes in 

the exportin, hence activating the cargo-binding site or by directly interacting with 

the cargo (Güttler and Görlich, 2011). All so far crystallized exportins employ both 

mechanisms at the same time, the exception being CRM1 where Ran does not 

contact the cargo. How does Ran promote cargo loading onto Xpo4? In the eIF5A 

export complex, the interaction interface between Ran and the cargo is very small 

compared to that in the other export complex structures and this interaction is 

dispensable. Consequently, export complex assembly is likely to be triggered by 

Ran inducing conformational changes in Xpo4. Although the details require the 

structure of unliganded (or import cargo-bound) Xpo4, it is tempting to speculate 

that the acidic loop of Xpo4 might orchestrate a point of communication between 

RanGTP binding and eIF5A loading. Considering the fact that the N-terminal 

positioning of eIF5A is crucial for complex formation, one can assume that the 

binding of Ran stabilizes the possibly flexible acidic loop and provides initial 

contact site for eIF5A. Following conformational changes in the C-terminal of Xpo4 

would complete complex assembly. Alternatively, Ran-binding can lock the already 

positioned eIF5A on the toroid and increase the affinity of exportin to its cargo by 

decreasing the dissociation rate of the cargo. 
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Although the canonical cargo-free exportins exhibit low affinity for RanGTP, 

bidirectional NTRs like Xpo4 and Imp13 bind RanGTP rather strongly. Therefore, 

eIF5A possibly will also encounter Xpo4•RanGTP complex in the nucleus. In the 

export complex, the hypusine-containing loop is locked in the acidic pocket by the 

acidic loop and HEAT repeats of Xpo4. As a result, the insertion of the hypusine-

containing loop into the acidic pocket is sterically not possible. This suggests that 

Xpo4•RanGTP complex should have an open conformation compared to the 

presented export complex. Indeed, we have obtained supportive information from 

mutational analysis of Xpo4 (Figure 3-31 and Figure 3-32). 

When an export complex reaches to the cytoplasm, it disassembles upon 

stimulation of the GTPase activity of Ran, releasing the cargo to the cytoplasm. In 

the eIF5A export complex, the interaction site of RanGAP on Ran is protected by 

the C-terminal HEAT repeats of Xpo4, and thus is inaccessible (Figure 4-2 and 

Lipowsky et al., 2000). It is likely that RanGTP is separated from the export 

complex by RanBP1 (or RanBP2) prior to GTP hydrolysis. Therefore, the 

mechanism of eIF5A export complex disassembly seems to be similar to that 

observed in other export complexes. When the RanGTP•RanBP1 complex is 

superimposed to the eIF5A export complex, RanBP1 and the C-terminal acidic tail 

of Ran would clash with intra-repeat loops of Xpo4 (Figure 4-2). In addition, 

RanBP1 would severely clash with N-terminal domain of eIF5A. As a result, 

RanBP1-binding would destabilize the export complex and trigger eIF5A release. 

 
Figure 4-2 Cytoplasmic disassembly of the export complex 

RanGTP•Xpo4•eIF5A
RanGAP•RanGTP•RanBP1

RanGTP•Xpo4•eIF5A
RanGAP•RanGTP•RanBP1
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RanGTP•Xpo4•eIF5A complex is overlaid with RanGAP•RanGTP•RanBP1 structure (PDB ID 1K5D; Seewald 
et al., 2002). The structures are aligned via RanGTP. eIF5A export complex is shown in a similar color-coding 
and orientation as in Figure 3-21. On the left, RanGAP (magenta) is shown in a ribbon representation. On the 
right, RanGTP and RanBP1 are shown in yellow and cyan, respectively. Note the severe clashes of RanGAP 
with C-terminal of Xpo4 and RanGTP•RanBP1 with Xpo4 and eIF5A. (Adapted from Aksu et al., 2016) 

4.1.2 Implications for Xpo4 function 

Impβ-like NTRs are characterized primarily by their ability to carry cargoes across 

the nuclear envelope. In addition, they have another very essential function: they 

act as chaperones for their cargoes. This function is well described for importins, 

which recognize exposed basic patches of their cargoes as nuclear localization 

signals. Most of the proteins destined for the nucleus, such as histones and 

ribosomal proteins, have DNA- or RNA-binding function and contain highly basic 

domains. By binding to these domains, importins block interaction of these 

proteins with polyanionic substances (such as tRNAs or acidic proteins) in the 

cytoplasm and therefore prevent cytoplasmic aggregation of these proteins (Jakel 

et al., 2002). Same function is also seen in exportins. In the Xpo5 export complex, 

pre-miRNA is surrounded by Xpo5 and RanGTP, and protected from any 

endonuclease activity (Okada et al., 2009). Consequently, NTRs shelter their 

cargoes against unwanted interactions before and during the transport (Jakel et 

al., 2002). 

Hypusination of eIF5A is essential for cell viability and is required for binding to 

RNAs, ribosomes and possibly to the other interaction partners and therefore 

critical component of eIF5A function (Park et al., 2010). In the eIF5A export 

complex, hypusine docks into an acidic groove of Xpo4 and is shielded from the 

environment. Consequently, Xpo4 would prevent any interaction partner 

approaching eIF5A. In fact, in the absence of Xpo4, eIF5A accumulates in nucleoli 

probably interacting with newly assembled ribosomes and disengages upon Xpo4 

addition (Figure 3-36 and Lipowsky et al., 2000). Therefore, Xpo4 acts like an 

eIF5A inhibitor in the nucleus and during the transport. It should be noted that 

while stoichiometric amounts of Xpo4 would be needed to block eIF5A function in 

the nucleus, by exporting eIF5A from the cytoplasm, Xpo4 accomplishes the same 

function with substoichiometric amounts. 

The inhibitor-like function also explains why eIF5A is not exported by CRM1. 

CRM1 exports hundreds of proteins by binding to short leucine-rich stretches. In a 
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similar binding mode, CRM1 would not shield the hypusine and protect it from 

undesired interactions. 

The structure of the eIF5A export complex also illuminates how Xpo4 can mediate 

export of both isoforms of eIF5A. Human eIF5A2 is 84% identical to the major 

isoform of eIF5A. Most of the variations are at the C-terminal domain of eIF5A, 

where Xpo4 does not interact extensively (Figure 4-3). Moreover, the residues 

interacting with Xpo4 is almost identical in both isoforms. Therefore, Xpo4 does 

not distinguish between the isoforms and can export both.  

 
Figure 4-3 Recognition of eIF5A isoforms by Xpo4 

(A) eIF5As are rendered as surface representation and shown after 180° rotation around the horizontal axis 
relative to the view in Figure 3-27 Left: The structural domains of eIF5A colored and indicated accordingly. 
Middle: eIF5A is shown in orange and the residues that contact Xpo4 are colored in magenta. Right: The 
residues that differ in eIF5A2 is colored in cyan. (B) Sequence alignment of human eIF5A isoforms. Identical 
residues are highlighted in orange boxes while the different residues in cyan. Magenta circles above the 
sequence mark the non-conserved residues that contact Xpo4. 

4.1.3 Implications for eIF5A function 

As described in section 2.4.2, due to technical reasons, eIF5A had been believed 

to localize to the nucleus. Therefore, a nuclear function for eIF5A was an attractive 

possibility. eIF5A was thought to be a shuttling protein, acting as an adaptor 

molecule for nucleocytoplasmic transport of macromolecules, including the HIV 

Rev protein (Ruhl et al., 1993; Bevec et al., 1996). Subsequent studies revealed 

that eIF5A did not bind Rev and did not promote export of this protein (Henderson 

and Percipalle, 1997; Lipowsky et al., 2000). However, due to the ability to bind 

RNAs in a sequence specific manner, eIF5As role as an export adapter for certain 
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RNAs have remained a possible function. C-terminal RNA-binding motif of eIF5A 

does not lie at the Xpo4 interaction interface and available for RNA binding. 

However, given that the RNA interaction of eIF5A depends on hypusine (Xu and 

Chen, 2001) and the Xpo4 dependent export is the only characterized direct 

export pathway for eIF5A (Lipowsky et al., 2000), eIF5A’s function as an RNA 

exporter is not rational any longer. 

Nevertheless, the eIF5A export complex structure does not rule out a nuclear role 

for eIF5A. Acetylation of eIF5A at Lys47 has been reported to affect the 

localization of eIF5A (Ishfaq et al., 2012). In the export complex, Lys47 side chain 

does not contact Xpo4 and the acetylation of this residue seems to be sterically 

possible. However, the side chain nitrogen makes hydrogen bonding with the main 

chain oxygen of the hypusine. Since the interaction of this region with Xpo4 is 

critical, any conformational change upon acetylation would impair export complex 

formation and cause nuclear accumulation of eIF5A. Similarly, any 

posttranslational modification of eIF5A that prevents Xpo4 binding might give rise 

to nuclear accumulation of eIF5A. Nevertheless, any nuclear function would 

require an active import, which so far has not been characterized for eIF5A. eIF5A 

modifications that interrupt Xpo4 binding would be suitable tools for finding an 

import factor. 

4.1.4 How does Xpo4 recognize other cargoes? 

In the eIF5A export complex, the hypusine plays an important role for Xpo4 

binding. Since eIF5A is the only protein with this residue, other export cargoes 

must be recognized differently. Xpo4 has five characteristic insertions. While the 

acidic loop plays an important role in eIF5A binding, roles of the others are elusive. 

We have already found that the protease sensitive loops are not well conserved 

among Xpo4 homologs and they are not present in some organisms. Therefore, 

these regions cannot be part of the conserved export cargo recognition motif. In 

contrast, insertions at the middle of Xpo4 might be potential regulatory regions 

important for export cargo recognition. Among the crystallized exportins, CAS and 

Xpo5 have such long insertions that are important for cargo binding (Matsuura and 

Stewart, 2004; Okada et al., 2009). 
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Sox-type transcription receptors are the only characterized import cargoes of 

Xpo4. Gontan et al (2009) showed that the basic DNA binding domain of Sox2 and 

SRY is essential part of the Xpo4 dependent import signal. Given that the inner 

surface of Xpo4 is acidic (Figure 3-28c), it is tempting to speculate that the import 

cargoes are recognized through the inner surface of Xpo4. In order to function as 

a unidirectional importin, RanGTP binding should abolish cargo binding, either 

directly competing for the binding site or causing conformational changes in the 

receptor. In canonical importins, the acidic loop has an essential role in cargo 

binding and release (Conti et al., 2006). In importin β, Ran competes with the 

import cargo for binding to the acidic loop. In contrast, in transportin, Ran binding 

results in an allosteric change of the acidic loop that displaces the cargo. We have 

already identified HEAT11B of Xpo4 as a potential region for Sox2 recognition 

motif. This region is very close to the acidic loop (Figure 3-22). Accordingly, it 

would not be surprising if the acidic loop were part of the import cargo assembly or 

disassembly mechanism. 

Considering the potential importance of the acidic loop for cargo recognition, one 

can envisage how Xpo4 might act as a bidirectional transporter. All cargoes might 

bind the acidic loop. The binding can be mutually exclusive or cooperative with 

RanGTP binding. This would eventually define whether the cargo is an import or 

export substrate. 

4.1.5 Experimental implications 

eIF5A have been the only cargo identified directly by Xpo4 affinity chromatography 

from a cytoplasmic cell extract. Its high abundance in proliferating cells and its 

high affinity for Xpo4•RanGTP complex might suggest that eIF5A masks the 

binding (or detection) of other proteins. One approach to identify low abundant or 

less affine cargoes could be using an eIF5A-depleted cell extract. However, this 

may not be ideal since eIF5A depletion would also deplete eIF5A interacting 

proteins. Alternatively, Xpo4 mutants could be utilized for the affinity 

chromatography. Assuming that the recognition mechanism of other potential 

export cargoes is different than that of eIF5A, it is high likely that one or more of 

the critical residues of Xpo4 interacts only with eIF5A. Then, using Xpo4 mutants 

that do not bind eIF5A would be an elegant way to identify (if there is any) new 
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cargoes. We have already characterized several mutants that specifically block 

eIF5A binding (Figure 3-33). Relatively mild mutants (Xpo4D470N, Xpo4E537Q and 

Xpo4S631A) could be the first choice to start with. This hypothesis can be tested 

with binding assays using the other characterized Xpo4 export cargo, Smad3. In 

addition, crystallization of the Smad3 export complex would be also informative to 

see if there is any critical residue that can be exploited for the above-mentioned 

purpose. 

In vitro hypusine-containing eIF5A production 

Hypusine is essential for cell viability and eIF5A function in translation. Since the 

identification of eIF5A as the hypusine-containing protein, the posttranslational 

modification of this protein has been extensively studied. The details of the 

enzymatic reactions, namely deoxyhypusination and hydroxylation, are well known 

and the protocols describing the in vitro modification of eIF5A are available (Park 

et al., 2011; Wolff et al., 2011). Yet, methods to separate eIF5A(Hpu) from 

eIF5A(Dhp) have not existed. During my PhD project, I have established a robust 

method to separate the fully modified eIF5A from the other variants. 

The method is based on two features of eIF5A variants. The first feature is the 

presence of the additional positive charge in eIF5A(Dhp) and eIF5A(Hpu). This 

allows them to bind cation exchangers stronger than eIF5A(Lys). Therefore, it is 

possible to separate the modified eIF5As from the non-modified one in a single 

chromatographic step. The second feature is the reversibility of the modification of 

eIF5A(Dhp) but not eIF5A(Hpu). DHS can use eIF5A(Dhp) but not eIF5A(Hpu) as 

a butylamine donor. As a result, in the presence of a suitable acceptor, DHS 

converts eIF5A(Dhp) to eIF5A(Lys). In a mixture of eIF5As with different 

modifications, the reversal of the deoxyhypusination reaction produces eIF5A(Lys) 

and eIF5A(Hpu). By using the same chromatographic method, the products are 

separated and fully modified eIF5A is obtained. 

I used the above-described method to produce large amounts of hypusinated 

eIF5A. The same setup can also be used to determine the composition of an 

eIF5A mixture. By comparing the elution profile (from the cation exchange 

chromatography) of the mixture with that of eIF5A(Lys), one can decide if the 

mixture contains modified eIF5A. Later, the mixture can be subjected to the 
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reversal of the deoxyhypusination reaction and analyzed on cation exchange 

chromatography again. The result will allow the examiner to deduce the complete 

constituents of the mixture. 

4.2 What have we learned about Xpo7? 

Xpo7 has been proposed to be the second broad-spectrum exportin (after the 

CRM1), yet only three cargoes have been described in detail. We aimed to 

discover novel export substrates by using cellular extracts as protein source. After 

optimization of the Xpo7 affinity chromatography, we utilized a SILAC based mass 

spectrometry method to identify as many interaction partners as possible. 

4.2.1 Xpo7 is a broad-spectrum exportin 

SILAC analysis has revealed more than twenty proteins interacting with Xpo7 in 

nuclear conditions (in the presence of RanGTP). All the previously identified Xpo7 

interaction partners and characterized export cargoes are in this list, indicating the 

high coverage of the findings. Moreover, subcellular distribution of the identified 

interaction partners is mostly cytoplasmic. Therefore, it is an attractive possibility 

that these proteins are also export cargoes. 

Having no detectable sequence and structural similarity between these proteins 

strongly supports the notion that Xpo7 is a broad-spectrum exportin. This raises 

the question how Xpo7 can recognize such diverse set of cargoes. CRM1 exports 

the large number of proteins or protein complexes by recognizing a short leucine-

rich NES. Employing similar recognition mechanism would be a straightforward 

approach for Xpo7. However, initial analysis by Mingot et al. (2004) showed that 

the recognition motif was more than just a short peptide and might involve several 

positively charged patches on the cargo. 

