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ABSTRACT 

Abstract 

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe hereditary 

cardiac ion-channel disease, which is caused by mutations in ryanodine receptor 2 (RYR2) 

or calsequestrin 2 (CASQ2). After β-adrenergic stimulation, these mutations lead to 

unwanted Ca2+ release from the sarcoplasmic reticulum (SR), which can cause life 

threatening arrhythmias, and sudden cardiac death. However, the underlying 

mechanisms how exactly point mutations in RYR2 induce arrhythmias have not been 

completely understood. Aim of this project was to establish in vitro disease models using 

human induced pluripotent stem cells (hiPSCs) as unlimited source for cardiomyocytes 

(CMs) and to study the molecular mechanism of CPVT.  

In this study, hiPSCs were generated from three patients with CPVT symptoms caused by 

the heterozygous point mutations, A2254V and E4076K, in the gene RYR2. The generated 

hiPSCs showed pluripotency and were able to differentiate spontaneously into derivatives 

of all three germ layers. CPVT-hiPSCs and Ctrl-hiPSCs from healthy subjects were directly 

differentiated into functional ventricular CMs and tested for their purity by their 

expression of cardiac-specific marker proteins. Allele-specific sequencing showed 

balanced allelic expression of the disease-causing allele and healthy allele of RYR2 in 

CPVT-CMs. Western blot analysis showed that CPVT-CMs expressed similar levels of RYR2 

in comparison to Ctrl-CMs. RYR2 phosphorylation (Ser2808, Ser2814) was not altered in 

CPVT-CMs carrying mutations R420W, A2254V and E4076K at basal or isoprenaline-

stimulated conditions when compared to Ctrl-CMs. This result refutes the hypothesis that 

stress induces hyperphosphorylation of RYR2 due to missense mutations in the RYR2 

gene, at least not in CPVT-CMs with the mutations analyzed.  

Furthermore, the CRISPR/Cas9 system was utilized for genome editing in hiPSCs. 

Homogeneous as well as heterogeneous CRISPR/Cas9-edited hiPSCs were generated and 

differentiated into CMs. CMs derived from RYR2+/Ø-T42-hiPSCs, which contain a 

heterogeneous deletion of 17 bps in the RYR2 gene leading to a premature termination 

codon, manifested downregulated mRNA expression of the CPVT-causing allele. However, 

RYR2 expression in RYR2+/Ø-T42-CMs was not altered and comparable to CPVT-CMs. 

Moreover, RYR2+/Ø-T42-CMs showed significantly reduced Ca2+ sparks, which were 

comparable to Ctrl-CMs, suggesting a potential healthy phenotype of CRISPR/Cas9-edited 

RYR2+/Ø-T42-CMs. In contrast, CRISPR/Cas9-edited CMs with a homozygous deletion in 

RYR2 (RYR2Ø/Ø-A3-CMs) showed normal RYR2 mRNA expression but no expression of the 

RYR2 protein. Interestingly, RYR2Ø/Ø-A3-CMs showed nearly no SR Ca2+ leak due to the 

missing RYR2 protein.   
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Taken together, the data demonstrate that patient-specific hiPSCs can be used to model 

CPVT. In CPVT-CMs with the mutations analyzed, the Ca2+ leak is not due to stress-

induced hyperphosphorylation of RYR2. Knockdown of the CPVT-causing RYR2 allele can 

rescue, at least partially, the disease phenotype in CPVT-CMs. In addition, the data 

suggest that RYR2 is not required for the initiation of differentiation from hiPSCs into 

CMs.  
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1- INTRODUCTION 

1 Introduction 

1.1 Catecholaminergic polymorphic ventricular tachycardia  

1.1.1 Clinical profile of catecholaminergic polymorphic ventricular tachycardia  

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe inheritable 

cardiac disorder associated with life-threatening cardiac arrhythmias, syncope, seizures or 

sudden cardiac death in response to physical exercise or emotional stress (Coumel et al., 

1978,; Jiang et al., 2002b). The prevalence of CPVT is estimated as 1:10,000 but its actual 

frequency in the general population is unknown (Faggioni and Knollmann, 2012). When 

the disease is untreated, approximately 30% of the affected subjects will develop 

symptoms before the age of 10 years and the majority of patients will have one or more 

arrhythmic patterns before age 40 (Leenhardt et al., 1995; Postma et al., 2005). Patients 

with CPVT have a structurally normal heart and normal 12-lead electrocardiography (ECG) 

recording at resting conditions (Leenhardt et al., 1995). Diagnosis of CPVT is 

demonstrated by ventricular arrhythmias such as bidirectional ventricular tachycardia 

(VT) during ECG recording with exercise testing. Due to the catecholamine induced 

phenotype of the disease, intravenous epinephrine infusion is used to aid the diagnosis of 

CPVT (Sy et al., 2011). In addition, screening for genetic mutations in cardiac genes 

associated with CPVT is often necessary for a correct diagnosis and an optimal therapy. 

In the first step of therapy, CPVT patients should avoid exhausting exercise and stress. To 

reduce arrhythmic events, β-blockers such as nadolol, which is a non- selective β-blocker, 

or metoprolol and bisoprolol, cardioselective β1-adenergic receptor blockers, are given as 

first-line treatment therapy. However, up to 40% of CPVT patients suffer again from 

cardiac events during long-lasting treatments with β-blockers (van der Werf et al., 2012). 

Administration of anti-arrhythmic drugs such as flecainide is the next step to suppress 

exercise-induced ventricular arrhythmias during therapy (van der Werf et al., 2011). 

Flecainide works by blocking the Nav1.5 sodium channel in the heart, slowing the 

upstroke of the cardiac action potential (AP) (Kvam et al., 1984; Ramos and O'Leary, 

2004). Moreover, flecainide inhibits opening of potassium channels, especially the rapid 

component of the delayed rectifier K+ current (IKr) which prolongs the action potential 

duration (APD) in ventricular and atrial muscle fibers (Campbell and Vaughan, 1983). 

Recent data suggest that flecainide also blocks ryanodine receptor (RYR) opening, thereby 

reducing spontaneous sarcoplasmic reticulum (SR) calcium (Ca2+) release, which 

potentially results in delayed afterdepolarization (DADs) and triggered activity (Watanabe 

et al., 2009; Liu et al., 2011). In new antiarrhythmic approaches Rycals such as JTV-519, 
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S36 and S107 are used, which are 1,4-benzothiazepine derivatives that stabilize 

complexes of RYR and FK506-binding proteins (FKBP12.6) to prevent unwanted Ca2+ 

release (Yano et al., 2003; Wehrens et al., 2004a; Shan et al., 2012; Mohamed et al., 

2015).  

Most CPVT cases are predominantly linked to autosomal dominant point mutations in the 

RYR2 gene encoding the cardiac ryanodine receptor 2 (named CPVT1) or the autosomal 

recessive mutation in the gene encoding calsequestrin 2 (CASQ2) (named CPVT2) 

(Laitinen et al., 2003). Recently, mutations in the cardiac genes encoding calmodulin 

(CALM1)  and triadin (TRDN) were also linked to CPVT (Nyegaard et al., 2012; Rooryck et 

al., 2015). Both autosomal dominant and autosomal recessive mutations alter the Ca2+ 

homeostasis of cardiomyocytes (CMs), thereby leading to ventricular arrhythmia.  

1.1.2 Ryanodine receptors in the context of CPVT 

RYRs are the largest known ion channels and mostly known for their important regulatory 

role in Ca2+ signaling that is essential for muscle contraction. The RYR protein is located in 

the transmembrane and forms homotetrameric assemblies with a total molecular mass of 

2.2 MDa. Each monomer consists of ∼5,000 amino acid (aa) residues from which 

approximately 4,300 aa forming the large cytosolic domain while ∼500 aa are located in 

the membrane at the C-terminal region (Inui et al., 1987; Lai et al., 1988). In mammalians, 

RYRs are expressed in a wide variety of cell types, including CMs, skeletal muscle cells, 

neurons, exocrine cells, epithelial cells, lymphocytes, and many other cell types (Lanner et 

al., 2010). RYRs are named after the plant alkaloid ryanodine that binds with high affinity 

to the receptor and blocks its opening at high concentrations (Meissner, 1986). Three 

different isoforms (RYR1–3) have been identified, which share about 65% sequence 

identity. RYR1 is widely expressed in skeletal muscle (Takeshima et al., 1989). RYR2 is 

primarily found in the heart (Nakai et al., 1990), and RYR3 was originally identified in the 

brain in hippocampal neurons (Hakamata et al., 1992), although each isoform is found in 

lower amounts in several cell types. The cardiac RYR2 plays a central role in excitation-

contraction coupling (ECC) of CMs. In this process, an action potential depolarizes the 

membrane and causes the release of Ca2+ ions from SR Ca2+ stores via RYR2, which then 

bind to the myofilaments to initiate contraction (systole). Following contraction, Ca2+ is 

pumped back into the SR by the Ca2+ ATPase SERCA (sarco/endoplasmic reticulum Ca2+-

ATPase) inducing relaxation (diastole), which is essential for refilling the ventricles with 

blood (Fig. 1). In response to β-adrenergic stimulation during stress or exercise, one key 

feature of CPVT implies spontaneous aberrant efflux of Ca2+ escaping the SR via RYR2 

during diastole. Increasing levels of intracellular Ca2+ gradually depolarize the membrane 
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potential by activation of Na+/Ca2+ exchanger (NCX) and generate triggered early after 

depolarizations (EADs) or delayed after depolarizations (DADs). If the membrane potential 

reaches the threshold, a premature full AP is generated which in turn leads to severe 

arrhythmias.  For the precise modulation of the channel gating, RYR2 associates with 

numerous binding proteins in the large cytosolic part including FKBP12.6, which stabilizes 

the receptor and calmodulin (CaM) and sorcin, which are calcium-binding proteins. On 

the luminal side, RYR2 binds to CASQ2, which is the major calcium storage protein in the 

SR, as well as junctin and triadin, which interact with CASQ2, thereby, forming the 

combined SR calcium release unit (CRU) (Fig. 2). In vitro studies showed that RYR2 and 

CASQ2 mutations induce CRUs to open spontaneously, thereby, leading to intracellular 

Ca2+ overload, which in turn could trigger EADs (Paavola et al., 2007; Kujala et al., 2012)  

or DADs (Paavola et al., 2007). 

 

 
Figure 1. Ca2+-induced Ca2+ release and triggered arrhythmias.  When CMs are depolarized by an 
AP, Ca2+ ions enter the cell through activated voltage-gated L-type Ca2+ channels (LTCC) located on 
the sarcolemma. A small amount of Ca2+ enters the SR and triggers a subsequent release of 
calcium that is stored in the SR through RYR2 by Ca2+-induced Ca2+ release (CICR, blue). Ca2+ 
released from the SR increases the intracellular Ca2+ concentration and free Ca2+ binds to troponin 
C that is attached to thin myofilaments and induces contraction. Relaxation is achieved by 
lowering the Ca2+ levels to diastolic values by SERCA for reuptake into the SR and by NCX that 
transports Ca2+ out of the cell. During stress situations, β-adrenergic signaling is activated leading 
to elevated levels of cAMP. cAMP functions as second messenger and activates protein kinase A 
(PKA). Besides RYR2, PKA phosphorylates phospholamban (PLB) and LTCC, causing an increased 
Ca2+ uptake in the SR. When the threshold is passed, store overload-induced Ca2+ release occurs. 
Abnormal Ca2+ release can activate NCX which then may lead to DADs and arrhythmias (Modified 
from Priori and Chen, 2011). 
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1.1.3 Mechanisms of CPVT 

To date more than 150 CPVT-associated RYR2 mutations have been identified. Most RYR2 

mutations were found as clusters in the four hot-spot regions called domain I/a (aa 44-

466), II/b (aa 2246-2534), III/c (aa 3778-4201), und IV/ d (aa 4497-4959) (Priori and Chen, 

2011) (Fig. 2). However, exact mechanisms how different point mutations in RYR2 induce 

arrhythmias are not well defined. Several potential mechanisms have been proposed to 

explain why mutations in RYR2 channels lead to excessive release of Ca2+ during diastole, 

thereby causing life threatening arrhythmias. First, Jiang et al. proposed that CPVT 

mutations may lower the threshold for spontaneous Ca2+ release. After adrenergic 

stimulation, the concentration of SR free Ca2+ ([Ca2+]SR) is physiologically increased. 

When [Ca2+]SR reaches a critical threshold, RYR2 opens and spontaneous Ca2+ release can 

happen even in the presence of normal channels. This process is called store overload 

induced Ca2+ release (SOICR) (Fernandez-Velasco et al., 2009). 

 
Figure 2. Structure of RYR2 including hot-spot regions of mutations. The schematic illustration 
shows the 2D-structure of a single RYR2 monomer, including interaction sites with ancillary 
proteins, phosphorylation sites, and clusters of registered mutations called “hot-spot” domains.  
On the cytosolic part, RYR2 interacts with the protein phosphatases PP1 and PP2A, FKBP12.6 also 
called calstabin2, PKA, and CaM. The membrane proteins junctin and triadin are closely associated 
to the C-terminal part of RYR2 and regulate the Ca2+ levels by binding to CASQ2. Clusters of 
mutations in RYR2 are represented by violet lines and located at four “hot-spot” regions, which 
are named a/I (N-terminal), b/II (cytosolic), c/III (cytosolic), and d/IV (channel region) (Modified 
from Priori and Napolitano, 2005).  
 

Moreover, CMs harboring RYR2 mutations present higher spontaneous Ca2+ release 

during diastole due to a dramatic increase in Ca2+ sensitivity of the RYR2 (Jiang et al., 

2004; Fernandez-Velasco et al., 2009). More recently, studies demonstrated that RYR2 

acts as sensor and is responsible for Ca2+ storage of the luminal Ca2+ and SOICR.  
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Furthermore, defective RYR2 inter-domain interactions were reported to trigger CPVT 

episodes. In this scheme, mutated RYR2 channels are believed to get hyperactive due to 

defective inter-domain interactions that “zip” N-terminal and central regions of RYR2, 

thereby causing diastolic Ca2+ leakage (Ikemoto and Yamamoto, 2002; Tateishi et al., 

2009). 

One important regulator of RYR2 is the 12 kDa protein FKBP12.6 which binds to RYR2, 

thereby stabilizing the closed state during diastole to prevent Ca2+ release from the SR. 

Former studies supposed that mutant RYR2 channels have a decreased binding affinity to 

FKBP12.6 which might cause triggered activity of RYR2 (Marx et al., 2000; Wehrens et al., 

2004a). However, this mechanism seems to be mutation-specific because other studies 

showed normal interaction of mutated RYR2 with FKBP12.6 (George et al., 2003). Protein 

kinases such as protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) play important roles in the calcium homeostasis by phosphorylating Ca2+ 

regulatory proteins such as phospholamban (PLB) and RYR2. Alterations of 

phosphorylation could alter the function of RYR2 channel leading to cardiac diseases, 

heart failure, and arrhythmias by enhanced Ca2+ leak. For this reason, another hypothesis 

supposed that hyperphosphorylation and loss of phosphatases is responsible for the 

increased Ca2+ leak. Increased phosphorylation could lead to dissociation of FKBP12.6 

from RYR2, thereby causing hyperactive leaky channels (Marx et al., 2000; Wehrens et al., 

2006; Shan et al., 2010). Currently, RYR2 has three well-defined phosphorylation sites, 

Ser2030, Ser2808,  and Ser2814 (Ser2809 and Ser2815 in rabbit) although there might be 

others (Rodriguez et al., 2003; Xiao et al., 2005). The degree of basal phosphorylation 

depends on a dynamic balance between multiple protein kinases and phosphatases 

(Heijman et al., 2013). Ser2808 and Ser2030 are mainly phosphorylated by PKA (Marx et 

al., 2000; Xiao et al., 2006). CaMKII regulates predominantly phosphorylation of RYR2 

residue Ser2814 (Wehrens et al., 2004b). It is also likely that other serine/threonine 

kinases can phosphorylate RYR2 (Ather et al., 2013; Marx and Marks, 2013). Protein 

phosphatases PP1 and PP2A associate with RYR2 via the anchoring proteins spinophilin 

and PR130, respectively, thereby regulating dephosphorylation of RYR2 (Marx et al., 

2001). Current studies had controversial results regarding the phosphorylation status of 

distinct sites in different disease model systems (mouse, rabbit, human) and the role of 

RYR2 phosphorylation and dephosphorylation seems to be very complex.  

The majority of CPVT-linked RYR2 mutations generate hyperactive leaky channels, also 

called “gain-of-function”, but hypoactive channels with decreased open probabilities 

were also reported and named “loss-of-function”. Examples for RYR2 mutations causing 

gain-of-function include among several others:  R176Q  and L433P located in the N-

terminal region; S2246L and R2474S located in the central region; as well as S4153R, 
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Q4201R and I4867M located in the C-terminal region (Jiang et al., 2005; Zhabyeyev et al., 

2013). HEK293 cells expressing recombinant RYR2, including these mutations, displayed 

enhanced propensity for spontaneous Ca2+ release and reduced threshold for SOICR, 

which are common features of CPVT-linked gain-of-function RYR2 mutations (Jiang et al., 

2005).  

In contrast, heterozygous Ryr2 mutations A4860G and I4855M are described as loss-of-

function mutation in mice. Ventricular myocytes isolated from mice carrying the Ryr2 

mutation A4860G have constitutively lower Ca2+ release than WT mice, and undergo 

apparently random episodes of prolonged systolic Ca2+ release upon β-adrenergic 

stimulation, which give rise to EADs (Jiang et al., 2007; Zhao et al., 2015). HEK293 cells 

expressing recombinant RYR2-I4855M exhibited inhibited caffeine-induced Ca2+ release 

(Roston et al., 2016). The closely located Ryr2 mutation E4782Q completely protects 

against SOICR-induced arrhythmias in a CPVT mouse model harboring the disease-causing 

Ryr2 mutation R4496C (Chen et al., 2014).  

1.2 Induced pluripotent stem cells  

The human induced pluripotent stem cell (hiPSC) technology provides a powerful tool in 

which somatic cells are reprogrammed with pluripotent associated transcription factors 

into a pluripotent state with unlimited proliferation and differentiation ability (Takahashi 

et al., 2007) (Fig. 3). The first set of reprogramming factors was composed of OCT4 

(octamer-binding transcription factor 4), SOX2 (sex determining region Y box 2), KLF4 

(Krüppel-like factor 4) and C-MYC (v-Myc myelocytomatosis avian viral oncogene 

homolog) and introduced by retroviral and lentiviral transduction methods (Takahashi et 

al., 2007). Other combinations such as OCT4, SOX2, NANOG and LIN28 were also 

sufficient to induce pluripotency (Yu et al., 2007). HiPSCs have quite similar properties to 

human embryonic stem cells (hESCs) in terms of morphology, proliferation ability, surface 

marker, gene expression, promoter activities and telomerase activity (Takahashi et al., 

2007). Like hESCs, hiPSCs can differentiate in vitro into derivatives of all three primary 

germ layers (ectoderm, mesoderm, and endoderm) and form teratoma following 

subcutaneous injection into immunodeficient mice (Takahashi et al., 2007). In contrast to 

hESCs, which are derived from the inner cell mass of developing embryos, hiPSCs do not 

give rise to ethical concerns and have the potential for future clinical transplantations. 

Until now, several reprogramming techniques were developed including viral-mediated 

transgene overexpression and viral-independent approaches such as plasmids, episomal, 

protein or mRNA-mediated overexpression (Stadtfeld et al., 2008; Kim et al., 2009; Jia et 

al., 2010; Warren et al., 2010).  
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Figure 3. Generation of patient-specific hiPSCs for disease modeling and drug screening. HiPSCs 
can be generated from patient-specific somatic cells and then transformed into specialized cells 
by directed differentiation. In vitro differentiated human cells provide an easy accessible source 
for applications in disease modeling to study the molecular phenotypes of diseases, or for 
screening assays that enable drug discovery as well as toxicity tests for various somatic sells. 
These applications can enrich the knowledge of new drugs to improve therapies of serious 
diseases (Bellin et al., 2012).  

 

High throughput and efficient generation of hiPSCs can be achieved by the usage of the 

single polycistronic lentiviral vector STEMCCA that compromises the four reprogramming 

factors in a single plasmid (Sommer et al., 2009). However, retroviruses and lentiviruses 

integrate into the cell genome and can interfere with the coding sequence, thus affecting 

transcription and protein function. Another serious problem is the gene set itself, which is 

used for reprogramming, because it could induce spontaneous tumor formation in case of 

future clinical administration. The expression of OCT4, SOX2, KLF4, and C–MYC is 

associated with the development of multiple tumors known in oncogenetics (Okita et al., 

2007; Ben-Porath et al., 2008). Expression of C-MYC is observed in 70% of human cancers 

(Kuttler and Mai, 2006). For this reason, it is not possible to use hiPSCs generated with 

lenti- or retroviruses in future clinical applications for cell replacement therapies.  

Currently, integration-free techniques for reprogramming such as Sendai virus (SeV) are 

commonly preferred. The F-deficient SeV is a non-transmissible, negative sense, single-

stranded RNA virus, which replicates in the cytoplasm of targeted cells without 

integrating into the host genome (Fusaki et al., 2009a). Nevertheless, transductions with 

SeV are expensive and require more biosafety standards compared to non-viral methods. 

Moreover, viral material persists for longer periods in cell culture. The latest integration-

free as well as cost-effective method is the CoMiP vector system that compromises all 4 

reprogramming factors in one plasmid and overcomes the problem of viral material 
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(Diecke et al., 2015). Various chemical substances, such as valproic acid, which is a 

histone acetylase inhibitor, were applied to enhance reprogramming efficiency 

(Huangfu et al., 2008). In addition, recent studies showed that supplementary nutrition 

factors, such as sodium butyrate and ascorbic acid, contribute to reprogramming 

efficiency and hiPSC quality (Esteban et al., 2010; Mali et al., 2010). With the use of 

different methods, various cell types were effectively reprogrammed, including 

mesenchymal stem cells (MSCs), fibroblasts, peripheral blood mononuclear cells (PBMCs), 

and keratinocytes (Churko et al., 2013). Reprogramming of MSCs into hiPSCs is more 

efficient compared to the usage of fibroblasts or keratinocytes (Streckfuss-Bomeke et al., 

2013). However, it is more difficult to obtain MSCs from patients compared to other cell 

sources.  

In the first years of hiPSC research, culture media for derivation and expansion of hiPSCs 

was based on culture conditions for hESCs. These conditions include the cultivation of 

hiPSCs on murine-derived feeder cells in combination with medium containing knockout 

serum replacement. Preparation of feeder cells requires significant time and effort, and 

they are cultured in fetal bovine serum (FBS)-containing medium, which has often large 

batch-to-batch variations. In the last years, feeder-free culture systems for hESCs and 

hiPSCs were developed to prevent spontaneous and unwanted differentiation during 

cultivation on feeder cells, thus improving the quality of conventional culture systems. 

Feeder cells were replaced by various matrices such as Matrigel, CELLstart, Geltrex and 

recombinant proteins such as vitronectin and laminin as well as synthetic polymers  

(Rodin et al., 2010; Chen et al., 2011b; Stover and Schwartz, 2011). Chemically defined 

media are nowadays commercially available, including in particular TeSR2, Essential 8 (E8) 

medium, and NutriStem (Chen et al., 2014). 

1.2.1 Modeling diseases with human pluripotent stem cells 

Reprogramming of cells obtained from patients into hiPSCs opens many possibilities for 

disease modeling. Patient-specific hiPSCs retain the genetic characteristics of their donors 

which enable the study of genotype-dependent disorders at cellular and molecular levels. 

In the last years, hiPSCs as well as hESCs were used to investigate various severe genetic 

diseases and brought new cellular and molecular mechanisms as well as genetic 

phenotypes forward.   

Genetic diseases can be divided into different types such as monogenetic, chromosomal, 

and complex diseases. Monogenetic diseases develop from mutations in single genes, 

whereas chromosomal diseases arise from either loss or addition of whole chromosomes 

or parts of it. Complex disorders originate from alterations in different genes or have an 
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unknown genetic cause. Diseases from all three types were successfully modeled using 

hiPSCs. Monogenetic diseases include among others the Lesh-Nyhan disease and the 

fragile X syndrome (Urbach et al., 2004; Eiges et al., 2007). Chromosomal diseases include 

modeling of the Turner and Down syndrome and examples for complex disorders are 

autism spectrum disorder and schizophrenia (Urbach and Benvenisty, 2009; Brennand et 

al., 2011; DeRosa et al., 2012; Briggs et al., 2013). Especially for early onset diseases, 

which occur during fetal development and childhood, hiPSC models are well suited 

because several differentiated cell types from hiPSCs resemble more an embryonic rather 

than an adult phenotype. Modeling of late onset diseases, such as Alzheimer disease, is 

more difficult and cellular maturation as well as ageing must be enhanced using 

sophisticated differentiation protocols or longer culture periods (Studer et al., 2015). 

In the last years, hiPSC technology gained strong attraction for cardiovascular medicine 

due to limited numbers of well-suited disease models. CMs isolated from patient biopsies 

can be used as tools but cardiac cells are difficult to obtain in adequate quantities and 

cannot be kept in culture for prolonged time periods or expanded in vitro. Rodent models 

carrying mutations causing cardiac diseases are actively used as alternative model to 

study mechanisms of diseases (Salama and London, 2007; Zaragoza et al., 2011). 

However, these models have some restrictions due to differences in cardiovascular 

physiology between rodents and humans, such as distinct physiological beating rates 

(~600 beats per minute in mice), repolarization phase of action potentials, and ion 

channel composition. Due to the same genetic background in rodent models, their use is 

limited for disease models because animal models can often not explain why patients 

carrying similar disease-causing mutations vary remarkable in their phenotype severity 

and drug response.  

These obstacles can be overcome by modeling heart diseases with patient-derived hiPSCs 

that are directly differentiated into large quantities of CMs. In 2010, the LEOPARD 

syndrome was modeled as first heart disease using patient-derived hiPSCs which were 

differentiated into CMs (Carvajal-Vergara et al., 2010). The following years, several 

inherited cardiac arrhythmogenic disorders, such as different subtypes of the long-QT 

syndrome (LQTS), Brugada syndrome and CPVT, were analyzed regarding their disease 

phenotypes and drug rescue (Moretti et al., 2010; Itzhaki et al., 2011a; Itzhaki et al., 2012; 

Kujala et al., 2012; Caspi et al., 2013; Cerrone et al., 2014). To investigate the phenotype 

of these channelopathies, electrical properties of cardiomyocytes can be measured by 

multielectrode arrays (MEAs) and patch clamp recordings and compared to CMs derived 

from healthy subjects. Disorders that cause defective structures, contractility and survival 

including dilated cardiomyopathy, hypertrophic cardiomyopathy, Barth syndrome and 
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arrhythmogenic right ventricular dysplasia (ARVD), have been also modeled (Sun et al., 

2012; Caspi et al., 2013; Dudek et al., 2013; Lan et al., 2013). 

Besides the advantages of hiPSC-based disease models, hiPSC-derived CMs are often 

criticized due to their immature phenotype resembling embryonic CMs when compared 

with native CMs in regards to molecular, structural, metabolic, and functional aspects. 

HiPSC- and hESC-derived CMs cultured in 2D-culture are much smaller in size, round or 

multangular in shape, and have often a more flattened structure when compared with 

adult CMs. Proportional to their smaller cell surface area, hiPSC-derived CMs have lower 

membrane capacitance with 49-68±6.89 pF (Stauske et al. unpublished data) in 

comparison to adult ventricular CMs that have approximately 150 pF (Drouin et al., 1995; 

Zhu et al., 2010). In addition, ultrastructure studies revealed that hiPSC-derived CMs lack 

a fully developed transverse tubule system and have disorganized shorter sarcomeres 

(Lieu et al., 2009; Gherghiceanu et al., 2011). Electrophysiological differences include 

spontaneous contraction, less negative maximum diastolic membrane potential, low 

maximal upstroke velocity and prolonged APD compared with adult CMs that do not 

contract spontaneously. Differences were also found in gene expression and cell function. 

For example, hiPSC-derived CMs have lower amounts of mitochondria which are located 

in the perinuclear region while adult CMs have randomly distributed mitochondria which 

occupy about 20-40% of the cell volume (Zhang et al., 2015). Transcriptome analysis 

reported that gene expression of hiPSC-derived CMs was similar to the first trisemester of 

the human fetal heart (van den Berg et al., 2015). Expression of MYH6 (α-MHC), TNNT1 

(fetal ssTNI) and titin isoform N2BA predominates in hiPSC-derived CMs while MYH7 (β-

MHC), TNNI3 (cTNI) and titin isoform N2B are expressed mainly in adult CMs (Denning et 

al., 2016). 

Prolonged culturing periods of hiPSC-derived CMs (80-120 days) demonstrated 

electrophysiological phenotype maturation with more hyperpolarized diastolic potential, 

faster upstroke velocity, increased connexin 43 (CX43) expression, and higher rates of 

calcium release and uptake (Lundy et al., 2013). Adding of supplements such as 

triiodothyronine, which is important for cardiac development, during prolonged culture 

periods increased the maturation of CMs including enhanced oxygen consumption and 

force development (Yang et al., 2014). In addition, electrical stimulation with 1 Hz for 14 

days mimicked fetal heart development and promoted the maturation of hiPSC-derived 

CMs. The increased maturation status was recognized by the upregulation of the 

potassium channel KIR2.1 and sacromeric proteins, the maturation of the AP shape, the 

increased number of quiescent cells and mature Ca2+ handling properties (Lieu et al., 

2013). In another study, maturation was enhanced when fetal CMs were cultured in a 
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3D-matrix and subjected to mechanical stress (Zimmermann et al., 2002; Soong et al., 

2012). 

Nevertheless, complex mechanisms of terminal differentiation are far from being fully 

understood and the achieved increased maturation of hiPSC-CMs is still more similar to 

the fetal–like phenotype, than to adult CMs. However, several studies of cardiac disease 

modeling showed that hiPSC-derived CMs work fine as additional tools for human 

models, but cannot replace completely in vivo studies using animal models. As mentioned 

before, animal models have also large limitations when they are used for studying human 

phenotypes.  

