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Aspects of QCD uncertainties and fast QCD
predictions for high-energy collider

experiments

Enrico Bothmann

Abstract

We address the issue of how to provide accurate perturbative QCD predictions along with
their theory uncertainties in a systematic and fast way using Monte-Carlo event genera-
tors, considering that state-of-the-art calculations become more and more complex and
require in some cases prohibitively extensive central processing unit (CPU) resources. An
internal reweighting method is presented for the Sherpa event generator. It gives varia-
tions to a nominal prediction with comparably little additional computational cost. ¿e
method supports next-to-leading-order multi-jet calculations in QCD combined with all-
order corrections generated with a parton shower. Moreover, we present new developments
for another reweighting approach, namely the use of QCD interpolation grids. ¿ese provi-
de even faster variations for �xed-order calculations, and can be created in an automated
way using event generators through interfaces such as MCgrid. Our improvements to this
interface allow for creating more versatile interpolation grids, supporting a larger class of
calculations, grid implementations and scale variations. Furthermore, we discuss ideas for
a future inclusion of resummation e�ects in such grids. Besides the reweighting, we also
study the use of extrapolation methods to predict high-multiplicity jet rates, which are ex-
pected to be ubiquitous at future collider energies. ¿e extrapolation is based on scaling
patterns. ¿is study is embedded in a more general discussion of jet activity at a future
100 TeV proton-proton collider.
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Aspekte von QCD-Unsicherheiten und von
schnellen QCD-Vorhersagen für Experimente

an Hochenergiebeschleunigern

Enrico Bothmann

Zusammenfassung

In dieser Arbeit adressieren wir die Schwierigkeit, Präzisionsvorhersagen mit dem komplet-
ten Satz theoretischer Unsicherheiten in der perturbativen Quantenchromodynamik im
Rahmen von Monte-Carlo-Simulationen zu tre�en, angesichts der zunehmenden Komple-
xität der dazu nötigen Berechnungen. Die Anforderungen an die Rechenleistung können
so groß sein, dass nicht in jeder Anwendung die bestmögliche Präzision erzielt wird. Wir
präsentieren eine Reweighting-Methode für den Monte-Carlo-Ereignisgenerator Sherpa.
Diese erstellt Variationen der nominellen Vorhersage mit vergleichsweise geringem zu-
sätzlichen Zeitaufwand. Die Methode ist kompatibel mit aktuellen Multijet-Berechnungen
nächsthöherer Ordnung, die mit Korrekturen von allen Ordnungen durch einen Parton-
schauer versehen sind. Zusätzlich diskutieren wir neue Entwicklungen für einen weiteren
Reweighting-Ansatz, der auf QCD-Interpolationsgittern beruht. Diese ermöglichen noch
schnellere Variationen für Berechnungen fester Ordnung. Solche Gitter können für Monte-
Carlo-Simulationen automatisiert erstellt werden mithilfe von Interfaces wie MCgrid. Un-
sere Verbesserungen für MCgrid ermöglichen die Erstellung vielseitigerer Gitter, die ei-
ne größere Klasse von Berechnungen, Gitter-Implementierungen und Skalenvariationen
unterstützen. Darüber hinaus diskutieren wir, auf welche Weise solche Gitter für die Un-
terstützung von Resummationse�ekten erweitert werden müssten. Neben dem Reweigh-
ting studieren wir noch die Verwendung von Extrapolationsmethoden für die Vorhersage
von Jet-Raten hoher Multiplizitäten, welche an zukün igen Hochenergiebeschleunigern
allgegenwärtig sein werden. Diese Methoden basieren auf dem Skalierungsverhalten der
Jet-Raten. Eingebettet ist diese Studie in eine allgemeinere Diskussion der zu erwartenden
Jet-Aktivität an einem Proton-Proton-Beschleuniger mit einer Schwerpunktsenergie von
100TeV.
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1. Introduction

¿e �rst operational run of the Large Hadron Collider (LHC) from 2009 to 2013, Run 1, pro-
vided an integrated luminosity of about 30 fb−1 of proton-proton collision data at 7–8 TeV.
Many important physics results were, and are still, being obtained from it. ¿emost notable
example is the discovery of a Higgs boson by the two collaborations A Toroidal LHC Appa-
ratuS (ATLAS) and Compact Muon Solenoid (CMS) [1, 2] in 2012. ¿is discovery and a large
number of other experimental analyses, focusing on a variety of �nal states and observables,
(re-)established and underpinned the validity of the Standard Model of particle physics
(SM) [3] to an unprecedented level of precision.
Searches for resonances in otherwise smooth invariant-mass distributions, such as the

resonance at theHiggsmass of 125GeV in the di-photon channel, are among the �rst physics
analyses of collision data at new energy frontiers, because they can be successful even with
limited statistics. Later, with su�cient collision data being available, and statistics not being
the limiting factor any more, the focus shi s towards precision physics: searches for less- or
non-resonant deviations from theory predictions, and precision measurements of model
parameters. To make most of the available data, the systematic uncertainties should at least
be comparable to the statistical uncertainty. Otherwise, new physics might hide in our
imperfect knowledge of both the theory and the experimental set-up. While the data taken
during Run 1 are still being analysed, Run 2 has started very successfully and is expected
to provide about 100 fb−1 of collision data at 13–14 TeV. Moreover, a proposal for a High-
Luminosity LHC has a design goal of 3 ab−1 [4]. Long-term, a Future Circular Collider (FCC)
is discussed as one of several future collider proposals with proton-proton collisions at a
centre-of-mass energy of 100 TeV and an integrated luminosity of 1–10 ab−1 [5–8]. Current
and future experiments will be even greater opportunities to analyse very large data sets;
the precision era of hadronic colliders is only beginning to unfold.
A prime example, and perhaps the most precise result of today, is one of the standard

candles of collider phenomenology, the Z-boson transverse momentum (pZT) measurement,
see Fig. 1.1. When the distribution is normalised to the �ducial cross-section of Drell-Yan
production1, the experimental uncertainties are below ±1% for pZT < 200GeV. With its
ten-fold increase in data, Run 2 will bring more results down to this level of precision.
And for the High-Luminosity LHC, a simple extrapolation with respect to the increased
luminosity indicates that the couplings of the Higgs boson to fermions and other bosons
can be measured with a 1–4% precision [9]. A recent study concludes that the observation
of di-Higgs production at the High-Luminosity LHC in the bb̄bb̄ decay channel requires
1By a normalisation with respect to the total cross section, the uncertainties for the luminosity and some
lepton e�ciency systematics cancel.
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Figure 1.1.: A measurement of the Z-boson transverse momentum in its e+e− and µ−µ+ decay

channels. Figure taken from [11].

controlling the backgrounds at a 1 % level [10].
Precise results such as the one for pZT , and the projections of experimental precisions in

the mid-term and long-term future, are a challenge for theory predictions in general, and
in particular for the theory of the strong interactions, Quantum Chromo-Dynamics (QCD).
Most predictions for the LHC are still limited by the accuracy of our QCD calculations,
although tremendous progress has been achieved. ¿e size of the strong coupling with
αS ≈ 0.1 at the Z-boson mass means its perturbative convergence is slower than e.g. for
Quantum Electro-Dynamics (QED). Another di�erence to QED is the non-Abelian group
structure of QCD, that allows for gauge-boson self-interactions. ¿e consequence of a
large coupling and these self-interactions is that additional QCD radiation comes with large
rates. Partonic jets are formed from cascades of partons that originate from a single mother
parton. ¿e non-Abelian group structure also leads to the phenomenon of con�nement,
which prohibits the exposure of colour charges at large length scales. Hence, the partons
eventually cluster into colour-neutral initial- and �nal-state hadrons. ¿is process is called
fragmentation in the �nal state. ¿e partonic jets are taken into hadronic jets that enter
the detector as sprays of hadrons that share a similar direction. In the initial state, the
colour-neutral objects are the colliding protons from the incoming beams, and the proton
structure in terms of partons is parametrised by parton density functions (PDFs). Due to
these complications, the analysis of the hard interaction using hadronic observables is more
complex than is the case for leptons or photons. It requires a good understanding, or at
least modelling, of the di�erent steps in the evolution from the high energy scale of the
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hard interaction down to the much lower energies at which the fragmentation takes place.
Perturbation theory is at the centre of QCD predictions at high-energy colliders, with an

expansion of the matrix element in αS . Such perturbative QCD (pQCD) calculations can
either be combined with analytic all-order resummations of logarithm-enhanced terms in
the perturbative expansion, or embedded within Monte-Carlo event generators (MCEGs),
which simulate entire collision events, including a numerical resummation of some en-
hanced terms using parton-shower algorithms and a modelling of non-perturbative e�ects
such as fragmentation.
Pure �xed-order calculations are fully automated to next-to-leading-order (NLO) accu-

racy, andmore andmore next-to-next-to-leading-order (NNLO) results becoming available.
Indeed, for most standard processes, the total cross section at NNLO is now known, and
many cross sections for di�erential observables have followed, with a plethora of new results
in the last 2 years alone [12–19]. Although there are still major problems to be solved for
a full automation of NNLO calculation, as discussed in Section 2.2.5, it has become con-
ceivable that this task might be completed in the near future. However, pure �xed-order
calculations at any order have a limited applicability at colliders, and in particular at hadron
colliders, because of the implicit integration over the pQCD evolution at lower energies. As
a consequence, also a combination with current non-perturbative models is not possible.
¿ese require the full speci�cation of the initial- and �nal-state partons at the length scales
at which their fragmentation takes place. Fixed-order calculations (in combination with an-
alytic resummations) can be very successfully applied to observables that are only sensitive
to �nal-state leptons or, more generally, are inclusive with respect to the evolution of �nal-
state partons into hadrons (with the most inclusive example being the total cross-section).
However, less inclusive ones will eventually su�er from missing non-perturbative correc-
tions and the inherently non-exclusive description of additional jet emissions. Moreover,
at hadron colliders even observables de�ned for QCD-free �nal states are a�ected by the
unavoidable QCD interactions in the initial state, e.g. through the recoil that is built up via
QCD emissions o� the incoming partons.
MCEGs are simulation tools with a more comprehensive approach. ¿ey start with a fully

di�erential �xed-order calculation for the hard process and use parton-shower algorithms
to evolve the initial- and �nal-state partons down to a cut-o� scale with fully speci�ed kine-
matics at each step. At the cut-o� scale, the non-perturbative fragmentation into hadrons
is simulated using universal phenomenological models. In addition, they model the evo-
lution of the remnants of the incoming hadrons, including additional parton interactions
among them. All of these aspects are combined to give a complete description of individual
pseudo-events, with a full speci�cation of the �nal-state as it would enter the detector in
the real world. Hence, they are most generally applicable for collider physics. With their
help, experimental consequences of theoretical models can be tested, by a comparison of
real data with pseudo-data, for which theMCEG simulation is potentially complemented by
a detector simulation. MCEGs are also used to develop search strategies, to �nd interpreta-
tions for data patterns, and to study the detector performance. As such, they are an essential
tool during the whole lifetime of a collider experiment, from early conceptual studies to the
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evaluation of the data.
While the �rst iterations of MCEGs were only applicable to single leading-order calcu-

lations for the hard interaction, and had rather simple parton showers based on a leading-
logarithmic description of collinear emissions, they have since then matured into precision
tools. Modern parton showers incorporate so -gluon emissions by correctly accounting for
colour-coherence e�ects [20–23]. ¿eir combination with NLOmatrix elements has been
fully automated ("matching") [24, 25], and the hardest jet emissions can be systematically
replaced with exact matrix-element calculations ("multi-jet merging") [26–33] combining
the power of multiple matrix elements and the parton shower in one inclusive sample. Both
matching and merging to LO and NLO have been �nalised only in the last 15 years (with
NLO merging in 2012 [33]), and allow the use of MCEGs for fully automated and precise
predictions. ¿e next natural step clearly is to promote the matching and merging schemes
to NNLO, without which a generalO(1%) accuracy is inconceivable. For �rst processes, a
matching of NNLOmatrix elements to parton showers have already been achieved [34–39],
but the full automation, in particular to colourful �nal-states, might take a few more years.2
With the description of the available tools and their latest developments, we can return

to the question of theoretical accuracy, and how it compares to the requirements of the
precision era of hadron colliders. Naively, the perturbative uncertainty3 at the order p is
given as αpS ≈ 0.1p (although some processes such as gluon-fusion Higgs production defy
this rule). Hence, with going from NLO to NNLO we move from perturbative uncertainties
around 10% down to about 1 %. For the Z-boson transverse momentum with its purely
leptonic signature, a comparison to a pure matrix-element calculation seems viable. For
this observable p = 1, as the recoil o� a parton emission is needed for pZT ≠ 0. In fact, a
remarkable perturbative accuracy of ±1.5% has been achieved for the pZT distribution [18].
Besides perturbative uncertainties, �xed-order calculations also su�er from paramet-

ric uncertainties, because of the free parameters in QCD, namely the quark masses, the
strong coupling αS , and at hadron colliders the parametrisation of the parton content of
the hadrons, the PDFs.4 ¿ey are determined by �ts of QCD calculations to experimental
data. Hence, their accuracy is not independent of other theoretical (and experimental) un-
certainties. Part of a successful precision era program will be newmeasurements, especially
of αS and the PDFs, as they enter nearly all hadronic collider predictions. Currently, their
uncertainties in central phase-space regions are of the order of 1 % (αS) and 2–3% (PDFs),
although tensions exist between �ts, and with respect to data comparisons. ¿is again high-
lights the need for further investigations and new �ts. In fact, one example is the Z-boson

2¿e incorporation ofNNLO calculations and future colliders with higher energies willmake the incorporation
of electro-weak NLO corrections necessary. Automated combinations of NLO QCD and NLO electro-weak
corrections for matrix-element plus parton-shower calculations have recently become available [40].

3¿e perturbative uncertainty is due to the corrections of missing higher-order terms. Hence, it can only be
estimated, as we will discuss in Chapter 2.

4Strictly speaking, PDFs are not free parameters, but (partly) non-perturbative quantities that are in principle
calculable from �rst principles, as is being attempted using lattice QCDmethods [41]. However, until this is
achieved, PDFs are subject to �ts the sameway as αS is, and hence its uncertainty is categorised as parametric
here.
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transverse momentum distribution, where the NNLO prediction is consistently about 4%
smaller than the experimental results. ¿e tension is also present in the total cross section,
and it has been proposed to constrain the high-x gluon PDF [19] with the total cross section,
or the pZT distribution.
InMCEGs, both perturbative and parametric uncertainties are still present in the hard-

interaction matrix-element calculation, but enter the calculation also through the pQCD
parton-shower algorithm. Moreover, the matching and merging schemes of the matrix
element(s) with the parton shower further complicates the dependence structure. ¿ese
schemes and the parton shower itself also o�er some choices within their perturbative ac-
curacy, which introduces further algorithmic uncertainties. Although they should formally
not exceed the perturbative uncertainty, numerics or an enhancement of higher-order dif-
ferences in certain phase-space regions can lead to sizeable deviations. In addition, the
�t parameters and assumptions of the non-perturbative models are another source of un-
certainty in MCEGs. Hence, for uncertainty studies, MCEGs are a much more complex
environment than a pure �xed-order calculation, even if we restrict ourselves to perturba-
tive and parametric uncertainties, of which the former dominate at (N)LO.
Multi-jet merging allows for a systematic reduction of perturbative uncertainties by in-

cludingmatrix elements for additional jet multiplicities, or by replacing LOmatrix elements
with NLO ones. Of course, one can not formally exceed NLO accuracy this way, but with
each additional matrix-element the region in which jets are described to (N)LO expands.
Some recent examples are:

1. the leading-jet transverse momentum in top-quark pair production, where with LO
matrix elements for the 0-, 1- and 2-jet multiplicities the perturbative uncertainties
are around 100%, whereas when promoting the three matrix elements to NLO, the
uncertainty goes down to about 20% [42];

2. observables related to the hardest jet in the production of 4 leptons, where with a com-
bination of NLO matrix elements for the 0- and 1-jet multiplicities the perturbative
uncertainty was reduced to about 5% compared to an uncertainty of about 10–15%
when a single NLOmatrix element was used [43];

3. and the number of jets NJets and the azimuthal angle ∆Φ between the two leading jets in
W-boson production. In Fig. 1.2, we present results from [33], where the distributions
are compared for Matrix Elements merged with Parton Shower emissions at Next-to-
Leading Order (MEPS@NLO) (W+ 0, 1, 2 jets at NLO, and W + 3, 4 jets at LO), Matrix
Elements merged with Parton Shower emissions at (Next-to-)Leading Order (MEN-
LOPS) (W + 0 jets at NLO, W + 1, 2, 3, 4 jets at LO) and MC@NLO (W + 0 jets at NLO,
and W + 1 jets at LO). ForMEPS@NLO andMENLOPS scale variations are employed to
estimate the perturbative uncertainty. All predictions are compared to ATLAS data [44].
¿e MC@NLO prediction fails to describe the two observables over the complete phase
space. ¿eMENLOPS is systematically smaller than the data, but with its large uncertain-
ties (about 50%) it is still compatible. ¿e MEPS@NLO has much lower uncertainties
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Figure 1: Cross section as a function of the inclusive jet multiplicity (left) and their ratios (right) in W+jets
events measured by ATLAS [50].

5 Conclusions

In this publication we have introduced a new method to consistently combine towers of matrix elements, at
next-to leading order, with increasing jet multiplicity into one inclusive sample. Our method respects, at
the same time, the fixed order accuracy of the matrix elements in their respective section of phase space
and the logarithmic accuracy of the parton shower. The analysis of scale dependencies allows for a solid
understanding of the corresponding theory uncertainties in the merged samples. Employing next-to leading
order matrix elements leads, of course, to a dramatic reduction of the dependence on the renormalisation
and factorisation scale and a much improved description of data. The same findings also apply to the case
of e�e+ annihilations into hadrons, cf. [40].

This allows, for the first time, to use Monte Carlo tools to generate inclusive multijet samples and analyse
their uncertainty due to the truncation of the perturbative series in the matrix elements in a systematic and
meaningful way.
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Figure 1.2.: A comparison of predictions for the inclusive jet multiplicity and the azimuthal

distance of the two leading jets in W-boson + jets production in pp collisions at a centre-of-

mass energy of 7 TeV. A parton shower is combined with a varying number of jets described

by matrix elements at LO and NLO, as described in Example 3 on Page 5. Figures taken from [33].

(about 10%), wherever the phase space is well-described by up to 2 jets. When more
jets are required to describe the observable (NJets ≥ 3 or ∆Φ ≤ 2π/3), the di�erences in
the accuracy begin to vanish, as expected.

From these examples, we can see that the inclusion of NLO matrix elements leads to a
dramatic reduction of perturbative uncertainties and a better description of data inMCEG
simulations. WithNLOmulti-jet merging in particular, a current standard of about 10–20%
uncertainty has been established.

¿e ongoing developments to provide accurate predictions do not come for free. With
more complicated calculations, the CPU time needed for their evaluation grows. And with
better perturbative accuracy, previously neglected uncertainty sources need to be taken
into account. O en, the only way to do this is to repeat the calculation with variations in
the choices that are connected to the uncertainties, with the consequence of even higher
resource needs, in CPU time and possibly in (pseudo-)data storage. Experiments such
as ATLAS and CMS perform massive central Monte-Carlo event generations, and need to
store event data that are of a considerable size even without considering the proliferation
through variations. Detector simulations for these event data records are so CPU-intense
that a repetition for a large number of variations is prohibitive. Another prime example
where explicit variations do not meet the time requirements are PDFs �ts. ¿ese need tens
of thousands of PDF variations for a complete �t, which are not known a priori, but only
a er each �tting iteration.
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¿ese problems exist because theory needs to accommodate better statistical accuracies
in current and future colliders. ¿e other main collider development, which is to increase
higher centre-of-mass energies, is an additional challenge for QCD predictions. Although
higher jet multiplicities come with a huge increase in calculational complexity, they will
occur at large rates at colliders such as the FCC. Searches for new physics will eventually
target large jet multiplicities, because they are a natural consequence of decay chains from
speculative particles with very high masses.

A major part of the solution to both problems is to provide, extend and study methods
that can provide pQCD predictions without doing the full pQCD calculation, and thus to
overcome CPU time and data storage constraints. ¿is is the aim of this thesis.
Our �rst focus will therefore be pQCD reweighting methods. ¿ese identify the depen-

dences of the parameters or scales that are to be varied, and reuse the independent pieces
(“weights”) for the variations. Hence the weights are calculated only once. As they are
also usually the most CPU-intense pieces, most of the CPU time for calculating variations
is saved. Another advantage of these methods stems from the fact that the phase-space
point of each event is kept the same, such that the variations are to a large degree statisti-
cally equivalent to the nominal calculation, which gives smooth uncertainty bands. ¿is
also leads to reduced storage requirements if individual events and their variations need
to be stored. In fact, only a single number (the varied event weight) needs to be stored per
variation, whereas the �nal-state speci�cation is shared between the nominal result and its
variations. ¿is also removes the need to do more than one detector simulation. As the
weight is only associated with the relative probability of the event, its variations do not a�ect
the simulation, and are needed only when fully simulated events are eventually compared,
as e.g. in a histogram for some observable.
¿e main part of this thesis is devoted to the presentation of a �rst comprehensive pQCD

reweighting account, which treats dependences that enter through the hard interaction
(for LO and NLOmatrix elements) and the parton shower individually, and through their
combination by the matching and merging schemes used to combine both. ¿is exceeds
previously available methods, which were restricted to (N)LO matrix elements only [45].
We implemented the reweighting as an on-the-�y event-by-event reweighting in theMCEG
Sherpa [46, 47]. ¿e reweighting of parton showers has sparked interest throughout the
MCEG community, such that alternate parton-shower reweighting implementations have
been reported by the Herwig [48, 49] and Pythia [50] collaborations during the last
year of this thesis, with the same underlying algorithm. ¿ese do not address the issues
of matching and merging and are therefore restricted to the combination with LOmatrix
elements.
A variant to the event-by-event reweighting is the use of pQCD interpolation grids, as

implemented in the APPLgrid [51] and fastNLO [52, 53] packages. Here, the indepen-
dent weights are written to discrete grids, a er the event is projected onto a prede�ned
observable. ¿e individual event information is lost by this projection, such that the result-
ing grid is speci�c to the observable. ¿e advantage in comparison to an event-by-event
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reweighting is that much less time is needed for each variation. ¿is makes interpolation
grids a perfect tool for PDF �ts. Recently, tools for an automated production of interpola-
tion grids have been reported, MCgrid [54–56] and aMCfast [57]. We present here new
developments within the MCgrid tool, most importantly extending its scope to support
the �xed-order expansion of NLO calculations matched with a parton shower, as a �rst step
towards interpolation grids with parton-shower support.
By overcoming limitations of both the event-by-event reweighting and interpolation

grids, we thus present major improvements to the pQCD reweighting methodology.
Our second focus takes us away from reweighting methods. Instead, we present an ap-

plication of another method to overcome otherwise infeasibly lengthy calculations, namely
an extrapolation of jet rates to higher multiplicities. For this extrapolation, two scaling
patterns in these jet multiplicity distributions are used that appear in di�erent kinematic
regimes. ¿ese patterns, Staircase and Poisson scaling, have both been observed in LHC
data [58–61] and in Monte-Carlo studies [62–64]. ¿ey have been explained as limiting
cases of jet-emission probabilities [65–67]. ¿e Poisson scaling features a single, hard quark
line emitting many gluons, which leads to a Poisson distribution in the jet multiplicities,
akin to hard electron lines emitting photons [68]. ¿e Staircase scaling is found when all
partons share a similar low virtuality. In this case, gluon emissions o� other gluons domi-
nate. As such, Staircase scaling is a distinctive feature of the non-abelian group structure of
QCD that allows for gauge-boson self-interactions. We �nd using Monte-Carlo studies for
a FCC set-up that the rates for the �rst few jet multiplicities can be used to make �ts that
predict rates for up to 15 or more jets.

¿e structure of this thesis is as follows. First, in Chapter 2, we introduce a collection of
material that is relevant to all later chapters. A er explaining the structure and paradigms
of a MCEG for the example of Sherpa, we continue with a more systematic discussion
of pQCD calculations, and of QCD uncertainties in the context of MCEGs. We end the
chapter by reviewing our closure testmethod to validate the reweightings and extrapolations
presented later.
We move on in Chapter 3 to present the �rst reweighting method with full NLOmatrix-

element plus parton-shower support. ¿is is the main part of this thesis. A er the reweight-
ing of each calculational mode is discussed, we present the validation of its implementation.
Additional studies discuss the replacement of parton-shower emissionswithmatrix-element
calculations in a multijet-merged calculation from the perspective of the reweighting, as
well as possible improvements of the numerical stability of the parton-shower reweighting.
A er a short note on whether certain parameter variations retain the formal accuracy of
the pQCD calculation, we end the chapter with a study of the CPU time savings.
In Chapter 4, we discuss developments with respect to interpolation grids. A er a short

review of interpolation grids and their automated generation using the MCgrid tool, we
provide validations of the di�erent improvements that we developed in MCgrid. A er
studying the e�ect of not reweighting parton-shower emissions through a comparison to
dedicated calculations and to the event-by-event reweighting method, we discuss possible
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extensions of interpolation grids with respect to multi-jet merging and parton showers.
Finally, we study jet rates and their extrapolation to higher multiplicities in Chapter 5.

A er establishing that the FCC is an environment with huge jet rates that extend to large
transverse momenta, we study the application of jet rate extrapolations through �ts to
scaling patterns.
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2. Elements of Monte-Carlo event generation

¿eneed for new or improved physics models to be readily available for comparison against
data, led to the development of a modular structure of multi-purpose Monte-Carlo event
generators (MCEGs). Eachmodule corresponds to a separate physics regime. ¿ese regimes
factorise from each other through their separation in length/energy scales or simply through
a separation in position space. By representing this in the so ware architecture, new devel-
opments in the associated physics models can be easily implemented by a local modi�cation
or the replacement of a module.
A cornerstone of event generators is the generation of single collision events with �nal-

state particles that can actually bemeasured with the current detector technology. ¿erefore
one speaks ofMonte-Carlo (pseudo-)data. ¿ismakes it possible to test both established and
hypothetical interaction models against real data, with the same tool set. ¿is comparison
requires to process the Monte-Carlo event with a detector simulation, which can be seen
as another factorised event-generation phase, but is typically provided by the experimental
groups as a separate code. A er the detector simulation, one can proceed with the event
reconstruction as it is done for real data.
A speci�c advantage over analytic results is that the natural output of the underlying

Monte-Carlo integration is fully exclusive in �nal-state particle content and its kinematic
con�guration. ¿is allows for generating a set of Monte-Carlo events once, and analyse this
data a-posteriori with respect to any observable.
Examples for Monte-Carlo event generators that are general enough to be applicable to

most physics studies at colliders such as the LHC are Pythia [50], Herwig [48, 49] and
Sherpa [46, 47]. In addition, many more specialised event generators exist.

2.1. The Sherpa framework

2.1.1. Physics modules

¿eMCEGmodularity paradigm is strictly followed in the Sherpa framework. ¿e central
program module, also called SHERPA, steers the event generation by passing the event
through di�erent phases. ¿is event is modelled as a series of n → m particle amplitudes
that are added or modi�ed by each phase in turn.
¿ese phases are mostly independent from each other, with a few compromises being

made where the physics model requires some additional cross-talk exceeding the actual
event. For example, the increased interplay between hard-process and parton-shower cal-
culations led to a strong integration between the matrix-element and the parton-shower
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Figure 2.1.: A pictorial representation of a Monte-Carlo event. As an example, the production

of a top-antitop quark pair in association with a Higgs-boson is considered. The hard pro-

cess (large red blob) is followed by the decay of the three particles (small red blobs). QCD

bremsstrahlung is produced (red). The incoming partons take part in secondary interactions,

which are also dressed by QCD bremsstrahlung (purple). Then the produced partons un-

dergo the fragmentation into hadrons (light green blobs). These possibly decay further into

stable hadrons (dark green blobs). During any phase, soft photons can be emitted (yellow).

modules in Sherpa. Otherwise the actual physics implementations are hidden behind
abstract event phase interfaces to enforce the modular structure. By this approach, modules
can be dynamically chosen by the user, when di�erent implementations of the same event
phase are available. In Sherpa, this is for example the case for the jet evolution, where
the CSShower [21] and Dire [69] modules can both be used as the underlying parton
shower.
Following the visualisation in Fig. 2.1 from the core to the outer layers, we will now

quickly discuss the relevant event phases and their implementation in Sherpa.

Hard interaction and decays

¿e hard-scattering cross section is calculated in Sherpa either by its Comix [70, 71] or
its Amegic [72] module. ¿e choice can be made per �nal-state multiplicity, so both can
be mixed to combine their strengths.

Amegic uses the methods described in [73, 74] to generate helicity amplitudes from
Feynman diagrams. Its Standard Model results are validated for di�erent multiplicities
in [75]. Besides thatwe alsomake use of its support for an e�ective gluon-gluon-Higgs vertex
via a top-quark loop, where the latter is integrated out in the in�nite top-mass limit. Amegic
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automates the Catani-Seymour subtraction method [76] to render separately divergent
pieces integrable, as explained in Section 2.2.1. Virtual matrix elements are available from
within Sherpa for a few standard processes, and interfaces exist to many one-loop codes.
Among those, BlackHat [77], OpenLoops [78, 79] and NJet [80] are used in this thesis.

Comix generates tree-level matrix elements using colour-dressed Berends-Giele recur-
sion relations [81]. Also the calculation of phase-space weights is done recursively. ¿is is a
key advantage when it comes to high �nal-state multiplicities, where it is much faster than
Amegic.
Two other key components for the hard interaction are shared between Amegic and

Comix, the phase-space integration, and the hard decays of unstable particles in the �nal
state. Both are described in [72], we only point out here that the phase space integrator
is based on a multi-channel Monte-Carlo algorithm with VEGAS optimisation [82]. For
parts of the �nal-state integration, implementations based on RAMBO [83], SARGE [84]
and HAAG [84] are used.

