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Abstract 

 

Chronic haemodynamic stress in the heart, induced by volume or pressure overload, contributes 

to cardiac dysfunction and heart failure and is associated with several human cardiovascular 

diseases (e.g. valvular heart diseases, arterial hypertension). Volume and pressure overload 

induce distinct cardiac remodelling responses in humans and mouse models, including different 

signalling patterns, but the differences between them are incompletely understood. In order to 

comprehensively study these, murine models of volume overload (aortocaval fistula, Shunt) and 

pressure overload (transverse aortic constriction, TAC and abdominal aortic banding, AAB) were 

studied in this work. The overall aims were (a) to apply advanced non-invasive methods to 

characterize changes in diastolic physiology in the two models; (b) to compare the changes in 

glucose metabolism that occur during these haemodynamic stress conditions; (c) to study during 

chronic cardiac volume overload the role of NADPH oxidase-4 (Nox4), a reactive oxygen species 

(ROS)-generating enzyme recently found to be protective against chronic pressure overload. 

Assessment of diastolic function in mice following chronic volume and pressure overload using 

state-of-the-art echocardiography revealed marked differences between the models with respect 

to left ventricular relaxation and filling. The isovolumic relaxation time (IVRT), left atrial area, 

E/E’ and reverse longitudinal strain rate were found to be consistent and reproducible parameters 

to analyze diastolic properties in these haemodynamically different settings. For interpretation, 

however, the physiological and haemodynamic background needs to be well-understood. 

A novel methodology of in vivo [U-13C] glucose administration followed by isotopomer analysis 

using NMR-spectroscopy, as well as expression profiles of metabolic enzymes, revealed 

fundamental differences in cardiac glucose metabolism following chronic volume or pressure 

overload in mice. Despite very similar increases in left ventricular hypertrophy between TAC and 

Shunt, glycolysis, TCA cycle activity, glutamine synthesis and O-GlcNAcylation of proteins 

were significantly increased only following TAC. These findings together with a nearly 

unchanged glucose metabolism after Shunt suggest a much more pronounced metabolic 

complexity during pressure overload and concentric remodelling than during volume overload. 

Nox4 was found to promote eccentric hypertrophy following two weeks of volume overload, as 

global Nox4-null mice (Nox4-/-) developed significantly less left ventricular hypertrophy and 

dilation compared to WT littermates. This was attributed to a Nox4-dependent activation of Akt 
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and its downstream targets S6 ribosomal protein and eIF4E-BP1, which are known to initiate 

protein synthesis. Despite its role in eccentric remodelling, Nox4 did not seem to alter cardiac 

function at this point. 

This study provides novel data on cardiac physiology and metabolism using advanced 

echocardiographic techniques and a novel in vivo 13C-labelling methodology following volume 

versus pressure overload in mice. It also identifies a novel Nox4-regulated pathway, which 

appears to be important for cardiac adaptation during volume overload. These results might be of 

relevance for future heart failure therapy development. 
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1. General Introduction 

 

1.1 Heart failure 

Heart failure is a very common cardiovascular pathology in an ageing and expanding global 

population. Approximately 37.7 million people globally suffer from heart failure1. Studies from 

the USA and Sweden report a prevalence of more than 2% in industrialized countries2, 3. In the 

USA, more than 550,000 people are diagnosed with heart failure each year and the lifetime risk 

for developing this syndrome is one in five4. By 2030, the prevalence of heart failure in the USA 

is projected to increase by 46% to affect more than 8 million people5. Besides being common, 

heart failure is also a severe pathological condition with five-year mortality rates as high as 59% 

in men and 45% in women respectively6. This prognosis is poorer than for most cancers with 

only lung cancer being worse7. Heart failure mainly affects older people. More than 50% of 

hospitalized patients are 75 years of age or older8. Whereas the prevalence is less than 1% for 

people younger than 40 years, it is more than 10% for those aged 80 years and more9. Thus, in an 

ageing population, heart failure is also an economic challenge. Direct costs for heart failure in the 

USA are meant to increase from 21 billion dollars (2012) to 53 billion dollars in 20305. In 

Germany, 1.3% of direct costs in the healthcare system are attributable to heart failure10. Taken 

together, these data highlight the importance of finding novel therapeutic approaches to target the 

development of heart failure. 

The American College of Cardiology Foundation (ACCF) and American Heart Association 

(AHA) define heart failure as “a complex clinical syndrome that results from any structural or 

functional impairment of ventricular filling or ejection of blood”11. Heart failure due to impaired 

ventricular filling during diastole is often associated with preserved ejection fraction, referred to 

as HFpEF (heart failure with preserved ejection fraction). Chapter 3 particularly focuses on 

HFpEF with respect to echocardiographic assessment of diastolic function. If systolic function is 

impaired and the ejection fraction drops to 40% or less, this is known as HFrEF (heart failure 

with reduced ejection fraction). Both entities present with similar symptoms in patients such as 

dyspnea, fatigue and fluid retention. Prevalence and mortality are also comparable, but treatment 

particularly for HFpEF lacks efficiency12. As the ACCF/AHA definition implies, heart failure is a 

syndrome that can result from a variety of different diseases. The most common cause for heart 

failure is ischemic heart disease, followed by pathologies such as hypertension, valvular heart 
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diseases and cardiomyopathies13. In all these diseases, the heart undergoes structural changes that 

alter cardiac geometry and morphology, as well as functional changes, a process that is 

collectively called “cardiac remodelling”. 

 

1.2 Cardiac remodelling 

Various stimuli, both physiological and pathological, can induce cardiac remodelling. This 

includes changes in heart size and shape, which are related to cardiomyocyte hypertrophy and 

extracellular matrix remodelling. Cardiomyocyte hypertrophy involves the addition of 

sarcomeres either in series or in parallel. If added in series, cardiomyocytes become longer and 

the cavity dimension increases, referred to as eccentric remodelling. Concentric remodelling 

describes increases in cardiomyocyte width with subsequent wall thickening through sarcomere 

addition in parallel. These two types of remodelling are illustrated in Fig. 1.1. 

 

 

Figure 1.1: Schematic illustration of concentric versus eccentric cardiac remodelling. Compared to the 

geometry and shape of a normal heart (left), concentric remodelling results in increased wall thickness. This can be 

associated with mild decreases in left ventricular cavity dimensions (middle). Eccentric remodelling is characterized 

by left ventricular dilation with or without thinning of ventricular walls (right). 

 

 

During physiological remodelling, the heart typically undergoes these morphological changes 

without increased fibrosis, apoptosis or reactivation of the fetal gene program. These changes, 

however, are commonly seen in pathological remodelling and subsequently lead to the 

deterioration of cardiac function and the development of heart failure. The underlying 
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mechanisms why a heart undergoes physiological or pathological remodelling are still poorly 

defined. A study from 2006 showed in a mouse model that the duration of cardiac stress is mainly 

responsible for the amount of hypertrophy, but the nature of the stress determines whether a heart 

remodels physiologically or pathologically14.  

Endurance versus strength exercise reflect the different types of cardiac remodelling under 

physiological conditions. Long-term endurance exercise causes eccentric remodelling as it has 

been shown to cause significant increases in left ventricular cavity dimensions with only 

moderate wall thickening. However, a more pronounced increase in wall thickness without 

increased left ventricular dimension following endurance exercise was reported to be pathological 

and mainly attributed to primary forms of cardiac hypertrophy such as hypertrophic 

cardiomyopathy15. Isometric strength exercise conditions, such as wrestling, induce 

predominantly concentric remodelling, as reflected by increases in left ventricular wall thickness 

rather than dimension16, 17. On a mechanistic level, most of the available data is based on murine 

studies. The insulin-like growth factor-1 (IGF-1) has been linked to physiological growth in the 

heart via activation of the phosphatidylinositol 3-kinase (PI3K)-Akt (protein kinase B/PKB)-

axis18. Although cardiomyocytes retain only a limited ability to proliferate, this was reported to 

significantly contribute to adaptive cardiac growth under physiological stress. Endurance exercise 

decreased cardiac levels of the transcription factor C/EBPβ (CCAAT-enhancer-binding protein 

β), which subsequently led to increased proliferation of cardiomyocytes19. This mechanism was 

also shown to be protective under pathological pressure overload. Pregnancy and endurance 

exercise-induced cardiac remodelling are similar in many aspects, which separate them from 

pathological hypertrophy. Both are rather eccentric than concentric, reversible and show no signs 

of cardiac fibrosis or expression of fetal genes, as mentioned previously. There is typically a good 

match between myocardial capillary density and the extent of hypertrophy during physiological 

remodelling. Whereas endurance exercise causes no impairment in systolic function, some 

studies report deterioration during pregnancy. However, these findings are based on highly load-

dependent parameters (e.g. ejection fraction or fractional shortening), which can be affected by 

increased preload during pregnancy. Mechanistically, both physiological stimuli are associated 

with increased cardiac Akt activation20. 

Under pathological conditions, however, cardiac remodelling has to be seen in a different 

context. In many pathologies, cardiac remodelling is initially believed to be beneficial and 

adaptive. However, as the disease progresses, the initial adaptive response eventually ends up in 
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the development of heart failure. This transition is typically associated with left ventricular 

dilation, myocyte apoptosis, myofibroblast proliferation, interstitial fibrosis and a mismatch 

between capillary density and the extent of hypertrophy. On a molecular level, re-expression of 

fetal genes as well as impaired excitation-contraction coupling, myofilament function, cell 

survival and the cellular metabolic state are hallmarks of pathological remodelling leading to 

heart failure21. Cardiac remodelling after myocardial infarction also involves similar changes. 

The initial removal of necrotic tissue and scar formation are believed to be beneficial and 

adaptive. However, left ventricular dilation and maladaptive hypertrophy progress, systolic and 

diastolic wall stress increase with subsequent deterioration of systolic function and development 

of heart failure. Mechanistically, pathological remodelling is at least partially driven by the 

activation of neurohormonal systems such as the sympathetic nervous system (SNS) and the 

renin angiotensin system (RAS). Activation of the SNS and RAS initially help to maintain 

cardiac output and are therefore an adaptive response. Chronic activation, however, contributes to 

pathological remodelling including necrosis and fibrosis, and is associated with a poor prognosis 

in patients22, 23. From a signalling perspective, catecholamines and angiotensin II (Ang II) are 

known to activate several protein kinases including protein kinase A (PKA), protein kinase C 

(PKC), protein kinase D (PKD) and mitogen-activated protein kinases (MAPK). These kinases 

induce a pro-hypertrophic programme in the heart via regulation of several transcription factors, 

such as myocyte enhance factor-2 (MEF2) or nuclear factor of activated T-cells (NFAT), and 

thereby contribute to long-term maladaptation of the heart24.  

 

1.3 Pressure versus volume haemodynamic load 

Haemodynamic load is an important pathological stressor for most conditions that induce cardiac 

remodelling, and is of particular interest in this thesis. It may be divided into pressure and volume 

overload. Pressure overload involves an increase in afterload, which can be defined as “all of the 

factors that contribute to total myocardial wall stress during systolic ejection”25. Under healthy 

conditions, this may be estimated by the mean aortic blood pressure. Volume overload increases 

mainly preload, which can be defined as “all the factors that contribute to passive ventricular wall 

stress at the end of diastole”25. Both pressure and volume overload increase cardiac work which, 

by the law of Laplace, is directly proportional to ventricular pressure (increased in response to 

increased afterload) and also directly proportional to ventricular volume (increased in response to 

increased volume or preload). Classical pressure overload diseases with increased afterload are 
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aortic stenosis and hypertension, which cause concentric remodelling and hypertrophy. Under 

pathological volume overload, such as in aortic/mitral regurgitation or ventricular septal defects, 

cardiomyocytes are stretched during diastole, which causes eccentric remodelling and 

hypertrophy. According to the law of Laplace, concentric remodelling reduces wall stress as a 

result of the increase in wall thickness. With eccentric remodelling, there is no such decrease in 

wall stress but on the other hand, there is an increase in stroke volume due to the Frank-Starling 

law; i.e. an increased recruitment of preload reserve. These differences were already reported in 

1975 by Grossman et al.26. In patients with aortic stenosis, both left ventricular systolic and 

diastolic wall stress were normalized despite elevated systolic and diastolic pressure levels. This 

was attributed to the increase in wall thickness as the hallmark of concentric remodelling, which 

was believed to be an adaptive response. Patients with volume overload-associated diseases also 

displayed normal systolic wall stress, but increased diastolic wall stress. From a haemodynamic 

point of view, eccentric remodelling following volume overload has been suggested to be 

maladaptive since wall stress is increased. However, based on experience, clinical outcomes 

appear to be better in patients with volume overload-associated heart diseases compared to 

pressure overload. Unfortunately, no human study has investigated this so far, presumably due to 

the difficult comparability of both stresses. Outcomes can also be studied and assessed in a more 

controlled manner using animal models. In a recent murine study that compared models of 

pressure and volume overload, despite a similar induction of left ventricular wall stress, pressure 

overload was associated with a more detrimental phenotype than volume overload27. This 

included increased cardiac fibrosis, cardiac dysfunction and higher mortality following pressure 

overload. Changes induced by chronic volume overload, especially in the early stages, were 

similar to changes during physiological remodelling including preserved systolic function and an 

absence of interstitial fibrosis. These differences between pressure and volume overload were at 

least partially due to different signalling under both stress conditions in the heart, which 

emphasizes the complexity of cardiac remodelling and its implication in cardiovascular diseases. 

The differences in cardiac responses to pressure and volume overload will be addressed 

throughout this thesis and investigated under different aspects in Chapters 3, 4 and 5. 

Heart failure therapy focuses on reversing or at least attenuating pathological remodelling. 

Inhibiting the RAS using angiotensin converting enzyme (ACE)-inhibitors or direct angiotensin 

II receptor-blockers is well-established as being sufficient and effective in heart failure therapy28, 

29. Addition of a mineralocorticoid receptor antagonist, such as spironolactone or eplerenone, to 
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the standard therapy also reduces the risk of morbidity and mortality amongst patients with 

severe heart failure30, 31. A recent study reported the benefits of using a novel angiotensin II 

antagonist named LCZ69632. This drug additionally inhibits neprilysin, which is an 

endopeptidase that mediates RAS overactivation. Using LCZ696 was shown to be superior to the 

ACE-inhibitor enalapril in reducing risks of death and hospitalization in heart failure patients. 

Besides pharmacological treatment, resynchronization therapy using implantable devices also 

belongs to the standard therapy as it improves survival in patients with severe heart failure33. 

Despite the optimal use of such therapies, mortality and morbidity remain high in heart failure. 

Whether therapies might have different effects in pressure versus volume overload has not been 

extensively studied. 

Taken together, a more detailed understanding of cardiac remodelling under different stress 

conditions and the transition to heart failure is needed for developing novel therapeutic options. 

 

1.4 Cardiac metabolism in heart failure 

The heart is the organ with the highest energy demand in the human body. Complete ATP 

turnover approximately occurs every ten seconds since the heart has both a relatively low ATP 

content (5 μmol/gram wet weight) and very high rates of ATP hydrolysis (0.5 μmol x g wet 

weight-1 x s-1). Under normoxic conditions, approximately 95% of the ATP derives from 

oxidative phosphorylation in the mitochondria with the remaining 5% coming mainly from 

glycolysis. Oxidative phosphorylation requires NADH as an electron donor to generate proton 

motive force to drive F1 ATP synthase; this NADH is generated in the tricarboxylic acid (TCA) 

cycle. Approximately two thirds of the energy is needed for contraction, the rest for various ion 

pumps and other cellular processes that require ATP. Besides ATP, phosphocreatine represents 

an additional energy pool in the heart. It serves as an ATP transporter and buffer. In the 

mitochondria, a phosphate group can be transferred from ATP to creatine by the mitochondrial 

creatine kinase. Phosphocreatine can easily diffuse through the mitochondrial membrane due to 

its smaller molecular weight. In the cytosol, ATP can be re-generated through phosphate-transfer 

from phosphocreatine to ADP, catalyzed by the cytosolic creatine kinase34, 35.  

Under healthy conditions, approximately 70-90% of cardiac energy derives from fatty acid 

oxidation, with the remaining 10-30% mainly coming from glucose and lactate oxidation. Fatty 

acids enter the cardiomyocytes and are then esterified to coenzyme A (CoA) to produce fatty 

acyl-CoA. Carnitine palmitoyltransferase 1 (CPT1) converts fatty acyl-CoA to long-chain 
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acylcarnitine, which can enter the mitochondria. In the mitochondria, CPT2 converts long-chain 

acylcarnitine back to fatty acyl-CoA, which then enters β-oxidation to produce acetyl-CoA, 

which enters the TCA cycle. Glucose in the heart comes from either intracellular glycogen stores 

or exogenous glucose uptake via glucose transporters (GLUT). Glucose is phosphorylated to 

glucose-6-phosphate, which can enter glycolysis to produce pyruvate. Pyruvate can then either be 

converted to lactate in the cytosol or oxidized at the mitochondrial membrane to acetyl-CoA to 

enter the TCA cycle. Additionally, glucose-6-phosphate can be utilized in the pentose phosphate 

pathway (PPP) to produce NADPH or the hexosamine biosynthetic pathway (HBP) for the 

production of UDP-N-acetylglucosamine (GlcNAc), an important monosaccharide donor for O-

GlcNAcylation of several proteins34. Acetyl-CoA is a common product from both fatty acid and 

glucose oxidation, which can enter the TCA cycle to produce GTP (or ATP), CO2 and the 

reducing equivalent NADH. In the TCA cycle, intermediate products are permanently removed 

and used for several biosynthetic pathways. Acetyl-CoA-independent production and 

replacement of these intermediates in the TCA cycle is therefore an important mechanism, called 

anaplerosis34. 

In heart failure, cardiac energy metabolism changes significantly. Reduction in cardiac 

phosphocreatine/ATP (PCr/ATP) ratio is a hallmark of impaired energy metabolism and 

correlates with the degree of heart failure. It is also a predictor of both total and cardiovascular 

mortality in patients with dilated cardiomyopathy36. Although some studies show contradictory 

results, it is generally accepted that utilization of fatty acids in the heart decreases during the 

development of heart failure. Using an invasive technique, patients with dilated cardiomyopathy 

displayed a decrease in both fatty acid uptake and oxidation in the heart compared to controls37. 

Additionally, fatty acid uptake was negatively correlated with left ventricular chamber 

enlargement suggesting a decrease in fatty acid utilization during heart failure Another study 

reported similar findings using positron emission tomography (PET) for measurements of 

myocardial fatty acid utilization and oxidation38. Both parameters were significantly reduced in 

patients with idiopathic dilated cardiomyopathy compared with healthy controls. This is in line 

with decreased cardiac mRNA and protein expression levels of fatty acid oxidation enzymes in 

human and animal heart failure samples compared to respective controls39. Data on glucose 

metabolism in heart failure is much more contradictory and diverse. This might partially be 

explained by fundamental differences in terms of metabolic changes between humans and 

rodents, where most of these studies have been carried out. The precise metabolic properties are 
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also dependent on the severity and nature of cardiac stress such as pressure versus volume 

overload. Those two haemodynamic stresses potentially induce very different metabolic profiles 

in the heart. In an animal model of pressure overload, glucose oxidation by pyruvate 

dehydrogenase (PDH) was shown to be unchanged despite increased glycolysis40. This finding 

was in line with increased anaplerotic flux into the TCA cycle, generally suggesting increased 

anaplerosis in pressure overload. It is possible that increased anaplerosis contributes to the 

mismatch between glycolysis and glucose oxidation, which is commonly seen in pressure 

overload. Whether this is specific for pressure overload or also occurs under volume overload is 

currently unknown. In Chapter 4, this is therefore further studied with particular focus on 

pressure versus volume overload-induced changes in cardiac metabolism.  

Modulation of cardiac metabolism has long been a target for novel therapies in heart failure. But 

since the data on the role of cardiac metabolism in heart failure development are controversial 

and contradictory, the same accounts for potential therapies. Reducing fatty acid oxidation using 

the CPT1-inhibitor perhexiline has been shown to improve the phosphocreatine/ATP ratio, 

diastolic function and exercise capacity in symptomatic patients suffering from hypertrophic 

cardiomyopathy41. However, studies in both animals and humans demonstrated the importance of 

cardiac fatty acid utilization in heart failure. Treatment of healthy controls with acipimox, a 

niacin derivate known to reduce lipid levels, reduced free fatty acid serum levels, decreased 

cardiac work and oxidative metabolism with preserved myocardial efficiency42. In patients with 

idiopathic dilated cardiomyopathy, however, acipimox treatment was associated with decreased 

cardiac work, unchanged oxidative metabolism and deterioration of myocardial efficiency. These 

findings suggest the need for fatty acids in the failing heart for optimal function. Using 

dichloroacetate (DCA) to activate PDH through inhibition of pyruvate dehydrogenase kinase 

(PDK) results in inhibition of free fatty acid metabolism, but increases in glucose and lactate 

consumption in the heart. One study reported that short-term treatment of heart failure patients 

with DCA improved cardiac function, another study demonstrated no beneficial effects43, 44.  

Taken together, various changes in metabolism seem to play an important role in cardiac 

remodelling and its transition to heart failure. However, these changes are likely to be different 

depending on the kind of cardiac stress. Thus, the evidently different cardiac responses to 

pressure and volume overload with respect to remodelling might also involve distinctive 

metabolic changes. Assessing, identifying and comparing these under both haemodynamic stress 

conditions will help to get a more detailed understanding of how cardiac remodelling is 
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influenced by metabolism. This knowledge could help to develop new therapeutic strategies, to 

attenuate the progression towards heart failure. This will be further discussed in Chapter 4. 

 

1.5 Reactive oxygen species (ROS) in heart failure 

Reactive oxygen species (ROS), including superoxide anion (O2
-), hydrogen peroxide (H2O2) and 

hydroxyl radicals (OH.) are either by-products from cellular aerobic respiration through 

mitochondrial leakage or generated by certain enzymes. Amongst these enzymes are the xanthine 

oxidase (XO), monoamine oxidase (MAO), uncoupled NO synthases (NOS) and NADPH 

oxidases (Nox). One electron reduction of molecular oxygen (O2) forms O2
-, which typically 

dismutates to the more stable H2O2. O2 can also be used by the NOS to produce nitric oxide 

(NO), a reactive nitrogen species (RNS). Together with O2
-, NO can rapidly form peroxynitrite 

(ONOO-), an additional reactive species. All these different molecules contribute to “redox 

signalling”, a term which describes altered cellular signalling components through oxidation or 

reduction respectively45. One of the most common mechanisms in redox signalling is the direct 

oxidation of cysteine thiols, causing intra- or intermolecular disulfide formation. This can lead to 

changes in conformation, stability and function of affected proteins. An example for this 

mechanism contributing to cellular signalling is the inhibition of protein tyrosine phosphatases 

(PTP). The enzymatic activity of PTPs depends on a cysteine residue, located in the active site of 

the enzyme. ROS-mediated oxidation of this cysteine results in inactivation of the enzyme. This 

causes increases in tyrosine phosphorylation levels, an important regulatory mechanism in 

several cellular processes46.  

Various relevant proteins in cardiac physiology and pathology are known to be regulated through 

redox signalling. Amongst these are calcium/calmodulin-dependent protein kinase II (CaMKII), 

protein kinase A (PKA) and protein kinase G (PKG), all of which are redox-activated, and 

ryanodine receptor 2 (RyR2), sarcoplasmic/endoplasmic reticulum calcium ATPase-2α (SERCA-

2α), GTPases, antioxidant proteins and histone deacetylases, whose function is modulated by 

ROS47. In the past, ROS production has been exclusively linked to pathological processes. An 

important aspect in this context is the amount of ROS being produced. Excessive amounts are 

detrimental through unspecific redox modification of macromolecules while redox signalling 

may also be pathological. However, there is increasing evidence that ROS also exert 

physiological functions in the cardiovascular system. For instance, during tachycardia, ROS 

production in the heart has been shown to modify RyR2 through S-glutathionylation, leading to a 
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faster, beneficial calcium release during increased cardiac activity48. ROS can also play a 

physiological role in blood pressure regulation. Under normal conditions, H2O2 can activate the 

PKG-Iα independently of NO and cGMP, which causes vasodilation. In a transgenic mouse 

model, amino acid substitution created a “redox-dead” PKG-Iα version, which could not be 

activated by H2O2
49. This resulted in hypertension in vivo, indicating a physiological role for 

redox activation of PKG. Low levels of H2O2 have also been shown to increase cardiomyogenesis 

of embryonic stem (ES) cells and induced proliferation of cardiomyocytes derived from ES cells 

and neonatal mice, suggesting a physiological role for ROS in cardiac development50.  

