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1 – GENERAL INTRODUCTION 

 

“Population analyses are necessary in settings in which there may be neural 

mechanisms that involve coordination of responses across neurons. These 

mechanisms exist only at the level of the population and not at the level of single 

neurons, such that single-neuron responses can appear hopelessly confusing or, 

worse, can mislead the search for the true biological mechanism.” 

(Cunningham and Yu, 2014) 

 

The cornerstone of psychology research is behavior. Although the ultimate aspirations 

of psychology are to tackle the inner-workings of the brain, the only sensible recourse 

for an early psychologist was to carefully measure the inputs and outputs of a system, 

make conclusions about the underlying computations, and make predictions based on 

these observations. This “black-box” approach to the nervous system was necessary at 

a time when the cellular structure of the brain was mysterious, and the technology did 

not permit more detailed study. Much of the earliest electrophysiological work, such 

as Sherrington’s experiments in the canine reflex system (Sherrington, 1906), were 

undertaken and initially interpreted under this framework. 

It was the birth of neuroscience that squarely focused attention inside the box. 

The birth of neuroscience did not precipitate out of the work of psychologists, but that 

of histologists and pathologists. In 1873, Camillo Golgi introduced the Golgi staining 

procedure (Golgi, 1873), allowing for visualization of individual neuronal bodies, 

axons, and dendrites. However, at this time the prevailing theory was ‘reticular 

theory,’ which posited that the nervous system was composed of an immense web of 

connectivity, termed a syncytium. 

1.1 – Birth of the neuron doctrine 

A few years later, Ramon y Cajal began experimenting with Golgi’s technique and 

introduced many refinements, tuning the procedure to the specific tissue being 

investigated among other factors (Cajal, 1888). Based on his painstaking research and 

documentation of individual cells, Cajal proposed the neuron doctrine. He believed, 

although couldn’t prove definitively, that the nervous system could be broken down 

into individual neurons distinct from one another. Furthermore, he postulated that the 
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function of these cells was to integrate the input of potentially thousands of other 

neurons and produce a self-regulated output. Although he was not the first person to 

propose neurons as the basic unit of the nervous system, and the physical gaps 

between individual neurons could not be proven until later (Porter et al., 1945), his 

neuron doctrine is still the prevailing theory today. In 1906, Cajal and Golgi shared a 

Nobel Prize for their many contributions. Together with the notion that individual 

neurons have specific receptive fields, i.e., areas of the skin or visual field that they 

respond to exclusively, these discoveries position the neuron as the most basic 

functional unit of the nervous system. 

 It is remarkable how closely linked the prevailing theories in the history of 

neuroscience are linked to the technological history. Indeed, this is a phenomenon that 

is true of many disciplines and has been pointed out a number of times (Dyson, 2012; 

Yuste, 2015). Sometimes ideas drive us to develop the technologies necessary to 

prove them, and sometimes, new technologies reveal basic facets of nature we never 

conceived. 

1.2 – Mapping the brain: neuron by neuron 

It was the discoveries of Cajal and Golgi that began neuroscience in earnest, but the 

explosion of neuroscience as we practice it today owes its state to the discoveries that 

allowed recording the activity of single neurons in vivo.  

 

“An electrode has been developed to fill the need for an easily made, study device 

capable of resolving single-neuron action potentials at least as well as the commonly 

used micro-pipette.” 

(Hubel, 1957) 

 

 In no small part due to Hubel’s development of the tungsten microelectrode, 

recording from single neurons during behavior became more practical and feasible 

than it ever was before. Implementing their techniques in cat visual cortex, Hubel and 

Wiesel were able to map out what kinds of stimuli excited individual cells in 

particular parts of the visual field (1962), and even developed a schematic of how 

such activity could arise in a network. Imagine identifying a neuron that seems to 

respond exclusively to a bar moving at a certain angle across a certain spot in an 
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animal’s visual field. Or, imagine finding a neuron that seems to respond only to the 

presentation of your favorite breakfast cereal. Indeed, finding out what kinds of 

stimuli or behaviors reliably modulate individual neurons is the cornerstone of 

neuroscience research up to the present time. Yet, in a behaving animal, how can one 

be sure that the very same neuron does not participate in many processes? How does 

it respond to auditory stimuli? How does it behave when an animal imagines a similar 

stimulus? What is its function when the animal does nothing at all? 

 Herein lies the crux of the neuron doctrine. By identifying neurons in the brain 

that form not just functional units, but perceptual units, we very easily begin to 

pigeonhole individual neurons as players fulfilling singular roles that are imaginable 

by us. That is, it’s easy to assume that because a neuron seems to care whether you 

stretch your arm or sit still; it must be causing that action and only that action. The 

discovery of specific receptive fields played perhaps the largest part in cementing this 

view, since under this framework neurons are presumed to be ‘inactive’ when their 

receptive field is not being addressed. Taking this point further, such a perspective 

additionally only considers the firing rate of a neuron itself, not when the individual 

spikes occur, or how they may be synchronized with other neurons (Gray et al., 1989; 

Fries, 2015). 

 

Indeed, recordings in higher level brain areas, as well as areas closer to sensory 

inputs and motor outputs, have yielded highly heterogeneous and complex single-

neuron responses, both across neurons and across experimental conditions. In some 

cases, single-neuron responses may bear no obvious moment-by-moment relationship 

with the sensory input or motor output that can be externally measured. Classically, 

such heterogeneity has been considered to be a result of biological noise or other 

confounds, and often researchers study only neurons that ‘make sense’ in terms of 

externally measurable quantities. However, this single-neuron complexity may be the 

realization of a coherent and testable neural mechanism that exists only at the level of 

the population.”  

(Cunningham and Yu, 2014) 

 

 As described above, the danger of viewing neurons as perceptual units is that 

during experiments, they tend to be selected based on how task-related they appear 

during recording sessions, thereby biasing recordings and obscuring the true 
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computational basis of a given area. 

 To give a more thorough exposition of how receptive field coding can be 

misleading, let’s consider the visual and somatosensory systems. While basic 

processing such as edge detection, both visual and sensory, has been long considered 

to be cortical in origin, new research challenges the established hierarchy of 

processing. In the visual system, studies have found that feature extraction can occur 

in the retina itself (Gollisch and Meister, 2010), as early as the first step following 

light detection by the rods and cones (Venkataramani and Taylor, 2010). From 

another modality it is known that first-order tactile neurons in the periphery have 

axons that branch in the skin, forming a distributed systems of receptive fields (Paré 

et al., 2002), the consequences of which have been elusive. A recent study recorded 

from first-order tactile neurons in human subjects while a large set of point and edge 

stimuli were passed over the receptive fields of these neurons (Pruszynski and 

Johansson, 2014). The experiment revealed that the distributed nature of these 

receptive fields allowed first-order tactile neurons to signal edge orientation, both 

through magnitude of response and temporal code. Therefore, while categorizing 

neurons directly by receptive field allows us to simplify our perceptual understanding 

of the computations being undertaken in the nervous system, these interpretations may 

underestimate the sophistication of the underlying circuit. Furthermore, in higher-

order brain areas in the cortex, where ‘receptive fields’ cannot be contained to 

individual areas of visual field or sensory patches, the concept of a clear receptive 

field becomes almost impossible to ascertain, as it would involve testing an endless 

number of stimuli and behavioral conditions. 

1.3 – Mapping the brain: en masse 

Although the arsenal of single electrode techniques has expanded to include tetrodes 

and laminar probes, the most significant development towards wide-scale recording is 

the implantable electrode array (Churchland et al., 2007; Kipke et al., 2008). The most 

widely used of these arrays is the so called Utah array, with 100 channels distributed 

on a grid (Nordhausen et al., 1996; Maynard et al., 1997). There are three immediate 

benefits of such a technology. Firstly, while recording with single electrodes requires 

many repeated recording sessions over the course of months, an array can record 

hundreds of individual neurons in a single session, meaning that data can be collected 
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more quickly, and therefore more experiments can be undertaken. Secondly, since the 

arrays are chronically implanted, it is often possible to obtain stable recording of 

single neuron for many hours, days, weeks, or in some cases months (Carmena et al., 

2005; Chestek et al., 2007; Dickey et al., 2009; Chestek et al., 2011). Thirdly and 

crucially, neural activity during repeated trials of identical stimuli often yield varying 

neural and behavioral results (Churchland et al., 2006a; Ko et al., 2011; Churchland 

and Abbott, 2012), and arrays permit the capture of population dynamics during 

single trials. How do neurons covariate during a trial? How is the timing of spikes 

coordinated across a population (Okun et al., 2015)? These are questions that can only 

be properly answered using parallel recording. Along with the advances in 

implantable array technology, much new research employs advanced 3D imaging 

techniques to visualize large populations of neurons simultaneously (Schrödel et al., 

2013; Prevedel et al., 2014), techniques which will no doubt become more and more 

relevant, especially in the pursuit of relating functional connectivity to anatomical 

connectivity. 

 It is also worthwhile to note how the development of these new technologies 

also biases us towards particular types of analysis in the same manner as single 

electrode recordings have biased us for many decades. While arrays tilt the scales in 

favor of population-based analysis, they also bias us away from other analyses. For 

example, understanding the layer structure of cortical areas in vivo requires detailed 

acquisition of depth information, for example using laminar probes with many 

contacts all down the shaft. The kinds of mass arrays that are in use tend to make 

ascertaining the identity of different layers of cortex virtually impossible and is 

therefore not emphasized or even attempted in most experiments employing array 

recordings. Furthermore, distinguishing different cell types in array recordings has 

been used controversially in recent studies. Some believe that excitatory neurons and 

inhibitory interneurons can be distinguished based on their spike-waveform shape 

(Kaufman et al., 2010; 2013), but proving a direct connection between spike 

waveform and cell class is an ongoing quest (Vigneswaran et al., 2011). 

1.4 – Dimensionality reduction: rotating the perspective 

Implantable arrays provide the necessary data complexity for elucidating how neural 

networks operate in real-time. However, they also produce an overabundance of data 
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to interpret (Sejnowski et al., 2014). Therefore, to go along with advanced recording 

techniques we require sophisticated analysis techniques (Stevenson and Kording, 

2011). Dimensionality reduction methods fill this requirement by summarizing and 

transforming high-dimensional signals into a realm that can be interpreted, analyzed, 

or utilized as a control signal. The many types of dimensionality reduction used in 

neuroscience research, and when they should be employed, has been reviewed in 

detail (Cunningham and Yu, 2014). 

 Dimensionality reduction is useful any time one suspects that the number of 

available signals is much greater than the number of informative latent dimensions, 

i.e., when redundancy exists between independently collected signals. Neural data 

often fits this description as neurons in the brain, especially within one area, are not 

expected to be completely independent given the connectivity between them. 

Therefore, dimensionality reduction techniques seek to find a lower-dimensional 

representation of high-dimensional data that captures certain aspects of the data. The 

specific objective varies from method to method and determines what parts of the 

signal are conserved in this low-dimensional representation. For example, data 

compression techniques by definition employ dimensionality reduction. In image 

compression, neighboring pixels in a natural image are unlikely to have wildly 

differing colors or intensities. Therefore, image compression finds a low-dimensional 

transformation of an image that preserves the unpredictable or visually relevant 

changes in an image while discarding others, taking up less digital storage space. The 

image can then be transmitted to another user and reconstructed from this reduced 

representation (note: in the case of image and sound compression the basis functions 

for reconstructing a signal are predetermined, and it is how these dimensions are 

combined that is computed in the compression 

https://en.wikipedia.org/wiki/Discrete_cosine_transform, accessed 18.11.2015). 

 As mentioned before, the primary difference between dimensionality 

reduction methods is the objective. The most common techniques, principal 

component analysis (PCA) and factor analysis (FA), have the objective of explaining 

covariance between dimensions. In the case of PCA, orthogonal dimensions are found 

(eigenvectors of covariance matrix) that can be linearly combined to optimally 

reconstruct the high-dimensional signal. These methods only consider overall 

covariance, not temporal dynamics. Other methods, such as Gaussian-process factor 

analysis (GPFA) (Yu et al., 2009) and the widely used Kalman filter (Harvey, 1990), 
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take into account how signals change from time point to time point, thereby 

emphasizing the dynamics of a signal. Recently, toolboxes have become available 

making many types of dimensionality reduction accessible to a wide audience of 

scientists (Cowley et al., 2013). 

From a basic array de-noising perspective, PCA can be used for artifact 

elimination (Musial et al., 2002). Since arrays have many channels distributed over a 

large area of brain tissue, it is unlikely that a biological signal would appear 

simultaneously on all channels. Therefore, PCA dimensions that represent signals 

present on all channels with no time difference are likely artifacts and can be 

subtracted from each channel prior to spike sorting to improve signal quality. 

 Dimensionality reduction that takes dynamics into account is commonly used 

to reduce a population of simultaneously recorded units into a kinematic output for a 

neuroprosthetic application, i.e., controlling a cursor on a screen or a robotic arm. 

Many studies have successfully developed and applied these methods in a research 

and clinical setting (Velliste et al., 2008; Collinger et al., 2012; Hochberg et al., 2012; 

Aflalo et al., 2015). However, these types of dimensionality reduction have 

limitations with respect to basic research. In some cases these methods are required to 

assume certain types of tuning within the model (Georgopoulos et al., 1986), and in 

all cases they map neural activity directly onto movement parameters. The drawback 

of projecting onto movement parameters is the assumption that an internal population 

of neurons follows the dynamics of movement variables as opposed to an abstract 

representation determined by the local circuit (Churchland et al., 2007). Therefore, to 

reveal the underlying processes in neural populations, unsupervised dimensionality 

reduction that extracts latent dimensions based on internal covariance, such as PCA, is 

required.  

The prospect of recording from large neural populations also raises an 

important practical concern. How many neurons do we need to record in order to 

understand neural circuit dynamics, as well as the resulting cognition and behavior? 

One of the most universal findings in neuroscience experiments employing 

dimensionality reduction is that the number of latent dimensions is far less than the 

number of recorded neurons (Gao and Ganguli, 2015). Do these underlying latent 

dimensions paint an accurate picture of the internal processing going on during a 

particular task, or would the number of dimensions increase when recording a larger 

pool of neurons?  Some effort has been made to develop a theory of neuronal task 



1 – General Introduction 

  
  

 17 

complexity for predicting the interplay between number of recorded neurons, quality 

of recording signal, and behavioral demands of a task. Using this theory, Gao and 

Ganguli (2015) were able to show that under some task designs, increasing the 

number of recorded neurons cannot provide a richer picture of internal processes, 

while on the other hand, a sufficiently rich task design does not necessarily require the 

acquisition of many more neural signals than is currently being collected. Such 

theories of data collection will be essential in the coming years as we hone 

experimental design to very specific questions, and analysis methods towards single-

trial investigation. 

1.5 – Dimensionality reduction: insights and pitfalls 

We have discussed the advantages of large populations of neurons being projected 

down onto a much smaller amount of latent dimensions during certain behaviors, but 

do these dimensions have an intrinsic meaning? That is to say, can the apparent 

functional interpretation of these dimensions elucidate the underlying computations of 

a particular brain region or circuit, or are they measurement artifacts of the 

mathematical methods used to extract them? 

 As a cautionary tale, let us examine the classical genetics paper of Menozzi et 

al. (1978), published in the journal Science. In this and other studies, the authors 

generated allele-frequency maps of specific genetic variants over large geographical 

regions by collecting genetic samples from many individuals. Then, to make this data 

palatable, they reduced the dimensionality of this data using PCA to form synthetic 

spatial maps. These synthetic maps revealed extremely interesting patterns of 

apparent human migration. However, as was pointed out many years later (Novembre 

and Stephens, 2008), these patterns arise even if control data is simulated that 

contains no heterogeneous migration patterns. In other words, purely mathematical 

artifacts could explain the observed patterns. All types of dimensionality reduction 

techniques have inherent pitfalls requiring proper controls. 

 However, it would be inappropriate to describe dimensionality reduction 

pitfalls without providing positive examples. A prime example of this comes from the 

neuroprosthetic experiment of Sadtler et al. (2014). In this experiment, monkeys 

controlled a cursor on a screen in two dimensions using recordings from a large 

population of neurons in primary motor cortex. First, population activity was linearly 
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combined and reduced to only 10 dimensions using a method similar to FA, which 

finds dimensions that capture the inherent covariance between neurons, similar to 

PCA. Then, these dimensions were reduced again to produce two-dimensional 

kinematics that controlled the cursor. Monkeys were able to use this interface to move 

the cursor to targets laid out in a circle on the screen with a very high degree of 

accuracy. Following this, perturbations were made to the transformation matrices, 

either between the full population and the latent set of 10 dimensions, or between 

those and the kinematics. When the perturbation was made between these 10 

dimensions and the kinematics, monkey performance dropped, but very quickly 

returned to perfect performance. However, when the perturbation was made in the 

transformation initially extracted using FA, monkeys were unable to improve their 

performance within a reasonable time scale. This study shows that the mechanisms 

underlying plasticity during closed-loop prosthetic control are readily able to 

recombine the latent dimensions extracted in the first step in order to produce 

meaningful kinematics. In other words, neurons that tend to covariate together are 

unlikely to de-couple their firing patterns in the short term, but as a group the 

magnitude of their firing can be adjusted by internal plasticity mechanisms to reduce 

output error (Martinez and Wang, 2015). 

 Another interesting experiment asked the question of how activity in primary 

and premotor cortex, which have direct connections to motor neurons in the spinal 

cord, could produce muscle activation during movement, but not during preparation 

for movement (Kaufman et al., 2014). It has been postulated that a non-linear gating 

mechanism could inhibit the effect of this output on muscle during preparation 

(Benjamin et al., 2010), as has been found for eye movements (Evinger et al., 1982), 

but no such mechanism could be detected for arm movements so far. In this study, it 

was found that the latent dimensions explaining neural population activity in premotor 

and primary motor cortex during movement could be linearly combined to produce 

the latent dimensions explaining muscle activation patterns during reaching. This 

linear transformation is meant to approximate how cortical output might synapse onto 

motor units in the spinal cord. Interestingly, they then showed that the neural activity 

during preparation for movement fell into the ‘null-space’ of this output 

transformation, suggesting that neural activity during preparation may ‘avoid’ 

population states that might produce unwanted muscle activity prematurely. This 

explanation was able to explain a large amount of variance in preparatory activity and 
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provides an explanation of how movement gating can be achieved in a linear fashion. 

Furthermore, they found evidence that the same principles may be at play between 

premotor and primary motor cortex, suggesting that connected pools of neurons could 

potentially selectively avoid or inhabit output-potent and output-null dimensions to 

selectively transfer or gate information. 

 Another area of research where parallel recording and dimensionality 

reduction is becoming essential is decision making. 

 

“If the neural activity is not a direct function of externally measurable or controllable 

variables (for example, if activity is more a reflection of internal processing than 

stimulus drive or measurable behavior), the time course of neural responses may 

differ substantially on nominally identical trials.” 

(Cunningham and Yu, 2014) 

 

As one progresses from large sensory driven areas to high-level association areas, 

consistency of processing between trials may decrease. Under these circumstances, 

averaging activity over many repeated trials of the same behavior can be misleading. 

Examples of this issue can be seen in the constant debate between certain decision 

processes represented as either accumulated evidence or spontaneous state shifts 

(Hanks et al., 2015). In an attempt to observe the decision making process in real-

time, Kaufman et al. (2015) trained monkeys to reach to different targets on a touch 

screen while recording from primary motor and premotor cortex using multiple 

arrays. On some trials, multiple reach opportunities were presented to the monkey at 

different times, and with varying difficulty, occasionally giving the animal reason to 

change its mind. Using the GPFA dimensionality reduction technique, they were able 

to extract smooth neural trajectories on single-trials, and subsequently using the 

trajectories of these trials during deliberation to make inference about the internal 

decision making process of the animals. They found that monkey’s decisions were 

often visibly reflected in the neural trajectory, both under forced conditions and 

spontaneously, revealing for the first time moment-by-moment correlates of the 

internal decision process. However, since behavior normally lies along a continuum 

of possibilities, distinguishing changes in internal processing from random 

fluctuations can be very difficult. The ultimate goal of such research should be not 

only interpretation of single-trial intention, which can be a subjective matter, but 



1 – General Introduction 

 

20 

direct manipulation of output behavior through inactivation (Erlich et al., 2015) or 

stimulation (Inoue et al., 2015). 