QCD bremsstrahlung

¿e evolution from the hard scale down to the hadronisation scale through the emission
of coloured particles is performed by parton-shower algorithms. Sherpa features two
implementations, CSShower [21] and Dire [69].

CSShower is the one we use (and reweight) exclusively in this thesis. Its model was
proposed in [85, 86] and rests on the factorisation of real-emission matrix elements in
the Catani-Seymour subtraction scheme [76]. ¿e dipole terms identi�ed in this scheme
capture all infrared singularities in general NLO QCD amplitudes. A so-called spectator
parton of the splitting takes the recoil, or all �nal-state partons, if both the splitter and the
spectator are initial-state partons. Hence, energy-momentum is conserved at each splitting.
Colours are treated in a large-NC limit, where the spectator and the splitter are adjacent in
colour space. ¿ese notions are explained in Section 2.2.2, when we discuss parton showers
in more detail.
¿e same structure underlies also the S-MC@NLO [87] implementation in Sherpa,

which matches �xed-order NLO calculations to the resummation of the parton shower.
Moreover, Sherpa also features an implementation of the merging methods in [30, 33, 88].
An account on matching and merging is given in Sections 2.2.3 and 2.2.4, respectively.

QED bremsstrahlung

¿e PHOTONS++ [89] module adds higher-order QED corrections both to the hard inter-
action and to hadron decays. It calculates a resummation of the infrared-singular terms
and uses complete �rst-order corrections for the most relevant cases. ¿e resummation is
based on the YFS algorithm [90].
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Non-perturbative e�ects: Multiple interactions, hadronisation and hadron decays

¿e multiple interactions module Amisic uses the model presented in [91], and extends
it by evolving each additional collision using the CSShower. ¿e organisation of the
beam-beam remnants is such that partons adjacent in colour space are also adjacent in
momentum space.
When all partons of the hard and multiple interaction are evolved to low energies by

the parton showers, the hadronisation module AHADIC translates them to primordial
hadrons using the cluster-fragmentation ideas discussed in [92]. An initial implementation
of AHADIC is discussed in [93].
¿e primordial hadrons (and τ leptons) are then further decayed in HADRONS++, such

that one ends with a set of stable particles (i.e. ones that actually enter the detector). ¿e
decay products can take into account full spin correlations. ¿e decays are generated partly
by matrix elements and by several form-factor models. For τ leptons, the Kühn-Santamaría
model [94] and form-factor parametrisations from Resonance Chiral ¿eory [95] are used.
For hadrons, form factors from heavy-quark e�ective theory and light-cone sum rules [96]
are employed.
Most studies in this thesis stop at the parton-level, i.e. before non-perturbative e�ects

are applied. An exception is the timing study for the reweighting implementation in Sec-
tion 3.14.

Many aspects of the hard interaction, the QCD bremsstrahlung and their matching and
merging will be discussed from a high-level perspective in Section 2.2, and in quantitative
terms in Chapter 3, when we address how to reweight the predictions of these methods. In
fact, in terms of Sherpa modules, the implementation of the internal reweighting as de-
tailed in Chapter 3 is mainly concentrated in abstract code shared by Amegic and Comix,
in the common phase space integrator Phasic, and in CSShower and S-MC@NLO, safe
for some additional handling code in the main steering of Sherpa. We will come back to
this at the end of Chapter 3, when we have explained and validated the reweighting.

Interfaced external codes

In addition to the already mentioned external one-loop matrix-element providers, a few
additional codes interfaced to Sherpa are an essential part of the overall framework for
most studies in this thesis. Considering the incoming partons of an event, LHAPDF [97,
98] is o en used as the library for the PDF sets, among which we employ NNPDF 3.0 [99],
CT10 [100], CT14 [101], MSTW [102] and MMHT2014 [103]. ¿ese PDF sets have di�erent
methods to encode their uncertainties. ¿e �rst, NNPDF 3.0, uses a statistical sample,
whereas the others use the Hessian method [104] for this purpose. ¿is is re�ected in all
error bands throughout this work, accordingly. Turning to the output side of the event
generation, we generate HepMC [105] event records if events need to be analysed and/or
compared to experimental data, for which the Rivet [106] event analysis framework is then
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used. Jets in hadron-hadron collisions are reconstructed with the anti-kT algorithm [107],
(mostly) with a radius parameter of R = 0.4. In e+e− collisions, the Durham jet algorithm
is used instead [108]. For both algorithms, the implementations in the FastJet package
are employed [109]. ¿e notion of jets is introduced in Section 2.2.

2.1.2. Standard Model choices

¿roughout this work, we use the default choices of Sherpa with respect to the SM. ¿e
electro-weak parameters are calculated from the masses of the W, Z and H bosons, and
the value of 1/αQED, through tree-level relations. ¿e appearance of unstable fermions or
bosons (e.g. the W or Z) as intermediate propagators in the hard process is treated through
the complex mass scheme [110], which ensures the gauge-invariance of the matrix elements.
¿e QCD sector is simpli�ed for the matrix-element calculation by assuming all quarks

except for the top quark to be massless. However, for the parton-shower kinematics and
for the running of αS , �nite parton masses are used. Per default, the top-quark mass is
considered for the running of αS , although in some interpolation-grid studies we use the
5-�avour scheme instead, to match the αS evolution calculated with the PDF sets, to achieve
more precise closure tests. ¿e running is calculated at the perturbative order of the used
PDF set and is �xed by setting αS(m2

Z) = 0.118, or to neighbouring values in αS uncertainty
studies. Another simpli�cation with respect to QCD is the disabling of quark mixing [111],
i.e. a unit matrix is used as the ckm matrix.
Higgs production via gluon-gluon fusion is calculated with an e�ective coupling through

a top-quark loop in the in�nite top-mass limit.

2.2. The state-of-the-art in perturbative QCD calculations

2.2.1. Pure �xed-order calculations

In perturbative QCD (pQCD) calculations, the cross section for a hard-scattering process
initiated by the two hadrons H1 and H2 with four momenta P1 and P2 is given by

σH1H2→X = ∑
i , j
∫ dx1 dx2 fi/H1(x1, µ

2
F) f j/H2(x2, µ2F)

× σ̂i j→X (x1P1, x2P2, αS(µ2R), Q
2

µ2F
, Q

2

µ2R
) ,

(2.1)

with the double sum over all incoming partons i, j that carry momenta x1P1 and x2P2,
respectively. ¿e parton densities within their mother hadrons, fi/H1 and f j/H2 , factorise
from the partonic cross section σ̂ , if its characteristic scale Q is much larger than the typical
momentum transfers within the hadron.
¿ere are di�erent ways to improve the precision of a pQCD calculation beyond a �xed

LO calculation of a Born matrix element (B) in the strong coupling αS . ¿e �rst step is to
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Figure 2.2.: A pictorial representation of the three contributions to a QCD NLO calculation.

include the NLO term in αS , by calculating the corresponding Feynman diagrams. If one
started with the classical Lagrangian, this makes additional re-orderings necessary. ¿e
ultra-violet divergence of loop amplitudes is absorbed into the running of αS(µ2R) (and
into running quark masses), by resumming logarithmically enhanced terms to all orders of
αS(M2). Here, M is a reference scale, and the ratio µ2R/M2 enters the logarithms. Hence,
to add quantum corrections, we need to re-organise the perturbative series. An ordinary
Feynman calculation can still be done, if running parameters are used, with a µR that is not
far from the physical scales of the process. An additional unphysical scale is needed in an
NLO calculation, if the initial-state contains hadrons, as in Eq. (2.1). ¿is is the cut-o� scale
µF that separates the non-perturbative low-energy interactions within the hadron from
the high-energy process under consideration. Loosely speaking, parton emissions with a
transverse momentum k2T < µ2F are integrated out from the hard interaction, and le to the
parametrisation of the hadron structure through its PDFs. By this procedure, the previously
purely non-perturbative PDFs acquire a running in µF . ¿is running is calculable within
perturbation theory. ¿e unphysical scales µR and µF are called the renormalisation and
the factorisation scale, respectively.
In addition to the Born part (B), NLO amplitudes comprise virtual loop-corrections (V),

where a LO Feynman diagram is combined with a loop diagram (that has two additional
powers in αS), and real radiation (R), for which two diagrams with an additional external
parton are combined, see Fig. 2.2. V and R are separately infrared divergent. However, the
divergences can be identi�ed by regularisation methods such as dimensional regularisation,
and are shown to cancel each other for so-called infrared-safe observables. ¿ese observ-
ables are de�ned by the property that additional so and/or collinear external partons do
not change the value of the observable, which makes it necessary to combine “adjacent” par-
tons into jets. However, for a Monte-Carlo integration, the di�erent multiplicities of V and
R have the consequence, that these parts come in separate events. ¿is separation prevents a
direct cancellation, such that the integration is numerically unstable due to the divergences.
A solution is to preserve the analytic cancellation of the divergences. ¿is is possible to do
in a universal (i.e. observable-independent) way, because of the factorisation of so - and/or
collinear emission kernels from the matrix element. Hence, the details of the full multi-leg
matrix-element calculation, for which analytic results would not be readily available, are not
necessary for the cancellation. Instead, an approximated matrix element that matches the
divergences of the actual matrix element can be used. Its regularised (e.g. by dimensional
regularisation) form is then employed for the cancellation, by subtracting the divergences
from R and adding them (integrated analytically over the so /collinear emission) to V. ¿e
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(a) collinear emissions (b) soft gluon emission

Figure 2.3.: Collinear emissions factorise for individual lines, whereas soft emissions factorise

only on the level of colour dipoles.

resulting terms are labelled RS (real-subtracted) and VI (virtual-integrated), and are sepa-
rately �nite.1 Several such automated subtraction schemes have been formulated (including
the analytic results for the integrated subtraction terms), such as the Catani-Seymour (CS)
dipole subtraction [76] or the Frixione-Kunszt-Signer (FKS) subtraction [112].

2.2.2. Exclusively adding log-enhanced emissions – the parton shower

¿e �xed-order calculations discussed so far are inclusive with respect to additional QCD
radiation below the scale of the hard process. A parton shower is a numerical method to gen-
erate explicit emissions from initial- and �nal-state partons down to a cut-o� scale, which is
typically chosen to be the scale where the fragmentation of the partons into hadrons should
take place. ¿e parton-shower emissions are modelled iteratively and as being independent
of each other, i.e. as a Markov Chain. ¿is approximation is based on the so -collinear
divergences of real emissions which render interference e�ects between di�erent emissions
negligible, and on the large-NC limit, whereby colour correlations can be omitted, such that
a local colour �ow is retained. Within these approximations, real-emission corrections are
resummed to all orders (as well as loop corrections, albeit more implicitly via unitarity).
For collinear emissions, the necessary factorisation appears at the cross-section level for

each external parton line individually, whereas so -gluon emissions factorise in this way
only on the level of individual amplitudes. At the cross-section level, i.e. a er building
the squared sum of these amplitudes, these so factorisations carry over to a sum over all
external lines, indicating non-negligible interferences. Hence, so -gluon emissions have to
be interpreted as being emitted by the entirety of the external partons. ¿is phenomenon is
called colour coherence [20]. ¿e di�erent factorisation properties are illustrated in Fig. 2.3.
Colour coherence makes no di�erence at the order of the leading logarithms associated
with cutting the so -collinear divergences, but needs to be taken into account to achieve
next-to-leading logarithmic accuracy. One way to do it, is to enforce an angular ordering of

1In Section 3.1.2, we will also discuss the KP terms. ¿ese are the remainders of the cancellation of collinear
divergences, that arise when integrating emissions involving initial-state partons fromwithin a hadron. ¿e
poles are subtracted into the PDF of the hadron, which can also be done in a universal way owing to the
universality of the PDFs. ¿e KP terms are dependent on the factorisation scheme and µF .
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the emissions, because so wide-angle gluon emissions from a more collinear parton pair
are suppressed. ¿en, all branchings can still be simulated as coming from single mother
partons. ¿is is proven to reproduce the emission patterns of colour coherence. For this
reason, parton showers that use an angular ordering are called coherence-improved parton
showers.
Another way to heed colour coherence and at the same time keep using the usual ordering

in transverse momentum (or a derivative of it), is to simulate emissions as coming from a
colour dipole, instead of a single mother parton. ¿is rests on the fact that for large NC a
de�nite colour �ow can be de�ned [113–116]. In fact, such a dipole decomposition for real
emissions is used in NLO subtraction schemes such as the CS dipole subtraction, where
each dipole is constructed from an emitter and a spectator. ¿is observation led to the
development of dipole parton showers based on such subtraction schemes [21–23].
¿e advantage of dipole showers with transverse momentum evolution over coherence-

improved showers is that by the pT ordering the hardest emission is generated �rst and
is guaranteed not to exceed the hard scale (or intermediate pre-set emission scales from
multi-jet merging algorithms). Also, the cut-o� scale is more physically meaningful when
de�ned in pT (usually around 1GeV), as a resolution criterion of emissions. Also note that
the input scale of the strong coupling must be chosen to be of the order of the transverse
momentum, to resum some of the higher-order corrections to the branching [117]. Hence,
the ordering in transverse momentum, together with such a cut-o� choice, ensures that the
strong coupling is not evaluated near its Landau pole at ΛQCD ≈ 500MeV. In particular,
dipole showers based on NLO dipole subtraction schemes are more easily matched with the
hard-scattering cross sections calculated with the same scheme.
¿e starting conditions of a parton shower are unambiguous for LO calculations with a

single dipole in the �nal state, such as boson or di-jet production. We speak of a Leading
Order matrix elements matched with Parton-Shower emissions (LOPS) event generation
then. However, if we include additional parton emissions, either directly by requiring
additional jets in the process de�nition, or by using an NLO calculation (or both), the
combination of matrix elements with parton showers becomes less straightforward. ¿ese
cases will be discussed in the following.

2.2.3. Matching NLO calculations with a parton shower

Similarly to the LOPS case, we want to specify a procedure to generate Next-to-Leading
Order matrix elements matched with Parton-Shower emissions (NLOPS) events. Here, we
have to address the double-counting of terms that are present in both the �xed-order NLO
calculation and the LOPS calculation. Several methods have been developed to cure this.
¿eir common goals are to retain NLO accuracy in the distributions when expanding the

method in αS , and that at the same time the logarithmic accuracy of the parton shower is
preserved. Furthermore, it is desirable that the transition between hard and so /collinear
emission regions is smooth.
¿e twomethods that achieve this are POWHEG [25] andMC@NLO [24]. Mixed schemes
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have also been discussed for a better comparison of the two [87]. In POWHEG, a one-step
parton shower is used with the ratio of the real-emission matrix element over the Born
matrix element, R/B, as the parton-shower splitting kernels. ¿e issue with this is, that hard
real-emission con�gurations are exponentiated, which amounts to extending the resumma-
tion beyond its region of validity. In addition, not all R contributions are given by the Born
con�guration plus one additional parton emission [87].
¿e latter two problems are not present in the MC@NLO method. It modi�es the NLO

subtraction, by �rst splitting o� the hard infrared-regular part from R. Hence, only the
remaining so infrared-singular part is exponentiated. In the original MC@NLO, the so 
part is de�ned by the parton-shower kernels. However, these might only be accurate to
leading-logarithmic order, and within the approximation from the large-NC limit. Diver-
gences in sub-leading colour con�guration would then remain in the subtracted hard part
of R. One can �x this by leaving the full NLO subtraction in place, and instead re-de�ning
the parton-shower kernels from the full NLO subtraction terms [87]. ¿is variant is called
the S-MC@NLO [87] method. It guarantees, that the one-step shower takes into account
all information of the R matrix element in the so -collinear limit. ¿e ordinary shower
then follows the �rst step, or in the case of the hard part is directly applied to the matrix
element result. ¿is ordinary shower falls back to the large-NC approximation and uses the
subtraction kernels in their spin-averaged form. A parton-shower that has been de�ned in
this way is the CSShower [21] used as the default in Sherpa.

2.2.4. Merging multiple jet multiplicities

Amulti-jet merged event generation allows to combine LO or NLO QCDmatrix elements
of arbitrary multiplicities with a parton-shower. ¿e merging procedure solves the prob-
lem of double counting and ambiguous starting conditions for higher-multiplicity matrix-
elements, and at the same time allows for the combination of several matrix-element mul-
tiplicities into a single inclusive sample. Accordingly, the production of jets associating a
given core process can be modelled through exact matrix elements rather than relying on
the logarithmic approximation of the parton shower only, see Fig. 2.4. In particular, when
considering hard jet kinematics or angular correlations such techniques prove to be indis-
pensable to properly describe experimental observations, see for instance [59, 61, 118, 119].
Compared to NLOPS, a merging calculation o�ers a better description of the production
and kinematics of hard jet emissions, and has proven to be more stable with respect to the
choice of the used scheme, even for more inclusive observables such as the Higgs-boson pT
distribution [120, 121].
¿e approaches for performing a multi-jet merged calculation at tree-level are called

CKKW [26, 29], CKKW-L [27, 122] andMLM [28]. ¿ey have been generalised toNLO in [33,
88, 123]. ¿e LO andNLOmerging techniques employed within the Sherpa framework are
presented in [30] and [33, 88], respectively, and are a generalisation of the CKKW approach.
¿ey rely on the reconstruction of parton-shower histories for multi-parton amplitudes that
set the parton-shower initial conditions for their subsequent evolution. ¿is is achieved
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Figure 2.4.: A pictorial representation of the multiplicities generated in a multi-jet merged

calculation for a core process (upper left diagram) plus matrix elements for up to N jets (left-

right) and additional parton-shower emissions (top-down).

by running a backward-clustering algorithm that identi�es a corresponding core process
and calculates hard-parton splitting scales that serve as predetermined shower branchings.
In the Sherpa approach the actual parton shower then starts o� the reconstructed core
process while incorporating the predetermined hard splittings based on a truncated shower.
¿is means that the internal lines between the predetermined shower branchings are fed
into the parton-shower with the scale of the lower predetermined branching as the cut-
o� scale. Another scale is used as a phase-space slicing scale. It is called the merging
scale Qcut. Matrix element emissions are vetoed below Qcut. Vice versa, parton-shower
emissions at scales larger than Qcut also lead to an event veto (“Sudakov veto”). ¿is is
equivalent to a multiplication of all lines with the corresponding no-branching probability,
and ensures that the jet multiplicity given by the matrix element calculation is rendered
exclusive. ¿is removes the double counting that would occur in a naive sum of matrix
elements with di�erent multiplicities. Moreover, by the combination of the vetoed shower
and the Sudakov vetoes of the matrix elements their individual dependences on Qcut cancel
out.
An additional consequence of the multi-jet merging technique is the appearance of a

natural dynamical scale choice for µR and µF . Instead of �xing their values with respect
to the whole multi-leg matrix element, it is done only for the core process. ¿e additional
strong couplings and the PDF ratios at the branchings from the backwards-clustering is then
chosen as it would have been for ordinary shower branchings for consistency, i.e. as some
factor times the transverse momentum of the emitted parton. In particular for the strong



2 . E L E M E N T S O F M O N T E - C A R L O E V E N T G E N E R AT I O N 20

couplings, this means that we pro�t from the improved resummation of the higher-order
corrections, as has been noted in Section 2.2.2. By not using a single predetermined scale for
the multi-leg matrix element, we can thus better accommodate the inherently multi-scale
nature of a high-multiplicity matrix element.
Multi-jet merged calculations combining LO or NLO matrix elements and the parton

shower are labelled Matrix Elements merged with Parton Shower emissions at Leading
Order (MEPS@LO) or MEPS@NLO, respectively. A combination of both, combining one
or more multiplicities given at NLO with additional multiplicities given at LO, has also
been developed and is referred to asMENLOPS [33, 88, 124–126]. ¿e reason for using this
combination is that tree-level matrix elements are available for higher multiplicities than
matrix-elements that contain a loop. For the latter, up to 6 external legs are state-of-the-
art [127], which is about a factor of two smaller than what is computationally feasible for
tree-level matrix elements [70].

2.2.5. Towards NNLO

¿e �eld of NNLO calculations is very active. In the last two years, over a dozen of new re-
sults have been presented, including fully di�erential results for di-photon production [12],
single-top(+decay) [13] and top-pair production [14], W+W−[ℓ′+νℓ′ ℓ−ν̄ℓ] production2 [15]
and V-boson production in association with a jet [16, 17]. Of particular interest are pro-
cesses with large higher-order corrections, such asHiggs-boson production via gluon fusion,
or standard candles like Drell-Yan lepton-pair production. For the latter, the scale uncer-
tainties of the Z transverse momentum can be reduced by the inclusion of the NNLO to
1–2% [18]. For Z+jets production, the scale uncertainties were reduced to 2%, with a K
factor of about 4% [19]. All these results seem to promise that a full automation of NNLO
calculations is in reach. However, there are still major obstacles to overcome, e.g. �nding
solutions to all master integrals being involved and the construction of a fully general sub-
traction technique. ¿is is especially true when it comes to amplitudes for multiplicities
beyond 2→ 2. For an overview on the achievements and the remaining challenges, see e.g.
[128].
As for NLO, the availability of NNLO calculations does not automatically mean that they

are readily usable for a Monte-Carlo event generation. A fully generalised methodology
has not been achieved yet, but �rst implementations are available for Drell-Yan and Higgs
production based on the MINLO-NNLOPS [37–39] and the UN2 LOPS [34–36] schemes.
However, these e�orts are considered only as �rst steps towards a more general Next-to-

next-to-Leading Order matrix elements matched with Parton-Shower emissions (NNLOPS)
matching [36]. And while the generalisation of Monte-Carlo methods to NNLO is still on-
going, a �rst �xed-order calculation to next-to-next-to-next-to-leading-order (N3LO) has
been published [129], for the gluon-fusion Higgs-boson production cross section. It leads

2¿roughout this thesis, the symbol ℓ stands for an electron or a muon. Brackets following a particle denote
o�-shell production with subsequent decay into the particles inside the brackets.
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to a reduction of the scale uncertainties from 9% at NNLO down to 3%.3 Although this
is not a di�erential calculation yet, the employed methods are claimed to be extendable
towards di�erential distributions in the future, which will eventually require another round
of matching/merging e�orts.

To conclude, MEPS@NLO/MENLOPS calculations and the not yet fully-automated NNLO
plus parton-shower calculations are our best general-purpose descriptions of perturbative
QCD processes that are available today.

2.3. QCD uncertainties in the context of event generators

¿e uncertainties that interest us most in the context of this thesis can be categorised into
parametric and perturbative uncertainties. We discuss them in turn, and then also other cat-
egories to further con�ne our scope. Most importantly, we donot consider non-perturbative
uncertainties.
¿e systematics of leading-order parton-shower simulations with Herwig 7 have re-

cently been discussed in [130]. A comprehensive comparison of various generators is pre-
sented in [128]. ¿e impact of PDFs in parton-shower simulations has been discussed in
[131, 132]. For non-experts it is practical to have a bottom-line prescription for estimating
the uncertainties of Monte Carlo event generator predictions, which is e.g. given in [133].

Parametric uncertainties

With parameters we refer to input quantities from measurements, like particle masses, the
value for αS(m2

Z), and PDFs. Usually the latter two are connected, as the αS(m2
Z) and the

PDFs are �tted together, or the PDFs are �tted with a �xed αS(m2
Z). ¿erefore, whenever

we vary αS(m2
Z) in this thesis, the use of an associated PDF set is understood. Consistent

αS(m2
Z)/PDF variations are expected to be less severe than αS(m2

Z) variations alone, as the
PDF values will compensate the lower/higher αS(m2

Z) to some degree. ¿is should at least
be true for the observables, for which data points are included in the PDF �t.
In this thesis, we do PDF and αS(m2

Z)/PDF variations, which are both relevant for parton-
level predictions at low and high energy scales. ¿erefore, they can not simply be absorbed
into tunes of non-perturbative models (see below). On the other hand, we do not vary
quark masses, although they clearly are QCD parameters. However, the very light quarks
(u,d,s) havemasses that are smaller thanΛQCD ≈ 500MeV. ¿e c quarkmass is only slightly
above the usual cut-o� scale for the parton shower and its variation is therefore subject to an
absorption through non-perturbative tunes; and the b and the t quark mass uncertainties
are below 1%, such that they are considerably smaller than the uncertainties we do consider.

3Higgs production via gluon fusion is a notorious counter-example for the rule of thumb, that pQCD calcula-
tions at order p have an approximate uncertainty of α pS . ¿is is due to large colour factors entering the loop
corrections.
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Perturbative uncertainties

¿is category refers to the approximation through the truncation of the perturbative series,
either by themaximumorder in αS , or by themaximumpower of resummed logarithmically
enhanced terms. Also of a perturbative nature is the large-NC approximation, as it restricts
the contributing Feynman diagrams to planar ones [134].
¿e perturbative uncertainties are conventionally estimated by varying unphysical scales

which are connected to the truncation, to assess the stability of the result under these
arti�cial choices. For the αS truncation, that would be the renormalisation scale µR and the
factorisation scale µF . ¿e variation of these two scales is considered throughout this work.

Other uncertainties

Other uncertainties can be labelled numerical, algorithmic or non-perturbative. Numerical
uncertainties can be trivially overcome by investing more resources. ¿e statistical uncer-
tainty can be reduced by generating more events, and the computational precision can be
improved e.g. by going from double to quad precision whenever necessary.
Algorithmic uncertainties come fromchoices in the implementation, like the non-singular

terms in parton-shower evolution kernels, its recoil scheme, or the speci�cs of the match-
ing/merging algorithms. Per construction, for sensible choices, these systematics also cor-
respond to higher-order perturbative corrections, but might be addressed separately, e.g.
by comparing the results of di�erent implementations/choices. Some attempts are done
in [130].
Lastly, non-perturbative uncertainties appear when using hadronisation and multiple-

interaction models. ¿ese are phenomenological models with parameters �tted to experi-
mental data, which is called “tuning”, see for instance [135, 136].4 ¿e parton-shower cut-o�
scale has a special role. It marks the (to some degree arbitrary) transition scale to the non-
perturbative regime. Its choice a�ects the �t results for the parameters, and therefore its
independent variation is not meaningful. As such, it is not a purely perturbative parameter,
but induces power corrections of the order of the ratio to the hard scale [134].

By making the multitude of theoretical uncertainties explicit, it becomes clearer that their
estimation through dedicated calculations of all associated variations, although desirable,
is unfeasible for most applications.

4For some event generators, tuning extends to parameters controlling certain characteristics of parton-shower
emissions, which evolves down to the hadronisation scale and can therefore not be separated cleanly from
the so physics. ¿is is in particular true for parton-shower emissions applied to multiple-interaction
remnants. However, in this case the parton-shower emissions from the remnants can be treated di�erently
from the parton-shower emissions from the hard interaction, as is e.g. done in Sherpa.
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2.4. Conclusive closure tests

In order to validate the reweighting methods presented in this thesis, we conduct closure
tests for a given observable O. For these, we start with an event generation run with
some nominal parameter and scale choices A. ¿e resulting prediction OA for A is then
reweighted to a prediction OA→B for another set of parameters and scale choices B. ¿is is
then compared with a prediction OB from a second event generation run, where B is used
as the nominal parameters and scale choices. Ideally, OA→B = OB. However, this is usually
spoiled by numerical and statistical di�erences between OA→B and OB. If the reweighting
method includes interpolation, the �nite interpolation accuracy is also a source of devia-
tions.
We call the event generation run for A the reweighting run and the one for B the dedicated

run.

2.4.1. Controlling Monte-Carlo statistics

¿e outcome of a Monte Carlo event generation depends on the underlying sequence of
random numbers. If we use the same random number generator and the same random seed
when doing repeated runs, we can ensure that this sequence is the same among these runs.
However, this does not guarantee that two runs with di�ering parameter and scale choices
are statistically equivalent. ¿e problem is that the count of random numbers used for a
given event may depend on the parameters and scales. A prominent example is the parton
shower, which is a Markov chain of variable length: Higher emission probabilities lead to a
higher number of branchings, and thus to a higher “use” of random numbers.
¿is problem can be ameliorated by setting the random seed a er each event to a pre-

de�ned value, such that these variable amounts of random number usages only a�ect the
statistics of one event, but not the statistics of all forthcoming ones. ¿is guarantees at least
that the �rst phase of the event generation, the selection of the hard process channel and
its momenta, is always the same. Less events are then needed to reach a given validation
target accuracy.
¿e hard process channel determines the incoming partons, the �nal-state multiplicity

and the part of the calculation (Born, Virtual, . . . ) of an event. In Sherpa, an optimisation
phase calculates the total cross sections of these channels. ¿eir relative sizes then give
the probability for the channel to be selected for an event. Moreover, the optimisation
determines the distribution used to sample the phase space. Collectively, we call the discrete
channel selection probabilities and the phase space distributions the selection weights of the
event generation. ¿ese weights depend on the parameters and scale choices used for this
precursor run. E.g. the outcome for the partonic channel selection for hadronic event
generations are a�ected by the PDF set used. We therefore use the same set of channel
selection weights in the reweighting and the dedicated runs if possible. ¿is ensures that the
same channel and phase space point is used for a given randon number.5

5To ensure statistical equivalence between Sherpa runs, it is in fact vital to do the optimisation run separately
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In fact, for a weighted event generation, using the “wrong” selection weights to ensure
statistical equivalence will only a�ect the speed of the statistical convergence. Otherwise, re-
sults will be correct and can therefore be used to validate reweighting results with. However,
for unweighted events, the selection weights are used for unweighting events. ¿erefore,
we can not reuse the same selection weights, and hence it can not be guaranteed that the
same channel is selected for a given event across reweighting and dedicated runs. Also, for
most calculations many events are rejected, and the probability for rejection depends on
parameter/scale choices. ¿erefore, each event actually consists of a tower of trial events, of
which only the last one is accepted. As this tower is of varying length, the event selection
and statistics will only be weakly correlated across reweighting/dedicated runs. In general,
it is therefore not possible to validate the reweighting for unweighted events with small
statistics runs.