1.2.2 Drug screening and cardiac toxicity tests using hiPSCs 

Conventional drug studies use animal models and artificial manipulated cell systems to 

screen drugs for monogenic diseases, cancer, neurodegenerative diseases, congenital 

heart diseases as well as cardiovascular diseases (Rubin and Haston, 2011). Interestingly, 

95% of new drugs, which were screened using artificial manipulated cells, were 

withdrawn due to off-target effects and cardiac toxicity (Munos, 2009). During the last 

decades of extensive research in the field of cardiovascular medicine, few inventions have 

significantly improved the survival of heart failure patients (Chandrasekera and Pippin, 

2015). The commonly prescribed treatments, such as β-adrenergic receptor blockers, act 

mainly by delayering the disease progression and could have severe side effects such as 

fainting, seizures or brachycardia (Gersh et al., 2011; Frishman, 2013). Current cardiac 

toxicity tests use mostly animal models or immortalized human cell lines overexpressing 

recombinant human Ether-à-go-go-Related Gene (hERG) channel to evaluate drug-

induced blockade of membrane channels leading to side effects of candidate drugs. 

Inhibition of hERG activity is the major cause for drug-induced arrhythmias and cardiac 

arrest because its inhibition causes LQTS which manifests by elongation of the QT 

interval. However, hERG assays have several limitations because the waveform of cardiac 

APs results from ions crossing the plasma membrane through a variety of other ion 

channels. Evaluation of APs from cell lines expressing recombinant hERG channels is not 

accurate enough for the recapitulation of the complex channel biology. Furthermore, 

recombinant expression systems are not able to mimic all side effects of drug candidates 

such as occurrence of organ toxicity. Until now hiPSC-derived CMs are the closed 

substitutes for human cardiac cells and thus appear to be a more predictive model for 

human cardiac toxicity. Comparative studies of hiPSC-derived CMs and hERG expressing 

HEK293 cells demonstrated that hiPSC-CMs were able to predict cardiac toxicity of 

multiple drugs including verapamil and alfuzosin in same efficiencies as their traditional 
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counterparts (Liang et al., 2013). These data suggest that hiPSC-derived CMs are able to 

function as advanced model for the prediction of cardiac toxicity. Moreover, 

high-throughput platforms such as automatic robotic patch clamp and MEA systems can 

be used to screen large chemical libraries simultaneously in 96- or 384-formats for the 

discovery of novel drugs.  

Recent studies of hiPSC-derived CMs from CPVT patients showed that the drug 

dantrolene, which was former administrated as muscle relaxant for the treatment of 

malignant hyperthermia, is able to prevent DADs in hiPSC-CMs from CPVT patients by 

restoring normal Ca2+ handling (Jung et al., 2012; Penttinen et al., 2015). Other studies 

with hiPSC-derived patient-CMs having mutations in lamin A/C (LMNA) showed that the 

cancer drugs U0126 and selumetinib block the MEK1 pathway, thereby improving the cell 

death of CMs with LMNA induced dilated cardiomyopathy (Siu et al., 2012). 

1.3 Cardiac differentiation of hiPSCs 

During the last 15 years, cardiac differentiation of pluripotent stem cells has been 

incredibly improved from originally 5-10% to over 90% efficiency (Burridge et al., 2012). 

Original protocols for the differentiation of CMs were based on spontaneous 

differentiation of three dimensional pluripotent stem cell aggregates called embryoid 

bodies (EBs) (Itskovitz-Eldor et al., 2000). To enrich the proportion of CMs using these 

protocols, percoll separation or cell sorting with cell surface markers such as VCAM1 was 

performed (Xu et al., 2002; van Hoof et al., 2010; Uosaki et al., 2011).  

Over the past years, numerous direct differentiation methods were developed for CMs. 

To this end, hiPSCs are cultured in a 2D monolayer and growth factors or small molecules 

are directly added to the medium to induce directed differentiation into the cardiac 

lineage. In contrast to EBs, 2D monolayer techniques allow scalable differentiation for 

large quantities of CMs with yields around 85-95%. Culturing differentiated CMs in 

medium containing lactate instead of glucose was found to favor the survival of CMs 

instead of other cell types. For this reason, purification of differentiated CMs is facilitated 

using these distinct metabolic differences of lactate and glucose metabolism between 

CMs and other differentiated cell types, thereby generating high yields of pure CMs 

(Tohyama et al., 2013).  

During CM differentiation, canonical WNT/β-catenin signaling acts in a biphasic role. 

Activation of WNT signaling induces mesodermal commitment and the following 

inhibition of WNT induces the formation of cardiac mesoderm (Paige et al., 2010). 

Treatment with special WNT inhibitors is able to boost cardiac development. However, 

suppression of WNT signaling at early stages or stimulation of WNT after mesoderm 



   

15 
 

1- INTRODUCTION 

formation decreases the yield of CMs significantly. First studies focused on the 

manipulation of signaling pathways by mimicking embryonic developmental signals that 

control mesoderm induction such as application of activin, BMP, and FGF and subsequent 

inhibition of WNT, BMP and TGFβ pathways (Kattman et al., 2011; Burridge et al., 2012; 

Willems et al., 2012).  

In 2012, it was demonstrated that differentiation of CMs could be started by activation of 

canonical WNT/β-catenin signaling through addition of GSK3-inhibitor CHIR99021 to the 

culture medium RPMI together with B27 supplement without insulin. Suppression of 

WNT/β-catenin signaling after mesoderm formation is sufficient for development of CMs. 

Inhibition of WNT signaling is achieved by using WNT inhibitor DKK1, or chemically 

produced small molecules, such as IWP2, IWP4 or IWR1 (Ren et al., 2011; Uosaki et al., 

2011; Lian et al., 2012, 2012; Willems et al., 2012). Furthermore, it was shown that CM 

differentiation and culture is even successful using just RPMI medium containing ascorbic 

acid and human albumin in combination with the appropriate GSK3 inhibitor for two days 

following by the WNT inhibitor for the next two days (Burridge et al., 2014). In general, 

activation of canonical WNT signaling facilitate the transcription of essential mesodermal 

transcription factors such as brachyury which in turn stimulate MESP1 that functions as a 

master regulator of cardiogenic mesoderm formation. Inhibition of canonical WNT 

signaling through MESP1-activated gene DKK1 leads to upregulation of cardiac progenitor 

marker such as NKX2-5 and T-box transcription factor TBX5. In the final step of cardiac 

differentiation, NKX2-5 and TBX5 mediate the activation of connexin 40, NPPA and 

sarcomere-specific proteins which initiate the formation of atrial, ventricular and 

pacemaker/nodal CMs. Common cardiac differentiation protocols create a mixture of 

these cell types. 30-35 days after starting differentiation, most of the CMs develop into a 

ventricular-like phenotype followed by small amounts of atrial and pacemaker-like CMs 

(Burridge et al., 2014). Treatment with retinoic acid (RA) can increase the proportion of 

atrial-like CMs during CM differentiation, whereas inhibition of RA signaling increases the 

proportion of ventricular-like phenotypes (Zhang et al., 2011). Inhibition of NRG1β/ERBB 

signaling can enhance the population of nodal-like CMs (Zhu et al., 2010) (Fig. 4). 

In future, nodal-like CMs could be potentially utilized for the formation of biological 

pacemakers in patients, while ventricular CMs may be used for recovery from myocardial 

infarction. However, many issues, including tumorigenesis of remaining hiPSCs, further 

maturation of CMs and immune reaction of the graft, have to be addressed until hiPSC-

derived CMs could be useful for clinical applications (Lee et al., 2009; Pearl et al., 2011). 

Moreover, optimal grafts will require 3D-engineered tissues that are composed of 

different cell types such as cardiomyocytes, endothelial cells and fibroblasts. Sufficient 

vascularization will keep the graft alive and electrical coupling with existing CMs would 
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minimize additional graft-induced arrhythmias (Caspi et al., 2007; Boudoulas and 

Hatzopoulos, 2009).  

 
Figure 4. Key steps sufficient for cardiac differentiation of hiPSCs. Cardiogenesis is induced by 
canonical WNT, activin, BMP and FGF signaling and inhibited by exposure to insulin. First 
mesodermal markers include brachyury, eomesodermin, FOXC1 and MIXL1. Specification of 
cardiac progenitors is promoted by non-canonical WNTs and inhibited by canonical WNT, activin 
and BMP signaling. NKX2-5 and TBX5 co-regulate together with other factors to further cardiac 
differentiation. Neurogenin (NRG1), RA and specific microRNAs direct specification of 
cardiomyocyte subtypes. Maturation of differentiated CMs is not fully understood, but could be 
enhanced by hormones, electrical and mechanical stimulation or organized 3D structures of 
engineered heart  tissues (Cyganek et al., 2013). 

1.4 Gene-editing technologies  

The development of nuclease-mediated gene editing technologies, including zinc finger 

nucleases (ZFNs), transcription activator-like nucleases (TALENs), and the clustered 

regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 

(Cas9) systems have introduced a new era for gene targeting, especially in the field of 

hiPSCs. Nuclease-mediated gene editing possesses various advantages compared to the 

conventional homologous recombination (HR)–mediated gene targeting which was 

historically limited to mouse ESCs. New nuclease-mediated genome editing tools are less 

time-consuming and facilitate higher efficiencies of gene targeting at endogenous loci. In  

principle, DNA double strand breaks (DSBs) are precisely introduced by nucleases which 

active the endogenous cellular DNA repair machinery to facilitate desired genomic 

modifications (Jasin, 1996; Vasquez et al., 2001). DSBs can be repaired by either error 

prone non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. 

NHEJ repair often leads to small insertions or deletions (indels) at the targeted site, while 

the less frequent HDR pathway leads to perfect repair or precise genetic modification, but 

requires a homology-containing donor DNA sequence as repair template. HDR can be 

utilized to repair specific genetic loci; by contrast, NHEJ can be used to disrupt or abolish 

the function of target genes, for example, by frame-shifting indels. While these site-

specific nuclease technologies have made important advances in genetic engineering, 

each system has associated with advantages and disadvantages such as costs and 
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difficulty of synthesis. In 2001, first ZFNs-mediated gene targeting was reported in living 

cells by injection of ZFN plasmids together with exogenous DNA fragments into the 

oocyte nuclei of Xenopus laevis (Bibikova et al., 2001; Bibikova et al., 2003). ZFNs consist 

of two domains: a DNA recognition domain and a nonspecific DNA cleavage domain of 

FokI endonuclease (Kim et al., 1996). The DNA recognition domain contains three or more 

Cys2His2 zinc fingers, and each finger interacts with three consecutive DNA base pairs 

(bps) (Smith et al., 2000). The FokI endonuclease is activated as a dimer when two 

individual ZFNs heterodimerize in an inverted orientation at the particular genomic locus 

to produce DSBs in the target DNA region.  

TALENs were reported as a new technique for sequence specific gene targeting in 2010 

(Christian et al., 2010). Similar to ZFNs, TALENs are composed of a TALE DNA binding 

domain and a FokI endonuclease that induces DSBs. The central TALE DNA binding 

domain is composed of 33-35 aa repeats. These repeats only differ from each other by 

two aa, known as the repeat-variable di-residue. To engineer DNA-binding domains with 

novel DNA-binding specificities, individual TALEN repeats are assembled into an array that 

is designed to recognize the target DNA sequence. TALENs present several advantages 

over ZFNs. First, ZFNs only recognize three continuous base pairs, while each repeat in 

TALENs binds to a single bp. For this reason, TALENs can theoretically target any DNA 

sequence. Second, TALENs have comparable or higher efficiency to ZFNs. In addition, off-

target effects as well as cytotoxicity are very low (Hockemeyer et al., 2011; Moore et al., 

2012). Until now, TALEN-mediated gene editing, including genetic deletions or insertions, 

has been successfully used in various mammals, such as rats (Tesson et al., 2011), mice 

(Sung et al., 2013), rabbit (Song et al., 2013), human cell lines (Hockemeyer et al., 2011) 

and monkeys (Liu et al., 2014b).  

In 2013, the novel RNA-guided endonuclease system CRISPR/Cas9 from Streptococcus 

pyogenes was introduced as latest tool for genome engineering and acquired popularity 

as new revolution in biomedical research (Cong et al., 2013). The first CRISPR repeats 

were discovered when the iap gene from E. coli was sequenced (Ishino et al., 1987). Then, 

these CRISPR repeats were identified in most archaea and bacteria and functioned 

together with CRISPR-associated (Cas) genes as acquired immunity to eliminate invading 

genetic material from viruses and phages by specific DNA recognition and cleavage 

(Barrangou et al., 2007; Brouns et al., 2008). Based on the diversity of Cas proteins, 

CRISPR/Cas systems were classified into three categories: type I, II and III. The type II 

system requires just one Cas protein (Cas9) and is therefore chosen for genome editing 

techniques (Makarova et al., 2011). The Cas9 endonuclease forms together with two 

naturally occurring RNA species, CRISPR RNA (crRNA) and trans-activating CRISPR RNA 

(tracrRNA), a complex that recognizes complementary sequences. This CRISPR target 
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sequence includes 20-24 bps and is located in close proximity to the protospacer adjacent 

motif (PAM) that resembles a 5’-NGG-3’ sequence. After binding to the target region, 

Cas9 introduces specifically DSBs by the HNH nuclease domain and RuvC-like nuclease 

domain (Haurwitz et al., 2010; van der Oost et al., 2014) (Fig. 5).  

 

In comparison to previous genome editing tools, the design of the CRISPR/Cas9 system is 

easier as well as the targeting efficiency of the genome is reported to be higher (Ding et 

al., 2013). Especially, hiPSCs were difficult to be engineered using classical genome editing 

strategies (Hockemeyer and Jaenisch, 2010). First reports of CRISPR/Cas9 demonstrated 

targeted efficiencies between 2% and 4% of hiPSCs when assayed by deep sequencing 

(Mali et al., 2013). Like the TALEN technique, CRISPR/Cas9 was applied in various species 

for the generation of gene knockout (KO) and site-specific knockin, thereby other 

genomic editing methods such as ZFN and TALEN were often replaced due to the easier 

application of CRISPR/Cas9. Recent studies have observed off-target cleavage by 

CRISPR/Cas9 with up to 5 mismatches in regions that are similar to CRISPR/Cas9 binding 

sites (Fu et al., 2013). To improve the specificity of CRISPR/Cas9, a modified Cas9 (Cas9n) 

was developed which induces only single strand DNA breaks, also known as nicks. To 

introduce a DSB with this technique, it is necessary to have two Cas9n-induced nicks 

adjacent to each other, which greatly reduces off target-effects (Ran et al., 2013). 

Furthermore, CRISPR/Cas9 can be fused to protein complexes and provide a new platform 

for targeted gene inhibition (CRISPRi), activation (CRISPRa), as well as spatiotemporal or 

conditional gene regulation with higher specificity and reproducibility compared to 

Figure 5. Genome editing using CRISPR/Cas9.  
CRISPR/Cas9 is a RNA-guided DNA endonuclease 
system, in which Cas9 endonuclease forms a 
complex with the guide RNA consisting of two 
RNA species called crRNA and tracrRNA. This 
complex targets specific DNA sequences 
complementary to the 20-24 bp guide RNA 
sequence including a PAM motif and introduces 
specifically DSBs by Cas9. DSBs are repaired 
through either NHEJ or HDR. NHEJ repair often 
leads to indels at the targeted site, while HDR 
pathway leads to perfect repair or precise genetic 
modification (Modified from www.neb.com). 
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systems such as RNA interference or tamoxifen-induced gene expression (Larson et al., 

2013; Yang et al., 2013; Gersbach and Perez-Pinera, 2014; Nihongaki et al., 2015).   

Although CRISPR/Cas9 is reported to be more efficient than ZFN and TALENs, general 

target efficiency of nuclease-induced genome editing is highly variable in different genes. 

For instance, one report described that ZFN technique was able to target OCT4 with over 

90% efficiency, while target efficiency of the gene PIX3 (paired-like homeodomain 3) 

reached only 8-11% (Hockemeyer et al., 2009). 

1.4.1 Application of gene editing in hiPSCs 

Genome-editing of hiPSCs by CRISPR/Cas9 provides a clinically relevant platform in order 

to understand human development and to investigate pathophysiology of diseases. 

CRISPR/Cas9 and other gene editing tools have been applied in various hESC- and hiPSC-

based disease models and enable the creation of isogenic hESC or hiPSC lines that differ 

only at specific loci, while all other genomic locations remain unchanged. Consequently, 

the effects of the introduced mutation can be dissected from modifying effects of 

different genetic backgrounds. CRISPR/Cas9-mediated genome editing can be utilized to 

correct patient-specific monogenetic disease-causing mutations in hiPSC models. In 

contrast to previous methods using allele-specific downregulation of the disease-causing 

allele by RNA interference, CRISPR/Cas9-mediated correction of mutations is able to 

change the genome permanently, thereby generating isogenic controls with a persistent 

healthy phenotype in differentiated hiPSC-derived cell types (Chang et al., 2015; Huang et 

al., 2015; Li et al., 2016). These published studies provide mostly a proof of principle that 

the observed phenotypes are caused by a specific mutation. Karakikes et al. corrected the 

PLB gene mutation R14del, which was associated with impaired Ca2+ handling and PLB 

distribution. TALEN-based correction of the PLB mutation improved abnormalities 

significantly (Karakikes et al., 2015). Genome editing can be also used to introduce 

disease-causing mutations into hiPSCs from healthy donors to study the mechanisms of 

extremely rare disorders. HiPSC technology in combination with genome editing can be 

utilized for genetic screening to identify essential genes that interfere with specific 

cellular processes. For example, Hinson et al. were able to generate cardiac microtissues 

using hiPSC-derived CMs to evaluate the pathogenic mechanism of truncated titin gene 

variants, which are associated with dilated cardiomyopathy. Truncated titin variants were 

introduced into healthy hiPSCs, which were differentiated into cardiac microtissues. 

These microtissues had diminished contractile abilities and impaired responses to 

mechanical and adrenergic stress among other defects (Hinson et al., 2015). Missense 

mutations in the HBB gene causing sickle cell disease and in the JAK3 gene causing severe 
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combined immunodeficiency were successfully genetically corrected using CRISPR/Cas9 

and healthy phenotypes were observed (Chang et al., 2015; Huang et al., 2015; Li et al., 

2016). To overcome difficulties of gene corrections based on vulnerable hiPSCs, 

reprogramming and episomal vectors as well as CRISPR/Cas9 components were 

simultaneously introduced into dermal fibroblasts and generated gene-corrected hiPSCs 

in one step from patients suffering from fibrodysplasia ossificans progressiva syndrome 

(Kim et al., 2016). Despite these diverse application possibilities of engineered hiPSCs, 

genome editing utilized in complex polygenetic disorders will be a greater task because 

each patient may harbor a substantial number of functionally connected but unknown 

mutations that interfere with the disease phenotype.  

1.5 Aim of this thesis 

The aim of this project was to establish an in vitro cell culture system using the patient-

specific hiPSC technology as a disease model to study the molecular mechanisms of CPVT. 

Six CPVT patients carrying heterozygous missense mutations (R420W, A2254V, E4076K, 

and H4742Y) in the 4 different domains of the RYR2 gene were recruited in the study. The 

scientific and technological objectives of the work included: 

 

1. Generation and characterization of CPVT-hiPSC lines from 3 different patients having 

mutations in RYR2 at two different loci (A2254V, E4076K) 

2. Direct differentiation of CPVT- and Ctrl-hiPSCs into functional CMs 

3. Analysis of RYR2 expression and phosphorylation of hiPSC-derived CPVT-CMs 

compared to Ctrl-CMs 

4. Genome editing by CRISPR/Cas9 using single-stranded oligodeoxynucleotides 

(ssODNs) to facilitate the introduction of mutations into CPVT-hiPSCs and/or the 

generation of isogenic controls having a potential healthy phenotype 

5. Differentiation and characterization of CRISPR/Cas9-engineered hiPSC-derived CMs 
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2 Materials and Methods  

2.1 Materials  

2.1.1 Laboratory equipment  

Table 1: List of laboratory equipment 

Description Name  Provider 

Autoclave Sterilizator SN30  Memmert 

Balances Extend ED153-CW 

CPA225D 

Sartorius 

Sartorius 

Blotting chamber Mini Trans-Blot Cell Bio-Rad 

Centrifuges 5810R 

5415D 

5415R 

Eppendorf 

Eppendorf 

Eppendorf 

Cell stimulator MyoPacer ES IonOptix 

Chemiluminescence 

detection system 

ChemiDoc MP Imaging 

System Universal Hood III 

Bio-Rad 

Confocal microscope  LSM 710 confocal 

microscopic system  

Carl Zeiss  

Cooling units 4°C Comfort 

-20°C Premium 

-80°C VIP series 

Liebherr 

Liebherr  

Sanyo  

Counting chamber Thoma Marienfeld Superior 

DNA Isolation DNA Maxwell 16 System Promega 

Electrophoresis 

chambers 

Mini-PROTEAN Tetra 

Vertical Electrophoresis 

Cell 

Bio-Rad 

Flow cytometer FACS Canto II BD 

Freezing box Mr. Frosty Thermo Fisher Scientific 

Gel documentation MultiImage Light Cabinet  Alpha Innotech Corporation  

Heated magnetic 

stirrer 

MR 3001 K Heidolph 

Ice machine Ziegra Ice maker   Ziegra Eismaschinen  

Incubators BBD6620  Heraeus Instruments  

Microscopes Axio Oberserver A1 

Axio Oberserver Z1 

Primo Vert 

Axiovert 25 

Carl Zeiss  
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Microtome - Leica Biosystems 

NanoDrop 2000c/2000 UV-Vis 

Spectrophotometer 

Thermo Fisher Scientific 

PCR cycler Thermocycler 48  SensoQuest  

pH meter inoLab pH 7110 WTW 

Photometer 96-well photometer Bio-tek Instruments  

Pipet controller Accu-jet pro  Brand  

Pipettes  Reference, Research plus 

(10/100/1000 μl) 

Eppendorf  

Power supply Power Pac 3000-Power 

supply  

Bio-Rad  

Shaker Polymax 1040 Heidolph 

Sterile work bench MSC-Advantage series  Thermo Fisher Scientific 

Tissue embedding 

system 

Benchtop Tissue Processor 

1020 

Leica Biosystems 

Transfection unit Amaxa Nucleofector II 

device  

Lonza 

Vortexer Vortex-Genie 2 VWR 

Water bath Type 003-2702 Haake 

Water preparation 

system 

Milli-Q Reference Merck Millipore 

2.1.2 Disposable Items 

Table 2: List of disposable items 

Name  Type Provider and Order number 

Cell culture plates 6-cm dish, TC-treated   

6-cm dish, untreated 

10-cm dish, TC-treated 

6-well plate, TC- treated 

12-well plate, TC-treated 

24-well plate, TC-treated 

48-well plate, TC-treated 

96-well plate, TC-treated 

CytoOne Starlab #CC7682-3359 

Sarstedt #82.1194.500  

CytoOne Starlab #CC7682-3394 

CytoOne Starlab #CC7682-7506 

CytoOne Starlab #CC7682-7512 

CytoOne Starlab #CC7682-7524 

Eppendorf #0030723112 

Eppendorf #0030730119 

Cell scraper 2-Posit. Blade 25 Sarstedt #83.1830 

Centrifuge tubes 0.2 ml, 0.5 ml, 1.5 ml, 2 ml Eppendorf 

Cryo tubes 2 ml Greiner #126263 

Falcon tubes 15 ml 

50 ml 

Sarstedt #62.554.002 

Sarstedt #62.547.004  
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Filcons 50 µm Filters Süd-Laborbedarf Gauting 

#150.47s 

Filter tips 0.1–1000 μl  Starlab #S1120-3810,  

#S1122-1830, #S1120-1840 

Flow cytometry 

tube 

5 ml Polystyrene Round-

Bottom Tubes 

BD Falcon #352058 

Pipette tips 0.1–1000 μl Starlab #S1111-3700, 

#S1111-1706, #S1112-1720 

Pipettes 5 ml, 10 ml, 25 ml Sarstedt #86.1253.001, 

#86.1254.001, #86.1685.001 

PVDF membrane Amersham Hybond P 

Western blotting membranes 

Sigma-Aldrich #GE10600023 

Slides and  

coverslips  

76x26mm 

18x18mm 

Round 25 mm 

Thermo Fisher Scientific 

#10143562CE, 

Thermo Fisher Scientific 

#4004672 

R. Langenbrinck, #1049251 

Sterile filters  Millex-GS, 0.22 µm 

Steriflip 50 ml 0.22 µm 

Steritops 500 ml 0.22 µm 

Merck Millipore #GLGS0250S 

Merck Millipore #SCGP00525 

Merck Millipore # SCGPT05RE 

Whatman gel 

blotting paper 

Grade GB003 Sigma-Aldrich #WHA10426890 

2.1.3 Plasmids and oligonucleotides 

Combined CRISPR/Cas9-Plasmids (Fig. 6) were designed and generated from Sigma-

Aldrich and listed in Table 3.  

 

Figure 6. CRISPR/Cas9 plasmid containing the sequence of gRNA, Cas9, GFP and kanamycin.  
 

All oligonucleotides were synthesized from Microsynth AG. The sequences are listed in 

alphabetical order together with the amplified fragment length (F), annealing 

temperature (TA), and number of cycles. Table 4 shows the list of oligonucleotides used 

for reverse transcription PCR. Table 5 shows oligonucleotides used for genome editing 
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with CRISPR/Cas9. Table 6 shows oligonucleotides used for the screening of CRISPR/Cas9 

clones. Table 7 shows oligonucleotides used for allele specific sequencing. 

Table 3: List of CRISPR/Cas9-plasmids  

Name CRISPR-binding site Calculated 

Off-targets 

Order Number 

CRISPR-B-1/Cas9 CCGGATCTAGAAAAGGTG

AGCA 

1 at n=3 humanRyr2B_0_18_CCG 

CRISPR-C-1/Cas9 ACGAACTCTTCGTAGTCG

AGGG 

0 at n=3 

 

HS0000065369, 

predesigned 

Plasmids contained a resistance gene against kanamycin and GFP for selection of positive 
transfected cells. Off-targets with up to n=3 mismatches were calculated from Sigma-Aldrich. 

 

Table 4: List of oligonucleotides for reverse transcription-PCR analysis  

Name Sequence  F 
[bp] 

TA [°C] Cycles 

AFP For: ACTCCAGTAAACCCTGGTGTTG 
Rev: GAAATCTGCAATGACAGCCTCA 

255 60 33 

ALB For: CCTTTGGCACAATGAAGTGGGTAACC  
Rev: CAGCAGTCAGCCATTTCACCATAG  

355 62 35 

CACNA1C For: ACCTGGAATGTCTGAAGCGA 
Rev: TTTCTCACTGGACTCGACCC 

248 60 30 

CASQ2 For: GGTCACGCAAAAACAGTTCC 
Rev: CGAAGGCTTGGACTTCCAGT 

284 60 30 

cTNT For: GACAGAGCGGAAAAGTGGGA  
Rev: TGAAGGAGGCCAGGCTCTAT  

305 56 35 

FOXD3 For: GTGAAGCCGCCTTACTCGTAC 
Rev: CCGAAGCTCTGCATCATGAG 

353 60 38 

GAPDH  For: AGAGGCAGGGATGATGTTCT  
Rev: TCTGCTGATGCCCCCATGTT  

258 60 30 

GDF3 For: TTCGCTTTCTCCCAGACCAAGGTTTC 
Rev: TACATCCAGCAGGTTGAAGTGAACAGCACC 

331 54 30 

IP3R1 For: GACCTTCGGGACGAAGAGAG 
Rev: AATGCTTTCATGGAACACTCGGTC 

230 
 

60 30 

IP3R2 For: AGCAACATCCAAAGCATATTGTGT 
Rev: AATGCTTTCATGGAACACTCGGTC 

198 59 30 

LIN28 For: AGTAAGCTGCACATGGAAGG 
Rev: ATTGTGGCTCAATTCTGTGC 

410 52 30 

MLC2A For: GAAGGTGAGTGTCCCAGAGG 
Rev: CTTGTAGTCGATGTTCCCCG 

289 58 30 

MLC2V For: GGCGAGTGAACGTGAAAAAT  200 56 30 
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Rev: CAGCATTTCCCGAACGTAAT 

NANOG  For: AGTCCCAAAGGCAAACAACCCACTTC 
Rev: ATCTGCTGGAGGCTGAGGTATTTCTGTCTC 

164 64 36 

OCT4 For: GACAACAATGAAAATCTTCAGGAGA 
Rev: TTCTGGCGCCGGTTACAGAACCA 

113 54 34 

RYR2 For: ATCCACAAAGAACAACAGAAGCTAT 
Rev: CCATAAGACAAGTGCAAGTACCTTT 

509 60 30 

SOX2 For: ATGCACCGCTACGACGTGA 
Rev: CTTTTGCACCCCTCCCATTT 

437 60 34 

SYN For: TGCAGAACAAGTACCGAGAG  
Rev: CTGTCTCCTTAAACACGAACC 

297 57 34 

TH  For: GCGGTTCATTGGGCGCAGG 
Rev: CAAACACCTTCACAGCTCG 

215 60 34 

α-ACT For: AGGAGGAAGAATGGCCTGAT 
Rev: GATGCAGTACTGGGCCTGAT 

291 60 30 

α-MHC For: GTCATTGCTGAAACCGAGAATG  
Rev: GCAAAGTACTGGATGACACGCT 

413 60 35 

AFP: alpha-1-fetoprotein, ALB: albumin, CACNA1C: calcium voltage-gated channel subunit 
alpha1 C CASQ2: calsequestrin 2, cTNT: cardiac troponin T, FOXD3: forkhead box D3, GAPDH: 
glyceraldehyde-3-phosphate dehydrogenase, GDF3: growth differentiation factor 3, IP3R1/2: 
inositol 1,4,5-trisphosphate receptor 1/2, MLC2A: myosin light chain 2a, MLC2V: myosin light 
chain 2v, SYN: synaptophysin, TH: tyrosine hydroxylase, α-ACT: alpha-actinin, α-MHC: myosin 
heavy chain (alpha) 

Table 5: Single-stranded oligodesoxynucleotides (ssODNs) used for CRISPR/Cas9 
technology  

Name Sequence Additional mutations 

CRISPR-

Oligo-c 

GTCAGAAACGGAATTCCTTTTGTC

TTGTGCGGAGACGGATGAGAATG

AAACCCTCGACTACGAAGAGTTC

GTCAAACGCTTCCACGAACCTGCG

AAGGACATCGGCTTCA 

Correction: G 

Silent mutation for EcoRI: T>C   

(TTT > TTC) 

CRISPR-

Oligo-c-

new1 

GTCAGAAACGGAATTTCTTTTGTC

TTGTGCGGAGACGGATGAGAATG

AAACTCTCGACTACGAAGAATTC

GTCAAACGCTTCCACGAACCTGCG

AAGGACATCGGCTTCA 

Correction: G   

Silent mutation for EcoRI: G>A 

(GAG> GAA) 

Binding prevention at PAM: C>T  

(ACC > ACT)  

CRISPR-

Oligo-c-

new2 

GTCAGAAACGGAATTTCTTTTGTC

TTGTGCGGAGACGGATGAGAATG

AAACTCTAGATTATGAAGAATTC

GTCAAACGCTTCCACGAACCTGCG

AAGGACATCGGCTTCA 

Correction: G  

Silent mutation for EcoRI: G>A  

(GAG > GAA) 

Binding prevention at PAM: C>T  

(ACC > ACT) 

Additional binding prevention:   

(CTC > CTA) 
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(GAC > GAT)  

(TAC > TAT)  

CRISPR-

Oligo-b-1 

GCCTCCCCAGCTATGAGAGGTTC

AACACCACTGGATGTGGCTGCAG

CTTCGGTGATGGATAATAATGAA

CTAGCATTAGCTCTGCGTGAGCCG

GATCTAGAAAAGGT 

Correction: C 

CPVT-Mutation (A2254V) 

(GTA instead of GCA) leads to the 

generation of SpeI (ACTAGT) restriction 

site 

The CRISPR/Cas9 binding site is highlighted in blue. Point mutations that should be corrected are 
highlighted in in red. Additional mutations are marked in purple. Underlined sequences are 
recognized by restriction enzymes. 