Oxidative stress describes the imbalance of ROS production and antioxidant defense mechanisms 

including enzymes like superoxide-dismutase, catalase, peroxiredoxins and thioredoxin as well as 

glutathione as main redox buffer and vitamins E and C. Oxidative stress causes pathological 

redox signalling and is known to contribute to heart failure development. In patients with 

coronary artery disease, oxidative stress in the heart was positively correlated with left ventricular 

dilation51. Mechanistically, this was associated with increased matrix metalloproteinase (MMP) 

levels, which might have contributed to the progression of left ventricular dilation under 

increased oxidative stress. Both ROS-generating enzymes XO and MAO have been implicated in 

cardiac pathology. Inhibition of XO significantly improved cardiac function of hypertensive rats, 

and mice with a dominant negative MAO-A were protected from pressure overload52, 53. ROS can 

also contribute to impaired calcium handling. In an experimental heart failure model, increased 

Ca2+ leak from the sarcoplasmic reticulum (SR) was attributed to direct oxidation and irreversible 

activation of RyR2 by increased ROS54. The duration of cardiac stress and subsequent ROS 

production seem to be important in altering calcium handling. Acute irradiation of the heart 

increases cardiac ROS levels and initially systolic force with increased calcium transient 

amplitudes55. However, under chronic irradiation, calcium transient amplitudes as well as SR 

calcium load decreased together with a decline in systolic force. This was shown to be due to 

ROS-dependent CaMKII activation and subsequent hyper-phosphorylation of RyR2. ROS 

production can also contribute to cardiac arrhythmias as it has been linked to the development of 

atrial fibrillation in both humans and experimental animal models56, 57. Furthermore, oxidative 

stress can cause cardiomyocyte apoptosis. Chronic stimulation with angiotensin II (Ang II) 

induces apoptosis of cardiomyocytes via ROS-dependent sustained activation of CaMKII58. 

Under chronic β-adrenergic stimulation, increased apoptosis was induced by activation of the 
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mitochondrial death pathway through a ROS/c-Jun NH2 terminal-kinase (JNK)-dependent 

mechanism59.  

Since ROS exert both physiological and pathological functions in the heart, they remain a 

challenging target for potential therapeutic approaches. Two main strategies are under current 

investigation: Reducing ROS or increasing antioxidants. Treatment of hypertensive rats with 

MitoQ, a potent mitochondria-targeted antioxidant, has been shown to attenuate the development 

of hypertension, improves endothelial function and reduces cardiac hypertrophy60. It was also 

shown to improve cardiac function, cell death and mitochondrial damage after ischemia-

reperfusion injury in rats61. This compound is currently being tested in clinical trials. Nox 

inhibition is another current approach in drug therapy development. As there is a specific focus 

on Nox enzymes throughout this thesis, the next section will give a brief overview about the main 

two Nox isoforms in the heart. 

 

1.6 NADPH oxidases in the heart 

Nox enzymes use NADPH as electron donor to reduce O2 to O2
- and H2O2 respectively. With 

Nox2 (also referred to as gp91phox) being the first one to be discovered, six more Nox family 

members are currently known: Nox1, Nox3, Nox4, Nox5, Dual oxidases 1 (Duox1) and 2 

(Duox2)62. Despite several similarities, these isoforms differ in structure, regulation and 

localization. The membrane-spanning Nox2 protein forms a heterodimer with the small subunit 

p22phox. This heterodimer requires binding of cytosolic subunits p40phox, p47phox, p67phox and Rac 

for stimulation of its catalytic activity. This activation occurs in response to stimuli such as Ang 

II, endothelin-1, growth factors, cytokines, metabolic factors and mechanical forces. Nox1 forms 

a heterodimer with p22phox, and for activation requires binding to Rac1 as well as NOXO1 and 

NOXA1, which are homologues of p47phox and p67phox. Nox3 can function just as a heterodimer 

with p22phox, but its activity is stimulated by binding of p47phox and p67phox. Nox4 is different 

with respect to its regulation. It forms a heterodimer with p22phox, but does not require any 

additional subunits for activation. It is constitutively active and therefore regulated via its 

abundance63. In contrast to other Nox enzymes, Nox4 has also been shown to produce H2O2 

rather than O2
-. This is at least partially attributed to its histidine-rich extracytosolic loop (E-

loop), which accelerates spontaneous dismutation of O2
- to H2O2

64
. Nox5 is the most divergent 

from Nox2. It is found in humans, not rodents, does not require p22phox binding and contains EF-

hand binding calcium motifs. Nox1, Nox2, Nox4 and Nox5 are expressed throughout the 
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cardiovascular systems with different cellular distribution: Nox1 is expressed mainly in vascular 

smooth muscle cells (VSMC); Nox2 in endothelial cells, fibroblasts, cardiomyocytes and 

inflammatory cells; Nox4 in endothelial cells, fibroblasts, cardiomyocytes and VSMCs; Nox5 in 

human endothelial cells, fibroblasts and VSMCs65. Key features with respect to regulation and 

localization of these four Nox-isoforms are summarized in Fig. 1.2. 

 

Figure 1.2: Schematic illustration of NADPH oxidases with respect to their structure, regulation and cellular 

distribution (Adapted from Antioxid Redox Signal 2013; 18(9): 1024-1041). Nox1, Nox2, Nox4 and Nox5 are 

relevant in the cardiovascular system. Nox1, Nox2 and Nox4 form heterodimers with p22phox. Whereas Nox1 

requires activation through binding of Rac1, NOXA1 and NOXO1, Nox2 is activated via Rac, p40phox, p47phox and 

p67phox. Both Nox-isoforms produce O2
- through electron transfer from NADPH to O2. Nox4 does not require 

activation, is constitutively active and produces H2O2 rather than O2
-. Nox5 is only found in humans, does not bind 

p22phox and contains EF-hand binding calcium motifs. Cellular distributions are listed on the top left for each isoform 

scheme. Abbreviations: GTP (guanosine triphosphate), NAPDH (nicotinamide adenine dinucleotide phosphate 

hydrogen), NOXO (NADPH oxidase organizer), NOXA (NADPH oxidase activator), phox (phagocyte oxidase), 

VSMC (vascular smooth muscle cell). 

 

 

As depicted in Fig. 1.2, the two main isoforms in cardiomyocytes are Nox2 and Nox4. Both have 

been implicated in physiological and pathological processes in the heart. Nox2 has recently been 

reported to differentially regulate calcium handling, excitation-contraction coupling and global 

contractile function in response to neurohormonal versus chronic mechanical stress (e.g. Ang II 

and chronic pressure overload). Zhang et al. demonstrated short-term increases in systolic 
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function under Ang II stimulation in cardiomyocyte-specific Nox2 overexpressing mice 

compared to WT littermates66. Under chronic pressure overload, however, systolic function was 

reduced through Nox2 overexpression, depicting different roles for ROS in cardiac 

pathophysiology under acute and chronic stress respectively. In addition, many studies report 

Nox2-dependent detrimental changes in cardiac remodelling under various pathological stimuli. 

After Ang II stimulation, Nox2-null mice were protected from increased fibrosis and systolic 

dysfunction compared to WT littermates despite similar increases in blood pressure and left 

ventricular hypertrophy 67, 68. However, without affecting blood pressure using sub-pressor doses 

of Ang II, Nox2-null mice were also protected from hypertrophy compared to WT littermates69. 

Thus, Nox2 seems to contribute to cardiac hypertrophy exclusively under agonist but not 

mechanical stimulation, considering that an increased blood pressure induces mechanical stress. 

Nox2 is also implicated in maladaptive cardiac remodelling after myocardial infarction (MI). 

Animal studies in mice demonstrate a detrimental role for Nox2 in post-MI remodelling, as Nox2 

-null mice are protected from left ventricular dilation, hypertrophy, dysfunction and fibrosis 

compared to WT littermates70. A potential involvement of Nox2 in post-MI remodelling was also 

reported in humans as heart tissue from patients with acute myocardial infarction showed 

increased Nox2 levels in cardiomyocytes71. Despite a few studies showing increased contractility 

through Nox2, the majority of studies demonstrate a rather detrimental role for Nox2 in the heart 

under different stress conditions. This does not apply to Nox4. Many studies report beneficial and 

protective roles for Nox4 in the heart. As previously mentioned, low levels of H2O2 increase 

cardiomyogenesis. This finding is supported by the observation that Nox4 overexpressing 

cardiomyocytes show an increased cell cycling capacity compared to WT littermates in vivo72. 

This was due to Nox4-mediated increases in H2O2 production. In a mouse model of chronic 

pressure overload, cardiomyocyte-derived Nox4 has also been shown to protect from maladaptive 

remodelling and systolic dysfunction through increased angiogenesis via HIF-1α (hypoxia-

inducible factor 1α) stabilization73. This finding is in line with a human study by Moreno et al., 

which reported decreased levels of Nox4 in cardiac tissue from patients with aortic stenosis 

(AS)74. In these patients, Nox4 levels correlated with capillary density and inversely correlated 

with apoptosis in the heart. In addition, Nox4 levels showed a positive correlation with systolic 

function in AS patients. Therefore, the decrease in Nox4 levels seen in AS patients might be 

contributing to maladaptive cardiac remodelling and deterioration of cardiac function suggesting 

a protective role for endogenous Nox4 in the heart. These studies focus on pressure overload-
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induced cardiac remodelling, whereas the potential role for Nox4 in eccentric remodelling 

following volume overload is unknown. This is extensively studied in Chapter 5 of this thesis. 

Taken together, the differences between Nox2 and Nox4 with respect to their physiological and 

pathological roles in cardiac remodelling once again highlight the complexity of redox signalling 

in the heart. 
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1.7 Aims 

Haemodynamic stress, including pressure and volume overload, is evident in several 

cardiovascular diseases such as valvular heart diseases, ventricular septal defects and 

hypertension. Whereas pressure overload leads to rapid deterioration of systolic function, 

maladaptive cardiac remodelling and increased mortality in rodent models, volume overload can 

be compensated for a long period of time with an initial phenotype similar to physiological 

remodelling. As the underlying mechanisms for this beneficial cardiac adaptation in response to 

chronic volume overload are currently unknown, the aims of this thesis were: (i) to develop and 

validate state-of-the-art echocardiographic parameters to characterize systolic and diastolic 

function in a murine model of volume overload (aortocaval fistula model) as compared to other 

forms of haemodynamic stress (e.g. pressure overload induced by abdominal aortic banding); (ii) 

to use this model to investigate changes in cardiac glucose metabolism in volume versus pressure 

overload with a novel in vivo 13C-labelling methodology; (iii) to study the role of Nox4 in the 

development of eccentric remodelling during volume overload in mice.  

This work aimed to provide new physiological, metabolic and mechanistic insights into changes 

occurring in the heart, particularly in response to volume overload, which may be more generally 

important in understanding cardiac remodelling and developing new therapeutic approaches.  
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2. Material and Methods 

 

2.1 Gene-modified mice 

Mice were kept in a temperature and humidity controlled animal facility (“Biological services 

unit” at Denmark Hill Campus, King´s College London) with 12-hour light/dark cycles and free 

access to food and water. Studies were conducted in accordance with the UK Home Office 

Guidance on the Operation of the Animals (Scientific Procedures) Act, 1986.  

Global Nox4-null mice (Nox4-/-) were generated by targeted deletion of the translation initiation 

site, exon 1 and exon 2 of the Nox4-gene as described previously73. Mice were backcrossed >10 

generations into a C57Bl/6 background before heterozygous mice were paired to produce Nox4-/--

mice and wildtype (WT) littermates. Nox4-/--mice were born in the expected Mendelian ratio and 

showed no basal phenotype with respect to cardiac size and function. Successful deletion was 

confirmed by the absence of Nox4-protein in heart lysates together with a small reduction in 

H2O2 levels compared to WT littermates. Protein levels of Nox2 and p22phox in the heart 

remained unchanged73. For generation of cardiomyocyte-specific Nox4 overexpressing mice 

(Nox4tg), full length mouse Nox4-cDNA was cloned downstream of the α-myosin heavy chain 

promotor, as previously described73. This construct was introduced into the mouse genome. After 

backcrossing for more than 10 generations into a C57Bl/6 background, heterozygous transgenic 

male mice were paired with WT females. Nox4tg-mice displayed increases of approximately 8 

fold in Nox4 protein and 1.5 fold in H2O2 production in the heart compared to WT littermates. 

Cardiac protein levels of p22phox, which forms a heterodimer with Nox4, was also 2.5 fold 

increased. Levels of Nox2 and O2
- production were unaffected. Cardiac mass was slightly 

increased in aged Nox4tg-mice without any cardiac dysfunction, fibrosis and apoptosis 

suggesting no detrimental consequences through Nox4 overexpression73. 

For pure WT experiments, female and male C57Bl/6 mice were purchased from Harlan 

Laboratories (UK).  

 

2.2 Genotyping 

For genotyping of the Nox4-/-- and Nox4tg-mouse lines, DNA was isolated as follows: murine ear 

punches were incubated with 300 μl NaOH (50 mM) at 95°C for 30 minutes. Samples were 

vortexed before 30 μl of Tris-HCl (1 M, pH 8.0) were added, mixed, and stored at room 
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temperature for another 30 minutes. Small volumes (2 µl) of this solution could directly be used 

for polymerase chain reactions (PCR), which also included REDTaq® ReadyMix™ PCR 

Reaction Mix (Sigma-Aldrich), water and specific primers. PCR products were visualized by UV 

detection using agarose gel electrophoresis (1.5% agarose w/v and 0.005% ethidium bromide v/v 

in Tris-acetate-EDTA buffer (TAE)).  

In the Nox4-/--line, primers were designed to identify WT, heterozygous and knockout (KO) 

animals depending on the sizes of different PCR products detected. In the Nox4tg-line, specific 

primers were used to amplify the transgene with GAPDH as internal control. The exact primer 

sequences and conditions can be found in Tables 2.1 and 2.2.  

 

 
 

Table 2.1: Genotyping protocol for the global Nox4-null mouse line (Nox4-/-).   
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Table 2.2: Genotyping protocol for the cardiomyocyte-specific Nox4 overexpressing mouse line (Nox4tg). 

 

 

2.3 Murine volume overload model 

The aortocaval fistula (Shunt) is an established model to induce volume overload in mice75. Mice 

aged 7-11 weeks were anesthetized using 1.5% isoflurane insufflation. Finadyne s.c. (100 µg 

diluted in 100 µl sterile saline per mouse; MSD Animal Health, Milton Keynes, UK) and 

Vetergesic i.m. (0.1 mg/kg; Alstoe Animal Health, York, UK) were injected for post-surgical 

pain relief. For Shunt operation, a longitudinal abdominal incision was made, the intestine put 

aside and the aorta as well as the inferior vena cava (IVC) were dissected free from any 

surrounding tissue. The aorta was clamped just above the renal arteries and punctured with a 23-

gauge needle in an infrarenal position, followed by penetration of the needle into the IVC. Since 

aorta and IVC share the same middle wall, an aortocaval fistula was created. After removing the 

needle, the external hole in the aorta was closed using cyanoacrylate glue (Krazy glue, Elmer’s 

Products, USA). Depending on the oxygen status of the animal, in most cases mixing of 

oxygenated blood from the abdominal aorta into the IVC could be observed. The abdomen was 

then closed and the mice were kept on a heating plate until full recovery from anesthesia. Sham 
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animals underwent the same procedure except for the puncture of the vessels. A schematic 

illustration of this surgery can be found in Fig. 2.1. 

 

 

Figure 2.1: Schematic illustration of the aortocaval fistula (Shunt) surgery. A fistula between the aorta and the 

inferior vena cava (IVC) is created in an infrarenal position to allow blood flow directly from the arterial into the 

venous system and thereby increasing cardiac volume load. The arrows indicate blood flow, the colour change in the 

upper IVC is due to mixing of oxygenated, red and deoxygenated, blue blood through the fistula. 

 

 

2.4 Murine pressure overload models 

Transverse aortic constriction (TAC) and abdominal aortic banding (AAB) are two commonly 

used models to induce pressure overload in mice, as described previously76, 77. TAC, as a model 

for aortic stenosis, causes a more severe phenotype due to aortic constriction near the left 

ventricle. AAB is more moderate and reflects the disease of peripheral hypertension. Both 

methods were performed in a minimally invasive approach and post-surgical pain relief was 

performed as described for the aortocaval fistula method in the previous section.  

For TAC, surgeries were done under 1.5% isoflurane insufflation. A vertical skin incision in mice 

aged 8-12 weeks was made at the level of the suprasternal notch, followed by dissection of 

muscle surrounding the trachea. The suprasternal notch was cut 4-5 mm into the top edge so that 

the aortic arch could be displayed. A 6/0-tie was passed underneath the aortic arch and then 

ligated around a 27-gauge needle. Afterwards, the needle was removed to allow a comparable 

severity of constriction. A successful surgery was visualized by enlargement of a pulsatile right 

carotid artery before the skin was closed. Sham animals underwent the same procedure except for 

banding of the aorta. This surgery was performed by Dr. Greta Sawyer (Cardiovascular Division, 

King´s College London) and is schematically presented in Fig. 2.2. 
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Figure 2.2: Scheme of the transverse aortic constriction (TAC) surgery. Two arrows facing each other show the 

location of the constriction between the brachiocephalic and left carotid artery near the left ventricle (L represent the 

left, R the right ventricle). The dotted arrow shows the direction of the blood flow in the aorta. 

 

 

For AAB, anesthesia in mice weighing 16-18 g was conducted by intraperitoneal injection of 

ketamine (75 mg/kg) plus medetomidine HCl (1 mg/kg) to allow easier positioning of the 

animals. An incision was made below the rib cage with dissection between the coeliac and 

superior mesenteric arteries. An 8/0-suture was positioned around the abdominal aorta and tied 

against a 28-gauge needle to achieve comparable constriction. Sham surgery was performed 

similarly without the placement of the suture. To reverse the anesthetic effect, atipamezole HCl 

(5 mg/kg) was administered intraperitoneally post surgery for quick recovery. Afterwards, mice 

were kept in a heated chamber for three hours. This surgery was performed by Dr. Helena Zhang 

(Cardiovascular Division, King´s College London). 

 

2.5 Infusion of 13C-labelled glucose in mice, sample preparation and 13C-NMR-

spectroscopy 

After a six hour fasting period, mice were anesthetized under 1.5% isoflurane insufflation before 

an intraperitoneal bolus of 0.4 mg/g body weight [U-13C] glucose (Sigma-Aldrich) was injected. 

[U-13C] is a widely used tracer for flux analysis in which all six carbons are 13C-labelled. The 

bolus injection was followed by continuous intravenous administration of [U-13C] glucose with 

0.012 mg/g body weight/min at 150 µL/hr for 30 minutes as this was the optimal time point for 

maximum glucose enrichment in the heart. Afterwards, the heart was rapidly snap-frozen by 

freeze-clamping to stop any enzymatic reactions.  
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Heart tissue was minced and homogenized in an extraction buffer containing 1:1:1 ratios of 

methanol, chloroform and water. 1.7 mL buffer were added per 0.2 g of tissue sample and 

homogenized using a Precellys homogenizer at 5000 rpm twice for 20 seconds each. The extract 

was then vortexed for 15 minutes before centrifugation at 1500 rpm at 40C for 30 minutes. The 

supernatant was collected, dried and finally reconstituted in 170 µL of 100% deuterium oxide 

containing 0.5 mM of DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid; Sigma Aldrich), 100 mM 

sodium phosphate (pH 7.0) and 6 mM imidazole (Sigma Aldrich). 

The following NMR (nuclear magnetic resonance) experiments were performed with a Bruker 

Avance 700 MHz spectrometer. This method is based on the principle that all nuclei have nuclear 

spin with certain directions. These directions are associated with different energy states. The 

energy of a distinct frequency required to induce changes in spin direction is called resonance 

frequency and depends on the type of nuclei (for example 1H or 13C). In a biological sample, this 

resonance frequency changes depending on which compound the nuclei are part of. This change, 

when compared to a reference compound, is termed chemical shift and is measured in parts per 

million (ppm). Thus, components of a biological sample can be identified according to their 

characteristic chemical shifts. The amount of these compounds present in the sample can be 

estimated by the peak intensity of the energy absorbed (area of NMR signal). In this study, 13C-

isotopomer information was extracted from the highly sensitive HSQC (Heteronuclear Single 

Quantum Coherence) spectrum. This is a two dimensional spectrum for 13C and attached 1H 

giving one intensity peak per pair of coupled nuclei. Tracing of [U-13C] glucose flux using this 

method was ideal for assessing cardiac glucose metabolism in pressure versus volume overload. 

The following readouts were used for different pathways involving glucose (Chapter 4): [1,2,3-

13C] lactate for glycolysis, [2,3-13C] glutamate for anaplerosis, [4,5-13C] glutamate for PDH 

activity as suggestive marker for mitochondrial oxidative metabolism and [4,5-13C] glutamine for 

glutamine synthesis. This method was performed by Dr. Mei Chong (Cardiovascular Division, 

King´s College London). 

 

2.6 Organ harvesting 

For organ harvesting, anesthesia in mice was induced in a chamber containing 5% isoflurane and 

maintained with 2% isoflurane insufflation. The ribcage was opened to expose the beating heart, 

followed by intracardiac injection of 200 μL 5% potassium chloride (KCl) to arrest the heart in 

diastole. Firstly, the two atria were removed, washed in ice-cold phosphate-buffered saline 
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(PBS), dried and weighed using a fine balance (Sartorius, Germany). The remaining heart was 

then excised at the level of the great vessels, followed by separation of the right and left ventricle. 

Both ventricles were washed in PBS, dried and weighed. The left ventricle was subsequently cut 

into three pieces: the apical piece was used for RNA isolation, the middle section for histology 

and the base for protein isolation and glutathione measurements. The apex and basal parts were 

frozen in liquid nitrogen and kept at -80°C, the middle part was stored in 4% paraformaldehyde 

(PFA) for two to four hours at room temperature. After fixing in PFA, each sample was washed 

in PBS and stored at 4°C in 70% ethanol until ready for paraffin embedding.  

Lung, liver and kidneys were also removed, washed in PBS and dried before weighing. The tibial 

length was used as parameter to normalize organ weights. Both tibias were isolated by separating 

the distal leg at the tibiofemoral and tibiotalar joints. Surrounding mucle, ligaments and cartilage 

were removed and the length was measured using a millimetre scale calliper (accurate to 0.1 

mm).  

 

2.7 Assessment of kidney function in mice 

Murine kidney function in vivo was assessed by acute diuretic stress tests. Mice were injected 

intraperitoneally with 20 mL/kg bodyweight of 0.9% saline w/v (Aqupharm). They were 

subsequently placed into a clean, individual metabolic chamber (Tecniplast 3600M021) without 

access to food or water. The urine produced by each animal was collected for four hours before 

its total volume was measured. This was compared to the volume of saline injected and a ratio of 

volume intake versus urine volume produced was calculated. 

In addition, levels of urea were measured in murine blood plasma samples. This was conducted 

using the QuantiChrom™ Urea Assay (BioAssay Systems), which utilizes a chromogenic reagent 

to form complexes specifically with urea. The intensity of the colour measured at 520 nm was 

directly proportional to the urea concentration in the sample. Briefly, blood from anesthetized 

mice was withdrawn via cardiac puncture and immediately stored on ice in tubes containing 

heparin to prevent clotting. Blood samples were centrifuged at 4°C with 3000 rpm for ten 

minutes to separate the plasma fraction. Light intensity at 520 nm was measured in blood plasma 

samples after incubation with the chromogenic reagent. Conducting additional measurements 

with water and a known urea standard (50 mg/dL) allowed quantification of estimated urea 

concentrations in the plasma samples. 
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2.8 Echocardiography 

Anesthesia in mice was induced in an induction chamber under 5% isoflurane and 2 L/min O2 for 

60 seconds, and maintained with 1.5% isoflurane insufflation. Heart rate and respiratory rate 

were kept consistent between experimental groups (400-510 bpm, 120-180 RR) using limb 

electrodes. The body temperature was monitored using a rectal probe and maintained at 37°C. 

Transthoracic echocardiography was performed using a Vevo 2100 Imaging System with a 40 

MHz linear probe (Visualsonics, Canada). Standard parameters such as left ventricular dimension 

(left ventricular end-diastolic/end-systolic diameters and volumes), hypertrophy (septum and 

posterior wall thickness) and systolic function (ejection fraction, fractional shortening, stroke 

volume) were assessed using anatomical M-Mode in long- and short-axis views. The relative wall 

thickness as a marker for concentric versus eccentric remodelling was calculated as follows: 

(Septum thickness + posterior wall thickness) / left ventricular end-diastolic diameter. An 

increase in relative wall thickness indicates concentric, and a decrease eccentric remodelling. 

Advanced echocardiographic assessment of cardiac function and physiology, as presented in 

Chapter 3, was performed using the following techniques: 

Transmitral Doppler profiles were acquired using a pulsed wave Doppler in the apical 4-chamber 

view. The sample volume was placed close to the tip of the mitral leaflets in the mitral orifice 

parallel to the blood flow in order to record maximal transmitral flow velocities78.  