2.4.2. Basic validations with auto-closure tests

For auto-closure tests, the nominal set of parameter and scale choices of the reweighting
run is equal to the one being reweighted to, i.e. A = B and thus we test how well the ideal
equality OA→A = OA is ful�lled.
Discrete parameter-dependent random choices in both the reweighting and the dedicated

event generation are then always the same (as long as the random number sequence is the
same). ¿is means for example, that the parton-shower algorithm will not lead to di�erent
kinematics between the event generation runs.
¿erefore, it is possible to widen the class of event generations for which the comparison

decouples from statistics entirely, and even unweighted and/or parton-showered event gen-
eration is expected to give perfect closure between reweighting and dedicated runs. Hence,
auto-closure tests are a �rst “cheap” test, to check for severe errors in the implementation.

2.4.3. Cross-closure tests and uncertainty band comparisons

For uncertainty estimates, we combine many parameter variations into a few uncertainty
bands. ¿e predictions from PDF error sets are combined to a PDF uncertainty of the
observable, those for di�erent αS(m2

Z) are combined to an αS uncertainty, and those for
di�erent scale choices to a scale uncertainty. We employ this for some of our validations,
by comparing uncertainty bands generated with our reweighting methods from a single
nominal event generation with uncertainty bands generated from dedicated calculations.
Deviations for single lines between the reweighting and the dedicated prediction might

be hidden when comparing uncertainty bands. On the positive side, the condensation of
information into bands allows for a quick overview, if the methodology works, and is still
sensitive to the level of precision that is actually required in actual applications.

from any of the production runs, because the event generator uses the same random number generator for
optimisation and production events, without resetting it a er the optimisation has �nished.
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Table 2.1.: An example variations set-up with two variants with respect to the PDF set choice,

used as the default for studies in this thesis. The set-up includes a total of 66 (CT14nlo) or

110 (NNPDF 3.0) parameter variations. Note that each value for αS(m2
Z) implies that it is used

with its associated PDF set variant.

nominal variations error band

PDF sets CT14nlo 56 Hessian error sets with a 90% CL Hessian
NNPDF 3.0 100 statistical replicas with a 68% CL statistical

αS(m2
Z) value 0.118 0.115, 0.117, 0.119, 0.121 envelope

µR/µF factors (1, 1) (½, ½), (1, ½), (½, 1), (2, 1), (1, 2), (2, 2) envelope

In Table 2.1, we present a set of variations, that is employed for uncertainty band valida-
tions throughout Chapters 3 and 4. As the nominal PDF set, CT14nlo is used, and the error
band is de�ned as the combination over its 56 Hessian error sets at a 90% con�dence level.
A variant we sometimes employ instead is the NNPDF 3.0 set, for which the error band is
de�ned as the standard deviation over its 100 statistical error sets, that are given at a 68%
con�dence level. For αS(m2

Z), a nominal value of 0.118 is used, and the variations are 0.115,
0.117, 0.119 and 0.121. Note that this variation of αS also implies using a PDF variant that
has been �tted with this αS(m2

Z) �xed. ¿is is expected to extenuate the e�ect of the αS
variation in most cases, as the PDF of the varied αS is still �tted to describe the same data as
the PDF of the nominal αS . ¿is consistent αS+PDF variation is also part of the PDF4LHC
recommendations for LHC Run 2 [133]. ¿e envelope of these αS+PDF variations is taken
as the respective uncertainty. For the scales we employ a 7-point variation, scaling both µR
and µF down and up by a factor of two, independently, but leaving out crossed variations
where one scale is scaled up and the other one is scaled down. ¿e scale uncertainty band
is de�ned as the envelope over the all scale variations.
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3. Reweighting (N)LO matrix elements and
parton showers

We present a comprehensive treatment to fully trace the αS and PDF dependences in the
matrix-element and parton-shower components of particle-level Sherpa [46, 47] simu-
lations in leading-order (LO) and next-to-leading-order (NLO) multi-jet merged calcula-
tions [30, 125], based on the Sherpa dipole-shower implementation [21]. Furthermore, we
provide the means to quickly evaluate the renormalisation- and factorisation-scale depen-
dence of the �xed-order matrix-element contributions, and to vary the associated PDF and
αS input scales within the parton shower.
Our treatment is implemented in the new internal reweighting feature in Sherpa. ¿e

approach is based on an event-wise reweighting and allows us to provide with a single
generator run a set of variational event weights corresponding to the prede�ned parameter
and scale variations, that would otherwise have to be determined through dedicated re-
evaluations. ¿e alternative event weights can either be accessed through the output of a
HepMC event record [105], or directly passed via the internal interface of Sherpa to the
Rivet analysis framework [106].
¿e event-wise nature of the internal reweighting is shared with approaches that post-

pone the re-evaluation until a er the event generation, operating on a set of independent
weights in the event record, called NTuples. ¿is approach is detailed in [45, 137] for NLO
calculations. ¿e advantage of this approach is that one does not need to repeat the event
generationwhen new variations become necessary. However, the storage needs for a smooth
NLO sample can be of the order of a Terabyte, and NNLO calculations might exceed this by
an order of magnitude [128, 138]. An exact reweighting of the parton shower, as detailed in
this section, would require storing even more information. ¿e internal reweighting does
not su�er from these practical constraints, as it can act on all available information while
each calculation is performed.
¿enew feature is partly available in the 2.2.1 release, withwhich it is being used by current

Monte-Carlo event productions of the ATLAS experiment, namely for V+jets samples. It
will be fully ready in the upcoming 2.3 release. Other internal reweighting implementations
have recently been presented for Herwig 7 [48, 49] and for Pythia 8 [50], in [139] and
[140], respectively. Both approaches are currently restricted to LO plus parton-shower
calculations, and do not extend to matched or merged calculations. A parton-shower-only
implementation is also available for the Vincia [116] shower model in [141].
Parts of the contents of this chapter are published in [128, 142].
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3.1. Fixed-order calculations

In order to re-evaluate aQCD cross-section calculation for a new choice of input parameters,
i.e. αS , PDFs or renormalisation and factorisation scales, it is necessary to understand and
trace-out its respective dependences. ¿is is a rather easy task at LO but is already more
involved when considering NLO calculations in a given subtraction scheme. It has been
done for the Catani-Seymour (CS) scheme in [45], and for the Frixione-Kunszt-Signer (FKS)
one in [137].
In this section, we brie�y review the dependence structure and discuss the correspond-

ing reweighting equations for LO and CS-subtracted NLO calculations within the Sherpa
framework. With this paragraph we also introduce the notation used in the later sections,
which explore the reweighting of more intricate QCD calculations, involving QCD parton
showers and merging di�erent �nal-state multiplicity processes.

3.1.1. The leading-order case

A LO parton-level calculation of some observable or measurement function O of the �nal-
state Φ is based on Born matrix elements B ofO(αnS). It exhibits explicit dependences on
the PDFs f = fa(x , µ2F), the running strong coupling αS = αS(µ2F), the renormalisation
scale µR and the factorisation scale µF :

⟨O⟩LO = ∫ dΦB B(ΦB) O(ΦB) = lim
N→∞

1
Ntrials

N
∑
i=1
B(ΦB,i) O(ΦB,i) , (3.1)

with Ntrials = ∑N
i=1 ntrials,i , the sum over the number of attempts ntrials,i to generate an

accepted event con�guration for each event i, and

B(ΦB) = B(ΦB; αS , f ; µR , µF) = αnS(µ2R) fa(xa , µ2F) fb(xb , µ2F) B′(ΦB) . (3.2)

¿erein, B is the Born matrix element containing all couplings, symmetry and �ux factors,
and PDFs, whereas B′ has the PDFs, here for assumed two incoming parton �avours a
and b, and the strong coupling stripped o�. Note that we have suppressed the event index i
here. It is understood that B depends on the event kinematics and that µR and µF can be
chosen dynamically, i.e. depending on the momenta (and the �avours). Changing the input
parameters µR → µ̃R, µF → µ̃F , and the input function f → f̃ , αS → α̃S results in

B(ΦB; α̃S , f̃ ; µ̃R , µ̃F) = α̃nS(µ̃2R) f̃a(xa , µ̃2F) f̃b(xb , µ̃2F) B′(ΦB) . (3.3)

From Eq. (3.3) we conclude that for PDF reweighting it is necessary to know the xa,b values
of the event.
For an unweighted event generation, the event weights are initially distributed uniformly,
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i.e. B(ΦB; αS , f ; µR , µF) = wnorm. Equation (3.1) thus simpli�es to

⟨O⟩LO = lim
N→∞

wnorm

Ntrials

N
∑
i=1
O(ΦB,i) . (3.4)

Scale and parameter variations work the same way as for weighted events. ¿e only caveat
is that applying Eq. (3.3) leads to a non-uniform weight distribution and one has to fall back
to Eq. (3.1) for calculating the reweighted ⟨O⟩. In partially-unweighted event generations
the weight distribution is bounded from above and below. Again, the reweighting can be
employed, one only has to expect a broadened weight distribution a er the reweighting,
with some event weights exceeding those bounds.

3.1.2. The next-to-leading-order case

A full NLO parton-level calculation including real-emission and one-loop corrections of
O(αn+1S ) based on CS dipole-subtraction, as introduced in Section 2.2.1, has the following
structure:

⟨O⟩NLO = ∫ dΦB

⎡⎢⎢⎢⎢⎣
B(ΦB) +VI(ΦB) + ∫ dx′a/b KP(ΦB , x′a/b)

⎤⎥⎥⎥⎥⎦
O(ΦB)

+ ∫ dΦR

⎡⎢⎢⎢⎢⎣
R(ΦR)O(ΦR) −

dipoles
∑
j=1

DS , j(ΦB ⋅ Φ j
1)O(Φ j

B)
⎤⎥⎥⎥⎥⎦

= lim
N→∞

1
Ntrials

⎧⎪⎪⎨⎪⎪⎩

NB

∑
i=1

⎡⎢⎢⎢⎢⎣
B(ΦB,i) +VI(ΦB,i) +KP(ΦB,i , x′a/b)

⎤⎥⎥⎥⎥⎦
O(ΦB,i)

+
NR

∑
i=1

⎡⎢⎢⎢⎢⎣
R(ΦR,i)O(ΦR,i) −

dipoles
∑
j=1

DS , j(ΦB,i ⋅ Φ j
1,i)O(Φ j

B,i)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
,

(3.5)

where the new parts have the following dependences,

VI(ΦB) ≡ VI(ΦB; αS , f ; µR , µF) ,
KP(ΦB , dx′a/b) ≡ KP(ΦB , x′a/b; αS , f ; µR , µF) ,

R(ΦR) ≡ R(ΦR; αS , f ; µR , µF) ,

DS , j(ΦB,i ⋅ Φ j
1) ≡ DS , j(Φ j

B ⋅ Φ
j
R∣B; αS , f ; µR, j , µF , j) .

(3.6)

¿erein, VI combines the renormalised one-loop matrix element with the I-operator of
the CS subtraction scheme. ¿is operator gives the �avour-diagonal endpoint contribution
of the integrated subtraction terms. VI is thus separately infrared-�nite and exhibits a
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common transformation behaviour. ¿us, for αS → α̃S , f → f̃ , µR → µ̃R and µF → µ̃F ,

VI(ΦB; α̃S , f̃ ; µ̃R , µ̃F)

= α̃n+1S (µ̃2R) f̃a(xa , µ̃2F) f̃b(xb , µ̃2F) [VI′(ΦB) + c ′ (0)R lR + 1
2 c

′ (1)
R l2R] ,

(3.7)

with αS- and PDF-independent coe�cients c ′ (i)R and lR = log(µ̃2R/µ2R). Again, VI′ is
stripped of all coupling and PDF factors.
¿e KP-terms are de�ned as the remainders of the integrated dipole-subtraction terms,

containing all �avour changing and x′a/b-dependent pieces, combined with the collinear
counter-terms. Here, x′a/b are the ratios of the partonic momentum fractions in the respec-
tive dipole before and a er radiation. Again, this combination is separately infrared-�nite
and transforms as one unit. When evaluated for the modi�ed set of input parameters, they
read

KP(ΦB , x′a/b; α̃S , f̃ ; µ̃R , µ̃F)
= α̃n+1S (µ̃R) f̃a(xa , µ̃2F) f̃b(xb , µ̃2F) KP′

= α̃n+1S (µ̃R) [( f̃ qa c ′ (0)F ,a + f̃ qa (x′a) c
′ (1)
F ,a + f̃ ga c

′ (2)
F ,a + f̃ ga (x′a) c

′ (3)
F ,a ) f̃b(xb , µ̃2F)

+ f̃a(xa , µ̃2F) ( f̃
q
b c

′ (0)
F ,b + f̃ qb (x

′

b) c
′ (1)
F ,b + f̃ gb c

′ (2)
F ,b + f̃ gb (x

′

b) c
′ (3)
F ,b )] ,

(3.8)

with the coe�cients c ′ (i)F ,a/b = c̃
(i)
F ,a/b + c̄

(i)
F ,a/b lF for i ∈ {0, . . . , 3}, lF = log(µ̃2F/µ2F), and

f̃ qq = f̃q(xq , µ̃2F) , f̃ qg = ∑
q
f̃q(xg , µ̃2F) ,

f̃ qq (x′q) = x′q f̃q(
xq
x′q

, µ̃2F) , f̃ qg (x′g) = x′g∑
q
f̃q( xgx′g , µ̃2F) ,

f̃ gq = f̃g(xq , µ̃2F) , f̃ gg = f̃g(xg , µ̃2F) ,

f̃ gq (x′q) = x′q f̃g(
xq
x′q

, µ̃2F) , f̃ gg (x′g) = x′g f̃g(
xg
x′g

, µ̃2F) ,

for a, b = {q, g}, respectively. Here, the sum over q includes all light-quark �avours, cor-
responding to all quarks potentially emitting a gluon. We note that in order to obtain the
reweighted expressions for the VI and KP contributions, the additional book-keeping of
the c ′ (i)R , c̃ (i)F ,a/b and c̄

(i)
F ,a/b (altogether 18)

1 coe�cients is required [45]. Due to its composite
structure, the KP-terms do not have a coupling- and PDF-stripped version KP′. Nonethe-
less, we formally introduce a still PDF-dependent version KP′ in the second line of Eq. (3.8),

1 ¿e two parameters c ′ (i)R correspond to the single- and double-pole coe�cients of the one-loop matrix
element while the remaining sixteen coe�cients are comprised of eight pairs of coe�cients, c̄ (i)F ,a/b and
c̃ (i)F ,a/b , corresponding to the µF-dependent and -independent parts for all four �avour structures of each
beam, respectively.
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for reference in later sections.
¿e remaining pieces of Eq. (3.5) are the Born matrix element B, the real-emission con-

tribution R and the di�erential dipole subtraction terms DS , j. ¿e latter is de�ned by an
underlying Born con�guration Φ j

B through its dipole-dependent phase-space map, em-
ploying the phase-space factorisation ΦR = ΦB ⋅ Φ j

1 . ¿e transformation of B under the
exchange of input parameters was detailed in Eq. (3.2), and the transformation of R and the
DS , j contributions works the same, only with an additional power in αS .

3.2. Closure tests for �xed-order calculations

¿e reweighting approach outlined above has been implemented in the Sherpa framework
for the two matrix-element generators Amegic [72] and Comix [70, 71] in conjunction
with the corresponding CS dipole-subtraction implementation [143]. ¿e required decom-
position of virtual amplitudes is generic and can be used for matrix elements from Black-
Hat [77], OpenLoops [78, 79], GoSam [144], NJet [80], the internal library of simple
2→ 2 processes, or loaded via the BLHA interface [145].
Here we shall present the validation of the reweighting approach of NLO QCD event

samples in particular. For that purpose we consider W-boson production in 13 TeV proton-
proton collisions atNLOQCD, and focus on the transverse-momentum distributions for the
W and the lepton it decays to. In Fig. 3.1, the scale, αS and PDF uncertainty bands for theW
pT and the lepton pT distributions are presented. For the bands, we use the prescription of
Table 2.1, with the NNPDF 3.0 set. All three bands have been produced for both observables
using the internal reweighting of Sherpa from a single event generation run. ¿e nominal
scale choice is µF = µR = H′

T , with

H′2
T = (mT ,ℓν̄ℓ +∑

i
pT ,i)

2

. (3.9)

In general, the sum runs over all �nal-state particles except for the lepton-neutrino pair.
Hence for NLOW production, the sum has one (real-emission phase space) or zero terms
(Born phase space). ¿e lepton-neutrino pair enters with its transverse mass, to take into
account the mass scale of the W resonance. ¿is scale choice has been motivated in [146].
¿e jet is reconstructed with the anti-kT algorithm [107], with a jet radius parameter R = 0.4
and a transverse momentum cut of pjT > 20GeV. ¿e lepton cuts are ηℓ < 3.5, pℓT > 25GeV
(or EmissT > 25GeV for the ν̄ℓ), and the lepton-neutrino pair has to satisfy 60GeV < mℓν̄ℓ <
100GeV. Here, η is the pseudo-rapidity, EmissT the missing transverse energy, and mℓν̄ℓ the
invariant mass of the lepton-neutrino pair.
¿e running of αS(µ2F) is calculated within Sherpa using its renormalisation group

equation at NLO with parton thresholds as given by the PDF set. ¿e treatment of partonic
thresholds deserves a short discussion. While �avour thresholds in the running of αS do not
present any challenges to the reweighting algorithmas αS(µ2) > 0 for all µ2 > 0 and any loop
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order, this is di�erent for the PDFs, where crossing a parton threshold results in a vanishing
PDF for that �avour. Hence, the cross section component of the given partonic channel
may be zero if no other non-zero contribution exists. Such an event will be discarded and,
thus, cannot be reweighted. If now the respective parton threshold of the target PDF is
smaller than the target factorisation scale while the one of the nominal PDF is larger than
the nominal factorisation scale we are in a region of phase space where the reweightingmust
fail to reproduce a dedicated calculation. ¿is could be remedied by storing events as well
which vanish solely due to crossing PDF thresholds. However, as only observables sensitive
to on-threshold production of light quarks (typically bottom quarks) are susceptible to these
e�ects, they are of little relevance to the vast majority of LHC observables.
Comparing the uncertainties for pWT , we observe that the scale uncertainties are the

largest, with relative deviations ofO(10%). ¿e relative deviations related to the PDF and
the strong coupling do not exceed ∼ 3%. ¿e scale uncertainty exhibits a minimum for
100GeV < pWT < 200GeV. ¿e reason is that the variations of µF alone cross the central
value prediction in this range, such that only the µR variation contributes to the overall
scale uncertainty here.
Note that pWT = 0 at O(α0S), and therefore only real-emission events contribute to the

distribution. Hence, the observable is only described to LO. We introduce it here as a refer-
ence for our later validations including the parton-shower, which use this observable. For
the current validation, we complement the discussion of the W-boson transverse momen-
tum with the one of the lepton it decays to. ¿e region below mW/2 is already �lled at
O(α0S), and therefore we partly have a true NLO description for this observable. In fact, the
scale uncertainties are much larger in that region, especially towards the mW/2 threshold,
and at the lepton pT cut at 25GeV. ¿is gives a more realistic picture of the perturbative
uncertainties than in the LO region above the threshold.
¿e small panels on the right of Fig. 3.1 compare the uncertainty bands calculated using

the reweighting approach to uncertainty bands where dedicated calculations have been
done for each variation. We observe that the bands overlap perfectly for both observables.
¿is is because the reweighting as presented above is exact and for all runs the same phase-
space points could be used, as explained in Section 2.4.1. ¿e reweighted and the dedicated
predictions for each variation are therefore equal, and so are the uncertainty bands.2

3.3. Parton showers

3.3.1. Sudakov form factors

Parton-shower algorithms are the exclusive counterpart to DGLAP evolution [147] (or its
higher-order re�nements). As such they use a re-formulation of the DGLAP evolution
equations in terms of Sudakov form factors [148], which give the no-emission probability

2¿e reweighted and the dedicated calculations are implemented independently, such that their predictions
can varywithin the numerical uncertainties of the calculation. However, this lies several orders ofmagnitude
below the physical uncertainties considered here, and is not visible in Fig. 3.1.
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Figure 3.1.: The W-boson and lepton transverse momenta in o�-shell W production, with

independent variations of µR /µF (green), αS (red) and the PDF (blue). In the right-hand pan-

els, the individual uncertainty bands, calculated via an internal reweighting, are compared

to uncertainty bands from dedicated calculations (yellow). The reweighted and dedicated

uncertainty bands are found to be equal.
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for the branching a → b between the two evolution scales t1 and t2,

∆ab(t2, t1) = exp(− ∫ t1

t2

dt
t ∫ dz ∫ dϕ

2π
J(t, z, ϕ)Kab(t, z, ϕ)) . (3.10)

¿e emission kinematics is parametrised by the evolution variable t, the portion of the
longitudinal momentum fraction inherited from the splitter, z, and the azimuthal angle ϕ.
J is the Jacobian associated with this parametrisation, and K is the emission kernel, which
in the simplest case is given by

Kab(t, z, ϕ) = αS(t)
2π

Pab , (3.11)

with Pab being the DGLAP splitting function, but the exact form depends on the shower
model. One important complication is the inclusion of a PDF ratio in K to guide the
backwards-evolution of initial-state showers. We will discuss this in more detail in Sec-
tion 3.4. For the time being, we can reduce Eq. (3.10) further to a more schematic form,

∆(t2, t1) = exp(− ∫ t1

t2
dt K(t)) , (3.12)

where we have absorbed the z and ϕ integrals and the Jacobian into the emission kernel,
and omit the a → b subscript.

3.3.2. The (reweighted) Sudakov Veto Algorithm

¿e advantage of Sudakov form factors is that they can easily be Monte-Carlo integrated
by sampling each integral in turn with a random number (and sampling over the possible
channels a → b), resulting in a list of concrete emissions. ¿e �rst task for each emission is
to �nd the next emission scale t below a starting scale t0, we can sample the Sudakov form
factor with a random number R:

exp(− ∫ t0

t
dt K(t)) = R exp(− ∫ t0

0
dt K(t)) , (3.13)

If K is integrable (with the inde�nite integralK), we can analytically solve for t:

t = K−1 (K(t0) + log(1 − R)) . (3.14)

However, most physical emission kernels are not integrable analytically and a direct numer-
ical integration of Eq. (3.13) is usually expensive, especially for backwards evolution, where
PDFs are part of the kernel. An alternative is an indirect numerical integration, which can
be achieved by the Sudakov Veto Algorithm (SVA) [87, 149–153]3. ¿erein the kernels K are
replaced with integrable over-estimates K̂. ¿is is balanced by only accepting a proposed
3¿e Sudakov Veto Algorithm is also known as the ¿inning Algorithm [154] in computer science, as has
been noted in [140].
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emission with probability Pacc = K/K̂.
An important consequence for the purpose of reweighting is that a multiplicative factor

in K is equivalent to a multiplicative factor in Pacc [151]. ¿is observation is for example
used to applymatrix-element corrections [87], where the emission kernels are replaced with
a real-emission-like kernel R/B. ¿is is done a-posteriori, i.e. the event weight is multiplied
by (R/B)/K, the emission itself is unchanged.
For convenience, we reproduce the modi�ed (i.e. reweighted) SVA and its proof, in a

similar way as in [151, 153]. ¿e task is to generate emission scales ti for the (nominal)
splitting kernel K, by using a suitably de�ned integrable over-estimate K̂ ≥ K. At the same
time, we want to use the ti for another (reweighted) emission kernel K̃, by using weights
w to counteract that they have been generated for K. We start with the nominal Sudakov
form factor,

∆K(t2, t1) = exp(− ∫ t1

t2
dt K(t)) . (3.15)

To keep the notation clean, we denote with K(t), K̂(t) and K̃(t) the emission kernels with
all kinematic variables except for the emission scale itself integrated out.4 ¿e reweighted
SVA then reads:

1. Start with i = 0, a starting scale t0 and a weight w = 1.

2. Add 1 to i and select ti = K̂−1 (K̂(ti−1) − logR) with the random number R, where K̂
is the inde�nite integral over the integrable over-estimate K̂. If ti < tIR, where tIR is the
constant (infrared) cut-o� scale, the algorithm ends.

3. Draw another random number R′; if Pacc = K(ti)/K̂(ti) ≤ R′, the trial emission is
vetoed. In this case, multiply w with

qrej(ti) ≡
K̂(ti) − K̃(ti)
K̂(ti) −K(ti)

(3.16)

and return to Item 2.

4. Otherwise, accept ti as the �rst emission scale below t0 and multiply w with

qacc(ti) ≡
K̃(ti)
K(ti)

. (3.17)

Hence, for each accepted trial emission following n rejected trial emissions, w gets multi-
plied by a combined reweighting factor Q(emission) = qrej,1qrej,2 . . . qrej,nqacc. A er the last
accepted emission, additional rejected trial emissions might occur before the cut-o� tIR

4For generalisations of the SVA with respect to a non-trivial z integration and multiple emission channels, see
e.g. [155]. ¿ese generalisations are not relevant for the reweighting part of the presented proof.
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is reached, so we have another reweighting factorQ(remainder) = qrej,1qrej,2 . . . qrej,n for that
region.
To prove that the above algorithm produces the right emission scale distribution for K̃,

when the weight factors qrej and qacc are applied, we �rst consider the probabilitiesPn(t0, t)
for accepting t as the �rst emission scale below t0 a er n vetoed trial emissions. If no trial
emission had been rejected, we obtain

P0(t0, t) = PK̂(t0, t) K(t)
K̂(t)

qacc(t) . (3.18)

¿e �rst factor on the right-hand side is de�ned as the probability that the �rst emission
below a starting scale t0 is at t when the emission kernel is K̂. ¿is probability is directly
connected to the Sudakov form factor, i.e. the no-emission probability between two scales,

PK̂(t0, t) = −d∆K̂(t0, t)
dt

= ∆K̂(t0, t) K̂(t) . (3.19)

¿e second factor on the right-hand side of Eq. (3.18) is the probability that the SVA accepts
t. ¿e third one is the weight we apply for an accepted trial emission. Inserting PK̂ and qacc
yields

P0(t0, t) = ∆K̂(t0, t) K̃(t0, t) . (3.20)

If exactly one trial emission has been rejected by the SVA at any intermediate scale t1, we
�nd

P1(t0, t) = ∫ t

t0
dt1PK̂(t0, t1) (1 − K(t1)

K̂(t1)
) qrej(t1)PK̂(t1, t)

K(t)
K̂(t)

qacc(t)

= P0(t0, t) ∫ t

t0
dt1 (K̂(t1) − K̃(t1)) ,

(3.21)

where we used ∆(t0, t1)∆(t1, t) = ∆(t0, t), and had to put in the rejection probability
(1 −K/K̂) and the rejection weight qrej.
If exactly two trial emissions have been rejected at intermediate scales t1 and t2, we have

P2(t0, t) = P0(t) ∫ t1

t0
dt1 (K̂(t1) − K̃(t1)) ∫ t

t1
dt2 (K̂(t2) − K̃(t2))

= P0(t0, t) 1
2

[ ∫ t

t0
dt′ (K̂(t′) − K̃(t′))]

2
,

(3.22)

where we extend the triangular integration area in the �rst line to a square one to decou-
ple the integrals. ¿is is balanced by the factor ½. ¿e generalisation for n intermediate
rejections is

Pn(t0, t) = P0(t0, t) 1
n!

[ ∫ t

t0
dt′ (K̂(t′) − K̃(t′))]

n
. (3.23)

Because we are not interested in the number of rejections the SVA uses internally, we have
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to sum over this number to get the actual probability distribution for accepting t with the
(reweighted) SVA:

P(t0, t) =
∞

∑
n=0
Pn(t0, t)

= P0(t0, t)
∞

∑
n=0

1
n!

[ ∫ t

t0
dt′ (K̂(t′) − K̃(t′))]

n

= P0(t0, t) exp{ ∫ t

t0
dt′ (K̂(t′) − K̃(t′))}

= ∆K̃(t0, t) K̃(t)
= PK̃(t0, t) ,

(3.24)

where the last identity �nally proves that the distribution for the emission kernel K̃ is gen-
erated by the reweighted SVA.
Note that the weights qrej and qacc are exactly the factors by which the acceptance and

the veto probabilities are modi�ed, if one would have used K̃ instead of K in the �rst place.
¿is is obvious for the acceptance weight qacc. For qrej, a few lines of algebra are involved,

Prej = 1 − Pacc → 1 − qaccPacc =
1 − qaccPacc
Prej

Prej

= 1 − qaccPacc
1 − Pacc

Prej

= 1 − K̃/K̂
1 −K/K̂

Prej

= K̂ − K̃
K̂ −K

Prej = qrejPrej .

