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Abstract

In this thesis, we consider the semilinear Tricomi-type equations.

In particular, we work on the global Cauchy problem for the semilinear
Tricomi-type equation
OPu —1"Au = |ul? (0.1)

in R, X R” with suitable initial data (x(0,-), d;u(0,-)) = (ug, u;), where
n > 3 and m € N. The main objective of this thesis is to determine the
critical exponent p. = p.(m, n), such that if p > p., the global existence
of small initial data solution is guaranteed, while, for 1 < p < p. and
(non-zero) non-negative initial data, the local solution blows up in finite
time.

So far, in the joint work with Ingo Witt and Huicheng Yin, we have
found out the precise value of the critical exponent p.. As it turns out, the
Tricomi-type operators behave much like the wave operator. Therefore,
non-weighted or weighted Strichartz estimates can establish what ultimately
leads to global existence. For the blowup part, one uses a suitable formula
for a modified Bessel function together with the test function method to get

the result.
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1 Introduction

The objective of this thesis is to establish global existence and blowup results for the Cauchy
problem for the semilinear generalized Tricomi equation. More specifically, for the Cauchy

problem

6t2u —t"Au = |ul?,
(1.1)

u(0,x) = up(x), 0u(0,x) = u(x),

where t > 0, x € R", n > 2, and m € N, we prove that there exists a critical exponent
Pc = pc(m,n) such that, for 1 < p < p,, local solutions will in general blow up in finite

time, whereas, for p > p., global existence of small data solutions hold.

1.1 Tricomi’s equation and idea

In 1923, Tricomi [34] initiated work on boundary value problems for partial differential

equations of mixed type and related equations of changing type. The Tricomi operator is
T =087 — 192, (1.2)

in R%. Tt is elliptic for # < 0 and hyperbolic for t > 0. Tricomi considered boundary
problems in a mixed-type domain. He transformed the problem into an integral equation

and found an explicit formula for the solution.

Frankl [|6] drew attention to the fact that the Tricomi problem is closely related to the
study of gas flow with nearly sonic speed. More precisely, the Tricomi equation describes
the transition from subsonic flow (elliptic region, t < 0) to supersonic flow (hyperbolic
region, ¢ > 0), for instance, in a de Laval nozzle, which is one of the most interesting

problems in fluid dynamics.



1 Introduction

1.2 The generalized Tricomi equation

The generalized Tricomi operator is

T =8> —1"A,, (1.3)

where r € R, x € R", m € N. The well-posedness of the Cauchy problem for in the
hyperbolic domain # > 0 has been exhaustively investigated. Moreover, the existence of
different fundamental solutions for the Cauchy problem has been established. Barros-Neto
and Gelfand [[1-3]] for the Tricomi equation with n = 1 and Yagdjian [35] for the generalized
Tricomi equation with n > 1 constructed fundamental solutions of the corresponding
operators.

Recently, linear and semilinear generalized Tricomi equations have been in the focus of
interest of many authors (see, e.g. Lupo and Payne [[17-20]). Ruan, Witt, and Yin [25-27]
established the local existence and the local singularity structure of low regularity solutions
of the semilinear equation 6t2u —t"Au = f(t, x,u) in the degenerate hyperbolic regions

and the mixed elliptic-hyperbolic regions, respectively, where f is a C! function and has

compact support with respect to x.

1.3 The semilinear problem

We are concerned with the global Cauchy problem

{ 6t2u — 1" Au = F,(u), (1.4)

u(0, x) = eup(x), Ou(0,x) = eu(x),

for suitable data (ug, u;) € C.°(R"). Here, the nonlinear term F),(u) is a C ! function of u.

For a given power p > 1, F},(u) satisfies
04 Fp ()] < ulP™, j=0,1. (1.5)

Our main goal is to determine the critical exponent p. = p.(m, n) such that, for 1 < p < p,,
local solutions will in general blow up in finite time, whereas, for p > p., global existence
of small data solutions hold.

There are only a few known results concerning this problem. Yadgjian [|36]] established
LP — L1 estimates for the solutions v of linear equation (9t2v —t"Av = F(t, x) and obtained

a series of interesting results about the global existence of solutions of problem (I.1]) when

2



1.4 Blowup

the exponent p is restricted to belong to the range

N 2m
m+2n+2 (1.6)
(m+2)n—2)p* = ((m+2)n+4)p-220.

p<1

In the same paper, Yagdjian applied a method of Sideris [30] and showed blowup of local

solutions when p belongs to the interval

(k+Dn+1

f uyp(x)dx >0

holds. There was a gap between the global existence interval and the blowup interval,

provided the condition

moreover, the critical exponent p.(m, n) was not determined there.
The Cauchy problem for (1.4]) with low regularity initial data was considered by Ruan,
Witt, and Yin [28]].

1.4 Blowup

Our first result concerns the blowup of local solutions when 1 < p < p.. To this end, we
define, as in [39], for the local solution u the function G(¢) = fR" u(t, x) dx and use the
multiplier method to show the blowup of G(¢) in finite time. If the initial data has compact
support, then finite speed of propagation yields blowup of u. More specifically, as in [11}
27], investigating the modified Bessel function and choosing a good test function, we derive
a Riccati-type ordinary differential inequality for G () by a delicate analysis of (I.1]). From
this and an ODE lemma, the following blowup result can be established assuming positivity
of up and u;.
Let p. denote the positive root of
m+2)n-2 , (M+2)(n-2)+6
2 P 2

p—(m+2)=0. (1.8)
Then we have

Theorem 1.1 (Blowup in finite time). Ler 1 < p < p.. Suppose (uo,u1) € H'(R") x
H 1_ﬁ(R’“) are nonnegative and positive somewhere, and supp(ug,u;) S {x||x] <
R} for some R > 0. If problem (L1) has a solution u € C([0,T],H'(R")) N
CL([0,T), H'= 772 (R™)), then T < .



1 Introduction

1.5 Global existence

Having established Theorem [I.1] a new question arises: Is the positive root p.(m, n) of
(T.8) the critical exponent? To answer this, we shall find the range of p where local solutions
can be extended for all times. As in the case of wave equation, here the proof is very long
and complicated. For technical reason and the reader’s convenience, we shall divide proof
into two parts, for p > pg and p. < p < po, respectively. The demarcation point is given by

(m+2)n+6

S mton-2 (1.9)

po = po(m,n)

Note that equation (I.1]) is conformally invariant for p = py.

For p > po, unweighted Strichartz estimates for linear homogeneous equation and

inhomogeneous equation yield the global existence theorem:
Theorem 1.2 (Global existence for p > pg). Let po < p < % or else p >

(m+2)(n—2)+6
(m+2)(n-2)-2’

go > 0 such that, for

p is an integer, and Fy,(u) is replaced with +uP. Then, there exists a constant

Nuollygs + llurll -2 < &o,
H

m+2

problem (1) admits a global weak solution u € L' (R%"). Here s = % — and

((m+2)n+2) (p-1)
r=—

4
(m+2)(p-1)

Remark 1.3. In [28], it is proved that u € C ([0, c0), H*(R")).

In case p. < p < po, the method that leads to the proof of Theorem [I.2] does not
work any more. Indeed, we need a refined decay estimates when p is near p.. To get

this, we follow an idea of Geogiev, Lindblad, and Sogge [7] and define the L” norm with

4
(m+2)?

By applying an explicit formula for the solution v of the problem 82v — t"Av = F(t, x),

- . Y . . .
characteristic weight ( M2 - |x|2) for the generalized Tricomi operator Gtz —t"A.

(v(0,x),0,v(0,x)) = (f(x),g(x)), we arrived at a class of Fourier integral operators
associated with the operator 6? — ™ A. From here, a series of crucial weighted inequalities
of v is established by a rather delicate and involved analysis. Notice, however, that we still
need to handle some remaining cases to finally get the global existence result. This will be

subject of a forthcoming paper.

1.6 Structure of the thesis

This thesis is organised as follows.

4



1.6 Structure of the thesis

Chapter [2] reviews the theory of semilinear wave equations, this work is closely related
to this case. We also recall Strauss’ conjecture. We then review the history of resolving
this conjecture, describe those ideas and useful techniques which motivated our approach.

Chapter [3| contains a proof of the blowup result for 1 < p < p.. We follow an idea of
Glassey [9]] and Sideris [30], prove blowup by using a lemma on ODEs and by applying
some refined techniques for the modified Bessel function as in [11}27].

Chapter []is devoted to the proof of global existence result for p > py. Motivated by
Lindblad and Sogge [15]], where Strichartz estimates were obtained for the linear wave
operator, we are required to establish Strichartz estimates for the generalized Tricomi
operator 6,2 —t"A. In this process, a series of inequalities is derived by applying an explicit
formula for solutions of the linear generalized Tricomi equations and by utilizing some
basic properties of related Fourier integral operators. Based on the resulting inequalities
and the contraction mapping principle, we eventually prove global existence for p > py.

Chapter 5| concentrates on the case p. < p < po. In this chapter, we will prove a precise
pointwise estimate for the solution of linear homogeneous Tricomi type equation, and then
use it to get the weighted Strichartz estimate for the homogeneous equation.

In Chapter [6] we study the weighted Strichartz estimate for linear inhomogeneous
equation. This is the most difficult part in the whole thesis. We start with reducing the
problem to a estimate inside the characteristic cone. Using interpolation, we then only
need to establish this estimate for the two endpoints p = pg and p = 1.

In Chapter[7, we deal with the case p = py. To this end, we follow an idea of Geogiev,
Lindblad, and Sogge [7] and split the solution into pieces supported in different parts. Most
cases will be handled in this chapter.

Chapter [] studies the case p = 1. The idea of the proof is basically the same as in
Chapter 5, but with easier computation. These two endpoints estimates together with
complex interpolation yield the weighted Strichartz estimates for all indexes p.

The thesis concludes with an appendix, which contains some technical stuff and lemmas

from other papers. Some useful notes and comments can also be found there.






2 Semilinear wave equations

In this chapter, we review the theory of the semilinear wave equation

{ ﬁtzu — Au = |ul?,
@.1)

u(0,x) = eup(x), u(0,x) = ecui(x).

After stating the problem and listing several important results about this problem, we
introduce some basic ideas for the wave equation, then some technical stuff are given for
both blowup and global existence. Finally, we show how these knowledge motivates our

approach to the problem under study.

2.1 Historical review

Here we provide some historical background. John [13]] in 1979 showed that for n = 3
global solutions of (2.1)) always exist provided p > 1 + V2 and & > 0 is small. He also
showed that this exponent is critical in the sense that no such result can hold for p < 1+ V2.
It was shown later by Schaeffer [29] that there in general is also blowup for arbitrarily small
data in the case n = 3 and p = 1 + V2.

The number 1 + V2 first appeared in Strauss’ work on scattering of small-amplitude
semilinear Schrodinger equations. Since semilinear wave equations and semilinear
Schrodinger equations behave similarly in several ways, he made the insightful conjecture
[32] that, for n > 2, global solutions of (2.I) should always exist if & is small and p is

greater than a critical power p. which is the positive root of the quadratic equation
n-Dp*-=m+1Dp-2=0. (2.2)

This conjecture was shortly after verified for n = 2 by Glassey [8, 9]]. John’s blow up
results were then extended by T. Sideris [30]. He showed that, for all n > 4, there is
in general blowup for arbitrarily small data if p < p.. In the other direction, Zhou [38]]

showed that when n = 4, there is always global existence for small data solutions if p > p,.



2 Semilinear wave equations

The result has been extended to dimensions n < 8 by Lindblad and Sogge [[16]]. Here it was
also shown that, under the assumption of spherical symmetry, for arbitrary n > 3 global
solutions of (2.1)) exist if p > p. and ¢ is small. Later, for n > 4, Georgiev, Lindblad, and
Sogge [7] removed the restriction of symmetry. For the critical case p = p., Schaeffer [29]
proved blowup for n = 3. Finally, Yordanov and Zhang [39]] finished the proof by showing

blowup for all n > 4.

2.2 Blowup

Suppose we have a local solution u of (2.1)) satisfying (u, d,u) € C([0,T), H'(R")) x
C([0,T), L>(R")). We want to show blowup in finite time. The idea is to introduce the
function G(¢) = fR” u(t, x) dx. Since the speed of propagation is finite, once we have
proven blowup of G(¢), then blowup of u immediately follows for initial data of compact
support.

To this end, we need the following lemma which implicitly appeared in [9].
Lemma 2.1. Suppose that G € CZ([a, b)) is real valued and, for a < t < b,
G(t) = Co(R+ 1), (2.3)
G"(t) > Ci(R+1)"1G(1)?, (2.4)

where Cy, Cy, and R are positive constants. Suppose further that p > 1, @ > 1, and

p-Da=qg-2.
Then b is finite.

With this lemma at hand, the main task is reduced to derive (2.3 and (2.4). To this goal,
Sideris [30] for n > 4 rewrote problem (2.1) as an integral equation and used the Riemann
function to establish certain estimates. This computation was long and complicated. His
proof was simplified by Rammaha [24] and Zhou [38]. Yordanov and Zhang [39] applied
an idea from parabolic equations to derive (2.3)) and (2.4)) for the critical case, which turned
out to be a special multiplier method, and they got the result by quite a short proof.

In this thesis, we use the idea of Yordanov and Zhang. More specifically, they found a

special solution ¥ (¢, x) of the linear homogeneous equation
*u—Au=0. (2.5)

Here ¥/ (2, x) = A(t)¢p(x) = e "¢(x), and ¢(x) is a generalized eigenfunction of Laplacian

on R”. Then they used ¥ (¢, x) as a multiplier and derived a lower bound for G(¢) =

8



2.3 Global existence

fR,, u(t, x)y (¢, x) dx. This bound played a decisive role in the derivation of (2.3)) and (2.4).
In our case, since the coefficients of the Tricomi-type equation does not depend on x, we
can also find a special solution of (2.5) of the form A(7)¢(x). However, now A(¢) is a

function related to the modified Bessel equation. We have to use an implicit formula for

A(?) to establish (2.3) and (2.4).

2.3 Global existence

It has been known for a while that non-trivial space-time estimates for the wave equation
lead to improved existence theorems for semilinear wave equations. The pioneering work
was Strichartz’ [33]], who proved a space-time estimate in the case p = pp = (n+3)/(n—1).
The essential idea Strichartz estimates is that one gains regularity because the solution of
the linear Cauchy problem spreads out in all directions almost as rapidly as in the radial

case if the initial data is smooth enough.

2.3.1 The casep > pg

In 1995, for the linear equation

{ 6,2u—Au:F, 2.6)

u(0,x) = ef(x), Iu0,x) = eg(x)

Lindblad and Sogge [15]] established the estimate

I| u ”LfLZ(ST) + |l u ||H7(DT)S C(IIF ”LfL{\:(ST) + 1 f ”HV(R") +1 g ||[-']y—1(Rn) ) (2.7)

provided the gap condition

1 1 1 1
n(———)+———:2 2.8)
P q roos
and
1 2 3 4q _n+1(1 1)
p q n+l S (n-1(g-2) 2 \2 ¢/
for
1
|§—’y< 1, l’l23,
" ’f‘ (2.9)
_ _ =2

hold. Here Sy = (0,7) x R" and Dy = {(T, x) | x € R"}.



2 Semilinear wave equations

Furthermore, if n > 2,2(n+1)/(n—1) < g <oo,andy =n/2—-(n+1)/q > 1/2, then

-1/2
I lzacsr) + 1D ”HL2<'1+1>/<"-1>(ST) o) (2.10)

<Co( 1D 2| s,y * 1S Mgy + 1.8 iy )

The proof uses the theory of Fourier integral operators as the main technical tool. More

specifically, in [15] the fundamental solution of (2.6)) was used, and the related operator

(WF)(1,x) = ff IS B, f)é%ds, a < n,
Rl+n

was studied. This was followed by a use of the Hardy-Littlewood theorem for fractional
integrals, the Riesz interpolation theorem and pointwise estimates of the dyadic parts of
the kernels
K¢ (@t x) = f e""f”"f'ﬁaﬂ/zf)ld—i
n) &l
for certain § € C°(R,). With all these analysis, Lindblad and Sogge managed to get

and (2.10)). Then an iteration proof of this yield:

Theorem 2.2. Letp > (n+3)/(n—1),andp > (n+3)/(n—1). Set

n 2

y=yp) = 3T ToT (2.11)

Then, if there exists an € = €(n, p) such that if,
I f vy + 11 8 Nt e < &
then there is a unique global solution to (2.6)) satisfying
(u, 0u) € Cp(R; HY(R™) x H"'(R")) and u e LP~DO+D2(RI+ny (2.12)

In this thesis, we use a similar idea, but the computations are much more involved for
the fundamental solution of the Tricomi-type operator is more complicated. Especially, we
have to carry out a very precise analysis when 7 is small which is the case when degeneracy

happens.

