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Summary 

Hypoplastic left heart syndrome (HLHS) is one of the most lethal congenital heart 

diseases (CHD) and its pathological mechanism remains unclear. Endocardial 

fibroelastosis (EFE) is a hallmark of HLHS which impairs myocardial growth. EFE 

tissue originates from aberrant EndMT. Thus, we hypothesized that potential 

disorders in endothelial cells of HLHS could facilitate the EndMT, which eventually 

lead to the EFE formation. Human induced pluripotent stem cells (hiPSCs) 

provide a new access for modeling HLHS because of their ability of differentiation 

into desired cell types. We developed a simple endothelial cells (ECs) 

differentiation protocol from hiPSCs by monolayer differentiation approach. Three 

different combinations of cytokines were confirmed to contribute towards 

endothelial cell generation in this protocol. Furthermore, stage-specific medium 

was optimized and simplified to increase the efficiency of endothelial cells 

differentiation. We also demonstrated that the endothelial cell growth medium was 

supportive for maintaining and expanding hiPSCs derived ECs (hiPSC-ECs). To 

explore the underlying molecular mechanisms of HLHS, patient-specific hiPSCs 

(HLHS-hiPSCs) were generated and characterized to be pluripotent. All the 

endothelial cells derived from the HLHS-hiPSC lines were generated based on 

this endothelial cell differentiation protocol. Endothelial cells derived from 

HLHS-hiPSCs (HLHS-hiPSC-ECs) showed similar morphological and genetic 

properties as the wild type control (WT-hiPSC-ECs). Thereafter, we investigated 

whether the HLHS-hiPSC-ECs were more susceptible to EndMT, induced by 

TGFβ1 treatment or hypoxia condition than WT-hiPSC-ECs. The expression of 

SNAIL (SNAIL1), and SLUG (SNAIL2), as key indicators of EndMT, implied no 

significant phenotypic and expression differences between HLHS-hiPSC-ECs and 

WT-hiPSC-ECs. In sum, it needs further optimization to study EndMT by using 

hiPSC-ECs, such as enrichment of specific subtype of endothelial cells. 
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1. Introduction 

Congenital heart disease, also known as congenital heart defect (CHD), is the 

most common birth defect. HLHS is one of the life-threatening CHD characterized 

by an undeveloped left heart. Despite the cause of HLHS remains elusive, former 

studies point out that it is most likely to be a genetic disease (Benson et al., 2016; 

Grossfeld et al., 2009; Grossfeld, 2007b; Hinton et al., 2007). Numerous gene 

mutations and genomic disorders have been identified, although investigators are 

prone to believe that HLHS is multifactorial in etiology. EFE is considered as a 

hallmark of HLHS, which has been implied to result from pathological EndMT (Xu 

et al., 2015a). EndMT is a biological process, which plays an important role in 

both normal heart development and pathological aspects of heart disease. It 

seems that endocardial endothelial cells contribute to the EFE tissue formation by 

aberrant EndMT, which might be caused by disrupted transforming growth factor 

β (TGFβ), hypoxia and other factors (Xu et al., 2015c; Yu et al., 2014; Zeisberg et 

al., 2007b).  

1.1 Hypoplastic left heart syndrome  

1.1.1 General overview  

HLHS is a rare, fatal and complex CHD, which is characterized by abnormally 

underdeveloped left ventricle and hypoplastic ascending aorta. HLHS accounts 

for 2% to 9% of all CHD patients (Fruitman, 2000). Furthermore, among all the 

infants who are born with CHD, approximately 20% to 25% of neonatal mortality 

are caused by HLHS (Fruitman, 2000; Grossfeld, 2007a). HLHS is a 

heterogeneous disease with different phenotypes of severe congenital left heart 

malformations (Tchervenkov et al., 2006). The common complex phenotypes of 

HLHS also include a smaller left atrium, and stenotic aortic and mitral valve. 

Interestingly, the left heart hypoplasia is correlated with hypertrophy of the heart in 

some reported cases (Andersen et al., 2015; Grant and Robertson, 1972; Rychik 

et al., 1999). For the HLHS fetus, a thick-walled cavity and EFE are usually 
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regarded as a clinical manifestation of the disease, yet the pathological 

mechanism between these correlated phenotypes is not fully proven (Figure 1).  

 

In HLHS infants, the oxygen-rich blood is mixed with oxygen-low blood. Besides, 

the hypoplasia of left heart cannot properly pump the oxygen-rich blood because 

of the influence of the defective left ventricle. Consequently, the rest of the body is 

starved of the oxygen-rich blood. Therefore, the infant would require surgical 

procedure or cardiac transplantation after birth to rectify these defects (Figure 1) 

(Bertram et al., 2008). There are different treatments of HLHS available now, 

including the Norwood operation, the Sano modification and the hybrid procedure 

(Brescia et al., 2014). Although the diagnosis and treatment of HLHS have been 

improved in the past few decades, mortality is still high and the cause of HLHS is 

still largely unknown. Recently, accumulated evidences support the contribution of 

genetic etiology to the HLHS pathological process (Glidewell et al., 2015; 

Grossfeld et al., 2009; Grossfeld, 2007b).  

 

HLHS is believed to share similar genetic disorders or genotypic milieus with two 

other types of cardiac diseases, aortic valve stenosis (AVS) and coarctation of the 

aorta (CoA) due to their feature of left ventricular outflow tract obstruction (LVOT) 

(Chu et al., 2016; McBride et al., 2009). Chromosomal abnormalities seem to be 

associated with these cardiac malformations (AVS, CoA, HLHS), such as 

monosomy X in Turner's syndrome and 11q terminal deletion in Jacobsen's 

syndrome (Gotzsche et al., 1994; Grossfeld et al., 2004b). Besides, genetic 

disorders, such as NOTCH1 and NKX2-5 mutations, have been reported in LVOT 

malformations including HLHS (McBride et al., 2009; McElhinney et al., 2003b; 

Mohamed et al., 2006).  
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Figure 1. The scheme of heart structure in HLHS patient.  
The heart structure of HLHS patient is severely affected. The typical 
structure-abnormality is a hypoplastic left ventricle. Besides, the narrow aorta, atrial 
septal defects and patent ductus arteriosus are also found in a large numbers of HLHS 
patients. AO=Aorta, PA=Pulmonary Artery, LA= Left Atrium, RA= Right Atrium, LV= Left 
Ventricle, RV= Right Ventricle. The picture of heart shape is adapted from: (Kobayashi et 
al., 2014).  

1.1.2 Genetic backgrounds of HLHS  

It has been shown that HLHS is associated with several gene mutations or gene 

copy number variances (CNVs) (Grossfeld, 2007b; Sifrim et al., 2016). Mutations in 

the genes that play important roles during the embryonic heart formation seem to 

be related with the heart malformation during development of HLHS, such as GJA1 

(6q22), NKX2-5 (5q35), NOTCH1 (9q34), and HAND1 (5q33) (Dasgupta et al., 

2001; Elliott et al., 2003; Garg et al., 2005; Iascone et al., 2012; Kanady et al., 2011; 

McElhinney et al., 2003a; Reamon-Buettner et al., 2008; Shay et al., 2011). 

Additionally, mutations of genes related to cardiac and endothelial development are 
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reported to be involved in HLHS (Table 1).  