Nevertheless, it is likely that the cargoes have common structural elements that 

allow them to be recognized by Xpo7. While, it may have not been possible to 

identify such elements with few cargoes at hand, newly identified proteins will 

certainly increase the identification probability. Detailed analysis of Xpo7–cargo 

interactions could allow us to build a novel export signal prediction algorithm, 

which could be used to discover further Xpo7 cargoes. 
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4.2.2 Xpo7 is a potential bidirectional NTR 

We have not only identified potential export substrates but also several potential 

import cargoes. For most of the newly discovered potential cargoes, there have 

not been characterized nuclear import pathways. Therefore, Xpo7-dependent 

nuclear import is a likely explanation for these proteins. For some of the proteins, 

we have validated that Xpo7 binding is regulated by Ran. Taken together, 

although the demonstration of the import activity is elusive, the characterization of 

Xpo7 as a potential importin makes this receptor the forth candidate of the 

bidirectional NTR family. This feature of Xpo7 was already suggested after the 

observation that this receptor bound Ran at mediocre affinities (Kutay et al., 2000). 

Xpo7 has been recently associated with erythroid nuclear maturation (Hattangadi 

et al., 2014). While mature mammalian erythrocytes (red blood cells) do not 

contain nuclei, their progenitors do. During their differentiation, nuclei of the red 

blood cell progenitors go through major changes, including chromatin 

condensation and export of the nuclear proteins, which is followed by enucleation 

(reviewed by Ji et al., 2011). An erythroid specific isoform of Xpo7 (Xpo7B) is 

highly expressed at the onset of red blood cell maturation (Hattangadi et al., 

2014). Blocking of the Xpo7B expression gives rise to nuclear accumulation of 

proteins, including histones. Given that Xpo7 is a broad-spectrum exportin, Xpo7 

can be considered as the factor required for the cytoplasmic transport of these 

proteins (Hattangadi et al., 2014). Alternatively, due to its new role as importin, it is 

tempting to speculate that Xpo7 might import the factors necessary for the early 

steps of differentiation, such as chromatin condensation. Chromatin condensation 

requires modification of the histones. Having identified two histone modification 

enzymes (HAT1 and HDAC8) as potential Xpo7 import cargoes supports this 

hypothesis. 

Investigation of Xpo7 also reveals an interesting observation. Among the four 

exportins (Xpo4, Xpo6, Xpo7, and Imp13) that are not conserved in all eukaryotes, 

Xpo4 and Imp13 have been already characterized as bidirectional NTRs. 

Identification of Xpo7 as a potential bidirectional transport receptor raises the 

question whether all of these NTRs could be a member of this class of Impβ 

family. Recent work in our lab has showed that Xpo6 also binds Ran at an 

intermediate strength, which is a necessity to function as a bidirectional NTR. 
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4.2.3 Functional significance of dimeric Xpo7 

Another interesting finding about Xpo7 is being a dimeric protein under the tested 

conditions. Impβ/Imp7 heterodimer was the first characterized NTR dimer (Jakel et 

al., 1999). Recently, human CRM1 has been also shown to form homodimer when 

binding the HIV Rev response element (Booth et al., 2014). Consequently, Xpo7 is 

the second example of a homodimeric NTR. Certainly, further investigation is 

necessary to completely elucidate the function of the homodimer. In this section, I 

will shortly discuss the possible implications.  

Impβ and Imp7 are typical importins that are able transport cargoes themselves. 

However, when Impβ and Imp7 form a heterodimer, a unique cargo-binding site is 

generated, where histone H1 docks (Jakel et al., 1999). Therefore, by forming 

different interaction interface, these receptors increase the number of cargoes that 

can be transported. Similar mechanism can also be envisaged for Xpo7. Xpo7 can 

import one set of proteins when it is monomer and another set of proteins when it 

is dimer. By regulating the dimer formation, cell can regulate the nuclear import of 

proteins that depend on Xpo7 dimer. 

Which proteins bind dimeric Xpo7? The answer could be the larger ones. NTRs 

allow rapid translocation of cargoes by shielding the “inert” surfaces of cargoes 

while passing through the permeability barrier of the nuclear pore complexes 

(NPCs). However, as the size of the cargo increases, the transport receptor can 

no longer cover the inert surface efficiently. This causes a slow down in NPC 

passage and known as the cargo-effect (Ribbeck and Görlich, 2002). As a result, 

large proteins require more than one receptor for an efficient transport. Forming an 

Xpo7 dimer would definitely increase the potential inert area that can be covered. 

When the lists of Xpo7 binders are analyzed, the protein complexes such as the 

endosomal retromer, the type II geranylgeranyl transferase and type B histone 

acetyltransferase complex immediately stand out. Moreover, detailed analysis has 

revealed that some of the Xpo7 binders, i.e. CutC and 14-3-3 protein sigma, 

function as homooligomers. Consequently, Xpo7 dimer could be a mechanism for 

the nucleocytoplasmic transport of these proteins. 

The dimer formation can also explain some of the discrepancies that we had in the 

binding assays. Although we have identified HMBS, MGEA5 and SMUG1 as 
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interacting with Xpo7 in a RanGTP sensitive manner (Table 3-7 and Figure 3-47), 

in the isolated context, they bound Xpo7 even in the presence of RanGTP (Figure 

3-48). The results give the impression that RanGTP and the cargo bind Xpo7 at 

the same time. This might imply that additional factors (that are already present in 

the extract) are required for complete disassembly of Xpo7•RanGTP from the 

cargo. Alternatively, if there is an Xpo7 dimer, the cargo and Ran can bind to 

different subunits of the dimer.  

4.3 Future perspectives 

During my PhD work, I have elucidated the recognition of eIF5A and RanGTP by 

Xpo4. How Xpo4 binds to the other export and import cargoes remain to be 

determined. I have already obtained promising crystallization conditions with 

Xpo4•Sox2 complex. The crystals resembled the needle-like crystals that were 

obtained from the initial export complex crystallization trials. There, the removal of 

the loop at the N-terminus allowed us to obtain high quality crystals. We shall see 

if similar engineering of Xpo4 affects the crystal quality of the import complex. 

Structure of the unliganded Xpo4 would also be of special interest for in-depth 

understanding of the cargo induced conformational changes. Due to highly flexible 

nature of Xpo4, its crystallization might be challenging. Therefore, another 

structure determination method, cryo-EM, could be utilized. Recent developments 

in cryo-EM technology allowed high-resolution structures comparable to X-ray 

crystallography. This technique could especially be useful for identifying the 

conformational flexibility of unliganded Xpo4. 

eIF5A is involved in cell proliferation (Hanauske-Abel et al., 1994; Kang and 

Hershey, 1994; Caraglia et al., 2001; Huang et al., 2007). Although the exact 

mechanism is not known, overexpression of eIF5A isoforms has been associated 

with increased tumorigenesis in several human cancers (Cracchiolo et al., 2004; 

Clement et al., 2006; Jasiulionis et al., 2007; Zender et al., 2008; Caraglia et al., 

2013). This effect is enhanced upon Xpo4 loss and can be suppressed by 

re-expression of Xpo4 (Zender et al., 2008). This suggests a rather complex 

interplay between eIF5A and Xpo4. We have already revealed how Xpo4 could 

prevent eIF5A activity in the nucleus. A next challenge will be to discover the other 

effectors of eIF5A in the nucleus. 
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Deciphering the mechanisms of cargo recognition by Xpo7 that allow it to be a 

broad-spectrum transport receptor is the most astonishing future perspectives of 

this study. We have identified several Xpo7-interacting proteins. Although, we 

have classified these proteins as potential transport substrates, Xpo7 could be 

merely a regulator for some of these proteins. Therefore, further analysis is 

essential to characterize the true import or export cargoes. 

There are also many open questions regarding the dimer formation of Xpo7. How 

does RanGTP regulate dimer formation? Which cargoes are recognized by the 

Xpo7 dimer? Does Xpo7 form heterodimers with other transport receptors? 

Further assessment of Xpo7 function will clarify these questions. 

Having established an efficient experimental protocol to identify novel transport 

substrates, we can now test different protein pools from various tissues and 

developmental stages. Red blood cell progenitors would be the first candidate to 

test. Similarly, the affinity chromatography protocol can be employed to other 

NTRs to identify new cargoes or novel functions. 

In order to understand how a living cell works, one has to unravel the complete 

functional networks of proteins in the cell. While the identification of its interaction 

partners might give a clue on the function of a given protein, the structural 

information would be the ultimate proof of the function at the molecular level. 

During my PhD project, I have employed these approaches to study the functions 

of two nuclear transport receptors, namely Xpo4 and Xpo7. The functions of many 

more proteins could, in principle, be revealed with similar approaches. With 

respect to nucleocytoplasmic transport mechanism, this project has already 

revealed important insights in to the function of the cell. 
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5 MATERIAL AND METHODS 

5.1 Materials 

5.1.1 Chemicals 

All chemicals were purchased from Calbiochem (San Diego, California, USA), Carl 

Roth (Karlsruhe, Germany), Life Technologies GmbH (Darmstadt, Germany), 

Merck (Darmstadt, Germany), MoBiTec (Göttingen, Germany), New England 

Biolabs (Ipswich, Massachusetts, USA), Pharmacia (Uppsala, Sweden), Pierce 

(Rockford, Illinois, USA), Promega (Madison, Wisconsin, USA), Qiagen (Hilden, 

Germany), Roche Diagnostics (Mannheim, Germany), Serva (Heidelberg, 

Germany) or Sigma-Aldrich (St. Louis, Missouri, USA). 

5.1.2 Instruments 

Instrument Manufacturer 
Arium pro UV water systems Sartorius (Göttingen, Germany) 
Äkta Purifier/Explorer Pharmacia (Uppsala, Sweden) 
Biophotometer-plus Eppendorf AG (Hamburg, Germany) 
Synquad (Cartesian) nanodispenser Digilab Inc (Marlborough, Massachusetts, USA) 
Climo-Shaker ISF1-X Kuhner (Basel, Switzerland) 
DynaPro NanoStar Wyatt Technology (Dernbach, Germany) 
Freedom Evo liquid handling robot Tecan group (Männedorf, Switzerland) 
GenePulser Bio-Rad (Hercules, California, USA) 
iMac 3.1 GHz Intel Core i5 Apple (Cupertino, California, USA) 
Labfors3 Bioreactor Infors (Bottmingen, Switzerland) 
Leica MZ6 microscope Leica Microsystems (Mannheim, Germany) 
MDF 793 -80 °C freezer Sanyo (Osaka, Japan) 
MiniDAWN Treos Wyatt Technology (Dernbach, Germany) 
NanoDrop ND2000C Peqlab Biotechnologies (Erlangen, Germany) 
Odyssey Infrared Imaging System Licor (Lincoln, Nebraska, USA) 
Perfection V700 photo scanner Epson (Long Beach, California, USA) 
Pitman neo pipettes Gilson (Middleton, Wisconsin, USA) 
RM Multi-1 programmable rotator STARLAB (Hamburg, Germany) 
Rock Imager automated imaging 
system 

Formulatrix Inc. (Walthom, Massachusetts, USA) 

SensoQuest lab cycler SensoQuest (Göttingen, Germany) 
Shodex RI-101 Showa Denko (Minato-ku,Japan) 
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Instrument Manufacturer 
Sonifier 450 Branson (Berkshire, UK) 
TCS SP5 confocal microscope Leica Microsystems (Mannheim, Germany) 
Thermomixer comfort Eppendorf AG (Hamburg, Germany) 
UV table Benda Laborgärate (Wiesloch, Germany) 
1260 Infinity Quaternary LC system Agilent Technologies (Waldbronn, Germany) 

Table 5-1 Laboratory equipment 

Centrifuge Rotor(s)/Type Manufacturer 
Discovery M120 S55A, S45A, AT3 Thermo Scientific (Waltham, MA, USA) 
LYNX 6000 F9, F12 Thermo Scientific (Waltham, MA, USA) 
RC6 plus centrifuge F9, F10 Thermo Scientific (Waltham, MA, USA) 
WX Ultra centrifuge T647.5, T1250.0 Thermo Scientific (Waltham, MA, USA) 
Tabletop centrifuge 5424  Eppendorf AG (Hamburg, Germany) 
Refrigerated tabletop 
centrifuge 

5417R, 5430R Eppendorf AG (Hamburg, Germany) 

Multifuge 3l-R 75006445 Heraeus (Hanau, Germany) 
Table 5-2 Centrifuges and rotors 

5.1.3 Software and bioinformatics tools 

Software Manufacturer 
Bento 4 FileMaker Inc. (Santa Clara, California, USA) 
Bookends Sonny Software (Checy Chase, Marylands, USA) 
ccp4 suite Rutherford Appleton Laboratory (Oxford, UK) 
UCSF Chimera UCSF (San Fransisco, California, USA) 
Illustrator CS5 Adobe Systems (San Josa, California, USA) 
ImageJ National Institute of Health (USA) 
LASAF Leica (Mannheim, USA) 
Lasergene 9 suite DNASTAR (Madison, Wisconsin, USA) 
Mac OS X Lion 10.7.5 Apple (Cupertino, California, USA) 
Microsoft Office Microsoft Corporation (Redmond, Washington, USA) 
Papers2 Mekentosj (Aalsmeer, Netherlands) 
Phenix Suite Lawrence Berkeley Laboratory (Berkeley, California, USA) 
Photoshop CS5 Adobe Systems (San Jose, California, USA) 
Prism 5 GraphPad Software (La Jolla, California, USA) 
PyMol Schrödinger (Portland, Oregon, USA) 
RockMaker Formulatrix Inc. (Walthom, Massachusetts, USA) 
Scaffold 4 Proteome Software (Portland, Oregon, USA) 
Table 5-3 Software 
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Tool Website 
Bioinformatics toolkit http://toolkit.tuebingen.mpg.de 
BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi 
COBALT http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi 
ELM http://elm.eu.org/search/ 
Fasta converter http://genome.nci.nih.gov/tools/reformat.html 
IUPred http://iupred.enzim.hu 
NEB tools https://www.neb.com/tools-and-resources 
NLStradamus http://www.moseslab.csb.utoronto.ca/NLStradamus/ 
NPS@ https://npsa-prabi.ibcp.fr/ 
Nucleotide http://www.ncbi.nlm.nih.gov/nuccore 
OligoAnalyzer 3.1 http://eu.idtdna.com/calc/analyzer 
OligoCalc http://www.basic.northwestern.edu/biotools/oligocalc.html 
Protein Data Bank (PDB) http://www.rcsb.org/pdb/home/home.do 
PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/ 
PSORT II http://psort.hgc.jp/form2.html 
TermiNator http://www.isv.cnrs-gif.fr/terminator3/index.html 
The ConSurf Server http://consurf.tau.ac.il 
UniProt http://www.uniprot.org 

Table 5-4 Online tools 

5.1.4 E.coli strains 

NEB Turbo (C2984, New England Biolabs), NEB 5-alpha (C2987, New England 

Biolabs) and NEB 10-beta (C3019, New England Biolabs) cells were used for 

cloning. NEB Express Iq (C3037, New England Biolabs), Top10F’ (C3030, Life 

Technologies) and BL21 (C2530, New England Biolabs) cells were used for 

recombinant protein expression. 

5.1.5 Media for E.coli culture 

LB liquid medium 2YT medium TB medium 
10 g Tryptone 16 g Tryptone 12 g Tryptone 
5 g Yeast extract 10 g Yeast extract 24 g Yeast extract 
10 g NaCl 5 g NaCl 4 ml Glycerol 
ddH2O to 1 L ddH2O to 1 L 2.13 g KH2PO4 
  12.54 g K2HPO4 
LB plates 50 mM KH2PO4 and 2% 

Glycerol was added to the 
expression cultures 

ddH2O to 1 L 

10 g Tryptone  
5 g Yeast extract  
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10 g NaCl   
15 g Agar   
ddH2O to 1 L   

For the selection and cultivation, liquid media and plates were supplemented with 

appropriate antibiotics in the following concentrations: Ampicillin (100 µg/mL), 

kanamycin (50 µg/mL) and spectinomycin (50 µg/mL). 