2.3.2 Thecasep. <p < po

Lindblad and Sogge [[16] proved that, under the assumption of spherical symmetry, for
arbitrary n < 8 global solutions of (2.1) exists if p > p. and ¢ is small enough. For the

general case, John in 1979 proved global existence. The essential part of his argument

10



2.3 Global existence

was to establish certain pointwise bounds for the solutions of (2.6) with zero data. More

specifically, he proved an inequality which is equivalent to the following:

et = 1x1)7~2u] Cpl[e (2 = 1x1)" 2| (2.13)

L R1+n S L RI-HI
R R

ifF(t,x) =0, t—|x| <land 1+ V2 < p < 3. This fact motivated Georgiev, Lindblad,
and Sogge to consider the Strichartz’ estimates with characteristic weight > — |x|? also
in higher dimension. They split up # and F into pieces supported at scales of ¢ and
t — | x|, respectively. After a long and technical proof, which involved harmonic analysis,

microlocal analysis, and hyperbolic geometry, they established the following estimate:

Theorem 2.3. Let n > 3 and assume that p. < p < (n+3)/(n—1). Then, ife¢ > 0 is
sufficiently small, (I.1)) has a unique global solution u such that

(1+1r = 1xl) w e L R (2.14)
for any vy satisfying
1 - <(n—1)p—(n+1)
pp+D) 7 20+
Based on this, they proved the global existence of weak solutions when p. < p <
(n+3)/(n-1).

We use a similar idea, but for the Tricomi-type operator here, the pointwise estimate is

(2.15)

more difficult and we need to obtain.

11






3 Blowup when p < p.

In this section, we shall prove blowup in finite time for certain local solutions u of (I.T].
For a fixed R > 0, suppose initial data (ug, u;) € C°(Bgr(0)), where Bg(0) = {x||x| < R}
is a ball in R”. By the local existence theory (see [25-27,(36, 37]]), we have, for some
T > 0, a unique solution u satisfying (u, u;) € C([0,T), H'(R")x H =5 (R™)). Moreover,
fort € [0,T), supp(u, u;)(t,-) C {x||x| < ¢#(t) + R}, where ¢(t) = 2/(m + 2)tmT+2. As we
stated in Section 1.1, we introduce the function G(¢) = fR" u(t, x) dx. Then the blowup of
u(t,-) in L'(R") and hence in L®(R") follows from the blowup of G(¢), both blowing up
at the same time. By some delicate analysis, we obtain a Riccati-type differential inequality
for G(t) so that blowup of G(¢) can be deduced from Lemma 1.1. Thus our main task is
reduced to derive (2.3) and (2.4).

3.1 Derivation of (2.3

Since, for any fixed ¢ > 0, the support of u(z, -) with respect to the variable x is contained

in the ball Bg,4(;)(0), we have by an integration by parts that

G'(t)= | lu(t,x)|Pdx > = CR+n)FEmPDIGOP.  (3.1)
Rn
(f|x|s1e+¢<r> dx)

This shows that G(¢) fulfills inequality (2.3) with g = (m + 2)n (p — 1) /2, once inequality
(2.4) has been verified demonstrating that G is positive.

3.2 Derivation of (2.4)

To establish (2.4)), we introduce the following two functions: the first one is

p(x) = f e"“dw, (3.2)
Sn—l



3 Blowup when p < pe

which was already used in [39], where ¢(x) is also shown to satisfy
o(x) ~ Cy, |x|_anle|X| as x| = oo.
The second function is the so-called modified Bessel function of order v,
K, () = fo ) e cosh(vz) dz, v eER,

which is a solution of the equation

tzd—2+ti—(t2+v2)l((t)—0 t>0
d2  dr AT '

From page 24 of [5], we have
K0 =2 e (1+0a™) ast — oo,
2t
provided that Rev > —1/2. Set

A1) =Cp 12K 1

1
m+2

2 m+2
trz |, t>0,
(m+2 )

where the constant C,,, > 0 is chosen so that A(¢) satisfies

A7) —-1"A(t) =0, t>0
{ A0) =1, A(c0)=0.
It follows a list of properties of A(¢) (see [11, Lemma 2.1]):
Lemma 3.1. (i) A(¢t) and —A’(t) are both stirctly decreasing. Moreover,
tli)rglo At) = lliglo A1) =0.
(ii) There exists a constant C > 1 such that

l < 14 (t),l forr >0 and 4 (t),!l
C Atz Atz

We now introduce the test function ¢ with

Yt x) = A1) e(x),
where the definition of ¢ has been given in (3.2)). Let
Gi(1) = f u(t, )y (t, x) dx.

Then G »
t
G't)= | |u@, )P dx > GO

<C fort>1.

R % p_l
Jtentean ¥ 627 dx)

For the function G{(¢), we have:
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3.2 Derivation of (2.4)

Lemma 3.2. Under the assumptions of Theorem there exists a to > 0 such that
Gi(t) > Ct™2, t>1. (3.11)

Proof. Inview of u € C([0,T), H'(R")), one has that G|(¢) is a continuous function of .

Because up > 0 and ug # 0, we have
G1(0) = f up(x)e(x) dx = co,

where c¢( is a positive constant. Hence, there exists a constant #; > 0 such that, for
0<t<1y,
o
Gi(t) = —.
1(1) >

Similarly, by Lemma (i)and u; > 0 and u; # 0, we can also choose a constant , > 0

such that, for 0 <t < 1,
o))
f Ou(t, x) Y (t, x) dx > 5 > 0.

Moreover, by the smoothness of A(¢) and 4(0) = 1, we find a #3 > 0 such that

m/2

I3

A(t3) > cy,

where ¢; > 0 is some positive constant. Together with (i) and (ii) of Lemma 3.1] this yields,
for0 <t < ts,
—A(t) 2 =X (13) = |4 (13)] = CH37A(13) = Cey.

Then, by the assumption that uy > 0 but uy # 0, we have that, for 0 <t < ¢3,
%)
(=0 (1, X)u(t, x)) dx > 5 > 0,
Rn

where ¢, is a positive constant. Note that

Ay (f et da)) = f Zw?e""” dw = f e’ dw.
§n-1 §n-1 =1 §n-1

Let t4 = min{¢y, #5, 13} > 0. Then it follows from a direct computation that, for ¢ > ¢4,

t t
f lu|Pyr dxds = f f (832u - smAu) W dxds
ty JR? 1y n

= (YOsu —udsyp) dx| - f (YOsu —udg) dx|
R7 s=t R s=

14

which leads to

>cC
S=I4

(Yosu —udgy) dx| = f (YOsu —udgyy) dx
Rn s=t Rn

.,
2 2

15



3 Blowup when p < pe

This further yields

G(t) =22'(1) up dx = di (f wy dx) - 2f uddx
R~ t R~ n (312)

> C.
S=t

= (Y Ogu — udsy) dx
Rn

Now assume that there is a constant 5 > 74 such G(t5) = 0, but G;(¢) > Ofort4 <t < ts.

Then, forf4 <t < ts,

A1) u(t, x)e(x) dx = f u(t, xY(t,x)dx = Gy(t) > 0.
R" R”

Together with Lemma [3.1] (i), this yields that, for 4 <t < ts,

fn u(t, x)e(x) dx > 0.
Furthermore, by Lemma [3.1] (ii), we have
~X(t) = V()] < CAn)e?.
Together with (3.12)), this yields

Gi(t) + Ct2G (1) = G| (1) = 22'(t) | updx > c. (3.13)
Rn
Without loss of generality, we can assume that ¢ = 1 in (2.12)). Then, by solving (3.13), we

get that, fort4 <t < ts,

t_ﬁ
CODG (1) 2 C1IGy (1) + Tz (eCP0 — L) (3.14)
Therefore, G;(t5) > 0 holds which is a contradiction to G;(t5) = 0.

Thus, we have that, for all ¢ > 24,
Gi(t) > 0.

Using Lemma [3.1] (ii) again and repeating the argument from above, one easily obtains the

existence of a uniform positive constant C such that, for t > 14,
Gi(t)>Crt 7.
This proves Lemma 3.2 o

The lower bound Lemma [3.2]is the most important part in the proof of blowup. In the
case of the wave equation, Yordanov and Zhang proved a similar result, see Lemma 2.2 of
[39]]. The proof in [[39] is simpler and direct. One should also notice that, for the wave
equation, the lower bound in Lemma 2.2 of [39]] holds for ¢ > ¢y > 0, where #( can be any
positive number. On the contrary, for the Tricomi operator we can only prove the lower
bound for ¢t > 14, where ¢4 is a certain positive number and we can not make it arbitrarily

small. This is due to the degeneracy of Tricomi operator when ¢ — 0.

16



3.3 Proof of Theoremlﬁ‘

3.3 Proof of Theorem

Relying on Lemma 3.2 we are now able to prove Theorem [[.1]

Proof of Theorem|[L.1] By (3.4) and (3.5)), we have that

At) ~t 572D a5t — oo,

: : 2\
Next we estimate the denominator ( flxl <M+o(0) W(t, x)PT dx) in (3.10). Note that

p p-1 » p-1
( f Y, x)r dX) = A(0)? ( f P(x) 7T dx)
|x|<M+¢(t) |X|SM+¢(t)

and
_n-l
()| < Gy (1+ [x))7 7 M.
Then
o
f @(x)P-T dx
|x|<M+¢(1)
e nolonsl.p p_, M+¢(@) nolonzl.p b,
<C (1+r) 2 pler " dr +C (1+7r) 2 pler-1" dr
0 M+2¢(t)

< CeP TN 1 (M + ¢()" T e (MH90)

< C (M + ()"~ "7 77 1 (M190)
and

p—1
(f W (t, )C)I’L*1 dx < Cf%l’e—l’(ﬁ(f) (M + ¢(t))(n—1)(17—1)—%p ep(M+¢(t))
[x|<M+¢(t)

< CrP (M + ¢(r)) DD

(3.15)
Therefore, it follows from (3.10) and (3.13)) that, for 7 > 1o,
G"(1) = ct™ 5P (M + ¢(1)) T 7~ DED 5 o5 (M + ¢(1))" 757 (3.16)
Integrating (3.16)) twice gives
G(t) > C(M + )T (71250) 4 €y (1 = 1) + Co.
Note that if
p m+2 n
Be2s (n—l—zp)>l (3.17)

17



3 Blowup when p < pe

holds, then one has, for ¢ > ¢,

m+2

G(t) > C (M +1)7+2 "5 (n=1-3p) (3.18)

This means that condition (2.3) holds with @ = 5 + 2 + 22 (n - 1 — 2£).
To conclude the proof of Theorem 1.1, we now apply Lemma 1.1. For n > 3, one easily

checks that all p < p, satisty (3.17)). For n = 2, (3.17) is equivalent to (m + 1)p < m + 4.
On the other hand, if we take

p m+2( n ) m+2
=—4+2+ -1-= = -1

then the condition (p — 1)@ > ¢ — 2 in Lemma 1.1 becomes

z(n—l—ﬁp)) > m+2n(p—1)—2,

2

P m +
-z +2
(p )(2+ + > >

which is equivalent to
n ) n
((m+2)§—1)p ; ((m+2)(1—§)—3)p—(m+2) <0.

By a direct verification, we have that p,. satisfies (I.8)) and that p. < po holds. Furthermore,

when n = 2, by a direct computation we have that

3+ Vdm2 + 12m+7
2(m+1)

pc(ma 2) =

and (m + 1)p.(m,2) < m + 4. We complete the proof of Theorem [[.1| by appealing to
Lemma2.I|with a = tg and b = ¢. o

In a forthcoming work, we will also consider the case p = p., where we will need a

stronger ODE result than Lemma[2.1]

18



4 Global existence for p > p

In this chapter, we prove the global existence result when p > pg. The main tool
is unweighted Strichartz estimates for both the linear homogeneous equation and the
inhomogeneous equation. These estimates not only play an important role in the proof
when p > py, but they also are basic for deriving the weighted Strichartz estimates when
1 <p < po.

In order to establish global existence, we need to establish unweighted Strichartz

estimates for the operator 6t2 —t"™A. To this end, we study the linear Cauchy problem

Au—t"ru=F@tx), (1x)eR™
' v (4.1)
u(0,-) = f(x),  du(0,-) = g(x).
Note that the solution u of (#.1)) can be written as
u(t, x) = v(t, x) + w(t, x),
where v solves the homogeneous problem
v —1"av =0, (t,x)eR*™,
4.2)
v(0,) = f(x), Gv(0,-) = g(x)
and w solves the inhomogeneous problem with zero initial data
Pw—1t"aw = F(1,x), (, x)eRM"
‘ ' (4.3)
w(0,:) =0, aow(0,-) =0.

Let H*(R") denote the homogeneous Sobolev space with norm

||f||Hs(Rn) = |||Dx|sf||L2(R")’

where |D,| = V-A.
If g = 0in (4.2), we intend to establish the Strichartz-type inequality

Wllaz: < C Il N,



4 Global existence for p > pg

where ¢ > 1 and r > 1 are suitable constants related to s. By a scaling argument, one

obtains that these indices should satisfy

1+m+2 n m+2(n
q 2 r 2

2- s) . (4.4)

Forn > 2,n € N, setting r = g and s = 1/(m + 2) in (4.4), we find that

. _2((m+2)n+2)
1= = (m+2n-2 > 2. )

By a scaling argument, we see that problem (T.1)) is ill-posed for uy € H*(R") with
s<nf2—4/((m+2)(p—1)). Thus we choose s = n/2 —4/((m+2)(p—1)). In this case,
p > po implies s > 1/(m + 2).

4.1 Estimate for linear homogeneous equation

We now prove:

Theorem 4.1. Let n > 2 and v solve problem &.2). Furtherlet 1/(m +2) < s < n/2.
Then

Wllagtony < € (1 Nange + gl 2, o ) (4.6)
where q = % > qo. The constant C > 0 depends on m, n, and s.
Proof. Tt follows from [36] that the solution v of (4.2) can be written as
v(t, x) = Vi(t, Dx) f(x) + Va(t, Dx)g(x),
where the operators V;(z, D) (j = 1,2) have symbols V;(z, £) given by
Vi, €) = Vi(s, €]) = %e H. (2(mm+ 3 mﬁz;z)
N .
% ¢t H- (Z(mm+ 2y’ m'ﬁ 2’ Z) “.7)

and

Va1, &) = Va1, [€]) =

(ZE) 23 m+4 m+4
) 2(m +2) m+2

( 7 _m+d N\
2(m+2)

s z
¢ ( +2)) e_iH ( m+4 m+4z), (48)

1"(2(";;42) \2m+2) m+2°

20



4.1 Estimate for linear homogeneous equation

where z = 2i¢(t)|€]. For a, v € R, w € C, we have

oim(v—a) 1 (0+) , 1 g\
. _ a—v -6 pv—a— _ 7
H (a,v;w) = D) — o= 0-®) T(y —a) w L e ’0 (1 a)) do,
1 1 0+) g\ !
H_ (a,v,w) = — . w“’f e o 1+ = de.
elﬂ'(l’ — e—lﬂ'(l F(a) o w

By Section 3 of [36]], one has that, for ¢(¢)|&| > 1,

_ Bl
0F Hy (@, v:2ig(01€])] < C (91N (1+161) 7, (4.9)

181

0F H- (e y: 2i¢(0)I€D] < C (p0)IEN™ (1+1¢1) 7 . (4.10)

__m+4
We only estimate V), since estimating V; is similar. Indeed, up to a factor of 7 ¢(¢) 2m+2 =

Cm¢(t)_2<mm+2>, the powers of ¢ appearing in V; or V, are the same. Choose y € C*(R;)

1, s>2,
x(s) = { 0 (4.11)

s < 1.

such that

Then

X(ODOIENVIE IEDFE) + (1= x(BDIENIWVI(L, 1ED £ ()
D18, &) + Do (1, ).

Using @.7), (4.9), and (#.40), we derive that

Vit 1€ f(€)

(4.12)

1.0 = G [ 00D a0 e
N f o (rE=0wlel) g r g)f(g)dg), 4.13)
where C,, > 0 is a constant only depending on m, and, for [ = 1, 2,
08 an(t.6)| < Cip el (p()lel) T .