 

Genomic imbalance refers to the abnormal copy number of genes due to 

chromosomal rearrangements or aneuploidy, which alters the gene dosage, thus 

affecting gene expression levels. This accounts for 12.7% of infants with HLHS and 

about 2% of healthy infants (Glessner et al., 2014). Recent reports have shown that 

CNVs are associated with HLHS pathogenesis (Glidewell et al., 2015; Iascone et 

al., 2012). CNVs encompassing NKX2-5 were previously demonstrated to 

contribute to the genetic etiology of HLHS (Baekvad-Hansen et al., 2006; Glessner 

et al., 2014). Besides, CNVs may potentially influence expression level of 

neighboring genes by alterations of the chromosomal structure (Breckpot et al., 

2011; Glidewell et al., 2015). Furthermore, other associated genomic imbalances, 

like trisomy 13, trisomy 18 and chromosome X monosomy are also found in HLHS 

patients (Grossfeld et al., 2009; Grossfeld et al., 2004a; McBride et al., 2009).  

 

Identified susceptibility loci or other genetic disorder at these reported cases in 

HLHS patients can however only account for a minority of HLHS patients. 

Therefore, it needs more efforts to solve the puzzle of the underlying molecular 

mechanism of HLHS (Lahm et al., 2015).  
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Table 1． HLHS-related gene mutations 

Gene 
name 

Gene ID 

Gene 
location 

Mutation Role in 
HLHS 

Documented 
Involvement in 
EndMT or EMT 

Vascular 
development 

cardiac 
development 

GJA1 

OMIM: 

121014 

6q22 Yes Yes 

(Dasgupta et 

al., 2001) 

Yes (Nakano et al., 

2008) 

Yes (Kanady et 

al., 2011) 

Yes 

NKX2-5 

OMIM: 

600584 

5q35 Yes Yes (Elliott 

et al., 2003) 

 Yes Yes 

HAND1 

OMIM:602

406 

5q33 Yes Yes 

(Reamon-Bu

ettner et al., 

2008) 

Yes (Asuthkar et 

al., 2016) 

Yes 

 

Yes 

GATA4 

OMIM: 

600576 

8p23 Yes Yes 

(Reamon-Bu

ettner et al., 

2008)  

Yes (Kondratyeva 

et al., 2016) 

Yes Yes(Moskowitz 

et al., 2011) 

FOXC2 

OMIM:602

402 

16q24 Yes Yes 

(Iascone et 

al., 2012) 

Yes (Kume, 2012) Yes  

S100B 

OMIM:176

990 

21q22 Yes Yes 

(Bokesch et 

al., 2002) 

Yes (Xu et al., 

2014) 

Yes(Bokesch et 

al., 2002) 

 

JAM3 

OMIM: 

606871 

11q25 Yes Yes (Phillips 

et al., 2002) 

 Yes(Ebnet et al., 

2003) 

 

NOTCH 1 

OMIM:190

198 

9q34.3 Yes Yes (Garg et 

al., 2005) 

Yes (Li et al., 

2013) 

Yes(Gridley, 

2007; Wu et al., 

2014) 

 

NR2F2 

OMIM:107

773 

15q26 Yes Yes (Al Turki 

et al., 2014) 

Yes (Zhang et al., 

2014) 

 Yes(Lin et al., 

2012b) 

TBX5 

OMIM:601

620 

12q24.1 Yes Yes (Shay et 

al., 2011) 

Yes (Gros and 

Tabin, 2014) 

 Yes 

Table1．Summary of HLHS-related gene mutations in published case reports of HLHS. 
OMIM: Online mendelian inheritance in man.  
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1.1.3 Endocardial fibroelastosis in HLHS 

Fetal EFE is one of the hallmarks of HLHS, which is characterized by a thick layer 

of fibro-elastic tissue in the left ventricular endocardium. EFE appears to play an 

important role in the HLHS pathological process (Friehs et al., 2012; Shimada et 

al., 2015). Generally, in the left ventricle of HLHS patients, a thick layer of EFE 

tissue is frequently observed to restrict the growth of myocardium. Abundant 

elastin and collagen fibers are also found in the thickened endocardium. Surgical 

removal of EFE tissue in HLHS patients will allow the myocardium to grow and a 

biventricular repair can be achieved in a subset of patients (Emani et al., 2012; 

McElhinney et al., 2010). EFE is also found in other left ventricular noncompaction 

(LVNC) related diseases (Ezon et al., 2012; Ozgur et al., 2011; Seki et al., 2013; 

Sjoberg et al., 2007) as well as in neonatal lupus, aortic stenosis or atresia and 

Barth Syndrome (Brito-Zeron et al., 2015; Capone et al., 2012).  

 

Cardiac valves and septum are derived from the mesenchymal layer (called 

endocardial cushion) which is generated by the process of EndMT from 

endocardial cells in the atrioventricular canal. Hypoplastic (or stenotic) valves may 

suggest the developmental defect of endocardial cushion during embryonic heart 

formation (Hickey et al., 2012; Tripathi et al., 2012). In this process, abnormal 

EndMT of the endocardium contributes to the EFE occurrence in the endocardial 

layer of HLHS patient (Xu et al., 2015a; Zeisberg et al., 2009). Among all the 

reported HLHS mutated genes, many of them have been shown to play a role in 

endothelial cell biology in general or even EndMT/EMT (epithelial-mesenchymal 

transition) specifically (Xu et al., 2015a).  

1.2 EndMT  

1.2.1 EndMT in heart development  

EndMT is a complex process, which is characterized by the acquisition of 

mesenchymal characteristics and loss of the endothelial properties. EndMT is 
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considered as a form of EMT. EMT is an evolutionary conserved process, during 

which epithelial cells gradually develop mesenchymal-like cell features (Kalluri 

and Weinberg, 2009). During EMT or EndMT, original cells gradually acquire the 

properties of migratory, invasiveness, and resistance to apoptosis. Both EMT and 

EndMT are vital mechanisms for embryonic development (Kovacic et al., 2012).  

 

Fetal heart as a life indicator is the first functional organ of human life during 

pregnancy (Bruneau, 2013). EndMT is known to play an important role in 

embryonic heart formation (Eisenberg and Markwald, 1995; Guan and Couldwell, 

2013; Lin et al., 2012a), for instance, heart valves formation. Heart valves 

originate from the endocardial cushion of heart (Xiong et al., 2012). During early 

heart development, endocardium and myocardium are separated by cardiac jelly 

(Kovacic et al., 2012). Endothelial cells undergo EndMT process and transform 

into mesenchymal cells. The mesenchymal cells generated from EndMT invade 

the cardiac jelly to form endocardial cushion tissue in atrioventricular canal and 

out flow tract (Markwald et al., 1977). Semi-lunar valves are developed from 

endocardial cushion in outflow tract, while mitral and tricuspid valves are 

generated form endocardial cushion tissue in atrioventricular canal (Kisanuki et al., 

2001; Kovacic et al., 2012; Thiery et al., 2009).  

1.2.2 EndMT in pathological process  

All chronic heart diseases are associated with cardiac fibrosis. In the experimental 

cardiac fibrosis model of ascending aortic constriction, approximately 30% of 

pathologic cardiac fibroblasts have been shown to be generated by EndMT 

(Zeisberg et al., 2007b). EndMT contributes to fibrosis generation in two ways: 

fibroblast proliferation and microvascular rarefication (Krenning et al., 2010; 

Zeisberg et al., 2008; Zeisberg et al., 2007b). Cardiac fibrosis causes increased 

stiffness of the heart and is a hallmark of diastolic dysfunction (Beggah et al., 2002; 

Burlew and Weber, 2002). Fibrosis found in other organs such as the kidney, lung 

or gut suggests that the etiological mechanisms of fibrosis formation are similar, 
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which is generated by abnormal EndMT, EMT or activation of fibroblast progenitors 

(Figure 2) (Hashimoto et al., 2010; Krenning et al., 2010; Rieder et al., 2011; 

Zeisberg et al., 2008; Zeisberg et al., 2007b). EndMT also contributes to the 

pathological process of cancer-associated myofibroblast generation (Zeisberg et al., 

2007a; Zeisberg et al., 2007b).  