Tissue Doppler imaging in the apical 4-chamber view was performed placing the pulsed wave 

Doppler close to the anterior mitral annulus to record the velocity of changes of myocardial 

structures.  

Apical 4-chamber view was used to measure the area of the left atrium. This measurement was 

consistently performed after closure of the mitral valve in early systole. 

Speckle tracking echocardiography was performed as described recently by our group79. Using 

the Vevo2100 Imaging Software 1.5.0, a number of tracking points were placed on the 

endocardial and epicardial border in parasternal long-axis views. Subsequent frame by frame 

tracking throughout the cardiac cycle allowed automatic calculation of ejection fraction (EF) as 

well as strain and strain rates. The software automatically divided the left ventricle into six 

segments and both radial and longitudinal strain and strain rate values were measured separately 

for each segment. The strain data presented in this study are the averages from these six different 

values per heart. Using the “reverse peak” option (Fig. 2.3A) during imaging analysis, the peak 
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longitudinal strain rate during early filling could automatically be determined (Fig. 2.3B) for all 

segments. This was an additional parameter to specifically assess diastolic properties in hearts 

following pressure and volume overload (Chapter 3). 

 

 

Figure 2.3: Technical and physiological aspects of assessing the reverse longitudinal strain rate in murine 

echocardiography. The Vevo2100 1.5.0 Image Software (Visualsonics, Canada) allows to automatically measure 

reverse strains and strain rates by ticking the “reverse peak” box, which is exemplarily depicted in A. B shows a 

typical longitudinal strain rate profile of a WT mouse heart at baseline using speckle tracking analysis. Different 

colours represent different left ventricular segments. Both the longitudinal strain rate and the reverse longitudinal 

rate peaks are emphasized. The reverse longitudinal strain rate peak correlates time-wise with the early filling phase 

of the ventricle, which is visualized in the respective M-Mode image.  

 

 

2.9 RNA isolation, cDNA synthesis and quantitative real-time polymerase 

chain reaction (qRT-PCR) 

Tissue samples were lysed using ceramic beads (Lysing Matrix D from MP Biomedicals) and the 

FastPrep-24 homogenizer (MP Biomedicals). The lysates were further processed using SV total 

RNA Isolation Systems (Promega) according to the manufacturer´s instructions. Total RNA was 

eluted in 50 μl nuclease-free water and the concentration was measured using a NanoDrop 

spectrophotometer (ND-1000, Labtech International). The RNA was stored at -80°C.  
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cDNA was synthesized by reverse transcription (RT) as follows: 1 μg RNA of each sample was 

diluted with nuclease-free water to a total volume of 17.5 μl. 1 μl of an Oligo(dT)18-primer-

solution (1 μg/μl) and 1 μl dNTPs (10 mM) were added to each sample before they were heated 

for 3 minutes at 70°C. Immediately afterwards they were kept on ice. Then 5 μl of a 5X RT 

buffer (Promega) and 0.5 μl M-MLV (Moloney murine leukaemia virus, Promega) reverse 

transcriptase were added to reach a volume of 25 μl. This was incubated at 42°C for 90 minutes. 

Final heating up to 70°C for ten minutes stopped the RT reaction and 75 μl of nuclease-free water 

were added to each sample to reach a final volume of 100 μl. 

Relative gene expression was assessed via qRT-PCR. Thus, transcripts of interests were 

amplified and measured using SYBR green fluorescent dye. Each reaction contained the 

following components: 10 μl of 2X SYBR green master mix (PCR Biosystems), 2 μl of a primer 

mix (9 μM of both forward and reverse primers), 2 μl of template cDNA and 6 μl of nuclease-free 

water to reach a final volume of 20 μl for each reaction. Samples were amplified using a 

StepOnePlus™ Real-Time PCR system (Applied Biosystems). This included initial denaturation 

at 90°C for ten minutes, followed by 40 cycles of: 95°C for 15 seconds and 60°C for 30 seconds. 

Relative mRNA expression was calculated using the ∆∆Ct method with GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase) as denominator. Specific primers used in this study 

were designed using the NCBI primer design tool and can be found in Tables 2.3 and 2.4 

respectively. Quality and specificity of primers was confirmed by detection of one single peak in 

the melt curve after product amplification. 
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Table 2.3: Primer sequences for metabolic enzymes (Chapter 4). 

 

 

 
 

Table 2.4: Primer sets for genes involved in cardiac stress and redox signalling (Chapters 3 and 5). 
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2.10 Protein isolation and Western Blotting 

Using ceramic beads and the Fastprep-24 homogenizer (MP Biomedicals), snap-frozen heart 

tissue samples were lysed and homogenized for protein extraction in a buffer containing 25 mM 

Tris-HCl, 150 mM NaCl, 2 mM EGTA, 5 mM EDTA, 0.5% NP-40 and protease/phosphatase-

inhibitor cocktails (1:100 v/v; Sigma-Aldrich). Specific membrane fractions from these lysates 

could be obtained through additional centrifugation steps: first at 18,000 g for 15 minutes to 

remove mitochondria and nuclei, followed by 100,000 g for 45 minutes in an ultracentrifuge 

(Optima™  

MAX Ultracentrifuge, Beckman Coulter, USA) to get rid of the cytosolic fraction. The remaining 

pellet contained the membrane-enriched fraction. Protein concentrations in all homogenates were 

measured using Bradford reagent80. Briefly, this reagent contains Coomassie Brilliant Blue G-

250, which changes its absorption spectrum maximum from 465 to 595 nm when bound to 

proteins. This change in absorption could be detected spectroscopically and compared to a 

standard curve of known BSA (bovine serum albumin) concentrations. This allowed calculations 

of absolute protein concentration in the lysates. After brief sonication, the appropriate volume of 

5X Laemmli buffer (300 mM Tris-HCl pH 6.8, 10% SDS w/v, 50% Glycerol w/v, 0.05% 

Bromophenol blue w/v, all diluted in water; before use 20% β-Mercaptoethanol v/v was added) 

was added to each sample, followed by boiling at 95°C for five minutes. Samples specifically 

used for Nox4-detection were not boiled but instead treated with 1 mM of the reducing agent tris 

(2-carboxyethyl) phosphine hydrochloride (TCEP; Sigma-Aldrich). Between 25 and 40 μg of 

protein sample were loaded into each well of a 7.5-15% SDS-polyacrylamide gel. A 10-180 kDa 

protein ladder (PageRuler Prestained, Thermo Fisher) was added in one of the wells to confirm 

the size of detected protein bands. In the presence of a buffer containing 25 mM Tris HCl, 200 

mM Glycine and 0.1% SDS v/v, electrophoresis was used to separate proteins according to their 

molecular weight. Afterwards, electrophoretic transfer onto nitrocellulose membranes (Hybond 

ECL, GE Healthcare) was performed under 100 Volts for 70 minutes in a methanol-containing 

buffer (25 mM Tris HCl, 200 mM Glycine, 20% Methanol v/v). Membranes were blocked with 

10% milk in Tris-buffered saline and 0.01% Tween v/v (TBST) for two hours at room 

temperature under gentle agitation. This was followed by incubation with the primary antibody 

(diluted in either 5% milk w/v or 5% BSA w/v in TBST) overnight at 4°C. Lists of primary 

antibodies used in this study can be found in Tables 2.5 and 2.6, specific Nox4-antibodies were 

produced by our group81. 
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After incubation with the primary antibody, membranes were washed three times with TBST for 

ten minutes each, followed by incubation with Li-Cor secondary antibodies-conjugated to 

fluorophores (IRDye 680RD and 800RD anti-mouse IgG or anti-rabbit IgG; diluted 1:15000 in 

5% milk w/v in TBST) for one hour at room temperature. After three more TBST washes for ten 

minutes each, images were acquired using the Odyssey® CLx imager (Li-Cor). Image analysis 

and densitometric quantification of specific protein bands were performed with Image Studio 2.1. 

GAPDH was used as loading control for whole heart lysates, caveolin-3 for membrane-enriched 

fractions. 

 

 
 

Table 2.5: Antibodies detecting proteins involved in cardiac metabolism (Chapter 4). 
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Table 2.6: Antibodies detecting proteins involved in cardiac hypertrophy and redox signalling (Chapter 5). 

 

 

2.11 Histology 

Using a microtome (Leica), paraffin-embedded heart tissues were sectioned with a thickness of 6 

μm each and placed on a glass slide. Sections were then dewaxed by two separate ten minute 

incubations in xylene, followed by graded rehydration: starting in 100% ethanol, then 96%, 80%, 

70%, 50%, 25%, ending in water (five minutes for each incubation). Depending on the protocols 

for different staining procedures, sections were processed as follows: 

2.11.1 Apoptosis 

Apoptosis was assessed by indirect TUNEL (TdT-mediated dUTP-biotin nick end labeling)-

staining with the ApopTag® Red In Situ Apoptosis Detection Kit (Merck Millipore S7165) 

according to the manufacturer´s instructions. Briefly, terminal deoxynucleotidyl transferase 

(TdT) catalyzes the addition of labelled and unlabelled nucleotide triphosphates to 3´OH-DNA 

termini of apoptotic cells. These nucleotides form an oligomer with digoxigenin. Utilizing an 

anti-digoxigenin antibody with a rhodamine fluorochrome, apoptotic cells could be detected 

using the Olympus IX-81 microscope. 4´,6-Diamidino-2-phenylindole (DAPI; 0.5 μg/ml) was 

used to stain all nuclei. Image analysis included quantification of apoptotic versus total cells and 

was performed with the Fiji software (ImageJ). 
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2.11.2 Fibrosis 

Sections were immersed in 0.2% phosphomolybdic acid w/v (diluted in water; Sigma-Aldrich), 

for two minutes. Then, they were washed in water three times and immersed in 0.1% Picrosirius 

red solution w/v (diluted in saturated picric acid; Sigma-Aldrich) for two hours. Slides were 

removed and washed in two changes of acidified water (0.5% acetic acid v/v) for two minutes, 

followed by graded dehydration in increasing ethanol concentrations (starting from 25%, 50%, 

75% and then 100%, incubation for one minute each). Sections were immersed in xylene for one 

minute before finally mounting the slides with DPX mounting medium and placement of the 

coverslip. Images were acquired using the Olympus IX-81 microscope. The proportion of fibrosis 

was calculated by the area of red staining relative to the total area of the heart tissue slice using 

Volocity software (Perkin Elmer). 

2.11.3 Cardiomyocyte area and capillary density 

Staining for cardiomyocyte area with WGA (wheat germ agglutinin)-rhodamine and capillary 

density using Isolectin B4 could be conducted in parallel on the same sections. Slides were 

immersed in 1% of a Tris-based antigen unmasking solution v/v (diluted in water; Vectorlabs) 

under steaming conditions for ten minutes, followed by incubation with the steamer switched off 

and finally with the steamer-lid taken off for ten minutes each. Slides were washed with PBS 

three times for five minutes each before blocking nonspecific protein binding with 10% goat 

serum v/v (diluted in PBS; Vectorlabs) for one hour in a humidified chamber at room 

temperature. Excess goat serum was removed and Isolectin B4 (1:150 v/v diluted in 10% goat 

serum; Vectorlabs) was added onto the sections and left overnight in a humidified chamber at 

4°C. On the following day, slides were washed with PBS three times for five minutes each. This 

was followed by simultaneous incubation with 1% avidin-FITC v/v (Vectorlabs) and 2% WGA-

rhodamine v/v (Vectorlabs), diluted together in 10% goat serum, for two hours in a humidified 

chamber at room temperature. Finally, sections were washed with PBS and mounted with mowiol 

before placement of a coverslip. Images were acquired with the Olympus IX-81 microscope, 

image analysis was performed with Fiji (ImageJ). 

 

2.12 Glutathione measurements 

Glutathione is one of the main intracellular redox buffers. The ratio of reduced versus oxidized 

glutathione gives an indication of the general redox status in biological samples. In this study, 

measurements were performed using the GSH-Glo™ Assay kit according to the manufacturer´s 
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protocol (Promega). In the presence of reduced glutathione (GSH), glutathione S-transferase 

(GST) catalyzed the conversion of a luciferin-derivate to luciferin, which could be detected 

through a coupled reaction generating luminescence. The amount of GSH was proportional to the 

luminescence intensity. Briefly, snap-frozen heart tissue was homogenized in phosphate-buffered 

saline containing 2 mM EDTA to reach a concentration of 20 mg tissue/ml buffer. Levels of GSH 

could be measured directly in the lysate as previously described, total glutathione (GSH+GS-SG) 

was assessed after pre-incubation of the lysates with the reducing agent TCEP (Sigma-Aldrich) in 

a concentration of 1 mM before continuing with the assay. Oxidized glutathione levels (GS-SG) 

as well as the ratio between reduced versus oxidized glutathione (GSH/GS-SG) were calculated 

afterwards. 

 

2.13 Statistical analysis 

Statistical analyses (including graphical presentations) were performed using GraphPad Prism 

version 6. Data are shown as the mean ± SEM. Differences in means were compared by either an 

unpaired Student’s t-test (Chapters 3 and 4) or two-way ANOVA followed by Bonferroni post-

hoc test for multiple comparisons (Chapter 5). Correlations were assessed using linear regression 

and coefficients of determination (r2). Differences between groups were considered significant if 

the p-value was <0.05. 
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3. Results I: Non-invasive assessment of cardiac physiology in 

murine models of volume and pressure overload 

 

3.1 Introduction 

Pressure and volume overload are common cardiac stressors in various cardiovascular diseases. 

Amongst these are valvular heart diseases with a reported prevalence of 2.5% in the US 

population, according to a study from 200682. In order to better understand the molecular 

pathogenesis and pathophysiology of these diseases, studying mice has become an invaluable 

tool in cardiovascular research due to their homogeneity and easy maintenance. Additionally, 

their genome can be altered easily and multiple procedures have been established to model 

human diseases. The transverse aortic constriction (TAC) model is used to mimic severe pressure 

overload in the heart, as seen in aortic stenosis. Abdominal aortic banding (AAB) causes a more 

moderate increase in pressure overload and is therefore used to model chronic arterial 

hypertension. Despite its clinical relevance, studies focusing on volume overload models, 

especially in mice, can hardly be found throughout the literature. A disease typically associated 

with volume overload is aortic regurgitation, which is caused by incomplete closure of the aortic 

valve during diastole. More than 2% of people aged 70 years or older suffer from at least 

moderate or even severe aortic regurgitation. The prognosis of patients with aortic regurgitation, 

who are symptomatic during mild activity (NYHA III) or at rest (NYHA IV), is poor with a five-

year survival of only 28%83. The aortocaval fistula (Shunt) is an established model to induce 

volume overload in mice, which has been first described 15 years ago75. This model was used in 

this study to characterize and assess changes in cardiac physiology during volume overload. 

Diastolic heart failure, often referred to as heart failure with preserved ejection fraction (HFpEF), 

is associated with left ventricular diastolic dysfunction due to an impaired relaxation as well as an 

increase in myocardial stiffness84. This can subsequently lead to an increase in left ventricular 

filling pressure, left atrial pressure and pulmonary capillary pressure causing acute pulmonary 

edema85. Diastolic dysfunction and its role in the development of heart failure has gained 

increasingly more attention over the past years. In the last two decades, the prevalence for 

diastolic heart failure has increased from 38% to 54% of all heart failure cases with outcomes 

similar to those of systolic heart failure86-89. Echocardiography remains a very important, non-

invasive tool for the assessment of diastolic function in humans. The usage of techniques such as 
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transmitral Doppler to assess the relaxation and early filling phase of the left ventricle (e.g. 

isovolumic relaxation time (IVRT), E/A (ratio of early versus late diastolic transmitral flow 

velocity), E-wave deceleration time (DT)), tissue Doppler (e.g. E/E’, which is the ratio of early 

diastolic transmitral flow versus early diastolic mitral annular velocity) and apical 4-chamber 

view (e.g. left atrial volume) to evaluate left ventricular filling pressures are all part of a general 

algorithm to diagnose diastolic heart failure in humans, proposed by the European Society of 

Cardiology89. If active relaxation is impaired, the E/A ratio decreases due to a shift from early 

filling to atrial contribution for ventricular filling, whereas the IVRT and DT increase. At this 

point, left ventricular filling pressure is normal. When diastolic dysfunction progresses, the left 

atrial pressure (and left atrial size) increases and disguises the impaired relaxation, therefore 

leading to pseudo-normalization of these parameters. If diastolic function further deteriorates due 

to increased left ventricular stiffness, it reaches the so called restrictive pattern. In this case, early 

filling terminates abruptly due to elevated left ventricular diastolic pressures, which causes a 

marked decrease in IVRT and DT, as well as an increase in the E/A ratio. The E/E’ as marker for 

left ventricular filling pressure increases as diastolic dysfunction progresses90-92.  

Whereas many studies in cardiovascular research focus on the systolic function in mice using 

standard long- and short-axis views, the diastolic part is often neglected. One of the reasons is the 

technically challenging assessment of diastolic properties due to high heart rates and small organ 

sizes in mice. One aim of the work in this Chapter was to define the most useful parameters to 

assess diastolic function in mice using non-invasive echocardiography. Thus, commonly 

recommended techniques in human echocardiography to evaluate the diastolic function were 

performed in a range of different mouse models that induce chronic, haemodynamic stress (e.g. 

pressure overload using AAB and TAC, volume overload using Shunt). Myocardial strain, a 

normalized measure of deformation to assess regional myocardial wall motion93, was evaluated 

during systole and diastole in those different mouse models using speckle tracking analysis, as 

this technique has been gaining more interest as a sensitive parameter in both humans and mice79, 

94-96. Besides evaluating different echocardiographic parameters in terms of their significance in 

mice, it was also aimed to get a more detailed understanding of diastolic physiology in the heart 

under different haemodynamic stress conditions. 
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3.2 Basic characterization of the aortocaval fistula (Shunt), a model to induce 

volume overload in mice 

Establishing and characterizing the aortocaval fistula model (Shunt) involved basic transthoracic 

echocardiography, organ weight measurements and gene expression analysis of common cardiac 

stress markers in mice after Shunt and their respective Sham control surgery. One and six weeks 

were chosen as end points to assess the progression of Shunt-induced cardiac remodelling, 

function and hypertrophy. 

 

3.2.1 Transthoracic echocardiography 

Using echocardiography, the left ventricular end-diastolic diameter (LVEDD) as parameter for 

eccentric remodelling was found to be significantly increased after one week (4.7 vs 4.0 mm, 

p<0.01), and even more pronounced after six weeks (5.5 vs 4.2 mm, p<0.01) of volume overload 

compared to respective Sham controls (Fig. 3.1A, Table 3.1). The left ventricular end-systolic 

diameter (LVESD) depends on the general size, but also on the contractile function of the left 

ventricle. This parameter was increased significantly after six weeks of volume overload (4.1 vs 

2.9 mm, p<0.01) compared to respective Sham controls, whereas the increase after one week did 

not reach statistical significance (3.1 vs 2.8 mm, p=0.06) (Fig. 3.1B, Table 3.1). The septal wall 

was slightly, but significantly thicker after both one week (0.80 vs 0.72 mm, p<0.05) and six 

weeks (0.76 vs 0.68 mm, p<0.05) of volume overload compared to controls (Fig. 3.1C, Table 

3.1). The relative wall thickness, expressed as wall thicknesses of both the septal and posterior 

wall divided by the LVEDD, is a parameter for concentric versus eccentric remodelling. The 

significant decrease after six weeks (0.26 vs 0.30, p<0.01) of volume overload indicated eccentric 

remodelling, which was not yet evident at one week (0.36 vs 0.37, p=n.s.) compared to respective 

controls (Fig. 3.1D, Table 3.1). 
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Figure 3.1: Echocardiographic assessment of cardiac remodelling in mice following volume overload. Shunt 

and respective Sham surgeries were performed in female WT mice. Transthoracic echocardiography was conducted 

one and six weeks after surgery to assess left ventricular end-diastolic diameter (LVEDD) (A), left ventricular end-

systolic diameter (LVESD) (B), septum thickness (C) and the relative wall thickness (D). n=6-7/group; data are 

presented as mean ± SEM; * p<0.05, ** p<0.01, n.s.: not significant between Shunt and respective Sham controls 

using unpaired Student´s t-test. 

 

 

The heart rate was significantly increased after one week of volume overload (475 vs 406 bpm, 

p<0.01) in mice compared to controls as sign for an acute, hyperdynamic response. After six 

weeks, however, heart rates were similar (445 vs 441 bpm, p=n.s.) between groups (Fig. 3.2A, 

Table 3.1). Ejection fraction (EF) and fractional shortening (FS), used as parameters to assess 

systolic function, showed an increase after one week of volume overload (EF: 61.9 vs 56.5%, 

p=0.08; FS: 33.4 vs 29.4%, p=0.07) compared to controls, indicating initial hypercontractility. 

After six weeks of volume overload, however, these parameters were significantly decreased (EF: 



3. Results I 

57 
 

50.5 vs 57.5%, p<0.01; FS: 26.0% vs 30.0%, p<0.05) suggesting deterioration of systolic 

function under long-term volume stress (Fig. 3.2B,C, Table 3.1). Cardiac stroke volumes were 

significantly higher at both one week (63.6 vs 39.8 µl, p<0.01) and six weeks (74.7 vs 44.9 µl, 

p<0.01) of volume overload compared to Sham controls (Fig. 3.2D, Table 3.1). 

 

 

Figure 3.2: Echocardiographic assessment of cardiac function in mice following volume overload. Shunt and 

respective Sham surgeries were performed in female WT mice. Transthoracic echocardiography was conducted one 

and six weeks after surgery to assess heart rate (A), ejection fraction (B), fractional shortening (C) and stroke volume 

(D). n=6-7/group; data are presented as mean ± SEM; * p<0.05, ** p<0.01, n.s.: not significant between Shunt and 

respective Sham controls using unpaired Student´s t-test. 
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Table 3.1: Echocardiographic parameters following volume overload. Transthoracic echocardiography was 

performed in female WT mice one and six weeks post Shunt and respective Sham controls. HR: heart rate, bpm: 

beats per minute, LVID;d: left ventricular diameter in diastole, LVID;s: left ventricular diameter in systole, LVV;d: 

left ventricular volume in diastole, LVV;s: left ventricular volume in systole, septum: septal wall thickness, post. 

Wall: posterior wall thickness, RWT: relative wall thickness, SV: stroke volume, EF: ejection fraction, FS: fractional 

shortening. Data are presented as mean ± SEM; * p<0.05 and ** p<0.01 between Shunt and respective Sham 

controls using unpaired Student´s t-test. 

 

 

3.2.2 Heart and organ weights 

Cardiac hypertrophy is a common response of the heart to many stressors including volume 

overload. In order to assess the amount of hypertrophy, heart weights following one and six 

weeks of volume overload were measured, normalized to respective tibia lengths and compared 

to Sham controls. Heart weight tibia length ratios increased progressively from 50% higher after 

one week (9.9 vs 6.6 mg/mm, p<0.01) to 64% higher after six weeks (10.8 vs 6.6 mg/mm, 

p<0.01) as compared to respective controls (Fig. 3.3A). To study this in more detail, all four 

cardiac chambers were separated and measured individually. Development of hypertrophy in 
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each chamber showed a similar pattern of progression following volume overload. The left 

ventricular weight versus tibia length ratio increased from 40% after one week (7.2 vs 5.2 

mg/mm, p<0.01) to 53% after six weeks (8.0 vs 5.3 mg/mm, p<0.01) (Fig. 3.3B), the right 

ventricular weight versus tibia length ratio from 82% (1.89 vs 1.04 mg/mm, p<0.01) to 102% 

(1.96 vs 0.97 mg/mm, p<0.01) (Fig. 3.3C) and the combined atrial weight versus tibia length 

ratio from 92% (0.73 vs 0.38 mg/mm, p<0.01) to 117% (0.76 vs 0.35 mg/mm, p<0.01) compared 

to respective Shams (Fig. 3.3D). 

 

 

Figure 3.3: Cardiac hypertrophy following volume overload. Shunt and respective Sham surgeries were 

performed in female WT mice and the hearts harvested after one and six weeks respectively to measure total heart 

weight (A), left ventricular (LV) weight (B), right ventricular (RV) weight (C) and atrial weight (both left and right 

atrium) (D), all normalized to respective tibia lengths. n=6-9/group; data are presented as mean ± SEM; ** p<0.01 

between Shunt and respective Sham controls using unpaired Student´s t-test. 
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Increases in body, lung, liver and kidney weights due to congestion are indicators of cardiac 

pump failure. To assess this, organs were harvested from mice one and six weeks following 

volume overload. Their dry weights were measured and normalized to respective tibia lengths. 