 As a final example, there exist some more targeted types of dimensionality 

reduction that combine unsupervised techniques with a priori information. Demixed 

principal component analysis (dPCA) seeks to explain existing covariance between 

neurons while also separating information about different task dimensions into 

components (Machens, 2010; Machens et al., 2010; Brendel et al., 2011; Kobak et al., 

2014). Using dPCA, one can separate stimulus effects from choice representation in 

large populations of neurons, as well as information about how signals change over 

time, and compare how the population of neurons contribute to each of these 

components. The extracted task-specific dimensions form the interpretable perceptual 

units of the network, much in the same fashion as single neurons were treated as 

perceptual units in the classical studies mentioned earlier. Such techniques also raise 

questions of how individual neurons contribute to the representation of many different 

task features, even across modalities, known as mixed selectivity. Mixed selectivity in 

individual neurons is something which appears to be essential and widespread in 

prefrontal (Mante et al., 2013; Rigotti et al., 2013) and parietal (Raposo et al., 2014) 

cortex, and is part of the concept that individual neurons participate in many different 

distributed networks for processing a multitude of stimuli and actions. 

 Even Mountcastle, who proposed the cortical column as the functional unit of 

cortex, and Hebb (1949) before him, recognized that the appearance of distinct 

functional units could be deceiving (Hawkins and Blakeslee, 2007). Single cells 

cannot be assigned perceptual identities based on how they respond to a single set of 

stimuli. A strong response to one stimulus does not preclude the participation of that 

cell in many distributed and variable processes. 

 

“It is obvious that the total number of distributed systems within the brain is much 

larger than had once been thought, and perhaps by several orders of magnitude. Thus 

major entities are parts of many distributed systems, contributing to each a property 

determined for the entity by those connections common to all of its modular subsets 

and by the particular quality of their intrinsic processing. Even a single module of 

such an entity may be a member of several (though not many) distributed systems.” 

(Edelman and Mountcastle, 1978) 
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1.6 – Modeling neural networks 

Understanding how a specific neuron contributes to an underlying computation or 

what kinds of computations a specific circuit can carry out is difficult to study directly 

in vivo. One would require knowledge of the whole neural network involved, full 

information regarding anatomical connectivity, and the ability to manipulate the 

system. Although some new techniques permit some of these aspects (Peron et al., 

2015), modeling is an essential tool to bridge the gap between theory and empirical 

data. 

 One of the most relevant methods for modeling the dynamics of a neural 

circuit in recent years is the recurrent neural network (RNN) (Sussillo, 2014). RNNs 

generally simulate individual neurons quite simply, modeling only firing rate and not 

individual spikes. Each neuron has an internal activation, which is related to its firing 

rate by some non-linear function, and has a set of inputs and outputs to and from other 

neurons in the network. The power of RNNs is that they allow complex temporal 

interactions between neurons, producing complex output even in the absence of input, 

similar to the brain. On the other hand, feed-forward neural networks, which are used 

to solve many complex problems, produce no output when no input is present. 

 There are a number of essential similarities between RNNs and biological 

systems. Firstly, neurons are non-linear, i.e., internal activation is non-linearly related 

to output firing rate (related through an inverse tangent function, for example). 

Secondly, neurons have strong feedback connections, a hallmark of cortical circuits. 

Thirdly, neurons themselves are modeled very simply, so completing complex tasks 

requires coordination over a large population. RNNs can approximate any dynamical 

system given enough internal units (Doya, 1993), so their power is not limited to 

biological modeling. 

 However, producing an endless stream of complex models does not directly 

allow us to understand the principles of neural computation. One of the most powerful 

aspects of modeling studies is to compare the space of all possible models that 

successfully reproduce a given empirical observation and those solutions observed in 

nature. For example, a study of a particular model of the yeast cell-cycle (Li et al., 

2004) showed that although many models could be generated that ‘fit’ the data, only 

3% of those models outperformed the empirical results when it came to robustness 

(Lau et al., 2007). This result provides strong evidence that the type of model that 
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evolved over time in nature seems to follow principles of robustness that could not 

have been identified without exploring the space of potential models. 

 In this way, we can sift through the endless pool of possible models and find 

those that are most likely informative about brain circuits and processes. For the next 

example, let’s take the field of center-out reaching, which has been very widely 

studied in neuroscience. Many classical studies have found that individual neurons in 

primary motor cortex were cosine-tuned for specific reach directions (Schwartz et al., 

1988; Caminiti et al., 1990), and that in the population these preferred directions were 

generally uniformly distributed throughout the field of possible movements. The 

robustness and uniformly distributed nature of these preferred directions has been 

used to conclude that motor cortex is coding high-level features of reaching, such as 

intended movement direction, rather than muscle activity, and has been leveraged in 

many decoding efforts such as the population vector (Georgopoulos et al., 1986). 

However, it has been shown that during two dimensional planar reaching, where 

movements can be more easily related to specific muscles, that the preferred 

directions of primary motor cortex neurons is not uniformly distributed, but biased 

based on the biomechanics of the limbs (Scott, 2000; Scott et al., 2001). Going on 

from this point, Lillicrap and Scott (2013) used modeling of this experiment to find 

the key ingredients that allow a model to perform like empirical data. In this study, 

they created a feed-forward neural network with state feedback in closed-loop to 

generate muscle activation pattern that could control an arm in two dimensions to 

complete center-out reaching movements. This model does not fit into the class of 

RNNs described above, since the network was feed-forward, but the state feedback 

provided a large degree of temporal interaction between read-outs and future states of 

the network. They showed that such a neural model reproduced the behavior as well 

as the non-uniform distribution of preferred directions within the internal neurons of 

the network, replicating the empirical findings. Crucially, they were able to directly 

test which aspects of their model were necessary to reproduce empirical results. 

Specifically, removing all bi-articulate muscles, i.e., those that span more than one 

joint (in the model with postural loads), produced a uniform preferred direction 

distribution. Therefore, they were able to step-wise test which ingredients of the 

model were essential. These types of studies are becoming more common in recent 

years and are vital to the field of motor control theory (Suminski et al., 2015), as 

many of these concepts still remain controversial (Naselaris et al., 2006; 
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Georgopoulos et al., 2007; Kurtzer and Herter, 2007; Tanaka, 2015), to the extent that 

cross-referencing between different laboratories has been minimized (Georgopoulos 

and Carpenter, 2015). 

 The study just described required not only solving a control problem with a 

neural network, but looking into the strategy of the network itself and making 

inferences. The same way the mind was treated as an impenetrable black-box for 

much of psychological history, so have RNNs. Although RNNs have been used to 

solve all manner of problems, the internal strategy and key ingredients of these 

solutions have not been analyzed in great detail. New techniques have made opening 

this black-box possible (Sussillo and Barak, 2013). 

 In the work of Mante et al. (2013), neural activity was recorded from the 

frontal eye field while monkeys performed a context-dependent motion or color 

discrimination task. Monkeys were presented with a set of moving dot patterns and 

had to selectively discriminate color or motion from the same visual stimuli based on 

a contextual cue. They then reported their response with a saccade, and were able to 

do this successfully. Neurons in this area show a wide range of mixed selectivity to 

the color and motion stimuli, as well as the performed saccade. So the question arose 

if the area in question could selectively process either the color or motion information 

depending on the context, without having to receive differing visual input? To test 

this, they simulated an RNN to execute the same task, i.e., select a saccade direction 

based on the sensory stimuli and the context. They found that like the recorded data, 

color and motion information were represented in parallel and orthogonally in the 

population of RNN units, while choice was represented independent of modality. 

Furthermore, by analyzing the fixed points of the system, they found that the temporal 

dynamics could be described by a simple combination of line attractors and selection 

vectors, mechanisms that arise directly from the learned connectivity within the RNN, 

and revealing a mechanism that is likely employed in the brain during context-

dependent computations. 

 Another recent study showed how an RNN could produce the temporal 

dynamics matching muscle activation during reaching (Sussillo et al., 2015). While 

the ability of RNNs to produce complex temporal patterns similar to muscle activation 

has been shown before (Hennequin et al., 2014), this study went further by comparing 

the activity in the internal neurons in the RNN to neural activity recorded from the 

brain. They showed that when internal activity was constrained to progress in a 
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biologically plausible manner; it matched the patterns of activity seen in empirical 

data very well. Furthermore, strong rotational dynamics underlay both the real data 

and the model, but not a similar model with complex internal activity, i.e., activity 

that was not constrained in a biologically plausible manner. Perhaps most 

interestingly, when perturbations were introduced, only the biological RNN was 

robust to these perturbations, while the complex model quickly degraded. The power 

of RNNs is tightly coupled to the simplicity of the model, which allows mapping 

properties such as robustness directly to certain aspects of the model. Although the 

simplicity of the individual neurons modeled in RNNs are appealing, much research is 

still focused around finding the limits of modeling individual neurons in spiking 

neural networks (Hawkins and Ahmad, 2015; Markram et al., 2015). While these 

spiking neuron models are essential in the pursuit of whole-brain modeling, using 

simplified neural models allows us to examine the key ingredients of network 

dynamics without making too many assumptions (O’Leary et al., 2015), and in many 

cases the simple models capture the essential aspects of neural computation 

(Churchland and Abbott, 2012; Litwin-Kumar and Doiron, 2012), 

1.7 – The grasping circuit 

Up to this point, we’ve spoken generally about the brain and the technologies that 

allow us to peer inside. Let us bring our previous discussions to bear on an essential 

aspect of primate behavior, grasping. From the moment I see my cup of coffee, to the 

moment I drink the hot coffee out of the mug, lie a multitude of complex processing 

steps and actions. The shape of the cup, its orientation, its location in space relative to 

my eyes and my hand, the hand shape required to grasp it, the muscle activation 

required to move the arm and hand, as well as the holding of the cup and motion 

towards the mouth, all must be determined and regulated by the brain. Furthermore, 

all of this must be undertaken in the right context, depending on whether the cup itself 

is hot or cold, full or half-full. As primates, reaching out, grasping, and manipulating 

objects are some of our most essential and unique skills. 

 A few specific parts of the primate cortex are particularly remarkable in the 

quest to understand grasping. The anterior intraparietal area in the parietal lobe, also 

know as AIP, and the hand area of the ventral premotor cortex (PMv) in the frontal 

lobe, also know as F5, together form an essential circuit for the preparation and 
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execution of grasping movements in macaque monkeys and humans. These areas 

share extensive anatomical connections (Luppino et al., 1999), forming a long-range 

and very specialized circuit. Lesion studies in monkeys have allowed us to get an 

initial impression of how areas participate in actions. Reversible inactivation of AIP 

results in a selective deficit in pre-shaping the hand during grasping (Gallese et al., 

1994), and the same is true for F5 (Fogassi et al., 2001). From many studies over the 

years (Janssen and Scherberger, 2015) we know that AIP and F5 are both involved 

during visual fixation of an object and manipulation of objects, even when no 

movement is required (Murata et al., 1997; 2000). Furthermore, in both areas, activity 

persists during delays between object presentation and movement, even when the 

object must be remembered and grasped in the dark (Murata et al., 1996; Baumann et 

al., 2009; Fluet et al., 2010). While F5 is thought to coordinate grasping as it happens, 

the role of AIP in online control is still controversial (Tunik et al., 2005; Schettino et 

al., 2015). Despite decades of research into both areas, differentiating their functional 

underpinnings has been elusive. As mentioned earlier, primary motor and premotor 

cortex have been sites for prosthetic application, but AIP has also been considered as 

a potential site for prosthetics (Menz et al., 2015; Schaffelhofer et al., 2015) and 

nearby areas of parietal cortex have recently been exploited in human patients (Aflalo 

et al., 2015). 

In order to determine the computations of this circuit, we can look to current 

working models of the AIP/F5 circuit. The most comprehensive model is that of Fagg 

and Arbib (1998), termed the FARS (Fagg/Arbib/Rizzolatti/Sakata) model. In this 

model, the authors simulated simple cell units consisting of leaky integrator neurons 

and linear threshold units that are triggered by certain visual stimuli. In this model 

only AIP and F5 are explicitly modeled, so visual information and context 

information arrives completely processed. Although this model is rather simple, it 

produces firing rates of individual units that were very similar to the empirical data 

existing at the time. In addition to matching experimental data, the model included a 

number of hypotheses. The primary hypothesis was that the main function of AIP is to 

extract “affordances,” i.e., provide information about the features of an object relevant 

for grasping, probably from connections to inferotemporal cortex (Webster et al., 

1994; Borra et al., 2008). On the other hand, F5 then selects only the desired grasp 

plan, based on information from prefrontal areas regarding the context of the action. 

Other hypotheses proposed that AIP maintains an active memory of the possible 
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affordances during execution, and that both areas should contain mixed information 

about objects and grasping. This second hypothesis has gathered substantial evidence, 

since neurons in AIP retain information about the orientation of an object often for an 

entire trial and do not change their preferences between cuing and movement, 

suggesting that they are maintaining a working memory of the object properties 

(Baumann et al., 2009). In addition to this, the idea that both visual and motor type 

activity exists in AIP is supported by a number of studies. It appears that object 

identity information likely is communicated to the posterior portion of AIP, while the 

anterior portion of AIP is more connected to F5, suggesting that a very large amount 

of the visuo-motor transformation process likely takes place within the gradient of 

AIP itself (Baumann et al., 2009; Michaels et al., 2015; Premereur et al., 2015). 

Along with these hypotheses, a number of predictions were made as well. One 

prediction is that if an object could be grasped in two ways, but the specific way to be 

used is instructed after a delay, both areas should first represent both plans and then 

reduce to a single plan after the second instruction (Cisek and Kalaska, 2002). Indeed, 

if the object is presented first, but the particular grip not indicated, both options seem 

to become active in AIP, suggesting that both affordances are prepared. On the other 

hand, if grip information is presented before the object to be grasped is made visible, 

almost no differential tuning exists (Baumann et al., 2009), suggesting that without 

any visible object features, the context cues have no meaning in AIP. 

Another prediction is that if two visually different objects are presented that 

are grasped identically, parts of AIP should distinguish these cases, and parts not, 

while F5 should mostly consider these objects identical. Furthermore, AIP should 

show the largest differences for aspects of objects that determine how they are 

grasped, regardless of the magnitude of visual differences. In a recent experiment, 

monkeys were presented with up to 50 different objects to be grasped in the dark, 

while activity was recorded from arrays in AIP and F5 along with kinematic recording 

from 27 joint angles in the shoulder, arm, and hand (Schaffelhofer, 2014). 

Interestingly, the similarity between the neural representation of these objects in the 

population of neurons in F5 closely matched the kinematic similarity between the 

hand shapes used to grasp the objects, implicating coding in a grasp-relevant manner. 

On the other hand, the population of neurons in AIP more closely represented the 

visual similarities the objects. As a test of the prediction above, a set of unique objects 

was specifically designed that was grasped identically regardless of difference in 
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appearance. Neurons in AIP much more readily indicated differences in these objects, 

while this was not the case in F5. Together, these findings lend support to the FARS 

model, which had predicted that AIP should generate responses that matched the 

affordances of each object; while F5 should represent only the selected grasp itself. 

If AIP is encoding grasp affordances, then why is tuning for an instructed 

grasp type, in cases where the object to be grasped is visually identical, so high in AIP 

(Baumann et al., 2009; Lehmann and Scherberger, 2013)? There are two main 

possibilities. The first is that AIP is more connected directly to prefrontal cortex than 

originally thought (Petrides and Pandya, 1984; Borra et al., 2008), and therefore 

selection of appropriate grasp could potentially be undertaken in AIP itself, sending 

on to F5 only the grasp selected (Rizzolatti and Luppino, 2001). However, recent 

evidence suggests that when the monkey is free to choose which grasp to use, this 

information is first represented in F5 (Dann and Scherberger, unpublished data). The 

second possibility is that since the monkeys are typically trained in these types of 

experiments over tens of thousands of trials, the cues indicating the type of grasp to 

use may have been incorporated into the representation of the grasping object itself, 

thereby determining the object affordances at an early stage in visual processing 

(Bonini et al., 2012).  

Although possible models have been discussed in detail in the last decade 

(Rizzolatti and Luppino, 2001; Cisek, 2007; Cisek and Kalaska, 2010; Grafton, 2010), 

the FARS model is still the most comprehensive computational model to date that 

directly simulates firing rates of cell populations in AIP and F5. Why has the AIP/F5 

circuit resisted more sophisticated modeling? The visual circuit for object 

identification has been modeled extensively using many methods including deep 

neural networks (DiCarlo et al., 2012; Pagan et al., 2013; Kriegeskorte, 2015). These 

models have been able to shed light on the processing steps likely taking place in each 

sub-area along this stream. One of the likely reasons why this has not been the case in 

the AIP/F5 circuit is that the inputs and output of the circuit are not clear-cut. Both 

areas receive input from many areas and participate in the planning and execution of 

movements, making reducing each area to singular processing functions 

unreasonable. 

However, there is another reason why modeling of these areas will likely 

always be a challenge. Both these areas are essential participants in action 

understanding. Understanding the actions and intentions of others is an essential 



1 – General Introduction 

 

28 

component of human social behavior. Deficits in social cognition have been 

associated with prevalent mental disorders such as autism (Frith and Frith, 2010). A 

recently discovered neural substrate that might be crucial for understanding the action 

of others is the mirror neuron system (MNS) (Gallese et al., 1996; Rizzolatti et al., 

1996a). Mirror neurons in macaque monkey premotor cortex fire during the execution 

of specific goal-oriented behaviors such as object grasping, holding, and 

manipulating, as well as the observation of similar actions by humans or other 

monkeys. Mirror neurons even respond if part of their preferred action is visually 

occluded (Umiltà et al., 2001), or a sound related to the action is heard (Kohler et al., 

2002). A number of human studies employing non-invasive brain imaging techniques 

have found evidence suggesting that a similar network exists in humans (Grafton et 

al., 1996; Rizzolatti et al., 1996b; Binkofski et al., 1999; Buccino et al., 2001; Grèzes 

et al., 2003). Mirror neurons with motor properties have been identified in area F5 

along with areas in and around the intraparietal sulcus, especially areas PFG and AIP 

(Rizzolatti and Sinigaglia, 2010). The MNS has been linked to imitation, motor 

learning, empathy, and deficits caused by autism (Iacoboni and Dapretto, 2006). The 

circuit not only permits the automatic preparation of potential grasping movements, 

but also likely underlies our understanding of others and is a substrate for learning. 

Therefore, convincing modeling of these areas requires not only the simulation of a 

successful grasp, but also many of the most complex behaviors we undertake as 

humans. 

 

“Rather than focusing on the question of ‘what is represented’ by a particular area or 

set of neurons, it may be more productive to address this issue by understanding the 

causal role of the activity of these neurons: how the activity is decoded or read out by 

the downstream areas and eventually used for behavior.” 

(Murakami and Mainen, 2015) 
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and parietal grasping network  
 

Michaels JA, Dann B, Intveld RW, Scherberger H (2015) Predicting Reaction 

Time from the Neural State Space of the Premotor and Parietal Grasping 

Network. Journal of Neuroscience 35:11415–11432. 

doi:10.1523/JNEUROSCI.1714-15.2015. (Michaels et al., 2015) 

 

Author contributions: J.A.M., B.D., R.W.I., and H.S. designed and performed 
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authors revised the manuscript. 

 

 

2.2 Probing the continuum of immediate to withheld grasping movements 
in the macaque fronto-parietal network 
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Author contributions: J.A.M., B.D., R.W.I., and H.S. designed and performed 

research; J.A.M. analyzed the data; J.A.M. wrote the paper. All authors 

revised the manuscript. 

 

 

2.3 Neural population dynamics during reaching are better explained by a 
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Representational Tuning. PLoS Computational Biology, 12(11), e1005175. 
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“In 1991, Leroy Burrell set a world record for the 100 m dash with a spectacular time 

of 9.90s, stunning the prerace favorite Carl Lewis, who finished second with a time of 

9.93s. It was later noted, however, that Burrell was not the faster runner. Rather, his 

reaction time to the gun that marked the start of the race was much shorter than 

Lewis’s: a hair-trigger 117 ms against a relatively lethargic 166 ms. Without this 

difference, Lewis would have won handily.” 