 

Cardiac fibrosis is further commonly observed in patients with chronic kidney 

disease (CKD) (Lopez et al., 2008). CKD patients have high risks of developing 

cardiovascular disease, and therefore high mortality (Charytan et al., 2014). A 

series of mechanical and circulating factors that deteriorate kidney functions of 

CKD patients may also be responsible for the development of cardiovascular 

disorders. According to existing studies, serological factors, e.g. the circulating 

angiogenesis and nitric oxide (NO) inhibitors are potential triggers for the linkage 

between CKD and heart disease (Bhandari et al., 2012; Chen et al., 2012; Fleck et 

al., 2001; Reinecke et al., 2013; Wang et al., 2015). The causative effects between 

aforementioned risk factors and CKD have been demonstrated in animal models 

(Amann et al., 1997; Jacobi et al., 2006). The pathogenic concentrations of these 

serological factors in CKD could induce the susceptibility of EndMT that trigger 

several downstream effects such as microvascular rarefaction and fibroblast 

accumulation. Abnormal concentration of circulating factors in CKD patient’s blood 

could induce not only the pathological change of human myocardial but also 

fibrosis generation (Charytan et al., 2014). Although evidence has been 

accumulated from decades of studies, the connection between chronic kidney 

disease and cardiovascular disease has still not been fully elucidated. 
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Figure 2. Origins of cardiac fibrosis.  
During the formation of cardiac fibrosis, the outside stimulus could trigger the resident or 
quiescent fibroblast to proliferate. EMT or EndMT could also react to the heart injuries 
and contribute to the cardiac fibrosis. Bone marrow derived cells are recruited to the 
injury site and differentiate into fibroblast.  

1.2.3 Molecular mechanisms of EndMT 

Plasticity of endothelial cells plays an important role in both heart development and 

pathological conditions like cardiac fibrosis. A large number of stimuli are proved to 

induce EndMT including TGFβ proteins, inflammatory factors, hypoxia, and even 

microRNAs. These stimuli can trigger the EndMT process by different signaling 

pathways, which are not mutually exclusive. In particular, TGFβ1 and TGFβ2 are 

the most commonly known cytokines associated with both Smad-dependent and 

Smad-independent pathways (Medici et al., 2011; Piera-Velazquez et al., 2011; van 

Meeteren and ten Dijke, 2012). In addition, interferon-γ could induce EndMT by 

increasing the TGFβ2 level that could lead to fibrogenesis. Also, ischemia and 

injury associated hypoxia can activate the TGFβ proteins by hypoxia inducible 

factor-1α (HIF-1α) (Choi et al., 2015a; Xu et al., 2015c). Several specific 
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microRNAs are reported to be involved in EndMT. MiR-9, miR-21 and miR-31 

regulate the endothelial cell transition by controlling the secretion of different 

cytokines, e.g. tumor necrosis factor-α (TNF-α) and TGFβs (Chakraborty et al., 

2015; Katsura et al., 2016; Kumarswamy et al., 2012). 

 

In particular, studies of cardiac pressure overload-induced mouse models have 

demonstrated that TGFβ pathways play crucial roles in cardiac fibrosis generation 

and pathological EndMT (Kovacic et al., 2012; Xu et al., 2015b; Zeisberg et al., 

2007b). TGFβ1 and TGFβ2 are the most powerful known pro-fibrotic inducers of 

EndMT. Furthermore, inhibition of the TGFβs has been shown to promote 

endothelial cell proliferation during endothelial cell differentiation in vitro (Atkins et 

al., 2011b; James et al., 2010). Upon TGFβ1 or TGFβ2 stimulation, several 

transcriptional factors (SNAIL, SLUG, ZEB1, and TWIST1) have been implicated 

as the downstream targets (Peinado et al., 2007; Peinado et al., 2004; Saito, 2013). 

Among these transcriptional factors, SNAIL and SLUG have been demonstrated to 

be the key regulators during the EndMT or EMT, which are up-regulated during 

TGFβ1 or TGFβ2 stimulation (Cooley et al., 2014; Lin et al., 2012a).  

 

Recently, several reports show that hypoxia is another inducer of EndMT (Choi et 

al., 2015b; Higgins et al., 2008; Xu et al., 2015c). Hypoxia is a condition where cells 

and tissues have insufficient oxygen supply and undergo a series of changes of 

their morphology and function. HIF-1 is a highly-conserved heterodimeric complex, 

composed by an alpha and a beta subunit. Once heart injury occurs, the 

environment becomes hypoxic, and oxygen shortage activates HIF-1α, a 

transcription factor responsible for stimulating expression of endothelial growth 

factors to induce EndMT (Medici and Kalluri, 2012; Xu et al., 2015c). HIF-1α 

binding to HIF-responsive elements (HREs) causes the stimulation of cascade 

response mediators of hypoxia. SNAIL has been shown as the direct mediator of 

hypoxia to induce EndMT (Xu et al., 2015c).  
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1.3 Disease-specific hiPSCs and endothelial cell generation 

1.3.1 Disease-specific human iPSCs 

hiPSC disease models hold great potential for advancing our understanding of the 

pathogenic mechanisms in various diseases. iPSCs are firstly generated by 

introducing four ectopic expression transcription factors, Oct3/4, Sox2, Klf4 and 

c-Myc (these four transcription factors are also commonly known as Yamanaka 

factors) to mouse or human fibroblasts (Takahashi et al., 2007; Takahashi and 

Yamanaka, 2006; Yu et al., 2007). Like all other pluripotent stem cells, iPSCs have 

the abilities of long term self-renewal and differentiation into all derivatives of three 

germ layers (ectoderm, mesoderm, and endoderm) (Drawnel et al., 2014; Ebert et 

al., 2012).  

 

Various methods have been established to generate iPSCs including 

integration-free DNA virus, RNA virus, synthetic mRNA, recombinant protein and 

even small molecules compounds (Fusaki et al., 2009; Hou et al., 2013; Kim et al., 

2009; Liu et al., 2016; Liu et al., 2013; Warren et al., 2010; Zhou et al., 2009). 

Different sources of somatic cells have also been used to generate hiPSCs, for 

example, dermal fibroblast, hair follicle cells, blood peripheral mononuclear cells 

and even epithelial cells excreted within the urine (Streckfuss-Bomeke et al., 2013; 

Zhou et al., 2012). 

 

hiPSCs can potentially provide an unlimited supply of cell source to avoid the 

ethical dilemmas involving the use of human embryonic stem cells (hESCs), thus it 

is a suitable approach for modeling diseases and drug screening. However, one of 

the limitations for hiPSCs application is the lack of stable differentiation protocol of 

endothelial cells. In vitro remodeling the dysfunctional ECs are promising for 

unmasking the underlying pathogenic mechanism of human vascular diseases and 

disease associated with EFE such as HLHS (Adams et al., 2013). 
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1.3.2 Endothelial cell generation from hiPSCs  

In the process of in vivo vasculogenesis, endothelial cells are believed to be 

generated from angioblasts which are derived from mesodermal layer origin 

(Belaoussoff et al., 1998; Marcelo et al., 2013; Vokes and Krieg, 2002). Several 

reports show that short-term treatment with CHIR in a high concentration or long 

term treatment in a low-concentration can both generate the mesodermal cell from 

hiPSCs (Borchin et al., 2013; Lian et al., 2012; Lian et al., 2013). CHIR mediated 

β-catenin phosphorylation is an important step of Wnt/β-catenin signaling activation, 

which stimulates mesoderm differentiation (Denham et al., 2012; Lian et al., 2013; 

Wu et al., 2013). In the first stage of EC differentiation, some pan-mesodermal 

markers are significantly upregulated after the treatment with CHIR, for instance，

BRACHYURY (T) and ACTA2 (Tan et al., 2013; Yang et al., 2008).  