Compared to Sham controls, body weight (25.3 vs 23.3 g, p<0.05) and lung weight versus tibia 

length ratios (9.2 vs 7.9 mg/mm, p<0.05) showed only moderate increases after six weeks with 

unchanged liver weights. One week of volume overload caused no change of body, lung and liver 

weights (Fig. 3.4A-C). The average kidney weight versus tibia length ratio, however, was 

significantly decreased at both one week (6.9 vs 8.3 mg/mm, p<0.05) and six weeks (7.1 vs 7.9 

mg/mm, p<0.05) of volume overload compared to respective controls (Fig. 3.4D). 

 

 

Figure 3.4: Body and organ weights following volume overload. Shunt and respective Sham surgeries were 

performed in female WT mice. The total body weight (A) as well as post mortem lung (B), liver (C) and average 

kidney weights (D) were measured after one or six weeks of volume overload and normalized to respective tibia 

lengths. n=6-9/group; data are presented as mean ± SEM; * p<0.05, ** p<0.01, n.s.: not significant between Shunt 

and respective Sham controls using unpaired Student´s t-test. 
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3.2.3 Kidney function 

In order to assess a functional relevance of this decrease in kidney weight, acute diuretic stress 

tests and plasma urea levels measurements were performed in mice after six weeks of volume 

overload and compared to respective Sham controls. Acute diuretic stress tests in mice were 

performed through intraperitoneal injection of 20 ml/kg saline, followed by urine collection for 

four hours and subsequent volume assessment. Ratios for injected saline versus volume of urine 

produced were calculated and compared to respective controls. Plasma urea levels were measured 

using the QuantiChrom™ Urea Assay (BioAssay Systems). Despite the change in kidney weight, 

both readouts for kidney function following Shunt displayed similar results to Sham controls 

indicating no functional impairment: ratios of injected saline versus collected urine volumes was 

1.09 following Shunt compared to 0.97 in controls (Fig. 3.5A), plasma urea levels were 44.7 

versus 42.4 mg/dL (Fig. 3.5B). Thus, the kidney weight decrease might be attributed to a Shunt-

mediated perfusion deficit rather than impaired function. 

 

 

Figure 3.5: Kidney function following volume overload. Shunt and respective Sham surgeries were performed in 

female WT mice. Kidney function was assessed by acute diuretic stress test (A) and measurements of plasma urea 

(B) in mice six weeks after volume overload and respective controls. n=6/group; data are presented as mean ± SEM; 

n.s.: not significant between Shunt and respective Sham controls using unpaired Student´s t-test. 

 

 

3.2.4 Gene expression 

Using qRT-PCR, cardiac stress markers, such as ANP (Atrial Natriuretic Peptide), BNP (Brain 

Natriuretic Peptide), α-skeletal actin and SERCA-2α (Sarcoplasmic/Endoplasmic Reticulum 

Calcium ATPase-2α), were assessed at gene expression level in the heart following volume 
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overload. Both one and six weeks of volume overload caused significant increases of cardiac 

ANP (one week: 4.2 fold, six weeks: 2.5 fold, both p<0.05), BNP (one week: 2.6 fold, six weeks: 

1.9 fold, both p<0.05) and α-skeletal actin (one week: 4.0 fold, six weeks: 4.9 fold, both p<0.05) 

compared to respective controls (Fig. 3.6A-C). These changes are commonly referred to as 

“reactivation of the fetal gene programme”, a typical hallmark of heart failure and cardiac stress. 

In addition, SERCA-2α-mRNA levels were significantly decreased (one week: 0.59 fold, six 

weeks: 0.64 fold, both p<0.01) compared to respective controls (Fig. 3.6D). 

 

 

Figure 3.6: Gene expression of cardiac stress markers in mice following volume overload. Shunt and respective 

Sham surgeries were performed in female WT mice. Cardiac mRNA levels of ANP (Atrial Natriuretic Peptide) (A), 

BNP (Brain Natriuretic Peptide) (B), α-skeletal actin (C) and SERCA-2α (Sarcoplasmic/Endoplasmic Reticulum 

Calcium ATPase-2α) (D) were measured one and six weeks post surgery. Values are presented as fold change 

compared to respective Sham controls, GAPDH was used for normalization. n=4-7/group; data are presented as 

mean ± SEM; * p<0.05, ** p<0.01 between Shunt and respective Sham controls using unpaired Student´s t-test. 
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3.3 Non-invasive assessment of cardiac function in mice during pressure and 

volume overload in mice using state-of-the-art echocardiography 

Using advanced state-of-the-art echocardiographic techniques, systolic and diastolic function in 

mice were assessed following pressure and volume overload. Pressure overload was induced by 

six weeks of abdominal aortic banding (AAB) and volume overload through one week of Shunt. 

These two time points were chosen in order to specifically assess cardiac function under very 

different haemodynamic conditions, i.e. long-term pressure versus short-term volume overload. 

This was meant to give new insights into cardiac physiology during haemodynamic load and to 

evaluate various echocardiographic parameters used in humans with respect to their significance 

and relevance in mice. 

 

3.3.1 Systolic function 

Systolic function in mice was assessed using speckle tracking echocardiography after six weeks 

of chronic pressure overload, induced by abdominal aortic banding (AAB). Heart rates between 

banded and control animals did not differ (442 vs 450 bpm, p=n.s.) (Fig. 3.7A), the ejection 

fraction as marker for global systolic function, however, was significantly decreased at this point 

in banded animals compared to respective Sham controls (34.9 vs 60.6%, p<0.01) (Fig. 3.7B). 

Additionally, the longitudinal strain rate was measured, as this parameter has been shown to be 

more sensitive to detect changes in systolic function97. In line with the decrease in ejection 

fraction, six weeks of AAB caused a significant reduction in the longitudinal strain rate compared 

to controls (-4.1 vs -11.0 s-1, p<0.01) (Fig. 3.7C) indicating systolic dysfunction at this point. 

After one week of volume overload, induced by Shunt surgery, mice had similar heart rates 

compared to Sham controls (435 vs 450 bpm, p=n.s.) (Fig. 3.7D), but were in a hypercontractile 

stage with increases in both ejection fraction (72.3 vs 56.5%, p<0.01) (Fig. 3.7E) and longitudinal 

strain rate (-12.2 vs -7.6 s-1, p<0.01) (Fig. 3.7F). These observations highlight the distinctive 

differences with respect to systolic function in response to long-term pressure and short-term 

volume overload. 
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Figure 3.7: Assessment of heart rate and systolic function in murine models of pressure and volume overload 

using speckle tracking echocardiography. Heart rate (A), ejection fraction (B) and longitudinal strain rate (C) were 

measured in male WT mice six weeks post AAB (abdominal aortic banding) and in their respective Sham controls 

(ShamA) using speckle tracking echocardiography. The same analysis was performed for female WT mice one week 

post Shunt and their Sham controls (ShamS) (D-F). n=6-7/group; data are presented as mean ± SEM, ** p<0.01, * 

p<0.05, n.s.: not significant in AAB or Shunt group compared to their respective Sham controls (ShamA for AAB, 

ShamS for Shunt) using unpaired Student´s t-test. 

 

 

3.3.2 Diastolic function 

Diastolic function in mice following long-term pressure and short-term volume overload was 

analyzed by transmitral flow profiles using pulsed wave Doppler imaging. Fig. 3.8 shows an 

example of a murine echocardiographic image in the apical 4-chamber view with the sample 

volume (two yellow horizontal lines) placed in the mitral orifice to acquire the transmitral flow. 

Transmitral flow profiles can be found in Fig. 3.9 and 3.10. In humans, this technique together 

with tissue Doppler imaging allows to assess left ventricular relaxation and filling properties by 

measuring several parameters including isovolumic relaxation time (IVRT), E-wave deceleration 

time (DT), E/A and E/E´. In the next part of this study, these parameters are evaluated in mice 

during pressure and volume overload respectively. 
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Figure 3.8: Sample placement for transmitral flow analysis. In the apical 4-chamber view, the left atrium (LA in 

red) and the left ventricle (LV in red) can be visualized. Using pulsed wave Doppler, the sample volume (two 

horizontal yellow lines) is placed close to the tip of the mitral leaflets in the mitral orifice, the optimal position for 

acquiring transmitral flow profiles. 

 

 

3.3.2.1 Left ventricular relaxation 

The isovolumic relaxation time (IVRT), measured between aortic valve closure and mitral valve 

opening, is well-established to be a sensitive parameter for left ventricular relaxation98. The 

progression of diastolic dysfunction typically involves prolongation of the IVRT as sign for an 

impaired relaxation. At later stages, however, the IVRT becomes shorter due to severe increases 

in left ventricular filling pressure. Six weeks after AAB, the IVRT was significantly increased 

compared to Sham controls indicating impaired relaxation (23.3 vs 14.3 msec, p<0.01) (Fig. 

3.9A,B). However, in contrast to chronic pressure overload, one week of volume overload caused 

a significant decrease in the IVRT (13.0 vs 17.1 msec, p<0.01) (Fig. 3.9C,D), presumably due to 

the Shunt-induced increases in left atrial and left ventricular filling pressure. 
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Figure 3.9: Assessment of the isovolumic relaxation time (IVRT) in murine models of pressure and volume 

overload using echocardiography. A and C show representative images for transmitral inflow profiles in mice six 

weeks post AAB (A) as well as one week post Shunt (C) and their respective controls (ShamA and ShamS). Images 

include exemplary measurements of the IVRT (in blue). Average data for the IVRT are depicted in B (AAB versus 

ShamA) and D (Shunt versus ShamS). n=7/group; data are presented as mean ± SEM; ** p<0.01 significant in AAB 

or Shunt group compared to their respective Sham controls (ShamA for AAB, ShamS for Shunt) using unpaired 

Student´s t-test. 

 

 

3.3.2.2 Left ventricular filling 

In humans, the ratio between early and late filling velocities, known as E/A, as well as the E-

wave deceleration time (DT) are important parameters to assess diastolic function89. In this study, 

however, these parameters could not be evaluated consistently. Heart rates in mice were between 

400 and 500 beats per minute, which in most cases led to fusion of the E- and A-wave, depicted 

in the representative images of the transmitral inflow profile in Fig. 3.10B,D,E. The clear 

separation of E- and A-wave, as illustrated in Fig. 3.10A, was exceptional. 

The E/E’ ratio, a parameter which correlates with left ventricular filling pressure in humans92, 

was determined in mice following volume and pressure overload using transmitral and tissue 
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Doppler. After six weeks of abdominal aortic banding, the E/E’ ratio increased significantly 

compared to its respective Sham controls indicating increased filling pressure (48.5 vs 36.5, 

p<0.01) (Fig. 3.10A-C). In the Shunt model, however, the E/E’ ratio did not change (33.7 vs 

29.8, p=n.s.) (Fig. 3.10D-F), even though an increase in volume load is known to increase left 

atrial and therefore left ventricular filling pressure99, 100. An additional parameter was therefore 

measured to non-invasively assess the left ventricular filling pressure in mice qualitatively. As 

the left atrial volume is used in humans to indirectly assess filling pressures89, the left atrial area 

was measured in mice as estimate using the apical 4-chamber view. Indeed, the left atrial area 

significantly increased in both haemodynamic stress models. Six weeks of AAB caused an 

increase from 2.3 to 4.3 mm2 (p<0.01) (Fig. 3.11A,B) and one week of Shunt from 3.4 to 6.5 

mm2 (p<0.01) (Fig. 3.11C,D) compared to respective controls.  

 

 

Figure 3.10: Assessment of the E/E’ ratio in murine models of pressure and volume overload using 

echocardiography Representative echocardiographic images in mice are shown for transmitral (left image in A, B, 

D, E) and tissue Doppler (right image in A, B, D, E) flow profiles six weeks after AAB as well as one week post 

Shunt (A, B, D, E). Images include exemplary measurements of the E- and E’-wave velocity after AAB (A, B) and 

Shunt (D, E) as well as their respective controls (ShamA for AAB, ShamS for Shunt). Average data for the E/E’ ratios 

are shown in C (AAB versus ShamA) and F (Shunt versus ShamS). n=7/group; data are presented as mean ± SEM; ** 

p<0.01, n.s.: not significant in AAB or Shunt group compared to their respective Sham controls (ShamA for AAB, 

ShamS for Shunt) using unpaired Student´s t-test. 
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Figure 3.11: Assessment of the left atrial area in murine models of pressure and volume overload using 

echocardiography. A and C show representative images in the apical 4-chamber view to measure the left atrial area 

(LA-area) in mice six weeks post AAB (A) and one week post Shunt (B), compared to their respective Sham controls 

(ShamA for AAB, ShamS for Shunt). The left atrium is encircled with red dots. Average data for the left atrial area 

are depicted in B (AAB versus ShamA) and D (Shunt versus ShamS). n=6-7/group; data are presented as mean ± 

SEM; ** p<0.01 in AAB or Shunt group compared to their respective Sham controls (ShamA for AAB, ShamS for 

Shunt) using unpaired Student´s t-test. 

 

 

3.3.2.3 Diastolic strain  

Furthermore, diastolic properties were assessed using speckle tracking analysis. Using the 

InVevo2100 1.5.0 Image Software, the peak longitudinal strain rate during early filling can 

automatically be determined using the “reverse peak” option, as described previously in Materials 

and Methods (Fig. 2.3). The longitudinal strain rate during early filling, named reverse 

longitudinal strain rate, has been shown to be related to left ventricular relaxation and stiffness as 

well as left atrial pressure and can be altered by changes in preload94, 101. Thus, six weeks of 

abdominal aortic banding caused a significant decrease of this parameter compared to respective 
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controls (4.6 vs 9.5 s-1, p<0.01) (Fig. 3.12A,B) presumably due to impaired relaxation. After one 

week of Shunt, however, this parameter was significantly increased (17.3 vs 9.2 s-1, p<0.01) (Fig. 

3.12C,D), which is in line with an augmented left ventricular filling pressure. 

 

 

Figure 3.12: Assessment of the reverse longitudinal strain rate in murine models of pressure and volume 

overload using speckle tracking echocardiography. Using speckle tracking analysis, the reverse longitudinal strain 

rate was measured six weeks post AAB and one week post Shunt and their respective Sham controls. Representative 

images and average data are shown in A-B (AAB versus ShamA) and C-D (Shunt versus ShamS). n=6-7/group; data 

are presented as mean ± SEM; ** p<0.01 in AAB or Shunt group compared to their respective Sham controls 

(ShamA for AAB, ShamS for Shunt) using unpaired Student´s t-test. 

 

 

3.3.3 Systolic and diastolic function following transverse aortic constriction 

All the previously mentioned systolic and diastolic parameters were also measured in mice after 

two weeks of transverse aortic constriction (TAC), a severe model to induce pressure overload. 

Thus, all parameters could be evaluated in terms of their consistency between different models. 

Indeed, two weeks of transverse aortic constriction induced similar changes to six weeks of 

abdominal aortic banding. Compared to controls, the ejection fraction decreased from 65.5 to 

36.0% (p<0.01) (Fig.3.13A) with significant increases in the IVRT (14.7 vs 11.3 msec; p<0.05) 
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(Fig. 3.13B), E/E´ (62.6 vs 47.8, p<0.05) (Fig. 3.13C) and left atrial area (6.8 vs 3.3 mm2, 

p<0.01) (Fig. 3.13D). The left atrial area increase of 106% matched the 110% increase in left 

atrial weight versus tibia length ratio (0.40 vs 0.19 mg/mm, p<0.01) two weeks after TAC 

compared to controls (Fig. 3.13E). The reverse longitudinal strain rate in mice was decreased 

from 11.6 in controls to 7.2 s-1 after two weeks of transverse aortic constriction (Fig. 3.13F). The 

similar change in parameters after chronic abdominal aortic banding and transverse aortic 

constriction emphasize consistency of the measured and evaluated parameters between different 

animal models of a similar haemodynamic stress. 

 

 
Figure 3.13: Assessment of systolic and diastolic function in mice two weeks after transverse aortic 

constriction (TAC). Using echocardiography, ejection fraction (A), IVRT (B), E/E’ (C), left atrial area (LA-area) 

(D), left atrial weight (LA Weight) versus tibia length ratio (E) and the reverse longitudinal strain rate (F) were 

measured in mice two weeks after TAC and in their respective Sham controls (ShamT). n=6-7/group; data are 

presented as mean ± SEM; * p<0.05, ** p<0.01 between TAC and respective Sham controls (ShamT) using unpaired 

Student´s t-test. 

 

 

3.3.4 Correlation of diastolic parameters with cardiac hypertrophy following pressure overload 

It was analyzed, whether the aforementioned diastolic parameters correlate with the extent of 

cardiac hypertrophy in both pressure overload models AAB and TAC. Compared to their 

respective Sham controls (ShamA for abdominal aortic banding and ShamT for transverse aortic 

constriction), percentage changes of IVRT, E/E’, left atrial area and reverse longitudinal strain 
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rate were correlated with the relative increase in heart to body weight (HW/BW) ratio in mice 

subjected to either six weeks of abdominal aortic banding or two weeks of transverse aortic 

constriction using linear regression analysis. The relative increases in IVRT and E/E’ as well as 

the relative decrease in the reverse longitudinal strain rate following pressure overload showed 

significant, positive correlations with the increase in HW/BW ratios. The strongest correlation 

with cardiac hypertrophy was found in the E/E’ increase (r2=0.74, p<0.01) (Fig. 3.14B), followed 

by the increase in IVRT (r2=0.65, p<0.01) (Fig. 3.14A) and the decrease in the reverse 

longitudinal strain rate (r2=0.43, p<0.05) (Fig. 3.14D). There was no correlation between the 

increase in HW/BW ratio and the relative left atrial area increase (r2<0.01, p=0.79) (Fig. 3.14C). 

 

 

Figure 3.14: Correlation of diastolic parameters and cardiac hypertrophy in murine models of pressure 

overload. Compared to respective Sham controls, relative changes in IVRT (A), E/E’ (B), left atrial area (C) and the 

reverse longitudinal strain rate (D) were correlated with the relative increase in heart to body weight ratio (HW/BW) 

for each mouse subjected to either six weeks of AAB or two weeks of TAC. n=11-13/group, coefficients of 

determination (r2) were determined and p-values<0.05 indicate a significant deviation from zero using linear 

regression analysis. 
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3.4 Discussion 

The aortocaval fistula model (Shunt) was established and used in this study to induce volume 

overload in mice. Volume overload is typically associated with eccentric cardiac hypertrophy, 

which includes increases in ventricular dimensions as well as cardiac weight. Indeed, one week 

of volume overload caused significant increases in both readouts, which were even more 

pronounced after six weeks (Fig. 3.1, 3.3; Table 3.1). Systolic function, assessed via ejection 

fraction measurements using echocardiography, was well-preserved at an early stage after one 

week, and only slightly worse compared to Sham controls after six weeks of volume overload 

(Fig. 3.2). Moderate increases of lung weight versus tibia length ratio as sign for pulmonary 

congestion was detected only after six weeks of volume overload (Fig. 3.4B), again indicating 

mild cardiac dysfunction. These findings are in line with previous reports in mice showing only 

slight deterioration of systolic function after long-term volume overload with decreased fractional 

shortening and increased lung weight27, 75. Despite early development of cardiac hypertrophy, this 

model initially seems to reflect a more physiological response with well-preserved systolic 

function (Fig. 3.2B,C; Table 3.1). This is supported by one study showing no signs of cardiac 

fibrosis and inflammation in mice one week after Shunt27. The reactivation of the fetal gene 

programme, however, does not fit into the scheme of an initial physiological response. The 

detected increases in ANP, BNP, α-skeletal actin and decreased SERCA-2α-mRNA levels (Fig. 

3.6) already after one week suggest cardiac stress and are typically associated with transition to 

heart failure. Thus, the aortocaval fistula induces a pathological stimulus in the heart, which, for 

unknown reasons, can be compensated very well over a relatively long period of time without 

development of severe cardiac dysfunction in mice. The reactivation of the fetal gene programme 

in response to volume overload also seems to be dependent on the mouse strain used. This study 

uses C57Bl/6 mice, whereas the previously mentioned study by Toischer et al. performed their 

experiments in FVB/N mice. Interestingly, they did not find differences in gene expression levels 

of BNP and SERCA-2α one week after Shunt suggesting a strain-dependent response to volume 

overload. The decrease in average kidney weight versus tibia length ratio after both one and six 

weeks of volume overload in mice (Fig. 3.4D) could not be attributed to impaired renal function, 

as diuretic stress tests and plasma urea levels gave similar results compared to Sham controls 

(Fig. 3.5). In rats, the aortocaval fistula was also shown to cause reductions in kidney weight102. 

If the increase in cardiac output cannot compensate for the blood flow through the fistula 
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anymore, perfusion of peripheral organs is reduced. Thus, the kidney weight reduction was 

attributed to a Shunt-mediated decrease in renal blood perfusion.  

Taken together, the aortocaval fistula in mice is a unique model as it progressively induces 

eccentric hypertrophy with early reactivation of the fetal gene programme, but only mild systolic 

impairment at late time points.  

In humans, three essential conditions are necessary to diagnose diastolic heart failure: 1. presence 

of symptoms of congestive heart failure such as fatigue and dyspnea, 2. presence of normal or 

mildly abnormal systolic function and 3. evidence of left ventricular diastolic dysfunction. Even 

though invasively acquired measurements using cardiac catheterization provide the clearest 

evidence of diastolic dysfunction, echocardiography has become a valuable, inexpensive tool to 

assess diastolic function in a non-invasive manner. According to the European Society of 

Cardiology, the central echocardiographic parameter in humans to diagnose diastolic dysfunction 

is the ratio of early filling velocity and early diastolic annular velocity, commonly known as 

E/E’89. This value correlates with the left ventricular filling pressure, which increases as diastolic 

dysfunction progresses92. The ratio of early filling to late filling velocity E/A, the E-wave 

deceleration time and the left atrial volume index are recommended to use if the E/E’ ratio is 

between 8 and 15 and therefore only suggestive of diastolic dysfunction. The isovolumic 

relaxation time (IVRT) as well as diastolic strain analysis are not part of the algorithm proposed 

by the European Society of Cardiology89. 

In mice, however, an algorithm for the assessment of diastolic properties using echocardiography 

does not exist, despite many cardiovascular research studies being carried out using mice. 

Therefore, different diastolic parameters were evaluated in this study with respect to their 

applicability and relevance in mice using two models of chronic pressure (abdominal aortic 

banding AAB and transverse aortic constriction TAC) as well as one volume overload (Shunt) 

model. This is the first study in mice to compare diastolic parameters in such a range of different 

haemodynamic, cardiac stress models. 

Even though the IVRT is not directly part of the algorithm to assess diastolic dysfunction in 

humans anymore, in mouse models of restrictive cardiomyopathy the increase in IVRT was a 

very sensitive echocardiographic sign of diastolic dysfunction103, 104. This is in line with the 

increase in IVRT after six weeks of AAB and two weeks of TAC (Fig. 3.9B, 3.13B). This might 

be at least partially due to the chronic pressure overload-induced cardiac fibrosis, a main 

contributor to impaired relaxation27, 73, 105. Volume overload (Shunt), however, increases the 
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ventricular filling and the preload27, which leads to the observed decrease in IVRT (Fig. 3.9D) 

after one week. Broadly speaking, in a volume overload setting, the left ventricle just has less 

time to relax. Under these circumstances it is difficult to draw a conclusion with respect to the 

functional relevance of the IVRT decrease. This is due to volume overload-induced preload being 

a confounding influence on the IVRT as it opposes a potential left ventricular relaxation 

impairment. This is one of its limitations to carefully assess relaxation106. However, it is a useful, 

consistent parameter which is easy to obtain and can add valuable information, providing the 

physiological background is fully understood. 

The ratio of early and late filling velocities (E/A) as well as the deceleration time of the E-wave 

(DT) are part of the recommended parameters to assess diastolic function in humans89, 106. 

Additionally, these two parameters are also commonly used in murine studies107-109. Here, 

however, it is reported to be very challenging to measure these values as high heart rates in mice 

led to fusion of E- and A-wave (Chapter 3.3.2.2). This subsequently did not allow to separately 

measure them. This has also been reported by others before110. A clear separation, as shown in 

the representative transmitral flow profile in Fig. 3.10A (left image), was exceptional; thus, it is 

not recommended to use this parameter routinely in mice as it cannot be measured consistently. 

The ratio of peak early filling to annular tissue velocity (E/E’) is the most important parameter to 

assess diastolic dysfunction in humans using echocardiography89 and is also most commonly 

used in murine studies, which focus on diastolic function108, 111, 112. In both chronic pressure 

overload models AAB and TAC, the E/E’ was increased (Fig. 3.10C, 3.13C). This is in 

accordance with an increased left ventricular filling pressure. Volume overload, on the other 

hand, did not change E/E’ (Fig. 3.10F), although it is known to increase the left ventricular filling 

pressure99, 100. One explanation for these different findings is the physiology behind the E’. In a 

chronic pressure overload setting, E’ mainly reflects the delayed left ventricular relaxation as it 

occurs after equilibration of left atrial and left ventricular pressures. Thus, E’ decreases after 

chronic pressure overload (see representative image in Fig. 3.10A,B: E´ decreases from 21.9 in 

controls to 15.1 mm/s after six weeks of AAB) and as a consequence, the E/E’ ratio increases 

(Fig. 3.10C). In volume overload, however, the E’ peak is reached quicker due to a faster 

relaxation. In this situation, E’ mainly reflects the left atrial to left ventricular pressure 

gradient113, which is increased in volume overload. This leads to an increased E’ peak velocity 

(see representative image in Fig. 3.10D,E: E´ increases from 21.9 in controls to 27.8 mm/s after 

one week of Shunt). Therefore, even though the early filling peak velocity (E) increases (see 
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representative image in Fig. 3.10D,E: E increases from 613.3 in controls to 808.6 mm/s after one 

week of Shunt) , the E/E’ ratio remains unchanged (Fig. 3.10F).  