(3.25)

3.3.3. Cut-o� issues and numerical instabilities

¿e backwards-evolution of initial-state parton branchings a → b is guided by PDF ratios
fa(x/z, µ2F)/ fb(x , µ2F). It is easy to see that this complicates choosing an over-estimator
K̂, with K̂ ≥ K everywhere. A pragmatic solution is to �nd one which ful�lls the relation
almost everywhere, and otherwise cap the emission probability at 1. ¿e ratio can even get
negative for PDF sets that are not positive-de�nite. ¿is translates to negative probabilities
in the SVA. Again, one can arti�cially enforce a minimum probability of zero to prevent
this.
¿ese choices are employed in CSShower. For the reweighting, such cut-o�s could

be an issue, if they occur too o en. ¿e problem is that the a�ected phase-space regions
will not perfectly overlap for di�erent parameter/scale choices. For example, consider a
trial emission, where using the nominal PDF leads to a negative emission probability, which
is then set to zero. ¿e trial emission is therefore rejected. However, the target PDF of
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Figure 3.2.: Illustration of two problems related to the reweighting of initial-state parton-

shower emissions, for the example of a low-scale g → dd̄ splitting. The PDF double ratios as

depicted in the lower panels feature divergences and their constituents—individually shown

in the upper panels—drop below zero in di�erent x ranges for di�erent PDF variants f and

f̃ . These are chosen to be the NNPDF 3.0 sets �tted to αS (m2
Z) = 0.118 and αS (m2

Z) = 0.115,

respectively.

the reweighting might lead to a �nite PDF ratio, and hence to a �nite emission probability.
However, the �rst line of Eq. (3.25) will give us a reweighting factor qrej = 1, which is clearly
not correct. Note that using the last line in Eq. (3.25) would give us a di�erent answer, which
even more highlights the pathology of reweighting such a trial emission. A related cut-o�
issue is caused by the minimum x and µ2F values of the involved PDF variations, which
potentially di�er if the variations are from di�erent PDF sets.
A separate issue related to PDF ratios is the numerical stability of the reweighting. When

calculating weight factors for the reweighting, ratios of these ratios will occur. Although
most of these double ratios are expected to be around unity, individual ones can become
very large, if the PDFs in the denominators approach zero at di�erent (x , µ2F) values.
We illustrate the negativity and the large reweighting factor issue in Fig. 3.2 for a reweight-

ing of αS(m2
Z) = 0.118 down to 0.115. Remember that this entails a change in the associate

PDFs, too. We plot the PDF double ratio and its constituent PDFs over x for a g → dd̄
splitting, i.e. an initial-state down quark is backwards-evolved to a gluon. ¿e scale is set
to µ2F ≳ 1GeV2, and for the ratio the fraction of partonic momentum carried over is set to
unity, z = 1. As such, we are considering a rather extreme trial emission, but it proves our
point, especially because we use NNPDF 3.0, which is not a positive-de�nite PDF set.
In Fig. 3.2, one can see that for the gluon PDF, fg, the crossing of zero occurs at smaller

values of x for αS(m2
Z) = 0.118, both for the crossing at small and at high x. ¿e opposite

is the case for the down-quark PDF, fd, which drops below zero for a smaller x value for
αS(m2

Z) = 0.115, and only once, at high x. ¿is leads to two x regions at which one PDF ratio
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is positive, and the other is not. In our implementation, we omit any reweighting factor
involving negative PDF values, i.e. we fall back to qacc = 1 or qrej = 1, which is indicated
by the dashed line in the �gure. ¿is is a pragmatic solution, but is expected to work for
most observables. In the end, this choice resembles the one taken in CSShower, and
should therefore lie within its inherent algorithmic uncertainty. ¿e minimum µ2F cut-o�
issue is treated the same way. ¿e number of such occurrences is monitored during event
generation for inspection.
We also see divergences of the PDF double ratio as expected. ¿is is not restricted to

PDF that can drop below zero. Also positive-de�nite PDFs can approach or become equal
to zero. Single trial emissions could then lead to very large event weights, although their
impact on the actual observable might be negligible. Although still being valid in the limit
of asymptotic statistics, the reweighting might feature very large statistical errors for a �nite
sample, even if the nominal distribution is smooth.
¿e same is true, if the over-estimate function K̂ resembles the nominal kernel K too

closely, because the denominator of the rejection weight factor qrej is (K̂−K), see Eq. (3.25).
One approach to that problem is to give some leeway by introducing a prefactor kK̂ to
K̂, cf. [139, 140, 151]. ¿is renders the SVA less e�cient, but is shown to reduce statistical
�uctuations in the reweighting.
However, in our implementation we address both issues—large PDF double ratios and

“too perfect” over-estimators—by introducing a cut-o�. If a trial emissions would result
in a reweighting factorQ which deviates more than ten from unity, it is not reweighted at
all. ¿e e�ect of this prescription is illustrated in Fig. 3.3, where we have generated two sets
of uncertainty bands using the internal reweighting for the W-boson transverse momen-
tum in W production at a 13 TeV pp collider. ¿e matrix element and all parton-shower
emissions are reweighted in the nominal LO plus parton-shower event generation, with
and without theQ cut-o�. We observe that the spikes associated to very large reweighting
factors disappear a er enforcing the cut-o�. In this case, the spikes were restricted to the
CT14 PDF uncertainty variation. Otherwise, the uncertainty bands do not change. ¿is
proves that we do not change the reweighting for the bulk of the trial emissions.
Although the cut-o� approach proved to cure the numerical issues for the W transverse

momentum, we will see for dijet azimuthal decorrelations in Section 3.12, that a K̂ pref-
actor kK̂ might be necessary to provide additional numerical stability for other observ-
ables/processes.
However, even if very large reweighting factors are omitted, we can still ask if the reweight-

ing will broaden the nominal weight distribution too strongly to be practical. ¿e answer
depends on the hard process and on the observable, and therefore we will need more expe-
rience to give it. Still, very encouraging examples are presented in the following sections.
For a �rst exploration, we look at the weight distributions for trial emissions of a simpli�ed
parton shower evaluated using the reweighted SVA implementation. ¿is parton shower
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Figure 3.3.: Uncertainty bands for the transverse momentum of the W in LO plus parton-

shower W production for independent variations of µF and µR (green), αS (red) and the PDF

(blue). The uncertainty bands are generated by a reweighting of the central event generation

run. On the left-hand side, all reweighting factors Q were applied to the event weights,

whereas on the right-hand side, reweighting factors Q with ∣Q− 1∣ > 10 have been discarded.

uses an emission kernel as de�ned in Eq. (3.10) given by

J(t, z, ϕ)Ki j(t, z, ϕ) = 1
t2
Pi j(z)

fi(x/z, t2)
f j(x , t2) . (3.26)

¿is means that we are simulating a backwards initial-state shower, ordered in t, with split-
ting functions Pi j. ¿e starting conditions are x = 0.2 and tmax = 1000GeV2, and a cut-o�
value of tIR = 1GeV2 is set. To constrain the shower to resolvable (and hence �nite) emis-
sions, the z integral limits are set to t2max/t2 and 1 − t2max/t2.
We generate two independent samples, one for u → ug emissions, and one for g → uū

splittings, using the NNPDF 3.0 set. Generating splitting chains for only one channel is
unphysical (especially in the gluon splitting case, which can not succeed itself), but makes
it easy to study their individual reweighting factor distributions. ¿e channels and their
choices for Pi j and K̂ are listed in Table 3.1. ¿e u→ ug sample consists of 250 statistically
independent runs, and the g → uū sample of 1000 runs. We record the t values for each
accepted trial emission and plot the t histogram (“splitting frequency”). We also do a
reweighting for variations over all 100 NNPDF 3.0 set replicas, and plot the corresponding
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Table 3.1.: The two channels of the simpli�ed parton shower with their splitting functions

Pi j and their over-estimate functions K̂.

branching Pi j K̂

u→ ug Pqq =
1 + z2
1 − z

1
t2

4
1 − z

g→ uū Pgq =
1 + (1 − z)2

z
1
t2
4
z

PDF uncertainty. Most importantly, we also plot the product of reweighting factors for the
PDF reweighting from the central NNPDF 3.0 member to its 100th replica, i.e. the Q as
de�ned below Eq. (3.17).
¿e results are shown in Fig. 3.4. Looking at the le -hand panels, i.e. the normalised

distribution of t-values, at which splittings occur, we �nd that the g → uū spikes more
strongly at low values of t, and falls down more quickly towards higher t values. Also, the
PDF uncertainty is much larger in the g → uū case (note the di�erent y scales in the ratio
plots), which is a result of the larger gluon PDF uncertainty.
In the right-hand panels, the reweighting factorsQ are presented for the reweighting to

the 100th NNPDF 3.0 replica. For the u→ ug emissions, theQ are distributed in a narrow
band around 1.0 with a width of O(1%). ¿is situation is very di�erent for the g → uū
splittings. Here, the bulk of the weights is located around ∼ 0.9, with an extended tail
towards larger values, which becomes more extended for smaller values of t. ¿is clearly
indicates that the reweighting would suppress events with large-t emissions and enhance
those with small-t emissions. Far outliers also foreshadow that the weight distribution of
full Monte Carlo events will be broadened by the reweighting. We conclude that this must
be monitored for hadronic collisions that feature initial-state radiation, to ensure that the
statistical accuracy of reweighted results is not diminished signi�cantly.

3.4. LO matrix elements and parton showers

We leave now the pure parton-shower test case and consider again more practical appli-
cations, i.e. full event generations. If parton-showering is added to a LO calculation, the
value of the observable is not evaluated at ΦB any longer, but at PS(ΦB), which denotes the
phase-space point a er the showering. Applying this modi�cation to Eq. (3.1) yields

OLOPS = ∫ dΦB B(ΦB) PS(O ,ΦB) = lim
N→∞

1
Ntrials

N
∑
i=1
B(ΦB,i) PS(O ,ΦB,i) . (3.27)
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Figure 3.4.: The distribution of the evolution variable t2 , at which splittings occur, for the

u → ug and the g → uū channels. The distribution is varied over all replicas using the

reweighted SVA. For the 100th replica, the reweighting factors Q for each splitting are shown

in the right-hand panels.
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¿erefore the reweighting for B does not need to be altered, but the parton-shower emis-
sions depend on the PDF, the strong coupling, their respective scale prefactors k f and kαS
(detailed below) and its starting scale µQ :

PS(O ,ΦB) ≡ PS(O ,ΦB; µ2Q) ≡ PS(O ,ΦB; kαS , k f ; αS , f ; µ2Q) . (3.28)

In order to reweight the parton-shower emissions, we �rst need to identify its exact depen-
dence structure. Schematically, it acts on the phase-space element in the following way

PS(O ,Φn; t′) = ∆n(tIR, t′) O(Φn) + ∫ t′

tIR
dΦ1 Kn(Φ1) ∆n(t, t′) PS(O ,Φn+1; t) , (3.29)

where the Sudakov form factor of the n-parton state, ∆n, and its emission kernel Kn have
been introduced. While the �rst term describes the no-emission probability between the
starting scale t′ and the infrared cut-o� tIR and therefore does not change the phase-space
element, the second term describes the emissions of a parton at scale t in the con�guration
dΦ1 = dt dz dϕ J(t, z) (the integration boundaries are to be understood in this decompo-
sition), leading to a con�guration dΦn+1 = dΦn ⋅ dΦ1. ¿e Jacobian J is not relevant to
the discussion here and is subsequently absorbed in the emission kernel Kn. As the emis-
sions are ordered in t, the Sudakov form factor in the second term ensures that the current
emission is the hardest a er starting the evolution at t′. Additional branchings may occur
at smaller t and are not resolved at this stage—they are described by the parton shower
acting on the newly produced state Φn+1 with the new starting scale t. In Eq. (3.29) the
dependences on αS , the PDFs, and their respective scale prefactors kαS and k f have been
omitted for brevity. ¿ey directly carry over to the emission kernel and the Sudakov form
factor, according to

∆n(t2, t1; kαS , k f ; αS , f ) = exp(− ∫ t1

t2
dΦ1 Kn(Φ1; kαS , k f ; αS , f )) . (3.30)

When considering parton-shower emissions o� NLO QCDmatrix elements, special empha-
sis has to be given to the �rst emission as described in Section 3.5 below.
¿e default parton shower of Sherpa, dubbed CSShower, is based on Catani-Seymour

dipole factorisation [76], as discussed in Section 2.2.2. Each splitting of an emitter parton
into two daughters is witnessed by a spectator parton, which takes the recoil, and ensures
that on-shell states are transferred into on-shell states and energy-momentum conservation
is respected simultaneously. ¿e emitter and spectator partons reside either in the initial-
state (I) or �nal-state (F), such that four dipole types need to be distinguished: II, IF, FI and
FF. In this notation, the �rst letter refers to emitter, and the second to the spectator parton.
¿e no-emission probabilities are given by the four corresponding Sudakov form factors,

∆n(t2, t1; kαS , k f ; αS , f ) = ∏
type ∈ {FF,FI,IF,II}

∆typen (t2, t1; kαS , k f ; αS , f ) . (3.31)
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Table 3.2.: De�nition of the evolution and splitting variables for each dipole type. The �fth

column lists the splitting process as seen from the Born process, c and c′ refer to the �avour

of the initial state before and after the splitting process, respectively. The variables y i j ,k , z̃ i ,
x i j ,a , x jk ,a , x j ,ab , u j and v j are de�ned in [21, 76].

Diagram Type z y x (i j, k) → (i , j, k) c, c′

FF z̃i yi j,k 1 (i j, k) → (i , j, k) a, a

FI z̃i
1 − xi j,a
xi j,a

xi j,a (i j, a) → (i , j, a) a, a

IF x jk,a
u j
x jk,a

x jk,a (a j, k) → (a, j, k) a j, a

II x j,ab
ṽ j
x j,ab

x j,ab (a j, b) → (a, j, b) a j, a

¿ey share the common form

∆typen (t2, t1; kαS , k f ; αS , f )

= exp
⎛
⎝
−∑

i j
∑
k
∫ t1

t2
dt ∫ z+

z−
dz αS(kαS t)K′i j,k(t, z)

fc′( ηcx , k f t)
fc(ηc , k f t)

⎞
⎠

,
(3.32)

wherein the kinematics of the splitting are given by the default choice for t = Q2 y z(1 − z)
in the massless case while the K′i j,k(t, z) denote the coupling and PDF stripped emission
kernels incorporating the remaining pieces of the Ki j,k and the Jacobian J of the phase-space
parametrisation. ¿e precise de�nitions of the variables for each dipole type are given in
Table 3.2. It directly follows that for FF-type dipole emissions the ratio of PDFs is simply
unity. Equation (3.32) further details the dependence on the αS and PDF scale factors kαS
and k f . ¿esemultiplicative factors as well as their variations are assumed to be of order one,
such that they do not induce spurious large logarithms. ¿e generalisation to the massive
case is straightforward and only involves generalised de�nitions of t, x, y and z, cf. [21].
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We employ now the reweighted SVA stated in Section 3.3.2 to account for variations of
the strong-coupling parameter and the PDFs in the shower evolution of LO and NLO QCD
matrix elements. ¿e emission kernels K depend linearly on αS and on a ratio of PDFs
fc′(ηc/x , k f t)/ fc(ηc/x , k f t). A change of PDFs f → f̃ , the strong coupling αS → α̃S and
the scale prefactors entering both, i.e. kαS → k̃αS and k f → k̃ f , gives a reweighting factor
for each accepted trial emission 5:

Pacc → qaccPacc , qacc ≡
α̃S(k̃αS t)
αS(kαS t)

f̃c′( ηcx , k̃ f t)
fc′( ηcx , k f t)

fc(ηc , k f t)
f̃c(ηc , k̃ f t)

, (3.33)

where the scale dependence and the de�nition of ηc and x can be read o� the Sudakov
form factors given in Eq. (3.32) and Table 3.2. In case of FF dipoles, Eq. (3.33) simpli�es
signi�cantly, as the ratios of PDF factors reduce to unity. As explained in Section 3.3.2, each
qacc must be multiplied to the overall event weight to incorporate the new choice of αS ,
PDFs and the scales they are evaluated at. On the other hand, each rejected trial emission
gives a reweighting factor to

Prej = 1 − Pacc → 1 − qaccPacc = [1 + (1 − qacc)
Pacc

1 − Pacc
] Prej ≡ qrejPrej . (3.34)

Consequently, for each rejected emission the event weight receives a corrective weight of
qrej.

3.5. NLO matrix elements and parton showers

To match NLO QCD parton-level calculations with subsequent parton-shower evolution,
Sherpa employs a variant of the original MC@NLO algorithm, referred to as S-MC@NLO,
as has been discussed in Section 2.2.3. Schematically, such a S-MC@NLO calculation has

5Although the emission scales can not be reweighted themselves using the presented method, the input scales
of the strong coupling and the PDFs can be changed, as indicated in the text. We focus on constant prefactors
here, but the functional form can also be changed, although the overall functional form of kαS t should be
restricted to the cmw-like rescaling [156].
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the following structure:

⟨O⟩NLOPS = ∫ ΦB

⎡⎢⎢⎢⎢⎣
B(ΦB) +VI(ΦB) + ∫ dx′a/b KP(ΦB , x′a/b)

+∑
j
∫ dΦ j

1 (DA, j −DS , j) (ΦB ⋅ Φ j
1)
⎤⎥⎥⎥⎥⎦
PSNLOPS(O ,ΦB)

+ ∫ ΦR

⎡⎢⎢⎢⎢⎣
R(ΦR) −∑

j
DA, j(Φ j

B ⋅ Φ
j
1)
⎤⎥⎥⎥⎥⎦
PS(O ,ΦR)

= ∫ dΦB B(ΦB)PSNLOPS(O ,ΦB) + ∫ dΦRHA(ΦR)PS(O ,ΦR) .

(3.35)

Here the real-emission contribution R of the NLO calculation has e�ectively been split into
an infrared-singular (so ) and an infrared-regular (hard) part, the resummation kernel
DA and the �nite hard remainder HA, respectively, such that R = DA +HA [87, 157]. ¿e
B-function has the following explicit parameter dependences,

B(ΦB) ≡ B(ΦB; αS , f ; µR , µF)
= B(ΦB; αS , f ; µR , µF) +VI(ΦB; αS , f ; µR , µF)

+ ∫ dx′a/bKP(ΦB , x′a/b; αS , f ; µR , µF)

+∑
j
∫ dΦ j

1 (DA, j −DS , j) (ΦB ⋅ Φ j
1 ; αS , f ; µR , µF) .

(3.36)

From the perspective of parameter reweighting, the resummation kernel DA contribution
behaves the same way as the subtraction term DS . In fact, in our reweighting implemen-
tation the (DA − DS) contribution is treated as a single term, as indicated in the last line
of Eq. (3.36). ¿eir PDFs are evaluated at the partonic momentum fractions xa/b, j and ex-
ternal �avours a j and b j of their ΦB ⋅ Φ j

1 phase-space con�guration rather than those of
ΦB. ¿e other parts of the B-function can then be reweighted as described in Section 3.1.2,
leading to

B(ΦB; α̃S , f̃ ; µ̃R , µ̃F)
= α̃nS(µ̃2R) f̃a(xa , µ̃2F) f̃b(xb , µ̃2F)

× [B′(ΦB) + α̃S(µ̃2R) (VI′(ΦB) + c ′ (0)R lR + 1
2 c

′ (1)
R l2R)

+α̃S(µ̃2R) ∫ dx′a/bKP
′(ΦB , x′a/b; f̃ ; µ̃F)]

+∑
j
∫ dΦ j

1 f̃a j(xa j , µ̃
2
F) f̃b j(xb j , µ̃

2
F)α̃n+1S (µ̃2R) (DA, j −DS , j) (ΦB ⋅ Φ j

1) .

(3.37)
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¿eHA-function transforms as

HA(ΦR; α̃S , f̃ ; µ̃R , µ̃F)
= R(ΦR; α̃S , f̃ ; µ̃R , µ̃F) −∑

j
DA, j(Φ j

B ⋅ Φ
j
1 ; α̃S , f̃ ; µ̃R, j , µ̃R, j)

= α̃n+1S (µ̃2R) f̃a j(xa j , µ̃2F) f̃b j(xb j , µ̃
2
F)R′(ΦR)

−∑
j
α̃n+1S (µ̃2R, j) f̃a j(xa j , µ̃2F , j) f̃b j(xb j , µ̃

2
F , j)D′

A, j(Φ
j
B ⋅ Φ

j
1) ,

(3.38)

wherein each subtraction term DA, j has its own scales µR, j, µF , j de�ned on its underlying
Born con�gurationΦ j

B. Writing Eq. (3.35) as aMonte Carlo sum over events with B-like and
R-like structure, which are conventionally called S andH events in MC@NLO calculations,
and with N = NS + NH, we obtain:

⟨O⟩NLOPS = lim
N→∞

1
Ntrials

{
NS
∑
i=1
S(ΦB,i) PSNLOPS(O ,ΦB,i)

+
NH
∑
i=1
H(ΦR,i) PS(O ,ΦR,i)} .

(3.39)

¿us, under µR → µ̃R, µF → µ̃F , αS → α̃S and f → f̃ both B of the S-events and HA of the
H-events transform as composite objects in terms of their constituents, as de�ned above.
¿is leaves the S-MC@NLO parton shower, PSNLOPS, de�ned through

PSNLOPS(O ,ΦB) ≡ PSNLOPS(O ,ΦB; kαS , k f ; αS , f ; µQ)

= ∆n(tIR, t′)O(Φn)

+ ∫ t′

tIR
dΦ1

DA(ΦB ⋅ Φ1)
B(ΦB)

∆n(t, t′)PS(O ,Φn+1; t) .

(3.40)

It di�ers from the usual parton shower (PS) of Eq. (3.29) with respect to the splitting kernel
for the �rst emission and the associated de�nition of the Sudakov form factor, cf. [87, 158].
However, for the purpose of reweighting, all trial emissions can be treated in the same way
as in the standard parton shower, because the parameter dependences are identical.

3.6. Closure tests for (N)LO matrix elements and parton showers

In order to validate the reweighting of scale and parameter dependences in CSShower and
S-MC@NLO calculations within the Sherpa framework we perform closure tests between
reweighting results and dedicated simulations.
Our implementation allows to constrain the maximum number of reweighted shower

emissions per event. For a pure LO plus parton-shower run orH-like events in S-MC@NLO
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calculations, this amounts to setting nPS ∈ {0, 1, 2, . . . ,∞}. When considering S-MC@NLO
simulations in addition the parameter nNLOPS ∈ {0, 1} can be used to disable the reweighting
of theO(αS) emission for S events.
Of course the reweighting result will only coincide with a dedicated calculation if all

emissions are reweighted, i.e. nNLOPS = 1 and nPS = ∞. However, by subsequently enabling
the reweighting of more and more emissions the relevance of their dependences for the
determination of the full uncertainty can be studied. A �nite value of nPS can also be useful
in production, if the e�ect of reweighting higher-order emissions becomes negligible. ¿e
reduced amount of reweighting per event then allows for a faster event generation. An
additional bene�t would be that rare high-multiplicity shower histories do not spoil the
statistical convergence of the reweighted result, even if their exact kinematics might be
irrelevant for the studied observable.

3.6.1. The �nal-state only case: Thrust and jet resolutions in e+e− → qq̄ events

To validate LOPS reweighting, we consider two observables, which are complementary in
their sensitivity to parton-shower emissions. At �rst, we consider the event-shape variable
thrust T [159] in hadronic events in e−e+ collisions at

√
s = 91.2GeV.

In this case, QCD emissions are restricted to the �nal state. Accordingly, there appear
no PDF factors in the shower reweighting, cf. Eq. (3.33). Also there is no factorisation scale
dependence in the matrix element for e+e− collision. Moreover, as we consider the leading-
order matrix element for e−e+ → qq̄ only, the renormalisation scale is also absent in the
hard-process component. ¿erefore, we can concentrate on the pure αS uncertainty in the
parton shower here. Leaving the perturbative order of its running invariant it is de�ned by
its value at the input scale mZ .
In Fig. 3.5, we compare αS uncertainty bands generated by reweighting the nominal

prediction with the one generated by dedicated predictions for each variation. As in Fig. 3.1,
the uncertainty band is de�ned as the envelope over the distributions with di�erent αS(m2

Z)
input values. ¿e nominal value is taken as αS(m2

Z) = 0.120, and its up/down variations
are 0.128 and 0.108, respectively. Reweighting bands are presented for nPS = 1, 4, 8,∞. ¿e
nPS = 1 band underestimates the uncertainty, especially for T ≤ 2/3, where multiple hard
emissions are required, and for T ≈ 1, the region sensitive to multiple so emissions. For
nPS = 4, the uncertainty is underestimated only for bins with T ≤ 2/3, and less so than
for the nPS = 1 case. ¿e di�erence between the two choices of nPS = 8 and∞ is merely
statistical and both reproduce the dedicated result very accurately.
However, for low values of T , the statistical �uctuations of the reweighting results with

higher nPS grow larger, see the lower panel of Fig. 3.5, corresponding to a widening of the
distribution of reweighting factors. Low values of the thrust observable correspond to the
emission of several hard partons, which is less probable in the parton-shower approxima-
tion, and more appropriately modelled in multijet-merged calculations, cf. Section 3.7. In
this phase-space region it is di�cult for the reweighting to compensate the multitude of
accepted so emissions o� these hard legs, that turn unstable for Pacc → 1, with rejected
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Figure 3.5.: Uncertainty band for the Thrust event shape in dijet production in e−e+ anni-

hilation for a variation of αS . The upper left panel shows the nominal distribution and the

ratio to the central value. The uncertainty band calculated using reweighting (including all

emissions, i.e. nPS = ∞) is compared to the one obtained from dedicated calculations. The

comparison is repeated in the three panels on the upper right for di�erent maximum number

of reweighted emission nPS . The lower panels show the deviations for each variation across

the di�erent values of nPS , including statistical errors.
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ones, cf. Eq. (3.34). As discussed at the end of Section 3.3, this issue might be addressed by
introducing a prefactor to the over-estimator function K̂ in the reweighting run.
We supplement the validation of the reweighting with respect to the¿rust observable

with another observable, the Durham jet resolution for a (n + 1) → n clustering. ¿e reso-
lution parameter yn,n+1 is de�ned as the value of the jet cut parameter ycut of the Durham
jet algorithm [108], at which a n-jet con�guration is clustered to a (n + 1)-jet con�guration.
¿e distribution for yn,n+1 is sensitive to the probability of hard-parton radiation from a
n-jet con�guration. So if we test the parton-shower reweighting, we are only sensitive up
to the (n + 1)th emission, factorising out higher-multiplicity emissions. In this sense, the
jet resolutions are more clean than the ¿rust, where overlapping regions are sensitive to a
varying number of emissions.
In Fig. 3.6, we provide cross-closure tests for a reweighting from αS(m2

Z) = 0.120 to
0.128, varying nPS. As expected, the reweighting succeeds when nPS ≥ n + 1. Even nPS ≥ n
performs reasonably well, but if nPS drops below n, large deviations appear between the
reweighted and the dedicated prediction.
Note that both the¿rust (for the region where three-jet production dominates) and the

jet resolution for n = 2, i.e. y23 have been used to �t αS(m2
Z) [160], among other event-shape

observables. ¿e results of our �nal-state shower validations show that the required theory
predictions can be generated with a reweighting, provided that nPS is at least 3 or 4.

3.6.2. The initial-state dominated case: W-boson transverse momentum and jet
resolutions in pp→ W[e−ν] events

¿esecondobservable considered to validate our CSShower and S-MC@NLO reweighting
implementation is theW-boson transverse-momentum (pWT ) distribution in 13 TeV proton-
proton collisions, that has already been used in Section 3.2 in the NLO case. ¿e lepton cuts
and the jet de�nition are unchanged. Also the de�nitions for constructing the uncertainty
bands used there are kept the same. ¿e only exception is the PDF band, where now we
consider the CT14 set, which uses a Hessian error representation at a 90% con�dence
level [101].6 ¿erefore the PDF error band will be larger than before, as it now corresponds
to nearly two standard deviations instead of only one.
Considering a hadronic environment, initial-state emissions are present, which means

that our reweighting factors now include PDF double ratios. In Fig. 3.7, we compare LOPS un-
certainty bands for scale, αS and PDF variations, including comparisons between reweighted
and dedicated predictions for a varying maximum number of reweighted shower emissions
nPS. Before discussing the bands, we observe that the tail of the pWT spectrum is not pop-
ulated, in particular in comparison to Fig. 3.1. ¿is is expected, as the LO con�guration
is constrained to pWT = 0, such that all other bins are �lled through recoils against parton-

6¿e reason for switching from NNPDF 3.0 to CT14 PDFs is the strict positivity of the latter. ¿e CSShower
rejects emissionswhen negative PDF values are involved, a behaviourwhich spoils the reweighting in regions
where the original and the target PDF do not have the same sign, see Section 3.3.3. ¿e deviations seem to
be small in practical applications, but here we chose to establish closure in a clean context �rst.
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Figure 3.6.: Cross-closure test for the Durham jet resolutions at di�erent multiplicities in

dijet production for e+e− annihilation, reweighting αS (m2
Z) up from 0.120 to 0.128. A LO plus

parton-shower calculation is used, and the maximum number of reweighted emissions nPS

is varied. The upper panels show the nominal distribution and the lower panels the ratio

of the reweighted predictions to the dedicated prediction. The uncertainty bands give the

statistical error, which is expected to grow for larger nPS .
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Figure 3.7.: The same as in Fig. 3.1, but for a LO plus parton-shower calculation. The un-

certainty bands are calculated by reweighting the matrix element and up to nPS shower

emissions. In the upper four plots, nPS = 3. In the lower plots, nPS is varied for comparison.

The scale uncertainties do not change with nPS and are therefore not repeated.
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shower emissions only. However, the phase space of parton-shower emissions is restricted
to the so region, and therefore the W boson can not build up a large recoil.
We now turn to the scale uncertainty band—which is only due to factorisation scale

variations, because the LOmatrix element is independent of αS . ¿erefore, the band gives
not a faithful estimate of the overall perturbative uncertainty. We also observe that the band
is nearly �at. As we vary only the scales of the matrix-element calculation, the constant
spread corresponds to the factorisation-scale uncertainty of the Born con�guration for
which pWT = 0, merely propagated to higher pWT bins through the parton shower, which
is unaware of the scale variations. In the matrix-element reweighting, we can guarantee
the same phase-space points as in the dedicated run, such that we see perfect agreement
between dedicated and reweighted predictions. We therefore omit comparisons for di�erent
nPS for the scale-uncertainty band.
Looking at the αS uncertainty band, we can see that the envelope constricts at the position

of the peak of the distributions. ¿is re�ects that the variation of αS shi s the position of the
peak, such that variations that are below the nominal distribution on the le side of the peak,
are exceeding the nominal distribution on the right side, and vice versa. Comparing the
reweighted prediction to the dedicated one, we �nd a �at band for nPS = 0, corresponding
to restricting the reweighting to the �xed-order matrix element. As the LO calculation is
independent of αS , this only re�ects the change of the PDFs, which are �tted to αS(m2

Z).
¿e reproduction of the shape of the αS uncertainty improves a lot when reweighting up to
one emission (nPS = 1), and slightly more when adding another emission on top (nPS = 2).
For the PDF uncertainty, we see that the reweighting with nPS = 0 under-estimates it by

at least 1–5% for small transverse momenta, and over-estimates it around the Wmass. As
for the αS uncertainty, this improves for nPS = 1, 2.
¿e last depicted step, i.e. nPS = 3, on the other hand, does not contribute further to the

reproduction of the αS and PDF uncertainties. No signi�cant di�erences with respect to the
nPS = 2 case is observed. It can be concluded that it is su�cient to reweight only up to two
emissions to reproduce the uncertainty bands for this observable.
¿is is to be expected, as the gauge boson recoils against the shower emissions and is

therefore mostly a�ected by the few hardest emissions. ¿ese mainly originate from the
incoming hard virtual partons, so the generally so er �nal-state emissions barely contribute.
Although we do not reproduce this here, we con�rmed this by entirely disabling �nal-state
emissions, which showed no e�ect on the results.
In Fig. 3.8, we present the validation of NLOPS predictions for the pWT distribution. Over-

all, we get a similar picture as in the LOPS case, but with more faithful scale variations as the
µR dependence is not present. ¿ey are smallest in the low pWT range, where the complete
set ofO(αS) corrections is present to the production process. For large pWT , the uncertainty
increases, because we fall back to a LO description again: Only the 2 → 3 matrix element
still contributes. We have repeated the nominal distribution for LOPS for reference, which
falls steeply for pWT ≳ mW, whereas theNLOPS distribution continues tomuch higher values
of pWT .
To assess the quality of the reweighting, we consider again di�erent settings for the
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Figure 3.8.: The same as in Fig. 3.7, but for a NLO plus parton-shower calculation. The un-

certainty bands are generated by reweighting the ME and a maximum number of emissions

from the MC@NLO (nNLOPS) and the ordinary parton shower (nPS). nNLOPS is constrained to 0

or 1, as the MC@NLO prescription only a�ects the �rst emission. In the upper four plots we

consider nNLOPS = 1 and nPS = 2, thus up to three emissions are reweighted. In the lower

plots, we consider variations of nNLOPS and nPS .
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parameters nNLOPS and nPS. Assuming nNLOPS = nPS = 0, only the scale variations of the
hard process are considered and the parton-shower contribution to theO(αS) correction is
not reweighted. Furthermore, we present results for nNLOPS = 1 and nPS = 0, 1, 2. With these
settings, the O(αS) corrections get properly reweighted, and the number of subsequent
shower emissions o� the S- and H-like events treated correctly is varied. We observe a
saturation for reproducing the dedicated calculations at nNLOPS + nPS ≥ 2, with no further
improvement when nPS is increased from 1 to 2. ¿is con�rms the �ndings made when
considering the LOPS setup in Fig. 3.7: ¿e pWT distribution is dominated by the few hardest
emissions.
To illustrate again the observable-dependence of choosing a su�ciently high nPS, we

present jet resolutions at LOPS in Fig. 3.9. Again, jet resolutions dn,n+1 give the jet distance
parameter of the jet algorithm, in this case the anti-kT algorithm [107], at which an (n + 1)-
jet con�guration is clustered into an n-jet con�guration. For harder jets with dn,n+1 ≳ 0.6,
we �nd a similar behaviour as for the jet resolution in e+e− annihilation in the previous
section. When n + 1 becomes larger than nPS, the reweighted result deviates away from the
dedicated result. We included for reference the fully reweighted prediction for nPS = ∞,
which always gives the correct result as it is expected to do.

3.7. Multi-jet merging

In this section we address the reweighting of multi-jet merged event generation runs. ¿ese
approaches allow to combine LO or NLO QCD matrix elements of di�erent multiplicity
dressed with parton showers into inclusive samples, as discussed in Section 2.2.4.
To �rst approximation the reweighting as described in the previous sections can be used

without change, only that the perturbative order p is no longer a constant across the sample,
but varies for each event, corresponding to the considered matrix-element parton multi-
plicity. However, there are also new algorithm-speci�c intricacies which complicate the
dependence on the input parameters and need to be dealt with to allow for a consistent
reweighting. In what follows we will detail the speci�cs of the reweighting procedure for
LO and NLOmulti-jet merging runs with Sherpa supplemented by an extensive validation
of the implementation.
It should be emphasised here, parton-shower reweighting is vital when using modi�ed

input parameters in order to cancel the Qcut dependence to the accuracy of the parton
shower. In case only the hard-processmatrix element parameters get reweighted the leading
dependence on Qcut still is cancelled but sub-leading contributions remain [33].

Preliminaries

Common to the LO and NLOmerging techniques used in Sherpa, cf. [30, 33, 88, 125, 161],
is the separation of the emission phase space into a so and a hard region, de�ned through
a suitable m-parton measure Qm and a separation criterion Qcut. For each parton con�g-
uration Φm with Qm > Qcut, a shower history that represents the event as a core process
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Figure 3.9.: Cross-closure test for the kT jet resolutions at di�erent multiplicities in W pro-

duction, reweighting from the CT14 PDF set to the MMHT2014 one. A LO plus parton-shower

calculation is used, and the maximum number of reweighted emissions nPS is varied. The

upper panels show the nominal distribution and the lower panels the ratio of the reweighted

predictions to the dedicated prediction. The uncertainty bands give the statistical error.
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Figure 3.10.: Possible parton-shower histories of a qg → Zgqq′q̄′ matrix element allowing

only QCD splittings (left) and also including electro-weak (EW) splittings (right).

with subsequent 1→ 2 shower splittings is probabilistically built through backward cluster-
ing. ¿e resulting sequence of cluster steps is characterised by tuples {ai , bi , xa,i , xb,i , ti},
recording the varying initial-state �avours andmomentum fractions as well as the evolution
variable of each splitting. We allow for both QCD and electro-weak splitting functions [30,
162] to identify such splitting processes and veto recombinations that would lead to the
reduction of con�gurations which are not present in the matrix elements7. As an example,
Figure 3.10 details possible cluster histories for a given pp→ Z+4 jets con�guration, depend-
ing on its kinematics, allowing for QCD splittings only (le ) or both QCD and electro-weak
splittings (right).
¿e sequence {ti} of reconstructed emission scales may be either ordered or unordered,

with an ordered history satisfying t j < t j−1 < . . . < t1 < t0 = µ2F ,core. ¿e recombination
probabilities in each clustering step are determined by the forward-splitting probabilities
and are therefore dependent on the parton shower and its parameters and choices. ¿is
is re�ected, step-by-step, in the addition of one factor of αS (when appropriate) at the
reconstructed splitting scale, a ratio of PDFs at the reconstructed initial �avours and their
momentum fractions, and a Sudakov form factor describing the evolution of each step.
In the Sherpa implementations the αS and PDF factors are added explicitly onto the

respective matrix elements and can therefore be reweighted directly. ¿e Sudakov form fac-
tor, on the other hand, is implemented through a vetoed truncated parton shower [30, 125].
¿e truncated shower itself, accounting for the possibility of so parton-shower emissions
between subsequent reconstructed hard emissions, i.e. with tm < t < tm−1 but Q < Qcut,
can be reweighted with the methods described in Section 3.3. If, however, an emission
with Q > Qcut occurs the event is vetoed. Practically, this is accounted for through increas-
ing ntrials of the next accepted event by ntrials of the vetoed event. ¿us, ntrials becomes
dependent on the parton-shower parameters.
In unordered histories the {ti} sequence has at least one pair tk ≥ tk−1. Such histories

can be encountered in various con�gurations, e.g. when the last clustering step produces

7An example here is the interpretation of an e+e− → gdd̄ con�guration. Its matrix element does not contain
terms/diagrams that allow the quark-antiquark pair to be clustered.
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a splitting scale larger than the nominal starting scale of the core process8, or the �avour
structure only allows further clusterings at scales tk−1 lower than the last identi�ed one tk9.
As such con�gurations can not be generated by a strictly-ordered parton shower, for each
unordered step neither the accompanying PDF ratio nor Sudakov form factor is therefore
present in the calculation. More than one unordering in a cluster history of a given event
is possible and in fact likely at high multiplicities. PDF ratios and Sudakov factors then of
course only occur in the ordered subhistories in between the unorderings. For the sake of
clarity and brevitywewill omit unorderings from the discussion of the following subsections.
Its implications to the algorithm, and therefore to the reweighting, are straightforward.

3.8. The leading-order case: MEPS@LO

We start the discussionwith the simplest case, where allmatrix elements used in themerging
are given at leading order. A LOmultijet-merged (MEPS@LO) calculation, with Bornmatrix
elements at O(αn+ jS ), containing j additional partons relative to the core process, has the
following structure

O =
jmax
∑
j=0

∫ dΦ j B
merge
j (Φ j) Θ(Q j − Qcut) PSvt(O ,Φ j)

= lim
N→∞

1
Ntrials

N
∑
i=1

jmax
∑
j=0

Bmergej (Φ j,i) Θ(Q j − Qcut) PSvt(O ,Φ j,i) .
(3.41)

Note that Φ j here denotes the entire �nal-state phase space of the process, including all
particles of the core process. As before, Q j is a suitable infrared-safe distance measure ofΦ j.
¿eΘ-function thus realises aminimum separation ofQcut and acts as an infrared regulator.
PSvt is the vetoed truncated parton shower derived fromEq. (3.29). As the limit in the second
line is well de�ned, it can be transposed with the summation over parton multiplicities. As
the ingredient LO matrix elements need to incorporate the so -collinear resummation
properties of the parton shower, they have the following parameter dependences:

Bmergej (Φ j) ≡ Bmergej (Φ j; αS , f ; µR,core, µF ,core, kαS , k f ;{ai , bi , xa,i , xb,i , ti}) . (3.42)

¿e cluster steps {ai , bi , xa,i , xb,i , ti} denote the identi�ed cluster history of the con�gu-
ration Φ j, as discussed above. ¿erein, the ai , bi are the possibly changing initial-state
�avours, the xa,i , xb,i their momentum fractions, and the ti are the reconstructed values
of the parton-shower evolution variable at each splitting. Together with the αS and PDF

8 An example here is the interpretation of a gq→ Zq con�guration. In regions of large transverse momenta
of the �nal-state parton its identi�ed emission scale t1 is larger than the starting scale t0 of the core process
qq̄→ Z, usually de�ned to be the invariant mass of the (virtual) Z.

9 An example here is the interpretation of a e+e− → dd̄uū con�guration. In a �rst step there are only two
choices to cluster, resulting in an identi�ed emission scale t2. ¿ere now is only a �nite region in phase
space where the gluon can be clustered with scale t1 < t2 .
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scale prefactors kαS , k f of the parton shower, the cluster steps relate B
merge
j to the scale- and

PDF-stripped Born matrix element B′j encountered in Section 3.1.1,

Bmergej (Φ j; αS , f ; µR,core, µF ,core, kαS , k f ;{ai , bi , xa,i , xb,i , ti})

=
j

∏
i=1

fa i(xa,i , k f ti)
fa i−1(xa,i−1, k f ti)

fa0(xa,0, µ2F ,core)
j

∏
i=1

fb i(xb,i , k f ti)
fb i−1(xb,i−1, k f ti)

fb0(xb,0, µ2F ,core)

× αn+ jS (µ2R) B′j(Φ j) .

(3.43)

In this notation, the core scale is t0 = µ2F ,core, it is therefore not multiplied by the prefactors
of the parton shower. ¿e partonic momentum fractions of the core process are xa,0, xb,0.
¿e scales of each single αS within the cluster history vary, but an e�ective global renor-

malisation scale can be de�ned through

αn+ jS (µ2R) = αn+eS (µ2R,core)
j

∏
i=1
α1−є iS (kαS ti) , (3.44)

where єi = 0 if the identi�ed splitting process at branching i is ofQCD-type, and 1 otherwise,
e = ∑ j

i=1 єi . To consistently vary the µR scale, we consider variations of the splitting scales ti
and the core scale µR,core on the right-hand side by a common factor, solving for the prefactor
of the e�ective µR to be used in the matrix-element calculation. ¿us, while up to NLO
accuracy µR is varied by the same common factor, the full solution of this procedure results
in slightly larger variations of the e�ective renormalisation scale.
Apart from the Sudakov form factors the so -collinear structure of the Bmergej is now

identical to the emission of j partons o� aB0 con�gurationwith the parton shower described
in Section 3.3. In the case of �nal-state splittings, the ratio of PDFs is simply unity as neither
the partonic xa/b,i and xa/b,i−1 nor the initial-state �avours ai , bi and ai−1, bi−1 di�er. In
principle, with every ratio of PDFs there is also a ratio of �ux factors. However, all such
factors cancel except for the outermost ones, corresponding to Φ j and, hence, are regarded
as part of B′j.
Changing the scales µR,core → µ̃R,core, µF ,core → µ̃F ,core, kαS → k̃αS , k f → k̃ f as well as

αS → α̃S and f → f̃ results in

Bmergej (Φ j; α̃S , f̃ ; µ̃R,core, µ̃F ,core, k̃αS , k̃ f ;{ai , bi , xa,i , xb,i , ti})

=
j

∏
i=1

f̃a i(xa,i , k̃ f ti)
f̃a i−1(xa,i−1, k̃ f ti)

f̃a0(xa,0, µ̃2F ,core)
j

∏
i=1

f̃b i(xb,i , k̃ f ti)
f̃b i−1(xb,i−1, k̃ f ti)

f̃b0(xb,0, µ̃2F ,core)

× α̃n+ jS (µ̃2R) B′j(Φ j) .

(3.45)

¿e scale µ̃2R is now calculated from Eq. (3.44) using µ̃2R,core and k̃αS as input.
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Equation (3.45) describes what happens to the matrix-element part of a multi-jet merged
calculation. ¿is leaves the vetoed truncated shower PSvt. While the truncated and standard
shower part is described in Section 3.3, the vetoed shower leads to vetoed events. As vetoed
events correspond to events whose weights have been set to zero, their description is equiva-
lent to increasing the number of trials, ntrials, by one. ¿us, when varying the parameters of
the parton shower, also the probabilities of vetoing events are changed. Consequently, ntrials
acquires a dependence on the parameters of the variation. ¿us, now explicitly stating the
dependence on the shower starting scale µ2Q and the merging scale Qcut,

ntrials(µ2Q ;Q2
cut;{ai , bi , xa,i , xb,i , ti}; α̃S , f̃ ; k̃αS , k̃ f )

=
1 − ∆n+ j(tIR, µ2Q ;Q2

cut; α̃S , f̃ ; k̃αS , k̃ f ;{ai , bi , xa,i , xb,i , ti})
1 − ∆n+ j(tIR, µ2Q ;Q2

cut; αS , f ; kαS , k f ;{ai , bi , xa,i , xb,i , ti})
,

(3.46)

where

∆n+ j(tIR, µ2Q ;Q
2
cut; αS , f ; kαS , k f ;{ai , bi , xa,i , xb,i , ti})

=
j

∏
i=1

exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

t i−1

∫
t i

dΦ1 Kn+i(Φ1; kαS , k f ; αS , f ) Θ(Qn+i > Qcut)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

.
(3.47)

¿us, ntrials corresponds to the survival probability between the unfolding of preexisting
splittings when evolving from the n-parton core con�guration to the (n + j)-parton con�g-
uration. When changing the parameters of the simulation, the probability of the truncated
shower to emit a parton with Q > Qcut must be re-evaluated following the substitutions
kαS → k̃αS , k f → k̃ f , αS → α̃S and f → f̃ using the methods of Section 3.3. Note, all
emissions produced by the truncated shower prior to the one that triggers the veto need to
be reweighted as they impact the initial conditions for that emission.

3.9. The next-to-leading-order case: MEPS@NLO

¿emerging of multi-jet matrix elements atNLO accuracy (MEPS@NLO) proceeds schemat-
ically similar as in the LO case. ¿e input quantity is now theNLOPSmatched (n+ j)-parton
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con�guration, thus

⟨O⟩MEPS@NLO =
jmax
∑
j=0

[ ∫ dΦ j B
merge
j (Φ j) Θ(Q j − Qcut) NLOPSv(O ,Φ j)

+ ∫ dΦ j+1 H
merge
A, j (Φ j+1,Qcut) PSvt(O ,Φ j+1)]

= lim
N→∞

1
Ntrials

⎧⎪⎪⎨⎪⎪⎩

NS
∑
i=1

jmax
∑
j=0

Bmergej (Φ j,i) Θ(Q j − Qcut) NLOPSv(O ,Φ j,i)

+
NH
∑
i=1

jmax
∑
j=0

Hmerge
A, j (Φ j+1,i ,Qcut) PSvt(O ,Φ j+1,i)

⎫⎪⎪⎬⎪⎪⎭
,

(3.48)

keeping the notation of Eqs. (3.35) and (3.41). For the S-events the same Θ-function of
Eq. (3.41) is used as an infrared regulator and the S-MC@NLO parton shower of Eq. (3.40)
is replaced by its vetoed version. It only matches the so est emission in t and, thus, does
not generate truncated emissions. ¿ese are added dressing it with additional emissions
through the standard parton shower. As all ingredients of Bmergej are evaluated at the same
phase-space point Φ j, they share a common cluster history {ai , bi , xa,i , xb,i , ti}. Hence,
again suppressing any further Qcut-dependence which is not varied,

Bmergej (Φ j) ≡ B
merge
j (Φ j; αS , f ; µR,core, µF ,core, kαS , k f ;{ai , bi , xa,i , xb,i , ti}) . (3.49)

¿is transforms under the replacements kαS → k̃αS , k f → k̃ f , αS → α̃S and f → f̃ in the
following way,

Bmergej (Φ j; α̃S , f̃ ; µ̃R,core, µ̃F ,core, k̃αS , k̃ f ;{ai , bi , xa,i , xb,i , ti})

=
j

∏
i=1

f̃a i(xa,i , k̃ f ti)
f̃a i−1(xa,i−1, k̃ f ti)

f̃a0(xa,0, µ̃2F ,core)
j

∏
i=1

f̃b i(xb,i , k̃ f ti)
f̃b i−1(xb,i−1, k̃ f ti)

f̃b0(xb,0, µ̃2F ,core)

× α̃n+ jS (µ̃2R) [B′j(Φ j) + α̃S(µ̃2R) (VI′j(Φ j) + c ′ (0)R, j lR + 1
2 c

′ (1)
R, j l

2
R)

+ α̃S(µ̃2R) ∫ dx′a/b KP
′

j(Φ j , x′a/b; f̃ ; µ̃F ,core)

+ α̃S(µ̃2R)∑
k
∫ dΦk

1 (D′

A,k −D′

S ,k) (Φ j ⋅ Φk
1 ) ]

−
j

∑
i=1

α̃S(µ̃2R)
2π

log ti−1
ti

⎛
⎝ ∑c=q,g

∫ dx′a,i
x′a,i

Pac(x′a,i) f̃c(
xa , i
x′a , i

, k̃ f ti)

+ ∑
d=q,g

∫ dx′b,i
x′b,i

Pbd(x′b,i) f̃d(
xb , i
x′b , i

, k̃ f ti)
⎞
⎠
α̃n+ jS (µ̃2R)B′j(Φ j) .

(3.50)
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In addition to the transformation properties of the B-function of Eq. (3.36), supplemented
with the PDF ratios already encountered in the LO case, additional terms appear. ¿ey
subtract the O(αS) expansion of these ratios, in order to retain the NLO accuracy of the
merged calculation. Again, please note that t0 = µ2F ,core.
¿e H-events do not have a homogeneous phase-space point. ¿eir constituent real-

emission matrix elements are de�ned on Φ j+1 , while each subtraction term DA,k has its
own projection on a phase-space point Φk

j . ¿us,

Hmerge
A, j (Φ j+1,Qcut)
≡ Rmergej (Φ j+1; αS , f ; µR,core, µF ,core, kαS , k f ;{ai , bi , xa,i , xb,i , ti})Θ(Q j − Qcut)

−∑
k
Dmerge
A,k, j (Φ

k
j ⋅ Φk

1 ; αS , f ; µR,core,k , µF ,core,k , kαS , k f ;

{ai ,k , bi ,k , xa,i ,k , xb,i ,k , ti ,k})Θ(Qk
j − Qcut) ,

(3.51)

wherein both Rmergej and the Dmerge
A,k, j separately transform as the LO counterpart Bmergej .

While the measure Q on Φ j+1 of R
merge
j is de�ned to act on the underlying Φ j, a er the �rst

cluster step reducing the real-emission con�guration to a Born con�guration, it is de�ned
directly on each Φk

j in each DA,k . Infrared safety is guaranteed through the infrared safety
of their phase-space maps, the clustering algorithm and the measure Q.
Finally, we considerMEPS@NLO calculations that are extended by additional LOmatrix

elements through theMENLOPS scheme, as described in Section 2.2.4. We denote the total
number of jets as jmax, and the number of jets described to NLO as jNLOmax ,

⟨O⟩MEPS@NLO+MENLOPS

=
jNLOmax

∑
j=0

[ ∫ dΦ j B
merge
j (Φ j) NLOPSv(O ,Φ j)

+ ∫ dΦ j+1 H
merge
A, j (Φ j+1) PSvt(O ,Φ j+1)]

+
jmax
∑

j= jNLOmax +1
∫ dΦ j k jNLOmax

(Φ jNLOmax +1(Φ j)) Bmergej (Φ j) PSvt(O ,Φ j)

= lim
N→∞

1
Ntrials

⎧⎪⎪⎨⎪⎪⎩

NS
∑
i=1

jNLOmax

∑
j=0

Bmergej (Φ j,i) NLOPSv(O ,Φ j,i)

+
NH
∑
i=1

jNLOmax

∑
j=0

Hmerge
A, j (Φ j+1,i) PSvt(O ,Φ j+1,i)

+
NLO

∑
i=1

jmax
∑

j= jNLOmax +1
k jNLOmax

(Φ jNLOmax +1(Φ j)) Bmergej (Φ j,i) PSvt(O ,Φ j,i)
⎫⎪⎪⎬⎪⎪⎭

,

(3.52)

with N = NS +NH +NLO. A di�erential K-factor k jNLOmax
is applied to the higher-multiplicity
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leading-order matrix elements in order to facilitate a smooth transition across Qcut. It has
the form

km(Φm+1) = Bm(Φm)
Bm(Φm)

(1 − HA,m(Φm+1)
Rm(Φm+1)

) + HA,m(Φm+1)
Rm(Φm+1)

, (3.53)

and therefore moulds the B jNLOmax +1 into the same form as the HA, jNLOmax
it is replacing. ¿e

projectionΦ jNLOmax +1(Φ j) for j > jNLOmax +1 is de�ned through its cluster history, as isΦm(Φm+1)
inside km itself. When we change now the parameters of the calculation, αS → α̃S , f → f̃ ,
µR → µ̃R and µF → µ̃F , k jNLOmax

transforms as a composite object in terms of its constituents,
cf. Sections 3.1.1, 3.1.2 and 3.3. ¿e scales are set directly by the Bmergej process. Of course, in
the interest of decreased computational costs one may decide to choose km ≡ 1 throughout
at the cost of larger merging systematics. Similarly, if an electroweak cluster history leads
to a changed signature in Φm+1, km ≡ 1 is chosen.

3.10. Closure tests for multi-jet merged calculations

¿e reweighting for multi-jet merged calculations as discussed in the previous sections
has been implemented within Sherpa with the CSShower for leading-order matrix
elements (MEPS@LO), next-to-leading order matrix elements (MEPS@NLO) and next-to-
leading-order matrix elements with additional leading-order ones on top (MENLOPS). For
the validation, we again perform closure tests between reweighted and dedicated predictions
for the transverse momentum of the W-boson in Figs. 3.11 to 3.13. Again, the de�nitions for
the scale uncertainty band are listed in Table 2.1, and the lepton cuts and the jet de�nition
are the same as in Section 3.2. In addition, we employ a merging cut of Qcut = 20GeV.
For theMEPS@LO validation in Fig. 3.11, we combine LOmatrix elements for 0-, 1- and

2-jet multiplicities, obtained from Comix [70]. We can observe that we populate a much
larger phase space than for a mere LOPS calculation in terms of pWT . Below the merging cut
(i.e. pWT ≲ 20GeV), the scale uncertainty band is equal to the one of the LOPS calculation.
For higher pWT , the scale uncertainty increases corresponding to the larger uncertainty of the
higher-multiplicity matrix elements, that contribute renormalisation scale uncertainties.
In Fig. 3.12, we consider the MENLOPS case. We combine an NLO matrix element for

the 0-jet multiplicities with LOmatrix elements for the 1- and 2-jet multiplicities. ¿e scale
uncertainty for low pWT values now features the reduced scale uncertainty, that we already
have seen in the NLOPS validation.
¿e same is true in the MEPS@NLO case depicted in 3.13. A direct comparison of the

scale uncertainties to the MENLOPS case is not straightforward though, as we combine
NLO matrix elements for the 0- and the 1-jet multiplicity, where the virtual amplitudes
are obtained from BlackHat. Hence, the 2-jet multiplicity is described at leading order
through the 1-jetH-events. As such, the set-up is not a simple “upgrade” fromourMENLOPS
calculation.
ForMEPS@NLO, we have also added the nominal result for the NLOPS calculation for
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Figure 3.11.: The same as in Fig. 3.8, but for a multi-jet merged generation with LO matrix ele-

ments for 0-, 1- and 2-jet multiplicities. The uncertainty bands are calculated by reweighting

the matrix element and a maximum number of emissions nPS of parton-shower emissions.

In the upper four plots, nPS = 3, thus up to three emissions are reweighted. In the lower

plots, nPS is varied for comparison. Again, we �nd a saturation when reproducing dedicated

calculations for nPS ≥ 2, with no further improvement when nPS is increased from 2 to 3.
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Figure 3.12.: The same as in Fig. 3.11, but for a multi-jet merged generation with one NLO matrix

element for the 0-jet multiplicity, and LO matrix elements for the 1- and 2-jet multiplicities.

The uncertainty bands are calculated by reweighting the matrix element and a maximum

number of emissions from the MC@NLO (nNLOPS) and the ordinary PS (nPS). In the upper four

plots, nNLOPS = 1 and nPS = 2, thus up to three emissions are reweighted. In the lower plots,

both n are varied for comparison. Again, we �nd a saturation when reproducing dedicated

calculations for nNLOPS + nPS ≥ 2, with no further improvement when nPS is increased from 1

to 2.
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Figure 3.13.: The same as in Fig. 3.12, but for a multi-jet merged generation with NLO matrix

elements for the 0- and 1-jet multiplicities. The uncertainty bands are calculated by reweight-

ing the matrix element and a maximum number of emissions from the MC@NLO (nNLOPS)

and the ordinary PS (nPS). In the upper four plots, nNLOPS = 1 and = nPS = 2, thus up to three

emissions are reweighted. In the lower plots, both n are varied for comparison. Again, we

�nd a saturation when reproducing dedicated calculations for nNLOPS + nPS ≥ 2, with no

further improvement when nPS is increased from 1 to 2.
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Figure 3.14.: The transverse momentum of the H-boson in H production. A reweighting is

performed to generate the CT10 uncertainty band, which is compared to a dedicated calcula-

tion. The reweighting is restricted to the matrix elements of the Sherpa multi-jet calculation,

merging the 0-, 1- and 2-jet multiplicities and a parton shower.

comparison. Below Qcut = 20GeV, it is identical to theMEPS@NLO result, but it falls more
steeply therea er, as it describes 0 jets to NLO and 1 jet to LO, whereas our MEPS@NLO
calculation describes the 0- and 1-jet multiplicities to NLO, and 2 jets to LO accuracy, such
that large W-boson recoils can be predicted with higher (and more faithful) rates.
In all multi-jet merging validations, we �nd a similar behaviour with respect to the

imprint of including emissions in the reweighting. For nNLOPS + nPS = 2, the dedicated
calculations are well reproduced, and no further improvement is found for nNLOPS+nPS = 3.
It is noteworthy, that for theMENLOPS case we �nd a worse reproduction for nNLOPS = 1
and nPS = 0 compared to the NLOPS and the MEPS@NLO cases. ¿is originates in the
fact that in the latter two cases, we enable the reweighting of emissions o� S-events at all
involvedmultiplicities, whereas in theMENLOPS case only the �rst of the threemultiplicities
is a�ected, because the other two are at LO and therefore do not have S-events. ¿us, the
overall importance of the S emission reweighting gets restricted to the region below Qcut
of the 1-jet con�guration in theMENLOPS case.
We close this section by noting that the too small uncertainty for very low pWT for varia-

tions of the matrix elements only seems to be a general feature, with the form being inde-
pendent of the partonic initial state. In Fig. 3.14, we perform a CT10 PDF band closure test
for the transverse momentum distribution of the H-boson in H production. ¿e collider
set-up is as for theW production, i.e. pp collisions at 13 TeV. LOmatrix elements for H plus
0, 1 or 2 jets are merged. ¿e Higgs is produced via an e�ective coupling to two incoming
gluons via a top-quark loop which is integrated out in the in�nite top-mass limit. Hence,
our lowest-order initial state is now two gluons instead of a weak quark doublet. However,
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the deviation of the matrix-element-only reweighting band from the dedicated one for low
transverse momentum is very similar to what we observed in the W-boson case, although
less pronounced.