 

From previous studies, cytokines are observed to play an important role in 

differentiation of different progenitor lineages (Yang et al., 2008). Fibroblast growth 

factor 2 (FGF2 or bFGF) has been shown to induce mesodermal cell differentiation 

by targeting FGF receptor (Marom et al., 2005; Saxton and Pawson, 1999). BMP4 

initiates the EC differentiation and interacts with a FGF2-dependent progress to 

regulate the specification of angioblasts (Hirashima, 2009; Marcelo et al., 2013; 

Pearson et al., 2008; Yamaguchi et al., 1994). Vascular endothelial growth factor 

(VEGF) signaling regulates numerous endothelial transcription factors both in vitro 

and in vivo. VEGF exerts its angiogenic function in the generation of endothelial 

cells and endothelial precursors usually through attributing to VEGFR1 and 

VEGFR2 activation (Yan et al., 2008). ACTIVIN A is believed to be involved in the 

process of cardiac vasculogenesis, which is reported in several protocols of 

endothelial cell differentiation (Chiang and Wong, 2011; McLean et al., 2007; 

Wu et al., 2015). Proper combinations of chemicals and cytokines could enable 

the specification of endothelial cells (Atkins et al., 2011a; Cao et al., 2013; Kume, 

2010; Li et al., 2011b; Li et al., 2009).  
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For functional characterization of hiPSC-ECs, one of the most widely accepted 

methods is in vitro endothelial tube formation assay (Li et al., 2011a; Li et al., 

2009). In this assay, capillary-like structures generates a hollow network of 

connecting tubes, representing the in vivo angiogenesis capability of endothelial 

cells. Another EC functional assessment is the low-density lipoprotein (LDL) 

uptake assay. LDL receptors mediated LDL uptake plays a key role in the cellular 

cholesterol level (Voyta et al., 1984). By the spheroid sprouting assay, the ability 

of self-aggregation of endothelial cells could be evaluated in in vitro 

three-dimension way (Glaser et al., 2011; Li et al., 2011a).  

1.4 Aims and objectives 

The overall aim of this thesis was to test if endothelial cells generated from 

HLHS-hiPSCs (HLHS-hiPSC-ECs) have a higher susceptibility to undergo EndMT 

as compared to endothelial cells generated from hiPSCs from healthy individuals 

(WT-hiPSC-ECs). For this purpose the individual objectives were:  

 

1. To establish a highly efficient, easy and cost effective endothelial cell 

differentiation method.  

2. Generation of hiPSCs from patients with HLHS.  

3. To test different stimuli of EndMT, such as TGFβ and hypoxia, in 

HLHS-hiPSC-ECs versus WT-hiPSC-ECs in EndMT assays in vitro.  
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First author 
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2. Epigenetic balance of aberrant Rasal1 promoter methylation and 
hydroxymethylation regulates cardiac fibrosis. 
 
Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, Sossalla S, Kalluri R, 
Zeisberg M, Hasenfuss G, Zeisberg EM. 
Coauthor 
Cardiovasc Res. 2015. DOI: 10.1093/cvr/cvv015 
 
3. Increased concentration of circulating angiogenesis and nitric oxide 
inhibitors induces endothelial to mesenchymal transition and myocardial 
fibrosis in patients with chronic kidney disease. 
 
Charytan DM, Padera R, Helfand AM, Zeisberg M, Xu X, Liu X, Himmelfarb J, 
Cinelli A, Kalluri R, Zeisberg EM. 
Coauthor 
Int J Cardiol. 2014. DOI: 10.1016/j.ijcard.2014.06.062 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Original publications 

 19 

2.1 Differentiation of functional endothelial cells from human induced 
pluripotent stem cells: a novel, highly efficient and cost effective method  

hiPSCs generated from patients carry identical genetic information as in the 

patients, which may re-implement the disease phenotype in vitro. Functional 

endothelial cells derived from patient-specific hiPSCs are a promising model to 

study the cardiac vascular disease. In this part, a highly efficient differentiation 

method of functional endothelial cells was established. At first, hiPSCs were 

treated with CHIR for 2 days to generate the mesoderm cells. Following, different 

combinations of cytokines were used to differentiate mesoderm cells into 

endothelial cells. At last, the derived CD31 and VE-cadherin double-positive 

endothelial cells were enriched and cultivated for further analysis. hiPSC-ECs 

showed similar properties with human coronary artery endothelial cells (HCAEC), 

including uptake of low-density, formation of capillary-like tubes and angiogenic 

sprouting from spheroids. Here, the differentiation efficiency of endothelial cells is 

as high as 80% within 12 days by the indication of double staining of CD31 and 

VE-cadherin. Comparing with former reported protocols, this protocol is superior in 

generating endothelial cells with respect to both cost and time.  

2.1.1 Declaration of my contribution  

Xiaopeng Liu: conceived and designed this study, performed experiments, data 

analysis, data interpretation, and help of drafting the manuscript.  

Prof. Dr. Elisabeth Zeisberg: conceived and designed this study, data 

interpretation, drafted the manuscript.  

Prof. Dr. Kaomei Guan: conceived and designed this study, data interpretation.  

Prof. Dr. Michael Zeisberg: drafted the manuscript.  

Jing Qi: conceived and designed this study, performed experiments, data analysis, 

and data interpretation.  

Xingbo Xu: data analysis, data interpretation.  
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2.2 Increased concentration of circulating angiogenesis and nitric oxide 
inhibitors induces endothelial to mesenchymal transition and myocardial 
fibrosis in patients with chronic kidney disease  

Chronic kidney disease (CKD) patients have a high risk of suffering from 

cardiovascular disease. According to previous studies, circulating angiogenesis 

and NO (nitrogen oxide) inhibitors were proposed to play a role in the development 

of cardiovascular disease within CKD patients. In this study, our aim was to verify if 

these factors are elevated in a cohort of patients with CKD and what the effect of 

these factors is on coronary endothelial cells, in order to unravel the association 

between CKD and cardiac fibrosis. Therefore, the circulating angiogenesis and NO 

inhibitors including asymmetric ADMA (asymmetric dimethyl arginine), END 

(endostatin), ANG (angiopoietin) and TSP (thrombospondin) were measured in 

CKD patients’ blood serum, and cardiac fibrosis and capillary density were 

analyzed in heart tissue of CKD patients. The data implied that the severity of CKD 

correlates with increasing concentrations of circulating angiogenesis and NO 

inhibitors. Furthermore, HCAEC were used for testing if these inhibitors could 

induce EndMT, which might contribute to the generation of myocardial fibrosis in 

patients with CKD. The results concluded that increased concentration of 

circulating angiogenesis and NO inhibitors could promote EndMT and cardiac 

fibrosis in CKD patients.  

2.2.1 Declaration of my contribution  

Xiaoepng Liu: data analysis and interpretation, performed experiments of serum 

treatments of HCAEC and gene expression analysis.  
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3. Unpublished data  

In this section, these unpublished data are about the establishment of 

HLHS-hiPSC disease model ， which was used for exploring the potential 

pathological mechanism of HLHS.  