5.1.6 Buffers and solutions 

10x PfuS buffer 10x Ligation buffer 1x TAE buffer 
200 mM Tris/HCl pH 9.0 500 mM Tris/HCl pH 7.5 4.84 g Tris Base 
250 mM KCl 100 mM MgCl2 1.14 mL Acetic acid 
15 mM MgSO4 100 mM DTT 2 ml 0.5 M EDTA pH 8.0 
100 mM (NH4)2SO4 10 mM ATP ddH2O to 1 L 
1% Tween-20 250 mg/mL BSA  
1 mg/mL BSA   
   
Orange G sample buffer 10x SDS-PAGE running buffer SDS sample buffer 
10 mM Tris/HCl pH 8.0 150 g Glycine 125 mM Tris/HCl pH 6.8 
10 mM EDTA pH 8.0 30 g Tris Base 3% SDS 
50% (w/v) Glycerin 10 g SDS 50 mM DTT 
25% (w/v) Orange G ddH2O to 1 L 1.0 M Sucrose 
  0.1 mg/ml Bromophenol 

Blue 
 
 
 

  

Coomassie stock 
solution 

Colloidal Coomassie stock 
solution 

10x PBS 

2% (w/v) Coomassie 
Brilliant Blue G250 

0.08% (w/v) Coomassie Brilliant 
Blue G250 

137 mM NaCl 

50% Ethanol 1.6% Ortho-phosphoric acid 2.7 mM KCl 
 8% (w/v) (NH4)2SO4 8.1 mM Na2HPO4 
 20% Methanol 1.76 mM KH2PO4 
   
20x Ran Mix 20x E-Mix 10x Blotting buffer 
100 µM RanGDP 20 mM HEPES/KOH pH 7.5 3 g Tris Base 
10 µM RanBP1 200 mM Creatine phosphate 15 g Glycine 
10 µM RanGAP 1mg/mL Creatine kinase 200 mL Methanol 
10 µM NTF2 10 mM ATP 3 mL 10% SDS 
 10 mM GTP ddH2O to 1 L 
 250 mM Sucrose  
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10x TBS Transport buffer 1 M Tris/HCl pH 7.7 
25 g Tris HCl 20 mM HEPES/KOH pH 7.5 26.13 g Tris HCl 
7.2 g Tris Base 110 mM KOAc 123 g Tris Base 
87.6 g NaCl 5 mM Mg(OAc)2 ddH2O to 1 L 
ddH2O to 1 L 1 mM EGTA  
 250 mM Sucrose  
   
10x M9 salts M9 1000x trace elements M9 minimal medium 
170 g Na2HPO4•2H2O 3.7 mg (NH4)6Mo7O24 1x M9 salts 
60 g KH2PO4 24.7 mg H3BO3 2 mM MgSO4 
5 g NaCl 7.1 mg CoCl2 0.4% Glucose 
20 g NH4Cl 2.5 mg CuSO4 0.3 mM CaCl2 
ddH2O to 1 L 15.8 mg MnCl2 1 mg/L Thiamine 
 2.9 mg ZnSO4 1 mg/L Biotin 
  ddH2O to 1mL 1x Trace elements 
 Add 150 mM EDTA and 

4.67 mg/mL FeCl3 just before 
adding to medium 

 

   
RS1 buffer RS2 buffer Binding assay buffer 
50 mM Tris/HCl pH 7.7 50 mM HEPES/KOH pH8.2 50 mM Tris/HCl pH 7.7 
500 mM NaCl 500 mM NaCl 100 mM NaCl 
2 mM Mg(OAc)2 5 mM MgCl2 2 mM Mg(OAc)2 
  2 mM DTT 
   
 

5.1.7 Commercial crystallization screens 

AmSO4, Anions, Cations, Classics, Classics II, Cryos, JSCG+, MbClass, 

MbClass II, MPD, Nucleix, PACT, PEGs, PEGs II, pHClear, Protein Complex 

screens were purchased from Qiagen (Hilden, Germany). Index screen was 

purchase from Hampton Research (Aliso Viejo, California, USA). Pentaerythriol-1-

4 screen was purchased from Jena Bioscience (Jena, Germany). Wizard 1+2 and 

Wizard 3+4 screens were purchase from Rikagu (Bainbridge Islands, Washington, 

USA). 
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5.2 Methods 

5.2.1 DNA construct preparation 

Oligo design and synthesis 

Oligos were designed and optimized using “priming” feature of Seqbuilder 

(DNASTAR Lasergene Suite 9). Mutations and restriction enzyme cleavage sites 

were introduced during oligo design. Oligos were ordered from Sigma-Aldrich 

Chemie GmbH (Steinheim, Germany) as desalted oligos. Upon delivery, oligos 

were resuspended with water to 100 µM and stored at -20 °C. 

Polymerase Chain Reaction (PCR) 

PCR was used for amplification of desired DNA fragments from DNA templates 

(Mullis et al., 1986). 

Typical 100 µl volume reaction contained 50 ng of template DNA, 10 µl of 

10x dNTPs (2.5 mM each), 10 µl of 10x PfuS buffer, 1 µl of the forward and the 

reverse primer, 2 µl of DMSO, 1 µl of PfuS triple mix and was completed to 100 µl 

with ddH2O. PCRs were performed in a SensoQuest lab cycler (Göttingen). A 

typical example for a PCR protocol is the following: 

Step Temperature (°C) Time Repeat 
Initial denaturation 98.5 5’ 1 

Denaturation 98.5 30’’ 

30 Annealing 58-64 30’’ 

Extension 68 Varying 

Final extension 68 10’ 1 

Table 5-5 Steps of PCR 

Annealing temperature was chosen according to primer characteristics and 

optimized when necessary. Extension time depended on the length of the 

amplified region; 2 kb/min polymerase speed was taken into account when 

calculating the required time. 
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Mutagenesis PCR 

Above mention PCR protocol was performed also for the mutagenesis PCR. After 

the reaction was completed, 2 µl DpnI was added to reaction mixture to digest 

methylated template DNA and incubated for 1 h at 37 °C. 

DNA gel electrophoresis 

DNA fragments were separated as described in (Sambrook and Russell, 2001) on 

agarose gels containing 0.8% to 2% agarose in 1x TAE buffer. 1/10 volume 

Orange G loading buffer was added to DNA samples before loading. In order to 

visualize, 0.05 µg/ml ethidium bromide was added to liquid agarose. After 

electrophoresis, DNA bands were visualized on a UV Table (Benda Laborgeräte, 

Wiesloch), bands corresponding to expected molecular weight were excised for 

subsequent cloning. 

DNA extraction from agarose gels 

Zymoclean gel DNA recovery kit (Zymo Research, Freiburg) was used to recover 

DNA from manually cut agarose gel bands after electrophoresis. 

Determination of DNA concentration 

The concentration of DNA solutions was determined via extinction coefficient at 

260nm (E260), with E260=1.0 corresponding to 50 µg/mL double-stranded DNA 

(Sambrook and Russell, 2001). Measurements were done using ND-2000C 

spectrophotometer.  

DNA cleavage with restriction enzymes 

Restriction enzymes were obtained from New England Biolabs (Ipswich, USA) and 

used as recommended by manufacturer	to	digest	4	µg	vector	or	2	µg	insert	DNA	in	a	

reaction	volume	of	50	µL. 

Ligation of DNA fragments 

Sticky end ligation 

Vector and insert DNA were cleaved with appropriate restriction enzymes. To 

prevent re-ligation, vector was dephosphorylated with Fast Alkaline Phosphatase 
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(FastAP, Fermentas) for 1 h at 37 °C. DNA fragments were separated on agarose 

gel. After extraction and purification, vector and insert fragments were ligated by 

0.5 µl T4 DNA ligase (100 ng/µL, expressed in our lab by Steffen Frey) in a 

volume of 5 µL at 37 °C for 30 min in 1x ligase buffer. 20 ng of vector was 

incubated with 6 fold molar excess of insert DNA. As a re-ligation control, vector 

was incubated without insert. 0.5 µL of ligation reaction was transformed into 

electro-competent E.coli cells. 

Blunt end ligation 

Blunt end ligation was carried out for the ligation of mutagenesis PCR products. 

100 ng of purified DNA was phosphorylated by 0.5 µl T4 Polynucleotide kinase 

(300 ng/µL, expressed in our lab by Steffen Frey) and ligated by 0.5 µl of T4 DNA 

ligase in a volume of 5 µl in 1x ligase buffer in SensoQuest lab cycler with the 

following program:  

Step Temperature (°C) Time 
Phosphorylation 37 30’ 

Ligation 16 16 h 

Enzyme deactivation 70 10’ 

Table 5-6 Steps of blunt end ligation reaction 

 
As a negative control, same ligation reaction was carried out without the ligase. 

1 µL of ligation reaction was transformed into electro-competent E.coli cells. 

Preparation of electro-competent E.coli cells 

Electro-competent cells were prepared by Gabriele Hawlitschek according to the 

protocol from (Sambrook and Russell, 2001). 

Electroporation of E.coli cells 

40 µL electro-competent E.coli cells were combined with 1 µL ligation reaction or 

250 µg plasmid DNA in an electroporation cuvette (165-2086; BioRad, Hercules, 

USA). Electroporation was performed using MicroPulser (BioRad, Hercules, USA) 

according to manufacturer’s instructions. Cells were recovered for 1h at 37 °C in 1 

ml 2YT, 100 µL of cells was plated on LB agar containing the appropriate 

antibiotic(s) and incubated o/n at 37 °C 
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DNA purification from E.coli cultures 

Small scale plasmid DNA preparations (mini-preps) and large scale plasmid DNA 

preparations (midi-preps) were done using the NucleoSpin Plasmid kit and 

NucleoBond PC100 (both Macherey Nagel, Düren) according to the 

manufacturer’s instructions. 

Sequencing of plasmid DNA 

All constructs were verified by DNA sequencing (SeqLab, Göttingen), results were 

analyzed by Seqman (DNASTAR Lasergene Suite 9). 

Vectors 

Construct 
ID 

Construct Name 

T145 H21-TEV-DOHH 
pKG031 H14-ZZ-bdSUMO-Ran5-180(Q69L) 
pKG078 H14-bdSUMO-ZZ-bdNEDD8-Ran5-180(Q69L) 
pSF965 BirA 
pMA018 H10-ZZ-bdNEDD8-hsRhoGAP 
pMA023 H10-ZZ-bdNEDD8-CutC 
pMA027 H10-ZZ-bdNEDD8-hsCutCRKRAR14_18TGSAT 
pMA028 H10-ZZ-bdNEDD8-hsXpo7 
pMA030 H10-ZZ-bdNEDD8-hsHAT1 
pMA031 H10-ZZ-bdNEDD8-hsMESH1 
pMA032 H10-ZZ-bdNEDD8-hsNAMPT 
pMA036 H10-ZZ-bdNEDD8-hsRBBP7 
pMA037 H10-ZZ-bdNEDD8-hsSMUG1 
pMA038 H10-ZZ-bdNEDD8-hsHMBS 
pMA039 H10-ZZ-bdNEDD8-hsMGEA5 
pMA040 H10-ZZ-bdNEDD8-hsHDAC8 
pMA042 H10-ZZ-bdNEDD8-hsRABGGTB 
pMA061 H14-ZZ-bdSUMO-GS-hseIF5A 
pMA064 H10-GFP-TEV-hsDHS 
pMA066 H14-bdSUMO-agtg-mmXpo4 
pMA071 H14-ZZ-bdSUMO-hseIF5A15-154 
pMA079 ZZ-bdNEDD8-ggSox2-H6 
pMA083 H14-bdSUMO-mmXpo4 
pMA087 H14-bdSUMO-mmXpo4delta931-948 
pMA107 H14-bdSUMO-mmXpo4delta241-260&931-948 
pMA111 H14-bdSUMO-mmXpo4delta241-260 
pMA114 H14-ZZ-bdSUMO-ggSox2 
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Construct 
ID 

Construct Name 

pMA119 H14-ZZ-bdSUMO-ggSox2 HMG box domain 
pMA131 H14-bdSUMO-atgt-mmXpo4Y110R 
pMA134 H14-bdSUMO-atgt-mmXpo4D395R 
pMA136 H14-bdSUMO-atgt-mmXpo4D396R 
pMA137 H14-bdSUMO-atgt-mmXpo4E401R 
pMA139 H14-bdSUMO-atgt-mmXpo4E904R 
pMA141 H14-bdSUMO-atgt-mmXpo4E905R 
pMA143 H14-bdSUMO-atgt-mmXpo4D395D396R 
pMA145 H14-bdSUMO-atgt-mmXpo4E904E905R 
pMA146 H14-bdSUMO-atgt-mmXpo4E390Q 
pMA147 H14-bdSUMO-atgt-mmXpo4E390R 
pMA148 H14-bdSUMO-atgt-mmXpo4E462R 
pMA150 H14-bdSUMO-atgt-mmXpo4E465R 
pMA151 H14-bdSUMO-atgt-mmXpo4D470N 
pMA152 H14-bdSUMO-atgt-mmXpo4D470R 
pMA153 H14-bdSUMO-atgt-mmXpo4E537Q 
pMA154 H14-bdSUMO-atgt-mmXpo4E537R 
pMA155 H14-bdSUMO-atgt-mmXpo4S631A 
pMA156 H14-bdSUMO-atgt-mmXpo4S631R 
pMA157 H14-bdSUMO-atgt-mmXpo4S695R 
pMA161 H14-bdSUMO-atgt-mmXpo4E906R 
pMA165 H14-ZZ-bdSUMO-GS-hseIF5AE42A 
pMA177 H14-bdSUMO-atgt-mmXpo4D395D396E904E905R 
pMA189 H14-ZZ-bdSUMO-hseIF5AK50A 
pMA190 H14-ZZ-bdSUMO-hseIF5AK50R 
pMA191 H14-ZZ-bdSUMO-hseIF5AH51A 
pMA215 H14-bdSUMO-atgt-mmXpo41-460 
pMA218 H14-bdSUMO-atgt-mmXpo4delta559-600 
pMA219 H14-bdSUMO-atgt-mmXpo4delta575-600 
pMA220 H14-bdSUMO-atgt-mmXpo4delta654-668 
pMA221 H14-bdSUMO-atgt-mmXpo4delta1036-1040 
pMA222 H14-bdSUMO-atgt-mmXpo41-625 
pMA223 H14-bdSUMO-atgt-mmXpo41-691 
pMA224 H14-bdSUMO-atgt-mmXpo41-759 
pMA225 H14-bdSUMO-atgt-mmXpo41-967 
pMA226 H14-bdSUMO-atgt-mmXpo41-993 
pMA227 H14-bdSUMO-atgt-mmXpo41-1069 
pMA228 H14-bdSUMO-atgt-mmXpo41-1120 
pKS308 ED-SUMOvera-H12-mmXpo7A 
pDG2298 H14-bdSUMO-Avi-hsXpo7 
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Table 5-7 List of vectors used in this study 

H10, H14 and H21, 10,14 and 21 histidine tags; SUMO, Small ubiquitin-like modifier protease; ZZ, Z domain 
of Staphylococcal Protein A; GFP, green fluorescent protein; TEV, tobacco etch virus protease; NEDD8, 
Neural precursor cell expressed developmentally down-regulated protein 8; bd, Brachypodium distachyon; 
mm, Mus musculus; all other proteins were from Homo sapiens 

pKG031 and pKG078 were kindly provided by K. Gencalp (our lab), T145 was kindly provided by C. Enke (our 
lab). pSF965 was kindly provided by Dr. Steffen Frey (our lab). pKS308 was kindly provided by Dr. Katharina 
Seibel (our lab). pDG2298 was kindly provided by Prof. Dirk Görlich. 