3.11. Adding reweighted emissions vs. merging more multiplicities

To supplement our closure tests for the transverse momentum of the W-boson, and to
highlight the di�erences between a �xed-order plus parton-shower calculation to a multi-
jet merged one, we now consider the exclusive jet multiplicity NJets. ¿e process still is W
production, at a 13 TeV pp collider, as in the previous section.
¿e NJets observable is not only sensitive to the generation of hard jets (as is the pWT

distribution through their combined recoil), but to the generation of jets in general. As the
number of jets itself is binned, possible deviations of the reweighting will be separated by
multiplicity. ¿is also allows us to explore the e�ect of replacing parton-shower emissions
with matrix-element calculations, by comparing a LOPS calculation to aMEPS@LO calcula-
tion. It is expected that this has a strong impact on higher jet multiplicities, as the parton
shower alone can not give a faithful prediction for several emissions that are hard enough
to seed new jets.
In Figs. 3.15 and 3.16, we present the results for LOPS and MEPS@LO, respectively, in a

similar way as we have done in the pWT case, i.e. we give nominal results and uncertainty
bands according to Table 2.1, along with the ratios to the central value. In addition, we show
for comparison the nominal prediction of the MEPS@LO prediction along with the LOPS
bands, and vice versa. ¿e uncertainty bands are now generated by a complete reweighting,
i.e. of the matrix element(s) and all parton-shower emissions (nPS = ∞). Closure tests for
the bands against dedicated predictions are also provided. For the αS band, it is repeated
for varying numbers of reweighted emissions, nPS = 0, 1, 2, 3, 6 and 12. We did not observe
signi�cant deviations for the scale and PDF uncertainty when nPS is varied, and hence these
variations are omitted from the �gure.
First we note that the nominal MEPS@LO calculation gives increasingly higher cross

sections for larger NJets bins than the LOPS ones. In fact, both results are only compatible
within their respective uncertainties for NJets = 0, 1.10 ¿is is expected, because in the
LOPS calculation, jet multiplicities beyond zero are exclusively �lled by parton-shower
emissions, which underestimates the probability of jet-seeding emissions. ¿ese bins also
inherit the (factorisation) scale uncertainty from the single 0-jet matrix element. For the
MEPS@LO calculation, also renormalisation scale uncertainties are present through the αS
factor, and we observe a larger scale uncertainty for larger jet multiplicities, corresponding
to the increasing order in αS .
Comparing the LOPS results for the nPS variation of the αS uncertainty band to the

MEPS@LO ones, one notes that the variation plays a larger role in the LOPS case, where the

10In general, this depends on the prescription on how to combine the individual uncertainty bands. However,
in this case already the scale uncertainty bands alone overlap.
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uncertainty is increasingly over-estimated for larger nPS. In fact, for each increment in nPS,
the αS uncertainty of the associated NJets bin exceeds beyond the reference band. Partly, this
e�ect also extends to larger NJets bins. ¿is is clearly an arti�cial e�ect, and we see in the
main αS uncertainty plots, that the full reweighting (nPS = ∞) performs well. A �nite choice
of nPS breaks the unitarity of the reweighted shower, and a discrete binning in exclusive
jet multiplicities is expected to be a�ected most. ¿is is because we do not reweight the
rejected trial emissions for the Sudakov form factor between the scale of the last emission
(i.e. the NJetsth emission) and the jet cut parameter, a region of the Sudakov form factor
integral that is still relevant to the number of jets. ¿ese rejections would counter-act the
reweighting of the accepted trial emissions, cf. the third line in Eq. (3.25). For NJets ≤ 2, we
see a signi�cant reduction of the over-estimated uncertainties only for our nPS = 12 sample.
Contrast this to the W pT , where we reweight the relevant (recoil-generating) part of the
Sudakov form factor as soon as nPS ≈ 2.
For MEPS@LO, the uncertainty growth is only visible for the NJets = 3 bin, when we

move from nPS = 0 to 1. Considering the band shapes, we observe that the nPS = 0, 1
ones in the MEPS@NLO case resemble the nPS = 2, 3 band shapes in the LOPS case. ¿is
supports the conclusion, that the PDF/αS reweighting behaves similarly, when nPS plus the
highest number of jets described by a matrix element, nME, are equal, since nME = 2 for
ourMEPS@NLO calculation. ¿is likely is an observable-speci�c statement. Any NJets bin
will be dominated by a matrix element of the same multiplicity, if available. ¿is in turn
will lead to a reweighting of a sequence of backward-clustered splittings of the same length,
which has the same dependence structure as an equal number of accepted parton-shower
trial emissions, cf. Eqs. (3.33) and (3.43). ¿is clear picture should be diluted in observables
that are less descriminating with respect to the number of jets.

3.12. Using over-estimate factors for a smoother parton-shower
reweighting

In Section 3.3.3 we discussed the possibility to shi the over-estimated parton-shower kernel
K̂ by a constant factor kK̂ to make sure that the denominator of the rejected trial-emission
reweighting factor, (K̂ − K̃)/(K̂ − K), given in Eq. (3.25), stays away from zero. Choosing
kK̂ involves compromising between the e�ciency of the parton shower and the numerical
stability of its reweighting. For the observables and processes (boson production) studied
so far, the reweighting procedure appeared stable, at least when we enforced a cut-o� on
the deviation of the reweighting factorsQ from unity, cf. Section 3.3.3.
To complement this, we now look at another process/observable pair, which is the dijet

azimuthal decorrelation in pp → jj events at 7 TeV, where the jets are de�ned with the
anti-kT algorithm with a radius parameter R = 0.6. ¿e two hardest jets are required to
be central, with a rapidity ∣y∣ < 0.8 and a minimum jet pT of 100GeV. Compared to dijet
events at a leptonic collider and W production at a hadronic collider, this is the �rst time
we look at a process which comprises all possible initial-state partonic channels already
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Figure 3.15.: The exclusive number of jets NJets for LOPS W-boson production, with uncer-

tainty bands according to Table 2.1. For comparison, the nominal prediction of a MEPS@LO

calculation presented in Fig. 3.16 is shown.



3 . R E W E I G H T I N G ( N ) L O M AT R I X E L E M E N T S A N D PA R T O N S H O W E R S 70

100

101

102

103

104

105

σ(N J
et
s)[pb

]

LOPS

NJets uncertainty bands

Sherpa MEPS@LO

pp → W[eν̄], √s = 13 TeV
nPS =∞

µF ,R

αS

CT14

dedicated

0 1 2 3
NJets

0.8

1.0

1.2

ra
tio

to
CV

0 1 2 3

0.8

1.0

1.2

scale uncertainty

0 1 2 3

0.9

1.0

1.1

ra
tio

to
CV

αS uncertainty

0 1 2 3
NJets

0.9

1.0

1.1

CT14 uncertainty

0 1 2 3

0.9

1.0

1.1

ra
tio

to
CV

nPS = 0

0 1 2 3

nPS = 1

0 1 2 3

nPS = 2

0 1 2 3
NJets

nPS = 3

0 1 2 3

nPS = 6

0 1 2 3

nPS = 12
other maximum numbers of reweighted emissions nPS for the αS uncertainty

Figure 3.16.: The same as in Fig. 3.15, but for a MEPS@LO calculation with matrix elements

for the 0-, 1- and 2-jet multiplicities. For comparison, the nominal LOPS result presented in

Fig. 3.15 is reproduced.
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at LO, including channels with one or two gluons. We have observed in Section 3.3.3, that
splittings behave di�erently with respect to the distribution of reweighting factors, and
hence the consideration of this gluon-induced process is complementary to our previous
discussions. ¿e dijet azimuthal decorrelation is the azimuthal angle ∆ϕ between the two
jets with the largest pT . At lowest order, we always have a back-to-back con�guration, i.e.
the maximum value ∆ϕ = π, due to momentum conservation. If we add higher-order
corrections, the momentum is potentially shared with additionally resolved jets, leading to
smaller ∆ϕ. For ∆ϕ → π, hard emissions o� the two leading jets are suppressed, and the
behaviour of the so emissions determine the amount of smearing away from ∆ϕ = π. To
produce con�gurations with low values of ∆ϕ, one or more hard emissions are necessary.
In fact, each multiplicity has a minimum value of ∆ϕ, corresponding to the case, where
the transverse momenta of all jets are equal. It follows that the azimuthal angles between
them are all the same, 2π/Njets. Hence, we have staggered regions towards ∆ϕ = 0, with
each region being dominated by events with a given number of hard emissions. Naturally,
the parton shower gives the best prediction in the ∆ϕ → π region, whereas �xed-order
corrections are necessary to describe the lower-∆ϕ region.
In Fig. 3.17, we show the nominal prediction of a Sherpa LOPS calculation, associated

with uncertainty bands as de�ned in Table 2.1 generated with the on-the-�y reweighting
including the matrix-element and all parton-shower emissions (nPS = ∞). ¿e calculation
is binned additionally in the hardest jet transverse momentum, here we show only the
region with 110 < pmaxT /GeV < 160. ¿e scales are set to µR = µF = HT , i.e. to the scalar sum
of the transverse momenta of all jets,

H2
T = (∑

i
pT ,i)

2

. (3.54)

¿e statistics is deliberately kept small, as we intend to study numerical instabilities with
respect to a possible choice of kK̂ = 3. However, the scale and PDF uncertainty bands are
smooth and feature the expected growth towards small values of ∆Φ. Note that the scale
uncertainty is arti�cially small at LO for small and very large ∆Φ bins. ¿is is because these
bins are dominated by many emissions, and those are not part of the LO matrix-element
calculation. Note also that the bands feature a constriction below the �rst bin. ¿is is
a consequence of the dominating statistics of the �rst bin and the normalisation of the
distribution to the total cross section.
If we consider now the αS uncertainty band, we observe that this choice of kK̂ = 3 still

leads to �uctuations at low values of ∆Φ (remember that the αS reweighting also entails PDF
reweightings, with ratios that are usually larger compared to a pure PDF uncertainty band).
However, we contrast the uncertainty bands for kK̂ = 3 with ones that are generated from a
reweighting with kK̂ = 1 on the right-hand side of Fig. 3.17. ¿e latter �uctuate strongly even
for intermediate values ∆Φ ≈ 0.8, and to a lesser degree also for ∆Φ ≈ 1.0, i.e. in the regions
with the largest statistics. We conclude that an over-estimate factor kK̂ > 1 improves the
statistical behaviour of the αS reweighting. Given more experience, an appropriate default
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Figure 3.17.: The dijet azimuthal decorrelation for LO plus parton-shower dijet production,

with pmax
T between 110 and 160 GeV. The uncertainty bands are de�ned according to Table 2.1

and generated with an on-the-�y reweighting of the matrix-element and all parton-shower

emissions. The over-estimate parton-shower kernel K̂ is multiplied by a factor of kK̂ = 3 in the

left-hand side panel. In the panels on the right-hand side, the individual uncertainty bands

are compared to a reweighting with kK̂ = 1.

value should be considered.

3.13. Preserving the formal accuracy in variations

In general, the renormalisation and factorisation scales, αS and the PDFs should be varied
consistently throughout any of the presented calculations. While at �xed order the situation
is clear, the matched and merged approaches allow for some degree of freedom regarding
partial variations while still retaining their respective accuracies.
In the simplest case, LOPS, µR and µF of the short distance cross section and the parton

shower may be varied independently as these variations can be expressed as higher-order
terms in a perturbative expansion in the coupling parameter αS . ¿is is not the case for αS
itself and the PDFs as they are �xed through measured input values and parametrisations.
Changes in these input values cannot be expressed as higher-order terms. ¿us they need
to be chosen consistently throughout the matrix element and the parton shower.
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Similarly, in NLOPS calculations, µR and µF may be varied in the matrix element (B and
HA) or the parton shower (PSNLOPS and PS) separately, losing neither the �xed-order nor
the resummation accuracy. As the pseudo-subtraction through the DA in any case employs
di�erent scales in PSNLOPS and the B and HA functions, it always leaves remainders of
O(α2S). Hence, further scale variations in either one, the short-distance cross sections or
the PSNLOPS, do not worsen the nominal accuracy of the method. Retaining the logarithmic
accuracy of the parton shower on the other hand requires identical renormalisation and
factorisation scales throughout all resummation-relevant components, i.e. PSNLOPS and PS.
Again, variations in αS or the PDFs need to be consistent throughout the calculation.
¿e multi-jet merged calculations impose further constraints since they treat multijet

matrix elements and parton-shower emissions on the same footing. ¿e notation of the
scales already re�ects this for µR and µF . In their de�nitions only the core scales remain as
free parameters and may be varied independently. Again, the αS and PDF parametrisations
need to be the same throughout.

3.14. CPU time measurements

¿e bene�t of reweighted calculations is given by the saving of CPU time. In order to
evaluate the gain, we shall compare the event generation time of reweighted calculations
with the sum of generation times for all corresponding dedicated computations. Here we
consider both parton-level calculations, as well as runs including multiple interactions and
a fragmentation model, the typical default in physics analyses applications. For the latter
it can be expected that the gain in CPU time by using the reweighting approach is most
considerable, as the CPU-intense non-perturbative event generation phases do not need to
be re-evaluated. In what follows, we compare actual event-generation times, neglecting the
set-up times of the individual runs.11
In Fig. 3.18, we consider event generations using LOPS,NLOPS,MEPS@LO andMEPS@NLO

calculations for pp → W[e−ν̄] at 13 TeV. ¿e ratio of CPU time between the reweighting
and dedicated generations is shown for di�erent maximum numbers of reweighted parton-
shower emissions nPS + nNLOPS. Whether non-perturbative e�ects are included or not, the
time needed for the reweighting calculation is below 10% of the time needed for dedicated
calculations if only the matrix element is reweighted (nPS = nNLOPS = 0). ¿e ratio then
increases with a larger number of reweighted emissions, as their reweighting needs addi-
tional time, asymptotically approaching the value when all parton-shower emissions are
reweighted. For parton-level-only calculations, this ratio is around 0.35 for LOPS events,
and around 0.3 for NLOPS events. ¿is reduction can be explained due to relatively smaller
computational cost of the parton shower as a whole when the rest of the calculation is

11If NLO matrix elements at higher multiplicities are needed for an event generation, the time needed for
the integrator optimisation and the process selection weight optimisation can be quite substantial, e.g. a
couple of days. In the case of unweighted event generation, this even has to be re-done for every single
parameter variation, as the channel weights are used for the unweighting. When reweighting is used, this
is not necessary and so even more CPU is saved.
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Figure 3.18.: The ratio of CPU time needed for a reweighting calculation trew over the time

needed for generating predictions for all variations with dedicated runs tded . The reweight-

ing includes up to nPS parton-shower emissions. The sampled variations are listed in Table 2.1.

Parton-level-only results are compared to results for calculations including multiple interac-

tions and hadronisation e�ects (“+ non-perturbative”), and to calculations where in addition

to adding non-perturbative e�ects the events have also been unweighted (“+ unweighting”).

The ratios for reweighting all emissions are indicated with a horizontal line.

more complex. Also note that nPS for LOPS is only equivalent to nPS + nNLOPS for S events.
H events do not feature the S-MC@NLO-emission, and hence for them nNLOPS does not
contribute to their reweighting.
For the same reason, when non-perturbative e�ects are included, that ratio drops to

about 0.1: ¿e parton shower (and its reweighting) plays a smaller role in terms of CPU
cycles, when multiple interactions and hadronisation is enabled.
If on top of the non-perturbative e�ects the events are also unweighted, the ratio does
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not change in the LOPS case, but in theNLOPS case (by about 20%). A reasonmight be, that
only in theNLOPS a sizeable number of events gets rejected. For these, the jet evolution and
non-perturbative phases are not performed at all, whereas the matrix-element calculation
(and its reweighting) is always done, for accepted and rejected events alike. ¿e same is
true for the S-MC@NLO emission from S events. As a consequence, the relative cost of the
reweighting grows slightly. A future improvement of the implementation would postpone
these reweightings to a time point a er the possible rejection. ¿is of course requires that
the dependence of the rejection probability is negligible. For the observables studied so far
this was found to be true, at least toO(10−4). Another speed-up will be provided as soon as
the Rivet framework and the HepMC event records will have a genuine support for event
weight variations, which is expected for the upcoming major releases. Currently the Rivet
analysis is repeated for every variation. ¿is is not necessary, because the reweighting only
change the overall weight, but does not modify the �nal state (or its kinematics). Only the
�lling itself and the histogram storage must be duplicated for each variation, which is much
less time-consuming than the analysis itself.
Note that the e�ective gains will be lower than the results presented in this section, when

we take into account the reduced statistical accuracy a er the parton-shower reweighting.
¿is requires more events to be generated in a reweighting calculation to reach the same
statistical accuracy as in a dedicated calculation.

3.15. Discussion

In this chapter we have discussed a new reweighting method for perturbative QCD and
validated it with closure tests.
¿e approach is an on-the-�y reweighting and is implemented within the Sherpa event

generation framework, and will be part of its next release. It is connected to all parts of the
event generation loop that are related to the calculation of the event weight (or its unweight-
ing), as is schematically depicted in Fig. 3.19. It supports weighted and unweighted event
generations. All fully automated state-of-the-art calculational methods for perturbative
QCD are supported, i.e. �xed-order (LO & NLO), �xed-order plus parton shower (LOPS &
NLOPS), and multi-jet merged calculations (MEPS@LO, MEPS@NLO and the mixed case,
MENLOPS). Of these, only the reweighting of LO and NLO calculations (and to some extent
LOPS) was available before. ¿e semi-automated NNLO (+ parton-shower) calculations
are not yet supported. However, the recent implementation of NNLO + parton-shower
calculations via the UN2 LOPS scheme in Sherpa make this a natural next step for future
developments, by extending the methods presented in this chapter. ¿e increased CPU
time consumption of NNLO calculations will even strengthen the motivation for an e�-
cient reweighting, and an on-the-�y approach would not su�er the storage issues of an
a-posteriori approach with respect to NNLO [128, 138].
Our implementation allows for both scale and parameter variations. Scale variations

a�ect either the ME-only µR and µF , or also the input scales of PDF and αS of parton-
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Figure 3.19.: A simpli�ed diagram of the internal reweighting implementation (blue) within

the Sherpa event loop parts that are relevant to the event weight calculation. Event phases

(and the associated Sherpa modules) are indicated outside the circle.
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shower emissions, including those that are pre-set by the clustering in a multi-jet merged
calculation. ¿e scales can be varied independently with prefactors, such that individual
scale uncertainties or combined uncertainties, like from a 7-point scale variation, can be
studied. ¿e parameters that can be varied are the PDFs, and the value of αS(m2

Z). ¿ese
choices are the main parametric sources for QCD uncertainties.
¿e on-the-�y reweighting does not allow for a variation of the merging scale Qcut, or

the parton-shower starting scale µQ . Also the splitting scales are kept �x, which is however
a feature of the reweighted SVA. A parton shower is also de�ned through its recoil scheme,
which can also not be reweighted with our current technology. ¿e form of the splitting
kernels K is also �xed in the current implementation, although in this case only straightfor-
ward modi�cations would be required to change that, since the reweighted SVA allows for
an arbitrarily modi�ed K.
We have seen that a parton-level simulation with full on-the-�y variations to 7 scale

variations, 56 PDF variations and 5 αS variations, is about three times faster than running
all variations in separate runs. If only the matrix element is reweighted, the reweighting is
faster by about a factor of ten to twenty. ¿e same is true, when non-perturbative e�ects
are enabled in the simulation. Unweighting the events on top of that does not change this
gain. However, this is because the current implementation also reweights events that are
rejected by the unweighting. In a future update, the reweighting will be postponed to a er
the unweighting as far as possible, to only reweight accepted events. ¿is is expected to
make the reweighting of an unweighted sample much faster. It should also be noted, that
running the events through a (usually complex and time-consuming) detector simulation
will increase the time gain considerably. Hence, applications involving detector-level data
comparisons will pro�t most by the internal reweighting. Besides the gain in CPU time, the
reweighting approach has the additional advantage to reduce the storage requirements of
event records signi�cantly, because only the overall event weight is varied, whereas all other
event data is not a�ected by the reweighting and therefore does not need to be duplicated.
We suggest to use scale variations on thematrix-element level as a default, as it is themost

important source of uncertainty at LO and NLO, and with the restriction to the �xed-order
part of the calculation, the event generation time hardly increases. If the full uncertainty
is needed, PDF/αS variations should be included, and a low-statistics study can tell if and
how many parton-shower emissions should be included in the reweighting, to keep the
CPU usage of the reweighting small. A rule of thumb is that no parton-shower emission
reweighting is necessary for the total cross section (this is ensured by the unitarity of the
shower), and 3 emissions are necessary for di�erential observables, that are a�ected by the
recoil of the hardest shower emissions, but are otherwise inclusive to jet evolution. ¿e
reweighting of all emissions is necessary for more exclusive jet observables. Here, a small
number of reweighted emissions can actually be worse than aME-only reweighting, as we
have observed for the exclusive jet multiplicity.
¿e comprehensive reweighting implementation presented in this chapter can greatly

speed up the evaluation times for both individual studies and the centralised high-statistics
productions of the major experiments at the LHC and future colliders. Other applications,
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where the exact variation is not known beforehand and/or where the associated prediction
must be known withinmilliseconds, call for the use of interpolation grids, which we discuss
in the next chapter.
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4. QCD interpolation grids

¿e decomposition of �xed-order QCD calculations into scale/parameter-dependent and
-independent bits employed in the last chapter is also a necessary ingredient to produce
cross-section grids as provided by the APPLgrid [51] and fastNLO [52, 53] tools. ¿ese
store the perturbative coe�cients for a certain observable calculation discretised in x and
Q2 using interpolation methods. By this, they get rid of the expensive sum over events
that is still necessary in reweighting methods, that operate on single events during or a er
the event generation. ¿is greatly speeds up a posteriori inclusions of PDFs, αS and scale
variations. In turn, such techniques are well suited for (combined) �ts of PDFs and αS that
require a multitude of re-computations of the theoretical predictions, but can also be used
for uncertainty studies.
Until recently, only a limited set of specialised interfaces to NLO codes existed for both

APPLgrid and fastNLO. ¿ese separate interfaces did not include a fully general NLO
code, and required a large amount of duplication in terms of analysis code, for the nec-
essary projection onto the observable. Over the last years, tools have been developed to
�ll this gap, by automating the projection of arbitrary NLO QCD calculations onto such
grids, namely the aMCfast [57] and the MCgrid [54–56] packages, which are both used
e.g. by the NNPDF collaboration [99]. ¿e �rst one produces APPLgrids with Mad-
Graph5_aMC@NLO [163] andMadAnalysis5 [164], the latterAPPLgrids or fastNLO
grids from Sherpa events projected on the observables through Rivet [106]. On the “post-
production” side, the APFELgrid [165] tool has been developed. It provides an improved
convolution method for use with APPLgrid �les that further speeds up the re-evaluations.
In this chapter, we �rst give a concise review of how to make use of the �xed-order

decompositions to �ll those interpolation grids in a generic and automated way. A er that,
we present closure tests for �xed-order interpolation grids generated with MCgrid and,
building on these, additional tests for various improvements that have been developed in
the context of this thesis within MCgrid and Sherpa. ¿ese improvements led to the
2.0 release of MCgrid [55]. One of them is the treatment of the O(αS) expansion of
S-MC@NLO NLOPS calculations, as a �rst preparation for a future inclusion of all-order
parton-shower dependences. Other ones are the support for the dedicated scale logarithm
grids within APPLgrid, and the support for �lling fastNLO grids. Lastly, a consistency
test is performed, where we show that we can fully reproduce NLOPS uncertainty bands
as with the internal reweighting, provided that we omit the reweighting of parton-shower
emissions in the latter. We �nd the same deviations from a dedicated calculation. From the
internal reweighting, we know that these deviations can be attributed to the omission of
the shower dependences, and hence we conclude this chapter with an outlook on a possible
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extension of interpolation grids to include those.
Some of the contents in this chapter are published in [55, 56].

4.1. Encoding cross sections on interpolation grids

4.1.1. Multiplicative αS and PDF dependences

If we go through the LO and NLO formulae Eqs. (3.2) and (3.5) for calculating an observ-
able O at �xed leading- or next-to-leading order, we can make an observation, which is
the basis of the QCD interpolation grid method. We can decompose all contributions into
terms that share a common form,

⟨O⟩(N)LO = ∑
terms

∫ dΦ (αS(µ
2
R)

2π
)
n

fa(x1, µ2F) fb(x2, µ2F) wab(Φ) O(Φ) , (4.1)

where the exact de�nitions of the perturbative order in QCD n, the phase space Φ, the
scales µR and µF , the partons a/b and their momentum fractions x1/2 depend on the term
type. For example, Φ is either ΦB, ΦR or ΦB ⋅ Φ1, and the x possibly contain the partonic
momentum fractions x′ for the KP contribution, see Eq. (3.8). Moreover, a and b do not
always label incoming partons, otherwise we would need to keep terms that involve dipole
splitting maps separate. ¿ese are found in the KP and the DS contributions.1 ¿e weights
wab contain everything else. ¿ey do not depend on αS or the PDFs, but if the term is part of
a VI or KP contribution, they depend on µR and µF , respectively. From Eqs. (3.7) and (3.8),
we can read o� how they transform under µR → µ̃R or µF → µ̃F :

wVI
ab ≡ VI′ → VI′ + c ′ (0)R lR + 1

2 c
′ (1)
R l2R (4.2)

wKP
ab ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c̃ (i)F ,a/b → c̃ (i)F ,a/b + c̄
(i)
F ,a/b lF if i = 1, 3

x′a/b c̃
(i)
F ,a/b → x′a/b (c̃

(i)
F ,a/b + c̄

(i)
F ,a/b lF) if i = 2, 4 ,

(4.3)

with lF = log(µ̃2F/µ2F) and lR = log(µ̃2R/µ2R). Otherwise the replacements αS → α̃S , f → f̃ ,
µR → µ̃R and/or µF → µ̃F only a�ect the prefactors to wab in Eq. (4.1), and can therefore be
applied by multiplying with the appropriate αS and PDF ratios.
In a Monte-Carlo integration, we replace the phase-space integral with a sum over phase-

space points and only sum over the terms that are present in a given event e:

⟨O⟩(N)LO = ∑
e
∑

terms in e
(αS(µ

2
R)

2π
)
n

fa(x1, µ2F) fb(x2, µ2F) wab(Φ) O(Φ) , (4.4)

1Special consideration must be given to the KP contribution also in another respect. ¿e involved linear
combination of quark PDFs, cf. Eq. (3.8), only involves light quarks in Sherpa, and it must be ensured, that
the number of light quarks is set consistently in MCgrid. ¿e default in both packages is 5, i.e. all quarks
except the top quark are considered light.



4 . Q C D I N T E R P O L AT I O N G R I D S 81

¿is abstraction of the dependence structure is advantageous, when an a posteriori event
reweighting is employed, because for each summand, only the following set of values must
be communicated: n, µR and µF , a and b, x1/2 andwab, and O(Φ), and in addition possibly
the scale logarithm coe�cients c ′ (0/1)R , c̄ (i)F ,a/b. ¿e reweighting implementation itself only
needs to evaluate Eqs. (4.2) to (4.4) for each of these value sets.
Usually one wants to know the distribution of O and not its average. ¿e weight that falls

in a single observable bin k of O with lower and upper boundaries Omin
b , Omax

b is given as

w(N)LO
k = ∑

e
∑

terms in e
(αS(µ

2
R)

2π
)
n

fa(x1, µ2F) fb(x2, µ2F) wk,ab , (4.5)

where the binned weight wk,ab is de�ned with the help of step functions Θ as

wk,ab(Φ) = wab Θ (Omax
k − O(Φ)) Θ (O(Φ) − Omin

k ) , (4.6)

A sum over events can still be too costly for certain applications, where speed is critical
due to the amount of variations necessary, as e.g. for PDF �ts. Interpolation grids overcome
this by casting the sum over events to a sum over (usually much less) grid points. ¿is is
achieved by discretising the x and µ values by interpolating the incoming weights wab of
each of the above summands to (x1, x2, µ) points on a �xed 3-dimensional grid. First we
rewrite αS and the pair of PDF values with the help of an interpolation kernel I :

αS(µ2R) fa(x1, µ2F) fb(x2, µ2F) =
Nx

∑
αβ

Nµ

∑
τ
αS(µ2R(µτ)) fa(xα , µτ) fb(xβ , µτ) Iαβ,τ(x1, x2, µτ)

(4.7)
with the number of points Nx and Nµ in the xa/b and the µ dimensions of the grid, re-
spectively. In order not to introduce another grid dimension, we assumed that µR can be
written as a function of µF . For a detailed account on the interpolation approaches, see the
APPLgrid and fastNLO publications [51–53]. However, in Fig. 4.1, we give a visualisation
of the polynomial interpolation as it is done in APPLgrid. ¿ere, the interpolation kernels
I are polynomials of the interpolation order n. ¿e interpolated function value at x is given
as the weighted sum over the actual function values at n + 1 neighbouring interpolation
nodes. ¿e weights are given by the value of the interpolation kernel at x. In the �gure, we
exemplify this with the neighbouring interpolation nodes and the associated kernels used
for the shaded region between two adjacent nodes, for an interpolation order of n = 3. It
can be seen, that the largest weight is assigned to the function values at the adjacent nodes,
as expected.
Inserting the interpolation of QCD parameters, Eq. (4.7), allows us to rewrite Eq. (4.5) as

w(N)LO
k = ∑

n
∑
ab

Nx

∑
αβ

Nµ

∑
τ
(αS(µ

2
R(µτ))
2π

)
n

fa(xα , µτ) fb(xβ , µτ) Wαβ,τ
k,ab,n , (4.8)



4 . Q C D I N T E R P O L AT I O N G R I D S 82

f(x) example
region

f

f (interpolated)

interpolation nodes

x

0.0

0.5

1.0

I(x)

interpolation kernels

Figure 4.1.: A visualisation of the polynomial grid interpolation used in APPLgrid, for an ar-

bitrary function f . Included are the interpolation nodes and kernels that are used for in-

terpolating function values in the shaded region between two adjacent grid nodes, for an

interpolation order of n = 3.

where the sum over events has been moved into combined weightsWk :

Wαβ,τ
k,ab,n ≡ ∑

e
∑

terms in e
δab,abtermδn,ntermIαβ,τ(x1, x2, µ2F)wk,ab . (4.9)

¿e subscripts k, ab, n label separate grids, and the superscripts αβ, τ specify the grid point
to �ll. As soon as all these grids are �lled by enough events, the encoded cross section can
be recombined to a new prediction for the observable via Eq. (4.8) at any later time.