On the other hand, it follows from [4]] that

_z m m
Vit,|é]) = e 2613(2(m+2),m+2,z), (4.14)

where @ is the confluent hypergeometric function which is analytic with respect to the
variable z = 2i¢(t)|&|. Then

|06 (1= x(@IENVIH, 1ED)| < € (1+ g(0)1g) 77 &)
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4 Global existence for p > pg

Similarly, one has

m

|08 (1 = x(@@OIEMVIG 1€D)| < € (1 + g(0)l€D) T |78,

Thus, we arrive at

vy (1, x) = Cp, ( f e/ (FErOWIED gy (1, £) £(£) de + f ! (E0OIED 4o (1,8) (&) df),
n Rn

(4.15)

where, for [/ = 1, 2,

0F axi (1, £)] < Cip (1 + G(1)]]) ™ |14,
Substituting and (4.13) into @.12) yields

Ve DS = Gl [ 00Dy fe) ae
o [ b ay e fe) de).

where the a; (I = 1,2) satisfy

0F a1, £)] < Cig (1 + ¢(0)]&]) T |14, (4.16)

We only treat the integral [, el (&8N g, (1, €) £(£) dé, since the treatment of the
integral [, e (vE=0IE1) g (1, £) £(£) d€ is similar. Denote

(APt x) = f 0D gy 1,6) f(£) de. 4.17)
We will show that
ALY Doty < C1LF s (4.18)
Note that if we set
i &) = ‘”gf), he) = €1 F6).
then (@.18)) is equivalent to

We denote the integral operator in the left-hand side of (#.19)) still by A. In order to prove
@.19) it suffices to establish its dual version

f e (W E+o0IED gp. EYh(E) dé

Lq(R2+1)

||A*G||L2(Rn) S C ||G||Lq/(Ri+n)’ (4.20)
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4.1 Estimate for linear homogeneous equation

where

W = [ [ N G G araxa
n RT—I

_ 2((m+2)n+2)

. o s 1,1 _ ’ ’ 1,1 _
is the adjoint operator of A, 77" lLLand1 < ¢" < g = i 2)n+6 (note that @ +oo = 1).

In view of

[(A"G)(y)I> dy = fl (AA"G)(1, x)G(1, x) dtdx < JAA Gl qgien)ll Gl gien),
Rn R++n
4.21)
one derives that (4.20) holds if

One can write
ARG = [ [ OO a6, ) BT E1G(r ) dedrdy. @23
Riﬂl n
To proceed further we need the following lemma from [[15]:

Lemma 4.2. Let § € C7 ((1/2,2)) and Z ﬁ(2‘jr) = 1 for T > 0. Define the
j=—00

Littlewood-Paley operators as
G5 =" [ g (21el) Guerde. ez
Rn

Then

- 1/2
12

j:—DO

and

B 12
(Z ”GJ'”irLg) < C”G”L;LQ’ l<p<2,1<r<2.
j=—00

If we choose a function g € C;°((1/2,2)) as in Lemma and set a,(t,7,&) =
BE&l/V)d(t, €é) da(t, &) for A > 0, then we obtain a dyadic decomposition of the operator
AA* by

(AA)G = f f (@M E) g (1,7, £)G (1, y) dedrdy.  (4.24)
Rﬁ-#l n
In order to prove (4.22)), we only need to prove
||(AA*)/1G||U1(R1+1) <C ”G”L‘l’(R’Fl)’ 1< q/ < Q(l), (4.25)
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4 Global existence for p > pg

where the constant C > 0 is independent of 2 > 0. Indeed, if (4.23) holds, then it follows
from Lemmaand q<qy= % < 2 that

IAA*GI7, < C ) IAAGIF <C Y. > I(AAYYGrllZ
JEZ JEZ k: |j—k|<Cy

2 2
<C E E IGklLy < CIGI, gty
+
JEZ k: |j—k|<Cy

where Gy (1, &) = BQ7¥1€)) G(x, &).
Next we prove (4.25). We will use interpolation between the two cases ¢ = co and

q = qo.
For g = o0, a direct analysis shows that

lai(t,7,6)| < €17

and

|| (AA*)/IG”LOO(RLM) < f

R_l:n

<
R}r+n

< CA" NG i gne -

f OO0y (1 7. g)dg' G, y)| dydr

f Y. ('i—') |§|—2Sd§' G(r, )| dydr

(4.26)
Next we prove the endpoint case ¢ = ¢o in (4.25)). Namely, we shall show that
I(AA") Gl g uromy < CATZ 2 (|Gl oy ton, (4.27)
Note that, for any #, 7 € R, and 7 = max{¢, 7}, one has that
|0 (7 a1, 7,6))| < Cle|™ T 1P, (4.28)

Indeed, without loss of generality, one can assume that # > 7. Then it follows from (4.16))
and a direct computation that

m m m

08 (FF8m a, (1. 7.6))| < Comdm (1+ $@IEN T (1+ p(r)1e]) T || -2

2m om
< Cp(t) T DD (P(1)|&])~ mamezmn |£|~1AI=2s

2,
< Cl¢[ ¥ Tmmimmn A,

Set

25+ 2m - —
b(t, T, é:) =A (m+2)((m+2)n+2) ¢ (m+2)n+2 a, (l‘, T, é:)

Then
0P b(t, 7, €)] < 1¢7P!
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4.1 Estimate for linear homogeneous equation

and we can write

(AA*)AG = f f ei((¢(t)—¢(T))|§|+(x—Y)'§)f_ <m+3§n+2 /1_25_ (m+2)((2r21+2)n+2)
Rz+l n

X b(t,1,&)G(1,y) dédydr.

Introduce the operator

Torf(x) = f f (GO )~ Glbirs (s, 7, £) f () dédy.

Then, by max{z, 7} > |t — 7|, we have that

I Tie fllz2gny < Clt = 7| @2m2 || fll 2 gny - (4.29)

On the other hand, it follows from the method of stationary phase that

ml___m _nl
T fllogny < CA T 17 #n2 |(t) — (D)™ = 1 fllp1 ey

ntl —_m___ _n-1 m+2 (4-30)
<CA |l — Tl (m+2)n+2 |t — Tl 2 2 ”f”Ll(R") .
Together with (4.29), this yields
2(n+1) _ (m+2)n-2
Tz fllLao @y < CATEDR2 |f — | Tne2ns2 IIfIIng)(Rn)- (4.31)
Because of 1 — (q— - —) %, it follows from the Hardy-Littlewood-Sobolev
0

inequality that

||(AA*)/1G||Lq0(R}j") = Hf T, -Gdt
0

L490 (R1+")

< CcCaA —25— (m+2)((m+2)n+2)/1(m+2)n+2

It —7|” (ETEs NG(T I gt o AT
f ERED s my  (4.32)

-2 +_
< CA =5 me2 ”G”Lqé(Rf") .

By interpolation between (4.26)) and (4.32), we have that, for 1 < p < py,

||(AA )/lG”Lq(R"H) < C/l_zs+2( (m+2)" )”G”LP(R"‘H)

In particular, choosing s = 5 — (m)nid ields estimate (@.18) for vi (7, x). The same

(m+2)q
estimate for v (7, x) is analogously obtained.

The proof of Theorem [@.1]is complete. o
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4 Global existence for p > pg

4.2 Estimate for the linear inhomogeneous equation

Next we treat the inhomogeneous problem (#.3)). Based on Theorem[.1and Lemma4.2]

we establish the following estimate:

Theorem 4.3. Let n > 2 and w solve (4.3)). Then

__1_
”W”L‘l(le”) < C”lely '"+2F|| (4.33)

L‘](’) (RL+n)’

(m+2)n+2
q(m+2)

wherey = 5 — qo < q < oo, and the constant C > 0 depends on m, n and q.

Proof. It follows from problem (4.3) that

W(t,X)=f (Va(t, Dy)Vi(7, Dy) — Vi(t, D) Va(7, Dy)) F(7, x) dr.
0

To estimate w(z, x), it suffices to treat the term fot Vo(t, Dy)Vi(7, D) F(1, x) dt, since the
treatment on the term fol Vi(t, Dy)Va(t, Dy)F (1, x) d7 is completely analogous. Choose a
cut-off function y as in (.11). Set

wi(t, x) = j(;tX(¢(I)Dx)X(¢(T)Dx)V2(ta DVi(z, Dy)F(7,x) dr,

wa(t, x) = fOtX(¢(t)Dx) (1= x(¢(7)Dx)) Va(t, Dx)Vi(7, Dy)F (7, x) dr,

wi3(t, x) = fol (1= x(@¢(1)Dy)) x(¢(T)D)Va(t, Dx)Vi(t, Dx)F (7, x) d,

wa(t, x) = fol (1= x(@(®)Dy)) (1 = x(¢(7)Dy)) Va(t, Dx)Vi(z, Dy)F (7, x) dt.

Together with (4.7)-(4.40), as in the proof of Theorem we can write Z?:l w;j as

4 t
D wj = (AF)(t,x) = f f S EH@O—VONED (1 1 £)F (1, €) dedr,  (4.34)
O n

j=1
where a(t, 7, &) satisfies

m

0fa(t, &)] < € (1+@)IED) T (1+ ¢(1)|€])” 7 |77 1A, (4.35)

To treat (AF)(¢, x) conveniently, we introduce the more general operator

(A”F)(t, x) = f f ei(x'§+(¢(t)_¢(T))|§|)Cl(l‘,T,f)F(T,f)lz% dr, (4.36)
0 n

where 0 < @ < n/2 is a parameter.
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4.2 Estimate for the linear inhomogeneous equation

As in the proof of Theorem {.1] we shall use the Littlewood-Paley argument with a

bump function 3 as in Lemma.2] Define the operator

AaF(t x) = f f z(x E+(o()— ¢(T))|€|)IB (l'ﬂ) a(t, T, f)F( L&) |§‘|§a T (4.37)
— i 0 < g < oo, our aim is to establish the inequality

—n
Note that, for y = 5 2T

S
Wil ieny < ClIID: "’+2F”L46(RF")

which is equivalent to proving that

< CIF|

1
- +_
Hle| 4 m+2 W L‘lé(Rlﬂa)'
+

|L‘1 (R

In terms of the operator A” in (4.36) with @ =y — it suffices to establish

1
m+2°

||A”F||Lq(R1++n) < C|F| (4.38)

L% R}
in order to complete the proof of {#.33).

Note that py < 2 < g < co. It follows from Lemma [4.2] that, in order to derive (.38)
we only need to prove

1A Fllpggisny < CIIFIl (4.39)

L(16 (Rl+n) *
By interpolation, it suffices to prove that (4.39) holds for the special cases ¢ = go and

q = 0. Denote the corresponding indices @ by @ and «;. A direct computation yields

cxozg—('q"(:('i—)f;)z—ﬁ:Oandaq:g—m+2 WenowtreatA A;).Let
T'JOG(Z', T, x) — f el(x§+(¢(t)_¢(7))|§|)ﬁ (lzé:—jl) a([’ T, f)G(T, g) dé‘: (440)

We can repeat the derivation of (4.31) to get

_ (m+2)n-2
IITJQG(I, 7, Mleao@n < Clt — 7| @252 ||G (7, )| (4.41)

L% R

t
Note that A?G(t, X) = f TJQG(I, 7,x)d7r. Then, by (4.41) and the Hardy-Littlewood-
0

Sobolev inequality, we get

0
|T G, x)||qudT " < C||G||LqO(Rn .
Lt
With
(m+2)n-2
|t — 7—| (m+2)n+2 > ()’
K1) =
0, T <0,

it follows from the following lemma with ¢ = go that (4.39) has been obtained. (See
Theorem 1.2 of [22]] for proof.)
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4 Global existence for p > pg

Lemmad.d. Let1 < p<qg<oo LetT: LP(R) = L1(R) be a bounded linear operator
which is defined by

Tf(x)= j;&K(x,y)f(y) dy,
for a locally integrable K. Define

TF(x) = f K(x.)f(y) dy.

o)

Then
IT fllLa < Cpg ITlLr—ra I fllLr-

Next we prove (#.39) for g = co. In this case, the kernel of A;“ can be written as

K]‘?/l(t,x;‘r,y) = Lnﬁ(ljjl) i(=y)E+@O=6ONED 4 (1. 1, £) |§|i,'

‘We now assert
supf IK;"(t,x;T,y)lqO drdy < oo. (4.42)
Rﬁ”

t,x
Obviously, if (@.42)) is true, then a direct application of Holder’s inequality yields (4.39))
for g = oo.

Next we turn to the proof of (4.42). By [31, Lemma 7.2.4], we have

|K;“(t, X; T,y)|

_n-l
2

< Caan AT (160 = ¢+ 2772 (14 Allx =yl = o) = s, (4.43)

where A =2/, N =0,1,2,...,and

2 3 2 +n 1 _n+ 1
m+2 m+2 2 m+2 2 m+2

) =

+a; =
It suffices to prove (4.42)) in case x = 0. In fact, a direct computation yields
f 1 K (2,057, y)|*drdy
Rn+
(S -a)- 40 1\~ 40 -N
A (lp(t) = p(0)| + 27") (1+ Allyl = 16() = ¢(0)I) 7" dsdy

n—1

il f AT (1) = g0l + 47) 4 (160) - 9@+ A7) ar

_2(n=1)(m+2)

o m(m+2)n+2m -1 __2 (m+2)n-2
<C A 2 ((m+2D)n-2) (|t -71|+A m+2) dr
—00

<C.

Thus, by interpolation, (4.39) and then further (4.33)) follow. o
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4.3 Proof of Theoremlﬁ‘

Relying on Theorem {.1]and Theorem {.3] we have:

Lemma 4.5. Let w solve (4.3). Then

1 1
w sy + [|[ Dy m 2w < CHD YmaF|l , 4.44
9l oy + |14 i < €2 phay G4
wherey = 5 — (";:nﬁ';z qo < q < oo, and the constant C only depends on m, n, and q.

Proof. Note that
(62 = 1"A) D4~ 72w = D"~ #F.

Then applying Theorem #.3| with g = g yields

1
|1pa=72

< CH|DX|V—ﬁF

q I+n 4] l+ny
L4 (R1+m) L% (R1+m)

Together with Theorem [.1] this gives (4.44). o

4.3 Proof of Theorem 1.2

Based on the results of Section[4.T]and [4.2] here we shall prove Theorem[I.2] To establish

the existence of a global solution of (I.4), we shall use the iteration scheme

2
Ofup — 1" Aug = |ug—117,

I/tk(o, ) = MO(-X), atuk(07 ) = U (X),

(4.45)

where u_; = 0.

Proof of Theorem We divide the proof into two parts.

4.3.1 Thecase whenn > 3, pissmallor n = 2.

We will show that there is a solution u € L"(RL™) of (T.4) with r = (’"T”n + 1) pT_l such

that u; — u and |ug|? — |ulP in D' (R as k — oo,

n _ (m+2)n+2
2 r(m+2)

We have that - < y

R <1+ ﬁ (using r > gp). Set

1
= +n Yo me2 . .
M = Nl o, + D272 o (4.46)
Suppose that we have already shown that, for/ = 1,2, ..., k,
M; < 2My < Ce. 4.47)
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4 Global existence for p > pg

Then we prove that also holds for / = k + 1. Applying Lemma4.5|to the equation
(67 = 1"A) (uiesr = uo) = F(wp),

where F(u;) = |ug|?, we arrive at

1L
Mk+1 S C ”leIy m+2 (F(uk))lqué(R}r+n) + MO

’ _ 1
<C|F (Mk)||L<m+2>n+2 D™ 72 ui || oo r1+my + Mo (4.48)

7 (er-#n)

< C”F/(uk)”L(m+2)n+2 " My + M.

TR
We mention that in this computation the following Leibniz rule for fractional derivatives

has been used (see [21,[23]] for details):

__1 __L
1D " m2 F ) (s, )l oy oy < WF @) (s, ez 11Dl " m52u(s, llers @y, (4.49)

where L = L + p% withp; >1 (1 <i<3)and0 <y - ﬁ < 1. Moreover, it follows

pP1 p2
from Holder’s inequality that

< Cllwllh . < CcMP™ < caMyP. (4.50)

4
|| F (uk)”L(m+2)n+2 L@l S

R

Thus, if My < Ceg and € is so small that

~ e 1
-1 p-1
CQRMy)P— < CEO < 5,

then we have .
My < EMk + My < 2M,.

Next we estimate My. By Theorem#.1] we have that

< : <
Mo < C (I ey + N8l o2, o, ) < Ceo (4.51)
where s = § — ("(’;i)zn)f and gy < r < co. Therefore, we have obtained the uniform
boundedness of the sequences { M} }.

Next we show that the sequence {u} is convergent under the norm || - ||, 4 (RI*1)- Set

Ni = [luy - uk_l”LqO(R}r*”)' Then

Ni+1 = llug+1 — uk”LqO(R}j") < |[F(ur) - F(uk—l)llLQé(RHn)

-1
< (”uk”Lr(an) + ||uk—1||Lr(Rjr+"))p oy — uk—l”mo(R]j")
4.52)

—1 -1
< (M + Mi-)?™ ik = w1 llpao riony < Ce N = g1 ll o miom

1 1
<5 Nk = -1l pao mieny = >Nk
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4.3 Proof of Theoremlﬁ‘

Therefore, u; — u in L% (R1*") and hence in D’(R1*"). This yields that there exists
a subsequence, which is still denoted by {uy}, such that uy — u a.e. In view of

ekl - @RIy S 2M,, it follows from Fatou’s lemma that
”M”L’(R}j") < h]?l)lol.}f Huk”L’(R}j”) < 2My < Ceq < oo.

In order to show that u is a solution of (1.4), It remains to prove that F'(u;) — F(u) in
D’ (RI*). In fact, for any fixed compact set K € R1*”, one has
IF ) = Falipgy < CrlIlF () = Fa) g o

< Cx (lukllr greny + luellzr k)P~ g — ullzao (i) (4.53)

-1
< Cng llug — ullpaoxy =0 as k — oo.