Table 6: List of oligonucleotides used for screening of CRISPR/Cas9-edited clones 

Name Sequence F [bp] TA [°C] Cycles 

CPVTb-Seq 

(C90/91) 

For: ACACTATGGATGGTGTTTAGAA 

Rev: AGAACGTTGGTTCTCCTTCC 

560 57 35 

CPVTc-Seq 

(C92/C93) 

For: TCTTCCAACAACGTGGAGAT  

Rev: TAATTCAGGACGCTCTCTGC  

368 57 35 

EcoRI-g For: CCAGGCTTTGTGGAGGTAGG 

Rev: GGGTGAAGTCCTGTCTGAGC  

865 60 35 

RYR2c-1021 For: AGAGTGAGAGATAAACAGGGACAT 

Rev: GGATGAAAAGAAGGCCGTGAC 

1021 59 40 

Table 7: List of oligonucleotides for allele-specific sequencing 

Name Sequence F (bp) TA [°C] Cycles 

RYR2-A-new For: GTGGACGTGAAATCCGTGAGA 

Rev: GGGGTGGAAGTAGCCAATGAG 

267 60 25 

RYR2-B-RT For: AGTGTTGGTCTTGCCTCCC 

Rev: CTCCACACTCTCCCCATTACAG 

267 60 25 

RYR2-C-RT For: CGATGGCAAGGGAGTCATTTC 

Rev: AGGACGCTCTCTGCTAATTCC 

267 57 28 

RYR2-D-RT For: AGCCAAAGAAAGACAGCTCCT 

Rev: AATGCCACCACAGTGTATAGGT 

298 57 28 

2.1.4 Antibodies  

Primary and secondary antibodies are listed in Tables 8 and 9, respectively, and were 

used for immunofluorescence (IF) and western blot (WB) analyses. 
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Table 8: List of primary antibodies  

Antigen Host Dilution  Blocking Provider 

AFP Rabbit 

(IgG) 

IF: 1:100 IF: 1% BSA/DPBS Dako #A0008-4oC 

cTNT Mouse 

(IgG1) 

IF: 1:500  

WB: 1:10.000 in 1% 

BSA/TBS-T 

IF: 1% BSA/DPBS 

WB: 3% BSA/TBS-T 

Thermo Fisher 

Scientific  

#MS295PABX 13-11 

CX43 Rabbit 

(IgG) 

IF: 1:1000 IF: 1% BSA/DPBS Abcam  

#ab11370 (GJA1) 

GAPDH Rabbit 

(IgG) 

WB: 1:5000 in 1% 

BSA/TBS-T 

WB: 3% BSA/TBS-T Thermo Fisher 

Scientific #PA1-987 

IP3R Rabbit 

(IgG) 

WB: 1:750 in 1% 

BSA/TBS-T 

WB: 3% BSA/TBS-T Merck Millipore  

#07-1210 

LIN28 Goat 

(IgG) 

IF: 1:300 IF: 1% BSA/DPBS R&D systems 

#AF3757 

MLC2A Mouse 

(IgG2b) 

1:200 IF: 1% BSA/DPBS Synaptic Systems 

#311-011 (56F5) 

MLC2V Rabbit 

(IgG) 

IF: 1:200 IF: 1% BSA/DPBS Protein tech  

#10906-1-AP 

NANOG Goat 

(IgG) 

IF: 1:200 IF: 1% BSA/DPBS Abcam #PA5-18406 

NCX1 Mouse 

(IgG2b) 

WB: 1:1000 in 1% 

BSA/TBST 

WB: 3% BSA/TBS-T Novus #NB300-127 

OCT4 Goat 

(IgG) 

IF. 1:40 IF: 1% BSA/DPBS R&D systems 

#AF1759 

RYR2  Rabbit 

(IgG) 

IF: 1:500 

WB: 1:5000 in 1% 

BSA/TBS-T 

WB: 3% BSA/TBS-T Sigma-Aldrich 

Prestige #HPA020028 

RYR2  Mouse 

(IgG) 

WB: 1:1000 in 1% 

BSA/TBS-T 

WB: 3% BSA/TBS-T Pierce antibodies 

#MA3-916 C3-33 

RYR2-

pSer2030 

Rabbit 

(IgG) 

WB: just unspecific 

binding (1:300-

1:1000) 

3-6% BSA/TBS-T Badrilla #A010-32 

RYR2-

pSer2808 

Rabbit 

(IgG) 

WB: 1:5000 in 3% 

BSA/TBS-T 

WB: 6% BSA/TBS-T Badrilla #A010-30 

RYR2-

pSer2814 

Rabbit 

(IgG) 

WB: 1:5000 in 3% 

BSA/TBS-T 

WB: 6% BSA/TBS-T Badrilla #A010-31 

SERCA2 

ATPase  

Mouse 

(IgG2a) 

WB: 1:1000 in 

1% BSA/TBST 

WB: 3% BSA/TBS-T Thermo Fisher 

Scientific #MA3-919 

SOX2 Mouse IF: 1:50 IF: 1% BSA/DPBS R&D systems 
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(IgG) #MAB2018 

SSEA-4 Mouse 

(IgG) 

IF: 1:200 IF: 1% BSA/DPBS Abcam #MC813 

TRA-1-60 Mouse 

(IgM) 

IF: 1:200 IF: 1% BSA/DPBS R&D systems 

#MAB4770 

α-ACTININ Mouse 

(IgG1) 

IF: 1:1000 

WB: 1:5000 in 2.5% 

nonfat dry milk in 

TBS-T 

IF: 1% BSA/DPBS 

WB: 5% nonfat dry 

milk in TBS-T 

Sigma-Aldrich #A7811 

α-SMA Mouse 

(IgG2A) 

IF: 1:3000 IF: 1% BSA/DPBS Sigma-Aldrich #A2547 

β-III-

TUBULIN 

Mouse 

(IgG2A/

K) 

IF: 1:2000 IF: 1% BSA/DPBS Covance #MMS-435P 

α-SMA: α- smooth muscle actin, SSEA4: stage-specific embryonic antigen 4 

Table 9: List of secondary antibodies 

Fluorophore & 

Antigen 

Host Dilution Company 

Alexa Fluor 488-

anti-mouse 

Donkey (IgG) 1:1000 Thermo Fisher Scientific #A21202 

Alexa Fluor 555-

anti-goat 

Donkey (IgG) 1:1000 Thermo Fisher Scientific #A21432 

Alexa Fluor 647-

anti-mouse 

Donkey (IgG)  1:1000 Thermo Fisher Scientific #A31571 

Cy3-anti-goat  Donkey 

(IgG) 

1:500 Jackson ImmunoResearch #705-165-147  

Cy3-anti-mouse  Goat 

(IgG+IgM) 

1:300 Jackson ImmunoResearch #115-165-068 

Cy3-anti-rabbit  Goat  

(IgG) 

1:600 Jackson ImmunoResearch #111-165-003 

Cy5-anti-mouse  Donkey(IgG) 1:300 Jackson ImmunoResearch #715-175-150 

FITC anti-rabbit  Donkey (IgG) 1:200 Jackson ImmunoResearch #711-095-152  

 

FITC-anti-mouse  Goat (IgG) 1:100 Jackson ImmunoResearch #115-096-072 

HRP-anti-mouse Donkey (IgG) 1:10.000 Thermo Fisher Scientific #A16011 

HRP-anti-rabbit Donkey (IgG) 1:10.000 Thermo Fisher Scientific #A16023 

PE-anti mouse Donkey (IgG) 1:200 Jackson ImmunoResearch #703-116-155 
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2.1.5 Chemicals and reagents  

All chemicals, reagents, kits and enzymes used for molecular and protein biological 

experiments are listed in Table 10 together with the name of the provider.  

Table 10: List of molecular biological reagents  

Name  Provider 

Agar Serva Electrophoresis #200201  

Alkaline phosphatase staining kit  Sigma-Aldrich #86R-1KT  

Ammonium persulfate (APS) Roth #9178 

AmpliTaq DNA polymerase with buffer II  Thermo Fisher Scientific #N808-0167  

Boric acid  Sigma-Aldrich #15663  

Bromphenol blue Roth #A512.2 

Calcium chloride dihydrate Roth #HN04 

Calyculin A  Santa Cruz #sc-24000 

cOmplete (protease inhibitor cocktail tablets)  Roche #04693132001  

DAPI (4′, 6-Diamidino-2-phenylindole 

dihydrochloride)  

Sigma-Aldrich #D9542  

Di-Sodium hydrogen phosphate dihydrate 

 (Na2HPO4 · 2 H2O) 

Roth #T877 

Dithiothreitol (DTT)  Roth #6908  

dNTP mix  Bioline #BIO-39029  

EcoRI-HF New England Biolabs #R3101S  

Ficoll 400 Roth #CN90.1 

Fluoromount-G  eBioscience #00-4958-02  

Fluo 4/AM, cell permeant Thermo Fisher Scientific #F14201 

Formalin (37 %) Merck Millipore #1039991000 

GeneRuler 100 bp Plus DNA Ladder  Thermo Fisher Scientific #0321  

Glucose Sigma-Aldrich #G8270 

Glycerol Roth #3783  

Glycine Roth #3908  

GoTaq G2 DNA polymerase  Promega #M7845  

HEPES Roth #9105 

Hydrochloric acid fuming 37% Merck Millipore #100317 

IGEPAL CA-630 Sigma-Aldrich #I3021 

Isoprenaline hydrochloride Sigma-Aldrich #I5627 

Isopropanol Merck Millipore #109634 

Kanamycin sulfate Roth #T832 
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KCl Sigma-Aldrich #P9541 

L-755,507 Tocris Bioscience #2197 

Luminol Sigma-Aldrich #123072  

Magnesium chloride Sigma-Aldrich #M8266  

Maxwell 16 cell DNA purification kit  Promega #AS1020  

Methanol Merck Millipore #106009 

Midori Green Advance Biozym #617004 

MuLV reverse transcriptase (50 U/μl)  Thermo Fisher Scientific #N808-0018  

Nonfat dry milk Roth #T145 

Nuclease-free water Thermo Fisher Scientific #AM9932 

Oligo d(T)16 (50 μM)  Thermo Fisher Scientific #N808-0128  

Paraformaldehyde (PFA)  Sigma-Aldrich #158127  

P-coumaric acid Sigma-Aldrich #C9008  

PeqGold protein marker V  Peqlab #27-2210  

peqGold universal agarose Peqlab #35-1020 

PhosStop (phosphatase inhibitor cocktail 

tablets) 

Roche #04906837001 

Pierce BCA protein assay kit  Thermo Fisher Scientific #23225  

Plasmid Maxi Kit Qiagen #12162 

Pluronic F-127 Thermo Fisher Scientific #P3000MP 

QIAquick gel extraction kit  Qiagen #28706  

QIAquick PCR purification kit  Qiagen #28104 

QuickExtract DNA Extraction Solution 1.0 Biozym #101094 

RNase inhibitor (20 U/μl)  Thermo Fisher Scientific #N808-0119  

Rotiphorese gel 30  Roth #3029  

Sodium azide Sigma-Aldrich #S2002 

Sodium chloride Roth #9265.1 

Sodium dodecyl sulfate (SDS)  Roth #2326  

Sodium fluoride (NaF)  Roth #P756  

SpeI-HF New England Biolabs #R3133S 

SV total RNA isolation system  Promega #Z3105  

Tetramethylethylenediamine (TEMED)  Roth #2367  

Tris  Roth #5429  

Triton X-100  Sigma-Aldrich #3051.3 

Trypton  Roth #6681.1 

Tween 20  Bio-Rad #170-6531  

Yeast extract  Roth #2363.1  
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2.1.6 Solutions, buffers and bacteria material for molecular and protein analyses 

Table 11: List of components for molecular biological methods, and protein analyses 

Solution  Components 

1x Transfer buffer 32 mM Tris, pH 8.3  

19 mM Glycine  

10% Methanol  

0.05% SDS  

2x HBS solution 280.0 mM NaCl  

50.0 mM HEPES  

0.15 mM Na2HPO4  

Ad 20 ml ddH2O  

pH 7.1  

4x Resolving gel buffer 0.4% SDS diluted in 1.5 M Tris, pH 8.8 

4x Stacking gel buffer 0.4% SDS diluted in 0.5 M Tris, pH 6.8 

5x Loading buffer 

 

0.313 M Tris-HCl pH 6.8  

10% SDS  

0.05% Bromophenol blue  

50% Glycerol  

5 mM EDTA 

150 mM DTT 

5x Transfer buffer 163 mM Tris pH 8.3, 96 mM Glycine 

APS (10% w/v) 10 g APS dissolved in 100 ml ddH2O, sterile filtered,  

stored at –20°C 

Cell lysis buffer 20 mM Tris-HCl pH 7.4, 200 mM NaCl, 20 mM NaF, 

1% IGEPAL CA-630, 1 mM Na3VO4, 1 mM DTT, 1 tablet 

PhosStop for 10 ml, 1 tablet cOmplete (EDTA-free) for 20 ml, 

freshly prepared 

DAPI 

  

 

Stock solution: 2 mg/ml 

Working solution: 1:50.000 in ddH2O, 

stored at 4°C under exclusion of light 

Enhanced 

luminescence (ECL) 

solution  

4 ml Solution SA  

400 μl Solution SB 

1.2 μl 35% H2O2 

Ficoll-loading-buffer 

(6x) 

1.5 g Ficoll 400, ad 10 ml ddH2O 

Laemmli-buffer (10x)  

 

864 g Glycine  

60 g SDS  

180 g Tris  

Ad 6000 ml ddH2O 
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LB-medium 5 g Yeast extract  

10 g NaCl  

10 g Trypton  

Ad 1000 ml ddH2O 

pH 7.0, autoclaved 

For agar plates: 1.5% agar was added 

Nonfat dry milk  

(5% w/v) 

5 g nonfat dry milk dissolved in 100 ml 1x TBS-T buffer 

PFA (4% w/v) 4% PFA in DPBS, stored at -20°C 

Resolving gel buffer 1.5 M Tris, pH 8.8 

SA solution 250 mg Luminol 

ad 1000 ml 0.1 M Tris, pH 8.6, storage at 4°C 

SB solution 12 mg P-coumaric acid 

ad 10 ml DMSO, 

stored at RT under exclusion of light 

SDS (10% w/v) 10 g SDS dissolved in 100 ml, stored at RT 

TBE buffer (5x) 

 

54 g Tris  

27.5 g Boric acid 

20 ml 0.5 M EDTA pH 8.0 

Ad 1 l ddH2O  

TBS-T-buffer 

 

20 mM Tris 

150 mM NaCl  

0.1% Tween  

Tyrode’s solution NaCl 140 mM, KCl 5.4 mM, CaCl2 1.8 mM, MgCl2 1 mM, 

HEPES 10 mM, Glucose 10 mM, pH 7.4 

0.1 % Triton-X/BSA  10 µl Triton-X 100 diluted in 10 ml 1% BSA diluted in DPBS,  

stored at 4°C 

Table 12: List of competent E. coli cells 

Competent cells Genotype Reference  

Top10 F– mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacX74 recA1 

araD139 Δ(ara leu) 7697 galU galK 

rpsL (StrR) endA1 nupG 

Kindly provided by the 

Department of Immunology, 

University Medical Center 

Göttingen, Thermo Fisher 

Scientific 
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2.1.7 Chemicals, solutions, and media for cell culture 

Table 13: List of components for cell culture  

Components  Provider  

0.25% Trypsin-EDTA    Thermo Fisher Scientific #25200056 

Albumin, human recombinant  

  

Sigma-Aldrich #A0237/A9731 

B-27 serum free supplement (50x)  Thermo Fisher Scientific #17504044  

Bovine albumin fraction V solution (BSA, 

7.5%)  

Thermo Fisher Scientific #15260037 

CHIR99021      Merck Millipore #361559 

Collagenase B      Worthington Biochemical, #CLS-AFB 

Collagenase IV Worthington Biochemical #CLS-4 

CytoTune-iPS 2.0 Sendai reprogramming kit 

   

Thermo Fisher Scientific #A16517, 

A16518 

DMEM (Dulbecco´s modified Eagle 

medium)/F-12  

 

Thermo Fisher Scientific #31331028  

DMEM/F-12, no phenol red Thermo Fisher Scientific #21041025 

DMEM Thermo Fisher Scientific #11960044 

Essential 8 (E8) medium     Thermo Fisher Scientific #A1517001 

Fetal bovine serum (FBS)    Sigma-Aldrich #F7524 

Gelatin  Sigma-Aldrich #48720  

Geltrex  Thermo Fisher Scientific #A1413301  

HEPES sodium salt solution (1 M)  Sigma-Aldrich #H3662  

Iscove´s modified Dulbecco´s medium 

(IMDM)  

Thermo Fisher Scientific #31980022  

IWP2  Merck Millipore #681671  

Knockout serum replacement  Thermo Fisher Scientific #10828028  

L-ascobic acid 2-phosphate   Sigma-Aldrich #A8960 

L-glutamine (200 mM, 100x)  Thermo Fisher Scientific #25030024  

Mitomycin C  Serva Electrophoresis #29805.02  

Monothioglycerol (MTG)  Sigma-Aldrich #M6145-25ML  

Non-essential amino acids (NEAA, 100x)  Thermo Fisher Scientific #11140035  

Penicillin-streptomycin solution (P/S) (100x)  Thermo Fisher Scientific #15140122  

Pro-survival compound  Merck Millipore #529659  

Recombinant human basic fibroblast PeproTech #100-18B  



   

34 
 

2- MATERIAL AND METHODS 

growth factor (hbFGF)  

RPMI 1640 with HEPES with GlutaMax  Thermo Fisher Scientific #72400021  

RPMI 1640 without HEPES without Glucose  Thermo Fisher Scientific #11879020  

Sodium DL-lactate solution 60% (w/w)  Sigma-Aldrich #L4263  

Thiazovivin (TZV)     Millipore # 420220 

Trypsin-EDTA (0.25%) Thermo Fisher Scientific #25200056  

Versene solution (0.48 mM EDTA)  Thermo Fisher Scientific #15040066 

β-Mercaptoethanol (β-ME) Serva Electrophoresis #28625  

Human stem cell nucleofector kit 2 Lonza #VPH-5022 

Table 14: List of buffers and solutions for cell culture  

Substance Preparation 

100x β-ME 0.07% β-ME diluted in DPBS, sterile filtered,  

stored at 4°C 

Calyculin A Stock solution 10 µM in DMSO, stored at -20°C 

Working solution: 50 nM, diluted in RPMI1640 

CHIR (12 mM) 5 mg CHIR99021 dissolved in 0.894 ml DMSO, stored at -20°C 

Collagenase B Working solution: 400 U/ml 

Dissolved in RPMI, sterile filtered, stored at -20°C 

Collagenase IV 

 

Stock solution: 2000 U/ml 

Working solution: 200 U/ml 

Dissolved in DMEM/F12, sterile filtered, stored at -20°C 

Gelatin (0.1%) 1 g gelatin dissolved in 1 l ddH2O, autoclaved, stored at 4°C 

Geltrex 2 mg Geltrex per 15 ml falcon tube, stored at -20°C 

hbFGF Stock solution: 100 ng/µl 

100 µg hbFGF dissolved in 1 ml Tris (5 mM), stored at -20°C 

Working solution: 5 ng/µl, diluted 1:20 in 0.1% BSA, stored at 4°C 

Isoprenaline Stock solution: 1 mM 

Dissolved in ddH2O, stored at -20°C 

Working solution: 100 nM, diluted in RPMI1640 

IWP2 (5 mM) 

  

10 mg dissolved in 4.28 ml DMSO,  

incubated for 10 minutes at 37°C, stored at -20°C 

L-755,507 Stock solution: 5 mM, dissolved in DMSO 

Working solution: 5 µM  

MTG Stock solution: 150 mM 

13 µl MTG diluted in 1 ml IMDM, sterile filtered, freshly prepared 

TZV (2 mM)  10 mg TZV dissolved in 6.8 ml DMSO, stored at -20°C 
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Table 15: List of media for human cell lines 

Medium Components 

B27 medium  500 ml RPMI 1640 with HEPES  

1x B27 supplement with insulin  

Cardio differentiation 

medium 

  

500 ml  RPMI 1640 with HEPES with GlutaMAX 

250 mg Albumin, human recombinant 

100 mg L-Ascorbic acid 2-phosphate, sterile filtered 

Cardio digestion medium  80 ml B27 medium  

20 ml FBS  

100 μl TZV  

CRISPR/Cas9 freezing 

medium 

E8 medium, 10% DMSO, 2 µM TZV 

E8 freezing medium E8 medium, 20% DMSO, 4 µM TZV 

FACS medium 1x DMEM/F-12, no phenol red 

1x P/S, 1.5% heat-inactivated FBS, 

4 µM TZV, 10 ng/ml hbFGF 

FL-medium DMEM, 15% heat-inactivated FBS, 1x L-Glutamine 

hES freezing medium 

 

 

18 ml DMEM 

5 ml FBS 

2 ml DMSO 

hES medium 

 

DMEM/F12, GlutaMAX 

15% Knock out serum replacement 

1x NEAA 

1x β-ME 

10 ng/ml hbFGF 

HFBM  DMEM 

10% heat-inactivated FBS 

1x NEAA 

1x β-ME 

10 ng/ml hbFGF 

E8 medium  500 ml E8 basal medium  

1x E8 Supplement  

Iscove medium 

 

IMDM, GlutaMAX 

20% heat-inactivated FBS 

1x NEAA 

450 µM MTG (freshly added) 

MEF-conditioned E8 

medium 

E8 medium was incubated for 24 hours on mitomycin C-

treated MEFs  
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2.1.8 Cells used in the study 

Mouse embryonic fibroblasts (MEFs): isolated from 15- to 17-day-old embryos of NMRI 

mice (Central Animal Facility, University Medical Center Göttingen) 

Human embryonic kidney 293T cells (HEK293T): used for the transient expression of 
CRISPR/Cas9 plasmids (University Medical Center Göttingen) 

Human fibroblasts: isolated from human skin biopsies of healthy subjects and CPVT 

patients. 

Control hiPSCs (Ctrl-hiPSCs): generated with STEMCCA lentivirus or SeV from human 

fibroblasts, blood and mesenchymal stem cells of healthy subjects (WTD2, C113, BM76.3, 

WT1bld and WT4bld) without known cardiac symptoms (University Medical Center 

Göttingen) (Table 16). 

CPVT-hiPSCs: generated from human skin fibroblasts of CPVT patients (CPVTa2, CPVTa3, 

CPVTb1, CPVTc1, CPVTc2, CPVTd1) carrying different RYR2 point mutations (University 

Medical Center Göttingen) (Table 16). HiPSCs from the patient CPVTb1, CPVTc1 and 

CPVTc2 were generated within this study.  

Table 16: hiPSC lines used in this work and their specifications 

Patient/Subject/ 

Cell line 

Mutation Donor Cell line origin Reprogramming 

virus 

WTD2 Healthy - Skin fibroblasts STEMCCA 

C113 Healthy - Skin fibroblasts STEMCCA 

BM76.3 Healthy Male  Mesenchymal 

stem cells 

STEMCCA 

isWT1bld Healthy Male Blood SeV 

isWT4bld Healthy Male Blood SeV 

isCPVTa2 R420W Female Skin fibroblasts SeV 

isCPVTa3 R420W Female Skin fibroblasts SeV 

isCPVTb1/ 

CPVTb1 

A2254V Male Skin fibroblasts SeV / STEMCCA 

isCPVTc1/ 

CPVTc1 

E4076K Female Skin fibroblasts SeV/ STEMCCA 

isCPVTc2/ 

CPVTc2 

E4076K Female Skin fibroblasts SeV/ STEMCCA 

isCPVTd1 H4742Y Female Skin fibroblasts SeV 
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2.1.9 Software  

Table 17: List of software used for analysis 

Name Purpose Company/Author 

Adobe Photoshop 

CS 6 

Image processing Adobe  

GENtle Sequencing analysis Markus Manske  

ImageJ  Image processing National Institutes of Health  

Graphpad Prism 6 Statistical data analysis and 

graph design  

Graphpad Software, Inc.  

AxioVision Immunofluorescence images  Carl Zeiss  

Zen Confocal images Carl Zeiss  

Alpha.Imager 

Software 

Calculation of CRISPR/Cas9 

cleavage efficacy 

Alpha-Imager 

2.2 Methods  

2.2.1 Cell biological methods 

All cells were cultivated under humidified conditions at 37°C and 5% carbon dioxide. All 

culture work was performed under sterile conditions using a laminar airflow cabinet to 

avoid microbiological contamination. 

2.2.1.1 Counting of cells 

For counting of cells, approx. 20 µl of the cell suspension was analyzed using a Thoma 

hemocytometer and a transmitted light microscope. Cells in a grid of two 4x4 quadrants 

were counted and the total cell number per ml was calculated using the following 

formula: mean value of counted cells/64*106. 

2.2.1.2 Cultivation and inactivation of mouse embryonic fibroblasts  

MEFs were isolated from 15- to 17-day-old NMRI mouse embryos and subsequently 

cultivated on 0.1% gelatin-coated culture dishes in FL-medium for maximal 4 passages. 

Before used for cultivation of hiPSCs, MEFs were treated with a final concentration of 

10 μg/ml mitomycin C for 3 h at 37°C to stop cell proliferation. MEFs were washed three 

times with DPBS and subsequently treated with 0.25% Trypsin-EDTA until cells started to 

detach. Single cells were resuspended in FL-medium and counted. 1.2x105 cells were then 

plated onto 0.1% gelatin coated 6-cm TC-treated culture dishes. 
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2.2.1.3 Isolation and cultivation of human fibroblasts  

For isolation of human skin fibroblasts, skin punch biopsy (3.5-4 mm) was taken 

aseptically by a surgeon, transferred in a sterile container with DMEM plus 2x P/S and 

transported as soon as possible to the laboratory. Tissue was rinsed with warm DPBS to 

remove excess blood and transferred to the lid of the petri dish. The fat tissue was 

removed using a scalpel and forceps, and the skin biopsy was cut into small pieces (about 

0.5 mm to 1 mm in size). The small pieces of tissue were transferred onto 6-cm TC-

treated dishes without medium, pressed carefully on the dish and cultured in HFBM plus 

2x P/S. Medium was changed the third day after plating the tissue pieces. Fibroblasts 

started to grow out at 7-10 days after plating, and P/S was omitted after 10 days. After 

two weeks in culture, fibroblasts derived from skin biopsies were passaged for the first 

time. To this end, pieces of tissue were transferred to a TC-treated dish containing HFBM 

for further cultivation. Medium was aspirated and prewarmed 0.25% Trypsin-EDTA was 

incubated for 1 min at RT. Trypsin-EDTA was removed and cells were resuspended in 

HFBM and transferred to a new plate. Fibroblasts were passaged with 0.25% Trypsin-

EDTA when confluent and used for transduction experiments before passage 3-4.  

2.2.1.4 Generation of hiPSCs using CytoTune-iPS 2.0 Sendai reprogramming kit 

For the reprogramming with SeV, early passage fibroblasts (p2-p3) were used. To this 

end, fibroblasts were washed twice with DMEM and detached with 0.25% Trypsin-EDTA 

as described in 2.2.1.3. 8x104 singularized cells were plated into one well of a TC-treated 

6-well plate containing HFBM. After 1-2 days cell density reached 50-80% and cells were 

used for transduction. CytoTune2.0 Sendai virus cocktail was prepared based on the 

counted cell number (approximately 1x105 cells per well) according to manufacturer’s 

protocol for MOI and the mixed virus cocktail was transferred into 0.5 ml HFBM. For each 

well, 0.5 ml virus containing medium was added into each well containing 1 ml HFBM plus 

1x P/S and mixed gently by pipetting. Virus was incubated for 24 hours and medium was 

changed daily until day 6. At day 7, fibroblasts were singularized using 0.25% Trypsin-

EDTA as previously described and 2-8x105cells were plated on MEF-coated TC-treated 6-

well plates containing hES-medium plus hbFGF (20 ng/ml). Medium was changed daily. 

First colonies appeared 2-3 weeks after transduction and were picked manually under 

sterile conditions using light microscopy and glass pipettes. Single colonies were 

transferred into MEF-coated 12-well plates containing hES medium plus 20 ng/ml hbFGF 

and 1x P/S. Medium was changed daily with hES medium plus 20 ng/ml hbFGF. After 

passaging, cells were further cultivated as described in 2.2.1.5. 
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2.2.1.5 Cultivation of hiPSCs with feeder cells  

For the pluripotency characterization of hiPSCs, undifferentiated hiPSCs were cultivated 

on mitomycin C-treated MEFs (see 2.2.1.2) in hES medium. The medium was changed 

daily and cells were split every 4 to 5 days. The cells were treated with collagenase IV 

(200 U/ml, 5 min, 37°C) and washed twice with DMEM/F-12. The cells were cut into small 

clusters using a cell scraper, gently resuspended and transferred onto new culture dishes 

with inactivated MEFs. Differentiated colonies were removed mechanically by suction. 