The longitudinal strain rate during early filling (reverse longitudinal strain rate), a parameter that 

has rarely been described in human or mouse studies, has been shown to share similar properties 

of E’94. Indeed, both chronic pressure overload models AAB and TAC showed a decrease (Fig. 

3.12B, 3.13F), whereas volume overload caused an increase in the reverse longitudinal strain rate 

(Fig. 3.12D), presumably for similar reasons as previously mentioned for E’.  

In humans, the left atrial volume is an important, valuable parameter to assess diastolic 

function89, 114, 115. Similarly, in mice the left atrial area is a technically simple measurement to 

indirectly assess the left ventricular filling pressure. However, it is not very frequently measured 

in murine studies116. Using the apical 4-chamber view, the left atrial area was increased in both 

chronic pressure overload (Fig. 3.11B, 3.13D) and volume overload (Fig. 3.11D) models, which 

is in line with increased filling pressures in all models. Thus, left atrial area seems to be a 

consistent, valid measurement throughout different cardiac stress models to assess diastolic 

function in mice. 

It has been known for more than two decades that pressure overload-induced hypertrophy leads 

to diastolic impairment in humans117. This is the first study to correlate a variety of diastolic 

parameters with the level of cardiac hypertrophy in mice following pressure overload (AAB and 

TAC). Significant, positive correlations were found between the relative E/E’, IVRT, reverse 

longitudinal strain rate changes and the relative increase in heart to body weight ratios (HW/BW), 

each compared to respective Sham controls (ShamA for AAB and ShamT for TAC) (Fig. 

3.14A,B,D). This in particular emphasizes the relevance and significance of these three 

parameters in order to assess diastolic function in mice. A human study by Müller-Brunotte et al. 

confirmed these findings using echocardiography in hypertensive patients118. They report 

significant, positive correlations of diastolic parameters, such as IVRT, with left ventricular 

hypertrophy. Between the left atrial area and the HW/BW ratio increase, however, no correlation 

was observed (Fig. 3.14C) suggesting a more qualitative rather than quantitative role for the left 

atrial area in the diastolic assessment in mice. 

Taken together, this study reveals in a variety of different pathophysiological models that most of 

the commonly used human, diastolic parameters can be sufficiently assessed in mice using state-

of-the-art echocardiography. However, some measurements are more useful than others due to 

technically challenging conditions in mice (e.g. small organ size, high heart rates). For instance, 
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E/A and DT were inconsistent in terms of their measurability and would therefore not be 

recommended. This study also emphasizes the importance of the physiology behind these 

distinctive diastolic parameters in order to interpret them correctly. Furthermore, a combination 

of several parameters is needed in order to obtain a detailed understanding of the diastolic 

properties in mice. In particular, E/E’, IVRT and the reverse longitudinal strain rate seem to be 

sensitive markers to detect diastolic dysfunction in mice, as they also correlate with the amount 

of pressure overload-induced cardiac hypertrophy. Taking all of this into consideration, diastolic 

assessment in mice should become part of the routinely performed readouts to analyze cardiac 

function. 
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4. Results II: Cardiac metabolism in murine models of volume and 

pressure overload 

 

4.1 Introduction 

Pressure and volume overload induce different patterns of cardiac remodelling, i.e. concentric 

versus eccentric remodelling. In concentric remodelling, cardiomyocytes grow in width due to 

sarcomeres being added in parallel. Eccentric remodelling is characterized by sarcomere addition 

in series, which leads to cardiomyocyte lengthening. Apart from the different remodelling 

patterns, differences in intracellular signalling including metabolic pathways are likely to be 

involved in the cardiac response to both haemodynamic stresses. In order to study these, murine 

models of pressure and volume overload have been established: the transverse aortic constriction 

(TAC) model to induce pressure overload and the aortocaval fistula (Shunt) model to mimic 

volume overload. Indeed, both models have been shown to induce very different cardiac 

responses in terms of remodelling, function and intracellular signalling27. However, they have not 

yet been carefully characterized and compared with respect to cardiac metabolism. Only a few 

animal studies focus on cardiac metabolism during volume overload119, 120, whereas pressure 

overload-induced changes in cardiac metabolism are more commonly studied. Especially with 

respect to glucose metabolism, the reported data are often not consistent and even contradictory. 

One study found decreased glucose uptake and oxidation with unchanged levels of glycolysis in 

murine hearts following TAC using an isolated working heart perfusion setup121. Other studies 

reported increased glycolysis and glucose uptake in hearts following pressure overload in both 

rats and mice122, 123. Additionally, an initial increase in cardiac glucose oxidation in response to 

TAC was shown in rats, which was normalized in a compensated stage, but progressively 

decreased as systolic dysfunction occurred124. This study by Doenst et al., like many others, base 

their conclusions on expression profiles of metabolic enzymes and ex vivo experiments in isolated 

working heart perfusion setups. The ex vivo perfusion method provides the flexibility to trace 

passages of the substrate through various metabolic pathways under conditions where the 

perfusate composition and the heart´s loading conditions are tightly controlled. However, it 

clearly does not reflect in vivo conditions, where loading is different, there are basal 

neurohumoral influences and multiple substrates are usually present in the circulating blood. 

Thus, infusion of labelled precursors into living organisms is gaining popularity to analyze 
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metabolism in vivo. In this context, radiolabelling and heavy atom-labelling need to be 

distinguished. Both labelling strategies use molecules, in which at least one atom is present as an 

isotope other than its naturally most abundant one. In the case of radiolabelling, this isotope is 

radioactive (e.g. 18F, 14C) and emits radiation during its decay, heavy atom-labelling, however, 

involves stable isotopes such as 13C. Both are common labelling techniques to track a specific 

isotope through chemical reactions or metabolic pathways respectively. In this study, we focused 

on isotopic labelling using 13C as it is stable, uncommon in the environment (1.1% of the total 

carbon pool compared to 12C making up 98.9%) and non-radioactive. Within a compound, such 

as glucose or pyruvate, any number of carbons can be substituted at any position to give a range 

of specifically labelled glucose or pyruvate isotopomers (same number of carbon isotopes but at 

different positions within the compound). In the course of this study, however, we have used [U-

13C] glucose, in which all six carbons are uniformly 13C-labelled. The majority of studies using 

an in vivo labelling approach have been carried out to study cancer metabolism in both mice and 

humans125-127. With respect to cardiac metabolism, infusion of labelled tracers into larger animals 

has been reported. Intracoronary infusion of labelled pyruvate has been conducted in swine 

models to study cardiac TCA (tricarboxylic acid) cycle metabolism128, 129, cardiac glucose and 

fatty acid oxidation were studied in a dog heart failure model via intravenous administration of 

[U-14C] glucose and [9,10-3H] oleate130.  

Clearly, more work is needed to study cardiac metabolism in vivo under different stress 

conditions as altering metabolism remains an interesting approach for heart failure therapy 

development. However, as outlined before, the current debate on metabolic activity including 

substrate utilization in the heart, especially under stress, is controversial and unclear. This is at 

least partially due to the usage of various animal models and different experimental setups. Thus, 

comparing murine models of pressure and volume overload under the same conditions (i.e. 

animal husbandry, duration of haemodynamic stress, experimental setup) with respect to glucose 

utilization would give reliable information about haemodynamic load-induced metabolic 

alterations in the heart. In vivo assessment using a 13C-labelling methodology via intravenous 

infusion of [U-13C] glucose in mice followed by NMR-spectroscopy and metabolic pathway 

analysis is a novel approach in this context. Additionally, expression profiles of metabolic 

enzymes on mRNA and protein level were analyzed and linked to the in vivo data to get a more 

comprehensive understanding of differences in cardiac metabolism during pressure versus 

volume overload. 
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4.2. Basic characterization of cardiac responses to two weeks of pressure and 

volume overload in mice 

Pressure overload in male WT mice was induced through transverse aortic constriction (TAC), 

volume overload through aortocaval fistula (Shunt) surgery including respective Sham controls 

(ShamT for TAC, ShamS for Shunt). Before focusing in detail on differences in cardiac 

metabolism including a novel 13C-labelling methodology, the two models had to be generally 

characterized and compared with respect to changes in left ventricular remodelling and function. 

The equal duration of two weeks was chosen for both models before transthoracic 

echocardiography and morphometric analysis were performed.  

 

4.2.1 Cardiac remodelling, function and hypertrophy 

Transthoracic echocardiography revealed significant differences in cardiac remodelling following 

two weeks of pressure and volume overload. Volume overload through Shunt surgery caused 

eccentric remodelling with an increased left ventricular end-diastolic dimension (4.7 vs 4.1 mm, 

p<0.01), unchanged septum thickness, slightly increased posterior wall thickness (0.69 vs 0.61 

mm, p<0.01) and a significant decrease in the relative wall thickness (0.30 vs 0.32, p<0.01) 

compared to respective Sham controls. As expected, two weeks of pressure overload through 

TAC surgery induced concentric remodelling with an unchanged left ventricular end-diastolic 

diameter, but an increased septum (0.87 vs 0.68 mm, p<0.01), posterior wall (0.81 vs 0.62 mm, 

p<0.01) and relative wall thickness (0.40 vs 0.32, p<0.01) compared to respective controls (Fig. 

4.1A-C, Table 4.1). The left ventricular end-systolic dimension, a parameter depending on both 

contractile function and size of the left ventricle, was increased to a similar extent under both 

haemodynamic stress conditions compared to respective Sham controls (Table 4.1). 
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Figure 4.1: Echocardiographic assessment of cardiac remodelling in mice following two weeks of pressure and 

volume overload. Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, male 

WT mice and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). Transthoracic 

echocardiography was conducted two weeks after surgery to assess the left ventricular end-diastolic diameter 

(LVEDD) (A), septum thickness (B), followed by calculation of the relative wall thickness (C). n=8-14/group; data 

are presented as mean ± SEM; ** p<0.01, n.s.: not significant between TAC/Shunt and respective Sham controls 

using unpaired Student´s t-test. 

 

 

Heart rates were similar in all four groups with only slight increases after TAC and Shunt 

compared to respective controls (Fig. 4.2A, Table 4.1). However, the ejection fraction as marker 

for global systolic function was significantly decreased after two weeks of TAC (37.3 vs 50.9%, 

p<0.01), but remained well-preserved in the volume overload model (53.6 vs 55.1%, p=n.s) (Fig. 

4.2B, Table 4.1). Despite these differences in systolic function and remodelling patterns, the 

amount of left ventricular hypertrophy, measured by left ventricular weight versus tibia length 

ratio, was almost identical after two weeks of TAC and Shunt (+42.3% after TAC vs +42.5% 

after Shunt, both p<0.01) compared to respective Sham controls (Fig. 4.2C, Table 4.1). Thus, 

volume overload-induced eccentric hypertrophy appears to be better adapted than a comparable 
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level of concentric hypertrophy through pressure overload with respect to systolic function. 

Whether alterations in cardiac metabolism might play a role in these different responses under 

both haemodynamic stress conditions is investigated in the following part of this Chapter. 

 

 

Figure 4.2: Assessment of left ventricular function and hypertrophy in mice following two weeks of pressure 

and volume overload. Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, 

male WT mice and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). Transthoracic 

echocardiography was conducted two weeks after surgery to measure the heart rate (A) and ejection fraction (B). The 

left ventricular (LV) weight for each mouse was assessed post mortem and normalized to the respective tibia length 

(C). n=5-14/group; data are presented as mean ± SEM; ** p<0.01, n.s.: not significant between TAC/Shunt and 

respective Sham controls using unpaired Student´s t-test. 
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Table 4.1: Echocardiographic and morphometric data in mice following two weeks of pressure and volume 

overload. Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, male WT mice 

and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). Two weeks after surgery, 

transthoracic echocardiography was performed, followed by removal of hearts and weighing of individual cardiac 

chambers, each normalized to the respective tibia length (TL). HR: heart rate, bpm: beats per minute, LVID;d: left 

ventricular diameter in diastole, LVID;s: left ventricular diameter in systole, LVV;d: left ventricular volume in 

diastole, LVV;s: left ventricular volume in systole, septum: septal wall thickness, post. Wall: posterior wall 

thickness, RWT: relative wall thickness, SV: stroke volume, EF: ejection fraction, FS: fractional shortening, HW: 

total heart weight, LV: left ventricular weight, RV: right ventricular weight, LA: left atrial weight, RA: right atrial 

weight. Data are presented as mean ± SEM; * p<0.05, ** p<0.01 between TAC/Shunt and respective Sham controls 

using unpaired Student´s t-test.  
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4.3 Changes in cardiac glucose metabolism in mice two weeks after pressure 

and volume overload 

Cardiac glucose metabolism in mice following pressure and volume overload was assessed via 

three different approaches:  

1. A novel in vivo 13C glucose-labelling strategy with subsequent analysis of flux into different 

metabolic pathways using NMR-spectroscopy. 

2. Gene expression analysis of enzymes involved in different metabolic pathways. 

3. Protein expression analysis of enzymes involved in different metabolic pathways. 

A particular focus of this study is on cardiac glycolytic activity, TCA cycle and glutamine 

metabolism under both haemodynamic stress conditions. 

 

4.3.1 Glycolysis 

After two weeks of tranverse aortic constriction (TAC), Shunt and respective Sham control 

surgeries (ShamT for TAC, ShamS for Shunt) in male WT mice, [U-13C] glucose was 

continuously administed intravenously for 30 minutes, followed by rapid snap-freezing of the 

heart and further tissue processing as described in 2.5. Metabolic flux through different pathways 

was measured using NMR-spectroscopy. During glycolysis, multiple enzymatic reactions convert 

glucose into pyruvate, which can be further processed to lactate by lactate dehydrogenase (LDH) 

(Fig. 4.3). Thus, if [U-13C] glucose enters the cell and undergoes glycolysis, [1,2,3-13C] pyruvate 

arises and can be used as substrate to produce [1,2,3-13C] lactate, which is schematically 

illustrated in Fig. 4.4A. In the present study, [1,2,3-13C] lactate was used as readout for glycolytic 

activity. Compared to respective controls, cardiac glycolytic flux was significantly enhanced after 

two weeks of TAC (11.8 vs 9.4% enrichment of [1,2,3-13C] lactate, p<0.05) suggesting more 

glycolysis in the heart following chronic pressure overload. The increase after two weeks of 

Shunt did not reach statistical significance (10.1 vs 8.8% enrichment of [1,2,3-13C] lactate, 

p=0.09), but also indicates a tendency towards augmented glycolytic activity in the heart 

following chronic volume overload (Fig. 4.4B). 
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Figure 4.3: Schematic illustration of the glycolytic pathway. Glucose enters the cell through glucose transporters 

(GLUT1 and 4), followed by phosphorylation through hexokinases (HK1 and 2). Pyruvate is the product of a multi-

step reaction and can subsequently act as substrate for lactate dehydrogenase (LDH) to produce lactate. Relevant 

enzymes in the course of this study are shown in purple, a red P indicates a phosphate group. 

 

 

Figure 4.4: Glycolytic activity in murine hearts following two weeks of pressure and volume overload. 

Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, male WT mice and 

compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). [U-13C] glucose was injected 

intraperitoneally followed by flux analysis using NMR-spectroscopy. [1,2,3-13C] lactate was used as readout for 

glycolysis, as depicted in A (LDH: Lactate Dehydrogenase; red circles indicate 13C-labelled carbon atoms). Mean 

data in B is shown as % enrichment of [1,2,3-13C] lactate in murine hearts following two weeks of TAC and Shunt 

compared to respective controls. n=4-5/group; data are presented as mean ± SEM; * p<0.05 between TAC/Shunt and 

respective Sham controls using unpaired Student´s t-test. 
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Gene and protein expression of enzymes involved in glycolysis were measured after TAC and 

Shunt, and compared to respective controls. This was meant to give additional information about 

metabolic properties in the heart following pressure or volume overload. However, it should be 

noted that expression levels of enzymes alone are not very meaningful with respect to their 

activity. Lactate deyhrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate, 

hexokinases 1 and 2 (HK1 and 2) the phosphorylation of glucose to glucose-6-phosphate (the 

first step in glycolysis) and glucose transporter 1 (GLUT1) is one of many transporters to bring 

glucose into the cell (Fig. 4.3). Gene expression of all these enzymes was significantly increased 

after TAC (LDHA: 1.4 fold, p<0.01; HK1: 2.7 fold, p<0.05; HK2: 1.9 fold, p<0.05 and GLUT1: 

1.9 fold, p<0.05), whereas two weeks of volume overload only induced a significant upregulation 

of HK1-mRNA (1.4 fold, p<0.05) compared to respective controls (Fig. 4.5A-D). Thus, cardiac 

gene expression levels of glycolytic enzymes are in line with the previous findings of 

significantly increased glycolytic activity in the heart following pressure overload. This effect 

appears to be much less pronounced after volume overload. 
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Figure 4.5: Cardiac gene expression of glycolytic enzymes in mice following two weeks of pressure and volume 

overload. Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, male WT mice 

and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). Cardiac mRNA levels of LDHA 

(lactate dehydrogenase A) (A), HK1 and 2 (hexokinases 1 and 2) (B,C), and GLUT1 (glucose transporter 1) (D) 

were measured two weeks post surgery using qRT-PCR. Values are presented as fold change compared to respective 

Sham controls, GAPDH was used for normalization. n=5/group; data are presented as mean ± SEM; * p<0.05, ** 

p<0.01, n.s.: not significant between TAC/Shunt and respective Sham controls using unpaired Student´s t-test. 

 

 

Before analyzing cardiac protein expression levels of glycolytic enzymes, three commonly used 

loading controls for Western Blot analysis were tested with respect to their expression levels 

during cardiac hypertrophy. Fig. 4.6A reveals that both α-tubulin as well as β-actin are induced in 

the heart after both two weeks of TAC and Shunt compared to respective controls. Cardiac 

protein levels of GAPDH (glyceraldehyde-3-phosphate dehydrogenase), however, seemed to be 

unchanged in response to both stresses. This is in line with Ponceau S-stainings reflecting similar 

protein loading between all different experimental groups (Fig. 4.6B,C). Thus, GAPDH was used 

as loading control in the course of this study. 
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Following cardiac gene expression analysis, protein levels of LDHA, HK1 and GLUT1 after 

TAC, Shunt and respective Sham surgeries were assessed by Western Blot analysis. 

Representative images are shown in Fig. 4.7A. Similar to gene expression levels, LDHA and 

HK1 were only increased following pressure overload (LDHA: 1.4 fold, p=0.06; HK1: 1.5 fold, 

p<0.05), but remained unchanged after Shunt compared to respective controls (Fig. 4.7A-C). 

GLUT1 expression, however, was significantly increased after Shunt (3.3 fold, p<0.05), but 

remained unchanged after two weeks of pressure overload compared to controls (Fig. 4.7A,D). 

This is contradictory to the previous observations on mRNA levels and therefore underlines the 

complexity of metabolic regulation in the heart. 

 

Figure 4.6: Evaluation of different loading controls for Western Blotting in murine heart lysates following two 

weeks of pressure and volume overload. Protein expression of α-tubulin, β-actin and GAPDH, three commonly 

used loading controls for Western Blot analysis, were assessed in murine heart lysates two weeks after TAC, Shunt 

and their respective control surgery (ShamT for TAC, ShamS for Shunt) by Western Blotting. Representative images 

are shown in A. Exemplary images for general protein staining from heart lysates using Ponceau S are shown in B 

(ShamT and TAC) and C (ShamS and Shunt). 
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Figure 4.7: Cardiac protein expression of glycolytic enzymes in mice following two weeks of pressure and 

volume overload. Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, male 

WT mice and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). Cardiac protein levels of 

LDHA (lactate dehydrogenase A), HK1 (hexokinase 1) and GLUT1 (glucose transporter 1) were assessed two weeks 

post surgery by Western Blotting. Representative images are shown in A, densitometric quantification for each 

enzyme in B-D. Values are presented as fold change compared to respective Sham controls, GAPDH was used as 

loading control. n=4-5/group; data are presented as mean ± SEM; * p<0.05, n.s.: not significant between TAC/Shunt 

and respective Sham controls using unpaired Student´s t-test. 
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4.3.2 TCA cycle 

Flux analysis using the novel in vivo 13C-labelling strategy in mice was performed as previously 

described. [1,2,3-13C] pyruvate arises from glycolysis of the administered [U-13C] glucose and 

can enter the TCA cycle either via oxidative decarboxylation through PDH (pyruvate 

dehydrogenase) or through carboxylation via anaplerotic reactions catalyzed by PC (pyruvate 

carboxylase) or ME (malic enzyme). As the general scheme of TCA cycle metabolism in Fig. 4.8 

illustrates, these anaplerotic reactions produce oxaloacetate and malate respectively, which can be 

converted into each other through malate dehydrogenase (MDH). Thus, labelled isotopomers 

arising from both anaplerotic reactions are identical. PDH activity and anaplerosis were 

separately assessed by using [4,5-13C] glutamate as a readout for flux through PDH and [2,3-13C] 

glutamate for anaplerosis. This is schematically illustrated in Fig. 4.9A. Compared to respective 

controls, metabolic flux through both PDH (8.2 vs 4.4% enrichment of [4,5-13C] glutamate, 

p<0.05) and anaplerotic reactions (12.3 vs 7.0% enrichment of [2,3-13C] glutamate, p<0.01) were 

significantly increased after two weeks of TAC suggesting enhanced TCA cycle activity in the 

heart following pressure overload. Such changes were not observed after two weeks of volume 

overload (Fig. 4.9B,C) – a similar finding to the lack of major changes in glycolytic activity after 

Shunt.  

 

 

Figure 4.8: Schematic illustration of TCA cycle metabolism. Glycolysis-derived pyruvate can enter the 

mitchondrium, followed by conversion to acetyl-CoA through pyruvate dehydrogenase (PDH) and entry into the 

TCA (tricarboxylic acid) cycle. PDH activity can be inhibited through phosphorylation by pyruvate dehydrogenase 

kinases (PDK1 and 4). Pyruvate can also act as substrate for anaplerotic reactions such as production of oxaloacetate 
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and malate through pyruvate carboxylase (PC) and malic enzyme (ME) respectively. Relevant enzymes in the course 

of this study are shown in red (PDH activity) or blue (anaplerosis), yellow arrows indicate the TCA cycle. 

 

Figure 4.9: TCA cycle activity in murine hearts following two weeks of pressure and volume overload. 

Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, male WT mice and 

compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). [U-13C] glucose was injected 

intraperitoneally followed by flux analysis using NMR-spectroscopy. [4,5-13C] glutamate was used as readout for 

pyruvate dehydrogenase (PDH) activity, [2,3-13C] glutamate for anaplerosis mediated by pyruvate carboxylase (PC) 

or malic enzyme (ME). A illustrates this schematically: [1,2,3-13C] pyruvate is produced through glycolysis of [U-

13C] glucose and can subsequently enter the TCA cycle either through PDH or anaplerosis, catalyzed by PC or ME. 

Labelled carbons of isotopomers arising from PDH are shown in dark red, from anaplerosis in dark blue; light red 

and light blue rectangles indicate the two isotopomers used as readouts for PDH and PC activity respectively. Mean 

data are shown as % enrichment of [4,5-13C] glutamate (B) and [2,3-13C] glutamate (C) in murine hearts two weeks 

post surgery compared to respective Sham controls. n=4-5/group; data are presented as mean ± SEM; * p<0.05, ** 

p<0.01, n.s.:not significant between TAC/Shunt and respective Sham controls using unpaired Student´s t-test. 

 

 

Gene and protein expression of enzymes involved in TCA cycle metabolism were measured after 

TAC, Shunt and compared to respective controls. Pyruvate dehydrogenase-alpha 1 (PDHA1) is a 
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component of the PDH multienzyme complex catalyzing the reaction from pyruvate to acetyl-

CoA. Pyruvate dehydrogenase kinases 1 and 4 (PDK1 and 4) phosphorylate PDH and thereby 

inactive it. Pyruvate carboxylase (PC) catalyzes the addition of CO2 to pyruvate to form 

oxaloacetate, an important step in anaplerosis. The significant increase in gene expression of 

PDHA1 after TAC (2.1 fold, p<0.01) is consistent with the previously reported increase in PDH 

activity, which is not evident after two weeks of Shunt compared to respective controls (Fig. 

4.10A). Cardiac PDK1 expression levels, however, show similar increaes under both stress 

conditions (Fig. 4.10B), whereas PDK4 is decreased (Fig. 4.10C). In the case of volume overload 

stress, this decrease even reaches statistical significance (0.52 fold, p<0.05). 

 

 

Figure 4.10: Cardiac gene expression of enzymes related to TCA cycle metabolism in mice following two 

weeks of pressure and volume overload. Transverse aortic constriction (TAC) and Shunt surgery were performed 

in age-matched, male WT mice and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). 

Cardiac mRNA levels of PDHA1 (pyruvate dehydrogenase-alpha 1) (A), PDK1 and 4 (pyruvate dehydrogenase 

kinases 1 and 4) (B,C) were measured two weeks post surgery using qRT-PCR. Values are presented as fold change 

compared to respective Sham controls, GAPDH was used for normalization. n=5/group; data are presented as mean 

± SEM; * p<0.05, ** p<0.01, n.s.: not significant between TAC/Shunt and respective Sham controls using unpaired 

Student´s t-test. 
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Cardiac protein expression levels of  the PDH component E1-subunit-α (PDH E1-α), PDK1, 

PDK4 and PC after TAC, Shunt and respective Sham surgeries were measured using Western 

Blot analysis. Representative images are shown in Fig. 4.11A. Despite the observed changes in 

TCA cycle activity and gene expression of enzymes involved in TCA cycle metabolism, protein 

expression of all enzymes was similar throughout all four experimental groups (Fig. 4.11A-E). It 

again highlights how challenging and diverse metabolic assessment in the heart can be, especially 

with respect to enzyme expression analysis. 
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Figure 4.11: Cardiac protein expression of enzymes related to TCA cycle metabolism in mice following two 

weeks of pressure and volume overload. Transverse aortic constriction (TAC) and Shunt surgery were performed 

in age-matched, male WT mice and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). 

Cardiac protein levels of PDH E1-α (pyruvate dehydrogenase E1-subunit-α), PDK1 and 4 (pyruvate dehydrogenase 

kinases 1 and 4) and PC (pyruvate carboxylase) were assessed two weeks post surgery via Western Blotting. 

Representative images are shown in A, densitometric quantification for each enzyme in B-E. Values are presented as 

fold change compared to respective Sham controls, GAPDH was used as loading control. n=4-5/group; data are 
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presented as mean ± SEM; n.s.: not significant between TAC/Shunt and respective Sham controls using unpaired 

Student´s t-test. 

4.3.3 Glutamine metabolism 

The novel in vivo 13C-labelling strategy with subsequent flux analysis using NMR-spectroscopy 

was used to assess glutamine synthesis in murine hearts following TAC, Shunt and respective 

Sham controls. Glutamine is an important substrate for the hexosamine biosynthetic pathway 

(HBP) and glutathione biosynthesis. Both pathways are implicated in the development of 

cardiovscular diseases131-134 and were therefore of particular interest. As described previously 

(Section 4.3.2), administered [U-13C] glucose can be metabolized to [4,5-13C] or [2,3-13C] 

glutamate (or [2,3,4,5-13C] glutamate, which is not of particular interest in this study), depending 

on whether it is formed through PDH or anaplerotic reactions. This glutamate can be further 

converted to glutamine through glutamine synthetase (GS). As illustrated in Fig. 4.12A, [4,5-13C] 

glutamine was used as readout for glutamine synthetase activity. Compared to respective 

controls, metabolic flux through PDH into glutamine was significantly enhanced after two weeks 

of TAC (3.0 vs 1.4% enrichment of [4,5-13C] glutamine, p<0.01) suggesting increased glutamine 

synthesis in the heart following chronic pressure overload. As for glycolytic and TCA cycle 

activity, two weeks of volume overload did not change glucose-dependent glutamine synthesis in 

the heart significantly (Fig. 4.12B). 

 

 

Figure 4.12: Glutamine biosynthesis in murine hearts following two weeks of pressure and volume overload. 

Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, male WT mice and 

compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). [U-13C] glucose was injected 

intraperitoneally followed by flux analysis using NMR-spectroscopy. [4,5-13C] glutamine was used as readout for 

glutamine synthesis, which is schematically illustrated in A: TCA cycle-derived glutamate is converted to glutamine 
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through glutamine synthetase (GS). Labelled carbons of isotopomers arising from PDH are shown in red, from 

anaplerosis in blue. Mean data in B is shown as % enrichment of [4,5-13C] glutamine in murine hearts two weeks 

post surgery. n=4-5/group; data are presented as mean ± SEM; ** p<0.01, n.s.: not significant between TAC/Shunt 

and respective Sham controls using unpaired Student´s t-test. 

As schematically depicted in Fig 4.13 and previously mentioned, glutamine can be a substrate in 

the hexosamine biosynthetic pathway (HBP). The rate limiting step of this pathway is the 

prduction of glucosamine-6-phosphate from fructose-6-phosphate and glutamine, a reaction 

catalzyed by GFAT 1 or 2 (glutamine:fructose-6-phosphate aminotransferase 1 or 2). 

Glucosamine-6-phosphate is used for the production of UDP-GlcNAc (uridine diphosphate N-

acetylglucosamine), the final substrate for O-GlcNAcylation modification of proteins. In the 

heart, this protein modification has been linked with both cardioprotection as well as disease 

progression135.  

Glutamine can also serve as substrate for glutathione biosynthesis (Fig. 4.13 upper part). As 

previously mentioned, glutamate is converted through glutamine synthetase (GS) to produce 

glutamine. However, glutaminase (GLS) catalyzes this reaction in the opposite direction, thereby 

producing glutamate from glutamine. In a two-step reaction, cysteine and glycine are added to 

glutamate to form glutathione, one of the main intracellular redox buffers.  

 

 

Figure 4.13: Schematic illustration of glutamine-involvment in the hexosamine biosynthetic pathway (HBP) 

and glutathione synthesis. HBP: Glutamate is converted to glutamine through glutamine synthetase (GS). GFAT 1 
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and 2 (glutamine:fructose-6-phosphate aminotransferases 1 and 2) use glutamine and fructose-6-phosphate as 

substrates to produce glucosamine-6-phosphate, which is converted via multiple steps to uridine diphosphate N-

acetylglucosamine (UDP-GlcNAc), the final substrate for O-GlcNAc modification of proteins. Glutamine can also be 

converted back to glutamate through glutaminase (GLS). Glutamate can then be used as precursor for glutathione 

biosynthesis. Relevant enzymes in the course of this study are shown in green, a red P indicates a phosphate group. 

 

The HBP was assessed following two weeks of TAC, Shunt and respective Sham controls by 

cardiac protein expression measurements of HBP-related proteins by Western Blotting. 

Representative images are shown in Fig. 4.14A. Expression levels of GS (1.6 fold, p<0.05) and 

GFAT2 (1.6 fold, p<0.01) were significantly increased after two weeks of pressure overload 

compared to controls (Fig. 4.14A,B,D), which was in line with significant increases in O-

GlcNAcylation modification of proteins (1.6 fold, p<0.05) (Fig. 4.14A,E). Interestingly, GFAT1 

levels did not change through pressure overload (Fig. 4.14A,C) suggesting a specific GFAT2-

dependent mechanism. Protein levels of GS, GFAT1, GFAT2 and O-GlcNAcylation of proteins 

remained unchanged after two weeks of volume overload (Fig. 4.14A-E). Thus, the increased 

glutamine production in response to chronic pressure overload might be related to the higher 

demand for HBP activity resulting in O-GlcNAcylation modification of proteins. After two 

weeks of volume overload, this does not seem to be of relevance. 

In order to assess potential changes in glutathione biosynthesis following pressure and volume 

overload, cardiac protein expression levels of glutaminase (GLS), which catalyzes the conversion 

of glutamine to glutamate, were assessed. Indeed, two weeks of pressure overload caused a 

significant increase in GLS levels (1.4 fold, p<0.05), which was not detected after chronic 

volume overload compared to respective controls (Fig. 4.15A,B). Additionally, the ratio of 

reduced versus oxidized glutathione, measured with the GSH-Glo™ Assay Kit (Promega), was 

significantly reduced after two weeks of TAC (0.7 fold, p<0.05; indicating a more oxidized 

environment), but not Shunt (1.1 fold, p=n.s.) compared to respective controls (Fig. 4.15C). Thus, 

more glutathione is presumably needed in order to buffer increased oxidative stress following 

chronic pressure overload in the heart. After two weeks of volume overload, this does not seem to 

be necessary due to a well-compensated redox environment.  

The need for increased HBP activity and glutathione biosynthesis following pressure, but not 

volume overload, might therefore explain the increased glutamine synthesis after TAC.  
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Figure 4.14: Cardiac protein expression of enzymes related to glutamine metabolism in mice following two 

weeks of pressure and volume overload. Transverse aortic constriction (TAC) and Shunt surgery were performed 

in age-matched, male WT mice and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). 

Cardiac protein levels of GS (glutamine synthetase), GFAT1 and 2 (glutamine:fructose-6-phosphate 

aminotransferases 1 and 2), and GlcNAc (O-linked-N-acetylglucosamine) were assessed two weeks post surgery via 

Western Blotting. Representative images are shown in A, densitometric quantification in B-E. Values are presented 
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as fold change compared to respective Sham controls, GAPDH was used as loading control. n=4-5/group; data are 

presented as mean ± SEM; * p<0.05, ** p<0.01, n.s.: not significant between TAC/Shunt and respective Sham 

controls using unpaired Student´s t-test. 

 

Figure 4.15: Glutamine-involvement in cardiac glutathione biosynthesis following two weeks of pressure and 

volume overload. Transverse aortic constriction (TAC) and Shunt surgery were performed in age-matched, male 

WT mice and compared to respective Sham controls (ShamT for TAC, ShamS for Shunt). For glutathione 

biosynthesis, glutamine needs to be converted to glutamate, a reaction catalyzed by glutaminase (GLS). Glutaminase 

protein expression two weeks post surgery was evaluated by Western Blotting. Representative images are shown in 

A, densitometric quantification in B, GAPDH was used as loading control. Reduced versus oxidized glutathione 

ratios were assessed in murine heart lysates two weeks post surgery using the GSH-Glo™ Assay (Promega) (C). 

Values in B and C are presented as fold change compared to respective Sham controls. n=4-9/group; data are 

presented as mean ± SEM; * p<0.05, n.s.: not significant between TAC/Shunt and respective Sham controls using 

unpaired Student´s t-test. 

 

 

4.3.4 Gene expression of enzymes related to fatty acid oxidation (FAO) and fatty acid synthesis 

(FAS) 

Fatty acid oxidation (FAO) and fatty acid synthesis (FAS) were analyzed in the heart following 

two weeks of pressure and volume overload by measuring gene expression levels of involved 

enzymes. As depicted in Fig. 4.16, carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) are 
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linked to transport of fatty acids into mitochondria and are therefore involved in FAO. 

Expression levels of these enzymes remained unchanged through both TAC and Shunt compared 

to controls (Fig. 4.17A,B). Acetyl-CoA carboxylases α and β (ACACA and ACACB), and fatty 

acid synthase (FASN) are related to FAS (Fig. 4.16). Both ACACA (1.8 fold, p<0.01) and FASN 

(1.7 fold, p<0.05) displayed significant increases on mRNA level following chronic pressure 

overload compared to controls, which was not evident after chronic volume overload (Fig. 

4.17C,E). ACACB-mRNA levels remained unchanged in all four experimental groups (Fig. 

4.17D).  

Taken together, with respect to cardiac gene expression profiles, there seems to be a shift towards 

increased FAS without alterations in FAO after chronic pressure overload. After chronic volume 

overload, both FAO and FAS appear to be unchanged, again implying a more complex metabolic 

response in response to chronic pressure compared to volume overload.  

 

 

Figure 4.16: Schematic illustration of fatty acid synthesis (FAS) and oxidation (FAO). Citrat is transported from 

the mitchondrium into the cytosol, where it can be converted into acetyl-CoA. Acetyl-CoA can then act as substrate 

for acetyl-CoA carboxylases α and β (ACACA and ACACB) to produce malonyl-CoA, the key substrate for fatty 

acid synthase (FASN)-mediated production of acyl-CoA (long-chain fatty acid-CoA). Acyl-CoA enters the outer 

mitchonchondrial membrane (OMM), but in order for it to enter the inner mitochondrial membrane (IMM), carnitine 

needs to be added via carnitine palmitoyltransferase 1 (CPT1) to produce Acylcarnitine. Acylcarnitine can then cross 
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the IMM. In the mitochondrium, carnitine palmitoyltransferase 2 (CPT) catalyzes the regeneration of acyl-CoA, 

which can then be used for β-oxidation. Relevant enzymes in the course of this study are shown in brown. 

 

Figure 4.17: Cardiac gene expression of enzymes related to fatty acid oxidation (FAO) and synthesis (FAS) in 

mice following two weeks of pressure and volume overload. Transverse aortic constriction (TAC) and Shunt 

surgery were performed in age-matched, male WT mice and compared to respective Sham controls (ShamT for TAC, 

ShamS for Shunt). Cardiac mRNA levels of CPT1β and 2 (carnitine palmitoyltransferases 1β and 2) as readouts for 

FAO (A,B), ACACA and ACACB (acetyl-CoA carboxylases α and β), and FASN (fatty acid synthase) for FAS (C-

E) were measured two weeks post surgery using qRT-PCR. Values are presented as fold change compared to 

respective Sham controls, GAPDH was used for normalization. n=5/group; data are presented as mean ± SEM; * 

p<0.05, ** p<0.01, n.s.: not significant between TAC/Shunt and respective Sham controls using unpaired Student´s 

t-test. 
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4.4 Discussion 

As expected, two weeks of transverse aortic constriction (TAC) and aortocaval fistula (Shunt) in 

mice are associated with different cardiac remodelling patterns. Whereas TAC, as a pressure 

overload model, causes concentric remodelling with increases in wall thickness, Shunt induces 

eccentric remodelling, characterized by left ventricular dilation (Fig. 4.1, Table 4.1). Despite the 

same amount of left ventricular hypertrophy in both haemodynamic stress models, systolic 

dysfunction only occurred in response to pressure overload (Fig. 4.2, Table 4.1). Hence, a certain 

level of concentric hypertrophy appears to be associated with a more detrimental phenotype in 

the heart compared to a similar level of eccentric hypertrophy. This is in line with a previous 

study showing cardiac dysfunction and interstitial fibrosis in mice subjected to chronic TAC, but 

not Shunt27. Chronic pressure overload was furthermore associated with higher mortality in these 

mice compared to chronic volume overload. However, the increase in left ventricular hypertrophy 

and mean total wall stress in both models were similar. Thus, different signalling is likely to be 

involved in the cardiac responses to these haemodynamic stresses, which might account for the 

different phenotypes. A particular focus in the course of this study was on the potential difference 

in cardiac metabolism following pressure and volume overload. 

Using a novel in vivo 13C-labelling strategy through [U-13C] glucose administration in mice 

subjected to either TAC or Shunt, glucose metabolism in the heart was assessed by flux analysis 

using NMR-spectroscopy. In response to chronic pressure overload, glycolytic activity in the 

heart appeared to be significantly increased (Fig. 4.4B). This was accompanied by increased gene 

expression levels of glycolytic enzymes such as LDHA, HK1 and 2, and GLUT1 (Fig. 4.5). On 

protein level, this was confirmed by increases of both LDHA and HK1 following TAC (Fig. 4.7). 

The increased glycolytic activity after TAC is in line with several other studies linking pressure 

overload-induced cardiac hypertrophy to increased glycolysis122, 136, 137. In response to chronic 

volume overload, glycolytic activity in the heart displayed only a tendency to being increased 

compared to Sham controls, which did not reach statistical significance (Fig. 4.4B). With respect 

to cardiac expression of glycolytic enzymes, only HK1-mRNA levels were increased following 

volume overload (Fig. 4.5B). Thus, glycyolysis in the heart following chronic volume overload 

appeared to be only slightly enhanced, if at all. A the study by El Alaoui-Talibi et al., however, 

reported significant and functionally relevant increases in cardiac glycolysis following volume 

overload120. There are several differences between experimental setups, which might explain the 

different findings with respect to levels of glycolysis. Firstly, their study was carried out in rats 
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with metabolic analysis performed three months after aortocaval fistula surgery. At that time 

point, systolic function has presumably deteriorated already leading to different findings on 

glycolytic activity. Furthermore, their metabolic analysis was performed ex vivo using isolated 

heart perfusion experiments. By using a proteomic approach, a different study reported an 

increased expression of β-enolase in mice following Shunt, which could suggest higher glycolytic 

activity138. Additionally, significantly decreased levels of lactate dehydrogenase (LDH) were 

reported, implying a shift towards more oxidative glucose metabolism in response to volume 

overload. However, their study focused on cardiac protein expression at an earlier time point (one 

week after surgery) and was carried out in FVB/N mice rather than C57Bl/6 mice. 

Increased glycolysis in response to pressure overload in the heart has been shown to be associated 

with augmented glucose uptake including expression of glucose transporters122, 139, 140. This could 

not be confirmed in this study, as protein expression of GLUT1 was not different after TAC 

compared to Sham controls (Fig. 4.7D). A study by Zhabyeyev et al. even reported a decreased 

glucose uptake following pressure overload121, highlighting the inconsistent findings throughout 

the literature. Interestingly, GLUT1 expression was significantly increased after Shunt (Fig. 

4.7D). This seems to be contradictory to the previous findings. However, whether this is really of 

functional relevance cannot be concluded as protein expression per se does not necessarily 

correlate with its function. This is why enzyme expression analysis needs to be put into context 

with other methodologies in order to comprehensively assess cardiac metabolism. 

Data on glucose oxidation and pyruvate dehydrogenase (PDH) activity during cardiac 

hypertrophy and heart failure are also inconsistent, ranging from decreased or unchanged to 

increased levels in various rat models of cardiac hypertrophy141-145. Using the in vivo 13C-

labelling approach through administration of [U-13C] glucose and subsequent flux analysis, mice 

subjected to chronic pressure overload reavealed significant increases in metabolic flux through 

PDH in the heart, suggesting increased PDH activity. Following chronic volume overload, PDH 

activity remained unchanged compared to respective controls (Fig. 4.9B) highlighting distinctive 

differences in PDH-dependent glucose oxidation between different animal models. Thus, the 

discrepancy throughout the literature migh at least partially be attributed to the usage of different 

animal models of cardiac hypertrophy and heart failure respectively. Gene and protein expression 

levels of enzymes involved in PDH activity were inconsistent following TAC and Shunt. Gene 

expression of PDH was increased only after chronic pressure overload without changes in 

pyruvate deyhrogenase kinases 1 and 4 (PDK1 and 4) expression, which negatively regulate PDH 
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activity. Chronic volume overload, however, caused decreases in PDK4, but did not alter PDH 

and PDK1 gene expression (Fig. 4.10). Protein expression of these enzymes remained unchanged 

in all four experimental groups (Fig. 4.11A-D). Metabolic flux through pyruvate carboxylase 

(PC) and malic enzyme (ME) were also enhanced after chronic pressure suggesting increased 

anaplerosis (Fig. 4.9C). Studies from pressure overload-induced cardiac hypertrophy in both rats 

and mice also reported increases of anaplerotic flux compared to controls40, 123. Again, volume 

overload did not change the level of anaplerosis in the heart (Fig. 4.9C). Protein levels of PC 

remained unchanged in both stress models (Fig. 4.11A,E). Taken together, cardiac glucose 

metabolism seems to be generally enhanced through chronic pressure overload, revealed by a 

novel in vivo 13C-labelling strategy. Chronic volume overload did not induce these changes to a 

similar extent with only glycolysis being moderately increased. This implicates an increased 

reliance on glucose-derived substrates for fueling cardiac mitochondria in response to pressure 

rather than volume overload. Discrepancies with respect to gene and protein expression levels of 

metabolic enzymes underline the importance of enzyme activity assessment through flux 

analysis.  

Flux of labelled isotopomers from administered [U-13C] glucose through glutamine synthetase 

(GS) into glutamine was also increased in the heart following chronic pressure, but not volume 

overload (Fig. 4.12B). This was in line with increased protein expression levels of GS following 

TAC (Fig. 4.14A,B). Glutamine is one of two substrates for glucosamine:fructose-6-phosphate 

aminotransferases 1 and 2 (GFAT 1 and 2) to produce glucosamine-6-phosphate. This represents 

the rate limiting step in the hexosamine biosynthetic pathway (HBP). The HBP leads to 

production of N-acetylglucosamine (GlcNAc), which can be added to various proteins in an O-

linked manner (O-GlcNAcylation) (Fig. 4.13). The unique aspect of the HBP is its reliance on 

inputs from a variety of metabolic pathways including glucose metabolism, amino acid 

metabolism, fatty acid metabolism and nucleotide metabolism146-148. The focus of this study, 

however, was on the role of glucose-derived glutamine. Cardiac protein expression levels of 

GFAT2, which is the main cardiac isoform, were enhanced after chronic pressure overload 

suggesting HBP activation. Indeed, this was associated with significant increases in general O-

GlcNAcylation protein modifications. None of these changes occurred in response to chronic 

volume overload (Fig. 4.14A,D,E). GFAT1 is mainly expressed in the pancreas, placenta and 

testis135 and therefore its protein expression levels in the heart remained unchanged following 

both chronic pressure and volume overload (Fig. 4.14A,C). O-GlcNAcylation has been shown to 
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be increased in the heart in animal models of pressure overload as well as humans suffering from 

aortic stenosis133, 149. It has been implicated in the development of cardiac hypertrophy as it was 

shown to be required for pro-hypertrophic NFAT (nuclear factor of activated T-cells) activation 

in a murine pressure overload model134. Depressing of O-GlcNAcylation blunted the NFAT 

activation and subsequent cardiomyocyte hypertrophy. From a functional point of view, NFAT 

activation has been linked with pathological, but not physiological hypertrophy150, suggesting a 

rather detrimental role for O-GlcNAcylation in the heart during pressure overload. On the other 

hand, GlcNAcylation has been demonstrated to protect mice from cardiac damage in a 

myocardial infarction model151. In the reverse experiment, loss of GlcNAcylation exacerbated 

infarct-induced heart failure. Thus, the precise role of O-GlcNAcylation during cardiac stress is 

still unclear. Whether the detected increase after TAC contributes to the systolic impairment or 

results as a consequence from cardiac dysfunction cannot be elucidated. However, in the well-

compensated stage of chronic volume overload, the HBP does not seem to be relevant in the heart 

with respect to cardiac remodelling and function. 

Glutamine can also be used as substrate for glutathione biosynthesis, if converted to glutamate, a 

reaction catalyzed by glutaminase (Fig. 4.13). Two weeks of pressure overload caused an 

increase in cardiac protein expression of glutaminase, which was not detected in response to 

chronic volume overload (Fig. 4.15A,B). This is also supported by the decrease in the reduced 

versus oxidized glutathione ratio under pressure overload conditions (Fig. 4.15C), which might 

indicate a greater need for glutathione to be synthesized in order to buffer increased amounts of 

oxidative stress. This might be a compensatory mechanism, as chronic depletion of glutathione 

has been shown to exacerbate pathological remodelling and cardiac dysfunction in a murine 

model of pressure overload132. In chronic volume overload, increased glutathione bioavailability 

might not be necessary due to a compensated redox environment in the heart, as indicated by an 

unchanged reduced versus oxidized glutathione ratio (Fig. 4.15C). 

A general trend towards increased gene expression of enzymes involved in fatty acid synthesis 

(FAS) was found in response to pressure overload, mRNA levels of fatty acid oxidation (FAO)-

related enzymes remained unchanged following both pressure and volume overload (Fig. 4.17A-

E). The increase in cardiac gene expression levels of FAS enzymes after TAC might be a 

mechanism to compensate for the decreased fatty acid utilization, a consistently reported 

characteristic during heart failure development34. Chronic volume overload did not induce any 

changes in gene expression levels of enzymes involved in FAS (Fig. 4.17C-E) suggesting that 
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utilization of fatty acids might still be physiological; hence, there would be no need to increase 

FAS. However, these conclusions are based on gene expression levels only. Therefore, it would 

be interesting to assess cardiac fatty acid metabolism after administration of 13C-labelled 

palmitate with subsequent flux analysis. This would give new insights into fatty acid utilization 

under chronic haemodynamic stress and expand the current knowledge about pressure versus 

volume-induced changes in cardiac metabolism. 

In conclusion, this study provides novel data on the assessment of cardiac glucose metabolism 

using an in vivo 13C-labelling strategy in mice following pressure versus volume overload. 