Thus |ug|? — |ul” in L} (R}*") and hence in D’ (R}*").
The proof of Subsectiond.3.1]is complete.

4.3.2 The case when n >

3, p is large

We will show that there is a solution u € L"(RL™) of (T.4) with r = (’”+2n + 1) such

that uy — u and uf — u? in O'(R}™") as k — oo.

2)n+2
We have that y = § — ("(1;; +)2’;j > 1+ -1 Let
m+2)n+2 2 2
My = sup |[|Dy| atm+D  mi2p-Ty . (4.54)
qo<q<r La(RLm)
Applying Lemma.5|to the equation
(07 = 1™ A) (uiesr = t9) = lug|”
yields
Mot < My + Gy IDul 2772 7 e (4.55)
L0@R™)

To treat the second summand on the right-hand side of (4.55]), we need the following variant
of (@.49) (see [14] for details):

D17 (e < CIIDL fllr gl + Cll fllzs 11Dx17 gl 52 » (4.56)

- 1_ 1.1 _1_ 1
whereOScrs1,1<rj,s]<oo,andp—rl+r2—sl+s2.

By (4.56) together with the fact that, for a given multi-index @ and 1 < p < oo,

DS flly < Cpa 12511,
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4 Global existence for p > pg

we arrive at

p
C [ TIDuI il gron
j=1

LPO(R1+")
whereOSa]S%—ﬁ—ﬁpzland
p
n 1 2 2
L= — . 4.57
;af 2 mt2 m+2p-1 (4.57)

Let gy < q; < oo satisfy

Py
Z 7 (4.58)

]:1 J O

where ¢; is determined by

(m+2n+2 2 2

Gm+2)  m+2p—1 O
From this, we have
(m+2)n+2
QOSC[J'S—4 (p-1)

and

51 m+2 ”( 2 2 )
N T Ot
= (m+2)n+2j:1 m+2 p-1
m+2 (n 1 2 2 2p 2 ) (4.59)

= == - +
m+2n+2\2 m+2 m+2p-1 m+2p-1
1

q,

Thus one has from that
M1 < Mo+ CoM;.
Suppose that M < 2M, < Ceg holds. Then
Mis1 < Mo+ Cp(2Mo)? "My < Mo + Cpel ™' M.
If €9 > 0 is so small that C‘peg_l < 1/2, then
M1 < Mo + %Mk < My + % - 2My = 2My.
Thus, we have obtained the uniform boundedness of the Mj provided that My < Cey.
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4.3 Proof of Theoremm

Furthermore, we then have that, if Ny is defined as in (4.8)),

Nivt = llttiesr = ukll oo m1+m)

< |||Mk |P - |I/tk_] |p||Lp0(Rl+")

IA

p—1
(ot gy + Notge—t Wl oy ) Mot = w1l o 1o

(m+2)n+2_i._
< sup |Dx| qm+2)  m+2 p-1 Up
qo<q<r La (R
| |(m+2)n+2_L.L p 1 || ||
+ sup D, | atmD  m+2 p-Ty, 4 Ur — Uk—11lp a0 (g1
qo<q<r La (R (RS

1
< (Mi + M) ke = =1 ll oo 1o

-1
< Cfg g — ug—1 ”L"O(RF")

1
< 5 lloeg — uk—llquo(R]j") = ENk-

Thus, uy — uin L9 (R1™) as k — co. From here we can finish the proof of Subsectionm
as in Subsection 4311

Subsection 4.3.1and Subsection 4.3.2] jointly constitute the proof of Theorem|[[.2] O
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S Weighted Strichartz estimate for the

homogeneous equation when p < py

The method in Chapter ] does not work if p < pg. This is due to the range of the index
in the Strichartz estimate. Indeed, if we want to apply standard iteration as before, we
shall need to use the Holder inequality. If p < pg, however, usage of the Holder inequality
introduces a term 7% for some positive . When T is small, this factor does not cause
trouble and we get local existence. However, when T is large, this factor is hard to control.
To overcome this difficulty, we get an L” — L4 estimate on R!*". To this end, we first
establish a pointwise estimate for solutions of linear homogeneous equation. From this
pointwise estimate we shall see that the solution behaviors like (1 + ¢(2)|¢(¢) — |x||)* for
some a < 0. This fact motivate us to consider the Strichartz estimates with characteristic

weight (;S(I)2 — |x|%.

5.1 The pointwise estimate

We start by proving the following pointwise estimate:
Lemma 5.1. Let v solve {.2). Then

V(t )| <Cpns (1+ ¢(1)) ™7 703 (14 ||x| - g(r)]) " 72+
(5.1)

XS Uy gyt g 18 gt )

(R® R")

for 6 > 0.

Proof. As in Chapter 4 we may assume that g = 0. By our analysis there, we can write

v(t,x) = Vi(t, D) f(x) = cm( f eLrEreWlilly, (1, &) f (&) d¢

n

o [ e o fe) dg)



5 Weighted Strichartz estimate for the homogeneous equation when p < pg

where a; (I = 1, 2) satisfies

m

|0§ﬁal(t, f)| <Cpg (1 + ¢(2)|&]) " 2mD |§|—|ﬁ|_

To estimate V; (t, D) f (x), it suffices to deal with the form fR” eI g, (1, &) £(8) dé,
since the term fR,, el E=¢ Wl g, (1, £) £ (£)d€ can be treated analogously. Set

(Af) (1 x) = f IO (1 2 (£) dé.

Let B(7) € C;°(1/2,2) such that

Z B(277r)=1 fort eR,.

j==

To estimate (Af)(, x), we now study the dyadic operators
Af a0 = [ e ea ) 7€) de

= f eI Olla; (1,6 f(£) dg,

where j € Z. Note that the kernel of operator A; is

Kj(t,x;y) = f ei[(X—y)'f+¢(f)|§|]aj(t’ &) d¢,

where |y| < M — 1 because of supp f C {x: |x| < M — 1}. By (3.29) of [15]], we have that
for any N € R™,

n+l
2

|Kj (%, x; )| < CunnA,; (1 + ¢(t)/lj)_%
(¢(I) + /1;1)_"74(1 + Aj]lx =yl - ¢(t)|)_N, (52)

where 1; = 2/. Since the solution v of ([#.2) is smooth and has compact support with
respect to the variable x for any fixed time, one easily obtains that (5.1)) holds in any domain
[0, 7] x R". Therefore, in order to prove (5.1)), it suffices to consider the case ¢(t) > CoM,
where C is a fixed large constant. From now on, we assume that |y| < M — 1 and (¢, x) is

in the support of the solution v of (4.2). Next we distinguish two cases.

5.1.1 The case ||x —y| — ¢(t)| = CoM
In this case, there exist two positive constants C; and C, such that
Cillx =yl = ¢@®] = [Ix] = ¢(®)| = Coflx = y| = ()] = CoM.
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5.1 The pointwise estimate

For j > 0, we take N = 2 + —L> + 5 in (5.2) to obtain

+1 r

ntl_ 1
K (t, x:9)| < Cunsd;” 2("”2)¢(t) T 2“”*2)/1 7270 |x| - (T)l e

< G A7 (1+ ¢(0) "7 75005 (1 + ||x| = p(1)]) 2777
For j < 0, taking N = n/2 + 1/(m + 2) — 6 in (5.2)) we arrive at

n+l

_m_ n-l__m _n__1 .5 _n__1_
IKj(t, 0] < Crng ;77 g™ 7 m 427727 x| = oo e

_n=l__m -4-
< Cunod? (14 ¢(0) ™7 7705 (1+|1x] = p(0)]) T 727,
It follows from f(x) € C3°(R") and direct computation that

n—1 m n 1
Cns A2 (1+6(0) ™2 7757 (1 +]1x] - (o) 72 %, j <0,
|A; f] < masdj (1+¢(1)) (1+] P(1)]) J (5.3)

Couno A7 (14 6(0) ™ 775 (1+]1x] = p(0)]) F727°, j >0,
Summing up the right sides of (5.3)), we get that for large ¢ (1) > CoM and ||x|—¢(t)| > CoM,

V()] < Cs (14 ¢(0) 7T 753 (14 1| - p(n)]) 3770270 (5.4)

5.1.2 The case ||x —y| — ¢(t)| < CoM
By a similar method as in Subsection [5.1.1] we obtain that, for 7 > 1,

_nl__m __
I My < Conns O™ T TN g1 e (5.5)

where 0 < 6 <n/2+1/(m+2) —vy — 1/q is a positive constant.
Indeed, note that

1A f (& 2) =\ f el fl(glf)|Dx|af<§> defj

where @ = n/2 + 1/(m + 2) + 6. Then, by the stationary phase method, we have that, for
Jj=0,

+1 m n—1
a T N\ 2m+2) -1\~ "2
A1 Coung 4572, (1460 4;) 7 (6O + 451 ) T I F gt g, 56
i
< Cmné/l_ (1+¢@) e || f || v S
(R™)
Similarly, for j < 0, we have
_nZl__m
Aj£1 < Crng 45 (L4 6@) 72T Nl s 5 s (5.7)
Summing up all terms in (3.6)) and (5.7) yields
_ —|
1V Iz @n < Cungd(t) ™2 705 || f || Borbs el ay’
which shows that (5.5) holds.
Therefore, (5.1)) follows from (5.4) and (5.5)). o
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5 Weighted Strichartz estimate for the homogeneous equation when p < pg

5.2 Weighted Strichartz estimate

Now we can prove the main theorem in this chapter:

Theorem 5.2. For the solution v of (&.2),

(o) + m)> = 1x2)” 4 -

<C(NF I gt a (5.8)

g gt )

T (R

2((m+2)n—m) (m+2)n-2  (m+2)n-m
(m+2)n-2 ° 2(m+2) (m+2)q

n/2+1/(m+2)—vy—1/q, and C is a positive constant depending on m, n, q, y and 9.

where¢(t):ﬁt#,q> O0<y< ,and any 0 < 6 <

Proof. From now on we denote My, =|| f || e + 0l g |l ko
n m+2

shall compute the integral in (5.8) by using (5.1]) and polar coordlnates

(&™)’

(@) + m)* = 1x1?) |}

L9(RY™)

< ConsMyg le (((</>(t) + M) - lez)y(l L B(1) T T
X (1+]1xl = ¢@)]) Fma )qudt

< CmnoMrg fomfo (@@ + M + 1) (6(t) + M =)' (1 + $(1)) "7 77
X (1+1r - ¢(t)|)‘%‘ﬁ+5)q ldrds

. CmnéMfgf f (1 T 0)

x (1+|r - ¢(t)|)7‘7‘m+5) P drdr.
(5.9)

Notice that by our assumption y — (n — 1)/2 — m/(2(m +2)) < (m/(m + 2) — n)/q holds.

Thus, we can choose two constants o > 0 and 6 > 0 such that

n-—1 m <( m )1
- - -n|--o
YT Tam+2) S \me2 7"y

and

( Z : +0 ) <-1
L A A
It follows that, for some positive constant & > 0, the integral in the last line of (5.9) can be

controlled by
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5.2 Weighted Strichartz estimate

f ) f (14 90) T (14 | - g7 P drdr
0 0
<C f (1+¢(0) ™77 (1 + ¢(1))"dr
0
<C,

which derives
(o) + m)* = 1x12) 7|
and (5.8)) is proved. o

< CunsMy
L4 (R’i*—l) m,n, fvg’
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6 Weighted Strichartz estimate for the

inhomogeneous equation.

Since we have already established the weighted Strichartz estimate for the homogeneous
equation, what remains to do is to prove the weighted Strichartz estimate for the inhomoge-
neous equation. From now on, we set ¢ = p + 1 for the exponent in (I.I). For technical

reasons, we shall first give the result in the characteristic cone {(z, x)||x| < ¢(2)}.

Theorem 6.1. For problem (.3), assume that F(t,x) = 0 when |x| > ¢(t) — 1. Let

Pe < p < qo— 1. Then there exist a y satisfying 0 <y < (’;’(trzli'gz - (n(l;i)zn):,m and py > é
such that
2 2\?Y 2 2\PY
|8 = 1) ]y oy, < C (20 = P F] e, s ©6.1)
where C > 0 is a constant depending on m, n, q, and y.
More specifically, since p > p., where p, solves (1.§)), by a direct computation
1 <(m+2)n—2 (m+2)n-—m
p(p+1) 2(m +2) m+2)(p+1)
From now on we set
_(m+2)n-2 (m+2)n-m
= m+2 T mrpr )
Thus, there exist a v > 0, such that
Yo—V <%0 (6.2)
and .
Yotv>—. (6.3)
p

Hence, for any fixed m, n and p, one can choose a v > 0 such that

p(yo—v)=yo+v



6 Weighted Strichartz estimate for the inhomogeneous equation.

and (6.2), (6.3) hold. In fact, one needs to take

p—1
Vv =
p+1

Yo-
Then Theorem [6.1]is a corollary of the following theorem

Theorem 6.2. For problem {#3), we assume F(t,x) = 0 when |x| > ¢(t) — 1. Let

1 < p < qo— 1. Then there exist a v > 0 such that

(@ -1 w

Yo+v

< CH((}&Z(I) ~ 1x?) F‘

(6.4)

4q_
L"(Rr") La-1 (er-#n) ’

and C > 0 is a constant depending on m, n, q, and vy.

Before we give the proof of Theorem [6.2] we show that how Theorem [6.1] yields the

following result

Theorem 6.3. For problem (.1), assume that F(t,x) = 0 when |x| > ¢(t) + M — 1 and
F(t,x) € C™([0, Tp] x R") for some fixed number Ty, 0 < Ty < 1. Let p. < p < qo — 1.

Then there exist some 7y satisfying 0 < y < (';(Jfllgz - ("(’;i););m, py > é such that

(o) + ) = 1x1) " w|

L9([Tp/2,00)xR™)

< C|[((p) + m)* = 1x12)" | (6.5)

LT ([Ty/2.00)xE™)

where C > 0 is a constant depending on m, n, q, and y.

Proof. To prove (6.5), first we consider the case F(f, x) = 0 when |x| > ¢(t) — ¢(Tp/4).
Note that the region {(#, x): t > Ty/2, |x| < ¢(¢) + M — 1} can be covered by a finite number
of cones {Q; };_V:ol, where each cone Q; (j > 2) is a shift in the x variable with respect to
the curved cone
Q1 ={(tx): t 2To/2, |x| < ¢(t) — ¢ (To/4)} .
Set
Fi = xo,F,

FZ = XQ2(1 _XQl)Fa

Fry = Xox, (1= x0r = X0 (1= x0) =+ = Xowy 1 (1= x0) -+ (1= X0y »)) F

where x o, stands for the characteristic function of Q;, and Z;.V;’I F; = F. Let w; solve

0t2wj - lmAWj = Fj(l, X),

w;i(0,x) =0, 0w;(0,x)=0.
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6 Weighted Strichartz estimate for the inhomogeneous equation.

Then suppw; C Q;. Since the Tricomi equation is invariant under the translation with

respect to the variable x, it follows from Theorem @ that

[(¢*@) = 1x = v;12) " w; < C||(¢*@) — 1x = v;?)” F| . (6.6)

L9(Q;) L%(Qj)

where v; € R" corresponds to the coordinate shift of the space variable x from Q; to Q;.
Next we derive ([6.5]) by using (6.6)) and the condition ¢ > Ty/4. First, we demonstrate

that there exists a constant 6 > 0 such that, for (¢, x) € Q;

62 (1) = 1x = viI* 2 6 ((¢(1) + M)* = |x]?) . (6.7)

To establish these inequalities, it suffices to prove (6.7) in two extreme cases: v; = 0 and
lvil = M — 1+ ¢(3Ty/8) (we need |v;| > M — 1 to cover the whole region {(#,x): t >
To/2, |x| < ¢(t) + M — 1}).

For v; =0, is equivalent to

¢>(1) = (1= 8)|x1> + 6 (¢(t) + M)*. (6.8)

By |x| < ¢(t) — ¢(Tp/4) for (¢, x) € Q1, in order to show it suffices to prove

$2(1) > (1= 6) (¢(t) — ¢ (To/4))* + 6 (¢(t) + M)*.
This is equivalent to
2(1 = 6)p (To/4) — 26M} ¢(1) = (1 = 6)§” (To/4) + SM>. (6.9)

It is easily achieved by ¢t > Tp/4 and the smallness of d.

Forv; = M — 1 + ¢(31,/8), the computation is a little more involved. First, note that for
fixed ¢, the region {(¢, x): t > To/2, |x| < ¢(t) + M — 1} is symmetric with respect to x
variable. Thus we can assume v; = (v,0,...,0), where v = |v;| = M — 1 + ¢(3Ty/8). In

this case, setting x = (x, x’), (6.9) is equivalent to
$7 (1) 2 |x = > + 6 ((¢(1) + M)* - |x]?)
= (1=86)x3=2vx; +v? + (1 =6} |* + 6 (p(t) + M)? (6.10)
=G(t x).
For fixed t, G(t,x) is a hyperbolic paraboloid, and it assumes its minimum at the point
x = (v/(1 = 6),0). Thus for the same fixed t, the maximum of the G(z, x) in {x||x — v;| <

¢(t) — ¢(Tp/4)} must is assumed on the boundary |x — v;| = ¢(¢) — ¢(Tp/4). Then our task

is reduced to prove
$2(1) > (p(1) - p(To/4)* + 6 ((p(1) + M)* — |x]?) (6.11)
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6 Weighted Strichartz estimate for the inhomogeneous equation.

We shall consider the case that |x|? assume its minimum on the boundary. In addition, on
the boundary |x — v;| = ¢(t) — ¢(To/4), we have

1x12 = (¢(t) — ¢ (To/4))* + 2vx; — 2. (6.12)

Then we shall take
x1=v—-0@)+¢(Ty/4), x' =0. (6.13)

Substituting (6.13) and (6.12) into (6.11)), we are left to prove

$*(1) > (¢(1) — ¢ (To/H)* + 5{($(1) + M)?
= ($(t) = ¢ (To/4) +2v (¢(1) — ¢ (To/4)) — v*)
= ¢7(1) + (26 (p(To/4) + M +v) = 26(Tp/4)}¢(t) (6.14)
+ (1= 8)¢* (To/4) + SM? — 6v (v +2¢ (Tp/4)) .

For fixed Ty and M, if § is small enough, then
1
26 (¢ (To/4) + M +v) < §¢ (Ty/4) (6.15)

and
(1= 6062 (To/4) + oM* < 37 (To/4) 6.16)

Substituting (6.135)) and (6.16) into (6.14)), our remaining task is to prove

3 3
=5 (To/4) $(1) + 5¢2 (To/4) <0,
but since ¢ > Ty/4, this holds.

Thus, for (t,x) € U;V:ol Q;, there exists a positive constant ¢ > 0 such that, for
1 <j< N,

c () + M)? = x?) < (1) = lx = v; 2. (6.17)

On the other hand, by |x| < ¢(¢) + M — 1, one has

2{(p(t) + M)? = |x*} = {¢*(t) — |x — v;|*)
> (Ix] + 1)% = |x* + (¢(r) + M) = x> = ¢*(1) + |x — v;I?

(6.18)
= 2Mp(t) + M + |[vj|* + 1+ 2(1 = |v;])|x].

In addition, if 1 — |v;| < 0, then by |v;| < M — 1 + ¢(31p/8) and the smallness of Tj, the
last line in (5.4) is bounded from below by
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6 Weighted Strichartz estimate for the inhomogeneous equation.

DMP(t) + M* + |v;P + 1 +2{2— M — ¢ 3To/8)} {¢(t) + M — 1}
=4¢(t) = M* + 6M = 3 + |vj|* — 26 (3To/8) ¢(t) — 2(M — 1)¢ (3T/8)

> 26(t) — M? + 1, 1%
while in the case 1 — |v;| > 0, (6.18) yields
2{(p(t) + M)? = |x*} = {#*(1) — |x — v;[*} = M* + 1 > 0. (6.20)
Combining (6.19) and (6.20) yields that for 2¢(¢) > M? - 1,
¢ (1) —lx = v;I* < C ((¢(0) + M)* = |xP). (6.21)
If 2¢(t) < M? — 1, then
¢*(1) = |x = vjI* < 6°(1) < Cyr < Cr ((0(1) + M)* = |x]?). (6.22)
Thus, it follows from (6.12)-(6.13) that, for j = 1,..., No,
$ () — Ix = vi* < C((6(0) + M)~ Ix?). (6.23)

Therefore,

(o) + ) = 1x1) " w|

L9([Tp/2,00)xR™)

No
<C > (e + M)* = 1x12) " w;
-

4 L4(Qj)
No

<) (@@ = e =) w; L9(Q))
]NO py

<€) [(@*® - e -P) Ff”L%(QJ
j=1 ’

No

< Cn ”((W) + M) - |x|2)py F“L%([To/zpo)xR")’

which derives (6.5)). o

Now let us turn to the proof of Theorem[6.2] This proof relies on the validity of two

endpoint estimates to be shown the remaining two chapters.
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6 Weighted Strichartz estimate for the inhomogeneous equation.

Proof of Theorem[6.2} To establish (6.1]), motivated by [7]], we prove in Chapter [7] and
Chapter [§] that (6.4) holds for two special cases, namely, (6.4) holds for the two endpoints

qg=qo= % (corresponding to ("21;31”2;2 - ("Z;i)z'l)'qm = é) and g = 2 (corresponding
— 4.
9=
2 n 1/q0—v 2 o\ 1/qo+v
(62— 1xP?) ™ w <C|(@=1xP) " TF| W . (6.24)
L490 (le'") qufl (Rl+n)
and
F=L oy 1/2+y
H(¢2<r> —x2) T <c|@o-wr)"F| L 62s)
L2(R1++n) L (R+ n)
By (6.24)-(6.25) and interpolation, one gets (6.4)). o
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7 LY estimate for q = q

In this chapter, we will give a proof of (6.24). Since (6.24) is a weighted estimate, we shall
split up w into pieces supported in regions which scale with the time variable to prove the

dyadic estimates first. In fact, one can write inequality (6.24)) as

1/go-v 1/qo+v
[pcr-1) " ™l <cf(@@? =) | W @
L40 (R++n) L qo—l (R1++n)
where v > 0 and ¢y = M To prove (/.1)), it suffices to prove the followin
q (m+2)n-2 ¥ p g

inequality, for T > T while T is a fixed large constant,

(62 = 1x1) ™|
< Co(T) I TV || (p(1)” = 1x) /" F||

L90([T/2,TIxR™) 72)

qu q0-1 (RlJrn)

In fact, Lemma 3.4 of [10] implies, for ¢ € [0,7/2],

w n < C F
W llao o,7/21xm < C I ”qu T gien)

In this case, the weight (;S(t)2 — |x|? is bounded from below and above. Thus we have

||(¢(t)2 - |x|2)l/qo_vw“L‘m([O,T/Z]XR”)

< C || (@@ = 12" F|| 7

qu I(RlJrn)

Summing (7:2) over all the T > T together with (7.3) yields (7.1). Note that, by Lemmal[5.1]
the solution of homogeneous equation (4.2)) has a faster decay if (¢, x) is far from the
characteristic cone {(z, x): t > 0, |x| = ¢(¢)}. Motivated by this observation and [7]], we
shall first establish ((7.2)) in the set {(z, x): t > 0, |x| < ¢(¢)/2}. To this end, we now prove

one basic inequality. All other cases are derived utilizing this result.

Proposition 7.1. Assume F(t,x) = 0 ifn > 3 and ¢(t)* — |x|> < 1. Then the solution w

of @.3) satisfies



7 L4 estimate for g = g

(62 = 1x1) ow|

L90({(1,x): T/2<t<T,|x|< &)

< C 7|V (p)? = x| w . (74)
qu—l (R_lﬁn)
where C = C(m,n) > 0 is a constant.

Remark 7.2. Note that suppF' C {(t,x) | ¢(t) — |x| = 1} implies supp F C {(¢,x) |
#(t)> — |x|?> > 1}. Thus, Propositionis more general than what we need in the proof of
Theorem [6.1]

7.1 Proof of Proposition
Proof. Setwr(t,x) = w(Tt,T"F x) and Fy(t, x) = T*F(Tt,T"" x). Then
(07 — 1" p)wr = Fr,

and, ((7.4) is equivalent to

40 _ . (1.5)
qufl (Rﬁ+1)

Note that the advantage of inequality (/.5) is that only right hand side of ((7.5)) contains a
weight.

i
Il wr g0 (((r,x): 1/2<0<1,x1<6@)/2)< ClIn Tll/qOH(¢(l)2 — |x]%) /quT’

To prove (7.5)), the following two cases will be considered: supp F(-,y) C {s >
0: ¢(s) < (1/8)¢(1/2)}, and supp F(-,y) € {s > 0: ¢(s) > (1/8)¢(1/2)} For the first
case, we shall derive by establishing a pointwise estimate of wr. For the second case,
will be shown by applying some techniques in microlocal analysis and analyzing the

solution wr precisely.

7.1.1 The casesupp F(.,y) C {s > 0: ¢(s) < ¢(1/2)/8]}.

Note that
t
wr(t, x) =f (Va(t, Dy)Vi (s, Dy) — Vi(t, Dx)Va(s, Dy)) Fr(s, x) ds. (7.6)
0

By an analogous analysis as in Lemma 3.4 of [10], we have

t
wr(t, x) = f f I ET OO0l g (1, 5, £)Fr (s, &) déds, (7.7)
0 n

where the amplitude function a satisfies for g € N7,

02at,5, )] < C(1+ $@)IED) T (1 + g(s)|€l) ™o g AL (78)
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7.1 Proof of Propositionlﬂ‘

As in the proof of Theorem@, to estimate wr (¢, x) in (7.7)), we first deal with the dyadic

operators

W%(l, x) = f(; f ei[x'§+(¢(l)—¢(5))|€|]ﬁ('f_'l)a(t, s, f)ﬁ(s, &) déds
n J

t
:ffKj(t,x;s,y)FT(S,y)dyds,
0 n

where the cut-off function g is given in Lemma , and 4; = 2/ for j € Z. It follows from
Lemma 7.2.4 of [31] (see also (3.41) of [[10]) that, for any N € R*,

(7.9)

m

(1¢(0) = B(s)] + ;)T (1 + 6(1) ;)T
% (14 4l160) - #(o)] - 1x— 1)) . 7.10)

ntl_ 2
2 m+2

|Kj(t,X;sa y)l < Cm,n,N/lj

For j > 0, by the compact support of F7 and wr in the time variable, we have (3/8)¢(¢) <

d(t) — P(s) < ¢(t) and ||p(2) — d(s)| — |x — y|| = (1/4)|¢(¢) — |x||. Hence, we can choose
N =n/2—-1/(m+2) + 6 with § > 0 being a small constant such that

n+l
2

2 n—1 __m —ﬂ+ﬁ—5
IKj (1,535, < Cngd,® 72 (07" (9(0) ) 7705 (1¢(0) — 1xl]) = ™7

J
n—1 5

R — n 1 (711)
< Cuna A7 ¢(0) 7T T3 |g(1) — ||| HH 0,

Denote Dy = {(s,y) | 0 < s < 1/84(1/2), ¢(s)> — |y|*> = 1/(T"™?)}. By Holder’s

inequality,

i ' . 2 _ 2y—1/q0
whl < ||K](t,x,s, y)(¢7(s) = |yI%) “qu(Do

x[|(@* ) =y CFr (s )| w . (712)
L9~ (Dy)

Note that in || wz [|z40(((1,x): 1/2<1<1, |x|<é(1)/2))> the domain of integration with respect to

(¢, x) is bounded. Then (7.5) can be established if we can bound || K;(z, x; s, V(P (s) —
[y[2)71490 || a0 (p,)- Now we focus on the treatment of || K;(#, x; s, ) (¢*(s)=|y|*) 1% ||a0(p,).-
By the assumption of 1/2 <t < 1 and |x| < ¢(¢)/2, one has

_nZl__m _ _ny 1
o) 2 2(m+2)|¢(l‘)_|x|| 2Tma27% < C.

In addition, a direct computation yields
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7 L4 estimate for g = g

(6 (s) = 1y ) ||

L9 (D)

¢~ (6(1/2)/8) 1
-[ [ S R
-1 ()T $()2-lyP2 1 ¢(8)7 = [yl

Tm+2
71 (p(1/2)/8) \/¢(S)2—ﬁ pn-1
<C —— drds
¢~ (1)/T 0 d(s)2 —r (7.13)

71 (p(1/2)/8) )

< Cf #($)" (I Ing(s)| + [In¢(T)|) ds
¢~ ()/T

< C|InT|.

Together with (7.11]), we then have that, for j > 0,

| Wi Lo : 1/2<e<1, 1x<6)/2)

7.14
< CLPIN TV (00 ~ 1) 0| 719
J qu—l (R}r-#n)
Similarly, for j < 0, one has
| Wi L0 () : 1/2<e<1, 1xl<()/2)
) 1/ 2 2\ 1/q0 (715)
< CAIT|V®|(g(0)* = 1xP)CFr| w
J qu—l (Rl+n)
It follows from Lemma [3.2] that
| Wr llzao(((r,0): 1/2<e<1, |x1<b()/2))
00 1
: 3
< io2
- C( Z IFwr ”Lq({(r,x):%srsl,|x|s@}) ) (7.16)

J=—

< ClInT1Y| (¢()* - Ix1?) ' Fy|

ot ey
L 490~ (R++n)

where C > 0 depends on m and n. Hence, (/.3)) holds for supp F'(-,y) € {s > 0 : ¢(s) <
¢(1/2)/8}.

7.1.2 Thecasesupp F(,y) C {s >0: ¢(s) > %(b(%)}.

Due to the scaling argument in (4.4)), we assume that

supp Fr € {(s, 7)1 ¢(s)* = Iy* > 1/T™?, 5> ¢7'((1/2)/8)} . (7.17)

Note that for (s, y) being away from the characteristic cone, the estimate of wy in (7.5)) is

just a corollary of Lemma 3.4 in [[10]. Indeed, from (3.33) of [10] we have

Il wllzgoqo,1/21xrmy< C || F || a0 .
qu—l (Rrrn)
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7.1 Proof of Propositionlﬂ‘

Since s <t < 1/2if ¢(s) — |y| > (1/4)¢(1/2), the weights on both sides are bounded

from below and above and we get

(@) = 12 0w < C |2~ 1xP) /o F

' _40

qu([o,%]XRn) L0~ q0-1 (RlJrn)

Thus, we can further assume that

s> ¢ (p(1/2)/8),
(s) = Iyl < ¢(1/2)/4}. (7.18)

supp Fr € {(,): ¢(s)* =y 2 .

In this case, we make the important observation that ¢(¢) — ¢(s) has a positive lower bound
(see Lemma[A.T|for a proof). This fact will also be used later in the L* estimate (7.23).
As in the case ¢(s) > ¢(1/2)/8, we have

t
wr(t, x) = f f e D=0 g (1, 5, £)F (5, €) déds, (7.19)
0 n

where the amplitude function a satisfies for g € N7,

02at,5, )] < C(1+ @) I€1) T (1 + g(s)|€])Twm|g| -7~ IA, (7.20)

Recalling s > ¢_1(¢(1/2)/8), for some positive ¢ € (0, %], we can rewrite wr(f, x) as

wr(t, x) = f f i[x-&+((t)— ¢(9))lf|](1 +o(D)€])” 2(’"+2)F(S é:)l ds. (721

§|m+2

As in [[7], we shall use the complex interpolation method to estimate (7.21). Set

(WeFr)(1,x) =(z - (m+2)n+2 5)e f f iLee+ (p0-4()) Il

2(m+2) (7.22)

x (1+ ¢(0)I€]) T F (s, f)l o d

where z € C. Then by Stein’s complex interpolation theorem, in order to prove (7.22) it

suffices to show that

W Fr o) 1/2<i<1, [x]<d()/2)) < CllFrllpgen)

(7.23)
with Rez = 522552 4+ 5 and
12 2 2172
IW=Frll 201 2<e< 1 <p0y/2p < ClInT]| / ||(¢(t) ~x»)Y FT||L2(R|++,,) (7.24)
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7 L4 estimate for g = g

with Rez = 0, here we have replaced the number (((m +2)n+2) 5) /4 with 6 in (7.23).

We next show (7.23)). Setz = ((m+2)n+2)/(2(m+2)) + 3§ +iq. Note that ¢(t) — @ (s)
is bounded from below. Then (7.23)) is valid by the stationary phase method. In this case,
for the cut-off function S in Lemma and 4; = 2/ for j > 0, we get

ge f 0O g £ (1 4 (o)1) 07 g
€121 J

n+l _ (m+2)n+2 -5

= C /l ? (¢(t) - (S)) (/1 (]5([)) 2(m+2)/l 2(m+2)

< Co(6(t) — ¢(5)) T p(1) T A 70 (7.25)
-8
< CA;°,
where C > 0 is a constant depending only on m and n. On the other hand, for |£| < 1, one
has that

qe_qz f el[x§+(¢(t)_¢(s))|é:|] (1 + ¢(t)|é‘:|)_2("7+2) |§|_(r£l(+”21_)'_nzj2—6—lq df
|§1<1

1 _ (m+2)n+2 -5 1
< Cf r-2m O dr < C 0 (7.26)
0

dueton—1-((m+2)n+2)/2m+2))-6=n/2-1-1/(m+2)-6 >—-1forn >3
andn/2 —1/(m+2) > m/(2(m +2)) > 6 > 0. Thus, combining (7.23)) and (7.26) yields
(7.23)).

Next we show (7.24)). Set ¢(s) = 7 + |y|. Then we have that, for Rez = 0

: (m+2)n+2 43 il(-y)-&+ (p()-7=1yl) €11
(WiFp)(tx) = C (z— T f ff y y

d
XFr(¢~'(t + |y, y)s” 2|§%dydf

(7.27)
By Holder’s inequality, we arrive at

1/2)/4
¢(1/2)/ 7_%(Z_(m+2)n+2_6)ezz

(W< Fr) @0 < ClnT 2] f N

1/Tm+2
Xf f et[(x—y)-§+(¢(t)—r—|y|)IfI]FT (¢‘1(T+|y|),y)s |§|Zdy| d‘r} . (7.28)

Note that ~'((1/8)¢(1/2)) < s < 1. In order to derive (7.28), it suffices to show that the

estimate,

[[GABICIORED]| < C Il f Nz (7.29)

L2({x:x|< &2y =
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7.2 Small time

withRez = Oand supp f C {y: |y| < ¢(¢)—7} holds, fort < (1/8)¢p(1/2)and 1/2 <t < 1
where

. 3 _(m+2)n+2_ 2
(W) (bt — 7. x) -(z T 5)6

o f f 1= (s0-r-y1)lel) () 9€ 4
n JRn &17
By Lemma ¢(t) — ¢(s) has a positive lower bound. Consequently, we have |y| =
#(s)—7 < ¢(t)—7. Therefore, once is shown, we get by setting f = 72572 Fy
(see the proof Lemma[A.2)).
Next we turn to the proof of (7.29) using the classical L? theorem for Fourier integral

(7.30)

operators (see, for example, Theorem 25.3.8 in [12]). For this purpose, we have to
demonstrate that the phase function ¢ = (x — y) - & + (¢(t) — 7 — |y|)|€]| of the Fourier
integral operator in is non-degenerate. Namely, for the point (x, y, &, 7) (€ # 0)
satisfying Vz¢(x, y, £, 7) = 0, one has

Vy,f‘P(X, ya ‘fa T) * 0

and
det ("Oxy 9ng> (x,y,¢6,7) #0.
Pye  Pee

Indeed, in order to prove this, it suffices to verify detp,s # 0 and —& — (y/[yD|€] # O
for Ve = 0, since Vyo = =& — (y/lyDI&l, ¢xy = 0, and ¢,z = I, hold. Note that
o(t) — 17— |y| = ¢(t) — ¢(s) is bounded from below by Lemma Then Vg =
x=y+(¢(0) == |yD(E/I€]) = s equivalent to £/|€] = —(x =)/ (¢(t) — T~ y]) (due to
ly| < ¢(t)—7, we can divide by ¢(r) —7—|y|). Inaddition, V¢ = Oimplies £/|&]| = —y/|y.
Combining these two facts yields |x| = ¢(¢) — 7. However, this is a contradiction since by
our assumption, 7 = ¢(t) —|x| > ¢(t)/2 > (1/2)¢(1/2) and T = ¢(s) —|y| < (1/2)p(1/2).
It means Vyg # 0. On the other hand, det gy = | = I = (v/1y)(¢/I£])" | = 0 holds if and
only if £/1&| = —y/ly| (but £/|&] = —y/|y| is impossible due to V¢ # 0 for Vs¢ = 0).
Therefore, the phase function ¢ is non-degenerate, and it follows from the classical L?
bounded theorem of Fourier integral operator that holds. Hence, and further
(7.5)) are proven. Then Proposition[7.1]is proven. m]

7.2 Estimate for small times

Based on Proposition [7.1] we now start to prove inequality (7.2)). We divide the proof into

two parts according to the relative scale of the time variable after scaling. More specifically,
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7 L4 estimate for g = g

we suppose
F(t,x)y=0 if |x|>¢@)—1.

Note that supp F C {(t,x): |x| < ¢(t) — 1} implies supp F C {(z, x): lx|> < ¢2(t) - 1).
Set F = FO + F!, where

F. o < 2000
0 _ 10(2) (731)
o s s 20O |
’ 104(2)

Correspondingly, set w = w® + w!, where

{ (% — " Aywi = F,
(7.32)

w/(0,x) =0, dw/(0,x) =0, j=0,1.

In this section, we deal with w!, that is, we deal with the relative small time. In this case,
motivated by the method for treating semilinear wave equations in [7]], we shall divide the
region {(¢, x) : |<;5(t)2 — |x|> < 1} into some pieces (these pieces can be reduced to the case
of {(¢, x) : |x| < ¢(¢)/2} in (4.3) by a conformal transformation), and apply Proposition
to derive (7.2). Indeed, we claim that

(60 = 1x2) a0 !

L90 ({(t,x):T/2<t<T}

- y (7.33)
< Co(M) ™| InT|"||(p(0)” = [x) VO FY| w
qu—l (Riﬂl)
Obviously, (7.33) follows from the following localized bounds for k € Z,
2 2y1/go—v_ 1
||(¢(t) |x] ) w ||Lq0({(t,x): T/2<t<T, 2k-1<¢(1)—| x| <2k} (7.34)

< ClInT 1| (6(1)* = [xI*) @ F!

q0 .
L q0-1 (R_];rn)

Indeed,
2 2\1/q0—v, 1
||(¢(t) 1x1%) W ”L%({(z,x): T/2<t<T})

<C D [@®? - 1xH el

L0 ({(t,x): T/2<t<T, 2¥-1<¢(t)—|x|<2k})

2k<¢(1)
~vA—ky 2 2 m .l
=C Z ¢(T) "2 (@) [x7) 0w L0 ({(t,x): T/2<t<T, 2*¥"1<¢(r)—|x|<2k})
2k<e(t)
<C Y oM ITV|(6(1) — 1x) P! W
qu—l (Rl+n)
2k<e(1) +
< Co(T) "I InT V| (¢(1)* = 1x) 'O F'|| .
qu—l (Rl+n)
1
< Co(M) I T|||(¢(0)* = 1x17) " FY| oy (by ¢(t)> — x> = 1)
qu—l (Rrrn)

54



7.3 Large time

Here we point out that in order that inequality makes sense, one needs 257! < ¢(1).
2k
Set Ty, = T /2m+2 and

1 1y Ak 1 Al (s Ak
Wk =W (2m+2 t, 2 x), Fk (l’, x) = 2m+2 F (2 m+2 l” 2 _x)
To prove (7.34)), it suffices to show that

(6 = 1) Towl|

< C(In T)l/‘1°|

LI0({(1,x): & <t<Ty, L<g(t)-|x|<1)

(7.35)
(@) = 1xP) VO FY| a

qu T Ry’
Now the remaining task is to prove (7.33). At first, we divide the support of wy and Fy
into suitable pieces. If T} is smaller than some fixed constant, then we choose a k € (0, 1)
such that |x| < k¢(¢) holds for T /2 <t < Ty and 1/2 < ¢(¢t) — |x| < 1. Then we can use
the same method in Proposition [7.1]to prove the estimate like (7.4). On the other hand,
by Lemma |A.3|we know that if 7} is large, then |x/|x| — y/|y|| < C/\J¢(Ty). Thus if we

assume that |y/ ly| — v| < C/A/¢(Ty) holds for some constant vector v € R” in the support

of Fi, then x/|x| must be close to v in the support of wy. Next we need to prove the estimate

(62 = 1x17) 0}

< ClInT| ]| (0 = 1xP) "0 Y| an

KllLao (D, 1)

qu 1(|y/|y| v|<C/oTo ¢(Y)>¢(Tk)/10)
(7.36)

where Dy = {(t,x): T3 /2 <t < T, 1/2 < ¢(2) - ,1x /x| —V| < C/y¢(Ty)}. Once

(7.36)) is done, then we can use Lemma[A.4Jto sum all the estimates with respect to different

constant vectors v to derive (7.35).

To do this, we want to find a transformation which sends D, ; into the center of the
characteristic cone and keeps (4.3)) invariant Then we use Propostion to establish
(7.36). However, unlike the case of the wave equation, the Tricomi operator is not the
Laplace-Beltrami operator of any metric. Thus it is difficult to find such a transformation.

We will fix this gap in a forthcoming paper.

7.3 Estimate for large times

Next we estimate wq in (7.32). As in (/.33)), it suffices to show that

[(60)* = 1x12) 7|

L0 ({(t,x): T/2<t<T})
< Cop(T)™*

(@O =) W (737)
qu I(RHn)
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7 L4 estimate for g = g

For this purpose, we shall make some reductions. First we suppose supp F° C [T, 2Tp] xR”
for some fixed constant 7y > 0 satisfying ¢(27y) > 1. Then (7.37) follows from

(602 = 1x12) 070
< Co(To) "oy~

L90({(t,x): T/2<t<T})

|(@%(6) = 1x) O EY| ag (7.38)
qu I(R1+n)

by summing up all over these 7yp. Furthermore, if F 0 = 0 when ¢(t) — |x| is not in
[000(Th), 200¢(Tp)] for some fixed constant 5y with 0 < 69 < 2 and dpp(7p) > 1, then in
order to prove we only need to show

2 a2y 1/q0-v, 0
||(¢’(t) | x| ) w ||Lq()({(zx)’T/2$tST})

< Co(To) 2 (1)

(@0 = 1x) " FO)|

. (1.39)
qu I(R1+n)

Finally, if we make a dyadic decomposition with respect to the variable ¢(¢) — |x| in the
support of wg. Then in order to prove it suffices to show that, for § > &y,
(62 = 1x17) w0

LO{(2.x): T/2<1<T,6¢(To)<p(1)-1x|<26¢(To) })

< Co(T) (D)2 (#* (@) = 1x) " FO)| an
qu I(R1+n)
v/2 1/go+v -0 (7.40)
< C(@(T) (D)7 (@* () = 1x) ' FY||
qu I(Rlﬂl)
With these reductions, to prove ([7.40), our task is to establish
(D (T0) (D)) O™ WOl a0 112y : T/21<T 56T <) —Lx| <266(To))
< C(H(To)¢(1)) (¢ (To)d0) '™ | F| L iy

By rearranging some terms, the above inequality follows from

O(T) \1/q0-v/2 1qotv/2
5 q0
(G ¢

(T0) 67127557 WPl L0 ({(1,x): T /250 <T00(T) < ()~ Ix] <256 (To)})

< Co/MIIFY|
qu 1 (Rl+n)

Note that
$(T0) 67755 < ¢(To)™6,”" = ($(To)do) ™8y < 65% < 272,
Therefore, (7.40) follows from

( ¢(T)
é(To)

1/go-v/2
) Vot I2110 | Lao (1) T/2<1<T, 60(To) <6 (1)~ Ix|<266(To))

< C5)/P|IFO) . (7.41)
qu— (RI-H’l)

We next intend to prove (7.41). Set G(r,x) = T()zFO(Tot, Tém”)/zx) and v(t,x) =
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7.3 Large time

wO(Tot, Té"”z)/ 2x). Then v satisfies

6,2\/ —t"Av = G(1, x),
v(0,x) =0, dv(0,x)=0,

where suppG C {(ft,x): 1 <t < 2,60 < ¢(t) — |x| < 260}. Then, if we let T denote
T/(Tp), then is a corollary of

- 1
(YOO Ry | o (10 725157, 5200)-1x1<20)) < C50/q0||G||nggl(R1+n), (7.42)
+

where ¢(T') > 10¢(2) by (7.31).
The proof of (7.42) can be divided into the following three parts according to the

different values of ¢/dp:

(i) 60 < 6 < 404(2)/(¢(1)) 6o,

(i) 6 > 104(2),

(iii) 40¢(2)/(¢(1))60 < 6 < 10¢(2), 60 < ¢(1)/4.

Here we stress the fact that for the wave equation and case (i)-(ii), it is not difficult to
prove an analogous inequality (see (3.2) and Section 3 of [7]]). However, for the
Tricomi equation, due to the complexity of its fundamental solution, it needs more delicate
and involved techniques from the knowledge of microlocal analysis to get the pointwise

estimate. For the proof of (7.42)) in case (iii), we shall follow an idea of [[7]].

7.3.1 The proof of in case (i).

Note that ¢(T) > ¢(Tp) > 1 and 6¢(Tp) < ¢(T). To prove ((7.42), it suffices to show

()P V]| Lao(((1x): T/2<0<T, 5<6()-Ix<26)) < C”G”L%(RH")' (7.43)

Using the method of Lemma 3.3 of [[10], if we write

t
v(t,x) = f H(, s, x) ds,
0

then we arrive at

_2 (14
IH (2, 5, )lpo@n < Clt—s| @ )G, ) w (7.44)
L2071 (Rm)

On the other hand, if we repeat the reduction of (3.23)-(3.24) in [10], we then have
H = Z H;, where

j:—OO

Hj =TiG(t,5,x) = f e OO=IWNED B(1£1/27) a1, 5, )G (s, €) dE

n

57



7 L4 estimate for g = g

and the amplitude function a satisfies

|3£a(l‘, 5,6)| < C(1 + ¢()|E€]) T (1 + ¢(s)|€]) Tm m—ﬁ—lﬁl.
If we further set
____2m _
TjG(t,s,x) = A" " H (15, %), A4 =2,

and repeat the computation of (3.29) and (3.30) in [[10], we then have

L (m+2)n-2

IT;G (&, 5, Mlgageny < A O] 4 A, (1)) T st

X |t = s|"T (|G (s, )l 2y (7.45)

and

_L m+2)n—-2
£ L (m+2)n-2

ntl
||T G(I S, )”L‘X’(R”) < Cﬂ 2 (1 + /1 (b(t)) 2(m+2) (m+2yn+2

——m —n-l m+2
X |l — sl (m+2)n,+2|t — sl 2 2 ”G(S, ')llLl(R")' (746)

Therefore, for j > 0,

— L (m+2)n-2
||T].G(t’ s, ')||L2(R") < C/1 'n+2 (1 + ¢(t)) 2(m+2) (m+2)n+2 |t —s|” (m+2)n+2 ||G(S )”LZ(R"

(m+2)n—

< C/lj ez (t-s)" T (m+2)n+2|t - 5| (e | G(s,-) ||L2(R")
and

TG, 5,-)_L”(R")
ntl 2 m_(m+2)n— .m+2 _ m
< C/ljz m+2 (t—s) 4% —(m+2)n+2|l‘ — s| 2|t — 5| mrne2||G (s, ')”Ll(R")-

Using interpolation, we have that, for j > 0,

VL5 oy < OO =) B GRR NG5 (7.47)

For j <0, let

ToG(t, s, x) = Z Hj(t,s,x) = f ei(x-§+(¢(t)—¢(S))|§|)a(l«’ s, f)é(s,f) dé.

Then it follows from Plancherel’s theorem that

TGt 5o < € f
1€1<1

) . 2 (12
|§|‘m(1+¢(r)|§|)‘2<m+z>G<s,§>\ a)
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7.3 Large time

Note that
1G(s, 6)| =\ f eEG(s, y) dyH f G (s, y) dy| < CIGEs. 2
n [<#(2)

and

<LIS1

2d§) 1/2

£ (1 + ¢(1)]£])TmeD

2 1/2
pl dr)

=C( | |7 (1 + g(0)r) T
0

! m+ m 1/2
< c(f P g dr) (7.48)
0

< Cp(1) Zm

Here we have used the factthatn — 1 —(m+4)/(m+2) > -2/(m+2) > —1forn > 3

and m > 1. Thus,

1ToG (2, 5, ) 2my < COHWO T || G(s,) ll2m < Clt = sI™FIG(s, M 2my. (7:49)
Similarly, we have
IT0G (1, 5. Iy < Cle — 517477 5| G(s, NIzt gny- (7.50)

Using interpolation again, we have

Z(1+4)

110G, s, )lLao@ny < Clt = 5] IG(s, ) a0 . (7.51)

Lao=t (Rm)
Then, by Littlewood-Paley theory, (7.47), (7.51), and (7.44) are proved. Hence, if one
notes that # < ¢t — s holds on the support of G(s, x), then

t
IVllLao (121 1R) < ||f (2, s, )|l L90 (m)ds

L9
L

<CHf 0= s 7w DG s, i ds|

< i fl GGl ds|]

T

2 m
U0 dt) 0||G| (Holder’s inequality) (7.52)

<C(
qu q0-1 (Rnﬂ)

Nh

m_
2

Ql,__

<CT 1G]l

qu l (Rn+l)

< Co) NG
0 (Rn+l)

which derives (7.43).
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7 L4 estimate for g = g

7.3.2 The proof of in case (ii).

In this case, we have ¢(7) — |x| > § > 10¢(2). Similar to the analysis from (7.6)) to (7.10),

we can write
v—Zv, fonK(txsy)G(sy)dyds

_]——OO J=—

where

Kj(t,x;s, y) = f i((x—y)-¢+(e(1)- ¢(V))If|)ﬁ(@)a(t s, .f)G(s &) dé (7.53)

n

Moreover, for A; = 2/ and N € R*,

ntl_ 2
2

m*2(|¢(t)—¢(s)|+a N5 (1 + ¢(1) ;)T

K1, x:5.y)] <CA,
X (1+ 4,116 = 9| - [ = yll)

(7.54)

Denote Dy, = {(s,y): 1 <5 <2,¢(s) =200 < |y| < ¢(s) — 6p}. By Holder’s inequality,

we arrive at

il < [[Ke x5 0 (@7 @ = )y (@20 = 1) TGy

L 1(D )
By the assumption on the support of G, it is easy to check
¢(1) —¢(s) = lx =yl =2 C(p(@) = |x]),  P(1) — d(s) + |x — y[ ~ (2).

Based on this, if we set N = n/2 — 1/(m + 2) in (7.54), we then have

[0, 90020 = 1)

L9(D,y)

2 ntl_ 2 n- m
<C f f (777 (160) = ¢(s)] + A7) 7T (1 + ¢ 1)
d(5)=260<|y|<p(s)—-00

n

1__n 1/q0
x (14 4l190) = 9] = b = 1) ™00 61 ~ 1)) dyds )

_nl 1 1 n 1 1/q0
< Coty 1T (g - e ([ f dvas)
L Jé(s)-260<lyl<é(s)-do

‘10 _%+L_2m+2 o A
< C6, ¢(1) 020D (B(t) — |x]) 0
(7.55)

and

2
) [(66)? ~ 1x) 0G| 7 dyds)
1 #(s)=260<|y|<d(s)—o
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7.3 Large time

< C(6¢(To)(T))~ ”‘f"nGn o,

qgn—-1 1+n
& (7 56)
< C(6p(T)) "OIIGII .
(RH")
In addition,
_n-1,1_ 1 _n, 1
o= 5 (o) - ey |
#(1)-104(2) . 1
- f $(1)~ P i) f ($(6) = )*E D grar)
L 0
2
T 1/q
sc(f ¢(t)‘ﬁ dt) ’ (7.57)
7
<C

Therefore, combining ((7.55)-(7.57) yields

1
I oo < €83 GO ®IGH o

_quo T ‘10 25 ‘10 "2
$(T)” d M)) IGI o

1
< CoL p(T) i 6 T G

qu q0—-1 (Rl+n)

here we have used the fact that 6 < ¢(7T') due to 20¢(Ty) < ¢(T) and ¢(Ty) > 1 before
scaling. Together with Lemma [3.2] this yields the estimate in case (ii).

7.3.3 The proof of in case (iii).

Following the ideas in Section 3 of [7], we shall divide the Fourier integral operator in
the expression of v into high frequencies part and low frequencies part. Subsequently, we
handle them by different techniques. At first we notice the facts that > sand 1 < s <2
(by the scaling argument in (7.42))). Together with (7.6)-(7.8)), this yields that in order to

show (7.42), it suffices to estimate, for some u € (0, 5,551, the following operator
! 1 —Vv)-E+ — ___m dé:
v = eL(x=2)-££(8(1) ¢(S))|§|]G(S, W (1 + ¢(1)|&]) 7D dyds.
0 n n |§| m+2 TH

Set 7 = ¢(s) — |y|. Applying Holder’s inequality as in (7.33)), one then has that

1 2(5()
lv| < Céqo f ’f f G- E£@O-T-DDIENG (571 (7 + |y]), )
Rn n

dé"

é‘:l m+2 TH

q0—1

dy|ﬁdr) “(7.58)

x (1+¢0I€))" 2“”*2)'
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7 L4 estimate for g = g

To deal with the integral in (7.58)), it is enough to consider the phase function with the
minus sign, since for the case of the plus sign the analysis can be done the same way.
In addition, we have that: §y < (1/4)¢(1) and (1/2)¢(1) < |y| < ¢(2). Indeed, note
that |y| < ¢(s) < ¢(2). One then has [y| > ¢(s) — 260 > (1/2)¢(1) if 69 < (1/4)p(1).
However, if 69 > (1/4)¢(1), then 10¢(2) < 404(2)/(¢(1))o < 6 < 104(2), which yields
a contradiction.

Next we start to estimate [|v|| 4. First note that by (7.31),

T ¢(T) 2 $(2)
o(t) 2 ¢(2—TO) 6Ty mt2 > 0@ ¢(1) = 104(2).

This together with 7 < ¢(s) < ¢(2) yields ¢(t) > ¢(t) — 7 > (1/2)¢(¢). Thus we can
replace ¢(¢) — 7 in with ¢(¢) and consider

(Tg)(t,x) = f f L) E=(¢(D)=IyDIE]]
n J{yeR":1p(1)<]y|<¢(2)}

X g(y) (1 + ¢(1)|£]) " TmeD

d¢
T—dy, (7.59)

§|m

where ¢(1) > 10¢(2) — ¢(2) > 9¢(2) and § < 10¢(2). Then, by Lemma [A.5] (7.42)
follows from

I (Tg)(t, ") llLao((x:s<p)-Ix|<26) < C<l5(l)2 w65 Il g |l A fqny (7.60)

Next we focus on the proof of (7.60). As in the proof of Proposition we shall use
the complex interpolation method to establish (7.60). To do this, set

2 2
(T.g)(t, x) = ( (mz(+m 1”2; f ) f )

O E=@O-IDIEN (] 1 (1) (&))"~ 2(m+2)g(y)|§%dy (7.61)

To prove (7.60), we shall replace v/2 by v/qo and prove

| (Tg)(, ) llLao(ix: 6<p(t)—Ix|<26)) < C¢(l)q° "0("”2)5 % gl a0 . (7.62)

L90~1 (Rm)

Then for some suitable ¢ > 0, (7.60) is a consequence of

_n-l__m
1(T28) (1, lz=@ny < Ch(r)™ T~ Zmi *H]| | 11 gy (7.63)

with Rez = % + u, and
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7.3 Large time

I (T8)(, ) ll2@m < Co(r) T (p(1)287 2 )"’+2 Il g 2

(7.64)
with Rez = 0. In fact, interpolates with to give
(T g)(t, )L ((x:6<p(r)-|x|<25))
< C¢(t) qo(m+2) (m+2)n+2 qo(m+2) 6 (m+2)q0 ”g” X (765)

0T (g

Since 6 < 10¢(2), we only need v/(qgo(m + 2)) + 4u/((m + 2)n + 2) < v/qo to derive
(7:62). Thus if 0 < p < min(55, ((mzz(zlizz));;’”l)v), then is proved.

Compared to (7.24), we have two extra decaying factors ¢(¢)~("=D/2=m/ (20m+2) +1 apg
P(t)r/>=m (20n+2)) on the right sides of (7.63) and (7.64) respectively, which require a

more involved analysis.

We now prove by the stationary phase method. To this end, for the cut-off
function 8 in Lemmaf3.2, A; = 2/ with j > Oand z = ((m +2)n+2)/(2(m +2)) + p +1i6,

we define and estimate the dyadic operator sz g

ﬁm:kf“j‘j“’Wyﬁ(W”WW%Uﬂx1+mnm)%M@@)E%

+1 _ (m+2)n+2

<Cq,; 2 (6(1) — $(2)) ™" (/l ¢(1))" 2“”*2’/1 2 ||g||L1(R")
_n-l__m __
< C/ljﬂ¢(t) 22 || gl L1 gy

(7.66)
By summing with respect to j > 0 yields
. j _n-l__m
H M 1g ‘ < Cot)™"T T gl 1 - (7.67)
= L (Rm)
On the other hand, for |£] < 1, we have that
‘Qe—QZ‘f f i[(x=y)-&=(o()- |)’|)|§|](1 + o1& 2<’"+2>g(y)—§
£1<1 JRn €12
ol _m+2ne2
SCf (1 + GOl T || 55 gl
el<1 (7.68)

f (1 +¢(t)r)__l_2<m+2>r_7_m_“r" 1drllglllLl(Rn
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7 L4 estimate for g = g

Here, we note that n — 1 —n/2 —1/(m+2) = n/2-1-1/(m+2) — u > -1 for
0<pu<m/(2(m+2)),m>1andn > 3. Thus, the integral in the last line of (7.67) is

convergent. In order to give a precise estimate, set p = (1 + ¢(t)r)1/ (2(””2)). Then

1
f (1+¢(t)r)_ 7 2(m+2)r_§_m—/,trn ]dr
0

1
f(1+¢<z>>2<m+2> - ( p2m) _ 1)§—1—ﬁ—u p2m2) _ |
1 é(1) é(t)
n (1+¢(t))2<":+2> D=2 +3)=2(m+2)p1 ,2(m+2)=1
< T tH
Co(r) 2" me fl P dp (7.69)

o (1+6(1)) )
— C¢(l_)—§+m+/l f p—(m+2),u—1 dp
1
< Cup(n)” T ",

Thus, and yield with a constant C that depends on m, n, and p.

To get (7.64)), the small frequencies and large frequencies will be treated separately in
the Fourier integral operator of (7.5T)). As in [[7]], we shall use the Sobolev trace theorem to
handle the small frequencies. More specifically, we first introduce a function p € C*(R")
such that

L, [£] =2
p&) = ¢
0, [ <1.

For @ = 1 + v, we have

(T:8)(1, x) = (R8) (1, x) + (S:8) (1, X),

where

(R;8)(, x) :( (m+2)n+2 +2)n+2 f f AlE=)-E=(D =y DI
2m+2) n ¢<1><|y|<¢(2)

X (1+¢MIEN T (1= p(g(1)'6%¢) ) g(y) —

(S:8)(t,x) =(z - o+ 2)n +2 +2)"+2 f f L E=(@O=IyDIEN
2m+2) n ¢(1)<|y|<¢<2)

x (14 GOIEN 7 p(¢(1) ~*67€) g () mf%dy

dé 4
IflZ >

We need to prove that

1(R-8) (1, Mlz2mny < Ch(t) T (B(1)* 5™y gl z2rn) (7.70)
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7.3 Large time

for Rez = 0, and

1828t 2 (s<)-ix<asy < €62 (B()6™) Zm || gl 2gm),

— Cowr = 0057 (L) T sy 071
¢(1)
< CH@) T (B 67 7 gl 2 ey
for Rez = 0. In order to prove (7.70), we shall apply Lemma 3.2 of [7] and a duality
argument. For h € L*(R"), due to (R:h, §) = (h, R,g),

|(h, R;8)| IR A2
IR.gll;2 = sup ——"= < sup ———||gl|,2.
nerz A2 nerz  All2
Since

+2)n+ 2
(R.8)(t,x) = ( (m+2)n+2 f f L= E=( @O~y DIE]
2m+2) n JLo()<lyl<p(2)

(1 - P60 15°€)) 1+ 60IED () dy

the adjoint operator of R, g is

) (- (m+2)n+2 (m+2)”+2 H(y—2)-€+( O —IyDIEN
(th)(y)_(z 2m +2) ff g '

(1 = p(B(0)17057E)) (1 + () [E]) T h(x) = drde

5
- (5_ M)ezz f SOEIIED idIE]
20m +2)

X (1= p(¢(1)'767E) (1 + ()| £]) TmD £ () dé.

Denote

A () = V(1= p(p(1)'767€) ) (1 + (1) 1€]) T || Zh(£).

Then it follows from Lemma 3.2 of [7] and a direct computation that

IRZglIL2(p(1) j251y1<62))

< c(||F1||L2(|§|S1) + Z 2’</2||P1||L2(2k3|§|s2k+1)) (by Lemma 3.2 of [[7])
k=0

(o)

< C(”I:I”Lzﬂﬂﬁl) + Z 2k/2||ﬁ”L2(2kS|f|S2kH))'
2k+1§¢(l)"_15_“

If kK > 0, then

A I __m N
||H||L2(2kﬁ|§|S2k+1) <C2 2(m+2)¢(t) 2(m+2) ||h||L2(2kS|f|S2k+l) (772)
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7 L4 estimate for g = g

Now the remaining part is the case |£] < 1. We first consider the special case that (&) is a
polynomial. More specifically, we assume that iz(f ) = fi. Since the region {|&| < 1} is
contained in the region D = {|£;| < 1,j = L,...n}, D’ = {|¢;| < 1,j =2, ...,n}, we only

need to estimate the integral

&
I _4e. (7.73)
f[)(1+¢(1)|g|)m ¢

But this integral is treated in Lemma[A.6] thus (7.70) is established.
Now we turn to deal with (7.71). Denote K by the kernel of the operator S;. Then

(m+2)n+?2 2f Ty )-E—(b(1)—
K.(t:x, :( _ ) z i[(=y) €= (@) =IyDIEN
AL ST L

dé
1£1°
with Rez = 0. Note that in this case |£| > ¢(t)“‘16_“. Therefore, it follows from Lemma
3.3 of [7] and our assumption § < 10¢(2) that, for any N € R*,

X p(‘p(t)l_a(saf) (1 + ¢(t)|§|)_2(rz12)

|K | < ((]5([)05 a/) 2(m+2) < CN( ((b(l) 5 a) oS

()" )

if [1x = yl = [¢() = Iyll| = 6/2.
This yields (7-7T) when ||x—y|—|¢(t)~|yl|| = 6/2. For the case of ||x—y|—|¢() ||| <
0/2, analogously treated as in Lemma 3.4-Lemma 3.5 and Proposition 3.6 of [[7], (7.71))

can also be derived. Here we omit the detail, since the proof is completely similar to that
of [7].

Remark 7.3. Note that (7.71)) is actually stronger than (7.64) and (7.70) by our assumptions
of § < 6¢(Tp) < ¢(T) and T/2 <1 < T.

(7.70) together with (7.71)) yield (7.64). Collecting all the results above, (7.42) is
proved.

Based on (7.42)), we know that ((7.2) is established.
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8 LY estimate for q = 2

To prove (6.25]), we need the following result, which is a variant of Lemma 3.2 in [7]

Lemma 8.1. One has

H f oEHIED £ g

L2({x: 6<t—|x|<26})

N k/2 2
< C51/2(||f||L2(|f|Sl) + Z 2 / ||f||L2(2kS|§|S2k+l))‘
k=0

Proof. Note that

H f oEHIEN fgy g

L2({x:6<t—|x|<26})

=(t-— 5)‘%

e lel f_ 6
[e et ae

L2((x: 2 <px <))
By applying the Sobolev trace theorem to the function [ e/l*¢*751¢€ll £(-£) d¢ with respect

to the variable x, we find that

f@eS”“

. 13 A 2
ez[r9.§+mlfl]f(i) d§| do

t—6
i . R 2
= C(Hﬂ%) L2(¢l<) +,~Z=(:>2J/2Hf(%) L2<2fs|§|szz'+l>) - &b
Integrating (8.1I) with respect to r yields
|| f L EHIEN £ £) dé:”Lz({x:(Sst—lxlsZ(S})
e N e K FC1
+ JZ:(:) 2%Hf(%)”Lz(ngﬂgzﬂl))
< Co* (I £© lzgereny +§]2‘% 1 f@) lz@icierzamy )-

Jj=0



8 L1 estimate for g = 2

We now start to prove (4.21)). Suppose that w solves (@.3)), where F = 0 for ¢(r)—|x| < 1.
By Theorem 2.1 of [36], we have

t
1w (t, 2@ < Ct f IF (s, )l ey ds.
0
which yields, for 0 <t <5,

Iwllz2qo51xm) < CNIF 210,575 -

Note, for 0 < r < 5, that ¢(¢) — |x| is bounded from below and above, thus, for any v > 0,

[(60)? ~ 1x2) 5w < c||(®? - 15 F (82)

L2([0,5]xR") —

‘Lz(Rb’")'
Next we suppose ¢(T) > 10 ¢(2)/¢(1). We split w as w = w® + w!, where
{ (02 = t"Ayw! = FJ,

w/(0,x) =0, 3w/ (0,x) =0

with

and F = FO + F'. Then in order to prove (6.23), it suffices to show that for j = 0, 1,

2 _ (g2 2 g
||(¢(t) |x| )2( vow ||L2({(t,x):T/2SlST})

—v/4 2 2N1/24 1j
< Com) (@) — 1) L L 83)
8.1 Estimate of w;
We first deal with w!. As in Proposition 4.2, we shall establish
2 2yl 2 21251
o =1yt e, oo S CN@O” = D P g
(8.4)

Set wh(t, x) = w!(Tt, T x) and F} (¢, x) = T*F' (T, T"5" x). To show (), it suffices

to prove that

[(60)? ~ 1x1?) 2wl < C|| () - 1) 2 F| (8.5)
T2 () 1725021, x|< 22y — Tl 2wy
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8.2 Estimation of wy

Note that in the domain of integration is {(z,x): 1/2 <t < 1, |x| < ¢(t)/2}, the
behavior of the weight (qﬁ(t)2 —|x]?) ) on the left side of (8.5]) behaviors like a positive

constant. Then, in order to derive (8.5)), we only need to prove

1 2 2 1/2 1
IWrllz2 e : <o), 1/2<1<1)) < C”(¢(f) —xHY FT”LQ(R,,H)- (8.6)

Recall that in we have

t
wr(t, x) = f {Va(t, Dx)Vi(s, Dy) = Vi(t, Dx)Va(s, Dy) } Fr(s, x) ds.
0

From ({.7)-(@.40) we know that the amplitude function a; of V2(z, D,)V; (s, D, ) satisfies

m

__m+4 __m _
0F a(t, 5, 6)| < Cr(1+ ¢T3 (1 + g(s)|¢]) T ]¢| A, (8.7)
By our assumption, t < 1. Thus the term on the right side of can be controlled by

|&]7181. The argument for V; (¢, D, )V5(s, D)) is similar, thus we only need to consider the

operators like

t
f f o1 EOO-0)IEN ¢ 2 (5. £) déds withRez = 0.
0 n

From this, as in the proof of (7.24), we get (8.6). Furthermore, recall the argument how we
use (6.5) to derive (6.1)), we use and the same method to establish (8.4).