3.1 Patient-specific iPSC models for HLHS  

3.1.1 Abstract  

HLHS is a rare but lethal congenital heart disease. EFE is a hallmark of HLHS. 

Aberrant EndMT is believed to be a common denominator of EFE generation. 

This provides evidence for assumption that dysfunctional endothelial cells may 

contribute to pathological process in HLHS. Surgical intervention can largely 

increase the survival rate of HLHS patient, but the lack of the etiological 

understanding impedes the development of new therapies. Another limitation of 

HLHS research is that such a complex syndrome could not be fully represented 

by animal models. With the development of stem cell technology, hiPSC disease 

model provides a powerful tool to study the underlying etiology of HLHS. In this 

study, endothelial cells derived from hiPSCs are used to test if the aberrant 

EndMT could contribute to EFE generation in HLHS. Firstly, we generated hiPSC 

lines from two unrelated HLHS patients. These HLHS-hiPSC lines were 

characterized to be pluripotent, which together with WT-hiPSC lines were 

differentiated into functional endothelial cells by using our reported protocol. 

EndMT assay showed that there seemed no significant difference of the 

susceptibility to TGFβ and hypoxia of HLHS-hiPSC-ECs compared to 

WT-hiPSC-ECs with respect to EndMT. This finding suggests that hiPSC-EC 

system should be optimized for modeling HLHS in the future.  
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3.1.2 Introduction  

HLHS is a rare birth defect, which is represented by the undeveloped and small 

left heart, especially the left ventricle (Tchervenkov et al., 2006). The hypoplasia 

of the left heart included left ventricle, aortic valve, aorta and mitral valve. 

Interestingly, EFE is found in a large number of HLHS cases and could be 

considered as one of the hallmarks (Feinstein et al., 2012; Xu et al., 2015a). 

Results of both mouse experiments and patient data strongly suggested that 

endothelial cell dysfunction, like EndMT, might contribute to the EFE generation 

(Xu et al., 2015a).  

 

hiPSCs is a powerful tool for drug screening and provides an alternative model for 

the study of pathological mechanism of diseases (Takahashi and Yamanaka, 

2006; Yu et al., 2007). In this study, hiPSC lines were generated from two HLHS 

patients. By using our reported endothelial cell differentiation method, 

patient-specific endothelial cells were successfully generated. The susceptibility 

of hiPSC-ECs to pro-fibrotic factors (TGFβ and hypoxia) was tested by EndMT 

assay.  

3.1.3 Materials and Methods  

3.1.3.1 HLHS-hiPSC generation  

Dermal fibroblasts were isolated from skin biopsies of HLHS1 patient (kindly 

supplied by Dr. Maria Iascone, Bergamo). Fibroblasts of HLHS2 patient were 

purchased from the Coriell Institute for Medical Research (GM12601). Both 

patients were clinically diagnosed with HLHS. All the dermal fibroblasts were 

cultured in DMEM (Dulbecco's Modified Eagle Medium) supplemented with 10% 

FBS. The disease-specific hiPSCs were generated from these HLHS1 and HLHS2 

fibroblast by Sendai virus (Life Technologies) or STMCCA virus (all related 

plasmids were provided by Prof. Kotton, Boston University School of Medicine) 

carrying reprograming factors OCT4, SOX2, KLF4 and C-MYC, respectively. 
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hiPSCs generation from HLHS patient was supported by the technicians in the 

stem cell unit (UMG, Gottingen). 2×104 fibroblasts were seeded into in a well of a 

12 well plate and transduced with STEMCCA virus plus polybrene or Sendai virus 

for 24 hours. hiPSC colonies were picked and cultured in Essential 8 medium 

supplemented with Essential 8 Supplement (Life Technologies) on the dish coated 

with Geltrex (Life Technologies).  

3.1.3.2 Alkaline phosphatase (ALP) staining  

Alkaline phosphatase is a widely accepted marker for stem cells, which has been 

used to label different types of pluripotent stem cells. The experiment was 

performed according to the manufacturer instructions (Sigma Aldrich). Briefly, 

hiPSCs were fixed by citrate-acetone-formaldehyde at room temperature. 

Thereafter fixed cells were washed with PBS for 3 times, alkaline-dye mixed 

solutions were sequentially added and kept for 15 min in dark. After washing 3 

times in PBS, the cells were dried in the air. The stained samples were analyzed 

under microscope (Carl Zeiss). 

3.1.3.3 In vitro ECs differentiation 

As we reported before, hiPSCs were seeded onto Geltrex coated 6-well plates with 

Essential 8 Medium supplemented with 6 uM ROCK inhibitor (Millipore). 24 hours 

later, DMEM/F12 supplemented with 4 μM CHIR (Millipore) was used for medium 

change. At day 2, medium was exchanged with endothelial cell basal medium 

(Promocell) supplemented with growth factors 5 ng/ml bFGF (Peprotech) and 10 

ng/ml VEGFA (R&D). At day 4, medium was changed with EMV2 medium 

(Promocell) supplemented with 10 ng/ml VEGFA. After 10 days of differentiation, 

the primary hiPSCs derived endothelial cells were ready for sorting. 

3.1.3.4 Flow cytometry and fluorescence-activated cell sorting  

Cells were dissociated into single cells with trypsin-EDTA. All the cell pellets were 

collected and re-suspended in 2% bovine serum albumin (BSA). Directly-labeled 
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antibodies against CD31 (BD) and VE-cadherin (BD) were added to the samples 

and incubated for 1 hour. Samples were resuspended in ice-cold dilution buffer (2% 

BSA in PBS) to adjust the final concentrations of 1x106 cells/ml. Cells were then 

filtrated through cell strainers and used for flow cytometry or 

fluorescence-activated cell sorting (FACS) analysis.  

3.1.3.5 Immunofluorescence staining 

All the cells were seeded on Geltrex (Life technologies) or gelatin (Sigma Aldrich) 

coated coverslips. When cells reached 80% confluence, fixation was performed 

by 4% paraformaldehyde. Then cells were permeabilized in 0.1% TritonX-100 for 

10 minutes and then blocked in 5% BSA for 30 minutes. Primary antibodies were 

incubated with the cells and kept at 4 ℃ overnight. After washing with PBS, proper 

secondary antibodies were added. After 1 hour incubation, the stained cells on 

the coverslips were analyzed by fluorescence microscopy (Carl Zeiss).  

 

Primary antibodies used: AFP (Dako), CD31 (Dako), LIN28 (R&D), NANOG 

(Thermo Fisher Scientific), OCT4 (R&D), SMA (Sigma Aldrich), VE-cadherin (Cell 

Signal Tech), von Willebrand factor (VWF) (Abcam), SSEA4 (Thermo Fisher 

Scientific), TRA-1-60 (Abcam), and β-III-TUBULIN (Covance). Secondary 

antibodies used: goat anti-rabbit Alexa Fluor 546 (Life Technologies), goat 

anti-mouse Alexa Fluor 546 (Life Technologies) and goat anti-mouse Alexa Fluor 

488 (Life Technologies).  