Chronic pressure overload induces much more complex alterations in cardiac glucose metabolism 

including glycolysis, TCA cycle metabolism and glutamine synthesis compared to chronic 

volume overload. Whether these changes contribute to cardiac dysfunction or result as a 

consequence of it needs further investigation. This study also highlights that relying on gene and 

protein expression levels of metabolic enzymes alone is insufficient for a comprehensive 

assessment of cardiac metabolism.  
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5. Results III: The role of Nox4 in cardiac remodelling during 

chronic volume overload 

 

5.1 Introduction 

Cardiac remodelling occurs in response to a variety of stressors in the heart. One of these 

stressors is haemodynamic load, which can be divided into pressure and volume overload. This 

differentiation is clinically relevant as certain cardiovascular diseases are associated with certain 

types of overload: pressure overload typically occurs in aortic stenosis and hypertension whereas 

volume overload is present in aortic and mitral regurgitation152-154. Chronic pressure and volume 

overload induce concentric versus eccentric remodelling respectively26. Distinct signalling 

pathways are likely to be involved in these responses but they are incompletely defined. Chronic 

pressure overload in mice has been shown to induce a more maladaptive cardiac phenotype with 

signs of fibrosis, apoptosis, inflammation, systolic dysfunction and higher mortality compared to 

chronic volume overload. The adaptive response in volume overload is associated with increased 

cardiac Akt activation, whereas pressure overload causes activation of calcium/calmodulin-

dependent protein kinase II (CaMKII)27.  

Oxidative stress has long been implicated in the pathophysiology of cardiovascular diseases 

including heart failure. Production of reactive oxygen species (ROS) correlates with the severity 

of heart failure in both humans and animal models155. However, clinical trials using antioxidant 

vitamins to treat cardiovascular diseases were unsuccessful156-158. One reason may be that ROS 

might exert complex functions depending on the sub-cellular location, source and the ROS 

species that has been generated65, 159. Not all ROS effects are necessarily detrimental; in 

particular, specific signalling induced by ROS (“redox signalling”) can be beneficial48, 49, 73. It is 

therefore not surprising that non-specific scavenging with antioxidant vitamins was not beneficial 

in clinical trials. In this context, NADPH oxidases (Noxs) have been gaining interest over the 

past two decades. They are different from other ROS-generating enzymes as ROS production by 

transferring electrons from NADPH to molecular oxygen is their primary function. Nox enzymes 

are important for redox signalling in several tissues. Of the seven known Nox family isoforms, 

Nox2 and Nox4 are the predominant ones in the heart160. Nox2, mainly located at the plasma 

membrane, produces superoxide and mediates angiotensin II (Ang II)-induced maladaptive 

cardiac remodelling69. Nox4, however, is located intracellularly, is regulated via its abundance as 
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it is constitutively active, produces predominantly hydrogen peroxide161 and has been recently 

shown to be beneficial in the cardiovascular system under different stress conditions. In a femoral 

artery ligation model in mice, Nox4 was shown to protect the vasculature from ischemic 

damage162. Zhang et al. demonstrated a protective role for Nox4 in the heart during chronic 

pressure overload through cardiac HIF-1α (hypoxia-inducible factor 1α) stabilization and 

increased angiogenesis in mice73. This was attributed specifically to cardiomyocyte-derived Nox4 

as cardiomyocyte-specific Nox4 overexpressing mice were protected from pathological 

remodelling and cardiac dysfunction during chronic pressure overload. Additionally, under the 

same stress conditions, activation of the transcription factor Nuclear factor erythroid-derived 2-

like 2 (Nrf2), which is a key regulator of cytoprotective processes, has been shown to be Nox4-

dependent. In more detail, cardiac protection during chronic pressure overload in cardiomyocyte-

specific Nox4 overexpressing mice was markedly reduced through an additional Nrf2-deletion163. 

Using the aortocaval fistula (Shunt) model in mice, this study investigated a potential role for 

endogenous Nox4 in the cardiac response to volume overload as this is currently unknown. It was 

aimed to get a more detailed understanding of cardiac signalling during volume overload and 

eccentric remodelling respectively.  
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5.2. Assessment of Nox4-involvement in cardiac eccentric remodelling 

following two weeks of volume overload in mice 

As NADPH Oxidase-4 (Nox4) activity is regulated via its abundance, cardiac Nox4 expression 

levels in WT mice were assessed following two weeks of chronic volume overload induced via 

aortocaval fistula (Shunt) surgery. For a more detailed understanding, global Nox4-null mice 

were intensively studied and compared to WT littermates with respect to cardiac remodelling and 

mechanisms in response to chronic volume overload. As a reverse approach, volume overload-

induced cardiac remodelling was also assessed in cardiomyocyte-specific Nox4 overexpressing 

mice and compared to WT littermates. 

 

5.2.1 Expression profiles of NADPH oxidases and related genes in the heart following chronic 

volume overload 

Two weeks of volume overload in WT mice significantly induced cardiac gene expression of 

Nox4 (1.6 fold, p<0.05) (Fig. 5.1A) without affecting Nox2 and Nox subunits (p22phox, p40phox, 

p47phox, p67phox)-mRNA levels compared to Sham controls (Fig. 5.1B-F).  

 

 

Figure 5.1: Cardiac gene expression of NADPH oxidases (Noxs) and subunits in WT mice following two weeks 

of volume overload. Shunt surgery was performed in age-matched, male WT mice and compared to respective 

Sham controls. Cardiac mRNA levels of Nox4 (A), Nox2 (B) and Nox subunits (p22phox, p40phox, p47phox and p67phox) 

(C-F) were measured two weeks post surgery using qRT-PCR. Values are presented as fold change compared to 

respective Sham controls, GAPDH was used for normalization. n=5/group; data are presented as mean ± SEM; * 

p<0.05, n.s.: not significant between Shunt and respective Sham controls using unpaired Student´s t-test. 
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This was confirmed on protein level as cardiac Nox4 expression was significantly increased (2.0 

fold, p<0.01), whereas Nox2 remained unchanged in the heart following chronic volume 

overload compared to respective controls (Fig. 5.2A-C). Nox2 needs to be activated through 

membrane translocation and binding of cytosolic subunits including p47phox; thus, Nox2 

activation in the heart following Shunt was assessed by Western Blotting for p47phox in the 

membrane-enriched fraction, where Nox2 is located. As with total Nox2 expression levels in 

whole heart lysates, Nox2 activation was found to be also not significantly different in the heart 

after two weeks of volume overload compared to controls (Fig. 5.2D,E). There even appeared to 

be a trend towards less Nox2 activation following chronic volume overload.  

 

 

Figure 5.2: Cardiac protein expression and activation of NADPH oxidases (Noxs) in WT mice following two 

weeks of volume overload. Shunt surgery was performed in age-matched, male WT mice and compared to 

respective Sham controls. Cardiac protein levels of Nox4 and Nox2 were measured two weeks post surgery via 

Western Blotting using whole heart lysates. Representative images are shown in A, densitometric quantification in B 

and C. Cardiac Nox2 activation was assessed by detection of p47phox in the membrane-enriched fraction. 

Representative image in D, densitometric quantification in E. Values are presented as fold change compared to 

respective Sham controls, GAPDH was used as loading control for whole heart lysates, caveolin-3 for membrane 

fractions. n=4/group; data are presented as mean ± SEM; ** p<0.01, n.s.: not significant between Shunt and 

respective Sham controls using unpaired Student´s t-test. 
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Thus, chronic volume overload seems to specifically induce Nox4 expression in the heart. One 

downstream target of Nox4 is Nrf2 (Nuclear factor erythroid-derived 2-like 2), which has been 

shown to mediate cardiac protection during chronic pressure overload163, 164. However, two weeks 

of volume overload did not change mRNA levels of three major Nrf2 targets Gclc (glutamate-

cysteine ligase, catalytic subunit), Gsta2 (glutathione S-transferase A2) and Txnrd1 (thioredoxin 

reductase 1) compared to controls (Fig. 5.3A-C). Therefore, a potential Nox4-involvement in the 

cardiac response to chronic volume overload is likely to be Nrf2-independent. 

 

 

Figure 5.3: Cardiac gene expression of Nrf2 (Nuclear factor erythroid-derived 2-like 2) targets in WT mice 

following two weeks of volume overload. Shunt surgery was performed in age-matched, male WT mice and 

compared to respective Sham controls. Cardiac mRNA levels of Nrf2 targets such as Gclc (glutamate-cysteine ligase, 

catalytic subunit) (A), Gsta2 (glutathione S-tranferase A2) (B) and Txnrd1 (thioredoxin reductase 1) (C) were 

measured two weeks post surgery using qRT-PCR. Values are presented as fold change compared to respective 

Sham controls, GAPDH was used for normalization. n=5/group; data are presented as mean ± SEM; n.s.: not 

significant between Shunt and respective Sham controls using unpaired Student´s t-test. 

 

 

5.2.2 Cardiac remodelling and hypertrophy in global Nox4-null mice and WT littermates 

following two weeks of volume overload 

Transthoracic echocardiography two weeks after Shunt surgery revealed significant differences 

between global Nox4-null mice (Nox4-/-) and WT littermates with respect to left ventricular 

eccentric remodelling compared to respective Sham controls (Fig. 5.4A). The increase in left 

ventricular end-diastolic diameter (LVEDD) as marker for dilation was increased in both 

genotypes, but signficantly less pronounced in Nox4-/--mice compared to WT littermates (4.6 vs 

5.1 mm, p<0.01), each compared to respective Sham controls (Fig. 5.4B, Table 5.1). This 

difference in dilation together with unchanged septum thickness (Fig. 5.4C, Table 5.1) between 

the genotypes suggested an important role for Nox4 during eccentric remodelling. This 

conclusion was also confirmed by a more pronounced decrease in relative wall thickness in WT 
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compared to Nox4-null mice (0.27 vs 0.30, p<0.05) (Fig. 5.4D, Table 5.1), which is indicative of 

more eccentric remodelling in WTs. Despite these differences in remodelling, global systolic 

function, measured by ejection fraction, was well-preserved and did not differ between the 

genotypes two weeks after Shunt surgery (Fig. 5.4E, Table 5.1).  

The amount of left ventricular hypertrophy was also different between Nox4-/--mice and WT 

littermates following two weeks of volume overload. WGA (wheat germ agglutinin)-staining and 

quantification of cardiac cross sectional area revealed significantly smaller cardiomyocytes in 

Nox4-/--mice compared to WT littermates (322.8 vs 378.8 μm2, p<0.01) (Fig. 5.5A,B). This could 

also be confirmed on a macroscopic level as Nox4-/--mice displayed significantly less increase in 

left ventricular weight / tibia length ratio increase compared to WT littermates following Shunt 

(+24.7 vs +42.6%, p<0.05) (Fig. 5.5C). However, this difference in hypertrophy could only be 

detected in the left ventricle as right atrial, right ventricular as well as left atrial weight versus 

tibia length ratios increased to a similar extent in Nox4-/--mice and WT littermates after two 

weeks of volume overload (Table 5.1). 
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Figure 5.4: Echocardiographic assessment of left ventricular remodelling and function in Nox4-/--mice and 

WT littermates following two weeks of volume overload. Shunt surgery was performed in age-matched, male 

global Nox4-null mice (Nox4-/-) and WT littermates compared to respective Sham controls. Representative 

transthoracic echocardiographic images two weeks post surgery are shown in A, mean data for left ventricular end-

diastolic diameter (LVEDD) in B, septum thickness in C, relative wall thickness in D and ejection fraction in E. n=9-

12/group; data are presented as mean ± SEM; ** p<0.01 in Shunt versus its respective Sham control, ‡ p<0.05 

significant interaction between both genotypes, # p<0.01 between both Shunt groups and significant interaction 

(p<0.01) between both genotypes, n.s.: not significant between both genotypes using two-way ANOVA followed by 

Bonferroni post-hoc test for multiple comparisons.  
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Figure 5.5: Left ventricular hypertrophy in Nox4-/--mice and WT littermates following two weeks of volume 

overload. Shunt surgery was performed in age-matched, male global Nox4-null mice (Nox4-/-) and WT littermates 

compared to respective Sham controls. Representative histological images in A are showing left ventricular myocyte 

cross sections stained with wheat germ agglutinin (WGA) after Shunt and respective Sham controls. Mean data for 

cross sectional area (CSA) are shown in B, for left ventricular (LV) weight versus tibia length ratios two weeks after 

surgery in C. n=6-12/group; data are presented as mean ± SEM; ** p<0.01 in Shunt versus its respective Sham 

control, ‡ p<0.05 between both Shunt groups and significant interaction (p<0.05) between both genotypes, # p<0.01 

between both Shunt groups and significant interaction (p<0.01) between both genotypes using two-way ANOVA 

followed by Bonferroni post-hoc test for multiple comparisons.  
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Table 5.1: Echocardiographic and morphometric data from Nox4-/--mice and WT littermates following two 

weeks of volume overload. Shunt surgery was performed in age-matched, male global Nox4-null mice (Nox4-/-) and 

WT littermates compared to respective Sham controls. Two weeks after surgery, transthoracic echocardiography was 

performed, followed by removal of hearts and weighing of individual cardiac chambers and lungs, each normalized 

to the respective tibia length (TL). HR: heart rate, bpm: beats per minute, LVID;d: left ventricular diameter in 

diastole, LVID;s: left ventricular diameter in systole, LVV;d: left ventricular volume in diastole, LVV;s: left 

ventricular volume in systole, septum: septal wall thickness, post. Wall: posterior wall thickness, RWT: relative wall 

thickness, SV: stroke volume, EF: ejection fraction, FS: fractional shortening, HW: total heart weight, LV: left 

ventricular weight, RV: right ventricular weight, LA: left atrial weight, RA: right atrial weight. Data are presented as 

mean ± SEM; * p<0.05, ** p<0.01 in Shunt versus its respective Sham control, ‡ p<0.05 between both Shunt groups 

and significant interaction (p<0.05) between both genotypes, # p<0.01 between both Shunt groups and significant 
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interaction (p<0.01) between both genotypes using two-way ANOVA followed by Bonferroni post-hoc test for 

multiple comparisons.  

5.2.3 Cardiac stress, angiogenesis, fibrosis and apoptosis in global Nox4-null mice and WT 

littermates following two weeks of volume overload 

Despite different patterns of eccentric remodelling, both Nox4-/--mice and WT littermates showed 

similar changes in cardiac mRNA levels of stress markers such as ANP (Atrial Natriuretic 

Peptide) (3.4 vs 3.0 fold increase, p=n.s.), BNP (Brain Natriuretic Peptide) (2.2 vs 2.4 fold 

increase, p=n.s.), α-skeletal actin (5.6 vs 6.7 fold increase, p=n.s.) and SERCA-2α 

(Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase-2α) (0.7 vs 0.7 fold change, p=n.s.) 

compared to respective Sham controls (Fig. 5.6A-D). Thus, these markers of the cardiac stress 

response appeared to be similar between the genotypes after two weeks of volume overload. 

 

 

Figure 5.6: Cardiac gene expression of stress markers in Nox4-/--mice and WT littermates following two weeks 

of volume overload. Shunt surgery was performed in age-matched, male global Nox4-null mice (Nox4-/-) and WT 

littermates compared to respective Sham controls. Cardiac mRNA levels of ANP (Atrial Natriuretic Peptide) (A), 

BNP (Brain Natriuretic Peptide) (B), α-skeletal actin (C) and SERCA-2α (Sarcoplasmic/Endoplasmic Reticulum 

Calcium ATPase-2α) (D) were measured two weeks post surgery using qRT-PCR. Values are presented as fold 

change compared to WT Sham controls, GAPDH was used for normalization. n=6-7/group; data are presented as 
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mean ± SEM; * p<0.05, ** p<0.01 in Shunt versus its respective Sham control, n.s.: not significant between 

genotypes using two-way ANOVA followed by Bonferroni post-hoc test for multiple comparisons.  

Isolectin B4-, Picrosirius red- and TUNEL (TdT-mediated dUTP-biotin nick end labeling)-

staining of cardiac cross sections revealed no changes in capillary density (Fig. 5.7), interstitial 

fibrosis (Fig. 5.8) and apoptosis (Fig. 5.9) through two weeks of volume overload per se and 

between genotypes compared to respective Sham controls.  

 

 

Figure 5.7: Left ventricular capillary density in Nox4-/--mice and WT littermates following two weeks of 

volume overload. Shunt surgery was performed in age-matched, male global Nox4-null mice (Nox4-/-) and WT 

littermates compared to respective Sham controls. Representative histological images in A illustrate left ventricular 

capillaries in green by isolectin B4-staining, mean data for the number of capillaries per mm2 two weeks post surgery 



5. Results III 

118 
 

are shown in B. n=6-7/group; data are presented as mean ± SEM; n.s.: not significant between both genotypes using 

two-way ANOVA followed by Bonferroni post-hoc test for multiple comparisons.  

 

 

Figure 5.8: Left ventricular interstitial fibrosis in Nox4-/--mice and WT littermates following two weeks of 

volume overload. Shunt surgery was performed in age-matched, male global Nox4-null mice (Nox4-/-) and WT 

littermates compared to respective Sham controls. Representative histological images in A illustrate fibrotic regions 

(red) via Picrosirius red-staining, mean data for the fibrotic area relative to the area of the total heart slice two weeks 
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post surgery are shown in B. n=5/group; data are presented as mean ± SEM; n.s.: not significant between both 

genotypes using two-way ANOVA followed by Bonferroni post-hoc test for multiple comparisons.  

 

 

Figure 5.9: Left ventricular apoptosis in Nox4-/--mice and WT littermates following two weeks of volume 

overload. Shunt surgery was performed in age-matched, male global Nox4-null mice (Nox4-/-) and WT littermates 

compared to respective Sham controls. White arrows indicate TUNEL-positive, apoptotic cells in representative 

histological images (A), mean data for number of apoptotic cells per counted nuclei are shown in B. n=4-5/group; 
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data are presented as mean ± SEM; n.s.: not significant between both genotypes using two-way ANOVA followed by 

Bonferroni post-hoc test for multiple comparisons.  

5.2.4 Cardiac kinase and protein synthesis activation in global Nox4-null mice and WT 

littermates following two weeks of volume overload 

Akt activation is known to be important in the cardiac response to volume overload27. Two weeks 

of volume overload induced significant differences in cardiac Akt activation between Nox4-/--

mice and WT littermates compared to respective Sham controls. Whereas WT animals showed an 

increase, Nox4-/--mice displayed a decrease in phosphorylated Akt at Ser473 (+29 vs -21%, 

p<0.05) after two weeks of volume overload (Fig. 5.10A,B). Erk1/2 is another kinase known to 

play a role in eccentric remodelling165. Two weeks of volume overload decreased 

phosphorylation levels of Erk1/2 at Thr202/Tyr204, but to a similar extent in Nox4-/--mice and WT 

littermates (-29 vs -37%, p=n.s.) (Fig. 5.10A,C). Taken together, this suggests a specific 

regulation of Akt activation by Nox4 in the heart in response to volume overload. 

S6 ribosomal protein and eIF4E-BP1 (eukaryotic translation initiation factor 4E-binding protein 

1) are two known protein synthesis initiators which can be regulated through Akt-dependent 

phosphorylation166. In line with increased Akt activation, both these proteins showed 

significantly different phosphorylation levels in WT and Nox4-/- mice. S6 ribosomal protein-

phosphorylation at Ser235/236 was significantly increased in WTs and slightly decreased in Nox4-/--

mice (+268 vs -19%, p<0.01) (Fig. 5.11A,B), as was the hyper-phosphorylated γ-isoform of 

eIF4E-BP1 (+53 vs -17%, p<0.01) (Fig. 5.11A,C). These changes in phosphorylation levels 

suggest more cardiac protein synthesis in WT compared to Nox4-/--mice following chronic 

volume overload.  

In conclusion, volume overload appears to induce eccentric hypertrophy in the heart via Akt 

activation and subsequent protein synthesis in a Nox4-dependent manner. 
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Figure 5.10: Phosphorylation of cardiac Akt and Erk1/2 in Nox4-/--mice and WT littermates following two 

weeks of volume overload. Shunt surgery was performed in age-matched, male global Nox4-null mice (Nox4-/-) and 

WT littermates compared to respective Sham controls. Representative Western Blot images for phospho-Akt (Ser473) 

(p-Akt), total Akt, phospho-Erk1/2 (Thr202/Tyr204) (p-Erk1/2), total Erk1/2 as well GAPDH from heart lysates two 

weeks post surgery are illustrated in A, densitometric quantification for phosphorylated versus total protein 

abundance in B and C. Values are presented as fold change compared to WT Sham controls. n=6-9/group; data are 

presented as mean ± SEM; * p<0.05 in Shunt versus its respective Sham control, ‡ p<0.05 between both Shunt 

groups and significant interaction (p<0.05) between both genotypes, n.s.: not significant between genotypes using 

two-way ANOVA followed by Bonferroni post-hoc test for multiple comparisons. 
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Figure 5.11: Phosphorylation of cardiac S6 ribosomal protein and eIF4E-BP1 in Nox4-/--mice and WT 

littermates following two weeks of volume overload. Shunt surgery was performed in age-matched, male global 

Nox4-null mice (Nox4-/-) and WT littermates compared to respective Sham controls. Representative Western Blot 

images for phospho-S6 ribosomal protein (Ser235/236) (p-S6), total S6 ribosomal protein, eIF4E-BP1 (divided into α, β 

and γ-isoform) and GAPDH from heart lysates two weeks post surgery are illustrated in A. Densitometric 

quantification of phosphorylated versus total S6 protein in B, and the hyper-phosphorylated γ-isoform versus total 

eIF4E-BP1 protein in C. Values are presented as fold change compared to WT Sham controls. n=5-6/group; data are 

presented as mean ± SEM; * p<0.05, ** p<0.01 in Shunt versus its respective Sham control, # p<0.01 between both 

Shunt groups and significant interaction (p<0.01) between both genotypes using two-way ANOVA followed by 

Bonferroni post-hoc test for multiple comparisons. 
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5.2.5 Cardiac remodelling and hypertrophy in cardiomyocyte-specific Nox4 overexpressing 

mice (Nox4tg) and WT littermates following two weeks of volume overload 

Increased Nox4 expression in the heart of Nox4tg-mice was confirmed on protein level by 

Western Blotting (Fig. 5.12). Transthoracic echocardiography two weeks post Shunt revealed a 

similar increase in LVEDD (left ventricular end-diastolic dimension) in both Nox4tg-mice and 

WT littermates (4.9 vs 5.1 mm, p=n.s.) compared to respective controls (Fig. 5.13A, Table 5.2). 

Septum thicknesses were unaltered and systolic function was preserved in all four experimental 

groups (Fig. 5.13B-C, Table 5.2). The amount of hypertrophy, measured as left ventricular 

weight versus tibia length ratio, was also similar in both Nox4tg-mice and WT littermates 

following two weeks of volume overload (7.6 vs 7.8 mg/mm, p=n.s.) compared to respective 

Sham controls (Fig. 5.13D, Table 5.2).  

Thus, forced cardiomyocyte overexpression of Nox4 does not seem to influence the cardiac 

response to volume overload with respect to left ventricular remodelling and hypertrophy. 

 

 

Figure 5.12: Confirmation of Nox4 protein overexpression in heart lysates from cardiomyocyte-specific Nox4 

transgenic mice (Nox4tg). Nox4 was detected in heart lysates from untreated, male WT and Nox4tg-mice using 

Western Blot imaging. GAPDH was used as internal loading control. An empty lane without protein was included 

between both samples. 
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Figure 5.13: Left ventricular remodelling, function and hypertrophy in Nox4tg-mice and WT littermates 

following two weeks of volume overload. Shunt surgery was performed in age-matched, male cardiomyocyte-

specific Nox4 overexpressing mice (Nox4tg) and WT littermates compared to respective Sham controls. 

Transthoracic echocardiography, followed by organ harvesting was performed two weeks post surgery to assess the 

left ventricular end-diastolic diameter (LVEDD) (A), septum thickness (B), ejection fraction (C) and left ventricular 

(LV) weight versus tibia length ratio (D). n=5-7/group; data are presented as mean ± SEM; ** p<0.01 in Shunt 

versus its respective Sham control, n.s.: not significant between both genotypes using two-way ANOVA followed by 

Bonferroni post-hoc test for multiple comparisons.  
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Table 5.2: Echocardiographic and morphometric data from Nox4tg-mice and WT littermates following two 

weeks of volume overload. Shunt surgery was performed in age-matched, male cardiomyocyte-specific Nox4 

overexpressing mice (Nox4tg) and WT littermates compared to respective Sham controls. Two weeks after surgery, 

transthoracic echocardiography was performed, followed by removal of hearts and weighing of individual cardiac 

chambers and lungs, each normalized to the respective tibia length (TL). HR: heart rate, bpm: beats per minute, 

LVID;d: left ventricular diameter in diastole, LVID;s: left ventricular diameter in systole, LVV;d: left ventricular 

volume in diastole, LVV;s: left ventricular volume in systole, septum: septal wall thickness, post. Wall: posterior 

wall thickness, RWT: relative wall thickness, SV: stroke volume, EF: ejection fraction, FS: fractional shortening, 

HW: total heart weight, LV: left ventricular weight, RV: right ventricular weight, LA: left atrial weight, RA: right 

atrial weight. Data are presented as mean ± SEM; * p<0.05, ** p<0.01 in Shunt versus its respective Sham control, 

none of parameters were significantly different between genotypes using two-way ANOVA followed by Bonferroni 

post-hoc test for multiple comparisons.  
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5.3 Discussion 

Nox4 expression has been shown to be induced by various stresses such as chronic pressure 

overload or myocardial infarction in vivo as well as hypoxia in vitro73. This study demonstrates 

for the first time an induction of Nox4 in the heart after chronic volume overload in vivo. 