 

5.2.2 Protein expression and purification 

Expression and purification of Xpo4 variants 

All Xpo4 variants were expressed as N-terminal H14-bdSUMO fusion in E.coli 

Top10 F’ cells. The constructs were transformed into Top10 F’ cells and plated on 

LB agar plates with kanamycin for selection. A single colony was inoculated in 

100 ml TB medium supplemented with kanamycin, and pre-culture was grown 

overnight at 30 °C with 95 rpm shaking. The pre-culture was diluted to OD600 of 0.3 

into 500 ml TB supplemented with kanamycin and incubated at 30 °C until OD600 

reached to 1.0. Cultures were transferred to 21 °C and grown until OD600 reached 

to 2.0. Protein expression was induced by the addition of 150 µM IPTG and 

expression was performed for 14-16 h at 21 °C. Before centrifugation, 5 mM EDTA 

and 1 mM PMSF were added to the culture to inhibit proteases. Cells were 

harvested by centrifugation (10 min, 4 °C, 5000 rpm, F9 rotor) and resuspended in 

RS1 buffer (50 mM Tris/HCl pH 7.7, 500 mM NaCl, 2 mM Mg(OAc)2) 

supplemented with 5% glycerol to an OD600 of 100. Resuspended cells were snap 

frozen in liquid nitrogen and stored at -80 °C or processed immediately. The cells 

were thawed in warm water, supplemented with 5 mM DTT and lysed with 

Branson Sonifier W-450 (40% duty cycle, 9 output power, 2x 2 min on ice). Lysate 

was cleared by centrifugation (1.5 h, 4 °C, 41000 rpm, T647.5 rotor). 15 mM 

imidazole was added to supernatant and the supernatant was incubated with 1 ml 

Ni (II) chelate matrix (24% Ni-EDTA amide coupled, PEG-passivated silica with 

500 Å pores; matrix was prepared by Prof. Dirk Görlich) equilibrated with RS1 

buffer supplemented with 15 mM imidazole for 1.5 h at 4 °C. Beads were settled 

and the supernatant was removed. Beads were resuspended with RS1 buffer, 

transferred to a gravity flow column (Sigma-Aldrich GmbH) and washed thoroughly 

with RS1 buffer containing 25 mM imidazole and 5 mM DTT. Elution was carried 
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out by protease cleavage based on (Frey and Görlich, 2014). Briefly, beads were 

incubated with 200 nM ZZ-tagged bdSENP1 protease (expressed in our lab by 

Steffen Frey) in RS1 buffer containing 25 mM imidazole and 2 mM DTT for 1.5 h at 

4 °C. 1 ml RS1 buffer was added from top and the eluate was collected in a single 

fraction. The eluate consisted untagged protein and ZZ-bdSENP1 protease. The 

protease was removed by incubating the eluate with 20 µL anti-Z affibody matrix 

(200 µM ZpA963 dimer coupled, GSH quenched Sepharose 2B, matrix was 

prepared by Prof. Dirk Görlich) for 1 h at 4 °C. Unbound fraction was subjected to 

a Superdex 200 16/60 gel filtration column (GE Healthcare) equilibrated with 50 

mM Tris/HCl pH 7.7, 150 mM NaCl, 2 mM MgOAc and 2 mM DTT. Peak fractions 

were pooled, supplemented with 250 mM sucrose, aliquoted (to prevent repeated 

freeze-thaw cycles), snap frozen in liquid nitrogen and stored at -80 °C. This 

protocol allowed production of 20-25 mg Xpo4 from 0.5 L of expression culture. 

For the proteins that were used in crystallization, anion exchange chromatography 

was performed after the size exclusion chromatography to remove minor 

proteolytic degradation contaminants. Peak fractions of the gel filtration were 

pooled; protein sample (diluted to 20 mM NaCl with 20 mM Tris/HCl pH 7.0, 

2 mM DTT) was injected to a Mono Q HR 5/5 1 ml column (GE Healthcare) 

equilibrated with 20 mM Tris/HCl pH 7.0, 20 mM NaCl and 2 mM DTT. Bound 

proteins were eluted with a linear gradient ending at 50 mM Tris/HCl pH 7.0, 300 

mM NaCl, 2 mM DTT. Pure Xpo4 fraction was directly used for complex formation 

and crystallization trials. 

Expression and purification of Selenomethionine-substituted Xpo4 

The Xpo4 constructs were transformed into BL21 cells and plated on LB agar 

plates with kanamycin for selection. A single colony was inoculated in 1 mL LB 

medium supplemented with kanamycin and grown at 37 °C for 3-4 h. The culture 

was centrifuged; pellet was washed twice with M9 medium and resuspended in 

1 mL M9 medium. 200 ml M9 medium was inoculated with the resuspended cells 

and the pre-culture was incubated o/n at 37 °C. Expression cultures were 

prepared by inoculating 3x 50 ml of pre-culture in 3x 700 ml fresh M9 medium. 

Cultures were grown until OD600 of 0.6 at 37 °C and then transferred to 20 °C. 

After OD600 reached to 0.8-1.0, 100 mg/L lysine, phenylalanine and threonine 
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(Sigma-Aldrich GmbH), 50 mg/L isoleucine, leucine, valine (Sigma-Aldrich GmbH) 

and 50 mg/L selenomethionine (Acros Organics) were added. Cultures were 

incubated at 20 °C for 15-20 min and protein expression was induced by the 

addition of 200 µM IPTG. Protein expression took place for 12-14 h. The rest of 

the protocol was performed as described for native Xpo4. Since the 

selenomethionine is prone to oxidation, 10 mM DTT was added to the harvested 

cells before lysis and DTT concentration of all buffers was increased to 5 mM 

during purification. 

Expression and purification of RanGTP 

Ran5-180(Q69L) was expressed and purified mainly following the protocol given for 

Xpo4 variants with the modifications described below. Cells were resuspended in 

RS2 buffer (50 mM HEPES/KOH pH 8.2, 500 mM NaCl, 2 mM MgCl2) 

supplemented with 5% glycerol, 100 µM DFP. After binding the protein to Ni (II) 

chelate matrix, beads were washed with two column volume (CV) of RS2 buffer 

containing 25 mM imidazole, 5 mM DTT, and 30 µM GTP; then with 2 CV of RS2 

buffer containing 25 mM imidazole, 5 mm DTT, and 1 mM ATP. Final washing was 

carried out using RS2 buffer containing 25 mM imidazole and 5 mM DTT. Elution 

was carried out either with untagged bdSENP1 protease or with RS2 buffer 

containing 500 mM imidazole and 5 mM DTT (for complex formation and 

crystallization trials). bdSENP1 protease was separated from Ran via cation 

exchange chromatography. The eluate (diluted to 100 mM NaCl with 50 mM 

Tris/HCl, 5 mM MgOAc, 2 mM DTT) was bound to a HiTrap SP HP 5 ml column 

(GE Healthcare) equilibrated with 20 mM Tris/HCl pH 7.5, 40 mM NaCl, 5 mM 

MgOAc, and 2 mM DTT. First, protease was eluted with a gradient ending at 300 

mM NaCl, and then Ran was eluted with 50 mM Tris/HCl pH 7.5, 600 mM NaCl, 5 

mM MgOAc, and 2 mM DTT. 

The nucleotide state of Ran was confirmed by following protocol. 5 nm of purified 

Ran was incubated at 95 °C for 5 min in order to denature the protein and release 

the nucleotide. Debris was removed by centrifugation (90 sec, 14000 rpm, F-45-

30-1 rotor; then 10 min, 45000 rpm, S45A rotor), supernatant (diluted to 50 mM 

NaCl with 50 mM Tris/HCl pH8.0) was injected to a Mono Q HR 5/5 1 ml column 

(GE Healthcare) equilibrated with 50 mM Tris/HCl pH 8.0, and eluted with 40 % 
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linear gradient with 50 mM Tris/HCl pH 8.0, 1 M NaCl. Elution pattern was 

compared with that of a 5 nmol GDP-GTP mixture. 

Expression and purification of other proteins 

All other proteins were expressed and purified as described for Xpo4 variants with 

minor modifications. Protein expression was induced at OD600 of 0.8-1.0. Glycerol 

was omitted during resuspension. Single immobilized metal affinity 

chromatography (IMAC) step with Ni (II) chelate matrix was enough to obtain the 

desired protein in high concentration and purity. Bound proteins were eluted with 

RS1 buffer supplemented with 500 mM imidazole and 2 mM DTT. 

Expression of proteins with in vivo biotinylation 

Streptavidin-biotin complex is one of the strongest non-covalent complex having a 

Kd of 10-15 M and this complex is stable at extreme pH, temperature or salt 

concentrations. We exploited this interaction in the pull down experiments by using 

a biotinylated protein and a streptavidin-coupled solid phase (streptavidin-agarose, 

Sigma-Aldrich GmbH). For biotinylation, the expression constructs were designed 

to have an N-terminal Avi-tag (amino acid sequence: GLNDIFEAQKIEWHE), 

which can be recognized by biotin ligase BirA for covalent attachment of a biotin 

moiety (Beckett et al., 1999). The expression construct was co-transformed with 

BirA expression vector  (pSF965). Before induction, 20 µg/ml biotin was added to 

the culture medium. Protein expression was performed as native proteins. 

SDS-PAGE 

Recombinant proteins were analyzed by discontinuous sodiumdodecylsulfate 

polyacrylamide gels (SDS-PAGE) according to the protocols provided by 

(Sambrook and Russell, 2001). All gels were prepared by Gabriele Hawlitschek 

and Jürgen Schünemann with the components indicated in Table 5-8. Gels were 

run for 65 min at 50 mA constant current. Afterwards, the proteins were fixed and 

stained by heating the gel in 3% acetic acid and 1:100 dilution of Coomassie stock 

solution. Gels were destained with H2O and documented using an EPSON 

Scanner. 
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 Heavy Gel (16%) Light Gel (7.5%) Stacking Gel (4.5%) 
Rotiphorese Gel 30 108 ml 51 ml 15 ml 
2 M Tris pH 8.8 40 ml 40 ml – 
0.5 M Tris pH 6.8 – – 15 ml 
H2O 32 ml 107 ml 68 ml 
10% SDS 2 ml 2 ml 1 ml 
85% Glycerol 8 ml – – 
2 M Sucrose 10 ml – – 
TEMED 130 µl 130 µl 150 µl 
10% APS 2x 640 µl 2x 640 µl 1.5 ml 

Table 5-8 Composition of gradient gel solutions 

5.2.3 In vitro modification of eIF5A 

Deoxyhypusination 

Protocol for the deoxyhypusination reaction was adapted from (Lipowsky et al., 

2000). 20 µM untagged recombinant eIF5A was incubated with 2 µM 

deoxyhypusine synthase, 2 mM NAD, 2 mM spermidine, 2 mM DTT, 200 mM 

glycine pH 9.0 for 4 h at 37 °C. In order to separate deoxyhypusinated eIF5A 

(eIF5A(Dhp)) from non-modified eIF5A (eIF5A(Lys)), buffer was exchanged to 

20 mM KHPO4 pH 6.0, 25 mM NaCl, and 2 mM DTT, and sample was loaded to 

HiTrap SP HP 1 ml column equilibrated with 20 mM KHPO4 pH 6.0, 25 mM NaCl, 

2 mM DTT. Bound proteins were eluted with 15 column volume 40% linear 

gradient of 50 mM KHPO4 pH 6.0, 2 M NaCl, 2 mM DTT. The efficiency of 

modification was 90 – 95% 

When eIF5A15-154 was used for modification, pH of KHPO4 buffers was adjusted to 

6.5 

Hydroxylation of eIF5A(Dhp) 

Hydroxylation assay was adapted from a published protocol (Park et al., 2011) as 

follows: 20 µM untagged eIF5A(Dhp) was incubated with 20 µM H14-tagged 

deoxyhypusine hydroxylase, 2 mM DTT, 25 mM Tris/HCl pH 7.5 for 4 h at 37 °C. 

eIF5A was separated from the enzyme by Ni (II) chelate matrix. Unbound proteins 

were used in the following reaction. 
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Reversal of deoxyhypusination 

For enzymatic removal of deoxyhypusine, 20 µM eIF5A(Dhp) was incubated with 2 

µM deoxyhypusine synthase, 2 mM NAD, 2 mM 1,3-diaminopropane, 2 mM DTT, 

200 mM glycine pH 9.0 for 4 h at 37 °C. Removal of modification was analyzed by 

cation exchange chromatography as explained for deoxyhypusination. The 

efficiency of removal was 100%. 

End product of the hydroxylation reaction was also subjected to reversal of 

deoxyhypusination reaction and cation exchange chromatography to determine 

the efficiency of the hydroxylation reaction.  

Large scale hypusination 

Deoxyhypusination and hydroxylation reactions were coupled for the large-scale 

eIF5A hypusination. Since the second reaction is irreversible, coupling pulls the 

reaction in the forward direction, which increases the efficiency of the 

deoxyhypusination. Briefly, 160 µM H14-ZZ-bdSUMO tagged eIF5A was 

incubated with 4 µM deoxyhypusine synthase, 20 µM deoxyhypusine hydroxylase, 

2 mM NAD, 2.5 mM spermidine, 5 mM DTT, 50 mM Tris pH 7.5 for 16 h at room 

temperature. Afterwards, 20 µM deoxyhypusine hydroxylase was added and 

further incubated for 4 h at 37 °C. eIF5A was separated from the enzymes by 

anti-Z affibody dimer matrix. Bound proteins were eluted with 150 nM bdSUMO 

protease in 15 mM Tris/HCl pH 7.0, 150 mM NaCl, and 2 mM DTT. Elution (diluted 

to 50 mM NaCl with 15 mM Tris/HCl pH 7.0) was bound to a HiTrap SP HP 5 ml 

column (GE Healthcare) equilibrated with 15 mM Tris/HCl pH 7.0, 20 mM NaCl, 

and 2 mM DTT. After non-modified eIF5A was eluted with 50 mM Tris/HCl pH 7.0, 

300 mM NaCl, and 2 mM DTT, modified eIF5A was eluted with 50 mM Tris/HCl pH 

7.0, 600 mM NaCl, and 2 mM DTT. 

Reversal of deoxyhypusination reaction was carried out as explained in the 

previous section with small changes; 100 µM modified eIF5A and 2.5 µM H10 

tagged deoxyhypusine synthase were used for the reaction. eIF5A was separated 

from the enzyme by Ni (II) chelate matrix. Buffer of the unbound proteins were 

exchanged to 15 mM Tris/HCl pH 7.0, 20 mM NaCl, and 2 mM DTT. eIF5A(Hpu) 

was separated from eIF5A(Lys) by cation exchange chromatography as explained 
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above. Purified protein was supplemented with 250 mM sucrose, aliquoted, snap 

frozen in liquid nitrogen and stored at -80 °C. 

5.2.4 Sample preparation for crystallization 

Protein samples of the highest purity were used in the sample preparation for the 

crystallization trials. Major effort was to use samples as fresh as possible. 

Therefore, the protein samples were used either directly after purification or just 

after one round of freeze thaw cycle. For initial crystallization trials, large-scale 

samples were prepared. After the initial hits, small-scale preparations were 

preferred. These preps were aliquoted in 5 µL fractions to prevent repeated freeze 

thaw cycles. In the following sections, I noted down the protocols of the most 

representative preparations. For simplicity, I described all the protocols for the 

full-length proteins. When complex formation was carried out with engineered 

proteins (e.g eIF5A15-154, Xpo4ΔN), very same protocol was employed by simply 

substituting the engineered protein with the full-length protein. When 

selenomethionine substituted proteins were used, DTT concentration of the buffers 

was increased to 5 mM. 