3.1.3.6 RNA isolation and real-time PCR 

RNA was extracted using TrizolTM (Invitrogen) and reverse transcribed using 

SuperScriptTM reverse transcriptase (RT) kit (Promega) according to 

manufacturers’ recommendations. Real-time polymerase chain reaction (qPCR) 

was performed using SYBR Master Mix kit (Applied Biosystems) on an ABI 

StepOne PCR instrument (Applied Biosystems). Real-time PCR primers are listed 

in Table 2.  
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Table 2. PCR primers list:  

Real-time PCR primers list: 

Gene name F/R Sequence Reference 

CD31(PECAM1) 
Forward 5′-ATTGCAGTGGTTATCATCGGAGTG-3′ Self-designed 

Reverse 5′-CTCGTTGTTGGAGTTCAGAAGTGG-3′ Self-designed 

VE-cadherin(CDH5) 
Forward 5′- AGACACCCCCAACATGCTAC -3′ Self-designed 

Reverse 5′- GCAAACTCTCCTTGGAGCAC-3 Self-designed 

VWF 
Forward 5′-GGGGTCATCTCTGGATTCAAG -3′ Primerdesign 

Reverse 5′-TCTGTCCTCCTCTTAGCTGAA-3′ Primerdesign 

SNAIL(SNAIL1) 
Forward 5′-GGCAATTTAACAATGTCTGAAAAGG-3′ Primerdesign 

Reverse 5′-GAATAGTTCTGGGAGACACATCG-3′ Primerdesign 

SLUG(SNAIL2) 
Forward 5′-ACTCCGAAGCCAAATGACAA -3′ Primerdesign 

Reverse 5′-CTCTCTCTGTGGGTGTGTGT-3′ Primerdesign 

RT-PCR primers list: 

GAPDH 
Forward 5′-AGAGGCAGGGATGATGTTCT-3′ Self-designed 

Reverse 5′-TCTGCTGATGCCCCCATGTT-3′ Self-designed 

OCT4 
Forward 5′-GACAACAATGAAAATCTTCAGGAGA -3′ Self-designed 

Reverse 5′-TTCTGGCGCCGGTTACAGAACCA -3′ Self-designed 

NANOG 
Forward 5′-AGTCCCAAAGGCAAACAACCCACTTC -3′ Self-designed 

Reverse 5′-ATCTGCTGGAGGCTGAGGTATTTCTGTCTC-3′ Self-designed 

LIN28 
Forward 5′- AGTAAGCTGCACATGGAAGG -3′ Self-designed 

Reverse 5′- ATTGTGGCTCAATTCTGTGC -3′ Self-designed 

FOXD3 
Forward 5′- GTGAAGCCGCCTTACTCGTAC -3′ Self-designed 

Reverse 5′- CCGAAGCTCTGCATCATGAG -3′ Self-designed 

 
Table 2． Primerdesign is the supplier who supplied all these primers marked as 
‘Primerdesign’. GAPDH primers for real-time PCR are also supplied by Primerdesign.  

3.1.3.7 Reverse transcription PCR (RT-PCR) 

RT-PCR was used to check the expression of pluripotency-related genes. The 

sequences of forward and reverse primers of RT-PCR are shown in Table 2. By 

using the PCR kit (Sigma Aldrich), DNA fragments of pluripotency-related genes 

were amplified. The RT-PCR products were analyzed by gel electrophoresis on 

1.5% agarose gel.  

3.1.3.8 Statistical Analysis 

All results were presented as means + SD (standard deviation). Statistical 

differences between different samples were evaluated by Student’s t test, 



Unpublished data 

 59 

Differences were considered statistically significant when p values <= 0.05. 

3.1.4 Results  

3.1.4.1 Generation of HLHS-hiPSCs  

At first, HLHS patients’ fibroblasts were isolated and prepared for hiPSCs 

generation. There were no morphological differences between HLHS fibroblasts 

and healthy controls. During the reprogramming process, the efficiency of hiPSCs 

generation was not influenced severely by the patient’s pathological background 

in this study. The WT-hiPSCs were obtained from Prof. Dr. Kaomei Guan (Now 

Dresden), and had been utilized in previous published projects (WT1-hiPSCs, 

WT2-hiPSCs) (Dudek et al., 2013; Streckfuss-Bomeke et al., 2013).  

 

After HLHS-hiPSCs were established, pluripotency characterizations were 

performed according to the former studies (Dudek et al., 2013; 

Streckfuss-Bomeke et al., 2013). All HLHS-hiPSC lines showed typical stem 

cell-like morphology and were positive for alkaline phosphatase staining (figure3 

A). At RNA level, the expression of pluripotency-related genes including OCT4, 

NANOG, LIN28 and FOXD3, were compared to hESCs (figure3 B). At protein 

level, all the HLHS-hiPSC lines expressed pluripotency-related proteins: OCT4, 

SOX2, NANOG, LIN28, SSEA4 and TRA-1-60 (figure3 C). Furthermore, the 

HLHS-hiPSCs were able to differentiate into different cell types of the three 

embryonic germ layers in vitro. The differentiated cells were identified as positive 

for the markers AFP (endoderm), SMA (mesoderm), and β-III-TUBULIN 

(ectoderm), respectively (figure3 D). In summary, the HLHS-hiPSCs cell lines 

were pluripotent and were ready for endothelial cell differentiation.  
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Figure 3. Pluripotency characterization of HLHS-hiPSCs.  
HLHS–hiPSC lines were successfully generated from HLHS patient 1 and HLHS patient 
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2, named as HLHS1.1, HLHS1.2, HLHS2.1 and HLHS2.2. (A) All of the established 
HLHS-hiPSC lines at passage 8 showed typical stem cell colony shape and were positive 
for alkaline phosphatase. (B) The pluripotency-related genes OCT4, NANOG, LIN28 and 
FOXD3 were expressed in all HLHS-hiPSC lines. (C) HLHS-hiPSCs showed typical 
pluripotency-related proteins OCT4, SOX2, NANOG, LIN28 and SSEA4. Cell nucleus 
was stained with DAPI. (D) Immunofluorescence staining results showed the 
representative markers of endoderm (AFP), mesoderm (SMA) and ectoderm 
(β-III-TUBULIN) in all HLHS-hiPSC lines. Scale bar: 50 μm.  

3.1.4.2 Generation and characterization of HLHS-hiPSC-ECs and 
WT-hiPSC-ECs  

hiPSC-ECs were generated with the endothelial cell differentiation method as 

previously reported (Liu et al., 2016). HLHS-hiPSCs showed similar capabilities of 

endothelial cell differentiation with WT-hiPSCs. Briefly, the efficiency and duration 

of endothelial differentiation were not altered in HLHS-hiPSCs compared to 

WT-hiPSCs. For morphological features, HLHS-hiPSC-EC colonies presented a 

similar “cobblestone” arrangement as WT-hiPSC-ECs (figure4 A). Furthermore, 

immunofluorescence staining showed that both HLHS-hiPSC-ECs and 

WT-hiPSC-ECs highly expressed the specific markers of endothelial cells, e.g. 

CD31, VE-cadherin and VWF (figure4 A). At RNA level, HLHS-hiPSC-ECs and 

WT-hiPSC-ECs expressed typical RNA expression patterns of endothelial cells 

(figure4 B). Altogether, our results demonstrated that HLHS-hiPSC-ECs 

expressed specific markers of endothelial cells at RNA and protein level similar to 

WT-hiPSC-ECs (figure4 A and B).  
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Figure 4. Characterization of HLHS-hiPSC-ECs.  
(A) Immunofluorescence staining results showed that the representative markers of 
endothelial cells including CD31, VE-cadherin and VWF were expressed in the 
HLHS-hiPSC-ECs. Cell nucleus was stained with DAPI. Scale bar: 50 μm. (B) Expression 
of CD31, VE-cadherin and VWF at RNA level were checked with real-time PCR.  