2.2.1.6 Preparation of Geltrex-coated dishes and glass coverslips 

Geltrex was thawed on ice, aliquoted in 2 mg portions and stored at -20°C. Geltrex was 

resuspended with cold DMEM/F-12 and distributed in culture plates to a final 

concentration of 17 µg/cm2 (per well of a 6-well plate) or 21 µg/cm2 (per well of 12-well 

plate). Cell culture plates were incubated for 30 min at 37°C or overnight at 4°C. For 

preparation of glass coverslips, glass slips (Ø25 mm) were incubated in 0.1% HCl overnight 

and transferred into 70% ethanol for 12 hours. Afterwards, slips were dried and heated 

up for sterilization at 200°C for 2 h. Coverslips were placed into 6-well plates and coated 

with Geltrex as described above.  

2.2.1.7 Transfer of hiPSCs from feeder layer onto Geltrex-coated dish  

After at least 8-10 passages, hiPSCs cultured on feeder layer were adapted to feeder-free 

cultures using Geltrex as coating matrix which contains mainly laminin, collagen IV, 

entactin, and heparin sulfate proteoglycan. To this end, medium from hiPSC culture on 

feeder layer was aspirated. The cells were washed twice and incubated for 3-4 min with 

Versene at RT. After aspirating Versene carefully, cells were detached by resuspending 

with E8 medium and plated at high density (1:4) onto Geltrex-coated dishes. Medium was 

changed daily with E8 medium.  

2.2.1.8 Cultivation of hiPSCs on Geltrex  

At about 85-90% confluence, hiPSCs were passaged onto new plates. Cells were washed 

twice and incubated for 3 to 4 min with Versene at RT. The small cell clusters or rather 

single cells were subsequently transferred onto new Geltrex-coated plates containing E8 

medium supplemented with 2 μM TZV. TZV was removed after 24 hours and the medium 

was changed daily. HiPSCs were cultured up to passage 60. After 4-5 passages on Geltrex, 

cells could be used for cardiac differentiation experiments (2.2.1.10).   
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2.2.1.9 Spontaneous differentiation of hiPSCs in vitro  

For spontaneous in vitro differentiation experiments, hiPSCs cultured on feeder cells were 

treated with 200 U/ml collagenase IV (see 2.2.1.5) and dissected with a cell scraper into 

big cell clusters. Cell clusters were transferred to untreated 6-cm dishes and kept in 

suspension with hES medium and incubated for 24 hours (day 0). During this time, the 

cells formed multi-cellular aggregates known as embryoid bodies (EBs). The medium was 

changed to Iscove medium and changed every second day. At day 8, EBs were plated on 

0.1% gelatin-coated TC-treated 6-cm dishes with or without glass coverslips (18 mm x 18 

mm). During this spontaneous differentiation, clusters of beating CMs and other cell 

types appeared. For reverse transcription-PCR analysis of tissue-specific markers, pellets 

were taken at day 8+3/8+17 and day 8+25 as described in 2.2.1.13. For 

immunofluorescence analysis, cells were stained for the endodermal marker AFP at day 

8+3/8+17. The mesodermal marker α-SMA and the ectodermal marker β-III-TUBULIN 

were stained at day 8+25.  

2.2.1.10 Directed differentiation of hiPSCs into cardiomyocytes  

For direct differentiation of hiPSCs into CMs, hiPSCs cultured on Geltrex were transferred 

into 12-well plates and homogeneously distributed. When cells reached about 80-90% 

confluence, differentiation was initiated by cultivation in Cardio differentiation medium 

supplemented with 4 μM CHIR99021, a glycogen synthase kinase 3 inhibitor that induces 

activation of WNT signaling (day 0). Medium was replaced after 48 hours by Cardio 

differentiation medium supplemented with 5 μM IWP2, a WNT pathway inhibitor (day 2) 

and changed again after 48 hours with Cardio differentiation medium. At day 6, medium 

was replaced by B27 medium. Medium was changed every 3-4 days with B27 medium. 

First beating CMs were observed between 8-11 days. To achieve CM maturation, CMs 

were further cultivated for three months. 

2.2.1.11 Digestion and selection of iPSC-derived CMs 

For detachment of beating CMs, cells were gently digested with collagenase B (400 U/ml 

in RPMI1640) for 30-40 min at 37°C. Detached cells were collected in a falcon tube, 

centrifuged for 5 min at 200 x g and carefully resuspended with 0.25% Trypsin-EDTA (5 

min, 37°C). Trypsinization was stopped with Cardio digestion medium and singularized 

cells were again centrifuged and re-suspended in Cardio digestion medium. About 1x 106 

cells were seeded in a Geltrex-coated well of a 6-well plate containing Cardio digestion 

medium. After 24 hours, medium was changed to B27 medium to remove FBS and TZV. 
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Once cells had recovered from digestion and spontaneous contraction had re-started 

(around day 15), cells were put under selective pressure to purify the CM population. 

Cells were cultured for 4-6 days in Cardio selection medium containing lactate instead of 

glucose. From here on CMs were cultivated in B27 medium until maturity levels had been 

reached.  

2.2.1.12 Freezing and thawing of cultivated cells  

For cryopreservation, hiPSCs cultured on feeder layer were treated with collagenase IV 

and dissected into small pieces as described in 2.2.1.5. Cell clusters were transferred into 

15 ml DMEM/F-12 and centrifuged (200 x g, 5 min). The supernatant was discarded and 

the cells were carefully resuspended in 1 ml hES freezing medium and transferred into 

cryo tubes. 

For cryopreservation of hiPSCs cultured on Geltrex, cells were washed twice with Versene 

and incubated for 5 min. Versene was aspirated carefully and cells were detached by 

adding 0.75 ml E8 medium. After resuspending, 0.75 ml E8 freezing medium was added. 

The suspension was mixed gently and the total 1.5 ml was transferred in a cryo tube 

immediately. The cells were kept overnight at –80°C in a freezing box containing 

isopropanol, allowing controlled freezing at –1°C per min. The following day, the frozen 

cells were stored in liquid nitrogen.  

For thawing, frozen cells were placed in a 37°C warm water bath. Immediately after 

thawing, cells were transferred into 10 ml cold DMEM/F-12 and centrifuged (200 x g, 

5 min). The supernatant was discarded and the cell pellet was resuspended in hES or E8 

medium and transferred onto 6-cm or 6-well TC-treated culture dishes either coated with 

inactivated MEFs or with Geltrex, respectively. 

2.2.1.13 Harvesting of cells for pellets 

Cells were washed twice with DPBS, covered with 1.5 ml DPBS and harvested by using a 

cell scraper. Detached cells were transferred into a 1.5 ml reaction tube and centrifuged 

one minute at 16,000 x g. The supernatant was removed and the reaction tube was flash 

frozen in liquid nitrogen and stored at -80 °C until analysis. 

2.2.2 Alkaline phosphatase staining 

One of the first evidence for successful somatic cell reprogramming is alkaline 

phosphatase activity. In reprogrammed cells, alkaline phosphatase expression is 

significantly increased. Alkaline phosphatase activity in hiPSCs was detected using an 
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alkaline phosphatase staining kit according to the manufacturer´s instructions. Cells were 

washed with DPBS and subsequently fixed for 30 sec using a fixation solution provided by 

the kit. Fixed cells were washed twice with ddH2O and stained for 15 min at 37°C using a 

staining solution. After a final washing step with ddH2O, cells were dried at RT. Alkaline 

phosphatase positive cells are stained in red. 

2.2.3 Teratoma formation and analyses  

Undifferentiated hiPSCs cultured on feeder layer were mechanically dissected using a cell 

scraper and transferred into 200–300 μl DPBS. The cell clusters were injected 

subcutaneously into recombination activating gene 2 and gamma C deficient (Rag2-/-
c-/-) 

mice, which lack B cells, T cells, and natural killer cells. Teratomas were collected about 

three months after injection and fixed in phosphate buffered formalin (pH 7.0) for 4 hours 

at RT or overnight at 4°C. After washing with ddH2O, teratomas were dehydrated. The 

samples were embedded into paraffin using a tissue embedding system and processed 

into 6 μm sections with a microtome. The injection of hiPSCs into Rag2-/-
c-/- mice as well 

as the section of teratomas were performed by technicians in Dr. Guan’s lab. Histological 

sections were stained with hematoxylin and eosin at the Department of Pathology of the 

University Medical Center Göttingen and subsequently analyzed using light microscopy. 

2.2.4 Molecular biological analysis  

2.2.4.1 RNA isolation  

For gene expression analyses, cultured cells were washed three times with DPBS and 

pelleted (see 2.2.1.13). Depending on the density, cells were lysed with 300–500 μl RNA 

lysis buffer. Total RNA isolation and purification was done with the SV total RNA isolation 

system according to the manufacturer´s instructions without the heating step in RNA 

dilution buffer. Elution was performed using 60-100 µl nuclease-free H2O. The 

concentration of the isolated RNA was measured with the NanoDrop 2000c/2000 at 

260 nm and 280 nm. The RNA was subsequently used for reverse transcription reaction or 

stored at –80°C. 

2.2.4.2 Reverse transcription reaction  

After RNA isolation, total mRNA was transcribed into complementary DNA (cDNA) using 

the enzyme reverse transcriptase. All components for one reverse transcription reaction 

are listed in Table 18. 
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Table 18: List of components for reverse transcription reaction 

Components  20 μl final volume  

10x PCR buffer II   2 µl 

25 mM MgCl2  4 µl 

100 mM dNTPs 0.8 µl 

RNase inhibitor (20 U/µl) 1 µl 

50 μM Oligo d(T)16  1 µl 

MuLV Reverse transcriptase (50 U/µl) 1 µl 

100-250 ng RNA and nuclease-free H2O 10.2 µl 

 

The reverse transcription reaction was accomplished in a thermocycler using the 

following program: 

Temperature time 

22°C 10 min 

42°C 50 min 

95°C 10 min 

4°C ∞ 

 
The resulting cDNA was stored at –20 °C 

2.2.4.3 Polymerase chain reaction 

All components for one PCR to amplify certain cDNA fragments are listed in Table 19. 

Table 19: List of components for PCR 

Components for PCR  25 μl final volume  

cDNA  1 μl  

Nuclease-free H2O 15.3 μl  

5x Green GoTaq reaction buffer  5 μl  

10 mM dNTPs  1.6 μl  

Sense primer (10 μM)  1 μl  

Antisense primer (10 μM)  1 μl  

GoTaq G2 DNA polymerase (5 U/µl) 0.1 μl  

 

The reaction was performed in a thermocycler using the following standardized program:  
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Step Temperature Time Repeats 

Denaturation 95°C 3 min 1 

94°C 15 sec 28-45 

Annealing* 50-65°C 30 sec 

Elongation 72°C 30 sec 

10 min 1 

Final step 4 °C ∞ 1 

*Exact annealing temperature and number of cycles for the different oligonucleotides are listed in 
Tables 4 and 6. 

2.2.4.4 Agarose gel electrophoresis  

Amplified PCR products were analyzed by electrophoretic separation on an 1.5-

2% agarose gel. The agarose gel was prepared using appropriate amounts of agarose, 1x 

TBE buffer and Midori Green Advance (0.04 µl/ml) for the visualization of DNA. The 

electrophoresis was performed at 120 V for approx. 45 min. The particular size of the 

DNA fragments was determined by GeneRuler 100 bp Plus DNA Ladder. All results were 

documented using ultraviolet light. 

2.2.4.5 Purification of DNA fragments from PCR 

DNA purification of PCR products and DNA extraction from agarose gels were performed 

using QIAquick PCR purification kit and QIAquick gel extraction kit, respectively, according 

to manufacturer’s protocols. Elution was performed using 30 µl nuclease-free H2O. 

2.2.4.6 Heat-shock transformation of chemo-competent E. coli  

For the amplification of CRISPR/Cas9-plasmids, plasmid-DNA was transformed into E. coli 

Top10F- cells. To this end, competent E. coli were thawed on ice and mixed with 20 ng 

pure plasmid-DNA. Cells were gently mixed by vortexing and incubated for 20 min on ice. 

The following heat-shock was performed at 42°C for 90 sec in a thermomixer. Afterwards 

the cells were incubated on ice for additional 2 min, resuspended in 500 μl LB medium 

(without antibiotics) and incubated for 60 min at 37°C in a thermomixer. 50 and 100 μl of 

the cell suspension was directly plated on LB-agar plates with kanamycin (50 µg/ml). The 

plates were incubated at 37°C overnight. 
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2.2.4.7 Plasmid purification from E. coli cultures  

Plasmid-harboring E. coli cultures were pre-cultured in 6 ml LB-medium with kanamycin 

(50 µg/ml) for 6 hours at 37°C. 2 ml of this E. coli culture were used to inoculate 250 ml LB 

medium with kanamycin, which was incubated at 37°C overnight in a shaking incubator. 

Afterwards, 800 μl of this culture was used for a glycerin stock (200 μl 99% glycerin and 

800 μl of E. coli culture). The isolation of plasmid DNA was done by the principle of 

alkaline lysis. To this end, the QIAGEN plasmid maxi kit was used according to the 

manufacturer's instructions. The plasmid-DNA-pellet was resuspended with 150-200 µl 

sterile nuclease-free H2O.  

2.2.4.8 Genomic DNA isolation for DNA sequencing 

Prior to genomic DNA isolation, cultivated cells were detached from the plates as 

described in 2.2.1.13 and pellets were stored at -80°C. The genomic DNA was isolated and 

purified using the automated Maxwell 16 cell DNA purification kit according to the 

manufacturer´s instructions. The concentration of the isolated DNA was measured using a 

NanoDrop at 260 nm and 280 nm. The samples were subsequently stored at -80°C. For 

genomic DNA sequencing, the DNA sequence from the gene of interest (RYR2) was 

initially amplified by PCR using the appropriate primer set. In each reaction, 100 ng of 

total genomic DNA was used. The PCR product was electrophoretically separated on an 

1.5% agarose gel and subsequently excised with a scalpel. The DNA fragment was then 

extracted from the agarose gel using the QIAquick gel extraction kit according to the 

manufacturer´s instructions.  

2.2.4.9 DNA sequencing 

DNA Sequencing of PCR products from CPVT patients and CRISPR clones was performed 

by a commercial sequencing facility (Seqlab, Göttingen). To this end, 200 ng DNA was 

mixed with 3 µl sequencing-primer (10 µM) and adjusted with nuclease-free H2O to a 

total volume of 15 μl. 

2.2.4.10 Allele-specific expression analysis of the RYR2 gene  

CPVT patients are characterized by a heterogeneous point mutation in the RYR2 gene. For 

an allele-specific expression analysis of RYR2, the cDNA of differentiated three-month-old 

CMs was used. To this end, the total amount of mRNA was isolated and 250 ng RNA were 

reverse transcribed into cDNA as described before (see 2.2.4.2 and 2.2.4.3). DNA 

fragments (267-289 bp) which include the region of the point mutation were amplified as 
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described in Table 20. Primer sets are listed in Table 7. The PCR product of two 50 µl PCR 

reactions was purified using the QIAquick PCR purification kit according to the 

manufacturer´s instructions and eluted in 30 µl nuclease-free H2O. Sequencing of cDNA 

copies was done in the Transcriptome and Genome Analysis Laboratory of the University 

Medical Center Göttingen. For sequencing, the cDNA samples were prepared with the 

"TruSeq RNA Sample Prep Kit v2" (Illumina®) according to the manufacturer's protocols. 

Paired-end (2x250 bp) sequencing was conducted using a MiSeq (Illumina®).   

Sequencing quality was checked and approved via the FastQC software 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequences were aligned 

to the genome reference sequence of Homo sapiens (Ensembl assembly GRCh38) using 

the STAR alignment software (Pubmed ID_23104886; version 2.5) with standard 

parameters. Optical and PCR duplicates were removed using Picard tools 

(http://broadinstitute.github.io/picard/, version 2.3.0). Variant calling, filtering and allele-

specific expression quantification were conducted using GATK tools according to best 

practices (Pubmed ID_ 21478889, version 3.4.46). 

Table 20: PCR for the amplification of cDNA used for allele-specific expression analysis 

Components for PCR  50 μl final volume  

cDNA  8 μl  

Nuclease-free H2O  24.6 μl  

5x Green GoTaq reaction buffer  10 μl  

10 mM dNTPs 3.2 μl  

Sense primer (10 μM)  2 μl  

Antisense primer (10 μM)  2 μl  

GoTaq G2 DNA polymerase (5 U/µl) 0.2 μl  

2.2.5 Protein expression analyses 

2.2.5.1 Flow cytometry  

CMs were digested using collagenase B and Trypsin-EDTA as described in 2.2.1.11. 

Collected cells were washed twice with DPBS (200 x g, 5 min) and fixed in 4% PFA solution 

for 20 min at RT. After removing of the PFA solution, cells were washed twice with DPBS 

(270 x g, 5 min) and incubated with the primary antibody diluted in 0.1% Triton-X/BSA at 

4°C overnight. After three washing steps (5 min, 270 x g, 0.1% Triton-X/BSA), cells were 

incubated with the secondary antibody in 0.1% Triton-X/BSA for 45 min at RT under 

exclusion of light. After three washing steps, samples were resuspended in 200 µl 0.2% 
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BSA-PBS and transferred into FACS tubes. For the calibration of the flow cytometer, 

non-labeled cells were used. Routinely, 10,000 cells were measured per sample. Gates 

had been adjusted to cells stained only with the secondary antibody. 

2.2.5.2 Western blot analyses  

2.2.5.2.1 Preparation of cell lysates  

For cell lysis, frozen cell pellets were extensively resuspended in 80-100 μl cell lysis buffer 

and incubated for 30 min on ice. To get rid of bigger cell fractions, lysates were 

centrifuged (2,400 x g, 5 min, 4°C) and the supernatant was transferred into a new 

reaction tube. 5 μl of each sample was diluted in 95 μl DPBS for measurements of protein 

concentrations. The protein concentration was determined using the Pierce BCA protein 

assay kit according to the manufacturer´s instructions and a 96-well photometer at 562 

nm. The samples were directly prepared for SDS-PAGE or stored at –80°C until further 

use. Before SDS-PAGE, a total amount of 40 μg protein lysate was mixed with SDS loading 

buffer and DPBS in a volume of 20 μl and denatured for 30 min at 37°C. 

2.2.5.2.2 SDS-polyacrylamide gel electrophoresis 

By SDS-PAGE charged proteins are separated according to their molecular weight. The 

separation gel was mixed according to Table 21 and poured between two glass plates 

separated by spacers and fixed with clamps. Solutions for the separation gel were 

covered with a thin layer of isopropanol. After polymerization the isopropanol was 

decanted, a stacking gel was poured on top and a comb was inserted. After the 

polymerization of the stacking gel, the whole gel was attached to an electrophoresis 

chamber, filled with 1x running buffer and the samples were loaded together with a 

prestained molecular weight marker. Electrophoresis was performed at a constant 

current of 30 mA for approx. 2 hours. To visualize the separated proteins, the gels were 

further processed by immunoblotting (2.2.5.2.3).  

Table 21: Components for 12 ml separation gel and 7.5 ml stacking gel 

Separation gel  6% 12% 15%  Stacking gel 2 Gels 

Rotiphorese gel 30 2 ml 4.8 ml 6 ml  Rotiphorese gel 30 1 ml 

4x Tris/SDS pH 8.8  3 ml 3 ml 3 ml  4x Tris/SDS pH 6.8  1.88 ml 

ddH2O  6.6 ml 4.2 ml 3 ml  ddH2O  4.62 ml 

10% APS  48 µl 48 µl 48 µl  10% APS  37.5 µl 

Temed  18 µl 18 µl 18 µl  Temed  15 µl 
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2.2.5.2.3 Protein transfer and detection 

Proteins previously separated by SDS gel electrophoresis (2.2.5.2.2) were transferred to 

PVDF membranes using the Wet/Tank blotting system. Four filter-papers were soaked in 

1x transfer buffer. PVDF membrane was activated according to the manufactures 

instructions. Two filter-papers were placed on the black site of the holder cassette and 

the SDS gel was placed on top followed by the PVDF membrane and two additional filter 

papers. Air bubbles were removed by rolling a pipette over the stack. The protein transfer 

was continuously cooled with ice during the blotting (400 mA, 2 h). 

Free binding sites on the PVDF membrane were blocked with 3% BSA/TBS-T or nonfat dry 

milk according to the listed dilution in Table 8 (60 min, RT). Immunostaining was 

performed by incubation with primary antibodies diluted in 1-3% BSA/TBS-T (4°C, 

overnight), followed by HRP-conjugated secondary antibodies in 1% BSA/TBS-T (60 min, 

RT). In between, the membrane was extensively washed three times with TBS-T. Antigens 

of interest were detected by adding ECL reagents and the result was documented with a 

chemiluminescence detection system.  

2.2.5.3 Immunofluorescence analyses  

The expression of pluripotency-associated proteins in undifferentiated hiPSCs, germ 

layer-specific proteins in spontaneously differentiated hiPSCs, as well as cardiac-specific 

proteins in CMs was shown by immunostaining. The hiPSCs, spontaneously differentiated 

cells and CMs were initially cultivated on coverslips. Cells were washed twice with DPBS, 

fixed with 4% PFA (20 min, RT), and washed again three times. Unspecific binding sites 

were blocked with 1% BSA (overnight, 4°C). Cells for nuclear-, cytoplasmic- and 

cardiac-specific protein analyses were additionally permeabilized with 0.1% Triton X-

100/BSA (10 min, RT). Stainings with CX43 were not treated with 0.1% Triton X. For the 

staining the primary antibody was added (overnight, 4°C) followed by the secondary 

antibody (60 min, RT, dark). The nuclei were stained with DAPI (1:5000 diluted in ddH2O, 

10 min, RT, dark). Between all steps the samples were washed three times with DPBS. 

Prior to mounting, coverslips were washed with ddH2O and mounted on microscope 

slides using Fluoromount-G. HiPSCs and spontaneously differentiated cells were analyzed 

by Carl Zeiss Axio Observer.Z1 microscope. Immunostaining of CMs was visualized by 

confocal laser microscopy using a 40x 1.1.W objective using the oil immersion technique. 
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2.2.6 Generation of cell clones edited by CRISPR/Cas9 

2.2.6.1 Transfection of HEK293T cells using calcium-phosphate  

For the cleavage assay of CRISPR/Cas9, calcium-phosphate transfection was performed in 

HEK293T cells which are susceptible for transfection by calcium-phosphate precipitates. 

The DNA is enclosed in the calcium-phosphate precipitates and is taken up by the cells 

across the cell membrane. For the transient transfection 3x 105 cells were seeded in each 

well of a 6-well plate one day before transfection. 4 hours before transfection, medium 

was exchanged with fresh FL-medium. 3.3 μg plasmid-DNA was added to 16.6 μl 2.5 M 

CaCl2 and adjusted with ddH2O to a final volume of 166 μl. Afterwards 166 μl 2x HBS-

solution was added dropwise with additional snapping of the reaction tube. Immediately 

afterwards, the mixture was added to the cells. 24 hours post transfection, medium was 

removed and 300 μl of pre-warmed 10% glycerol (v/v) was added to the cells and 

removed shortly afterwards. Cells were washed once with fresh medium. Next, 

transfected cells were counted and pellets containing 1x106 transfected cells were 

prepared by pooling 2-3 transfected wells as described in 2.2.1.13 and used for the 

CRISPR/Cas9 cleavage assay. 

2.2.6.2 Cleavage assay of CRISPR/Cas9 

When using CRISPR/Cas9 editing tools to obtain targeted genome correction, it is 

necessary to determine how efficient the Cas9 nuclease cleaves the target sequence. The 

cleavage assay of CRISPR/Cas9 was done using the GeneArt genomic cleavage detection 

Kit according to the manufacturer´s instructions. Briefly, pellets containing 1x106 

CRISPR/Cas9 transfected HEK293T cells were resuspended in 50 μl cell lysis buffer/protein 

degrader mix, heated in a thermal cycler and used as template for the PCR, which 

amplified the DNA region of interest. For the cleavage assay, 2 µl of the PCR product was 

mixed with detection reaction buffer in a total volume of 10 µl. The re-annealing reaction 

was started in the thermal cycler. Immediately afterwards, the PCR-amplicon containing 

the mismatched DNA was cleaved by the detection enzyme and the entire sample was 

load on a 2% agarose gel using Ficoll loading buffer without dye to avoid interference with 

band intensity measurements. The percent of gene modification was analyzed using 

Alpha Imager Software.  
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2.2.6.3 Transfection of hiPSCs  

Transfection of hiPSCs was performed using the Nucleofector II device and the 

nucleofector kit 1/2 for human stem cells. For this purpose, feeder-free hiPSCs were 

passaged 2 days before transfection. For one transfection, 4 µg plasmid and 3.3 µg 

ssODNs were added to the mixture of 82 μl Nucleofector solution and 18 μl 

supplement 1. HiPSCs with confluence about 80-90% were detached as described in 

2.2.1.8. For each transfection 2x106 cells were transferred into a 15 ml falcon tube and 

centrifuged (200 x g, 5 min). The supernatant was discarded and the cells were carefully 

resuspended in the DNA-Nucleofector solution mix and transferred into the Nucleofector 

cuvette. The cuvette was placed in the Nucleofector II device and program B-16 was used. 

Transfected cells were transferred into one well of a 6-well plate containing E8 medium 

supplemented with TZV and 1x P/S. 

2.2.6.4 FACS of GFP+ hiPSCs 

To select successfully transfected cells, GFP+ hiPSCs were purified in the FACS facility of 

the UMG Göttingen 24 hours after transfection. To this end, hiPSCs cells were washed 

twice with Versene, incubated for 5 min and resuspended in FACS medium. Cell 

suspension was filtered with 50 µm filcons and transferred to FACS tubes. 1-7x103 cells 

were directly seeded on each Geltrex-coated 96-well plate in a 1:1 mix of E8 and MEF-

conditioned E8 medium supplemented with additional hbFGF (10 ng/ml), 1x TZV and 1x 

P/S. E8 medium supplemented with hbFGF (10 ng/ml), 1x TZV 1x P/S was changed every 

third day. 

2.2.6.5 Expansion of cell clones edited by CRISPR/Cas9 

First colonies were observed 10-18 days after FACS. Single hiPSC colonies were shortly 

incubated with Versene (30 sec). After aspirating Versene, hiPSC colonies were 

resuspended with E8 medium plus 1x TZV using a 100 µl pipette and transferred into 

Geltrex-coated 96-well plates or 48-well plates depending on the colony size. Confluent 

48-well plates were transferred onto two wells of a 24-well plate as described in 2.2.1.8. 

Confluent wells were used either for pellets for DNA extraction or for cryopreservation. 

For the cryopreservation of CRISPR/Cas9 clones, cells were washed once with Versene 

and incubated for approx. two minutes with Versene. After aspirating Versene, hiPSCs 

were directly resuspended in CRISPR/Cas9 freezing medium and transferred into cryo 

tubes. Cells were kept overnight at -80°C in a freezing box. 
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2.2.6.6 Genomic DNA isolation and screening of cell clones edited by CRISPR/Cas9 

For screening of cell clones edited by CRISPR/Cas9, cell pellets were resuspended in 80 µl 

QuickExtract solution and incubated in a thermoshaker (65°C, 800 rpm). In the next step, 

the temperature was increased to 98°C (2 minutes, 800 rpm) and DNA lysates were 

centrifuged (1 min, 16,000 x g). DNA lysates were stored at –20°C or directly used for PCR 

amplification of CRISPR/Cas9 targeted sequences. PCR was performed as described in 

Table 20 using a reaction of 50 µl containing 5 µl DNA lysate and the appropriate primer 

set. The primer set RYR2c-1021 or CPVTc-Seq was used for amplification of transfected 

cells from patient c1 and c2, and the primer set CPVTb-Seq was used for amplification of 

cells transfected from patient b1. 1 µl restriction enzyme was directly put into 25 µl PCR 

product and incubated for 3 hours in a thermoshaker (37°C, 300 rpm). After restriction 

digestion, the PCR product was separated on an 1.5% agarose gel for 60-70 minutes at 

120 V. Positive digested clones were visualized using ultraviolet light. The undigested PCR 

products of these clones were purified using the QIAquick gel extraction kit according to 

the manufacturer´s instructions. Purified DNA was sent out for sequencing.  

2.2.6.7 Subcloning of sequenced CRISPR/Cas9 edited cell clones  

When sequencing showed inconsistent results, CRISPR/Cas9-edited cell clones were 

digested as described in 2.2.6.4 and resuspended in FACS medium to dilute those again 

using the FACS facility. To increase the survival rate after sorting, just living cells were 

gated and different numbers of cells (ranging from 1-11 cells) were put into one well of a 

Geltrex-coated 96-well plate containing 1:1 mixture of MEF-conditioned E8 medium and 

E8 medium supplemented with additional hbFGF (10 ng/ml), 1x TZV and 1x P/S. 

2.2.6.8 Cytosolic calcium recordings 

5 to 7 days before the calcium recording, CRISPR/Cas9-edited CMs, patient-specific CMs, 

and Ctrl-CMs were digested and plated on Geltrex-coated 25 mm glass coverslips and 

incubated in B27 medium. For calcium imaging cells (day 86-118) were washed twice with 

Tyrode’s solution, incubated with 5 µM fluo-4/AM fluorescent calcium indicator and 

0.02% [w/v] pluronic F-127 in Tyrode’s solution for 30 minutes at 20-22°C and washed 

twice again with Tyrode’s solution. Recordings were obtained from paced cells which 

were field stimulated at 0.25 Hz (18 V, 3 ms duration) using a recording chamber with 

platinum electrodes in Tyrode’s solution at 20-22°C and total medium change every ten 

minutes. Cells were treated with isoprenaline (100 nM) for 10 minutes before recordings. 