Reconstitution of the eIF5A export complexes 

For large-scale preparations, 12.8 mg Xpo4 was directly mixed with 4.7 mg H14-

ZZ-bdSUMO tagged RanGTP and 1.9 mg eIF5A(Hpu). After 1 h incubation on ice, 

sample buffer was exchanged to 15 mM Tris/HCl pH 7.7, 48 mM NaCl, 2 mM 

MgOAc and 2 mM DTT (binding buffer). The sample was further incubated on ice 

for 3 h. Then, 4 ml of the pre-equilibrated anti-Z affibody dimer beads were added 

and the complex was immobilized via tagged RanGTP. After 2 h rotation in the 

cold room, the beads were transferred to a gravity flow column and unbound 

proteins were removed by washing with the binding buffer. Immobilized RanGTP 

and the bound proteins were recovered by the protease elution by incubating with 

150 nM bdSUMO protease containing binding buffer. The eluate was kept on ice 

o/n. Next day; the eluate was centrifuged 10 min at 14000 rpm and subjected to a 

Superdex 200 16/60 gel filtration column (GE Healthcare) equilibrated with 15 mM 

Tris/HCl pH 7.7, 18 mM NaCl, 2mM MgOAc and 2mM DTT. Peak fractions were 

pooled and concentrated to 12 mg/ml. After concentration, sample was directly 

used for crystallization. 
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For small-scale preparations, 1.38 mg Xpo4 was mixed with 228 µg untagged 

RanGTP and 180 µg eIF5A(Hpu) and buffer was exchanged to 15 mM Tris/HCl 

pH 7.7, 18 mM NaCl, 2mM MgOAc and 2mM DTT. The sample was kept at 4 °C 

o/n for complex formation. Export complex was subjected to size exclusion 

chromatography as large-scale preparations in order to remove free RanGTP and 

eIF5A(Hpu). Peak fractions were pooled, concentrated to 12 mg/ml and used for 

manual crystal settings. The rest was divided in 5 µL aliquots, snap frozen in liquid 

nitrogen and stored at -80 °C. 

Reconstitution of the RanGTP•Xpo4 complex 

Nuclear RanGTP•Xpo4 complex was prepared by following the large-scale eIF5A 

export complex formation protocol with two modifications. First, the complex 

formation was done by mixing 10.8 mg Xpo4 with 3.5 mg H14-ZZ-bdSUMO tagged 

RanGTP. Second, after the size exclusion chromatography, the complex was 

concentrated to 15 mg/ml and used directly for crystallization. 

Xpo4 preparation 

As explained in 5.2.2, after purification, Xpo4 was cleared by size exclusion 

chromatography and then polished by anion exchange chromatography. 

Afterwards, buffer of Xpo4 was exchanged either to 15 mM Tris/HCl pH 7.7, 

20 mM NaCl and 2 mM DTT or to 15 mM Tris/HCl, 100 mM NaCl and 2 mM DTT. 

After concentrating to 15 mg/ml, Xpo4 was used for crystallization. 

Reconstitution of the Sox2 import complex 

Sox2 import complex was prepared by following essentially the same protocol for 

the reconstitution of the RanGTP•Xpo4 complex. ZZ-bdNEDD8-Sox2-H6 was used 

for the instead of RanGTP. 

5.2.5 In vitro limited proteolysis 

In order to identify the possible flexible regions, proteins or protein complexes 

were subjected to (analytical scale) in vitro limited proteolysis. 3 µg of protein or 

protein complex was mixed with trypsin, chymotrypsin and GluC (Roche) in 1:20, 

1:100, 1:500, 1:2500 (w/w) protease: substrate ratio in 15 µL of 15 mM Tris/HCl 

pH 7.7, 18 mM NaCl, 2 mM MgOAc. As a control one sample without any protease 
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was prepared. The samples were incubated 1 h at 22 °C in a thermocycler. 

Afterwards, 15 µL SDS loading buffer (supplemented with 5 mM PMSF and 5 mM 

EDTA) was added and the samples were boiled (in the thermocycler) at 98 °C for 

10 min. 10 µL of the samples was analyzed by SDS-PAGE followed by Coomassie 

blue staining. 

For the analysis of the digested samples in size exclusion chromatography, 

180 µg of eIF5A15-154•Xpo4•RanGTP complex was incubated with trypsin 

(1:500 w/w) or chymotrypsin (1:100 w/w) in 30 µL of 15 mM Tris/HCl pH 7.7, 18 

mM NaCl, 2 mM MgOAc, 2 mM DTT for 90 min at room temperature. 25 µL of the 

sample was injected to a Superdex 200 10/30 gel filtration column equilibrated 

with reaction buffer. Eluted proteins were collected in 200 µL fractions and 

precipitated with 25 µL of 100% TCA. Pellet was resuspended in 25 µL SDS 

loading buffer and 10 µL was analyzed by SDS-PAGE followed by Coomassie 

blue staining. 

In order to monitor the effect of the deletions, eIF5A export complexes with Xpo4, 

Xpo4ΔN, Xpo4ΔN&C and Xpo4ΔC were subjected to analytical scale digestions. 

3 µg of each of the complexes were incubated with trypsin (1:1000 w/w) for 1 h at 

22 °C and analyzed by following the same procedure above. 

5.2.6 Molecular weight determination with static light scattering (SLS) 

Size exclusion chromatography can be used to estimate the molecular weight of 

globular proteins. Nevertheless, different conformations or nonspecific interactions 

with column particles can change the running behavior of the sample. In order to 

determine the absolute mass, therefore the stoichiometry, of the proteins or 

protein complexes, we used size exclusion chromatography with multi angle light 

scattering (SEC-MALS). The principle of the technique is that, for a given particle, 

the amount of scattered light is proportional to the molecular concentration and the 

molar mass. In the device, a Superdex 200 10/30 GL (GE Healthcare) gel filtration 

column is coupled to UV (1260 Infinity, Agilent Technologies, USA) and refractive 

index (RI) (Shodex RI-101, Showa Denko KK) detectors to measure the protein 

concentration and to a miniDAWN TREOS (Wyatt Technology) static light 

scattering detector to measure the intensity of the scattered light. For the 
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SEC-MALS experiments, 100 µL of 2 mg/ml sample was used. Astra 6 software 

(Wyatt Technology) was used to calculate the absolute molecular mass. 

5.2.7 Crystallization 

It is extremely difficult to predict the conditions that would trigger proteins or 

protein complexes to form well-ordered crystals. Therefore, it is necessary to 

screen broad range of conditions. We used the crystallization facility of MPI-BPC, 

run by Dr. Vlad Pena, for automated screening of the crystallization conditions. 

First, large scale crystallization conditions were screened for initial crystallization 

hits. Later, the hits were optimized by grid screens. Finally, manual drops were 

assembled to obtain larger crystals. These crystals were harvested and stored for 

data collection. Vapor diffusion was the choice of method for all the crystallization 

setups.  

Sparse matrix screening 

We used the commercially available crystallization screens for initial hits. 

Crystallization drops were set up either in 96 well sitting drop MRC plates 

(Hampton) using Cartesian Microsys (Genomic Solutions) Nano dispenser robot or 

in 96 well sitting drop Intelli plates (Ari) using Gryphon (Ari) robot. 60 nl of reservoir 

solution was pipetted into the wells of the plates followed by 60 nl of protein 

solution (100 µL + 100 µL for Gryphon robot). Plates were sealed tightly and 

stored at 4 °C or 20 °C incubators. Plates were imaged at regular intervals by 

automated imagers (Formulatrix) and crystal growth was monitored via RockMaker 

software (Formulatrix).  

Grid screening 

When crystals were observed in the sparse matrix screens, corresponding 

conditions were optimized by grid screens to improve the growth, shape and 

quality of the initial crystals. RockMaker software (Formulatrix) was used to 

generate the grid screens. The grid screens were designed by varying the pH of 

the buffer and the concentration of the precipitant of the initial condition. One such 

example is shown below. The plates were pipetted and monitored as described for 

sparse matrix screens. 



 132 

 
Figure 5-1 An example MRC plate of a grid screen design 

Initial crystallization condition is 0.1 M MES pH 6.5, 15% PEG 400 (PEGII-A2). Original condition was placed 
to E7 in the grid screen. pH was varied across columns to cover the whole buffering capacity. On the other 
hand, precipitant concentration was varied across rows. (MRC plate image was taken from MRC website) 

Manual drops 

After the conditions were optimized in the grid screens, further refinement was 

done with manual drops using 24-well hanging drop Linbro plates. 500 µL of the 

crystallization conditions was pipetted into the well. 1 µL of the reservoir solution 

was placed on a coverslip and 1 µL of the protein solution was added. After 2 or 3 

such drops were prepared, the coverslip was inverted and greased to the well. The 

plates were kept at room temperature or placed to 20 °C incubators. Crystal 

growth was followed by visual examination under Leica MZ6 microscope (Leica 

Microsystems). 

Seeding 

Seeding technique was used to optimize the crystal growth and the final size of the 

crystals. Crystallization process can be divided into two, namely, nucleation and 

crystal growth. Although the aim of the initial screening is to find the optimum 

condition that supports both, in order to obtain larger crystals, it is necessary to 

decrease the number of the nucleation events. This can be achieved by modifying 

the crystallization condition such that it does not allow new nucleation events but 

supports crystal growth from the present crystals (or seeds). We employed both 

streakseeding and microseeding for optimization using the manual hanging drop 

set up explained above. For streakseeding, a cat whisker was passed through the 

initial crystals to collect small crystals and then a streak line was drawn in the new 

10.8% 17.2%
PEG 400

pH 5.2

pH 7.0

0.1 M

MES
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drop to leave the seeds. For microseeding, the initial crystals were taken into 5-10 

µL new reservoir solution. Afterwards, crystals were crushed by vortexing, 

sonication or shaking with a glass bead to create seed stock. The seed stock was 

diluted in reservoir solution to create dilutions series (ranging from 10-1 to 10-9) and 

1 µL of the each dilution was used as precipitant for crystallization. 

Crystal mounting 

After crystals reached to a certain size, they had to be harvested in order to store 

and transport. Crystallization drop containing the desired crystal(s) was slowly 

exchanged with a cryo protectant solution (i.e 0.1 M MES pH 6.26, 26 % PEG 400 

and 15 % Glycerol). After the crystal was equilibrated with the cryo protectant, the 

crystal was carefully fished out of the drop using 0.06-0.5 µm sized Nylon loops 

mounted on a magnetic head (mounted CryoLoops, Hampton Research) and 

immediately dipped in liquid nitrogen for freezing. Finally, loop was placed into 

puck and stored in Dewar until further use in the synchrotron. 

In situ limited proteolysis 

After the results of the in vitro limited proteolysis experiment, In situ limited 

proteolysis was performed. Trypsin, chymotrypsin and GluC were diluted with 

complex buffer to 5.26 µg/ml, 52.6 µg/ml and 100 µg/ml, respectively and each 

protease was tested separately. 1 µL of the protease was mixed with 11 µL of the 

protein solution (12 mg/ml) on ice just before the crystallization trial. The grid 

screen crystallization plates (Figure 5-1) were set up as described in sparse matrix 

screening. 

5.2.8 Structure determination 

All diffraction data were collected at beamline X10SA at the Swiss Light Source 

(Villigen, Switzerland). All datasets were indexed, integrated and scaled with XDS 

(Kabsch, 2010). SHELXD was used to locate the 56 selenium sites (out of 66) 

(Schneider and Sheldrick, 2002). Initial phases were obtained by molecular 

replacement with PHASER (McCoy, 2007) using Ran (PDB ID 3GJX Monecke et 

al., 2009) and eIF5A (PDB ID 3CPF Tong et al., 2009) as search models. The 

resulting information and position of selenium atoms were used to obtain the 

electron density map in AutoSol Wizard (Terwilliger et al., 2009) in Phenix suite 
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(Adams et al., 2010). Model building was carried out with resolve and buccaneer 

(Cowtan, 2006) using AutoBuild Wizard (Terwilliger et al., 2008) in Phenix and with 

COOT (Emsley and Cowtan, 2004). Iterative cycles of refinement using PHENIX 

Refine (Afonine et al., 2012) were done after each round of model building and the 

quality of the model was assessed with MolProbity (Chen et al., 2010). In the final 

stages, the model was refined against a native data set at a resolution of 3.20 Å to 

an Rwork of 23.3% and Rfree of 29.9%. The model has good stereochemistry, 

with 96.4% of the residues in the most favored region of the Ramachandran plot 

and only two residues in the disallowed region. 

All figures were prepared using USCF Chimera (http://www.cgl.ucsf.edu/chimera).  

5.2.9 Binding assays 

Binding assays were performed to analyze the protein-protein interactions. 

Different methods were employed to precipitate the protein complexes. 

Representative protocols for each different binding assay were written below. 

Protein concentrations in specific experiments might differ than written here; those 

cases were clearly indicated in the text and explained in the figure legends. 

In all experiments, freshly prepared or aliquoted (single use) proteins were used. 

Salt contributions of all the components were calculated and 0.5 M NaCl was used 

to compensate the salt concentration when necessary. All proteins were mixed in 

50 mM Tris/HCl pH 7.7, 2 mM Mg(OAc)2 and 2 mM DTT buffer. Final salt 

concentration was adjusted to 100 mM after the contributions from the proteins. 

Therefore, 50 mM Tris/HCl pH 7.7, 100 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT 

was considered as “binding buffer” in the following sections. 

When Xpo4-RanGTP interaction was tested, 1 µM Xpo4 and 0.75 µM ZZ-

bdNEDD8 tagged RanGTP were used. 

When eIF5A-Xpo4•RanGTP interaction was tested, 1.25 µM eIF5A was mixed 

with 1µM Xpo4 and 0.75 µM ZZ-bdNEDD8 tagged RanGTP. 

In Xpo4 competition experiments, 0.75 µM ZZ-NEDD8 tagged RanGTP was 

incubated with 0.75 µM Xpo4 and 0.75 µM H14-Avi-Tev tagged Xpo4. 
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When HMG domain of Sox2-Xpo4 interaction was tested, 0.75 µM Xpo4 and 2 µM 

HMG domain were used. 

When eIF5A mutants were tested for Xpo4•RanGTP interaction, 0.75 µM H14-ZZ-

bdSUMO tagged eIF5A mutants were incubated with 1 µM Xpo4 and RanGTP, 

each. 

When Xpo7-cargo interactions were tested, 0.5 µM of H14-ZZ-bdNEDD8 tagged 

cargoes was incubated with 0.75 Xpo7 in the presence or absence of 1.5 µM 

RanGTP. 

Binding assays with anti-Z affibody dimer beads 

Proteins were mixed in 350 µL salt adjusted binding buffer and incubated 2 h in 

cold room on SB3 rotator (Bibby Scientific) with 12 rpm. Meanwhile 40 µL of anti-Z 

affibody dimer coupled beads were transferred to MoBiCols (MoBiTec) and 

equilibrated with binding buffer (2x 350 µL). 300 µL of the sample was transferred 

to MoBiCols and incubated with beads to immobilize ZZ-bdNEDD8 or ZZ-bdSUMO 

tagged cargo. After 90 min rotation, unbound proteins were removed by 

centrifugation at 700 rpm for 30 sec in a refrigerated tabletop centrifuge. The 

beads were washed twice with binding buffer (680 + 320 µL). 40 µL of 250 nM 

bdNEDD8 or bdSUMO protease supplemented binding buffer was added to each 

sample and incubated in the cold room for 90 min. Cleaved proteins were 

collected in a total volume of 100 µL as following: After the cleavage 40 µL was 

collected in a 1.5 ml tube by centrifugation, 60 µL binding buffer was added to the 

beads and again centrifuged and collected in the same tube. Then, it was mixed 

with 100 µL SDS loading buffer “ Eluate”.  Remaining proteins (on the beads) were 

eluted by incubating the beads with 200 µL SDS loading buffer for 5 min at room 

temperature and centrifugation “Beads”. 25 µL of the remaining 50 µL of the initial 

sample and 25 µL of the unbound protein fraction were mixed with 25 µL SDS 

loading buffer, “Input” and “FT”. 10 µL of Input, FT, Eluate and Beads were 

analyzed by SDS-PAGE. 