8.2 Estimation of w

Next we estimate w”. Note that by an analogous treatment on w° in (7.38)-(7.42), (8.3)

will follow from

m-=2 _ v m=2 v
()20~ 2 52003 2|V 2y () 122127, s20)-tri<2sh) S €Oy NGl 2@y, (8.8)
where suppG C {(t,x): 1 <1 < 2,60 < ¢(7) — x| < 260}, ¢(T) = 10¢(2)/¢(1), and
0 = dop.

8.2.1 The case o > 10¢(2)

As in Subsection[7.3.2] we shall use the pointwise estimate to handle the case of ¢(¢) — |x| >
0 > 10¢(2). We can write

V= Z vj = Z f - Kt x;s,y)G(s, y)dyds,
j=—o00

- j:—DO
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8 L1 estimate for g = 2

where

Kj(t, x;5,y) = f T OOTIIED B(1£1 /2T ar, 5, £)G (s, €) dE.
By and Holder’s inequality, we arrive at

il < [[Kje x50 @20 = 1) |, [[(@20 = 1) GG .

Taking N = n/2 —1/(m+2) in and repeating the computations of (7.53)) and (7.56),

we have

m

i B G 1__nyl
Kt x5 9) (@70 = 1) 2|, < Cogo)™ = 27 (p(r) - |xym 3t
Sy

and

_ 1/2 ]

( f f (6 = 1xP) G »)dyds) < €M) UG zayny.
In addition, by —(n —1)/2+ 1/(m +2) < —=1/2 forn > 3, m > 1, a direct computation
reveals

1

_nzl 1 m _nzl, 1
H(p(t) 7 273w (¢(t) — |x])” 2 tine2

2
LS.}’

T $(1)-104(2) 1
gcn(fT ¢(t)-("-1>+ﬁf (6(6) = )01y dr)
5 0
2

T 1

o f s (8.9)
T
2

<C(CT.
Thus we obtain
m=2__y _m=2 Ly
¢(T)2(m+2) 202m+) T2 || Y “Lz({(l‘,x)Z%StST, 0<p(r)—|x|<26})
m=2__y l.v 1/3 -1
< 9TmEOR 0, (04 PTGy o

1/2
S Cdo/ ||G||L2(R_l++n).

8.2.2 The case 9 <6 < 10¢(2)

Next we study (8.8) in case ¢(r) — |x| < 10¢(2). At first, we claim that under certain
restriction of &, this case can be treated as the proof of (7.63)) in Section 7. Indeed, recalling
(@.7)-@.40) and noting that 7 > s > 1, we can assume that

t
y = f f f ei[(x—y)~§+(¢(l)—¢(s))|§|]¢(t)_2(nr1n+2) |§|_1G(S, v) dydfds
0 n n
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8.2 Estimation of wy

As in Subsection we split v into a low frequency part and high frequency part. To
this end, we choose a function 8 € C°(R") satisfying 8 = 1 near the origin such that

v = vg + vy, where

py = f f f i[(x=y)-E+(g(t)— ¢(9))|E|]¢(t) 2(m+2) — B(og) ——G(s,y) dydéds

€]
—f Ti(t, s, x) ds.
0

Note (1 — B(6£))/|€] = O(6). Then the expression of v is similar to (7.61]) with Rez = 0
except the extra term 6¢(¢)" 7 . Consequently we can apply to get

y__m__ _y.1
IT1(2, 5, )2 @ny < Co(1)2"2mD 6272 G (s, ) |2 mmys

which yields
1 v, 1 v__m=2
ill2 < C8L6™T 26(T) 23 (|G| o g

Due to § < 10¢(2), the estimate (8.8)) for v; immediately follows.

We now estimate vy. At first, one notes that

|f (=) €@ -0(DIEN g (1)~ £20F) B(6¢) dg)
§|<1 €]

<C(+|p@) - ¢(S)|)_%¢([)_2(nr1n+2)
< C(1+1x—y)) T ¢(r) T,

In the last step we have used the fact ¢(¢) — ¢(s) > |x — y|, see Lemma
Thus it follows from a direct computation that inequality (8.8]) holds if we replace v by

t
Voi = f f f D€ @O-36NIEN ()~ PO 1) dvaeds,
0 Jrr Jigi<i 4

Indeed, one has

lIvor ||L2({(z,x):§srsT,55¢(r)—|x|525})

< H f f f =€ O-0IEN g )~y POE) oo oy dyds
jé1<1 €] L2

t,x

<c| f f (L+]x = 3% ¢(0) ™5 G (s. ) dyds|
L

,x

< CH(T) Zm

1+ 1= )7 iz G2

g ~(n—1) 172
( (1+1]x-y]) dxdr)
L Jo<o)-Ix|<26

< CH(T) T ||Gl|;2

2
LS,)’
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8 L1 estimate for g = 2

By |y| < ¢(2), (1/2)|x] < |x —y| < 2|x|if |x] > 2¢(2). On the other hand, if x| < 2¢(2),
then the integral with respect to x in last line is finite and can be controlled by 6. This

yields

r _(n1) 12
( (L+|x-y] dxdt)
T Js<ot)-Ix|<26 L3,

$(1)-5
<cH f f drdr)’ < C(5,6T)"2.
b(1)-26 L%,y

which implies that the left side of (8.8) is controlled by

nm-—. VvV nm-—. VvV m l
¢(T)z<m—fz>—zaz<m—fz>+i¢(T)—z<m+z> (505T)%||G||Lz < C81IG 2y (8.11)

Consequently, our proof will be complete if we can show that

m=2_ _y _m=2 vy 1
¢(T) 2(m+2) 262(m+2)+2 ||v02||L2({(t,x)Z%SIST,5S¢(I)—|X|S25}) < C(Sé”G”LZ(RT'I)’ (812)
where
t
Vo2 = f f f ei[(x—y)-f+(¢(r)—¢<s)>|,s|]¢(t)—%—'3 I(dlf) G(s,y) dydéds.
0 Jrr Jig=1 '3

The first step in proving (8.12) is to notice that

voall; 2 T _ < HfIITGII 2((xe _ ds ,
L2({(1,x): 5 <t<T.6<¢p(1)—| x| <26}) L=({x:0<¢(1)~|x|<20}) L2 T/2<i<T))

where

7G = f f ei[(x—y>-§+(¢(r)—¢(s)>|§|]¢,(t)-zm’ﬁz)—'8 (5§)G(s,y) dydé.
él21 €]

To estimate ||TG||,> ({x:0<p(t)-|x|<20})- 1t follows from Lemma and a direct computation
that

m-2_ _y m=2 v
¢(T)2(m+2) 262(’”+2)+2||V02||L2({(t,x) % <T, 6<¢(1)—|x|<25})

< Co(T) A3 A TS ST ¢(T) T

i i snien BOE)
j 22||ff iT-y-£-g(s))lel BOE) & P99 G(s, y)dyd ||L2(21<|f|<w)) .

L - T mv)-E—db(s (68)
=€ 2(2” ff f e B0 6 vyayagai], )
2/ <|&|<27+1 |€;|§ L2

J=
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8.2 Estimation of wy

Then applying Holder’s inequality as in (7.58) yields

. 5
H fff | el BOE) o 1y yaeds 2
2i<|g|<2i+! 1§12 L

| 5 2
<c 6(1)/2( f f - A E-nlen BOD 1y 4 o, y)dyd§|dxdr) :
2 <|g|<2! €12

(8.14)

On the other hand, by applying Lemma 3.2 of [[7], we obtain that, for each fixed j > 0,

Hff et B0 G o1y 1),y dyag
2/ <|é|<2/+1 |§|7

2 1
SC(ff G(¢7 (1y] + 1), y)| dydr)’
P(D<yl+7<6(2)

2 1
C(ff |G(¢_1(|y|+7'),y)| dey)2 (Fubini’s Theorem)
P(D=Lyl+7<6(2)
2 1
<ol [ [ 166nPst aa)’ (815
nJ1

< C(fRn ﬁzlG(s,y)lz dsdy)%

< C|G]| 2R (by Fubini’s Theorem).

2
LT,X

Furthermore, in the support of S(5¢), one has 2/6 < |£|6 < C, which yields
Jj < C(1+|Ind)). (8.16)

Substituting (8.135) and (8.16) into (8.14) and further (8.13), we have

m-2_ _v m=2 v
¢(T) 2D~ 252mn "2 Ivozllz2 () T<i<t, 5<p0)-1xI<26))
m 1
< €5 (1 + 16162 Gl o e
1
< C(Sé ”G”LZ(RTH)‘

Hence, we have completed the proof of (6.25). o
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A Appendix

Lemma A.1. Under condition (71.18)), ¢(t) — ¢(s) admits a positive lower bound.

Proof. From Theorem 2.4 of [37]], we have that

tro(n)—g(s)
wr (1, X) :Cmfo fo O W (Fp), (r1, X) (1) + ¢(s) + 1)

X (¢(t) + ¢(s) —r1) "G (y, v, 1,2)drds,

(A.1)

(ri+d®=¢ () (=ri—¢O+¢(s))
(=ri+¢ ) +d(s)) (=ri—¢(H)—¢(5))’

W4 (r1, x) stands for the solution of the linear wave equation

G(y,v, 1, 7) is the hypergeometric function, and

where z =

6,21\/ —Av =0,
v(0,x) =0, 0d,v(0,x)=g(x).

Then by finite propagation speed for the linear wave equation and the expression (A.T)), we

have that, for any (s, y) € supp Fr and (¢, x) € supp wr,

¢(t) — ¢(s) = |x = yl. (A.2)

Denote by wr = (K(t, x; 5, y), Fr(s, y)). Then, for any fixed (x, y), if (¢, x; s, y) € supp K,
it follows from the support condition of Fr that ¢(¢) — ¢(s) takes its maximum |x — y| when
o(t) —¢d(s) = |x —y|land ¢(s) — |y| = (1/4)¢(1/2). In fact, since the support of K with
respect to the space variable is symmetric, we can assume x = (|x|,0, ...,0). Figure |A.1
illustrates the case when s takes its minimum.

In Figure [1 denotes the surface ¢(s) — |y| = 1/ (T"+2), 1, denotes the surface
o(s) — |yl = (1/4)¢(1/2), and [3 is the characteristic cone ¢(f) — ¢(s) = |xX — y| for fixed
(t, ). The domain ABCD is the admissible area for (s, y) when y; > 0. It is clear that s
assumes its maximum at the point C, where ¢(f) — ¢(s) assumes its minimum.

We now show that ¢(¢) — ¢ (s) has a positive lower bound: Fix (7, x) € {(t,x): 1/2 <t <

I, |x] < (1/2)¢(1)}, (otherwise, rotate in the x variable), we assume x = (|x|,0,...,0) and



A Appendix

t (7, )
I
C

[

U

I3
D
A

X1

Figure A.1: The boundary of the domain

denote by y = (y1,y"). By ¢(?) — ¢(s) = [x — y| and ¢(s) — |y| = a witha = (1/4)¢(1/2),
we have

2(¢(1) = a)p(s) = > (1) — a® + 2|xly1 - |xI.

Since ¢(t) —a > ¢(1/2) — (1/4)¢(1/2) > 0, ¢(s) is a monotone increasing function of y;.
So, we may take y = (|y|, 0) to derive a lower bound of ¢(¢) — ¢(s). In this case, we have
2(¢(1) — a)p(s) = ¢*(1) — a® + 2|x|((5) — a) — |xI7,

which yields, ¢(s) = (¢(¢) + |x| + a)/2 and

o) —Ixl—a _ ¢@) —¢)/2 -
2 - 2

Thus the proof of Lemma A.1 is complete. O

Lemma A.2. Setting f = /2572 Fr in (T.29), we get (T.24).

Proof. Tt follows from (7.28)), f = 7!/257/2Fr, and the assumption ¢(s) > (1/8)¢(1/2)

that
f | _(m+2n+2 ezz f f A=) E+@O-T-IyDIE]]
2m+2) n Jpn

x Fr(¢7 (4 [y y)s™ 2|§7dyl ar)'”

<cf [ Irts 262 =Py w2 - b e+ ) e

$() — ¢(s) = 2> 0(1/2)/8>0.  (A3)

L2({|x|< 82 f<i<1y)
2 o2\ 3
< C||(@()" = ) Fr(s. )| |
Together with (7.29), this yields (7.24). o
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A Appendix

Lemma A.3. Let w solve (4.3) and denote w as w = (K(t,x;5,y), F(s,y)). If0 <
o) — |x[ < 1, #()/10 < ¢(s) < (1), and ¢(s) — 1 < |y| < ¢(s), then

LD

lx[ |yl

if (t,x,s,y) €suppK(t,x;s,y),

C
V(@)

Jor some constant C > Q.

Proof. When t is small, the lemma holds naturally. So we can assume that, say, ¢(¢) > 20.

Since ¢(s) > ¢(¢)/10 > 2 and ¢(s) — 1 < |y|, we have 2|y| > ¢(s). Recall that in (A.2))
we have

K(t,x;8,y) =0 if [x—y|> @) - ¢(s).

Then using the identity
lx = y12 = (xl = [yD? + 2(1xllyl = x - y) = (1x] = [yD* + xllyllx/1x] = y/1yI[

we have that |x — y|> < (¢(t) — ¢(s))? is equivalent to

2 2
/1] =yl < LB =D = (xl = IvD

lx[yl
_(#0 == @@ = bI) (60 + 11 = @& + D)
lxyl
8@ ~ XD (¢ + Ix])
B (1) p(s)
Now we note that 0 < ¢(¢) — |x|] < 1 and ¢(s) > ¢(t)/10. Then the result follows
immediately. O

Lemma A.4. Suppose that K(x,y) is a measurable function on R™ X R" and set

Tf(x) = f K(xy)f()dy.

Suppose further that we can write R™ and R" as disjoint unions R™ = | cza Aj and
R" = (Ureza Bk, where if x € Aj, then K(x,y) = 0 when 'y € By with |j — k| > C, for
some constant C. Then, if we let T; denote the integral operator with kernel K, where

Ki(x,y) = K(x,y) if (x,y) € Aj X By and zero otherwise,
IT|lLp—ra < Cq - sup [|TjxllLr—La,
.k

provided that 1 < p < g < 0.

Lemma A.5. If holds, then holds true.

7
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Proof. If (7.60) holds, then we have

IVIlLa0 (((1,x): s<p()—1xI<26))

q0—1

200
< C5q0||(f ITG)(9(t) -7, )Hzgotx6<¢(t) Ix|<26}) dT) °

q0-1

SC(SS_O (f((qb(t)—r) qo<m+z>5 ‘10||G(T,-)|| %)qﬁ—"]dT) 40

a0
L

< Col oty s f IG(z. )||"°' ar)

Lao0-T

‘/0
1
< colis f By HEd) G
L o a0t
< C5q° q°¢(T) q"||G|| a0,
L90!
which shows that holds. o

Lemma A.6. L’ estimation in case |£| < 1.

Proof. We first prove the L? estimate for all the polynomials, then use approximation to

get the general result. Let & = (&1, &”). For the polynomial function & we have

521
I = d&deg’
f'fl A+ ompen 1%

d§21+1
Sy 7 L o
2+ ¢(t)|f|)m+2

/

20 +1 fD 1+ ¢<r>|§|)ﬁ &i=1

. f f é:Zl+1 |g|¢(t) i
(2l + 1)(m+2) cJo (1 + ¢@)|€])met! derdg

&€ ()
dé d¢’
) 21“fo (1+¢(t))m+z e (2l+1)(m+2)f/f1 (1+¢(t)|§|)m_+“ 1

déde’,

(21+1)(m+2)f/f1 (1+¢(z)|g|)m+2

where C,, = f p» 4¢’ depends only on n. Thus we have

(1-

m _m_ __m_
+2)1 ff d&(1+ ¢(2)) m

f%’ : ! m
— o dE) < Cullélllagpy (1 + 6(1)) 7.
(fD (1+ ()N | Hee
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Analogously, we can prove similar estimates for all the polynomial functions. Now, for

every fixed ¢ and nonzero & € L2, we can find a continuous function g, such that

7 1 s __m_
||h - g||L2(D) < §||h||L2(D)(1 + ¢(l‘)) 2m+2) |

In addition, since D is compact, by the Stone-Weierstrass theorem, we can find a polynomial

p such that
1 4 __m_
lp = gll2py < §||h||L2(D)(1 + (1)) 2.
Then a approximation argument gives the estimate

m

1A 2py < CH@) T || Al 2y (A.5)
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