Images were captured using a LSM 710 confocal microscopy system and a 63x 1.4 NA oil 
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objective in line scan mode (512 pixels, 45 µm, 1057.7 Hz, 20,000 cycles) exiting at 

488 nm and collecting emission at 490-540 nm. Post-acquisition analysis of changes in 

intracellular calcium as a function of the time was performed using ImageJ and Excel. A 

defined plot per recording (500 ms, 25 µm) during diastolic phase was analyzed by ImageJ 

SparkMaster (settings: 1057.70 lps; 0.088 µm; Fl. U. 0; criteria 3.3; intervals 3) and sparks 

with minimal amplitude of 0.2 ∆F/F0, minimal width of 0.7 µm and minimal duration of 

7 ms were selected for detailed analysis. 
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3 Results 

3.1 Clinical profile of patients suffering from CPVT 

In this study, CPVT patients were recruited to study mutation-specific differences as well 

as the molecular mechanisms of CPVT in these individuals. The study group consisted of 6 

individuals (mean age 36, range 29-45 years, 5 females) who were molecularly defined 

heterozygous carrier of different RYR2 mutations causing CPVT symptoms. CPVT patients 

carried the following missense mutations: R420W (patients a2 and a3), A2254V (patient 

b1), E4076K (patients c1 and c2) and H4742Y (patient d1). Mutation nomenclature was 

based on RYR2 reference protein sequence NM_001035.2. The mutations are located in 

the four hot spot clusters of RYR2. The mutations R420W, A2254V  and E4076K are 

localized in the cytosolic N-terminal or central regions of the receptor and were already 

described in the literature (Bauce et al., 2002; Postma et al., 2005) while the mutation 

H4742Y is located in the pore region close to the C-terminal part of the RYR2 receptor 

(Fig. 7). All mutations were associated with severe exercise-induced ventricular 

tachycardia (VT). 5 of 6 patients were known to have a family history with sudden cardiac 

death. Following diagnosis of CPVT, β-adrenergic blocking agents (bisoprolol or 

metoprolol) were administrated as first line therapy to prevent further arrhythmias. After 

several years, all patients had recurrent symptoms despite treatment with β-adrenergic 

blocking. For this reason, therapies were supplemented with the anti-arrhythmic agent 

flecainide to reduce the severity of arrhythmias.  However, combined treatment therapies 

were not fully protective to prevent symptoms for longer periods. Last examinations 

(06/2016-07/2016) revealed still recurrent symptoms in all patients.  Patient a2 is a 

35-year-old woman, who suffered since the age of 14 from palpitations during exercise 

and emotions. She developed premature ventricular contractions (PVCs) during exercise 

test without medications. Combined application of flecainide and bisoprolol showed 

bigeminy as most severe type of arrhythmia during exercise test.  The 34-year-old female 

patient a3 suffered from palpitations during exercise for several years. Exercise tests 

without medication revealed non-sustained polymorphic VT. In 2016, renal denervation 

was performed due to persistent arrhythmia despite therapy with β-blockers and 

flecainide. The 45-year-old male patient b1 was asymptomatic before diagnosis, but 

screened due to familiar accumulation of sudden cardiac death. His worst arrhythmias 

during exercise test were couplets, which were still observed during treatment with 

bisoprolol and flecainide. To minimize these symptoms, left cardiac sympathetic 

denervation was performed in 2016.  
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Figure 7. RYR2 protein and mutations studied in the present study. Six patients had 
heterozygous missense mutations in this study (arrows) which are located in different mutation 
clusters of the RYR2 protein. Clusters are represented as dark grey lines numbered from 1 to 4. 
Cluster 1 comprises of amino acids (aa) 44–466, cluster 2 aa 2246–2534 and cluster 3 aa 3778–
4201. These three clusters are located in the N-terminal and central regions of RYR2 and form the 
cytoplasmic domain. Cluster 4 comprises of aa 4497–4959 and is located in the transmembrane 
and C-terminal region. Five patients (a2, a3, b1, c1, c2) had mutations in the N-terminal and 
central region of the protein and are located in the cytoplasmic domain. One Patient d1 (H4742Y) 
had a missense mutation in the transmembrane region which is located in the C-terminal region 
in the membrane. In the 3D-tetramer structure of RYR2 (not shown), the mutation H4742Y is 
located in the pore region of the tetrameric protein RYR2 (modified from Penttinen et al. 2015).  
 

The 28-year-old female patient c1 had her first clinical symptoms already with 10 years. 

Left cardiac sympathetic denervation was performed due to syncope despite treatment 

with metoprolol. In 2010, flecainide was administrated because of recurrent ventricular 

arrhythmias. The 45-year-old female patient c2 had syncope at rest with the age of 

27 years. Due to family history of sudden cardiac death, exercise test was performed and 

showed polymorphic non-sustained VT. Despite combined treatment with metoprolol and 

flecainide, bigeminy was observed during exercise test but the severity of arrhythmias 

was decreased. The 29-year-old female patient d1 had recurrent syncope with the age of 

16 in response to physical and emotional stress. Exercise test showed polymorphic non-

sustained VT. Ventricular arrhythmias occurred despite β-blocker therapy and additional 

treatment with flecainide could also not prevent bigeminy.  
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3.2 Generation of CPVT- hiPSCs and proof of their pluripotency  

3.2.1 Generation of CPVT-hiPSCs from 3 different CPVT patients 

As part of this work, skin biopsies from three CPVT patients (b1, c1, c2) were obtained for 

the generation of hiPSCs. These patients had a missense mutation at different loci 

(A2254V, E4076K). Outgrowing skin fibroblasts were expanded. Between passage 2 and 4 

fibroblasts were directly taken for transduction using the non-integrative SeV containing 

the Yamanaka factors KFL4, C-MYC, OCT4 and SOX2 (Fusaki et al., 2009b) (Fig. 8). Four 

weeks after transduction, several colonies resembling pluripotent stem cells with respect 

to their round morphology were picked mechanically and transferred onto new culture 

dishes coated with MEFs (Fig. 9A-C). From each patient between two and four 

independent cell clones were further cultivated and characterized for their pluripotency 

and differentiation ability.  

 

 

Figure 8. Timeline for the generation of CPVT-hiPSCs. Generation of pluripotent stem cells 
involves cultivation of skin fibroblasts obtained from skin biopsies and reprogramming using 
Sendai virus. After successful reprograming, hiPSC colonies were expanded and characterized for 
their pluripotency and differentiation ability into all three germ layers.   
 

 
Figure 9. Morphology and alkaline phosphatase activity of CPVT-hiPSCs. CPVT-hiPSC lines were 
first cultured on MEFs. Like human pluripotent stem cells, all tested cell lines have typical round 
shape colonies (A-C) and express high levels of alkaline phosphatase (D-F). Scale bar: 200 µm. 
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The enzyme alkaline phosphatase, which is the first marker for undifferentiated cells 

(O'Connor et al., 2008), was expressed in all generated CPVT-hiPSCs indicated by red 

staining of CPVT-hiPSC colonies (Fig. 9D-F). Cellular reprogramming involves an extensive 

remodeling of gene expression. Expression of pluripotency-specific markers was proven 

by reverse transcriptase-PCR (Fig. 10) on mRNA level and immunofluorescence staining 

(Fig. 11) on protein level. 

 

 
Figure 10. Gene expression analysis of generated CPVT-hiPSCs and their parental fibroblasts. All 
CPVT-hiPSC lines from patients b1 (A), c1 (B) and c2 (C) show similar high expression of the 
pluripotency-related genes SOX2, OCT4, NANOG, LIN28, GDF3, and FOXD3 compared to the hES2 
cell line. These pluripotency genes were expressed at very low levels in their parental fibroblasts. 
GAPDH was used as housekeeping gene. MEFs were used as negative control. The hESC line hES2 
was used as positive control. 
 

In comparison to hESCs (hES2), CPVT-hiPSCs from patients b1, c1 and c2 expressed similar 

levels of the pluripotency-related marker genes OCT4, NANOG, SOX2, LIN28, GDF3 and 



   

57 
 

3- RESULTS 

FOXD3 (Fig. 10). In contrast, pluripotency markers are not expressed in their parental 

fibroblasts. Just a very weak expression of NANOG and OCT4 was detected in fibroblasts. 

These data support an activation of endogenous gene expression because four of 

analyzed genes (NANOG, LIN28, GDF3, and FOXD3) are not part of SeV which was used for 

reprogramming.  

 

 
Figure 11. Immunostaining detects pluripotency-related proteins of generated CPVT-hiPSCs. 
Representative cell lines from patient c1 are shown here, demonstrating high expression of the 
transcription factors SOX2 (A-C), NANOG (D-F) and OCT4 in the nuclei (G-I), as well as for the 
cytoplasmic located marker LIN28 (J-L). SSEA4 (M-O) and TRA-1-60 (P-R), both located in the cell 
membrane, were also detected. The cell nuclei were stained with DAPI. Scale bar: 100 μm. 
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Furthermore, the pluripotency related proteins NANOG, OCT4, SOX2, LIN28, SSEA4, and 

TRA-1-60 were detected in all generated hiPSC clones (Fig. 11). The transcription factors 

SOX2, NANOG and OCT4 (Fig. 11A-I) are located in the nuclei of all CPVT-hiPSC lines. 

LIN28 is located in the cytoplasm (Fig. 11J-L), whereas SSEA4 (Fig. 11M-O), and TRA1-60 

(Fig. 11P-R) are located on the membrane surface. No obvious differences were observed 

among all analyzed hiPSC clones. 

3.2.2 Differentiation potential of in vitro and in vivo  

Differentiation ability of generated hiPSCs was determined in vitro by spontaneous 

differentiation via EB formation and in vivo by teratoma formation. For in vitro 

differentiation, CPVT-hiPSCs were cultivated in suspension with Iscove medium for 8 days. 

During this period, cells formed multi-cellular aggregates known as EBs, which were 

plated onto gelatin-coated culture dishes at day 8 after differentiation. To analyze 

changes of gene expression, mRNA was isolated and reverse transcribed into cDNA at 

three different time points (day 0, day 8+3/d8+17, and day 8+25) (Fig. 12).  

In all differentiation experiments, CPVT-hiPSC lines showed an increased mRNA 

expression of tissue-specific germ layer markers in a developmentally controlled manner. 

All cell lines from patients b1 and c1 showed an upregulation of the tested germ layer 

markers. However, not all cell lines from patient c2 express all tested germ layer markers 

after differentiation on mRNA level (Fig. 12C). In general, the early endodermal marker 

gene AFP was already expressed at day 8, whereas ALB, a late marker for hepatocytes, 

was often expressed at later stages during the process of differentiation. The mesodermal 

marker genes cTNT and α-MHC were already early expressed during the differentiation 

experiments. Both ectodermal marker genes, SYN and TH were expressed at early stages, 

too.  

To test spontaneous differentiation on protein level, differentiated hiPSCs were stained 

with antibodies against three different germ layer-specific proteins (Fig. 13). HiPSC lines 

from all three CPVT patients were able to express the endodermal marker AFP (Fig. 13A-

G), the mesodermal marker α-SMA (Fig. 13H-N) as well as the neuroectodermal marker 

β-III-TUBULIN (Fig. 13O-U) on protein level after spontaneous differentiation. 
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Figure 12. Gene expression of differentiated CPVT-hiPSCs. CPVT-hiPSCs from patients b1 (A), c1 
(B), and c2 (C) were differentiated spontaneously in vitro and mRNA was isolated at day 0, day 
8+3/d8+17, and day 8+25 of differentiation. For each germ layer two representative markers were 
chosen. Gene expression of endodermal (AFP, ALB), mesodermal (α-MHC, cTNT) and ectodermal 
markers (SYP, TH) was upregulated during spontaneous differentiation. The pluripotency marker 
NANOG was highly expressed in undifferentiated hiPSCs and downregulated during 
differentiation. GAPDH was used as housekeeping gene. MEFs were used as negative control.  
 

To test the differentiation potential in vivo, hiPSCs were injected subcutaneously into 

immunodeficient Rag2-/-
c-/- mice to induce teratoma formation. The injected cells formed 

mature teratoma, which were analyzed histologically for the expression of all three germ 

layers (Fig. 14). Teratomas derived from patients b1 and c1 contained derivatives of all 

three embryonic germ layers shown by neural rosettes representing ectoderm (Fig. 14A-

C), cartilage representing mesoderm (Fig. 14D-H) and intestinal tissue representing 

endodermal lineages (Fig. 14I-M). Neural rosette structures were not found in the 

teratoma derived from the cell line isCPVTc1.1. HiPSC lines from patient c2 developed just 

a single teratoma which expressed mesodermal tissues such as cartilage and endodermal 

tissue such as intestinal tissue (Fig. 14H, M) but lacked expression of neural rosettes. 
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Figure 13. Immunostaining of differentiated hiPSCs detects germ layer-specific proteins. All 
differentiated CPVT-hiPSC lines were positive for the endodermal marker AFP (A-G), mesodermal 
marker protein SMA (H-N) and the ectodermal marker β-III-TUBULIN (O-U). The cell nuclei were 
stained with DAPI. Scale bar: 100 μm. 
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Figure 14. Teratoma formation of CPVT-hiPSCs. After subcutaneous injection into Rag2-/-
c-/-mice, 

nearly all injected CPVT-hiPSC lines developed teratoma (A–M) with derivatives of all three 
embryonic germ layers: ectoderm represented by neural rosettes (A-C), mesoderm represented 
by cartilage (D-H), and intestinal tissue with endodermal origin (I-M). Neural rosettes were not 
observed in the hiPSC lines isCPVTc1.1 and isCPVTc2.3. Scale bar: 200 μm. 

3.2.3 Verification of the RYR2 missense mutation in CPVT-hiPSCs  

RYR2 gene regions, containing different mutation sites (A2254V, E4076K) in three CPVT 

patients (b1, c1, c2), were sequenced to confirm the genotype of CPVT-hiPSCs. RYR2 is 

located on chromosome 1q43. The genomic DNA of generated CPVT-hiPSCs from patients 

b1, c1 and c2 was isolated and sequenced approximately 170-250 bp up- and 

downstream of the predicted mutations within the RYR2 gene. CPVT-hiPSC lines from 

patient b1 showed the missense mutation A2254V referred to the amino acid coding 
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sequence. The amino acid position E4076K is mutated in CPVT-hiPSC lines from patients 

c1 and c2 (Fig. 15). 

 
 
Figure 15. Verification of the RYR2 point mutation in the generated CPVT-hiPSCs. Sequence 
chromatograms from CPVT-hiPSCs revealed the expected heterogeneous missense mutation in 
the RYR2 gene (A2254V, E4076K). The analysis of hiPSCs from patient b1 shows a nucleotide 
substitution of C to T in exon 44 in RYR2 converting alanine to valine at position 2254 of the 
protein. HiPSCs from patients c1 and c2 had nucleotide substitution of G to A in exon 90 which 
changes the amino acid from glutamic acid into lysine at codon 4076. 
 

To sum up, patient-specific CPVT-hiPSCs were successfully generated using non-

integrative reprogramming methods. CPVT-hiPSCs fulfill all criteria which are essential for 

pluripotent stem cells. All generated hiPSC lines from 3 CPVT patients had a typical 

morphology of pluripotent stem cells and expressed pluripotency-associated markers on 

mRNA and protein level. Furthermore, in vitro experiments showed that CPVT-hiPSCs 

were able to differentiate spontaneously into all three germ layers indicated by mRNA 

and protein expression of germ layer-specific markers. Teratoma assays demonstrated 

pluripotency of the analyzed CPVT-hiPSC lines in vivo. Sequencing confirmed their 

missense mutation in RYR2 which probably induces the CPVT phenotype in patients.  

3.3 Directed differentiation of hiPSCs into CMs 

After reprogramming and cultivation on MEF, Ctrl-hiPSCs and CPVT-hiPSCs from patients 

a2, a3, b1, c1, c2 and d1 were adapted to Geltrex-coated plates and maintained in feeder-

free culture conditions using E8 medium. Direct CM differentiation was initiated with 
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cardio differentiation medium and progressive treatment with CHIR and IWP2 for 

temporal WNT signaling activation and repression, respectively (Fig. 16).  

 

Figure 16. Schematic illustration of the directed cardiac differentiation using hiPSCs. At 80-90% 
confluence of hiPSC cultured on Geltrex-coated plates, direct CM differentiation was initiated 
using GSK3 inhibitor CHIR to activate canonical WNT/β-catenin signaling for mesodermal 
induction. For cardiac specification, the canonical WNT pathway was inhibited by IWP2 for two 
days, thereby cardiac gene expression was activated. CMs were selected using medium containing 
lactate instead of glucose and cultured for three months until further analysis (Modified from 
Cyganek et al. 2013). 

 

First beating areas were observed between day 8 and 12 after starting differentiation. To 

purify young differentiated CMs (<30 days), metabolic CM selection was performed using 

RPMI1640 minus glucose, but supplemented with lactate for 4-6 days. For maturation, 

CMs were cultured in RPMI1640 with B27 for 90-115 days before further analysis. Flow 

cytometry analysis reveals high efficiency of cardiac differentiation and high purity of CMs 

after lactate selection and cultivation for three months. Up to 98% of the CMs were 

stained positive for cTNT (Fig. 17). 

 
 

Figure 17. Flow cytometric analysis of 3-month-old CMs. Ctrl-CMs (A, B) and CPVT-CMs (C, D, E) 
were stained with antibodies against cTNT and detected with PE-labeled anti-mouse IgG 
antibodies. In total, we obtained an average of 92.3% cTNT+ cells (n=14 different experiments 
from different cell lines). The diagrams show cTNT+ cells of representative measurements of Ctrl- 
and CPVT-CMs that were gated for living cell populations. Unstained CMs served as negative 
control. 10,000 cells were measured per sample.  
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Reverse transcription PCR analyses show that Ctrl- as well as CPVT-CMs expressed 

cardiac-specific markers such as cTNT, MLC2A and MLC2V, α-ACT, IRX4, RYR2 and CASQ2 

on mRNA level (Fig. 18). Although depending on the cell quality, individual batch-to-batch 

differences were observed for the expression of CASQ2, α-ACT and the ventricular marker 

IRX4, no significant differences were observed between Ctrl- and CPVT-CMs analyzed. 

 
Figure 18. Expression of cardiac-specific marker genes. Different CPVT- and Ctrl-hiPSCs were 
directly differentiated into CMs. After three months of cultivation, mRNA was isolated and reverse 
transcribed into cDNA. CPVT- and Ctrl-CMs expressed cardiac specific genes such as cTNT, α-ACT, 
MLC2V, MLC2A and RYR2 on mRNA level.  

 

Immunofluorescence staining of differentiated CPVT-CMs showed normal organized 

cross-striations indicated by sacromeric staining with antibodies against RYR2, α-ACT, 

MLC2A and MLC2V (Fig. 19). RYR2 expression co-localized with the expression of α-ACT. 

Furthermore, the gap junction protein CX43, which is important for conducting electrical 

signals between neighboring cells, was detected between adjacent CMs (Fig. 20). No 

specific differences were observed between Ctrl- and CPVT-CMs across all cell clones 

regarding cardiac-specific structural proteins. Most CMs show a ventricular-like 

phenotype indicated by predominant expression of the ventricular-specific marker MLC2V 

(Fig. 19), which is restrictedly expressed in the ventricles throughout development and 

persists into adulthood (Chuva de Sousa Lopes et al., 2006). CMs positive for MLC2A were 

also detected (Fig. 19), which is expressed in both atria and ventricles during 

development (Chuva de Sousa Lopes et al., 2006). Furthermore, patch-clamp analysis 

displayed that most cells had action potentials with ventricular-like shapes (data from 

W. Li).  
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Figure 19. Cardiac differentiation of CPVT-hiPSCs. 3-months-old CMs from patients c1 (A-F) and 
c2 (G-M) expressed the structural myofilament proteins α-ACT (E, L), MLC2A (B, H) and MLC2V 
(A, G). The striated pattern of RYR2 expression (D, K) is co-localized with expression of α-ACT (F, 
M). Cell nuclei were stained with DAPI (blue). Same results were obtained from CMs from patient 
b1 (not shown). Scale bar: 50 μm. 
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Figure 20. Expression of CX43 in CPVT-CMs. The gap junction protein CX43 was detected at the 
connection between adjacent CMs of patients b1, c2 and c2 (A, D, G, in green). CPVT-CMs were 
stained with Alexa 555-conjucated phalloidin to visualize the cytoskeleton of cellular F-ACTIN 
filaments (B, E, H, in red). Cell nuclei were stained with DAPI (blue). Scale bar: 50 μm. 
 

Taken together, CMs with high purity were successfully differentiated from Ctrl- and 

patient-specific CPVT-hiPSCs. CMs differentiated from Ctrl-and patient-specific CPVT-

hiPSCs express cardiac-specific markers on mRNA and protein levels and do not show 

patient- or cell line-specific differences regarding structural abnormalities or 

cardiac-specific marker expression. Furthermore, most Ctrl- and CPVT-hiPSC lines 

generated from STEMCCA and Sendai virus do not show differences regarding 

differentiation efficiencies. However, CPVT-hiPSCs from patient c2, which were generated 

using SeV, were difficult to differentiate into CMs. For this reason, CPVT-CMs from patient 

c2 were mainly differentiated with STEMCCA-derived hiPSC lines.  
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3.4 Role of heterogeneous RYR2 missense mutations in the pathogenesis of 

CPVT 

Electrophysiological and calcium imaging studies demonstrated, that CPVT-CMs derived 

from hiPSCs carrying different RYR2 mutations in the domains a, b, c, and d, could 

recapitulate the phenotype of the CPVT disease in vitro. CPVT-CMs show mutation-

specific or patient-specific differences regarding electrophysiological properties. CPVT-

CMs carrying the RYR2 mutations A2254V (CPVTb) and E4076K (CPVTc) reveal phenotypic 

stress-dependent arrhythmia with DADs (data from W. Li) (Fig. 21) and increased 

spontaneous Ca2+ releases under basal and isoprenaline stimulated conditions (data from 

L. Cyganek) (Fig. 22). In contrast, CPVT-CMs carrying the RYR2 mutation H4742Y (CPVTd) 

display phenotypic stress-dependent arrhythmia with EADs (Fig. 21) and reduced 

spontaneous Ca2+ releases (Fig. 22). CPVT-CMs carrying the RYR2 mutation R420W 

(CPVTa) display phenotypic stress-dependent arrhythmia with DADs (Fig. 21) but reduced 

spontaneous Ca2+ releases (Fig. 22). 

 

 
Figure 21. Patch clamp analysis of CPVT- and Ctrl-CMs. Under basal and isoprenaline-stimulated 
conditions (100 nM Iso) CPVT-CMs showed increased number of arrhythmic events (A, C, D) and 
increased frequencies of irregular beating in comparison to Ctrl-CMs (B).  CPVT-CMs from patients 
a3 and c1 show a milder phenotype with increased numbers of DADs under basal conditions and 
isoprenaline stimulation. In contrast, CPVT-CMs from patients b1 and c2 show more severe 
phenotypes after isoprenaline treatment with high incidence of DADs (C). CPVT-CMs generated 
from patient d1 reveal phenotypic stress-dependent arrhythmia with EADs (D) (data from W. Li). 



   

68 
 

3- RESULTS 

 

 
Figure 22. Basal and isoprenaline-induced Ca2+ sparks in CPVT- and Ctrl-CMs. For cytosolic 
calcium recordings by confocal line scan imaging of Ctrl- and CPVT-CMs, cells were loaded with 
fluo-4/AM, paced with 0.25 Hz and stimulated with Iso (100 nM). Example recordings CPVTc2-CMs 
show increased Ca2+ sparks visualized by 3D reconstruction of selected areas before and after 
stimulation with Iso (A). CPVT-CMs from patients b1, c1 and c2 display larger Ca2+ sparks with 
significantly higher spark amplitudes (C), an increased full width at half spark maximum (FWHM) 
(D) and a longer full duration at half spark maximum (FDHM) (E) compared to Ctrl-CMs. In 
contrast, CPVT-CMs from patients a2, a3 and d1 display smaller Ca2+ sparks with significantly 
lower spark amplitudes (C), a reduced FWHM (D) and a shorter FDHM (E) compared to Ctrl-CMs. 
However, Iso treatment increases Ca2+ sparks in all CPVT-CMs (C, D) (data from L. Cyganek). 

3.4.1 Allele-specific expression of RYR2 in CPVT-CMs on mRNA level 

To analyze the reason for the different severe phenotypes observed by patch-clamp and 

calcium imaging, all six different CPVT patients (a2, a3, b1, c1, c2 and d1) were analyzed 

for potential differences in allele-specific expression of RYR2 gene caused by the 

heterogeneous missense mutations (Fig. 7). To study whether an allelic imbalance of 

RYR2 expression exists in hiPSC-derived CPVT-CMs, RNA sequencing of the healthy and 

mutated allele was performed with the MiSeq sequencing system (TAL Göttingen). Total 

mRNA of 3-month-old CMs was isolated, reverse transcribed into cDNA and the region of 

interest, which included the mutation, was amplified and subsequently sequenced. The 

results showed that CMs derived from CPVT patients have a similar RYR2 mRNA 

expression of the disease causing and the healthy allele located in chromosome 1q43 

(Fig. 23A, B). Only CMs from patient a3 have a slightly increased expression of the disease 

causing allele. In addition, gDNA from hiPSCs-derived CMs from patient c1 was sequenced 
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as control and revealed similar copy numbers of the healthy allele (51.2 %) and mutated 

allele (47.8 %). 

 
 

Figure 23. Allele-specific RYR2 expression of CPVT-CMs. Sequencing of cDNA copies revealed 
same expression of the healthy compared to the mutated allele. Just one cell line (isCPVTa3.2) 
showed a slight increased expression of the mutated allele (59.7%). For each probe between 470-
1100 counts were made after subtraction of double cDNA copies generated by PCR amplification 
(A). Missense mutations are located in RYR2 of chromosome 1q43 (B). 

3.4.2 RYR2 expression and phosphorylation in CPVT-CMs 

To address the question whether different CPVT phenotypes result from different levels 

of RYR2 expression in CPVT-CMs, the protein amount of RYR2 from three-month-old 

CPVT-CMs (cell lines: isCPVTa2.3, isCPVTa3.2, isCPVTb1.2, isCPVTc1.7, CPVTc2.6, 

isCPVTd1.4) was compared to Ctrl-CMs (cell lines: WTD2.1, BM76.1, isWT1bld2). But 

western blot analysis of CPVT-CMs from all 6 patients do not show differences of RYR2 

protein expression compared to Ctrl-CMs derived from healthy subjects (Fig. 24).  

Different mechanisms were proposed how exactly point mutations in RYR2 induce 

arrhythmias and different severe phenotypes. In the next step, we tested the hypothesis 

that RYR2 from CPVT patients is hyperphosphorylated in response to β-adrenergic 

stimulation, thereby causing hyperactive channels and Ca2+ leak. To address this question, 

phosphorylation of Ser2808 and Ser2814, both located in the cytosolic region of RYR2, 

was tested in CMs derived from patients a2, a3, b1, c1 and c2 which have their mutation 

in the cytosolic region. To activate the adrenergic signaling pathway, three-month-old 

CMs were treated with isoprenaline (15 min, 100 nM), calyculin A (50 nM), or with both 
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substances together. Calyculin A is a structurally distinct inhibitor of PP1 and PP2A which 

regulate dephosphorylation of the receptor.  

 

 
 
Figure 24. RYR2 expression in CPVT- and Ctrl-CMs. Western blot analyses of 3-month-old CMs 
demonstrated equal protein expression of RYR2 in CPVT-CMs compared to Ctrl-CMs. Detection of 
the 500 kDa RYR2 protein was done with anti-RYR2 antibodies in combination with HRP-coupled 
detection antibodies. Figure A shows a representative western blot of Ctrl- and CPVTb1-CMs 
expressing RYR2 as well as α-ACT. Quantification was done by calculating the signal intensity with 
Image Lab software. RYR2 was normalized to GAPDH.  α-ACT was used as positive control for the 
presence of CMs. Bars represent the mean of 4 samples including SEM.  

 

Western blot analyses were performed to test if CPVT-CMs with RYR2 missense mutations 

differ in their phosphorylation status of different residues (Ser2808, Ser2814) at basal or 

under stress conditions in comparison to Ctrl-CMs. The data showed that Ser2808 and 

Ser2814 are highly phosphorylated at basal conditions in CPVT-CMs as well as in Ctrl-CMs 

(Fig. 25). After stimulation with isoprenaline, phosphorylation was slightly increased in 

both CPVT-CMs and Ctrl-CMs. However, mutation-specific differences were not observed, 

when phosphorylation was compared to Ctrl-CMs. In some cases, phosphorylation of 

CPVT- and Ctrl-CMs was not increased in response to isoprenaline treatment (Fig. 25). 
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Figure 25. Phospho-RYR2 expression in CPVT- and Ctrl-CMs. CPVT- and Ctrl-CMs were incubated 
in RPMI without B27 for 2 hours and stimulated with Iso (15 min, 100 nM) to induce β-adrenergic 
signaling. Simultaneous stimulation with calyculin A (15 min, 50 nM) should inhibit 
dephosphorylation of RYR2 during stimulation. Phosphorylation (p) was detected with antibodies 
against RYR2-pSer2808 and RYR2-pSer2814 in combination with HRP coupled detection 
antibodies. After stimulation with isoprenaline, phosphorylation is slightly increased or stays at 
the same level in CPVT-CMs and Ctrl-CMs (A, B). Here, representative western blots from patients 
b1 and c1 compared to Ctrl-CMs are shown (A, B). Mutation- or patient-specific differences were 
not observed between different CPVT-CMs from patients a2, a3, b1, c1, and c2 compared to 
Ctrl-CMs. 

3.5 Genome editing by CRISPR/Cas9 

CRISPR/Cas9 genome editing was used as a tool to modify the RYR2 gene in CPVT-hiPSCs. 

In addition, CPVT-causing mutations should be corrected using ssODNs to generate 

isogenic controls that might have a potential healthy phenotype. In this study, a protocol 

for the generation of CRISPR/Cas9-engineered hiPSCs using transfections with ssODNs 

together with CRISPR/Cas9 plasmids was established. 
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3.5.1 Cleavage assay of CRISPR/Cas9 

When using CRISPR/Cas9 editing tools for the generation of targeted mutations, it is 

necessary to first determine how efficient Cas9 nucleases cleave the target sequence, 

which is mostly dependent on the designed gRNA. The genomic region of the RYR2 gene 

in CRISPR/Cas9 transfected HEK293T cells was amplified and used for the cleavage assay 

to detect indel (insertion/deletions) introduction (Fig. 26A). The PCR products were 

analyzed on agarose gel to quantify the intensity of the digested and undigested bands. 

The plasmid CRISPR-C-1/Cas9 had a calculated cleavage efficiency of 25-27% and the 

positive control had a cleavage efficiency around 23-26% (Fig. 26B). 

 

 
 

Figure 26. Cleavage assay of CRISPR/Cas9-transfected cells. Schematic presentation of the 
cleavage assay (A). HEK293T cells were transfected with the CRISPR-C-1/Cas9 plasmid using 
calcium phosphate-mediated transfection. After 24-48 hours, the transfected cells are positive for 
GFP. Scale bar: 100 µm (B). DNA lysates from cell pellets were used as direct PCR template for 
amplification of the CRISPR/Cas9-targeted region of RYR2. The PCR product was denatured and 
re-annealed to produce heteroduplex mismatches at regions where DSBs had occurred, resulting 
in indel introduction. These mismatches were recognized and cleaved by the detection enzyme. 
After gel electrophoreses, the intensity of the digested and undigested bands was analyzed using 
Alpha Imager software. The cleavage efficiency was calculated according to the formula in the 
GeneArt Cleavage assay kit. The cleavage efficiency of the plasmid CRISPR-C-1/Cas9 was 
calculated with 25-27%. The positive control PCR, supplemented in the kit, showed cleavage 
efficiencies around 23-26%.  

3.5.2 Generation of CRISPR/Cas9-targeted hiPSCs  

For the generation of CRISPR/Cas9-targeted hiPSC clones, hiPSC lines from patients b1, c1 

and c2 were used. CRISPR/Cas9 plasmids and ssODNs were transfected into hiPSCs and 
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sorted for GFP+ cells (Fig. 27A, B). Designed ssODNs contain silent mutations to destroy 

the CRISPR binding site and the PAM motif to prevent further cleavage of Cas9 after HDR. 

EcoRI restriction site was integrated to enable screening of clones with HDR by restriction 

digestion (Table 5). To improve the efficiency of precise genome editing with CRISPR/Cas9 

for HDR mechanisms, the small molecule L-755,507 was applied for 3 hours before and 24 

hours after transfection (Fig. 28A).  

 

 
 
Figure 27. Strategy for the generation of CRISPR/Cas9-targeted hiPSCs. CRISPR/Cas9 plasmids for 
gene targeting were introduced to hiPSCs by nucleofection using 2x 106 cells mixed with 4 µg 
plasmid DNA and 3.3 µg ssODNs as donor DNA. In some experiments, L-755,507 (5 µM) was 
added 3 hours before and 24 hours after nucleofection to E8 medium supplemented with TZV. 24 
hours after nucleofection, GFP+ hiPSCs were purified by FACS. 2-7x103 cells were seeded onto 
each Geltrex-coated 96-well plate in a 1:1 mix of E8 and MEF-conditioned E8 medium 
supplemented with additional hbFGF (10 ng/ml), TZV, 1x P/S. After 10-18 days single colonies 
were transferred into Geltrex-coated 48-well plates. Confluent cultures of one well of a 48-well 
plate were transferred onto two wells of a 24-well plate for cryopreservation and DNA extraction. 
Amplified PCR products of targeted DNA regions were tested for integration of ssODNs by EcoRI 
restriction digestion. Positive digested cell clones were sequenced (A). Transfection efficiencies of 
hiPSCs ranged between 2-8% (C). The percentage of living single cell populations expressing GFP+ 
was much lower (B, C). 
  

Although different transfection methods were tested for hiPSCs, transfection efficiencies 

of hiPSCs were quite low with around 5% in average (Fig. 27C). In total, 757 GFP+ cell 

clones derived from CPVT-hiPSCs (patients c1 and c2) were tested with PCR and 

restriction digestion after cell expansion. In addition, 50 clones were tested from hiPSCs 

derived from patient b1. Altogether, 22 clones were targeted by the CRISPR/Cas9 system 

and there were 11 clones integrated with ssODNs in their genome indicated by restriction 

digestion and sequencing (Fig. 28A). The targeting efficiency of the CRISPR/Cas9 system 

was about 2.7%, and the HDR efficiency was about 1.4%. After treatment with L-755,507, 
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the number of clones integrated with ssODNs into their genome was slightly increased.  

Sequencing data displayed that all CRISPR/Cas9-targeted clones integrated with ssODNs 

had additional deletions in their genome (Fig. 29). In some cases, mixed hiPSC colonies 

were observed after cell expansion and sequencing due to high cell densities after sorting 

(5-15 cells/96-well). These CRISPR/Cas9-targeted clones were purified again using single 

cell dilution by FACS, expanded and sequenced again. Around 60-70% of the sorted hiPSC 

clones maintained normal morphology estimated by visual inspection (Fig. 28B). Some 

clones differentiated completely into other cell types.  

 

 
 

Figure 28. Screening of CRISPR/Cas9-transfected cell clones. In total, 757 clones transfected with 
plasmid CRISPR-C-1/Cas9 and different ssODNs were screened from hiPSC lines of patients c1 and 
c2. 50 clones transfected with plasmid CRISPR-B-1/Cas9 and ssODNs were screened from hiPSC 
lines of patient b1 (A). Most CRISPR/Cas9-targeted hiPSC clones maintained normal morphology 
after transfection, sorting and expansion. Scale bar: 300 µm (B). Representative PCR shows a 
positive digested CRISPR/Cas9-targeted clone (A3) as well as CRISPR/Cas9-targeted clones with 
insertions (A1, B3, D6) indicated by larger fragment sizes (C). 
 

Although fully isogenic corrected CPVT-hiPSCs were not obtained with CRISPR/Cas9 in 

combination with ssODNs, different RYR2 knockout (KO) clones were generated by using 

the CRISPR/Cas9 system. The CRISPR/Cas9 targeted clones A3 (RYR2Ø/Ø-A3) derived from 

CPVTc2-hiPSCs (Fig. 29A), and X4 (RYR2Ø/Ø-X4) generated from CPVTb1-hiPSCs (Fig. 29B) 

had a homozygous nucleotide deletion which caused a reading frameshift.  In RYR2Ø/Ø-A3 

hiPSCs, a premature termination codon (PTC) occurred at the aa position 4102 in the 

cytosolic domain of RYR2.  In RYR2Ø/Ø-X4 hiPSCs, a PTC occurred at the aa position 2247 in 

the cytosolic domain of RYR2. By this way, the truncated proteins generated in RYR2Ø/Ø-

A3- and RYR2Ø/Ø-X4-hiPSCs do not have a transmembrane domain and cannot form the 

channel pore of RYR2. 
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Figure 29. Sequencing of CRISPR/Cas9-targeted clones. CRISPR/Cas9-targeted cell clones were 
sequenced to test if ssODNs were integrated into the genome after EcoRI-digested fragments 
were observed. Depending on the used ssODNs for transfections, cell clones had silent mutations 
after successful HDR (purple, A).  Clone A3 had a homozygous deletion of a single bp (A). Clone X4 
had a homozygous deletion of 4 bps (B). Clone B6 had a homozygous deletion of two triplets (A). 
Clone P39 had a heterozygous deletion of 5 triplets in one allele and the ssODNs integrated in the 
second allele. The clones N14, O33 and O120 had a heterozygous integration of ssODNs in the 
healthy allele. Clone T42 had the ssODNs integrated in the CPVT causing allele, but with one 
additional 17 bp deletion (A). 

 

Another CRISPR/Cas9-edited cell clone T42, defined as RYR2+/Ø-T42-hiPSCs, integrated the 

ssODNs in combination with a 17 bp deletion into the mutated CPVT allele resulting in a 

PTC at the aa position 4075 in the cytosolic domain of RYR2. The sequence of the healthy 

allele in the clone T42 was not changed. In addition, in RYR2+/Ø-T42-hiPSCs, the truncated 

protein generated from the mutant allele does not have a transmembrane domain and 

cannot be used for the channel formation. The full-length protein generated from the 

healthy allele can form a functional channel of RYR2. To further study the function of 

RYR2 and to test whether the knockout of the RYR2 mutant allele could rescue the 

disease phenotype, the homozygous and heterozygous CRISPR/Cas9-edited lines 

(RYR2Ø/Ø-A3-, RYR2Ø/Ø-X4-, and RYR2+/Ø-T42-hiPSCs) were successfully differentiated into 

beating CMs using our standard directed differentiation protocol and were cultivated up 
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to three months. After three-month cultivation, CRISPR/Cas9-edited CMs (RYR2Ø/Ø-A3 and 

RYR2+/Ø-T42) do not show differences in RYR2 expression on mRNA level in comparison 

with their corresponding original CPVT-CMs (Fig. 30A, B). Moreover, CRISPR/Cas9-edited 

CMs (RYR2Ø/Ø-A3 and RYR2+/Ø-T42) express cardiac-specific genes regulating Ca2+ 

signaling, such as the cardiac inositol 1,4,5-triphosphate receptor types 1 and 2 (IP3R1, 

IP3R2) and the calcium voltage-gated channel subunit alpha-1C (CACNA1C), as well as 

genes coding for sarcomeric proteins, such as cTNT and α-ACT. However, no tendency of 

increased/or decreased expression of the tested genes in CRISPR/Cas9-edited CMs was 

observed in comparison to their corresponding CPVT-CMs (Fig. 30).  

 

 
Figure 30. Gene expression of Ca2+ regulating genes in CRISPR/Cas9-edited CMs. RYR2Ø/Ø-A3-, 
RYR2+/Ø-T42-hiPSCs and the original CPVT-hiPSCs (CPVTc2.1, isCPVTc1.7) were directly 
differentiated into CMs. After 3-month cultivation, mRNA was isolated from independent 
cultivated CMs and reverse transcribed into cDNA. RYR2Ø/Ø-A3-CMs as well as CPVTc2.1-CMs 
express Ca2+ regulatory genes, such as IP3R1, IP3R2 and CACNA1C, at the same level (A). Similar 
results were observed in RYR2+/Ø-T42-CMs that were compared to their corresponding origin of 
isCPVTc1.7-CMs (B). HiPSCs were used as negative control for the cardiac-specific marker genes 
cTNT and α-ACT. GAPDH was used as reference gene. 
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The next experiment tested if a heterogeneous PTC in the RYR2 gene leads to a different 

mRNA expression level of the healthy and mutated allele in RYR2+/Ø-T42-CMs. 

Interestingly, allele-specific sequencing of the heterozygous RYR2+/Ø-T42-CMs showed 

that the mRNA expression of the disrupted allele is highly decreased (11.4%) in 

comparison to the wildtype/healthy allele (88.6%) (Fig. 31). This result highlights that we 

generated a CRISPR/Cas9-targeted hiPSC clone expressing almost only the healthy allele. 

 

 

Figure 31. Allele-specific RYR2 expression in RYR2+/Ø-T42-CMs. Sequencing of cDNA copies 
showed that 167 of 1280 reads had a 17 bp deletion (11.4%). All reads containing the 17 bp 
deletion had three additional nucleotide substitutions in the CRISPR/Cas9-targeted CPVT-allele 
originated from the introduced ssODNs. 88.6% of the cDNA copies showed no deletion or 
substitution in comparison to the reference sequence (n=1). Sequencing of gDNA showed similar 
copy numbers of the healthy allele compared to the mutated one.  

 

Western blot analysis using the rabbit antibody that can detect both the full length and 

truncated RYR2 proteins showed no change in the full-length RYR2 in RYR2+/Ø-T42-CMs 

compared to CPVT-CMs (Fig. 32). The truncated protein with a predicted size of 448 kDa 

was not detected in RYR2+/Ø-T42-CMs (Fig. 32A). In contrast, RYR2Ø/Ø-A3- and RYR2Ø/Ø-X4 

showed no detectable RYR2 protein by western blot analysis in comparison to CPVT-CMs 

(Fig. 32C, D). 
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Figure 32. RYR2 expression in CRISPR/Cas9-edited CMs. RYR2+/Ø-T42-CMs showed no visible 
change in RYR2 expression compared to CPVT-CMs (A). Analysis of western blots (n=4) showed a 
slight, but not significant, increase of RYR2 in RYR2+/Ø-T42-CMs compared to isCPVTc1.1-CMs (B). 
Western blot analysis of RYR2Ø/Ø-A3-CMs showed no detectable RYR2 expression (C, D). Two 
different RYR2Ø/Ø cell lines from different hiPSC origin (A3, X4) were tested with two different 
RYR2 antibodies recognizing the full length protein (α-RYR2 mouse) (C) and the N-terminal region 
(α-RYR2 rabbit) (D) in front of the PTC. cTNT and α-ACT were used as positive controls for the 
presence of CMs in protein lysates. GAPDH was used as loading control.  

 

Furthermore, immunofluorescence staining with the anti-α-actinin antibody revealed the 

z-line zone in a typical striated pattern in RYR2Ø/Ø-A3- (Fig. 33D) and RYR2Ø/Ø-X4-CMs 

(Fig. 33G) similar to CPVTc2-CMs (Fig. 33A). Whereas RYR2 was co-localized with α-ACT in 

the z-line zone in CPVTc2-CMs (Fig. 33C), RYR2 protein was not detected in a striated 

pattern in RYR2Ø/Ø-A3- and RYR2Ø/Ø-X4-CMs (Fig. 33F, I).  
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Figure 33. Immunostaining of RYR2Ø/Ø-A3-CMs in comparison to CPVTc2.1-CMs. Two month old 
CMs were stained with antibodies against RYR2 (A, D, G, green). RYR2Ø/Ø-A3-CMs did not express 
RYR2 but had normal sarcomeric structures indicated by staining of α-ACT (D, G). CPVTc2.1-CMs 
showed a striated pattern of RYR2 (A, green) which co-localized with the expression of α-ACT (B, 
red). Cell nuclei were stained with DAPI (blue). Scale bar: 50 μm. 

 

To test if the degradation of the truncated versions of RYR2 might occur in RYR2Ø/Ø-A3- 

and RYR2+/Ø-T42-CMs, 3-month-old CMs were treated with the proteasome and calpain 

inhibitor MG132 (24 h, 10 µM) together with the autophagosome-lysosome fusion 

inhibitor bafilomycin A1 (BafA1) (6 h, 100 nM). However, no truncated proteins were 

observed in both RYR2Ø/Ø-A3-CMs (Fig. 34A) and RYR2+/Ø-T42-CMs (Fig. 34B) after the 

inhibition of protein degradation. Moreover, no changes in expression of the full-length 

RYR2 were observed in RYR2+/Ø-T42-CMs compared to CPVTc1-CMs (Fig. 34).  
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Figure 34. Analysis of RYR2 protein degradation in CRISPR/Cas9-edited CMs. RYR2Ø/Ø-A3-CMs, 
RYR2+/Ø-T42-CMs and CPVTc1-CMs stimulated with Iso (100 nM, 6 h) were stepwise treated with 
the proteasome and calpain inhibitor MG132 (10 µM, 24 h), and the autophagy inhibitor BafA1 
(100 nM, 6 h) to inhibit potential protein degradation. Truncated versions of RYR2 were not 
observed in both RYR2Ø/Ø-A3- and RYR2+/Ø-T42-CMs after single and combined treatment with 
inhibitors (A, B). In addition, the amount of the full-length RYR2 protein did not change in RYR2+/Ø-
T42-CMs (n=1, 2 blots). GAPDH was used as loading control. 
 

To analyze potential compensatory mechanism in RYR2Ø/Ø-A3-CMs, the expression of Ca2+ 

regulating proteins were studied. However, RYR2Ø/Ø-A3-CMs did not show any changes in 

protein expression of IP3R, SERCA2A or NCX1 in comparison to CPVT-CMs (Fig. 35).  

 

 
 
Figure 35. Expression of Ca2+ regulatory proteins in RYR2Ø/Ø-A3-CMs. Western blot analysis 
showed that IP3R, SERCA2a and NCX1 are not differently expressed in 2-3-month-old RYR2Ø/Ø-A3-
CMs compared to CPVT-CMs. α-ACT was used as positive control for the presence of CMs in the 
protein lysates. GAPDH was used as loading control. 
 

In the next step, the Ca2+ handling in RYR2+/Ø-T42-CMs and RYR2Ø/Ø-A3-CMs was analyzed 

in comparison to CPVTc1/c2-CMs (cell line: CPVTc1.7, CPVTc2.1) and Ctrl-CMs (cell line: 

isWT1bld2) under isoprenaline stimulated conditions (Fig. 36A-F).  
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Figure 36. Isoprenaline-induced Ca2+ sparks in CRISPR/Cas9-engineered CMs. Ctrl-CMs (n=358), 
CPVTc1/c2-CMs (n=410) and the CRISPR/Cas9-engineered RYR2+/Ø-T42-CMs (n=20) as well as 
RYR2Ø/Ø-A3-CMs (n=21) were used for cytosolic calcium recordings by confocal line scan imaging. 
All CMs (d90-108) loaded with fluo-4/AM and stimulated with isoprenaline (100 nM) were paced 
with 0.25 Hz. Example recordings from Ctrl-, CPVTc1/c2-, and RYR2+/Ø-T42-CMs show Ca2+ sparks 
visualized by 3D reconstruction of selected areas after stimulation with isoprenaline. In contrast, 
RYR2Ø/Ø-A3-CMs did not display Ca2+ sparks after stimulation with isoprenaline (A). After 
stimulation with isoprenaline, RYR2+/Ø-T42-CMs and RYR2Ø/Ø-A3-CMs display highly significant 
reduced Ca2+ spark frequency (B), with significantly lower spark amplitude (C) lower FDHM (D), 
lower FWHM (E), and reduced SR Ca2+ leak per cell (F) compared to CPVTc1/c2-CMs. In 
comparison to Ctrl-CMs, RYR2+/Ø-T42-CMs did not show differences in regard to spark 
frequency (A), FDHM (D), and FWHM (E), but lower spark amplitude (C), and reduced SR Ca2+ leak 
per cell (F). All Measurements were shown in relation to the Ctrl-CMs that were set to 1. Data are 
shown as mean ±SEM, two-tailed student's t test with two samples and unequal variance was 
used for the statistical analysis. ***, p<0.001; **, p<0.01; *, p<0.05; n.s., p>0.05 (in cooperation 
with Karolina Sekeres). 
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The analysis of Ca2+ leak showed that RYR2+/Ø-T42-CMs resemble a phenotype that is 

comparable with Ctrl-CMs in respect to the spark frequency (Fig. 36B), FDHM (Fig. 36D), 

and FWHM (Fig. 36E). Furthermore, RYR2+/Ø-T42-CMs displayed significantly lower Ca2+ 

spark frequency, lower spark amplitude, reduced FWHM, lower FDHM and reduced SR 

Ca2+ leak per cell compared to CPVTc1/c2-CMs (Fig. 36). RYR2Ø/Ø-A3-CMs showed highly 

significant reduced spark frequency, spark amplitude, FWHM, FDHM and SR Ca2+ leak in 

comparison to Ctrl- and CPVTc1/c2-CMs (Fig. 36B-F). For example, RYR2Ø/Ø-A3-CMs 

display 65% reduced spark frequency as well as 96% reduced SR Ca2+ leak is in comparison 

to Ctrl-CMs (Fig 36B, F). 

In the next experiments, fluo-4/AM-loaded RYR2Ø/Ø-A3-, RYR2+/Ø-T42-CMs and CPVT-CMs 

were paced with 0.25 Hz and Ca2+ transients were studied. The data showed that shapes 

of Ca2+ transients in RYR2+/Ø-T42-CMs are comparable with those in CPVTc2-CMs (37A, B). 

However, the amplitude of Ca2+ transients is slightly smaller in RYR2+/Ø-T42-CMs 

compared to CPVTc2-CMs. By contrast, the shapes of Ca2+ transients in RYR2Ø/Ø-A3-CMs 

are clearly different from those in in RYR2+/Ø-T42-CMs and CPVTc2-CMs. The amplitude of 

Ca2+ transients in RYR2Ø/Ø-A3-CMs is much smaller when compared to CPVTc2-CMs and 

RYR2+/Ø-T42-CMs (Fig. 37A-C). 

 

 
Figure 37. Ca2+ transients from CRISPR/Cas9-engineered CMs. For the measurement of Ca2+ 
transients, fluo-4/AM loaded CPVTc2-CMs, RYR2+/Ø-T42-CMs and RYR2Ø/Ø-A3-CMs were paced 
with 0.25 Hz. Confocal line scan imaging was performed and representative Ca2+ transients of 
CPVTc2-CMs (A), RYR2+/Ø-T42-CMs (B) and RYR2Ø/Ø-A3-CMs (C) were shown. In comparison to 
CPVTc2-CMs and RYR2+/Ø-T42-CMs, the amplitudes of the Ca2+ transients of RYR2Ø/Ø-A3-CMs were 
much smaller and transient decreased much slower to the baseline (C). F/F0: fluorescence (F) 
normalized to baseline fluorescence (F0). 
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4 Discussion 

CPVT is a severe hereditary ion-channel disease characterized by fatal cardiac arrhythmia 

in response to physical or emotional stress due to missense mutations in RYR2 or CASQ2. 

Previous studies showed that mutant RYR2 channels led to unwanted Ca2+ release 

following catecholamine stimulation which could cause DADs, EADs and sudden cardiac 

death in young patients. (Jiang et al., 2002a; Cerrone et al., 2009). 

The molecular mechanisms by which RYR2 mutations trigger arrhythmia are 

controversially discussed but include weakened inter-domain interactions, modified 

interaction with accessory proteins, increased phosphorylation of the channel by protein 

kinases, and altered sensitivity in response to luminal or cytoplasmic Ca2+ concentrations. 

So far, only 15% of more than 150 CPVT-causing RYR2 mutations have been studied in 

HEK293 cells or in a mouse model. The discovery of induced pluripotency generated from 

somatic cells by ectopic expression of pluripotency-associated transcription factors 

represented a major breakthrough for medical research (Takahashi and Yamanaka, 2006). 

Patient-specific hiPSCs function as renewable and unlimited source for CMs and provide 

the opportunity to investigate the pathophysiology of genetic diseases in vitro. 

The aim of this thesis was to establish in vitro disease models using hiPSCs from CPVT 

patients carrying a heterozygous missense mutation in the RYR2 gene and to study 

molecular mechanisms of the disease. First, hiPSC lines were generated from 3 different 

CPVT patients that are heterozygous for point mutations in the RYR2 gene (A2254V, 

E4076K) encoding the cardiac RYR2 protein. The generated CPVT-hiPSCs exhibited 

pluripotent stem cell characteristics demonstrated by pluripotency-related gene and 

protein expression, in vitro spontaneous differentiation capacity, and in vivo teratoma 

formation. Furthermore, CPVT-hiPSCs and Ctrl-hiPSCs were directly differentiated into 

spontaneously beating CMs expressing cardiac-specific genes and proteins. Allele-specific 

sequencing showed that CMs derived from nearly all CPVT patients have a similar RYR2 

mRNA expression of the disease-causing and the healthy allele.  Furthermore, CPVT-CMs 

have similar levels of RYR2 protein expression compared to Ctrl-CMs. Phosphorylation 

studies showed that RYR2 residues Ser2808 and Ser2814 are highly phosphorylated at 

basal conditions in CPVT-CMs as well as in Ctrl-CMs. After stimulation with isoprenaline 

no mutation-specific differences were observed between CPVT-CMs and Ctrl-CMs.  

CRISPR/Cas9-triggered genetic engineering was applied for CPVT-hiPSCs using ssODNs 

and total 807 cell clones were tested after hiPSC transfection and expansion. Two 

CRISPR/Cas9 targeted clones (RYR2Ø/Ø-A3-hiPSCs and RYR2Ø/Ø-X4-hiPSCs) had 

homozygous single nucleotide deletions in their genome, which causes a PTC in the RYR2 

gene. Another cell line (RYR2+/Ø-T42-hiPSCs) had a heterogeneous 17 bp deletion in the 
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CPVT causing allele, which leads to a PTC in the CRISPR binding site. These engineered 

CRISPR/Cas9 cell lines were differentiated into beating CMs. RYR2Ø/Ø-CMs derived from 

RYR2Ø/Ø-A3- and RYR2Ø/Ø-X4-hiPSCs showed no detectable RYR2 protein expression but 

normal mRNA expression. However, RYR2+/Ø-CMs derived from RYR2+/Ø-T42-hiPSCs with 

heterozygous deletion in the CPVT-causing allele showed normal RYR2 expression but 

downregulation of the CRISPR/Cas9-targeted allele which normally causes CPVT 

symptoms. Notably, the analysis of the calcium imaging of RYR2+/Ø-T42-CMs showed a 

reduced Ca2+ leak in comparison to CPVT-CMs. Furthermore, RYR2+/Ø-T42-CMs resemble a 

phenotype that is comparable with Ctrl-CMs in respect to the Ca2+ spark frequency and 

FDHM. In contrast, RYR2Ø/Ø-A3-CMs showed highly significant reduced spark frequency, 

spark amplitude, FWHM, FDHM and SR Ca2+ leak in comparison to both Ctrl- and CPVTc2-

CMs. In addition, RYR2Ø/Ø-A3-CMs have much smaller amplitude and altered shapes of 

Ca2+ transients when compared to CPVT-CMs and RYR2+/Ø-T42-CMs. 

4.1 Successful generation of hiPSCs from CPVT patients 

The generation of hiPSCs by reprogramming somatic cells with defined factors opened 

the door for disease modeling and medical application of patient-derived engineered 

stem cells. In this study, SeV was used for reprogramming of CPVT-fibroblasts into hiPSCs. 

SeV is a non-segmented negative-strand RNA virus and belongs originally to the 

paramyxoviridae family. Its RNA replication occurs in the cytoplasm which minimizes the 

risk for integration into the host genome (Li et al., 2000; Bitzer et al., 2003). SeV was 

developed as highly efficient transduction vector which enables RNA-based gene delivery 

of pluripotency-associated factors (Kato et al., 1997; Fusaki et al., 2009b). After viral 

transduction of somatic cells, SeV vector enables a robust and sustained expression of all 

four Yamanaka factors OCT4, SOX2, KLF4, and C-MYC for the derivation of transgene-free 

hiPSCs (Fusaki et al., 2009b).  

In the present study, ectopic expression of the four Yamanaka factors in fibroblasts 

resulted in successful generation of hiPSCs. The reestablishment of pluripotency in a 

somatic cell is a complicated mechanism which has not been completely understood yet.  

The most important events during early reprogramming include suppression of somatic 

cell-specific genes, thereby activating the hESC-specific transcription network, the 

mesenchymal-to-epithelial transition, and changes from oxidative phosphorylation to a 

glycolysis-based metabolism (Li et al., 2010; Panopoulos et al., 2012; Zhang et al., 2012a). 

During the reprogramming process, overexpression of Yamanaka factors also induces a 

unique epigenetic profile enriched for active chromatin modifications, including 

trimethylation of histone 3 Lys4 (H3K4me3), H3K36me3, histone acetylation, and 
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hypomethylated DNA. These marks are often found within the regions of pluripotency-

related genes (Apostolou and Hochedlinger, 2013). Furthermore, pluripotent stem cells 

acquire increased number of bivalent domains marked both with H3K4me3 and 

H3K27me3 at differentiation-related genes for fast repression or activation of gene 

expression by removing H3K4me3 or H3K27me3, respectively (Gladych et al., 2015). SOX2 

and OCT4 co-occupy promoters of highly expressed pluripotency genes including their 

own promoters, thus forming an auto-regulatory loop of pluripotency. This 

auto-regulatory loop enhances the expression of pluripotency-associated transcription 

factors, such as NANOG, and signaling components to maintain the state of pluripotency 

of hESCs and hiPSCs (Chen et al., 2008; Kim et al., 2008). NANOG, a homeodomain 

protein, is an important component for the maintenance of self-renewal in ESCs 

(Chambers et al., 2003; Mitsui et al., 2003). KFL4 transcription factor shares about half of 

its target genes with SOX2 and OCT4 (Jiang et al., 2008). In contrast to OCT4, SOX2 and 

KFL4, C-MYC targets predominately genes involved in the regulation of cellular 

proliferation, biosynthetic pathways and metabolism, thereby enhancing reprogramming 

efficiency (Nakagawa et al., 2008; Kim et al., 2010).  

Pluripotency-associated transcription factors including OCT4, SOX2 and NANOG are 

essential to maintain the pluripotency network of ESCs (La Boyer et al., 2005). These 

factors among others, such as LIN28, FOXD3, GDF3, SSEA4, or TRA-1-60, are also found to 

be highly expressed in undifferentiated hESCs and their downregulation is linked to 

differentiated cells (La Boyer et al., 2005; Kim et al., 2008). The generated hiPSCs in the 

present study showed hESC-like characteristics with regards to their morphology and 

mRNA expression of pluripotency-related markers, such as OCT4, SOX2, NANOG, LIN28, 

FOXD3 and GDF3. Furthermore, SOX2, OCT4, NANOG, LIN28, SSEA4 and TRA-1-60 were 

expressed on protein level, indicating that the ectopic expression of OCT4, SOX2, KLF4, 

and C-MYC initiated the activation of endogenous pluripotency-associated genes and 

proteins (Kim et al., 2008; Fusaki et al., 2009b).  

The ability to differentiate into derivatives of all three germ layers is an important 

characteristic of human pluripotent stem cells (Itskovitz-Eldor et al., 2000). Spontaneous 

in vitro differentiation of CPVT-hiPSCs showed that differentiated cells of all cell lines 

expressed markers that are specific for all three germ layers, demonstrating that they are 

truly pluripotent. However, cell line isCPVTc2.4 from patient c2 failed to express 

ectodermal markers on mRNA level but expressed β-III-TUBULIN on protein level.  

Teratoma formation assays is defined as the “gold standard” to prove pluripotency and 

demonstrates the diverse differentiation potential of hiPSCs (Zhang et al., 2012b). In vivo 

differentiation of CPVT-hiPSCs revealed tissue-specific cells including derivatives of all 

three germ layers, such as cartilage (mesoderm), neural rosettes (ectoderm) and 
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intestinal tissue (endoderm). The hiPSC lines isCPVTc1.1 and isCPVTc2.3 from patients c1 

and c2, respectively, formed teratoma containing endodermal and mesodermal cells, but 

no neural rosettes. However, gene expression analyses showed expression of the 

ectodermal markers SYN and TH on mRNA level and β-III-TUBULIN on protein level 

indicating that these cell lines were able to differentiate into the ectodermal lineage, too. 

Sequencing of CPVT-hiPSCs from all three patients confirmed the heterogeneous 

missense mutation (A2254V, E4076K). 

To sum up, the generated patient-specific CPVT-hiPSCs have similar characteristics as 

hESCs and fulfill the criteria of fully reprogrammed hiPSCs. Because of their somatic origin 

(human fibroblasts), their further use for research purposes does not raise ethical 

concerns like hESCs.  

4.2 HiPSCs are able to differentiate directly into functional CMs 

Directed cardiac differentiation of hiPSCs was the first step to establish a disease 

modeling system from CPVT patients and healthy control subjects. Previous studies often 

used the formation of EBs in medium containing FBS to differentiate hESCs and hiPSCs 

into CMs for disease modeling. However, this method was very inefficient and the culture 

typically composed less than 1% cardiomyocytes and provided inconsistent results with 

different human pluripotent stem cell lines (Kehat et al., 2001). Subsequent 

methodological improvements concentrated first on imitating the embryonic 

developmental signals that control mesoderm induction such as Nodal/activin, BMP, WNT 

and FGF pathways following cardiac specification by inhibition of WNT, BMP and TGFβ 

signaling (Kattman et al., 2011; Burridge et al., 2012).  

