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1 - GENERAL INTRODUCTION

“Population analyses are necessary in settings in which there may be neural
mechanisms that involve coordination of responses across neurons. These
mechanisms exist only at the level of the population and not at the level of single
neurons, such that single-neuron responses can appear hopelessly confusing or,

)

worse, can mislead the search for the true biological mechanism.’

(Cunningham and Yu, 2014)

The cornerstone of psychology research is behavior. Although the ultimate aspirations
of psychology are to tackle the inner-workings of the brain, the only sensible recourse
for an early psychologist was to carefully measure the inputs and outputs of a system,
make conclusions about the underlying computations, and make predictions based on
these observations. This “black-box” approach to the nervous system was necessary at
a time when the cellular structure of the brain was mysterious, and the technology did
not permit more detailed study. Much of the earliest electrophysiological work, such
as Sherrington’s experiments in the canine reflex system (Sherrington, 1906), were
undertaken and initially interpreted under this framework.

It was the birth of neuroscience that squarely focused attention inside the box.
The birth of neuroscience did not precipitate out of the work of psychologists, but that
of histologists and pathologists. In 1873, Camillo Golgi introduced the Golgi staining
procedure (Golgi, 1873), allowing for visualization of individual neuronal bodies,
axons, and dendrites. However, at this time the prevailing theory was ‘reticular
theory,” which posited that the nervous system was composed of an immense web of

connectivity, termed a syncytium.

1.1 - Birth of the neuron doctrine

A few years later, Ramon y Cajal began experimenting with Golgi’s technique and
introduced many refinements, tuning the procedure to the specific tissue being
investigated among other factors (Cajal, 1888). Based on his painstaking research and
documentation of individual cells, Cajal proposed the neuron doctrine. He believed,
although couldn’t prove definitively, that the nervous system could be broken down

into individual neurons distinct from one another. Furthermore, he postulated that the
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function of these cells was to integrate the input of potentially thousands of other
neurons and produce a self-regulated output. Although he was not the first person to
propose neurons as the basic unit of the nervous system, and the physical gaps
between individual neurons could not be proven until later (Porter et al., 1945), his
neuron doctrine is still the prevailing theory today. In 1906, Cajal and Golgi shared a
Nobel Prize for their many contributions. Together with the notion that individual
neurons have specific receptive fields, i.e., areas of the skin or visual field that they
respond to exclusively, these discoveries position the neuron as the most basic
functional unit of the nervous system.

It is remarkable how closely linked the prevailing theories in the history of
neuroscience are linked to the technological history. Indeed, this is a phenomenon that
is true of many disciplines and has been pointed out a number of times (Dyson, 2012;
Yuste, 2015). Sometimes ideas drive us to develop the technologies necessary to
prove them, and sometimes, new technologies reveal basic facets of nature we never

conceived.

1.2 - Mapping the brain: neuron by neuron

It was the discoveries of Cajal and Golgi that began neuroscience in earnest, but the
explosion of neuroscience as we practice it today owes its state to the discoveries that

allowed recording the activity of single neurons in vivo.

“An electrode has been developed to fill the need for an easily made, study device
capable of resolving single-neuron action potentials at least as well as the commonly

used micro-pipette.’

(Hubel, 1957)

In no small part due to Hubel’s development of the tungsten microelectrode,
recording from single neurons during behavior became more practical and feasible
than it ever was before. Implementing their techniques in cat visual cortex, Hubel and
Wiesel were able to map out what kinds of stimuli excited individual cells in
particular parts of the visual field (1962), and even developed a schematic of how
such activity could arise in a network. Imagine identifying a neuron that seems to

respond exclusively to a bar moving at a certain angle across a certain spot in an
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animal’s visual field. Or, imagine finding a neuron that seems to respond only to the
presentation of your favorite breakfast cereal. Indeed, finding out what kinds of
stimuli or behaviors reliably modulate individual neurons is the cornerstone of
neuroscience research up to the present time. Yet, in a behaving animal, how can one
be sure that the very same neuron does not participate in many processes? How does
it respond to auditory stimuli? How does it behave when an animal imagines a similar
stimulus? What is its function when the animal does nothing at all?

Herein lies the crux of the neuron doctrine. By identifying neurons in the brain
that form not just functional units, but perceptual units, we very easily begin to
pigeonhole individual neurons as players fulfilling singular roles that are imaginable
by us. That is, it’s easy to assume that because a neuron seems to care whether you
stretch your arm or sit still; it must be causing that action and only that action. The
discovery of specific receptive fields played perhaps the largest part in cementing this
view, since under this framework neurons are presumed to be ‘inactive’ when their
receptive field is not being addressed. Taking this point further, such a perspective
additionally only considers the firing rate of a neuron itself, not when the individual
spikes occur, or how they may be synchronized with other neurons (Gray et al., 1989;

Fries, 2015).

Indeed, recordings in higher level brain areas, as well as areas closer to sensory
inputs and motor outputs, have yielded highly heterogeneous and complex single-
neuron responses, both across neurons and across experimental conditions. In some
cases, single-neuron responses may bear no obvious moment-by-moment relationship
with the sensory input or motor output that can be externally measured. Classically,
such heterogeneity has been considered to be a result of biological noise or other
confounds, and often researchers study only neurons that ‘make sense’ in terms of
externally measurable quantities. However, this single-neuron complexity may be the
realization of a coherent and testable neural mechanism that exists only at the level of
the population.”

(Cunningham and Yu, 2014)

As described above, the danger of viewing neurons as perceptual units is that
during experiments, they tend to be selected based on how task-related they appear

during recording sessions, thereby biasing recordings and obscuring the true
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computational basis of a given area.

To give a more thorough exposition of how receptive field coding can be
misleading, let’s consider the visual and somatosensory systems. While basic
processing such as edge detection, both visual and sensory, has been long considered
to be cortical in origin, new research challenges the established hierarchy of
processing. In the visual system, studies have found that feature extraction can occur
in the retina itself (Gollisch and Meister, 2010), as early as the first step following
light detection by the rods and cones (Venkataramani and Taylor, 2010). From
another modality it is known that first-order tactile neurons in the periphery have
axons that branch in the skin, forming a distributed systems of receptive fields (Paré
et al., 2002), the consequences of which have been elusive. A recent study recorded
from first-order tactile neurons in human subjects while a large set of point and edge
stimuli were passed over the receptive fields of these neurons (Pruszynski and
Johansson, 2014). The experiment revealed that the distributed nature of these
receptive fields allowed first-order tactile neurons to signal edge orientation, both
through magnitude of response and temporal code. Therefore, while categorizing
neurons directly by receptive field allows us to simplify our perceptual understanding
of the computations being undertaken in the nervous system, these interpretations may
underestimate the sophistication of the underlying circuit. Furthermore, in higher-
order brain areas in the cortex, where ‘receptive fields’ cannot be contained to
individual areas of visual field or sensory patches, the concept of a clear receptive
field becomes almost impossible to ascertain, as it would involve testing an endless

number of stimuli and behavioral conditions.

1.3 - Mapping the brain: en masse

Although the arsenal of single electrode techniques has expanded to include tetrodes
and laminar probes, the most significant development towards wide-scale recording is
the implantable electrode array (Churchland et al., 2007; Kipke et al., 2008). The most
widely used of these arrays is the so called Utah array, with 100 channels distributed
on a grid (Nordhausen et al., 1996; Maynard et al., 1997). There are three immediate
benefits of such a technology. Firstly, while recording with single electrodes requires
many repeated recording sessions over the course of months, an array can record

hundreds of individual neurons in a single session, meaning that data can be collected
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more quickly, and therefore more experiments can be undertaken. Secondly, since the
arrays are chronically implanted, it is often possible to obtain stable recording of
single neuron for many hours, days, weeks, or in some cases months (Carmena et al.,
2005; Chestek et al., 2007; Dickey et al., 2009; Chestek et al., 2011). Thirdly and
crucially, neural activity during repeated trials of identical stimuli often yield varying
neural and behavioral results (Churchland et al., 2006a; Ko et al., 2011; Churchland
and Abbott, 2012), and arrays permit the capture of population dynamics during
single trials. How do neurons covariate during a trial? How is the timing of spikes
coordinated across a population (Okun et al., 2015)? These are questions that can only
be properly answered using parallel recording. Along with the advances in
implantable array technology, much new research employs advanced 3D imaging
techniques to visualize large populations of neurons simultaneously (Schrodel et al.,
2013; Prevedel et al., 2014), techniques which will no doubt become more and more
relevant, especially in the pursuit of relating functional connectivity to anatomical
connectivity.

It is also worthwhile to note how the development of these new technologies
also biases us towards particular types of analysis in the same manner as single
electrode recordings have biased us for many decades. While arrays tilt the scales in
favor of population-based analysis, they also bias us away from other analyses. For
example, understanding the layer structure of cortical areas in vivo requires detailed
acquisition of depth information, for example using laminar probes with many
contacts all down the shaft. The kinds of mass arrays that are in use tend to make
ascertaining the identity of different layers of cortex virtually impossible and is
therefore not emphasized or even attempted in most experiments employing array
recordings. Furthermore, distinguishing different cell types in array recordings has
been used controversially in recent studies. Some believe that excitatory neurons and
inhibitory interneurons can be distinguished based on their spike-waveform shape
(Kaufman et al., 2010; 2013), but proving a direct connection between spike

waveform and cell class is an ongoing quest (Vigneswaran et al., 2011).

1.4 - Dimensionality reduction: rotating the perspective

Implantable arrays provide the necessary data complexity for elucidating how neural

networks operate in real-time. However, they also produce an overabundance of data
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to interpret (Sejnowski et al., 2014). Therefore, to go along with advanced recording
techniques we require sophisticated analysis techniques (Stevenson and Kording,
2011). Dimensionality reduction methods fill this requirement by summarizing and
transforming high-dimensional signals into a realm that can be interpreted, analyzed,
or utilized as a control signal. The many types of dimensionality reduction used in
neuroscience research, and when they should be employed, has been reviewed in
detail (Cunningham and Yu, 2014).

Dimensionality reduction is useful any time one suspects that the number of
available signals is much greater than the number of informative latent dimensions,
1.e., when redundancy exists between independently collected signals. Neural data
often fits this description as neurons in the brain, especially within one area, are not
expected to be completely independent given the connectivity between them.
Therefore, dimensionality reduction techniques seek to find a lower-dimensional
representation of high-dimensional data that captures certain aspects of the data. The
specific objective varies from method to method and determines what parts of the
signal are conserved in this low-dimensional representation. For example, data
compression techniques by definition employ dimensionality reduction. In image
compression, neighboring pixels in a natural image are unlikely to have wildly
differing colors or intensities. Therefore, image compression finds a low-dimensional
transformation of an image that preserves the unpredictable or visually relevant
changes in an image while discarding others, taking up less digital storage space. The
image can then be transmitted to another user and reconstructed from this reduced
representation (note: in the case of image and sound compression the basis functions
for reconstructing a signal are predetermined, and it is how these dimensions are
combined that is computed in the compression
https://en.wikipedia.org/wiki/Discrete _cosine transform, accessed 18.11.2015).

As mentioned before, the primary difference between dimensionality
reduction methods is the objective. The most common techniques, principal
component analysis (PCA) and factor analysis (FA), have the objective of explaining
covariance between dimensions. In the case of PCA, orthogonal dimensions are found
(eigenvectors of covariance matrix) that can be linearly combined to optimally
reconstruct the high-dimensional signal. These methods only consider overall
covariance, not temporal dynamics. Other methods, such as Gaussian-process factor

analysis (GPFA) (Yu et al., 2009) and the widely used Kalman filter (Harvey, 1990),
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take into account how signals change from time point to time point, thereby
emphasizing the dynamics of a signal. Recently, toolboxes have become available
making many types of dimensionality reduction accessible to a wide audience of
scientists (Cowley et al., 2013).

From a basic array de-noising perspective, PCA can be used for artifact
elimination (Musial et al., 2002). Since arrays have many channels distributed over a
large area of brain tissue, it is unlikely that a biological signal would appear
simultaneously on all channels. Therefore, PCA dimensions that represent signals
present on all channels with no time difference are likely artifacts and can be
subtracted from each channel prior to spike sorting to improve signal quality.

Dimensionality reduction that takes dynamics into account is commonly used
to reduce a population of simultaneously recorded units into a kinematic output for a
neuroprosthetic application, i.e., controlling a cursor on a screen or a robotic arm.
Many studies have successfully developed and applied these methods in a research
and clinical setting (Velliste et al., 2008; Collinger et al., 2012; Hochberg et al., 2012;
Aflalo et al., 2015). However, these types of dimensionality reduction have
limitations with respect to basic research. In some cases these methods are required to
assume certain types of tuning within the model (Georgopoulos et al., 1986), and in
all cases they map neural activity directly onto movement parameters. The drawback
of projecting onto movement parameters is the assumption that an internal population
of neurons follows the dynamics of movement variables as opposed to an abstract
representation determined by the local circuit (Churchland et al., 2007). Therefore, to
reveal the underlying processes in neural populations, unsupervised dimensionality
reduction that extracts latent dimensions based on internal covariance, such as PCA, is
required.

The prospect of recording from large neural populations also raises an
important practical concern. How many neurons do we need to record in order to
understand neural circuit dynamics, as well as the resulting cognition and behavior?
One of the most universal findings in neuroscience experiments employing
dimensionality reduction is that the number of latent dimensions is far less than the
number of recorded neurons (Gao and Ganguli, 2015). Do these underlying latent
dimensions paint an accurate picture of the internal processing going on during a
particular task, or would the number of dimensions increase when recording a larger

pool of neurons? Some effort has been made to develop a theory of neuronal task
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complexity for predicting the interplay between number of recorded neurons, quality
of recording signal, and behavioral demands of a task. Using this theory, Gao and
Ganguli (2015) were able to show that under some task designs, increasing the
number of recorded neurons cannot provide a richer picture of internal processes,
while on the other hand, a sufficiently rich task design does not necessarily require the
acquisition of many more neural signals than is currently being collected. Such
theories of data collection will be essential in the coming years as we hone
experimental design to very specific questions, and analysis methods towards single-

trial investigation.

1.5 - Dimensionality reduction: insights and pitfalls

We have discussed the advantages of large populations of neurons being projected
down onto a much smaller amount of latent dimensions during certain behaviors, but
do these dimensions have an intrinsic meaning? That is to say, can the apparent
functional interpretation of these dimensions elucidate the underlying computations of
a particular brain region or circuit, or are they measurement artifacts of the
mathematical methods used to extract them?

As a cautionary tale, let us examine the classical genetics paper of Menozzi et
al. (1978), published in the journal Science. In this and other studies, the authors
generated allele-frequency maps of specific genetic variants over large geographical
regions by collecting genetic samples from many individuals. Then, to make this data
palatable, they reduced the dimensionality of this data using PCA to form synthetic
spatial maps. These synthetic maps revealed extremely interesting patterns of
apparent human migration. However, as was pointed out many years later (Novembre
and Stephens, 2008), these patterns arise even if control data is simulated that
contains no heterogeneous migration patterns. In other words, purely mathematical
artifacts could explain the observed patterns. All types of dimensionality reduction
techniques have inherent pitfalls requiring proper controls.

However, it would be inappropriate to describe dimensionality reduction
pitfalls without providing positive examples. A prime example of this comes from the
neuroprosthetic experiment of Sadtler et al. (2014). In this experiment, monkeys
controlled a cursor on a screen in two dimensions using recordings from a large

population of neurons in primary motor cortex. First, population activity was linearly
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combined and reduced to only 10 dimensions using a method similar to FA, which
finds dimensions that capture the inherent covariance between neurons, similar to
PCA. Then, these dimensions were reduced again to produce two-dimensional
kinematics that controlled the cursor. Monkeys were able to use this interface to move
the cursor to targets laid out in a circle on the screen with a very high degree of
accuracy. Following this, perturbations were made to the transformation matrices,
either between the full population and the latent set of 10 dimensions, or between
those and the kinematics. When the perturbation was made between these 10
dimensions and the kinematics, monkey performance dropped, but very quickly
returned to perfect performance. However, when the perturbation was made in the
transformation initially extracted using FA, monkeys were unable to improve their
performance within a reasonable time scale. This study shows that the mechanisms
underlying plasticity during closed-loop prosthetic control are readily able to
recombine the latent dimensions extracted in the first step in order to produce
meaningful kinematics. In other words, neurons that tend to covariate together are
unlikely to de-couple their firing patterns in the short term, but as a group the
magnitude of their firing can be adjusted by internal plasticity mechanisms to reduce
output error (Martinez and Wang, 2015).

Another interesting experiment asked the question of how activity in primary
and premotor cortex, which have direct connections to motor neurons in the spinal
cord, could produce muscle activation during movement, but not during preparation
for movement (Kaufman et al., 2014). It has been postulated that a non-linear gating
mechanism could inhibit the effect of this output on muscle during preparation
(Benjamin et al., 2010), as has been found for eye movements (Evinger et al., 1982),
but no such mechanism could be detected for arm movements so far. In this study, it
was found that the latent dimensions explaining neural population activity in premotor
and primary motor cortex during movement could be linearly combined to produce
the latent dimensions explaining muscle activation patterns during reaching. This
linear transformation is meant to approximate how cortical output might synapse onto
motor units in the spinal cord. Interestingly, they then showed that the neural activity
during preparation for movement fell into the ‘null-space’ of this output
transformation, suggesting that neural activity during preparation may ‘avoid’
population states that might produce unwanted muscle activity prematurely. This

explanation was able to explain a large amount of variance in preparatory activity and
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provides an explanation of how movement gating can be achieved in a linear fashion.
Furthermore, they found evidence that the same principles may be at play between
premotor and primary motor cortex, suggesting that connected pools of neurons could
potentially selectively avoid or inhabit output-potent and output-null dimensions to
selectively transfer or gate information.

Another area of research where parallel recording and dimensionality

reduction is becoming essential is decision making.

“If the neural activity is not a direct function of externally measurable or controllable
variables (for example, if activity is more a reflection of internal processing than
stimulus drive or measurable behavior), the time course of neural responses may

differ substantially on nominally identical trials.”

(Cunningham and Yu, 2014)

As one progresses from large sensory driven areas to high-level association areas,
consistency of processing between trials may decrease. Under these circumstances,
averaging activity over many repeated trials of the same behavior can be misleading.
Examples of this issue can be seen in the constant debate between certain decision
processes represented as either accumulated evidence or spontaneous state shifts
(Hanks et al., 2015). In an attempt to observe the decision making process in real-
time, Kaufman et al. (2015) trained monkeys to reach to different targets on a touch
screen while recording from primary motor and premotor cortex using multiple
arrays. On some trials, multiple reach opportunities were presented to the monkey at
different times, and with varying difficulty, occasionally giving the animal reason to
change its mind. Using the GPFA dimensionality reduction technique, they were able
to extract smooth neural trajectories on single-trials, and subsequently using the
trajectories of these trials during deliberation to make inference about the internal
decision making process of the animals. They found that monkey’s decisions were
often visibly reflected in the neural trajectory, both under forced conditions and
spontaneously, revealing for the first time moment-by-moment correlates of the
internal decision process. However, since behavior normally lies along a continuum
of possibilities, distinguishing changes in internal processing from random
fluctuations can be very difficult. The ultimate goal of such research should be not

only interpretation of single-trial intention, which can be a subjective matter, but
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direct manipulation of output behavior through inactivation (Erlich et al., 2015) or
stimulation (Inoue et al., 2015).

As a final example, there exist some more targeted types of dimensionality
reduction that combine unsupervised techniques with a priori information. Demixed
principal component analysis (dPCA) seeks to explain existing covariance between
neurons while also separating information about different task dimensions into
components (Machens, 2010; Machens et al., 2010; Brendel et al., 2011; Kobak et al.,
2014). Using dPCA, one can separate stimulus effects from choice representation in
large populations of neurons, as well as information about how signals change over
time, and compare how the population of neurons contribute to each of these
components. The extracted task-specific dimensions form the interpretable perceptual
units of the network, much in the same fashion as single neurons were treated as
perceptual units in the classical studies mentioned earlier. Such techniques also raise
questions of how individual neurons contribute to the representation of many different
task features, even across modalities, known as mixed selectivity. Mixed selectivity in
individual neurons is something which appears to be essential and widespread in
prefrontal (Mante et al., 2013; Rigotti et al., 2013) and parietal (Raposo et al., 2014)
cortex, and is part of the concept that individual neurons participate in many different
distributed networks for processing a multitude of stimuli and actions.

Even Mountcastle, who proposed the cortical column as the functional unit of
cortex, and Hebb (1949) before him, recognized that the appearance of distinct
functional units could be deceiving (Hawkins and Blakeslee, 2007). Single cells
cannot be assigned perceptual identities based on how they respond to a single set of
stimuli. A strong response to one stimulus does not preclude the participation of that

cell in many distributed and variable processes.

“It is obvious that the total number of distributed systems within the brain is much
larger than had once been thought, and perhaps by several orders of magnitude. Thus
major entities are parts of many distributed systems, contributing to each a property
determined for the entity by those connections common to all of its modular subsets
and by the particular quality of their intrinsic processing. Even a single module of
such an entity may be a member of several (though not many) distributed systems.”

(Edelman and Mountcastle, 1978)
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1.6 - Modeling neural networks

Understanding how a specific neuron contributes to an underlying computation or
what kinds of computations a specific circuit can carry out is difficult to study directly
in vivo. One would require knowledge of the whole neural network involved, full
information regarding anatomical connectivity, and the ability to manipulate the
system. Although some new techniques permit some of these aspects (Peron et al.,
2015), modeling is an essential tool to bridge the gap between theory and empirical
data.

One of the most relevant methods for modeling the dynamics of a neural
circuit in recent years is the recurrent neural network (RNN) (Sussillo, 2014). RNNs
generally simulate individual neurons quite simply, modeling only firing rate and not
individual spikes. Each neuron has an internal activation, which is related to its firing
rate by some non-linear function, and has a set of inputs and outputs to and from other
neurons in the network. The power of RNNs is that they allow complex temporal
interactions between neurons, producing complex output even in the absence of input,
similar to the brain. On the other hand, feed-forward neural networks, which are used
to solve many complex problems, produce no output when no input is present.

There are a number of essential similarities between RNNs and biological
systems. Firstly, neurons are non-linear, i.e., internal activation is non-linearly related
to output firing rate (related through an inverse tangent function, for example).
Secondly, neurons have strong feedback connections, a hallmark of cortical circuits.
Thirdly, neurons themselves are modeled very simply, so completing complex tasks
requires coordination over a large population. RNNs can approximate any dynamical
system given enough internal units (Doya, 1993), so their power is not limited to
biological modeling.

However, producing an endless stream of complex models does not directly
allow us to understand the principles of neural computation. One of the most powerful
aspects of modeling studies is to compare the space of all possible models that
successfully reproduce a given empirical observation and those solutions observed in
nature. For example, a study of a particular model of the yeast cell-cycle (Li et al.,
2004) showed that although many models could be generated that ‘fit’ the data, only
3% of those models outperformed the empirical results when it came to robustness

(Lau et al., 2007). This result provides strong evidence that the type of model that

21



1 - General Introduction

22

evolved over time in nature seems to follow principles of robustness that could not
have been identified without exploring the space of potential models.

In this way, we can sift through the endless pool of possible models and find
those that are most likely informative about brain circuits and processes. For the next
example, let’s take the field of center-out reaching, which has been very widely
studied in neuroscience. Many classical studies have found that individual neurons in
primary motor cortex were cosine-tuned for specific reach directions (Schwartz et al.,
1988; Caminiti et al., 1990), and that in the population these preferred directions were
generally uniformly distributed throughout the field of possible movements. The
robustness and uniformly distributed nature of these preferred directions has been
used to conclude that motor cortex is coding high-level features of reaching, such as
intended movement direction, rather than muscle activity, and has been leveraged in
many decoding efforts such as the population vector (Georgopoulos et al., 1986).
However, it has been shown that during two dimensional planar reaching, where
movements can be more easily related to specific muscles, that the preferred
directions of primary motor cortex neurons is not uniformly distributed, but biased
based on the biomechanics of the limbs (Scott, 2000; Scott et al., 2001). Going on
from this point, Lillicrap and Scott (2013) used modeling of this experiment to find
the key ingredients that allow a model to perform like empirical data. In this study,
they created a feed-forward neural network with state feedback in closed-loop to
generate muscle activation pattern that could control an arm in two dimensions to
complete center-out reaching movements. This model does not fit into the class of
RNNs described above, since the network was feed-forward, but the state feedback
provided a large degree of temporal interaction between read-outs and future states of
the network. They showed that such a neural model reproduced the behavior as well
as the non-uniform distribution of preferred directions within the internal neurons of
the network, replicating the empirical findings. Crucially, they were able to directly
test which aspects of their model were necessary to reproduce empirical results.
Specifically, removing all bi-articulate muscles, i.e., those that span more than one
joint (in the model with postural loads), produced a uniform preferred direction
distribution. Therefore, they were able to step-wise test which ingredients of the
model were essential. These types of studies are becoming more common in recent
years and are vital to the field of motor control theory (Suminski et al., 2015), as

many of these concepts still remain controversial (Naselaris et al., 2006;
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Georgopoulos et al., 2007; Kurtzer and Herter, 2007; Tanaka, 2015), to the extent that
cross-referencing between different laboratories has been minimized (Georgopoulos
and Carpenter, 2015).

The study just described required not only solving a control problem with a
neural network, but looking into the strategy of the network itself and making
inferences. The same way the mind was treated as an impenetrable black-box for
much of psychological history, so have RNNs. Although RNNs have been used to
solve all manner of problems, the internal strategy and key ingredients of these
solutions have not been analyzed in great detail. New techniques have made opening
this black-box possible (Sussillo and Barak, 2013).

In the work of Mante et al. (2013), neural activity was recorded from the
frontal eye field while monkeys performed a context-dependent motion or color
discrimination task. Monkeys were presented with a set of moving dot patterns and
had to selectively discriminate color or motion from the same visual stimuli based on
a contextual cue. They then reported their response with a saccade, and were able to
do this successfully. Neurons in this area show a wide range of mixed selectivity to
the color and motion stimuli, as well as the performed saccade. So the question arose
if the area in question could selectively process either the color or motion information
depending on the context, without having to receive differing visual input? To test
this, they simulated an RNN to execute the same task, i.e., select a saccade direction
based on the sensory stimuli and the context. They found that like the recorded data,
color and motion information were represented in parallel and orthogonally in the
population of RNN units, while choice was represented independent of modality.
Furthermore, by analyzing the fixed points of the system, they found that the temporal
dynamics could be described by a simple combination of line attractors and selection
vectors, mechanisms that arise directly from the learned connectivity within the RNN,
and revealing a mechanism that is likely employed in the brain during context-
dependent computations.

Another recent study showed how an RNN could produce the temporal
dynamics matching muscle activation during reaching (Sussillo et al., 2015). While
the ability of RNNs to produce complex temporal patterns similar to muscle activation
has been shown before (Hennequin et al., 2014), this study went further by comparing
the activity in the internal neurons in the RNN to neural activity recorded from the

brain. They showed that when internal activity was constrained to progress in a
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biologically plausible manner; it matched the patterns of activity seen in empirical
data very well. Furthermore, strong rotational dynamics underlay both the real data
and the model, but not a similar model with complex internal activity, i.e., activity
that was not constrained in a biologically plausible manner. Perhaps most
interestingly, when perturbations were introduced, only the biological RNN was
robust to these perturbations, while the complex model quickly degraded. The power
of RNNss is tightly coupled to the simplicity of the model, which allows mapping
properties such as robustness directly to certain aspects of the model. Although the
simplicity of the individual neurons modeled in RNNs are appealing, much research is
still focused around finding the limits of modeling individual neurons in spiking
neural networks (Hawkins and Ahmad, 2015; Markram et al., 2015). While these
spiking neuron models are essential in the pursuit of whole-brain modeling, using
simplified neural models allows us to examine the key ingredients of network
dynamics without making too many assumptions (O’Leary et al., 2015), and in many
cases the simple models capture the essential aspects of neural computation

(Churchland and Abbott, 2012; Litwin-Kumar and Doiron, 2012),

1.7 - The grasping circuit

Up to this point, we’ve spoken generally about the brain and the technologies that
allow us to peer inside. Let us bring our previous discussions to bear on an essential
aspect of primate behavior, grasping. From the moment I see my cup of coffee, to the
moment [ drink the hot coffee out of the mug, lie a multitude of complex processing
steps and actions. The shape of the cup, its orientation, its location in space relative to
my eyes and my hand, the hand shape required to grasp it, the muscle activation
required to move the arm and hand, as well as the holding of the cup and motion
towards the mouth, all must be determined and regulated by the brain. Furthermore,
all of this must be undertaken in the right context, depending on whether the cup itself
is hot or cold, full or half-full. As primates, reaching out, grasping, and manipulating
objects are some of our most essential and unique skills.

A few specific parts of the primate cortex are particularly remarkable in the
quest to understand grasping. The anterior intraparietal area in the parietal lobe, also
know as AIP, and the hand area of the ventral premotor cortex (PMv) in the frontal

lobe, also know as F5, together form an essential circuit for the preparation and
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execution of grasping movements in macaque monkeys and humans. These areas
share extensive anatomical connections (Luppino et al., 1999), forming a long-range
and very specialized circuit. Lesion studies in monkeys have allowed us to get an
initial impression of how areas participate in actions. Reversible inactivation of AIP
results in a selective deficit in pre-shaping the hand during grasping (Gallese et al.,
1994), and the same is true for F5 (Fogassi et al., 2001). From many studies over the
years (Janssen and Scherberger, 2015) we know that AIP and F5 are both involved
during visual fixation of an object and manipulation of objects, even when no
movement is required (Murata et al., 1997; 2000). Furthermore, in both areas, activity
persists during delays between object presentation and movement, even when the
object must be remembered and grasped in the dark (Murata et al., 1996; Baumann et
al., 2009; Fluet et al., 2010). While F5 is thought to coordinate grasping as it happens,
the role of AIP in online control is still controversial (Tunik et al., 2005; Schettino et
al., 2015). Despite decades of research into both areas, differentiating their functional
underpinnings has been elusive. As mentioned earlier, primary motor and premotor
cortex have been sites for prosthetic application, but AIP has also been considered as
a potential site for prosthetics (Menz et al., 2015; Schaffelhofer et al., 2015) and
nearby areas of parietal cortex have recently been exploited in human patients (Aflalo
et al., 2015).

In order to determine the computations of this circuit, we can look to current
working models of the AIP/F5 circuit. The most comprehensive model is that of Fagg
and Arbib (1998), termed the FARS (Fagg/Arbib/Rizzolatti/Sakata) model. In this
model, the authors simulated simple cell units consisting of leaky integrator neurons
and linear threshold units that are triggered by certain visual stimuli. In this model
only AIP and F5 are explicitly modeled, so visual information and context
information arrives completely processed. Although this model is rather simple, it
produces firing rates of individual units that were very similar to the empirical data
existing at the time. In addition to matching experimental data, the model included a
number of hypotheses. The primary hypothesis was that the main function of AIP is to
extract “affordances,” i.e., provide information about the features of an object relevant
for grasping, probably from connections to inferotemporal cortex (Webster et al.,
1994; Borra et al., 2008). On the other hand, F5 then selects only the desired grasp
plan, based on information from prefrontal areas regarding the context of the action.

Other hypotheses proposed that AIP maintains an active memory of the possible
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affordances during execution, and that both areas should contain mixed information
about objects and grasping. This second hypothesis has gathered substantial evidence,
since neurons in AIP retain information about the orientation of an object often for an
entire trial and do not change their preferences between cuing and movement,
suggesting that they are maintaining a working memory of the object properties
(Baumann et al., 2009). In addition to this, the idea that both visual and motor type
activity exists in AIP is supported by a number of studies. It appears that object
identity information likely is communicated to the posterior portion of AIP, while the
anterior portion of AIP is more connected to F5, suggesting that a very large amount
of the visuo-motor transformation process likely takes place within the gradient of
AIP itself (Baumann et al., 2009; Michaels et al., 2015; Premereur et al., 2015).

Along with these hypotheses, a number of predictions were made as well. One
prediction is that if an object could be grasped in two ways, but the specific way to be
used is instructed after a delay, both areas should first represent both plans and then
reduce to a single plan after the second instruction (Cisek and Kalaska, 2002). Indeed,
if the object is presented first, but the particular grip not indicated, both options seem
to become active in AIP, suggesting that both affordances are prepared. On the other
hand, if grip information is presented before the object to be grasped is made visible,
almost no differential tuning exists (Baumann et al., 2009), suggesting that without
any visible object features, the context cues have no meaning in AIP.

Another prediction is that if two visually different objects are presented that
are grasped identically, parts of AIP should distinguish these cases, and parts not,
while F5 should mostly consider these objects identical. Furthermore, AIP should
show the largest differences for aspects of objects that determine how they are
grasped, regardless of the magnitude of visual differences. In a recent experiment,
monkeys were presented with up to 50 different objects to be grasped in the dark,
while activity was recorded from arrays in AIP and F5 along with kinematic recording
from 27 joint angles in the shoulder, arm, and hand (Schaffelhofer, 2014).
Interestingly, the similarity between the neural representation of these objects in the
population of neurons in F5 closely matched the kinematic similarity between the
hand shapes used to grasp the objects, implicating coding in a grasp-relevant manner.
On the other hand, the population of neurons in AIP more closely represented the
visual similarities the objects. As a test of the prediction above, a set of unique objects

was specifically designed that was grasped identically regardless of difference in
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appearance. Neurons in AIP much more readily indicated differences in these objects,
while this was not the case in F5. Together, these findings lend support to the FARS
model, which had predicted that AIP should generate responses that matched the
affordances of each object; while F5 should represent only the selected grasp itself.

If AIP is encoding grasp affordances, then why is tuning for an instructed
grasp type, in cases where the object to be grasped is visually identical, so high in AIP
(Baumann et al., 2009; Lehmann and Scherberger, 2013)? There are two main
possibilities. The first is that AIP is more connected directly to prefrontal cortex than
originally thought (Petrides and Pandya, 1984; Borra et al., 2008), and therefore
selection of appropriate grasp could potentially be undertaken in AIP itself, sending
on to F5 only the grasp selected (Rizzolatti and Luppino, 2001). However, recent
evidence suggests that when the monkey is free to choose which grasp to use, this
information is first represented in F5 (Dann and Scherberger, unpublished data). The
second possibility is that since the monkeys are typically trained in these types of
experiments over tens of thousands of trials, the cues indicating the type of grasp to
use may have been incorporated into the representation of the grasping object itself,
thereby determining the object affordances at an early stage in visual processing
(Bonini et al., 2012).

Although possible models have been discussed in detail in the last decade
(Rizzolatti and Luppino, 2001; Cisek, 2007; Cisek and Kalaska, 2010; Grafton, 2010),
the FARS model is still the most comprehensive computational model to date that
directly simulates firing rates of cell populations in AIP and F5. Why has the AIP/F5
circuit resisted more sophisticated modeling? The visual circuit for object
identification has been modeled extensively using many methods including deep
neural networks (DiCarlo et al., 2012; Pagan et al., 2013; Kriegeskorte, 2015). These
models have been able to shed light on the processing steps likely taking place in each
sub-area along this stream. One of the likely reasons why this has not been the case in
the AIP/FS5 circuit is that the inputs and output of the circuit are not clear-cut. Both
areas receive input from many areas and participate in the planning and execution of
movements, making reducing each area to singular processing functions
unreasonable.

However, there is another reason why modeling of these areas will likely
always be a challenge. Both these areas are essential participants in action

understanding. Understanding the actions and intentions of others is an essential
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component of human social behavior. Deficits in social cognition have been
associated with prevalent mental disorders such as autism (Frith and Frith, 2010). A
recently discovered neural substrate that might be crucial for understanding the action
of others is the mirror neuron system (MNS) (Gallese et al., 1996; Rizzolatti et al.,
1996a). Mirror neurons in macaque monkey premotor cortex fire during the execution
of specific goal-oriented behaviors such as object grasping, holding, and
manipulating, as well as the observation of similar actions by humans or other
monkeys. Mirror neurons even respond if part of their preferred action is visually
occluded (Umilta et al., 2001), or a sound related to the action is heard (Kohler et al.,
2002). A number of human studies employing non-invasive brain imaging techniques
have found evidence suggesting that a similar network exists in humans (Grafton et
al., 1996; Rizzolatti et al., 1996b; Binkofski et al., 1999; Buccino et al., 2001; Grézes
et al., 2003). Mirror neurons with motor properties have been identified in area F5
along with areas in and around the intraparietal sulcus, especially areas PFG and AIP
(Rizzolatti and Sinigaglia, 2010). The MNS has been linked to imitation, motor
learning, empathy, and deficits caused by autism (Iacoboni and Dapretto, 2006). The
circuit not only permits the automatic preparation of potential grasping movements,
but also likely underlies our understanding of others and is a substrate for learning.
Therefore, convincing modeling of these areas requires not only the simulation of a
successful grasp, but also many of the most complex behaviors we undertake as

humans.

“Rather than focusing on the question of ‘what is represented’ by a particular area or
set of neurons, it may be more productive to address this issue by understanding the
causal role of the activity of these neurons: how the activity is decoded or read out by

the downstream areas and eventually used for behavior.’

(Murakami and Mainen, 2015)
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“In 1991, Leroy Burrell set a world record for the 100 m dash with a spectacular time
of 9.90s, stunning the prerace favorite Carl Lewis, who finished second with a time of
9.93s. It was later noted, however, that Burrell was not the faster runner. Rather, his
reaction time to the gun that marked the start of the race was much shorter than
Lewis’s: a hair-trigger 117 ms against a relatively lethargic 166 ms. Without this
difference, Lewis would have won handily.”

(Afshar et al., 2011)
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Predicting Reaction Time from the Neural State Space of the
Premotor and Parietal Grasping Network

Jonathan A. Michaels,! Benjamin Dann,' Rijk W. Intveld,' and “Hansjérg Scherberger!
!German Primate Center, D-37077 Gittingen, Germany, and 2Faculty of Riology, Georg August University Gittingen, D-37073 Géttingen, Germany

Neural networks of the brain involved in the planning and execution of grasping movements are not fully understoed. The network
formed by macaque anterior intraparietal area (ATP) and hand area (F5) of the ventral premotor cortex is implicated strongly in the
generation of grasping movements. However, the differential role of each area in this frontoparietal network is unclear. We recorded
spiking activity from many electrodes in parallel in AIP and T5 while three macaque monkeys (Macaca mulatta) performed a delayed
grasping task. By analyzing neural population activity during action preparation, we found that state space analysis of simultanecusly
recorded units is significantly more predictive of subsequent reaction times (RTs) than traditional methods. Furthermore, because we
observed a wide variety of individual unit characteristics, we developed the sign-corrected average rate (SCAR) methed of neural
population averaging, The SCAR method was able to explain at least as much variance in RT overall as state space methods. Overall, F5
activity predicted RT (18% variance explained) significantly better than ATP (6%). The SCAR methods provides a straightferward
interpretation of population activity, although other state space methods could provide richer descriptions of pepulation dynamics.
Together, these results lend support to the differential role of the parietal and frontal cortices in preparation for grasping, suggesting that

variability in preparatoery activity in F5 has a more potent effect on trial-to-trial RT variability than AIP.

Key words: grasping; nonhuman primate; parietal; premotor; single unit recording
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Significance Statement

Grasping movements are planned before they are executed, but how is the preparatory activity in a population of neurens related
to the subsequent reaction time (RT)? A population analysis of the activity of many neurons recorded in parallel in macaque
premotor (F5) and parietal (AIP) cortices during a delayed grasping task revealed that preparatory activity in F5 could explain a
threefold larger fraction of variability in trial-to-trial RT than AIP. These striking differences lend additienal support to a differ-
ential role of the parietal and premetor cortices in grasp movement preparation, suggesting that F5 has amore direct influence on
trial-to-trial variability and movement timing, whereas ATP might be more closely linked to overall movement intentions.

\

/

Introduction

In the sport of fencing, rapid actions are required on the millisec-
ond scale. Small rotations of the wrist can make the difference
between a hit and a complete miss. The response of athletes to
various attacks is highly variable, despite the rigorously trained
nature of their skill set. What are the factors that contribute to the
variability of such complex actions? It is known that voluntary
movements are prepared before they are executed (Kutas and
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Donchin, 1974; Wise, 1985; Ghez et al., 1997). A benefit oflonger
preparation is a reduction in reaction times (RTs), which is the
time between a go signal and the initiation of a movement
{Rosenbaum, 1980; Riehle and Requin, 1989). Nevertheless, RT
varies even for similar amounts of preparation.

The ideal design for studying motor preparation is the de-
layed reaching task, in which a movement must be planned
and withheld for a certain time. Studies have shown that pop-
ulation activity of neurons in the dorsal premotor cortex
(PMd) of the primate brain, recorded either sequentially
{(Riehle and Requin, 1993) or in parallel (Churchland et al.,
2006¢; Afshar et al., 2011; Churchland, 2015), can explain a
large portion of the variability in reach RT and reach velocity
{Churchland et al., 2006a,b). Similar results have been ob-
tained using sequential recordings in the parietal reach region
{Snyder et al., 2006) and lateral intraparietal area (Janssen and
Shadlen, 2005). However, a comparative study of the fronto-
parietal network has not been undertaken.
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To analyze RT variability, an understanding of preparatory
activity is vital. A number of models have been proposed to ex-
plain how preparation of movement is undertaken. Initial mod-
els related the preparatory activity of single neurons to behavior
by suggesting that subpopulations of neurons may hold activity
near a movement threshold that is crossed to initiate movement
(Riehle and Requin, 1993; Hanes and Schall, 1996; ErThagen and
Schémner, 2002), whereas more recent models use a state space
framework of population activity. In the latter framework, the
firing of each neuron represents a dimension in a high-
dimensional space of all neurons. Hence, the firing of all neurons
at a particular time represents a single point in the state space,
de-emphasizing the importance of tuning properties of individ-
ual neurons (Fetz, 1992). The “optimal subspace” hypothesis
posits that a preparatory state is achieved during planning and
that deviations from this state may delay movement (Churchland
et al., 2006¢; Churchland and Shenoy, 2007a). The “initial con-
dition hypothesis” augmented this view by further stating that
trial-to-trial fluctuations in the neural trajectory are correlated
with RT (Afshar et al., 2011).

To elucidate the role of the frontoparietal network in prepa-
ration, the established hand grasping circuit {(Luppino et al,,
1999) consisting of the hand area (F5) of the ventral premotor
cortex {(PMv) and the anterior intraparietal area (AIP) were in-
vestigated using a delayed grasping task. Neural activity in these
areas ismodulated strongly by visual object properties (Murata et
al., 1997, 2000}, extrinsic goals (Kakei et al., 2001), performed
grip types (Baumann et al., 2009; Fluet et al., 2010), and prepara-
tory activity in these areas can be used to decode the visual prop-
erties of objects and complex hand shapes required to grasp a
diverse range of objects (Carpancto et al., 201 1; Townsend et al.,
2011; Schaffelhofer et al., 2015).

In the current study, we analyzed population activity in a de-
layed grasping task with multiple grip types to evaluate how pop-
ulation activity of simultaneously recorded units in F5 and AIP
might inform subsequent behavior. Preparatory activity in F5
could explain up to 18% of the variability in trial-to-trial RT, a
significant finding, whereas AIP could explain only up to 6%. By
demonstrating a significant advantage of F5 over AIP in RT pre-
diction, ourresults support the concept that the encoding of RT'is
represented primarily in the frontal and not the parietal lobe, at
least when grasping in the dark.

Materials and Methods

Basic proceduires. Neural activity was recorded simultaneously from area
F5 and area AIP in one male and two female rhesus macaque monkeys
(Muacaca mulatia, animals B, §, and Z; body weight, 11.2,9.7, and 7.0 kg,
respectively). Animal care and all experimental procedures were con-
ducted in accordance with German and European law and were in
agreement with the Guidelines for the Care and Use of Mammals in Neu-
roscience and Behavioral Research (National Research Council, 2003).
Basic experimental methods have been described previously
(Townsend et al., 2011; Schaffelhofer et al., 2015). We trained animals to
perform a delayed grasping task. They were seated in a primate chair and
trained to grasp a handle with the left hand (animals B and Z) or the right
hand (animal $; Fig. 1D). This handle was placed in front of the monkey
at chest level and in the vertical position at a distance of ~26 cm, i.e., the
monkeys had to reach a distance of 26 cm to grasp the handle. The handle
could be grasped either with a power grip (opposition of fingers and
palm) or precision grip {opposition of index finger and thumb; Fig. 15).
Two clearly visible recessions on either side of the handle contained
touch sensors that detected thumb and forefinger contact during preci-
sion grips, whereas power grips were detected using an infrared light
barrier inside the handle aperture. The monkey was instructed which
grip type to make by means of two colored LED-like light dots projected
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from a thin-film transistor (TFI) screen (CTF846-A; screen size, 8
inches, digital; resolution, 800 X 600; refresh rate, 75 Hz) onto the center
of the handle via a half mirror positioned between the animal’s eyes and
the target. A mask preventing a direct view of the image was placed in
front of the TFT screen and two spotlights placed on either side could
illuminate the handle. Apart from these light sources, the experimental
room was completely dark. Tn addition, one or two capacitive touch
sensors (model EC3016NPAPL; Carlo Gavazz ) were placed at the level of
the animals’ midtorso and functioned as hand-rest buttons. The non-
acting arm of animals B and Z were placed in a long tube, preventing it
from interacting with the handle. Monkey S was trained to keep its non-
acting hand on an additional hand-rest button.

Eve movements were measured using an infrared optical eye tracker
{model AA-ETL-200; ISCAN) via a heat mirror directly in front of the
monkey’s head. To adjust the gain and offset, red calibration dots were
shown at different locations at the beginning of each session for 25 trials
that the animal fixated for at least 2 s.

Eve tracking and the behavioral task were controlled by custom-
written software implemented in LabView Realtime (National Instru-
ments) with a time resolution of 1 ms. An infrared camera was used to
monitor behavior continuously throughout the entire experiment.

Behavioral paradigm. Animals B and S performed Task 1 (Fig. 1E),
whereas animal Z performed Task 2 (Fig. 1F). The following is an expla-
nation of the trial course of Task 1. Trials started after the monkey placed
the acting hand on the resting position and fixated a red dot (fixation
period). The animal was required to keep the acting hand, or both hands
{animal §), completely still on the resting position until after the go cue.
After 400-700 ms, two flashlights illuminated the handle for 300 ms,
followed by 600 ms of additional fixation. In the cue period, a second
light dot was then shown next to thered one to instruct the monkey about
the grip type for this trial (grip cue). Either a green or white dot appeared
for 300 ms, indicating a power or a precision grip, respectively. After that,
the monkey had to memorize the instruction for a variable memory
period. This memory period lasted for 0-1300 ms (i.e., the go cue could
appear simultaneously with the grip cue), in discrete memory petiod bins
of 0, 100,200, 300, 400, 500, 600, 700, 800, 900, 1000, or 1300 ms, which
were pseudorandomly sampled with an equal number of trials from each
condition. Regardless of memory period length, the grip cue was always
shown for 300 ms. Switching off the fixation light then cued the monkey
to reach and grasp the target (movement period) to receive a liquid
reward. Animals were required to hold the appropriate grip for 300 ms.
Additionally, catch trials were interleaved randomly (~8% of trials), in
which a go cue was never shown and the animal only received a reward if
it maintained fixation and the hands on the hand rests for 2000 ms after
the grip cue. All trials were interleaved randomly and in total darkness.

The differences between Task 1 and Task 2 are as follows. In Task 2, there
was only one fixation period that lasted for 600-1000 ms. In Task 2, the
illumination of the handle took place at the time of grip cue. In the instructed
version of Task 2, the grip cues were identical to Task 1. In the free-choice
version, both a green and white dot appeared simultaneously, indicating that
the monkeywasfree to choose between the two grip types. Thiswas followed
by amemory periodlasting 400 —500 ms, and then either the green or white
dot reappeared for 300 ms in 509 of all free-choice trials, which tumed the
free-choice task into a delayed-instructed task and was followed by a second
memory period (duration, 400— 600 ms). In all other trials (instructed or free
choice), only the red fixation dot was shown during the second cue period,
making it impossible to distinguish the first and second memory periods.
The hold period in Task 2 was 200 ms as opposed to 300 ms in Task 1.
Importantly, during free-choice trials, the reward wasreduced every time the
monkey repeatedly chose the same grip type.

Surgical procedires and imaging. After completion of behavioral train-
ing, each animal received an MRI scan to locate anatomical landmarks
for subsequent chronic implantation of microelectrode arrays. Each
monkey was sedated (e.g., 10 mg/kg ketamine and 0.5 mg/kg xylazine,
im.) and placed in the scanner (GE Healthcare 1.5T or Siemens Trio 3T)
in a prone position. T1-weighted volumetric images of the brain and
skull were obtained as described previously (Baumann et al., 2009). We
measured the stereotaxic location of the arcuate and intraparietal sulci to
guide placement of the electrode arrays.
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Free-Cholce

FMA implantationand task design. A-C, Array locations for animals B, S,and Z, respectively, Two amays were placed in F5 on the bank of the arcuate sulcus (AS). Two additional arrays

were placed in AIP toward the lateral end of the intraparietal sulcus (IPS). In animals Band 7, two more arrays were placed on the bank of the central sulcus (CS). The cross shows medial (M), lateral
(L), anterior{A},and posterior (P) directions. Mote thatanimal S was implanted in the left hemisphere and animals B and Zin the righthemisphere. £, Sketch of an animal in the experimental setup.
The cues were presented on a monitor projected onto a mirror, making the light dots appear superimposed onto the grasping handle. £, Delayed grasping task with two grip types (Task 1). An
example of each grip type can be seen during the movement epoch (top, power grip; bottom, precision grip). The handle wasrotated to a supine orientation for demonstration purposes only. £,
Delayed grasping task with two griptypesand three decision conditions (Task 2). Free-choice trials were presented twiceas oftenaseach of the other conditions. Delayed-instucted trials contained
asecond grip cue turning a free-choice trial into a delayed-instructed trial. Trials were presented ina pseudorandom order.

Chronic electrode implantation. An initial surgery was performed to
implant a head post (titanium cylinder; diameter, 18 mm). After recovery
from this procedure and subsequent training of the task in the head-fixed
condition, each animal was implanted with floating microelectrode ar-
rays (FMAs; MicroProbes for Life Science) in a separate procedure. An-
imal S was implanted with 32 electrode FMAs and received two arrays in
each area (Fig. 1B). The arcuate sulcus of animal § did not present a spur,
butin the MRT a small indentation was visible in the posterior bank, ~2
mm medial to the knee, which we treated as the spur. We placed both
anterior FMAs lateral to that mark. Animals B and Z wereimplanted with
six electrode arrays in the right hemisphere, each with 32 electrodes (Fig.
1A, C). Two such arrays were implanted in area FS, two in area AIP, and
two in the primary motor cortex (M1). FMAs consisted of nonmoveable
monopolar platinum—iridium electrodes with initial impedances rang-
ing from 300 to 600 k(} at 1 kHz measured before implantation. Post-
implantation measurements in the first months after implantation
confirmed these values in vivo. Lengths of electrodes were 1.5-7.1 mm.

All surgical procedures were performed under sterile conditions and
general anesthesia (e.g., induction with 10 mg/kg ketamine, i.m., and
0.05 mg/kg atropine, s.c., followed by intubation, 1-2% isoflurane,

and analgesia with 0.01 mg/kg buprenorphene, s.c.). Heart and respira-
tion rates, electrocardiogram, oxygen saturation, and body temperature
were monitored continuously, and systemic antibiotics and analgesics
were administered for several days after each surgery. To prevent brain
swelling while the dura was open, the animal was hyperventilated mildly
{end-tidal CO., ~30 mmHg), and mannitol was kept at hand. Animals
were allowed to recover fully {(~2 weeks) before behavioral training or
recording experiments commenced.

Neural recordings and spike sorting, Signals from the implanted arrays
were amplified and stored digitally using a 128 channel recording system
{sampling rate, 30 kS/s; 0.6-7500 Hz hardware filter; Cerebus; Blackrock
Microsystems). Data were first filtered using a median filter (window
length, 3 ms), and the result was subtracted from the raw signal. After-
ward, the signal was low-pass filtered with a causal Butterworth filter
(5000 Hz; fourth order). To eliminate movement noise (i.e., common
component induced by reference and ground), principal component
analysis (PCA) artifact cancellation was applied for all electrodes of each
array (as described by Musial et al., 2002). To ensure that no individual
chanmnels were eliminated, PCA dimensions with any coeffident >0.36
{with respect to normalized data) were retained. Spike waveforms were
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extracted and semiautomatically sorted using a modified version of the
offline spike sorter Wave_clus (Quiroga et al., 2004; Kraskov et al., 2009).

Unit isolation was evaluated using four criteriaz (1) the absence of
short (1-2 ms) intervals in the interspike interval histogram for single
units, (2) the degree of homogeneity of the detected spike waveforms, (3)
the separation of waveform clusters in the projection of the first 17 fea-
tures detected by Wave_clus, and (4) the uniqueness of the shape of the
interspike interval distribution.

After the semiautomatic sorting process, redetection of the average
waveforms (templates) was done to detect overlaid waveforms {Gozani
and Miller, 1994). Filtered signals were convolved with the templates
starting with the biggest waveform. Independently for each template,
redetection and resorting was run automatically using a linear classifier
function (MATLAR function classify). After the identification of the tar-
get template, the shift-corrected template (achieved by up and down
sampling) was subtracted from the filtered signal of the corresponding
channel to reduce artifacts for detection of the next template. This pro-
cedure allowed a detection of templates up to an overlap of 0.2 ms. Asa
control, unit isolation was evaluated again as described previously to
determine the final classification of all units into single units or multi-
units. In case of ambiguity, a unit was not classified as single. Stationarity
of firing rate was checked for all units, and, in case the firing rate was not
stable over the entire recording period (=30% change in firing rate be-
tween the first 10 min and the last 10 min of recording), the unit was
excluded from additional analyses (<23% of all single units).

Data preprocessing. In all datasets trials with outlying RTs, =700 ms in
Task 1and =500 msin Task 2 and <2200 msin either task were excluded.
In animals B and S, these trials comprised <21% of the data and <<3% in
animal Z. Clearly, all animals were careful to wait for the appropriate go
cue and did not act preemptively. We used this conservative check on
outlier RT's to safely exclude the possibility that animals were acting in
anticipation of the go cue.

Crucially, for all analyses of Task 1, trials with memory periods <500 ms
were excluded from analysis. These short memory period trials were re-
movedto ensure that animals had sufficient time to fully plan the movement
before acting, Such an exclusion criteria was not used in Task 2, because the
animal never had <<700 ms to plan (delayed-instructed condition) and was
trained for many months to acquire this timing scheme.

All recorded units (single unit and multiunit) were used in our main
analyses. After spike sorting, spike events were binned in overlapping 100
ms windows and sampled every millisecond to produce a continuous
firing rate signal {1 kHz). This means that firing rates at the time of the go
cue considered spikes occurring 50 ms before to 50 ms after the go cue.
Because it is unlikely that (sensory) responses to the go cue would be
represented in AIP or FS already at 50 ms after presentation, we believe
this binning does not bias the predictive power of RTs. In fact, our con-
clusions do not change when using a binming that does not extend be-
yond the go cue {data not shown).

Dimensionality reduction. Dimensionality reduction was performed
for the purposes of visualization only. All quantitative analyses relied on
the full dimensionality of the data. Gaussian-process factor analysis
(GPFA) was performed on the neural data from cue presentation to
movement onset (Yu et al., 2009). This method performs smoothing of
spike trains and dimensionality reduction simultanecusly within a com-
mon probabilistic framework. It assumes that the activity of each unit is
a linear function (plus noise) of a low-dimensional neural state whose
evolution in time is well described by a Gaussian process. This methods
allows for better visualization on the single-trial level than other pub-
lished methods (Yu et al., 2009). The data were reduced to 12 dimensions
(the optimal number of latent dimensions in the data as determined by
cross-validation) using 20 ms nonoverlapping spike bins to produce the
trajectories in Figure 3A. In this reduction, the three displayed dimen-
sions explain 63% of the total variance. In this figure, a rotation of the
first threelatent dimensions is shown (equivalent to a linear combination
of the three dimensions explaining the most variance overall).

Similarly, neural trajectories in Figure 9 were generated by performing
PCA on the peristimulus time histograms of all units for each grasp
condition separately. All individual trials were then transformed into the
two principal components explaining the most variance and binned into
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slow, medium, and fast RTs. All trials were aligned to the go cue and
plotted from 350 ms before to 280 ms after the go cue.

Projection methods. As can be seen in Figure 3A, trials of the same
condition tend to follow a stereotypical trajectory through neural space.
Following the study by Afshar et al. (2011), we reasoned that the farther
the neural state had advanced along the mean neural path at the time of
the go cue would be predictive of subsequent performance. To test this
hypothesis, we projected neural activity of individual trials at the go cue
on the mean neural trajectory of similar trials (excluding the tested trial
of the same condition). The projection is denoted in Figure 3B with the
symbol . The vector formed between the mean firing rate at the go cue
and the firing rate at the go cue of an individual trial is projected onto the
vector between the mean firing at go and the mean firing at go * some Az
The data were tested empirically to determine the optimal At values over
all datasets. Selected At values ranged from 300 ms before to 300 ms after
the go cue.

Additionally, as depicted in Figure 3D, the instantaneous velocity of
the neural data, [tgo — (tgo — 20)], in the high-dimensional neural space
of individual trials was projected onto the mean neural trajectory. Similar
to the projection method, the velocity projection method hypothesized
that trials in which the neural space is changing in the direction of the
mean trajectory willhave shorter RTs. Importantly, trials were segregated
into 100-200 ms bins based on the length of the memory period to
minimize the effect of memory period length on neural position, i.e., the
mean trajectory used as a reference for each trial was calculated solely on
other trials within the same memory period bin.

EBuclidian distance method. The Euclidian distance method was per-
formed also equivalently to the study by Afshar et al. (2011). Single-trial
RT was correlated with the Euclidian distance between the high-
dimensional firing rate at the go cue on the single trial and the mean
high-dimensional firing rate of all other trials of the same condition at
some time offset, A#, as depicted in Figure 3C.

The optimal subspace method, as originally reported by Churchland et
al. (2006¢), was also performed. It is equivalent to the Euclidian distance
method with a time offset of A= 0 ms. Both of these methods are based
on the hypothesis that trials in which firing rates are close to the mean
rates observed for similar trials have shorter RTs.

Average rate method. The average rate (AR) method is based on the
simple hypothesis that trials during which particular units have higher
firing rates will be associated with shorter RTs. This method posits that
neural activity increases during preparation and crosses a movement
threshold to initiate a movement, also known as the rise-to-threshold
hypothesis (Erlhagen and Schéner, 2002). Under the assumptions of this
method, higher preparatory activity would always be associated with
shorter RTs. Four implementations of this method were tested initially.
The trial-by-trial RT was correlated with the following: (1) the signed
difference between firing rate at go cue and at cue onset (i.e., an approx-
imation of baseline firing), averaged across all units; (2) the same method
but using the unsigned difference (absolute value); (3) the average firing
rate at the go cue across all units; and (4) the average firing rate at the go
cue across all units for their preferred grip type only. The third version,
which does not rely on baseline firing rate or unit preferences, was the
best performing (data not shown) and was therefore the one used for
additional analysis. For clarity, we opted to name our implementation of
the rise-to-threshold hypothesis as the AR method.

Sign-corrected average rate method. Ashypothesized by the AR method,
if units that increase their activity (relative to the mean) during move-
ment preparation are associated with trials having short RTs, then they
are negatively correlated with RT. However, if the activity of some units
were in fact reduced (relative to the mean) for trials with short RT, this
would resultin a positive correlation. If many of each of these types exists
in the same population, which is averaged to produce an RT prediction,
these two inverted populations would be in conflict and cancel out each
other, thereby causing poor RT prediction.

To overcome this obstacle, we introduced the sign-corrected average
rate (SCAR) method. Itisidentical to the simple AR method as described
in the previous section; however, the signal of all units was first multi-
plied with a sign-correction vector. That is, units that were correlated
positively with RT were inverted to produce a negative correlation. To
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Figure 2.
line represents the mean, and error bars indicate SEM within nonoverlapping 50 ms bins.

decide which units were to receive a negative value in the sign-correction
vector, (1) the firing rates at the go cue of individual units were cor-
related with RT (twofold cross-validated) over all conditions. (2)
Units received a —1 value in the sign-correction vector if they pos-
sessed on average (over all conditions) an r value >0. All other units
received a value of 1in the correction vector. This method preserves
the absolute magnitude of the mean firing rate acrosstrials because no
normalization is performed. A number of inversion criteria were test-
ed; however, we found that it was sufficient to invert only units with a
positive r value (data not shown). It is important to note that units
were not tested separately for each condition {grip type/decision con-
dition), i.e.,a unit that was inverted for a precision grip would also be
inverted during a power grip. Testing on each condition separately
would have increased RT prediction further.

RT correlations. When correlating single-trial neural metrics, i.e., the
previously described methods excluding the AR and SCAR methods,
with RT, we did not include the neural data from that trial in the calcu-
lation of the mean neural trajectory used for that prediction, as in the
study by Afshar et al. (2011). The predicted and observed RT's were then
correlated with each other. This technique, termed leave-one-out cross-
validation, ensured that predictions of the RT of each trial were not based
on movement activity from that trial.

Whenever average RT variance explained was calculated across an
average of datasets, each average was weighted by the number of trials in
each dataset.

Partial RT correlations. In our tasks, memory period length was corre-
lated highly with RT (Fig, 2). To disentangle the relationship of memory
periodlength to RT and the relationship of our neural prediction metrics
on RT, partial correlation, which bares much similarity to multiple re-
gression, was performed (Cramér, 1946). Partial correlation is a method
for determining the correlation between two variables while controlling
for one or more other variables. The partial correlation between two
variables, while controlling for a single other variable, is described by

g = Tl ms
Prexa = T
\jl - f%\rM\fl - ”iﬁa

where pis the partial correlation of a neural prediction metric (N) with
RT (B), while controlling for the effect of the length of the memory
period (M). ry-.is the standard Pearson’s correlation between vectors X
and Y.

Cross-validation. The results of all methods were twofold cross-
validated. All trials of each dataset were first randomly segregated into
two sets of equal size and methods performed separately on each set.
Furthermore, the SCAR method required the preevaluation of prepara-
tory correlations with RT to determine which units should have their

Memory perlod length (ms)

Memory peried length (ms)

Scatter plots of RTversus memory period length. A—C, The RT of animals B, S, and 7, respectively, as a function of memory period length forall task conditions and datasets. The solid

firing rates inverted. To avoid false-positive results, SCAR was first
trained on a training set of trials and always tested on trials that were not
used for training. All analyses were twofold cross-validated by flipping
the role of both sets. Segregating the data into more than two cross-
validation folds would severely reduce the number of test trials in each
condition and therefore the reliability of prediction.

Mudriple linear regression. To determine whether a combination of the
tested methods could improve the amount of variance explainedin RT, a
number of regressions was performed. Multiple regression was per-
formed using the leave-one-out technique, in which regressing on all
other trials generated the prediction for each trial, and this process was
repeated for each individual trial. First, the same model as described by
Afshar et al. {2011) was used, which consisted of the projection method
on both the pre-go and post-go cue axes, as well as the velocity projection
method on both the pre-go and post-go cue axes. Alternatively, a number
of simpler combinations were tested, although most are not presented
here because they vielded poor results.

To test whether or not a multivariate model could explain significantly
more variance than a simpler model, the F test was used. The F test is
ideally suited to compare models (regressions) that use nested predictors,
that is, models that use a subset of predictors of a more complex model.
However, because we wanted to compare models over a number of con-
ditions {each with varying degrees of freedom), we had to generate a
nonstandard F distribution for testing. Therefore, the F statistic compar-
ing each pair of models was calculated separately and then summed.
Additionally, because each cross-validation fold contained different tri-
als, each fold was considered as a separate condition for a total of four
conditions in Task 1 {two behavioral, two folds) and 12 conditions (six
behavioral, two folds) in Task 2. To generate a testing distribution the
probability density functions (pdfs) of each corresponding F statistic
were convolved with each other to form a new distribution. We then
calculated the likelihood of observing the calculated sum of F statistics
and from there derived the p value.

To extend this test over all datasets and reach general conclusions, the
sum of F statistics was summed across all conditions and datasets and
tested on an F distribution of convolved pdfs over all conditions and
datasets.

Chance-level calcwlation. Many individual correlations were computed
in the current study. To ensure that all relevant methods were truly
identifying relationships between neural data and RT, all correlations
were tested against a chance distribution. For each method and condi-
tion, chance distributions were generated by correlating the prediction of
each method with a corresponding vector of randomly shuffled RTs
{1000 repetitions). We could then calculate the probability of observing
the empirical R * given our shuffled distributions and use this as a pvalue.
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In the case in which a significance calculation was required over multiple
conditions and datasets, the generated chance distributions were con-
volved with each other to form a new distribution, precisely as with the F
statistic for testing multiple linear regression. The p value for significance
was fixed at 0.01.

For the SCAR method, an additional control was performed. The
SCAR method involved the inversion of the firing rates of some units. To
ensure that this inversion did not artificially produce our results, the
following control was performed. A random sample of units of the same
size as in the real data was inverted and the method performed as normal
(1000 repetitions, permutation test). The resulting chance-level distribu-
tions could be tested against the empirical results as was done for the
other chance-level calculations.

Variance selection. All recorded units were included in the main anal-
yses. To determine whether one could select a subset of units that would
perform equally or better than the entire population, a variance selection
was performed. The units with higher variances in spike count (at the go
cue) across trials were preferentially induded first. In addition, a random
unit selection was performed alongside the first analysis with the same
number of units per test. The random selection of units was performed
1000 times per percentage value. Data were interpolated to the range of
0-100% to fadilitate averaging between datasets.

Significance testing was performed by summing the R over all data-
sets and testing the likelihood of obtaining this value against the distri-
bution of convolved pdfs over all datasets as generated by the random
unit selection, precisely as was done with the F statistic for testing mul-
tiple linear regression. The significance level was set at 0.05 and Bonfer-
roni’s corrected for the number of percentages tested (100).

Bayesian information criterion. The Bavesian information criterion
(BIC) is a well known model selection criterion (McQuarrie and Tsai,
1998). It is described by the following:

BIC = — 2Inf + pInN,

where [ is the posterior likelihood of the data given the best-fit model,
pisthenumber of parameters used to generate the model, and N is the
number of observations used. A smaller BIC is associated with a better
explanatory model. BICs were calculated for single conditions and
averaged either over conditions or over conditions and datasets.

Results

Behavior

All three animals performed the task successfully. After initiating
trials to the point of obtaining task information, i.e., receiving a
grip cue, animals B, S, and 7 successfully completed those trials
96, 98, and 95% ofthe time, respectively. Catch trials in which the
animal was required to withheld movement were included in
Task 1. Animals B and S completed these catch trials successfully
95 and 98% of the time, respectively. Figure 2 plots the RTs ofall
animals as a function of memory period length. The memory
period in Task 1 lasted 0—1300 ms, whereas the memory period in
Task 2 was relatively longer {(a minimum of 1400 ms in the in-
structed condition including the grip cue) to facilitate a second
cue period in the delayed-instructed condition. RTs were reduced
during longer memory periods, consistent with the established
hypothesis that motor preparation improves over time (Rosen-
baum, 1980; Riehle and Requin, 1989). The exception to this was
the 1300 ms memotry condition in Task 1, in which RT slightly
increased, likely because of the expectation of a catch trial, which
appeared periodically and lasted 2000 ms. Foranimals B, S, and Z,
the correlation coefficients over all datasets between memory pe-
riod length and RT were —0.55, —0.57, and —0.33, respectively.
Similar experiments have shown that saturation of RT, ie., the
minimum length of memory period after which RT does not
significantly improve, is at least 100-200 ms (Churchland et al.,
2006¢) in a reaching task. In Task 1, we observed RT saturation,
but we did not observe this in Task 2.

Michaels et al. @ Reaction Time Prediction in the Neural State Space

In contrast, there was no significant correlation between
memory period length and movement time, which is the time
between the hand leaving the hand-rest button and making con-
tact with the handle, indicating that animals only initiated a
movement when the movement was fully prepared. The only
exceptions are the movement times of animal B, which were
slightly longer in the 1300 ms memory period condition than in
shotrter memory periods, potentially an effect of decreased atten-
tion for long memory periods. For all animals, the hands re-
mained completely stationary on the hand-rest buttons before
the go cue. The experiments from which these data were collected
were originally designed to assess hypotheses that are not pre-
sented here and will be addressed elsewhere.

Neural recordings
The analyzed datasets include a collection of 18 recording ses-
sions, six from each animal. In animal B, an average = SD of 63 =
17 and 28 = 18 units were recorded in F5 and AIP, respectively, as
well as in animal S (mean = SD, 132 * 15 and 131 + 26) and
animal 7 (85 = 18 and 81 = 24). An average of 483 trials per
dataset met the inclusion criteria, as described in Materials and
Methods. This corresponded to an average of 77 trials per condi-
tion and cross-validation fold overall. In animals S and Z, there
was no significant difference between the two brain regions in the
number of units recorded per dataset (p = 1 and p = 0.56, Wi-
lcoxon’s signed-rank test). However, in animal B, significantly
more units were obtained in area F5 ( p = 0.03), which may have
affected the quality of RT decoding in area AIP. The majority of
units obtained in all animals were identified as multiunits (52%
in animal B, 60% in animal S, 709 in animal Z). All recorded
single units and multiunits were included in additional analyses.
Although the response characteristics of each individual unit
are not analyzed here in detail, it is worth noting that the overall
tuning characteristics of units in F5 and AIP were very similar
regardless of the task design used (Task 1 or 2). Furthermore,
both tasks were able to elicit strong grip tvpe tuning in both F5
and ATP. An average of 32% of recorded units were significantly
tuned for grip type during the late memory period in F5, whereas
26% were tuned in ATP ( p << 0.05, two-sample ¢ test), which did
not differ between areas (p = 0.09, Kruskal-Wallis ANOVA),
although differences were seen between animals (p = 0.002,
Kruskal-Wallis ANOVA), with animal B showing slightly less
tuning overall (24% in F5 and 18% in AIP). This finding is par-
ticularly robust when considering that there are no visual cues
present in the memory period, and, therefore, grip type tuning
tends to reach a minimum during this epoch.

Low-dimensional visualization of single-trial trajectories

To visualize how neural data evolves on single trials, a low-
dimensional representation of the full neural space of both brain
areas combined is shown in Figure 3A for an exemplar dataset
{(instructed precision grip, dataset Z120829). Dimensionality re-
duction was performed using GPFA, as described in Materials
and Methods. Single trials tended to evolve from cue onset to a
preparation state and further to a movement state after the go
cue. Conversely, it did not appear that variability between trials
decreased in a systematic way when comparing the size of the
confidence ellipses at cue onset, go cue, and movement onset. To
determine whether the trajectory of an individual trial could be
related to RT, three methods were formulated, as depicted in
Figure 3B-D. These three methods, the projection method, Eu-
clidean distance method, and velocity projection method, are
presented here virtually identical to how they were performed by
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Figure 3.  Neural data and RT prediction methods visualized as low-dimensional trajectories. 4, Neural data ofboth areas ofan exemplar condition reduced toa low-dimensional representation
of the trial course (determined by GPFA). