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Summary 

Rett syndrome is a neurodevelopmental disorder that primarily occurs in girls 

with a prevalence of 1:10.000–1:15.000 life births. The main genetic reasons 

of Rett syndrome are mutations in the methyl-CpG binding protein 2 (MECP2) 

gene. After a short, but normal development, a Rett child falls into 

developmental stagnation, which is followed by neuronal and autonomic 

dysfunction, and manifests as mental retardation, breathing impairment, 

epilepsy, loss of speech, mobility disturbances and stereotypical hand 

movements. Growing evidence shows that Rett syndrome is associated with 

mitochondrial dysfunction and oxidation stress. Mitochondria of MeCP2-

deficient (Mecp2-/y) mouse brain have been previously confirmed to be partly 

uncoupled and to show increased respiratory rates. More oxidized baseline 

conditions, exaggerated responses to oxidants and mitochondrial inhibition 

have been detected in the hippocampus of Mecp2-/y mice. To unveil the 

molecular causes of this redox imbalance specifically in neurons, and to 

enable a quantitative live-cell imaging of sub-cellular redox dynamics, viral 

vectors, expressing the genetically-encoded optical redox sensor 

reduction/oxidation-sensitive green fluorescent protein 1 (roGFP1) in cytosol 

and mitochondrial matrix have been generated. For quantitation, the 

ratiometric responses of roGFP1s were calibrated to full oxidation and 

reduction in mitochondrial and cytosolic compartments. Detailed fluorescence 

microscopy and two photon imaging confirmed that mitochondrial and 

cytosolic redox baselines were more oxidized in Mecp2-/y hippocampal 

neurons. Redox challenge induced by hydrogen peroxide (H2O2) and severe 

hypoxia elicited intensified oxidizing and reducing transients in Mecp2-/y 

neurons, respectively. Moreover, inhibition of superoxide dismutase (SOD) 

caused a less intense oxidation in Mecp2-/y cytosol and mitochondria, 

suggesting a decreased efficiency of this scavenging enzyme in Rett mice. 

Interestingly, differences among wildtype (WT) and Mecp2-/y mice were 

evident especially in the more complex organotypic slices, and they occurred 

already at neonatal stages in mitochondria and the cytosol. Furthermore, the 

current work is the first study, showing a pronounced shift towards more 

oxidizing conditions in Mecp2-/y neurons in response to different 



 XIII 

neurotransmitters. Taking advantage of the recently generated transgenic 

mouse lines, stably expressing roGFP1 in neuronal cytosol, the redox 

changes could be also confirmed for hippocampal neurons of adult and 

symptomatic Mecp2-/y mice. Taken together, roGFP1 responds reliably to 

oxidation and reduction, and it allows for semi-quantitative recordings of 

redox changes specifically in neurons. Since mitochondria are a primary 

source of reactive oxygen species (ROS), and the neuronal mitochondria of 

Mecp2-/y hippocampus revealed a more oxidizing and more vulnerable redox 

balance, this supports the hypothesis that mitochondrial dysfunction underlies 

the oxidative burden in Rett syndrome and drives potentially disease 

progression. Moreover, the roGFP1 transgenic mice will extend quantitative 

redox imaging to all postnatal stages and more complex preparations. This 

will enable studying disease progression and redox conditions throughout the 

brain of maturing Rett and WT mice. 
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1. Introduction 

1.1. Pathology of Rett syndrome 

Rett syndrome is a progressive, postnatal and neurodevelopmental disorder 

which was originally described by the Austrian paediatrician Andreas Rett as 

an ‘unusual brain atrophy syndrome’ in 1966 (Rett 1966; Hagberg et al. 

1983). This X-linked disorder affects predominantly girls with a prevalence of 

approximately 1:10.000-1:15.000 live births worldwide, and is apparently 

lethal in male embryos. However, individual cases of Rett syndrome in male 

patients were also reported (Wan et al. 1999; Clayton-Smith et al. 2000; 

Meloni et al. 2000; Orrico et al. 2000; Villard et al. 2000). 

 

Four main stages constitute the typical disease progression, spanning from 

normal development through developmental and neuronal stagnation up to 

rapid regression, and final motor deterioration (Chahrour and Zoghbi 2007). 

Rett girls develop properly during the first 6-18 months. Hence, the first step 

of Rett syndrome often might be not even noticed. While fine motor functions 

develop, head growth and circumference starts to decelerate (Schultz et al. 

1993). Along with an acquired microcephaly, general growth retardation is 

followed by a loss of weight and muscle hypotonia. With the onset of the rapid 

regression, patients start loosing hand skills, developing stereotypic hand 

movements such as washing movements, clapping, wringing, flapping or 

putting hands into the mouth (Chahrour and Zoghbi 2007; Weng et al. 2011). 

Furthermore, motor abnormalities together with seizures, loss of speech and 

social interaction occur and patients fall into a stationary, and late motor 

deterioration stage. They also acquire additional symptoms such as scoliosis, 

mental retardation, autism, epilepsy, sleep disturbances and anxiety 

(Chahrour and Zoghbi 2007). Other characteristic features, which might 

associate with the disease are teeth grinding, laughing or crying at night and 

screaming episodes (Young et al. 2007; Weng et al. 2011). 

 

Furthermore, although the lifespan of Rett patients is very diverse and some 

individuals might even reach their 60s (Hagberg et al. 2001; Hagberg 2005), 

life expectancy might be highly reduced due to serious breathing 
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complications, which is one of the hallmarks of Rett syndrome (Kerr et al. 

1997; Julu et al. 2001; Acampa and Guideri 2006). The respiratory 

abnormalities appear in the rapid regression stage of the disease and include 

breath-holding, aerophagia, forced expulsion of air and saliva as well as 

frequent apnoeas (Chahrour and Zoghbi 2007). 

 

Impaired regulation of normal brain development might arise from changes in 

various neurotransmitters and neuropeptides such as altered levels of 

dopamine (Zoghbi et al. 1985; Brucke et al. 1987; Zoghbi et al. 1989; Lekman 

et al. 1990; Percy 1992), serotonin (Segawa 1997), noradrenaline, 

acetylcholine (Wenk and Mobley 1996; Wenk 1997; Wenk and Hauss-

Wegrzyniak 1999), nerve growth factor (Lappalainen et al. 1996; Riikonen 

and Vanhala 1999), endorphins, substance P (Matsuishi et al. 1997; Deguchi 

et al. 2000), glutamate (Hamberger et al. 1992; Lappalainen and Riikonen 

1996) and other aminoacids as well as their receptor expression levels 

(Jellinger 2003; Acampa and Guideri 2006). Altered neurotrophin signalling 

together with reduced serotonin plasma and substance P levels may lead to 

disturbances in the autonomic nervous system. This causes cardiac 

autonomic nervous system alterations, sympathetic imbalance and reduced 

cardiac vagal tone, each of which contributes to life threatening cardiac 

arrhythmias. In fact, sudden death represents ~25% of mortality rate among 

Rett patients (Kerr et al. 1997; Julu et al. 2001; Acampa and Guideri 2006). 

 

So far, reports have shown a reduced size of the brains of Rett patients 

(Armstrong 2005). Moreover, neuronal size in cortex, thalamus, basal ganglia, 

amygdala and hippocampus has been reported to be decreased (Bauman et 

al. 1995). Also, studies on cerebral cortex indicated a less complex dendritic 

arborisation and decreased numbers of dendritic spines. Furthermore, less 

afferent axons were found in Rett mice as well as in patients (Belichenko et 

al. 1994; Belichenko and Dahlstrom 1995; Belichenko et al. 2009). 

 

Although obvious brain structural and functional impairments in Rett 

syndrome are manifesting, no clear neuronal or glial cell atrophy or 

degeneration as well as no gliosis, demyelization or disruption of neuronal 
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migration have ever been reported. Therefore, Rett syndrome is not 

considered as a neurodegenerative disorder (Jellinger et al. 1988; Reiss et al. 

1993; Armstrong 2005). 

 

1.2. Genetic cause of Rett syndrome 

Mutations in the MECP2 gene, encoding the methyl-CpG binding protein 2 

(MECP2), are the primary cause of Rett syndrome, and they have been 

confirmed in more than 95% of typical cases of this disorder (Amir et al. 

1999). MECP2 is located on chromosome X in the Xq28 band position and it 

consists of four exons. Due to alternative splicing of exon 2 and alternative 

use of the polyadenylation sites in the 3’ untranslated region (3’UTR), two 

different variants of MECP2 transcripts can be created. It has been shown 

that expression of the MECP2-e1 longer transcript in brain is high especially 

during embryonic development, but it decreases in the postnatal period, and 

increases again in adulthood (Shahbazian et al. 2002; Pelka et al. 2005). 

 

De novo mutations in MECP2 occur in the male germline, and therefore they 

are transmitted from the father (Trappe et al. 2001). Mutations of MECP2 

involve transition of C to T at CpG dinucleotides (Wan et al. 1999; Trappe et 

al. 2001), and include missense, nonsense and frameshift mutations as well 

as entire exons’ deletions (Christodoulou et al. 2003; Archer et al. 2006). 

Although Rett syndrome is a sporadic disorder, arising from spontaneous 

sperm mutations, ~1% of reported cases support a genetic basis for the 

disease and a damaged copy of MECP2 from one inheritance of generation 

to the next (Zoghbi 1988; Schanen et al. 1997). 

 

However, also atypical forms of Rett syndrome exist. They arise from 

mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene (Tao et al. 

2004; Weaving et al. 2004; Weaving et al. 2005; Archer et al. 2006). 

Moreover, congenital variants of Rett syndrome are caused by mutations in 

the forkhead box protein G1 (FOXG1) gene (Ariani et al. 2008). 
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1.3. MeCP2 protein – structure, function and expression 

MeCP2 is a 53 kDa protein and it is a member of the methyl-CpG binding 

protein family (Hendrich and Bird 1998). It consists of three main domains: 

methyl-CpG binding domain (MBD), transcriptional repression domain (TRD) 

with two nuclear localization signals (NLSs), and C-terminal domain (CTD) 

(Figure 1). 

 

 

Figure 1. MeCP2 structure. 

The MeCP2 protein consists of three main domains, and two of them are especially important 

for MeCP2 function: methyl-CpG binding domain and transcriptional repression domain, 

which includes two nuclear localization signals. Third domain of MeCP2 is the C-terminal 

domain. 

 

The MBD domain binds specifically to methylated CpG dinucleotides, allowing 

therefore for MeCP2-chromatine interactions and chromatine modulations. 

However, the presence of adjacent A/T base pairs for efficient MeCP2-DNA 

binding is mandatory (Klose et al. 2005). Yet, an equally efficient methylation-

independent form of MeCP2-DNA binding was also identified (Galvao and 

Thomas 2005). The TRD domain consists of residues that were originally 

thought to be required only for transcriptional repression (Nan et al. 1997). 

The hypothesis of transcriptional silencing (Figure 2 A) is based on the 

binding of SIN3 transcription regulator family member A (Sin3A) to MeCP2 

protein, which recruits histone deacetylases (HDACs) and mediates post-

transcriptional modifications of histone tails (Chahrour et al. 2008). 

 

On the other hand, MeCP2 acts also as a transcriptional activator (Figure 2 

B), and by microarray analysis it was found to activate the majority (~85%) of 

genes in the hypothalamus (Chahrour et al. 2008). Also, mass spectrometry 

analysis revealed that the cAMP responsive element binding protein 1 

(CREB1) is the major co-activator, which binds to MeCP2 protein and thus, 
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allows for a successful transcription of target genes (Chahrour et al. 2008). 

The CTD domain of MeCP2 is not yet completely known. Nevertheless, data 

on mice lacking the CTD domain show that CTD is necessary for proper 

MeCP2 function and facilitates the MeCP2-DNA binding processes 

(Shahbazian et al. 2002). 

 

 

Figure 2. MeCP2 acts as a transcriptional repressor and activator. 

A) The TRD domain of MeCP2 binds to the Sin3A co-repressor and recruits HDAC, causing 

transcriptional repression of MeCP2 target genes. 

B) Due to interaction of MeCP2 with co-activators such as CREB1, successful transcription of 

MeCP2 target genes may take place. 

From Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY. MeCP2, a key 

contributor to neurological disease, activates and represses transcription. Science 2008; May 

30; 320(5880):1224-9. Reprinted with permission from AAAS. 

 

MeCP2 is a nuclear and multifunctional protein. Apart from its role in 

transcriptional repression and activation as well as chromatin modulation, it 

modulates neuronal development and neuronal differentiation. Studies on 

MeCP2 expression have confirmed a changing pattern of MeCP2 protein 

levels. MeCP2 expression is low during embryogenesis and increases during 

neuronal maturation at the postnatal stage, finally reaching its peak in mature 

neurons (Shahbazian et al. 2002; Balmer et al. 2003; Cohen et al. 2003; Kishi 

and Macklis 2004; Mullaney et al. 2004). Thus, it has been suggested that 

MeCP2 is involved in modulation of general activity and/or plasticity of mature 

neurons (Chahrour and Zoghbi 2007). Furthermore, MeCP2 was reported to 

modulate RNA splicing (Young et al. 2005). 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Chahrour%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18511691
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jung%20SY%5BAuthor%5D&cauthor=true&cauthor_uid=18511691
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shaw%20C%5BAuthor%5D&cauthor=true&cauthor_uid=18511691
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20X%5BAuthor%5D&cauthor=true&cauthor_uid=18511691
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wong%20ST%5BAuthor%5D&cauthor=true&cauthor_uid=18511691
http://www.ncbi.nlm.nih.gov/pubmed/?term=Qin%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18511691
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zoghbi%20HY%5BAuthor%5D&cauthor=true&cauthor_uid=18511691
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1.4. Animal models of Rett syndrome 

Over the years, various mouse models of Rett syndrome have been 

developed and they include Mecp2 knockout, Mecp2 mutant and MECP2 

knock-in mice. 

 

The ‘Bird strain’ Mecp2tm1.1Bird, which was used in this study, represents a 

Mecp2-deficient mouse model. Its Mecp2 gene lacks exons 3 and 4 and 

therefore, it remains completely dysfunctional with no expression (Guy et al. 

2001). Mouse strain Mecp2tm1Tam, which was generated by removal of the 

coding sequence of the MBD domain of MeCP2, constitutes another Mecp2-

null mouse (Pelka et al. 2006). The Mecp2-null male mice develop hindlimb 

clasping and reduced spontaneous movements, growth arrest, uncoordinated 

gait, irregular breathing and increased mortality (Guy et al. 2001). These mice 

die around postnatal day (PD) 50. Moreover, studies on brain sections from 

cerebral cortex, cerebellum and hippocampus showed smaller size and 

increased density of neuronal cell bodies and nuclei (Chen et al. 2001; 

Fischer et al. 2009). The Mecp2-null females represent only the minimal initial 

phenotype. They regularly take care of their offspring, live more than a year 

and develop clinical features only with a marked delay (Guy et al. 2001). 

 

The group of Mecp2 mutant mouse models are mice that express only a 

truncated MeCP2 protein, cell-type-specific Mecp2 deletions and mutations or 

reduced levels of Mecp2 (Calfa et al. 2011). The MECP2 knock-in mice carry 

human MECP2 mutations associated with Rett syndrome and hence, they 

represent a cohort of experimental animal models mimicking the specific 

mutations of Rett syndrome in humans (Lawson-Yuen et al. 2007; Jentarra et 

al. 2010; Wegener et al. 2014). So far, all of the developed mouse models of 

Rett syndrome reveal behavioural symptoms and clinical features that are 

associated with the disease (Ricceri et al. 2008; Tao et al. 2009). Yet, they 

clearly differ in the severity of symptoms and the time course at which they 

appear. 
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Interestingly, a novel Mecp2 knockout rat model of Rett syndrome has 

recently become available, and very first studies on neuronal behavioural 

processing of communication in Rett syndrome have been performed 

(Engineer et al. 2015). However, it should be mentioned that none of the 

various rodent models fully corresponds to the complex clinical conditions of 

the human disorder. 

 

1.5. Breathing impairment and mitochondriopathy in Rett 

syndrome 

It is commonly known, that Rett syndrome is associated with severe and life-

threating breathing irregularities, causing a sudden death (Kerr et al. 1997; 

Julu et al. 2001; Acampa and Guideri 2006). Also, the Mecp2tm1.1Bird-null 

mouse model (Guy et al. 2001) for Rett syndrome shows such respiratory 

disruptions. After PD 20 these Mecp2-deficient mice develop erratic breathing 

characterized by alternating fast and slow breathing frequencies as well as 

long-lasting apnoeas, resulting in drops of arterial oxygen saturation defined 

as intermittent systemic hypoxia (Julu et al. 2001; Viemari et al. 2005; Ogier 

and Katz 2008; Stettner et al. 2008; Katz et al. 2009). 

 

Recent data suggest an enhanced hypoxia susceptibility of neuronal networks 

of hippocampus and brainstem in Mecp2-null mice. As possible underlying 

mechanisms, contributing to this increased hypoxia susceptibility, disruption 

of K+ channel function as well as an imbalance in Ca2+ homeostasis were 

proposed (Fischer et al. 2009; Mironov et al. 2009; Kron and Müller 2010; 

Kron et al. 2011). Also, since mitochondria are actively involved in the Ca2+ 

uptake and Ca2+ release pathways (Duchen 2000; Brookes et al. 2004), it is 

tempting to take a closer look at these organelles. 

 

Indeed, various signs of mitochondrial pathology have been found in tissue 

samples from Rett patients and mouse models. A case report on the frontal 

lobe biopsy tissue of a Rett individual at age 3 showed impaired mitochondrial 

morphology, which became evident due to numerous large and spherical 

mitochondria, low-density structure of mitochondrial matrix, few rudimentary 
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cristae and abundant ribosomal content. Moreover, electron microscopy 

studies on brain post-mortem tissue from the same 15 years old patient 

showed granular matrix inclusions and disorganized membranous material 

(Cornford et al. 1994). Basing on muscle biopsy material, also mitochondrial 

distention, vacuolisation as well as irregular cristae were uncovered by other 

studies (Ruch et al. 1989; Eeg-Olofsson et al. 1990). 

 

Apart from morphological studies, strong evidence of mitochondrial enzyme 

impairment has been also reported (Coker and Melnyk 1991; Gibson et al. 

2010). Enzyme assays performed on muscle biopsy material revealed lower 

levels of cytochrome c oxidase and succinate cytochrome c reductase in 

three Rett girls (Coker and Melnyk 1991). Furthermore, the cytochrome c 

oxidase subunit 1 was downregulated in the frontal cortex of Mecp2-deficient 

mice (Gibson et al. 2010). 

 

Mitochondrial impairment has been confirmed also on the gene level. Gene 

expression profiles, which were performed on the peripheral blood 

lymphomonocytes from Rett patients by using microarray assays, suggest 

misregulation of 482 genes, out of which 146 genes are involved in 

mitochondrial function, ubiquitination, proteosome degradation, mitochondrial 

organisation, ATP-synthesis, chromatin modulation and RNA processing 

(Pecorelli et al. 2013). Moreover, expression analyses performed on Rett 

mice identified an overexpression of the ubiquinol-cytochrome c reductase 

core protein 1 (Uqcrc1), which encodes for a complex III subunit of the 

mitochondrial respiratory chain, and whose promoter interacts with MeCP2 

(Kriaucionis et al. 2006). Along with these findings, a potential uncoupling and 

30% more intensified respiration rates of isolated brain mitochondria were 

identified. However, due to various tissue processing and mRNA extraction 

protocols, microarray studies might lead to differing results and quite variable 

gene expression patterns. Moreover, it should be mentioned, that a change 

on the gene level does not always correspond to a downstream modulation of 

protein activity (Li et al. 2013). 
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Evidence for altered mitochondrial function as well as oxidative changes has 

been also reported by our group. An increased FAD/NADH autofluorescence 

ratio in both neonatal and adult Rett mice was detected, confirming more 

intensively respiring mitochondria (Großer et al. 2012; Müller and Can 2014). 

Based on blood analyses on human patients, a reduced activity of the 

scavenging enzyme SOD (Sierra et al. 2001) and decreased levels of vitamin 

E were identified, which also plays an important role in the cellular 

scavenging system (Formichi et al. 1998). 

 

Other evidence for a functional impairment of mitochondria in Rett syndrome 

includes variations in mitochondrial ATP production and energy disturbances. 

Indeed, Saywell and colleagues showed decreased ATP levels in Rett mice, 

which was detected by using magnetic resonance imaging (Saywell et al. 

2006). Our group could, however, not confirm these observations as no 

significant changes in ATP levels between adult hippocampus of Mecp2-null 

and the respective WT tissue have been observed (Fischer et al. 2009). 

Interestingly, increased cellular ATP levels and more intensified ATP turnover 

have been recently reported for neonatal Mecp2-deficient hippocampus by 

using the ATP-specific genetically-encoded sensor Ateam 1.03 (Toloe et al. 

2014). 

 

1.6. Reactive oxygen species 

Mitochondria are considered to be one of the most important and major 

generators of superoxide (·O2
-) (Loschen et al. 1971; Boveris et al. 1972). 

Approximately 2-5% of electrons escape during the electron transit within the 

respiratory chain from complex I to complex IV and bind to molecular oxygen, 

forming thereby ·O2
- and contributing to the secondary production of other 

reactive oxygen species (ROS) such as hydroxyl radicals (·OH) at complexes 

I and II (Boveris and Chance 1973). 

 

Superoxide anions are highly unstable and reactive molecules. They rapidly 

convert into the somewhat less reactive H2O2. The H2O2 might form ·OH and 

hydroxyl anions (OH-) in the presence of iron (Fe2+) due to electron 
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acceptance from a transition metal in a Fenton reaction. Furthermore, it can 

generate peroxynitrite (ONOO-) in a reaction with nitric oxide (NO) (Dean et 

al. 1997; Lipton and Nicotera 1998) (Figure 3). 

 

 

Figure 3. ROS generation and cellular scavenging systems 

A) The respiratory chain complexes I and III generate ·O2
-
 due to the electron (ē) flow in 

mitochondria. 

B) The superoxide dismutase (SOD); catalase (Cat), thioredoxin reductase (Trx); glutathione 

peroxidase (GP), glutathione reductase (GR) and glutathione S-transferase (GST) constitute 

the main components of the cellular anti-oxidant defence. GSH represents monomeric 

glutathione, and GSSG represents the oxidized glutathione disulfide. NO, nitric oxide;  

ONOO
-
, peroxynitrite. 

 

Generation of ROS within mitochondria is constant and low levels of ROS 

play an important role in cellular physiology. ROS were proven to participate 

in various cellular signalling pathways, e.g. the control of the vascular tone in 

the brain (Demchenko et al. 2002). Furthermore, they take part in host 

defence and cellular proliferation, and they are also involved in aging and cell 

apoptosis processes (Sinha et al.; Harman 2003; Kroncke 2003; Nathan 

2003; Finkel 2011; Sinha et al. 2013). 
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However, any imbalance in ROS production due to mitochondrial dysfunction, 

e.g. enhanced mitochondrial activity, respiratory chain inhibition or disruption 

in the cellular ROS neutralization systems, leads to oxidative stress, and may 

therefore seriously threaten cell viability or cell function (Sies 1991; Halliwell 

and Cross 1994). Due to oxidation challenge, highly activated ROS constitute 

stress signals, causing DNA damage, protein nitrosylation, lipid peroxidation 

and alterations in DNA methylation level, and finally changes in gene 

expression (Weitzman et al. 1994) (Figure 4). Yet, the severity of cellular 

changes due to ROS interference depends on the exact type of ROS. 

Whereas H2O2 seems to be less harmful, O2·
-, ·OH and ONOO- are 

considered to be very aggressive in their reactivity (Halliwell and Gutteridge 

1984; Lipton 1999; Chan 2001; Foster et al. 2006). 

 

To prevent intensified ROS accumulation, cells developed various enzymatic 

defence systems, e.g. catalase (Cat), superoxide dismutases (SOD1, SOD2, 

SOD3), glutathione peroxidase (GP), glutathione S-transferases (GST), 

glutathione reductase (GR), peroxiredoxins (Prxs), glutaredoxin and two 

thioredoxin isoforms (TRX1 and TRX2). Also, non-enzymatic scavengers take 

part in the cell endogenous protection against ROS, e.g. glutathione disulfide 

(GSH) thioredoxin, α-tocopherol (vitamin E), ascorbic acid (vitamin C), beta 

carotene, uric acid and melatonin (Sinha et al.; Milton and Sweeney 2011; 

Sinha et al. 2013) (Figure 3). 
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Figure 4. ROS as a potential source of cellular damage 

A) Healthy mitochondria generate only low levels of ROS and downstream reactive nitrogen 

species (RNS). Redox balance is guaranteed due to properly functioning cellular scavenging 

systems.  

B) Impairment of mitochondria or less efficient scavenging capabilities may, however, give 

rise to abnormally intensified generation of ROS. This unequivocally culminates in aberrant 

redox conditions and oxidative stress, and therefore, it may cause profound cellular damage. 

This research was originally published in Portland Press Limited. Müller M, Can K. Aberrant 

redox homoeostasis and mitochondrial dysfunction in Rett syndrome. 2014 Aug; 42(4):959-

64, Biochemical Society Transactions. 

 

1.7. Oxidative stress in Rett syndrome and oxidative stress 

markers 

Cellular alterations elicited by ROS have been confirmed in various 

neurodevelopmental and neurodegenerative disorders (Fernández-Checa et 

al. 2010). For example, oxidative damage was proven to play a substantial 

role in the development of Alzheimer’s disease, Parkinson’s disease, 

Huntington’s disease or Amyotrophic lateral sclerosis (Zhang et al. 1999; 

Rahman et al. 2012). Oxidative stress can provoke neuronal cell dysfunction 

and/or neuronal death and therefore, it might drive disease progression. 

Hence, studies on the detailed effects mediated by ROS constitute a central 

focus of research over the last years.  

 

Also for Rett syndrome, extended studies have confirmed an involvement of 

oxidative stress. Already in 1987, reduced levels of ascorbic acid and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=M%C3%BCller%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25109986
http://www.ncbi.nlm.nih.gov/pubmed/?term=Can%20K%5BAuthor%5D&cauthor=true&cauthor_uid=25109986
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glutathione were found in post-mortem brain tissue of Rett patients (Sofić et 

al. 1987). Furthermore, lipid peroxidation and significantly elevated plasma 

protein carbonyl levels as well as increased hypoxia-induced oxidative stress 

were demonstrated in patients with typical Rett syndrome (De Felice et al. 

2009). Furthermore, studies on Rett patients clearly indicated mutations in 

target genes of MeCP2 such as the brain-derived neurotrophic factor (BDNF) 

and CREB (De Felice et al. 2009). These genes were proven to be involved 

not only in neuronal protection against hypoxia, but also in ROS scavenging 

(Lee et al. 2009; Pereira et al. 2009). In addition, recent data pointed out an 

important role of the insulin-like growth factor 1 (IGF-1). It mediates 

neuroprotection against oxidative stress under control conditions (Heck et al. 

1999), and it has been also shown to partially reverse some of the Rett 

syndrome-like symptoms by e.g. improved spine density, synaptic potential 

restoration and cortical plasticity stabilization (Tropea et al. 2009). Moreover, 

further evidence of a direct connection between MeCP2 and oxidative stress 

was reported by the group of Valinluck as the affinity properties of the MBD 

domain of MeCP2 were found to be inhibited by oxidative damage (Valinluck 

et al. 2004). Accordingly, such ROS-mediated changes might therefore 

culminate in epigenetic DNA damage and disrupt chromatin organization. 

 

Further investigations of parameters, which might be involved in functional 

neuronal disruptions in Rett syndrome, revealed changes in the antioxidant 

defence responses. For example, SOD activity was found to be significantly 

decreased in erythrocytes of Rett patients (Sierra et al. 2001). Following 

these studies, other data showed critically increased levels of 

malondialdehyde – a marker for content lipid peroxidation – also in Rett 

individuals. This could possibly lead to peroxidative damage of cellular 

membranes, and finally in consequence to progression of dementia, impaired 

motor function, changes in behaviour and seizure incidence (Ross 2000; 

Sudha et al. 2001). Nevertheless, there are numerous and currently available 

oxidative stress markers that are specific for pro-oxidant factors, lipid 

peroxidation and protein oxidation as well as for mitochondrial impairment, 

enzyme activity and gene expression (De Felice et al. 2012). Among this 

large group of biomarkers, isoprostanes (IsoPs) – the prostaglandin-like 
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compounds – represent a reliable class of bioproducts of oxidative imbalance 

(Kadiiska et al. 2005). They originate from the peroxidation of polyunsaturated 

fatty acid precursors and fulfil a diversity of biological functions. For example, 

they take part in inflammatory responses and act as pain mediators or 

neuromodulators (Jahn et al. 2008; Milne et al. 2011). Additionally, reduced 

vitamin E concentrations were identified in Rett patients’ serum, suggesting 

less efficient antioxidant capacity in Rett syndrome (Formichi et al. 1998). 

 

1.8. Imaging of reactive oxygen species – outline of redox 

sensors 

Over the years, various dyes and ROS/redox sensors for imaging of ROS 

formation and/or oxidative stress detection became available. Compounds 

such as dichlorodihydrofluorescein (LeBel et al. 1992) dihydroethidium 

(Gallop et al. 1984) and Amplex Red (Mohanty et al. 1997) accumulate in the 

cytosol after entering a cell and become fluorescent once being oxidized due 

to cellular ROS production. 

 

To evaluate and detect ROS/redox changes directly in mitochondria, other 

synthetic dyes targeting the mitochondrial matrix were generated, namely 

dihydrorhodamine (Dugan et al. 1995), RedoxSensor Red CC-1 Stain (Chen 

and Gee 2000), MitoSOXRed (Robinson et al. 2006), and the MitoTracker 

probes, e.g. MitoTracker Red CM-H2XROS, MitoTracker Orange CM-

H2TMROS (Esposti et al. 1999). Due to very intense fluorescence of these 

synthetic dyes, mitochondrial morphology as well as tracking of mitochondrial 

particles and mitochondrial content might be also assessed within a single 

cell (de la Monte et al. 2000; Stamer et al. 2002). All of these redox indicators 

become intensively fluorescent only upon oxidation. But this conversion is 

irreversible. Moreover, any sensitivity of these dyes to reducing conditions is 

lacking. Thus, quantifiable evaluation of cellular ROS levels and/or redox 

changes is not achievable. Although these ROS dyes are relatively easy to 

handle and sufficient cell loading occurs within minutes, other disadvantages 

such as fast photo-bleaching, auto-oxidation, and/or accumulation in other 
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compartments restrict a reliable functional analysis of ROS levels and their 

changes within a cell. 

 

Yet, the genetically-encoded optical redox indicators are more reliable as they 

react to both oxidation and reduction, allowing therefore for a quantitative 

assessment of cellular ROS/redox changes. Moreover, they overcome most 

of the problems associated with photobleaching and cell movements, and 

they can be designed to target a specific type of cells, defined cellular 

compartments or even particular parts of protein (Gutscher et al. 2008). 

These optical sensors derive from the green and yellow fluorescent proteins 

(YFP, GFP). Redox-sensitive properties of these indicators are achieved by 

specific structural modification of the native YFP and GFP – redox-sensitive 

yellow fluorescent protein (rxYFP) and reduction/oxidation-sensitive green 

fluorescent protein (roGFP) (Ostergaard et al. 2001; Hanson et al. 2004). 

Mainly, it is the insertion of reactive cysteines within the fluorescent proteins, 

which generate a functional switch between the oxidized and reduced forms 

of the protein. The fluorescent hydroxyl peroxide (HyPer) sensor (Belousov et 

al. 2006) together with the fluorescence resonance energy transfer (FRET) 

constructs such as CFP-HSP33-YFP (Guzy et al. 2005), CFP-RL5-YFP 

(Kolossov et al. 2008) and Redoxfluor (Cerulean –Yap1-Citrine)(Yano et al. 

2010) are also members of the group of genetically-encoded optical probes. 

Nevertheless, especially the optical sensor roGFP1 is used for quantitative 

and dynamic redox imaging by our group. Since roGFP1 responds reversibly 

to oxidation/reduction due to the functional thiol switch, and reacts similarly to 

other redox-sensitive proteins, it may give detailed information on the other 

redox-modulated endogenous proteins. So far, our group confirmed reliable 

responses of roGFP1 in both murine and rat hippocampal neurons in a variety 

of oxidizing and reducing conditions. Moreover, in terms of response 

reliability, data from our laboratory ruled out any significant effects of 

intracellular pH or Cl- changes on roGFP1 (Funke et al. 2011; Großer et al. 

2012). Further details about roGFP1 and HyPer sensors are given in the 

following Materials and Methods section. 
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2. Aims of this Thesis 

Although the literature is constantly growing with new findings on 

mitochondrial impairment, those mechanisms leading to MeCP2 dysfunction 

and Rett syndrome progression are still lacking detailed explanation. A variety 

of open questions, regarding a direct connection between oxidative stress 

and Rett syndrome as well as the molecular causes of oxidative imbalance, 

and the very reasons for damaged mitochondria still need to be answered. 

 

The aim of this thesis was to analyze redox changes in Mecp2-/y mice 

specifically in primary cultured hippocampal neurons as well as in organotypic 

hippocampal slices. The hippocampal formation is an established model for 

metabolic insults, neurodegeneration, mitochondrial and cellular signalling 

dysfunction, and it has been proven to respond more sensitively than other 

tissues to oxidative challenge (Wilde et al. 1997; Wang et al. 2007). Since the 

mitochondrial matrix constitutes the primary cellular source of ROS, and since 

ROS might be further released from mitochondria into the cytosol within a cell 

(Brand 2010), evaluation of redox changes in both mitochondrial and cytosolic 

compartments was considered to be mandatory. 

 

Therefore, the main objectives of the current thesis were: 

 

1. First of all, in order to analyse sub-cellular redox changes within 

neurons, a suitable and reliable redox indicator had to be chosen. 

 

2. To investigate mitochondrial and cellular redox changes specifically in 

hippocampal neurons, viral vectors carrying the respective cytosolic 

and mitochondrial optical redox-sensor roGFP1 were established to 

optimize expression levels and the selectivity of redox sensor 

expression. 

 

3. Detailed calibration of the selected redox sensor roGFP1 was 

performed to enable quantitative recordings of redox balance. 
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4. Redox responses were assessed upon control and stress conditions, 

e.g. hypoxia, oxidative challenge, blockade of the scavenging enzyme 

SOD, mitochondrial respiration inhibition and application of various 

neurotransmitters to define altered responses in Mecp2-/y neurons. 

 

5. To analyse further sub-cellular changes of Mecp2-/y and WT neurons, 

local neuronal stimulation was performed, using both pressure drug 

ejection and extracellular electrical stimulation. 

 

6. To decipher potential candidate processes, underlying the detected 

redox alterations in Mecp2-/y, contribution of signalling pathways such 

as Ca2+ influx, role of mitochondria, involvement of NADPH oxidase 

and xanthine oxidase as well as an activation of G-proteins were 

analyzed. 

 

7. To extend quantitative redox imaging to adult Mecp2-/y mice, the cross-

breeding of the recently generated transgenic roGFP1c mice with 

Mecp2+/y mice has been started to be able to correlate redox 

imbalance with disease progression of Rett syndrome. 
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3. Materials and Methods 

All experiments were conducted in accordance to German national 

regulations. The tissue isolation and the in vitro experiments were approved 

by the office for animal welfare of the Universitätsmedizin Göttingen “Anoxie 

und neuronale Netzwerke (T13-08)”. 

 

3.1. Solutions and pharmacological compounds 

Usually, chemicals obtained from Sigma-Aldrich were used, in other cases 

this is clearly stated. 

 

To maintain viability of primary hippocampal cell and organotypic slice culture 

during particular experiments, the artificial cerebrospinal fluid (ACSF) was 

used. It was composed of (in mM) 130 NaCl, 3.5 KCl, 1.25 NaH2PO4, 24 

NaHCO3, 1.2 CaCl2, 1.2 MgSO4 and 10 dextrose. During the entire 

experiment, the ASCF was constantly aerated with carbogen (95% O2, 5% 

CO2) in order to guarantee the constant oxygenation of cell and slice cultures, 

and to preserve a stable pH of 7.4. 

 

In order to challenge cell and slice cultures by various oxidizing and reducing 

conditions, different drugs were administered. These include: H2O2 (30% 

stock solution in H2O), diethyldithiocarbamic acid (DEDTC), 1,4-dithio-DL-

threitol, (DTT, Fluka), antimycin A (AMC, 20 mM stock solution in ethanol, 

stored at -20˚C), dimethyl sulfoxide (DMSO), propionate, tert-

butylhydroperoxide (tBHP, 70% stock solution in H2O), forskolin (20 mM stock 

solution in DMSO, stored at -20˚C, Bio Trend), carbonyl cyanide-

4(trifluoromethoxy)phenylhydrazone (FCCP, 10 mM stock solution in DMSO, 

stored at 4˚C, Tocris Bioscience), diphenyleneiodonium chloride (DPI, 10 mM 

stock solution in DMSO, stored at -20˚C, Tocris Bioscence) and cyanide (CN-, 

1 M stock solution in H2O, stored at -20˚C). Glutamate (5 mM stock solution in 

H2O, stored at -20˚C), norepinephrine, serotonin, dopamine and allopurinol 

were immediately dissolved in ACSF in their final concentrations right before 

use. 
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To calibrate the pH-sensitive optical sensor SypHer, a calibration solution was 

prepared from (in mM) 130 KCl, 1.2 CaCl2, 1.2 MgCl2, 10 glucose, 20 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) and adjusted up to 

pH 7.0 by NaOH, in order to mimic intracellular ionic conditions. The final 

calibration solutions were adjusted with KOH to the respective pH: 7.0, 7.2, 

7.4, 7.6, 7.8. To disrupt the membrane potential in neurons, 5 µM nigericin 

(2.5 mM stock solution in DMSO and 100% ethanol in proportion 1:1, stored 

at -20˚C) was used. 

 

3.2. Mouse model of Rett syndrome 

The Mecp2-deficient mouse model represented by the ‘Bird strain’ 

Mecp2tm1.1Bird was used for the current work (Guy et al. 2001). The 

heterozygous (Mecp2+/-) female mice were provided by Jackson Laboratories 

(Bar Harbor, Me.) and next bred with C57BL/6J WT males (Figure 5). Mice 

were maintained in the central animal facility of the University of Göttingen in 

a stable 12 h light-dark cycle, and they had a constant access to food and 

water. In order to genotype WT and Mecp2-/y mice, the polymerase chain 

reaction (PCR) was performed on a tail biopsy material. For all hippocampal 

cell and slice culture preparations, Mecp2-/y mice at PD 2-4 were used. 

 

 

Figure 5. The ‘Bird strain’ Mecp2tm1.1Bird mouse model of Rett syndrome. 

A) During development, Mecp2
-/y

 mice start developing a very obvious phenotype from ~ PD 

20 and this includes markedly reduced gain of body weight, lower body temperature, loss of 

mobility and irregular breathing. 

B) Most of symptomatic Mecp2
-/y

 mice show also an obvious hind-limb clasping. 

 



Materials and Methods 

 

 20 

3.3. Preparation of dissociated cell and organotypic cultures 

Preparation of primary hippocampal dissociated neuronal cultures was 

performed according to the previous protocol from our group (Weller et al. 

2014). Neonatal Mecp2-/y males at PD 1-4 were decapitated and the whole 

brain was isolated from the skull into ice-cold Hanks’ balanced salt solution 

(HBSS), containing 20% FCS (fetal calf serum, Biochrom). Hippocampi were 

then dissected, cleaned from additional cortical tissue and the meninges, and 

next cut into several pieces. After two washing steps with HBSS, containing 

20% FCS, and three further washing steps with HBSS without serum, 

hippocampi were treated with freshly prepared digestion solution for 10 min at 

37˚C in a humidified (5% CO2) incubator. After trypsinization, hippocampi 

were washed again with HBSS with 20% FCS and HBSS only. They were 

triturated in a freshly prepared dissociation solution, and the neuronal cell 

suspension obtained was then centrifuged (1500 rpm, 10 min, 4°C). The cell 

pellet was redissolved in ice-cold plating medium and neurons were plated on 

sterile glass coverslips, coated beforehand with Matrigel (BD Biosciences). 

Final culturing was done in four-well plates (Nunc). The cell density of the 

plated neurons was at about 30.000-40.000 cells per well. At first, the 

dissociated primary neurons were incubated at humidified conditions (37°C, 

5% CO2) for a minimum of 24 h. After one day, plating medium was replaced 

by growing medium. In the following culturing period, 50% of medium was 

replaced by pre-warmed and fresh growing medium every 2-3 days. 

 

To prepare organotypic slice culture, earlier protocols from our group were 

used (Fischer et al. 2009; Kron and Müller 2010; Großer et al. 2012). The 

Mecp2-/y and WT mice at PD 2-5 were decapitated and the whole brain was 

isolated directly into ice-cold HBSS without serum. Hippocampi were 

dissected, gently cleaned from the meninges without disturbing the tissue, 

and next placed on a McIlwain tissue chopper (Stoelting Co.) while protecting 

the tissue from drying out too much. Hippocampi were completely chopped 

into 350 µm-thick slices, which were gently separated in HBSS and 

transferred onto the porous support membranes of 6-well culture plates 

(Transwell Permeable Support, Corning). Excess of HBSS medium was 
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removed using a pipette without disturbing the membranes. A maximum of 4 

slices were cultured in each single well. Slices were incubated in sterile and 

humidified conditions (37°C, 5% CO2). To maintain organotypic slice cultures, 

over a longer period half of the growing medium was replaced every 2-3 days. 

 

3.4. Culturing media 

The HBSS medium, used during tissue dissection, contained Hanks powder, 

NaHCO3 0.35 g/l, HEPES 0.238 g/l and H2O. The pH was adjusted to 7.3-7.4. 

 

To trypsinize dissected hippocampi, the digestion solution was used. It 

contained (in mM) NaCl 137, KCl 5, Na2HPO4 7, and HEPES 25. Before use, 

digestion solution was additionally supplemented with trypsin 0.5 g/100 ml 

and DNAse 0.05 g/100 ml, and filtered. The pH was adjusted to 7.2. 

 

Dissociation solution was required during the triturating procedure of 

hippocampal tissue fragments in order to obtain a cell suspension. 

Dissociation solution consisted of Hanks and 12 mM of MgSO4 was enriched 

with DNAse 0.05 g/100 ml, and filtered before use. 

 

Plating medium was served for the initial plating of neuronal cell cultures, and 

it consisted of minimum essential medium (MEM) (Invitrogen) plus 10% FCS, 

5 mg/ml glucose, 0.2 mg/ml NaHCO3, 0.1 mg/ml transferrin (Calbiochem), 2 

mM L-glutamine and 25 µg/ml insulin. 

 

Growing medium was used for both cell and slice cultures and it contained 

MEM, 5 mg/ml glucose, 0.2 mg/ml NaHCO3, 0.1 mg/ml transferrin, 5% FCS, 

0.5 mM L-glutamine, 20 µl/ml B27 50x supplement including antioxidants 

(Invitrogen), 2 µM cytosine arabinoside and 100 µg/ml penicillin-streptomycin 

(Biochrom). 

 

All culturing media were filtered and stored sterile at 4˚C. Experiments were 

performed between 7-16 days in vitro (DIV). 
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3.5. Preparation of brain acute slices  

To prepare acute brain slices, earlier protocols from our group were followed 

(Fischer et al. 2009; Großer et al. 2012). Transgenic mice, carrying cytosolic 

roGFP1 sensor specifically in neurons (roGFP1c) (Wagener et al. 2016) at 

PD 47-52, were anesthetized by using di-ethyl ether and then decapitated. 

The brain was isolated and placed in ice-cold ACSF for ~ 2 min. After a 

sufficient chilling period of a few min, the brain was sliced in 400 µm thick 

coronal slices by a vibroslicer (752 M Vibroslice, Campden Instruments, 

Loughborough, Leicester, UK). The slices were then gently placed in a well 

oxygenated submersion-style chamber. They recovered at room temperature 

(RT) for a minimum duration of at least 90 min. Afterwards, slices were 

transferred into the recording chamber, which was constantly supplied (flow 

rate 3-4 ml/min) with aerated (95% O2 / 5% CO2) and pre-warmed (37˚C) 

ACSF.  

 

3.6. Transduction 

Primary hippocampal cell and organotypic slice cultures were transduced with 

the genetically-engineered optical sensor roGFP1. The roGFP1 expressing 

plasmid and its sequences were obtained from the University of Oregon 

under the permission of the inventor Prof. S. James Remington. The 

respective adenoviral constructs (AAV-6-syn roGFP1 virus), selectively 

targeting mitochondria (mito-roGFP1) and cytosol (cyto-roGFP1) in neurons, 

have been provided by Dr. Sebastian Kügler (viral vector platform, CNMPB, 

University Medical Center Göttingen). The human synapsin-1 promoter 

guaranteed a specific neuronal expression of the cyto-roGFP1 and mito-

roGFP1. 

 

Dissociated hippocampal neurons were transduced with cyto-roGFP1 or mito-

roGFP1 viral vectors (stock dilution 1:50) in phosphate buffered saline (PBS) 

on DIV 2, respectively. To transduce neuronal cultures, 2.5 µl of diluted 

constructs were directly added into 800 µl of growing medium. 
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Organotypic hippocampal slice cultures were transduced on DIV 3-4. The 2.5 

µl of the cyto-roGFP1 or mito-roGFP1 (stock dilution 1:50) construct were 

directly applied onto the surface of each slice. Primary cell and slice cultures 

were left undisturbed for another 5-7 days until a sufficient roGFP1 

expression (~15%) of neurons was obtained. 

 

3.7. Transfection 

In order to assess, whether the genetically-encoded hydroxyl peroxide sensor 

HyPer is pH susceptible, primary neuronal cultures were transfected with the 

pH-sensitive, but redox-insensitive variant of the original HyPer sensor 

(SypHer, pC1-HyPer-C199S, Addgene Plasmid 42213) (Poburko et al. 2011). 

This sensor was expressed in the cytosol of neurons and glial cells. 

 

On DIV 2, primary neuronal cultures were transfected with the SypHer vector 

plasmid by using Lipofectamine 2000 (Invitrogen). In detail, plating medium 

(see section 3.4.) was removed and 200 µl of transfection solution was added 

into each well. Transfection solution (OptiMEM, Invitrogen) was 

complemented with 1% Lipofectamine and 1 µg/ml DNA of the SypHer vector. 

Cells were placed for 1 h at 37 ºC in a humidified and 5% CO2-containing 

incubator. Transfection solution was next replaced by fresh and pre-warmed 

(37˚C) growing medium (see section 3.4.). A sufficient fraction of SypHer-

expressing primary cells (2-3%) was obtained within 48 h. 

 

3.8. Visualizing of mitochondria in vitro using MitoTracker 

RED FM 

To identify mitochondrial compartments within neurons, the mitochondria-

specific synthetic fluorescent dye MitoTracker RED FM (Life Technologies) 

was used. To visualize intact mitochondria in vitro, growing medium was 

removed and pre-warmed (37˚C) ACSF containing MitoTracker RED FM (1 

μM) was added to primary neuronal cultures. Cells were incubated for 20 min 

(37°C, 5% CO2). Neuronal mitochondria were imaged using a 2-photon 

microscope equipped with a 63x 1.0NA objective (Zeiss Plan-Apochromat 

VIS-IR) and a wavelength of 860 nm. 
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3.9. Immunostaining of neurons with MAP2 

To confirm the neuronal specificity of roGFP1, primary hippocampal cultures 

were stained with the neuronal marker anti-microtubule associated protein 2 

(MAP2) antibody (Cell Signaling). 

 

Cultured neurons were gently washed two times with a pre-warmed PBS 

(37°C) for 3 min and fixed in 4% paraformaldehyde (PFA) for ~20 min at RT. 

Cells were washed again two more times in PBS in order to remove any 

remaining PFA. To permabilize cellular membranes, cells were washed two 

times with 0.2% triton in PBS for 3 min. Neurons were then incubated with 

MAP2 antibody (stock dilution 1:300) overnight (o/n) at 4°C or 1 h at RT. The 

next day, primary cultures were washed two times with 0.2% triton in PBS for 

3 min and incubated with the secondary antibody (anti-rabbit Cy3, Sigma-

Aldrich) for 1 h at RT and protected from light. To remove an excess of Cy3, 

cells were washed twice with 0.2% triton and two times in PBS, respectively. 

Coverslips with primary cultures were dried gently and mounted with a proper 

mounting medium (DakoCytomation). Neurons were visualized using a 

fluorescence microscope (Olympus BX51WI) and a 60x/0.90 objective 

(Olympus LUMPlanFI), and an excitation wavelength of 525 nm. 

 

3.10. Optical recordings 

To perform dynamic and semi-quantitative recordings of redox changes 

specifically in neurons, the genetically-engineered optical redox probe 

roGFP1 was used. Native GFP protein became redox-sensitive by inserting 

two cysteines, between which a functional disulfide (S-S) bond forms, 

depending on the surrounding environmental oxidation/reduction conditions. 

These structural changes of roGFP1 modulate its absorption and 

fluorescence (Figure 6 A) (Hanson et al. 2004). The response principle of 

roGFP1 relies on two absorption peaks, which respond oppositely to redox 

modulation. Upon oxidation, the roGFP1 light absorption increases at 395 nm 

and decreases at 470 nm, and this is the opposite upon reduction. Already in 

real time during the experiment, the roGFP1 fluorescence emission ratio 

(F395/F470) is calculated (Figure 6 B). Since individual neuronal cell bodies 
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and/or parts of the dendrites were used as regions of interest, several cells 

within the field of view could be recorded at the same time. To visualise the 

dynamics of redox changes, neurons were imaged every 10 s. 

 

Alternatively, to assess cellular ROS/redox changes, also the genetically-

encoded hydroxyl peroxide sensor HyPer may be used. HyPer consists of 

circularly permuted YFP (cpYFP) linked to OxyR-RD – the regulatory domain 

of the H2O2 sensitive Escherichia coli transcription factor. However, it was 

suggested to be quite pH sensitive (Elsliger et al. 1999; Wachter et al. 2000; 

Schwarzländer et al. 2011). To monitor pH-mediate responses of HyPer, a 

plasmid vector carrying a modified redox-insensitive variant of HyPer – 

SypHer (HyPer C199S) – was used, which only shows the artifactual pH 

responses associated with a given (redox challenging) treatment. To image 

SypHer responses, primary cell cultures were viewed by using a 60x 0.9 NA 

water immersion objective (LUMPlanFI; Olympus). The SypHer sensor was 

excited alternatively at 420 nm and 490 nm, and the ratio of 420 nm/490 nm 

was calculated. 

 

To ensure dynamic live-imaging of primary cell and slice cultures in vitro, an 

optical recording set-up was used. It consisted of a suitable light source 

(Polychrome II; Till Photonics) and a sensitive CCD camera (Imago QE; PCO 

Imaging), which was fixed to the microscope. To perform optical recordings, 

cell and slice cultures were placed in a submersion-style chamber, which was 

constantly supplied with a pre-warmed ACSF at a solution flow rate of 4.5 

ml/min. All recordings were performed by using the TILLvisION software and 

device-control package (version 4.0.1; TILL Photonics). 
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Figure 6. Ratiometric response properties of roGFP1. 

A) Cytosol-targeted roGFP1 responded to oxidant challenge, which was induced by H2O2. In 

the displayed ratiometric images oxidation is indicated by “warm” pseudocolors and reduction 

by “cold” pseudocolors. 

B) The redox sensor roGFP1 exhibits two absorption peaks, which show opposite changes 

upon redox modulation. Fluorescence excited at 395 nm (F395) increased, while fluorescence 

excited at 470 nm (F470) decreased under oxidation. As a result, the roGFP1 ratio (F395/F470) 

increases upon oxidation. 

 

3.11. The 2-photon laser scanning microscope 

In order to visualize primary hippocampal neurons as well as organotypic 

hippocampal slices transduced with mito-roGFP1 and cyto-roGFP1 at an 

optical higher resolution, cell and slice cultures were imaged by a 2-photon 

laser scanning microscope (LaVision BioTec TriMScope II with BX51WI, 

Olympus). Excitation of roGFP1 was performed at a wavelength of 890 nm, 

using a 63x 1.0 NA objective (Zeiss Plan-Apochromat VIS-IR). The 3-

dimentional reconstructions of images were assembled with Metamorph 

Offline Software (version 6.1; Molecular Devices). 
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To enable ratiometric imaging of the cyto-roGFP1 ratio in neurons from 

hippocampal acute slices of adult roGFP1c transgenic mice, the recently 

established dual laser-based ratiometric 2-photon excitation approach was 

used (Wagener et al. 2016). Alternating excitation of roGFP1c slices was 

performed at wavelengths 910 nm (provided by the MaiTai eHP laser system, 

Neuport-Spectra Physics) and 740 nm (provided by the Millenia-pumped 

Tsunami laser system, Neuport-Spectra Physics), and a 40x 0.8NA IR-

optimized objective (IR Achroplan, Zeiss) was used. 

 

3.12. Local redox challenge 

To evaluate sub-cellular redox changes, primary neurons were transduced 

with the cyto-roGFP1 optical sensor. Patch clamp-shaped capillaries 

(GC150F-10 borosilicate glass, Harvard Part no. 30-0057, Harvard 

Apparatus) were mounted in a pipette holder of a 3-axis step 

micromanipulator (Luigs & Neumann) and used for a local pressure puff 

application of redox stimulants. Tips of these capillaries were trimmed to a 

resistance of ~5 MΩ. Application of local stimuli was performed by the 

pneumatic drug ejection system (PDES-02D npi). Applied pressure was 50 

mbar and stimulation of neurons was performed for various durations. In 

parallel, images of cells were taken every 2 s. 

 

3.13. Electrical stimulation 

The extracellular stimulating electrode was made from the same type of 

capillaries used for pressure puff application. A chlorided silver wire (Science 

Products) was attached to a microconnector and connected to the stimulus 

isolation unit (PSIU-6, Grass Instrument Co.). The wire was inserted into the 

glass capillary, which was filled with ACSF. The stimulation electrode was 

mounted to the 3-axis step motor micromanipulator and carefully positioned 

close to a neuronal soma without actually touching the cell membrane. 

 

In order to establish the electrical stimulation procedure, neurons were first 

loaded with a calcium indicator Fluo-3 AM (2 mM stock solution in DMSO, 
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stored frozen at -20˚C, Molecular Probes). To stain neuronal cultures in vitro, 

Fluo-3 AM (5 µM) was added directly to growing medium with primary cell 

cultures and incubated for 30 min (37°C, 5% CO2). To induce any neuronal 

responses, cells were stimulated using the following parameters: 10-100 μA 

current, 1 s stimulation only, 1 ms pulses at 1-5 Hz frequencies. Extracellular 

electrical stimulation was elicited by using a S88 stimulator (Grass 

Instruments). The Fluo-3 targeted neurons were visualised at a wavelength of 

470 nm. 

 

For the comparison of the responses of WT and Mecp2-/y hippocampal 

neurons, primary neuronal cultures transduced with cyto-roGFP1 were used. 

 

3.14. Statistics 

For statistical calculations a two-tailed, unpaired Student t test was used, with 

a significance level of 5%. Significant changes have been indicated by 

asterisks (* p<0.05; ** p<0.01; *** p<0.001). All values constitute mean ± 

standard deviation (SD). The number of trials (n) represents the number of 

cells taken for the experiments, unless stated otherwise. 
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4. Results 

The current thesis aimed to assess the potential redox changes in Mecp2-/y 

hippocampal primary neurons and organotypic hippocampal slices by taking 

advantage of genetically-encoded redox sensors. Local sub-cellular redox 

differences within single neurons were monitored in cytosol and mitochondria, 

and redox changes associated with neuronal activity were investigated. Also, 

the effects of various physiological stimuli on cellular redox homeostasis were 

compared among WT and Mecp2-/y neurons to define Rett syndrome 

associated differences in cellular redox balance. 

 

4.1. Challenge to select the ideal optical redox indicator 

Among the genetically-encoded redox sensors only HyPer and roGFPs are 

ratiometric by excitation, thereby enabling also quantitative analyses. The 

cytosol and mitochondria expressing plasmids of HyPer are commercially 

available and allow evaluating cellular redox dynamics within these two 

cellular compartments. The advantage of HyPer is that it detects H2O2 

directly, which is not possible with other sensors, such as roGFPs, which 

report general thiol redox balance. 

 

Unfortunately, chromophores based on YFP and cpYFP are pH sensitive 

(Elsliger et al. 1999; Wachter et al. 2000; Schwarzländer et al. 2011). Since 

pH may change during hypoxia and neuronal stimulation, the pH-sensitivity of 

HyPer was assessed in order to decide, whether HyPer sensor is indeed 

suitable and sufficiently reliable for the planed experiments. To monitor pH 

changes, arising from various treatments and stimuli, a plasmid vector, which 

carries a modified variant of HyPer – SypHer – was used (Figure 7). It is no 

longer redox-sensitive but it shows only the artifactual pH responses. 
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10 µm

SypHer

 

Figure 7. Hippocampal primary cell transfected with SypHer. 

Cultured hippocampal cell expressing the cytosol-targeted SypHer sensor. Sufficient 

expression of SypHer was achieved within DIV 3-4. In accordance to HyPer, also SypHer 

exhibits two absorption peaks at 420 nm and 490 nm. 

 

4.1.1. Calibration of the SypHer sensor 

To define the SypHer response kinetics as well as response magnitudes in 

different pH conditions, primary hippocampal cells were transfected with the 

SypHer vector and exposed to pre-warmed pH-calibration solutions, starting 

from pH 7.0 to pH 7.8. As soon as the cells had reached a stable baseline, 

the cellular membrane potential was disrupted by the K+/H+ ionophore 

nigericin (5 µM) and the SypHer ratio responses were recorded for ~ 25 min 

(Figure 8). Once the cells reached a stable plateau, 10 successive images 

were averaged to calculate the final SypHer ratio. In these trials, a given cell 

was only exposed to one of the pH calibration solutions. 