In this present study, we tested two monolayer-based cardiac differentiation protocols 

using small molecule-based approaches with progressive treatment of CHIR99021 and 

IWP2 for temporal WNT signaling activation and repression, respectively, as previously 

described (Lian et al., 2012; Burridge et al., 2014). To achieve robust cardiac 

differentiation, we combined both protocols and generated functional CMs with high 

efficiency. The first cardiac differentiation protocol for monolayer culture was based on 

cardiac differentiation medium containing RPMI1640 with B27 supplement. Application of 

small molecules enabled high efficiency of CM differentiation (Lian et al., 2012; Lian et al., 

2013). However, B27 supplement is quite expensive, and contains a complex mixture of 

various substances from animal origin, and it was originally designed for culturing 

hippocampal neurons (Brewer et al., 1993). The animal origin could lead to variations in 

different batch of the B27 supplement which in turn leads to inconsistent CM 

differentiation. Burridge et al. screened the components of B27 and found that few 
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medium ingredients were required for efficient differentiation of hiPSCs into CMs. Along 

with the treatment of small molecules, the combination of human recombinant albumin, 

ascorbic acid and basal medium RPMI1640 was essential for robust and efficient CM 

differentiation. The great advantage of this protocol was the lower prize compared to 

cardiac differentiation medium supplemented with B27. However, CMs derived by using 

Burridge’s protocol often detached from cell culture dishes, stopped beating 

spontaneously and showed immature action potentials by patch clamp after longer 

cultivation periods (60-90 days) (data from W. Li). For this reason, we combined two 

protocols and switched the medium after 6 days of differentiation again to RPMI1640 

with B27 until further experiments and the previously described problems disappeared. 

Previous studies, which compared the electrophysiological phenotype of one- and 

three-month-old hiPSC-derived CMs, reported that CMs following 3 months of in vitro 

culturing reached a more mature phenotype indicated by higher sodium currents 

(Stauske et al., unpublished data). Because first symptoms of CPVT manifest during 

childhood and young adolescence, CMs involved in the CPVT project were cultivated for 

three months after starting differentiation to increase maturation. After cultivation for 90 

days, up to 98% of the CMs were stained positive for the cardiac marker cTNT. To obtain 

these pure hiPSC-derived CMs, metabolic selection with lactate instead of glucose was 

performed one month after starting differentiation. For older cells (>30 days), metabolic 

selection was less effective and CMs without selection were often overgrown with other 

neural or fibroblast-like cell types.  

For the directed differentiation of CMs, we used Ctrl-hiPSCs and CPVT-hiPSCs generated 

by STEMCCA and SeV because some hiPSC lines, especially from CPVT patient c2, were 

not able to differentiate stably or efficiently into CMs. One major disadvantage of the 

STEMCCA-derived hiPSCs is that the lentivirus is able to integrate its gene fragments 

randomly into the host genome, thereby causing potential gene disruptions. In this study, 

no significant differences were observed in hiPSCs generated by using the STEMCCA and 

SeV systems in respect to their pluripotency and cardiac differentiation efficiency. 

Furthermore, we did not observe functional differences between CMs derived from 

STEMCCA or SeV virus. Some hiPSC lines had variable differentiation efficiencies for the 

generation of CMs, but these circumstances seem to be random and were not linked to 

the patient’s cell origin or the virus used for reprogramming. 

The data of this study showed that hiPSC-derived Ctrl- and CPVT-CMs expressed 

sarcomeric and gap junction proteins which are essential for cardiac function without 

differences. Immunocytological staining showed cardiac-specific protein expression in 

CPVT- and Ctrl-CMs, represented by staining with antibodies against MLC2V, MLC2A, 

α-ACT, and CX43. These data correspond with the data of previous studies that 
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differentiate hiPSCs directly into CMs (Burridge et al., 2014). Furthermore, antibody 

stainings showed organized cross-striations of RYR2, α-ACT and F-ACTIN. CX43 was 

expressed at cell-to-cell contacts of CMs, indicating the presence of gap junctions which 

are important for conducting electrical signals between adjacent CMs. Ctrl- and CPVT-

CMs showed no differences regarding sarcomeric organization and gap junctions, 

indicating they are structurally comparable. This is consistent with the clinical findings 

that patients diagnosed with CPVT have a structurally normal heart (Priori et al., 2002).  

Electrophysiological recordings of Ctrl- and CPVT-CMs revealed in respect to the AP shape 

that our direct cardiac differentiation protocol generates a mixture of the three major 

cardiac subtypes, named ventricular-, atrial-, and nodal-like CMs (W. Li, unpublished data) 

with properties similar to hESC-derived CMs (He et al., 2003). By using the differentiation 

protocol described here, more than 80% of the CMs showed a ventricular-like phenotype 

indicated by major expression of the ventricular-specific marker MLC2V and 

electrophysiological analysis. Around 15% of the differentiated CMs were characterized as 

nodal-like CMs and 5% of them were atrial-like CMs (data from W. Li).  

4.3 CPVT-CMs as model for studying disease-specific phenotypes in vitro 

CPVT was first described in 1995 and considered a rare syndrome, which is triggered by 

surge of catecholamines and characterized by polymorphic ventricular arrythmia that 

usually occurs during physical exercise or emotional stress (Leenhardt et al., 1995). 

Molecular screenings revealed that 65% of the patients have mutations in RYR2. The 

minor percentages of the patients have mutations in CASQ2, TRDN and JCN. Patients with 

CPVT a normal 12-lead ECG at rest (Leenhardt et al., 1995). Although ECG abnormalities 

are diverse during exercise testing, bidirectional VT are recognized in many patients and 

considered as principle sign of the disease (Baher et al., 2011; Priori and Chen, 2011). 

RYR2 is an important regulator of Ca2+ homeostasis in CMs and mutations in RYR2 are 

often associated with hyperactive channels that are prone for unwanted Ca2+ release 

which may trigger arrhythmias. However, loss-of-function mutations causing hypoactive 

RYR2 channels with decreased open channel probabilities in response to Ca2+ and caffeine 

were also reported (Jiang et al., 2007; Zhao et al., 2015). Although the mortality rate of 

the disease is extremely high (30-35% by the age of 35 years), therapies are limited.  

During the last decades, β-blockers such as metoprolol and bisoprolol were 

recommended as first line therapy to reduce the frequency of arrhythmias in patients 

suffering from CPVT. Despite therapy, approximately 30% of the patients experience at 

least one episode of life threating arrhythmia leading to syncope or cardiac arrest and will 

need implantable cardioverter defibrillator (Priori et al., 2002; Cerrone et al., 2012).  
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More recently, new drugs, such as flecainide and dantrolene, improved the treatment 

possibilities for patients who do not tolerate long treatments with high doses of β-

blockers. However, mechanisms by which RYR2 mutations cause arrhythmias are still not 

fully understood and remain a matter of debate. This limits the development of new 

drugs for CPVT patients. So far, the proposed mechanisms include weakened inter-

domain interactions, altered sensitivity to cytosolic or luminal Ca2+ concentrations, 

decreased binding affinities of interacting proteins, such as FKBP12.6, and enhanced 

phosphorylation of RYR2 by protein kinases. The development of individual therapies for 

CPVT patients requires a crucial understanding of the pathophysiological mechanism that 

is responsible for the occurring syndromes. In this study, patient-specific hiPSCs were 

generated from different CPVT patients. CMs derived from these hiPSCs were used to 

investigate the pathophysiological mechanisms of CPVT on molecular level and we 

hypothesized that different RYR2 mutations have a different molecular cause for the 

development of CPVT disease. 

The usefulness of patient-derived hiPSCs for modelling diseases in vitro has recently been 

tested for several channelopathies, including among others LQTS type 1 (Moretti et al., 

2010), type 2 (Itzhaki et al., 2011a; Matsa et al., 2011; Lahti et al., 2012) and type 3 (Ma et 

al., 2013) as well as Timothy syndrome (Yazawa et al., 2011) and CPVT (Fatima et al., 

2011). 

4.3.1 Pathophysiological comparison of clinical data and hiPSC-derived CPVT-CMs 

The present study established hiPSC models from 6 different CPVT patients and used 

hiPSCs-derived CMs to understand the underlying molecular mechanism causing CPVT. 

Disease modeling with hiPSCs from CPVT patients overcomes the impossibility of 

harvesting adult human CMs from patients and expanding them in culture. Furthermore, 

diverse hiPSC model systems could facilitate the screening and development of new 

candidate drugs for the treatment of CPVT on a patient-specific level. Previous disease 

models studying CPVT were based on in vitro models expressing mutant versions of RYR2 

in heterologous cell line systems, lipid bilayers and transgenic knock-out as well as knock-

in mouse carrying specific RYR2 mutations (Jiang et al., 2002a; Cerrone et al., 2005). 

These models suggest already that arrhythmias in CPVT are provoked by diastolic Ca2+ 

leak from the SR, thereby triggering DADs following adrenergic stimulation (Cerrone et al., 

2009). But considering the large number of point mutations reported in RYR2, it is difficult 

to generalize their different Ca2+ signaling profile due to the different proposed 

mechanisms causing CPVT symptoms. For this reason, different mouse models, including 

the Ryr2 mutations R2474S (Lehnart et al., 2008), S2246L (Suetomi et al., 2011), P2328S 
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(Goddard et al., 2008) and R4496C (Liu et al., 2006; Fernandez-Velasco et al., 2009) were 

established. Although mouse models might provide a more powerful tool to elucidate the 

pathophysiological mechanisms of CPVT compared to heterologous expression systems, 

they have still limited relevance because of striking physiological differences between the 

mouse and human heart. 

Recent studies focused on patient-specific hiPSC disease models to understand CPVT in 

the human system. Until now hiPSC models from 10 different CPVT patients were 

generated including the following missense mutations in the RYR2 gene: S406L (Jung et 

al., 2012), R420Q (Novak et al., 2015), P2328S (Kujala et al., 2012), E2311D (Di Pasquale et 

al., 2013), F2483I (Fatima et al., 2011; Zhang et al., 2013), P2328S, T2538R, L4115F, 

Q4201R (Penttinen et al., 2015) and M4109R (Itzhaki et al., 2012). Another patient-

specific hiPSC model had a large deletion in exon 3 of RYR2 (Penttinen et al., 2015).  

In this study, we used CMs differentiated from hiPSC models that were generated from 6 

different CPVT patients carrying four new RYR2 mutations (R420W, A2254V, E4076K, and 

H4742Y). These mutations are localized in different domains of the tetrameric protein 

RYR2. The domains of the channel include the cytoplasmic, central and channel region 

and the largest part is the cytoplasmic region. Structural analysis of porcine RYR2 showed 

that the cytoplasmic region consists of 9 different domains including four armadillo 

repeats-containing domains, the amino terminal domain (NTD), the handle domain, the 

helical domain and the central domain, three intertwined SPRY domains, and two 

domains designating P1 and P2 domains (Peng et al., 2016). Because RYR2 is highly 

conserved between mammalian species, the mutation R420W is probably located in the 

NTD, A2254V is located in the helical domain HD1, E4076K is located in the central 

domain and H4742Y is localized in the channel domain. All these mentioned mutations 

were previously not described with hiPSC models. In contrast to other studies, the 

mutations R420W and E4076K were modeled with two independent patients to 

investigate if patient-specific differences in the phenotype exist between two patients 

carrying the same mutation. Electrophysiological analysis showed that CPVT-CMs carrying 

the RYR2 mutations R420W, A2254V and E4076K develop different severe types of 

triggered activity with DADs in response to isoprenaline treatment (W. Li, unpublished 

data). Furthermore, adrenergic stimulation of fluo 4/AM-loaded CPVT-CMs (R420W, 

A2254V and E4076K) leads to increased spontaneous Ca2+ release determined by Ca2+ 

spark analysis using confocal line scanning technique (L. Cyganek, unpublished data). 

Previous literature describes this hyperactive phenotype as gain-of-function mutation 

with increased Ca2+ release during diastole generating a depolarizing transient inward 

current when NCX extrudes the released Ca2+. The Na+ inward current then causes DADs 

which can initiate new action potentials following triggered activity when the threshold is 
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reached (Priori and Chen, 2011; Leenhardt et al., 2012). Interestingly, CPVT-CMs carrying 

the mutation R420W (patients a2 and a3) located in NTD develop less arrhythmias and 

Ca2+ sparks in comparison to CPVT-CMs carrying the mutation A2254V (patient b1) and 

E4076K (patients c1 and c2) which are both located in different domains of RYR2, namely 

helical domain HD1 and central domain. No significant differences were observed 

between two patients (a2 and a3, or c1 and c2) with the same mutation. It could be 

speculated that the severity of CPVT could be correlated to the location of the mutation 

in different domains, but the number of patients is very small and the genetic background 

could be also associated to the severity of the phenotype. When the data of the Ca2+ 

spark frequency in CPVT-CMs were compared to the clinical data of the recruited 

patients, it is noticed that isoprenaline-stimulated CPVT-CMs derived from patients b1, c1 

and c2 have a more severe phenotype compared to CPVT-CMs derived from the patients 

a2 and a3. The clinical data support these findings partially. Patient c1 has also a highly 

severe clinical phenotype and the first CPVT symptoms were already recognized with the 

age of 10 years. Due to recurrent ventricular arrhythmias, left cardiac sympathetic 

denervation was performed to minimize the frequency of arrhythmias. In contrast, 

patient b1 showed no symptoms until diagnosis, but CPVT-CMs showed a severe 

phenotype in response to isoprenaline treatment in vitro. However, the recruited patients 

are currently very young in average and the severity of disease progression cannot be 

predicted at the moment.  

The clinical data from patient d1, carrying the mutation H4742Y, is similar when 

compared to the other recruited CPVT patients. But, we observed a completely different 

phenotype in the CPVT-CMs from patient d1 in vitro. The hiPSC-derived CMs were prone 

to develop EADs in combination with less Ca2+ release when compared to Ctrl-CMs, 

highlighting that this mutation might induce a loss-of-function. Experimental data of a 

previous study support this explanation because Ryr2-H4742Y as well as Ryr2-A4860G 

mutation are both located in the channel region of the receptor (Zhao et al., 2015). Zhao 

and colleagues observed that CMs isolated from mice heterozygous for the Ryr2 mutation 

A4860G exhibited depressed channel activity in vitro characterized by a markedly 

response to luminal Ca2+ and extremely low open probability in the presence of full 

agonists, such as Ca2+ and caffeine. Furthermore, prolonged APs with EADs were observed 

during isoprenaline stimulation. ECG recordings of anesthetized Ryr2-A4860G+/- mice 

displayed QRS alternans, premature ventricular complexes and bidirectional VTs in 

comparison to WT mice without symptoms. HEK293T cells expressing recombinant RYR2-

A4860G mutation displayed depressed activity and loss of luminal Ca2+ sensitivity 

(Jiang et al., 2007). 
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These results demonstrate that our CPVT-CMs carrying different RYR2 mutations (R420W, 

A2254V, E4076K, and H4742Y) could recapitulate the phenotype of CPVT disease in vitro. 

Mutation-specific as well as patient-specific differences were observed regarding 

electrophysiological and Ca2+ confocal imaging properties. Three RYR2 mutations (R420W, 

A2254V, and E4076K) resembling the phenotypes that is described as “gain-of-function” 

mutation. The mutation H4742Y resembles the phenotype which is described as “loss-of-

function”. The clinical data of our patients cannot distinguish between both phenotypes. 

Nonetheless, phenotypic differences between “gain-of-function” and “loss-of-function” 

mutations might be important for the choice of a potentially successful therapy with new 

developed rycals, such as S36 and S107. Furthermore, the location of the mutation in the 

different domains could be also important for the future therapy of CPVT patients.  

4.3.2 Understanding the mechanism of CPVT disease 

To understand the reason for different phenotypes observed in patient-specific hiPSC-

derived CPVT-CMs, allele-specific expression (ASE) and protein expression studies were 

performed. In general, ASE describes that two alleles of the same loci are expressed in a 

different proportion due to epigenetic modification, cis-acting regulatory variation, and 

post transcriptional modification. ASE is essential for cellular programming and embryonic 

development and the diversity of cellular phenotypes. To date, various studies which 

analyzed genome wide ASE in human, mice and cell lines identified hundreds to 

thousands of genes that display significant imbalanced expression of both alleles (Delaval 

and Feil, 2004; Wang et al., 2008; Gregg et al., 2010; Ju et al., 2011; Grundberg et al., 

2012). 

Distinguishing allelic activity is important for studying abundance of abnormal mRNA 

products. In the extreme case of ASE, monoallelic expression happens, where only one of 

both alleles is expressed while the second is completely inactive. However, allele-specific 

sequencing of the RYR2 gene showed no allelic imbalance in CPVT-CMs derived from all 6 

CPVT patients, demonstrating that both alleles were equally expressed in differentiated 

CPVT-CMs. One sample of patient a3 (R420W) showed a slight increased expression of the 

CPVT-causing allele (59.7%), but this imbalanced expression was detected in CPVT-CMs 

showing a milder phenotype leading to controversial results. Sequencing of genomic DNA 

of CPVT-CMs showed that both alleles are present in the same ratio. So it could be 

concluded that the severity of arrhythmias in our CPVT-CMs is not related to the allele-

specific transcription of RYR2. The ASE data of mouse studies, which showed no 

difference between WT and mutated RYR2 mRNA expression, endorse this presumption 

(Cerrone et al., 2005). To examine that different CPVT phenotypes do not arise from 
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different protein expression values, RYR2 protein expression of all 6 CPVT-CMs was 

compared to Ctrl-CMs by western blot analysis, and altered RYR2 expression was not 

detected in CPVT-CMs. Previous works studying protein changes caused by different RYR2 

mutations also showed no altered RYR2 expression when these CMs were compared to 

Ctrl-CMs (Jung et al., 2012; Di Pasquale et al., 2013). 

4.3.3 Phosphorylation of Ser2808 and Ser2814 in CPVT-CMs  

The RYR2-channel protein complex is modulated by various posttranslational 

modifications, including phosphorylation, S-nitrolysation and oxidation which are 

considered contributing to RYR2 leakiness. RYR2 channels contain several 

phosphorylation sites which are essential for normal heart function. Studies suggest that 

RYR2 phosphorylation is increased in heart failure and contributes to increased diastolic 

Ca2+ leak from the SR, thereby causing atrial and ventricular arrhythmias. Physical 

exercise increases concentrations of catecholamine that binds and activates β-adrenergic 

receptors, which in turn activate adenylate cyclase. The resulting increase of cAMP 

activates cAMP-dependent PKA which phosphorylates important Ca2+ handling proteins 

including the voltage-gated L-type Ca2+ channel, RYR2 and PLB. During heart failure in 

mice, stress situations result in downregulation of PDE4D3 as well as protein 

phosphatases PP1 and PP2A, which contributes to chronically increased PKA inducing 

phosphorylation of RYR2. These hyperphoshorylation of RYR2 is assumed to decrease the 

binding of the stabilizing protein FKBP12.6 resulting in diastolic SR Ca2+ leak (Wehrens et 

al., 2005). However, the molecular events leading to RYR2 hyperphosphorylation in CPVT 

remain incompletely understood and are highly controversial because different groups 

reported contradictory findings using similar approaches.  

Three phosphorylation sites in RYR2 have been confirmed by 32P incorporation assays and 

shown to be phosphorylated in vivo. The first discovered one was Ser2808 in human and 

rodents or Ser2809 in rabbit, respectively, which functions as primary target of PKA  

(Witcher et al., 1991; Marx et al., 2000). Ser2814 (Ser2815 in rabbit) has been shown as 

target site of CaMKII and Ser2030 is mainly phosphorylated by PKA (Xiao et al., 2006). 

Mass spectrometry analysis of the RYR2 phosphorylation domain (aa 2699-2904) has 

revealed additional putative phosphorylation sits at Ser2810, Ser2811, Ser2797 and 

Thr2876 (Yuchi et al., 2012). 

Marks and colleagues found that elevated phosphorylation of position Ser2808 results in 

dissociation of the auxiliary protein FKBP12.6 from the RYR2 complex leading to an 

increase in the channel’s sensitivity to Ca2+ (Marx et al., 2000). Further studies showed 

that increased PKA-induced phosphorylation of RYR2 resulted in diastolic SR Ca2+ leak in 
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CMs which contributes to chronically reduced SR Ca2+ content and diminished 

contractility in heart failure (Wehrens et al., 2006; Shan et al., 2010). However, other 

studies could not support these findings. For example, ouabain-induced arrhythmias did 

not cause differences in the phosphorylation status of RYR2 at position Ser2808 in the 

heterologous knock-in mice model Ryr2-R4496C+/- compared to wildtype mice. Basal 

levels of phosphorylation were also not changed in Ryr2-R4496C+/- mice (Sedej et al., 

2010). 

In our experiments, two different phospho-specific antibodies (anti-Ser2808, anti-Ser-

2814) were used to study changes in RYR2 phosphorylation by PKA and CAMKII after 

isoprenaline application of Ctrl- and CPVT-CMs. It was not possible to analyze the 

phosphorylation site Ser2030 in CPVT-and Ctrl-CMs due to unspecific binding of 

p-Ser2030 antibody. Other groups also failed to analyze Ser2030 phosphorylation 

(Li et al., 2013). It could be also speculated that Ser2030 is not phosphorylated in hiPSC-

derived CMs or becomes just phosphorylated in response to other conformational 

changes in RYR2. 

In this study, high baseline phosphorylation of the RYR2 residues Ser2808 and Ser2814 

was found in both Ctrl- and CPVT-CMs. However, CMs derived from the 5 CPVT patients 

(a2, a3, b1, c1 and c2) showed no patient-specific differences of their basal 

phosphorylation status when they were compared to Ctrl-CMs. After β-adrenergic 

stimulation with isoprenaline, phosphorylation of both Ser2808 and Ser2814 was slightly 

increased in CPVT-CMs and Ctrl-CMs, but mutation- or patient- specific differences were 

again not observed. The combined treatment of isoprenaline and calyculin A increased 

the phosphorylation in some cases further, but single treatment with calyculin A resulted 

in increased phosphorylation of RYR2, too. This observation could be explained by the 

fact that calyculin A is a distinct inhibitor of PP1 and PP2A (Ishihara et al., 1989). PP1 and 

PP2A were shown to regulate RYR2 phosphorylation. PP1 appears to be the main 

phosphatase dephosphorylating Ser2808 and Ser2814. But PP2A may also 

dephosphorylate RYR2 at the CAMKII site Ser2814 (Xiao et al., 2006; Huke and Bers, 

2008). Blocking these phosphatases with calyculin A could increase RYR2 

phosphorylation. In general, no significant differences were observed between the both 

phosphorylation sites Ser2808 and Ser2814. In most experiments, both phosphorylation 

sites were already highly phosphorylated at basal conditions and the detected increase 

was not significant. The data from Carter et al. agree with these results because they 

observed that RYR2, isolated from non-failing sheep hearts, were already phosphorylated 

to 75% of maximum at Ser2809, which could explain that significantly increased 

phosphorylation of Ser2808 would be improbable in hiPSC derived-CMs after the 

isoprenaline and calyculin A treatments. Other groups compared RYR2 phosphorylation of 
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Ser2808 and Ser2814 from rat hearts and reported that Ser2814 (15%) was significantly 

lower phosphorylated than Ser2808 (69%) under basal conditions. After stimulation with 

isoprenaline, these levels were increased to 60% and 83%, respectively (Li et al., 2013). It 

could be argued that 15 min of isoprenaline stimulation was too short to increase 

phosphorylation of RYR2. But this is contradicted because the cAMP/PKA response of the 

β-adrenergic signaling pathway needs to be activated within seconds to increase the 

heart beat in a “fight-or-flight” situation (Xiao, 2001). Furthermore, electrophysiological 

analysis and calcium imaging observed first arrhythmias and Ca2+ leaks already after 15-

20 min stimulation with isoprenaline. 

Previous studies focusing on the two Ryr2 mutations R176Q and G230C in mice are in line 

with our data showing that CPVT-linked RYR2 mutations do not alter baseline 

phosphorylation of RYR2 at the residues Ser2808 and Ser2814 (Chelu et al., 2009; Sedej et 

al., 2010; Meli et al., 2011; Shan et al., 2012). Other studies observed an elevated 

phosphorylation after pacing of CMs, but they observed again no differences between 

wildtype and mutated receptors (Chelu et al., 2009). However, Loaiza and colleagues 

stimulated mice bearing the heterogeneous Ryr2 mutation V2475F with PKA and reported 

that phosphorylation of Ser2808 and Ser2030 was increased in comparison to wildtype 

mice. In addition, these mice displayed adrenergically triggered-increased tachycardias, 

cytosolic Ca2+ sensitivity and increased activation by luminal Ca2+ (Loaiza et al., 2013).  

Taken together, data from this study together with previous results limit the hypothesis 

that RYR2 hyperphosphorylation is one of the mechanisms causing CPVT symptoms in our 

CPVT-CMs in response to adrenergic stimulation. Instead, it could be rather suggested 

that hyperphosphorylation is mutation-specific and causes increased Ca2+ leak if the 

FKBP12.6 binding site is destroyed with specific RYR2 mutations thereby preventing 

binding of the stabilizer FKBP12.6. Finally, our data support the hypothesis that 

phosphorylation of RYR2 is not altered in CPVT patients because we did not observe 

differences between any hiPSC-derived CMs from healthy subjects and CPVT patients. 

Phosphorylation of RYR2 seems to be essential for normal channel activity but increased 

phosphorylation might not be the cause for arrhythmias and Ca2+ leak in CPVT patients, at 

least in patients carrying the mutations analyzed in this study. More recent studies 

showed that the ablation of RYR2 phosphorylation at Ser2808 cause worsened Ca2+ 

mishandling and cardiac dysfunction in triple mutated mice with Ryr2-Ser2808A+/- 

deficient expression of CASQ2 and overexpression of SERCA1 (Liu et al., 2014a). 
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4.4 CRISPR/Cas9 as tool for efficient genome editing in hiPSCs 

The discovery that the bacterial CRISPR/Cas9 defense system can be utilized to generate 

DSBs in eukaryotic genomes has resulted in a new technology which is able to disrupt, 

knock-in and correct endogenous genes. Nowadays, CRISPR/Cas9 has rapidly emerged 

into one of the most popular and efficient techniques for genome editing with successful 

application in a wide range of biological systems including human cells (Cong et al., 2013; 

Jinek et al., 2013; Mali et al., 2013).   

Custom-engineered CRISPR/Cas9 also holds enormous therapeutic potential for the 

treatment of genetic disorders by directly correcting disease-causing mutations. The 

target DNA sequence corresponds to the complementary 20 nt gRNA that is needed to 

guide CRISPR/Cas9 to the desired location for inducing DSBs. The repair of the broken 

DNA ends occurs either through NHEJ or HDR. The NHEJ repair mechanism generates 

indels, which have been utilized to generate random genomic mutations. Alternatively, 

HDR occurs in the presence of donor DNA plasmids or ssODNs, which contain homologous 

sequences flanking the DSBs sites to generate site-directed gene fragments leading to 

targeted gene mutations or corrections.  

In this study, a protocol for CRISPR/Cas9-triggered gene targeting was established in 

CPVT-hiPSCs using ssODNs and a combined customized CRISPR/Cas9 plasmid for 

transfection of hiPSCs. Using this protocol, we wanted to apply CRISPR/Cas9 

simultaneously for NHEJ-mediated deletions causing a reading frame shift in the RYR2 

gene as well as for HDR-mediated knock-in to correct the CPVT-causing point mutation in 

the RYR2 gene. We hypothesized that the latter mentioned process is able to rescue the 

CPVT phenotype in CRISPR/Cas9-edited CMs. 

To correct the CPVT-causing point mutation by HDR after the induction of DSBs, ssODNs 

were designed to contain the desired bp located in the center of the ssODNs. High 

targeting frequencies were reported when the mutation is located in close proximity 

(<20 bp) to the target site of the nuclease (Chen et al., 2011a; Yang et al., 2013). For the 

direct measurement of gene disruption at the particular locus in the RYR2 gene by the 

CRISPR/Cas9 plasmids designed, a mismatch-specific endonuclease assay was performed 

first to test the cleavage efficiency of our CRISPR/Cas9 plasmids. We measured 25-27% 

cleavage efficiency which was comparable to the positive control provided in the kit. 

Application of genome editing in sensitive pluripotent stem cells has been reported to be 

much more difficult compared to the efficient and fast genome editing of robust human 

tumor cell lines (Fu et al., 2013; Mali et al., 2013). To date, CRISPR-mediated gene 

knockout has worked efficiency using NHEJ-induced indel mutations in mouse ESCs and 

zygotes, but precise introduction of point mutations or a sequence fragments directed by 
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HDR has remained inefficient in hiPSC systems. Until now, few studies were able to 

correct missense mutations in hiPSCs successfully using CRISPR/Cas9. These studies 

include the correction of homozygous missense mutation in the HBB gene causing sickle 

cell disease and the genetic correction of a point mutation in the JAK3 gene causing 

severe combined immunodeficiency (Chang et al., 2015; Huang et al., 2015; Li et al., 

2016). For transfection, these studies used nucleofection in combination with ssODNs and 

CRISPR/Cas9 constructs or adenoviral-mediated genome editing. In the present study, 

ssODNs were also used as source for HDR in combination with predesigned CRISPR/Cas9 

plasmids for the gene-editing experiments. After transfection of the designed 

CRISPR/Cas9 plasmids with ssODNs into CPVT-hiPSCs, low transfection efficiencies were 

observed with around 5% using nucleofection. However, the vector had GFP integrated 

and enabled efficient sorting of GFP+ cells. One aggravating factor was the low survival 

rate of hiPSCs after cell sorting. Furthermore, around 30% of the growing hiPSC colonies 

were not able to maintain their pluripotent state and differentiated into other cell types. 

Despite low transfection efficiency and survival rate, total 807 cell clones were screened 

after hiPSC transfection, sorting and expansion. In future, the survival of the clones could 

be improved by culturing sorted hiPSC cells in a more nutrient hiPSC medium, such as the 

new developed StemMACS iPS-Brew XF medium, which is reported to ensure fast 

recovery after stressful situations. Perhaps, the viability of dissociated single hiPSCs could 

be further enhanced if a survival cocktail of different small inhibitors, termed SMC4, 

would be added to the medium instead of single application of TZV after cell sorting 

(Valamehr et al., 2012).  

After expansion and freezing of the CRISPR/Cas9 targeted clones, PCR and restriction 

digestion revealed, that 1.4% of the cell clones integrated ssODNs in their genome by 

HDR.  The small percentage of surviving CRISPR/Cas9-targeted clones, which integrated 

ssODNs corroborates that HDR works highly inefficient in hiPSCs. To improve the 

efficiency of CRISPR/Cas9-mediated genome editing, several studies tested small 

molecules, including RAD51, L-755,507 and SCR7 that were reported to enhance HDR 

after DSBs (Maruyama et al., 2015; Yu et al., 2015; Song et al., 2016). In some 

experiments, the β3-adrenergic receptor agonist L-755,507 was applied, which has been 

shown to enhance CRISPR/Cas9-mediated HDR in hiPSCs (Yu et al., 2015). In contrast to 

the previous study, we did not notice a significant increase of HDR-targeted clones that 

integrated the ssODNs into their genome.  

After PCR amplification and positive restriction digestion with EcoRI, 12 CRISPR/Cas9-

targeted clones were sequenced, and 11 out of 12 were HDR-targeted clones that had 

ssODNs integrated. However, additional indels closely located to the CRISPR/Cas9 binding 

site in the RYR2 gene were found in these 11 clones. This suggests that CRISPR/Cas9 
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might cleave the DNA again after integration of the ssODNs. To solve this problem, two 

additional ssODNs were designed with silent missense mutations to prevent further DNA 

cleavage after HDR. Although recent studies achieved an increase of HDR efficiency after 

introduction of CRISPR/Cas9-blocking mutations (Paquet et al., 2016), we could not 

confirm this result even after insertion of 5 silent mutations. Additional deletions were 

still observed after introduction of the ssODNs by HDR. This observation fits to other 

reports describing that Cas9-sgRNA complexes are able to tolerate 1-5 mismatches 

between the sgRNA and the target sequences, thereby creating off-target cuts in genomic 

DNA (Fu et al., 2013). The high incidence of cutting already integrated ssODNs displays 

that the designed CRISPR/Cas9 plasmid has probably a high tolerance to mismatches even 

though the plasmid was customized generated with minimal off-target activity. In human 

systems it is particular important to design the sgRNA with high specificity because almost 

half of the human genome consists of repeated sequences. The off-targeting should be 

absolutely avoided (Hsu et al., 2013; Kuscu et al., 2014). Nowadays, several online tools 

and algorithms are available to predict putative nuclease off-targeting sites including: the 

CRISPR Design Tool (Hsu et al., 2013), ZiFiT targeter (Fu et al., 2013), CasFinder (Aach et 

al., 2014), and E-CRISP (Heigwer et al., 2014). However, all of these tools have certain 

limitations because off-target risks and cleavage activity cannot be accurately predicted 

by any algorithm currently available (Ishida et al., 2015). In this regard, the risk of off-

target mutagenesis is also one of the most important obstacles to the future therapeutic 

use of genome-specific nucleases.  

4.4.1 Generation of CRISPR/Cas9-edited CMs to study RYR2 function in hiPSCs 

Due to the high incidence of indels after HDR in CRISPR/Cas9- targeted hiPSCs, the 

designed CRISPR/Cas9 vectors in this study are not suited to correct missense mutations 

in the RYR2 gene. However, this protocol worked effectively for the introduction of 

genetic alterations in the RYR2 gene. After sequencing, three exciting CRISPR/Cas9-

targeted hiPSC clones were found to have beside the integrated ssODNs homozygous as 

well as heterozygous deletions in RYR2. Two hiPSC clones (RYR2Ø/Ø-A3- and RYR2 Ø/Ø-X4-

hiPSCs) had a homozygous deletion of 1 and 4 bps causing a frame shift with a PTC which 

could inhibit the translation of the RYR2 protein. The third CRISPR/Cas9-edited clone 

(RYR2+/Ø-T42-hiPSCs) had a 17 bp deletion in the mutated CPVT allele resulting in a PTC, 

too. These clones were probably not the only generated ones, because PCR screenings 

revealed several different hiPSC clones with small and large deletions in the PCR amplified 

RYR2 gene.  
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Several mouse knockout models were reported to analyze the function of RYR2, but 

human models studying knockout of RYR2 with hiPSC-derived CMs are still not available. 

Homozygous deletion of Ryr2 causes embryonic lethality in Ryr2-/- mice due to cardiac 

arrest around day 10. Heterozygous Ryr2+/− mice showed alterations in ECG recordings 

and membrane potential in urinary bladder smooth muscle cells (Hotta et al., 2007).  

Another study reduced the amount of Ryr2 with an inducible cardiac-specific Ryr2-/- 

knockout in adult mice and observed brachycardia and intermittent tachycardiac 

arrhythmias if the levels of Ryr2 were significantly reduced (Bround et al., 2012). These 

results suggested that Ryr2 is required to maintain normal heart rhythm. However, the 

precise mechanism causing arrhythmias in conditional Ryr2-/- mice was not further 

analyzed in the previous study. Because it is commonly known that results from mouse 

models can often not be translated to human models, we wanted to use hiPSC-derived 

CMs to study the RYR2 function in homozygous RYR2 knockout models.   

In this study, CRISPR/Cas9-edited CMs (RYR2Ø/Ø-A3, RYR2Ø/Ø-X4, and RYR2+/Ø-T42) do not 

show obvious differences in RYR2 mRNA expression in comparison to their corresponding 

CPVT-CMs. Notably, western blot analysis and immunofluorescence staining showed no 

detectable RYR2 protein in RYR2Ø/Ø-A3- and RYR2Ø/Ø-X4-CMs in comparison to the original 

CPVT-CMs. Only the full-length RYR2, not the truncated RYR2, was detected in RYR2+/Ø-

T42-CMs. These data suggest that the truncated RYR2 resulted from the frame shift in 

RYR2Ø/Ø-A3- and RYR2Ø/Ø-X4- and RYR2+/Ø-T42-CMs is fully degraded. 

Similar results of full protein degradation caused by CRISPR/Cas9-induced frame shift 

mutations were also observed by other studies. They simply rescued the phenotype of 

the genetic skin disorder dominant dystrophic epidermolysis bullosa by knocking out of 

the mutant allele using specifically induced frame shift mutations (Shinkuma et al., 2016). 

To investigate the reason for the missing RYR2 protein in RYR2Ø/Ø-A3-CMs, we analyzed 

potential protein degradation in RYR2Ø/Ø-A3- and RYR2+/Ø-T42-CMs by the treatment with 

the proteasome and calpain inhibitor MG132 and the autophagy inhibitor BafA1 (Pedrozo 

et al., 2010). But, we were not able to visualize truncated protein versions in RYR2Ø/Ø-A3- 

and RYR2+/Ø-T42-CMs suggesting a potential nonsense-mediated mRNA decay (NMD) 

before protein synthesis. NMD is a translation-coupled mRNA surveillance mechanism 

that helps to maintain the quality of gene expression in eukaryotes. NMD controls newly 

synthesized mRNAs and degrades those that harbor a PTC, thereby preventing the 

production of truncated proteins that could result in diseases in humans (Frischmeyer, 

1999; Mort et al., 2008). An intron located at least 50–55 bp downstream of a termination 

codon is sufficient to initiate mammalian NMD. Both homozygous as well as heterozygous 

RYR2+/Ø-T42-CMs fulfill these requirements, suggesting that NMD facilitates the 

degradation of PTC-containing RYR2 mRNA. ASE of mRNA from RYR2+/Ø-T42-CMs 
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supported this hypothesis because the allele including the PTC is highly decreased (11.4%) 

compared to the WT allele (88.6%). In the future, this result should be repeated with 

more samples. Nonetheless, the results highlight the generation of RYR2+/Ø-T42-CMs with 

an allele-specific downregulation of the mutated RYR2 mRNA, which would rescue the 

CPVT phenotype. The potential rescue of the disease phenotype is supported by another 

study that used RNA interference to downregulate a mutated version of KCNH2 mRNA to 

rescue the LQT2 phenotype in hiPSC-derived CMs. In that study, electrophysiological 

analysis of patient-specific LQT2-CMs treated with mutation-specific siRNA showed 

normalized APDs and K+ currents together with concurrent rescue of spontaneous and 

drug-induced arrhythmias (Matsa et al., 2014). In this study, western blot analysis of 

RYR2+/Ø-T42-CMs showed a slight increase of RYR2 expression compared to CPVT-CMs, 

this might be due to the upregulated mRNA expression of the healthy allele. This result is 

not in line with the data found in Ryr2+/− mice showing the half reduced Ryr2 expression 

(Hotta et al., 2007). Taken together, the results suggest that the highly reduced 

expression of the mutated allele might cause a potential healthy phenotype with less or 

without CPVT-associated symptoms.  

The analysis of the Ca2+ sparks in RYR2+/Ø-T42-CMs showed that the allele-specific 

downregulation of the mutated version of RYR2 significantly reduced the Ca2+ sparks 

under isoprenaline-stimulated conditions. RYR2+/Ø-T42-CMs have got a phenotype that is 

comparable with Ctrl-CMs because the spark frequency is on a comparable level, while 

CPVTc1/c2-CMs have a significantly increased spark frequency in comparison to Ctrl-CMs. 

Even though it was not possible to correct the missense mutation in the CPVT allele with 

homologous recombination, we were able to downregulate the mutated allele and 

verified with this technique that the missense mutation E4076K is probably responsible 

for CPVT symptoms in patients c1 and c2.  

Previous studies showed that CMs isolated from Ryr2+/− mice had abnormal Ca2+ release 

from the SR and reduced contractility at baseline (Zou et al., 2011). This is different from 

that observed in RYR2+/Ø-T42-CMs in the present study. During pressure overload, which 

was induced by constriction of transverse aorta, isolated Ryr2+/−-CMs showed reduced 

Ca2+ transient amplitudes and increased intracellular Ca2+ concentrations during systole 

(Zou et al., 2011). However, Ryr2+/−-CMs showed no differences in terms of their 

morphology, and the heart structure and cardiac contractility in Ryr2+/− mice were 

compared to wildtype mice. This indicates that defects of Ca2+ signaling in single cells 

could be compensated in Ryr2+/− mice at organ level.  

Because we wondered why RYR2Ø/Ø-A3-CMs were able to beat without RYR2 expression, 

we speculated that these CMs have altered expression of other Ca2+ regulatory proteins 

to compensate the missing RYR2 protein. Studies revealed that hiPSC-derived CMs have 
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large differences in their intracellular Ca2+ handling properties compared to adult CMs 

due to their immature phenotype and their smaller intracellular Ca2+ stores (Satin et al., 

2008). For this reason, we speculated that the cardiac IP3Rs might be responsible for 

compensatory mechanisms involving the contraction of RYR2Ø/Ø-A3-CMs when RYR2 is 

absent. In adult CMs, IP3Rs seem to regulate only the non-contractile Ca2+ signaling, but 

abnormal IP3R expression is able to cause arrhythmias (Harzheim et al., 2009). IP3Rs 

share structural and functional similarities to RYRs, but for their opening IP3 has to bind 

to the cytosolic part of IP3Rs. Although Ca2+ flux via IP3R is relatively small in comparison 

to the large whole-cell [Ca2+]i transients regulated by RYR2, it is suggested that IP3Rs have 

an important role in cardiac physiology. IP3Rs are located in the perinuclear region as well 

as in the nuclear membrane of adult ventricular CMs, but they are expressed in a much 

smaller density compared to RYRs (~1:50-1:100) (Moschella and Marks, 1993; Bare et al., 

2005). IP3-dependent Ca2+ signaling has been shown to play an important role during the 

process of cardiac development. In fact, IP3Rs are the first Ca2+ release channels 

expressed in embryos and the IP3R-mediated Ca2+ release is reported to contribute to 

spontaneous activity and Ca2+ handling in mouse ESC-CMs and hiPSCs (Kapur and Banach, 

2007; Itzhaki et al., 2011b).  

In this study, no obvious differences regarding mRNA expression of IP3R1, IP3R2 and 

CACNA1C were found in RYR2Ø/Ø-A3-CMs in comparison to CPVT-CMs. The protein 

expression of IP3R, SERCA2A and NCX1 was also not changed in RYR2Ø/Ø-A3-CMs. These 

results suggest that the RYR2 is not necessarily required in CM differentiation from hiPSCs 

and that IP3-mediated Ca2+ signaling might be important for ECC in RYR2Ø/Ø-A3-CMs. 

Similar to the results in RYR2Ø/Ø-A3-CMs, the expression levels of Ca2+ handling proteins 

(SERCA2, L-type Ca channel, and NCX) in CMs from Ryr2+/− mice were not altered when 

compared to those from wildtype mice at baseline conditions (Zou et al., 2011). However, 

they did not analyze IP3R expression. These results implicate that reduced or absent 

expression of RYR2 might not alter expression of other proteins that are involved in the 

Ca2+ handling of CMs. 

Ca2+ imaging in RYR2Ø/Ø-A3-CMs showed Ca2+ sparks were highly reduced in comparison 

to CPVT-CMs that reveal high occurrence of sparks at isoprenaline-stimulated conditions. 

Moreover, amplitudes of Ca2+ transients in RYR2Ø/Ø-A3-CMs became much smaller. These 

results suggest that IP3R-mediated Ca2+ release might be implicated and different from 

RYR2-mediated Ca2+ release even though the expression of IP3R is not changed. The small 

amplitudes might indicate that Ca2+ cannot be released from the SR, which in turn leads to 

potentially increased [Ca2+]SR levels in RYR2Ø/Ø-A3-CMs.  
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4.5 Conclusion and future perspectives  

In conclusion, the findings of this study describe that patient-specific hiPSCs can serve as 

suitable model for studying RYR2 mutations in the context of CPVT and RYR2-knockout 

models. CPVT-hiPSCs were successfully differentiated into functional ventricular-like CMs. 

HiPSC-derived CPVT-CMs display phenotypic features of CPVT symptoms, which partially 

correlate with different severities of arrhythmias in CPVT patients. Abnormalities of allele-

specific mRNA expression or RYR2 protein expression were not found in CPVT-CMs 

derived from different patients. Furthermore, the data showed that adrenergically 

stimulated hiPSC-derived CPVT-CMs had no differences in their RYR2 phosphorylation 

status compared to hiPSC-derived CMs from healthy subjects. Due to these results, this 

study refutes the hypothesis that stress induces hyperphosphorylation of RYR2 due to 

missense RYR2 mutations which favor unwanted Ca2+ release from the SR. In future, the 

underlying molecular mechanism how different RYR2 mutations favor different severe 

phenotypes CPVT need to be investigated further. To this end, the cytosolic and luminal 

Ca2+ sensitivity of RYR2 as well as the SR Ca2+ content should be analyzed by Ca2+- and 

caffeine-induced Ca2+ release in CPVT-CMs and compared to Ctrl-CMs. Furthermore, it 

should be tested if RYR2 mutants have a lowered threshold for SOICR. RYR2 proteins 

containing different missense mutations from several patients could be isolated to 

analyze the single channel activity by planar lipid bilayers. 

Our studies showed that hiPSC-derived CPVT-CMs are functional and suitable for high 

throughput screening of new rycals or other small molecules that could restore the RYR2 

activity. Furthermore, personalized medicine could predict the response to therapy of 

individual CPVT patients, which carry different RYR2 mutations causing either “gain-of-

function” or “loss-of-function” of RYR2.  

Additionally, the CRISPR/Cas9 system was used for genome editing of hiPSCs. 

CRISPR/Cas9-edited hiPSCs were generated efficiently but it was not possible to generate 

isogenic controls by ssODNs integration, simultaneously. In general, it would be easier to 

generate isogenic controls by introducing genetic missense mutations in healthy Ctrl-

hiPSCs. This technique would be faster to generate CRISPR/Cas9-targeted hiPSCs with 

different RYR2 mutations and it would not be necessary to recruit different CPVT patients 

from the clinics. Furthermore, the costs and time for reprograming would be reduced. 

However, cell lines would have the same genetic background and it would be difficult to 

apply these cells for personalized medicine due to the missing patient-specific 

background.  

In this project, two homozygous CRISPR/Cas9-edited hiPSC lines (RYR2Ø/Ø-A3- and 

RYR2Ø/Ø-X4-hiPSCs) with complete knockout of the RYR2 protein were generated. 
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4- DISCUSSION 

RYR2Ø/Ø-A3-CMs showed no express of RYR2, have altered Ca2+ transients and are useful 

to study the Ca2+ regulation in hiPSC-derived CMs, especially during early CM 

differentiation. Furthermore, one heterozygous RYR2+/Ø-T42-iPSC line with a functional 

healthy allele of RYR2 was generated. RYR2+/Ø-T42-CMs display normal RYR2 expression 

and have highly downregulated expression of the disease-causing allele. These results 

suggest that RYR2+/Ø-T42-CMs might bear the characteristics of Ctrl-CMs and do not 

display high incidence of arrhythmias and Ca2+ sparks in response to isoprenaline 

treatment. The analysis of the Ca2+ sparks, which are significantly reduced in RYR2+/Ø-T42-

CMs, confirmed this hypothesis and highlights that we were able to rescue CPVT 

symptoms with CRISPR/Cas9-induced genome editing by knocking out the CPVT-causing 

allele. In the next step, CRISPR/Cas9-edited CMs should be analyzed by patch-clamp 

analysis to test if RYR2+/Ø-T42-CMs display a healthy phenotype with reduced arrhythmias 

that are comparable to Ctrl-CMs. Furthermore, RYR2Ø/Ø-A3-CMs should be analyzed by 

patch-clamp analysis or MEA to test if these CMs display brachycardia, which were 

observed in Ryr2-/- mice (Bround et al., 2012).  
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7 Appendix  

7.1 Abbreviations 

°C   Degree celsius 

µ Micro 

µg Microgram 

a.u. Arbitrary units 

aa Amino acids 

AFP Alpha-1-fetoprotein 

ALB Albumin 

APD Action potential duration 

Approx. Approximately 

APS Ammonium persulfate  

ATP Adenosine triphosphate 

ASE Allele-specific expression 

BafA1 Bafilomycin A1 

bp Base pair 

BSA  Bovine serum albumin 

Ca2+ Calcium 

CaM Calmodulin 

CamKII  Ca2+/Calmodulin-dependent protein kinase II 

cAMP Cyclic adenosine monophosphate 

Cas9 CRISPR-associated protein 9 

CASQ2  Calsequestrin 2 

cDNA  Complementary DNA 

CM Cardiomyocyte 

c-MYC V-myc myelocytomatosis avian viral oncogene homolog 

CO2 Carbon dioxide 

CPVT Catecholaminergic polymorphic ventricular tachycardia 

CRISPR Clustered regularly interspaced short palindromic repeats 

cTNT Cardiac troponin T  

Cx43  Connexin 43 

DAD Delayed afterdepolarization 

DAPI  4′, 6-Diamidino-2-phenylindole dihydrochloride 

ddH2O  Double distilled water  

DMEM  Dulbecco's modified eagle medium 
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DMSO  Dimethylsulfoxide 

DNA  Deoxyribonucleic Acid  

DPBS  Dulbecco's phosphate buffered saline 

DSB Double strand break 

DTT Dithiothreitol  

E. coli Escherichia coli 

EAD Early afterdepolarization 

ECL  Enhanced chemiluminescence 

EDTA  Ethylene diamine tetra acetic acid 

ESCs  Embryonic stem cells 

F Fluorescence 

FACS Fluorescence-activated cell sorting 

FBS  Fetal bovine serum 

FDHM Full duration at half maximum 

Fig. Figure 

FITC Fluorescein isothiocyanate  

FL Feeder layer 

for Forward 

FOXD3 Forkhead box D3 

FSC Forward scatter  

FWHM Full width at half maximum 

g Gram 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase  

GDF3  Growth differentiation factor 3 

gDNA Genomic DNA 

h Hours 

hbFGF  Fibroblast growth factor basic 

HDR Homology directed repair 

HEK293 Human embryonic kidney 293 

HEPES  4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

hERG Human ether-à-go-go-related gene 

hESC Human embryonic stem cell 

hiPSC Human induced pluripotent stem cell 

HR Homologous recombination 

HRP  Horseradish peroxidase  

Hz Hertz 

IP3R Inositol 1,4,5-trisphosphate receptors 
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IRX4 Iroquois homeobox 4 

Iso Isoprenaline 

KCl  Potassium chloride 

kDa  Kilodalton  

KIR2.1 Inward rectifier potassium channel 2 

KLF4 Krüppel-like factor 4 

l Liter 

mA Milliampere 

MEA Multi-electrode array 

MEFs  Mouse embryonic fibroblasts 

min Minutes 

ml Milliliter  

MLC2A  Myosin light chain 2a 

MLC2V Myosin light chain 2 v 

MOI  Multiplicity of infection 

ms Milliseconds 

MSC Mesenchymal stem cell 

MTG  Monothioglycerol 

n Nano 

Na2HPO4  Disodium hydrogen phosphate 

NaOH  Sodium hydroxide 

Nav1.5 Cardiac voltage-gated Na+ channel 

NCX Sodium-calcium exchanger 

NEAA  Non-essential amino acids 

OCT4 Octamer binding transcription factor 4 

OCT4 Octamer-binding transcription factor 4 

PAGE  Polyacrylamide gel electrophoresis 

PCR Polymerase chain reaction  

PDE4D3 Phosphodiesterase 4D3 

PE Phycoerythrin 

pF Picofarad 

PFA  Paraformaldehyde 

pH Negative logarithmic value of the H+ concentration 

PLB Phospholamban 

PP1 Protein phosphatase 1 

PP2A Protein phosphatase 2a 

PTC Premature termination codon 
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rev Reverse  

rpm  Revolutions per minute  

RPMI  Roswell Park Memorial Institute 

RT  Room temperature 

RYR Ryanodine receptor 

SDS  Sodium sodecyl sulfate 

sec Seconds 

SEM Standard error 

Ser Serine 

SERCA Sacro/ endoplasmic reticulum Ca2+-ATPase  

SeV Sendai virus 

SMA  Smooth muscle actin 

SOX2  Sex determining region Y box 2 

SOX2 Sex Determining Region Y-Box 2 

SR Sacroplasmic reticulum 

SSEA4 Stage-specific embryonic antigen-4 

ssODNs Single-stranded oligodeoxynucleotides 

STEMCCA  Stem cell cassette 

SYP  Synaptophysin 

Tab. Table 

TALEN Transcription activator-like nuclease 

TBE buffer  Tris-borate EDTA buffer 

TBS  Tris buffered saline 

TBS-T  Tris buffered saline with Tween-20 

TC Tissue culture 

TEMED  Tetramethylenediamine 

TH  Tyrosine hydroxylase 

Thr Threonine 

TRA-1-60 Tumor rejection antigen 1-60 

Tris Tris-(hydroxymethyl)-aminomethane 

TZV Thiazovivin  

U Unit 

V Voltage 

v Volume 

VCAM-1 Vascular cell adhesion molecule 1 

VT Ventricular tachycardia 

ZFN Zinc finger nuclease 



   

129 
 

7- APPENDIX 

α Alpha 

α-ACT α-Actinin 

α-MHC Myosin heavy chain α isoform 

β 

 

Beta 

 

 



   

130 
 

7- APPENDIX 

7.2 List of Figures 

Figure 1. Ca2+-induced Ca2+ release and triggered arrhythmias............................................ 5 

Figure 2. Structure of RYR2 including hot-spot regions of mutations. ................................. 6 

Figure 3. Generation of patient-specific hiPSCs for disease modeling and drug screening. 9 

Figure 4. Key steps sufficient for cardiac differentiation of hiPSCs. ................................... 16 

Figure 5. Genome editing using CRISPR/Cas9. .................................................................... 18 

Figure 6. CRISPR/Cas9 plasmid containing the sequence of gRNA, Cas9, GFP and 

kanamycin. ........................................................................................................................... 23 

Figure 7. RYR2 protein and mutations studied in the present study. ................................. 54 

Figure 8. Timeline for the generation of CPVT-hiPSCs. ....................................................... 55 

Figure 9. Morphology and alkaline phosphatase activity of CPVT-hiPSCs. ......................... 55 

Figure 10. Gene expression analysis of generated CPVT-hiPSCs and their parental 

fibroblasts. ........................................................................................................................... 56 

Figure 11. Immunostaining detects pluripotency-related proteins of generated CPVT-

hiPSCs................................................................................................................................... 57 

Figure 12. Gene expression of differentiated CPVT-hiPSCs. ............................................... 59 

Figure 13. Immunostaining of differentiated hiPSCs detects germ layer-specific proteins.

 ............................................................................................................................................. 60 

Figure 14. Teratoma formation of CPVT-hiPSCs. ................................................................. 61 

Figure 15. Verification of the RYR2 point mutation in the generated CPVT-hiPSCs. .......... 62 

Figure 16. Schematic illustration of the directed cardiac differentiation using hiPSCs. ..... 63 

Figure 17. Flow cytometric analysis of 3-month-old CMs. .................................................. 63 

Figure 18. Expression of cardiac-specific marker genes. ..................................................... 64 

Figure 19. Cardiac differentiation of CPVT-hiPSCs. ............................................................. 65 

Figure 20. Expression of CX43 in CPVT-CMs. ....................................................................... 66 

Figure 21. Patch clamp analysis of CPVT- and Ctrl-CMs. ..................................................... 67 

Figure 22. Basal and isoprenaline-induced Ca2+ sparks in CPVT- and Ctrl-CMs. ................. 68 

Figure 23. Allele-specific RYR2 expression of CPVT-CMs. ................................................... 69 

Figure 24. RYR2 expression in CPVT- and Ctrl-CMs. ............................................................ 70 

Figure 25. Phospho-RYR2 expression in CPVT- and Ctrl-CMs. ............................................. 71 

Figure 26. Cleavage assay of CRISPR/Cas9-transfected cells. ............................................. 72 

Figure 27. Strategy for the generation of CRISPR/Cas9-targeted hiPSCs. ........................... 73 

file:///C:/Users/Sarah%20Henze/Dropbox/Doktorarbeit/Sarah%20_Doktorarbeit%2019.10.2016.docx%23_Toc464637999


   

131 
 

7- APPENDIX 

Figure 28. Screening of CRISPR/Cas9-transfected cell clones. ............................................ 74 

Figure 29. Sequencing of CRISPR/Cas9-targeted clones. .................................................... 75 

Figure 30. Gene expression of Ca2+ regulating genes in CRISPR/Cas9-edited CMs. ........... 76 

Figure 31. Allele-specific RYR2 expression in RYR2+/Ø-T42-CMs. ........................................ 77 

Figure 32. RYR2 expression in CRISPR/Cas9-edited CMs. ................................................... 78 

Figure 33. Immunostaining of RYR2Ø/Ø-A3-CMs in comparison to CPVTc2.1-CMs. ............ 79 

Figure 34. Analysis of RYR2 protein degradation in CRISPR/Cas9-edited CMs. .................. 80 

Figure 35. Expression of Ca2+ regulatory proteins in RYR2Ø/Ø-A3-CMs. .............................. 80 

Figure 36. Isoprenaline-induced Ca2+ sparks in CRISPR/Cas9-engineered CMs. ................. 81 

Figure 37. Ca2+ transients from CRISPR/Cas9-engineered CMs. ......................................... 82 

 

  



   

132 
 

7- APPENDIX 

7.3 List of Tables 

Table 1: List of laboratory equipment ................................................................................. 21 

Table 2: List of disposable items.......................................................................................... 22 

Table 3: List of CRISPR/Cas9-plasmids. ................................................................................ 24 

Table 4: List of oligonucleotides for reverse transcription-PCR analysis ............................ 24 

Table 5: Single-stranded oligodesoxynucleotides (ssODNs) used for CRISPR/Cas9 

technology. .......................................................................................................................... 25 

Table 6: List of oligonucleotides used for screening of CRISPR/Cas9-edited clones .......... 26 

Table 7: List of oligonucleotides for allele-specific sequencing .......................................... 26 

Table 8: List of primary antibodies ...................................................................................... 27 

Table 9: List of secondary antibodies .................................................................................. 28 

Table 10: List of molecular biological reagents ................................................................... 29 

Table 11: List of components for molecular biological methods, and protein analyses .... 31 

Table 12: List of competent E. coli cells .............................................................................. 32 

Table 13: List of components for cell culture ...................................................................... 33 

Table 14: List of buffers and solutions for cell culture ........................................................ 34 

Table 15: List of media for human cell lines ........................................................................ 35 

Table 16: hiPSC lines used in this work and their specifications ......................................... 36 

Table 17: List of software used for analysis ........................................................................ 37 

Table 18: List of components for reverse transcription reaction ........................................ 43 

Table 19: List of components for PCR ................................................................................. 43 

Table 20: PCR for the amplification of cDNA used for allele-specific expression analysis . 46 

Table 21: Components for 12 ml separation gel and 7.5 ml stacking gel ........................... 47 

 

 

  



   

133 
 

7- APPENDIX 

7.4 Curriculum Vitae 

Personal details  

Name Sarah Henze 
Date of birth 06/11/1988 
Place of birth Göttingen, Germany 
Nationality German 

Address Falkenhorst 12, 34346 Hann. Münden 
  
Education  

Since Mai 2013 PhD study of Molecular Medicine at the Department of Cardiology 
and Pneumology, Georg-August University Göttingen 
 
PhD Thesis: Induced pluripotent stem cell-derived cardiomyocytes 
as model for studying CPVT caused by mutations in RYR2 
 
 

10/2010 - 03/2013 Master of Science study of “Developmental, Neural and Behavioral 
Biology” at the Georg-August University Göttingen 
 
Master thesis: Chemical-versus Ligand-induced Heterodimerization 
of β-Arrestin and Chemokine Receptors CXCR4/CCR5 
 
 

10/2007 -10/2010 Bachelor of Science, Molecular Biosciences,  
at the Georg-August-University Göttingen 
 
Bachelor thesis: “Identifizierung der Interaktionspartner der 
S-Adenosylmethioninsynthetase unter der Verwendung der 
Tandem-Affinitäts-Aufreinigung in Aspergillus nidulans” 
 
 

2004-2007 “Berufliches Gymnasium”, Specialization: Biotechnology, 
Witzenhausen 
 

2000-2004 “Werra-Realschule”, Hann. Münden 
 

1994-2000 Primary School “Königshof” and “Orientierungsstufe I”,  
Hann. Münden 

 

 

 

 


	1.5 Aim of this thesis