(Afshar et al., 2011)  



2.1 – Reaction time prediction 

32                



2.1 – Reaction time prediction 

         33 



2.1 – Reaction time prediction 

34                



2.1 – Reaction time prediction 

         35 



2.1 – Reaction time prediction 

36                



2.1 – Reaction time prediction 

         37 



2.1 – Reaction time prediction 

38                



2.1 – Reaction time prediction 

         39 



2.1 – Reaction time prediction 

40                



2.1 – Reaction time prediction 

         41 



2.1 – Reaction time prediction 

42                



2.1 – Reaction time prediction 

         43 



2.1 – Reaction time prediction 

44                



2.1 – Reaction time prediction 

         45 



2.1 – Reaction time prediction 

46                



2.1 – Reaction time prediction 

         47 



2.1 – Reaction time prediction 

48                



2.1 – Reaction time prediction 

         49 



2.2 – Probing the continuum 

 

50                

  



2.2 – Probing the continuum 

   
      51 

 

2.2 – Probing the continuum of immediate to withheld grasping movements 
in the macaque fronto-parietal network 

 

Authors: 

 

Jonathan A. Michaels 

Benjamin Dann 

Rijk W. Intveld 

Hansjörg Scherberger 

 

 

 

Acknowledgements: We would like to thank Natalie Bobb, Ricarda Lbik, and 

Matthias Dörge for technical assistance, Roman Eppinger for preliminary analysis, 

and B. Lamplmair and Stefan Schaffelhofer for providing illustrations.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“… ‘motor preparation’ may be more accurately defined as the engagement of a 

specific set of preparatory dynamics, rather than the achievement of a particular 

neural state. The set of states that are produced by these dynamics serve as initial 

conditions that are sufficient to generate a correct reach. ” 

(Ames et al., 2014)  
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Abstract 

Our actions lie on a continuum between acting immediately and waiting for the right 

moment. Studying the interplay between planning and movement requires 

systematically varying preparation time. Two macaque monkeys performed a 

grasping task with a short instruction followed by variable time to go cue (0-1300 ms) 

while we recorded from many neurons in parallel from the ventral premotor cortex 

(F5) and the anterior intraparietal area (AIP), areas essential for grasp generation. 

Initial population responses passed through a fixed neural space, unique to each grip 

type, reflecting essential motor preparation. After this, AIP stabilized in a unique 

memory state while activity in F5 continued to evolve, providing a decodable 

signature of time. Intriguingly, in both areas activity during movement initiation 

separated into two groups corresponding to movements ‘as fast as possible’ and 

movements from memory, suggesting that withholding a movement causes a network-

wide shift whose trace lasts throughout movement initiation.   
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Introduction 

Some actions, such as quickly stopping to spill a cup of coffee, demand an immediate 

response. Others, such as waiting before a traffic light, require withholding our 

actions for the right moment. Most of our actions lie on the continuum between the 

two, and although many actions are carefully planned before they are executed (Kutas 

and Donchin, 1974; Ghez et al., 1997), we are often required to act with little or no 

warning. Various studies have examined how movements are planned and held in 

memory in the primate brain (Tanji and Evarts, 1976; for a review see Wise, 1985; 

Riehle and Requin, 1989; Murata et al., 1996; Cisek and Kalaska, 2002), but only a 

few have contrasted well planned movements with situations where little to no 

preparation is possible (Wise and Kurata, 1989; Crammond and Kalaska, 2000; Ames 

et al., 2014). None, to our knowledge, have systematically probed the transition 

between immediate and planned grasping movements in the behaving primate. 

 Understanding how specific brain areas contribute to movement planning 

requires being able to dissociate the neural preparation that occurs before a movement 

and the movement activity itself. Delayed movement paradigms in which actions must 

be withheld before they are executed have shown that preparatory activity in premotor 

and parietal cortex can be used to decode object properties and hand shapes 

(Townsend et al., 2011; Schaffelhofer et al., 2015), as well as arm and hand 

kinematics during movement itself (Menz et al., 2015), implicating them in reach and 

grasp generation. Furthermore, preparatory activity in the premotor cortex 

(Churchland et al., 2006b; Afshar et al., 2011) and parietal cortex (Michaels et al., 

2015) is correlated with reach and grasp reaction time (RT), and perturbing this 

preparation state in premotor cortex delays subsequent movement (Day et al., 1989; 

Churchland and Shenoy, 2007; Gerits et al., 2012), a clear indication of a functional 

contribution to action planning. 

 While relating the responses of single neurons to behavior has been vital in the 

past, a neuron-by-neuron characterization cannot reveal the dynamics of whole brain 

regions, or how they interact with one another (for a review see Yuste, 2015). More 

and more studies show how task features are distributed over many neurons of a 

network (Raposo et al., 2014), which have been made possible by the increasing 

implementation of large-scale parallel recording and employing a state space 

framework of population activity (for a review see Cunningham and Yu, 2014). Under 

this framework, the firing of each neuron represents a dimension in a high-
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dimensional space of all neurons where the firing of all neurons at a particular time 

represents a single point in the space of all potential network states. A recent study 

revealed that when reaches are cued immediately, the neural population in dorsal 

premotor cortex (PMd) does not need to achieve the specific state attained during 

fully planned movements (Ames et al., 2014), suggesting that successful reach 

preparation may be achieved through multiple neural trajectories. While contrasting 

immediate and fully planned reaches reveals important population features, to address 

the full continuum of preparation, as well as the complex interaction between 

planning and movement, a large range of preparation times must be investigated. 

Additionally, it is unclear how neural populations stabilize or maintain the plan of 

movements that must be executed from memory when visual cue information is only 

presented briefly. Crucially, to understand how the motor system encodes and 

executes movements, multiple distributed brain regions must be investigated, thereby 

providing a picture of how diverse areas differentially contribute to action. 

To investigate how parts of the frontal and parietal lobes differentially encode 

the continuum of grasp preparation, we recorded large neural populations from the 

grasping circuit (Luppino et al., 1999) consisting of the hand area (F5) of the ventral 

premotor cortex (PMv) in the frontal lobe and the anterior intraparietal area (AIP) in 

the parietal lobe. While neural activity was recorded, two macaque monkeys 

performed a delayed grasping task, with a memory component, in which the amount 

of preparation time was systematically varied using 12 discrete delays (0-1300 ms). 

We found that during short delays, population activity takes shortcuts to movement 

onset, bypassing the states achieved during fully prepared grasps. However, initial 

trajectory (first 300 ms) was the same regardless of delay, but specific to each grip 

type, suggesting that this activity is required for successful movement. Furthermore, 

the entire trajectory of the short delays (0-200 ms) was the same throughout the entire 

trial, suggesting varying the presentation of the go cue within this range resulted in 

the same grasp execution. 

 While single unit activity was similar between the areas, there was a 

dramatic difference in population dynamics for fully planned grasps. Activity in AIP 

stabilized after 600 ms for long delays, but activity in F5 was highly dynamic and 

continued to evolve for the entire memory period. The signature of time could be 

decoded from activity of either area, but time decoding was significantly better in F5 

specifically during the memory period, suggesting that F5 and AIP play different roles 
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during memory. Activity was broadly distributed in the state space at the time of go 

cue, but rapidly converged in the 200 ms preceding movement onset with F5 leading 

AIP by 60 ms. Interestingly, activity in both areas approached movement onset in two 

distinct trajectory clusters composed of delays shorter or greater than 500-600 ms, 

suggesting that a network-wide shift occurs when movements no longer occur 

immediately, but instead must be withheld and executed from memory.  
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Results 

Task and behavior 

We trained two macaque monkeys to perform a delayed grasping task, with a memory 

component, in which the amount of preparation time was systematically varied 

between non-delayed (0 ms) and a long delay (1300 ms) in 12 distinct increments. 

Monkeys B and S fixated a central point, received a grip cue (300 ms) corresponding 

to either precision or power grip, and were cued to perform this grip following a 

variable delay when the central fixation point turned off (Figure 1a-b). The grip cue 

appeared for 300 ms regardless of delay length, so for longer delays monkeys had to 

remember which grasp had been cued at the beginning of the trial. The performance 

of both monkeys was high, correctly completing trials after receiving grip information 

95% and 98% of the time for monkeys B and S, respectively (Table 1).  In addition to 

the normal task, we also randomly inserted no-movement trials to ensure that the 

monkeys always waited for the go cue before acting. In these trials monkeys were 

given a grip cue as normal, but were required to continue fixating and withholding 

movement for 2 seconds (8% of all trials), after which a reward was given for 

withholding movement. Both monkeys completed these added trials successfully 

(monkey B: 100%; monkey S: 97.7%). 

 

 Trial 

Count 

Correct 

Performance 

Units Recorded 

in F5 

Units Recorded 

in AIP 

B1 485 91% 65 29 

B2 685 96% 88 35 

B3 586 96% 43 25 

B4 814 96% 64 28 

B5 775 96% 46 19 

B6 745 97% 72 33 

Average: 682 95.3% 63.0 28.2 

S1 502 98% 124 134 

S2 514 97% 136 148 

S3 571 97% 142 137 

S4 658 99% 121 97 

S5 590 99% 115 104 

S6 546 98% 156 165 

Average: 564 98.0% 132.3 130.8 

 

Table 1. Table of trial counts, performance, and number of units recorded for all 

data sets. 
  



2.2 – Probing the continuum 

 

58                

In addition to number of correctly executed trials, examining the reaction 

times (RTs) and movement times (MTs) of the monkeys can provide useful insight 

into the difficulty of the task and how reliably monkeys could perform. RT decreased 

steadily with increasing amounts of preparation (Rosenbaum, 1980), approaching a 

minimum after approximately 400 ms of preparation (Figure 1c)(Churchland et al., 

2006b). RT tended to increase slightly for the longest delay, which is expected since it 

is hard to maintain focus for long periods of time. For monkey S, MT did not correlate 

with length of the delay period (Figure 1d), suggesting that although RT was slower 

for short delays, once movements were initiated, the movements were identical 

regardless of delay. In monkey B there was a small positive correlation between delay 

and MT (r = 0.18, Figure 1 – Figure Supplement 1), indicating that movements after 

longer delays were slightly slower. The number of errors showed no clear relationship 

to the length of the delay period (Figure 1 – Figure Supplement 2), and the number of 

errors was extremely low, providing evidence that the monkeys could complete all 

conditions equally well. 
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Figure 1. Task design, implantation, and behavior. (a) Illustration of a monkey in 

the experimental setup. The cues were presented on a masked monitor and reflected 

by a mirror such that cues appeared super-imposed on the grasping handle. (b) 

Delayed grasping task with two grip types (top: power grip, bottom: precision grip). 

Trials were presented in pseudorandom order in darkness and with the handle in the 

upright position. (c and d) Scatter plots of reaction time (c) and movement time (d) 

against delay length for monkey S. The solid line represents the mean for each delay 

bin. (e and f) Array locations for monkey B (e) and S (f). Two arrays were placed in 

F5 on the bank of the arcuate sulcus (AS) and two were placed in AIP toward the 

lateral end of the intraparietal sulcus (IPS). In monkey B two more arrays were placed 

on the bank of the Central sulcus (CS). The cross shows medial (M), lateral (L), 

anterior (A), and posterior (P) directions. Note that monkey S was implanted in the 

left hemisphere and monkey B the right hemisphere. 

 
 
Neural responses 
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During the six recording sessions of each monkey, single- and multi-unit activity was 

recorded simultaneously in F5 and AIP using floating microelectrode arrays (Figure 

1e,f; Materials and Methods). The number of units recorded in each session is 

summarized in Table 1. There were significantly more units recorded in area F5 of 

monkey B than in AIP (Paired t-test, p < 0.001), while there was no significant 

difference for monkey S (Paired t-test, p = 0.81). For all analyses we pooled single- 

and multi-units together (mean recorded per session: 75 single and 102 multi). We 

evaluated grip type tuning in both areas to ensure that the task successfully elicited 

task-related tuning. The average percentage of units tuned for grip type during the 200 

ms following cue onset was 29% in F5 and 29% in AIP, 28% and 26% in the 200 ms 

before the go cue and 55% and 45% in the 200 ms following movement onset (t-test, 

p < 0.05), conservatively measured only for movements that could be fully planned 

(i.e. ≥500 ms delay). Amounts of grip tuning were very similar between monkeys and 

to previous studies of both F5 and AIP (Lehmann and Scherberger, 2013; Michaels et 

al., 2015; Schaffelhofer et al., 2015). 

 

 
 

Figure 1 – Figure Supplement 1. Behavior of monkey B. 

 

 

 If the brain areas we investigated were specifically coding task-related visual 

features, we would expect similar responses to the grip cue regardless of whether 

grasps were cued immediately or not. Conversely, if single units were related to 

execution of the correct motor plan, we should observe similar neural responses 

during movement regardless of when go cues were presented. Interestingly, a wide 
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variety of mixed activity patterns were present in both areas, as shown by Figure 2, 

which directly compares the 1300 ms delay and the 0 ms delay for a number of 

example single-units. In many cases the initial cue response in the delayed condition 

was suppressed when the go cue appeared concurrently with the grip information 

(Figure 2a,e). In other cases, the initial cue response was present regardless of delay, 

but the activity quickly converged to an equivalent movement trajectory (Figure 

2b,d,f,h). Other interesting responses were observed, such as a peak in activity during 

the memory period (Figure 2c), similar to hazard rate, i.e., the expectation of an event 

given that no event has occurred until now (Janssen and Shadlen, 2005), and activity 

during the movement period which differed between delayed and non-delayed grasps 

(Figure 2g), an interesting result returned to later. Figure 2d shows an example of 

strong grip type tuning after the cue and during movement, and Figure 2h shows an 

additional example where the pre-movement activity varies between delayed and non-

delayed grasps. All of these diverse types of responses were present in both F5 and 

AIP, although movement period activity tended to be higher in F5. The broad variety 

of unit responses reveals a complex representation of non-delayed vs. delayed 

movement, making further analyses based on individual units insufficient for 

characterizing processing within these brain areas.  
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Figure 1 – Figure Supplement 2. Error trial distribution over all data sets. 
 

 
Visualizing the population response 

An alternative approach to single unit tuning is to use a state space framework, in 

which all units together are considered as a high-dimensional space in which the 

firing of each unit represents one dimension. In order to visualize the complex 

interactions between planning and movement, we normalized (soft-normalization, 

Materials and Methods) and then projected population activity of all units of each 

area, for all 12 delay lengths of one grip type, onto the first three principal 

components (PCs; Materials and Methods). Video 1 shows the neural trajectory of 

exemplar data sets in F5 (B5-Power) and AIP (S4-Power) from shortly before grip 

cue onset to shortly after movement onset. The first three PCs were able to explain 

between 62-75% of firing rate variance, suggesting that the first three components 

capture most of the dominant features in the entire population of units. 
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Figure 2. Example average firing rate curves of single-units for delayed (1300 

ms) vs. non-delayed (0 ms) grasps. Data were aligned to two events, grip cue onset 

and movement onset. (a-d) Examples from area F5 showing (a) a suppressed cue 

response for the non-delayed condition in monkey B, (b) where the cue and 

movement responses are merged, (c) where the movement activity greatly differs 

between delayed and non-delayed grasps, (d) and an interesting additional example 

similar to the second example. All of these examples are from monkey B, but similar 

examples exist for monkey S. (e-f) Similar types of example single-units from AIP in 

monkeys B and S in the same order as the first section. Dotted red line represents 

approximate time of cue onset for non-delayed grasps. The cue was always presented 

for only 300 ms regardless of delay. Curves and shaded bands represent mean and 

standard error of the mean, respectively. 
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 By following how the neural trajectories evolve in Video 1, we can generate a 

number of interesting hypotheses: (1) the states achieved by longer delays are 

completely bypassed for immediately cued grasps, in both areas, (2) the initial (first 

300 ms) response to the cue is the same regardless of delay length or area, (3) the 

memory period activity in F5 changes continuously, never reaching a stable state, 

while the activity in AIP congregates in a stable state shortly after the cue, (4) activity 

at the go cue is very broad, but rapidly decreases in variance and converges towards a 

singular movement onset state, and (5) the activity during movement initiation is 

clustered into two groups, corresponding to delays shorter or longer than 500-600 ms. 

With this visualization as a guide, we now have a starting set of hypotheses to 

investigate. 

 

The video can be viewed online at the following address: 

http://www.jmichaels.me/docs/Video1.mp4 

 

Video 1. Neural trajectory of all amounts of preparation in the first three 

principal components of F5 and AIP. (Left) Example data set from F5 of monkey B 

(B5-Power). (Right) Example data set from AIP of monkey S (S4-Power). Colors 

represent mean trajectory for each delay condition ranging from 0 ms (red) to 1300 

ms delay (blue). To generate trajectories, data from each trial was aligned to two 

events, the grip cue presentation (magenta point) and movement onset (black point), 

averaged over all trials of each delay condition, and then interpolated to form a 

continuous trajectory. The grip cue always lasted for 300 ms regardless of delay. 

Trajectories begin 100 ms before the grip cue and end 50 ms after movement onset. 

The initial perspective is in the first two principal components and then rotates 

through the first three. 
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Figure 3. Point-to-curve distance between delayed and non-delayed trajectories. 
(a) Minimum Euclidian distance between each time point on the delayed trajectory 

(1000 ms, in steps of 50 ms) and the entire non-delayed (0 ms) trajectory over time 

for 4 example data sets (F5: B5-Precision, S2-Power; AIP: B5-Power, S4-Precision) 

from both areas and monkeys. The magenta line represents the point-to-curve distance 

between the delayed and non-delayed trajectory, while the gray lines represent the 

same analysis when trials are drawn only from the delayed trajectory, acting as a 

chance level. Black bars along the top of plots denote times when the distance is 

significantly greater than chance level (Bootstrapping procedure with 1000 resamples, 

p < 0.05 Bonferroni-corrected for number of time points). Error bars represent the 5% 

and 95% confidence intervals generated by the bootstrapping procedure. (b) Fraction 

of significant distances (for the 1000 ms delay) over all data sets and conditions of 

both monkeys (12 data sets x 2 grip types). (c) Point-to-curve distance analysis 
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repeated for all time points on each delay (0-1300 ms) to the entire non-delayed (0 

ms) trajectory reported as fraction significant distance over all data sets, grip types, 

and areas (12 data sets x 2 grip types x 2 area). 

 

 
Required preparation and shortcuts to movement 

 When the monkey had no or only very little time to plan, the neural trajectory 

seemed to take a “shortcut” to movement initiation. To quantify if, and when, delayed 

and non-delayed trajectories diverged, we used a continuous distance analysis 

(Materials and Methods). We measured the minimum Euclidean distance (known as 

point-to-curve) between each time point on the delayed trajectory (1000 ms delay 

condition in steps of 50 ms) and the entire non-delayed (0 ms) trajectory in the full 

space of all units (i.e. without dimensionality reduction) to determine which points in 

the state space were traversed by both conditions and which were unique to longer 

delayed movements. This analysis was carried out separately for each grip type and 

data set. 

 Figure 3a displays the results separately for both monkeys and brain areas. 

After the cue, distance between the trajectories rose and stayed significantly above 

chance level (marked in gray) until around movement onset (Bootstrapping procedure 

with 1000 resamples, p < 0.05, Bonferroni-corrected for number of time points; 

Materials and Methods), at which point it decreased rapidly, suggesting that the 

trajectories during the movements were quite similar regardless of delay. Over all grip 

types and data sets the trend remains clear (Figure 3b), showing that maximal distance 

between the trajectories was maintained until near movement onset. These results 

statistically reinforce our first hypothesis that the population activity achieved during 

longer delays is unique to delayed grasps and is not achieved during non-delayed 

grasp and therefore not necessary to successfully complete the movement. The 

amount of divergence between the delayed and non-delayed trajectories was very 

similar in F5 and AIP, suggesting that when grasps are cued without a delay the 

neural population of both areas take shortcuts to movement, in agreement with our 

first hypothesis. Furthermore, our findings were not an artifact of our smoothing 

kernel, since a fixed spiking window of 100 ms yielded comparable results (data not 

shown). Due to differences in number of recorded units, the magnitude of the effect 

varied between monkeys (Figure 3 – Figure Supplement 1). 
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Figure 3 – Figure Supplement 1. Minimum point-to-curve distance separately by 

monkey. 

 

 

 Given that the delayed and non-delayed neural trajectories diverge, is there an 

area in the neural space that is traversed regardless of delay? In no data set or grip did 

the trajectories diverge before 300 ms after cue onset (Figure 3b), indicating that the 

initial response to the cue is identical whether or not the monkeys were given time to 

prepare. Therefore, it is likely that this time represents required processing, a point 

supported by the leveling off of the RT curve with preparation times exceeding 

around 300-400 ms (Figure 1c). Taken together, these results suggest that large 

portions of the state space that are traversed after the first 300 ms do not seem to be 

necessary for successfully executing grasping movements, in agreement with our 

second hypothesis. If we repeat the same distance analysis comparing all delayed 

trajectories with the non-delayed trajectory, we can gain a more detailed picture of 

how trajectories differ over varying amounts of preparation (Figure 3c). Interestingly, 

distance between delayed and non-delayed trajectories barely ever exceeded chance 

level for the shortest delays (100 and 200 ms) at any point during the trial, suggesting 

that neither the extra preparation time nor the difference in when the go cue was 

presented changed the trajectory at all. 

 

Static and dynamic memory 

Given that the trajectories of non-delayed grasps only overlap with longer delays for 

the first 300 ms of preparation, what is the function and dynamics of the memory 

period activity in longer delays? A striking feature of the visualization in Video 1 was 

that the F5 activity continually evolved throughout the course of the memory period, 

while activity in AIP seemed to congregate in an area of low variability. To analyze if 

the neuronal trajectory of the two areas stabilized during particular states, we 
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systematically compared the Euclidean distance between all pairs of time points along 

a trajectory for both the delayed (1300 ms) and no-movement trajectories (Figure 4, 

averaged over all data sets since results were very similar across grip types, monkeys, 

and sessions). For each time point, if the neural distance did not exceed a dynamic 

significance threshold, values were set to zero (Materials and Methods). Therefore, 

patches where the mean distance is zero (black) indicate that for no grip type or data 

set was there a significant difference between these two time points, while all other 

points contain at least one incidence of significance. 

With the exception of the fixation epochs, all parts of the trial seemed to attain 

unique states that significantly differed from one another. The movement epoch was 

the most unique and dynamic epoch of the task, while the reward epoch and the time 

of cue offset stood out most in the no-movement condition. Most remarkably, the 

neuronal trajectory during the memory period in F5 is continuously and uniformly 

changing even though no event or movement occurs in this time. On the contrary, in 

AIP the neuronal trajectory stabilized about 300 ms after cue offset, representing a 

unique state, which is maintained throughout the memory period even after 2 seconds 

in the no-movement condition. These results suggest a considerably different code at 

the population level in AIP and F5. 

In the current task, the expectation of having to perform a movement did not 

remain constant, since the probability of being in a no-movement trial increased with 

time spent in the memory period. Therefore, could it be that the dynamic nature of the 

memory period in F5 is due to this change in expectation? To rule out this possibility, 

we repeated the current analysis on data of a similar experiment in which movement 

expectation never changed during the memory period, due to the absence of a no-

movement condition (Michaels et al., 2015). We found that even when the certainty of 

performing a movement remained constant, the same inter-area difference reported 

here was robustly present (Figure 4 – Figure Supplement 1), lending support to the 

observed dissociation between the two areas. These findings support our third 

hypothesis that population activity in F5 continually evolved throughout memory, 

while AIP activity became stable shortly after cue offset. 
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Figure 4. Uniqueness of neural state over the course of the trial. Mean Euclidean 

distance for delayed grasps (1300 ms) and no-movement trials between all pairs of 

time points over all data sets in F5 and AIP. For each pair of time points over all 

conditions (12 data sets x 2 grip types), distance results were tested for a significant 

difference using a bootstrapping procedure (6000 resamples in steps of 60 ms, p = 

0.01, Bonferroni-corrected for number of time pairs). If a pair of time points did not 

significantly differ, their distance was set to zero. Therefore, all time points showing a 

distance of 0 did not significantly differ for any condition, while any value above zero 

showed significance for at least one condition. The abbreviations Fix, Illu, Mem, and 

Rew, correspond to the fixation, illumination, memory, and reward epoch, 

respectively. The median time reward onset was used for delayed movements. 
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Figure 4 – Figure Supplement 1. Uniqueness of neural state over the course of 

the trial for an additional experiment. As described in Michaels et al. (2015), 

monkey Z performed a similar task to the current study (6 data sets x 2 grip types, 

Instructed condition). The same grip types were cued and the memory period was also 

variable; however, all trials resulted in movement, regardless of condition. Therefore, 

if the dynamic nature of the memory period observed in the present experiment were 

due only to the changing expectation of having to execute a movement over the 

course of the trial or the deterioration of a motor plan, we should observe stable 

activity. Yet, in this additional experiment the highly time dependent nature of the 

memory period activity is maintained, specifically in F5, suggesting that this 

variability is not due to the varying chance of subsequent movement, but represents an 

essential feature of the examined areas. 

 

  

Signature of time 

Given the constantly evolving population trajectory in F5, it should be possible to 

decode the exact time points of the task, while this should be more difficult in AIP, 

assuming the quality of recording is comparable between areas. To this end, we 

decoded the time course of the task, using a linear classifier (200 ms time bins, n-fold 

cross-validated; Matlab function: fitcdiscr). To ensure similar recording quality 

between areas, units were randomly discarded from each data set until there were an 

equivalent number of units in both areas (stratification; Materials and Methods). The 

average confusion matrix across data sets (decoded vs. real time bins) can be seen in 

Figure 5a for the no-movement condition and for a delayed grasp in Figure 5 – Figure 

Supplement 1a. as expected from Figure 4, the most decodable epochs were around 

movement and reward, while the least discernible were the first fixation period and 

the memory period. Figure 5b shows the average performance along the diagonal of 

the confusion matrices, revealing a significant advantage of F5 over AIP which was 

limited to the memory period (cluster-based permutation test across data sets, p < 



2.2 – Probing the continuum 

   
      71 

0.05; Materials and Methods), confirming that there is less information regarding the 

passage of time in AIP. The fact that the reduction in decoding performance was 

limited to the memory period indicates that the observed difference between F5 and 

AIP represents a temporally localized difference in the dynamics at play while the 

monkey is remembering and withholding a grasping movement. 

It is also notable that even when decoding was incorrect, most decoded epochs 

were assigned to those very close in time. Therefore, if we consider not just the 

diagonal of the confusion matrix when evaluating performance, but included also 

super- and sub-diagonal entries (i.e., entries just one step off the diagonal), 

performance increased by an average of 25 percentage points over both areas and 

delayed/no-movement trials (range: 23-26 percentage points). These results suggest 

that AIP holds a specific memory state during delays, while F5 actively tracks the 

temporal position within the delay, a novel finding in agreement with our third 

hypothesis. 

 

Converging on movement 

The population state at the time of go cue varied greatly between delays, especially in 

F5, but shortly before movement all activity converged towards a singular movement 

onset point. Taking a closer look at a few single units over all delay lengths (Figure 

6a), we can see a large variety of paths to movement. However, all the trajectories 

converged at some point during the movement, with the exception of the first example 

in AIP, a point that will be returned to later. 

 To quantify how widespread variability around movement was, we tested for 

tuning to delay length independent of grip type (Figure 6b; sliding one-way ANOVA 

in steps of 50 ms, p < 0.05, Bonferroni-corrected for number of time points). Thirty 

percent of units showed delay length tuning and tuning in the population started to 

decrease about 200 ms before movement onset, reaching chance levels about 200-300 

ms after movement onset in both areas. The progression of delay tuning was similar 

for both monkeys, although monkey B had more delay length tuning in F5 than 

monkey S. One possible explanation for the increased delay length tuning could be 

the slight, but significant, correlation between delay length and movement time only 

present in monkey B (Figure 1d and Figure 1 – Figure Supplement 1b). 
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Figure 5. Time dependent decoding of task epochs of the no-movement condition 

using a linear classifier. (a) Confusion matrix of average decoding accuracy in 

identifying current epoch of each trial in non-overlapping 200 ms spike windows over 

all data sets in F5 (top) and AIP (bottom). (b) Mean correct decoding performance for 

each time epoch over all data sets in F5 and AIP. Black bar represents cluster of 

significant difference between F5 and AIP (cluster-based permutation test, p < 0.05) 

and the dashed line represents chance level. Units were discarded from each data set 

until an equivalent number of units were present for each area (stratification), then the 

decoding was repeated 100 times and the average performance taken. Abbreviations 

are as in Figure 4. 
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Figure 5 – Figure Supplement 1. Time dependent decoding of task epochs of 

delayed grasps (1300 ms) using a linear classifier. 
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Figure 6. Rapid decrease in trial-to-trial variability during movement initiation. 

(a) Example average firing rates of single-units in F5 and AIP from both monkeys 

showing large firing rate differences between the various delay conditions of a single 

grip type. Only one grip type (precision or power) is plotted in each panel. (b) The 

fraction of units encoding delay length independent of grip type (one-way sliding 

ANOVA in steps of 50 ms, p < 0.05, Bonferroni-corrected for time points) in F5 and 

AIP. Error bars represent standard error of the mean over trials in (a), and over data 

sets in (b). (c) (Top) Mean firing rate before (gray) and after (black) mean-matching. 

(Bottom) Mean-matched Fano Factor over all units (pooled over data sets and 

conditions), showing a minimum shortly after movement onset. Error bars represent 

95% confidence interval from regression. 
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 At a specific time before movement onset, the high variability between delays 

rapidly begins to decrease. To quantify this effect further, we calculated the Fano 

factor over this same interval (Materials and Methods). The Fano factor provides a 

normalized measure of trial-to-trial spiking variability and has already been used to 

show that external stimuli decrease spiking variability in many cortical areas 

(Churchland et al., 2010a). Since the firing rate increases during movement (Figure 6c 

upper panel, gray line), which could possibly affect variability due to saturation of 

neurons at high firing rates, data were mean-matched (Figure 6c upper panel, black 

line) before calculating the Fano factor. Variability based on Fano factor is rapidly 

reduced 150-200 ms prior to movement onset (Figure 6c (bottom panel), reaching 

levels almost equivalent to the spontaneous spiking patterns of single neurons 

(neurons inherently do not spike in a completely predictable way, following a Poisson 

process). This strong effect is significant in both monkeys and areas (p < 0.001, 

confidence interval of regression; Materials and Methods) when comparing the Fano 

factor 300 ms before and 100 ms after movement onset, although the effect is stronger 

in F5. These results suggest that although the pre-movement activity for each grip is 

initially quite variable, it becomes mostly eliminated around movement onset, 

implicating an internal mechanism that brings all trajectories onto a similar path while 

the movement is being initiated. Although the path to movement onset may be broad, 

the state achieved when the monkey starts moving the hand seems to be in a very 

small area of the state space in order to successfully execute the grasp, confirming our 

fourth hypothesis and suggesting that activity must be very similar between trials in 

order to correctly execute the movement. 
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Figure 7. Movement initiation decoding in F5 and AIP. (a) Single trial distance to 

support-vector machine decision boundary between pre- and post-movement initiation 

generated from the population of units recorded simultaneously in F5 (top) and AIP 

(bottom) from an example data set (S2-Precision), aligned to the go cue. (b) 

Correlation of predicted time between go cue and movement onset (crossing of the 

decision boundary) and measured RT. Each point represents a single trial. (c) 

Difference in movement onset between F5 and AIP measured by systematically 

shifting the neural data relative to behavior and generating a new RT decoder for each 

time point (in steps of 10 ms), reported as mean normalized R-Square over all 

conditions (12 data sets x 2 grip types, normalized to max performance of each 

condition). F5 significantly led AIP by 60 ms (Wilcoxon sign-rank test, p < 0.001). 

Units were discarded from each data set until an equivalent number of units were 

present for each area (stratification), then the decoding was repeated 5 times and the 

average result taken. 

 

 
Leading movement initiation 

The decrease in variability preceding movement was not locked to the go cue itself, 

but to the internal generation of overt movement. This raised two questions: how is 

movement initiation represented in both F5 and AIP, and do both areas represent 

movement initiation at the same time? We can shed light on this process by testing the 

discriminability of movement initiation in each area and comparing the onset of this 

activity to see if one is leading the other, an analysis that is only possible when 

activity from many units in both areas is recorded in parallel. We implemented a 

support vector machine (SVM) to separate the times before and after movement onset 

by using activity in the 800 ms following the go cue (4-fold cross-validated; Matlab 

function: fitcsvm). Figure 7a shows the distance of each individual trial to the 
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discrimination boundary between pre- and post-movement onset of the SVM for an 

exemplar data set. Each trial crosses the decoder boundary at a specific time that can 

be used to make a prediction of RT. The time that each trial crossed the boundary 

(excluding unrealistic RTs: < 100 ms) was used to predict RTs and was correlated 

with the behavioral RT (Figure 7b), producing very high correlation coefficients. In 

order to make useful comparisons between the areas, we first discarded units from our 

recordings until the number of units in each brain area was the same (stratification), 

and repeated the current analysis 5 times. The average r-value over all data sets was 

0.86 (0.95 and 0.77 for monkeys S and B, respectively; significant difference: 

Wilcoxon rank sum, p < 0.001) with no significant difference between areas or grip 

types (Wilcoxon rank sum, p > 0.05), suggesting that movement initiation is robustly 

encoded in both areas. 

Since both areas were able to predict RT equally well, it is now possible to test 

if there was a difference in neuronal movement onset between the areas. We 

systematically shifted the neural data back in time relative to the behavior and tried to 

predict future RT using a new decoder for each time step (steps of 10 ms, 800 ms 

window; same SVM procedure as above). Figure 7c shows the mean performance of 

the decoders by time shift (normalized to maximum r-value for each session), 

showing that F5 significantly led AIP by approximately 60 ms in the representation of 

movement initiation (Wilcoxon sign-rank test, p < 0.001, 12 out of 12 data sets 

significant at the p < 0.05 level). Since our method relies on the decoding of RT on 

single trials, this small but robust difference in internal movement onset between the 

areas is only detectable when many unit are recorded in parallel, and suggests that the 

signal triggering movement to occur is more likely transmitted to F5 before AIP. 

 

Clustering of immediate and withheld movements from memory 

Based on the visualization of the many different delay trajectories between go cue and 

movement onset, the trajectories seemed to cluster into two groups dependent on the 

delay length. This interesting effect is especially visible in the example unit in the top 

right panel of Figure 6, where these two clusters remain present for over 600 ms after 

movement onset, signaling a long lasting effect. But is this clustering robustly present 

at the population level? To visualize the clustering for an example data set in F5, we 

plotted the activity of all linearly spaced delays (0-1000 ms) of a single grip type 

around movement onset in the largest principal component (Fig 8a, optimized to 
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extract delay variability; Materials and Methods). Looking specifically at the 500 and 

600 ms delays just before movement onset, one can see that although both are 

following similar trajectories, the 500 ms delay is deflected downward and the 600 ms 

upward towards separate groups. This effect is even more striking in AIP, where 

delay lengths following the same trajectory diverge into two distinct groups (Figure 8 

– Figure Supplement 1a). 

To quantify this at the population level, we calculated the Euclidean distance 

between all pairs of delay lengths for each grip type in the full neural space (Figure 

8b) and looked for clusters in the distance matrices without forcing clustering 

(Materials and Methods). Two clusters were identified for the example data set 

(Figure 8c), showing a split around the 500-600 ms delay point that lasts until under 

50 ms before movement onset, after which no significant clusters are found 

(permutation test, p < 0.05, Bonferroni-corrected for number of time points; Materials 

and Methods). This pattern was very similar over all data sets and grips (Figure 8d) 

and was also present in AIP (Figure 8 – Figure Supplement 1), suggesting that the 

switch that occurs 500-600 ms after the cue spans both the frontal and parietal lobes. 

 Is it possible that the observed clustering could be due to factors other than a 

state switch? Clustering is not likely due to different movement kinematics, since the 

movement times were nearly identical for all delay lengths (Figure 1d), especially for 

monkey S. Additionally, since movement is initiated by the monkey, there could be a 

built-in bias in the amount of time that has elapsed since the grip cue was presented. 

However, differences in how long ago the grip cue was presented is unlikely to 

explain the two clusters, since repeating the same clustering analysis on the mean 

times between cue presentation and movement onset for all delays does not produce 

significant clustering for either grip type (permutation test, Precision grip: p = 0.97, 

Power grip: p = 0.97). These controls suggest that the separation of the neural 

trajectories into two distinct clusters reflects a robust effect of delay length in F5 and 

AIP, rather than some other trivial effect. 
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Figure 8. Clustering of movement initiation activity in F5. (a) PCA projection 

(optimized to distinguish delays) of population activity in F5 over all linearly spaced 

delays (0-1000 ms) for an example data set (B2-Precision), aligned to movement 

onset. (b) Euclidean distance between all pairs of delays in the full neural space for 

two example time points of the example data set including identified clustering using 

a clustering analysis that finds community structure. (c) Clusters identified in the 

distance matrices over time (in steps of 10 ms) for the example data set. Black 

significance bar shows time points where the modularity statistic exceeded chance 

level (permutation test, p < 0.05, Bonferroni-corrected for number of time points). (d) 

Same analysis as (c) averaged over all data sets and grip types of both monkeys (12 

data sets x 2 grip types). 
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Figure 8 – Figure Supplement 1. Clustering of movement initiation activity in 

AIP. Same as Figure 8 for AIP (example data set in a-c: S3-Power). 

 

 

 Interestingly, as marked in the area of interest in Figure 8 – Figure Supplement 

2, the delay at which the neural population transitions between the two clusters is not 

the same in F5 and AIP (Chi-Square test over all data sets, grips, and delay lengths, p 

< 0.05, Bonferroni-corrected for number of time points). For delays along the border 

between clusters in AIP, the 500 ms delay was more likely to be classified in the 

second cluster, suggesting that the state transition to the second cluster may occur 

earlier in AIP. This interesting finding suggests that although F5 leads AIP in 

movement initiation, AIP may lead F5 in the transition from immediate movements to 

withheld movements from memory. 
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Figure 8 – Figure Supplement 2. Differences in cluster assignment between F5 

and AIP. Presented data is identical to Figure 8d and Figure 8 – Figure Supplement 

1d. Black bar marks time points that significantly differed in cluster assignment over 

all delays between F5 and AIP over all data sets and conditions (12 data sets x 2 grip 

types; Chi-Square test, p < 0.05, Bonferroni-corrected for number of time points). 

Note the difference in cluster assignment within the dashed area of interest.  
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Discussion 

To systematically probe the interplay between planning and movement in the grasping 

network, we recorded large neural populations in premotor area F5 and parietal area 

AIP while two macaque monkeys performed a delayed grasping task with 12 distinct 

preparation times (0-1300 ms), from having to execute movements immediately to 

movements executed from memory after a long delay. Figure 9 illustrates the most 

significant findings using exemplar data sets. Firstly, the initial part of the neural 

space traversed was the same for all trajectories, regardless of delay length, and was 

grip specific, strongly suggesting that this activity was required to successfully 

prepare the correct movement. Secondly, once preparation was completed, population 

activity shifted into a separate state that is not achieved during short delays, revealing 

a unique memory state. Furthermore, while this area was static in AIP, it was highly 

dynamic in F5, tracking the evolution of time and suggesting a strong dissociation of 

roles between the two areas. Lastly, immediate movements followed a similar 

trajectory after the go cue, while withheld movements initiated from memory 

followed a separate trajectory to movement onset, forming two distinct clusters and 

suggesting a network-wide shift when movements are withheld. 

 Our results provide new insights for studies examining delayed reaching or 

grasping activity in premotor cortex (Cisek et al., 2003; Lucchetti et al., 2005; Fluet et 

al., 2010) or parietal cortex (Murata et al., 1996; Snyder et al., 2006; Baumann et al., 

2009). The present study has some similarities with previous work on reaching 

movements (Ames et al., 2014). However, it provides several important advances. 

Firstly, we investigated the grasping network of the macaque, spanning two areas in 

multiple lobes of the brain, allowing comparison between the parietal and frontal 

aspects of grasp planning. Secondly, our paradigm is a memory-guided task, since our 

visual cue was phasic (300 ms) and was not presented either during the memory 

period or during the movement. This allowed us to dissociate strong visual inputs 

from internal planning and execution, unlike previous work that included a strong 

visual cue for the entire trial. Thirdly and crucially, previous work only compared a 

single delayed condition to a non-delayed condition, while we systematically varied 

the amount of preparation in 12 discrete steps, allowing fine resolution of the 

continuum between planning and movement. 

 Given that our task also involved a large reaching component, reach planning 

is likely a significant part of the observed activity. Still, the presence of robust grip 
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type tuning in our tasks, as well as previous research employing a grasp-only task 

(Hepp-Reymond et al., 1994), and a grasp-reach dissociation task (Lehmann and 

Scherberger, 2013) suggests that F5 encodes grasping quite independently of 

reaching, although both areas contain information about reach position (more so in 

AIP). Furthermore, reversibly inactivating F5 (Fogassi et al., 2001) or AIP (Gallese et 

al., 1994) selectively impairs hand-shaping and not reaching, suggesting that our 

results are an accurate representation of the grasping network. 

 The neural trajectory of short delays bypassed the states achieved by longer 

delays in both areas, taking shortcuts to movements. Yet, the first 300 ms of activity 

was identical regardless of delay, and grip specific (Figure 9), suggesting that this 

preparation is necessary for completing the movement. After this initial preparation, 

activity enters other states that are not necessary for preparation, but likely serve other 

purposes, such as holding a motor plan or withholding movement, a point discussed 

later. Furthermore, the trajectories of very short delays (0-200 ms) were almost 

completely identical for the entire trial (Figure 3c), suggesting that the planning and 

execution of movement does not differ within either F5 or AIP if the go cue comes 

before initial preparation is complete. 

 In F5 the memory period activity did not congregate in a specific region of the 

state space, a feature of the ventral premotor cortex never before observed to our 

knowledge. This finding is at odds with the conclusions of Ames et al. (2014), who 

postulated that delay period activity of the dorsal premotor cortex (PMd) may act as 

an attractor state into which all trials would congregate given enough preparation 

time. Nevertheless, since stability was not tested, it remains unclear if the attractor 

state described in their study is fixed or a temporally evolving state. An alternative 

explanation could be differences in task design. In Ames et al. (2014) the reaching 

target was present for the entire delay, a salient visual cue, while we utilized a 

memory period following a short presentation of the cue. Therefore, we predict that 

PMd activity would be much more dynamic if a memory period were used, a point 

supported by a study showing that PMd activity can encode prior knowledge of when 

events are likely to occur (Mauritz and Wise, 1986), a feature which requires 

continuously evolving population activity. 
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Figure 9. Visualization of fronto-parietal grasp preparation system. Visualization 

based on principal components of example data sets (F5: B4, AIP: B2). Each gray 

trace represents the mean activity for one delay length of one grip type. Following the 

grip cue activity in both areas follows a fixed preparation path, after which longer 

delays congregate in a memory state in AIP or continue to dynamically evolve in F5. 
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After the go cue, activity quickly branches off towards the appropriate grip onset 

position while adhering to two distinct clusters. 

 

 

 It could be that the temporal dynamics of F5 activity are a result of an 

internalized representation of the likelihood of task events occurring at specific times 

throughout the memory period, similar to hazard rate observed in the lateral 

intraparietal cortex (LIP) (Janssen and Shadlen, 2005) or the neural representation of 

time as observed in LIP (Leon and Shadlen, 2003). Nevertheless, in the current study 

we found significantly more time dependence in the memory period of F5 than AIP, 

even though LIP is connected to AIP (Borra et al., 2008). However, time dependence 

has also been identified in prefrontal areas (Genovesio et al., 2006), and in PMd 

(Lucchetti et al., 2005), suggesting that the temporal complexity we observe in F5 

could be present in these nearby areas. 

 A mechanistic explanation for the dynamics observed during the memory 

period could be that recurrent networks of neurons in these areas generate temporal 

dynamics similar to a time code. Under this perspective, the complex temporal 

dynamics during memory would be a feature of a network optimized to produce the 

patterns of activity required to generate movement (Sussillo et al., 2015) and maintain 

the short-term memory of these motor plans in short time-scales. The observed 

temporal dynamics are in line with increasing literature suggesting that time keeping 

is an intrinsic property of all neural networks (for a review see Goel and Buonomano, 

2014), as well as a feature of some sub-cortical areas (Gouvêa et al., 2015). 

Interestingly, a number of recent studies have shown that timing is a robust feature of 

chaotic recurrent networks (Buonomano and Laje, 2010; Laje et al., 2013; Goudar and 

Buonomano, 2014), and that neural networks can transition through internal states 

with or without the presence of external triggers (Ponce-Alvarez et al., 2012; 

Mazzucato et al., 2015), suggesting that F5 may be able to track the course of time 

internally and use this information to predict when an action is likely to be required. 

 One of the most striking features in both areas, but especially F5, was that the 

population activity of a single grip type was highly variable at the time of go cue, yet 

converged rapidly leading up to movement onset, raising the question of how the 

correct movement can be successfully initiated. Recently, alternative theories of 

movement generation have arisen, suggesting that preparatory activity in motor cortex 

may serve to set the initial conditions of a dynamical system (Churchland et al., 2012; 
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for a review see Shenoy et al., 2013; or Churchland and Cunningham, 2014). 

However, the large variability at go cue cannot be explained by a rotational dynamical 

system (Churchland et al., 2010b; 2012), since, under this model, all trials of a 

particular performed movement (e.g. power or precision grip) should have very 

similar preparatory activity and the movement activity should follow predictably from 

this state. This is especially interesting since F5 does indeed show strong rotational 

patterns during movement initiation (J.A. Michaels, S. Schaffelhofer, and H. 

Scherberger, unpublished data) that explain a similar amount of variance as in 

PMd/M1 (20-40%). We propose that the broadly tuned nature of activity at the go cue 

provides the motor system with a large flexibility in movement initiation. Similar to 

the dynamics observed during the memory period, it could be that once movement is 

triggered, recurrent networks of neurons within these areas rapidly reduce variability 

within particular regions of the neural space in order to ensure correct muscle 

activation during initiation. Under this framework, selecting between multiple 

movement plans would only require the neural population to be within a general 

region of activity. Once movement is initiated, activity would fall onto a common 

trajectory unique to each action plan and rotational dynamics could proceed as 

proposed previously (Churchland et al., 2012). Yet, the movement itself must be 

triggered in order to engage this process. Interestingly, the internal initiation of 

movement seems to appear first in F5, suggesting that the source of this trigger is 

either frontal or subcortical, and only transferred to AIP after a delay (Figure 7). 

Future work must tackle the question of to what degree local or extrinsic processes 

can account for the rapid decrease in trial-to-trial variability taking place before 

movement execution, bringing all trajectories onto a similar path. 

 Although variability is strongly suppressed leading up to movement onset, the 

trajectories did not follow individual paths to movement onset. Instead, trajectories 

seemed to cluster into two distinct groups, splitting around the 500-600 delay mark. 

Given that the preparation itself likely takes ~300 ms, in the case of short delays the 

arrival of the go cue appears before preparation has completed, thereby triggering a 

movement ‘as fast as possible’. Conversely, in longer delays the monkey must first 

wait for the go signal. We propose that shifting between immediate movements and 

movements from memory causes a state shift in the fronto-parietal network that 

produces the two clusters during movement initiation (Figure 8-9). Once the state has 

been shifted, the trajectories continue to cluster for the entirety of movement 
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initiation, and occasionally remain visible into the movement itself in AIP (Figure 8 – 

Figure Supplement 1). 

 The clustering observed in both areas during movement initiation could be a 

function of the transition from reactive to proactive control, i.e., the increased ability 

to properly anticipate a go cue after long preparation times. This kind of neural state 

transition is inherent in highly trained tasks, as is the case in supplementary motor 

area (SMA)(Chen et al., 2010). Execution of timed behavior is reduced in humans 

with SMA lesions (Halsband et al., 1993) and supports our findings, since F5 is 

especially connected to the pre-SMA (Luppino et al., 1993). Yet, this explanation 

does not explain the strength of the clustering in the activity of AIP, or the interesting 

finding that AIP seemed to transition to the second state earlier than F5 (Figure 8 – 

Figure Supplement 2). 

 More and more evidence proposes that beta-band activity, normally measured 

in the local field potential (LFP) acts as a signal of maintenance and re-emerges 

during delayed tasks where movements must be withheld (for reviews see Engel and 

Fries, 2010; or Khanna and Carmena, 2015). A strong beta rebound occurs when 

movements must suddenly be withheld (Zhang et al., 2008). Therefore, it is possible 

that once movement planning is completed, beta could provide a network-wide signal 

of maintenance during proactive control that spans both F5 and AIP, explaining the 

presence of movement initiation clustering in both areas. Future studies should probe 

the boundary between immediate and withheld movements by assessing whether beta 

activity appears during some, but not all, amounts of preparation time, a finding that 

would implicate a state shift once movements are fully planned and await a go signal. 

 In the current study we probed the continuum of grasp preparation by 

systematically varying the amount of time monkeys had to prepare grasping 

movements. We showed robust differences in population dynamics between areas F5 

and AIP, revealing that F5 may play a larger role in tracking time or expectation 

during memory. Interestingly, population activity in both areas converged on 

movement initiation along two separate trajectories, comprised of movements ‘as fast 

as possible’ and withheld movements executed from memory. The separation of 

trajectories into two distinct clusters suggests that a widespread and long-lasting state 

shift occurs during the transition from immediate to memory-guided movement.  
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Materials and Methods 

Basic procedures 

Neural activity was recorded simultaneously from area F5 and area AIP in one male 

and one female rhesus macaque monkey (Macaca mulatta, monkeys B and S; body 

weight 11.2 and 9.7 kg, respectively). Animal care and experimental procedures were 

conducted in accordance with German and European law and were in agreement with 

the Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral 

Research (National Research Council, 2003). 

 Basic experimental methods have been described previously (Michaels et al., 

2015). We trained monkeys to perform a delayed grasping task. They were seated in a 

primate chair and trained to grasp a handle with the left (monkey B) or the right hand 

(monkey S) (Fig. 1a). A handle was placed in front of the monkey at chest level at a 

distance of ~26 cm and could be grasped either with a power grip (opposition of 

fingers and palm) or precision grip (opposition of index finger and thumb; Fig. 1b 

insets). Two clearly visible recessions on either side of the handle contained touch 

sensors that detected thumb and forefinger contact during precision grips, whereas 

power grips were detected using an infrared light barrier inside the handle aperture. 

The monkey was instructed which grip type to make by means of two colored LED-

like light dots projected from a TFT screen (CTF846-A; Screen size: 8” digital; 

Resolution 800x600; Refresh rate: 75Hz) onto the center of the handle via a half 

mirror positioned between the monkey’s eyes and the target. A mask preventing a 

direct view of the image was placed in front of the TFT screen and two spotlights 

placed on either side could illuminate the handle. Apart from these light sources, the 

experimental room was completely dark. In addition, one or two capacitive touch 

sensors (Model EC3016NPAPL; Carlo Gavazzi) were placed at the level of the 

monkey’s mid-torso and functioned as handrest buttons. The non-acting arm of 

monkey B was placed in a long tube, preventing it from interacting with the handle. 

Monkey S was trained to keep her non-acting hand on an additional handrest button. 

 Eye movements were measured using an infrared optical eye tracker (model 

AA-ETL-200; ISCAN) via a heat mirror directly in front of the monkey’s head. To 

adjust the gain and offset, red calibration dots were shown at different locations at the 

beginning of each session for 25 trials that the monkey fixated for at least 2 seconds. 

 Eye tracking and the behavioral task were controlled by custom-written 

software implemented in LabView Realtime (National Instruments) with a time 
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resolution of 1 ms. An infrared camera was used to monitor behavior continuously 

throughout the entire experiment. 

 

Task Design  

The trial course of the delayed grasping task is shown in Figure 1b. Trials started after 

the monkey placed the acting hand on the resting position and fixated a red dot 

(fixation period).  The monkey was required to keep the acting hand, or both hands 

(monkey S), completely still on the resting position until after the go cue. After a 

variable period of 400 to 700 ms two flashlights illuminated the handle for 300 ms, 

followed by 600 ms of additional fixation. In the cue period a second light dot was 

then shown next to the red one to instruct the monkey about the grip type for this trial 

(grip cue). Either a green or white dot appeared for 300 ms, indicating a power or a 

precision grip, respectively. After that, the monkey had to either react immediately or 

memorize the instruction for a variable memory period (also referred to as delay 

length). This memory period lasted for 0 to 1300 ms (i.e. the go cue could appear 

simultaneously with the grip cue, which was always presented for 300 ms regardless 

of the length of the delay), in discrete memory period bins of 0, 100, 200, 300, 400, 

500, 600, 700, 800, 900, 1000, or 1300 ms. Switching off the fixation light then cued 

the monkey to reach and grasp the target (movement period) in order to receive a 

liquid reward. Monkeys were required to hold the appropriate grip for 300 ms. 

Additionally, no-movement trials were randomly interleaved (8% of trials), in which a 

go cue was never shown and the monkey only received a reward if it maintained 

fixation and the hands on the hand rests for 2000 ms following the grip cue. All trials 

were randomly interleaved and in total darkness. 

 

Surgical procedures and imaging 

Upon completion of behavioral training, each monkey received an MRI scan to locate 

anatomical landmarks, for subsequent chronic implantation of microelectrode arrays. 

Each monkey was sedated (e.g., 10 mg/kg ketamine and 0.5 mg/kg xylazine, i.m.) and 

placed in the scanner (GE Healthcare 1.5T or Siemens Trio 3T) in a prone position. 

T1-weighted volumetric images of the brain and skull were obtained as described 

previously (Baumann et al., 2009). We measured the stereotaxic location and depth 
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orientation of the arcuate and intra-parietal sulci to guide placement of the electrode 

arrays. 

An initial surgery was performed to implant a head post (titanium cylinder; 

diameter, 18 mm). After recovery from this procedure and subsequent training of the 

task in the head-fixed condition, each monkey was implanted with floating 

microelectrode arrays (FMAs; MicroProbe for Life Science) in a separate procedure. 

Monkey B was implanted with six electrode arrays in the right hemisphere, each with 

32 electrodes (Fig. 1e). Two such arrays were implanted in area F5, two in area AIP, 

and two in area M1. Monkey S was implanted with four FMAs in the left hemisphere 

and received two arrays in each area (Fig. 1f). The arcuate sulcus of monkey S did not 

present a spur, but in the MRI a small indentation was visible in the posterior bank of 

the arcuate sulcus, about 2 mm medial to the knee, which we treated as the spur. We 

placed both anterior FMAs lateral to that mark. FMAs consisted of non-moveable 

monopolar platinum-iridium electrodes with initial impedances ranging between 300 

and 600 kΩ at 1 kHz measured before implantation and verified in vivo. Lengths of 

electrodes were between 1.5 and 7.1 mm. 

 All surgical procedures were performed under sterile conditions and general 

anesthesia (e.g., induction with 10 mg/kg ketamine, i.m., and 0.05 mg/kg atropine, 

s.c., followed by intubation, 1–2% isofluorane, and analgesia with 0.01 mg/kg 

buprenorphene). Heart and respiration rate, electrocardiogram, oxygen saturation, and 

body temperature were monitored continuously and systemic antibiotics and 

analgesics were administered for several days after each surgery. To prevent brain 

swelling while the dura was open, the monkey was mildly hyperventilated (end-tidal 

CO2, ~30 mmHg) and mannitol was kept at hand. Monkeys were allowed to recover 

fully (~2 weeks) before behavioral training or recording experiments commenced. 

 

Neural recordings and spike sorting 

Signals from the implanted arrays were amplified and digitally stored using a 128 

channel recording system (Cerebus, Blackrock Microsystems; sampling rate 30 kS/s; 

0.6-7500Hz hardware filter). Data were first filtered using a median filter (window-

length: 3ms) and the result subtracted from the raw signal, corresponding to a 

nonlinear high-pass filter. Afterwards, the signal was low-pass filtered with a non-

causal Butterworth filter (5000 Hz; 4th order). To eliminate movement noise (i.e., 

common component induced by reference and ground), PCA artifact cancellation was 
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applied for all electrodes of each array (as described in Musial et al., 2002). In order 

to ensure that no individual channels were eliminated, PCA dimensions with any 

coefficient greater than 0.36 (with respect to normalized data) were retained. Spike 

waveforms were extracted and semi-automatically sorted using a modified version of 

the offline spike sorter Wave_clus (Quiroga et al., 2004; Kraskov et al., 2009).  

 Units were classified as single- or non-single unit, based on five criteria: (1) 

the absence of short (1–2 ms) intervals in the inter-spike interval histogram for single 

units, (2) the homogeneity and SD of the detected spike waveforms, (3) the separation 

of waveform clusters in the projection of the first 17 features (a combination for 

optimal discriminability of principal components, single values of the wavelet 

decomposition, and samples of spike waveforms) detected by Wave_clus, (4) the 

presence of well known waveform shapes characteristics for single units, and (5) the 

shape of the inter-spike interval distribution. 

 After the semiautomatic sorting process, redetection of the average waveforms 

(templates) was done in order to detect overlaid waveforms (Gozani and Miller, 

1994). Filtered signals were convolved with the templates starting with the biggest 

waveform. Independently for each template, redetection and resorting was run 

automatically using a linear classifier function (Matlab function: classify).  After the 

identification of the target template, the shift-corrected template (achieved by up and 

down sampling) was subtracted from the filtered signal of the corresponding channel 

to reduce artifacts for detection of the next template. This procedure allowed a 

detection of templates up to an overlap of 0.2 ms. As a control, unit isolation was 

evaluated again as described before to determine the final classification of all units 

into single- or multi-units. Units were only classified as single if they unambiguously 

met the five criteria. Stationarity of firing rate was checked for all units and in case 

the firing rate was not stable over the entire recording period (more than 30% change 

in firing rate between the first 10 min and the last 10 min of recording), the unit was 

excluded from further analyses (<3% of all units). 

 

Data preprocessing 

Although units were classified as single- or multi-units, all recorded units were used 

in our main analyses. A detailed list of data set information can be found in Table 1. 

After spike sorting, spike events were binned in non-overlapping 1 ms windows and 

smoothed with a Gaussian window (𝜎 = 50 ms) to produce a continuous firing rate 
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signal (1 kHz). Data were aligned to two events, the presentation of the grip cue and 

movement onset, i.e. the time when the monkey’s hand left the handrest. No go cue 

alignment was necessary, since the length of the delay period was identical for all 

trials of the same delay. For most analyses these two alignments were combined to 

produce a continuous signal with as small an overlap as possible. In this case the two 

signals were simply concatenated in time. Average firing rates were then calculated 

by averaging over all trials of the same condition. All units received soft-

normalization before further population analysis, which is computed by dividing the 

activity of each unit over time, 𝑓(𝑡), by it’s overall firing rate range, 𝑓𝑟, plus a 

softening term, 𝑠, giving 𝑓′(𝑡)  =  𝑓(𝑡) (𝑓𝑟 + 𝑠)⁄ . For all analyses we used a 

softening term of 10 Hz, meaning a unit that fires between 0 and 10 Hz would 

correspond to a normalized range of 0 to 0.5. In contrast, a softening term of 0 would 

correspond to normalization by range. Normalization was utilized in order scale the 

impact of extremely high firing units while not over-emphasizing weak units. 

 

Dimensionality reduction 

Dimensionality reduction was carried out for the purpose of visualization only. All 

statistical analyses relied on the full space of all units. Neural trajectories were 

generated by performing standard principal component analysis (Matlab function: 

princomp) on normalized firing rate curves. In general, data was prepared by creating 

a matrix of size ct x n, where c is the number of conditions analyzed (e.g., delayed 

and non-delayed grasps / precision and power grips), t is the number of time points, 

and n is the number of units recorded, then finding principal components as a linear 

combination of the n units. The only exception to this procedure was the PCA 

analysis in Figure 8a, where data were first averaged over all time points, t, in order to 

find components that ideally separated the various delays, then the entire trajectory 

was transformed into this space. 

 

Distance analysis 

In order to find the neural distance between two conditions over time, we calculated 

the minimum Euclidean distance (point-to-curve distance) between the two 

trajectories in the full space of all units. Two versions of this analysis were performed. 

For the distance in Figure 3, we selected time points on specific delayed trajectories 
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(in steps of 50 ms) and calculated the Euclidean point-to-curve distance of the delayed 

(100-1300 ms) trajectory to the non-delayed (0 ms) trajectory, calculated as the 

minimum of all distances between a specific point on the delayed trajectory to all 

points on the non-delayed trajectory. Minimum distance, as a conservative measure, 

was used in order to overcome the different time courses of the conditions being 

compared. Small distances indicate that the two trajectories achieve the same point in 

neural space at some point in time, while large distances indicate that the two 

trajectories do not pass through the same point in the high dimensional space.  

 For the distance analysis in Figure 4, the Euclidean distance was calculated 

between all pairs of time points on the same trajectory and used in conjunction with 

the bootstrapping procedure (next section) to determine if two points significantly 

differed.  

 

Bootstrap procedure 

In order to gain an estimate of underlying trial-to-trial variability, we performed a 

bootstrap analysis. This procedure varied slightly for the different distance analyses 

presented above, but the general principle was constant. We resampled trials from 

each condition randomly, with replacement, of the same size as the number of 

recorded trials in that condition. We then constructed normalized average firing rates 

and carried out the appropriate distance analysis as described above (e.g., minimum 

distance between delayed and non-delayed trajectory). This resampling was done 

1000 times, producing a distribution of distances. 

 To obtain an estimate of how much distance is expected between trajectories 

by chance, we carried out another resampling in which a trajectory was resampled 

from itself to determine its underlying variability. Trajectories were resampled once 

with the number of trials observed in that condition, and once using the number of 

trials recorded in the other trajectory in the comparison, then the Euclidean distance 

was calculated as described in the previous section. We could then calculate the 

percentage of observations where the distance between delayed and non-delayed 

trajectories was greater than the distance from a trajectory to itself (1000x1000 

comparisons) and use this as a p-value. This analysis allowed us to determine when an 

observed distance was significantly greater than the distance expected if two 

trajectories were generated from the same underlying distribution. 
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For chance analyses in Figure 4, resampling of trials was carried out 6000 

times, with replacement, for each condition and data set, due to the large number of 

comparisons being made. For each of the 6000 resampling steps the same trajectory 

was resampled twice, termed 𝒑 and 𝒑′. Then, for every pair of time points (𝑡1 and 𝑡2), 

the resampled distance along the first trajectory 𝑑 = 𝑑(𝒑(𝑡1), 𝒑(𝑡2)) was compared to 

the two inter-trajectory distances at time 𝑡1 and 𝑡2: 𝑑1 = 𝑑(𝒑(𝑡1), 𝒑′(𝑡1)) and 𝑑2 =

𝑑(𝒑(𝑡2), 𝒑′(𝑡2)). We determined the fraction of resamples (across all 6000) for which 

the along-trajectory distance 𝑑 exceeded both inter-trajectory distances: 

𝑑 > 𝑚𝑎𝑥 (𝑑1, 𝑑2). This fraction determined a specific p-value for each time pair 

(𝑡1, 𝑡2). The resampled distance, 𝑑, was then considered significant if 𝑝 < 0.01/𝑐, 

given the Bonferroni correction 𝑐 = 𝑇2, where 𝑇 is the number of time points on the 

trajectory. In this way, the underlying threshold for significance was dependent on 

which time points were compared along the trajectory, establishing a conservative 

estimate of the underlying trial-to-trial variability. 

 

Linear classifier 

To evaluate the uniqueness of different time points in the trial, a linear classifier 

(linear discriminant analysis) was used to discriminate non-overlapping 200 ms bins 

of spikes distributed throughout the trial-course (Matlab function: fitcdiscr). In order 

to make a meaningful comparison between F5 and AIP, units were first randomly 

discarded from each recording session until both areas had an equivalent number of 

units (stratification). For classification, decoding was n-fold cross-validated, where n 

is the total number of trials. All trials of the delay length being investigated (either no-

movement or 1300 ms delay) were decoded together regardless of grip type. 

 To determine at which times during the trial F5 and AIP differed, decoding 

performance was compared using a cluster-based permutation test (Maris and 

Oostenveld, 2007). Briefly, this test evaluates the t-statistic (independent samples) 

between two conditions over all time points and extracts clusters (consecutive time 

segments) of activity whose t-statistic exceeds a predefined threshold (𝛼 = 0.05), then 

the absolute t-statistics within each cluster were summed to produce cluster-level 

statistics. To generate a chance-level distribution from which the appropriate 

threshold could be determined, trials were randomly partitioned between the two 

conditions and the t-test and clustering redone (1000 partitions). From every partition 
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the largest cluster-level statistic was used to generate a largest chance cluster 

distribution. By comparing the real cluster-level statistic against the largest chance 

cluster distribution, significant clusters could be determined if the observed cluster 

value exceeded a set percentage of largest chance cluster values (p = 0.05). In this 

way, sensitivity to short time-scale differences is greatly reduced, but the overall 

false-alarm rate remains below the designated p-value. 

 

Fano factor 

In order to obtain a measure of how spike rate variability changes over time, we 

employed the frequently used measure of Fano factor. The current analysis was 

performed using a freely available toolbox 

(http://churchlandlab.neuroscience.columbia.edu/code/) that was originally introduced 

by Churchland et al. (2010a). Briefly, Fano factor is based on the ratio of spiking 

variance (across trials) to spiking mean rate. The total data set consisted of all units 

(pooled over recording sessions), and both grip types. Data for each unit and grip type 

were initially treated separately. Spike counts were computed in a 100 ms sliding 

window in steps of 50 ms from 400 ms before movement onset to 600 ms after. 

For each time point, the variance across trials was plotted against the mean 

spike count (one point per unit x grip type). The weighted regression was calculated 

through these points. For the regression, values were weighted by the estimated 

sampling error of the variance, which is the square of the mean divided by the number 

of trials, and the resulting slope of the regression represented the raw Fano factor. A 

value of one indicates purely Poisson spiking. 

In order to control for increases in firing rate over time, which could bias spike 

timing, data were first mean-matched. The mean-matching procedure consisted of 

calculating the histogram of mean rates over all units and grip types for each time 

point, then finding the largest common distribution over all time points, i.e., the height 

of each bin in the common distribution was equal to the smallest height of that bin 

over all time points. Afterwards, data points were randomly discarded from each bin 

until the distribution at each time point matched the common distribution. This 

procedure was carried out 50 times and the resulting Fano factors averaged to produce 

the mean-matched Fano factor. During mean-matching, 21% of data points were 

discarded in F5 and 15% in AIP. This procedure ensures that the overall mean does 
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not increase over time, thereby eliminating any reduction in Fano factor that is purely 

a result of an increase in the mean. 

To evaluate if the reduction in Fano factor was significant, the sampling 

distributions estimated from the 95% confidence intervals provided by the regression 

were compared between 300 ms before movement onset and 100 ms after movement 

onset to produce a p-value. 

 

Clustering analysis 

To evaluate whether or not delay trajectories leading up to movement onset clustered 

in a distinct way, we calculated the Euclidean distance between all pairs of linearly 

spaced delays (0-1000 ms, in steps of 10 ms) in the full neural space and looked for 

community structure (i.e. distinct clusters of similar value) in the resulting distance 

matrix. We employed a well-known modularity analysis that iteratively finds non-

overlapping groups of conditions that minimizes the within-group distance between 

conditions and maximizes the between-group distance (Newman, 2004; Reichardt and 

Bornholdt, 2006) with a gamma sensitivity of 0.8. Using this analysis, the number of 

clusters obtained is purely data-driven and not specified by the experimenter. To 

ensure that the found structure was not due to chance, we randomly permuted the 

distance matrix (1000 permutations, while conserving matrix symmetry) and 

compared the modularity statistic, 𝑄, between the empirical and permuted data. The 

percentage of instances where the empirical value exceeded the permuted distribution 

was used to generate a p-value. 
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“Even something as mundane as watching a movie on a TV screen is an 

example of the importance of emergent properties: one cannot 

comprehend the scene by looking at individual pixels but instead 

needs to simultaneously view many pixels to decipher the image. 

Although the neuron doctrine and single neuronal techniques have 

focused on the exhaustive analysis of the individual ‘pixels’ of the 

brain, it is possible that the function of neural circuits may not be 

apparent unless one can visualize many, or most, ‘pixels’ in the 

screen.” 

(Yuste, 2015) 
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Supporting Information 
 

 
 
S1 Fig. Latency offsets produce derivative-like principal components. (a) Firing 

rates of six simulated neurons (normal distributions with identical SD) over time with 

random time offsets (drawn from normal distribution). (b) The first three principal 

components of the simulated units. (c) The plane formed by the first two principal 

components, showing a ‘horseshoe’ pattern. 

 
 

 
 

S2 Fig. Simulation of a complex-kinematic tuning based model with variable 

neuron-kinematic latencies. (a) Four example neurons with differing latencies. (b-d) 

Comparison of rotational dynamics for (b) observed, (c) permuted without covariance 

matching, and (d) covariance-matched data in the first jPCA plane. p-value in b are 

from the CMPT for the rotational goodness-of-fit ratio (RGR: 𝑅𝑀𝑠𝑘𝑒𝑤

2 𝑅𝑀
2⁄ ) in all 

jPCA planes. Data is plotted for 200 ms regardless of time period used to generate 

statistics. Colors are based on the preparatory activity in the first jPC. 
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S3 Fig. Tuning curves of RNN neurons during movement. Mean firing rate during 

the movement epoch of all movement directions for 16 randomly selected RNN 

neurons. 
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 “Performance of reaching movements appears to require control at multiple levels of 

abstraction. For example, the neural mechanisms involved in deciding on the target 

for a reach need not necessarily take into account all the details of muscular 

contraction which must ultimately be controlled to accomplish the selected movement. 

Conversely, mechanisms involved in overt muscular control need not be sensitive to 

the criteria by which a particular action was selected. One therefore expects that 

different neural populations represent a given movement in different ways, 

emphasizing some cognitive, temporal, or spatial aspects while ignoring others.” 

(Cisek et al., 2003)  
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Abstract 

Preparing and executing grasping movements demands the coordination of sensory 

information across many scales. Factors such as the position of an object, the shape of 

the hand required to grasp, and which of our hands to use must all be coordinated in 

parallel. The network formed by macaque anterior intraparietal area (AIP) and hand 

area (F5) of the ventral premotor cortex is essential in the generation of grasping 

movements. However, the role of these areas in hand selection for grasping is unclear. 

We recorded from 1342 single and multi units in areas AIP and F5 of macaque 

monkeys (Macaca mulatta) during a delayed grasping task, in which monkeys were 

instructed by a context cue (LED) to perform power or precision grips on a handle 

that was presented in five different orientations, with either the left or right hand, as 

instructed by an auditory tone. We found that orientation tuning was prevalent in AIP 

throughout the trial, even in darkness. Units in AIP maintained identical orientation 

preferences between cue and movement, and were not modulated by the hand used 

before movement, suggesting that AIP encodes task information in a largely visuo-

spatial frame during preparation. In contrast, preparatory activity in F5 increasingly 

represented the intended hand to be used, but orientation tuning was only present for 

contralateral movements, revealing a selective transfer of orientation information 

depending on hand use. Interestingly, preferred grip type was shared between hands, 

suggesting that the underlying representation of grip information is identical 

regardless of hand use. Together, our results indicate a more direct form of 

sensorimotor integration in F5 than previously thought, and a surprising lack of hand 

dependence in AIP, suggesting that the circuit formed by AIP and F5 is an essential 

step in the visual to motor specific transformation. 
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Introduction 

Our everyday reaching and grasping movements demand the coordination of 

information across multiple scales. While grasping a cup requires determination of the 

physical position and orientation of the cup, one must also resolve the appropriate 

shaping of the hand, which hand to use, and the muscle forces required. Given this, 

and given the flexibility with which we switch between hands, it is expected that both 

hand independent and muscle specific representations should be found at various 

levels of abstraction throughout cortex. 

 Indeed, a number of studies have probed how neural circuits represent 

laterality of reaching movements in macaque monkeys. Integration of arm specific 

and arm independent information has been found in the parietal reach region (PRR) 

(Chang et al., 2008), dorsal premotor cortex (PMd) (Hoshi and Tanji, 2000; Cisek et 

al., 2003; Hoshi and Tanji, 2006; Kurata, 2010), and primary motor cortex (M1) 

(Muakkassa and Strick, 1979; Tanji et al., 1988; Kermadi et al., 1998), although the 

outputs from M1 have been identified as mostly contralateral (Penfield and 

Rasmussen, 1950; Evarts, 1966). 

 Yet, little is known about the laterality of grasping movements. It has been 

shown that when all inter-hemispheric connections of macaques has been severed, the 

ipsilateral hemisphere can generate reaching movements towards food, but cannot 

properly pre-shape the fingers of the hand (Brinkman and Kuypers, 1973), suggesting 

that grasping is a highly lateralized process. The hand grasping circuit (Luppino et al., 

1999) consisting of the hand area (F5) of the ventral premotor cortex (PMv) and the 

anterior intraparietal area (AIP) is an essential anatomical and function circuit in grasp 

preparation and execution. Neural activity in these areas is strongly modulated by 

visual object properties (Murata et al., 1997; 2000), extrinsic goals (Kakei et al., 

2001), performed grip types (Baumann et al., 2009; Fluet et al., 2010), and 

preparatory activity in these areas can be used to decode the visual properties of 

objects and complex hand shapes required to grasp a diverse range of objects 

(Carpaneto et al., 2011; Townsend et al., 2011; Schaffelhofer et al., 2015), as well as 

predict reaction times (Michaels et al., 2015). Although laterality has been studied in 

PMv, these studied either employed no delay period (Rizzolatti et al., 1988), simple 

movements (Tanji et al., 1988), or required only reaching movements (Hoshi and 

Tanji, 2006; Kurata, 2007; 2010). Additionally, to our knowledge, no studies of 

laterality have been undertaken in AIP. 
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  In the current study, laterality of grasping movements were investigated using 

a delayed grasping task (for review see Janssen and Scherberger, 2015) while neural 

activity was recorded in AIP and F5. Two monkeys visually fixated a central fixation 

point throughout the trial. During a cue phase, monkeys received a visual cue 

indicating which of two grip types to perform in one of five possible grasping handle 

orientations as well as an auditory tone indicating the hand to use on that trial. 

Following a memory period, a go cue instructed monkeys to grasp the handle in the 

dark. 

 We found that activity in AIP and F5 during the movement itself robustly 

reflected which hand was used, but preparatory activity representing the intended 

hand was only found in F5, suggesting that AIP represents task information 

independent of hand during preparation. Furthermore, the amount of grip tuning and 

preferred grip type of each unit did not depend on hand used, indicating a shared 

framework for grasp planning. However, although orientation tuning was abundant in 

AIP, orientation tuning was only present in F5 for contra- and not ipsi-lateral 

movements, revealing a functional differentiation between hemispheres. Finally, the 

functional representation of task conditions in the neural population was significantly 

more correlated between AIP and F5 during contra- rather than ipsi-lateral movement 

preparation, but equal during execution, suggesting that preparatory coordination 

between the areas may be limited to contralateral grasping movements. 
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Results 

Behavior 

 To investigate the laterality of grasp movement coding in premotor and 

parietal cortex, two monkeys performed a delayed grasping task in which the hand the 

monkey had to use, as well as the appropriate grip type and hand orientation, was 

cued on each trial. Concurrently with behavior, single- and multi-unit activity was 

recorded from premotor area F5 and parietal area AIP simultaneously (Figure 1). Both 

monkeys successfully performed the task. After initiating trials to the point of 

obtaining specific trial information, monkeys S and P successfully completed 85% 

and 84% of trials, respectively. In detail, monkeys S and P correctly selected the 

correct hand on 89% and 93% of trials, respectively, while grip type selection was 

correct 99% and 98% of the time. As the motion of the hand during the memory 

period was tracked with an infrared camera (Materials and Methods), monkeys were 

required to keep the hands completely still on the hand rests. Trials were completed 

successfully without premature movement 99% and 94% of the time, for monkeys S 

and P, respectively. Median reaction time, i.e. the time between the go cue and the 

hand leaving the handrest, was 230 and 265 ms for monkeys S and P, respectively, 

while median movement time, i.e. the time between the hand leaving the handrest and 

executing the appropriate grip on the handle was 305 and 325 ms. 

 

Neural recordings 

 The analyzed data sets included a collection of 178 individual recording 

sessions, 91 from monkey S and 87 from monkey P. In monkey S, 861 single- and 

multi-units were successfully recorded (single: 459, multi: 402), of which 581 were 

task-related (AIP: 189, F5: 392) and used in further analysis (Materials and Methods). 

In monkey P, 481 units were recorded (single: 263, multi: 218), of which 390 were 

task-related (AIP: 207, F5: 183). Units were classified as task-related if they were 

tuned for any of the three task factors (hand, grip, or orientation) at any point during 

the course of the trial as determined by a cluster-based permutation test (CBPT; 

Materials and Methods), which finds contiguous segments of time tuned for one of the 

three task factors, while keeping the overall false-positive rate below 1.7%. Only units 

found to be task-related were used in further analysis. 
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Figure 1. Task design and recordings. A, Illustration of a monkey in the 

experimental setup. The cues were presented via LEDs above the handle. B, Delayed 

grasping task with two grip types (top: power grip, bottom: precision grip), five 

orientations of the grasping handle, and grasped with either the left or right hand. 

Grips and orientation were cued using LEDs and handle illumination, while hand was 

cued by two auditory tones. Trials were presented in pseudorandom order in darkness. 

C-D, Recording locations for monkey P (C) and S (D) overlaid on a structural MRI. 

The illuminated oval marks the outline of the recording chamber. Recordings were 

made in F5 on the bank of the arcuate sulcus (AS) and in AIP toward the lateral end 

of the intraparietal sulcus (IPS). The cross shows medial (M), lateral (L), anterior (A), 

and posterior (P) directions. Note that monkey S was implanted in the left hemisphere 

and monkey P in the right hemisphere. 

 

 

 To get an overview of what kind of task-related responses were present, we 

averaged over all trials of each condition to produce average firing rate curves and 

combined them with the significance testing described above (CBPT). Figure 2 shows 

a number of example single units recorded from both areas and monkeys. One of the 

most common responses in AIP was tuning for a specific orientation of the handle that 

was sustained from cue onset to the end of movement, even though the handle was 
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only illuminated during the cue (Fig. 2 - Top Left). Another common response in AIP 

was units that did not respond to the cue at all, but showed strong grip and hand 

tuning specifically during the movement (Fig. 2 – Middle Left). Interestingly, many 

units in F5 were tuned for the hand used not only during the movement, but also from 

the end of the cue period onwards, showing a preference for both ipsi- and contra-

lateral movements (Fig. 2 – Top Right). Additionally, units showing sustained tuning 

for grip were widely present (Fig. 2 – Middle Right), and occasionally units that were 

tuned for all three factors (Fig. 2 – Bottom Right), although these were relatively rare. 

 

 
 

Figure 2. Example average firing rate curves of single-units in AIP and F5. (Top 

Left) A unit tuned to a single orientation of the handle throughout the trial, even in 

darkness. (Middle Left) A unit tuned only during movement both for the grip 

performed and the hand used. (Top Right) A unit tuned for hand used through the 

trial, showing a preference for ipsilateral movements. (Middle Right) A unit tuned for 

performed grip throughout the trial, along with phasic hand tuning during movement. 

(Bottom Right) A unit tuned for all task factors at different points in the trial. Data 

were aligned to three events, cue onset, movement onset, and reward. Raster plots 
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above curves show single spikes over all trials of each condition. Significance bars 

represent tuning for each of the three factors, as determined by cluster-based 

permutation test (p < 0.017). Examples were taken from both monkeys. 

 

 

Population tuning 

While examining the average responses of individual units is an essential step, 

characterization of population function requires examination of a large set of units. 

Before looking at the laterality of population responses, we examined population 

tuning for grip type and orientation of the handle. Figure 3A shows the times of 

significant grip and orientation tuning for all recorded units from both monkeys and 

areas, aligned to time of first tuning. Data from both monkeys were pooled together 

since the amounts of tuning were very similar for both grip and orientation. Tuning 

increased for both factors typically during the cue epoch and around movement onset. 

Interestingly, the amount of grip tuning in AIP was quite low, especially during the 

memory period, while orientation tuning on AIP was extremely prevalent and often 

sustained for the whole trial, as seen in the example unit in Figure 2. In contrast, grip 

tuning in F5 ramped steadily during the cue and was often present during the memory 

period, while orientation tuning was very rare. Also notable is that the preferred grip 

type of each unit was frequently unstable over the course of the trial, showing a 

switch in significant tuning at various time points, an interesting effect that will be 

returned to later. 

 To see the difference in prevalence in tuning between contra- and ipsi-lateral 

grasps we repeated the previous tuning analysis for trials of each hand separately and 

summed over the population, producing plots of the total amount of tuning in Figure 

3B. Interestingly, the amount of grip tuning did not differ between contra- and ipsi-

lateral trials, suggesting that the intended grip is equally prevalent in both 

hemispheres during planning and execution. Intriguingly, while there was some 

orientation tuning in F5 during contralateral grasps, there was virtually none during 

ipsilateral grasps, implicating a differing function of the area depending on the hand 

being used for grasping. 

  



2.4 – Hand-invariant to hand-specific 

 

134                

 
 

Figure 3. Grip type and orientation tuning over all recordings. A, Times of 

significant tuning for all units from both areas and monkeys, aligned by onset of first 

tuning, as determined by cluster-based permutation test (p < 0.017). Labeled 

condition represents the one that elicited the higher firing rate. B, Percentage of units 

tuned for each effect over time. Same analysis as A repeated for contra- and ipsi-

lateral trials separately and collapsed for each time point. Results were very similar 

between monkeys and were therefore pooled. Data were aligned to three events, cue 

onset, movement onset, and reward. 

 

 

 Another interesting question is whether or not the preferred grip type was 

shared between contra- and ipsi-lateral grasps. To test this, we compared the preferred 

grip type (highest firing) between trials of each hand for each unit that was 
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significantly tuned (based on CBPT) during both movements. During cue and 

memory, not a single unit in either area switched preference between contra- and ipsi-

lateral trials, indicating that grip tuning was preserved regardless of hand used. During 

the movement period, less than 5% of units in either area switched their preference 

between trials of each hand, implicating a shared representation regardless of hand 

used. 

 

Laterality encoding 

Up to this point we have only considered tuning for classical features such as grip 

type and handle orientation. Now, we consider tuning for the hand itself using the 

same analysis as above, but plotted for each monkey separately (Figure 4). For 

monkey S, hand tuning was virtually non-existent in AIP before movement onset, 

suggesting that AIP encodes task-relevant features in a hand-independent manner 

before the movement has started. In contrast, hand tuning in F5 seemed to ramp 

continuously throughout the entire trial, reaching a maximum (50% of units tuned) 

just before the hold period, showing that F5 is strongly dependent on hand used. 

 The results of monkey P with respect to hand tuning were significantly 

different, showing phasic spikes in hand tuning in both areas immediately after the 

cue. As described in the Materials and Methods, an infrared camera tracked the 

position of the hands during the cue and memory periods to ensure that no premature 

movements occurred. However, very small movements were likely still possible. To 

test this possibility, the sum of a measure of hand movement (Materials and Methods) 

that was recorded during the memory period of individual trials was used to decode 

task conditions offline. Using a linear classifier (n-fold cross-validated, Matlab 

function: fitcdiscr), it was possible to decode the hand used from the memory period 

with 52% accuracy in monkey S, where 50% is chance level, suggesting that no 

premature movements occurred. In contrast, the hand used could be decoded with 

75% accuracy in monkey P, suggesting that small premature movements may have 

occurred. Additionally, grip type could never be decoded from the infrared video 

during the memory period (50% accuracy in both monkeys), indicating that any 

premature movements never represented the grip type. Taken together, this result 

suggests that monkey P made small premature movements during the memory that 

caused phasic spikes in hand tuning, but left grip tuning unaffected. Therefore, we 
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believe that the results of monkey S with respect to hand tuning during the cue and 

memory periods conservatively reflects the function of these areas. 

 

 
 

Figure 4. Hand tuning over all recordings separated by monkey. A, Times of 

significant hand tuning for all units from both areas and monkeys, aligned by onset of 

first tuning, as determined by cluster-based permutation test (p < 0.017). Labeled 

condition represents the one that elicited the higher firing rate. B, Percentage of units 

tuned for hand over time, obtained from A. Results significantly differed between 

monkeys and were therefore presented separately. Data were aligned to three events, 

cue onset, movement onset, and reward.  
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 Now that we have seen that hand tuning exists in both areas, Figure 5 plots 

the hand specificity index (HSI, Materials and Methods) of all units of monkey S to 

identify how much firing rates differed between contra- and ipsi-lateral grasps. A 

value of one indicates firing purely during contralateral movements, while a value of 

negative one indicates firing purely during ipsilateral movements. As expected, during 

the cue and memory period the HSI was not significantly shifted from zero in AIP 

(Wilcoxon signed rank test, p > 0.05), while the HSI was significantly biased towards 

contralateral during movement and the hold period (Wilcoxon signed rank test, p < 

0.001). Furthermore, this shift did not differ when splitting units into single- and 

multi-unit recordings. In F5, the HSI was significantly shifted in the positive direction 

during all epochs (Wilcoxon signed rank test, p < 0.001), suggesting that producing 

contralateral movements generally increased firing rates more than ipsilateral 

movements. However, during memory it is clear that units were tuned to both contra- 

and ipsi-lateral movements, as seen by the bimodal distribution of significantly tuned 

units, suggesting that movements of either hand were likely to produce higher firing 

rates during the memory period. 

 

 
 

Figure 5. Hand specificity index (HSI) for monkey S. HSI was calculated as the 

sum of the spikes in a specific task epoch for contralateral trials, minus the same for 

ipsilateral trials and then divided by the sum of both values. Therefore, a value of +1 

indicated purely contralateral firing while a value of -1 indicated purely ipsilateral 
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firing. Units were plotted separately for single- and multi-units to determine if a bias 

was introduced by pooling activity into multi-units. This analysis was only carried out 

on monkey S since hand tuning was significantly different between monkeys.  

 

   

Tuning consistency 

A large number of units were tuned during each epoch of the task. How often was this 

tuning sustained between epochs, and was there significant preference for particular 

conditions over time? Figure 6A shows a chart of which epochs all units in both areas 

were tuned for either grip or hand. For grip tuning, most units were only tuned during 

one epoch, although there was substantial overlap in many cases. Hand tuning was 

least during the cue, most during movement, and showed substantial overlap between 

memory and movement. However, most units were still only tuned during one epoch, 

suggesting that most of the time tuning to either factor is phasic and not sustained 

over all epochs. 

 

 
 

Figure 6. Consistency of grip and hand tuning in F5. A, (Top) Distribution of when 

units (from both monkeys) were tuned for grip in F5. (Bottom) Distribution of when 

units (from monkey S only) were tuned for hand in F5. Although some units remained 

tuned over the entire trial, many only showed a preference during specific epochs. B, 

(Top) Onset of first tuning and switch tuning for units that switched their preferred 
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grip type during the trial. (Bottom) Onset of first tuning and switch tuning for units 

that switched their preferred hand during the trial. All tuning is based on the cluster-

based permutation test used in Figures 3-4. 

 

 

  To investigate the consistency of tuning over time, Figure 6B shows the 

times when units first became tuned for grip or hand, and the time at which certain 

units became significantly tuned for the other factor. Only units that switched tuning 

are plotted. Interestingly, very few units changed grip preference during the cue or 

memory period, yet many either changed their preference between cue and 

movement, or throughout the movement itself. Overall, 23% of units switched their 

tuning at some point during the trial, suggesting that preference varied throughout 

time. A similar effect was seen for hand tuning, since 18% of units switched their 

hand preference at some point during the trial, however almost exclusively during the 

movement itself. 

 

Coordinate frame 

Both areas investigated in the current study are essential parts of the visuo-motor 

transformation process, and therefore involved in transforming visual information into 

a body-centered coordinate frame so that muscle movements can be executed to the 

appropriate location in physical space. By examining the relationship between handle 

orientation preference and hand used, it is possible to test the representation of 

extrinsic (visual-centric) and intrinsic (body-centric) coordinate frames in all recorded 

units. Figure 7A illustrates the two potential preferences of an example unit for the 

two coordinate frames. If a unit were tuned purely in an extrinsic frame, orientation 

preference should be shared regardless of hand used. In contrast, in an intrinsic frame 

the orientation preference may shift between hands to match the correspondingly 

mirrored wrist rotation (i.e., pronation or supination) required between each hand. To 

test this, we correlated the average firing rate of each unit during all handle 

orientations of one hand and the other over time (200 ms spiking windows in steps of 

50 ms). If the correlation exceeded zero and was significant, that indicated an 

extrinsic frame, as shown in Figure 7B, while units showing a significant correlation 

below zero indicated an intrinsic frame (permutation test, p < 0.05). Figure 7C shows 

the number of units fitting either frame over both monkeys for AIP and F5 separately. 

The number of units fitting the extrinsic frame was highest at the end of the cue and 
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decreased throughout the trial in both areas, increasing slightly in AIP during 

movement. Interestingly, very few units showed an intrinsic frame, suggesting that 

such a transformation is not represented in the units of these areas. However, the 

general lack of orientation tuning in F5 makes conclusions difficult and is discussed 

later. 

 

 
 

Figure 7. Extrinsic or intrinsic reference frame representation in individual 

units. A, Illustration of preferred handle orientations for example units following an 

extrinsic (visual) or an intrinsic (body-centered) frame. B, Average firing rates of 

example units. Each dot represents the average firing rate for one of the five handle 

orientations, with the line of best fit. A positive slope for the line of best fit 

corresponded to an extrinsic frame and a negative slope an intrinsic frame. C, Number 

of units fitting either model in AIP and F5 (200 ms spiking windows in steps of 50 

ms). 

 

 

Demixed principal component analysis 

Both AIP and F5 are involved in the processing of a large multitude of task factors. 

These factors must be processed in parallel, and are distributed over many units in the 

population. To get a picture of how these factors are represented in the populations of 

AIP and F5, we implement demixed principal component analysis (dPCA), a 

dimensionality reduction methods for extracting low-dimensional linear combinations 

of a population that represent specific task features (Kobak et al., 2014). Since there 

was a significant difference in how hand was encoded between the two monkeys, we 
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developed an additional procedure for extracting only dimensions that were present 

independently in both monkeys (Materials and Methods). Figure 8 shows the results 

of dPCA over all units of both monkeys in AIP and F5. The amount of variance 

explained by dPCA was very similar to that extracted by classical PCA, suggesting 

that the method is able to properly extract relevant task features. 

 Intriguingly, the components taking up the most variance overall are 

condition independent signals. The first component in AIP is a large condition-

independent signal that begins shortly before movement onset, while the second 

component is a large phasic response to the cue. In F5, the first component is the 

same, while the second component seems to progress linearly with time, especially 

during the memory period. The next largest component in both areas was related to 

the hand used, although the hand used could only be decoded from this signal in AIP 

during the movement period, as denoted by the black bars (Materials and Methods), 

while hand used could be consistently decoded from this signal in F5 starting towards 

the end of the cue and lasting throughout memory and movement. The same was true 

of grip decoding, being present in F5 throughout the trial starting in early cue, but 

only during movement in AIP. However, grip could be decoded at earlier time points 

in component 10 in AIP, as shown by the black bars marking significant decoding. 

Handle orientation was very well decodable from AIP throughout the trial, while 

barely so in F5. 

 Given that the task factors must be represented within each area in parallel, 

we tested the orthogonality of each component by taking the dot product between the 

coefficients of each component (i.e. the contributions of all units to each component). 

Interestingly, most components were not significantly non-orthogonal, suggesting that 

the task factors are independently represented. 
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Figure 8. Demixed PCA on AIP and F5 of both monkeys. (Right Panels) Demixed 

principal components. Thick black lines show time intervals during which the 

respective task parameters can be reliably extracted from single-trial activity. Note 

that the vertical scale differs across subplots. (Left Top) Cumulative signal variance 

explained by PCA (black) and dPCA (red). Demixed PCA explains almost the same 
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amount of variance as standard PCA. (Left Middle) Variance of the individual 

demixed principal components. Each bar shows the proportion of total variance, and 

appears to be single-colored, which signifies nearly perfect demixing. Pie chart shows 

how the total signal variance is split between parameters. (Left Bottom) Lower-right 

triangle shows dot products between all pairs of demixed principal axes. Stars mark 

the pairs that are significantly and robustly non-orthogonal. Upper-left triangle shows 

correlations between all pairs of the components. Most of the correlations are very 

low. 

 

 

Task-space correlation 

Communication between AIP and F5 is required to properly prepare and execute 

grasping movements. Therefore, we wanted to test how functionally similar the 

representation of our task was in both areas at different times during the trial. To 

achieve this, we calculated the Euclidean distance between the average firing rates of 

all pairs of conditions (for each hand separately) in the space of all recorded units 

across both monkeys, producing distance matrices. Two example matrices are shown 

in Figure 9A. The unique portions (upper triangle excluding the diagonal) of these 

matrices were then correlated between AIP and F5 for trials of each hand separately. 

The resulting correlations (Spearman) are shown in Figure 9B for five epochs, and 

significant differences between contra- and ipsi-lateral trials are marked with a star 

(permutation test, p < 0.05, false-discovery rate correction, Materials and Methods). A 

high correlation would indicate that the relationship between task conditions in neural 

space was very similar between areas, while a low correlation would indicate 

differing representations of task conditions between areas. At the beginning of the 

cue, the correlation was reasonable and not significantly different between contra- and 

ipsi-lateral movements. However, by the end of the cue and during the memory period 

the correlation between areas was significantly higher during contralateral 

movements, suggesting that the representation of the task was highly similar in AIP 

and F5 specifically for these movements. Finally, during the movement the task 

representation was very similar between areas and did not differ between contra- and 

ipsi-lateral movements. If data are separated by monkey, the same result is obtained 

for monkey S, but not for monkey P, a relatively expected result given the differences 

in memory period behavior between monkeys. Although not a direct measure of 

causal communication, this analysis strongly suggests that communication between 

AIP and F5 is more extensive during preparation of contra- vs. ipsi-lateral grasping 

movements. 
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Figure 9. Task space correlation between contra- and ipsi-lateral movements. A, 

Example distance matrices showing Euclidean distance between all pairs of 

conditions for one hand (contralateral) in the neural space of all recorded units of both 

monkeys in the early memory epoch. Distance matrices produced from the activity of 

each area were correlated to each other to determine the similarity in functional 

representation between areas. B, Spearman correlation of distance matrices for contra- 

and ipsi-lateral trials separately. Stars mark epochs when the correlation was 

significantly higher during contra-lateral trials (permutation test, p < 0.05, False-

discovery rate correction). 
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Discussion 

In the current study, by recording from many units in AIP and F5 of two macaque 

monkeys during a delayed grasping task, we found that the laterality of hand use was 

not robustly encoded in AIP before movement, while hand tuning steadily increased 

in F5. Furthermore, while orientation tuning was prevalent in AIP, it was only found 

in F5 during preparation of contralateral movements. 

The amount of grip tuning obtained in AIP was significantly lower than found 

in previous studies (Baumann et al., 2009) as was the amount of orientation tuning 

found in F5 (Fluet et al., 2010). We believe these differences are due to selective 

recording of task-related units in previous studies, while in the current study units 

were not evaluated for tuning online, presumably giving a more unbiased estimate of 

tuning percentage.  

As mentioned earlier, severing all connections between hemispheres of 

macaques has shown that the ipsilateral hemisphere can coordinate reaches, but not 

properly pre-shape the fingers of the hand to grasp the food (Brinkman and Kuypers, 

1973). Therefore, it’s interesting that in the current study grip preference and tuning 

was identical regardless of hand use. It suggests that premotor cortex in either 

hemisphere should be successful in hand shaping; yet this was not the case in this 

classic study. Therefore, it is unlikely that involvement of F5 in ipsilateral movements 

is contributing directly to muscle activation. Supporting this, stimulation of ipsilateral 

M1 produces no direct corticospinal activation of the muscles (Soteropoulos et al., 

2011). Therefore, F5 modulation during ipsilateral movements is likely coordinated 

with the contralateral F5 through the corpus callosum and likely also plays a larger 

role during bimanual rather than unimanual grasping movements, as is the case in M1 

(Donchin et al., 1998). 

Interestingly, while grip preference did not change between hands, many units 

changed their grip or hand preference between the preparatory periods and the 

movement itself (Fig. 6), in line with studies showing that individual unit tuning tends 

to be unstable, and that different dynamics govern preparation and movement 

(Churchland et al., 2012; Ames et al., 2014). 

The fact that AIP showed no preparatory response to hand use is unexpected, 

especially since the nearby parietal reach region shows strong modulation (Chang et 

al., 2008). Additionally, AIP is part of the network that responds to passive auditory 

listening (Poremba et al., 2003), and since the current task employed an auditory cue, 
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it would be expected that playing multiple tones would elicit a task dependent 

response. It could be that the auditory stimuli in our task were not varied enough to 

elicit a significant effect, or rather that since the task was active rather than passive, 

AIP was likely dominated by visual processing demands. 

 During the movement itself, both areas strongly represented the hand used. 

Along with F5 contributing to the initiation of movement, hand tuning during 

movement could originate from projections from secondary sensory cortex to both F5 

(Kurata, 1991; Gerbella et al., 2011) and AIP (Borra et al., 2008).  

Monkeys were required to reach to the target as well as grasp. Therefore, 

reach planning and execution is likely a significant part of the observed activity. 

However, as we have argued previously (Michaels et al., 2015), previous research 

employing a grasp-only task (Hepp-Reymond et al., 1994) and a grasp-reach 

dissociation task (Lehmann and Scherberger, 2013) suggests that F5 encodes grasping 

quite independently of reaching, although both areas contain information about reach 

position. Furthermore, reversibly inactivating F5 (Fogassi et al., 2001) or AIP 

(Gallese et al., 1994) selectively impairs hand-shaping and not reaching, suggesting 

that our results are an accurate representation of the grasping network. 

 Although monkeys received grip cue information at the center of their visual 

field, the effector cue was auditory, introducing a potential confound in lateralized 

processing. However, it is unlikely that any lateralization effects found in the current 

study are a result of asymmetric processing of auditory information since only 

complex stimuli, such as vocalizations, evoke a lateralized response in macaque 

monkeys (Poremba and Mishkin, 2007; Joly et al., 2012). 

Based on our analysis of infrared motion tracking, it is very likely that monkey 

P made small movements of the hand during the preparatory phases, biasing hand 

tuning during that time. However, the same analysis showed that no such movements 

occurred with monkey S, and grip and orientation tuning appeared unaffected. 

Furthermore, we were able to extract the population level preparatory and movement 

related signals that were shared in both monkeys (Fig. 8), revealing the commonality 

in data sets. The relative orthogonality of these extracted dimensions is an indicator of 

the coding mechanisms that may be employed by cortex in order to efficiently encode 

information in parallel. A number of studies support the notion that low-dimensional 

features of neural populations have a biological basis, including learning induced 



2.4 – Hand-invariant to hand-specific 

  
     147 

plasticity (Sadtler et al., 2014), gating of motor output (Kaufman et al., 2014), and 

parallel encoding (Mante et al., 2013). 

In our analysis of orientation tuning, the lack of intrinsic coordinate frame 

tuning observed across both areas (Fig. 7) raises two possibilities. Either, wrist 

orientation is not well encoded in either area, or an intrinsic frame in which wrist 

orientation preference is mirrored in individual units between hands used is not a 

sensible coordinate frame employed by these areas. Given the low amounts of 

orientation tuning observed in F5, it is likely that wrist orientation is simply not 

directly encoded in F5, and that properly testing an intrinsic frame requires 

considering more complex reference frames that well explain wrist and finger 

movements. 

Given that the hand tuning observed in F5 does not likely originate from AIP, 

the hand tuning in F5 likely comes indirectly through prefrontal cortex, from which a 

number of areas project to F5 (Gerbella et al., 2011). This is also in line with the fact 

that hand tuning in F5 appears only towards the end of the cue and builds slowly, as 

observed previously (Hoshi and Tanji, 2006). An alternative explanation for large 

amounts of hand-invariant tuning could be that many proximal muscles are required 

for movements of either arm, given the large postural adjustments required in 

extending the arm, and could therefore explain large amounts of hand invariant 

tuning. However, experiments limiting movements to the distal muscles alone (Tanji 

et al., 1988), or controlling for postural contributions to ipsilateral control (Ganguly et 

al., 2009), have shown strongly bilateral representation of hand movement in 

premotor cortex, suggesting that postural control cannot fully explain hand-

independence. 

On the other hand, an extrinsic frame representation in PMv is not altogether 

surprising, since PMv has been shown to be very sensitive to visuo-spatial 

information as opposed to the dynamics of movement (Hoshi and Tanji, 2006; Xiao et 

al., 2006), but likely shifts its control strategy during movement (Suminski et al., 

2015). A change in control strategy between preparation and movement is supported 

by the fact that although there was an equal amount of orientation tuning in F5 during 

movement as during cue, the number of units fitting an extrinsic frame dropped to 

baseline levels, suggesting that the reference frame used during execution in F5 does 

not match either tested frame. In contrast, almost all units in AIP tuned for orientation 

during movement also showed a significant extrinsic frame, suggesting that AIP 
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continues employing a largely visuo-spatial frame. Therefore, PMv is likely a site of 

transformation between hand-invarient and hand-specific representations, 

representing stimuli from both the contra- and ipsi-lateral visual hemi-field 

(Boussaoud and Wise, 1993a; 1993b), leading to a strong visuo-spatial dependence, 

while also accumulating hand-specific information before and during movement. Yet, 

the dependence of orientation tuning in PMv on hand use reveals a more direct 

representation of sensorimotor integration than posited previously (Hoshi and Tanji, 

2007), and provides an interesting perspective on the function of the premotor and 

parietal grasping circuit. 
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Materials and Methods 

Experimental Setup 

Two female rhesus monkeys (Macaca mulatta) participated in this study (monkeys P 

and S; weight 4.5 and 5.5 kg, respectively). They were pair-housed in a spacious and 

enriched environment. All procedures and monkey care were conducted in accordance 

with the regulations set by the Guidelines for the Care and Use of Mammals in 

Neuroscience and Behavioral Research (National Research Council, 2003), and in 

agreement with German and European laws governing monkey care. 

 Monkeys were habituated to comfortably sit upright in an individually 

adjusted primate chair with the head rigidly fixed to the chair. A grasp target was 

located at a distance of 24 cm in front of the monkey. The target consisted of a handle 

that could be grasped with two different grip types, either with a precision grip (using 

index finger and thumb in opposition) or a whole-hand power grip (Baumann et al., 

2009; Fluet et al., 2010). Inside the handle, two touch sensors were placed in small, 

visible recessions to detect the contact of the monkey’s thumb and index finger during 

precision grips. An infrared light barrier placed inside the opening of the handle 

detected power grips. Grip type was instructed by two colored light emitting diodes 

(LEDs) that were positioned immediately above the grasping handle. The handle was 

rotatable and was presented in five different orientations (upright and 25° or 50° 

clockwise and counter-clockwise) and two spotlights could illuminate it from the left 

and right side in an otherwise dark experimental room. Two capacitive touch sensors 

(model EC3016NPAPL; Carlo Gavazzi) were placed at the level of the monkey’s 

waist as handrest buttons. A single speaker, which produced the audio tones for cuing 

the appropriate arm, was positioned directly above and behind the monkey’s head. 

The speaker was oriented such that the audio tone was equally directed into each ear. 

Monkeys had to fixate on a red LED that was positioned between the two cue LEDs. 

Eye movements were measured using an optical eye tracker (ET-49B; Thomas 

Recording) and custom-written software implemented in LabView Realtime (National 

Instruments) using a time resolution of 5 ms was used to control the behavioral task. 

 In additional to normal behavioral control, the stationarity of each monkey’s 

hands on the hand rests was also tracked during the memory period of every trial with 

an infrared camera positioned directly over the hands. Using a separate custom-

written LabView control program, the stationarity of both hands was simultaneously 

monitored for several criteria: (a) the total luminance of the hand, (b) the center of the 
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hand, i.e. the position of the weighted average of the most luminous pixels in both the 

x and y direction separately, and (c) the standard deviation around the center of the 

hand in both the x and y direction. If at any time during the memory period either 

hand moved more than a pre-set threshold with respect to any of these factors, the trial 

was aborted without reward. The thresholds beyond which a trial would be aborted 

were fixed during all recordings of both monkeys at: (a) ±2%, (b) ±1%, and (c) ±2%. 

 Additionally, during all recordings of monkey S and a small portion of the 

recordings from monkey P, continuous infrared hand motion information was 

digitally stored (500 Hz) for later offline analysis. For each hand the sum of these 

variables was recorded, i.e. the sum of the total hand luminance, the center of the 

hand in x-coordinates, and the center of the hand in y-coordinates, as these values 

were most valuable in controlling motion behavior. 

 

Behavioral paradigm 

Monkeys were trained in a delayed grasping task in which they were required to grasp 

a handle in five possible orientations with either a power grip or a precision grip using 

the left or right arm. This led to 20 grasp conditions that were presented in a 

pseudorandom order. To initiate a trial, monkeys sat in darkness and placed each hand 

on a handrest button. The handle was then positioned in one of the five orientations 

and subsequently a red fixation LED switched on. From then on, the monkey was 

required to fixate while keeping both hands on the handrest buttons (fixation period 

duration: 700–1100 ms, mean: 900 ms), as illustrated in Figure 1A. In the following 

cue period (cue period duration: 800 ms), the object was illuminated to reveal its 

orientation. The color of an additional LED presented to the left or right of the 

fixation LED indicated which grip type to perform, either a power grip (green light, 

left) or a precision grip (yellow light, right). In addition, an audio tone (1000Hz or 

2000Hz), representing the left and right arms, respectively, was presented 

simultaneously with the grip cue and spotlights. The spotlights, audio tone, and the 

grip cue LED were then switched off while the fixation light remained on for a 

variable period (memory period duration: 700–1100 ms, mean: 900 ms) during which 

the monkey had to remember the trial instructions. A brief blinking of the fixation 

LED (130 ms) instructed the monkey to reach and grasp the object in the dark with 

the correct arm while maintaining eye fixation and keeping the other arm on the 
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handrest. After a hold period of 300 ms, each correct trial was rewarded with a fixed 

amount of water. 

 

Surgical procedures and MRI scans 

Details of the surgical procedures and MRI scans have been described previously 

(Lehmann and Scherberger, 2013). In short, a titanium head post was secured in a 

dental acrylic head cap and a custom made oval-shaped recording chamber [material 

PEEK (polyether ether ketone); outer dimensions, 40 X25 ئج mm2; inner dimensions, 

35 X 20 mm2] was implanted over the right or left hemisphere to provide access to 

parietal area AIP and premotor area F5. 

 Two structural magnetic resonance image (MRI) scans of the brain and skull 

were obtained from each monkey, one before the surgical procedures, to help guide 

the chamber placement, and one after chamber implantation to register the coordinates 

of the chamber with the cortical structures (Fig. 1C,D). AIP was defined as the rostral 

part of the lateral bank of parietal sulcus (Borra et al., 2008), whereas recordings in F5 

were made primarily in F5ap, which is in the post-arcuate bank lateral to the tip of the 

principal sulcus (Belmalih et al., 2009). 

 

Neuronal recordings 

Single-unit and multi-unit (spiking) activity was recorded using quartz-glass-coated 

platinum/tungsten single electrodes (impedance 1–2 MΩ at 1 kHz) or tetrodes 

(impedance 500-800 kΩ at 1 kHz) that were positioned simultaneously in AIP and F5 

by two five-channel micromanipulators (Mini-Matrix, Thomas Recording). Neural 

signals were amplified (400X), digitized with 16-bit resolution at 30kS/s using a 

Cerebus Neural Signal processor (Blackrock Microsystems), and stored on a hard 

drive together with the behavioral data.  

 

Preprocessing 

All data analysis was performed offline. Neural signals were band-pass filtered 

(forward-backward) with cutoff frequencies between 300-5000 Hz. Waveforms were 

extracted when the signal deflected beyond 5 standard deviations from baseline either 

negatively or positively. The refractory period between spikes was set at 1.5 ms. 

During tetrode recordings spikes that were detected on one of the electrode tips were 
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extracted from all 4 and aligned to the peak or valley of the first channel to cross the 

threshold. Units were isolated using principal component analysis techniques (Offline 

Sorter v3.2.2, Plexon), and sorted into single and multi units. Using Matlab 

(Mathworks) for further analysis, we included all units in our database that were 

stably recorded for at least 5 trials per condition (100–260 trials in total). Average 

firing rate curves were generated using a Gaussian window as a kernel (SD: 57 ms) in 

three alignments (cue, movement, and reward). However, all statistical tests other 

than the cluster-based permutation test were based on exact spike counts. 

 

Data analysis 

The preferred and non-preferred orientations were determined for each unit from the 

mean activity in the time interval from cue onset to reward onset. Activity was 

averaged across all trials of the same orientation. Of the five tested orientations, the 

orientation with the higher (or lower) mean firing rate was defined as the preferred (or 

non-preferred) orientation, as in Baumann et al. (2009). In order to determine the 

degree to which each individual unit preferred, i.e. increased firing rate for, 

movements with the contra- or ipsi-lateral hand, a hand specificity index (HSI) was 

calculated for each unit, 

 

𝐻𝑆𝐼 =
𝐶𝑜𝑛𝑡𝑟𝑎 − 𝐼𝑝𝑠𝑖

𝐶𝑜𝑛𝑡𝑟𝑎 + 𝐼𝑝𝑠𝑖
 

 

where ‘Contra’ represents average spiking of a unit during a specific task epoch for all 

trials where the contralateral hand was cued, and vice versa for ‘Ipsi’. Therefore, a 

value of +1 would indicate activation purely for contralateral trials and -1 for purely 

ipsilateral trials (Fig. 5). 

 To complement each firing rate curve, periods of significant tuning were 

calculated using a cluster-based permutation test (CBPT) to generate the significance 

bars in Figure 2 (Maris and Oostenveld, 2007). Briefly, this test evaluates the t-

statistic (independent samples) between two conditions over all time points and 

extracts clusters (consecutive time segments) of activity whose t-statistic exceeds a 

predefined threshold (𝛼 = 0.01), then the absolute t-statistics within each cluster were 

summed to produce cluster-level statistics. To generate a chance-level distribution 

from which the appropriate threshold could be determined, trials were randomly 
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partitioned between the two conditions and the t-test and clustering redone (1000 

partitions). From every partition the largest cluster-level statistic was used to generate 

a largest chance cluster distribution. By comparing the real cluster-level statistic 

against the largest chance cluster distribution, significant clusters could be determined 

if the observed cluster value exceeded a set percentage of largest chance cluster 

values (p = 0.05). In this way, sensitivity to short time-scale differences is greatly 

reduced, but the overall false-alarm rate remains below the designated p-value. This 

test was carried out once for each of the three factors. Additionally, to see if grip and 

orientation tuning differed between contra- and ipsi-lateral trials, the CBPT was 

repeated for those trials separately. 

 To test which units were task-related, if a unit had a significant effect of any of 

the three factors at any tested time point of the CBPT, it was considered task-related. 

Crucially, all analyses only considered units that were determined to be task-related. 

As a control, if a 3-way ANOVA is used in place of the CBPT, approximately the 

same amount of significance is found overall, suggesting that the CBPT does not 

over-estimate the level of tuning for each unit. 

 

Coordinate frame analysis 

In order to determine which units significantly exhibited the characteristics of an 

extrinsic or intrinsic coordinate frame (Fig. 7) activity was first averaged over trials of 

each of the five orientations in sliding bins (width: 200 ms, interval: 50 ms) and 

correlated between contra- and ipsi-lateral trials (Fig. 9B). To test significance, trials 

were randomly permuted with respect to orientation (while keeping grip type and 

hand consistent), and the average and correlation were redone (1000 repetitions). If 

the absolute value of the real correlation obtained from the unshuffled data exceeded 

95% of the permuted correlation distribution (p = 0.05), this unit was deemed to be 

significantly representing an extrinsic or intrinsic reference frame, corresponding to 

an r-value > 0 or < 0, respectively. 

 

Dimensionality reduction 

A common problem with large data sets is their inherent complexity. Principal 

component analysis (PCA) is commonly employed to reduce the dimensionality of 

such data sets by finding a low dimensional representation of the data by defining 

independent linear combinations, or weighted averages, of units that explain most of 
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the variance in firing rates. PCA finds a ‘decoder’, 𝐃, which represents a linear 

mapping of the full data onto a compressed read out. Using an ‘encoder’, 𝐅, data can 

then be approximately reconstructed by decompressing it. 

To formalize this, given a matrix of data 𝐗, where each row contains he 

average firing rates of one neuron for all task conditions, PCA finds an encoder, 𝐅, 

and an equivalent decoder, 𝐃, which minimizes the loss function 

 

𝐿 = ‖𝐗 − 𝐅𝐃𝐗‖2 

 

under the constraint that the principal axes are normalized and orthogonal and 

therefore 𝐃 = 𝐅T (Hastie et al., 2009), and where the matrix norm is the Frobenius 

norm, i.e. ‖𝐗‖2 = ∑ ∑ 𝑋𝑖𝑗
2

𝑗𝑖 . Unfortunately, data that is represented in this way 

heavily mixes the effect of different task parameters between latent dimensions, since 

no information regarding the actual task conditions is present in the loss function. 

However, we would like to extract dimensions that dissociate our specific task 

conditions. To achieve this demixed principal component analysis (dPCA) was 

performed (Kobak et al., 2014) using freely available code: 

https://github.com/wielandbrendel/dPCA. 

 dPCA is similar to classical PCA in the sense that it seeks to find a rotation of 

the full neural space that explains most of the variance in average firing rates in a 

small number of latent dimensions. In contrast to PCA, dPCA seeks to explain 

marginalized variance with respect to our specific task variables (hand, grip type, 

orientation, and time), instead of merely explaining total variance. The differences 

between traditional PCA and dPCA can be formalized by comparing the loss 

functions that are minimized in each procedure. dPCA utilizes a separate encoder and 

decoder   

 

𝐿 = ∑ 𝐿∅

∅

= ∑(‖𝐗∅ − 𝐅∅𝐃∅𝐗‖2 + λ‖𝐃∅‖2)

∅

 

 

where 𝐗∅ is the marginalization of the full data with respect to each of our task 

parameters of interest and the λ‖𝐃∅‖2 term is a regularization parameter, preventing 

overfitting. Marginalizations of 𝐗 can be obtained by averaging over all parameters 
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which are not being investigated and subtracting all simpler marginalizations (then 

replicating matrix entries so that 𝐗∅ has the same dimensionality as 𝐗). In our case the 

marginalizations of interest were Time, Hand x Time, Grip x Time, and Orientation x 

Time (for more detail regarding marginalization and regularization see Brendel et al., 

2011; Kobak et al., 2014). The values of λ determined via cross-validation for brain 

areas AIP and F5 in the pooled data were 1.310-5 and 5.810-6, respectively. 

In contrast to Kobak et al. (2014), We did not construct our time-courses in 

order to extract certain effects during certain enforced task epochs. All extracted 

dimensions were permitted to vary along the entire time axis in addition to their 

respective dimension. 

In addition to finding demixed latent dimensions, our goal was to find latent 

dimensions in the pooled data of both monkeys that accurately represented aspects of 

the task that were present of both monkeys. Crucially, we wanted to exclude 

dimensions that could only explain variance in the units taken from a single monkey. 

In order to achieve this dPCA was first carried out (with cross-validated regularization 

parameters) on the data of each monkey separately. Next, for each brain area, all pairs 

of dPCs between the two monkeys were correlated. If any pair of dimensions 

produced an absolute correlation of at least 0.45 (20% variance explained), those 

dimensions were considered to be robust in both monkeys, and all other dimensions 

were discarded. Next, each set of shared dimensions was correlated with the 

dimensions produced by executing dPCA on the pooled data from both monkeys. 

Similar to the previous computation, dimensions in the pooled dPCA were extracted if 

they were significantly (absolute r-value ≥ 0.45) correlated with single dimensions in 

both the set of dimensions from monkey S and monkey P. All other dimensions were 

discarded, so that only these dimensions were plotted in Figure 8. 

To determine whether the encoding axes, 𝑓1 and 𝑓2, of two dPCA components 

were orthogonal, the dot product, 𝑓1 ∙ 𝑓2, between the axes, was calculated. To 

determine the chance level, we calculated the dot product between many pairs of 

randomly (uniform) generated unit vectors in 𝑁 dimensions, where 𝑁 is the number 

of units. For large 𝑁, the distribution of dot products is approximately Gaussian. 

Therefore, if |𝑓1 ∙ 𝑓2| > 3.3 ∗ 𝑁−1/2, we classified them as significantly non-

orthogonal (p < 0.001). Significantly non-orthogonal dimensions that also had a 
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spearman correlation above 0.2 (and p < 0.001) are marked with a star in Figure 9 (for 

more information see Kobak et al., 2014). 

A decoding procedure was undertaken to determine if the dPCs provided 

useful decoding axes for the task conditions. We used 100 iterations of stratified 

Monte Carlo leave-group-out cross-validation, where on each iteration we held out 

one random trial for each unit in each condition forming 𝑋𝑡𝑒𝑠𝑡 (as the units were not 

recorded simultaneously, we do not have recordings of all units in any actual trial). 

Remaining trials were averaged to form a training set 𝑋𝑡𝑟𝑎𝑖𝑛. We then calculated 

dPCA on 𝑋𝑡𝑟𝑎𝑖𝑛 and used the resulting components as linear classifiers for the trials in 

𝑋𝑡𝑒𝑠𝑡. We then used 100 shuffles to compute Monte Carlo distribution of 

classification accuracies expected by chance. For each unit and iteration we shuffled 

all available trials between conditions, respecting the number of trials per condition. If 

the real classification accuracy exceed that expected by chance on all iterations and 

for 10 consecutive time bins, classification was considered significant and are marked 

as black bars in Figure 8 (Right Panels) (for more information see Kobak et al., 2014). 

 

Task space correlation 

The objective of the task space correlation was to determine how similar the 

functional representation of our specific behavioral task was between areas AIP and 

F5. Firstly, spike rates were averaged in 400 ms bins for five epochs (cue on, cue off, 

early memory, late memory, and movement). For the results in Figure 9B, pairwise 

Euclidean distance was calculated between all task conditions, separately for each 

area and each hand, in the space of all task-related units across both monkeys. The 

unique values resulting from the distance calculation, i.e., the upper triangle of the 

distance matrix excluding the diagonal, were correlated (Spearman r) between areas. 

In order to determine if correlations significantly differed between contra- and 

ipsi-lateral trials, a permutation test was carried out. The contra- vs ipsi-lateral 

assignment of trials was either flipped or remained unchanged, randomly, for each 

unit individually, while keeping the other task conditions constant. This process was 

repeated 1000 times and the real difference in r-value between contra- and ipsi-lateral 

trials was compared to the distribution of all permutations. If the real r-value 

difference was greater than the chance distribution (p < 0.05, false-discovery rate 

correction), then the difference was considered to be significant. 
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3 – GENERAL DISCUSSION 

3.1 – Summary 

In chapter 2.1 we saw how large-scale parallel recordings can be leveraged to make 

behavioral predictions on single trials. The methods used to extract single-trial 

predictions varied in their performance, but population-based methods provided the 

most consistent and meaningful interpretation of the data. In addition, the success of 

these behavioral predictions could be used to make inferences about how areas differ 

in their contribution to preparation of grasping movements. It was found that while 

reaction time could be predicted from the population activity of either area, 

performance was significantly higher using the data from premotor cortex, suggesting 

that population activity in premotor cortex may have a more direct effect on behavior. 

 In chapter 2.2 we saw how preparation and movement intermingle and interact 

with one another on the continuum between immediate and withheld movement. Our 

population-based analysis and dimensionality reduction enabled interpretation of the 

data, even though single neuron tuning properties were highly temporally and 

functionally complex. Activity in AIP stabilized during the memory period, while it 

continued to evolve in F5, revealing a decodable signature of time. Furthermore, 

activity during movement initiation clustered into two groups, movements initiated as 

fast as possible and movements from memory, showing how a state shift likely occurs 

on the border between these two types of actions. 

 In chapter 2.3 we saw that the question of how motor cortex controls 

movement is an ongoing issue in the field. We addressed some details about recent 

methodology used to extract rotational dynamics in motor cortex. We saw how a 

simple simulation could explore the limits of mathematical methodology, and how 

models of movement generation can be essential tools in adding perspective to 

empirical results. 

 Finally, in chapter 2.4 we saw how the specificity of hand use could be used as 

a tool to dissociate levels of abstraction in the visual to motor transformation in 

parietal and premotor cortex. While preparatory activity was mostly hand-invariant in 

parietal cortex, activity in premotor cortex dissociated the intended hand use well 

before movement. Furthermore, we saw how appropriate dimensionality reduction 

techniques could disentangle the effects of multiple task parameters and find latent 

dimensions consistent between areas and animals. 
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3.2 – Outlook 

 

“… the vague question of ‘how the brain works’ can be meaningfully reduced to the 

more precise, and proximally answerable question of how do the connectivity and 

dynamics of distributed neural circuits give rise to specific behaviors and 

computations” 

(Gao and Ganguli, 2015) 

 

Understanding the kinds of computations that can be carried out by a circuit does not 

necessarily entail simulating such a network to the finest degree of detail, down to the 

cell membranes and messenger proteins. As an analogy, when presented with an 

algebraic formula to solve, mathematics informs us how to make inferences about the 

kind of solutions that satisfy our equation of interest without explicitly solving for x. 

The same process of analysis can be applied to neuroscience research. To formalize 

this way of thinking, the circuit-motifs hypothesis has been proposed in recent years 

(Figure 1) (Womelsdorf et al., 2014; Womelsdorf and Everling, 2015). 

 

 

 
Figure 1. Dynamic motifs represent a tight linkage of three components: the (1) 

circuit motif describes the structural basis (synaptic, cellular, local connectivity) 

that gives rise to (2) a characteristic neuronal activation signature, and (3) completion 

of a dynamic motif requires a link to a canonical input-output transformation that 

serves to implement a behavioral function. Modified from Womelsdorf et al. (2014). 

 

Although this framework has been proposed largely to aid in the 

understanding of rhythmicity and how the functional significance of oscillations in 
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differing frequency ranges can be disentangled, it can be used as a general framework 

of computation in the brain. Most motor neuroscience research in primates relies on 

relating neural activation signatures, such as firing rate, spike frequency, or 

synchronization, to behavior. However, the essence of this tripartite approach makes 

explicit the linking of circuit motifs and computations to these neural activation 

signatures. In this context, one must directly link synaptic properties, cellular identity, 

and local connectivity to specific neural signatures, as well as linking those signatures 

to specific computations and functions, such as selective integration or segregation. 

Going even further, one must investigate what kinds of computations can be 

undertaken using a specific neural circuit, or what kinds of circuits would be 

necessary to compute a given function. Then, by isolating and identifying each of 

these possible connections, these links can be manipulated through experiment. 

 Purely behavior-based neuroscience will always have a necessary place in the 

field. After all, the world we inhabit is not to be confused with the model realities we 

generate in experiments. 

 

“Nothing in neuroscience makes sense except in the light of behavior” 

(Shepherd, 1988)  

 

We will always only have one piece of the picture. The incremental goal of 

neuroscience should be not to solve the whole process, but rather find the key 

ingredients and how they relate to one another. 

 Even Cajal, the first person to extensively observe and document individual 

neurons, was able to deduce the dynamic nature of the brain (De Carlos and Borrell, 

2007). In a system where cells cannot replicate, as is the case for neurons, he held that 

the specific connections between neurons and their ability to change over time was 

the fundamental power of the brain. That is to say, he recognized that the function of 

neurons must not be delimited to the specific firing patterns we observe in a given 

experiment, but rather by the dynamic circuits in which these neurons are embedded. 
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