 

To record the entire response range, SypHer-transfected primary 

hippocampal cells were exposed successively to all pH solutions, applying 

each respective pH for ~4 min (Figure 9; Table 1). For reliable analyses, 

ratiometric calculations were corrected for cell movements in these trials. 
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pH SypHer ratio (∆R SypHer) 

7.0 0.5 ± 0.03% 

7.2 0.7 ± 0.02% 

7.4 1.0 ± 0.05% 

7.6 1.5 ± 0.09% 

7.8 1.9 ± 0.2% 

 
Table 1. SypHer ratio changes induced by various pH. 

Listed are averages ± SD of 7 cells. 

 

 

Figure 8. The pH-calibration of the SypHer sensor. 

A) The SypHer ratio adjusts to current extracellular pH conditions within 1-2 min once the 

membrane integrity is challenged by nigericin. Time scaling applies to all traces. 

B) Summary of the SypHer responses to different pH conditions. 
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Figure 9. Full range calibration of SypHer recorded as an example in a single 

cell. 

Starting from pH 7.4, the SypHer ratio reliably increased with a rising pH, whereas it 

decreased when pH was lowered. 

 

4.1.2. Challenging SypHer by various redox stimuli 

The next set of experiments addressed pH-changes resulting from e.g. redox 

stimuli, and they were recorded in cells with intact all membranes. 

Hippocampal cell cultures of WT mice were transfected with the cytosolic 

SypHer construct and exposed to pH challenge, which was induced by 

propionate (30 mM). Also, different redox stimuli such as H2O2 (50 µM and 5 

mM), tBHP (20 µM), DEDTC (50 µM), CN- (1 mM), glutamate (50 µM, 1 mM), 

DTT (10 mM) and hypoxia were applied. Hypoxic conditions were induced by 

applying the oxygen scavenger sodium sulfite (Na2SO3; 1 mM, 15 min) and 

nitrogen aerated ACSF (95% N2 / 5% CO2; 15 min). In accordance to the 

previous experiment, an increase of the SypHer fluorescence ratio indicates 

an alkalinization, whereas a decrease of the SypHer ratio corresponds to an 

acidification. 

 

First of all, the responses of HyPer and SypHer were directly compared. In 

the case of HyPer, administration of propionate (30 mM, 15 min) resulted in 

an initial and transient decrease of the HyPer ratio, which was followed by an 

increase when propionate was removed again (Figure 10 A; Table 2). Upon 

the same treatment, the SypHer ratio showed a similar pattern of responses, 

indicating intracellular acidification and alkalinization, respectively (Figure 10 

B; Table 2). This shows that a large part of the HyPer response simply does 
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not represent redox changes but rather artifactual responses due to pH 

changes. 

 

 

Figure 10. HyPer and SypHer responses to modulation of cellular pH. 

A) The HyPer ratio initially decreased and recovered back to baseline in the presence of 

propionate (30 mM), and then increased upon wash out. Note that SypHer shows the same 

response pattern. The HyPer trace included here as a reference, was recorded already 

earlier by others (Weller et al. 2014). 

B) The summary of the SypHer responses shows that application of propionate induced an 

acidification, which was then followed by an alkalinization.  

 

Propionate 

(30 mM) 

HyPer ratio 

(∆R HyPer) 

SypHer ratio 

(∆R SypHer) 

Acidosis 

-23.5 ± 4.5% 

n = 8 

(Weller et al. 2014) 

-14.5 ± 4.2% 

n = 9 

Alkalosis 

50.5 ± 20.2% 

n = 8 

(Weller et al. 2014) 

12.5 ± 3.9% 

n = 9 

 

Table 2. The pH changes of redox-insensitive sensor SypHer. 

Treatment with propionate (30 mM, 15 min) triggered pH changes, which can be measured 

as the SypHer ratio. However, these pH changes are also detected by the redox sensor 

HyPer, giving rise to non-reliable results. 
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Administration of low (50 µM) concentrations of H2O2 induced an increase in 

the SypHer ratio (Figure 11 A, Figure 13; Table 3). Interestingly, a short initial 

increase in the SypHer ratio, induced by a high dose (5 mM) of H2O2, was 

followed by marked decrease. Oxidant challenge by tBHP (20 µM, 5 min) 

revealed a marked alkalinization (Figure 11 B, Figure 13; Table 3). Also, 

treatment with DEDTC (50 µM, 10 min) evoked a slight increase in the 

SypHer ratio (Figure 11 C, Figure 13; Table 3). Induction of reducing 

conditions by DTT (10 mM, 10 min), also increased the SypHer ratio (Figure 

11 D, Figure 13; Table 3). During hypoxia (15 min), the SypHer ratio was only 

slightly decreased and then it increased during reoxygenation (Figure 12 A, 

Figure 13; Table 3). CN- (1 mM, 5 min) elicited a biphasic response, an 

alkalinization followed by an acidification (Figure 12 B, Figure 13; Table 3). 

Pronounced acidification was induced by glutamate (50 µM, 3 min), which 

was even more obvious upon application of a high dose of glutamate (1 mM, 

3 min) (Figure 12 C, Figure 13; Table 3). 

 

 

Figure 11. SypHer responses to redox challenge. 

A) Low dosage (50 µM) of H2O2 increased the SypHer ratio, while high concentrations (5 

mM) of H2O2 induced a pronounced acidification. All traces are displayed at the same time 

scaling. 

B) Oxidant challenge provoked by tBHP revealed an increase in the SypHer ratio. 

C) Alkalinization was evoked by DEDTC treatment. 

D) The SypHer ratio revealed an increase upon reducing conditions induced by DTT. 
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Figure 12. SypHer responses to hypoxia and excitotoxicity. 

A) The SypHer ratio was only slightly decreased during hypoxia. This was then followed by a 

minor increase upon reoxygenation. All traces are displayed at the same time scaling. 

B) Chemically-induced hypoxia by CN
-
 caused a short and reversible alkalinization followed 

by an acidificaion. 

C) Administration of glutamate elicited a reversible and pronounced acidification. 

 

 

Figure 13. Summary of SypHer responses to changes in redox balance. 

The SypHer ratio responded with an acidification during treatments with H2O2 (5 mM), CN
-
, 

N2 and glutamate. Administration of H2O2 (50 µM), tBHP, DEDTC, reoxygenation upon 

hypoxia and DTT evoked alkalinization. 
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SypHer ratio (∆R SypHer) 

Treatment Acidosis Alkalosis 

H2O2 (50 µM) - 
14.4 ± 6.9% 

n = 11 

H2O2 (5 mM) 
-21.5 ± 7.6% 

n = 11 

6.4 ± 4.5% 

n = 11 

tBHP (20 µM) - 
12.9 ± 5.6% 

n = 6 

DEDTC (50 µM) - 
4.8 ± 2.8% 

n = 7 

CN- (1 mM) 
-5.2 ± 3.3% 

n =7 

3.2 ± 1.2% 

n =7 

Hypoxia 
-8.3 ± 4.6% 

n = 9 

4.7 ± 2.2% 

n = 9 

Glutamate (50 µM) 
-19.6 ± 8.2% 

n = 7 
- 

Glutamate (1 mM) 
-28.4 ± 5.9% 

n = 7 
- 

DTT (10 mM) - 
14.9 ± 8.5% 

n = 6 

 

Table 3. The pH changes of SypHer sensor upon various redox stimuli. 

The pH-sensitive, redox-insensitive optical sensor SypHer showed very clear pH changes, 

indicating acidosis and/or alkalosis, which were associated with the different redox stimuli. 

 

4.2. Redox changes in primary neuronal cell culture and 

organotypic slice culture 

Since the HyPer sensor has been found not to be a suitable redox indicator 

as its responses were markedly disturbed by pH changes, the genetically-

encoded roGFP1 sensor was used for all further experiments. For roGFP1 it 

has been confirmed earlier that it is hardly affected by pH changes (Funke et 

al. 2011). 
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To asses any changes in the redox homeostasis specifically within neurons, 

primary cell and slice cultures were transduced with a neuron-specific viral 

expression vector AAV-6, carrying roGFP1 and targeting it to mitochondria 

(mito-roGFP1) as well as the cytosol (cyto-roGFP1). At first, proper 

expression of roGFP1 in cytosolic and mitochondrial compartments of cell 

and organotypic culture preparations was confirmed (Figure 14). Since 

roGFP1 gives excitation ratiometric responses, variations in redox balance 

could be measured and analysed quantitatively.  

 

 
Figure 14. Transduction of primary cell and slice cultures with cyto-roGFP1 

and mito-roGFP1. 

Viral transduction ensured neuron-specific expression of roGFP1. Sufficient expression levels 

were obtained within DIV 6-7. Mito-roGFP1 reported the redox changes in mitochondrial 

matrix of individual mitochondria in neuronal cell cultures and organotypic slice cultures. 

Cyto-roGFP1 was distributed homogenously in cytosol, reporting redox conditions in the 

cytosolic sub-compartments. The scale bar applies to all images displayed. 
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4.2.1. Confirming proper sub-cellular localization of mito- and 

cyto-roGFP1 in neurons 

The mitochondria-specific synthetic dye MitoTracker RED FM was used to 

certify specific targeting of mito-roGFP1 to intact mitochondria of primary 

neurons (Figure 15 A-C). To confirm the specific targeting of cyto-roGFP1 to 

neuronal cells, primary cell cultures were fixed and stained with MAP2-

directed antibody as MAP2 is present only in neurons, in their perikarya and 

dendrites in particular (Figure 15 D-F). 

 

 

Figure 15. Sub-cellular localization of mito-roGFP1 and cyto-roGFP1. 

A) Cyto-roGFP1 was expressed homogenously within hippocampal neurons as confirmed by 

MAP2 immunolabeling. The scale bar applies to all images. 

B) Mito-roGFP1 specifically targeted mitochondrial compartments in neurons. MitoTracker 

RED FM confirmed the proper location of mito-roGFP1 in neuronal mitochondria. 
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4.2.2. Calibration of cyto- and mito-roGFP1 

To perform semi-quantitative analyses, the ratiometric fluorescence 

responses of mito-roGFP1 and cyto-roGFP1 were calibrated to maximum 

oxidation and reduction. Complete oxidation was induced by applying 

saturating doses of H2O2 (5 mM, 3 min) and full reduction was obtained by 

DTT (10 mM, 3 min) (Hanson et al. 2004; Funke et al. 2011; Großer et al. 

2012). According to the assumption of linear roGFP1 responses, the relative 

amount of oxidation/reduction of the respective construct was estimated 

(Figure 16 A), and Mecp2-/y and WT genotypes as well as primary cell culture 

and organotypic slice culture preparations could be compared. Calibrations 

were performed for each sensor construct as well as in each type of in vitro 

preparation. Both genotypes responded similarly to the calibration treatments. 

However, the response ranges of mito-roGFP1 in Mecp2-/y and WT neurons 

in slice cultures were somewhat decreased in comparison to cultured 

dissociated cells (Figure 16 B; Table 4). 

 

Figure 16. Response range of mito-roGFP1 and cyto-roGFP1. 

A) Calibration of mito-roGFP1 responses in a
 
hippocampal neuron

 
to full oxidation and 

reduction. Upon reduction, induced by DTT, the fluorescence of mito-roGFP1 decreased and 

it increased upon oxidation, which was mediated by H2O2. 

B) Calculated response ranges of mito-roGFP1 and cyto-roGFP1 in primary cell and 

organotypic hippocampal slice cultures. 
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roGFP1 ratio (F395 / F470) 

WT Mecp2-/y Treatment 
M

it
o

c
h

o
n

d
ri

a
 Cell culture 

1.5 ± 0.2 

n = 14 

1.5 ± 0.3 

n = 18 
H2O2 

0.7 ± 0.1 

n = 14 

0.8 ± 0.1 

n = 19 
DTT 

Slice culture 

1.0 ± 0.1 

n = 12 

1.0 ± 0.1 

n = 46 
H2O2 

0.6 ± 0.1 

n = 15 

0.6 ± 0.1 

n = 25 
DTT 

C
y
to

s
o

l 

Cell culture 

1.7 ± 0.1 

n = 9 

1.8 ± 0.4 

n = 10 
H2O2 

0.8 ± 0.1 

n = 6 

0.8 ± 0.0 

n = 6 
DTT 

Slice culture 

1.6 ± 0.4 

n = 35 

1.7 ± 0.3 

n = 39 
H2O2 

0.6 ± 0.1 

n = 13 

0.7 ± 0.1 

n = 33 
DTT 

 
Table 4. Calibration of the roGFP1 redox sensors in mitochondrial and 

cytosolic compartments. 

Listed are the peaks and nadirs recorded in response to oxidation and reduction, 

respectively. 

 

4.2.3. The roGFP1 pre-treatment baseline ratio in 

mitochondria and cytosol 

Previously, it has been shown that the roGFP1 pre-treatment baseline ratio 

was significantly increased in the cytosol of neonatal Mecp2-/y hippocampi 

(Großer et al. 2012). In these trials the roGFP1-coding DNA was delivered by 

lipofectamine, which certainly resulted in a mixed population of roGFP1 

expressing neurons and glial cells. In the present thesis, redox conditions 

were monitored specifically in neurons, and analyses were not only performed 

in the cytosol, but also extended to the mitochondrial matrix. This was done in 

a comparable fashion in WT and Mecp2-/y hippocampal primary neurons as 
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well as in organotypic slice cultures. The specific delivery of roGFP1 to 

neurons was achieved by the AAV-6 viral vector, which mediated a highly 

efficient and specific roGFP1 expression under the control of the human 

synapsin I promoter. 

 

Differing redox conditions in WT and Mecp2-/y mice were especially obvious in 

organotypic slice cultures under control conditions. In the cultured 

hippocampal tissue, Mecp2-/y neurons revealed more oxidized roGFP1 

baseline ratios both in their mitochondria (p<0.05) and in cytosol (p<0.001) 

than WT neurons. Significant changes were also observed not only between 

WT and Mecp2-/y genotypes, but also between mitochondrial and cytosolic 

compartments. Interestingly, the roGFP1 pre-treatment baseline ratio was 

significantly (p<0.001) decreased in the cytosol of neuronal cultures from WT 

and Mecp2-/y hippocampus as compared to mitochondria. In contrast, it was 

markedly (p<0.001) increased in cytosol as compared to mitochondria in 

organotypic slice cultures of these both genotypes (Figure 17; Table 5). 

 

 

Figure 17. The cytosolic and mitochondrial pre-treatment baseline ratio 

responses. 

In all dissociated cell cultures no differences of the cytosolic and mitochondrial roGFP1 

baseline ratio between WT and Mecp2
-/y

 neurons were observed. However, in organotypic 

slice cultures, the roGFP1 baseline ratio was significantly increased in mitochondria (p<0.05), 

and in cytosol of (p<0.001) Mecp2
-/y

 mice as compared to WT. Also, the roGFP1 baseline 

was significantly (p<0.001) decreased in cytosol compared to mitochondria in dissociated cell 

cultures, which was opposite in organotypic slices. 
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roGFP1 ratio (F395 / F470) 

WT Mecp2-/y 
C

e
ll

 c
u

lt
u

re
 

Mitochondria 
1.3 ± 0.2 

n = 75 

1.3 ± 0.2 

n = 70 

Cytosol 
1.1 ± 0.1 

n = 110 

1.1 ± 0.1 

n = 177 

S
li

c
e
 c

u
lt

u
re

 

Mitochondria 
0.8 ± 0.2 

n = 75 

0.9 ± 0.1 

n = 101 

Cytosol 
1.0 ± 0.2 

n = 125 

1.0 ± 0.1 

n = 209 

 

Table 5. Mito-roGFP1 and cyto-roGFP1 ratio baselines under control 

conditions in WT and Mecp2-/y neurons. 

 

4.2.4. Mitochondrial and cytosolic redox status 

In order to screen for redox changes of Mecp2-/y hippocampus during 

hypoxia, oxygen (O2) was removed by applying the O2 scavenger sodium 

sulfite (Na2SO3; 1 mM, 10 min) together with ACSF, which was aerated with 

nitrogen (95 % N2 / CO2; 10 min) (Figure 18 A). To assess any alterations in 

the redox homeostasis of Mecp2-/y hippocampal neurons, hippocampal cell 

and slice cultures were challenged by acute oxidative stress, induced by a 

transient application of H2O2 (200 µM, 3 min) (Figure 18 B). The efficiency of 

cellular scavenging systems in Mecp2-/y neurons was rated by SOD 

scavenging enzyme inhibition, which was triggered by DEDTC (5 mM, 5 min) 

(Figure 18 C). Also, changes in mitochondrial ROS production were provoked 

by blocking the oxidative phosphorylation with the complex III inhibitor AMC 

(20 µM, 10 min) (Figure 18 D). 
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Figure 18. Rating of cellular redox homeostasis. 

A) Severe hypoxia was induced by O2 withdrawal (95% N2 / CO2) in the presence of the O2 

scavenger Na2SO3. The roGFP1 ratio decreased towards more reducing conditions in  

Mecp2
-/y

 hippocampus as compared to WT. The scale bar applies to all panels. 

B) Direct oxidative challenge by H2O2 induced a clearly more intense oxidation in 

mitochondria of Mecp2
-/y

 mice as compared to WT. 

C) Inhibition of SOD by DEDTC evoked a less intense oxidation in Mecp2
-/y

 neurons than in 

WT. 

D) Inhibition of mitochondrial electron transport chain by administration of AMC induced a 

slight oxidation, however, differences between WT and Mecp2
-/y

 were not obvious. 

 

Upon redox challenge, more obvious differences between WT and Mecp2-/y 

mice were detectable in hippocampal organotypic slice culture rather than in 

cell culture preparations. These changes were seen in both mitochondrial and 

cytosolic compartments (Figure 19). 

 

In primary cell cultures, upon induction of hypoxia, the mito-roGFP1 ratio 

clearly (p<0.01) shifted towards more reducing conditions in Mecp2-/y neurons 

as compared to WT (Figure 19 A; Table 6). However, application of H2O2, 

DEDTC and AMC did not reveal any significant differences among 

mitochondria of WT and Mecp2-/y neurons. Also, the cyto-roGFP1 ratio did not 
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show any differences between WT and Mecp2-/y neurons during application of 

hypoxia, DEDTC and AMC (Figure 19 B; Table 6). Only H2O2 evoked a shift 

to more (p<0.05) oxidizing conditions in Mecp2-/y neurons as compared to 

WT. 

 

Exaggerated redox responses were, however, found in organotypic slice 

cultures. During hypoxia, the mito-roGFP1 ratio reached more reducing levels 

in Mecp2-/y slices as compared to WT (p<0.05). Also, the mito-roGFP1 ratio 

clearly (p<0.01) shifted further towards oxidation in Mecp2-/y slices due to 

H2O2 application as compared to WT. Treatment with DEDTC evoked a less 

intense (p<0.05) oxidation of mito-roGFP1 in Mecp2-/y slices as compared to 

WT. Moreover, the mito-roGFP1 ratio tended to increase more upon 

application of AMC in Mecp2-/y slices as compared to WT (Figure 19 C; Table 

6). 

 

Pronounced differences in the redox responses between WT and Mecp2-/y 

slices were especially seen in the cytosol. Hypoxic conditions elicited clearly 

(p<0.01) more reducing responses in Mecp2-/y slices as compared to WT. 