Binding assays with phenyl sepharose 

Proteins were mixed in 350 µL salt adjusted binding buffer and incubated 2 h in 

the cold room on SB3 rotator (Bibby Scientific) with 12 rpm. Meanwhile 40 µL of 
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phenyl sepharose beads (low substitution, GE Healthcare) were transferred to 

MoBiCols (MoBiTec) and equilibrated with binding buffer (2x 350 µL). 300 µL of 

the sample was transferred to MoBiCols and incubated with beads to immobilize 

the NTR. After 2 h rotation, unbound proteins were removed by centrifugation at 

700 rpm for 30 sec in a refrigerated tabletop centrifuge. The beads were washed 

twice with binding buffer (680 + 320 µL). Bound proteins were eluted by incubating 

beads with 100 µL 2% SDS supplemented SDS loading buffer for 5 min at room 

temperature. After 100 µL is collected in a tube by centrifugation, another 100 µL 

SDS loading buffer was added to the beads and collected in the same tube (total 

200 µL) “Eluate”. 25 µL of the remaining 50 µL of the initial sample and 25 µL of 

the unbound protein fraction were mixed with 25 µL SDS loading buffer, “Input” 

and “FT”. 10 µL of Input, FT and Eluate were analyzed by SDS-PAGE. 

5.2.10 Nuclear export assays 

The assays were performed as previously described (Güttler et al., 2010) with the 

following modifications: 2 µM alexa567-labelled hypusinated eIF5A was allowed to 

diffuse into the nuclei of permeabilized HeLa cells. After 15 min, the mixture was 

split and 2 µM Xpo4 variant was added. After 30 min, the distribution of eIF5A was 

recorded by confocal fluorescence microscopy. 

5.2.11 Pull down experiments from cytoplasmic Hela extracts 

Cytoplasmic Hela S100 extracts used in this study were kindly provided by 

Lührmann Lab (Department of Cellular Biochemistry, MPI-BPC). Cytoplasmic 

SILAC Hela extracts (Heavy and Light) were kindly provided by Dr. Miroslav 

Nikolov (Mass Spectrometry Research Group, MPI-BPC). 

The cytoplasmic extracts from Lührmann Lab were supplemented with 20 mM 

HEPES/KOH pH 7.5 and 40 mM NaCl. Both extracts were centrifuged at 45000 

rpm for 1 h at 4 °C using S55A rotor. Supernatant was carefully collected, 

aliquoted, flash frozen in liquid nitrogen and stored at -80 °C. 

Xpo4 and Xpo7 affinity chromatography 

In vivo biotinylated NTRs were immobilized on streptavidin agarose beads (Sigma-

Aldrich GmbH). For each reaction, 20 µL of the streptavidin agarose beads were 



 137 

used. Beads were taken to a MoBiCol, washed three times with pull down buffer 

(50 mM Tris/HCl pH 7.5, 50 mM NaCl, 5 mM Mg(OAc)2, 2 mM DTT) supplemented 

with 0.005% digitonin. Buffer was removed by centrifugation for 30 sec at 1000 

rpm at 4 °C in a tabletop centrifuge. 

For each reaction 0.5 nmol of biotinylated NTR was immobilized on beads by 

adding the required amount of protein in 500 µL pull down buffer and incubating 

1 h in cold room on SB3 rotator (Bibby Scientific) with 12 rpm. After the 

immobilization, unbound proteins were removed by centrifugation. In order to 

saturate the available biotin binding sites on the beads, the beads were washed 

three times with 2 µg biotin containing pull down buffer. Finally, beads were 

washed with pull down buffer (3x 500 µL) and then 20 µL of beads were 

transferred to 1.5 ml tubes. 

1.5 ml of the cytoplasmic Hela extract supplemented with either 5 µM RanGTP or 

same volume of RanGTP buffer was added to the tubes. The samples were 

incubated in the cold room for 3 h on SB3 rotator at 8 rpm. Afterwards, the tubes 

were placed on ice for 5 min and centrifuged for 5 min at 1000 rpm to settle the 

beads at the bottom of the tube. Supernatant was carefully removed. Beads were 

resuspended in 500 µL pull down buffer and transferred to MoBiCols. Beads were 

washed with pull down buffer (3x 500 µL) allowing them to settle again before the 

last wash. In order to remove the buffer in the bead volume (dead volume), the 

samples were centrifuged for 5 sec at 1300 rpm. MoBiCols were placed to 1.5 ml 

tubes and 30 µL SDS sample buffer was added to the beads. Tubes were kept at 

room temperature for 5 min. After centrifugation, another 30 µL SDS sample buffer 

was added and then samples were centrifuged immediately. 10 µL was analyzed 

by SDS-PAGE. 

For mass spectrometry-based quantitative proteomics, Xpo7 affinity 

chromatography was performed with the same procedure above using the 

cytoplasmic SILAC extracts. For each ‘heavy’ and ‘light’ extract, the affinity 

chromatography was performed in the presence or absence of 5 µM RanGTP. 

Affinity chromatography with Xpo7 cargoes 

After the identification of potential Xpo7 binders from cytoplasmic Hela extract. We 

wanted to test if these proteins (RhoGAP, CutC, MESH1, NAMPT, HMBS, 
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MGEA5, HDAC8, HAT1, SMUG1 and RabGGTB) can pull down Xpo7 from 

cytoplasmic Hela extract in a RanGTP dependent or RanGTP sensitive manner. 

Therefore the affinity chromatography experiment was performed by immobilizing 

the potential Xpo7 cargoes. 

We performed the affinity chromatography experiments with same procedure 

described in the previous section with some modifications. H14-ZZ-NEDD8 tagged 

cargoes were used as bait and anti-Z affibody dimer beads were used to capture 

the baits. 0.5 nmol of the cargo was immobilized and beads were washed. In 

contrast to NTR chromatography, we did not use 1.5 ml of the extract. Instead, the 

extract was diluted with same volume of pull down buffer and supplemented with 

either 3 µM RanGTP or same volume of RanGTP buffer. Finally, sample was 

centrifuged 10 min at 13000 rpm in a refrigerated tabletop centrifuge. 500 µL of 

the preparation was added to the beads and incubated in the cold room for 3 h on 

SB3 rotator at 12 rpm. Beads were settled on ice and the centrifuged. Flow 

through was collected and beads were washed. Cargoes and bound proteins were 

eluted with NEDD8 protease elution. Simply, beads were incubated with 40 µL of 

200 nM bdNEDD8 protease for 1h. Cleaved proteins were recovered in total 

volume of 80 µL. 80 µL SDS sample buffer was added to the eluate. 10 µL of the 

initial extract was mixed with 80 µL SDS sample buffer “Input”. 9 µL of input and 

16 µL of the eluates were analyzed by SDS-PAGE.  

5.2.12 Western Blotting 

Whatman papers, SDS gels, nitrocellulose membranes and foam pads were 

equilibrated in Blotting buffer (15 g/L Gylcine, 3 g/L Tris base in 20% Methanol and 

0.03% SDS). The blotting cassette was prepared as following: A layer of Whatman 

paper (3.0 mm, Whatman) was positioned on a foam pad. On top of that the SDS 

gel was placed, followed by the nitrocellulose membrane (protran, 0.2 µm pore 

size, Schleicher und Schuell GmbH). Finally, another layer of Whatman paper was 

placed and covered with another foam pad. All air bubbles were removed. Blotting 

cassette was placed into blotting buffer filled chamber such that the SDS gel faced 

the negative pole of the blotting chamber. It enabled the SDS intercalated proteins 

to migrate towards the nitrocellulose membrane. Blotting was performed at 4 °C 

either for 4 h at 400 mA or 16 h or 100 mA with gentle stirring. 
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Afterwards, the membrane was carefully removed from the cassette and incubated 

at room temperature first with 1x TBS for 10 min, then with blocking buffer (4 g 

milk powder in 100 ml 1x TBS) for 1 h. Later, the membrane was placed in a 

primary antibody containing solution (in 1:50000 dilution in blocking buffer) and 

incubated at least 2 h (up to 16 h) at room temperature. After washing three times 

with 1x TBS (10 min each), the membrane was incubated with the secondary 

antibody (Goat α-rabbit IRdye, Goat α-mouse IRdye, Licor) containing solution for 

1h at room temperature. Finally, the membrane was washed with 1x TBS (3x 10 

min), air-dried and scanned at 800 nm wavelength using the Odyssey scanner 

(Licor). 

5.2.13 Mass spectrometry analysis 

Samples to be analyzed by Mass spectrometry were separated on 10% Bis-Tris 

gels (NuPAGE, Life Technologies) and stained with Colloidal Coomassie Blue. 

Individual bands were carefully cut and delivered to Mass spectrometry facility of 

MPI-BPC for analysis. Final results were analyzed by Scaffold 4.0 software 

(Proteome Software). 

For SILAC analysis, the eluates of the heavy extract with RanGTP and light extract 

without RanGTP were mixed in equal amounts (Forward experiment). For reverse 

experiment, the eluates of the light extract with RanGTP and heavy extract without 

RanGTP were mixed. Forward and reverse experiment samples were separated 

on 4-12% gradient SDS-PAGE (NuPAGE, Life Technologies) and stained with 

Colloidal Coomassie Blue. Each gel lane was cut into 12 equal slices; proteins 

within the slices were in-gel digested with trypsin and peptides were extracted as 

described in (Shevchenko et al., 1996). The rest of the analysis was carried out by 

Samir Karaca (Mass Spectrometry Research Group, MPI-BPC) as previously 

described in (Wirth et al., 2013). 

  



 140 

 



 141 

6 REFERENCES 

Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian 
cells requires soluble cytoplasmic factors. J Cell Biol, 111: 807–816 

Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, 
Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, 
Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a 
comprehensive Python-based system for macromolecular structure solution. Acta 
Crystallogr D Biol Crystallogr, 66: 213–221 

Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, 
Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated 
crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol 
Crystallogr, 68: 352–367 

Aksu M, Trakhanov S, Görlich D (2016) Structure of the exportin Xpo4 in complex with 
RanGTP and the hypusine-containing translation factor eIF5A. Nat Commun, 7: 11952 

Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet, 
11: 115–116 

Andrade MA, Petosa C, O’Donoghue SI, Muller CW, Bork P (2001) Comparison of ARM 
and HEAT protein repeats. J Mol Biol, 309: 1–18 

Arnold M, Nath A, Wohlwend D, Kehlenbach RH (2006) Transportin is a major nuclear 
import receptor for c-Fos: a novel mode of cargo interaction. J Biol Chem, 281: 5492–
5499 

Arts GJ, Fornerod M, Mattaj IW (1998) Identification of a nuclear export receptor for tRNA. 
Curr Biol, 8: 305–314 

Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M (2002) GLFG and FxFG 
nucleoporins bind to overlapping sites on importin-beta. J Biol Chem, 277: 50597–50606 

Becker J, Melchior F, Gerke V, Bischoff FR, Ponstingl H, Wittinghofer A (1995) RNA1 
encodes a GTPase-activating protein specific for Gsp1p, the Ran/TC4 homologue of 
Saccharomyces cerevisiae. J Biol Chem, 270: 11860–11865 

Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin 
holoenzyme synthetase-catalyzed biotinylation. Protein Sci, 8: 921–929 

Benne R, Hershey JW (1978) The mechanism of action of protein synthesis initiation 
factors from rabbit reticulocytes. J Biol Chem, 253: 3078–3087 

Bevec D, Jaksche H, Oft M, Wohl T, Himmelspach M, Pacher A, Schebesta M, Koettnitz 
K, Dobrovnik M, Csonga R, Lottspeich F, Hauber J (1996) Inhibition of HIV-1 replication in 
lymphocytes by mutants of the Rev cofactor eIF-5A. Science, 271: 1858–1860 

Bischoff FR, Klebe C, Kretschmer J, Wittinghofer A, Ponstingl H (1994) RanGAP1 induces 
GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci U S A, 91: 2587–2591 



 142 

Bischoff FR, Görlich D (1997) RanBP1 is crucial for the release of RanGTP from importin 
beta-related nuclear transport factors. FEBS Lett, 419: 249–254 

Bischoff FR, Ponstingl H (1991a) Mitotic regulator protein RCC1 is complexed with a 
nuclear ras-related polypeptide. Proc Natl Acad Sci U S A, 88: 10830–10834 

Bischoff FR, Ponstingl H (1991b) Catalysis of guanine nucleotide exchange on Ran by the 
mitotic regulator RCC1. Nature, 354: 80–82 

Bohnsack MT, Czaplinski K, Görlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-
binding protein that mediates nuclear export of pre-miRNAs. RNA, 10: 185–191 

Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Görlich 
D (2002) Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport 
pathways to confine translation to the cytoplasm. EMBO J, 21: 6205–6215 

Bonner WM (1975) Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate 
microinjected histones, allow entry to small proteins, and exclude large proteins. J Cell 
Biol, 64: 421–430 

Booth DS, Cheng Y, Frankel AD (2014) The export receptor Crm1 forms a dimer to 
promote nuclear export of HIV RNA. Elife, 3: e04121 

Brownawell AM, Macara IG (2002) Exportin-5, a novel karyopherin, mediates nuclear 
export of double-stranded RNA binding proteins. J Cell Biol, 156: 53–64 

Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM (2000) Cloning and 
characterization of a novel human histone deacetylase, HDAC8. Biochem J, 350 Pt 1: 
199–205 

Bullock TL, Clarkson WD, Kent HM, Stewart M (1996) The 1.6 angstroms resolution 
crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol, 260: 422–431 

Calado A, Treichel N, Muller EC, Otto A, Kutay U (2002) Exportin-5-mediated nuclear 
export of eukaryotic elongation factor 1A and tRNA. EMBO J, 21: 6216–6224 

Cansizoglu AE, Chook YM (2007) Conformational heterogeneity of karyopherin beta2 is 
segmental. Structure, 15: 1431–1441 

Caraglia M, Marra M, Giuberti G, D’Alessandro AM, Budillon A, del Prete S, Lentini A, 
Beninati S, Abbruzzese A (2001) The role of eukaryotic initiation factor 5A in the control of 
cell proliferation and apoptosis. Amino Acids, 20: 91–104 

Caraglia M, Park MH, Wolff EC, Marra M, Abbruzzese A (2013) eIF5A isoforms and 
cancer: two brothers for two functions? Amino Acids, 44: 103–109 

Chen KY, Liu AY (1997) Biochemistry and function of hypusine formation on eukaryotic 
initiation factor 5A. Biol Signals, 6: 105–109 

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, 
Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for 
macromolecular crystallography. Acta Crystallogr D Biol Crystallogr, 66: 12–21 

Chook YM, Blobel G (1999) Structure of the nuclear transport complex karyopherin-beta2-
Ran x GppNHp. Nature, 399: 230–237 



 143 

Chuderland D, Konson A, Seger R (2008) Identification and characterization of a general 
nuclear translocation signal in signaling proteins. Mol Cell, 31: 850–861 

Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the 
IBB domain of importin-alpha. Nature, 399: 221–229 

Ciufo LF, Brown JD (2000) Nuclear export of yeast signal recognition particle lacking 
Srp54p by the Xpo1p/Crm1p NES-dependent pathway. Curr Biol, 10: 1256–1264 

Clement PM, Johansson HE, Wolff EC, Park MH (2006) Differential expression of eIF5A-1 
and eIF5A-2 in human cancer cells. FEBS J, 273: 1102–1114 

Conti E, Muller CW, Stewart M (2006) Karyopherin flexibility in nucleocytoplasmic 
transport. Curr Opin Struct Biol, 16: 237–244 

Cook A, Bono F, Jinek M, Conti E (2007) Structural biology of nucleocytoplasmic 
transport. Annu Rev Biochem, 76: 647–671 

Cook AG, Conti E (2010) Nuclear export complexes in the frame. Curr Opin Struct Biol, 
20: 247–252 

Cook AG, Fukuhara N, Jinek M, Conti E (2009) Structures of the tRNA export factor in the 
nuclear and cytosolic states. Nature, 461: 60–65 

Coutavas E, Ren M, Oppenheim JD, D’Eustachio P, Rush MG (1993) Characterization of 
proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature, 366: 585–587 

Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing 
protein chains. Acta Crystallogr D Biol Crystallogr, 62: 1002–1011 

Cracchiolo BM, Heller DS, Clement PM, Wolff EC, Park MH, Hanauske-Abel HM (2004) 
Eukaryotic initiation factor 5A-1 (eIF5A-1) as a diagnostic marker for aberrant proliferation 
in intraepithelial neoplasia of the vulva. Gynecol Oncol, 94: 217–222 

Dean KA, von Ahsen O, Görlich D, Fried HM (2001) Signal recognition particle protein 19 
is imported into the nucleus by importin 8 (RanBP8) and transportin. J Cell Sci, 114: 
3479–3485 

Doerfel LK, Wohlgemuth I, Kothe C, Peske F, Urlaub H, Rodnina MV (2013) EF-P is 
essential for rapid synthesis of proteins containing consecutive proline residues. Science, 
339: 85–88 

Dong X, Biswas A, Suel KE, Jackson LK, Martinez R, Gu H, Chook YM (2009) Structural 
basis for leucine-rich nuclear export signal recognition by CRM1. Nature, 458: 1136–1141 

Dorfman J, Macara IG (2008) STRADalpha regulates LKB1 localization by blocking 
access to importin-alpha, and by association with Crm1 and exportin-7. Mol Biol Cell, 19: 
1614–1626 

Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and 
gating of the nuclear pore complex. Nat Commun, 6: 7532 

Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta 
Crystallogr D Biol Crystallogr, 60: 2126–2132 



 144 

Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA (1994) Rab 
geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the 
small GTPases Rab1A, Rab3A, and Rab5A. Proc Natl Acad Sci U S A, 91: 11963–11967 

Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R (1995) The HIV-1 Rev activation 
domain is a nuclear export signal that accesses an export pathway used by specific 
cellular RNAs. Cell, 82: 475–483 

Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for 
leucine-rich nuclear export signals. Cell, 90: 1051–1060 

Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability 
properties of nuclear pore complexes. Cell, 130: 512–523 

Frey S, Görlich D (2014) A new set of highly efficient, tag-cleaving proteases for purifying 
recombinant proteins. J Chromatogr A, 1337: 95–105 

Gall JG (1967) Octagonal nuclear pores. J Cell Biol, 32: 391–399 

Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of 
nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-
acetylglucosaminidase from human brain. J Biol Chem, 276: 9838–9845 

Gontan C, Güttler T, Engelen E, Demmers J, Fornerod M, Grosveld FG, Tibboel D, 
Görlich D, Poot RA, Rottier RJ (2009) Exportin 4 mediates a novel nuclear import pathway 
for Sox family transcription factors. J Cell Biol, 185: 27–34 

Gordon ED, Mora R, Meredith SC, Lee C, Lindquist SL (1987) Eukaryotic initiation factor 
4D, the hypusine-containing protein, is conserved among eukaryotes. J Biol Chem, 262: 
16585–16589 

Görlich D, Dabrowski M, Bischoff FR, Kutay U, Bork P, Hartmann E, Prehn S, Izaurralde E 
(1997) A novel class of RanGTP binding proteins. J Cell Biol, 138: 65–80 

Görlich D, Henklein P, Laskey RA, Hartmann E (1996a) A 41 amino acid motif in importin-
alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J, 15: 
1810–1817 

Görlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehn S (1995) Two 
different subunits of importin cooperate to recognize nuclear localization signals and bind 
them to the nuclear envelope. Curr Biol, 5: 383–392 

Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu 
Rev Cell Dev Biol, 15: 607–660 

Görlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996b) Identification of different roles 
for RanGDP and RanGTP in nuclear protein import. EMBO J, 15: 5584–5594 

Görlich D, Prehn S, Laskey RA, Hartmann E (1994) Isolation of a protein that is essential 
for the first step of nuclear protein import. Cell, 79: 767–778 

Gregio AP, Cano VP, Avaca JS, Valentini SR, Zanelli CF (2009) eIF5A has a function in 
the elongation step of translation in yeast. Biochem Biophys Res Commun, 380: 785–790 



 145 

Grunwald M, Lazzaretti D, Bono F (2013) Structural basis for the nuclear export activity of 
Importin13. EMBO J, 32: 899–913 

Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, Dever TE (2013) 
eIF5A promotes translation of polyproline motifs. Mol Cell, 51: 35–45 

Güttler T, Görlich D (2011) Ran-dependent nuclear export mediators: a structural 
perspective. EMBO J, 30: 3457–3474 

Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, 
Görlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type 
nuclear export signals bound to CRM1. Nat Struct Mol Biol, 17: 1367–1376 

Hanauske-Abel HM, Park MH, Hanauske AR, Popowicz AM, Lalande M, Folk JE (1994) 
Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine 
hydroxylation. Biochim Biophys Acta, 1221: 115–124 

Hattangadi SM, Martinez-Morilla S, Patterson HC, Shi J, Burke K, Avila-Figueroa A, 
Venkatesan S, Wang J, Paulsen K, Görlich D, Murata-Hori M, Lodish HF (2014) Histones 
to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. 
Blood, 124: 1931–1940 

Haushalter KA, Todd Stukenberg MW, Kirschner MW, Verdine GL (1999) Identification of 
a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr 
Biol, 9: 174–185 

Henderson BR, Percipalle P (1997) Interactions between HIV Rev and nuclear import and 
export factors: the Rev nuclear localisation signal mediates specific binding to human 
importin-beta. J Mol Biol, 274: 693–707 

Ho JH, Kallstrom G, Johnson AW (2000) Nmd3p is a Crm1p-dependent adapter protein 
for nuclear export of the large ribosomal subunit. J Cell Biol, 151: 1057–1066 

Hopper AK, Traglia HM, Dunst RW (1990) The yeast RNA1 gene product necessary for 
RNA processing is located in the cytosol and apparently excluded from the nucleus. J Cell 
Biol, 111: 309–321 

Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johanson K, Sung CM, Liu 
R, Winkler J (2000) Cloning and characterization of a novel human class I histone 
deacetylase that functions as a transcription repressor. J Biol Chem, 275: 15254–15264 

Huang Y, Higginson DS, Hester L, Park MH, Snyder SH (2007) Neuronal growth and 
survival mediated by eIF5A, a polyamine-modified translation initiation factor. Proc Natl 
Acad Sci U S A, 104: 4194–4199 

Huber J, Cronshagen U, Kadokura M, Marshallsay C, Wada T, Sekine M, Luhrmann R 
(1998) Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain 
structure. EMBO J, 17: 4114–4126 

Hulsmann BB, Labokha AA, Görlich D (2012) The permeability of reconstituted nuclear 
pores provides direct evidence for the selective phase model. Cell, 150: 738–751 

Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. 
Trends Cell Biol, 17: 193–201 



 146 

Imaoka N, Nakajima T (1973) Hypusine, N6-(4-amino-2-hydroxybutyl)-2,6-
diaminohexanoic acid, in tissue proteins of mammals. Biochim Biophys Acta, 320: 97–103 

Ishfaq M, Maeta K, Maeda S, Natsume T, Ito A, Yoshida M (2012) Acetylation regulates 
subcellular localization of eukaryotic translation initiation factor 5A (eIF5A). FEBS Lett, 
586: 3236–3241 

Ishizawa J, Kojima K, Hail NJ, Tabe Y, Andreeff M (2015) Expression, function, and 
targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein. 
Pharmacol Ther, 153: 25–35 

Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric 
distribution of the constituents of the Ran system is essential for transport into and out of 
the nucleus. EMBO J, 16: 6535–6547 

Izaurralde E, Lewis J, Gamberi C, Jarmolowski A, McGuigan C, Mattaj IW (1995) A cap-
binding protein complex mediating U snRNA export. Nature, 376: 709–712 

Jakel S, Albig W, Kutay U, Bischoff FR, Schwamborn K, Doenecke D, Görlich D (1999) 
The importin beta/importin 7 heterodimer is a functional nuclear import receptor for 
histone H1. EMBO J, 18: 2411–2423 

Jakel S, Görlich D (1998) Importin beta, transportin, RanBP5 and RanBP7 mediate 
nuclear import of ribosomal proteins in mammalian cells. EMBO J, 17: 4491–4502 

Jakel S, Mingot JM, Schwarzmaier P, Hartmann E, Görlich D (2002) Importins fulfil a dual 
function as nuclear import receptors and cytoplasmic chaperones for exposed basic 
domains. EMBO J, 21: 377–386 

Jao DL, Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent 
binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell 
Biochem, 97: 583–598 

Jao DL, Yu Chen K (2002) Subcellular localization of the hypusine-containing eukaryotic 
initiation factor 5A by immunofluorescent staining and green fluorescent protein tagging. J 
Cell Biochem, 86: 590–600 

Jasiulionis MG, Luchessi AD, Moreira AG, Souza PP, Suenaga AP, Correa M, Costa CA, 
Curi R, Costa-Neto CM (2007) Inhibition of eukaryotic translation initiation factor 5A 
(eIF5A) hypusination impairs melanoma growth. Cell Biochem Funct, 25: 109–114 

Jenkins ZA, Haag PG, Johansson HE (2001) Human eIF5A2 on chromosome 3q25-q27 is 
a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 
5A with tissue-specific expression. Genomics, 71: 101–109 

Ji P, Murata-Hori M, Lodish HF (2011) Formation of mammalian erythrocytes: chromatin 
condensation and enucleation. Trends Cell Biol, 21: 409–415 

Sambrook J, Russell DW. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring 
Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 

Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr, 66: 125–132 

Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence 
able to specify nuclear location. Cell, 39: 499–509 



 147 

Kang HA, Hershey JW (1994) Effect of initiation factor eIF-5A depletion on protein 
synthesis and proliferation of Saccharomyces cerevisiae. J Biol Chem, 269: 3934–3940 

Kataoka N, Bachorik JL, Dreyfuss G (1999) Transportin-SR, a nuclear import receptor for 
SR proteins. J Cell Biol, 145: 1145–1152 

Kemper WM, Berry KW, Merrick WC (1976) Purification and properties of rabbit 
reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. J Biol Chem, 251: 
5551–5557 

Kim KK, Hung LW, Yokota H, Kim R, Kim SH (1998) Crystal structures of eukaryotic 
translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. Proc 
Natl Acad Sci U S A, 95: 10419–10424 

Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, 
Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, 
Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, 
Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, 
Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, 
Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel 
R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw 
PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, 
Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake 
CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, 
Gowda H, Pandey A (2014) A draft map of the human proteome. Nature, 509: 575–581 

Klebe C, Bischoff FR, Ponstingl H, Wittinghofer A (1995) Interaction of the Nuclear GTP-
Binding Protein Ran with Its Regulatory Proteins RCC1 and RanGAP1 - Biochemistry 
(ACS Publications). Biochemistry,  

Kose S, Imamoto N, Tachibana T, Shimamoto T, Yoneda Y (1997) Ran-unassisted 
nuclear migration of a 97-kD component of nuclear pore-targeting complex. J Cell Biol, 
139: 841–849 

Koyama M, Matsuura Y (2010) An allosteric mechanism to displace nuclear export cargo 
from CRM1 and RanGTP by RanBP1. EMBO J, 29: 2002–2013 

Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin C-H, Moustakas A 
(2006) The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell 
Biol, 26: 1318–1332 

Kutay U, Bischoff FR, Kostka S, Kraft R, Görlich D (1997) Export of importin alpha from 
the nucleus is mediated by a specific nuclear transport factor. Cell, 90: 1061–1071 

Kutay U, Hartmann E, Treichel N, Calado A, Carmo-Fonseca M, Prehn S, Kraft R, Görlich 
D, Bischoff FR (2000) Identification of two novel RanGTP-binding proteins belonging to 
the importin beta superfamily. J Biol Chem, 275: 40163–40168 

Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Görlich D 
(1998) Identification of a tRNA-specific nuclear export receptor. Mol Cell, 1: 359–369 

Kyrpides NC, Woese CR (1998) Universally conserved translation initiation factors. Proc 
Natl Acad Sci U S A, 95: 224–228 



 148 

Lam MH, Briggs LJ, Hu W, Martin TJ, Gillespie MT, Jans DA (1999) Importin beta 
recognizes parathyroid hormone-related protein with high affinity and mediates its nuclear 
import in the absence of importin alpha. J Biol Chem, 274: 7391–7398 

Lassak J, Keilhauer EC, Furst M, Wuichet K, Godeke J, Starosta AL, Chen JM, Sogaard-
Andersen L, Rohr J, Wilson DN, Haussler S, Mann M, Jung K (2015) Arginine-
rhamnosylation as new strategy to activate translation elongation factor P. Nat Chem Biol, 
11: 266–270 

Lee SB, Park JH, Kaevel J, Sramkova M, Weigert R, Park MH (2009) The effect of 
hypusine modification on the intracellular localization of eIF5A. Biochem Biophys Res 
Commun, 383: 497–502 

Lee SJ, Matsuura Y, Liu SM, Stewart M (2005) Structural basis for nuclear import complex 
dissociation by RanGTP. Nature, 435: 693–696 

Lee YB, Park MH, Folk JE (1995) Diamine and triamine analogs and derivatives as 
inhibitors of deoxyhypusine synthase: synthesis and biological activity. J Med Chem, 38: 
3053–3061 

Li J, Ji C, Chen J, Yang Z, Wang Y, Fei X, Zheng M, Gu X, Wen G, Xie Y, Mao Y (2005) 
Identification and characterization of a novel Cut family cDNA that encodes human copper 
transporter protein CutC. Biochem Biophys Res Commun, 337: 179–183 

Lipowsky G, Bischoff FR, Izaurralde E, Kutay U, Schafer S, Gross HJ, Beier H, Görlich D 
(1999) Coordination of tRNA nuclear export with processing of tRNA. RNA, 5: 539–549 

Lipowsky G, Bischoff FR, Schwarzmaier P, Kraft R, Kostka S, Hartmann E, Kutay U, 
Görlich D (2000) Exportin 4: a mediator of a novel nuclear export pathway in higher 
eukaryotes. EMBO J, 19: 4362–4371 

Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK (2006) Intrinsic disorder 
in transcription factors. Biochemistry, 45: 6873–6888 

Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA 
precursors. Science, 303: 95–98 

Magdolen V, Klier H, Wohl T, Klink F, Hirt H, Hauber J, Lottspeich F (1994) The function 
of the hypusine-containing proteins of yeast and other eukaryotes is well conserved. Mol 
Gen Genet, 244: 646–652 

Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related 
polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 
88: 97–107 

Makowski AM, Dutnall RN, Annunziato AT (2001) Effects of acetylation of histone H4 at 
lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J Biol Chem, 276: 
43499–43502 

Masaoka A, Matsubara M, Hasegawa R, Tanaka T, Kurisu S, Terato H, Ohyama Y, 
Karino N, Matsuda A, Ide H (2003) Mammalian 5-formyluracil-DNA glycosylase. 2. Role of 
SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and 
deaminated base lesions. Biochemistry, 42: 5003–5012 



 149 

Matsuura Y, Stewart M (2004) Structural basis for the assembly of a nuclear export 
complex. Nature, 432: 872–877 

Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates 
the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and 
the nuclear pore complex. J Cell Biol, 135: 1457–1470 

McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with 
Phaser. Acta Crystallogr D Biol Crystallogr, 63: 32–41 

Melchior F, Paschal B, Evans J, Gerace L (1993) Inhibition of nuclear protein import by 
nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an 
essential transport factor. J Cell Biol, 123: 1649–1659 

Mingot JM, Bohnsack MT, Jakle U, Görlich D (2004) Exportin 7 defines a novel general 
nuclear export pathway. EMBO J, 23: 3227–3236 

Mingot JM, Kostka S, Kraft R, Hartmann E, Görlich D (2001) Importin 13: a novel mediator 
of nuclear import and export. EMBO J, 20: 3685–3694 