4.1.2. Scale logarithms: RGE approach vs. dedicated grids

When we transitioned to grid weights, we did not address the issue of the scale logarithms
that must be taken into account when the grids are used for scale variations.
¿is can either be done when the grids are �lled, by using separate grids for the scale

logarithm coe�cients c ′ (0/1)R and c̄ (i)F ,a/b, or during the recombination by demanding that
the scale derivative of the recovered cross sections results to zero to next-to-next-to-leading
order in αS . ¿rough this renormalisation group equation (RGE) approach, the missing
terms can be calculated, as long as the scale variation is restricted to constant scale factors
[51]. ¿e RGEmethod also assumes that the interpolation grids are �lled with asymptotic
statistics (only then the scale derivative is expected to vanish). So, if e.g. in a closure test the
grids are only �lled with a small number of events, the separate grids method is expected
to give a more precise closure. However, the practical reason to use separate grids is to
overcome the restriction to constant scale factors.
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4.1.3. LO & NLO plus parton-shower calculations

We can replace O(Φ) with PS(O ,Φ) in Eq. (4.1) to allow for parton-shower emissions to
modify the �nal state. In this context, PS can denote either the ordinary shower or the
S-MC@NLO-shower PSNLOPS, as de�ned in Eqs. (3.29) and (3.40), respectively:

⟨O⟩(N)LOPS = ∑
terms

∫ dΦ (αS(µ
2
R)

2π
)
n

fa(x1, µ2F) fb(x2, µ2F) wab(Φ) PS(O ,Φ) . (4.10)

By doing so, we can include LOPS and NLOPS calculations in our list of calculations that
can be brought into such a form, and readily �ll interpolation grids. In particular, we note
that the newDA contribution in a S-MC@NLO calculation is structurally not di�erent from
the DS one that is already found in NLO calculations. ¿erefore, we do not have to modify
Eq. (4.10).
Although we can allow formore exclusive observables by letting the parton shower act on

our �nal state, the interpolation grid as described above has no notion of the dependences
of the shower, as has been detailed in Section 3.3, and therefore we expect that it fails to
reproduce all features of a dedicated prediction. Compare for example theME-only results
with the ones where the reweighting of parton-shower emissions has been enabled for the
on-the-�y reweighting validations in Fig. 3.8. We will come back to this in Section 4.6.

4.1.4. Optimised subprocess bases

¿e number of grids can be reduced and the recombination time decreased by making use
of initial-state �avour symmetries. Consider e.g. Drell-Yan, where all quark-antiquark pairs
share the same matrix element. ¿e only di�erence is the PDF prefactor. We can therefore
rewrite Eq. (4.8) as

w(N)LO
k = ∑

n
∑
l

Nx

∑
αβ

Nµ

∑
τ
(αS(µ

2
R(µτ))
2π

)
n

Fl(xα , xβ , µτ) Wαβ,τ
k,l ,n . (4.11)

Here, l labels the lists of the �avour-symmetric subprocesses. Hence, the linear combination
of PDFs associated with l is de�ned by

Fl(xα , xβ , µτ) ≡ ∑
ab
C l
ab fa(xα , µτ) fb(xβ , µτ) , (4.12)

with C l
ab = 1 if ab is in l and 0 otherwise. For each pair ab, at most one C l

ab can be one
by construction. Depending on the order, some pairs ab might not contribute at all, then
C l
ab = 0 for all l . By combining weights of subprocesses that are generated separately in the

Monte-Carlo integration, the resulting grid will not be statistically equivalent to the event
generation run with which it was created. ¿is is discussed in detail in [54].
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Figure 4.2.: A �ow chart of an automated fastNLO/APPLgrid interpolation grid production

via the MCgrid plug-in. The interpolation grids are �lled alongside nominal histograms by

calling MCgrid code from a Rivet analysis. After the event generation, the created grids can

be convoluted to obtain reweighted predictions for these histograms.

4.2. Automation for Catani-Seymour subtracted NLO calculations via
MCgrid

Until recently, interfaces to APPLgrid and fastNLO were only available to specialised
�xed-order matrix-element generators, as e.g. NLOJet++ [166] and MCFM [167]. Because
interpolation grids are observable-speci�c, analysis code had to be added on a case-by-case
basis to these interfaces. ¿is has changed with the release of two new interfaces to more
general Monte-Carlo event generators, aMCfast [57] and MCgrid [54–56]. ¿e former
interfaces the �xed-order matrix-element generator MadGraph5_aMC@NLO [163] to
APPLgrid, and employs MadAnalysis5 [164] to provide the observable projection. It
supports LO and NLO calculations.
¿e latter, MCgrid, uses HepMC [105] event records as an input, which are projected

onto observables via the Rivet [106] analysis framework, see Fig. 4.2. In fact, MCgrid
is implemented as a plug-in to Rivet, and therefore pro�ts from its extensive library of
analysis codes. On the output side, both APPLgrids and fastNLO grids can be �lled via
MCgrid. HepMC is a widely used event output format. Being interfaced to a mere data
storage format, MCgrid is agnostic with respect to the actual generator that �lled the event
records. However, it expects NLO events to be calculated using the CS subtraction scheme,
and that the respective weight information is present in the weight container of the HepMC
event record. In addition to LO and Catani-Seymour subtracted NLO calculations, also the
O(αS)-expansion ofNLO calculationsmatched to a parton shower via the S-MC@NLO [87]
formalism is supported. ¿us, even when the parton shower is added to NLO calculations,
the �lled interpolation grids are still accurate to NLO.
¿e automation of NLO calculations in MadGraph5_aMC@NLO and Sherpa, along

with the existing analysis code, allows for a much more automated interpolation grid pro-
duction. One additional aspect here is the subprocess basis adopted when �lling the grid.
Whereas codes such as NLOJet++ and MCFM uses process-speci�cally optimised bases,
MadGraph5_aMC@NLO and Sherpa output fully exclusive events, i.e. with all partonic
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subchannels separate from another. ¿is would lead to bigger memory usage of the pro-
duced grids, and also to a bigger CPU footprint, when one �lls a grid and, more importantly
for practical purposes, when one convolutes a grid. However, internally both generators use
process-optimised subprocess bases, and both aMCfast and MCgrid provide automated
means to read out these bases and make use of them for the grid creation.
As a part of this thesis, MCgrid had been extended to support fastNLO and the

S-MC@NLO O(αS) expansion. In addition, support has been added for the dedicated
scale logarithm grids in APPLgrid, adding another �ll mode besides the RGE approach.
We will therefore mainly validate these new features in the following section.

4.3. Closure tests for �xed-order calculations

To establish our set-up, we �rst present an auto-closure test for the t̄t-production process
with a semileptonic �nal state at the LHC with a centre-of-mass energy of 7 TeV, where it is
mostly sensitive to the gluon content of the incoming protons.

Sherpa NLO events are generated, with the one-loop results provided by OpenLoops.
¿e parton shower and non-perturbative e�ects are disabled. ¿e αS and PDF values are
provided by the CT10 PDF set. ¿e scales µF and µR are set to the squared average of the
transverse masses of the top quarks.
¿e top quarks have their mass set to 172.5 GeV, and they are produced on their mass

shell and then decayed further with a zero-width approximation. First the t quark decays to
aW+ and a b/s/d quark, and the t̄ quark decays accordingly to aW− and a b̄/s̄/d̄ quark. ¿e
W+ is then restricted to decay leptonically, either to a e+νe− or a µ+νµ pair. ¿eW−, on the
other hand, is set to decay hadronically. As the top quark is too heavy to be produced by an
on-shell decay of the W, this leaves the sc̄ and the dū channels. Again, the decay widths are
set to zero. As we assign explicitly, which of the W-bosons decays hadronically, and which
one leptonically, we multiply the resulting event weights by two, which gives us the correct
result as long as the observables considered are symmetric under charge-conjugation.
¿e analysis reconstructs jets from theMonte-Carlo data with the anti-kT algorithm [107]

with a jet radius parameter of R = 0.4. At least three are required, one of which is required to
be seeded by a b quark. ¿e two leading jets minimum transverse momenta cuts are 50GeV
and 35GeV. ¿e MCgrid plug-in is used to �ll an interpolation grid for the transverse
momentum of the �rst jet (ordered in pT). ¿e jets consist of the real emission parton of
the NLO calculation and/or the partons from the hard decays.
In Fig. 4.3, the auto-closure result for this observable is presented. ¿e convolution from

the grid reproduces the nominal result withinO(10−4) accuracy, which is of the order of
typical APPLgrid interpolation accuracies [51].
To validate our method to �ll the O(αS) expansion of S-MC@NLO calculations, we

generate two Drell-Yan samples for p+p− collisions at a centre-of-mass energy of 1.96 TeV,
one at NLO and one at NLOPS. To select for the Z resonance, an invariant mass of 66GeV <
mℓℓ < 116GeV is required. ¿e scales are �xed to the mass of the Z-boson, such that the
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Figure 4.3.: Closure test for an MCgrid-�lled APPLgrid for the leading jet pT in tt̄ production.

generated grid only interpolates in x1 and x2. To ensure statistical equivalence, all parton-
shower emissions in the NLOPS run are disabled. Hence, we are able to validate that the
(DA − DS)-terms exclusive to the S-MC@NLO event generation are reproduced within
interpolation accuracy.
We compare the deviations of the re-convolutions of both calculations with respect to

their respective nominal result in Fig. 4.4. We observe, that both deviations are of a com-
parable size. In fact, they are much smaller than for the t̄t-production auto-closure test
in Fig. 4.3, because the additional scale interpolation is absent in our Drell-Yan grid.
Comparing the NLO and the NLOPS event generation, we �nd that the latter does not �ll

the phase-space for 0 < p2T ≲ m2
Z = µ2Q , due to the missing parton-shower emissions in this

region, that would otherwise move events with p2T = 0 into this region.

4.4. Comparison of scale-logarithm methods

We now validate our implementation within MCgrid for �lling separate APPLgrids for
the scale logarithm coe�cients, as discussed in Section 4.1.2. To this end, we again generate
a Drell-Yan sample with Sherpa at NLOPS for p+p− collisions at a centre-of-mass energy
of 1.96 TeV with 66GeV < mℓℓ < 116GeV and the CT10 PDF set. ¿e scales are now set
dynamically to µR = µF = H′

T , as de�ned in Eq. (3.9).
Two grids are produced for the rapidity y of the Z boson, one including separate scale

logarithm grids, and one that is using the RGEmethod. We then compare the reweighting
for scaling µR and µF to 2µR and 2µF with a dedicated sample. We also include the result
from the on-the-�y reweighting implemented in Sherpa, as discussed in Chapter 3. For
all samples, parton-shower emissions are disabled to eliminate statistical �uctuations as
far as possible, such that all deviations should be due to the numerical and interpolation
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Figure 4.4.: Auto-closure tests for an MCgrid-�lled APPLgrid for pZ
T in o�-shell Z-boson pro-

duction, with a comparison of NLO and NLOPS event generations. To enforce equivalent

statistics, parton-shower emissions are disabled in the MC@NLO run. In the lower panel, the

ratios to the nominal runs are shown.

accuracies. ¿e only exception would be the RGEmethod, which is not expected to give a
statistically equivalent result.
In fact, in Fig. 4.5 we observe that the deviations for the RGEmethod are about a factor

of ten higher than with the separate grid method. ¿e internal reweighting as discussed
in Chapter 3 is also plotted for comparison. However, on the depicted scale, no deviations
from a dedicated run is visible in this case.

4.5. Comparison between MCgrid-�lled APPLgrids and fastNLO grids

Another MCgrid-addition developed during this thesis is the support for fastNLO grids.
In this section, we validate this new feature using auto-closure tests comparing MCgrid-
�lled APPLgrids and fastNLO grids.
We consider two observables for this, the hardest jet pT in dijet production for pp colli-

sions and the Z rapidity in Z production in p+p− collisions, at a centre-of-mass energy of
7 TeV and 1.96 TeV, respectively. For the dijets, the anti-kT algorithm has been used with a
jet radius parameter of R = 0.5.
We will see that APPLgrid performs slightly better in both cases. However, the compa-

rability is not fully given, because although we ensure that the same number of grid points
and the same statistics is used, the interpolation kernels and the x/µ parametrisation are
di�erent. From a phenomenology viewpoint the deviations are tiny in both cases, being
much smaller than other theoretical uncertainties.
For both observables, we use Sherpa at NLO, and generate both grids in one run. ¿e
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Figure 4.5.: Cross-closure tests for the Z-boson rapidity in o�-shell Z production, with a nom-

inal scale choice µR = µF = H′T , which is reweighted up to 2H′T . Results from MCgrid-�lled

APPLgrids using the separate grid method and the RGE method are compared with each

other, and to a result from the internal reweighting of Sherpa.

αS and PDF values are given by the CT10 PDF set. For the dijet production, the one-loop
matrix element is provided by BlackHat. In Fig. 4.6, the auto-closure tests for the two
mentioned observables are presented. For both we �nd good agreement, the deviations in
the jet pT case goes up to 2 ⋅10−3 and 3 ⋅10−3 for APPLgrid and fastNLO, respectively. ¿is
deviation is largest for small jet pT , where x is also smallest on average. ¿is suggests that
the parametrisation of the x values with respect to the internal grid space is more sparse
for small x, such that the interpolation accuracy is worse. ¿e other observables/processes
considered so far involved the production of massive particles, such that they are less vulner-
able to such a “shortcoming” in the grid architecture. However, as long as the reproduction
accuracy is still considerably smaller than 1%, there is no problem when it comes to physics
applications. For the Z rapidity, we present two auto-closure tests. For the one labelled
“subprocess ID enabled”, the subprocess basis optimisation as described in Section 4.1.4 is
used. For Z production, only 12 channels are needed then. For the “subprocess ID disabled”
one, the full subprocess basis is used, i.e. 11 × 11 = 121 channels (5 active quark �avours and
their anti-particles, plus the gluon).
We �nd good agreement in both cases. However, the deviations are larger when the op-

timisation is enabled (up to ∼ 1% for large ∣y∣), as the combination of weights for use with
a reduced PDF basis means that the interpolated result is statistically not equivalent to the
nominal result it is compared to [54]. However, this only re�ects the limited statistical accu-
racy of the grid �lling run in that region, and is therefore only a problem for an auto-closure
validation test, not for actual applications. ¿e advantage of the optimised subprocess ba-
sis are the reduced time needed for the grid �lling run (about topt. = 3.5 hours instead of
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Figure 4.6.: Auto-closure tests for fastNLO grid production vs. APPLgrid production with

MCgrid. The leading jet pT distribution is generated for dijet production and the rapidity

y of the Z-boson for o�-shell Z production. For the latter, we also include results for a grid

production with an optimised subprocess basis.
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tfull = 21 hours in our example). When we subtract the time needed for a non-�lling event
generation run (about tbaseline = 1.5 hours), we �nd a ratio

topt. − tbaseline
tfull − tbaseline

≈ 0.1 , (4.13)

which equals the ratio of channels, 12/121 ≈ 0.1. ¿is suggests that the time needed for grid
production scales linearly with the number of channels used.
We observe a deviation of about 0.2 % between the fastNLO result and the nominal

result for ∣y∣ > 2.0 of, with APPLgrid performing signi�cantly better: its deviation is below
0.1 % in all bins. Again, this is only indicative of the APPLgrid defaults being better suited
for the process/observable at hand.

4.6. Comparison to the internal reweighting including the parton
shower

Finally, we come back to our claim that uncertainty bands generated from a grid should
be equal to those generated by the direct reweighting approach presented in Chapter 3,
provided that it is restricted to thematrix-element dependences. In otherwords, the number
of reweighted parton-shower emissions is set to zero, nPS = nNLOPS = 0.
To con�rm this last validation, we re-use the bands we generated to test the internal

reweighting at NLOPS, from an event generation for W-boson production in pp collisions
at 13 TeV, see Fig. 3.8. In Fig. 4.7, we overlay the bands generated from reweightings of an
APPLgrid generated by an identical set-up via MCgrid. However, as the statistics is not
equal between the reweighting and the grid-�lling run, we do not calculate the ratios against
a shared nominal central value. Instead, we divide the variations from the reweighting
through the nominal result of the reweighting run, and the variations from the grid through
the nominal result of the grid-�lling run. By this, we can ignore statistical �uctuations
between the two samples, and still test if the uncertainty bands come out equal. In fact, we
�nd a perfect agreement between the two reweighting methods.
¿is is not to say that the grid reproduces the full uncertainty, as the dependences of

the parton shower are ignored in both bands. Going back once more to Fig. 3.8, where we
found that this approximation fails in the low pT region for the internal reweighting, we
can now infer that this is also true for the grid approach.

4.7. Future steps towards beyond �xed-order interpolation grids

¿e lack of multi-order or all-order support in QCD interpolation grids puts limits on what
data is usable for PDF �ts, because these �ts rely on the speed of the grid reweighting ap-
proach, at least beyond LO. ¿is means that data points have to be removed from the �t,
when they require resummation e�ects to be taken into account, or if they are better de-
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Figure 4.7.: A comparison of uncertainty bands for the pW
T in a Sherpa NLOPS W production.

The left-hand plot features bands that are generated by reweighting an APPLgrid �lled by

Sherpa via MCgrid. In the right-hand plots, these bands are compared individually to ones

that are generated with the internal reweighting of Sherpa, where the reweighting of parton-

shower emissions is disabled.

scribed as a combined result of calculations at di�erent jet multiplicities. All Monte-Carlo
results that rely on parton showers or multi-jet merging fall into this category. Resumma-
tion e�ects play a role in the small-pW/ZT bins, as we have seen, which is why e.g. in the
NNPDF 3.0 �t the corresponding data points for pWT are not used [99]. Another example is
the small-angle region of the dijet azimuthal decorrelation observable, which is dominated
by so gluon emissions [168, 169]. Both observables, pW/ZT and the azimuthal decorrelation,
are also examples for observables that pro�t from a multi-jet merged calculation. ¿ey
feature overlapping regions (at large pT and large angles, respectively), where each one is
best described by a certain number of hard jets that provide the recoil.

4.7.1. Multi-jet merging via stacked interpolation grids

How easy is it to modify interpolation grids to support multi-jet merged calculations? We
have seen in Section 3.7 that multi-jet merged calculations feature several aspects that re-
quire a reweighting. ¿ere are the di�erentmatrix elements that can be handled individually
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as �xed-order calculations, safe for the simple PDF factors, which are replaced with several
ratios of PDFs determined by the clustering, cf. Eq. (3.43). ¿ese ratios are accompanied for
NLOmatrix elements with appropriate counter-terms, given in Eq. (3.50), which subtract
their αS expansion to retain the NLO accuracy. ¿e clustering also determines shower-like
αS scales, one perQCD cluster node, which are combined to determine an overall renormal-
isation scale, see Eq. (3.44). Morover, there are the Sudakov rejection weights, Eq. (3.46),
for which truncated showers are sampled for emissions above the merging scale, which
leads to the scale-/parameter-dependent veto. And �nally, MENLOPS calculations come
with K factors, that reweight as compositions of matrix-elements, involving products and
divisions, see Eq. (3.53).
Leaving aside the all-order parts for the moment, i.e. the parton shower and the re-

lated Sudakov veto, there are still elements in the remaining �xed-order calculations that
can not be �lled into existing interpolation grids. Matrix elements with varying multi-
plicities themselves are easily supported, either by implementing the support for addi-
tional sub-grids per multiplicity within APPLgrid/fastNLO, or by operating with several
APPLgrid/fastNLO instances managed by MCgrid. Also the dynamic renormalisa-
tion scale determination by itself is not an issue, because the variation of the combined
scale is correct to NLO accuracy. However, interpolation grids assume µ2R = µ2F , or at least
µ2R = µ2R(µ2F), which is broken by the di�erent prescription for the µF scale (which is de-
termined by the lowest invariant mass or negative virtuality in the core process). Also the
PDF ratios of the clustering can not be �lled into interpolation grids, as they require PDFs
to enter as simple prefactor pairs. On the other hand, the counter-terms only feature a
single PDF factor, and the current grid implementations do not allow a mixture of single
and paired PDF prefactors. ¿e K factor provides further PDF ratios, via its dependence on
a B/B term.
A perfect representation of these complications by a modi�ed interpolation grid tech-

nology is a question of scalability. It is feasible to add a one grid per multiplicity and one
per parton (e.g. to �ll the single-PDF counter-terms), but the storage size and convolution
times will increase by orders of magnitude when we begin to provide grids for each possible
combination of PDF ratios, and the question of how to encode the individual cluster scales
and longitudinal momentum fractions would remain.
However, one could study with a simple modi�cation of the internal reweighting of

Sherpa, how accurate it would be to neglect those complications, i.e. to only reweight the
matrix-element contributions per multiplicity, and to restrict the PDF reweighting to the
external incoming partons (i.e. before clustering), and to set µ2F = µ2R. At �rst, NLOmatrix
elements could be omitted to factor out the additional problems by the counter-terms and
the K factor.

4.7.2. Approximate approaches to include parton-shower emissions

¿e problem of a variable number of PDF ratios discussed in the previous section is also
encountered when we attempt to reweight parton-shower emissions with interpolation
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grids, with the number of partonic combinations growing too large to get by with some
variation of the usual approach.
One idea is motivated by our �nding that some observables, such as the pWT , are only

sensitive to the dependences of the �rst two or three hardest emissions. However, even then
the number of rejected emissions still varies and will be larger than the number of accepted
ones. Also, the dependence structure is di�erent between the two, which prevents a uni�ed
handling, e�ectively doubling the number of grids again. Hence, the problem is even more
complex than with the cluster PDF ratios of the merging.
¿erefore, a second idea is to not track the dependences of the parton shower at all, and

instead have a number of grid replica, each one �lled by events from a matrix-element
plus parton-shower generation, where some scale or parameter used is varied. ¿en the
respective parton-shower dependence is encoded in the di�erence between the predictions
of those grid replica, and one could interpolate between those predictions. Unfortunately,
even if this can be done for a single-valued parameter like αS(m2

Z), there is no universal
ordering between di�erent PDFs. ¿e approach would only be feasible, if a PDF can be
parametrised by a small number of values. If we look at the MMHT2014 parametrisation,
there are about 40 independent parameters entering its �t. So if onewants three grid replicas
per PDF parameter—a central one along with an up and a down variation, a total of 120
grids is needed. An increase of the number of grids by two orders of magnitude seems
impractical in terms of storage and CPU time requirements.
In conclusion, a direct encoding of emission dependences is made infeasible by the large

number of PDF ratio combinations and the duplication by the di�ering dependence of re-
jected trial emissions, and an indirect and approximate encoding by grid replicas is di�cult
due to the large number of degrees of freedom in PDF determinations.

4.8. Discussion

In this chapter we have discussed new developments for pQCD reweighting using interpo-
lation grids, and validated them with closure tests.
Typical applications for interpolation grids are parameter �ts that use an iterative ap-

proach, such as PDF �ts. In these, the exact variations are not known beforehand, and the
associated predictions must be calculable within milliseconds due to the large number of
iterations needed. Currently, interpolation grids allow for variations of the PDFs, αS(m2

Z),
and both µF and µR, for �xed-order LO, NLO and even NNLO calculations.
We have presented and validated new features in the MCgrid interface, which led to its

2.0 release. First, fastNLO interpolation grids are now supported, such that the two main
interpolation grid implementations can be used. ¿rough this common interface, they can
be compared in a reliable manner. Also, their feature sets are not equal, such that it can be
advantageous to use one or another. For example, fastNLO in principle supports NNLO
cross sections, and allows for two additional sub-grids for encoding kinematic variables for
a more �exible scale variation based on an arbitrary function of these two variables [53].
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MCgrid does not yet support these two features, but especially the addition of NNLO
calculations will certainly be relevant for future applications, and would be a natural next
step of the development. A second addition to MCgrid we presented is the support for
dedicated APPLgrids for the scale logarithm coe�cients, which allow for scale variations
that go beyond simple scale factors. ¿irdly, we discussed the added support for theO(αS)
expansion of S-MC@NLO calculations, by �lling their (DA −DS) contribution.
¿is last feature is a �rst step beyond encoding �xed-order calculations in interpolation

grids. However, proper resummation e�ects by the inclusion of parton-shower emissions
are still absent. A precondition for adding these is a precise understanding of their de-
pendences, which we achieved in the previous chapter with our detailed account on this
subject in the context of the internal reweighting. However, there are still major di�culties
to overcome, such as variable numbers of PDF ratios. ¿ese need to be solved, possibly by
an approximate account, before a reweighting of parton-shower emissions in interpolation
grids is in reach. For now we suggest to use the on-the-�y reweighting as a fast exploratory
method before the actual grid production, to assess the validity of doing �xed-order vari-
ations only. Similarly, one could assess with a modi�cation of the on-the-�y reweighting
the viability of a future implementation for an approximate handling of multi-jet merged
calculations within interpolation grids. Hence, internal-reweighting methods can play a
guiding role in future interpolation-grid developments.
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5. QCD uncertainties and jet rate
extrapolations at a future 100 TeV
proton-proton collider

A er the presentation of more general methods to get many predictions out of one calcula-
tion, we eventually discuss in this chapter a method to extrapolate predictions for multi-jet
rates to higher jet multiplicities.
¿is is presented in the context of amore general exploration ofmulti-jet physics at a high-

multiplicity environment, namely a 100 TeV pp collider. Such amachine is under discussion
by the high-energy physics community as an important next step a er the completion of the
physics programmes at the LHC and the High-Luminosity LHC [5, 6], with an anticipated
luminosity of the order of 1–10 ab−1 [6–8]. It is called the Future Circular Collider (FCC).
As for the LHC, we will need a good description of the StandardModel of particle physics

(SM) at the FCC, because also beyond-SM particles eventually decay to SM particles in the
�nal state within most models, and because beyond-SM interactions could in�uence the
production of SM particles. ¿is means that the SM provides both potential backgrounds
and signatures for the exploration of beyond-SM phenomena. In addition, the FCC will
provide sizeable rates even for rather rare processes, as e.g. rare decays of top-quarks or
Higgs-bosons. ¿is can be used to improve the precision in the determination of SM pa-
rameters, and to look for deviations from SM dynamics at distances that are even shorter
than at the LHC. Besides being eventually used as precision tools during the data analysis,
Monte-Carlo event generators can be used as exploratory tools in the planning phase of
such a future collider, to calculate estimates for these interesting backgrounds and signals.
Here, we focus on the huge amount of multi-jet activity that is expected at the FCC. ¿is

opens up many possibilities for searches of exotic physics beyond the SM such as black
holes or instantons decaying into jets. A large number or events containing systems with
e�ective masses of 10 or even 20TeV would be observed which will also explore a region
where no prior experience of QCD exists. In view of the enormous phase space available for
producing additional jets at the FCC, new methods to estimate and probe the tails of the jet
multiplicity distribution are desirable, in a region where otherwise one has to largely rely
on parton-shower simulations alone.
Oneway to address this challenge of describing high-multiplicity jet environments within

QCD is by �tting the scaling behaviour of such processes. In particular, we look at pure
QCDmulti-jet production and vector boson production associatedwith jets as typical bench-
marks for this part of SM dynamics. We discuss the scaling in jet multiplicities between 14
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and 100TeV, and the scaling behaviour in ratios of multi-jet cross sections, which di�er
by one in the jet multiplicity. ¿e latter is particularly interesting, since increasing collider
energies allow increasingly more hierarchical kinematics, which in turn trigger the transi-
tion of the well-known Staircase scaling—also known as Berends scaling—to a Poissonian
scaling. ¿e latter is usually associated with the onset of practically unconstrained, inde-
pendent emission patterns. ¿ese scaling patterns have recently been explained using semi-
analytical methods [65, 170, 171]. We �nd that both scaling patterns are well-instantiated in
our Monte-Carlo predictions, and potentially allow to extrapolate the rates for up to about
15 jets or even higher, using the �rst few jet bins only. Using such scaling-based predictions,
background subtractions for New Physics signatures resulting from decays of new heavy
coloured particles yielding a distinct imprint on the multiplicity distribution might become
feasible [62, 172].
We discuss the jet activity to be expected at the FCC in Section 5.1, and explore jet scaling

patterns and their extrapolations in Section 5.2. Parts of this chapter have been published
within a more extensive study carried out to assess SM physics at the FCC as a step towards
a Conceptual Design Report [173], and within a paper that discusses a variety of pQCD
aspects in an FCC environment [174].

5.1. QCD cross sections at high energies

In order to gain some intuition about the kind of known physics that will be encoun-
tered at such a machine, representative cross sections for the production of relevant high-
multiplicity �nal states are compiled in Fig. 5.1. As in all studies in this chapter, the anti-kT
algorithm [107] is used to cluster jets with a radius parameter of R = 0.4. ¿e �rst thing
to notice is the inelastic cross section at the FCC, being around 105mb [175], which consti-
tutes a 45% raise compared to the LHC (∼ 72mb). To contrast that, we calculated LO cross
sections for a multitude of processes, with cross sections ranging from a few attobarn up
to hundreds of microbarn, across 15 orders of magnitude. QCD-only processes come with
the largest cross sections when a jet cut of pT ,min = 50GeV is used, with dijet production
at 315 µb. Also higher jet multiplicities have very high cross sections, and only inclusive
7-jet production is less probable than any other hard process: ¿e inclusive single vector
boson production cross sections come with 350nb–600nb and are thus slightly enhanced
compared to 7-jet production. ¿e least probable cross sections included in Fig. 5.1 are
those of triple Higgs production in association with a vector boson or from vector-boson
fusion with at least two jets. ¿ese cross sections are between 3 and 20 ab. ¿us at least the
H3 j2 cross section would still correspond to several events at a luminosity of 1–10 ab−1.
¿e total inclusive cross sections are compared to those at 14 TeV in Fig. 5.2a where

one clearly sees the increasing multiplicity of events at the higher centre-of-mass energy.
Turning our attention to the pT spectra, in Fig. 5.2b we show cumulative distributions for
a democratic cut of 1 TeV on all jets for the �rst 6 jets ordered in pT . ¿is sample now has
been generated using Sherpa with aMEPS@LO set-up with matrix elements for up to two
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Figure 5.1.: A compilation of LO cross sections at the 100 TeV future proton-proton collider.

The Higgs cross sections labelled with “GF” refer to Higgs production via gluon fusion,

whereas “VBF” stands for vector-boson fusion production. For gluon-fusion Higgs production

the top-mass e�ects have been included.

additional jets on top of the dijet core process merged together and dressed with parton
showers. ¿ough the energy distribution for the highest multiplicity jets fall quickly, many
events will be observed where the 6th jet has still more than 400–500GeV. ¿e leading jets
are accessible at energies much greater than 3 TeV.
In Fig. 5.3 jet rates at NLO QCD di�erential in jet transverse momentum and additionally

binned in jet rapidity y are presented. ¿ese results have been obtained with Black-
Hat+Sherpa [77]. ¿e renormalisation and factorisation scale have been set to µR = µF =
HT/2. For the de�nition of HT , cf. Eq. (3.54). Comparing rates for 14 and 100TeV centre-
of-mass energy an increase of about one order of magnitude for central jets with low and
moderate pT is observed. Considering larger pT values the di�erences get more extreme,
at pT = 3.5TeV the FCC rates are more than three orders of magnitude larger than at the
LHC. In fact, the FCC provides substantial jet rates even for very large rapidities: 200GeV
jets with 5 < ∣y∣ < 6 come with rates about two orders of magnitude larger than those for
200GeV jets in the 4 < ∣y∣ < 5 bin at the LHC. From these rate estimates it can be concluded
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Figure 5.3.: NLO QCD inclusive jet cross sections for
√
s = 14 TeV (left) and

√
s = 100 TeV (right),

di�erential in pT for di�erent bins in jet rapidity y. Note that for illustrative purposes the

results have been multiplied by variable scaling factors (SF), as indicated in the legend.

that one can expect at least ten times more jets at the FCC compared to the LHC, and this
factor gets larger when looking into high pT and/or high ∣y∣ regions or demanding large jet
multiplicities. Accordingly, the rapidity coverage of general-purpose detectors at the FCC
should increase with respect to ATLAS or CMS.
At NLO, we can study the reduction of the scale uncertainties in jet pT spectra compared

to LO. In Fig. 5.4, we show NJet+Sherpa [80] predictions for the �rst and second leading
jets ordered in pT . Variations in the factorisation and renormalisation scale choices at NLO
leads to the expected reduction in theoretical uncertainty—in this case around 10% at NLO,
compared with 20% at LO.
To summarise the LO results in this section we collect a number of multi-jet QCD pro-

cesses in Fig. 5.5. For four di�erent values of the minimum pT we show pure jet productions
with up to 8 jets and single photon with up to 7 jets. As a comparison we also show top pair
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Figure 5.4.: The �rst and second leading jet pT for dijet production. LO and NLO scale varia-

tions in the range [1/2, 2] are shown around the central scale of µR = µF = HT/2. The top row

shows a linear scale from 50 GeV to 10 TeV while the bottom row shows the same plot using

a logarithmic scale over the range 250 GeV to 10 TeV in order to avoid the singularity which

a�ects the �rst bin.
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Figure 5.5.: A comparison of inclusive jet rates between various QCD processes calculated at

LO for di�erent pT ,min . For pure jets production, an additional comparison is made between

jets with radii R = 0.2 and R = 0.4.

production with up to 6 jets, two quark pairs with up to 4 jets and three top pairs with up to
two jets. ¿e fact that the latter processes are accessible with relatively high-pT jets impres-
sively demonstrates the degree to which QCD can be studied in the 100 TeV environment,
opening up huge amounts of phase space for new physics searches.

5.2. The scaling behaviour of multi-jet rates

We have seen in the previous section that when considering hadron collisions at highest
energies QCD jet production processes are omnipresent. Even processes with a very large
multiplicity of (associated) jets exhibit sizeable rates. Accurate predictions for such �nal
states pose a severe challenge for Monte-Carlo event generators. Fixed-order calculations
are feasible only up to �nal-state multiplicities of 6 at NLO [127] or up to 12 at LO [70].
Beyond this point the parton shower has to be employed, which does not extend to the hard-
emission phase space, and therefore fails to give accurate jet-rate predictions. ¿erefore one
might have to resort to approximate methods. ¿is section focuses on one such approach,
which is based on the scaling behaviour of QCD jet rates with respect to jet multiplicities.
¿eQCD jet production rates anticipated at the FCC demand suitable theoreticalmethods

even for very large jet multiplicities. While a �xed-order prediction for a given jet process is
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suitable to describe the corresponding jet multiplicity bin, matrix-element parton-shower
merging techniques provide inclusive predictions, di�erential in the jet multiplicity, with
high jet multiplicities beingmodelled through the parton shower. Alternatively, there has re-
cently been progress inmaking (semi-)analytical predictions for jet rates at hadron colliders
that account for small jet radii and high jet counts [65, 170, 171].
With the advent of such methods, the morphology of the entirety of the jet-multiplicity

distribution can be studied. Guided by phenomenological evidence, and supported by both
�xed-order calculations and parton-shower simulations, certain jet-multiplicity scaling pat-
terns can be identi�ed [66] that �nd their analogue in the analytical jet-rate predictions [65,
170].
As already visible in Fig. 5.2a, jet rates binned in the number of jets exhibit a high degree

of regularity. To study this feature one considers the ratio R(n+1)/n of the exclusive (n + 1)-
over the n-jet cross section,

R(n+1)/n ≡
σexcln+1
σexcln

. (5.1)

¿e approximately equal step size (on a logarithmic scale) between the subsequent exclusive
jet rates observed in Fig. 5.2a translates into a �at plateau for R(n+1)/n, i.e. R(n+1)/n ∼ const.
¿is suggests a simple exponential form of the jet-rate distribution. ¿is shape of the jet
rates is called Staircase Pattern. Another regularity in jet rates found is named Poisson
Pattern. ¿is pattern is caused by jet cross sections that follow a simple Poisson statistics,
resulting in R(n+1)/n ∼ n̄/(n + 1), with the average number of jets given by n̄.
Both patterns have been observed in LHC data [58–61] and in Monte-Carlo studies [62–

64]. ¿ey can be understood as the limiting cases for the jet-emission probability: for
αS/π log2 Q/Q0 ≪ 1, a Staircase Pattern is expected, while for the opposite regime, i.e.
αS/π log2 Q/Q0 ≫ 1, one expects a Poisson Scaling [65–67]. Here Q denotes the hard pro-
cess scale and Q0 is of the order of the jet-resolution scale, i.e. Q0 ∼ pT ,min. ¿e derivation
is based on the language of generating functionals for the jet rates. ¿e two distinct regimes
correspond to additional parton emissions being distributed either equally among all other
partons or stemming predominantly from a single hard parton line. ¿e latter follows a
simple Sudakov decay-like model which results in a Poisson distribution, as is the case for
photon emissions from a hard electron line [68]. ¿e case of democratic emissions (mainly
gluons from gluons) on the other hand is exclusive to �eld theories with a non-abelian
group structure such as QCD.
In realistic measurements jet patterns will be overlaid and cut o� by other e�ects, such

as phase-space constraints. When the available energy for further jet emission is being
depleted or when the jets already radiated cover a good fraction of the available solid an-
gle [67], then higher multiplicities will quickly tend to zero. On the other hand, the �rst few
emissions carry away sizeable parts of the total energy available, such that the increase in the
partonic momentum fractions at which any participating PDFs are evaluated is comparably
large. ¿is leads to somewhat steeper decrease of jet rates for the �rst few emissions and is
known as the PDF suppression e�ect [66].
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Table 5.1.: The jet-cut scenarios considered for pure jet production at FCC energies. Further-

more, the �t hypotheses, cf. Eq. (5.2), and the corresponding parameters are listed.

pT ,min cuts [GeV]

label leading other �t function �t region �t parameters

S1 (democratic) 100 50 fStaircase 3 ≤ n ≤ 5 c = 0.342, m = 0.006
S2 (democratic) 200 100 fStaircase 3 ≤ n ≤ 5 c = 0.274, m = 0.003
P1 (hierarchical) 500 50 fPoisson 1 ≤ n ≤ 5 n̄ = 2.21, c = 0.16
P2 (hierarchical) 2000 50 fPoisson 1 ≤ n ≤ 5 n̄ = 2.64, c = 0.25

To study in how far simple jet scaling patterns describe the jet multiplicity distributions at
FCC energies, �ts of R(n+1)/n in Monte-Carlo predictions are considered. For that purpose
Sherpa Monte-Carlo samples for pure jet production are explored, triggering scaling pat-
terns using either democratic or hierarchical, i.e. staggered, jet cuts. As mentioned before,
democratic re�ects the fact that all jet pT ,min are of the same order, i.e. uniform, whereas
hierarchical refers to the scenario where the cut on the leading jet, pleadingT ,min , is signi�cantly
increased.
Both cut scenarios considered for pure jet production are listed in Table 5.1. In all cases

the 2→ 2 core process has been considered at MC@NLO accuracy, furthermore LOmatrix
elements for �nal-state multiplicities up to six partons are included, all consistently merged
with the parton shower. In Fig. 5.6, the resulting R(n+1)/n distributions are presented for the
four considered selections. Note that the index n counts the number of jets radiated o� the
hard two-to-two core, e.g. n = 1 corresponds to the production of three �nal-state jets.
As discussed in [63], jets assigned to the core process behave di�erently from jets emitted

thereof, which is why they have to be dismissed from pattern �ts through the data. Fur-
thermore, PDF e�ects leave a non-universal imprint on the �rst few bins. ¿erefore, the
Staircase-pattern �ts for the democratic cut scenarios are based on the values from R4/3
through R6/5, cf. the two upper panels of Fig. 5.6. For the hierarchical cut scenarios, the PDF
suppression e�ect is less prominent, due to the hard cut on the leading jet that induces a
much higher scale Q for the core process. Accordingly, the �ts for the Poisson-like patterns
are based on R2/1 up to R6/5, cf. the two lower panels in Fig. 5.6. To quantify the quality
of the �ts, a term linear in n for the Staircase pattern and a constant term for the Poisson
pattern have been added to the ideal scaling hypotheses. Hence, the �t functions for the
two scenarios are

fStaircase(n) = c +mn ,

fPoisson(n) =
n̄

n + 1 + c .
(5.2)

All resulting �t parameters are listed in Table 5.1. For all cut scenarios the �t function
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Figure 5.6.: The exclusive jet multiplicity ratio R(n+1)/n in pure jet production at the FCC. Re-

sults are presented for the four cut scenarios described in Table 5.1, with �ts for the Staircase

and Poisson patterns, cf. Eq. (5.2).
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and its extrapolation to higher jet bins describe the simulated data very well. For the two
democratic scenarios, the constant c decreases from 0.35 to 0.29 when we increase the jet
cuts, re�ecting the fact that the cost in terms of available energy for adding an additional
jet increases.
Poisson patterns are obtained when hierarchical cuts are applied. Although the constant

o�set c increases from 0.16 to 0.25 when enlarging the gap between the leading jet cut and
the overall jet cut pT ,min, one can see by eye that the overall �t quality is better for the
larger cut gap, i.e. 2000GeV vs. 50GeV. For the smaller cut gap, i.e. 500GeV vs. 50GeV,
the �t increasingly underestimates R(n+1)/n for growing n, which might indicate a faster
transition to a Staircase-like behaviour. As expected, the average jet multiplicity n̄ found
from the �t increases with a larger leading jet cut (from 2.2 to 2.6). In particular the S2
and P2 cut scenarios are very well modelled by the simple scaling pattern hypotheses and
allow for reliable extrapolations where explicit calculations based on �xed order or even
parton-shower simulations become computationally infeasible.
As explained above, jet-multiplicity scaling patterns are a generic feature of associated

jet-production processes. To illustrate this, vector-boson production, and in particular
W-boson production, in association with jets will be considered in the following. Once
again, samples based on an MC@NLO simulation of pp →Wmerged with additional LO
matrix elements for up to �ve jets dressed with parton showers have been produced. In
Fig. 5.7, the predictions for exclusive jet rates imposing a jet cut of pT ,min = 50GeV and
variable cuts on the leading jet (le panel) or on the W-boson (right panel) transverse mo-
mentum are presented. ¿e two cut schemes induce very similar shapes on the multiplicity
distributions, but the overall rates are signi�cantly smaller when demanding the W-boson
to have large transverse momentum. In fact, a sizeable part of the W+jets cross section
originates from hard jets accompanied by a vector boson with comparatively low transverse
momentum [176].
For comparison, Fig. 5.8 shows the same event selections, but for a pureMC@NLO simula-

tion of the inclusive vector-boson production process, i.e. without any additional tree-level
matrix elements taken into account. Noticeably, with the lack of higher-multiplicity matrix
elements the rate estimates for the high-multiplicity bins are orders of magnitude smaller
than in the merged run. From similar comparisons at LHC energies, it is apparent that the
predictions based on higher-multiplicity matrix elements are more reliable and describe
data much better, see for instance [59–61, 177].
In Figs. 5.9 and 5.10, the exclusive jet multiplicity ratios R(n+1)/n for the multi-jet merged

sample described above are plotted alongside with �ts following the functional forms given
in Eq. (5.2). In this context, the jetmultiplicity, n, counts the number of jets in addition to the
core process pp→ ℓν̄ℓ + j, i.e. W production in association with at least one jet. In Fig. 5.9,
results for the democratic selection scenario, i.e. a universal jet cut of pT ,min = 50GeV,
requiring pWT > 100GeV, are presented. A �t of the Staircase hypothesis in the range
1 ≤ n ≤ 5 results in an almost vanishing parameter m. ¿is presents an ideal Staircase
scaling, with a constant ratio of c = 0.4. ¿e extrapolation of this scaling function to higher
values of n is in very good agreement with the Monte-Carlo simulation results. In Fig. 5.10,
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Figure 5.7.: Results of a MENLOPS calculation for the exclusive jet multiplicity Njet for o�-shell

W-boson production in association with jets for di�erent cuts on the leading jet and the

W-boson transverse momentum. For all (subsequent) jets a cut of pT > 50 GeV is applied.
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Figure 5.8.: The same as in Fig. 5.7, but with a MC@NLO calculation instead of a MENLOPS

one.



5 . Q C D U N C E R TA I N T I E S A N D J E T R AT E E X T R A P O L AT I O N S AT T H E F C C 107

0.0

0.5

1.0

1.5

2.0

R
n

=
σ

e
x
c
l

n
/
σ

e
x
c
l

n
−

1

anti-kT jets
R = 0.4

pT,min = 50 GeV

√
s = 100 TeV pWT > 100 GeV

Sherpa MENLOPS
pp→ lνl + j + nj

fit: fStaircase(n) = c+mn
m =-2.8e-04, c =0.4

2 4 6 8 10 12 14

n

0.6
0.8
1.0
1.2
1.4
1.6
1.8

R
at

io
to

fit fitted region

Figure 5.9.: Results of a MENLOPS calculation for exclusive jet multiplicity ratios in o�-shell

W-boson production in association with jets for a democratic jet selection, i.e. applying a

universal jet cut of pT ,min = 50 GeV and requiring pT ,W > 100 GeV. As the �t function the

Staircase hypothesis given in Eq. (5.2) has been used.

the corresponding results for hierarchical selection criteria are presented. Two cut scenarios
have been considered, namely p jleadT > 500GeV and pWT > 500GeV, while pT ,min = 50GeV
is required otherwise. ¿e results for the �ts of the Poisson hypothesis in the range 1 ≤ n ≤ 4
illustrate the signi�cantly larger average jet number n̄ = 2.7 in the �rst case vs. n̄ = 1.1
in the latter case. ¿e constant o�set parameters c are determined as c = 0.1 and c = 0.4,
respectively. ¿e extrapolations of both �ts yield a good description of the simulated data
up to very high jet counts.
To further illustrate the universality of jet-scaling patterns, Fig. 5.11 compiles the inclusive

jet multiplicity ratios for a variety of processes, including pure jets, γ + jets, t̄t + jets and
W/Z + jets. ¿e predictions are based on dedicated n-jet tree-level matrix-element calcu-
lations, without invoking parton showers. Democratic jet selection cuts are applied, i.e.
requiring p jT > 50GeV in all processes. In addition, the photon production processes are
regulated by the selection criteria pγ

T > 50GeV and R j,γ > 0.4, with R j,γ the (η−ϕ)-distance
between any of the jets and the photon.
¿ere are a few remarkable aspects to note here. Apparently, for the pure jets and the

W+jets processes these LO rate estimates nicely reproduce the staircase scaling parameters
found in the matrix-element plus parton-shower samples for the analogous jet-selection
cuts, cf. Figs. 5.6a and 5.9. ¿is is supported by the fact that for exact Staircase scaling the
cross-section ratios for subsequent jet multiplicities are identical for exclusive and inclusive
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Figure 5.10.: The same as in Fig. 5.9, but for hierarchical event selection cuts. For the �t, the

Poisson hypothesis given in Eq. (5.2) has been used.
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process listed in the legend.

cross sections [66], i.e. in this limit

σexcln+1
σexcln

= σ incln+1
σ incln

= R(n+1)/n = const. (5.3)

Also, the Z+jets result resembles the W+jets one very closely, and for γj+jets, the same
overall behaviour is found. However, the production of a pair of top quarks induces a
large upper scale for subsequent jet emission. Correspondingly, the plateau is more slowly
approached from the top, indicating an initially Poisson-like scaling.

5.3. Discussion

Moving to a centre-of-mass energy of 100 TeV comes with a large amount of increased
complexity and challenges, but also a very large potential for the discovery of New Physics
and tests of the current SM.¿is chapter presented results demonstrating the overwhelming
amount ofQCD radiation at such a proton-proton collider. Although some techniques used
at the LHC can also be used to study a 100TeV environment, others will need to be adapted
or improved.
We demonstrated that one can make use of dominant jet-multiplicity scaling patterns

in democratic and hierarchic kinematic regimes at the FCC to extrapolate known �xed-
order or Monte-Carlo results to higher multiplicities. ¿ese two regimes feature Staircase
and Poisson scaling, respectively, and we found good agreement between scaling-based
extrapolations and simulation results in both cases. It is possible to �t jet multiplicities n
up to values of n = 15 or even higher, using results for much lower n.
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¿ese extrapolation techniques allow trustworthy predictions to be made for very high
jet-multiplicity bins that will be populated by a variety of production processes at FCC
energies. Hence, the use of jet-scaling patterns can be of use to separate New Physics signals
from QCD backgrounds in multi-jet channels, based on the shape of the jet multiplicity
distribution.
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6. Conclusions

Data sets from the current and future runs at the LHC and proposed colliders will have an
unprecedented statistical precision. Recent measurements, e.g. of the Z-boson transverse
momentum distribution, foreshadow this precision era, in which theory predictions need to
be ready to provide accuracies of only a few percent atmost, even for di�erential observables.
However, (N)NLO QCD predictions are computationally expensive, especially when dressed
with parton showers and non-perturbative e�ects using Monte-Carlo event generators.
Hence, explicit re-calculations for scale and parameter variations to estimate the theory
uncertainties can be prohibitive, in particular for �ts of multi-variate objects such as PDFs.
But precision measurements and searches for New Physics at high-energy colliders require
QCD theory uncertainties to be fully accounted for, and that determinations of parameters
such as PDFs or αS continue to improve. Moreover, higher collider energies will lead to
large rates of high-multiplicity jet production. Predicting these rates is also computationally
challenging. To face these issues, fast and ready-to-usemethods to evaluateQCDpredictions
are necessary.
With this thesis we provided signi�cant new contributions to reweighting approaches,

allowing for fast re-evaluations of state-of-the-art perturbative QCD predictions. By pre-
senting new developments for both event-by-event and interpolation-grid reweighting
techniques, we gave an exhaustive treatment on the subject. In addition, we studied high-
multiplicity jet rates at the FCC and the application of approximate jet-scaling laws for the
extrapolation of those rates.
Firstly, we have presented the implementation and validation of event-by-event reweight-

ing techniques allowing for the fast and e�cient evaluation of perturbative and parametric
systematic uncertainties in the Sherpa event-generator framework. We have li ed the
available techniques for the determination of PDF, αS and scale uncertainties in leading-
and next-to-leading-order QCD calculations to include the respective variations in parton-
shower simulations. In turn, we provide the means to perform consistent uncertainty evalu-
ations formulti-jet merged simulations based on leading- or next-to-leading-order accurate
matrix elements of varying multiplicity matched with parton showers.
With our extensive validation we have been able to prove the correctness of the imple-

mentation and have, furthermore, been able to illustrate the importance of parton-shower
reweighting for reliable uncertainty estimates. With comparably little additional computa-
tional costs this allows for the on-the-�y determination of PDF, αS and scale uncertainties
based on one single generator run, that, otherwise, would require explicit re-computations.
¿e overall reduction in CPU time is by a factor of about 3 to 20, depending on the event-
generation mode used. Even larger reduction factors can be achieved when the events are
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further processed through a detector simulation.
Hence, considering its scope and the amount of saved CPU time it o�ers, the presented

reweighting implementation is ideally suited for event-wise uncertainty estimates and can
readily be used in arbitrary theoretical and experimental analyses.
Secondly, we have presented new developments for the reweighting through QCD inter-

polation grids, as implemented in the APPLgrid and fastNLO packages. ¿ese store the
perturbative coe�cients for a certain observable calculation discretised in x and Q2. Using
interpolation methods, this allows for the a posteriori inclusion of PDFs, αS and variations
of the renormalisation and factorisation scales. In turn, such techniques are well suited for
(combined) �ts of PDFs and αS that require a multitude of re-computations of the theoret-
ical predictions. ¿e automated projection of arbitrary NLO QCD calculations onto such
grids is done by the recently released aMCfast and MCgrid tools. We discussed and val-
idated new features in MCgrid. A new interface has been added to support the fastNLO
package. ¿is supplements the already existing interface to APPLgrid, which in turn has
been enhanced to allow for more �exible scale variations. ¿is makes use of dedicated scale
logarithm grids instead of an RGE approach that is restricted to simple scale factors. ¿e
third new MCgrid feature is the support for �lling theO(αS) expansion of S-MC@NLO
calculations. ¿ese improvements allow for a more versatile automated interpolation-grid
production, supporting a larger class of pQCD calculations, grid implementations and scale
variations.
Lastly, we explored the multi-jet environment of a 100 TeV proton-proton collider, apply-

ing a method to extrapolate low-multiplicity jet rates to high-multiplicity ones to overcome
computational limits of explicit calculations. ¿is extrapolation rests on universal scaling
patterns in these jet rates, namely the Staircase and the Poisson scaling, which are found
in two limiting kinematic regimes, respectively. Using Sherpa Monte-Carlo studies for
di�erent processes in association with additional jets, we found clean manifestations of
both patterns. Using these, we could show that a �t to the �rst few jet multiplicity rates
can be used to extrapolate rates for up to 15 or more jets. Hence, this method can be used
to discriminate New Physics signals and QCD backgrounds in the tails of jet-multiplicity
distributions.
¿roughout the thesis we have seen large deviations between predictions when mov-

ing from “simple” (N)LO (plus parton-shower) calculations to more complex ones using
multi-jet merging, con�rming earlier results. ¿is was e.g. the case for the W-boson pT or
the number of jets in W-boson production, both for our 13 TeV and our 100TeV samples.
Also the scale uncertainties generally got smaller, although they can be spuriously small
for LO matrix elements. ¿ese �ndings clearly highlight the need to use state-of-the-art
MEPS@NLO calculation for those and other observables whenever possible. With this thesis,
we provided means to make the application of such calculations less expensive in terms of
CPU cycles, and hence more feasible.

To give an outlook, the most obvious improvement for both the internal reweighting in
Sherpa and the MCgrid interface would be the support for NNLO calculations. For the
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internal reweighting, this should also include the matching to a parton shower, as presented
in [34, 35]. It would be advantageous to start with the internal reweighting, because this
entails tracing the dependences in Sherpa. ¿is would make it easy to output the correct
weights and to implement their projection to grid weights in MCgrid a erwards. ¿e
motivation for supporting NNLO (+ parton shower) is even stronger than for NLO, due to
the signi�cantly higher CPU time requirements. Furthermore, the extension to NNLO QCD
is comparatively straightforward. For these reasons, it is planned for the near future.
Another follow-up would be the application of the internal reweighting to an αS �t based

onmultiple jet observables. A similar study has recently been presented forNLO calculations
of Z+jets observables, based on the reweighting of NTuple event �les [138]. With our
internal reweighting, we could make use of an NLO multi-jet merged calculation, which
gives a more faithful description of jet distributions.
A milestone for interpolation grids would be the inclusion of parton-shower e�ects.

Alternatively, the support for the matrix-element parts of a multi-jet merged calculation
can be attempted. ¿e vantage point of a complete account of an internal reweighting
helped us to identify the problems with these two enhancements. Especially the variable
number of PDF ratios is di�cult to encode on a reasonable number of grids. However, we
found indications in our internal-reweighting discussion that not all PDF ratios are equally
important and this might point to suitable approximations that help to mould many-/all-
order calculations into a form that is compatible with interpolation grids. ¿is would allow
for the inclusion of phase-space regions in PDF determinations, that are not well described
by �xed-order calculations.
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A. Con�guring and accessing event-weight
variations

Sherpa provides a list of pre-calculated alternative event weights, which are automatically
output to the HepMC event record or directly to an interfaced Rivet analysis. For versions
of Sherpa later than v.2.2.0, the variations to calculate can be speci�ed with the following
line in the (run) section of the Sherpa run card:

VARIATIONS muR2fac1,muF2fac1,PDF1 muR2fac2,muF2fac2,PDF2 ...;

Each variation is characterised by up to three arguments

muR2fac a prefactor multiplying the nominal (squared) renormalisation scale

muF2fac a prefactor multiplying the nominal (squared) factorisation scale

PDF a parton density and its accompanying αS parametrisation.

¿is syntax works for all employed scale setters of Sherpa and both Sherpa’s internal
PDFs and PDFs interfaced through LHAPDF (v. 5 or later). If trailing arguments are omitted
from a variation, their default values are used, which is 1.0 for scale factors and the PDF set
used by Sherpa for the nominal calculation.
In HepMC event records (v. 2.06 or later), the alternate weights can be accessed as named

weights within the HepMC::WeightContainer of each event. ¿e keys are given in one of
the following formats:

MUR<muR2fac>_MUF<muF2fac>_PDF<ID>
MUR<muR2fac>_MUF<muF2fac>_PDF<ID>_PSMUR<muR2fac>_PSMUF<muF2fac>

¿e parts in angle brackets are replaced with the respective scale factors and LHAPDFIDs.
¿e second form is used, if a factor is applied to the renormalisation/factorisation scale
of parton-shower emissions. ¿is includes branchings within cluster histories determined
by the multi-jet merging procedure, as discussed in Section 3.7. If the scale reweighting
with parton-shower emissions has been enabled (we discuss below how to do so), the scale
factors for MUR, MUF and PSMUR, PSMUF are always equal, respectively, in the current imple-
mentation.
If the internal Rivet interface of Sherpa is used to analyse events during the generation,

one histogram �le per variation is written to disk, along with the nominal one. ¿e �le
names follow a pattern resembling the HepMC weight-container keys as speci�ed above.
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Scale variations

¿e scale argument can also be speci�ed by enclosing it in square brackets: [mu2fac]. ¿is
syntactic sugar implies both the given factor, its inverse and the default value. For example,
1.0,[4.0] is equivalent to 1.0,4.0 1.0,0.25 1.0,1.0 and therefore triggers up and
down variations of the factorisation scale, along with the central value. If both scale factors
are enclosed in brackets, they are expanded individually, keeping the other at its default value
of 1.0: Hence, [4.0],[4.0] is equivalent to the 5-point scale variation4.0,1.0 0.25,1.0
1.0,4.0 1.0,0.25 1.0,1.0. To include simultaneous variations in the same direction,
both factors can be surrounded by a single pair of brackets. ¿us, [4.0,4.0] is equiv-
alent to the 7-point scale variation 4.0,1.0 0.25,1.0 1.0,4.0 1.0,0.25 4.0,4.0
0.25,0.25 1.0,1.0.

PDF and αS variations

PDF and αS variations both work by specifying a PDF set through the PDF argument of a
variation. ¿is is because Sherpa per default uses the value for αS(m2

Z) given by the PDF
set in use. ¿erefore an αS variation can be achieved by using PDF �ts for di�erent values
of αS(m2

Z).
To specify a speci�c member of a PDF set, its number is given as an additional argu-

ment separated by a slash. ¿us, 1.0,1.0,CT14nlo/38 asks for the 38th member of the
CT14nlo PDF set, without modifying the renormalisation and factorisation scales. If the
slash and the number are not given, the central PDFmember is used, i.e. CT14nlo is equiv-
alent to CT14nlo/0.

Sherpa can also be asked to do variations for all members of a PDF set by enclosing it
in square brackets. Hence, 1.0,1.0,[CT14nlo] is equivalent to

1.0,1.0,CT14nlo/0 1.0,1.0,CT14nlo/1 ... 1.0,1.0,CT14nlo/56

¿is [PDF]-notation only works with PDFs interfaced through LHAPDF v. 6. It can be
combined with scale factors that are enclosed in square brackets. Again, the expansions
are done individually, keeping other arguments at their default values. ¿is means that
for example 1.0,[4.0],[CT14nlo] is equivalent to 1.0,[4.0] 1.0,1.0,[CT14nlo].
Hence, a 7-point scale variation and a full CT14nlo PDF variation can be requested by

VARIATIONS [4.0,4.0],[CT14nlo];

Con�guring how variations are calculated

¿e following options always a�ect all variations that are speci�ed by arguments to the
VARIATIONS keyword.

REWEIGHT_SPLITTING_ALPHAS_SCALES (default: 0) If this is set to 1, the renormalisation
scale factor is applied to the αS argument of individual splittings, instead of applying it
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only to the overall renormalisation scale, see Section 3.7. ¿ismeans that parton-shower
emissions are only included in the rescaling, if this option is enabled. In the notation of
Sections 3.3 and 3.7, this sets k̃αS = µ̃R/µR.

REWEIGHT_SPLITTING_PDF_SCALES (default: 0) If this is set to 1, the factorisation scale
factor is also applied to PDF scale arguments within shower emissions (and intermediate
cluster history PDF ratios), and not only to the core-process PDFs. In the notation of
Sections 3.3 and 3.7, this sets k̃ f = µ̃F/µF .

REWEIGHT_MAXEM (default: -1)¿is option speci�es the number of ordinary parton-shower
emissions included in the reweighting per event. If this is set to 0, no emission is
reweighted. ¿e default value -1 means that all emissions should be reweighted.

REWEIGHT_MCATNLO_EM (default: 1) If this is set to 0, the single parton-shower emission
within the S-MC@NLO contribution is not reweighted.

VARIATIONS_INCLUDE_CV (default: 1) If this is set to 0, the behaviour of the square bracket
syntax is changed, such that the central-value variation is not included when expanding
a parameter in square brackets. It is recommended not to disable it, such that one can
do a closure test between the dedicated calculation and the reweighting. However, in
CPU intensive applications, this setting can be used to omit this one obsolete variation
while still making use of the convenient square-bracket syntax.
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