Redox challenge, induced by H2O2, resulted in a significantly (p<0.05) more 

intense oxidation in Mecp2-/y slices as compared to WT. Furthermore, the 

cyto-roGFP1 ratio was notably (p<0.001) less effected in Mecp2-/y slices due 

to SOD inhibition as compared to WT. Surprisingly, blockade of the 

mitochondrial transport chain by AMC did not evoke any obvious differences 

in the cytosolic responses of WT and Mecp2-/y slices (Figure 19 D; Table 6). 
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Figure 19. Summary of redox responses in mitochondria and cytosol. 

A) Mito-roGFP1 ratio did not respond differently between WT and Mecp2
-/y

 mice, when H2O2, 

DEDTC and AMC were applied. However, Mecp2
-/y

 neurons were more (p<0.01) susceptible 

to hypoxia when compared to WT. 

B) Mecp2
-/y

 and WT neurons responded equally to hypoxia as well as to DEDTC and AMC. 

Yet, the cyto-roGFP1 ratio shifted towards more (p<0.05) oxidizing conditions in Mecp2
-/y

 

neurons due to H2O2 treatment as compared to WT. 

C) The mito-roGFP1 ratio shifted towards more (p<0.05) reducing conditions during hypoxia 

and showed more (p<0.01) exaggerated responses to H2O2 in Mecp2
-/y

 organotypic slices as 

compared to WT. Moreover, DEDTC evoked a shift of the mito-roGFP1 ratio towards 

oxidation, which was less (p<0.05) intense in Mecp2
-/y

 organotypic slices as compared to WT. 

Also, Mecp2
-/y

 slices showed a tendency towards more intense oxidation upon AMC 

administration as compared to WT. 

D) Cyto-roGFP1 showed significantly lowered (p<0.01) reducing responses during hypoxia 

and markedly (p<0.05) increased oxidation in response to H2O2 in Mecp2
-/y

 organotypic slices 

as compared to WT. Also, a weaker (p<0.001) shift of the cyto-roGFP1 ratio towards 

oxidation was found in Mecp2
-/y

 slice cultures due to DEDTC administration as compared to 

WT. However, no obvious differences between WT and Mecp2
-/y

 organotypic slices were 

observed when AMC was applied. 
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Evoked changes in roGFP1 ratio  

(F395 / F470), ∆R roGFP1 

 Hypoxia H2O2 DEDTC Antimycin A 

M
it

o
c
h

o
n

d
ri

a
 

C
e
ll

 c
u

lt
u

re
 

W
T

 -5.5 ± 2.2% 

n = 10 

14.6 ± 4.3% 

n = 13 

12.0 ± 5.1% 

n = 12 

14.6 ± 9.9% 

n = 5 

M
e

c
p

2
-/

y
 

-8.3 ± 1.5% 

n = 9 

15.6 ± 6.3% 

n = 11 

14.9 ± 6.5% 

n = 14 

12.4 ± 3.7% 

n = 6 

S
li

c
e
 c

u
lt

u
re

 

W
T

 -4.5 ± 2.3% 

n = 23 

6.3 ± 2.5% 

n = 10 

17.9 ± 6.6% 

n = 9 

9.5 ± 6.3% 

n = 6 

M
e

c
p

2
-/

y
 

-6.8 ± 3.4% 

 n = 20 

9.8 ± 2.7% 

n = 12 

10.2 ± 5.4% 

n = 10 

16.0 ± 12.8% 

n = 9 

C
y
to

s
o

l 

C
e
ll

 c
u

lt
u

re
 

W
T

 -4.3 ± 1.2% 

n = 10 

21.0 ± 12.4% 

n = 28 

41.4 ± 18.2% 

n = 14 

25.6 ± 11.5% 

n = 8 

M
e

c
p

2
-/

y
 

-3.3 ± 2.1% 

n = 9 

28.8 ± 13.8% 

n = 28 

39.8 ± 17.9% 

n = 12 

27.4 ± 10.0% 

n = 11 

S
li

c
e
 c

u
lt

u
re

 

W
T

 -2.9 ± 3.9% 

n =24 

27.7 ± 10.8% 

n = 21 

33.1 ± 8.5% 

n = 14 

9.1 ± 3.9% 

n = 15 

M
e

c
p

2
-/

y
 

-5.2 ± 1.9% 

n = 34 

39.4 ± 21.6% 

n = 51 

18.0 ± 6.7% 

n = 32 

6.3 ± 3.5% 

n = 20 

 

Table 6. Overview of the mito-roGFP1 and cyto-roGFP1 ratio responses in 

cultured neurons and hippocampal organotypic slices upon various redox 

stimuli. 
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4.3. Sub-cellular redox changes under control conditions and 

upon oxidative challenge. 

To investigate the redox conditions of somata and dendrites in Mecp2-/y 

neurons under control conditions, cyto-roGFP1 transduced neurons were 

imaged and analyzed for sub-cellular differences in their steady state roGFP1 

ratios. For this, a line of interest (LOI) was drawn along the neurons, starting 

from the centre of the somata up to the periphery of single dendrites (Figure 

20 A). For statistical calculations, redox ratios were normalized to the mean of 

first ten pixels of the respective LOI. Furthermore, to reduce pixel noise, a 

moving average (5 data points wide) was applied. These analyses revealed a 

more increased cyto-roGFP1 baseline ratio in somata than in dendrites in WT 

and Mecp2-/y neurons (Figure 20 B). Genotypic differences in this sub-cellular 

redox gradient were not observed. 

 

 

Figure 20. Oxidation level changes between somata and dendrites in WT and 

Mecp2-/y neurons under control conditions. 

A) To analyze redox baselines in somatic and dendritic areas of hippocampal neurons, a LOI 

was drawn along a neuron from the middle of the soma into a well pronounced dendrite. 

B) The cyto-roGFP1 ratio showed an increased steady state oxidation in somata, which was 

progressively decreasing towards the periphery of the dendrites. 

 

To assess any differences in the redox responses to oxidative challenge 

between somatic and dendritic areas of Mecp2-/y and WT neurons, H2O2 (200 

µM, 3 min) was applied to cyto-roGFP1-transduced cell cultures. As a result, 

the cyto-roGFP1 ratio shifted towards more (p<0.01) oxidizing conditions in 

somata than in dendrites of WT and Mecp2-/y neurons (Figure 21; Table 7). 
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As expected, upon H2O2 treatment, the cyto-roGFP1 ratio increased also 

more intensively in Mecp2-/y neurons than in WT, and this was observed in 

neuronal dendrites (p<0.001) and somata (p<0.05). 

 

 

Figure 21. Local redox changes in response to oxidation challenge. 

Upon H2O2 (200 µM, 3 min) application, more increased (p<0.01) cyto-roGFP1 ratios were 

apparent in the somata of WT and Mecp2
-/y

 neurons than in their dendrites. Furthermore, 

Mecp2
-/y

 neurons showed significantly higher shifts of the cyto-roGFP1 ratios towards 

oxidation in dendrites (p<0.001) and in soma (p<0.05) as compared to WT. 

 

Evoked changes in roGFP1 ratio  

(F395 / F470), ∆R roGFP1 

H2O2 (200 µM) WT Mecp2-/y 

Dendrites 
14.6 ± 4.4% 

ndendrites = 40 

19.9 ± 4.9% 

ndendrites = 32 

Soma 
21.0 ± 12.4% 

n = 28 

28.8 ± 13.5% 

n = 28 

 

Table 7. Relative changes in the cyto-roGFP1 ratio in somatic and dendritic 

areas of WT and Mecp2-/y neurons upon oxidative challenge. 

Usually, 1-2 dendrites were analyzed per cell. 

 

To evaluate the changes in SOD efficiency specifically among soma and 

dendrites of Mecp2-/y neurons, the cyto-roGFP1-transduced neuronal cultures 

were also treated with DEDTC (5 mM, 5 min) in order to inhibit SOD. Upon 
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such treatment, Mecp2-/y neuronal dendrites showed more increased (p<0.01) 

cyto-roGFP1 ratios when compared to WT. Moreover, the cyto-roGFP1 ratio 

shifted towards more oxidation in somata than in dendrites, which was 

especially pronounced (p<0.001) in WT (Figure 22; Table 8). 

 

 

Figure 22. Local neuronal changes in response to SOD inhibition. 

Upon SOD blockade, Mecp2
-/y

 dendrites showed a marked (p<0.01) oxidizing shift in the 

cyto-roGFP1 ratio as compared to WT. Furthermore, more oxidized (p<0.001) responses 

were observed in the somatic areas of WT neurons than in their somata. 

 

Evoked changes in roGFP1 ratio  

(F395 / F470), ∆R roGFP1 

DEDTC (5 mM) WT Mecp2-/y 

Dendrites 
22.5 ± 9.6% 

ndendrites = 30 

30.7 ± 7.0% 

ndendrites = 16 

Soma 
41.4 ± 18.2% 

n = 14 

39.8 ± 17.9% 

n = 12 

 

Table 8. Differences in oxidation levels of somatic and dendritic areas between 

Mecp2-/y and WT neurons in response to DEDTC. 

Usually, 1-2 dendrites were analyzed per cell. 
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4.4. Local redox stimulation of primary neurons 

In order to better understand the cellular redox physiology, it is crucial to 

challenge neurons with different redox stimuli. However, since neurons 

constitute a group of very sensitive and energy demanding cells, too high 

drug concentrations and/or long neuronal stimulation might contribute to 

cellular impairment, and result in unreliable observations. It is therefore 

important also to apply more subtle and localized stimuli. Hence, the next set 

of experiments aimed to establish the local neuronal stimulation by using a 

pneumatic drug ejection system, and to assess the sub-cellular changes in 

the roGFP1 ratio of Mecp2-/y neurons in response to oxidative challenge. 

 

First, tests of the drug ejection system were performed to confirm proper and 

reproducible ejection of small volumes from a pipette tip once a pressure was 

applied. A glass pipette was filled with the highly fluorescing dye rhodamine 

123 (Rh123), which was then ejected either in a constant or pulsed (100 ms, 

5 Hz) mode for durations of 5 s and 10 s. Applied pressure was 20 mbar, and 

both single and repeated pressure puff stimulations resulted in a reliable 

Rh123 release (Figure 23). 

 

 

Figure 23. Rh123 release from a pipette tip by using pulsed puff stimuli. 

Application of single (blue mark) and pulsed (red dashed mark) pressure puffs reliably 

induced Rh123 release from the pipette into the recording chamber. Plotted fluorescence was 

recorded with a region of interest placed in front of the pipette tip at a distance ~5 µm. 

 

Next, to rule out any unwanted mechanical effects that might appear upon 

puff stimulation of neurons, the pipette was filled with ACSF and positioned in 
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close proximity to a dendrite of a cyto-roGFP1-transduced neuron (Figure 24 

A) without actually touching the cell membrane (Figure 24 B). Single puffs 

with durations of 100 ms, 200 ms and 300 ms and 50 mbar pressure were 

applied. No changes were observed in the cyto-roGFP1 ratio by such local 

ACSF puffs (Figure 24 C). Now, to redox challenge hippocampal neurons, a 

glass pipette was filled with H2O2 (5 mM) and placed closely to a proximal 

dendrite and the soma. The cell body was stimulated by pressure puffs in a 

repeated (100 ms, 5 Hz) mode for 10 s, 30 s and 1 min. Upon local H2O2 

puffs, the cyto-roGFP1 ratio clearly increased and recovered to the pre-

treatment baseline (Figure 24 D). 

 

 

Figure 24. Local redox stimulation of a cyto-roGFP1-transduced neuron. 

A) Cyto-roGFP1 transduced neurons were used for local redox stimulation. The scale bar 

applies to both images displayed. 

B) The patch pipette was positioned in close proximity to a neuronal dendrite of a cyto-

roGFP1 transduced neuron, allowing therefore for a localized redox challenging. 

C) When neurons were exposed to ACSF pressure puffs for 100 ms, 200 ms and 300 ms, no 

changes in the cyto-roGFP1 ratio were detected, ruling out mechanical artefacts. 

D) The cyto-roGFP1 ratio clearly increased to local H2O2 (5 mM) puffs. Local redox challenge 

was achieved by applying repeated pressure puffs (100 ms, 5 Hz) for 10 s (red mark), 30 s 

(blue mark) and 1 min (green mark). Displayed changes were quantified in the soma region. 
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To optimize the parameters of local redox stimulation, dendrites of neurons 

were puffed by lower concentrated H2O2 (1 mM) in a single puff of 100 ms. 

Again, the cyto-roGFP1 ratio increased, which was especially obvious in the 

soma (Figure 25 A). To visualise cytosolic redox kinetics during redox 

challenge, a LOI along the neurons was drawn, starting from the lower 

dendrite through the soma, up to the upper dendrite (Figure 25 B). Based on 

the time course of the cyto-roGFP1 ratiometric responses along this LOI, a 

kymograph was calculated to create a graphical representation of the evoked 

redox changes in the somatic and dendritic areas of a single neuron in time 

(Figure 25 C). 

 

 
Figure 25. Sub-cellular changes within a single neuron upon local oxidant 

challenge. 

A) The cyto-roGFP1 ratio revealed clear redox changes in the soma during H2O2 (1 mM) 

treatment. 

B) To analyze the neuronal kinetics upon redox challenging induced by H2O2, and to 

calculate a kymograph, the LOI was drawn along the cell. Triangles indicate the particular 

areas of a neuron, whose redox changes are presented in panel A. 
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C) The kymograph summarizes the cyto-roGFP1 ratio changes within a single neuron in 

respect to the LOI from panel B in time. The cyto-roGFP1 ratio increased especially in the cell 

body due to H2O2 application. 

 

To prevent a potential spillover of high concentrated H2O2 (1 mM), even more 

subtle stimuli were performed by applying doses of 200 µM H2O2 in a single 

puff (200 ms). The cyto-roGFP1 ratio shifted towards more oxidizing 

conditions, which was especially pronounced in the soma (Figure 26 A). 

Similar to the previous experiment, a LOI was drawn along the neuron to 

obtain the sub-cellular kinetics during treatment (Figure 26 B). Again, based 

on these data, a kymograph was created (Figure 26 C). 

 
Figure 26. Local stimulation of a neuron with low doses of H2O2. 

A) The cyto-roGFP1 ratio responded to redox modulation induced by 200 µM H2O2, which 

was applied as a local 200 ms pressure puff. 

B) To calculate the kymograph and to analyze the neuronal kinetics, the LOI was drawn 

along the cell, starting from the upper dendrite. Triangles indicate the positions at which the 

displayed traces were extracted. 
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C) The kymograph represents the temporal changes in redox balance within the displayed 

neuron. The H2O2 puff evoked an oxidation especially in the soma. 

 

After confirming the feasibility of local puff application and the sensitivity of 

roGFP1 to even single puffs, sub-cellular changes in the cyto-roGFP1 ratio 

were now analyzed in more detail. For redox challenge of neurons, H2O2 (200 

µM) was locally applied in a single puff mode for 200 ms in close proximity to 

a dendrite, and the resulting changes in sub-cellular redox balance were 

analyzed at different regions of interest to compare soma and dendrites. 

 

As seen earlier (Figure 20), the cyto-roGFP1 pre-treatment baseline ratio was 

significantly (p<0.001) higher in somata than in dendrites of WT and Mecp2-/y 

hippocampal neurons. Surprisingly, the cyto-roGFP1 pre-treatment baseline 

ratio was lower (p<0.001) in Mecp2-/y dendrites as compared to WT dendrites 

(Figure 27 A; Table 9). 

 

However, the cyto-roGFP1 ratio shifted towards more oxidation in WT and 

Mecp2-/y dendrites than in somata in response to local H2O2 application. This 

change was significant (p<0.05) especially in WT neurons, but also evident as 

a solid trend in Mecp2-/y neurons (Figure 27 B; Table 9). 
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Figure 27. Relative redox changes in dendrites and soma of neurons. 

A) Already under control conditions, the cyto-roGFP1 baseline ratio within the soma region 

was more (p<0.001) oxidized in comparison to dendrites. This was observed in both WT and 

Mecp2
-/y

 hippocampal neurons (see also Figure 20). 

B) Upon local puff stimulation of cultured neurons with H2O2 (200 µM, 200 ms), the cyto-

roGFP1 ratio was shifted to more oxidized levels in dendrites than in soma. This was 

especially obvious (p<0.05) for WT neurons. 
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 WT Mecp2-/y 
P

re
-t

re
a

tm
e
n

t 

c
y

to
-r

o
G

F
P

1
 r

a
ti

o
 

Dendrites 
1.3 ± 0.1% 

ndendrites = 27 

1.1 ± 0.1% 

ndendrites = 26 

Soma 
1.6 ± 0.4% 

nsomas = 9 

1.5 ± 0.2% 

nsomas = 8 

L
o

c
a

l 
s

ti
m

u
la

ti
o

n
 

(H
2
O

2
, 

2
0

0
 m

s
) 

 

∆
R

 r
o

G
F

P
1
 

 

Dendrites 
2.6 ± 2.1% 

ndendrites = 27 

3.3 ± 2.8% 

ndendrites = 26 

Soma 
0.9 ± 1.4% 

nsomas = 9 

1.5 ± 0.9% 

nsomas = 8 

 

Table 9. Oxidative changes in dendrites and soma in response to locally 

stimulated neurons. 

The soma was more oxidized in comparison to dendrites under control conditions in WT and 

Mecp2
-/y

 hippocampal neurons. However, upon local neuronal stimulation with H2O2 (200 µM, 

200 ms), the cyto-roGFP1 ratio showed more intense oxidative responses in dendrites than in 

the soma. 

 

4.5. Electrical stimulation of neurons 

Since even defined sub-cellular redox changes could be detected in somatic 

and dendritic areas of cultured neurons, it was interesting to assess the local 

changes due to more physiological stimuli. Therefore, to evaluate the 

interplay of neuronal activity and redox balance, extracellular monopolar 

electrical stimulation was established. 

 

For proof of principle, intact primary neuronal cultures were bulk loaded with 5 

µM of calcium (Ca2+) dye Fluo-3 in sterile and humidified (37°C, 5% CO2) 

conditions for 30 min (Figure 28 A). The cultures were next placed into the 

submersion style recording chamber, and an extracellular stimulation 

electrode was positioned close to a dendrite (Figure 28 B). For electrical 

stimulation, 100 µA current, 1 ms pulses, 5 s train duration and frequencies of 

2 Hz and 5 Hz were applied. In response to such stimuli, Fluo-3 fluorescence 
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markedly increased, confirming successful activation of this neuron. However, 

after a second stimulation, cell rupture was frequently observed, which was 

indicated by a marked and rapid drop of Fluo-3 fluorescence (Figure 28 C). 

 

 

Figure 28. Principle of electrical stimulation. 

A) Primary hippocampal neurons were stained with the calcium-sensitive dye Fluo-3. The 

extracellular recording electrode was positioned closely to a neuronal dendrite. The scale bar 

applies to both images. 

B) Fluorescence responses were evoked by 100 µA of current, 1 ms pulse, 5 s train duration, 

and 2 Hz and 5 Hz frequency. Note that the Fluo-3 fluorescence increased immediately upon 

electrical stimulation. 

 

In order to quantify the Fluo-3 responses upon massive neuronal 

depolarisation and the related strong Ca2+ influx, neurons were depolarised 

by ACSF containing 40 mM potassium (K+). To prevent any osmotic stress, 

ACSF with only 90 mM sodium (Na+) was used in these tests. The Fluo-3 

fluorescence increased by a total of 505.4 ± 145.4% (n = 16), and it fully 

recovered after the treatment (Figure 29). 
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Figure 29. Fluo-3 responses upon massive neuronal depolarisation. 

A) Depolarisation (40 mM K
+
) of neurons induced pronounced transient Ca

2+
 influx indicated 

by a marked increase in Fluo-3 fluorescence. 

B) On average, K
+
-mediated depolarisation caused an increase of Fluo-3 fluorescence by 

505.4 ± 145.4% (n = 16). 

 

After confirming that electrical stimulation does in principle work and elicits a 

much more moderate Ca2+ influx than general cellular depolarisation, this 

approach was next applied to the cyto-roGFP1-transduced hippocampal 

primary neurons. Parameters of 100 µA current, 1 ms pulse, 5 s duration and 

frequencies of 2 Hz and 5 Hz were applied. Against expectation, after a first 

electrical stimulation, the cyto-roGFP1 ratio fluorescence decreased and a 

second electrical stimulation induced neuronal cell loss (Figure 30). 

 

 

Figure 30. The cyto-roGFP1 ratiometric response to extracellular electrical 

stimulation. 

Upon electrical stimulation (100 µA current, 1 ms pulse, 5 s duration, 1 Hz and 2 Hz 

frequency), the cyto-roGFP1 ratio fluorescence decreased. A second electrical stimulation 

induced a marked fluorescence drop, suggesting massively impaired neuronal integrity. 

 

In an attempt to maintain cellular viability, stimulation intensities were 

reduced. Indeed, the contrary neuronal responses could now be observed, at 

least in some trials. In some neurons, the cyto-roGFP1 ratio increased upon 
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electrical stimulation when 20 µA current in a single 10 ms pulse was applied 

(Figure 31 A). In others, the cyto-roGFP1 ratio markedly decreased right after 

the stimulation (Figure 31 B). Stimulation of neuronal cultures with even more 

gentle parameters (10 µA current, 1 ms pulse) still induced quite variable 

responses. The cyto-roGFP1 ratio shifted towards more oxidizing conditions 

in some cells (Figure 31 C), whereas in others it rapidly decreased upon 

electrical stimulation (Figure 31 D). Therefore, one might speculate that 

roGFP1-transduced neurons are more fragile to electrical stimulation than 

Ca2+ loaded neurons, which tolerated the procedure. 

 

 

Figure 31. Variability of cyto-roGFP1 ratio responses to extracellular electrical 

stimulation. 

A) Electrical stimulation of neurons (20 µA, 10 ms pulse) resulted in an increase of the cyto-

roGFP1 ratio, indicating oxidation. A second stimulation did not noticeably affect the cyto-

roGFP1 ratio. 

B) Stimulation of another neuronal cell induced a rapid decrease in the cyto-roGFP1 ratio and 

cell loss. 

C) Stimulation of a neuron with a more gentle current (10 µA, 1 ms pulse) increased the cyto-

roGFP1 ratio, which then reached a plateau stage. 

D) Yet, even gentle electrical stimulation of neurons sometimes resulted in cell loss. 
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4.6. The effect of neurotransmitters on cellular redox balance 

In order to compare the redox responses of WT and Mecp2-/y hippocampal 

neurons, evoked by various neurotransmitters, glutamate, serotonin, 

norepinephrine and dopamine were applied to cyto-roGFP1-transduced 

primary cultured neurons. 

 

Glutamate (50 µM, 5 min) caused biphasic responses, consisting of an initial 

decrease followed by a marked increase of roGFP1 ratio. Since glutamate 

induced continuously rising responses of the cyto-roGFP1 ratio, which did not 

recover upon wash-out, the redox-level reached after 30 min was taken for 

statistical calculations. Genotypic comparison revealed that the initial drop 

was more (p<0.001) intense in WT than in Mecp2-/y neurons. The secondary 

increase was more pronounced (p<0.001) in Mecp2-/y neurons in comparison 

to WT (Figure 32 A, F; Table 10). 

 

The cyto-roGFP1 ratio increased also more intensively (p<0.001) in Mecp2-/y 

neurons when norepinephrine (200 µM, 3 min) was applied as compared to 

WT (Figure 32 B, F; Table 10). Moreover, after only partial recovery upon 

wash-out of norepinephrine, the cyto-roGFP1 ratio continued to rise. Similar, 

but even stronger effects occurred in Mecp2-/y neurons exposed to a higher 

dose of norepinephrine (500 µM, 3 min) (Figure 32 C, F; Table 10). An 

increase of the cyto-roGFP1 ratio was also induced by serotonin (100 µM, 10 

min), which was again more pronounced (p<0.05) in Mecp2-/y than in WT 

neurons (Figure 32 D, F; Table 10). Furthermore, in contrast to WT, the cyto-

roGFP1 ratio of Mecp2-/y cells did not recover to its pre-treatment baseline 

after serotonin treatment. Application of dopamine (500 µM, 3 min) shifted the 

roGFP1 ratio towards more oxidizing conditions, which was also intensified 

(p<0.05) in Mecp2-/y neurons (Figure 32 E, F; Table 10). In contrast to the 

other tested neurotransmitters, the redox changes evoked by dopamine 

readily recovered in both genotypes after wash out. Nevertheless, the 

oxidative shift reduced, was again more intense in Mecp2-/y neurons. 
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Figure 32. The cyto-roGFP1 ratio responses to neurotransmitters. 

A) Under treatment with glutamate, the cyto-roGFP1 ratio shifted towards more (p<0.001) 

oxidizing conditions in Mecp2
-/y

 neurons as compared to WT. Also, application of glutamate 

caused an initial drop in the cyto-roGFP1 ratio, which was markedly less (p<0.001) intense in 

Mecp2
-/y

 neurons than in WT. Time scaling is identical for all of the traces shown. 

B and C) Smaller (200 µM) and higher (500 µM) doses of norepinephrine resulted in an 

increase in cyto-roGFP1 ratio, which was more pronounced (p<0.001) in Mecp2
-/y

 neurons. 

D) Treatment with serotonin elicited a shift towards oxidation, which was intensified (p<0.001) 

in Mecp2
-/y

 neurons. 

E) Also, dopamine induced a more intense (p<0.05) oxidation in Mecp2
-/y

 neurons. 

F) Statistical overview of the quantified cyto-roGFP1 responses to neurotransmitters in WT 

and Mecp2
-/y

 neurons. 
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Evoked changes in roGFP1 ratio 

(F395 / F470), ∆R roGFP1 

Neurotransmitter WT Mecp2-/y 

Serotonin 
7.5 ± 3.6% 

n = 11 

14.0 ± 8.8% 

n = 12 

Norepinephrine 

(200 µM) 

7.9 ± 2.5% 

n = 10 

18.9 ± 7.2% 

n = 11 

Norepinephrine 

(500 µM) 

14.2 ± 4.7% 

n= 8 

38.5 ± 11.8% 

n = 6 

Glutamate 

(initial drop) 

-3.3 ± 0.5% 

n = 7 

-1.7 ± 0.5% 

n = 8 

Glutamate 

(secondary increase) 

18.8 ± 6.4% 

n = 7 

34.6 ± 2.2% 

n = 8 

Dopamine 
12.3 ± 3.0% 

n = 13 

15.7 ± 5.0% 

n = 14 

 

Table 10. Effects of neurotransmitters on the cyto-roGFP1 ratio in hippocampal 

cultured neurons. 

 

4.7. Mechanisms of transmitter-mediated redox changes 

To identify the very molecular mechanisms, which play a role in neuronal 

redox events in response to neurotransmitters, potential candidate processes 

such as Ca2+ influx, mitochondrial respiration, NADPH oxidase (NOX) and 

xanthine oxidase (XO) activation as well as altered cyclic adenosine 

monophosphate (cAMP) levels were evaluated. In these experiments, the 

neuronal responses to glutamate (50 µM, 5 min) and dopamine (500 µM, 3 

min) were assessed. These two transmitters were chosen, since glutamate 

evoked the most intensified and continuously rising responses of the cyto-

roGFP1 ratio, which did not recover upon wash-out, whereas dopamine 

responses always fully recovered in both genotypes. 

 

Treatment of neurons with glutamate under Ca2+ free conditions still caused a 

marked (p<0.001) shift of the cyto-roGFP1 ratio towards oxidation in Mecp2-/y 
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neurons, whereas the oxidizing redox response in WT neurons was almost 

completely abolished (Figure 33 A, E; Table 11). Interestingly, the initial drop 

upon glutamate application was now significantly (p<0.05) larger in Mecp2-/y 

than in WT neurons (Figure 33 F; Table 11). A continuous shift towards 

oxidation was still induced by glutamate in WT and Mecp2-/y neurons when 

mitochondria were uncoupled by FCCP (1 µM, 8 min) (Figure 33 B, E; Table 

11). Yet, upon inhibition of NOX by DPI (20 µM, 8 min) the glutamate-

mediated redox responses were almost abolished. Only a tiny shift towards 

oxidation remained (Figure 33 C, E; Table 11). The responses to glutamate 

were also suppressed when XO was blocked by allopurinol (200 µM, 10 min); 

instead, a very small reducing shift could now be observed (Figure 33 D, E; 

Table 11). 
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Figure 33. Mechanistic deciphering of the glutamate-mediated roGFP1 

responses. 

A) Glutamate caused an increase in the roGFP1 ratio under free Ca
2+

 conditions, which was 

especially obvious (p<0.001) for Mecp2
-/y

 neurons. In WT neurons, the redox responses to 

glutamate were markedly dampened. The scale bar is equal for all traces displayed. 

B) After mitochondrial uncoupling, the roGFP1 baseline slightly decreased, but still glutamate 

induced a clear oxidizing response of the roGFP1 ratio in WT and Mecp2
-/y

 neurons. Also, the 

cyto-roGFP1 ratio showed a solid tendency towards more intense oxidation in Mecp2
-/y

 

neurons as compared to WT. 

C) Blocking of NOX by DPI almost completely abolished the roGFP1 response to glutamate 

in WT and Mecp2
-/y

 neurons. 

D) Inhibition of XO by allopurinol fully blocked the responses of the roGFP1 ratio to glutamate 

in WT and Mecp2
-/y

 neurons. Note that the roGFP1 ratio now even decreased slightly. 

E) Statistical overview of the quantified responses of WT and Mecp2
-/y

 neurons to glutamate 

under Ca
2+

 free conditions, mitochondrial uncoupling and inhibition of NOX and XO. The bar 

plot of the control conditions under ACSF were included again as a reference of the original 

response magnitude. 
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F) Summary of the initial reducing shifts under the respective physiological conditions. The 

bar plot of the control conditions under ACSF were included for comparison. 

 

Application of dopamine still induced a marked shift of the cyto-roGFP1 ratio 

towards oxidation in WT and Mecp2-/y neurons under Ca2+ free conditions 

(Figure 34 A, D; Table 11). Also, an increase of the cyto-roGFP1 ratio 

occurred when glutamate was applied upon mitochondrial uncoupling (Figure 

34 B, D; Table 11). Surprisingly, under these conditions, this shift of the cyto-

roGFP1 ratio towards oxidation was now more (p<0.05) intense in WT than in 

Mecp2-/y neurons. Supplementation of neurons with dopamine upon NOX 

blockade evoked only a very slight residual shift of the cyto-roGFP1 ratio 

towards oxidation in WT and Mecp2-/y neurons (Figure 34 C, D; Table 11). 

 

 

Figure 34. Mechanistic analysis of dopamine-mediated redox responses. 

A) Administration of dopamine evoked a shift of the cyto-roGFP1 ratio towards oxidation 

under Ca
2+

 free conditions in WT and Mecp2
-/y

 neurons. The time scaling is identical for all 

traces displayed. 

B) Application of dopamine during mitochondrial uncoupling by FCCP still induced a clear 

shift of the cyto-roGFP1 ratio towards more oxidizing conditions in WT neurons, which was, 

however, less intense in Mecp2
-/y

 neurons. 

C) Inhibition of NOX by DPI almost completely abolished the dopamine reduced oxidative 

shifts in both genotypes. 
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D) Statistical overview of the quantified responses of WT and Mecp2
-/y

 neurons to dopamine 

upon Ca
2+

 withdrawal, mitochondrial uncoupling and inhibition of NOX. Dopamine responses 

under control conditions (ACSF) are shown as a reference. 
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Evoked changes in roGFP1 ratio 

(F395 / F470), ∆R roGFP1 

Treatment Neurotransmitter WT Mecp2-/y 

Ca2+ free 

Glutamate 
(initial drop) 

-0.9 ± 0.6% 

n = 11 

-2.5 ± 1.6% 

n = 4 

Glutamate 
(secondary 
response) 

4.5 ± 2.6% 

n = 10 

45.4 ± 22.5% 

n = 4 

DA 
10.7 ± 0.7% 

n = 4 

10.0 ± 2.5% 

n = 4 

FCCP 

Glutamate 
(initial drop) 

-0.2 ± 0.8% 

n = 5 

-0.4 ± 0.3% 

n = 5 

Glutamate 
(secondary 
response) 

27.7 ± 2.7% 

n = 5 

41.4 ± 13.3% 

n = 5 

DA 
11.3 ± 2.1% 

n = 5 

5.1 ± 1.3% 

n = 4 

DPI 

Glutamate 
(initial drop) 

-1.3 ± 0.5% 

n = 5 

-0.1 ± 0.3% 

n = 4 

Glutamate 
(secondary 
response) 

1.6 ± 1.1% 

n = 5 

1.1 ± 1.0% 

n = 3 

DA 
4.8 ± 1.3% 

n = 9 

4.2 ± 0.3% 

n = 5 

Allopurinol 

Glutamate 
(1st peak) 

-0.7 ± 1.6% 

n = 7 

-0.9 ± 2.0% 

n = 9 

Glutamate 
(2nd peak) 

0.8 ± 2.0% 

n = 7 

-1.7 ± 1.5% 

n = 9 

Glutamate 
(1st drop) 

-3.2 ± 0.6% 

n = 7 

-3.4 ± 1.3% 

n = 9 

Glutamate 
(2nd drop) 

-3.1 ± 1.3% 

n = 7 

-5.8 ± 3.0% 

n = 9 

 

Table 11. Redox changes in response to glutamate and dopamine upon Ca2+ 

depletion, mitochondrial uncoupling, NADPH oxidase inhibition and xanthine 

oxidation blockade. 
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To assess briefly, whether G-protein and cAMP mediated signalling is 

involved in redox changes, the cyto-roGFP1 transduced neurons were treated 

with forskolin (10 µM, 10 min) in order to activate G-proteins and hence, 

adenylate cyclase. Promotion of the cAMP pathway did, however, not 

contribute to redox changes under control conditions, since the cyto-roGFP1 

ratio only barely increased by 3.6 ± 1.4% (n = 6). 

 

To assess a particular contribution of the respective ROS generating 

candidate mechanisms to steady state baseline redox conditions, the cyto-

roGFP1 baseline ratios under Ca2+ free conditions and mitochondrial 

uncoupling as well as NADPH and xanthine oxidases inhibition were 

calculated and compared with the control cyto-roGFP1 baseline ratios. The 

largest change in cyto-roGFP1 ratio was observed under mitochondria 

uncoupling as it decreased by 0.4 % in WT and Mecp2-/y neurons (Table 12). 
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Evoked changes in roGFP1 ratio (F395 / F470) 

WT 

Ca2+ free 

1.02 ± 0.02% 

n = 16 

Mecp2-/y 
1.03 ± 0.03% 

n = 8 

WT 

FCCP 

0.96 ± 0.02% 

n = 11 

Mecp2-/y 
0.96 ± 0.01% 

n = 9 

WT 

DPI 

0.99 ± 0.01% 

n = 14 

Mecp2-/y 
1.01 ± 0.02% 

n = 11 

WT 

Allopurinol 

1.02 ± 0.01% 

n = 7 

Mecp2-/y 
1.01 ± 0.00% 

n = 9 

 

Table 12. RoGFP1 baseline changes upon arrest of potential cellular ROS 

sources. 

Listed are changes of the cytosolic roGFP1 baseline ratios of WT and Mecp2
-/y

 neurons in 

various redox conditions in respect to the control roGFP1 baseline ratio under ACSF. 

 

4.8. The roGFP1-transgenic mice as a novel tool for cellular 

redox imaging during disease progression. 

 

To overcome the limitations of cultured preparations and surgery 

interventions, and to allow for the more complex cellular redox imaging 

especially at older stages, our group has recently generated transgenic mice, 

carrying the neuronal specific mitochondrial roGFP1 (roGFP1m) and cytosolic 

roGFP1 (roGFP1c) sensors, respectively (Wagener et al. 2016). 

 

To assess any potential redox alterations in Mecp2-/y neurons of adult 

symptomatic Rett mice, and to correlate the Rett syndrome disease 
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progression with impaired redox balance, the transgenic roGFP1c males were 

cross-bred with Mecp2-/+ females. The very first obtained two roGFP1c 

Mecp2-/y mice were here tested for redox changes specifically in neurons. 

Acute brain slices from adult (PD 47-52) mice were prepared. Neurons of the 

hippocampal regions CA1, CA3 and dentate gyrus (DG) as well as cortical 

neurons were imaged and the cytosolic roGFP1 baseline ratio was calculated 

by using the recently developed dual laser based excitation ratiometric 2-

photon imaging (Figure 35, (Wagener et al. 2016). 

 

 

Figure 35. Dual laser ratiometric 2-photon excitation of hippocampal and 

cortical neurons of roGFP1c transgenic Mecp2-/y mice. 

Cytosolic roGFP1 was homogenously expressed in the cytosol of hippocampal and cortical 

neurons. For ratiometric redox analyses, the cytosolic roGFP1 was alternatively excited at 
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740 nm and 910 nm wavelength by our novel dual laser based excitation ratiometric 2-photon 

imaging approach. Imaging was performed on acute 400 µm thick cortico-hippocampal tissue 

slices. 

 

This revealed that the cytosolic roGFP1 ratio was more oxidized in roGFP1c 

Mecp2-/y neurons when compared to roGFP1c WT in CA1 (p<0.01) and DG 

(p<0.001) regions of the hippocampus (Figure 36, Table 13). In the CA3 

subfield and the cortex, those very first tests did not reveal any significant 

differences of steady state redox balance. 

 

 

Figure 36. Redox baselines in hippocampal and cortical neurons of adult 

roGFP1c mice. 

The roGFP1c Mecp2
-/y

 hippocampal neurons from CA1 and DG regions showed a more 

oxidized redox steady state balance under control conditions than roGFP1c WT neurons. 

 

Analyses were performed on acute tissue slices. Data were obtained from the 

very first two roGFPc Mecp2-/y mice that became available from the recently 

started cross-breading of roGFP1c and Rett mice. 
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Evoked changes in roGFP1 ratio (F910 / F740) 

 roGFP1c WT roGFP1c Mecp2-/y 

CA1 
1.3 ± 0.4% 

n = 124 

1.4 ± 0.2% 

n = 300 

CA3 
1.1 ± 0.1% 

n = 21 

1.1 ± 0.1% 

n = 40 

Cortex 
1.3 ± 0.2% 

n = 65 

1.3 ± 0.2% 

n = 113 

DG 
1.2 ± 0.2% 

n = 176 

1.3 ± 0.2% 

n = 280 

 

Table 13. RoGFP1 baselines of adult hippocampal and cortical neurons in 

acute tissue slices of roGFP1c transgenic Mecp2-/y mice. 
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5. Discussion 

Changes concerning not only morphology, but also modulating the function of 

mitochondria were reported in Rett syndrome. These disruptions were 

obvious in Rett patients and representative mouse models (Ruch et al. 1989; 

Eeg-Olofsson et al. 1990; Coker and Melnyk 1991; Cornford et al. 1994; 

Kriaucionis et al. 2006; Gibson et al. 2010; Großer et al. 2012; Pecorelli et al. 

2013). However, the previous analyses of mitochondrial metabolism, which 

had been performed by our group earlier on hippocampal tissue, likely 

represent mixed neuronal and glial responses from Mecp2-/y mice (Großer et 

al. 2012). Therefore, the aim of the present study was to assess redox 

changes in mitochondrial and cytosolic compartments specifically in Mecp2-/y 

and WT neurons. Since the hippocampus represents a major structure for 

studying metabolic and signalling dysfunction as well as neurodegeneration 

(Wilde et al. 1997; Wang et al. 2007), hippocampal primary cultured neurons 

as well as hippocampal organotypic slices of Mecp2-/y mice were investigated 

in terms of redox imbalance. 

 

5.1. The genetically-encoded sensors allow for ratiometric 

measurements of redox imbalance. 

A wide range of synthetic oxidation-sensitive fluorescent dyes is available to 

investigate cellular redox changes (Gallop et al. 1984; LeBel et al. 1992; 

Mohanty et al. 1997). However, these dyes have many disadvantages and 

limitations, e.g. they respond only to oxidation but not reduction (Foster et al. 

2006; Gerich et al. 2009; Funke et al. 2011). More advanced optical sensors 

such as genetically-encoded optical ROS/redox sensors, are based on 

fluorescent proteins, in particularl GFP or YFP, and they become redox-

sensitive due to an inclusion of reactive cysteine switch, which is inserted 

closely to the chromophore. While oxidation facilitates forming of a covalent 

connection between reactive thiols, reduction promotes a breakup of the S-S 

disulfide bridges. Such fully reversible structural changes modify the 

fluorescence of the optical redox sensors. Accordingly, these constructs 

behave as other endogenous redox-sensitive proteins. 
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One of the feasible optical redox sensors is HyPer. Based on functional 

cysteine residues, HyPer allows for the dynamic imaging of sub-cellular H2O2 

levels (Belousov et al. 2006). Previously, HyPer was mostly applied in cell 

lines, e.g. COS-7, HeLa, PC-12, H4IIE, HThy-ori3.1, HEK 293 but also in rat 

pancreatic beta-cells primary cultures (Belousov et al. 2006; Markvicheva et 

al. 2008; Malinouski et al. 2011; Kratschmar et al. 2012; Roma et al. 2012; 

Weyemi et al. 2012). The detailed response properties of HyPer have been 

recently investigated in primary cultured hippocampal neurons in mice (Weller 

et al. 2014). 

 

5.1.1. Diminished reliability of the redox sensor HyPer 

The first aim of the current thesis was to choose a suitable and reliable redox 

indicator in order to analyse redox changes within neurons. Using the HyPer 

sensor would be advantageous to investigate ROS changes within cells as it 

directly and specifically detects H2O2 (Belousov et al. 2006). Since 

chromophores based on YFP are potentially pH-sensitive (Elsliger et al. 1999; 

Wachter et al. 2000; Belousov et al. 2006; Forkink et al. 2010; Schwarzländer 

et al. 2011), a crucial goal was to assess the properties of the HyPer sensor. 

For this, the responses of cytosolic HyPer to various oxidative challenges and 

different pH conditions have been evaluated by using the optical pH sensor 

SypHer. As shown earlier, this modified redox-insensitive biosensor SypHer 

can be targeted to the cytosol of hippocampal neurons as well as glial cells, 

and it reacts only to pH changes, but no longer to redox modulation (Poburko 

et al. 2011; Weller et al. 2014). 

 

In the current study, exposure of SypHer-transfected hippocampal primary 

neurons to different types of stimuli such as propionate, H2O2, tBHP, DEDTC, 

CN-, glutamate, DTT, and hypoxia, caused clear pH responses. Treatment 

with a lower concentration (50 µM) of H2O2 induced a slight alkalinization, 

whereas a higher concentration (5 mM) of H2O2 resulted in an acidification. 

Hence, the actual effect of H2O2 as well as cellular redox changes measured 

by HyPer upon oxidation might be mimicked by pH modulations. Interestingly, 

not only H2O2 (50 µM), but also tBHP, DEDTC and DTT as well as 
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reoxygenation after hypoxia revealed similar effects, shifting the SypHer ratio 

towards alkalinization, whereas CN-, hypoxia and glutamate elicited a marked 

acidification. Finally, the unequivocal confirmation of pH-sensitivity of the 

HyPer sensor was obtained with propionate – an intracellular pH modulator 

(Sharp and Thomas 1981; Schlue and Thomas 1985) – which caused a 

marked acidification as confirmed by SypHer responses, and which was 

followed next by an alkalinization upon washout. 

 

The high pH-sensitivity of HyPer is, however, not the only disadvantage of 

this redox sensor. Although HyPer has been shown to ensure a pronounced 

photostability and cell-retention, the unresponsiveness to reducing stimuli 

questions the reliability of this optical sensor for quantitative redox 

measurements (Weller et al. 2014). 

 

5.2. The genetically-encoded optical redox sensor roGFP1 

allows for detailed and quantitative monitoring of ROS/redox 

changes  

Even though recent investigations increased our knowledge on the redox 

imbalance in Rett syndrome, the detailed role of the cellular redox conditions, 

and the very contribution of mitochondria to ROS-mediated signalling and 

pathology are still unclear. Fresh frozen and formalin fixed tissues of brain 

samples from Rett patients are stored in tissue banks and they are available 

for research investigations. However, using animal models, which reflect 

human-related diseases, overcomes many limitations, giving therefore a 

unique chance to study these disorders on organotypic, cellular and 

molecular levels. Taking into account, that most of the knowledge about redox 

modulations in brains of Rett mice has been gathered from mixed responses 

of neuronal and glial cells, it was important to assess such responses now 

specifically in Mecp2-/y neurons. 

 

Since mitochondria and the cytosol are the main areas, where most metabolic 

reactions take place within a cell, it was mandatory to investigate redox 

changes in both of these compartments. Hence, to determine the cellular 
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redox imbalance in Mecp2-/y mice, the genetically-encoded optical sensor 

roGFP1 was used to perform quantitative analyses. Similarly to HyPer, 

roGFP1 is based on thiol groups and functional S-S bridge formation, 

enabling dynamic and reversible ratiometric measurements of redox 

modulation (Hanson et al. 2004). In comparison to other redox sensors and 

synthetic oxidation-sensitive fluorescent dyes, the roGFP1 indicator seems to 

be one of the most reliable current tools used for redox analyses, since its 

ratiometric properties cancel out potential artefacts (Bokman and Ward 1981; 

Funke et al. 2011). 

 

In earlier studies of our group, roGFP1 expression within neurons has been 

mostly obtained by transfection procedures using lipofectamine (Funke et al. 

2011; Großer et al. 2012). In the current thesis, in order to evaluate any 

defects in mitochondrial function and redox imbalance in Mecp2-/y mice, the 

primary cultured neurons as well as organotypic hippocampal slices have 

been transduced with viral vectors (AAV-6) to express efficiently the optical 

sensors mito-roGFP1 and cyto-roGFP1, and to ensure a specific neuronal 

targeting. Counterlabeling with the neuronal marker MAP2 confirmed the 

specific localisation of the roGFP1 construct in neuronal cells. Likewise, the 

mitochondria-specific dye MitoTracker RED FM confirmed the mitochondrial 

targeting of mito-roGFP1. 

 

Semi-quantitative analyses were possible by taking advantage of the two 

distinct excitation peaks (395 nm and 470 nm) of roGFP1, which respond 

oppositely to reduction and oxidation (Dooley et al. 2004; Hanson et al. 2004; 

Funke et al. 2011; Großer et al. 2012). Potential errors, which could arise 

from diverse fluorophore concentrations and/or illumination intensities, were 

ruled out by calculating the fluorescence intensity ratio (F395/F470) 

(Grynkiewicz et al. 1985). At the very first, roGFP1 had to be calibrated to the 

specific optical components of the particular experimental set-up and the 

detailed recording conditions. The states of maximum reduction (0% 

oxidation) and maximum oxidation (100% oxidation) were forced by applying 

saturating doses of DTT and H2O2, respectively (Hanson et al. 2004; Funke et 



Discussion 

 77 

al. 2011; Großer et al. 2012). Exposure to reducing agents decreased the 

roGFP1 fluorescence ratio, which was then increased upon oxidation. 

 

Interestingly, the lowest ratio response of mito-roGFP1 occurred in 

organotypic hippocampal slices of all preparations. This might be due to a 

decreased O2 supply bye a diffusional barrier in slice cultures. Moreover, 

because of a more condensed neuronal network and the presence of glial 

cells, drug penetration inside the tissue could be slower and/or less efficient 

than in dissociated cell cultures. Furthermore, the cellular scavenging 

systems might have already intercepted part of the applied ROS during 

oxidative challenge before it actually reached the mitochondria. A diminished 

response range for the mito-roGFP1 ratio in hippocampal slices could have 

also result from technical aspects such as loss of focus and/or partial shifts of 

the area of interest due to mitochondrial motility. Indeed, mitochondria are 

mobile and dynamic organelles with changing shapes and sizes. They might 

be further modulated by fusion and fission processes. Such mitochondrial 

fission and arrest of mitochondrial motility have been observed during 

oxidative stress (Pletjushkina et al. 2006; Gerich et al. 2009; Fan et al. 2010). 

 

5.3. Redox homeostasis and mitochondrial function are 

impaired in Mecp2-/y neurons 

Modulations not only in the mitochondrial morphology but also in the 

functional activity of mitochondria have been previously observed in Rett 

patients’ brains (Coker and Melnyk 1991). Reported changes include for 

example lower levels of cytochrome c oxidase and succinate cytochrome c 

reductase. Furthermore, recent reports have suggested changes also on the 

gene level, showing diversities in the expression pattern of genes directly 

correlated with mitochondrial function (Pecorelli et al. 2013). 

 

Since mitochondria are cellular power houses, the question arose, whether 

disturbed mitochondrial function might correlate with a lower ATP production 

and/or lower ATP content. Indeed, Saywell and colleagues showed 

disruptions in mitochondrial metabolism and reported lower ATP levels in 
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brain tissue of Mecp2-/y mice (Saywell et al. 2006). However, these results 

could not be further confirmed by our group for acute adult Mecp2-/y 

hippocampal slices, which did not contain a lowered cellular ATP content 

when compared to WT tissue (Fischer et al. 2009). Additionally, more recent 

findings have demonstrated even increased ATP formation, but also 

increased ATP consumption in neonatal Mecp2-/y hippocampus (Toloe et al. 

2014). Thus, altered mitochondria might run at higher turn-over rates in Rett 

mice. 

 

The hypothesis of more intensively working mitochondria in Rett syndrome 

arose from the findings of Kraucionis and colleagues, who detected 

significantly increased respiration rates and a larger respiration capacity in 

Mecp2-/y mice (Kriaucionis et al. 2006). Since an appropriate proton gradient 

needs to be maintained between the intermembrane space and the 

mitochondrial matrix, the electron transport chain has been suggested to 

operate at higher rates and to consume more O2 in an attempt to overcome 

the proton leak across the inner mitochondrial membrane (Kriaucionis et al. 

2006). This was also supported by our groups’ recent observations of an 

increased mitochondrial O2 consumption of isolated adult Mecp2-/y 

hippocampal mitochondria (Menzfeld et al. 2014). Moreover, increased 

pyruvic and lactic acid levels were found in Rett patients, which might also 

correlate with functional disturbances in the mitochondrial respiratory chain 

and the urea cycle (Matsuishi et al. 1992; Dotti et al. 1993; Lappalainen and 

Riikonen 1994). 

 

Such impaired mitochondria may in consequence activate a vicious circle, 

leading to additional ROS formation and redox imbalance, and further 

oxidative stress. In particular, these changes might be even more 

strengthened due to the impaired breathing in Rett syndrome, e.g. apnoeas, 

thus causing further cellular network damage and contributing to the disease 

progression (Figure 37). 
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Figure 37. Redox hypothesis of Rett syndrome disease progression. 

Functional damage of mitochondria results in more intensified ROS and RNS generation in 

Rett syndrome. This may contribute to impaired cellular redox signalling and aberrant activity 

of various cellular proteins such as structural proteins, enzymes, ion channels and 

neurotransmitter receptors. Redox imbalance and oxidative stress lead further to cellular 

network dysfunction, thereby accelerating the progression of this neurodevelopmental 

disease. 

This research was originally published in Portland Press Limited. Müller M, Can K. Aberrant 

redox homoeostasis and mitochondrial dysfunction in Rett syndrome. 2014 Aug; 42(4):959-

64, Biochemical Society Transactions. 

 

5.3.1. Mecp2-/y neurons are more oxidized already under 

control conditions 

Changes in redox homeostasis in Rett syndrome have been previously 

verified by our group (Großer et al. 2012). First, mitochondrial alterations 

were demonstrated by performing optical imaging and ratiometric analyses of 

cellular NADH and FAD autofluorescence in acute hippocampal slices of 

Mecp2-/y mice. The elevated FAD/NADH ratio indicates a shift towards 

oxidation already under control conditions in neonatal (PD 7-10) and adult 

Mecp2-/y hippocampi (Großer et al. 2012). Furthermore, a more oxidized pre-

treatment baseline ratio was also detected for Mecp2-/y organotypic 

hippocampal slices, transfected with cytosolic roGFP1 (Großer et al. 2012). 

http://www.ncbi.nlm.nih.gov/pubmed/?term=M%C3%BCller%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25109986
http://www.ncbi.nlm.nih.gov/pubmed/?term=Can%20K%5BAuthor%5D&cauthor=true&cauthor_uid=25109986
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Even more oxidizing conditions in Mecp2-/y hippocampal tissue have been 

shown in the absence of B-27 supplement, which contains antioxidants and is 

commonly used in cell culture media (Großer et al. 2012). However, these 

results were gained from both glial cells and neurons, and represent 

responses of a mixed population (Großer et al. 2012). 

 

The present thesis unequivocally confirms that mitochondria of Mecp2-/y 

neurons suffer from an increased oxidative burden. Indeed, significant 

changes were found in organotypic hippocampal Mecp2-/y slices, in which the 

mitochondrial roGFP1 baseline ratio was already markedly increased in 

comparison to WT hippocampus. A clear increase of redox baseline ratios 

was also verified for the cytosolic compartment of Mecp2-/y slices. Since the 

cytosol constitutes of a complex mixture of macromolecules, metabolites, ions 

and other solutes, any changes in the redox conditions might further influence 

several signalling pathways, which control cellular processes such as cell 

cycle, cell proliferation, apoptosis, metalloproteinase function, oxygen 

sensing, protein kinases, phosphatases and transcription factors (Brookes et 

al. 2004). 

 

5.3.2. Redox imbalance is more pronounced in somatic areas 

of hippocampal neurons 

Several studies have previously shown changes in neuronal dendrites during 

aging and in neurodegeneration. For example, physiological and structural 

impairments of dendrites include a reduction in arborisation, a lower number 

of spines or higher mitochondrial oxidative stress (Dickstein et al. 2007; 

Greenwood et al. 2007; Gomez-Isla et al. 2008; Rocher et al. 2008; 

Dryanovski et al. 2013; Siskova et al. 2014; Hasel et al. 2015). Interestingly, 

the current investigation of redox status in Mecp2-/y and WT hippocampal 

neurons revealed a significantly higher cytosolic baseline roGFP1 ratio in 

neuronal somata in comparison to dendrites, suggesting a more oxidized 

basal redox state in the somatic areas. However, neuronal exposure to 

oxidative challenge by a local neuronal stimulation (H2O2, 200 µM, 200 ms), 

shifted the roGFP1 ratio towards more oxidizing conditions in dendrites of 
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these cells, in particular. Similarly to these observations, recent findings have 

indicated more dramatic fluctuations in the redox potential in cortical dendrites 

in response to H2O2 treatment (Hasel et al. 2015). This was confirmed for 

mouse embryos E17.5 by using the genetically-encoded reporter of the 

glutathione redox potential Grx1-roGFP2 (Hasel et al. 2015). 

 

Noteworthy, upon H2O2 administration, Mecp2-/y neurons showed a tendency 

towards a higher oxidation in both dendritic and somatic areas as compared 

to WT. This indicates an increased vulnerability of the cytosolic redox 

homeostasis in somata and dendrites of Mecp2-/y hippocampus. Indeed, 

similarly to other ROS, H2O2 impairs various cellular processes including 

mitochondrial ATP generation, regulation of Ca2+ levels, activity and gating of 

ion channels, and the axonal transport of mitochondria (Denu and Tanner 

1998; Forte et al. 2007; Marino et al. 2007; Gerich et al. 2009; Fang et al. 

2012). 

 

Surprisingly, although H2O2 was locally applied to dendrites of primary 

neurons, the first and clear responses to redox modulation were observed 

rather in the soma. This was true for Mecp2-/y and WT neurons. It is well 

known that H2O2 reacts very fast, affecting almost every single molecule. 

However, although H2O2 is highly membrane permeable, how exactly it 

crosses the cellular membrane of neurons, still remains unclear. It was 

considered that H2O2 is capable of crossing the membrane of mammalian 

cells via selected aquaporins (Bienert et al. 2006). Aquaporin-8 (AQP8), 

which is present in many tissues and organs, was found to have an increased 

sensitivity to H2O2 (Bienert et al. 2006). It was shown to be in the plasma 

membrane, but later studies have indicated that AQP8 is also expressed in 

the inner mitochondrial membrane (Calamita et al. 2005; Liu et al. 2006; 

Bienert et al. 2007). Therefore, AQP8 was suggested to be involved in cellular 

H2O2 diffusion. On the other hand, recently it has been reported that most 

neurons in the central nervous system, especially pyramidal neurons, do not 

express functional aquaporins, which might serve to prevent any unwanted 

cellular volume changes upon acute osmotic stress (Andrew et al. 2007). 
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No matter how H2O2 crosses the lipid bilayer of neurons, the pathways might 

differ between dendrites and soma. It would be also interesting to take a 

closer look at sub-cellular redox buffering capacities within neuronal cells, 

which might vary in dendritic and somatic compartments, and which may also 

be different between WT and Mecp2-/y mice. On top of that, it would be also 

tempting to assess, whether the dendritic scavenging systems differ from the 

somatic ones, with special regards to the activity and localisation of catalase, 

as it is involved in the degradation of H2O2 to H2O and O2 (Luck 1954). 

 

5.3.3. Mecp2-/y neurons reveal altered responses to redox 

challenge and show less efficient superoxide dismutation 

It has been previously shown by our group that the roGFP1 ratio was 

increased under oxidative challenge in Mecp2-/y hippocampus (Großer et al. 

2012). This finding could be extended and specified in the current work. First, 

it could be demonstrated that differences in response to redox challenge 

between Mecp2-/y vs. WT mice were obvious especially in hippocampal 

organotypic slices as compared to neuronal cell culture preparations. It could 

be also shown that Mecp2-/y neurons responded with increased oxidative 

shifts to H2O2 (200 µM) than WT. This was markedly visible in cytosolic and 

mitochondrial compartments. However, more excessive oxidation was found 

rather in cytosol than in mitochondria, suggesting either a higher ROS 

production and/or a less efficient ROS scavenging, and thus a more 

pronounced redox imbalance in this compartment. As an intensified 

extramitochondrial ROS generation in Mecp2-/y hippocampus was earlier 

excluded by our group, and even less pronounced extramitochondrial ROS 

production was found in Mecp2-/y neonatal slices (Großer et al. 2012). It 

therefore seems that especially the redox-maintaining cytosolic buffering 

systems are impaired in Rett syndrome. 

 

In the current work, differing redox responses of Mecp2-/y vs. WT neurons 

were detected upon SOD inhibition. Previously, the first suggestions towards 

an impaired SOD in Rett syndrome have been made as a reduced activity of 

this enzyme was found in blood samples of Rett patients (Sierra et al. 2001). 
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Changes in Cu-Zn-SOD (SOD1) – localized in cytoplasm, nucleus and 

lysosomes of mammalian cells (Chang et al. 1988; Keller et al. 1991; Crapo 

et al. 1992; Liou et al. 1993; Zelko et al. 2002) – have been also shown on the 

genetic level, e.g. the SOD1 was upregulated in the adult Mecp2-/y Cornu 

ammonis 1 (CA1) region of hippocampus (Großer et al. 2012). 

 

Impairment of SOD could be also confirmed specifically in Mecp2-/y 

hippocampal neurons in the current thesis, and this was especially obvious 

for slice cultures. Upon SOD inhibition, the roGFP1 ratio shifted towards 

oxidation, which was significantly less intense in Mecp2-/y neurons in 

comparison to WT. This might be due to the assumed reduced activity of 

SOD in Rett syndrome. Interestingly, these modulations were obvious in 

cytosol as well as in mitochondria of Mecp2-/y hippocampal neurons, thus 

suggesting alterations not only in cytosolic SOD1 but also in the mitochondrial 

Mn-SOD (SOD2) (Weisiger and Fridovich 1973; Zelko et al. 2002). Since a 

mitochondrion is surrounded by two-phospholipid bilayers, weaker responses 

to SOD inhibition might be an effect of a resistant barrier against drug 

diffusion. This might also apply to slice culture preparations, since 

mitochondria of WT and Mecp2-/y slices reacted less to SOD inhibition. 

Mitochondria may be therefore more resistant to SOD blockade. 

 

Also, sub-cellular cyto-roGFP1 ratio changes have been observed for 

hippocampal neurons in response to SOD inhibition. Interestingly, the DEDTC 

induced increase of the cyto-roGFP1 ratio was less pronounced in dendrites 

than in somata, suggesting less efficiency of SOD in dendrites than in the 

soma of hippocampal neurons. This change was especially clear for WT 

neurons. 

 

5.3.4. Mecp2-/y hippocampus is more susceptible to hypoxia 

and mitochondrial challenge 

The Mecp2-/y hippocampus has been previously confirmed to be more 

vulnerable to hypoxia (Fischer et al. 2009; Großer et al. 2012). An increased 

hypoxia-susceptibility could be now confirmed specifically for Mecp2-/y 
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neurons. It could be shown that during hypoxia, the roGFP1 ratio decreased 

more in Mecp2-/y hippocampal organotypic slices and neuronal cultures as 

compared to WT. A substrate reduction and/or inhibition of NOX and/or XO 

might serve as a possible explanation of this observation. Indeed, NOX and 

XO have been reported to constitute extramitochondrial ROS sources and 

were shown to be O2-dependent (Abramov et al. 2007; Funke et al. 2011). 

Along this line, NOX was suggested to be involved in ROS generation 

especially during reoxygenation after hypoxia. It was shown that O2 and 

glucose deprivation as well as reoxygenation led to a cellular Ca2+ increase 

and further NOX activation (Abramov et al. 2007). Activation of XO also 

seems to require Ca2+ influx (Dykens et al. 1987). However, other studies 

questioned the Ca2+-dependent activity of XO (Abramov et al. 2007). 

 

Yet, no clear changes in the roGFP1 ratio traces were observed upon 

reoxygenation in the current work. Nevertheless, it should be noted that 

changes in the expression of NOX, XO, ATPase and the rate of mitochondrial 

depolarization are not stationary processes and they represent an intense 

and progressive cross-talk between Ca2+, ATP consumption and 

mitochondrial membrane potential. Therefore, detection of generated ROS 

depends on how the mitochondrial potential is maintained. Well maintained 

mitochondria are constantly producing ROS, which might be untraceable 

though in case of fast depolarizing mitochondria under hypoxic conditions 

(Abramov et al. 2007). A significant role of mitochondria in hippocampal 

neurons during hypoxia was also confirmed by the present observations. 

More pronounced responses to hypoxia were found in mitochondria and 

cytosol in hippocampal slices, but also in mitochondrial compartments in cell 

culture, which was more intense in Mecp2-/y neurons as compared to WT. 

Such effects might be also supported by the fact, that the hippocampal 

network together with the neocortical and cerebellar circuits, constitute the 

most sensitive parts of the brain to hypoxic/ischemic conditions (Pulsinelli et 

al. 1982; Schmidt-Kastner and Freund 1991; Fischer et al. 2009). 

 

Furthermore, morphological changes might also enhance hypoxic responses. 

Smaller and more densely packed neurons as well as less complex dendritic 
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arborizations and reduced spine numbers, observed in Rett syndrome 

(Belichenko et al. 1994; Bauman et al. 1995), could also go in line with a 

higher hypoxia vulnerability. However, the elevated levels of the hypoxia-

inducible factor 1-alpha (HIF1α) found in hippocampus, neocortex, cerebellum 

and lower brain stem of Mecp2-/y mice, indicated that not only hippocampus, 

but also other parts of Mecp2-/y brain seem to be more hypoxia-sensitive 

(Fischer et al. 2009). 

 

5.4. Intact neurotransmission is required for a proper 

neuronal network functioning 

In spite of the incomplete knowledge on detailed molecular mechanisms, 

regulating neuronal plasticity, there are indications, pointing to the 

involvement of neurotransmitters and neurotrophic pathways in 

neuroplasticity processes (Mattson 2007). Extensive studies have shown a 

pivotal role of mitochondria in plasticity-related mechanisms such as neuronal 

polarity formation and neurite outgrowth control (Vayssiere et al. 1992; 

Mattson and Partin 1999; Chada and Hollenbeck 2004; Lee and Peng 2006). 

Also, damaged mitochondria contribute to changes in neuronal plasticity as 

ROS serve signalling functions by modulating activities of kinases or the 

phosphatase calcineurin (Kamsler and Segal 2003; Hongpaisan et al. 2004). 

 

Since the extracellular electrical stimulation of primary neurons was not 

suitable to perform detailed studies on neuronal activity, primary neurons 

were exposed to various neurotransmitters. It is well known that exaggerated 

ROS production, redox imbalance and further aberrant energy states, lead to 

neuronal network disturbances and functional changes within cells. Data on 

neuronal responses to glutamate, norepinephrine, serotonin and dopamine 

confirmed such disruptions by shifting the cellular redox conditions towards 

oxidation. With all transmitters tested, this was significantly more pronounced 

in Mecp2-/y than in WT neurons. 

 

The current thesis is the first study showing very clear redox responses of 

Mecp2-/y neurons to neurotransmitters, which additionally confirms the cellular 
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redox impairment in Mecp2-/y hippocampus. Therefore, another aim of the 

current work was to evaluate possible candidate processes, which might 

stand behind such redox alterations, e.g. activation of NOX and XO, Ca2+ 

influx, engagement of mitochondrial respiratory chain or increase of cAMP 

levels. Since glutamate is the principal excitatory neurotransmitter and 

mediates also neuronal excitotoxicity when excessively released (Atlante et 

al. 2001), it was interesting to assess the possible signalling pathways of 

redox changes in response to glutamate. Also, the responses to dopamine 

under above-mentioned conditions have been investigated as dopamine was 

the only one, which evoked redox responses with full recovery in Mecp2-/y and 

WT neurons. 

 

5.4.1. Activation of NADPH oxidase and xanthine oxidase 

contributes to ROS production in response to glutamate 

Disruptions in various neurotransmitters have been already proposed for Rett 

syndrome (Hamberger et al. 1992; Lappalainen and Riikonen 1996; Viemari 

et al. 2005; Chao et al. 2010; Maezawa and Jin 2010). In the current thesis, it 

became evident that exposure to neurotransmitters glutamate, 

norepinephrine, serotonin and dopamine, induced redox alterations and 

shifted redox status towards more oxidizing conditions. It was especially 

Mecp2-/y neurons, which overreacted and which did not show a proper 

recovery of the cyto-roGFP1 ratio to its pre-treatment baseline upon wash out 

of the tested compounds. This might suggest a persistent redox impairment in 

Mecp2-/y neurons. Such changes have been particularly obvious during 

glutamate application as the cyto-roGFP1 ratio continued to increase even 

when the treatment was terminated. 

 

Glutamate has been previously shown to induce an irreversible neuronal 

injury, leading to cell death (Choi 1988; Hamberger et al. 1992; Lappalainen 

and Riikonen 1996; Simonian and Coyle 1996; Meldrum 2000; Ha et al. 2009; 

Maezawa and Jin 2010). It was suggested to activate lactate production, 

causing neuronal acidification and damaging mitochondria by decreasing 

mitochondrial membrane potential and provoking mitochondrial uncoupling, 
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which gives rise to ROS generation. Moreover, a decrease in the efficiency of 

the cellular antioxidant defences by glutamate has been shown to enhance an 

oxidative stress (Ciani et al. 1996). Surprisingly, treatment with glutamate, in 

the presence of the mitochondrial uncoupler FCCP, failed to prevent the 

increase in cyto-roGFP1 ratio. This strongly suggests that the major redox 

response to glutamate is mediated by other cellular sources rather than 

mitochondria. However, it should be mentioned that mitochondrial uncoupling 

evoked the largest decrease of the cyto-roGFP1 ratio baseline in WT and 

Mecp2-/y neurons when compared to ACSF conditions. Therefore, it indicates 

that mitochondria do contribute to redox changes and ROS production in 

hippocampal neurons, at least under control baseline conditions. 

 

Glutamate was proposed to mediate its effects on different molecular levels, 

namely through ionotropic receptors, i.e. NMDA, α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) and kainate receptors in postsynapses 

(Nicholls and Budd 2000). Activation of NMDA and non-NMDA receptors 

leads to a neuronal injury due to intracellular Ca2+ overload (Olney 1969; 

Michaels and Rothman 1990; Nicholls and Budd 2000). In the current study, 

the cultured Mecp2-/y neurons still markedly reacted to glutamate in Ca2+ free 

conditions, shifting the cyto-roGFP1 ratio towards oxidation. However, the 

responses of WT neurons to glutamate were almost abolished. 

 

Glutamate may also operate through G-protein coupled glutamate 

metabotropic receptors (mGluR) by affecting ion channels or secondary 

messengers such as diacylglycerol and cAMP (Schoepp and Conn 1993; Pin 

and Duvoisin 1995; Conn and Pin 1997; Meldrum 2000). Yet, activation of the 

adenylate cyclase and hence, elevation of the intracellular cAMP 

concentration by forskolin, did not reveal any changes in the cyto-roGFP1 

ratio, which excludes an involvement of cAMP-coupled mGluR in redox 

modulation during neuronal exposure to glutamate. 

 

Interestingly, it could be also shown, that upon blocking NOX by DPI, 

glutamate did not cause any longer major redox changes. This indicates that 

NOX might be crucially engaged in redox responses to glutamate. The NOX 
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was earlier proposed to intensify ROS production by neurons, whereas the 

generation of ·O2
- was restrained upon NOX inhibition in the presence of 

glutamate (Brennan et al. 2009). Furthermore, ROS formation induced by 

NOX under glutamate administration, seemed to be independent on 

mitochondria. Neurons have been confirmed to generate ROS even upon an 

overexpression of the mitochondrial SOD2, whereas ROS output was 

markedly reduced in neurons lacking NOX (Brennan et al. 2009; Demaurex 

and Scorrano 2009). 

 

Nevertheless, other studies suggested also a role of XO in the production of 

ROS due to glutamate neurotoxicity in cerebellar granule cells. This occurs 

via a conversion of xanthine dehydrogenase (XDH) to XO in response to Ca2+ 

influx (Atlante et al. 1997). Moreover, generation of peroxide was previously 

shown to be prevented by laupeptin, which inhibits the conversion of XDH to 

XO (Atlante et al. 1997). Indeed, the inhibition of XO by allopurinol prevented 

glutamate-mediated changes in the roGFP1 ratio, confirming a crucial XO 

involvement in these redox responses. 

 

It should be mentioned, that XO seems to act as the most efficient catalyzer 

of ·O2
- production, since the time course of XO activity coincides with the 

generation of oxygen radicals after glutamate stimulation of cerebellar granule 

cells (Atlante et al. 1997). On top of that, the same studies showed that XO 

activity was lost in the presence of the NMDA receptor antagonist MK-801 or 

ethylene glycol tetraacetic acid (EGTA), which captures Ca2+. This suggests 

that activation of XO, and therefore, conversion of XDH to XO, is mediated by 

NMDA receptors and Ca2+ influx. Thus, Ca2+ influx is a crucial trigger of ROS 

production as it may activate XO and NOX. This view is supported by the 

observation that WT neurons do not longer become oxidized when glutamate 

is applied under Ca2+ free conditions. However, the latest studies showed that 

NOX may be also active even in low magnesium (Mg2+) and Ca2+-free 

conditions (Kovac et al. 2014). 

 

It should be mentioned, that glutamate was the only neurotransmitter, which 

induced an initial drop in the cyto-roGFP1 ratio traces. The reason of this 
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response changes is, however, not clear. It could be that there are other 

glutamate receptor subtypes, which mediate this only moderate response. 

 

5.4.2. Dopamine modulates mitochondrial function in Mecp2-/y 

hippocampal neurons 

The link between neuron-specific oxidative stress and dopamine was 

previously indicated by several studies (Cubells et al. 1994; Wrona et al. 

1997; Cadet and Brannock 1998; Miyazaki and Asanuma 2008). In the 

current thesis, it was shown that clear cytosolic redox changes could be 

evoked by the dopaminergic system in Mecp2-/y and WT hippocampal 

neurons. Indeed, dopaminergic neurotoxicity was proposed to be strictly 

related with the generation of ROS and dopamine quinine formation (Graham 

1978; Sulzer et al. 2000). Since dopaminergic neurons are enriched with iron 

and other transition metals, H2O2 may lead to the production of ·OH in a 

Fenton reaction. Moreover, dopamine was suggested to provoke the 

mitochondrial impairment, e.g. dopamine has been shown to inhibit the 

mitochondrial complex I, demolish mitochondrial motility and dissipate the 

mitochondrial membrane potential (Ben-Shachar 2002; Brenner-Lavie et al. 

2008; Miyazaki and Asanuma 2008). Such changes clearly suggest that 

dopamine indeed interacts with the mitochondrial respiration and may lead to 

cellular redox impairment. However, since dopamine shifted the roGFP1 ratio 

towards oxidation despite the presence of FCCP, mitochondria are not the 

only molecular player through which dopamine acts, although their 

contribution seemed to be higher in Mecp2-/y than in WT neurons. The Ca2+ 

free conditions did not prevent an increased cyto-roGFP1 ratio upon 

dopamine application, suggesting Ca2+ release from other cellular sources. 

Interestingly, the roGFP1 responses to dopamine were markedly dampened 

when NOX was inhibited by DPI in the current thesis, which again indicated a 

pronounced role of NOX in ROS producing signalling pathways. 

 

Yet, the question remains, whether such pronounced responses of the cyto-

roGFP1 ratio were simply due to high concentration of dopamine applied, as 

a concentration of 30 nM is considered to be within the physiological range 
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(Lee et al. 2000). Nevertheless, the 500 µM dopamine used here, can be 

considered not to impair cell viability as the redox changes fully recovered 

upon wash-out. Also, studies on schizophrenia revealed that intact, coupled 

and respiring mitochondria could accumulate saturated doses of dopamine, 

and non-lethal dopamine-mitochondria interactions were detected (Brenner-

Lavie et al. 2008). 

 

6. Redox imbalance occurs not only in Mecp2-/y neonates but 

also in neurons of adult and symptomatic Rett mice 

Transgenic mice, carrying specifically mitochondrial (roGFP1m) and cytosolic 

(roGFP1c) roGFP1 sensors within neurons, could be recently successfully 

generated in our lab (Wagener et al. 2016). Cross-breeding of these mice 

with heterozygote Mecp2+/y females will allow to obtain symptomatic Mecp2-/y 

mice, which carry roGFP1 redox indicators for mitochondria and cytosol, 

specifically in neurons. 

 

In the current work, the first tests towards an investigation of a redox 

imbalance under control conditions in hippocampal and cortical neurons of 

adult roGFP1c Mecp2-/y mice could be performed. It could be confirmed, that 

roGFP1c Mecp2-/y neurons (PD 47-52) of CA1 and DG regions of 

hippocampus were more oxidized as compared to the respective WT mice. 

Although a proper evaluation of neuronal responses to oxidative challenge 

conditions is lacking so far, these are the first tests confirming redox 

impairment by using functional redox imaging in living neurons of 

symptomatic, adult Rett mice. 
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6. Conclusion and future perspectives 

Extensive research has been carried out to evaluate the redox changes in 

Mecp2-/y neonatal hippocampus by taking advantage of the genetically-

encoded optical sensor roGFP1. In the current thesis, it could be shown that 

Mecp2-/y hippocampal organotypic slices suffer from an increased oxidative 

burden, which has been confirmed also for Mecp2-/y dissociated neurons. 

They were more susceptible to hypoxia and revealed more intense oxidizing 

shifts in response to oxidative challenge. Moreover, Mecp2-/y neurons 

possess less efficiently working cellular scavenging systems. 

 

Upon redox challenge, genotypically different redox responses could be found 

in the cytosol as well as at the level of mitochondria. This confirms that Rett 

syndrome is indeed associated with early mitochondrial alterations. Although 

there are studies questioning that Rett syndrome constitutes a primary 

mitochondrial disease (Matsuishi et al. 2011), it could be confirmed that 

neuronal mitochondria of Mecp2-/y hippocampus do show a more oxidized 

and a more vulnerable redox balance already at neonatal and pre-

symptomatic stages. These findings therefore support the hypothesis, that 

mitochondria constitute a primary cause or at least very crucial events for 

disease progression. 

 

Furthermore, the current thesis underlines the key role of neurotransmitters in 

neuronal redox events and provides evidence that even subtle changes in the 

neuronal activity may lead to a substantially modified redox balance. 

However, more knowledge must be gathered in order to better understand the 

fine molecular mechanisms by which neurotransmitters lead to intensified 

ROS production and cellular redox changes. Without doubt, the exaggerated 

redox responses seen in Mecp2-/y neurons with all neurotransmitters tested, 

may shed a new light on disturbed neurotransmission in Rett syndrome. So 

far, the responses to the tested neurotransmitters have been assessed in 

individual Mecp2-/y cultured neurons. Now, it would be interesting to 

investigate similar reactions in organotypic or even acute hippocampal 

Mecp2-/y slices. It would be evenly tempting to assess redox changes in the 
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mitochondrial compartments of Mecp2-/y and WT neurons under the treatment 

with these neurotransmitters. 

 

Transfection and viral transduction procedures required to deliver roGFP1-

coding DNA limited the current studies to cell and slice cultures, and hence 

neonates. The next crucial step would be therefore to use the novel 

transgenic redox-sensor mice. They specifically express roGFP1 in the 

cytosol and the mitochondrial matrix, and they will finally enable sub-cellular 

analyses of redox changes also in adult neurons (Wagener et al. 2016). 

Cross-breeding these transgenic lines with the Mecp2-/y mice will provide the 

tremendous opportunity to assess redox imbalance of adult stages of   

Mecp2-/y mice and to correlate it in detail with the disease progression of Rett 

syndrome. 
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