3.1.4.3 Susceptibility of hiPSC-ECs to EndMT  

Disruption of endothelial cell development or pathological EndMT could contribute 

to the EFE tissue generation (Xu et al., 2015a). According to our hypothesis, if the 

HLHS-hiPSC-ECs are susceptible to TGFβ treatment, the expression of EndMT 

master regulator genes should be upregulated in TGFβ1 mediated EndMT assay 

comparing to WT-hiPSC-ECs. Here, TGFβ1 exposure for 6 days was used to 
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induce EndMT in both HLHS-hiPSC-ECs and WT-hiPSC-ECs (Xu et al., 2015b). 

Analysis of the gene expression of EndMT key regulators SNAIL and SLUG 

illustrated that there seems no obvious differences between HLHS-hiPSC-ECs 

and WT-hiPSC-ECs in response to TGFβ1, suggesting that HLHS-hiPSC-ECs are 

not more susceptible to TGFβ1 treatment with respect to EndMT (figure5 A).  

 

Hypoxic damage has been proven to be another pro-fibrotic factor which also 

induces EndMT. Hypoxic damage furthermore increases DNA damages, DNA 

replication arrest, and even genomic instability. Interestingly, genomic instability 

was demonstrated previously to be associated with HLHS in several case reports 

(Fakhro et al., 2011; Gaber et al., 2013). There is also evidence that the genomic 

instability could increase the susceptibility of the oxidative stress or other injuries 

(Gaber et al., 2013). In HLHS, HIF-1α has been found to translocate into the 

nucleus in left ventricle samples (Gaber et al., 2013). HIF-1α signaling pathway is 

also a crucial factor for the fetal heart development (Patterson and Zhang, 2010). 

To investigate the susceptibility to hypoxia-induced EndMT of HLHS-hiPSC-ECs, a 

hypoxia-mimetic agent was used to induce EndMT as has been previously 

described (Xu et al., 2015c). Briefly, 4 days of the chemical CoCl2 treatment was 

sufficient to mimic HIF-1 activation effectively by stabilizing HIF-1. The CoCl2 

mimetic hypoxia condition is similar to the hypoxic microenvironment in vivo (Dai et 

al., 2012; Zhou et al., 2004). The CoCl2 treatment of HLHS-hiPSC-ECs and 

WT-hiPSC-ECs showed a significant upregulation of EndMT key regulators when 

compared to normal condition (figure5 B). In addition, there seemed no observable 

differences of the gene expression of EndMT key regulators SNAIL and SLUG 

between HLHS-hiPSC-ECs and WT-hiPSC-ECs (figure5 B). 
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Figure 5. Susceptibility of HLHS-hiPSC-ECs to TGFβ1 treatment and hypoxia 
condition. (A) With the pro-fibrotic factor TGFβ1 treatment (final concentration 10 ng/ml), 
the expression of EndMT key regulators SNAIL and SLUG were similar between 
HLHS-hiPSC-ECs and WT-hiPSC-ECs. (B) CoCl2 (final concentration 400 M) was used 
for mimicking the hypoxia condition, it seemed no difference of the expression of EndMT 
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key regulators SNAIL and SLUG comparing HLHS-hiPSC-ECs to WT-hiPSC-ECs. 

3.1.5 Discussion  

Here, HLHS-hiPSCs were generated from fibroblasts of two individual HLHS 

patients, and further characterization showed that all HLHS-hiPSC lines were 

pluripotent and had the capability to differentiate into endothelial cells. Endothelial 

cells derived from WT-hiPSCs and HLHS-hiPSCs were used for further functional 

comparisons and mechanism studies. 

 

Development of fibrosis, like scarring process, is a repair mechanism for acute or 

chronic injuries (Krenning et al., 2010; Moncrieff et al., 2004; Weber, 2000). 

Previous studies confirmed that EndMT contribute to the progression of fibrosis in 

different organs, suggesting that EndMT could be the responsible source of 

fibroblast during EFE tissue formation (Krenning et al., 2010; Piera-Velazquez et 

al., 2011; Xu et al., 2015a). Many factors such as TGFβ and hypoxia also 

contribute to EndMT.  

 

To test the susceptibility of HLHS-hiPSC-ECs to TGFβ1 and hypoxia condition, 

EndMT assay was performed in this study. The results showed that 

HLHS-hiPSC-ECs were not significantly susceptible to TGFβ1 or hypoxia 

condition compared to WT-hiPSC-ECs. However, the aforementioned observation 

cannot be used to rule out the susceptibility of endothelial cells to pro-fibrotic 

factors in HLHS. The previous study revealed that higher expression levels of 

TGFβ1 was observed in myocardial samples of HLHS compared to the healthy 

control. It was also confirmed that TGFβ1 co-localized with fibroblast specific 

protein 1 (FSP1) in the hearts of HLHS patient (Gaber et al., 2013), which 

suggests that TGFβ1 still play an important role in EFE generation. In addition, it 

has been proved that the perturbed TGFβ1 might be caused by the aberrant 

secretion from damaged or abnormal cells (Hung et al., 2013). Particularly, 

malfunctioned cardiomyocytes may contribute to the accumulation of pro-fibrotic 
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factors, like TGFβ or chronic hypoxia condition (Bujak and Frangogiannis, 2007; 

Song and Wang, 2015). 

 

The HLHS-hiPSC disease model is only able to explain one aspect of phenotypes 

and molecular mechanisms. Generally, different endothelial cell lineages share 

the same molecular markers, e.g. CD31, VE-cadherin, and VWF. Therefore, the 

endothelial cells derived from hiPSCs show heterogeneity in this protocol (Liu et 

al., 2016). Furthermore, different endothelial cell lineages express their distinct 

gene expression patterns and possess unique biological characteristics. These 

limitations of hiPSC-ECs could have an impact on the EndMT assay, which might 

hide the susceptibility to TGFβ1 or hypoxia in HLHS samples.  
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4. Discussion  

Despite the cause of HLHS is still unknown, strong evidence propose that HLHS 

is a genetic disease (Grossfeld, 1999; Hinton et al., 2007; Iascone et al., 2012). 

Abnormal EndMT has been shown to contribute to the generation of EFE, which 

supposes that endothelial cell malfunctions may play an important role in the 

pathological development of heart in HLHS (Xu et al., 2015a). The purpose of this 

study is to analyze HLHS pathological disorder by using a patient-specific hiPSC 

system, and differentiate the patient-specific hiPSCs into endothelial cells for 

pathological analysis in vitro. At first, a highly efficient and simple protocol for the 

differentiation of endothelial cells was established. Furthermore, 

HLHS-hiPSC-ECs were generated and applied for further investigation of HLHS 

etiology.  

4.1 Establishment of a novel endothelial cell differentiation method  

Direct monolayer differentiation approach was established for endothelial cell 

differentiation in this study. Three steps, including mesoderm induction, 

endothelial cell differentiation and endothelial cell expansion, are involved in the 

differentiation of endothelial cells. During the first phase of endothelial cell 

differentiation, mesodermal cells were induced by the treatment of GSK3β 

inhibitor CHIR. The combinations of cytokines facilitate generation of endothelial 

cells by the activation of sequential endothelial cell differentiation cascades. After 

the generation of endothelial progenitor cells, complete endothelial cell growth 

medium was used for the acclimating progenitor cells into matured functional 

endothelial cells. In vitro functional characterizations of hiPSC-ECs further 

demonstrated that hiPSCs could be successfully differentiated into endothelial 

cells.  

 

Since hESCs were isolated for the first time, efforts for developing different 

somatic cell differentiation protocols have never ceased (Thomson et al., 1998). In 
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the beginning, a method with three-dimensional aggregates called embryoid body 

was used for the differentiation of various cell types, which undergo differentiation 

of three-germ lineages in vitro. Several reports have illustrated that generation of 

endothelial cells from iPSCs through embryoid bodies (EBs) formation is reliable 

(Choi et al., 2009; James et al., 2010; Li et al., 2009; Rufaihah et al., 2013; Yang 

et al., 2008). However, this three-dimensional method could give rise to some 

undesired cell types and low differentiation efficiency. In contrast, direct 

monolayer differentiation creates a controllable microenvironment and overcomes 

the disadvantages associated with the spontaneous differentiation approach 

using embryoid body. Monolayer differentiation of endothelial cells was then 

developed later to improve this approach (Li et al., 2011a; Li et al., 2009; Lian et 

al., 2014; Orlova et al., 2014) and showed many advantages compared to EB 

methods, such as time-saving and cost efficiency. Besides, in some of endothelial 

cell differentiation methods, endothelial cell progenitors were enriched by cell 

sorting and then differentiated into endothelial cells (Tatsumi et al., 2011; Yang et 

al., 2008). The process of enrichment is time-consuming and was soon replaced 

by direct differentiation method (Lian et al., 2014; Patsch et al., 2015; Sahara et 

al., 2014). Due to the optimization of different cytokines and chemicals, the 

efficiency and duration of direct endothelial cell differentiation increased 

significantly in the protocols published recently (Bao et al., 2015; Sahara et al., 

2014; Wu et al., 2015). Although there are several ready-to-use medium available 

now, it would be a large expenditure using of these commercial differentiation 

medium, which might be a limitation for their applications (Orlova et al., 2014; 

Patsch et al., 2015). Considering about all these pros and cons, medium and 

reagents used in this protocol was simplified and optimized. Therefore, a fast, 

high-efficiency and cost-effective endothelial cell differentiation protocol was 

established. 

 

In our protocol, to shrink the time expansion of differentiation, endothelial cells 

were enriched with only one-step of cell sorting within 10 days. Here, the 
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differentiation efficiency of endothelial cells was improved to be more than 80% by 

the indication of double positive of CD31 and VE-cadherin. Moreover, this 

protocol could provide a more efficient approach for the generation of endothelial 

cells subtypes. We speculate that after further refinement of the protocol with 

proper characterization and modulation of different cytokines, a novel method for 

enrichment of particular subtypes of endothelial cells, namely arterial, venous or 

lymphatic endothelial cells could also be developed.  

4.2 Modeling of HLHS by hiPSCs  

In HLHS, patients have different levels of the heart defects. In particular, 

undeveloped left ventricle phenotype is associated with other heart disease, like 

mitral valve atresia and heterotaxy defects (Lin et al., 2008). EFE is reported in 

some HLHS cases, and further evidence showed that EFE originates from 

aberrant EndMT (Xu et al., 2015a). Additionally, fetal left ventricle in HLHS patient 

shows a decrease of the cardiomyocyte population and an increase of the 

fibroblast population (Gaber et al., 2013; Jiang et al., 2014).  

 

For modeling the human cardiovascular diseases in vitro, hiPSCs provide a new 

method to recapitulate the complex pathophysiology of HLHS. Using the 

advantages of hiPSCs, HLHS-hiPSCs was used for modeling the cardiomyopathy 

in HLHS in several studies (Jiang et al., 2014; Kobayashi et al., 2014). It was 

reported that the properties and the gene expression profiles of HLHS-hiPSCs 

derived cardiomyocyte was perturbed by comparing with the cardiomyocyte from 

WT-hiPSCs, but the potential endothelial cell disorder was not addressed yet.  

 

In this study, fibroblasts were isolated from diagnosed HLHS patients, which could 

be used for hiPSCs generation. After the patient-specific fibroblasts were 

successfully reprogrammed to hiPSCs, which were sequentially differentiated into 

endothelial cells. hiPSC-ECs were characterized with the expression of specific 

markers. Thereafter, EndMT assays were carried on to test the susceptibility of 
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HLHS-hiPSC-ECs to TGFβ1 and hypoxia condition, the results revealed no 

differences between HLHS-hiPSC-ECs and WT-hiPSC-ECs. 

 

The hypothesis of susceptibility of HLHS-hiPSC-ECs to TGFβ1 and hypoxia 

condition could not be fully proved in this hiPSCs model. There could be some 

limitations of the hiPSCs derived endothelial cells. On one hand, hiPSC-ECs 

derived from this differentiation method contain a mixture of different subtypes of 

endothelial cells. It assumed that TGFβ1 or hypoxic condition could trigger the 

susceptibility in a specific endothelial subtype, e.g. endocardial endothelial cells. 

On the other hand, it is speculated that endothelial cell progenitors are not 

synchronously differentiated into endothelial cells at the same stage. In detail, the 

gene expression profile varies in the enriched endothelial cell populations. 

Furthermore, the hiPSC-ECs may be not mature enough compared to the 

endothelial cells in normal physiological conditions. Therefore, hiPSCs derived 

endothelial cells may not re-implement the susceptibility to TGFβ or hypoxia as we 

expected.  

 

For the further application, we provide a possibility of manipulating growth factors 

and chemicals for particular endothelial cell lineage generation. Treatment with 

the BMP4 and low level of VEGF, the generation of venous EC could be promoted. 

Stimulation with VEGF-C or Ang1 at the early stage could lead to lymphatic 

differentiation; beside, combination of BMP4, high level of VEGF concentration 

and cAMP were proven to enhance specific arterial EC differentiation (Atkins et al., 

2011a; Kume, 2010; Le Bras et al., 2010; Li et al., 2009; Rufaihah et al., 2013; 

Yamashita, 2007). Based on all of these findings, it might be possible to enrich 

one particular EC lineages in a controllable microenvironment, particularly the 

endocardial endothelial cells. 

 

Previous studies also reported gene mutations and CNVs in HLHS cases, which 

are associated with the gene regulatory pathways of EndMT or cardiac 
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development (Gioli-Pereira et al., 2010; Hitz et al., 2012; Silversides et al., 2012; 

Stallmeyer et al., 2010; Zhao et al., 2015). In this study, the patient HLHS1 was 

identified with mutations in two genes including GSE1 and LRP6, while gene 

mutations were not found in another patient HLHS2 in former studies. Although 

several reported genetic mutations in HLHS, it is still unclear if these genetic 

mutations are responsible for disease progression or as non-disease-causing 

single nucleotide polymorphisms (SNPs). The interactions between these gene 

mutations and TGFβ1 or TGFβ1 induced EndMT require further investigations. 

According to the existential viewpoint, one of the reasonable explanations of 

HLHS malformation could result from the changes in the gene background 

combined with the toxic environmental factors (Benson et al., 2016; Grossfeld, 

2007a; Grossfeld et al., 2009; Grossfeld, 2007b; Hinton et al., 2007).  
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5. Conclusion and future perspectives  

A simple and highly efficient differentiation method of functional endothelial cell 

from hiPSCs was established. HLHS-hiPSC lines were demonstrated to be 

pluripotent and differentiated into functional endothelial cells. There was no 

differences in susceptibility to TGFβ1 or hypoxia condition comparing 

HLHS-hiPSC-ECs with WT-hiPSC-ECs.  

 

In future studies, new differentiation protocols of specific subtypes of endothelial 

cell including the arterial, venous and lymphatic endothelial cells may be 

established based on current protocols. The pathological mechanisms of HLHS 

require individual assessment on a case-by-case basis. The development of 

precise medicine is becoming an option for the understanding of HLHS. 

Understanding of the genetic basis of HLHS would be achieved with the 

development of better analytical tools and more functional disease models.  
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