Mohr D, Frey S, Fischer T, Güttler T, Görlich D (2009) Characterisation of the passive 
permeability barrier of nuclear pore complexes. EMBO J, 28: 2541–2553 

Monecke T, Güttler T, Neumann P, Dickmanns A, Görlich D, Ficner R (2009) Crystal 
structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. 
Science, 324: 1087–1091 

Moore MS, Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein 
import into the nucleus. Nature, 365: 661–663 

Moore MS, Blobel G (1994) Purification of a Ran-interacting protein that is required for 
protein import into the nucleus. Proc Natl Acad Sci U S A, 91: 10212–10216 

Mosammaparast N, Jackson KR, Guo Y, Brame CJ, Shabanowitz J, Hunt DF, Pemberton 
LF (2001) Nuclear import of histone H2A and H2B is mediated by a network of 
karyopherins. J Cell Biol, 153: 251–262 

Muhlhausser P, Muller EC, Otto A, Kutay U (2001) Multiple pathways contribute to nuclear 
import of core histones. EMBO Rep, 2: 690–696 

Mullis, Faloona F, Scharf S, Saiki R, Horn G, Elich H (1986) Specific enzymatic 
amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp 
Quant Biol, 51 Pt 1: 263–273 

Nachury MV, Weis K (1999) The direction of transport through the nuclear pore can be 
inverted. Proc Natl Acad Sci U S A, 96: 9622–9627 

Nakajima T, Matsubayashi T, Kakimoto Y, Sano I (1971) Distribution of hypusine, N 6 -(4-
amino-2-hydroxybutyl)-2,6-diaminohexanoic acid, in mammalian organs. Biochim Biophys 
Acta, 252: 92–97 

Nilsson J, Weis K, Kjems J (2002) The C-terminal extension of the small GTPase Ran is 
essential for defining the GDP-bound form. J Mol Biol, 318: 583–593 



 150 

Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW (2000) PHAX, a mediator of U snRNA 
nuclear export whose activity is regulated by phosphorylation. Cell, 101: 187–198 

Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator for the onset of 
chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol, 109: 
1389–1397 

Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara 
T (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. 
Science, 326: 1275–1279 

Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) 
Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate 
approach to expression proteomics. Mol Cell Proteomics, 1: 376–386 

Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-
Mezarino V, Rinner O, Bork P, Lemke EA, Beck M (2013) Cell type-specific nuclear pores: 
a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol, 
9: 648 

Paraskeva E, Izaurralde E, Bischoff FR, Huber J, Kutay U, Hartmann E, Luhrmann R, 
Görlich D (1999) CRM1-mediated recycling of snurportin 1 to the cytoplasm. J Cell Biol, 
145: 255–264 

Park JH, Wolff EC, Folk JE, Park MH (2003) Reversal of the deoxyhypusine synthesis 
reaction. Generation of spermidine or homospermidine from deoxyhypusine by 
deoxyhypusine synthase. J Biol Chem, 278: 32683–32691 

Park JH, Wolff EC, Park MH (2011) Assay of deoxyhypusine hydroxylase activity. 
Methods Mol Biol, 720: 207–216 

Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A 
and its hypusine modification in eukaryotes. Amino Acids, 38: 491–500 

Park MH, Wolff EC, Folk JE (1993) Hypusine: its post-translational formation in eukaryotic 
initiation factor 5A and its potential role in cellular regulation. Biofactors, 4: 95–104 

Partridge JR, Schwartz TU (2009) Crystallographic and biochemical analysis of the Ran-
binding zinc finger domain. J Mol Biol, 391: 375–389 

Patel SS, Belmont BJ, Sante JM, Rexach MF (2007) Natively unfolded nucleoporins gate 
protein diffusion across the nuclear pore complex. Cell, 129: 83–96 

Peat TS, Newman J, Waldo GS, Berendzen J, Terwilliger TC (1998) Structure of 
translation initiation factor 5A from Pyrobaculum aerophilum at 1.75 A resolution. 
Structure, 6: 1207–1214 

Peil L, Starosta AL, Virumae K, Atkinson GC, Tenson T, Remme J, Wilson DN (2012) 
Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nat Chem Biol, 8: 
695–697 

Plafker SM, Macara IG (2000) Importin-11, a nuclear import receptor for the ubiquitin-
conjugating enzyme, UbcM2. EMBO J, 19: 5502–5513 



 151 

Plafker SM, Macara IG (2002) Ribosomal protein L12 uses a distinct nuclear import 
pathway mediated by importin 11. Mol Cell Biol, 22: 1266–1275 

Pollard VW, Michael WM, Nakielny S, Siomi MC, Wang F, Dreyfuss G (1996) A novel 
receptor-mediated nuclear protein import pathway. Cell, 86: 985–994 

Reichelt R, Holzenburg A, Buhle ELJ, Jarnik M, Engel A, Aebi U (1990) Correlation 
between structure and mass distribution of the nuclear pore complex and of distinct pore 
complex components. J Cell Biol, 110: 883–894 

Reményi A, Lins K, Nissen LJ, Reinbold R, Schöler HR, Wilmanns M (2003) Crystal 
structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and 
Sox2 on two enhancers. Genes Dev, 17: 2048–2059 

Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore 
complexes. EMBO J, 20: 1320–1330 

Ribbeck K, Görlich D (2002) The permeability barrier of nuclear pore complexes appears 
to operate via hydrophobic exclusion. EMBO J, 21: 2664–2671 

Ribbeck K, Kutay U, Paraskeva E, Görlich D (1999) The translocation of transportin-cargo 
complexes through nuclear pores is independent of both Ran and energy. Curr Biol, 9: 
47–50 

Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear 
import of Ran. EMBO J, 17: 6587–6598 

Richards SA, Lounsbury KM, Macara IG (1995) The C terminus of the nuclear RAN/TC4 
GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, 
and HTF9A/RANBP1. J Biol Chem, 270: 14405–14411 

Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic 
domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite 
nuclear targeting sequence. Cell, 64: 615–623 

Romacho T, Villalobos LA, Cercas E, Carraro R, Sanchez-Ferrer CF, Peiro C (2013) 
Visfatin as a novel mediator released by inflamed human endothelial cells. PLoS One, 8: 
e78283 

Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, Andris F (2002) Pre-B-cell 
colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a 
nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD 
biosynthesis. Eur J Immunol, 32: 3225–3234 

Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear 
pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction 
with the export receptor CRM1. J Cell Sci, 112: 2369–2380 

Rout MP, Blobel G (1993) Isolation of the yeast nuclear pore complex. J Cell Biol, 123: 
771–783 

 

 



 152 

Ruhl M, Himmelspach M, Bahr GM, Hammerschmid F, Jaksche H, Wolff B, Aschauer H, 
Farrington GK, Probst H, Bevec D, et A (1993) Eukaryotic initiation factor 5A is a cellular 
target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-
activation. J Cell Biol, 123: 1309–1320 

Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A 
promotes translation elongation. Nature, 459: 118–121 

Scheffzek K, Klebe C, Fritz-Wolf K, Kabsch W, Wittinghofer A (1995) Crystal structure of 
the nuclear Ras-related protein Ran in its GDP-bound form. Nature, 374: 378–381 

Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr 
D Biol Crystallogr, 58: 1772–1779 

Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JW (1991) Translation 
initiation factor 5A and its hypusine modification are essential for cell viability in the yeast 
Saccharomyces cerevisiae. Mol Cell Biol, 11: 3105–3114 

Schwoebel ED, Talcott B, Cushman I, Moore MS (1998) Ran-dependent signal-mediated 
nuclear import does not require GTP hydrolysis by Ran. J Biol Chem, 273: 35170–35175 

Seewald MJ, Korner C, Wittinghofer A, Vetter IR (2002) RanGAP mediates GTP 
hydrolysis without an arginine finger. Nature, 415: 662–666 

Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of 
proteins silver-stained polyacrylamide gels. Anal Chem, 68: 850–858 

Shi XP, Yin KC, Zimolo ZA, Stern AM, Waxman L (1996) The subcellular distribution of 
eukaryotic translation initiation factor, eIF-5A, in cultured cells. Exp Cell Res, 225: 348–
356 

Shiba T, Mizote H, Kaneko T, Nakajima T, Kakimoto Y (1971) Hypusine, a new amino 
acid occurring in bovine brain. Isolation and structural determination. Biochim Biophys 
Acta, 244: 523–531 

Stuven T, Hartmann E, Görlich D (2003) Exportin 6: a novel nuclear export receptor that is 
specific for profilin.actin complexes. EMBO J, 22: 5928–5940 

Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, Kim KJ, Kim Y, Kim BY, Hong JI, 
Park C, Choy HE, Kim JH, Jeon YH, Chung J (2010) A metazoan ortholog of SpoT 
hydrolyzes ppGpp and functions in starvation responses. Nat Struct Mol Biol, 17: 1188–
1194 

Taylor CA, Sun Z, Cliche DO, Ming H, Eshaque B, Jin S, Hopkins MT, Thai B, Thompson 
JE (2007) Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer 
cells and associates with the nucleus in response to tumour necrosis factor alpha 
signalling. Exp Cell Res, 313: 437–449 

Teng YB, Ma XX, He YX, Jiang YL, Du J, Xiang C, Chen Y, Zhou CZ (2009) Crystal 
structure of Arabidopsis translation initiation factor eIF-5A2. Proteins, 77: 736–740 

 

 



 153 

Terwilliger TC, Adams PD, Read RJ, McCoy AJ, Moriarty NW, Grosse-Kunstleve RW, 
Afonine PV, Zwart PH, Hung LW (2009) Decision-making in structure solution using 
Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D Biol 
Crystallogr, 65: 582–601 

Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, 
Read RJ, Adams PD (2008) Iterative model building, structure refinement and density 
modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr, 64: 
61–69 

Thomas F, Kutay U (2003) Biogenesis and nuclear export of ribosomal subunits in higher 
eukaryotes depend on the CRM1 export pathway. J Cell Sci, 116: 2409–2419 

Thompson JE, Hopkins MT, Taylor C, Wang TW (2004) Regulation of senescence by 
eukaryotic translation initiation factor 5A: implications for plant growth and development. 
Trends Plant Sci, 9: 174–179 

Tong Y, Park I, Hong BS, Nedyalkova L, Tempel W, Park HW (2009) Crystal structure of 
human eIF5A1: insight into functional similarity of human eIF5A1 and eIF5A2. Proteins, 
75: 1040–1045 

Truant R, Cullen BR (1999) The arginine-rich domains present in human 
immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent 
nuclear localization signals. Mol Cell Biol, 19: 1210–1217 

Tsuchiya M, Ogawa H, Suzuki T, Sugiyama N, Haraguchi T, Hiraoka Y (2011) Exportin 4 
interacts with Sox9 through the HMG Box and inhibits the DNA binding of Sox9. PLoS 
One, 6: e25694 

Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN, Jung K (2013) Translation 
elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science, 339: 
82–85 

UniProt (2015) UniProt: a hub for protein information. Nucleic Acids Res, 43: D204–D212 

Van den Wyngaert I, de Vries W, Kremer A, Neefs J, Verhasselt P, Luyten WH, Kass SU 
(2000) Cloning and characterization of human histone deacetylase 8. FEBS Lett, 478: 77–
83 

Verreault A, Kaufman PD, Kobayashi R, Stillman B (1998) Nucleosomal DNA regulates 
the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol, 8: 96–
108 

Vetter IR, Arndt A, Kutay U, Görlich D, Wittinghofer A (1999a) Structural view of the Ran-
Importin beta interaction at 2.3 A resolution. Cell, 97: 635–646 

Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A (1999b) Structure of a Ran-
binding domain complexed with Ran bound to a GTP analogue: implications for nuclear 
transport. Nature, 398: 39–46 

Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three 
dimensions. Science, 294: 1299–1304 



 154 

Wang TW, Lu L, Wang D, Thompson JE (2001) Isolation and characterization of 
senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation 
initiation factor 5A from tomato. J Biol Chem, 276: 17541–17549 

Watson ML (1954) Pores in the mammalian nuclear membrane. Biochim Biophys Acta, 
15: 475–479 

Weinmann L, Hock J, Ivacevic T, Ohrt T, Mutze J, Schwille P, Kremmer E, Benes V, 
Urlaub H, Meister G (2009) Importin 8 is a gene silencing factor that targets argonaute 
proteins to distinct mRNAs. Cell, 136: 496–507 

Wen W, Meinkoth JL, Tsien RY, Taylor SS (1995) Identification of a signal for rapid export 
of proteins from the nucleus. Cell, 82: 463–473 

Wild T, Horvath P, Wyler E, Widmann B, Badertscher L, Zemp I, Kozak K, Csucs G, Lund 
E, Kutay U (2010) A protein inventory of human ribosome biogenesis reveals an essential 
function of exportin 5 in 60S subunit export. PLoS Biol, 8: e1000522 

Wirth M, Karaca S, Wenzel D, Ho L, Tishkoff D, Lombard DB, Verdin E, Urlaub H, 
Jedrusik-Bode M, Fischle W (2013) Mitochondrial SIRT4-type proteins in Caenorhabditis 
elegans and mammals interact with pyruvate carboxylase and other acetylated biotin-
dependent carboxylases. Mitochondrion, 13: 705–720 

Wolff EC, Lee SB, Park MH (2011) Assay of deoxyhypusine synthase activity. Methods 
Mol Biol, 720: 195–205 

Xu A, Chen KY (2001) Hypusine is required for a sequence-specific interaction of 
eukaryotic initiation factor 5A with postsystematic evolution of ligands by exponential 
enrichment RNA. J Biol Chem, 276: 2555–2561 

Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S (2010) A paralog of lysyl-
tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor 
P. Nat Struct Mol Biol, 17: 1136–1143 

Yao M (2003) Crystal Structure of Hyperthermophilic Archaeal Initiation Factor 5A: A 
Homologue of Eukaryotic Initiation Factor 5A (eIF-5A). Journal of Biochemistry, 133: 75–
81 

Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-
microRNAs and short hairpin RNAs. Genes Dev, 17: 3011–3016 

Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, Nishii K, Kuma K, Hayashida T, 
Miyata T, Aebi U, et A (1995) A giant nucleopore protein that binds Ran/TC4. Nature, 376: 
184–188 

Yoshida K, Blobel G (2001) The karyopherin Kap142p/Msn5p mediates nuclear import 
and nuclear export of different cargo proteins. J Cell Biol, 152: 729–740 

Zanelli CF, Maragno AL, Gregio AP, Komili S, Pandolfi JR, Mestriner CA, Lustri WR, 
Valentini SR (2006) eIF5A binds to translational machinery components and affects 
translation in yeast. Biochem Biophys Res Commun, 348: 1358–1366 

Zanelli CF, Valentini SR (2007) Is there a role for eIF5A in translation? Amino Acids, 33: 
351–358 



 155 

Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, 
Schirmacher P, McCombie WR, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW 
(2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver 
cancer. Cell, 135: 852–864 

Zuk D, Jacobson A (1998) A single amino acid substitution in yeast eIF-5A results in 
mRNA stabilization. EMBO J, 17: 2914–2925 

 



 156 

7 APPENDIX 

O75436 Q9UBQ0 E5RJD8 P62424 P26373 F8VQ10 

Q8N584 Q07960 Q5JVF3 Q9HCN4 P50914 F6QR24 

Q96QK1 Q92696 C9JP52 P84098 P50542-4 P30153 

P10155 P31947 Q4G0F5 P53611 P62753 
 

Table 7-1 Uniprot identifiers of the proteins that were significantly enriched in the presence of RanGTP 

 

Q53HV7 Q9NTM9 O60502 P49915 Q9H974 P46060 

Q16576 P08397 Q9BY41 Q8WWN8 Q9BXR0 P49321-3 

Q8N4P3 O14929 O75818 Q96I15 Q96MB7 O43813 

P43487 Q96SI1 Q86W42 O00571 P43490 P55060 

Table 7-2 Uniprot identifiers of the proteins that were significantly enriched in the absence of RanGTP 
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