Furthermore, Nox4 is shown to promote adaptive, eccentric remodelling in the heart during 

volume overload, at least partially via Akt-mediated activation of protein synthesis initiators. 

This finding is in line with previous studies from our group emphasizing a beneficial and 

protective role for Nox4 in the heart during chronic pressure overload73, 163. However, other 

studies have reported rather detrimental effects of Nox4 in the heart during cardiac stress167, 168. 

In the current controversial debate about the precise role of Nox4 in the heart169, this study once 

more highlights the physiological importance for endogenous Nox4 during haemodynamic stress.  

Chronic volume overload in vivo stretches cardiomyocytes resulting in increased length27. 

According to our findings, this affects Nox4 without changing Nox2 expression or activation 

levels (Fig. 5.1, 5.2). This seems to be in contrast with a study from Prosser et al., which 

demonstrated increases in Nox2 activation and ROS production after cardiomyocyte stretch170. 

However, their experiments were performed under short-term acute physiological stretch in vitro, 

whereas the aortocaval fistula (Shunt) model induces pathological chronic stress in vivo. Prosser 

et al. investigated mechanisms in single cardiomyocytes, experiments in our study were 

performed in whole heart lysates and membrane-enriched fractions from heart lysates 

respectively. These differences might explain the different observations with respect to Nox2. 

The maladaptive cardiac response to pressure overload compared to a more beneficial and 

physiological cardiac phenotype following chronic volume overload has been addressed before27. 

In a previous Chapter of this thesis (4.3.3), pressure overload was shown to induce a shift 

towards an oxidized environment in the heart as the reduced versus oxidized glutathione ratio 

was significantly decreased compared to controls. The same duration of volume overload, 

however, did not alter the cardiac redox status (Fig. 4.15C). Thus, it was tested whether the 

increase in Nox4 expression following volume overload might maintain the redox status in the 

heart through an Nrf2-mediated antioxidant response, as this mechanism is known to be 

protective during chronic pressure overload163. However, mRNA levels of three commonly 

reported Nrf2 targets Gclc (glutamate-cysteine ligase, catalytic subunit), Gsta2 (glutathione S-

tranferase A2) and Txnrd1 (thioredoxin reductase 1) remained unchanged after two weeks of 

volume overload (Fig. 5.3). Hence, Nox4-dependent Nrf2 activation does not seem to be a 
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relevant mechanism in the cardiac response to volume overload. Whether the difference in the 

general cardiac redox status is cause or consequence for the two different phenotypes following 

pressure and volume overload needs further investigation. It emphasizes that ROS production, 

balance and source can be different depending on the cardiac stress or cardiovascular disease 

respectively. From this point of view, it seems logical that general antioxidant treatment in 

cardiovascular diseases was shown to be unsuccessful157. 

Increased angiogenesis through HIF-1α (hypoxia-inducible factor 1α) stabilization and 

subsequent release of VEGF (vascular endothelial growth factor) is one of the mechanisms by 

which Nox4 protects the heart from maladaptive concentric remodelling during chronic pressure 

overload73. However, here it was demonstrated that this mechanism does not seem to be relevant 

after two weeks of volume overload. Neither Nox4-deletion nor two weeks of volume overload 

per se changed the capillary density in the heart (Fig. 5.7). Likewise, there were no changes in 

interstitial fibrosis (Fig. 5.8) or cardiac apoptosis (Fig. 5.9), again highlighting a more 

physiological response in the heart following two weeks of volume overload. 

Akt activation is known to play an important role in the cardiac adaptation to volume overload. 

After 20 weeks of volume overload, Akt-deficient mice showed decreased left ventricular 

eccentric remodelling and hypertrophy, which was associated with impaired systolic function and 

higher mortality compared to WT littermates171. Our findings identified Nox4 as an upstream 

activator of Akt during chronic volume overload as Nox4-null mice displayed less Akt activation 

compared to WT littermates after two weeks of Shunt (Fig. 5.10A,B). Similar to Akt-deficient 

mice, this was associated with less left ventricular eccentric remodelling and hypertrophy in 

Nox4-null mice (Fig. 5.4, 5.5, Table 5.1). An interaction between Nox4 and Akt has been 

recently reported in an angiotensin II (Ang II) model, where cardiac-specific overexpression of 

human Nox4 in mice led to maladaptive cardiac remodelling including fibrosis through Akt 

activation168. With respect to the Ang II and the Shunt model being two very different stress 

models, this is in contrast to our findings suggesting an adaptive response through that same 

mechanism. However, the study by Zhao et al. used a transgenic mouse with a 10 fold increase in 

cardiac protein levels of human Nox4 and 8 fold in subsequent ROS production. Such a 

supernormal increase in ROS might regulate signalling pathways in an artificial and non-

physiological manner. Thus, we focused on physiological mechanisms regulated by endogenous 

Nox4 using global Nox4-null mice. Even though prolonged Akt activation can cause cardiac 

dilation and systolic dysfunction172, many studies report rather beneficial roles for Akt in the 



5. Results III 

128 
 

heart. In line with our findings, Akt-deficient mice show less physiological growth in response to 

exercise, but an increase in maladaptive cardiac remodelling and contractile dysfunction to 

pathological stimuli such as chronic pressure overload or endothelin-1173, 174. This supports the 

hypothesis that Nox4-Akt-dependent eccentric remodelling is an adaptive response of the heart to 

volume overload. 

Decreased Erk1/2-phosphorylation has been shown to be associated with eccentric remodelling in 

vitro165. We could confirm these results by showing significantly less Erk1/2-phosphorylation 

after two weeks of volume overload (Fig. 5.10A,C). However, this does not seem to be regulated 

in a Nox4-dependent manner as it occurs in Nox4-null mice and WT littermates to a similar 

extent. Whether decreased Erk1/2-phosphorylation contributes to eccentric remodelling in a 

physiological or pathological manner needs further investigation. 

In line with the Nox4-dependent regulation of Akt activation during volume overload, 

phosphorylation of S6 ribosomal protein and eIF4E-BP1 also appeared to be regulated by Nox4 

(Fig. 5.11). S6 ribosomal protein and eIF4E-BP1 are two known targets of the Akt-mTOR-axis 

and initiate general protein synthesis upon phosphorylation. This mechanism has recently been 

reported to be associated with cardiac adaptation to volume overload in mice: treatment of WT 

mice with the mTOR-inhibitor temsirolimus reduced S6 ribosomal protein and eIF4E-BP1-

phosphorylation, which caused cardiac atrophy, less eccentric remodelling and higher mortality 

compared to vehicle treatment during chronic volume overload175. We could confirm that 

phosphorylation of S6 ribosomal protein and eIF4E-BP1 are increased through volume overload 

in WT mice, which is blunted in global Nox4-null mice.  

Despite the different phenotypes in global Nox4-null mice and WT littermates, cardiomyocyte-

specific overexpression of Nox4 had no effect on left ventricular remodelling and hypertrophy 

following two weeks of volume overload compared to WTs (Fig. 5.13). This could be interpreted 

in two ways: 1. Cardiomyocyte-derived Nox4 is not crucial for promoting eccentric hypertrophy. 

The different response in global Nox4-null mice might therefore be mediated by other cell types 

such as fibroblasts, which represent more than 50% of all cardiac cells176. However, the majority 

of cardiac mass and volume is made up of cardiomyocytes. As the differences in Akt-protein 

synthesis-signalling were detected in this study using whole heart lysates (Fig. 5.10, 5.11), it is 

more likely to be a cardiomyocyte-dependent phenotype. Additionally, left ventricular 

hypertrophy following chronic volume overload was associated with increases in cardiomyocyte 

area (Fig. 5.5) without any signs of fibrosis (Fig. 5.8), again emphasizing the importance of 
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cardiomyocytes in this setting. Previous studies from our group also reported cardiac protection 

by Nox4 to be cardiomyocyte-specific during pressure overload73, 163. 2. In order to promote 

adaptive eccentric hypertrophy following chronic volume overload, physiological increases in 

cardiac Nox4 levels are enough, further augmentation is redundant and might even regulate 

signalling pathways in an unphysiological manner, as mentioned earlier. This seems more likely 

to be the explanation for why Nox4tg-mice do not differ from WT littermates with respect to left 

ventricular remodelling following chronic volume overload. 

Taken together, Nox4 is known to reduce maladaptive, concentric remodelling during chronic 

pressure overload through different mechanisms. During volume overload, Nox4 seems to 

activate the Akt-protein synthesis-axis to promote adaptive, eccentric remodelling. This is 

schematically illustrated in Fig. 5.14. Nox-inhibition has long been considered as a therapeutic 

option in various diseases. GKT137831, a Nox1 and Nox4 inhibitor, is currently undergoing class 

II clinical trials as potential treatment for diabetic nephropathy. However, most compounds lack 

isoform-specificity and too little is known about their exact mechanisms177, 178. Our study 

confirms the importance of isoform-specificity, as inhibiting Nox4 might also attenuate adaptive 

processes in the heart during haemodynamic stress. This has to be considered in the development 

of new compounds targeting NADPH oxidases. 

Limitation: 

We could not detect any functional differences after two weeks of volume overload. Impairment 

in systolic function is known to occur very late in this model, starting after around 15 weeks171. 

In our hands, time points as late as 15 weeks were inappropriate due to a potential closure of the 

Shunt. It has been reported that a three-week maturation phase of the fistula is followed by a 

three-week potential failure phase179, which we have also observed in this model. 
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Figure 5.14: Scheme of Nox4-involvement in the regulation of cardiac remodelling during pressure and 

volume overload. Pressure overload and volume overload activate Nox4. In pressure overload, Nox4 increases 

angiogenesis through stabilization of the hypoxia-inducible factor 1α (HIF-1α) and subsequent increases in levels of 

vascular endothelial growth factor (VEGF). Additionally, Nox4 increases levels of the transcription factor Nuclear 

factor erythroid-derived 2-like 2 (Nrf2), which induces a cytoprotective gene program. Both these mechanisms have 

been described to reduce detrimental, concentric remodelling73, 163. 

In volume overload, we could demonstrate that Nox4 promotes eccentric cardiac adaptation through Akt activation 

and presumably increased protein synthesis. 
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6. Concluding Discussion 

This study provides novel data on cardiac physiology and metabolism during chronic 

haemodynamic stress, i.e. volume versus pressure overload. The aortocaval fistula (Shunt) is a 

well-established, but not frequently used model to induce volume overload in mice. As expected, 

Shunt as a volume overload model induced eccentric cardiac hypertrophy with left ventricular 

dilation. Pressure overload models such as abdominal aortic banding (AAB) or transverse aortic 

constriction (TAC) caused concentric hypertrophy, characterized by wall thickening (Figure 4.1). 

Despite these different remodelling patterns, two weeks of Shunt and TAC have been shown to 

induce almost identical levels of left ventricular hypertrophy (Fig. 4.2). However, functional and 

metabolic properties were remarkably different between both models. This was assessed by state-

of-the-art echocardiography (Chapter 3) and a novel in vivo 13C-labelling strategy with [U-13C] 

glucose administration followed by flux analysis using NMR-spectroscopy (Chapter 4). This in 

vivo approach was meant to give new insights into glucose metabolism during cardiac 

hypertrophy and heart failure, as this is currently under controversial debate34.  

In Chapter 3, differences between volume and pressure overload-induced changes in systolic and 

diastolic parameters were reported and discussed. Volume overload was not associated with 

systolic impairment, but significantly altered diastolic parameters. These included a decreased 

IVRT (isovolumic relaxation time) and increases in both left atrial area and diastolic strain as 

signs of increased left ventricular filling pressure. These changes are usually associated with a 

restrictive pattern of diastolic heart failure, which is characterized by left ventricular filling 

primarily during early diastole due to significantly elevated left atrial pressure levels. This 

restrictive filling pattern is typically observed in the end-stage of progressive diastolic 

dysfunction and is associated with a poor prognosis in patients180. It is related to progressive left 

ventricular dilation and is a predictor for cardiac death in patients with prior myocardial 

infarction. The murine Shunt model, however, stays well-preserved for a long period of time 

without development of heart failure and increased mortality. This suggests the detected changes 

in diastolic parameters to be model-dependent through increased preload rather than reflecting 

functionally relevant diastolic dysfunction. This is also supported by the fact that E/E´, the most 

sensitive parameter to assess diastolic impairment in humans, is not different amongst mice 

subjected to Shunt and Sham respectively. Additionally, we did not detect any changes in cardiac 

fibrosis following Shunt (Fig. 5.8). This is in line with rather physiological diastolic properties, as 

fibrosis is known to be a key contributor to diastolic dysfunction181, 182. Chronic pressure 
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overload, induced by TAC and AAB surgery, however, led to both diastolic and systolic 

impairment including prolonged relaxation (increase in IVRT), increased left ventricular filling 

pressure (increases in E/E´, left atrial area and diastolic strain), and contractile dysfunction 

(decrease in EF). TAC is known to induce a more detrimental phenotype compared to Shunt 

including systolic dysfunction, increased cardiac fibrosis and higher mortality in mice27. Our 

findings add to this with respect to differences in diastolic assessment. Particularly the presence 

of cardiac fibrosis is likely to significantly contribute to the progression of diastolic dysfunction 

following chronic pressure overload.  

On a metabolic level, chronic pressure overload caused increased cardiac glucose metabolism 

including augmented glycolysis, glucose-derived TCA cycle activity, anaplerosis, glutamine 

synthesis and metabolism respectively including O-GlcNAcylation of proteins (Chapter 4). As 

discussed in Chapters 1.4 and 4.4, a substrate switch from fatty acids to glucose utilization during 

pressure overload-induced cardiac hypertrophy has been reported by several studies and is 

generally accepted122, 124, 136, 137, 183. However, whether this metabolic switch is a compensatory 

mechanism to cope with increased haemodynamic stress or in fact is a driver of progression to 

heart failure is not fully understood and under controversial debate184. Several studies have 

demonstrated beneficial effects of increased glucose utilization during pressure overload. For 

instance, in mice with an insulin-independent cardiac-specific overexpression of GLUT1, basal 

glucose uptake and glycolysis were elevated following chronic pressure overload185. This was 

associated with adaptive cardiac remodelling including preserved systolic function, left 

ventricular dimensions, and higher survival compared to WT littermates. The beneficial cardiac 

response in transgenic mice was attributed to a favourable energetic profile (PCr/ATP) through 

increased glucose utilization. Choosing the reverse approach by subjecting cardiomyocyte-

specific GLUT1-deficient mice to chronic pressure overload, one would have assumed 

accelerated pathological remodelling and cardiac dysfunction, based on the previous findings. 

However, despite a shift from glucose to fatty acid utilization in GLUT1-deficient mice, no 

differences with respect to pathological remodelling compared to WT littermates could be 

detected following chronic pressure overload186. A different way of augmenting glycolysis is 

through inhibition of FAO (fatty acid oxidation). In this context, heterozygous CPT1β (carnitine 

palmitoyltransferase 1β)-knockout mice were studied following chronic pressure overload187. 

Interestingly, these mice showed exacerbated cardiac hypertrophy, pathological remodelling and 

premature death compared to WT littermates. This was attributed to increased lipid accumulation 
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and subsequent lipotoxicity due to an inability to uptake long-chain fatty acids into the 

mitochondria for oxidation. These different findings indicate the complexity between glucose 

utilization and heart failure development. As outlined before, the metabolic switch may just be a 

consequence of an inability to use fatty acids; thus, alternative fuels such as glucose are used 

instead that do not necessarily generate as much ATP in order to sustain myocardial energetics 

and cardiac function. Pressure overload is associated with a decreased capillary density in the 

heart leading to a mismatch between oxygen supply and demand73, 163. With respect to oxygen 

efficiency, a switch from fatty acid to glucose utilization would be a logical consequence as 

glucose metabolism is more oxygen efficient than palmitate: for each mole of oxygen consumed, 

there is a more than 50% higher production of high energy phosphate bonds from glucose than 

from palmitate utilization188. Each gram of palmitate, on the other hand, produces more high 

energy bonds than glucose and is therefore more energy efficient, if oxygen is abundant. Taken 

together, augmenting glucose utilization in the heart during chronic pressure overload does not 

seem to be detrimental but there is a mixed picture as to whether it is responsible for preventing 

maladaptive cardiac remodelling or is just a logical consequence due to an insufficient oxygen 

supply. Glucose metabolism in the heart following two weeks of volume overload remained 

mainly unchanged with only slight increases in glycolytic activity (Chapter 4). This was also 

revealed by expression levels of metabolic enzymes. Cardiac function is still well-compensated 

two weeks after Shunt, thus indicating that glucose utilization might not need to be augmented in 

order to match a potentially higher demand. As shown in Fig. 5.7, capillary density in the heart is 

also well-maintained following two weeks of volume overload; hence, as previously mentioned, 

initial eccentric remodelling and hypertrophy in response to volume overload can be considered 

as being adaptive and physiological. At this stage, the oxygen supply in the heart is presumably 

still sufficient so that fatty acids with their favourable energy efficiency remain the ideal substrate 

for the heart. This is supported by metabolic profiling of inducible, cardiomyocyte-specific c-myc 

overexpressing mice, who were shown to develop well-compensated left ventricular hypertrophy. 

Compared to WT littermates, these transgenic animals showed free fatty acid contribution to the 

TCA cycle to be increased by nearly 50% with corresponding decreased exogenous glucose 

contribution in the heart189. For future work, it would be of interest to assess volume overload-

induced cardiac remodelling and function after an induced shift from fatty acids to glucose 

utilization. One potential experiment would be subjecting GLUT1 overexpressing mice to Shunt 

surgery, which might give new insights into the precise role of the metabolic shift during cardiac 
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remodelling and potentially heart failure development. It would also be interesting to inject 

labelled palmitate into mice following two weeks of Shunt and TAC respectively with 

subsequent flux analysis by NMR-spectroscopy. That way it could be assessed whether the 

increase in glucose metabolism following TAC is associated with decreased fatty acid utilization 

in vivo. After two weeks of volume overload, fatty acid utilization might still be physiological; 

thus, there is no need to increase glucose utilization.  

From a mechanistic point of view, Nox4-dependent activation of Akt with subsequent protein 

synthesis and eccentric, adaptive hypertrophy following chronic volume overload has been 

proposed in this study (Chapter 5). This is in line with previous studies reporting Akt activation 

to promote adaptive, eccentric hypertrophy during volume overload through increased protein 

synthesis171, 175. This finding is similar to the previously reported Akt-dependent increase in 

physiological hypertrophy following exercise in mice173. Thus, at least at relatively early time 

points, volume overload and exercise seem to induce similar changes in the heart with respect to 

remodelling and signalling. Under pathological pressure overload or endothelin-1 stimulation, 

Akt-deficient mice show less maladaptive hypertrophy. This suggests a beneficial role for Akt 

activation in cardiac remodelling, both by limiting maladaptive as well as mediating adaptive 

cardiac hypertrophy under different stress conditions. This role for Akt in cardiac remodelling 

during different stresses is very similar to what we have proposed for Nox4, as depicted in Fig. 

5.14. This suggests an important interaction between both proteins to protect the heart from 

various stresses via different mechanisms. In line with this hypothesis is a previous study from 

our group reporting increased levels of Akt-phosphorylation in cardiomyocyte-specific Nox4 

overexpressing mice following chronic pressure overload compared to WT littermates73. 

Accordingly, these transgenic animals were protected from cardiac dysfunction and maladaptive 

remodelling. The exact mechanism how Nox4 might activate Akt has not been further 

investigated. However, unpublished data from our group demonstrates a Nox4-mediated 

inhibition of protein phosphatase 2a (PP2A), which subsequently results in increased Akt-

phosphorylation levels.  

Long-term volume overload of 20 weeks, on the other hand, is associated with decreased Akt-, 

but increased CaMKII (calcium/calmodulin-dependent protein kinase II)-phosphorylation levels, 

which is known to be an unfavourable signalling pattern27, 171. This signalling switch after long-

term volume overload is associated with increased apoptosis and oxidative stress, potentially 

triggering the transition to heart failure. Thus, the beneficial and physiological response of the 
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heart to volume overload via Nox4-dependent Akt activation seems to be a limited process. 

Chronic Nox4 activation might in fact have deleterious effects in the heart during volume 

overload, similar to Akt. Chronic Akt activation can cause maladaptive left ventricular 

hypertrophy with left ventricular dilation and contractile dysfunction172, 190. In this regard, long-

term effects of Nox4-deficiency during chronic volume overload would be an interesting 

approach for future work. 

Akt activation has also been implicated in the regulation of glucose metabolism. In cancer cells, 

for instance, activation of Akt leads to increased glucose consumption including augmented 

glycolysis191. In the heart, acute activation of Akt was shown to increase glucose uptake and 

protect the heart from ischemia-reperfusion injury. Long-term Akt activation in the adult heart, 

however, contributes to pathological left ventricular hypertrophy, at least partially by reducing 

mitochondrial oxidative capacity192-194. These findings underline the difference between acute 

versus chronic Akt activation with respect to cardiac remodelling and heart failure respectively. 

They also seem to be contradictory to our findings. Despite the increased Akt activation 

following two weeks of volume overload, we could not detect any significant changes in cardiac 

glucose metabolism, as reported and discussed in Chapter 4. One explanation might be the level 

of Akt activation. The three studies previously mentioned used transgenic mice with either 

constitutively active Akt or Akt overexpression, which will result in unphysiological levels of 

activated Akt. The data presented in our study focused on endogenous Akt-phosphorylation 

levels, which are only moderately increased by around 30% through volume overload in WT 

mice (Fig. 5.10). Additionally, we have used a novel in vivo 13C-labelling approach to assess 

cardiac metabolism, which might also explain the different findings. 

From a therapeutic point of view, our study and others demonstrate that enhancing cardiac Nox4 

activation could be an interesting approach during haemodynamic cardiac stress to protect the 

heart. Prostacyclin has been shown to be a potent Nox4 activator in endothelial cells as 

prostacyclin treatment induces endothelial cell proliferation, cytoprotection and angiogenesis in a 

Nox4-dependent manner195. It would be interesting to test this hypothesis in a cardiovascular 

disease model as prostacyclin treatment has been shown to increase both left and right ventricular 

function in patients suffering from congestive heart failure and pulmonary arterial hypertension 

respectively196, 197. Adeno-associated virus (AAV)-mediated gene transfer of Nox4 might be 

another option for increasing cardiac Nox4 activity in this setting. Many animal studies have used 

this technique for the transfer of various genes. The most famous one amongst these genes is 
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SERCA-2α (sarcoplasmic/endoplasmic reticulum calcium ATPase-2α), which showed a high 

potential for heart failure therapy and has been tested in clinical trials198-201. However, as outlined 

before, it is not clear yet whether long-term activation of Nox4 still exerts beneficial effects in the 

heart during chronic haemodynamic stress. Additionally, many studies report detrimental effects 

of Nox4 in the development and progression of various diseases including diabetic nephropathy 

and cancer202-205. Thus, general Nox4 activation might also have deleterious side effects. 

However, Nox4 remains an interesting enzyme for potential heart failure therapy, but 

substantially more work needs to be done to comprehensively understand its role in 

cardiovascular diseases. 

In conclusion, the work presented in this study highlights the fundamental differences in cardiac 

physiology, metabolism and distinctive signalling pathways during volume versus pressure 

overload respectively. Volume overload in the heart is associated with compensated 

physiological properties, nearly unchanged glucose metabolism and activation of beneficial 

signalling pathways involving Nox4, Akt and protein synthesis. Pressure overload, on the other 

hand, causes rapid cardiac dysfunction, induces more complex metabolic alterations including 

increased glucose and glutamine metabolism, and induces early activation of detrimental 

signalling such as CaMKII. These findings highlight the importance of haemodynamics, 

especially the distinction between volume and pressure overload, during cardiac hypertrophy and 

heart failure development respectively. They also suggest a requirement for differential 

pharmacological intervention depending on the contribution of volume versus pressure overload 

in cardiovascular diseases. Surely, this will be challenging as many patients suffer from multiple 

diseases, such as hypertension and aortic regurgitation, inducing both pressure and volume 

overload simultaneously. However, a targeted approach like this would allow to treat patients 

based on their individual haemodynamic profile, which would be of significant benefit for future 

heart failure therapies.  
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