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Summary  

Decomposition processes in the high tropical Andes are complex and influenced by a variety of 

biotic and abiotic factors. Tropical montane rainforests of the high Andes harbour large stocks of 

dead organic material and little is known on the regulatory forces responsible for this accumulation 

of carbon. Litter quality, climate and the decomposer community are known from other systems as 

the main factors controlling decomposition rates. Microarthropods play a major role in regulating 

decomposition processes due to the impact they have on their surrounding habitat. They are known 

to regulate organic matter turnover and influence nutrient cycling via direct and indirect processing 

of organic matter entering the soil system as both litter fall and root exudates. However, there is a 

lack of knowledge on interrelationships between litter decomposition and the structure of soil 

microarthropod communities in tropical montane rainforests.  

This thesis focuses on disentangling the relative importance of regulatory forces, e.g. litter quality 

and local biotic and abiotic conditions, in regulating long term decomposition processes and 

variations in the microbial and microarthropod community composition. Further, I investigated the 

role of root derived resources in structuring the soil fauna community and in regulating 

decomposition processes. The studies were performed as field experiments along an altitudinal 

gradient from 1000 to 2000 to 3000 m in a tropical montane rainforest in Southern Ecuador.  

In the first study, presented in Chapter 2, I investigated the influence of litter quality, i.e. litter 

origin, and altitude on long term decomposition rates of both leaf and root litter in the tropical 

montane rainforests. The results suggested that the pronounced accumulation of dead organic 

material at higher altitudes at least in part is caused by reduced or even ceasing decomposition 

rates after 12 months. The study demonstrated that litter quality is far less important in controlling 

decomposition rates than previously assumed. Rather, site specific and altitude dependant biotic 

and abiotic factors are most relevant. Presumably, the observed long term decomposition patterns 

are caused by different forest floor types at the investigated altitudes as well as different 

rhizosphere interactions between plants and the belowground community. Litter materials are 

generally poor in nitrogen and do not allow effective decomposition by saprotrophic 

microorganisms and this applies in particular to condensed litter compounds such as lignin. The 

results suggest that poor nutrient conditions in organic litter layers at high altitudes inhibit 

microorganisms to decompose litter materials due to the lack of contact to nutrients in the mineral 

soil. Presumably, restriction of microorganisms to root derived resources in the organic layer results 

in a closer linkage between plants and the decomposer community exploiting litter resources and 

this linkage is most pronounced at higher altitudes. 

Parallel to decomposition processes, in a second study I investigated changes in the abundance and 

diversity of the most abundant microarthropod groups in soil, i.e. Oribatida and Collembola, as well 
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as Oribatida diversity and species composition, during litter decomposition (Chapter 3). As in the 

first study presented in Chapter 2, I investigated the role of litter quality (i.e. litter origin), altitude 

and litter type (root and leaf litter) as driving factors in order to quantify their role in regulating the 

composition and abundance of the microarthropod community. The parallel investigation of 

decomposition processes and microarthropods in one experiment allowed linking driving factors of 

both litter decomposition and microarthropod community composition. Similar to the results of the 

first study quality of litter material was of little importance as driving force for the composition of 

the microarthropod community. Rather, factors changing with altitude were most important, with 

both the abundance of microarthropods as well as the diversity of Oribatida decreasing with 

increasing altitude. Decomposition stage also strongly affected the soil microarthropod fauna with 

the changes in abundance and diversity occurring over time being closely associated with changes 

in the speed of litter decomposition and associated changes in microorganisms. Surprisingly 

however, microarthropods were unable to benefit from the flourishing microbial community at the 

early decomposition stage, potentially due to the presence of plant secondary compounds such as 

phenols, and the dominance of mycorrhizal fungi. At later stages microarthropods appear to benefit 

from the dominance of saprotrophic microorganisms decomposing more recalcitrant litter 

compounds, either by feeding on these microorganisms directly or by indirectly benefiting from the 

conditioning of the litter by microbial enzyme production. 

The results of the first two studies suggest that in particular at higher altitude root-derived 

resources are major drivers of decomposition rates, microorganisms and soil microarthropods in 

the investigated tropical montane rainforests. The third experiment, presented in Chapter 4, 

therefore focused on investigating the effect of the exclusion of roots and mycorrhizal hyphae on 

litter decomposition and soil fauna community composition. The results from this study suggested 

that mycorrhizal fungi and saprotrophic microorganisms compete for litter-derived resources, with 

mycorrhizal fungi suppressing the activity of saprotrophic microorganisms at each of the 

investigated altitudes. Collembola were the only microarthropods to benefit from mycorrhiza 

exclusion and reduced competition between mycorrhizal fungi and saprotrophic microorganisms, 

indicating that they depend on litter-derived resources. Total soil microarthropod density as well 

as Oribatida diversity, however, were reduced if roots and mycorrhizal hyphae were excluded, 

highlighting the importance of root-derived resources for fuelling soil food webs. Along the 

altitudinal gradient variations in microarthropod abundance and decomposition rates did not fit 

the patterns observed in the studies presented in Chapters 2 and 3 suggesting that plant-soil fauna 

interactions influencing belowground ecosystem processes vary with season, e.g. with drought or 

drought related changes, especially at lower altitude. 
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By highlighting the importance of altitude and root derived resources for long term decomposition 

processes and the belowground community structure the results of this thesis improved the 

understanding of regulatory forces controlling decomposition processes as well as microarthropod 

abundance and diversity in tropical montane rainforests. 
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Decomposition processes  

Decomposition is one of the most important processes in terrestrial ecosystems, with between 80 

and 90 % of the aboveground net primary production entering the soil as leaf and root litter 

(McNaughton et al., 1989; Bardgett, 2005). Under unfavourable environmental conditions 

undecomposed plant material can accumulate resulting in extensive amounts of carbon (C) being 

stored. Especially in peatlands, tundra and the boreal zone an estimated one-third of the global C 

stock is accumulated in large organic layers (Post et al., 1982; Gorham, 1991). The release of this C 

in either gaseous or aqueous form may contribute substantially to the increasing CO2 

concentrations in the atmosphere (Cox et al., 2013). Current models projecting the response of soil 

organic C pools to climate change and elevated atmospheric CO2 levels are still uncertain whether 

C storage will increase or decline and more data on regulatory forces of decomposition processes 

are needed (Cox et al., 2013; Todd-Brown et al., 2014). Processes and interactions involved in 

decomposition are manifold and complex. It is almost impossible to consider all possible influences 

when investigating decomposition processes in natural systems (Berg & McClaugherty, 2008), but 

litter quality, climate and the decomposer community have been identified as the most important 

drivers (Kirschbaum, 1995; Coûteaux et al., 2002; Davidson & Janssens, 2006; Berg, 2014). Over the 

course of decomposition the chemical composition of litter material changes both through import 

and export of nutrients and the synthesis of new organic compounds (Berg & McClaugherty, 2008). 

Litter mass loss during decomposition is due to CO2 released via microbial respiration, 

fragmentation of litter material by larger decomposer fauna as well as leaching of both C and 

nutrients. Over the course of decomposition complex litter compounds (e.g. proteins, lignin, 

cellulose etc.) are broken down by the microbial community through the release of extracellular 

enzymes producing smaller compounds that can be assimilated by the microorganisms (Bardgett, 

2005). Despite being taken up in large by microorganisms, plants in part may also assimilate organic 

compounds such as amino acids. Most plants, however, are unable to obtain organic nutrients and 

therefore rely on microorganisms, which release inorganic N (ammonium) after their own 

nutritional requirements are fulfilled. This net N mineralization is assumed to only occur in 

ecosystems where the decomposing material contains C-to-N ratios lower than 25 (Hodge et al., 

2000). Decomposition processes are known to undergo different stages with the early stage being 

characterized by fast mass loss through leaching of soluble compounds and decomposition of 

holocellulose while in the later phases of decomposition the rate of mass and C loss slows down 

and is dominated by the degradation of lignified litter compounds (Berg & McClaugherty, 2008; 

Berg, 2014). With the changes in litter quality over the course of decomposition also the importance 

of litter as a basal resource for the soil food web varies not only between habitats but also over 

time, with litter in later stages of decomposition becoming more palatable for soil mesofauna 
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consumers (Bardgett, 2005). Next to litter decomposition products also resources provided via the 

root pathway play an important role in structuring the soil food web.  

 

Roots, rhizosphere and mycorrhizal fungi 

Plant roots modify both physical and chemical properties of the soil by structuring the soil and 

organic material surrounding them, the release of nutrients via root exudates and through their 

death and decomposition (Bardgett, 2005; Cesarz et al., 2013; Eissfeller et al., 2013). The 

rhizosphere; i.e. the area closely surrounding the root surface, has long been recognised as an area 

of high microbial activity in soil due to the release of root exudates and consequently very close 

interactions between roots and soil microorganisms (Hiltner, 1904; Gregory, 2006). Root exudates 

are a high quality resource consisting of ions, water, mucilage and many low molecular primary and 

secondary metabolites containing C (Bertin et al., 2003; Bais et al., 2006). They are relevant for 

sustaining the soil microbial community in close proximity to the root surface where microbial 

biomass is significantly increased compared to the bulk soil (Whipps & Lynch, 1983; Bais et al., 2006; 

Dennis et al., 2010). C from the plant not only reaches the soil via root exudates, but also a large 

proportion of plant assimilated C is transported into mycorrhizal fungi, which form mutualistic 

associations with plants (Farrar et al., 2003). Mycorrhizal fungi therefore function as a sink of 

plant C (Averill et al., 2014) and gain an advantage in competition with the soil microbial 

community. In return plants receive nitrogen (N) as well as phosphorus (P) from mycorrhizal fungi 

with this interaction being especially close in nutrient (N and P) limited ecosystems (Johnson et al., 

2003). Plant species associated with mycorrhizal fungi comprise around 95 % of all vascular plants 

(Smith & Read, 2008) and the enhanced nutrient supply increases their competitive strength as well 

as the growth rate and improves plant fitness (Bardgett, 2005). Mycorrhizal fungi can be divided 

into different types according to their growth form within the root, with ectomycorrhizal (EM), 

arbuscular mycorrhizal (AM) and ericoid mycorrhizal fungi being the most abundant types. The 

more primitive AM fungi are dominant forming associations with up to 80-90 % of plant species, 

including grasses, herbs, crops and trees (Mosse, 1973). AM fungi reproduce asexually and cannot 

be cultivated without their host. They grow within their hosts root cortical cells, forming tree like 

structures, the arbuscules, which are thought to be the area in which C and nutrients are exchanged 

between plant and fungus (Bardgett, 2005). EM fungi on the other hand are most abundant in 

temperate and boreal forest ecosystems where they form associations with shrubs and trees, 

especially coniferous species. They do not grow inside their hosts cells but rather form either the 

intercellular Hartig net or a mantle of fungal tissue covering the entire root (Smith & Read, 2008). 

Ericoid mycorrhizal fungi only form associations with ericaceous plants, which typically grow in 

highly organic, nutrient poor soils, mainly of the alpine and tundra regions (Bardgett, 2005). The 
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ericoid fungus grows inside the root cortical cells similar to the AM fungi, but without forming 

arbuscules. While EM and ericoid mycorrhizal fungi have saprotrophic capabilities, AM fungi were 

in the past assumed to be unable to take up organic forms of N, but have recently been suggested 

to in fact also possess saprotrophic capabilities and enhance decomposition rates (Hodge et al., 

2001; Hodge & Fitter, 2010). Both EM and AM fungi can therefore influence decomposition 

processes (Gadgil & Gadgil, 1971; Hodge et al., 2001; Bending, 2003; Nuccio et al., 2013; Leifheit 

et al., 2015) with their functioning in litter decomposition being closely associated with the activity 

and community structure of saprotrophic microorganisms (Leigh et al., 2011). Depending on the 

environmental conditions, mycorrhizal fungi can either slow down or enhance decomposition 

processes (Gadgil & Gadgil, 1971; Olsson et al., 1996; Hodge et al., 2001; Hodge & Fitter, 2010) with 

slowed down decomposition presumably being caused by mycorrhizal fungi competing with 

saprotrophic bacteria and fungi for nutrients (mainly nitrogen; Gadgil and Gadgil, 1971; Leigh et al., 

2011) as well as for water (Bending, 2003). AM fungi have also been shown to form close 

interactions with the soil fauna community, e.g. the microbial community and protozoans, 

increasing N uptake of plants via the microbial loop (Coleman, 1994; Koller et al., 2013) as well as 

soil microarthropods grazing on extra-radical hyphae of AM fungi (Ngosong et al., 2014). 

 

Soil microarthropods, e.g. Oribatida 

Soil microarthropods are highly diverse and abundant in soils of virtually any ecosystem and climatic 

zone (Bardgett, 2005). Together with other soil fauna groups they impact their surrounding habitat 

by regulating organic matter turnover and nutrient cycling via processing of organic matter that is 

entering the soil system via litter fall and root exudates (Bardgett, 2005). The effect of soil 

microarthropods on decomposition processes may be direct by shredding litter material, but also 

indirect via trophic interactions with the fungal and bacterial community (Moore et al., 1988; 

Maraun et al., 1998; Pollierer et al., 2012; Zieger et al., 2015). Recently soil microarthropods have 

been recognised to also largely depend on root-derived resources (Pollierer et al., 2007; Zieger 

et al., 2015). The two most abundant groups of soil microarthropods are Collembola and Acari. Both 

of these groups interact closely with bacteria and fungi and comprise a wide spectrum of species of 

different trophic levels including primary and secondary decomposers and in part also predators 

(Scheu, 2002; Schneider et al., 2004a; Chahartaghi et al., 2005). Although soil microarthropods are 

present in virtually any soil, both their abundance and diversity varies between ecosystems as well 

as within few centimetres of soil (Ettema & Wardle, 2002). The reasons for the high spatial 

heterogeneity in the structure of soil microarthropod communities still are little understood, but 

likely are due to both variations in biotic and abiotic factors such as local climatic conditions and 

litter quality (Coûteaux et al., 1995; Wardle et al., 2006; Berg & McClaugherty, 2008). 
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With around 55,000 described species and an estimated total species number between 500,000 

and 1,000,000 (Krantz et al., 2009) Acari are one of the most diverse and also oldest microarthropod 

groups (Fisher et al., 2013). While earliest fossil records of Acari were found in Devonian sediment 

(~380 million years ago) (Shear et al., 1984; Norton et al., 1988) molecular clock analysis dates the 

origins of Acari as far back as 570 million years (Schaefer et al., 2010). Acari are extremely successful 

in colonising a wide spectrum of terrestrial, aquatic and marine habitats (Krantz et al., 2009). 

With nearly 10,000 described species (Subias, 2015) and an estimated total of 110,000 species 

(Walter & Proctor, 2013) the Oribatida are the most species-rich subgroup within the Acari (Krantz 

et al., 2009). In soils rich in organic material Oribatida are often the most abundant microarthropod 

group (Krantz et al., 2009), reaching densities of up to 200,000 individuals per square meter in 

temperate coniferous forests (Maraun & Scheu, 2000). Oribatida were, for a long time, assumed to 

be predominantly decomposers feeding on dead organic material. In recent years closer analysis of 

their feeding biology via gut content and stable isotope analysis as well as laboratory feeding 

experiments have shown that Oribatida also feed on lichens and algae, nematodes and root-derived 

resources, therefore ranging over three to four trophic levels (Schneider et al., 2004b; Erdmann 

et al., 2007; Pollierer et al., 2007). With a live span of typically between one to two years and low 

reproductive output Oribatida invest strongly in defence mechanisms, such as camouflage, strong 

sclerotization, defensive glands and protective structures and are as a result well defended and not 

preyed upon by mesofauna predators (Peschel et al., 2006; Schneider & Maraun, 2009; Heethoff 

et al., 2011; Heethoff & Raspotnig, 2012). Parthenogenesis is more abundant in Oribatida than in 

any other Acari (Krantz et al., 2009), although the percentage of parthenogenetic species varies 

between habitats. In tropical regions where Oribatida are the most abundant soil microarthropods 

(Heneghan et al., 1999; Franklin et al., 2004; Illig et al., 2010) even so their diversity does not appear 

to increase towards the tropics (Maraun et al., 2007) and many species are not yet described 

(Ermilov et al., 2013a,b,c), only around 30 % of species are parthenogenetic (Maraun et al., 2013) 

compared to between 60-80 % in temperate and boreal forest (Maraun et al., 2003; Fischer et al., 

2010). 

 

Tropical montane rainforests and altitudinal gradients 

The term tropical rainforest was first introduced in 1898 by the German botanist A.F.W. Schimper, 

describing all forests in the humid tropical regions. Today the term tropical rainforest is mainly used 

to describe evergreen forests occurring in regions of constantly high temperatures with less than 

five degree variation between mean daily temperatures and high amounts of precipitation 

(≥ 100 mm per month) throughout the year (Whitmore, 1990). Tropical rainforests are found on all 

three land regions around the equator, i.e. Middle and South America, Sub Saharan Africa and 
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Southeast Asia. The largest are the neotropical rainforests of South America covering 4×106 km² 

and making up half of the world’s rainforest areas (Whitmore, 1990). All tropical rainforests are 

exceptionally species rich, containing most of the world’s higher plants (Pitman & Jørgensen, 2002) 

as well as a high diversity in both vertebrate and invertebrate fauna. In different environments 

tropical rainforests possess individual compositions, structures and physiognomy and are therefore 

often separated into forest types according to the conditions under which they occur, e.g. swamp 

forests, peat forests, coastal forests (i.e. mangroves), lowland forests and montane forests. 

Montane rainforests are found in all major tropical forest regions, although in Africa they only occur 

in smaller local patches. They are especially species rich (Myers et al., 2000) due to the progressively 

changing abiotic conditions along altitudinal gradients. Changes in both biodiversity and abundance 

have been widely studied along altitudinal gradients for different taxa and in a wide range of 

ecosystems (Richardson et al., 2005; Sanders et al., 2009; Sundqvist et al., 2013; Willig & Presley, 

2015). Altitudinal gradients provide the opportunity to investigate the influence of changing abiotic 

conditions on fauna and flora composition and can help understanding consequences of climate 

change. Precipitation, soil moisture, cloud coverage, solar radiation as well as mean annual air 

temperature generally vary with altitude, leading to some predictable vegetation patterns that can 

be observed in all tropical montane rainforests. The altitude in which the different forest types 

occur depends on the size of the mountain, with forest zones being higher on larger mountains 

(Bruijnzeel & Hamilton, 2000). This phenomenon is called the “Massenhebungseffekt” and is due 

to differences in cloud coverage and temperature, depending on the height and surface area of the 

mountain (Ghazoul & Sheil, 2010). Forest types change from lower montane forests to lower 

montane cloud forests followed by upper montane and finally subalpine cloud forests, also called 

dwarf forests or “elfine woodland” (Ghazoul & Sheil, 2010). These subalpine dwarf forests are 

especially common in the high tropical Andes occurring above 2,800 to 3,000 m a.s.l. With 

increasing altitude the tree canopy gets lower and plant species diversity generally decreases; the 

abundance of mosses and bryophytes increases while lianas disappear at higher altitudes (Ghazoul 

& Sheil, 2010). Above the tree line which can be as high as 3,900 m a.s.l. the forests give way to 

alpine vegetation consisting of grasslands, heath, tundra bogs and meadows (Ghazoul & Sheil, 

2010). In the tropical Andes this vegetation zone is called “Paramo”. The Tropical Andes are one of 

the world’s biodiversity hotspots (Myers et al., 2000; Brehm et al., 2008). Myers et al. (2000) 

defined these hotspots as areas containing exceptionally high numbers of endemic species, 

focusing on aboveground animal and plant species (Henderson et al., 1991; Myers et al., 2000; 

Barthlott et al., 2005), still there is far less known about the belowground system. While in tropical 

lowland forests macrofauna decomposers such as termites and earthworms are abundant and play 

an important role as primary decomposers improving the accessibility of litter material for bacteria 
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and fungi by shredding the litter, in montane rainforests these macro-decomposers are rare 

(Anichkin et al., 2007; Illig et al., 2008) and their place is supposedly filled by mesofauna species 

(Illig et al., 2005) such as the highly abundant Oribatida (see above). 

 

Study site 

Studies of the present thesis were conducted on the eastern slope of the tropical Andes in southern 

Ecuador, with three study sites along an altitudinal gradient at 1000, 2000 and 3000 m a.s.l. The 

study sites are in the northern part of the Podocarpus National Park where slopes are moderately 

steep with 26°-31° (Moser et al., 2007) and covered with mostly undisturbed montane rainforest 

(Homeier et al., 2002). The site at 1000 m (Bombuscaro, S04°06´54´´, W78°58´02´´) is located south 

of the city Zamora in the valley of the Rio Bombuscaro. The site at 2000 m (San Francisco, 

S3°58´18´´, W79°4´45´´) is part of a private reserve, the Reserva Biologica San Francisco, which 

includes an area of 9 ha on the flank of the valley of the Rio San Francisco on the northern border 

of the Podocarpus National Park. The site at 3000 m (Cajanuma, S04°06´711´´, W79°10´58´´) is 

located south of the city Loja at the north-west gate of the Podocarpus National Park.  

With 8-10 humid months per year the region has a semi humid climate. Mean annual rainfall 

increases from 2230 and 1950 mm at 1000 and 2000 m, respectively, to 4500 mm at 3000 m (Moser 

et al., 2007), while the mean annual air temperature decreases with increasing altitude from 19.4 

to 15.7 to 9.4°C at 1000, 2000 and 3000 m, respectively. Soil pH also gradually decreases with 

increasing altitude from 3.94 to 3.52 to 2.86 at 1000, 2000 and 3000 m, respectively (Moser et al., 

2007). With increasing altitude the mean soil moisture in the organic layer increases to 45.3 vol.% 

at 3000 m as compared to 9.9 and 11.6 vol.% at 1000 and 2000 m, respectively (Leuschner et al., 

2007). Biotic conditions also change along the altitudinal gradient. Mean tree height decreases from 

15.6 to 10.1 to 5.2 m at 1000, 2000 and 3000 m, respectively, while thickness of organic layers as 

well as fine root biomass increases from 48 mm and 2.7 t ha-1 to 305 mm and 6.2 t ha-1 to 435 mm 

and 10.8 t ha-1 at the respective sites (Moser et al., 2007; Graefe et al., 2008). At 1000 m a thin litter 

layer overlays the mineral soil (Ah horizon), i.e. F and H layers are lacking; in contrast, at 2000 and 

3000 m the leaf litter overlays thick organic layers comprising predominantly of F material. Soil 

types at 1000, 2000 and 3000 m are predominantly Alumic Acrisols, Gley Cambisols and Podzols, 

respectively (Moser et al., 2007).  
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Objectives and chapter outline 

This thesis aims at improving the knowledge about interactions between above- and belowground 

compartments of ecosystems in a tropical montane rainforest in Southern Ecuador focusing on the 

controlling forces influencing decomposition processes at different altitudes. Chapters 2 to 4 are all 

field experiments with Chapter 2 aiming at quantifying the relative importance of litter quality and 

abiotic conditions on long term decomposition processes of leaf and root litter and Chapter 3 in 

parallel investigating the colonisation of leaf and root litter material by microorganisms and soil 

microarthropods. The field experiment presented in Chapter 4 investigates the role of mycorrhizal 

fungi and root-derived resources for belowground food web interactions in tropical forest 

ecosystems.  

The main hypotheses of this thesis are as follows: 

(1) Decomposition rates as well as changes in C and N concentrations in decomposing litter material 

are driven by both biotic and abiotic site specific conditions as well as the quality of the litter 

material, i.e. the origin of litter from rainforests of different altitude. 

(2) The abundance of the Collembola and Acari as well as Oribatida diversity decreases along the 

altitudinal gradient and differs between leaf and root litter. 

(3) Abundance and diversity of the soil fauna community vary with litter quality and with the degree 

to which the litter material is decomposed. 

(4) Root-derived resources influence decomposition processes and the abundance and diversity of 

soil microarthropods. 

The content of the three chapters can be summarized as follows: 

In Chapter 2 we investigated the effect of altitude, litter origin and litter type on long term 

decomposition rates and microorganisms in a tropical montane rainforest in southern Ecuador. Leaf 

litter from three abundant tree species and roots of different diameter were collected from three 

sites along an altitudinal gradient (1000, 2000, 3000 m), placed in litterbags and incubated for 6, 

12, 24, 36 and 48 months. Altitude and time were the main factors driving litter decomposition, 

while origin and therefore quality of the litter material was of minor importance. At 2000 and 

3000 m decomposition of litter declined for 12 months reaching a limit value of ~50 % of initial not 

decomposing further from 12 to 24 months; after 36 months decomposition commenced, but at 

low rates resulting in an average of 37.9 % and 44.4 % of initial remaining after 48 months. In 

contrast, at 1000 m decomposition continued for 48 months with only 10.9 % of the initial litter 

remaining. Changes in decomposition rates were paralleled by changes in the microbial community 
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with microbial biomass decreasing after 24 months at 2000 and 3000 m, while varying little at 

1000 m. The results suggest that low nutrient supply at high altitudes inhibit decomposition 

processes resulting in the sequestration of carbon in thick organic layers. 

Chapter 3 presents further results from the experimental setup described in Chapter 2. Parallel to 

the results presented in Chapter 2 the effect of the same parameters (i.e. altitude, litter origin and 

litter type) on soil microarthropod communities over the course of long term decomposition 

processes in a tropical montane rainforest in southern Ecuador were investigated (see above). 

Density and diversity of soil microarthropods (i.e. Acari and Collembola) decreased with increasing 

altitude and varied with the degree to which the litter was decomposed rather than with litter origin 

and therefore quality of the litter material. Species composition of Oribatida varied strongly 

between altitudes, with few species overlapping between altitudes. This suggests origin and 

therefore quality of litter material to be of little importance as driving force for the composition of 

the microarthropod community of tropical montane rainforests. Factors changing with altitude, 

such as temperature and soil pH, as well as decomposition stage and associated changes in the 

microbial community and interactions with mycorrhizal fungi and litter-derived resources are much 

more important.  

Results of the experiments presented in Chapters 2 and 3 suggested a strong influence of root-

derived resources on decomposition rates, microorganisms and soil microarthropods in the 

investigated tropical montane rainforest. Therefore, in Chapter 4 we investigated the role of roots 

and mycorrhizal fungi on these parameters. We conducted an experiment at the three altitudes 

(1000, 2000 and 3000 m a.s.l.) and placed microcosms with openings covered with different mesh 

sizes (4 mm, 45 µm and closed) to manipulate the accessibility by roots and mycorrhizal fungi in the 

field. The microcosms contained an undisturbed soil core and a litter layer consisting of litter from 

the three abundant tree species at each altitude. Decomposition rates, C-to-N ratio, water content, 

microbial parameters and microarthropod abundance differed between the three altitudes. While 

water content and C-to-N ratio were lower and microbial biomass was increased in the litter layer 

at the lowest altitude, decomposition rate and microarthropod abundance were at a maximum at 

the intermediate altitude. The exclusion of roots and mycorrhizal fungi did not affect the 

decomposition rate but lead to a decrease in Oribatida abundance and diversity, while Collembola 

abundance was increased in closed microcosms. Oribatida community composition varied between 

the altitudes. The results of Chapter 4 indicate that root- and mycorrhiza-derived resources are of 

similar importance at each of the three investigated altitudes. Nutrient limitation presumably 

resulted in competition between mycorrhizal fungi and saprotrophic microorganisms for litter-

derived resources, with mycorrhizal fungi suppressing the activity of saprotrophic microorganisms. 



Chapter 1: General Introduction 

 
13 

Variations between the altitudes suggest that at the studied tropical montane forest ecosystems 

seasonality plays a larger role in structuring belowground communities than previously assumed. 

Oribatida appear to strongly depend on root-derived resources, while Collembola presumably 

benefitted from reduced competition between mycorrhizal fungi and saprotrophic microorganisms.  
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Abstract  

Decomposition is among the most fundamental processes in terrestrial ecosystems. Especially in 

tropical montane rainforests, which harbour large stocks of dead organic material, little is known 

about the factors driving decomposition processes. We investigated the effect of altitude, litter 

origin and litter type on long term decomposition rates and microorganisms in a tropical montane 

rainforest in southern Ecuador. Leaf litter from three abundant tree species and roots of different 

diameter were collected from three sites along an altitudinal gradient (1000, 2000, 3000 m). Litter 

and roots were placed in litterbags at the three altitudes, and after 6, 12, 24, 36 and 48 months the 

remaining amount and percentage of C and N as well as microbial biomass and the metabolic 

oxygen quotient were determined.  

Altitude and time were the main factors driving litter decomposition, while origin and therefore 

quality of the litter material was of minor importance. At 2000 and 3000 m the amount of C declined 

over the first 12 months, before reaching a limit value of ~50 % of initial not decomposing further 

from 12 to 24 months; only after 36 months decomposition commenced but at very low rates 

resulting in an average of 37.9 % and 44.4 % of initial remaining after 48 months, at 2000 and 

3000 m, respectively. In contrast, at 1000 m decomposition was more continuous resulting in only 

10.9 % of litter remaining after 48 months. This suggests that after 12 months lignified litter 

components accumulate at higher altitudes contributing to the formation of thick layers of dead 

organic material. In contrast, at 1000 m favourable conditions for litter decomposition prevent the 

accumulation of soil organic matter. Changes in decomposition rates in time especially after 24 

months were paralleled by changes in microbial parameters but these varied with site specific 

conditions. At higher altitudes microbial biomass decreased after 24 months indicating a shift in the 

microbial community, while at 1000 m microbial biomass remained rather constant.  

The results suggest that factors associated with thick layers of organic material at high altitudes 

inhibit decomposition processes, presumably low supply of nutrients, in particular N, causing the 

microbial community to largely depend on root-derived resources and decomposition processes to 

be exceptionally slow, indicating close linkage between plant roots and litter decomposition 

processes. 
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Introduction 

Decomposition is among the most fundamental processes in terrestrial ecosystems, with over 90 % 

of the aboveground net primary production entering the decomposer food web as leaf and root 

litter (McNaughton et al., 1989). Regulatory forces of decomposition processes attract increasing 

attention in the current debate on the functioning of ecosystems as sinks or sources for carbon (C) 

(Cox et al., 2013; Todd-Brown et al., 2014). Extensive amounts of C are stored in dead organic 

matter, with peatlands, tundra and the boreal zone containing an estimated one-third of the global 

C stock (Post et al., 1982; Gorham, 1991). A release of this C in either gaseous or aqueous form may 

contribute substantially to the increasing CO2 concentrations in the atmosphere (Cox et al., 2013). 

Current models projecting the response of soil organic C pools to climate change and elevated 

atmospheric CO2 levels are still uncertain whether C storage will increase or decline and more data 

on regulatory forces of decomposition processes are needed (Cox et al., 2013; Todd-Brown et al., 

2014). Litter quality, climate and the decomposer community are the main factors controlling 

decomposition rates (Kirschbaum, 1995; Coûteaux et al., 2002; Davidson & Janssens, 2006; Berg, 

2014). Litter quality is known to regulate decomposition processes mainly in the early stages of 

decomposition, while climatic conditions become more important with time (Berg & McClaugherty, 

2008). Sensitivity of decomposition processes to changes in temperature have widely been studied, 

however, with controversial outcomes (Kirschbaum, 1995; Giardina & Ryan, 2000; Fang et al., 2005; 

Fierer et al., 2005; Knorr et al., 2005; Davidson & Janssens, 2006). Fang et al. (2005) and Giardina 

et al. (2000) found the decomposition of soil organic matter not to be affected by temperature, 

while Fierer et al. (2009) stated that the influence of temperature on litter decomposition depends 

on the quality of the litter material. Effects of both litter quality and temperature on litter 

decomposition are largely mediated through their effects on the microbial community (Allison 

et al., 2010; Treseder et al., 2012; Cleveland et al., 2014), which is known to be affected by changes 

in temperature (Allison & Treseder, 2008; Frey et al., 2013) and litter quality (Cleveland et al., 2014).  

Large stocks of dead organic material are not only stored in peatlands of the boreal zone but also 

in tropical regions (Post et al., 1982; Pan et al., 2011). Generally, decomposition processes in the 

humid tropics are faster compared to temperate regions (Heneghan et al., 1999). However, in cold 

tropical montane rainforests at high altitude litter decomposition is slow compared to lowland 

tropical rainforests causing soil organic C to accumulate (Post et al., 1982; Heneghan et al., 1999; 

Dieleman et al., 2013; Butenschoen et al., 2014). In the tropical Andes, one of the most species rich 

and diverse ecosystems on earth (Henderson et al., 1991; Barthlott et al., 2005; Hilt & Fiedler, 

2005), montane rainforests are exposed to strong variations in biotic and abiotic conditions on small 

spatial scales (Homeier et al., 2010). Studies in the area of the Reserva Biológica San Francisco in 

the southern Ecuadorian Andes showed litter decomposition to vary markedly along an altitudinal 



Chapter 2: Decomposition of leaf and root litter 

 
21 

gradient spanning about 2000 m (Illig et al., 2008). With increasing altitude, litter decomposition 

slows down and soil organic matter as well as soil C stocks increase (Wilcke et al., 2002; Leuschner 

et al., 2007; Illig et al., 2008). These altitudinal variations are associated with changes in plant 

community composition (Paulsch et al., 2006; Moser et al., 2007; Wilcke et al., 2008; Homeier et al., 

2010) and declining quality of leaf litter material with increasing altitude, resulting in the formation 

of soil organic matter layers of low quality at higher altitude (Wilcke et al., 2002). Further, 

aboveground standing biomass and tree diversity decrease with increasing altitude (Giardina & 

Ryan, 2000; Homeier et al., 2010), which is especially relevant since plant species diversity is known 

as driver for decomposition processes (Butenschoen et al., 2014). The biomass of living and dead 

fine roots as well as living coarse roots increases significantly with increasing altitude (Leuschner 

et al., 2007; Girardin et al., 2010). Therefore, fine root necromass is an important factor 

contributing to the formation of thick organic layers at high altitudes of tropical montane forest 

ecosystems. In addition to changes in plant community composition, also the plant associated 

mycorrhiza community changes with altitude in tropical montane forest ecosystems (Kottke & 

Haug, 2004; Kottke et al., 2006). Generally, in tropical montane ecosystems the mycorrhizal 

community is dominated by arbuscular mycorrhizal fungi (AMF) (Kottke et al., 2004), which are 

known to be closely linked to the microbial and protozoan community (Bonkowski & Clarholm, 

2012; Koller et al., 2013b). Mycorrhizal fungi communities recently also have been suggested to 

directly and indirectly influence decomposition processes and soil organic C stocks (Averill et al., 

2014). Temperature and precipitation also change with altitude (Röderstein et al., 2005; Moser 

et al., 2007), and Wilcke et al. (2002) suggested low temperatures, increased precipitation and 

waterlogging to be responsible for the accumulation of dead organic material in high altitude 

Andean forest ecosystems. Contrasting this view, Krashevska et al. (2012) reported microbial 

biomass to decrease with declining precipitation and Illig et al. (2008) found temperature to only 

be of minor importance for decomposition processes in montane Andean forest ecosystems. This 

suggests that other factors than moisture and temperature are crucial in regulating decomposition 

rates in tropical montane forest ecosystems. 

In this study we investigated the influence of altitude, i.e. site specific conditions, and litter origin, 

i.e. litter quality, on decomposition of leaf and root litter in the Andean tropical montane rainforest 

of southern Ecuador. The study aims at improving the understanding of the mechanisms 

contributing to the accumulation of dead organic material at high altitude sites. We measured C 

and nitrogen (N) as well as microbial biomass concentrations in a litterbag experiment including 

both leaf and root litter over the course of four years. In detail the study aims to disentangle (1) 

whether decomposition rates as well as changes in C and N concentrations in decomposing litter 

material are driven by the quality of the litter material, i.e. the origin of litter from rainforests of 
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different altitude, or biotic and abiotic site specific conditions, and (2) whether leaf and root litter 

decomposition rates are driven by similar factors. We further investigated (3) variations in microbial 

biomass and ergosterol concentrations during decomposition to link changes in litter biota to litter 

decomposition processes.  

 

Material and methods 

Study site  

The study area, with three study sites along an altitudinal gradient at 1000, 2000 and 3000 m a.s.l., 

is located in southern Ecuador on the eastern slope of the Andes. The study sites are in the northern 

part of the Podocarpus National Park facing northeast to northwest. The slopes are moderately 

steep with 26°-31° (Moser et al., 2007) and covered with mostly undisturbed montane rainforest 

(Homeier et al., 2002). The site at 1000 m (Bombuscaro, S04°06´54´´, W78°58´02´´) is located south 

of the city Zamora in the valley of the Rio Bombuscaro. The site at 2000 m (San Francisco, 

S3°58´18´´, W79°4´45´´) is part of a private reserve, the Reserva Biologica San Francisco, which 

includes an area of 9 ha on the flank of the valley of the Rio San Francisco on the northern border 

of the Podocarpus National Park. The site at 3000 m (Cajanuma, S04°06´711´´, W79°10´58´´) is 

located south of the city Loja at the north-west gate of the Podocarpus National Park.  

With 8-10 humid months per year the region has a semi humid climate. Mean annual rainfall 

increases from 2230 and 1950 mm at 1000 and 2000 m, respectively, to 4500 mm at 3000 m (Moser 

et al., 2007), while the mean annual air temperature gradually decreases with increasing altitude 

from 19.4 to 15.7 to 9.4°C at 1000, 2000 and 3000 m, respectively. Soil pH also gradually decreases 

with increasing altitude from 3.94 to 3.52 to 2.86 at 1000, 2000 and 3000 m, respectively 

(Moser et al., 2007). With increasing altitude the mean soil moisture in the organic layer increases 

to 45.3 vol.% at 3000 m as compared to 9.9 and 11.6 vol.% at 1000 and 2000 m, respectively 

(Leuschner et al., 2007). Biotic conditions also change along the altitudinal gradient. Mean tree 

height decreases from 15.6 to 10.1 to 5.2 m at 1000, 2000 and 3000 m, respectively, while thickness 

of organic layers as well as fine root biomass increases from 48 mm and 2.7 t ha-1 to 305 mm and 

6.2 t ha-1 to 435 mm and 10.8 t ha-1 at the respective sites (Moser et al., 2007; Graefe et al., 2008). 

Soil types at 1000, 2000 and 3000 m are predominantly Alumic Acrisols, Gley Cambisols and 

Podzols, respectively (Moser et al., 2007). At 1000 m the litter layer overlays the mineral soil (Ah 

horizon), i.e. F and H layers are lacking; in contrast, at 2000 and 3000 m the leaf litter overlays thick 

organic layers comprising predominantly of F material. 
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Experimental setup 

Nylon bags (litterbags, 4 mm mesh) were used to investigate the influence of altitude and litter 

origin on decomposition and microbial colonization of leaves and roots, i.e. two types of litter 

materials. At each of the three study sites freshly fallen leaves of the three most abundant tree 

families at the respective site with differing C-to-N ratios (See Appendix Table S1) were collected 

from the forest floor (origins; Bombuscaro = Bomb, Estacion Cientifica San Francisco = ECSF, 

Cajanuma = Caja). Roots where collected by digging up the upper 20 to 30 cm of organic material 

and soil, and removing roots by hand. To clear from adhering organic matter and soil, roots where 

washed by gentle rinsing with tap water. Roots were separated into three size classes, small 

(< 2 mm diameter), medium (2 - 5 mm diameter) and large (> 5 mm diameter). Both leaf litter and 

roots where dried at 60°C for four days.  

To simulate natural conditions and at the same time standardize conditions as far as possible, 

litterbags were filled with 10 g of leaf or root litter by mixing leaves of the three plant families, 

respectively root size classes, according to the relative abundance of leaf families/root size classes 

at the three altitudes (Table 1).  

 

Table 1: Leaf litter species and root litter size groups placed into the litterbags and the amount of each used 
(g dry weight) from the three study sites Bombuscaro (Bomb, 1000 m), Estacion Cientifica San Francisco (ECSF, 
2000 m) and Cajanuma (Caja, 3000 m). The amount of litter placed into litterbags of the three litter species 
respectively root size classes was based on the amount present at the respective study site.  

Leaves    Roots   

Bomb [g] Bomb [g] 

Pouteria sp. 5 small 2.8 

Cavendishia zamorensis  3 medium 4.9 

Mollinedia sp. 2 large 2.5 

ECSF   ECSF   

Graffenrieda emarginata 5 small 4.4 

Clusia spp. 4 medium 2.1 

Cavendishia zamorensis 1 large 3.5 

Caja   Caja   

Clusia spp. 5 small 3.4 

Graffenrieda emarginata 4 medium 2.5 

Hedyosmum sp. 1 large 4.1 

 

Litterbags filled with the six different litter mixtures (3 origins × 2 types), where placed at the study 

sites on each of the three altitudes (Fig. 1). Leaf litterbags were placed on top of the litter layer, 

whereas root litterbags were placed in between the soil (1000 m), respectively F layer (2000 and 

3000 m) and the fresh litter layer, where fine root density is at a maximum (Röderstein et al., 2005). 

At each of the three study sites four blocks were established, minimum distance between the blocks 

was 20 m. In each block five replicates of each treatment were placed with one replicate from each 
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block being retrieved at each of five dates, i.e. after 6, 12, 24, 36 and 48 months, resulting in 360 

litterbags in total.  

 

Fig. 1: Scheme of collection of litter materials (origins) and placement of litterbags (altitudes). Leaf and root 
litter samples from three sites (origins: Bombuscaro (Bomb, 1000 m), Estacion Cientifica San Francisco (ECSF, 
2000 m) and Cajanuma (Caja, 3000 m)) were placed in litterbags; six litterbags, three with leaves and three 
with roots, were set up per site and placed in the field at each of the respective sites where leaf litter and 
roots were sampled. 
 

Analytical procedures 

After retrieval the remaining leaf and root litter was stored at 4°C and transported to Germany, 

where it was cleaned by removing soil, plants and roots grown into the litterbags, and then dried 

at 60°C for four days. Litter dry mass was measured gravimetrically. For measuring C and N 

concentrations an aliquot of the litter material was milled to powder and 3-4 mg from each sample 

were filled into tin capsules and analysed using an elemental analyser (Vario EL III, elementar, 

Hanau, Germany). 

Microbial respiration and substrate-induced respiration (SIR) were determined by measuring O2 

consumption using a computer controlled O2 microcompensation apparatus (Scheu, 1992). 

Material from each litterbag was cut into pieces of about 0.5 cm2, water content was adjusted to 

about 60 % of the water holding capacity and the samples were rested for 4 days at room 

temperature. Then, O2 consumption was measured for 24 h. Microbial biomass was determined by 

measuring SIR (Anderson & Domsch, 1978). Moist samples equivalent to 0.2 g dry weight were 

supplemented with glucose equivalent to 80 mg g-1 dry weight and the measurement of the O2 

consumption continued for 24 h. Microbial biomass was calculated from the maximum initial 

respiratory response (MIRR; µl O2 g-1 dry mass h-1) as Cmic = 38 * MIRR (Beck et al., 1997; Joergensen 

& Scheu, 1999). 

Bombuscaro
(1000 m)

Cajanuma
(3000 m)

ECSF
(2000 m)

3000 m
(Cajanuma)

2000 m
(ECSF)

1000 m
(Bombuscaro)

3 root size classes3 leaf species

filled in litterbags

roots
ECSF

roots
Caja

leaves
Caja

leaves
ECSF

leaves
Bomb

roots
Bomb

Origins:

Altitudes:



Chapter 2: Decomposition of leaf and root litter 

 
25 

Ergosterol was extracted from 0.5 g of leaf or root material with 50 ml ethanol in bay-coloured glass 

vial by oscillating shaking for 30 min (250 rev. min-1 on a rocker). Then, samples were centrifuged 

at 3500 g for 40 min. The supernatant was split in two 20 ml samples and evaporated. The dried 

extract was collected in 0.5 ml methanol and filtered through a membrane of 0.45 µm. 

Determination of ergosterol was done by reverse-phase high performance liquid chromatography 

(HPCL) (Djajakirana et al., 1996). Ergosterol concentrations were only measured from the first three 

sampling dates (6, 12 and 24 months) due to lack of material at later dates, resulting in a total of 

216 samples.   

 

Calculations and statistical analysis 

We focused on the variation in the amount and concentration of C within the litter material to 

closely link decomposition processes to energetic processes. Therefore, the amount of C remaining 

(CR) in the litterbags at the sampling dates (n) were expressed as percentages of the initial amount 

of C placed in the litterbags (C0). Similarly, changes in the amount of N remaining (NR) were 

expressed as percentage of the initial amount of N placed in the litterbags (N0), according to the 

following formula: 

CR [%] = (Cn/ C0) × 100 and NR [%] = (Nn/N0) × 100, with Cn and Nn the amount of C and N remaining 

at each sampling date n. 

The concentrations of C (CC) and N (NC) in the litter were calculated as: 

CC [%] = (Cn/DWn) × 100 and NC [%] = (Nn/DWn) × 100, with DWn the dry weight of litter remaining at 

sampling date n. 

In addition, the litter C-to-N mass ratio was calculated, but since variations were similar to those in 

the NC, we focused on NC and only display C-to-N ratio in the appendix (Appendix Table S2, Fig. S1).  

Microbial activity and density were quantified using four parameters. Microbial biomass 

(Cmic: µg C g-1 DW), metabolic oxygen quotient (qO2: µl O2 mg-1 Cmic h-1), the ratio between microbial 

carbon and total soil carbon (Cmic-to-Corg ratio) and the ration between the ergosterol concentration 

and total soil C (µg g-1 C).  

The remaining amount and concentration of C and N (CR, NR, CC, NC and C-to-N ratio) and microbial 

parameters (Cmic, qO2, Cmic-to-Corg ratio and ergosterol concentration) were analysed by repeated 

measures four-factor randomized complete block multivariate analysis of variance (MANOVA) with 

time (6, 12, 24, 36 and 48 months) as repeated factor and block (1, 2, 3 and 4) being nested for 

altitude. Fixed factors were altitude (1000, 2000 and 3000 m a.s.l.), origin (Bomb, ECSF and Caja) 

and litter type (leaf and root litter). Block was excluded from the analysis as there were no 
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significant block effects. Protected repeated measures analysis of variance (ANOVA) with the same 

criteria as stated above were carried out with the general linear model (GLM; type III sum of 

squares), providing between and within subject effects and significant variations between the dates 

(Scheiner & Gurevitch, 2001). Single ANOVAs for each sampling date were performed to identify 

differences between dates. Tukey´s HSD test (α < 0.05) was used to identify significant differences 

between means. Statistical analyses were performed using SAS (Statistical Analysis System, Version 

9.3; SAS Institute Inc., Cary, NC, USA).  

Further, all the measured parameters were correlated in a matrix in total and for each sampling 

date separately using STATISTICA 12 (Statsoft, Inc., Tulsa, USA) (Appendix Fig. S3 and S4). Before 

the analyses data were inspected for homogeneity of variance and normal distribution. Percentage 

data where arcsine square root- and all other date log-transformed. Means presented in the results 

are based on non-transformed data.  

 

Results 

Altitude had the strongest influence on NR, CC, qO2 and Cmic-to-Corg ratio. Litter type had the 

strongest influence on the ergosterol concentration, while CR and Cmic varied strongest with 

sampling dates. The origin of litter material had the strongest influence on NC (Table 2, 3). The effect 

of origin of litter material on most of the investigated parameters was only significant at early 

sampling dates, affecting Cmic and ergosterol concentration only after 6 months, Cmic-to-Corg ratio 

after 6 and 24 months, Cc after 12 and 36 months, while CR and qO2 were not affected by origin as 

main effect at any sampling date. Only NR and NC significantly varied with litter origin at each of the 

sampling dates. Results are therefore presented focusing on the effect of altitude, sampling date 

and litter type on the investigated parameters. 

 

Amount and concentration of C and N 

CR declined with time but this varied significantly with altitude (Fig. 2a, Table 2). Within the first 6 

months C loss at all three altitudes was similar and averaged 15.8 ± 2.6 % of C0. In contrast, from 6 

to 12 months C loss was highest at 1000 m (further 44.1 % of C0) but similar at 2000 and 3000 m 

(further 31.9 and 34.4 % of C0, respectively). From 12 to 36 months CR remained almost constant at 

2000 and 3000 m at an average of 48.7±2.2 and 54.5±3.2 % CR, respectively. From 36 to 48 months 

CR again decreased by 8.2 and 8.5 % of C0 at 2000 and 3000 m, respectively. In contrast, at 1000 m 

CR decreased steadily from 12 to 48 months by an average of 9.7±1.1 % of C0 each year resulting in 

only 10.9 % CR after 48 months. This contrasted 37.9 and 44.4 % CR after 48 months at 2000 and 

3000 m, respectively.  
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Table 2: Repeated measures ANOVA/GLM table of F- and p-values on the effects of altitude (1000, 2000 and 
3000 m), litter type (roots or leaves), litter origin [Bombuscaro (Bomb), ECSF and Cajanuma (Caja)] and date 
(6, 12, 24, 36 and 48 months) on the amount of C (CR) and N (NR) in litterbags (as percentages of initial), the 
percentage of C (CC) and N (NC) in the litter and litter C-to-N ratio. Significant effects are given in bold.  

  CR CC NR NC 

 F-value p-value F-value p-value F-value p-value F-value p-value 

Between subject effects         

altitude 219.26 <.0001 111.59 <.0001 103.48 <.0001 45.66 <.0001 

origin 1.18 0.3163 5.76 0.0057 35.81 <.0001 337.75 <.0001 

type 22.38 <.0001 36.89 <.0001 3.86 0.0552 128.82 <.0001 

altitude × origin 1.64 0.1790 6.54 0.0003 2.52 0.0527 3.45 0.0147 

altitude × type 0.39 0.6819 47.53 <.0001 3.67 0.0326 2.82 0.0696 

origin × type 7.91 0.0011 0.13 0.8761 7.00 0.0021 9.23 0.0004 

altitude × origin × type 2.59 0.0482 2.50 0.0548 3.02 0.0263 3.75 0.0098 
         
Within subject effects         

date 271.93 <.0001 58.88 <.0001 78.99 <.0001 136.79 <.0001 

date × altitude 48.78 <.0001 16.19 <.0001 30.55 <.0001 5.73 <.0001 

date × origin 0.58 0.7933 2.63 0.0093 1.80 0.0791 6.02 <.0001 

date × type 5.8 0.0002 1.00 0.4093 5.20 0.0005 3.96 0.0041 

date × altitude × origin 1.13 0.3322 1.52 0.0943 1.91 0.0216 2.68 0.0008 

date × altitude × type 0.44 0.8983 7.11 <.0001 0.30 0.9665 4.70 <.0001 

date × origin × type 1.43 0.1876 1.96 0.0541 2.62 0.0095 4.03 0.0002 

date × altitude × origin × type 0.61 0.8715 1.51 0.0994 0.51 0.9409 0.62 0.8633 
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Fig. 2: Variation in the amount of C (CR) (a) and N (NR) (b) in litter (percentages of initial) exposed in tropical 

montane rainforests at three altitudes (1000, 2000 and 3000 m) for 6, 12, 24, 36 and 48 months (means±SD). 

 

C loss also varied between root and leaf litter (interaction: date × type; Table 2). Within the first 

year the C loss was similar in leaf and root litter, with an average of 15.8±0.5 % of C0 after 6 and an 

additional 36.9±1.6 % of C0 from 6 to 12 months. Between 12 and 24 months C loss slightly differed 
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between leaf and root litter, decreasing in leaf litter by 5.0 % of C0 reaching 41.7 % CR, while 

remaining almost constant in root litter at 49.1±1.3 % CR. From 24 to 48 months the decrease was 

again similar, with an average of 6.4±0.7 % from 24 to 36 and 8.1±0.9 % of C0 from 36 to 48 months, 

resulting in an overall lower C loss in root as compared to leaf litter (35.5 and 26.8 % CR after 48 

months, respectively). Further, CR also varied with the origin of the litter material, but this 

depended on altitude and litter type (Fig. 5a, Table 2). At each of the three altitudes CR in root litter 

from ECSF was higher than that of leaf litter from ECSF, while in litter from Caja this was only true 

at 1000 and 2000 m. CR in litter from Bomb did not vary significantly between leaf and root litter.  

CC also varied significantly with time, litter type and altitude (Table 2, Fig. 3a). It decreased at each 

of the altitudes in both litter types from 6 to 12 months. In the following years the pattern varied, 

in both leaf and root litter exposed at 2000 and 3000 m CC increased from 12 to 24 months and 

then remained almost constant in the following two years. At 1000 m variations in CC with time 

differed between leaf and root litter. In leaf litter it remained almost constant after 12 months at 

an average of 47.3±0.6 %, while in root litter it slowly decreased, but remained almost constant 

between 24 and 36 months.  
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Fig. 3: Variation in the percentages (of dry weight) of C (CC) (a) and N (NC) (b) in leaf and root litter exposed 

in tropical montane rainforests at three altitudes (1000, 2000 and 3000 m) for 6, 12, 24 ,36 and 48 months 

(means±SD) . 
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Overall, leaf litter contained slightly higher CC than root litter and at 1000 m CC was generally lower 

due to stronger decrease with time. Further, CC also varied with time and origin of litter material 

(interaction: time × origin; Table 2) and this was mainly due to lower CC in the litter material from 

ECSF after 36 months. After 6 months litter from Bomb contained slightly less CC with 51.8 % than 

litter from ECSF and Caja both with 52.8 %. The decrease from 6 to 12 months was strongest and 

did not vary with litter origin; on average it decreased to 46.8 % of C0. CC in litter from Bomb and 

Caja varied in a similar pattern increasing after 12 months by 1.2 % and 2.5 % in the second, and by 

1.2 % and 0.9 % in the third year, respectively. From 36 to 48 months the decrease was identical 

with an average of 1.4±0.1 % per year. In litter from ECSF CC only increased from 12 to 24 months 

by 2.0 %. From 24 to 36 it decreased by 1.0 % and then stayed constant from 36 to 48 months, 

resulting in litter from Bomb and ECSF having a slightly lower CC after 48 months (47.9±4.9 and 

48.0 % CC, respectively) than litter from Caja (48.7±4.3 %).  

Generally, except during the first 6 months, NR decreased with time, but this varied significantly 

with altitude (Fig. 2b, Table 2). After the first 6 months NR exceeded N0 at 1000 m, whereas it 

uniformly decreased later. From 6 to 12 months the decrease was strongest with 47.5 % of N0 and 

continued with an average of 12.9±2.0 % of N0 each following year. At 2000 and 3000 m the pattern 

was less consistent. At both altitudes NR was close to 100 % of N0 after 6 months and decreased in 

the following 6 months to 82.4 and 77.7 % NR, respectively. From 12 to 24 months it remained 

almost constant at 2000 m, but at 3000 m it increased again to 94.9 % NR. From 24 to 36 months it 

decreased again to 70.6 and 84.1 % NR at 2000 and 3000 m, respectively. From 36 to 48 months 

changes were small. The decrease in NR also varied significantly between litter types (date × type 

interaction; Table 2), in both leaf and root litter the decline was strongest between 6 and 12 

months. In leaf litter NR remained constant between 12 and 24 months followed by a decrease 

between 24 and 48 months. In root litter NR fluctuated after 12 months with an overall weaker 

decline than in leaf litter resulting in 54.5 compared to 69.2 % NR after 48 months, respectively. The 

decrease in NR at the three altitudes also varied significantly with origin of the litter material (date × 

altitude × origin interaction; Table 2). Overall, the decrease was most pronounced at 1000 m, with 

only 17.0 % NR in litter from Bomb after 48 months compared to 26.9 and 46.2 % of NR in litter from 

Bomb and Caja, respectively. At higher altitudes the decrease was also at a maximum in litter from 

Bomb with 57.2 and 73.1 % NR after 48 months at 2000 and 3000 m, respectively, compared to 

88.3 % NR in litter from ECSF and 81.2 % NR in litter from Caja at 2000 m and 76.9 % NR in litter from 

ECSF and 86.5 % NR in litter from Caja at 3000 m. The decrease in NR in the two litter types also 

varied significantly with origin of the litter (date × type × origin interaction; Table 2). In leaf litter 

from Bomb NR declined strongest with 45.1 % NR after 48 months, compared to 62.4 % and 55.9 % 

NR after 48 months in leaf litter from ECSF and Caja, respectively. In root litter from Bomb and ECSF 
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the N loss was very similar with an average of 56.4 and 64.6 % NR after 48 months compared to 

86.7 % NR in root litter from Caja.  

Generally, NC increased with time, but this varied with altitude and litter type (Fig. 3b, Table 2). The 

NC increase was strongest in leaf litter at 1000 m, increasing by 0.9 % between 6 and 48 months, 

and root litter at 2000 m, increasing by 0.7 % between 6 and 48 months (Fig. 3b). In the other 

treatments the NC increase varied between 0.4 and 0.5 % over the course of 48 months. In leaf litter 

at 2000 and 3000 m the increase stopped between 24 and 36 months, while in root litter at 3000 m 

it stopped between 12 and 36 months. In contrast, NC in root litter at 2000 m decreased from 24 to 

36 months. NC increased strongly in leaf litter at 1000 m, while it increased less in root litter, 

remaining constant between 12 and 24 months as well as between 36 and 48 months. Overall, NC 

decreased with increasing altitude and was higher in leaf as compared to root litter. At the three 

altitudes the increase also varied with litter origin (date × altitude × origin interaction; Table 2). In 

litter from Bomb, which had the highest NC, the total increase was lowest irrespective of altitude. 

At 1000 and 3000 m the increase in NC was most pronounced in litter from Caja, while at 2000 m it 

was most pronounced in litter from ECSF. In litter from Bomb and Caja NC decreased or remained 

constant between 24 and 36 months at both 2000 and 3000 m. In both litter types the increase in 

NC also varied with the origin of the litter material (date × type × origin interaction; Table 2). The 

increase in NC from 6 to 48 months in the litter material from Bomb and ECSF was lower in roots 

than in leaf litter, with 0.4 % as compared to 0.6 % in litter from Bomb and 0.6 % as compared to 

0.7 % in litter from ECSF, respectively. In litter from Caja NC in root litter almost doubled, increasing 

by 0.6 % from 0.7 to 1.3 % NC as compared to only 4.8 % in leaf litter from 0.9 to 1.4 % NC. 

 

Microorganisms 

Cmic, ergosterol concentration, qO2 and Cmic-to-Corg ratio varied significantly with time, altitude and 

litter type (Tab. 3, Fig. 4). None of them increased or decreased steadily with time. Cmic declined 

strongly from 6 to 24 months in both litter types at 2000 m and root litter at 3000 m, followed by 

an increase from 24 to 36 months (Fig. 4a). In leaf litter at 3000 m Cmic remained almost constant. 

In leaf litter at 1000 m Cmic declined from 6 to 12 months, remained constant until 36 months and 

strongly increased from 36 to 48 months. In contrast, in root litter at 1000 m Cmic increased strongly 

after 24 months followed by a similarly strong decrease (Fig. 4a). Cmic also varied with the origin of 

the litter material (Table 3); it was highest in litter from Bomb followed by litter from ECSF and litter 

from Caja. Ergosterol concentrations decreased in leaf litter at 1000 and 2000 m from 6 to 24 

months by 56.4 and 63.1 %, respectively (Fig. 4b), parallel to the strong decrease in Cmic (Fig. 4a). In 

root litter at 1000 and 2000 m ergosterol concentrations did not vary significantly with time. At 

3000 m ergosterol concentrations in leaf litter increased from 6 to 12 months, while in root litter 
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they only increased from 12 to 24 months contrasting the decrease in Cmic. Ergosterol 

concentrations also varied significantly with time and litter origin (date × origin interaction; 

Table 3). They were highest in the litter from ECSF after 6 months with 0.25 µg g-1 C and decreased 

continuously, reaching 0.14 µg g-1 C after 24 months. In litter from Bomb and Caja the variation with 

time was less pronounced, with 0.16 µg g-1 C in litter from both origins after 6 months and 0.17 and 

0.14 µg g-1 C in litter from Bomb and Caja after 24 months, respectively. 

 

Table 3: Repeated measured ANOVA/GLM table of F- and p-values, of the effects of altitude (1000, 2000 and 

3000 m), type (roots or leaves), origin (Bombuscaro (Bomb), ECSF and Cajanuma (Caja)) and date (6, 12, 24, 

36 and 48 months) on the microbial biomass (Cmic), metabolic oxygen quotient (qO2), Cmic-to-Corg ratio and 

ergosterol concentration (ergosterol/Corg). Significant effects are given in bold. 

  Cmic qO2 Cmic-to-Corg ratio ergosterol 

 F-value p-value F-value p-value F-value p-value F-value p-value 

Between subject effects         

altitude 15.08 <.0001 16.20 <.0001 16.01 <.0001 13.55 <.0001 

origin 8.77 0.0007 2.17 0.1299 11.18 0.0002 2.71 0.0762 

type 0.02 0.8868 0.01 0.9248 0.40 0.5307 90.31 <.0001 

altitude × origin 2.04 0.1083 3.43 0.0185 3.65 0.0135 4.21 0.0051 

altitude × type 9.11 0.0006 1.16 0.3241 11.11 0.0002 12.67 <.0001 

origin × type 0.37 0.6937 2.62 0.0872 0.66 0.5227 8.48 0.0007 

altitude × origin × type 1.70 0.1694 2.77 0.0429 1.46 0.234 1.64 0.1785 
         

Within subject effects         

date 22.63 <.0001 12.33 <.0001 12.9 <.0001 19.96 <.0001 

date × altitude 8.16 <.0001 3.36 0.0015 7.55 <.0001 13.61 <.0001 

date × origin 1.94 0.0581 0.79 0.6128 2.08 0.0419 5.19 0.0008 

date × type 2.98 0.0210 1.58 0.1825 2.40 0.0525 13.23 <.0001 

date × altitude × origin 0.85 0.6314 1.41 0.1455 1.06 0.3984 1.31 0.2484 

date × altitude × type 6.31 <.0001 5.54 <.0001 4.92 <.0001 3.45 0.0110 

date × origin × type 0.83 0.5745 0.91 0.5102 0.51 0.8482 1.87 0.1208 

date × altitude × origin × type 1.51 0.1033 1.07 0.3942 0.97 0.4958 0.55 0.8139 

 

Changes in qO2 contrasted those of Cmic, increasing strongly from 12 to 24 months in both litter 

types at 2000 m and root litter at 3000 m (Fig. 4c, Table 3), while in leaf litter at 3000 m it only 

decreased from 6 to 12 months. At 1000 m qO2 decreased in root litter from 6 to 24 months, while 

increasing in leaf litter from 12 to 24 months. The qO2 was generally lowest after 48 months. The 

qO2 also varied significantly with litter origin, but the variation depended on altitude and litter type 

(Fig. 5b, Table 3). Root litter from Caja had higher qO2 values than root litter from Bomb and ECSF, 

irrespective of altitude. The qO2 in leaf litter at 1000 m was highest in litter from Caja followed by 

litter from Bomb and litter from ECSF. At 2000 m qO2 values in leaf litter from Bomb and Caja where 

almost identical while in litter from ECSF qO2 was 10.7 % higher. At 3000 m litter from ECSF and 

Caja had similar qO2 values while in litter from Bomb it was 13.3 % lower. 
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The Cmic-to-Corg ratio closely correlated with Cmic (see Appendix Table S3 and S4). It declined strongly 

from 6 to 24 months in both litter types at 2000 m and root litter at 3000 m, followed by an increase 

from 24 to 36 months and remained almost constant in leaf litter at 3000 m (Fig. 4d, Table 3). The 

Cmic-to-Corg ratio at 1000 m declined from 6 to 12 months in leaf litter and remained constant until 

36 months, followed by a strong increase from 36 to 48 months, while in root litter it strongly 

increased from 12 to 24 months, parallel to the variations in Cmic. The Cmic-to-Corg ratio also varied 

significantly with time and litter origin (date × origin interaction; Table 3). It decreased in litter from 

Bomb and ECSF from 6 to 36 months, from 2.0 and 1.7 after 6 months to 1.4 and 1.2 after 

36 months, respectively. From 36 to 48 months the Cmic-to-Corg ratio increased to 1.5 in litter from 

Bomb and 1.4 in litter from ECSF. In litter from Caja the Cmic-to-Corg ratio was more variable and 

reached a minimum of 0.9 after 24 months.  

 

Discussion 

Decomposition processes have been shown to strongly depend on the quality of litter material, 

especially in the early phase of decomposition (Berg & McClaugherty, 2008; Cusack et al., 2009). In 

contrast to this view, in the present study the origin and therefore quality of the litter material was 

of minor importance, influencing C loss only in the early phase of decomposition. Generally, 

however, at later phases of decomposition C mass loss of litter was mainly affected by the altitude 

at which the litter material was exposed and therefore by site specific biotic and abiotic conditions 

rather than by litter quality.  

Decomposition processes are known to undergo different stages with the early stage being 

characterized by fast mass loss through leaching of soluble compounds and decomposition of 

holocellulose (Berg & McClaugherty, 2008; Berg, 2014). Our results support this view, with a rapid 

decline in the amount of litter C within the first year of decomposition irrespective of altitude. Berg 

(2014) described that in the later phases of decomposition the rate of mass and C loss slows down 

and is dominated by the degradation of lignified litter compounds. The decomposition rate can 

even cease, reaching a limit value and leaving behind stable litter compounds which are little 

decomposed (Berg & McClaugherty, 2008; Berg, 2014). In the present study the C loss rate in later 

phases (after 12 months) varied between altitudes. Butenschoen et al. (2014) already reported a 

strong decrease in litter mass in the first year followed by slowing down or ceasing of 

decomposition rates from 12 to 24 months in a litterbag experiment at the 2000 m study site of the 

present study. Results of the present study support these findings and document that the 

retardation in decomposition rate and C loss at 2000 and 3000 m starts after 12 months and lasts 

then for at least 24 months, with the amount of litter C staying constant at a limit value of around 

50 % of C0. After this second phase of litter decomposition, the loss of C resumed from 36 to 48 
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months at 2000 and 3000 m, however, at a low rate of 8-9 % of C0. This resumption of C loss 

indicates a third phase of decomposition, which likely is associated with the start of lignin 

degradation and a shift in the decomposer community towards lignin decomposing 

microorganisms. The long delay before this resumption of decomposition suggests that lignin 

degrading organisms were outcompeted in the early phase of decomposition by primary colonisers 

which use the fast decomposable soluble litter compounds as resource. In contrast, at 1000 m C 

loss continued after 12 months at a low but steady rate of around 10 % of C0 each year, reaching 

over 80 % C loss after 4 years, indicating that in contrast to higher altitudes site specific conditions 

at 1000 m promote litter decomposition including recalcitrant compounds such as lignin. 

Presumably, the different forest floor types at the different altitudes with the litter layer being in 

close contact with mineral soil at 1000 m whereas thick layers of F-material separating leaf litter 

and mineral soil at higher altitudes contribute to the different decomposition dynamics. Soil 

characteristics are known to influence decomposition (Berg & McClaugherty, 2008), for example by 

supporting a stable microbial community by enabling them to acquire N from the inorganic N pool 

in soil (Hodge et al., 2000) and therefore increasing decomposition rates. At 1000 m the thin litter 

layer (L layer) on top of the mineral soil (Ah layer) enables direct interactions between 

microorganisms of the litter and mineral soil while at the higher altitude sites the litter layer 

overtops thick layers of decomposed organic material (F layer) and therefore, is separated from the 

mineral soil. This might result in a feedback loop in which accumulation of organic material and the 

formation of thick F layers inhibits further decomposition.  

Irrespective of altitude the pattern of inhibited C loss after 12 months was more pronounced in root 

litter, while in leaf litter C mass loss continued at a low rate. Presumably, this is due to root litter 

containing higher concentrations of lignin than leaf litter (Bloomfield et al., 1993; Berg & 

McClaugherty, 2008), resulting in a stronger accumulation of lignified litter compounds in later 

phases of decomposition causing slowed down or ceasing decomposition rates. This is especially 

relevant for the accumulation of large amounts of little decomposed root litter at 2000 and 3000 m, 

since the root-to-shoot ratio in the studied area is increased at higher altitude (Leuschner et al., 

2007). 

The concentration of C in the litter material (CC) remained very high over the course of the 

experiment, indicating an overall high concentration of highly condensed carbon compounds such 

as lignin (Berg & McClaugherty, 2008). Only in root litter at 1000 m CC decreased continuously with 

time, indicating continuous degradation of recalcitrant condensed compounds. At higher altitudes, 

but also in leaf litter at 1000 m, CC only decreased from 6 to 12 months and increased strongly from 

12 to 24 month, supporting our conclusion of inhibited lignin degradation and therefore 

accumulation of recalcitrant compounds in the second phases of decomposition.  
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Berg and McClaugherty (2008) stated that the retardation in mass loss during later phases of 

decomposition is not only caused by high lignin concentration, but also due to negative effects of 

increased N concentrations. While high concentrations of N increase litter decomposition at early 

stages of litter decay, they suppress the degradation of recalcitrant compounds by repressing the 

formation of lignolytic enzymes (Keyser et al., 1978; Berg & McClaugherty, 2008; Berg, 2014). Early 

during litter decomposition NC in the present study ranged from 0.6 to 1.4 %. During exposure NC 

in the litter increased at each of the altitudes and in both litter types. High NC in leaf litter at 1000 m 

might explain the high CC, due to inhibited lignin degradation, at this altitude compared to root 

litter (Cusack et al., 2009). The initial NC in litter from the different altitudes influenced the pattern 

in which NC varied with time. In litter material with initially high NC values, the increase with time 

was less pronounced than in litter material with low NC, suggesting that NC values converge with 

time.  

The amount of N in the litter material (NR) increased in the first 6 months at 1000 m and remained 

constant at 2000 and 3000 m, indicating that at 1000 m fungal hyphae transported N into the litter 

thereby improving conditions for litter decomposition in the early decomposition phase. After 6 

months, however, NR started to decrease, suggesting that N from the litter material was mobilized 

and transported out of the litterbags. At 1000 m NR decreased from 12 months onwards. Together 

with the continuous loss of C at 1000 m this suggests that also recalcitrant compounds were 

decomposed. At 2000 and 3000 m NR decreased by less than 30 % of N0, and this decrease mainly 

occurred between 6 and 12 months of exposure in the field, suggesting that during this early phase 

export of litter N was at a maximum, while at later phases of decomposition litter N was retained 

in the litter. The C-to-N ratio of litter at 2000 and 3000 m was high (ranging from 97 to 32 over the 

course of the experiment) and exceeded values at which net mineralisation is assumed to occur (25) 

(Hodge et al., 2000). This suggests that plant roots at the study site are unable to obtain N from 

decomposing litter. Presumably, plants rely on mycorrhizal fungi improving N capture by growing 

into leaf and root litter material. Indeed, the great majority of tree species at our study sites are 

associated with AM fungi (Haug et al., 2004; Kottke et al., 2004). AM fungi, while unable to 

decompose complex organic molecules themselves, are known to stimulate N uptake by plants and 

improve decomposition by interacting with the microbial community (Coleman, 1994; Hodge et al., 

2001; Koller et al., 2013b,c). Presumably, in particular at the 2000 and 3000 m sites the microbial 

community heavily relies on mycorrhizal C provided via hyphal exudates (Bonkowski, 2004; Koller 

et al., 2013c). Potentially, this C input enabled the microbial community to obtain N from the litter 

material, despite the high C-to-N ratio (Koller et al., 2013a). In fact, irrespective of litter C-to-N 

ratios protozoa mobilise microbially fixed N by grazing on bacteria, and AM fungi translocate the 

mobilised N to the host plant (Koller et al., 2013b). Notably, Krashevska et al. (2008) suggested 
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testate amoebae, a major group of protists at our study site, to be driven by the availability of 

bacteria and fungi as food source.  

Overall, microbial biomass was low as compared to temperate regions, resembling results from 

previous studies at our study sites and other tropical forests (Luizao et al., 1992; Imberger & Chiu, 

2002; Krashevska et al., 2008). Krashevska (2008) investigating the same altitudinal transect found 

Cmic and ergosterol in the litter layer to peak at 2000 m, while in the present study Cmic and 

ergosterol concentrations only peaked at this altitude in leaf litter after 6 months. At all other dates 

they either increased with increasing altitude or were reduced at 2000 m after 24 months. 

Krashevska et al. (2008) also reported high ergosterol concentrations in the upper litter layer. 

Results of the present study support these findings as ergosterol concentrations in leaf litter 

exceeded those in root litter irrespective of altitude after 6 months. 

The structure and functioning of the microbial community in decomposing litter material is known 

to change during decomposition, parallel to changes in the chemical composition of the litter 

material (Scheu & Parkinson, 1995; Berg & McClaugherty, 2008). In the present study, this linkage 

between changes in litter chemistry and microbial community composition was evident throughout 

the decomposition process. While the origin and therefore quality of the litter material affected the 

microbial community mainly in the early phase of decomposition, site specific conditions, i.e. 

altitude, became more important later. At each altitude the fast decrease in CR and NR from 6 to 12 

months as well as the generally high Cmic and Cmic-to-Corg ratio after 6 months support the hypothesis 

that the early microbial community depended mainly on easily decomposable litter compounds. 

This also is reflected by high Cmic and Cmic-to-Corg ratios in litter material from Bomb which had the 

lowest C-to-N ratio. The ergosterol concentration only decreased from 6 to 12 months in leaf litter 

at 1000 and 2000 m, indicating that saprotrophic fungi in these treatments also depended on easily 

decomposable litter compounds.  

Differences in the rate of C mass loss between altitudes after 12 months presumably are related to 

changes in microbial community composition. At 1000 m Cmic was generally higher than at 2000 and 

3000 m and decomposition of litter continued after 12 months suggesting that microorganisms at 

this altitude were able to continuously decompose condensed litter compounds including lignin 

thereby reducing CC and CR. Presumably, contact of litter and mineral soil as well as higher quality 

of the surrounding local litter material at 1000 m (Wilcke et al., 2002) improved the ability of the 

microbial community to decompose litter. Contrasting the conditions at 2000 and 3000 m where 

the separation of the leaf litter layer from mineral soil and low nitrogen concentration of F-material 

may hamper translocation of N into the litter material, causing the litter to remain poor in N; in 

fact, both leaf and root litter at 2000 and 3000 m still were poor in N with average C-to-N ratios of 

33.7±9.0 and 36.7±8.2 after 48 months, respectively, whereas at 1000 m litter N was higher with 
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an average C-to-N ratio of 24.8±4.7 after 48 months. In both leaf and root litter at 2000 m and root 

litter at 3000 m the strong decrease in Cmic and Cmic-to-Corg ratio from 6 to 24 months indicates that 

the early microbial community depending on easily decomposable litter compounds declined due 

to substrate depletion. High qO2 during this phase suggests that increased stress contributed to the 

decline in Cmic (Blagodatskaya & Anderson, 1999). After 24 months Cmic and the Cmic-to-Corg ratio 

increased while qO2 decreased, indicating a shift in the structure of the microbial community. This 

suggests that after depletion of easily decomposable litter compounds in the first phase of 

decomposition, the activity of the microbial community slowed down or ceased in the second phase 

between 12 and 36 months. Resumption of litter decomposition at 2000 and 3000 m in the third 

phase after 36 months suggests that a novel microbial community able to decompose condensed 

recalcitrant litter compounds including lignin took over. Slower decline in Cmic and Cmic-to-Corg ratio 

and higher ergosterol concentration in leaf litter at 3000 m as compared to 2000 m indicates that 

this shift in microbial community composition was less strong in leaf litter at 3000 m as compared 

to root litter and both litter types at 2000 m. Presumably, at 3000 m where organic layers are most 

pronounced reaching a thickness of more than 40 cm (Graefe et al., 2008) dominance of 

saprotrophic fungi in the upper litter layer is most pronounced.  

 

Conclusions 

Results of the present long term study suggest that the accumulation of dead organic material at 

higher altitude and the formation of thick F layers in tropical montane rainforests in part is caused 

by reduced or ceasing decomposition rates in both leaf and root litter in a second phase of 

decomposition between 12 and 36 months as well as slow resumption of litter decomposition after 

this phase. Continuous litter decomposition at 1000 m suggests that these long term decomposition 

patterns are not caused by differences in litter quality, but by site specific conditions such as 

different forest floor types as well as different trophic interactions between plants and the 

belowground community. We suggest that the accumulation of leaf and root litter at high altitudes 

and therefore the formation of thick layers of organic material (F layer) inhibits positive interactions 

between the microbial community in the upper litter layer and the mineral soil, causing the 

microbial community to depend on plant-derived resources only, with the litter poor in N being 

insufficient to allow saprotrophic microorganisms to effectively decompose in particular condensed 

litter compounds such as lignin. We suggest that these conditions lead to closer trophic linkage 

between plants and the decomposer community at higher altitude. Future studies need to elucidate 

interactions between the plant and the decomposer community, to disentangle how plant-derived 

resources impact the belowground community structure, decomposition processes and the capture 

of nutrients from decomposing litter by plants.  
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Appendix 

Table S1: Percentage (of dry weight) of C (CC) and N (NC), and C-to-N ratio in freshly collected leaf and root 

litter from three different origins (Bomb, ECSF and Caja) along an altitudinal gradient in a tropical montane 

rainforest.  

litter type origin CC NC C/N 

leaf 

Bomb 50.1 1.35 37.0 

ECSF 50.2 0.62 81.4 

Caja 50.6 0.64 79.5 

root 

Bomb 50.4 1.09 46.4 

ECSF 49.8 0.76 66.0 

Caja 51.6 0.53 96.9 

 

Table S2: Repeated measures ANOVA/GLM table of F- and p-values on the effects of altitude (1000, 2000 and 
3000 m), litter type (roots or leaves), litter origin [Bombuscaro (Bomb), ECSF and Cajanuma (Caja)] and date 
(6, 12, 24, 36 and 48 months) on litter C-to-N ratio. Significant effects are given in bold.  

  C-to-N ratio 

 F-value p-value 

Between subject effects   

altitude 89.39 <.0001 

origin 348.71 <.0001 

type 89.28 <.0001 

altitude × origin 3.45 0.0148 

altitude × type 8.61 0.0006 

origin × type 8.38 0.0008 

altitude × origin × type 4.70 0.0028 
   
Within subject effects   

date 189.98 <.0001 

date × altitude 10.09 <.0001 

date × origin 6.49 <.0001 

date × type 3.79 0.0055 

date × altitude × origin 2.09 0.0102 

date × altitude × type 2.89 0.0046 

date × origin × type 3.48 0.0009 

date × altitude × origin × type 0.56 0.9089 
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Fig. S1: Variation in C-to-N ratio in leaf and root litter exposed in tropical montane rainforests at three 

altitudes (1000, 2000 and 3000 m) for 6, 12, 24 ,36 and 48 months (means±SD). 
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Table S3: Correlation matrix of the amount of C (CR) and N (NR), the percentage of C (CC)  and N (NC), C-to-N 

ratio (C/N), microbial biomass (Cmic), Cmic-to-Corg ratio (Cmic/Corg) and metabolic oxygen quotient (qO2) in 

decomposing litter material exposed in the field for 6, 12, 24, 36 and 48 months.  

 CR NR CC NC C/N  Cmic Cmic/Corg qO2  

CR p= ---                

NR p=.003 p= ---              

CC p=0.00 p=.002 p= ---            

NC p=.000 p=.123 p=0.00 p= ---          

C/N  p=.000 p=0.00 p=.000 p=.040 p= ---        

Cmic p=.000 p=.000 p=.000 p=.001 p=.002 p= ---      

Cmic/Corg p=.382 p=.000 p=.118 p=.066 p=.000 p=0.00 p= ---    

qO2 p=.000 p=.000 p=.000 p=.002 p=.000 p=.942 p=.371 p= ---  

          

 

Table S4: Correlation matrix of the amount of C (CR) and N (NR), the percentage of C (CC)  and N (NC), C-to-N 

ratio (C/N), microbial biomass (Cmic), Cmic-to-Corg ratio (Cmic/Corg), metabolic oxygen quotient (qO2) and the 

ergosterol content, measured after 6 months (a), 12 months (b), 24 months (c), 36 months (d) and 48 months 

(e) in decomposing litter material. 

(a) CR NR CC NC C/N Cmic Cmic/Corg qO2 Ergosterol 

CR p= ---                 

NR p=.077 p= ---               

CC p=.062 p=.377 p= ---             

NC p=.212 p=.238 p=.001 p= ---           

C/N p=.074 p=0.00 p=.435 p=.039 p= ---         

Cmic p=.536 p=.000 p=.317 p=.554 p=.000 p= ---       

Cmic/Corg p=.181 p=.000 p=.255 p=.643 p=.000 p=0.00 p= ---     

qO2 p=.259 p=.075 p=.003 p=.292 p=.097 p=.046 p=.037 p= ---   

Ergosterol p=.021 p=.840 p=.189 p=.249 p=.686 p=.000 p=.000 p=.134 p= --- 

          
(b) CR NR CC NC C/N  Cmic Cmic/Corg qO2 Ergosterol 

CR p= ---                 

NR p=.734 p= ---               

CC p=.006 p=.886 p= ---             

NC p=.292 p=.285 p=.000 p= ---           

C/N p=.408 p=0.00 p=.534 p=.280 p= ---         

Cmic p=.872 p=.136 p=.342 p=.361 p=.219 p= ---       

Cmic/Corg p=.235 p=.162 p=.634 p=.465 p=.183 p=0.00 p= ---     

qO2 p=.773 p=.011 p=.450 p=.834 p=.001 p=.872 p=.899 p= ---   

Ergosterol p=.853 p=.658 p=.026 p=.007 p=.718 p=.000 p=.001 p=.098 p= --- 

          
(c)  CR NR CC NC C/N Cmic Cmic/Corg qO2 Ergosterol 

CR p= ---                 

NR p=.872 p= ---               

CC p=.000 p=.071 p= ---             

NC p=.000 p=.026 p=.000 p= ---           

C/N  p=.014 p=0.00 p=.001 p=.002 p= ---         

Cmic p=.000 p=.011 p=.000 p=.001 p=.000 p= ---       

Cmic/Corg p=.000 p=.045 p=.000 p=.000 p=.000 p=0.00 p= ---     

qO2 p=.000 p=.202 p=.014 p=.229 p=.006 p=.000 p=.000 p= ---   

Ergosterol p=.155 p=.865 p=.845 p=.374 p=.378 p=.003 p=.002 p=.031 p= --- 
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(d) CR NR CC NC C/N Cmic Cmic/Corg qO2  

CR p= ---                
NR p=.038 p= ---              
CC p=.000 p=.002 p= ---            
NC p=.000 p=.018 p=.000 p= ---          
C/N p=.000 p=.000 p=.000 p=.018 p= ---        
Cmic p=.556 p=.641 p=.607 p=.519 p=.959 p= ---      
Cmic/Corg p=.486 p=.905 p=.658 p=.182 p=.584 p=0.00 p= ---    
qO2 p=.850 p=.661 p=.940 p=.275 p=.208 p=.014 p=.014 p= ---  

          
(e) CR NR CC NC C/N Cmic Cmic/Corg qO2  

CR p= ---                
NR p=.657 p= ---              
CC p=.000 p=.003 p= ---            
NC p=.000 p=.000 p=0.00 p= ---          
C/N p=.000 p=0.00 p=.000 p=.000 p= ---        
Cmic p=.007 p=.160 p=.013 p=.002 p=.027 p= ---      
Cmic/Corg p=.000 p=.214 p=.001 p=.000 p=.007 p=0.00 p= ---    
qO2 p=.038 p=.346 p=.019 p=.015 p=.082 p=.000 p=.000 p= ---  
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Abstract 

Microarthropods impact their habitat by regulating organic matter turnover and nutrient cycling 

via direct and indirect processing of organic matter entering the soil system as litter fall and root 

exudates, causing feedback to the aboveground system. The reasons for variation in the structure 

of soil microarthropod communities still are little understood, but likely they are due to both 

variations in biotic and abiotic factors such as local climatic conditions and litter quality. 

We investigated the effect of altitude, litter origin and litter type on soil microarthropod 

communities over the course of long term decomposition processes in tropical montane rainforests 

in southern Ecuador. Leaf litter from three abundant tree species and roots of different diameter 

were collected from three sites along an altitudinal gradient (1000, 2000, 3000 m). Litter and roots 

were placed in litterbags at the three altitudes, and after 6, 12, 24 and 36 all movable soil fauna 

was extracted to assess abundance of Collembola and Acarina groups as well as diversity of 

Oribatida.  

Density and diversity of soil microarthropods (i.e. Acarina and Collembola) decreased with 

increasing altitude and varied with the degree to which the litter was decomposed rather than with 

litter origin and therefore quality of the litter material. Densities fluctuated over the course of 

decomposition being generally low after 24 months and again increased after 36 months. Species 

composition of Oribatida varied strongly between the altitudes, with little species overlap between 

the altitudes. The percentage of parthenogenetic Oribatida species decreased with increasing 

altitude.  

This suggests that the origin and therefore quality of litter material is of little importance as driving 

force for the composition of the microarthropod community of tropical montane rainforests. 

Factors changing with altitude, such as temperature and soil pH, as well as decomposition stage 

and associated changes the microbial community and interactions with mycorrhizal fungi and litter-

derived resources are much more important.  
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Introduction 

Soil microarthropods are highly diverse and abundant in soils of virtually any ecosystem and climatic 

zone (Bardgett, 2005). Their importance for decomposition processes has long been recognized and 

extensively studied (Scheu, 2002; Cornwell et al., 2008; Kampichler & Bruckner, 2009; Castanho 

et al., 2012). Together with other soil fauna groups they impact their habitat by regulating organic 

matter turnover and nutrient cycling via processing of organic matter that is entering the soil 

system via litter fall and root exudates (Bardgett, 2005). These processes cause feedbacks to the 

aboveground system, resulting in enhanced soil fertility and increased plant performance (Scheu, 

2001; Wardle et al., 2004; van der Putten et al., 2009). Besides the major regulatory forces, i.e. 

climatic conditions, litter quality and parent rock (Kirschbaum, 1995; Coûteaux et al., 2002; 

Davidson & Janssens, 2006; Berg, 2014), interactions between organisms are considered to be an 

important factor regulating decomposition processes (Seastedt, 1984; Heneghan et al., 1999; 

Castanho et al., 2012). Understanding decomposition processes in detail is of significant importance 

since over 90 % of the carbon fixed by plants is entering the soil system via litter fall and root 

exudates (McNaughton et al., 1989; Bardgett et al., 2005). The effect of soil microarthropods on 

decomposition processes may be direct by shredding litter material, but also indirect via trophic 

interactions with the fungal and bacterial community (Moore et al., 1988; Maraun et al., 1998; 

Pollierer et al., 2012; Zieger et al., 2015). Collembola and Acari, the two most abundant and diverse 

microarthropod taxa in soil, interact closely with bacteria and fungi. Both comprise a wide spectrum 

of species of different trophic levels including primary decomposers, secondary decomposers and 

in part also predators (Scheu, 2002; Schneider et al., 2004; Chahartaghi et al., 2005).  

Although soil organisms are present in virtually any soil (Bardgett, 2005), their abundance and 

diversity varies between ecosystems as well as within few centimetres of soil (Ettema & Wardle, 

2002). The reasons for the high spatial heterogeneity in the structure of soil microarthropod 

communities still are little understood, but likely it is due to both variations in biotic and abiotic 

factors such as local climatic conditions and litter quality (Coûteaux et al., 1995; Wardle et al., 2006; 

Berg & McClaugherty, 2008). Leaf and root litter form the two most important types of plant litter 

differing markedly in quality (Berg & McClaugherty, 2008), surprisingly, however, decomposition of 

leaf and root litter of plant species in one ecosystem have rarely been studied in combination 

(Berg & McClaugherty, 2008; Cusack et al., 2009). In particular, little is known on variations in the 

structure of microarthropod communities in leaf as compared to root litter.  

High functional diversity of soil fauna is related to increased decomposition processes in a wide 

range of terrestrial as well as aquatic ecosystems (Handa et al., 2014). Especially in tropical 

rainforests high diversity as well as high abundance of soil microarthropods are related to high 

decomposition rates (Heneghan et al., 1999; Castanho et al., 2012). However, most studies 
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assessing soil microarthropods in tropical regions have been carried out in lowland rainforests 

(Heneghan et al., 1999; Palacios-Vargas et al., 2007; Castanho et al., 2012), where climatic 

conditions are favourable and the diversity of microarthropods is high. In particular, there is a lack 

of knowledge on interrelationships between litter decomposition and the structure of soil 

microarthropod communities in tropical montane rainforests.  

Tropical montane rainforests of the Andes are one of the most species rich and diverse ecosystems 

on earth with around 20,000 endemic plant and 1567 endemic vertebrate species (Myers et al., 

2000). Diversity of arthropods in this ecosystem also is exceptionally high, but studies assessing this 

diversity so far focused on the above ground system (Myers et al., 2000; Mittelbach et al., 2001). 

Maraun et al. (2007) found Oribatida diversity of montane rainforests of the tropical Andes to 

resemble that of temperate forests, indicating that belowground taxa do not follow the 

aboveground pattern of markedly increased diversity in the tropics. Unfortunately, the factors 

driving soil microarthropod abundance and diversity of tropical rainforests remain poorly 

understood hampering understanding of global diversity gradients, but also variations between 

different tropical rainforest ecosystems.  

Changes in biodiversity and abundance of aboveground taxa have been widely studied along 

altitudinal gradients (Richardson et al., 2005; Sanders et al., 2009; Sundqvist et al., 2013; Willig & 

Presley, 2015), while only few studies investigated changes in the below ground system. In the 

tropical Andes of southern Ecuador climatic conditions, plant community composition as well as 

soil structure and pH change with altitude (Leuschner et al., 2007; Moser et al., 2007; Homeier 

et al., 2010). A prominent change which presumably is of significant importance for soil animal 

communities is the thickness of organic layers which increases with increasing altitude (Röderstein 

et al., 2005; Leuschner et al., 2007; Wilcke et al., 2008). Generally, compared to tropical lowland or 

temperate forests, decomposition processes in tropical montane forests are slow especially at 

higher altitudes (F. Marian, unpublished data, Chapter 2; Post et al., 1982; Heneghan et al., 1999; 

Butenschoen et al., 2014). Parallel to the increase in the thickness of organic layers, Illig et al. (2010) 

found the abundance and diversity of Oribatida to decrease along an altitudinal gradient in the 

tropical Andes, but the factors responsible for these changes are little understood. 

Most studies assessing interrelationships between litter decomposition and microarthropod 

communities focused on early stages of decomposition and lasted for only one to two years 

(Heneghan et al., 1999; Scheu, 2002; Kampichler & Bruckner, 2009; Castanho et al., 2012), whereas 

changes in the structure of microarthropod communities at later stages of decomposition received 

little attention. In Andean tropical montane rainforests less than 50 % of the litter material 

decomposes within the first year and in the later phases litter decomposition slows down strongly 

in particular at higher altitude (F. Marian, unpublished data, Chapter 2; Butenschoen et al., 2014). 
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Whether these changes are paralleled by changes in the abundance and diversity of soil 

microarthropods as major drivers of decomposition processes, however, remains unknown.  

A commonly used method to asses not only decomposition rates but also linkages between 

abundance and diversity of soil animals and litter decomposition in the field are litterbags 

(Kampichler & Bruckner, 2009). In the present study, we used litterbags filled with litter material 

from three different altitudes to investigate the influence of altitude, i.e. site-specific conditions, 

and litter origin, i.e. litter quality, on the colonisation of leaf and root litter by microarthropods over 

the course of three years in an Andean tropical montane rainforest of southern Ecuador. Acari and 

Collembola as major microarthropod taxa were investigated, with special focus on Oribatida, one 

of the most abundant and species rich soil Acari groups. Parallel, litter decomposition and microbial 

activity in the litterbags was assessed (F. Marian, unpublished data, Chapter 2) and the results are 

used in the present study to relate changes in microarthropod density and community composition 

to litter decomposition.  

The study aims at disentangling whether the abundance of major microarthropod groups, such as 

Collembola and Acari, and the diversity of Oribatida, along altitudinal gradients is driven by the 

quality of the litter material, i.e. the origin of the litter from rainforests at different altitudes, or 

other site specific conditions (biotic and abiotic), and if their abundance differs between leaf and 

root litter. We hypothesized that the abundance of the Collembola and Acari as well as Oribatida 

diversity decreases along (1) the altitudinal gradient and (2) from leaf to root litter. We further 

hypothesized that abundance and diversity vary (3) with the initial litter quality and (4) with the 

degree to which the litter material is decomposed. 

 

Material and methods 

Study site 

The study area, with three study sites along an altitudinal gradient at 1000, 2000 and 3000 m a.s.l., 

is located in southern Ecuador on the eastern slope of the Andes. All study sites are in the northern 

part of the Podocarpus National Park facing northeast to northwest. The slopes are moderately 

steep with 26°-31° (Moser et al., 2007) and covered with mostly undisturbed montane rainforest 

(Homeier et al., 2002). The site at 1000 m (Bombuscaro, S04°06´54´´, W78°58´02´´) is located south 

of the city Zamora in the valley of the Rio Bombuscaro. The site at 2000 m (San Francisco, 

S3°58´18´´, W79°4´45´´) is part of a private reserve, the Reserva Biologica San Francisco, which 

includes an area of 9 ha on the flank of the valley of the Rio San Francisco on the northern border 

of the Podocarpus National Park. The third site at 3000 m (Cajanuma, S04°06´711´´, W79°10´58´´) 

is located south of the city Loja at the north-west gate of the Podocarpus National Park. With 8-10 

humid months per year the region has a semi humid climate. Mean annual rainfall increases from 
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2230 and 1950 mm at 1000 and 2000 m, respectively, to 4500 mm at 3000 m (Moser et al., 2007), 

while the mean annual air temperature gradually decreases with increasing altitude from 19.4 to 

15.7 to 9.4°C at 1000, 2000 and 3000 m, respectively. Soil pH also gradually decreases with 

increasing altitude from 3.94 to 3.52 to 2.86 at 1000, 2000 and 3000 m, respectively (Moser et al., 

2007). With increasing altitude the mean soil moisture in the organic layer increases to 45.3 vol.% 

at 3000 m as compared to 9.9 and 11.6 vol.% at 1000 and 2000 m, respectively (Leuschner et al., 

2007). Biotic conditions also change along the altitudinal gradient. Mean tree height decreases from 

15.6 to 10.1 to 5.2 m at 1000, 2000 and 3000 m, respectively, while thickness of organic layers as 

well as fine root biomass increases from 48 mm and 2.7 t ha-1 to 305 mm and 6.2 t ha-1 to 435 mm 

and 10.8 t ha-1 at the respective sites (Leuschner et al., 2007; Moser et al., 2007; Graefe et al., 2008). 

Soil types at 1000, 2000 and 3000 m are predominantly Alumic Acrisols, Gley Cambisols and 

Podzols, respectively (Moser et al., 2007). At 1000 m the litter layer overlays the mineral soil (Ah 

horizon), i.e. F and H layers are lacking; in contrast, at 2000 and 3000 m the leaf litter overlays 

organic layers comprising predominantly of F material. 

 

Experimental setup 

Litterbags (4 mm mesh) were used to investigate the influence of altitude and litter origin on soil 

microarthropod community composition and colonization of leaf and root litter by 

microarthropods. At each of the three study sites (‘origins’) freshly fallen leaf litter of the three 

most abundant tree families (i.e., Puteria sp., Cavendishia zamorensis and Mollinedia sp. from 

1000 m; Graffenrieda emarginata, Clusia spp. and Cavendishia zamorensis from 2000 m; Clusia 

spp., Graffenieda emarginata and Hediosmum sp. from 3000 m) was collected from the forest floor 

within the study sites. Roots were collected by digging up the upper 20 to 30 cm of organic material 

and soil and removing all roots from this layer by hand. To clear from adhering soil, the roots were 

washed by gentle rinsing with tap water in the laboratory. Roots were separated into three size 

classes, small (< 2 mm diameter), medium (2 - 5 mm diameter) and large (> 5 mm diameter). Both 

leaves and roots were dried at 60°C for four days. To simulate natural conditions and at the same 

time standardize conditions as far as possible, litterbags where filled with 10 g of leaves/roots by 

mixing leaves of the three plant families, respectively, root size classes, according to the relative 

abundance of leaf families/root size classes at the three altitudes (see Chapter 2), resulting in six 

litter mixtures, one with leaf and one with root litter from each of the three origins. 

The litterbags, filled with the six different litter mixtures, were placed at the study sites on each of 

the three altitudes. The leaf litterbags were placed on top of the litter layer, whereas the root 

litterbags were placed between the fresh litter layer and the soil (1000 m), respectively 

fermentation layer (2000 and 3000 m), where fine root density is at a maximum. At each of the 
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three study sites three blocks were established with a minimum distance between the blocks of 

20 m. In each block four replicates of each treatment were placed with one replicate from each 

block being retrieved at each of four dates, i.e. after 6, 12, 24 and 36 months, resulting in 216 

litterbags in total. 

 

Species extraction and determination 

Mobile soil fauna was extracted from one half of the litter material via heat using modified Kempson 

extractors (Kempson et al., 1963). The extraction was performed directly after collection and 

transfer of the litterbags to the laboratory. Extracted animals were stored in 70 % ethanol. Most 

animal groups were determined to order, suborder or cohort level using Schaefer (2010) except for 

Oribatida. Collembola were separated into five morphologically defined groups resembling the 

Collembola families Entomobryidae, Isotomidae, Sminthuridae, Hypogastruridae/Neanuridae 

(Hypogast/Neanu) and the genus Megalothorax and were named accordingly. Individuals of 

Oribatida were determined to species level if possible. Due to the lack of appropriate keys for 

determination this was not possible for Brachychthoniidae, Galumnidae, Mesoplophoridae, 

Phthiracaridae and Euphthiracaridae. For the determination of other Oribatida taxa the keys of 

Balogh and Balogh (1988, 2002) and Weigmann (2006) were used. Species names of Oribatida 

follow Subias (2015) and were classified also into families according to Krantz (2009). In total 19,077 

individuals were determined, with Collembola (4352 individuals) and Acari (11,275 individuals) 

being most abundant. Within Acari the dominant group of Oribatida made up 7202 individuals of 

which 5862 individuals were determined to species level.  

 

Calculations and statistical analysis 

To correct for the different amount of litter material left in litterbags the abundance of animals was 

calculated per 10 g litter dry weight (DW), the initial amount of litter in the litterbags. The 

abundance of the total mobile soil fauna, Collembola, Prostigmata, Mesostigmata and Oribatida as 

well as the abundance of the Collembola morphogroups and Oribatida families Brachychthoniidae, 

Galumnidae, Mesoplophoridae, Phthiracaridae and Euphthiracaridae and species diversity of the 

remaining Oribatida per litterbag were analysed by repeatedly measured four-factor randomized 

complete block multivariate analyses of variance (MANOVA) with time (6, 12, 24 and 36 months) 

as repeated factor and block (1, 2 and 3) being nested in altitude. Fixed factors were altitude (1000, 

2000 and 3000 m a.s.l.), litter origin [Bombuscaro (Bomb), ECSF and Cajanuma (Caja)] and litter type 

(leaf and root litter). Except for the diversity of Oribatida block was excluded from the analyses as 

there were no significant block effects. Protected repeated measures analyses of variance (ANOVA; 

type III sum of squares) with the same factors as stated above were carried out using general linear 
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models (GLM; type III sum of squares), providing between and within subject effects and significant 

variations between the dates. Single ANOVAs for each sampling date were performed to identify 

differences between dates. Tukey´s HSD test (α < 0.05) was used to identify significant differences 

between means. Statistical analyses were performed using SAS (Statistical Analysis System, Version 

9.3; SAS Institute Inc., Cary, NC, USA).  

Oribatida species in leaf and root litter present in three or more samples were analysed by 

detrended correspondence analysis (DCA) including altitude and sampling date as passive variables 

not affecting the ordination using CANOCO (Lepš & Šmilauer, 2003). Origin of the litter material was 

not included as earlier analyses indicated that it was of minor importance.  

Before the analyses data were inspected for homogeneity of variance and normal distribution and 

log-transformed if appropriate. Means presented in the results and figures are based on non-

transformed data. 

 

Results 

Abundance of soil mesofauna 

The abundance of soil mesofauna decreased with increasing altitude and varied significantly with 

time and litter type (Table 1). In each of the treatments the abundance increased from 6 to 12, 

decreased from 12 to 24 and again increased from 24 to 36 months.  

 

Table 1: Repeated measures GLM table of F- and p-values on the effect of altitude (1000, 2000 and 3000 m), 
litter type (type: roots or leaves), litter origin [origin: Bombuscaro (Bomb), ECSF and Cajanuma (Caja)] and 
date (6, 12, 24 and 36 months) on the abundance of soil mesofauna, the decomposer groups Oribatida and 
Collembola, as well as the predator groups Prostigmata and Mesostigmata. Significant effects are given in 
bold.  
  Soil invertebrates Oribatida Collembola Prostigmata Mesostigmata 
  F-values p-values F-values p-values F-values p-values F-values p-values F-values p-values 

Between subject effects           

altitude 68.67 <.0001 65.01 <.0001 84.52 <.0001 7.48 0.0019 160.34 <.0001 

origin 0.15 0.8587 0.76 0.4747 3.17 0.0549 1.41 0.2564 0.42 0.661 

altitude × origin 0.48 0.7505 1.01 0.4173 1.14 0.354 2.16 0.093 1.91 0.1297 

type 0.94 0.338 19.23 <.0001 20.63 <.0001 0.27 0.6067 2.58 0.1168 

altitude × type 2.48 0.098 5.56 0.0079 6.24 0.005 2.18 0.1272 0.44 0.6461 

origin × type 0.93 0.4043 0.06 0.9465 2.51 0.0971 0.53 0.5943 0.83 0.4459 

altitude × origin × type 0.8 0.5334 0.96 0.4414 0.19 0.9439 1.81 0.1488 0.95 0.4454 
           

Within subject effects           

date 26.42 <.0001 81.06 <.0001 32.86 <.0001 20.72 <.0001 46.35 <.0001 

date × altitude 2.99 0.0098 1.77 0.1122 2.08 0.0617 2.89 0.0118 7.71 <.0001 

date × origin 1.67 0.1363 1.17 0.3295 0.5 0.8073 0.49 0.8131 2.21 0.047 

date × altitude × origin 1.39 0.1805 1.18 0.3101 0.53 0.8904 1.6 0.1022 1.02 0.4395 

date × type 1.86 0.14 2.73 0.0477 10.96 <.0001 0.8 0.4944 1.52 0.2141 

date × altitude × type 2.97 0.01 1.5 0.1866 4.54 0.0004 0.66 0.6793 0.76 0.6057 

date × origin × type 2.4 0.0324 3.7 0.0022 1.15 0.3393 0.72 0.6356 2.14 0.0549 

date × altitude × origin × type 1.1 0.3646 1.8 0.0562 1.17 0.3165 1.2 0.2906 0.76 0.6888 
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On average, the abundance was higher in leaf than in root litter, with the exception at 3000 m after 

6 months where root litter contained 107 % more individuals than leaf litter. In each of the 

treatments the abundance was highest after 36 months, ranging from 1348.0 ± 799.8 in leaf litter 

at 1000 m to 183.3 ± 127.8 ind. 10 g- 1 DW in root litter at 3000 m. After 6 months the abundance 

was lowest in most treatments, varying between 332.0 ± 224.9 and 68.0 ± 45.7 ind. 10 g-1 DW in 

leaf litter at 1000 and leaf litter at 3000 m, respectively. Only in root litter at 3000 m the abundance 

was lowest after 24 months (95.0 ± 56.0 ind. 10 g-1 DW compared to 140.9±45.7 ind. 10 g-1 DW after 

6 months). Origin of the litter material also affected the abundance of soil mesofauna, but the effect 

varied strongly with time and litter type (Table 1). The previously described pattern of alternating 

increase and decrease between the sampling dates was present in both leaf and root litter from all 

origins, with the exception of root litter from ECSF where the abundance did not decrease from 12 

to 24 months. After 6 months abundances in litter material from Bomb were higher compared to 

litter from ECSF and Caja. Leaf litter from ECSF and Caja contained similar abundances, while root 

litter from ECSF contained higher abundances. After 12 and 24 months leaf litter from Caja 

contained higher abundances than both leaf litter from ECSF and Bomb, while in root litter the 

highest abundances after 12 months were still present in litter from Bomb and after 24 months in 

litter from ECSF. After 36 months abundances in leaf litter were lowest in material from Caja while 

in root litter both material from ECSF and Caja contained low abundances.  

 

Abundance of Oribatida 

Oribatida were the most abundant microarthropods comprising 37.8 % of the total mesofauna; the 

overall mean density was 170.4 ± 212.8 ind. 10 g-1 DW. Time was the most important factor affecting 

the abundance of Oribatida followed by altitude (Table 1). However, the effect of time varied with 

the type and origin of the litter material (Table 1, Fig. 1). Generally, changes in Oribatida abundance 

were similar to those of total soil fauna. Abundance was higher in leaf as compared to root litter, 

especially from 12 months onward. In most samples the abundance of Oribatida increased from 6 

to 12 months, decreased from 12 to 24 months and again increased from 24 to 36 months. Only in 

leaf litter from Caja and root litter from ECSF the abundance of Oribatida remained constant 

between 24 and 36 months, while the increase between these two sampling dates was most 

prominent in root litter from Caja. With increasing altitude the abundance of Oribatida decreased, 

but the decline varied with the type of litter material (Table 1). At 1000 m the abundance in the two 

litter types did not differ significantly, while at 2000 and 3000 m the abundance in root litter was 

50.5 ± 0.1 % lower than in leaf litter. Therefore, the decrease in abundance from 1000 to 2000 m 

was stronger in root as compared to leaf litter.  
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Fig. 1: Abundance of Oribatida in litterbags with leaf and root litter from three origins [Bombuscaro (Bomb), 

ECSF and Cajanuma (Caja)] exposed in tropical montane rainforests for 6, 12, 24 and 36 months (means±SD). 

 

The five Oribatida families that were not identified to species level comprised 18.6 % of the total 

number of Oribatida. The response of these five families to the treatments fell into three groups: 

(1) Mesoplophoridae were the least responsive group, being only influenced by the altitude. Their 

abundance was generally low, with densities below a mean of 2 ind. 10 g-1 DW and decreased with 

increasing altitude (Appendix Table S1). (2) Galumnidae and Phthiracaridae showed an 

intermediately strong response. Altitude and time had the strongest effects on Galumnidae, again 

decreasing with increasing altitude and showing the same abundance pattern over time as the 

higher taxonomic levels (Appendix Table S1). The effect of date varied further with origin and litter 

type (Appendix Fig. S1). Abundance of Phthiracaridae in the two litter types varied between the 

three altitudes (Appendix Table S1), with abundance of Phthiracaridae in leaf litter exceeding that 

of root litter at 2000 and 3000 m while it was the other way round at 1000 m. Abundance of 

Phthiracaridae in the two litter types also varied with altitude and the pattern differed from the 

one at higher taxonomic levels. In leaf litter abundance increased by 333 % from 6 to 12 months 

and remained constant afterwards at 10.3±0.3 ind. 10 g-1 DW, while in root litter the abundance 

increased from 6 to 12 months by only 88.1 % followed by a decrease from 12 to 24 months by 

23.7 %. From 24 to 36 months the abundance remained constant at a mean of 5.5 ± 0.1 

ind. 10 g-1 DW. (3) Brachychthoniidae and Euphthiracaridae were most responsive to the 

treatments (Appendix Table S1). Brachychthoniidae abundance differed strongest between the 

altitudes, increasing from 1000 to 2000 m and strongly decreasing from 2000 to 3000 m. This effect 

varied with time and litter type (Appendix Table S1; Fig. S2) with the highest abundance being 

present after 36 months at all altitudes and in both litter types. Euphthiracaridae also differed 

strongest between the three altitudes, decreasing from 1000 to 2000 m and further to 3000 m. 
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However, the decrease varied with the sampling dates and litter type as well as with date and litter 

origin (Appendix Table S1; Fig. S3). 

 

Abundance of Collembola 

Collembola comprised 22.8 % of the total mesofauna; the overall mean density was 89.9 ± 95.7 ind. 

10 g-1 DW. Temporal variations in Collembola abundance mainly resembled that of total mesofauna 

and Oribatida (Fig. 1 and 2). Altitude was the most important factor influencing Collembola 

abundance, which decreased with increasing altitude, however, the effect of altitude varied with 

time and litter type (Table 1, Fig. 2). The abundance of Collembola increased from 6 to 12 months 

at all altitudes and in both litter types except root litter at 3000 m. At 1000 m the increase was 

similar in leaf and root litter with 183.3 ± 2.5 %, while at 2000 and 3000 m the increase in leaf litter 

was much stronger as compared to root litter, where abundance at 3000 m even decreased from 6 

to 12 months. From 12 to 24 months the abundance of Collembola in leaf and root litter decreased 

at each altitude by 65.2 ± 11.8 %, while from 24 to 36 months it increased again, reaching a 

maximum after 36 months in each of the treatments except root litter at 3000 m. 
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Fig. 2: Abundance of Collembola in litterbags with leaf and root litter placed at three altitudes (1000, 2000 

and 3000 m) exposed in tropical montane rainforests for 6, 12, 24 and 36 months (means±SD). 

 

The pattern in total Collembola resembled the response of the most abundant Collembola 

morphogroup, i.e. Isotomidae. Altitude had the strongest effect on total Collembola as well as 

Isotomidae, closely followed by sampling date, while the origin of the litter material had no effect 

(Appendix Table S2). Isotomidae abundance was highest at 1000 m and after 12 and 36 months 

(Appendix Fig. S4d). In root litter the abundance of Isotomidae was higher compared to leaf litter 

(Appendix Fig. S4c). For most other morphogroups the abundance also declined with increasing 

altitude, only Sminthuridae reached highest abundance at 2000 m followed by 3000 m and 1000 m 
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(Appendix Fig. S6). Sampling date also affected all morphogroups, but only for Isotomidae the 

pattern resembled that of total Collembola (Appendix Table S2; Fig. S4c and d). The abundance of 

Hypogastruridae/Neanuridae increased from 6 to 12 and again slightly from 24 to 36 months, 

between 12 and 24 months it remained constant (Appendix Table S2; Fig. S4e and f). The other 

three groups Sminthuridae, Entomobryidae and Megalothorax, were most abundant after 6 and 12 

months and thereafter their abundance declined (Appendix Table S2; Fig. S6, S4a and b and S5). 

These major patterns varied to some degree with other factors but the effects of these factors were 

minor (Appendix Fig. S4-6). 

 

Abundance of Mesostigmata and Prostigmata 

Mesostigmata comprised 13.9 % of the total mesofauna; the overall mean density was 64.1 ± 89.3 

ind. 10 g-1 DW. Similar to Oribatida and Collembola, the abundance of Mesostigmata also varied 

with time and altitude (Table 1, Appendix Fig. S7a), with the abundance generally being highest at 

1000 m. After 6 months the abundance at 1000 m was still low with 39.9 ± 26.2 ind. 10 g-1 DW, but 

increased from 6 to 12 months by 364 %. From 12 to 24 months the abundance decreased by 

27.2 %, in the following year it increased again by 62.3 %, reaching 219 ± 130 ind. 10 g-1 DW after 

36 months. At 2000 m the abundance of Mesostigmata was below 15 ind. 10 g-1 DW after both 6 

and 24 months. From 6 to 12 months it increased to 41.7 ± 26.5 ind. 10 g-1 DW and, following a 

decrease after 24 months, it increased again after 36 months reaching 85.8 ± 65.9 ind. 10 g-1 DW. 

At 3000 m the abundance was lowest; generally, it did not exceed 17.0 ± 13.2 ind. 10 g-1 DW, the 

maximum density after 36 months (Appendix Fig. S7a). The abundance of Mesostigmata also varied 

with the origin of the litter material but this depended on the sampling date (Table 1, Appendix 

Fig. 7b). Litter material from each of the three origins showed the common pattern with the 

abundance being lowest after 6 months and highest after 36 months. Generally, the abundances of 

Mesostigmata in litter from Bomb exceeded that in litter from the other two origins. 

Prostigmata comprised 6 % of the total mesofauna; the overall mean density was 23.5 ± 33.1 ind. 

10 g-1 DW. Similar to Oribatida, Collembola and Mesostigmata, the abundance of Prostigmata 

varied significantly with time and altitude (Table 1, Appendix Fig. S7c). At each altitude the 

abundance of Prostigmata was lowest after 6 months, with only 12.7 ± 10.9, 5.1 ± 6.5 and 10.9 ± 

10.5 ind. 10 g-1 DW at 1000, 2000 and 3000 m, respectively. The abundance then increased from 6 

to 12 months by 122.2, 130.3 and 84.3 % at 1000, 2000 and 3000 m, respectively, and thereafter 

remained at a constant level between 12 and 24 months. At 1000 and 2000 m the abundance of 

Prostigmata increased strongly from 24 to 36 months reaching 65.1 and 45.3 ind. 10 g-1 DW, 

respectively. While at 3000 m the abundance of Prostigmata stayed almost constant between 12 

and 36 months at a mean value of 22.0 ± 1.8 ind. 10 g-1 DW. 
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Diversity of Oribatida 

A total of 189 species of Oribatida were found at the three study sites. Oribatida diversity varied 

significantly with time (F3/90= 27.04; p= <0.0001) and altitude (F2/30= 93.85; p= <0.0001), but the 

effect of altitude also varied with litter type (F2/30= 6.07; p= 0.006). Overall, species numbers 

decreased with increasing altitude, with the decrease being stronger in leaf than in root litter. The 

effect of time also varied between the altitudes (F6/90= 2.26; p= 0.044). At each of the altitudes the 

mean species number increased from 6 to 12 months from 10.7 ± 5.4 to 16.0 ± 5.8, 4.6 ± 2.8 to 

9.0 ± 3.2 and 2.8 ± 1.6 to 6.4 ± 2.3 at 1000, 2000 and 3000 m, respectively. Thereafter, it uniformly 

decreased from 12 to 24 months at each altitude, but this was less pronounced at 1000 m with a 

decrease by only 18.8 % as compared to a decrease by 51.2 and 38.6 % at 2000 and 3000 m, 

respectively. From 24 to 36 months species numbers increased again to a level close to the one 

after 12 months. The variation of species numbers with time also varied with litter origin and litter 

type (F6/90= 2.92; p= 0.012; Fig. 3). After 6 months species numbers were lowest in leaf litter from 

ECSF, but increased strongest in this treatment from 6 to 12 months by 228 %. The decrease in 

species numbers from 12 to 24 months also varied between the treatments with the strongest 

decrease in root litter from Caja with 51.0 % compared to only 14.7 % in root litter from ECSF. The 

increase from 24 to 36 months was generally more pronounced in root than in leaf litter.  
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Fig. 3: Diversity of Oribatida in litterbags with leaf and root litter from three origins [Bombuscaro (Bomb), 

ECSF and Cajanuma (Caja)] exposed in tropical montane rainforests for 6, 12, 24 and 36 months (means±SD). 

 

The number of species which exclusively occurred at one of the three study sites differed between 

the altitudes, with 63 species at 1000 m (33.4 % of the total species) compared to 23 species 

(12.1 %) and 29 species (15.3 %) at 2000 and 3000 m, respectively. The species overlap between 

altitudes was strongest between 1000 and 2000 m with 34 species present on both altitudes, 

compared to only 18 species which were present at both 1000 and 3000 m and 6 species present 
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at 2000 and 3000 m. Only 8.5 % of species were present at all of the three altitudes. Species 

numbers differed only slightly between leaf and root litter. In leaf litter 157 of the total 189 species 

were present, compared to 150 species in root litter; 62.4 % of the total species were present in 

both litter types. 

 

Community structure of Oribatida 

The Oribatida community in leaf litter varied most among the three altitudes, which separated 

along the first axis (Detrended Correspondence Analysis, DCA; Fig. 4a). The separation was stronger 

between 1000 and 2000 m as compared to 2000 and 3000 m. The sampling dates at 1000 m 

separated along the second axis, while at 2000 and 3000 m the sampling dates were not as clearly 

separated. Most Oribatida species were associated with the 1000 m site and shifted along the 

temporal gradient, only few species were closely associated with the 3000 m site. From the total 

number of species in leaf litter 40.1 % were only present at the 1000 m altitude, among them the 

only two Enarthronota species (Eohypochthonius gracilis and Enarthronotha sp.1). Notably, the 

Enarthronota family Brachychthoniidae, which was excluded from the ordination, reached high 

abundance at both 2000 and 3000 m (Appendix Fig. S2). Many parthenogenetic species were 

associated with the 1000 m altitude site, mainly belonging to the family of Suctobelbidae. At higher 

altitude the parthenogenetic species belonged to other taxonomic groups, such as 

Nanhermanniidae. The number of species which exclusively occurred in leaf litter was lowest at 

2000 m with only 12.7 % compared to 16.6 % at 3000 m, but due to the overall low abundances at 

3000 m a higher number of the species only present at this altitude were excluded from the DCA 

due to the constraint of only including species present in more than two samples. Six of the species 

were exclusively present in leaf litter, Microtegeus similis, Borhidia cf. andina, Liebstadia n.sp. (1), 

Neoamerioppia longicoma, Suctobelbella variosetosa and Neosuctobelba transitoria. Apart from 

the last two all of the species were associated with the 3000 m altitude. The Oribatida community 

in root litter also varied most between the three altitudes, which separated along the first axis 

(Detrended Correspondence Analysis, DCA; Fig. 4b). Contrasting the pattern in leaf litter, here the 

sampling dates at 2000 m separated along the second axis, while at 1000 and 3000 m the sampling 

dates were not clearly separated. The Oribatida species in root litter also were mainly associated 

with the 1000 m site, with 60.0 % of the species present at 1000 m being endemic at this altitude. 

Only few species were associated with the 3000 m site. Species exclusively present in root litter 

were Haplobelba simplex, Schalleria pectinata, Tecteremaeus cornutus and Cyrthermannia cf. 

florens which were associated with the 1000 m altitude site, as well as Sternoppia n.sp.(1), 

Solenozetes n.sp. and Kokoppia euramosa, which were associated with the higher altitude sites. In 



Chapter 3: Changes in the structure of soil animal communities 

 
60 

root litter it was even more evident that a higher number of parthenogenetic species was present 

at 1000 m as compared to 2000 and 3000 m.  

 

 

Fig. 4: DCA ordinations of Oribatida  species in litterbags with (a) leaf and (b) root litter exposed at three 

altitudes (1000, 2000 and 3000 m) for 6, 12, 24 and 36 months. Consecutive sampling dates are linked by 

arrows. Species given in brown reproduce via parthenogenesis. Framed species are only present at one 

altitude (red = 1000 m, green = 2000 m, blue = 3000 m). For full species names see Appendix. 
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Discussion 

Results of the present study suggest that in tropical montane rainforests the density and diversity 

of soil animals varies more with altitude and the degree to which the litter is decomposed than with 

litter origin and therefore quality of the litter material. At our study sites the origin of the litter 

material only affected the abundance of certain soil fauna groups at early sampling dates, i.e. after 

6 or 12 months. This pattern fits well to the fact that the quality of the litter material only affected 

decomposition rates and microbial biomass of litter at early stages of decomposition (F. Marian, 

unpublished data, Chapter 2). 

Densities of total fauna as well as the most abundant decomposer groups, Oribatida and 

Collembola, decreased with increasing altitude, suggesting that the two groups are structured by 

similar factors. A similar distribution pattern has been described for Oribatida along a smaller 

altitudinal gradient in the same study area as well as for different soil fauna groups in a montane 

rainforest in Puerto Rico (Richardson et al., 2005; Maraun et al., 2008; Illig et al., 2008, 2010). In the 

present study, only one Collembola group, Sminthuridae, showed a differing pattern with highest 

density at the intermediate altitude. Important factors driving the density of Oribatida include soil 

acidity, harshness of abiotic conditions, density of macroarthropods and litter quality (Maraun & 

Scheu, 2000; Illig et al., 2010). For the studied montane rainforest in the Ecuadorian Andes Illig et al. 

(2010) suggested that among various factors studied driving Oribatida density, litter quality is the 

most important. In other regions changes in plant community structure have been shown to affect 

densities and composition of soil animals (Richardson et al., 2005; Sundqvist et al., 2013), although 

there are also studies pointing to a greater importance of regional abiotic factors (Erdmann et al., 

2012). For a tropical rainforest in Puerto Rico, Richardson et al. (2005) suggested changes in abiotic 

conditions along an altitudinal gradient to be less important than the forest structure for both soil 

animal abundance and diversity, pointing in the same direction as the study of Illig et al. (2010). The 

results of the present study suggest that this influence of plant community structure on the 

abundance of decomposer animals is due to belowground characteristics of the plant community, 

mediated presumably via root exudates and mycorrhizal fungi and not due to litter quality changes. 

However, Leuschner et al. (2007) found the biomass of living roots to increase with increasing 

altitude suggesting that the amount of carbon directed towards the root system and the release of 

root exudates also increases with increasing altitude arguing against the suggestion that the density 

of soil mesofauna is driven by root-derived resources. Rather than the amount of living roots and 

root exudates, the quality of root litter may be important in determining the density of soil 

mesofauna as nitrogen concentration in root litter decreases with increasing altitude (F. Marian, 

unpublished data, Chapter 2) and root necromass accumulates at higher altitudes (Röderstein et al., 

2005).  
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Parallel to the decrease in decomposer fauna with increasing altitude, the density of the 

investigated predators also decreased, suggesting close interrelationships. While most Oribatida 

species are well defended and not preyed upon by mesofauna predators (Peschel et al., 2006; 

Schneider & Maraun, 2009), Collembola are a common prey for Mesostigmata (Koehler, 1999), 

suggesting that the parallel decrease of Collembola and Mesostigmata along the altitudinal gradient 

is driven by a decrease in resource supply, i.e. by bottom-up control. In contrast, variations in the 

abundance of Prostigmata were not closely linked to the abundance of Collembola and did not 

differ between 2000 and 3000 m, indicating that Prostigmata predominantly rely on other prey than 

Collembola, potentially Nematoda. 

At our study sites the density of Oribatida and Collembola varied between the two litter types with 

the density of Oribatida being lower in root as compared to leaf litter. This might have been due to 

the lower quality of root as compared to leaf litter; however, it may also be related to the fact that 

root litterbags were exposed deeper in the soil whereas leaf litterbags were placed on the soil 

surface. It is well documented that typically the density of soil mesofauna declines with soil depth 

(Berg et al., 1998). However, the density of Collembola did not show such a uniform response. 

Sminthuridae showed the expected pattern, reaching higher abundances in leaf litter, while 

Megalothorax, Isotomidae and at some altitudes Entomobryidae were more abundant in the root 

litterbags. Potentially, the latter Collembola taxa preferentially colonize deeper soil layers to evade 

predators as larger predators such as spiders and beetles predominantly forage in the porous space 

of leaf litter (Wagner et al., 2003). Preferential colonization of leaf litter by Sminthuridae is conform 

to the fact that they are closely associated with plants and at least in part live as herbivores feeding 

on higher plants, algae and lichens (Chahartaghi et al., 2005).  

Parallel to density species richness of Oribatida declined with increasing altitude (Rahbek & 

Museum, 1995; Richardson et al., 2005; Sanders et al., 2009; Willig & Presley, 2015). A similar 

pattern has been described by Illig (2010) for a smaller altitudinal gradient and the pattern 

resembled that in tree diversity (Homeier et al., 2002, 2008; Paulsch et al., 2006). This points to a 

higher diversity of niches for soil mesofauna species at lower altitude associated with higher tree 

diversity.  

Compared to temperate forests the diversity of Oribatida species at our study sites was rather high 

especially at the 1000 m site with 131 species compared to 60-80 species in temperate forests 

(Erdmann et al., 2012). Investigating latitudinal gradients in species diversity in Oribatida, Maraun 

(2007) found species richness to increase little from temperate to tropical regions and our findings 

generally fit to this pattern. Low to moderate increase in species diversity in Oribatida contrasts the 

typically much higher species richness in tropical as compared to temperate regions in plants and 

aboveground animals in particular insects (Pianka, 1966; Hillebrand, 2004), but is consistent with 
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the pattern in other soil animal taxa such as Lumbricidae and Nematoda (Judas, 1988; Boag & 

Yeates, 1998; De Deyn & Van Der Putten, 2005). This suggests that latitudinal gradients in species 

diversity differ in general between above and belowground biota as suggested earlier (De Deyn & 

Van Der Putten, 2005). Notably, at our study sites species richness patterns in Oribatida matched 

with decomposition rates, suggesting that the diversity of soil fauna might drive litter 

decomposition as recently documented for a number of ecosystems (Handa et al., 2014).  

The community structure of Oribatida varied strongly with altitude, with only a small number of 

species being present at each of the three altitudes and many species occurring at one altitude only 

(endemic species). This pattern highlights the strong turnover of species with altitude, i.e. high 

β-diversity. The turnover likely is driven by abiotic factors such as temperature, but potentially also 

by marked changes in vegetation structure with altitude. For temperate forests Erdmann et al. 

(2012) recently showed marked turnover of species in space in forests of similar species 

composition and age across Germany suggesting that species turnover in space in part is due to 

dispersal limitation.  

Oribatida communities in soil of temperate and boreal forests typically are dominated by 

parthenogenetic individuals and high numbers of parthenogenetic species (Cianciolo & Norton, 

2006; Heethoff et al., 2009). Ranging between 23 and 35 % the percentages of parthenogenetic 

species at our study sites were generally low as compared to temperate and boreal forests where 

it typically ranges between 80 and 95 % (Maraun et al., 2003; Cianciolo & Norton, 2006). The 

percentage of sexual Oribatida species and individuals increased with increasing altitude and this is 

consistent with earlier reports (Maraun et al., 2013). Notably, this pattern fits well to the model 

proposed by Scheu and Drossel (2007) predicting sexual species to be favoured by density-

dependent factors and competition for resources. Both likely increase with altitude at our study 

sites as indicated by the decrease in density of Oribatida and the decline in resource quality at 

higher altitude.  

The degree to which the litter material was decomposed also strongly influenced the abundance 

and diversity of the investigated soil animal taxa. Although interrelationships between litter 

decomposition and soil mesofauna have been widely studied (Heneghan et al., 1999; Scheu, 2002; 

Kampichler & Bruckner, 2009; Castanho et al., 2012), little is known on changes in density and 

diversity of mesofauna taxa in decomposing leaf litter in the long term. In the present study the 

abundance of both decomposer groups, Oribatida and Collembola, varied strongly and in similar 

directions with sampling dates, suggesting that processes occurring during litter decomposition 

influence both taxa in a similar way. The diversity of Oribatida also varied between sampling dates, 

indicating that the availability of niches changes during decomposition. Although the abundance of 

both decomposer groups and Oribatida diversity varied with other factors investigated, including 
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altitude, litter type and litter origin, temporal changes dominated, highlighting the importance of 

time as major driving factor. Decomposition processes at our study sites at 2000 and 3000 m can 

be divided into three phases (F. Marian, unpublished data, Chapter 2). Similarly, the abundance of 

the investigated decomposer groups and of Oribatida diversity followed a three phase-pattern. 

Notably, contrasting to microorganisms and litter decomposition, the pattern was very similar at 

each of the three altitudes. Recent studies using stable isotope labelling suggest that the 

decomposer community of forest ecosystems is little affected by the availability and quality of 

aboveground litter (Pollierer et al., 2007; Zieger et al., 2015). Rather, an increasing number of 

studies highlight the importance of root-derived resources for fuelling soil food webs. Root-derived 

carbon is incorporated in large amounts into mycorrhiza suggesting a close interaction between 

fungal feeding mesofauna and mycorrhizal fungi (Pollierer et al., 2007, 2012; Zieger et al., 2015). 

Apparently contradicting these findings, it has been shown that major soil fauna groups prefer 

saprotrophic over mycorrhizal fungi as food source (Gange, 2000; Tiunov & Scheu, 2005). Potapov 

et al. (2015) also provided evidence that Collembola do not incorporate mycorrhizal carbon 

suggesting that root-derived carbon is incorporated via other pathways. Potentially, the assumed 

low importance of litter-derived carbon for the soil food web at least in part is due to carbon 

transfer into the soil mesofauna through the plant litter pathway being investigated by adding fresh 

undecomposed labelled leaves to the soil system (Pollierer et al., 2012; Zieger et al., 2015), thereby 

only following the fate of leaf litter carbon at the early stage of decomposition. On the other hand 

litter resources are known to become more important as food resources for soil detritivores at later 

stages of litter decomposition (Berg & McClaugherty, 2008; Coulis et al., 2009), suggesting that 

studies pointing towards the importance of root-derived carbon underestimated the carbon input 

from old litter material. 

The low abundance of Oribatida and Collembola at early stages of litter decomposition indicates 

that food quality of fresh litter material is of little relevance for detritivore microarthropods. This is 

surprising as it is decomposing fast at each of the three altitudes and contains easy-to-use soluble 

litter compounds and high biomass of microorganisms (F. Marian, unpublished data, Chapter 2). 

Low diversity of Oribatida after 6 months suggests that not only the abundance of soil fauna is 

reduced, but also that only a low number of Oribatida species are able to benefit from the nutrients 

released early during litter decomposition. As suggested earlier (F. Marian, unpublished data, 

Chapter 2), litter decomposition at early stages of decay at our study sites might be characterized 

by high activity of mycorrhizal fungi. Low abundance of Oribatida and Collembola during early 

phases of litter decomposition could therefore suggests that they do not feed intensively on 

mycorrhizal fungi or benefit from mycorrhiza-mediated changes in litter quality. 
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The increase in mesofauna abundance after 12 months suggests that towards the end of the first 

phase of decomposition more resources are becoming available to the soil fauna community as 

decomposition continues. The strong parallel increase in Oribatida diversity, resulting in maximum 

diversity after 12 months in many of the treatments, suggests that after the initial colonization 

phase the community is becoming more complex. This indicates that by the end of the first phase 

of litter decomposition more niches for decomposer soil mesofauna species are becoming 

available. Notably, these changes are paralleled by changes in decomposition processes and 

microorganisms (F. Marian, unpublished data, Chapter 2).  

In the second phase of decomposition from 12 to 24 months, soil mesofauna abundance of virtually 

all of the studied mesofauna groups as well as Oribatida species diversity declined and this was 

consistent in almost all treatments. Notably, in parallel the microbial community composition 

shifted with microbial biomass declining and litter decomposition slowing down or even coming to 

halt (F. Marian, unpublished data, Chapter 2). This suggests that decomposition, microbial biomass 

and mesofauna abundance are closely linked and driven by similar factors. Presumably, resource 

availability in the litter is at a minimum at this decomposition stage and the low resource level is 

insufficient to sustain microbial and mesofauna populations. Further, the decline in species 

diversity of Oribatida suggests that the decline in resources is associated with a decline in the 

number of trophic niches.   

In the third phase of decomposition starting after 24 months, decomposition of litter resumed and 

was associated with an increase in microbial biomass (F. Marian, unpublished data, Chapter 2). This 

resumption of decomposition presumably was due to a shift in the microbial community, with 

bacteria and fungi able to decompose lignified compounds becoming more abundant (F. Marian, 

unpublished data, Chapter 2). Parallel to this shift the mesofauna abundance increased suggesting 

that initiation of the decomposition of recalcitrant litter compounds also increases resource supply 

for soil mesofauna. This may be due to either microorganisms themselves serving as food or the 

litter material becoming more palatable at late decomposition stages (Bardgett, 2005). As indicated 

by earlier studies, increased palatability of litter resources at later stages of decay might be due to 

the breakdown of phenolic litter compounds (Coulis et al., 2009) indicating that the importance of 

energy pathways varies over the course of decomposition. In the early stage of decomposition 

mesofauna presumably is fuelled mainly via the root pathway, while at later stages more resources 

are gained from decomposing litter material and/or associated microorganisms. These changes in 

the importance of energy channels also propagates to higher trophic levels, as indicated by the 

abundances of both Mesostigmata and Prostigmata following the pattern of decomposer 

abundance over the course of decomposition. The fact that this was less pronounced in Prostigmata 
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as compared to Mesostigmata suggests that the latter more heavily rely on other food resources 

than decomposer microarthropods, presumably Nematoda.  

The strong increase in species number of Oribatida from 24 to 36 months especially in root litter 

highlights that litter at late stage of decomposition - when bacteria and fungi decomposing complex 

litter compounds dominate (Marian, unpublished data, Chapter 2) provides ample resources and 

niches for decomposer microarthropods allowing coexistence of many species.  

The community structure of Oribatida in leaf litter also changed during decomposition and this was 

most pronounced at the 1000 m study site. The less pronounced changes at the 2000 and 3000 m 

site suggest that Oribatida species at higher altitude are more generalist feeders exploiting a wider 

range of resources than the species at 1000 m. However, the more continuous and faster 

decomposition of leaf litter at 1000 m (F. Marian, unpublished data, Chapter 2) may also have 

resulted in more pronounced changes in trophic niches and therefore changes in Oribatida 

community structure. The generally less pronounced changes in Oribatida community composition 

in decomposing root litter may have been due to the fact that root litter decomposed slower than 

leaf litter causing trophic niches to stay more constant. Further, the generally low quality of root 

litter may have selected for species which are able to live on poor resources preventing pronounced 

changes in community composition.  

 

Conclusions 

Overall, the results of the present long-term study suggest that the origin and therefore quality of 

litter material is of little importance as driving force for the composition of the microarthropod 

community of tropical montane rainforests. Factors changing with altitude, such as temperature 

and soil pH, are much more important, with the abundance of microarthropods as well as the 

diversity of Oribatida decreasing with increasing altitude. Beside altitude decomposition stage was 

the second most important factor driving the density of microarthropods and diversity of Oribatida. 

Notably, these changes were closely associated with changes in the speed of litter decomposition 

and associated changes in microorganisms. Despite the generally poor resource quality, 

microorganisms efficiently exploit litter resources during the early phase of decomposition and this 

phase presumably is associated with the depletion of easily available litter compounds exploited by 

root-associated microorganisms including mycorrhiza. Surprisingly, microarthropods are unable to 

benefit from the flourishing of these microorganisms, potentially due to the presence of plant 

secondary compounds such as phenols. At later stages of decomposition when recalcitrant 

compounds are being attacked by saprotrophic microorganisms, such as lignin-degrading fungi, 

microarthropods are becoming more abundant and diverse either due to benefiting from feeding 

on these microorganisms or by indirectly benefiting from the conditioning of the litter by microbial 
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enzyme production. The results of the present study highlight the role of altitude and the degree 

of decomposition for the importance of litter-derived resources as food source for decomposers. 

Further research into long-term decomposition processes is needed to reconcile the ongoing 

debate on the relative importance of the root and litter energy channel in fuelling soil food webs.  
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Appendix 

Table S1: Repeated measures GLM table of F- and p-values on the effect of altitude (1000, 2000 and 3000 m), 

litter type (roots or leaves), litter origin [Bombuscaro (Bomb), ECSF and Cajanuma (Caja)] and date (6, 12, 24 

and 36 months) on the abundance of Brachychthoniidae, Galumnidae, Mesoplophoridae, Euphthiracaridae 

and Phthiracaridae. Significant effects are given in bold.  
  Brachychthoniidae Galumnidae Mesoplophoridae Euphthiracaridae Phthiracaridae 
  F-values p-values F-values p-values F-values p-values F-values p-values F-values p-values 

Between subject effects           

altitude 12.31 <.0001 10.34 0.0003 6.15 0.005 23.09 <.0001 0.05 0.9518 

origin 0.43 0.6556 0.65 0.5274 0.7 0.5008 0.47 0.6271 1.15 0.3275 

altitude × origin 0.26 0.9037 0.69 0.6016 1.14 0.3547 0.78 0.5438 1.12 0.3612 

type 14.2 0.0006 1.37 0.25 0.32 0.5751 1.84 0.1832 3.45 0.0715 

altitude × type 3.42 0.0436 0.81 0.4526 0.08 0.92 0.94 0.4001 7.53 0.0019 

origin × type 1.12 0.3378 0.26 0.7734 0.34 0.7112 1.08 0.35 0.74 0.4846 

altitude × origin × type 0.71 0.5886 0.48 0.7485 0.31 0.8722 0.93 0.4565 0.48 0.7471 
           

Within subject effects           

date 31.92 <.0001 8.54 <.0001 0.41 0.744 7.32 0.0002 4.24 0.0071 

date × altitude 2.92 0.0112 1.58 0.1612 0.43 0.8591 2.68 0.0182 1.75 0.1174 

date × origin 0.9 0.4954 0.77 0.5969 1.41 0.2158 0.37 0.8944 1.36 0.2362 

date × altitude × origin 0.56 0.8673 0.56 0.8708 1.15 0.3322 2.16 0.0188 1.25 0.2575 

date × type 1.55 0.2052 1.68 0.1745 0.72 0.5425 1.78 0.1552 3.71 0.0138 

date × altitude × type 2.61 0.0212 1.61 0.1526 0.76 0.6025 2.71 0.0174 1.36 0.2387 

date × origin × type 0.61 0.7225 2.41 0.0318 0.98 0.4418 0.59 0.7394 0.38 0.89 

date × altitude × origin × type 0.75 0.7034 1.27 0.2477 0.45 0.9381 0.72 0.7279 0.97 0.4815 
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Fig. S1: Abundance of Galumnidae in leaf and root litter from three origins [Bombuscaro (Bomb), ECSF and 

Cajanuma (Caja)] exposed in tropical montane rainforests for 6, 12, 24 and 36 months (means±SD). 
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Fig. S2: Abundance of Brachychthoniidae in litterbags with leaf and root litter exposed in tropical montane 

rainforests at three altitudes (1000, 2000 and 3000 m) for 6, 12, 24 ,36 and 48 months (means±SD). 
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Fig. S3: Abundance of Euphthiracaridae in (a) leaf and root litter placed at three altitudes (1000, 2000 and 

3000 m) and (b) leaf and root litter from three origins (Bomb, ECSF and Caja) exposed in tropical montane 

rainforests for 6, 12, 24 and 36 months (means±SD). 
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Table S2: Repeated measures GLM table of F- and p-values on the effect of altitude (1000, 2000 and 3000 m), 

litter type (roots or leaves), litter origin [Bombuscaro (Bomb), ECSF and Cajanuma (Caja)] and date (6, 12, 24 

and 36 months) on the abundance of the Collembola morphogroups Entomobryidae, 

Hypogastruridae/Neanuridae (Hypogast/Neanu), Isotomidae, Megalothorax and Sminthuridae. Significant 

effects are given in bold. 

  Entomobyridae Hypogast/Neanu Isotomidae Megalothorax Sminthuridae 

  
F-

values 
p-

values 
F-

values 
p-

values 
F-

values 
p-

values 
F-

values 
p-

values 
F-

values 
p-

values 

Between subject effects                     

altitude 13.68 <.0001 27.76 <.0001 72.93 <.0001 8.31 0.0011 3.96 0.0278 

origin 2.92 0.0666 1.73 0.1909 2.32 0.1128 0.2 0.8227 1.16 0.326 

altitude*origin 0.7 0.5975 1.17 0.3384 0.2 0.9369 0.43 0.7876 0.92 0.4648 

type 1.54 0.2233 0.41 0.5267 11.09 0.002 15.58 0.0004 12.88 0.001 

altitude*type 5.91 0.006 0.66 0.5245 0.82 0.4464 3.85 0.0305 0.08 0.9278 

origin*type 0.21 0.8078 1.31 0.2828 0.72 0.4928 1.75 0.188 1.88 0.1678 

altitude*origin*type 1.91 0.1295 0.44 0.7819 0.33 0.8536 0.16 0.957 0.5 0.7331 

                      
Within subject effects                     

date 24.67 <.0001 4.35 0.0062 67.2 <.0001 25.7 <.0001 26.79 <.0001 

date*altitude 6.33 <.0001 1.15 0.3404 3.74 0.002 3.26 0.0055 1.65 0.1396 

date*origin 1.99 0.0732 0.4 0.8778 1.9 0.0867 0.63 0.7095 2.28 0.0413 

date*altitude*origin 1.36 0.1947 0.63 0.8154 1.1 0.365 1.96 0.0353 1.34 0.2079 

date*type 5.29 0.0019 3.44 0.0195 2.92 0.0372 8.79 <.0001 3.32 0.0225 

date*altitude*type 0.13 0.9923 1.61 0.1505 1.44 0.2056 3.18 0.0066 2 0.0718 

date*origin*type 0.85 0.5326 0.54 0.7768 1.97 0.0758 0.6 0.726 1.49 0.1891 

date*altitude*origin*type 1.36 0.1975 0.75 0.7008 0.83 0.6204 1.06 0.3991 2.54 0.0055 
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Fig. S4: Abundance Entomobryidae (a and b), Isotomidae (c and d) and Hypogastruridae/Neanuridae (e and f) 

in leaf and root litter (a, c, e) and at three altitudes (1000, 2000 and 3000 m) (b, d, f) exposed in tropical 

montane rainforests for 6, 12, 24 and 36 months (means±SD). 
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Fig. S5: Abundance of Megalothorax in (a) leaf and root litter placed at three altitudes (1000, 2000 and 

3000 m) and (b) litter from three origins [Bombuscaro (Bomb), ECSF and Cajanuma (Caja)] placed at three 

altitudes exposed in tropical montane rainforests for 6, 12, 24 and 36 months (means±SD). 
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Fig. S7: Abundance Mesostigmata (a and b) and Prostigmata (c) in litter placed at three altitudes (1000, 2000 

and 3000 m) (a and c) and from three origins [Bombuscaro (Bomb), ECSF and Cajanuma (Caja)] exposed in 

tropical montane rainforests for 6, 12, 24 and 36 months (means±SD). 
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Species list: List of species names (SN) and lead author, abbreviation of species name (used in Fig. 4), species 

number according to internal classification system (Nr.), total abundance and abundance at the three 

investigated altitudes (1000, 2000 and 3000 m). Mode of reproduction (rm) (s = sexual, p = parthenogenetic). 

  

Supercohorte (SC)

Cohorte (Co)

Superfamiliy (SF)

Family (Fa)

Subfamily (Su) Species name (SN) abbreviation Nr. 1000 2000 3000 total rm

Palaeosomata

Acaronychoidea 3 s

Acaronychidea

Stomacarus macfarlani  (Grandjean, 1957) 148 3

Parhyposomata

Parhypochthonioidea

Parhypochthoniidae

Parhypochthonius n. sp. 193 1 1 p

Enarthronota

Enarthronota n. sp. EnarSp. 317 35 35 p

Hypochthonioidea

Hypochthoniidae

Eohypochthonius gracilis  (Jacot, 1936) EohyGrac 139 63 63 p

Eohypochthonius n. sp. EohySp. 187 18 18 p

Atopochthonioidea

Atopochthoniidae

Pterochthonius n. sp. PteroSp. 194 14 14 s

Lohmannioidea

Lohmanniidae

Xenolohmannia comosa  (P. Balogh, 1984) XenoComo 235 1 7 1 9 s

Mixonomata

Dichosomata

Epilohmannioidea

Epilohmanniidae

Epilohmannia minuta minuta  (Berlese, 1920) EpilMiMi 277 18 18 p

Holosomata

Crotonioidea

Malaconothridae

Fossonothrus n. sp. 57 1 1 p

Malaconothrus monodactylus   (Michael, 1888) MalaMono 103 4 13 1 18 p

Malaconothrus n. sp. MalaSp. 300 7 7 p

Malaconothrus n.sp. 361 1 1 2 p

Nothridae

Nothrus cf. willmanni 182 1 1 p

Nothrus n. sp. 365 1 1 p

Crotoniidae

Crotonia reticulata  (Luxton, 1982) CrotReti 236 18 7 25 s

Heminothrus castaneus   (Hammer, 1961) 132 3 3 p

Heminothrus n.sp. HemiSp. 220 4 4 p

Brachypylina

Pycnonoticae

Nanhermannioidea

Nanhermanniidae

Cyrthermannia cf florens CyrtFlor 119 4 4 p

Nanhermannia elegantissima  (Hammer, 1958) NanhEleg 2 1 7 38 46 p

Nanhermannia nana  (Nicolet, 1855) NanhNana 3 1 11 12 p

Hermannielloidea

Hermanniellidae

Ampullobates ecuadoriensis  (Ermilov, Starý, Sandmann, Marian, Maraun, 2013) AmpuEcua 272 11 11 s

Ampullobates n. sp. 166 1 1 s

Hermannobates intermedius  (Calugar, 1990) 285 2 2 s

Hermannobates monstruosus  (Hammer, 1961) HermMons 20 1 10 11 s

Hermannobates n. sp. (1) 377 1 1 s

Hermannobates n. sp. (2) HermSp.2 198 5 5 s

Hermannobates n. sp. (3) HermSp.3 218 9 9 s

Hermannobates n. sp. (4) 286 3 3 s

Plasmobatidae

Plasmobates pagoda  (Grandjean, 1929) PlasPago 243 4 4 s

Solenozetes cf. carinatus SoleCari 264 58 14 27 99 s

Solenozetes cf. flagellatus SoleFlag 252 70 63 1 134 s

Solenozetes n. sp. SoleSp. 138 6 13 19 s

Damaeoidea

Damaeidae

Damaeus cf. flagellatus DamaFlag 140 19 19 s

Damaeus cf. flagelloides 123 2 2 s

Parabelbella cf. meridiana 227 2 2 s

Eutegaeoidea

Compactozetidae

Eupterotegaeus dentatus  (Sitnikova, 1979) 234 2 2 s

Eupterotegeus n. sp. 120 1 1 s

Microtegeidae

Microtegeus similis   (Balogh, Mahunka, 1980) MicrSimi 223 1 1 s

Abundace
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SC Co SF Fa Su SN abbreviation Nr. 1000 2000 3000 total rm

Microzetoidea

Microzetidae

Acaroceras n. sp. (1) 159 3 3 s

Acaroceras n. sp. (2) 184 3 3 s

Brasilozetes n. sp. 216 3 3 s

Cosmozetes n. sp. CosmSp. 261 9 2 11 s

Cosmozetes reticulatus  (Balogh, 1962) CosmReti 93 79 67 146 s

Licnozetes granulatus  (Balogh, Mahunka, 1969) LicnGran 153 33 33 p

Orthozetes bidentatus  (Ermilov, Sandmann, Maraun, 2013) OrthBide 158 35 9 44 s

Orthozetes n. sp. (1) 289 1 1 2 s

Orthozetes n. sp. (2) 152 6 6 s

Schalleria brevisetosa  (Ermilov, Sandmann, Maraun, 2013) SchaBrev 97 1 4 5 s

Schalleria pectinata  (Ermilov, Sandmann, Maraun, 2013) SchaPect 215 27 4 31 s

Ameroidea

Eremulidae

Eremulus brasiliensis  (Perez-Inigo, baggio, 1985) 237 1 2 3 p

Eremulus rigidisetosus  (Balogh, Mahunka, 1969) EremRigi 253 12 9 21 p

Eremobelbidae

Eremobelba foliata  (Hammer, 1958) 210 3 3 s

Damaeolidae

Caudamaeolus petalus  (P. Balogh, 1988) CaudPeta 171 16 5 21 s

Fosseremus laciniatus (Berlese, 1905) FossLaci 94 30 30 s

Heterobelbidae

Haplobelba simplex  (Balogh, Mahunka, 1969) HaplSimp 296 12 12 s

Heterobelba oxapampensis  (Beck, 1962) HeteOxap 244 16 16 s

Caleremaeidae

Anderemaeus n. sp. 219 1 1 s

Epieremulus granulatus (Balogh, Mahunka, 1979) EpieGran 240 21 21 s

Epieremulus longiseta  (P. Balogh, 1988) 232 1 1 s

Rhynchoribatidae

Rhynchoribates cf. mirus RhynMiru 246 14 7 4 25 s

Rhynchoribates n.sp. RhynSp. 192 3 1 4 s

Suctoribates n. sp. 211 2 2 s

Suctoribates/Oxyamerus n.sp. 1 40 3 3 s

Eremaeoidea

Arceremaeidae

Tecteremaeus cornutus  (Hammer, 1961) TectCorn 295 24 24 s

Tecteremaeus incompletus  (Mahunka, 1988) TectInco 162 15 15 s

Gustavioidea

Astegestidae

Amazoppia cf tricuspidata 137 1 1 2 s

Ceratorchestes globosus (Balogh, Mahunka, 1969) CeraGlob 125 2 11 13 s

Ceratorchestes n. sp. CeraSp. 280 19 19 s

Ceratorchestes setosus  (Balogh, Mahunka, 1969) CeraSeto 124 11 1 12 s

Cultroribula zicsii (Balogh, Mahunka, 1981) CultZics 273 15 51 66 p

Xenillidae

Xenillus n. sp. 18 3 3 p

Carabodoidea

Carabodidae

Carabodes cf. ecuadoriensis 26 1 1 s

Yoshiobodes n. sp. 320 1 1 s

Dampfiellidae

Beckiella capitulum  (Balogh, Mahunka, 1978) 241 3 3 s

Beckiella cf. recta 17 1 1 s

Otocepheidae

Cavernocepheus monstruosus (Balogh, Mahunka, 1969) CaveMons 310 5 5 s

Plenotocepheus neotropicus  (Ermilov, Sandmann, Marian, Maraun, 2013) PlenNeot 1 15 38 1 54 s

Oppioidea

Oppiidae

Lanceoppiinae

Globoppia cf. maior 4 2 2 s

Globoppia n. sp. 325 2 2 s

Lanzeoppia cf zicsica 149 4 4 s

Chaviniinae

Chavinia n. sp. 334 9 9 s

Oppiinae

Lasiobelba chistyakovi  (Ermilov, Kaluz, 2012) LasiChis 168 78 78 s

Neoamerioppia longiclava  (Hammer, 1962) NeoaLoCl 229 108 115 223 s

Neoamerioppia longicoma  (Hammer, 1958) NeoaLoCo 228 14 14 s

Neoamerioppia rotunda  (Hammer, 1958) 226 1 1 s

Multioppiinae

Ramusella cf. puertomonttensis 326 7 7 s

Arcoppiinae

Arcoppia dechambrierorum  (Mahunka, 1983) ArcoDecha 221 16 16 s

Kokoppia euramosa   (Balogh, Mahunka, 1969) KokoEura 224 13 13 s

Wallworkoppia machadoi  (Balogh, Mahunka, 1958) WallMach 146 1 5 6 p

Brachioppiinae

Brachioppia cf. deliciosa BrachDeli 141 17 17 s

Brachioppia n. sp. (1) BrachSp1 258 2 8 3 13 s

Brachioppia n. sp. (2) BrachSp2 181 44 1 1 46 s

Brachioppia n. sp. (3) 179 1 1 s

Brachioppiella n. sp. 386 1 1 s

Gittella n. sp. 200 1 1 2 s

Gittella variabilis  (Ermilov, Sandmann, Marian, Maraun, 2013) GittVari 5 13 8 14 35 s

Gittella variabilis  (Ermilov, Sandmann, Marian, Maraun, 2013) 199 3 3 s
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SC Co SF Fa Su SN abbreviation Nr. 1000 2000 3000 total rm

Medioppiinae

Microppia minus  (Paoli, 1908) 233 3 3 p

Oppiellinae

Oppiella nova  (Oudemans, 1902) OppiNova 13 158 88 18 264 p

Oxyoppiinae

Oxoppia polynesia   (Hammer, 1972) OxopPoly 80 9 7 16 s

Mystroppinae

Striatoppia opuniseta  (Balogh, Mahunka, 1968) StriOpun 302 7 7 s

Epimerellidae

Epimerella n. sp. 130 2 2 s

Lyroppiidae

Lyroppia similis  (Balogh, Mahunka, 1977) 323 2 2 s

Teratoppiinae

Teratoppia pluripectinata  (Balogh, Mahunka, 1978) TeraPlur 142 10 14 24 s

Sternoppiidae

Sternoppia cf. incisa SterInsi 59 12 1 13 s

Sternoppia cf. mirabilis 267 1 1 2 s

Sternoppia fissurata  (Ermilov, Sandmann, Marian, Maraun, 2013) SterFiss 303 9 2 11 s

Sternoppia n. sp. (2) SterSp.2 105 36 36 s

Sternoppia n. sp. (3) SterSp.3 291 3 15 18 s

Sternoppia parainsica  (Ermilov, Sandmann, Marian, Maraun, 2013) SterPaIn 284 33 6 39 s

Sternoppia paramirabilis  (Ermilov, Sandmann, Marian, Maraun, 2013) SterPara 39 2 16 6 24 s

Sternoppia striata  (Mahunka, 1983) 84 1 1 s

Machuellidae

Machuella ventrisetosa (Hammer, 1961) 161 2 2 s

Quadroppiidae

Borhidia cf. andina BorhAndi 231 14 14 s

Quadroppia cf. quadricarinata 331 6 6 s

Quadroppia n. sp. 249 1 1 s

Machadobelbidae

Machadobelba n. sp. 329 2 2 s

Rioppia comteae  (Mahunka, 1985) RiopComt 205 41 41 s

Suctobelbidae

Neosuctobelba transitoria  (Balogh, Mahunka, 1969) NeosTran 154 3 2 5 p

Parasuctobelba cf. subcomplexa ParaSubc 78 20 8 28 p

Parasuctobelba compacta  (Woas, 1986) ParaComp 254 17 3 20 p

Parasuctobelba subcomplexa  (Balogh, Mahunka, 1968) ParaSubc 262 13 5 18 p

Suctobelbella baculifera  (Balogh, Mahunka, 1981) SuctBacu 316 9 9 p

Suctobelbella biangulata  (Hammer, 1979) 213 1 1 p

Suctobelbella cf. asinus 189 3 3 p

Suctobelbella cf. claviseta SuctClav 292 27 27 p

Suctobelbella cf. complexa (1) SuctCom1 263 61 8 69 p

Suctobelbella cf. complexa (2) SuctCom2 279 191 11 202 p

Suctobelbella cf. roigi 248 1 1 p

Suctobelbella cf. semiplumosa (1) SuctSemi 283 28 28 p

Suctobelbella cf. semiplumosa (2) 160 2 2 p

Suctobelbella complexa  (Hammer, 1958) SuctComp 308 68 26 94 p

Suctobelbella loksai (Balogh, Mahunka, 1981) SuctLoks 274 11 11 p

Suctobelbella macrodentata  (Hammer, 1962) SuctMacr 230 18 18 p

Suctobelbella n. sp. (1) 307 4 4 p

Suctobelbella n. sp. (2) 128 1 1 p

Suctobelbella n. sp. (3) 335 1 1 p

Suctobelbella peracuta  (Balogh, Mahunka, 1980) SuctPera 86 58 10 68 p

Suctobelbella semiplumaosa indica  (Haq, 1978) SuctSeIn 170 19 19 p

Suctobelbella variosetosa  (Hammer, 1961) Suctvari 266 12 12 p

Suctobelbila cf. pocsi 359 5 5 p

Suctobelbila n.sp. (1) 37 3 3 p

Suctobelbila n.sp. (2) SuBiSp.2 85 16 6 22 p

Suctobelbila n.sp. (3) 373 5 5 p

Suctobelbila peruensis  (Woas, 1986) SuBiPeru 203 18 1 19 p

Tectocepheoidea

Tectocepheidae

Tectocepheus minor  (Berlese, 1903) TeCeMino 251 16 4 20 p

Tectocepheus velatus sarekensis (Trägardh, 1910) TeCeVeSa 22 9 4 19 32 p

Tectocepheus velatus velatus  (Michael, 1880) TeCeVeVe 77 20 85 29 134 p

Ameronothroidae

Tegeocranellidae

Tegeocranellus bolivianus  (Balogh, Mahunka, 1969) TegeBoli 299 60 60 s

Cymbaeremaeoidea

Cymbaeremaeidae

Scapheremaeus cf. bicornutus 247 1 1 s

Scapheremaeus cf. fungisetosus 290 1 1 s

Poronoticae

Achitreioidea

Achipteridae

Campachiptera brevisetosa (Ermilov, Sandmann, Marian, Maraun, 2013) CampBrev 318 7 5 12 s

Oribatelloidea

Oribatellidae

Oribatella avicula  (P. Balogh, 1989) 133 1 1 s

Oribatella n. sp. OribSp. 239 4 8 12 s
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SC Co SF Fa Su SN abbreviation Nr. 1000 2000 3000 total rm

Oripodoidea

Mochlozetidae

Dynatozetes n. sp. 202 1 1 s

Hemilleiidae

Hemileius n.sp. HemiSp. 51 18 18 s

Liebstadiidae

Liebstadia n. sp. (1) LiebSp.1 147 12 12 s

Liebstadia n. sp. (2) 271 4 4 s

Liebstadia n. sp. (3) 311 1 1 s

Scheloribatidae

Bischeloribates n. sp. 209 1 1 s

Monoschelobates hemileiformis   (Ermilov, Sandmann, Marian, Maraun, 2013) MonoHemi 222 2 140 142 s

Monoschelobates parvus  (Balogh, Mahunka, 1969) MonoParv 214 15 9 24 s

Perscheloribates cf. luminosus PersLumi 321 4 3 7 s

Perscheloribates n. sp. 98 2 1 3 s

Perscheloribates paratzitzikamaensis  (Ermilov, Sandmann, Marian, Maraun, 2013) PersPara 242 3 10 13 s

Perscheloribates setiger (P. Balogh, 1988) PersSeti 245 9 9 s

Perscheloribates subtropicus  (Hammer, 1961) PersSupt 104 23 23 s

Scheloribates cf elegans  (Hammer, 1958) SchelEleg 19 9 5 14 s

Scheloribates cf. huancayensis 301 1 1 s

Scheloribates n. sp. 195 1 1 s

Oripodidae

Oripoda n. sp. (1) 100 2 2 s

Oripoda n. sp. (2) 204 2 2 s

Pteroripoda n.sp. 134 2 2 s

Protoribatidae

Protoribates ecuadoriensis (Ermilov, Bayartogtokh, Sandmann, Marian, Maraun, 2013) ProtEcua 281 41 26 67 s

Protoribates n. sp. (1) 327 1 5 6 s

Protoribates n. sp. (2) 371 3 5 8 s

Protoribates paracapucinus  (Mahunka, 1988) ProtPara 278 101 1 102 s

Haplozetidae

Indoribates paraminimicoma  (Ermilov, Bayartogtokh, Sandmann, Marian, Maraun, 2013) IndoPara 183 16 4 7 27 s

Peloribates cf. porosus 163 1 1 s

Trachyoribates carinatus TrachCari 287 14 1 15 p

Trachyoribates glaber (Beck, 1965) 270 2 2 s

Trachyoribates n.sp. (1) TrachSp.1 315 12 1 13 s

Trachyoribates n.sp. (2) TrachSp.2 293 22 10 32 s

Trachyoribates n.sp. (3) TrachSp.3 376 13 13 p

Trachyoribates n.sp. (4) TrachSp.4 319 7 1 8 s

Trachyoribates n.sp. (5) TrachSp.5 212 23 2 25 s

Trachyoribates ovulum ovulum  (Berlese, 1908) TrachOvOv 9 72 112 3 187 p

Trachyoribates ovulum poensis  (Mihelcic, 1957) TrachOvPo 225 51 51 s

Ceratozetoidea

Ceratozetidae

Ceratozetes n. sp. 208 7 7 s
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Abstract  

Roots and mycorrhizal fungi modify their surrounding soil and organic material through physical 

structuring, release of exudates and provision of dead organic material. We investigated the role of 

roots and mycorrhizal fungi on decomposition rates, microorganisms and soil microarthropods in a 

tropical montane rainforest in southern Ecuador. At three altitudes (1000, 2000 and 3000 m a.s.l.) 

microcosms with openings covered with different mesh sizes (4 mm, 45 µm) or closed were exposed 

in the field to manipulate accessibility by roots and mycorrhizal fungi. The microcosms contained 

undisturbed soil with the litter layer being replaced by litter from three abundant tree species at 

each altitude. After 12 months water content and microbial biomass in both litter and soil, as well 

as the remaining amount of litter, its C-to-N ratio and the abundance of soil microarthropods and 

diversity of Oribatida in the litter layer were analysed.   

Decomposition rates, C-to-N ratio, water content, microbial parameters and microarthropod 

abundance differed between the three altitudes. While water content and C-to-N ratio were lower 

and microbial biomass was increased in the litter layer at the lowest altitude, decomposition rate 

and microarthropod abundance were at a maximum at the intermediate altitude. The exclusion of 

roots and mycorrhizal fungi did not affect the decomposition rate but lead to a decrease in 

Oribatida abundance and diversity, while Collembola abundance was increased in closed 

microcosms. Oribatida community composition varied between the altitudes and only few species 

were associated with the root and mycorrhizal exclusion treatments.  

The results indicate that root- and mycorrhiza-derived resources are of similar importance at each 

of the three investigated altitudes. Nutrient limitation presumably resulted in competition between 

mycorrhizal fungi and saprotrophic microorganisms for litter-derived resources, with mycorrhizal 

fungi suppressing the activity of saprotrophic microorganisms. Oribatida appear to strongly depend 

on root-derived resources, while Collembola presumably benefitted from reduced competition 

between mycorrhizal fungi and saprotrophic microorganisms. Variations between the altitudes 

suggest that in the studied tropical montane forest ecosystem seasonality plays a larger role in 

structuring belowground communities than previously assumed.  
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Introduction 

Plants affect the belowground food web through direct input of litter material as well as through 

the input of root exudates and via allocating carbon to mycorrhizal fungi (Hobbie, 1992; Scheu & 

Setälä, 2002; Wardle et al., 2004). Over 90 % of plant assimilated carbon ultimately enters the soil 

(McNaughton et al., 1989; Bardgett et al., 2005) of which 5 - 10 % enters the soil via roots (Farrar 

et al., 2003). Roots modify the surrounding soil and organic material through physical structuring, 

release of exudates and provision of dead organic material (Bardgett, 2005; Cesarz et al., 2013; 

Eissfeller et al., 2013). Root exudates represent high quality resources fuelling the microbial 

community in the rhizosphere (Bais et al., 2006; Dennis et al., 2010). Root derived resources play 

an important role in increasing the activity of saprotrophic bacteria and fungi, leading to higher 

abundance of bacterial and fungal feeding animals, such as nematodes, protozoa and higher trophic 

level consumers (Bais et al., 2006; Eissfeller et al., 2013; Zieger et al., 2015). Additional carbon is 

transferred from plants to mycorrhizal fungi (Farrar et al., 2003), which function as a sink for plant 

carbon (Averill et al., 2014). In return plants receive nitrogen (N) as well as phosphorus (P) from 

mycorrhizal fungi with the transfer being highest in nutrient limited ecosystems (Johnson et al., 

2003). Both ecto- (EM) and arbuscular-mycorrhizal (AM) fungi influence decomposition processes 

(Gadgil & Gadgil, 1971; Hodge et al., 2001; Bending, 2003; Nuccio et al., 2013; Leifheit et al., 2015), 

and the activity and community structure of saprotrophic microorganisms (Leigh et al., 2011). 

Depending on environmental conditions, they may slow down or enhance litter decomposition 

(Gadgil & Gadgil, 1971; Olsson et al., 1996; Hodge et al., 2001; Hodge & Fitter, 2010), with reduced 

decomposition presumably being due to mycorrhizal fungi competing with saprotrophic bacteria 

and fungi for nutrients (mainly N; Gadgil and Gadgil, 1971; Leigh et al., 2011) as well as water 

(Bending, 2003).  

The tropical Andes are one of the world’s biodiversity hotspots (Myers et al., 2000; Brehm et al., 

2008) with exceptionally high numbers of aboveground animal and plant species (Henderson et al., 

1991; Myers et al., 2000; Barthlott et al., 2005). In an area with such high plant diversity the 

interactions between the above- and belowground system are expected to be complex. 

Decomposition processes in tropical montane rainforests are generally slow compared to lowland 

rainforests (Tanner, 1981; Heneghan et al., 1999; Illig et al., 2008; Butenschoen et al., 2014). With 

increasing altitude litter decomposition slows down and soil organic matter as well as soil C stocks 

increase (Wilcke et al., 2002; Leuschner et al., 2007; Illig et al., 2008). These altitudinal variations 

are associated with changes in plant community composition (Paulsch et al., 2006; Moser et al., 

2007; Wilcke et al., 2008; Homeier et al., 2010) and an increase in fine root biomass with altitude 

(Kitayama & Aiba, 2002; Leuschner et al., 2007). In particular at high altitude root biomass is 

concentrated in the upper organic layer rather than in mineral soil layers (Röderstein et al., 2005). 
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Since the bedrock in the tropical Andes is geologically old and heavily weathered (Paulsch et al., 

2006) forests typically are co-limited by both P and N (Homeier et al., 2012), and both soil biota and 

plants heavily depend on nutrients accumulated in organic layers. As indicated by high nutrient-to-

carbon ratios, litter quality in organic layers is low and decreases with increasing altitude (Leuschner 

et al., 2007). For capturing nutrients, plants therefore are interacting closely with the soil food web 

including mycorrhizal fungi, saprotrophic microorganisms and soil microarthropods (F. Marian, 

unpublished data; Chapter 2 and 3), and presumably heavily invest into these interactions by 

allocating carbon to roots and root exudates.  

The mycorrhizal community in Andean montane rainforests of southern Ecuador is dominated by 

AM fungi (Kottke et al., 2004) with only few species forming associations with EM or with both AM 

and EM fungi (Haug et al., 2004; Kottke et al., 2004). AM fungi not only transfer P, but also 

considerable amounts of N to their host plant (Hodge et al., 2001; Leigh et al., 2009; Veresoglou 

et al., 2012). However, contrasting the saprotrophic capabilities of EM and ericoid mycorrhizal 

fungi, AM fungi are assumed to be unable to take up organic forms of N, but this remains 

controversial (Hodge et al., 2001; Hodge & Fitter, 2010). AM fungi have also been shown to form 

close interactions with the soil fauna community, e.g. the microbial community and protozoans, 

increasing N uptake of plants via the microbial loop (Vohník et al., 2011; Koller et al., 2013) as well 

as soil microarthropods grazing on extra-radical hyphae of AM fungi (Gange, 2000; Johnson et al., 

2005).  

Soil microarthropods in tropical montane rainforests have been little studied, but their abundance 

is low compared to temperate forests and decreases with increasing altitude (F. Marian, 

unpublished data, Chapter 3; Illig et al., 2010; Rillig et al., 2013). Illig at al. (2005) described a lack 

of primary decomposers directly feeding on the litter material in rainforests of the Ecuadorian 

Andes. This lack of primary decomposers may indicate that, similar to temperate forest ecosystems 

(Pollierer et al., 2007, 2012) root derived resources are more important for fuelling soil 

microarthropod communities than previously assumed. Soil microarthropods benefit from root-

derived resources either by directly feeding on roots, root exudates and mycorrhizal fungi or by 

feeding on free-living microorganisms which incorporate root-derived resources. The most 

abundant and diverse soil microarthropod group in tropical rainforests are Oribatida (Heneghan 

et al., 1999; Franklin et al., 2004). Species of this group not only feed on dead organic material, but 

also on fungi and bacteria (Maraun et al., 2003; Schneider et al., 2004; Illig et al., 2005). Their 

diversity in Andean montane forests is similar to that of temperate forests (Maraun et al., 2007), 

but they are less well studied in particular in respect to their food resources and position within the 

soil food web (Ermilov et al., 2013a,b,c). 
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In order to assess the importance of root- and mycorrhiza-derived resources for decomposition 

processes and as food resources for the microarthropod community along an altitudinal gradient 

in a tropical montane rainforest in southern Ecuador, decomposition rates, litter quality, 

microorganisms as well as soil microarthropod abundance with a focus on Oribatida were 

investigated by experimentally excluding roots and mycorrhizal hyphae. We expected (1) roots and 

mycorrhiza to influence decomposition processes by competing with saprotrophic microorganisms, 

with reduced competition by exclusion of roots and mycorrhiza resulting in increased activity of 

saprotrophic microorganisms and litter decomposition. Assuming that soil microarthropods largely 

depend on root derived resources we expected (2) numbers of microarthropods to decline if roots 

and mycorrhizal hyphae are excluded. Further, we expected (3) the community structure of 

Oribatida species to change if roots and mycorrhizal hyphae are excluded with species depending 

on saprotrophic microorganisms and litter derived resources to gain in dominance. Finally, due to 

the decline in litter quality we expected (5) these effects to become more prominent with increasing 

altitude. 

 

Material and methods 

Study site 

The study area with three study sites at different altitudes, 1000, 2000 and 3000 m a.s.l., is located 

in southern Ecuador on the eastern slope of the Andes within the northern part of the Podocarpus 

National Park in the political region of Zamora Chinchipe. The site at 1000 m (Bombuscaro, 

S04°06´54´´, W78°58´02´´) is located south of the city of Zamora in the valley of the Rio Bombuscaro. 

The site at 2000 m (ECSF, S3°58´18´´, W79°4´45´´) is part of the Reserva Biologica San Francisco, a 

private reserve on the northern border of the Podocarpus National Park, which includes an area of 

9 ha on the flank of the valley of the Rio San Francisco. The third site at 3000 m (Cajanuma, 

S04°06´711´´, W79°10´58´´) is located south of the regional capital Loja at the north-west gate of 

the Podocarpus National Park. All study sites face northeast to northwest, and the slopes are 

moderately steep between 26°-31° (Moser et al., 2007). 

The region has a semi-humid climate with 8-10 humid months per year. Mean annual rainfall 

increases from 2230 and 1950 mm at 1000 and 2000 m, respectively, to 4500 mm at 3000 m (Moser 

et al., 2007), while the mean annual air temperature gradually decreases from 19.4 over 15.7 to 

9.4°C at 1000, 2000 and 3000 m, respectively. Soil pH also gradually decreases from 3.94 over 3.52 

to 2.86 at 1000, 2000 and 3000 m, respectively (Moser et al., 2007). Biotic conditions also change 

along the altitudinal gradient. Mean tree height decreases from 15.6 to 10.1 to 5.2 m at 1000, 2000 

and 3000 m, respectively, while thickness of organic layers as well as fine root biomass increases 

from 48 mm and 2.7 t ha-1 at 1000 m, over 305 mm and 6.2 t ha-1 at 2000 m to 435 mm and 
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10.8 t ha-1 at 3000 m (Moser et al., 2007; Graefe et al., 2008). Soil types at 1000, 2000 and 3000 m 

are predominantly Alumic Acrisols, Gley Cambisols and Podzols, respectively (Moser et al., 2007). 

At 1000 m the litter layer overlays the mineral soil (Ah horizon), i.e. F and H layers are lacking; in 

contrast, at 2000 and 3000 m the leaf litter overlays organic layers comprising predominantly of F 

material. 

 

Experimental set up 

To investigate the influence of roots and mycorrhiza on the animal community and decomposition 

processes, three types of mesh ingrowth core microcosms were built. Microcosms were 

constructed from plastic tubes 20 cm in length and of a diameter of 15 cm equipped with two 

windows at the side (Fig. 1a). To limit accessibility by roots and/or mycorrhiza the windows were 

covered with mesh of different sizes (Fig. 1b). Mesh of 4 mm mesh size was used to allow access of 

roots and mycorrhiza, i.e. to simulate natural conditions. Mesh of 45 µm mesh size was used to 

exclude fine roots but allow access by mycorrhizal hyphae; at the study sites the diameter of fine 

roots varies from 0.55 to 0.68 mm (Graefe et al., 2008), whereas mycorrhizal hyphae typically are 

< 5 µm (Friese & Allen, 1991; Smith & Read, 2008). Microcosms with the windows closed were used 

to exclude both roots and mycorrhizal hyphae (Fig. 1b). To allow drainage of water, but block 

ingrowth of roots and mycorrhizal hyphae from the bottom the cores were equipped with a double 

floor each consisting of 45 µm mesh separated by 5 cm of open space. 

 

 
Fig. 1: Schematic depiction of the general structure of root and mycorrhiza exclusion containers (a), three 
types of containers with different mesh sizes in the side windows (b) and microcosm located in the soil with 
soil core and litter material (c). 

 

Microcosms were placed in the field following a complete randomized block design with six blocks 

at each altitude spaced by at least 10 m. Each block contained three microcosms of each mesh size, 

resulting in 54 microcosms in total (Fig. 2).  

4 mm mesh

4 mm mesh („open“) / 45 µm mesh / closed

45 µm mesh

45 µm mesh

15 cm

5 cm

15 cm

4 mm 45 µm closed

a)

c)

b)
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Fig. 2: Experimental design on the three altitudes (1000, 2000 and 3000 m) and amount of total replicates. 
Schematic depiction of the microcosm types placed in the field (see Fig. 1). 
 

Microcosms were placed into holes excavated by a steel core matching the outer diameter of the 

microcosms (Fig. 1c). The excavated soil was kept intact and the surrounding soil was left as 

undisturbed as possible. The litter layer of the excavated core was removed and the underlying 

10 cm of the core consisting of Ah (1000 m) and F layer material (2000 and 3000 m) was placed into 

the microcosms. We refer to this material as "soil" later in text. Separated by a 4 mm mesh screen, 

leaf litter material ("leaf litter" or “litter” later in text) was placed on top of this layer (Fig. 1c). The 

amount of leaf litter material added was equivalent to that in the L layer of the respective forest 

that had been removed from the cores and consisted of a mixture of the three most abundant tree 

species at the respective study sites with the proportions of the species resembling that in the 

respective L layer (Table 1).  

 

Table 1: Leaf litter species placed into the exclusion containers and the amount of each used (g dry weight) 
from the three studied altitudes. The amount and proportion of the litter species placed into the exclusion 
containers was based on the amount and proportion of the three species present and the thickness of the 
litter layer at the respective study site.  

Leaf species   

At 1000 m [g] 

Puteria sp. 5 

Cecropia andina 3 

Mollinedia sp. 2 

At 2000 m   

Graffenrieda emarginata 10 

Clusia spp. 6 

Cavendishia zamorensis 4 

At 3000 m   

Clusia spp. 10 

Graffenrieda emarginata 8 

Hediosmum sp. 2 

3 types of 
Ingrowth cores

6 replicates

18

18

18

54

3000 m

2000 m

1000 m
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The leaf litter material consisted of freshly fallen leaves which had been sampled in the field and 

dried at 60°C for 72 h prior to placement in the microcosms. Microcosms were closed by a lid of 

4 mm mesh allowing percolation of water. Microcosms were placed into the soil with matching leaf 

litter layer inside and outside the microcosms. Microcosms were left in the field for 12 months. 

Replacement of the leaf litter layer by standardized leaf litter material allowed following 

decomposition of leaf litter during exposure. We focus on the colonization of the leaf litter layer by 

microorganisms and soil animals as microbial biomass and density of soil invertebrates is at a 

maximum in leaf litter at the study sites (Röderstein et al., 2005; Maraun et al., 2008; Krashevska 

et al., 2008). 

 

Analytical procedures 

After retrieval of the microcosms, a subsample of the litter and soil material was stored at 4°C and 

transported to Germany. Litter material was cleaned by removing soil, plants and roots and then 

dried at 60°C for four days. Litter dry mass was measured gravimetrically. For measuring C and N 

concentrations an aliquot of the litter material and a subsample of soil were milled to powder and 

3-4 mg from each sample were filled in tin capsules and analysed using an elemental analyser (Vario 

EL III, elemental, Hanau, Germany). 

Microbial respiration and substrate-induced respiration (SIR) were determined by measuring O2 

consumption using a computer controlled O2 microcompensation apparatus (Scheu, 1992). 

Material of litter and soil from each microcosm was cut into pieces of about 0.5 cm2, homogenised, 

water content was adjusted to about 60 % of the water holding capacity and the samples were 

rested for four days at room temperature. Then, O2 consumption was measured for 24 h. Microbial 

biomass was determined by measuring SIR (Anderson & Domsch, 1978). Moist samples equivalent 

to 0.2 g dry weight were supplemented with glucose equivalent to 80 mg g-1 dry weight and the 

measurement of the O2 consumption continued for 24 h. Microbial biomass was calculated from 

the maximum initial respiratory response (MIRR; µl O2 g-1 dry mass h-1) as Cmic = 38 × MIRR (Beck 

et al., 1997; Joergensen & Scheu, 1999). 

Mobile soil fauna was extracted from the litter material via heat using modified Kempson extractors 

(Kempson et al., 1963). The extraction was performed directly after collection and transfer of the 

litter material to the laboratory. Animals extracted were stored in 70 % ethanol. Most animal groups 

were determined to order, suborder or cohort level using Schaefer (2010) except for Collembola 

and Oribatida. Collembola were separated into five morphologically defined groups resembling the 

Collembola families Entomobryidae, Isotomidae, Sminthuridae, Hypogastruridae/Neanuridae 

(Hypogast/Neanu) and the genus Megalothorax, and were named accordingly. Oribatida were 

determined to species level except for Brachychthoniidae, Galumnidae, Mesoplophoridae, 



Chapter 4: Roots, mycorrhizal fungi and altitude 

 
90 

Phthiracaridae and Euphthiracaridae. For determination the keys of Balogh and Balogh (1988, 2002) 

and Weigmann (2006) were used. Species names and classification into families follow Subias 

(2015).   

 

Statistical analysis 

The percentages of litter remaining as well as C-to-N ratio and microbial parameters (BR and Cmic) 

of both litter and soil were analysed by two factor randomized complete block multivariate analysis 

of variance (MANOVA) with block being nested in altitude; later block was excluded from the 

analysis as it was not significant. The fixed factors were altitude (1000, 2000 and 3000 m a.s.l.) and 

treatment (open, 45 µm and closed microcosms). Thereafter, protected general linear models 

(GLMs) with the same factors as above were carried out (Scheiner & Gurevitch, 2001). The 

percentage of litter remaining from each litter species was analysed for each altitude separately in 

a similar procedure with only treatment as fixed factor and the three litter species as dependent 

variables. Block was excluded as it was not significant.  

The abundance of the total arthropods, total Collembola, total Oribatida, Collembola subgroups 

and Oribatida families as well as Oribatida species diversity in the litter layer per microcosm were 

analysed by two factor randomized complete block MANOVA with block being nested in altitude. 

The fixed factors were altitude (1000, 2000 and 3000 m a.s.l.) and treatment (open, 45 µm and 

closed microcosm). Except for the diversity of Oribatida, block was excluded from the analyses as 

it was not significant. Thereafter GLMs with the same factors as above were carried out. Tukey´s 

HSD test (α < 0.05) was used to identify significant differences between means. Statistical analyses 

were performed using SAS (Statistical Analysis System, Version 9.3; SAS Institute Inc., Cary, NC, 

USA).  

The relationship between groups of soil arthropods and environmental factors combined for the 

three altitudes were analysed using redundancy analysis (RDA) as implemented in CANOCO (Lepš & 

Šmilauer, 2003) including the three treatments at each of the three altitudes as silent variables not 

affecting the ordination. Environmental variables included decomposition rate, Cmic, BR and C-to-N 

ratio. Oribatida species present in three or more microcosms were analysed by principal 

components analysis (PCA) for each of the three altitudes, including the three treatments (open, 

45 µm and closed microcosms) as silent variables not affecting the ordination using CANOCO 

(Lepš & Šmilauer, 2003). Before the analyses data were inspected for homogeneity of variance and 

normal distribution. Percentage data were arcsine square root and all other data log-transformed. 

Means presented in text are based on non-transformed data. 
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Results 

Litter decomposition and microorganisms 

Decomposition rates were significantly higher at 2000 m as compared to 1000 and 3000 m; after 

12 months 57.3±5.2 % of the leaf litter material was decomposed at 2000 m, while at 1000 and 

3000 m only 46.7±11.0 and 48.0±5.3 % was decomposed, respectively (F2/41 = 8.2, p = 0.001); in 

contrast to altitude, decomposition rates did not vary significantly with treatment (F2/41= 1.2 p = 

0.322). Also, decomposition of the different leaf litter species at the three altitudes did not vary 

significantly with treatment. Only at 2000 m Clusia leaves in trend decomposed faster in closed 

(60.5±4.7 % of initial) as compared to open and 45 µm microcosms (51.7±6.2 and 51.7±5.7 % of 

initial, respectively; F2/12 = 2.9, p = 0.096); while at 3000 m Hediosmum leaves in trend decomposed 

faster in open (54.4±9.5 % of initial) as compared to 45 µm and closed microcosms (77.1±16.2 and 

63.9±18.8 % remaining, respectively; F2/12= 3.1; p = 0.075).  

The water content in the litter layer (percentage of dry weight) at 1000 m was lower with 

190.2±59.1 % as compared to 290.8±50.1 and 281.2±47.5 % at 2000 and 3000 m, respectively 

(F2/40 = 22.0, p < 0.001). In soil the difference was even more pronounced with only 44.8±10.4 % at 

1000 m as compared to 506.4±126.0 and 656.5±114.7 % at 2000 and 3000 m, respectively (F2/40 = 

213.7, p = < 0.001). In both litter and soil the water content in open microcosms was slightly but 

significantly lower than in 45 µm and closed microcosms (litter: 227.3±81.0, 266.3±70.4 and 

268.1±44.7 %, respectively; F2/40 = 4.2, p = 0.014; soil: 365.1±257.6, 1.4±302.0 and 432.9±308.0 %, 

respectively; F2/40= 4.2, p = 0.022).  

The C-to-N ratio in leaf litter increased with increasing altitude from 26.2±1.0 to 48.1±4.4 to 

61.9±15.2 at 1000, 2000 and 3000 m, respectively (F2/41 = 114.8, p < 0.001). In soil the C-to-N ratio 

was significantly lower at 1000 m as compared to 2000 and 3000 m with 12.6±0.6 as compared to 

24.8±2.0 and 25.3±2.7, respectively (F2/41 = 347.1, p < 0.001).  

At 1000 m BR in soil was much lower than at 2000 and 3000 m (3.1±1.0, 52.7±14.6 and 58.0±19.3 

µg O2 g-1 dry weight h-1 respectively; F2/39 = 458.5, p < 0.001). Respiration in leaf litter was higher in 

closed (87.5±21.4 µg O2 g-1 dry weight h-1) as compared to the open and 45 µm microcosms 

(68.2±22.1 and 66.8±23.6 µg O2 g-1 dry weight h-1, respectively; F2/35 = 5.3, p = 0.010). In trend the 

same was true for microbial biomass with 8934±4796 µg Cmic g-1 dry weight in closed microcosms in 

litter compared to 6893±1906 and 7153±2245 µg Cmic g-1 dry weight in open and 45 µm microcosms, 

respectively (F2/35 = 2.9, p = 0.068). At 1000 m (10,324±3577 µg Cmic g-1 dry weight) microbial 

biomass markedly exceeded that at 2000 and 3000 m (6571±1441 and 5748±1351 µg Cmic g-1 dry 

weight, respectively; F2/35 = 24.4, p < 0.001). However, in soil it was the opposite with microbial 

biomass at 1000 m (734.1±160.6 µg Cmic g-1 dry weight) being markedly lower than at 2000 and 

3000 m (4521±1080 and 3969±1177 µg Cmic g-1 dry weight, respectively; F2/39 = 185.2, p < 0.001).  
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Animals 

The abundance of arthropods in the litter layer was highest at 2000 m (364.8±175.4 ind. 

microcosm-1) and lower at 1000 and 3000 m (206.7±93.4 and 91.5±46.9 ind. microcosm-1, 

respectively; F2/27 = 24.6, p < 0.001). In open microcosms the abundance of arthropods (290.8±188.7 

ind. microcosm-1) exceeded that in 45 µm and closed microcosms (194.7±123.8 and 177.5±153.9 

ind. microcosm-1, respectively; F2/27 = 5.3, p = 0.012). 

The abundance of the two most abundant soil arthropod groups, Collembola and Oribatida, 

increased in each of the treatments and at each of the three altitudes from the initial density 

present in the undisturbed soil core to the total abundance in the soil and litter layer at the end of 

the experiment (Table 2). Collembola density increased from initially 8.75±6.5, 38.25±17.63 and 

9.0±2.83 at 1000, 2000 and 3000 m, respectively by 91.12±36.11, 142.14±19.77 and 

186.34±69.65 % in open, 45 µm and closed microcosms, respectively. The abundance of Oribatida 

increased from initially 15.25±13.23, 23.75±10.4 and 4.75±2.06 at 1000, 2000 and 3000 m, 

respectively, by 604.37±198.65, 313.52±102.99 and 141.18±78.96 % in open, 45 µm and closed 

microcosms, respectively. 

 

Table 2: Mean abundance (mean) (ind. microcosm-1) and standard deviation (SD) of (a) Collembola and (b) 
Oribatida in undisturbed soil cores from the three investigated altitudes (1000, 2000 and 3000 m) before 
exposure in the field (initial abundance (soil)) and in the combined soil and litter layer cores in the three 
different treatments (open, 45 µm and closed) at the end of the experiment (end abundance (soil + litter)). 

a) Collembola     
altitude initial abundace (soil) treatment end abundance (soil + litter) 

  mean SD   mean SD 

1000 8.75 6.50 open 18.00 14.76 

45 µm 22.00 13.29 

closed 30.50 27.14 
2000 38.25 17.63 open 83.25 35.44 

45 µm 97.75 83.12 

closed 114.50 50.40 
3000 9.00 2.83 open 13.50 6.56 

45 µm 19.75 14.15 

closed 19.00 16.10 

b) Oribatida      

altitude initial abundace (soil) treatment end abundance (soil + litter) 

  mean SD   mean SD 

1000 15.25 13.23 open 76.00 42.29 

45 µm 74.25 38.79 

closed 36.50 18.93 
2000 23.75 10.40 open 171.00 60.55 

45 µm 70.25 28.91 

closed 76.25 61.14 
3000 4.75 2.06 open 42.50 13.70 

45 µm 21.75 15.65 

closed 7.75 2.22 
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The abundance of Collembola in the litter layer along the altitudinal gradient resembled that of 

total arthropods (F2/27 = 40.54; P = <0.001), but the abundance along the altitudinal gradient also 

varied with treatment (altitude × treatment interaction; F4/27 = 2.97, p = 0.0373). At 1000 and 

2000 m it was highest in closed microcosms (29.0±22.2 and 126.5±77.5 ind. microcosm-1, 

respectively) and lower in 45 µm (17.0±10.1 and 79.5±107.0 ind. microcosm-1, respectively) and 

open microcosms (18.5±16.9 and 90.0±36.8 ind. microcosm-1, respectively), while at 3000 m the 

abundance was higher in open and 45 µm microcosms (9.0±7.7 and 6.5±3.0 ind. microcosm-1, 

respectively) than in closed microcosms (1.5±1.9 ind. microcosm-1; F4/27 = 3.0, p = 0.037). The 

Collembola groups Hypogastruridae/Neanuridae, Isotomidae, Megalothorax and Sminthuridae 

were most abundant at 2000 m (9.8±11.8, 7.8±6.7, 42.3±48.9 and 29.7±31.7 ind. microcosm-1, 

respectively) and less abundant at 1000 (5.0±7.3, 3.2±3.8, 9.2±12.9 and 2.8±3.1 ind. microcosm-1, 

respectively) and 3000 m (1.0±1.6, 1.7±2.1, 0.3±0.8 and 0.5±1.2 ind. microcosm-1, respectively) 

(Table 3).  

 

Table 3: F- and p-values of Collembola morphogroups in the litter layer of microcosms exposed at three 
altitudes (1000, 2000 and 3000 m a.s.l.) and subjected to three treatments (open, 45µm and closed). 
(Hypogast/Neanu: Hypogastruridae and Neanuridae). Significant values are given in bold. 
 Hypogast/Neanu Isotomidae Megalothorax Sminthuridae Entomobyridae 

Litter F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value 

altitude 5.08 0.0134 7.16 0.0032 28.89 <0.0001 17.65 <0.0001 4.57 0.0196 

treatment 0.26 0.7752 1.95 0.1618 1.81 0.1826 1.51 0.2382 0.88 0.4247 

altitude*treatment 0.48 0.7535 1.87 0.1449 1.11 0.3737 0.54 0.7106 4.54 0.0062 

 

The abundance of Entomobryidae varied significantly between treatments, but the effect 

depended on altitude (Table 3). It was highest in closed microcosms at 2000 m, where it was more 

than five times higher than in any other treatment on other altitudes (Fig. 3). At 1000 m the 

abundance was highest in 45 µm microcosms and at 3000 m it was highest in open microcosms. 
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Fig. 3: Mean abundance and standard deviation of Entomobryidae in open, 45 µm and closed microcosms 

exposed in the field at three altitudes (1000, 2000 and 3000 m a.s.l.) for 12 months (means±SD).  
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The abundance of the three largest groups within the Acarina in the litter layer significantly varied 

with altitude, namely Gamasina (F2/27 = 16.4, p = <0.001), Uropodina (F2/27 = 57.9, p = <0.001) and 

Oribatida (F2/27 = 20.4, p = <0.001). Abundances also varied between treatments for Gamasina (F2/27 

= 3.3, p = 0.053; fig. 4) and Oribatida (F2/27 = 13.5, p = <0.001; Fig. 4). The abundance of Gamasina 

and Uropodina decreased from 1000 m (22.7±20.2 and 19.0±9.9 ind. microcosm-1, respectively) to 

2000 m (10.0±10.3 and 2.3±4.1 ind. microcosm-1) and 3000 m (1.8±1.8 and 0.2±0.6 ind. 

microcosm-1). In contrast, in Oribatida it was highest at 2000 m (178.3±119.9 ind. microcosm-1) and 

lower at 1000 (100.0±59.7 ind. microcosm-1) and 3000 m (40.3±34.5 ind. microcosm-1). The 

abundance of both Gamasina and Oribatida was highest in open microcosms as compared to 45 µm 

and closed microcosms (Fig. 4).  
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Fig. 4: Mean abundance and standard deviation of Gamasina (a) and Oribatida (b) in open, 45 µm and closed 

microcosms exposed in the field at three altitudes (1000, 2000 and 3000 m a.s.l.) for 12 months (means±SD).  

 

Using forward selection, two of the four explanatory variables included in the RDA were significantly 

related to the community structure of soil animals, i.e. C-to-N ratio and decomposition rate (Fig. 5). 

All four variables together explained 25.8 % of the variation in animal data with the C-to-N ratio 

explaining 12.2 % (F = 3.9, P = 0.006), decomposition rate 7.4 % (F = 2.5, P = 0.036), basal respiration 

3.7 % and Cmic 2.6 %. Separation of the three altitudes in the RDA primarily reflected differences in 

animal community composition. In contrast, the three treatments were grouped close to each 

other. Most animal taxa were most abundant at 2000 m and reached low densities at 3000 m. Cmic 

was associated with 1000 m reflecting the high microbial biomass in the litter at this altitude. 

Uropodina and Gamasina were associated with high Cmic. High decomposition rates were associated 

with 2000 m and Collembola groups. Microcosms at 3000 m were associated with high C-to-N ratio 

and characterized by a lack of animal groups associated with this altitude. 
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Fig. 5: Forward selection RDA of the animal groups with supplementary variables (Cmic = microbial biomass; 

BR = basal respiration; C/N-ratio and decomposition (as percentage of litter decomposed after 12 months)) 

and altitude dummies (three altitudes (1000, 2000 and 3000 m a.s.l.) and three treatments (open, 45 µm, 

closed)) 

 

Oribatida groups responded in a similar way to changes in altitude as total Oribatida with the 

changes being significant in 14 groups (Table 4). In most groups the abundances were highest at 

2000 m and lower at 1000 and 3000 m or groups were not present at these altitudes [Ameroidea 

(1.0±2.3, 3.2±5.2 and 0 ind. microcosm-1 at 1000, 2000 and 3000 m, respectively), Damaeoidea (0, 

3.2±6.2 and 0), Phthiracaroidea (1.3±1.8, 5.2±4.7 and 1.8±3.5), Galumnoidea (9.2±14.4, 17.2±13.3 

and 1.8±3.2), Gustavioidea (1.8±3.0, 20.7±37.8 and 0.3±0.8), Suctobelbidae (7.7±7.0, 8.8±13.4 

and 0) and Oppioidea (9.8±8.4, 55.2±40.2 and 0)]. In contrast, Oripodoidea (26.3±24.5, 15.5±22.3 

and 12.7±16.2 ind. microcosm-1 at 1000, 2000 and 3000 m, respectively) and Hermannielloidea 

(2.7±3.7, 0.5±0.9 and 0) were more abundant at 1000 m as compared to 2000 and 3000 m. 

Ameronothroidae, Enarthronota and Hypochthonioidea were only present at 1000 m (1.8±2.5, 

3.3±6.3 and 2.3±2.4 ind. microcosm-1, respectively). 
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Table 4: ANOVA table of F- and p-values on changes in the density of the 14 Oribatida subgroups in the litter 

layer of microcosms exposed at three altitudes (1000, 2000 and 3000 m a.s.l.) and subjected to three 

treatments (open, 45µm and closed). Significant values are given in bold. 
 Ameroidea Damaeoidea Phthiracaroidea Galumnoidea Gustavioidea 

 F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value 

altitude 6.52 0.0049 7.01 0.0035 4.05 0.0289 15.34 0 16.48 0 

treatment 4.38 0.0225 0.35 0.7046 2.19 0.1311 3.65 0.0396 2.19 0.1309 

altitude*treatment 1.38 0.2687 0.35 0.8384 0.61 0.6576 2.35 0.0798 0.67 0.6187 

 Suctobelbidae Oppioidea Oripodoidea Hermannielloidea Ameronothridea 

 F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value 

altitude 20.3 0 129.64 0 3.92 0.0321 7.48 0.0026 6.3 0.0057 

treatment 3.6 0.041 1.95 0.1616 9.29 0.0009 4.27 0.0245 0.18 0.8348 

altitude*treatment 1.46 0.242 0.49 0.741 0.95 0.4522 1.95 0.1304 0.18 0.9458 

 Enathronota Hypochthonidea Nanhermannioidea Microzetoidea   

 F-value p-value F-value p-value F-value p-value F-value p-value   

altitude 6.13 0.0064 12.88 0.0001 8.93 0.0011 7.41 0.0027   

treatment 1.08 0.3526 0.58 0.5693 5.52 0.0098 5.09 0.0133   

altitude*treatment 1.08 0.3842 0.58 0.6829 2.8 0.0459 3.15 0.03   

 

Five Oribatida groups responded significantly to the treatments (Table 4; Fig. 6). Ameroidea, 

Oripodoidea and Suctobelbidae were more abundant in the open and less abundant in the 45 µm 

and closed microcosms, while the abundances of Hermannielloidea and Galumnidae were similar 

in open and 45 µm and lower in closed microcosms (Fig. 6).  
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Fig. 6: Mean abundance and standard deviation of five Oribatida groups in open, 45 µm and closed 
microcosms exposed in the field at three altitudes (1000, 2000 and 3000 m a.s.l.) for 12 months (means±SD)  
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For the abundance of two Oribatida groups, the interaction between treatment and altitude was 

significant (Table 4). Nanhermannioidea were only found at 2000 and 3000 m (Fig. 7a) and at both 

altitudes most animals were present in open microcosms. At 2000 m the abundance was lowest in 

45 µm microcosms while at 3000 m it was lowest in closed microcosms. Microzetoidea were only 

present at 1000 and 2000 m (Fig. 7b). At 2000 m they were only present in open while at 1000 m 

they were present in open and 45 µm, but were most abundant in the open microcosms. At each 

of the altitudes no individuals were present in closed microcosms.  
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Fig. 7: Mean abundances and standard deviation of the two Oribatida subgroups (Nanhermannioidea (a)) and 

Microzetoidea (b)) reacting significantly towards the interaction of treatment (open; 45 µm; closed) and 

altitude (1000, 2000 and 3000 m a.s.l.) (means±SD). 

 

A total of 74 species of Oribatida were found at the three study sites. Oribatida species number 

varied significantly between altitudes (F2/27 = 39.6, p < 0.001) and also between the treatments (F2/27 

= 11.0, p < 0.001). The species number was lowest at 3000 m (2.9±1.4 species microcosm-1) and 

significantly higher at 1000 and 2000 m (10.7±6.1 and 10.1±3.8 species microcosm-1). Between the 

treatments abundance was highest in open (11.3±6.9 species microcosm-1) and lower in 45 µm and 

closed microcosms (6.9±3.7 and 5.5±3.7 species microcosm-1, respectively).  

PCA of the Oribatida community at each of the three altitudes separated the three treatments along 

the first axis (Fig. 8a,b,c). At 1000 m most species were associated with open microcosms, only 

Trachyoribates n.sp. (3), Tegeocranellus bolivianus, Cultroribula zicsii and two species of 

Suctobelbidae were associated with 45 µm and closed microcosms. Species of Suctobelbidae, which 

generally were more abundant in open microcosms (Fig. 8a), spread over the full gradient from 

closed to open microcosms.  

At 2000 m the separation between closed, 45 µm and open microcosms was less pronounced as 

compared to 1000 m (Fig. 8b). Most species were again associated with open microcosms, although 

the association was not as pronounced as at 1000 m. 
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Fig. 8: PCA-log plot of Oribatida species in open, 45 µm and closed microcosms at (a) 1000 m (Eigenvalue of 

axis 1 is 0.23 and axis 2 is 0.35), (b) 2000 m (Eigenvalues of axis 1 is 0.23 and axis 2 is 0.34) and (c) 3000 m 

(Eigenvalues of axis 1 is 0.4 and axis 2 is 0.35). (See Appendix for internal classification numbers of Oribatida 

species) 
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The species associated with the closed and 45 µm microcosms at 2000 m were not present at 

1000 m, Damaeus cf. flagellatus, Beckiella capitulum, Globoppia cf. maior and Scheloribates 

elegans. Again, species of Suctobelbidae and Oppiidae were spread over the full gradient. At 

3000 m species numbers were substantially lower, with four of the seven species present being 

associated with the open microcosms (Fig. 8c) and these four species not being present at the lower 

altitudes, Nanhermannia nana, Oripoda n.sp. and Heminothrus castaneus. Closed and 45 µm 

microcosms were more distantly separated at 3000 m as compared to the lower altitudes. 

 

Discussion 

The lack of variation in the treatment effect between the three investigated altitudes, with the 

exception of Collembola abundance, contradicts the assumption that the role of mycorrhizal fungi 

for both decomposition and soil fauna community structure increases with decreasing quality of 

the litter resource and harshness of abiotic conditions. This suggests that at each of the altitudes 

the influence of root-derived resources for microorganisms and animals is of similar importance. 

We therefore discuss the effects of root and mycorrhizal exclusion and variations along the 

altitudinal gradient separately. 

 

Exclusion of roots and mycorrhiza 

The lack of treatment effects on litter decomposition and C-to-N ratio questions the widely 

assumed role of mycorrhizal fungi in decomposition processes. Gadgil and Gadgil (1971) found 

decomposition rates to decrease in the presence of EM fungi and attributed this effect to either 

increased competition between EM fungi and saprotrophs or changes in the soil water content. The 

water content being only significantly lower in the open as compared to the closed and 45 µm 

microcosms suggests that the exclusion of roots and therefore the missing water uptake by plants 

was responsible for the lower water content in the litter layer of the open as compared to the closed 

and 45 µm microcosms (Brant et al., 2006). The fact that only roots in the open but not mycorrhiza 

in the 45 µm microcosms affected the water content in the litter layer indicates that mycorrhiza 

little affected the drainage of the microcosms. AM fungi have been shown to influence 

decomposition rates in both directions by accelerating decomposition rates of grass leaves (Hodge 

et al., 2001; Hodge & Fitter, 2010), but also reducing the decomposition rate of woody plant litter 

(Leifheit et al., 2015). Mycorrhizal fungi at the study sites are dominated by AM fungi (Kottke et al., 

2004) and results of the present study suggest that they do not alter litter decomposition at any of 

the three studied altitudes. AM fungi transfer not only P (Smith & Read, 2008), but also N to their 

host plant (Hodge et al., 2001; Leigh et al., 2009; Veresoglou et al., 2012), while in exchange C is 

transferred from the host plant to the mycorrhizal fungi. In a tropical coffee plantation Cuenca et al. 
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(1983) reported a decrease in litter N in the presence of coffee roots, however, in most studies the 

transfer of N by mycorrhiza did not affect N concentrations in leaf litter (Gadgil & Gadgil, 1975; 

Staaf, 1988; Zhu & Ehrenfeld, 1996). In the present study the litter C-to-N ratio also neither was 

affected by the exclusion of roots nor by mycorrhizal hyphae, suggesting that litter N dynamics were 

independent of roots and mycorrhiza. Only few studies investigated interactions between AM fungi 

and soil microorganisms distant to roots (Hodge & Fitter, 2010; Nuccio et al., 2013), although AM 

fungi are known to form pronounced extra-radical mycelia growing into decomposing litter material 

(Camenzind & Rillig, 2013) suggesting that they interact with saprotrophic fungi (Marschner et al., 

2001; Marschner & Baumann, 2003; Camenzind & Rillig, 2013). Indeed, AM fungi have been shown 

to modify the abundance as well as community composition of bacteria in litter (Marschner & 

Baumann, 2003; Nuccio et al., 2013) and Leigh et al. (2011) found antagonistic interactions between 

AM fungi and bacteria suggesting that they compete for resources. Especially in P limited systems 

the extra-radical hyphae of AM fungi and the microbial community are assumed to compete for P 

(Leigh et al., 2011; Nottingham et al., 2013). The investigated tropical montane rainforests are co-

limited by both N and P (Homeier et al., 2012) and addition of both nutrients has been shown to 

impact AM fungi abundance and diversity (Camenzind et al., 2014) as well as the microbial 

community (Krashevska et al., 2010). This suggests antagonistic interactions between mycorrhizal 

fungi and saprotrophic microorganisms to be pronounced at our study sites as suggested earlier 

(Krashevska et al., 2010). Conform to these expectations exclusion of mycorrhizal hyphae and roots 

resulted in an increase in basal respiration and in trend also in Cmic, suggesting that mycorrhizal 

fungi in fact suppressed the activity of saprotrophic microorganisms. The fact that this was 

independent of the presence of roots suggests that these interactions occurred between the extra-

radical mycorrhizal mycelia and saprotrophic microorganisms in litter. As documented above, 

however, these interactions did not translate into changes in litter decomposition and litter N 

dynamics. Potentially, this is related to limitations of the experimental system used with rather 

large diameter of microcosms limiting interactions between mycorrhiza and saprotrophic 

microorganisms.  

As expected, the exclusion of roots and mycorrhizal hyphae affected the abundance and community 

composition of soil microarthropods, however, overall the effects were rather small. The 

abundance of total microarthropods was significantly lower in closed microcosms with a trend 

towards lower abundance in the root-exclusion microcosms at each of the three altitudes, 

suggesting that microarthropods benefited from open microcosms and the ingrowth of roots. An 

increasing number of studies in temperate forests highlighted the importance of root-derived 

resources for fuelling soil food webs (Pollierer et al., 2007, 2012; Zieger et al., 2015), but whether 

this also applies to tropical montane rainforests is unclear. Hishi et al. (2008) showed for a 
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temperate forest system that the density of Oribatida and Collembola correlates with fine root 

biomass and hyphal length with Oribatida relying more on root derived resources than Collembola. 

In the present study, density of Collembola at 1000 and 2000 m were at a maximum in closed 

microcosms suggesting that they benefited from exclusion of mycorrhizal hyphae, potentially due 

to flourishing of saprotrophic fungi in absence of mycorrhizal fungi. This is consistent with the 

increase in basal respiration and Cmic (in trend) in the closed microcosms. The results therefore 

suggest that Collembola at the lower altitude study sites mainly rely on saprotrophic 

microorganisms rather than mycorrhizal fungi as food supporting the findings of Hishi et al. (2008). 

Recently, Potapov et al. (2015) provided strong evidence that Collembola in temperate forests also 

do not incorporate mycorrhizal carbon, further supporting the suggestion that Collembola mainly 

rely on litter derived resources. Typically, the density of Collembola and Oribatida respond in 

parallel, e.g. both are more abundant in acidic as compared to base rich forest ecosystems and both 

suffer from the activity of macrofauna species, in particular earthworms (Eisenhauer, 2010). Similar 

to Collembola (Chahartaghi et al., 2005), Oribatida are trophically diverse and span over three to 

four trophic levels from primary decomposers to predators (Walter & Proctor, 1998; Schneider et 

al., 2004; Maraun et al., 2007). Recent studies conducted in the temperate region suggest that 

Oribatida species heavily rely on root-derived resources (Schneider et al., 2005; Pollierer et al., 

2007; Remen et al., 2010; Zieger et al., 2015) and sensitively respond to resource limitation (Domes 

et al., 2007). Low density and diversity of Oribatida in microcosms in which roots and mycorrhizal 

hyphae were excluded are consistent with these findings. Reduced diversity indicates that exclusion 

of roots and mycorrhiza not only reduced the amount of resources available but also the number 

of trophic niches in the system. The few species which were abundant in the closed and 45 µm 

microcosms belonged to different Oribatida families and feeding guilds. Unfortunately, however, 

little is known on food resources of tropical Oribatida species but e.g. Cultroribula zicsii which was 

abundant in 45 µm and closed microcosms at 1000 m was found to be associated with fresh litter 

material suggesting litter as main food resource (Illig et al., 2005). Similarly, Heminothrus castaneus 

and Nanhermannia nana which were abundant in closed and 45 µm microcosms at 3000 m are 

assumed to mainly feed on litter material and associated saprotrophic microorganisms (Illig et al., 

2005). However, Suctobelbidae of which two species were associated with closed and 45 µm 

microcosms at 1000 m are assumed to mainly feed on liquids, but it is unknown whether liquids are 

of plant, fungal or animal origin. The fact that many Oribatida species were associated with open 

microcosms suggests that the lack of root-derived resources cannot easily be compensated by 

switching to other food resources (Domes et al., 2007).  

Despite the fact that soil microorganisms and microarthropods responded in a consistent way to 

the exclusion of roots and/or mycorrhizal hyphae caution is needed interpreting the results of the 
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present study in a causal way being due to the lack of root-derived resources. In addition to the lack 

of root-derived resources, reduced density of Oribatida in closed and 45 µm microcosms may also 

have resulted from restricted colonisation of the litter material added to microcosms by Oribatida 

from outside the microcosms. However, Domes et al. (2007) showed that, although colonization of 

soil cores by Oribatida from soil is slower than colonization from litter, the individuals and eggs 

present in soil are sufficient to ensure establishment of a diverse community of Oribatida. Also, 

especially at higher altitudes, only part of the organic layers had been removed, enabling litter 

species to colonise the added leaf litter material. In fact, compared to the initial density in the soil 

layer added to the microcosms at the beginning of the experiment, the abundances in the 

microcosms at the end of the experiment had increased in virtually all soil fauna groups 

investigated. The consistent pattern of the response of soil microorganisms and microarthropods 

at each of the altitudes as well as the increased abundance of Collembola in closed microcosms 

indicates that the response indeed can be attributed to the exclusion of roots and mycorrhizal fungi 

and not only to colonization bias between open, closed and 45 µm microcosms.  

 

Altitude 

In the studied region many ecosystem processes and characteristics have been shown to vary along 

the studied altitudinal gradient (Homeier et al., 2002; Röderstein et al., 2005; Leuschner et al., 2007; 

Moser et al., 2007; Krashevska et al., 2007; Illig et al., 2010). The strong influence of altitude on the 

investigated parameters in the present study therefore is consistent with earlier findings (F. Marian, 

unpublished data, Chapter 2 and 3; Krashevska et al., 2007; Illig et al., 2008), although unexpectedly 

the influence of root exclusion did not differ significantly between the altitudes. Soil humidity at 

the study site increases with increasing altitude due to increased precipitation (Leuschner et al., 

2007; Moser et al., 2007). The lower soil water content at 1000 m as compared to 2000 and 3000 m 

indicates that in addition to lower precipitation the mineral soil at 1000 m has a lower water holding 

capacity than the organic layers underlying the litter at 2000 and 3000 m.  

The variation in decomposition rates between the three altitudes differs from the pattern 

previously reported for the study sites with litter decomposition decreasing with increasing altitude 

(F. Marian, unpublished data, Chapter 2). This decrease in decomposition rate with increasing 

altitude has been associated with changes in biotic and abiotic conditions, such as increased water 

logging (Wilcke et al., 2002) and changes in plant community structure (F. Marian, unpublished 

data, Chapter 2). Parallel to the decrease in decomposition, the litter quality (C-to-N ratio) also 

decreases with increasing altitude (F. Marian, unpublished data, Chapter 2; Wilcke et al., 2002; 

Leuschner et al., 2007), but variations in litter quality were found to be of little importance as 

drivers of litter decomposition at our study sites (F. Marian, unpublished data, Chapter 2). Also, the 
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differences in decomposition rates between the altitudes were found to increase as decomposition 

continues, while within the first 12 months decomposition rates did not vary strongly between the 

three altitudes (F. Marian, unpublished data, Chapter 2). Compared to the decomposition rates 

reported in a previous study (F. Marian, unpublished data, Chapter 2) the litter lost about 7 % more 

mass at 3000 m while at 1000 m litter lost about 10 % less mass, whereas the decomposition rate 

at 2000 m was almost identical to previous studies. 

The different patterns in which the microbial parameters varied in soil and litter along the 

altitudinal gradient indicate that different regulatory forces control the microbial community in the 

two layers. In the soil layer where biomass and respiration have been shown to be lower compared 

to the litter layer (Krashevska et al., 2008), both parameters were low at the 1000 m altitude 

reflecting the high concentration of mineral material in this layer (Ah horizon). In the litter layer the 

opposite pattern, i.e. increased microbial biomass at 1000 m compared to the higher altitudes, 

indicates that increased nutrient availability due to higher litter quality and temperature at 1000 m 

provides favourable conditions for microorganisms as suggested before (Krashevska et al., 2010).  

Variations in the diversity and abundance of microarthropod species along altitudinal gradients 

have been studied extensively (Richardson et al., 2005; González et al., 2007; Sanders et al., 2009; 

Sundqvist et al., 2013; Willig & Presley, 2015). In the study area both the abundance and diversity 

of soil arthropods are known to vary along the altitudinal gradient (F. Marian, unpublished data, 

Chapter 3; Rillig et al., 2013). Contrary to the present study, where the abundance of most 

investigated microarthropod groups was at a maximum at the intermediate altitude and Oribatida 

diversity did not differ between 1000 and 2000 m, previous studies using litterbags or soil cores 

found a decrease in soil arthropod abundance with increasing altitude (F. Marian, unpublished data, 

Chapter 3; Maraun et al., 2008; Illig et al., 2010; Rillig et al., 2013). Also, the diversity of plants, 

moths, testate amoebae and Oribatida have previously been found to vary along the altitudinal 

gradient (Krashevska et al., 2007, 2008; Homeier et al., 2010; Rillig et al., 2013; Brehm et al., 2013). 

Testate amoebae diversity was highest at the 2000 m site (Krashevska et al., 2007) while Oribatida 

diversity decreased with increasing altitude (F. Marian, unpublished data, Chapter 3; Illig et al., 

2010; Rillig et al., 2013). The decrease in both diversity and abundance of soil microarthropods with 

altitude has been attributed to variations in the microbial community and the decreasing quality 

and diversity of belowground plant-derived resources (mainly via mycorrhizal and root exudate 

input) (F. Marian, unpublished data, Chapter 3). The hump shape pattern of microarthropod 

abundance and the missing increase in Oribatida species numbers at 1000 m in the present study 

suggests that other factors than belowground resources influence microarthropod abundance and 

diversity. The hump shaped distribution pattern of Oribatida and Collembola, corresponds to 

variations in decomposition rates at the different altitudes. The matching pattern of decomposition 
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rates, litter C-to-N ratio and Collembola abundance supports our conclusion that Collembola heavily 

rely on litter resources and litter associated saprotrophic microorganisms. 

Previous studies reporting microarthropod abundance to decrease with increasing altitude have 

been conducted in the wet season in April and May (F. Marian, unpublished data, Chapter 3; Rillig 

et al., 2013). The hump shaped pattern in the abundance and diversity of testate amoebae along 

the studied altitudinal gradient was reported in a study conducted in the dry season of autumn 

2006 (Krashevska et al., 2007, 2008). Testate amoebae as well as soil microarthropods (Acari and 

Collembola) are sensitive to drought (Lindberg et al., 2002; Krashevska et al., 2012). Studies on the 

effects of seasonality in tropical montane rainforests on soil invertebrates are scarce although 

variations in plant functional traits vary with seasonal changes in precipitation and humidity (Ortiz 

et al., 2006; Bendix et al., 2006). Virtually nothing is known on the influence of these seasonal 

changes on the soil fauna community. The results of the present study point towards seasonal 

variations, e.g. drought or drought related changes in the plant soil fauna interaction, as a possible 

cause for the low abundance of microarthropods and low Oribatida diversity at the lowest altitude. 

Surprisingly the abundance of the predatory Acarina groups Gamasina and Uropodina as well as 

some of the Oribatida families did not follow a hump shaped pattern indicating that factors driving 

the abundance of these groups differ from those driving the abundance of Oribatida. Additionally, 

in Collembola, which are little sclerotized and therefore more sensitive to low humidity than e.g., 

Oribatida, all morphogroups reached highest abundance at the 2000 m site.  

 

Conclusions 

Results of the present study indicate that in nutrient limited Andean tropical montane rainforests 

mycorrhizal fungi and saprotrophic microorganisms compete for litter-derived resources, with 

mycorrhizal fungi suppressing the activity of saprotrophic microorganisms at each of the 

investigated altitudes. Reduced densities of soil microarthropods with root and mycorrhizal 

exclusion highlight the importance of root-derived resources for fuelling soil food webs, with 

exclusion of roots and mycorrhiza not only reducing the amount of resources available for Oribatida 

but also the number of trophic niches in the system. Collembola, on the other hand, appear to 

benefit from reduced competition between mycorrhizal fungi and saprotrophic microorganisms, 

indicating that they heavily depend on litter-derived resources. Further research on interactions 

between mycorrhizal fungi and bacteria is needed to reconcile the debate on the importance of 

mycorrhizal fungi in decomposition processes and the importance of root-derived resources as food 

source for the soil fauna community in particular in tropical rainforests. Variations in decomposition 

rates as well as microarthropod abundance and diversity along the altitudinal gradient did not fit 

previously reported patterns pointing to the importance of seasonal variations, e.g. drought or 
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drought related changes, for plant-soil fauna interactions influencing belowground ecosystem 

processes stronger than previously thought, especially at lower altitudes. Further studies 

investigating the importance of seasonal variations for belowground interactions in tropical 

montane rainforests are needed to understand the forces driving major ecosystem processes such 

as litter decomposition and nutrient cycling. 
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Appendix 

Species list: List of Oribatida species names (SN) and lead author, species number according to internal 
classification system (Nr.), total abundance and abundance at the three investigated altitudes (1000, 2000 
and 3000 m). 

  

Supercohorte (SC)

Cohorte (Co)

Superfamiliy (SF)

Family (Fa)

Subfamily (Su) Species name (SN) Nr. 1000 2000 3000 total

Enarthronota

Enarthronota sp.

Nattifftofftidae

Enarthronota n.sp. 317 20 20

Hypochthonioidea

Hypochthoniidae

Eohypochthonius gracilis  (Jacot, 1936) 139 14 14

Mixonomata

Dichosomata

Lohmannioidea

Lohmanniidae

Xenolohmannia comosa  (P. Balogh, 1984) 235 1 1

Desmonomatides

Holosomata

Crotonioidea

Trhypochthoniidae

Afronothrus incisivus  (Wallwork, 1961) 341 1 1

Malaconothridae

Fossonothrus n.sp. 57 1 1

Malaconothrus monodactylus   (Michael, 1888) 103 3 3

Malaconothrus n.sp. (1) 300 2 2

Malaconothrus n.sp. (2) 185 1 1

Crotoniidae

Heminothrus castaneus   (Hammer, 1961) 132 4 4

Brachypylina

Nanhermannioidea

Nanhermanniidae

Nanhermannia nana   (Nicolet, 1855) 3 35 21 56

Hermannielloidea

Hermanniellidae

Ampullobates ecuadoriensis  (Ermilov, Starý, Sandmann, Marian, Maraun, 2013) 272 2 2

Plasmobatidae

Solenozetes cf. carinatus 264 8 1 9

Solenozetes cf. flagellatus 252 8 8

Damaeoidea

Damaeidae

Damaeus cf. flagellatus 140 19 19

Microzetoidea

Microzetidae

Berlesezetes brazilozetoides   (Balogh, Mahunka, 1981) 288 1 1

Cosmozetes reticulatus  (Balogh, 1962) 93 5 1 6

Eremulus rigidisetus  (Balogh, Mahunka, 1969) 253 2 1 3

Licnozetes granulatus  (Balogh, Mahunka, 1969) 153 12 12

Ameroidea

Damaeolidae

Fosseremus laciniatus  (Berlese, 1905) 94 4 4

Caleremaeidae

Epieremulus granulatus  (Balogh, Mahunka, 1979) 240 16 16

Rhynchoribatidae

Rhynchoribates cf. mirus 246 2 2

Eremaeoidea

Arceremaeidae

Tecteremaeus cornutus  (Hammer, 1961) 295 1 1

Gustavioidea

Astegestidae

Ceratorchestes globosus  (Balogh, Mahunka, 1969) 125 9 2 11

Ceratorchestes n.sp. 280 1 1

Cultroribula zicsii (Balogh, Mahunka, 1981) 273 10 115 125

Carabodoidea

Dampfiellidae

Beckiella capitulum (Balogh, Mahunka, 1978) 241 3 4 7

Otocepheidae

Plenotocepheus neotropicus  (Ermilov, Sandmann, Marian, Maraun, 2013) 1 1 1

abundance
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SC Co SF Fa Su SN Nr. 1000 2000 3000 total

Oppioidea

Oppiidae

Lanceoppiinae

Globoppia cf. maior 4 7 7

Lanceoppia n.sp. 260 1 1

Oppiinae

Lasiobelba chistyakovi (Ermilov, Kaluz, 2012) 168 4 4

Neoamerioppia rotunda  (Hammer, 1958) 226 217 217

Brachioppiinae

Brachioppia cf. deliciosa 141 1 1

Oppiellinae

Oppiella nova (Oudemans, 1902) 13 8 53 61

Suctobelbidae

Neosuctobelba transitoria 154 2 1 3

Parasuctobelba compacta 254 5 5

Parasuctobelba subcomplexa 262 1 7 8

Suctobelbella cf. complexa (1) 263 2 7 9

Suctobelbella cf. complexa (2) 279 8 8

Suctobelbella cf. roigi 248 1 1

Suctobelbella cf. semiplumosa 283 5 5

Suctobelbella complexa  (Hammer, 1958) 308 6 15 21

Suctobelbella macrodentata  (Hammer, 1962) 230 2 4 6

Suctobelbella n.sp. 128 1 19 20

Suctobelbella semiplumosa indica  (Haq, 1978) 170 3 3

Suctobelbella variosetosa  (Hammer, 1961) 266 5 5

Suctobelbila peruensis  (Woas, 1986) 203 5 5

Tectocepheoidea

Tectocepheidae

Tectocepheus minor  (Berlese, 1903) 251 3 1 4

Tectocepheus velatus sarekensis  (Trägardh, 1910) 22 1 1 2

Tectocepheus velatus velatus  (Michael, 1880) 77 4 2 1 7

Ameronothroidae

Tegeocranellidae

Tegeocranellus bolivianus  (Balogh, Mahunka, 1969) 299 11 11

Cymbaeremaeoidea

Cymbaeremaeidae

Scapheremaeus cf. fungisetosus 290 1 1

Poronoticae

Oribatelloidea

Oribatellidae

Oribatella n.sp. 239 2 1 3

Epactozetidae

Truncozetes n.sp. 384 1 1

Oripodoidea

Mochlozetidae

Unguizetes incertus  (Balogh, Mahunka, 1969) 11 1 1

Hemilleiidae

Hemileius n.sp. 51 3 3

Liebstadiidae

Liebstadia n.sp. (1) 147 1 1

Liebstadia n.sp. (2) 304 1 1

Scheloribatidae

Monoschelobates hemileiformis  (Ermilov, Sandmann, Marian, Maraun, 2013) 222 68 68

Perscheloribates cf. luminosus 321 26 26

Perscheloribates n.sp. 98 3 3

Scheloribates cf. laticlava 255 1 1

Scheloribates elegans  (Hammer, 1958) 19 7 7

Oripodidae

Oripoda n.sp. 100 2 2

Protoribatidae

Protoribates ecuadoriensis  (Ermilov, Bayartogtokh, sandmann, marian, Maraun, 2013) 281 1 1 2

Protoribates n.sp. 371 1 1

Protoribates paracapucinus  (Mahunka, 1988) 278 2 2

Haplozetidae

Trachyoribates carinatus  (Beck, 1965) 287 101 101

Trachyoribates glaber  (Beck, 1965) 270 1 1

Trachyoribates n.sp. (1) 212 17 1 18

Trachyoribates n.sp. (2) 319 1 1

Trachyoribates n.sp. (3) 376 8 8

Trachyoribates n.sp. (4) 294 1 1

Trachyoribates ovulum ovulum  (Berlese, 1908) 9 1 74 75

Trachyoribates ovulum poensis  (Mihelcic, 1957) 225 4 4
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Regulatory forces of litter decomposition 

The results of this thesis, particularly Chapter 2, demonstrate that in the investigated tropical 

montane ecosystems litter quality is far less important for decomposition processes than previously 

assumed and reported for other climatic regions (Coûteaux et al., 1995; Berg, 2014; Cleveland et al., 

2014). In the studies presented in Chapter 2 and 4 mass loss of litter was mainly affected by altitude 

specific biotic and abiotic conditions and particularly the study presented in Chapter 2 showed that 

this relationship was independent of the quality of the local litter material. However, the pattern in 

which decomposition rates varied between the three investigated altitudes differed in the two 

studies. While in Chapter 2 the pattern was identical to those previously reported, with 

decomposition rates decreasing with increasing altitude (Illig et al., 2008), in Chapter 4 

decomposition rates were found to be highest at the 2000 m site. Importantly, however, the 

sampling in the two studies took place in different seasons; i.e. in the study presented in Chapter 2 

during the wet season in spring and in the study presented in Chapter 4 during the dry season in 

autumn. This suggests that decomposition processes in the investigated tropical montane 

ecosystem vary with seasonal changes in biotic and abiotic factors. Presumably, drought or drought 

related changes in plant - soil fauna interaction influence the decomposition rate at the investigated 

study sites.  

The study presented in Chapter 2 also demonstrated that the differences in decomposition rates 

between the investigated altitudes became more pronounced as decomposition continued. 

Decomposition processes are known to undergo different stages with the early stage being 

characterized by fast mass loss through leaching of soluble compounds and decomposition of 

holocellulose (Berg & McClaugherty, 2008; Berg, 2014). Especially this early phase of decomposition 

previously has been shown to strongly depend on the quality of litter material (Berg & 

McClaugherty, 2008; Cusack et al., 2009) and conform to this pattern litter decomposition during 

this phase was found in this thesis to be largely independent of altitudinal variations. The 

investigation of long term decomposition processes along the altitudinal gradient in Chapter 2 

revealed however, that after this initial phase of fast decomposition rates at all three altitudes, in 

later phases (after 12 months) decomposition rates varied between altitudes. Berg (2014) already 

found in temperate ecosystems that the rate of mass and C loss of litter slows down in the second 

phase of decomposition and is dominated by the degradation of recalcitrant litter compounds such 

as lignin. Decomposition rates in this phase can even cease, reaching a limit value and leaving 

behind recalcitrant litter compounds which are little decomposed (Berg & McClaugherty, 2008; 

Berg, 2014). In the results presented in Chapter 2 this, however, was only the case for litter material 

exposed at the 2000 and 3000 m sites clearly documenting a strong retardation in decomposition 

rate after 12 months which lasted for at least 24 months supporting earlier findings of Butenschoen 
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et al. (2014). The results presented in Chapter 2, however, also demonstrate that this second phase 

is followed by a third phase characterised by a slow resumption of decomposition after 36 months. 

This phase likely is associated with the start of lignin degradation and a shift in the decomposer 

community towards lignin decomposing microorganisms. In contrast, at 1000 m decomposition 

continued after 12 months at a low but steady rate, resulting in over 80 % mass loss after four years 

and indicating that in contrast to higher altitudes higher nutrient availability at 1000 m allowed 

continuous decomposition of litter including recalcitrant compounds such as lignin. We suggest that 

the different forest floor types at the different altitudes, with the litter layer being in close contact 

with mineral soil at 1000 m, whereas thick layers of F-material separating leaf litter and mineral soil 

at higher altitudes, resulted in a feedback loop in which accumulation of organic material and the 

formation of thick F layers at higher altitudes inhibits further decomposition. This effect is 

presumably further increased by the fact that the thick F layers at 2000 and 3000 m are formed in 

large by little decomposed root litter (Leuschner et al., 2007). Comparing the decomposition rates 

of leaf and root litter the results presented in Chapter 2 revealed that generally the retardation of 

mass loss after 12 months was more pronounced in root litter as compared to leaf litter where 

decomposition continued at a low rate. Presumably, this is due to root litter containing higher 

concentrations of lignin and lower concentrations of N than leaf litter (Bloomfield et al., 1993; 

Berg & McClaugherty, 2008), resulting in a stronger accumulation of recalcitrant litter compounds 

in later phases of decomposition at higher altitudes.  

In N limited systems in the temperate and boreal regions, litter material with a high C-to-N ratio 

typically accumulates N for longer periods of time (Berg, 2014). In contrast to this pattern, the 

results presented in Chapter 2 show for the investigated tropical montane ecosystems, which are 

co-limited by both N and P (Homeier et al., 2012), that despite the initially very low N concentration 

in the litter there was generally no increase in the amount of litter N except within the first 6 months 

in litter at 1000 m. After 6 months the amount of N uniformly decreased in the litter material at all 

altitudes suggesting that N from the litter material was mobilized and transported out of the 

litterbags, although the C-to-N ratio of litter markedly exceeded values at which net mineralisation 

is assumed to occur (Hodge et al., 2000). This suggests that plants rely on mycorrhizal fungi 

improving N capture by growing into leaf and root litter material. Indeed, the great majority of tree 

species in the investigated tropical montane forest are associated with AM fungi (Haug et al., 2004; 

Kottke et al., 2004) which are known to stimulate N uptake by plants, improve decomposition by 

interacting with the microbial community (Coleman, 1994; Hodge et al., 2001; Koller et al., 2013b,c) 

and form pronounced extra-radical mycelia growing into decomposing litter material (Marschner 

et al., 2001; Camenzind & Rillig, 2013). We suggest that, as previously reported by Koller et al. 

(2013a) for temperate ecosystems, the C input via AM fungi enables the microbial community in 
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tropical montane forests to obtain N from the litter material, despite the high C-to-N ratio (Koller 

et al., 2013a). In fact, it has been shown that protozoa can mobilise microbially fixed N by grazing 

on bacteria irrespective of litter C-to-N ratios and that AM fungi effectively translocate the 

mobilised N to the host plant (Koller et al., 2013b). Notably, Krashevska et al. (2008) already 

suggested testate amoebae, a major group of protists at the investigated study site, to be driven by 

the availability of bacteria and fungi as food source.  

We expected, in accordance with the results of the study presented in Chapter 2 and 3, that the 

microbial biomass would decrease in the absence of root derived resources. However, this was not 

the case in the study presented in Chapter 4, suggesting that AM fungi and the microbial community 

not always benefit from their mutualistic interaction but instead compete for resources. Leigh et al. 

(2011) described antagonistic interactions between AM fungi and bacteria in a laboratory 

experiment. Especially in P limited systems, the extra-radical hyphae of AM fungi and the 

saprotrophic microbial community are assumed to compete for P (Leigh et al., 2011; Nottingham 

et al., 2013). This suggests that at our study sites, where both P and N are in limited supply (Homeier 

et al., 2012), antagonistic interactions between mycorrhizal fungi and saprotrophic microorganisms 

are pronounced. This is also supported by the exclusion of mycorrhizal hyphae and roots resulting 

in an increase in basal respiration and in trend also in Cmic, suggesting that mycorrhizal fungi in fact 

suppressed the activity of saprotrophic microorganisms. As documented above, however, these 

interactions did not translate into changes in litter decomposition and litter N dynamics.  

The results presented in Chapter 2 further indicate that variations in the microbial community in 

the litter material are closely linked to the different stage of the decomposition process. From 

temperate and boreal regions the structure and functioning of the microbial community in 

decomposing litter material is known to change during decomposition, parallel to changes in the 

chemical composition of the litter material (Scheu & Parkinson, 1995; Berg & McClaugherty, 2008). 

While in the studied tropical montane rainforest the origin and therefore quality of the litter 

material affected the microbial community only early during decomposition; site specific 

conditions, i.e. altitude, became more important at later stages. The microbial biomass data 

therefore indicates that after depletion of easily decomposable litter compounds in the first phase 

of decomposition, the activity of the microbial community slows down or even cease in the second 

phase between 12 and 36 months at the 2000 and 3000 m altitude, due to resource availability 

being at a minimum. Resumption of litter decomposition at these altitudes in the third phase after 

36 months suggests that a novel microbial community able to decompose condensed recalcitrant 

litter compounds including lignin took over. This pattern indicates, considering the results 

presented in Chapter 4, that at higher altitudes the interaction between mycorrhizal fungi and 

saprotrophic microorganisms varies during decomposition, from initial competition for easily 
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decomposable litter compounds to a greater importance of saprotrophic microorganisms able to 

decompose recalcitrant litter compounds at later stages.  

 

Soil microarthropod abundance and diversity 

Similar to previous studies (Illig et al., 2010; Rillig et al., 2013), the results presented in Chapter 3 

and 4 of this thesis demonstrated that changes in biotic and abiotic variations along the altitudinal 

gradient not only influence decomposition rates, but also soil microarthropod abundance and 

diversity. Unexpectedly, however, the pattern in which the abundance of microarthropods varied 

along the altitudinal gradient was not consistent in the studies presented in Chapter 3 and 4. 

Previous studies (Maraun et al., 2008; Illig et al., 2010; Rillig et al., 2013) and the study presented 

in Chapter 3 reported that soil microarthropod abundance and diversity decreased with increasing 

altitude and these changes were attributed to variations in the microbial community and the 

decreasing quality and diversity of belowground plant-derived resources (Maraun et al., 2008; Illig 

et al., 2010; Rillig et al., 2013). In contrast, results presented in Chapter 4 showed microarthropod 

abundance to peak at the intermediate altitude (i.e. 2000 m) and Oribatida diversity not to differ 

between 1000 and 2000 m. As stated above, the sampling in the study presented in Chapter 4 was 

performed during a different season than that in the study presented in Chapter 3 suggesting that 

seasonal variations, such as drought and drought related changes in plant - soil fauna interactions, 

were responsible for the low abundance of microarthropods and low Oribatida diversity at the 

1000 m site. While variations in plant functional traits are known to vary with seasonal changes in 

precipitation and humidity (Ortiz et al., 2006; Bendix et al., 2006), virtually nothing is known on the 

influence of these seasonal changes on the soil fauna community in tropical montane ecosystems.  

In addition to abundance and diversity also the community structure of Oribatida varied strongly 

with altitude, with only few species occurring at each of the three altitudes, rather, most species 

occurred at one altitude only (endemic species). This pattern highlights the strong turnover of 

species with altitude, i.e. high β-diversity. Also, the percentage of sexual Oribatida species and 

individuals increased with increasing altitude consistent with earlier reports (Maraun et al., 2013) 

and fitting the model proposed by Scheu and Drossel (2007) predicting sexual species to be 

favoured by density-dependent factors such as competition for resources. Indeed, as indicated by 

the decrease in density of microarthropods and the decline in resource quality at higher altitude, 

resource competition is likely to increase with altitude at our study sites. 

The results presented in Chapter 3 also demonstrated that the abundance of Oribatida and 

Collembola varied between leaf and root litter. Typically, the density of soil mesofauna declines 

with soil depth (Berg et al., 1998). The abundance of Oribatida fit this pattern, whereas the density 

of Collembola did not show such a uniform response. The lower density of Oribatida in root as 
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compared to leaf litter might be due to the previously discussed lower quality of root as compared 

to leaf litter (Bloomfield et al., 1993; Berg & McClaugherty, 2008); however, it may also be related 

to root litterbags being exposed deeper in the soil whereas leaf litterbags were placed on the soil 

surface. Sminthuridae also showed the expected pattern, reaching higher abundances in leaf litter. 

Their distribution is conform to the fact that they are closely associated with plants and at least in 

part live as herbivores feeding on higher plants, algae and lichens (Chahartaghi et al., 2005). The 

other investigated Collembola groups, Megalothorax, Isotomidae and Entomobryidae, typically 

were more abundant in root litterbags. Potentially, these Collembola taxa preferentially colonize 

deeper soil layers to evade larger predators such as spiders and beetles as they predominantly 

forage in the porous space of leaf litter (Wagner et al., 2003).  

As presented in Chapter 3 the abundance and diversity of the investigated soil animal taxa was 

strongly influenced by the degree to which the litter material was decomposed. As previously 

discussed, decomposition rates and the microbial community composition varied strongly with time 

and although interrelationships between litter decomposition and soil mesofauna have been widely 

studied (Heneghan et al., 1999; Scheu, 2002; Kampichler & Bruckner, 2009; Castanho et al., 2012) 

little is known on long-term changes in density and diversity of mesofauna taxa in decomposing leaf 

litter. In the study presented in Chapter 3 the abundance of both decomposer groups, Oribatida 

and Collembola, as well as Oribatida diversity varied strongly and in similar directions with sampling 

dates, suggesting that processes occurring during litter decomposition influence both taxa in a 

similar way as well as indicating that the availability of resources and niches changes during 

decomposition. Both Collembola and Oribatida interact closely with bacteria and fungi and 

comprise a wide spectrum of species of different trophic levels including primary and secondary 

decomposers and in part also predators (Scheu, 2002; Schneider et al., 2004; Chahartaghi et al., 

2005; Heidemann et al., 2014). In recent years an increasing number of studies in temperate forests 

highlighted the importance of root-derived resources for fuelling soil food webs (Schneider et al., 

2005; Pollierer et al., 2007; Remen et al., 2010; Zieger et al., 2015). The results of this thesis indicate, 

however, that the availability of root and litter derived resources as well as the importance of these 

energy pathways varies with the previously discussed three phases of decomposition. Similar to 

these three phases of decomposition, in the study presented in Chapter 3, the abundance of the 

investigated decomposer groups and of Oribatida diversity also followed a three phase-pattern and 

these changes were closely associated with changes in the speed of litter decomposition and the 

changes in microorganisms presented in Chapter 2. As discussed above, during the early phase of 

decomposition microorganisms presumably efficiently exploited labile litter resources, i.e. easily 

available litter compounds used by root-associated microorganisms including mycorrhiza. 

Surprisingly, in the study presented in Chapter 3 microarthropods were unable to benefit from this 
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microbial community and their abundance did only increase after 12 months of decomposition, 

suggesting that towards the end of the first phase of decomposition more resources were becoming 

available to the soil fauna community. In part this pattern might be explained by the presence of 

plant secondary compounds such as phenols in the litter material which are broken down during 

the first phase of litter decay. Further, as previously discussed, mycorrhizal fungi and saprotrophic 

microorganisms presumably compete for easily available nutrients, and the low abundance of 

microarthropods in the early phase of decomposition might be related to the dominance of 

mycorrhizal fungi which, according to recent evidence, are little consumed by microarthropods 

(Potapov & Tiunov, 2015). The results of the study presented in Chapter 4, however, highlights the 

importance of root-derived resources in fuelling the soil food web in the investigated tropical 

montane rainforest, with exclusion of roots and mycorrhiza not only reducing the amount of 

resources available for Oribatida but also the number of trophic niches in the system. Also, recent 

studies conducted in the temperate region suggest that especially Oribatida species heavily rely on 

root-derived resources (Schneider et al., 2005; Pollierer et al., 2007; Remen et al., 2010; Zieger 

et al., 2015). However, the results presented in Chapter 3 show that the density of soil fauna 

increased after 12 months of litter decomposition, i.e. the end of the first phase (see also Chapter 2) 

and sampling time if the study presented in Chapter 4. Potentially, at this stage mycorrhizal fungi 

no longer dominate the microbial community and microarthropods benefit from the shift towards 

the dominance of saprotrophic microorganisms at the end of the first phase of litter decay. 

However, thereafter, in the second phase of decomposition from 12 to 24 months, soil mesofauna 

abundance of virtually all of the studied mesofauna groups as well as Oribatida species diversity 

declined parallel to changes in microbial community composition, declining microbial biomass and 

litter decomposition slowing down or even coming to halt. Presumably, resource and niche 

availability in litter declined during this decomposition stage with the level of resources available 

being insufficient to sustain microbial and mesofauna populations. As discussed above, at the third 

stage of decomposition when recalcitrant compounds are being attacked by saprotrophic 

microorganisms, such as lignin-degrading fungi, detritivore mesofauna species became more 

abundant. This may be due to either saprotrophic microorganisms themselves serving as food or 

the litter material becoming more palatable due to more intensive enzyme attack (Bardgett, 2005). 

As indicated by earlier studies, increased palatability of litter resources at later stages of decay 

might be due to the breakdown of phenolic litter compounds (Coulis et al., 2009) indicating again 

that the importance of energy pathways varies over the course of decomposition. We therefore 

suggest that at the early stage of decomposition the mesofauna community is fuelled mainly via 

the root pathway, whereas at later stages more resources are gained from decomposing litter 

material and/or associated saprotrophic microorganisms. 
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Conclusions 

Long term decomposition patterns as well as the composition of the microarthropod community in 

tropical montane rainforests are at least for the most part not caused by differences in litter quality, 

but rather by site specific conditions as well as different trophic interactions between plants and 

the belowground community. Results of the present thesis suggest that the accumulation of dead 

organic material at higher altitudes and the formation of thick F layers in tropical montane 

rainforests is caused by reduced or ceasing decomposition rates in both leaf and root litter in a 

second phase of decomposition between 12 and 36 months and slow resumption of litter 

decomposition after this phase. Presumably, the accumulation of leaf and root litter at high 

altitudes and therefore the formation of thick layers of organic material (F-layer) inhibits positive 

interactions between the microbial community in the upper litter layer and the mineral soil and 

these conditions lead to closer trophic linkage between plants and the decomposer community at 

higher altitudes. Decomposition stage was also an important factor driving the microarthropod 

community and variations in their abundance and diversity were closely associated with changes in 

microorganisms. Presumably, in the nutrient limited Andean tropical montane rainforests 

mycorrhizal fungi and saprotrophic microorganisms compete for litter-derived resources with 

mycorrhizal fungi being able to suppress the activity of saprotrophic microorganisms early during 

litter decay. Results of the studies presented in this thesis highlight the importance of root-derived 

resources in fuelling soil food webs, with exclusion of roots and mycorrhiza not only reducing the 

amount of resources available but also the number of trophic niches in the system. Surprisingly, 

microarthropods are unable to benefit from the flourishing of microorganisms at the early stage of 

decomposition, potentially due to the presence of plant secondary compounds such as phenols and 

the suppression of saprotrophic microorganisms by mycorrhizal fungi. At later stages of 

decomposition when recalcitrant compounds are being attacked by saprotrophic microorganisms, 

such as lignin-degrading fungi, microarthropods are becoming more abundant and diverse either 

due to benefiting from feeding on these microorganisms or by indirectly benefiting from the 

conditioning of the litter by microbial enzyme production.  

The studies presented in this thesis advanced the understanding of regulatory forces controlling 

decomposition processes as well as microarthropod abundance and diversity in tropical Andean 

ecosystems and contributed to reconciling the ongoing debate on the relative importance of the 

root and litter energy channel in fuelling soil food webs. They help to disentangling how plant 

derived resources impact the belowground community structure, decomposition processes and the 

capture of nutrients by plants and microarthropods from decomposing litter and root associated 

mycorrhiza over long-term decomposition processes. 
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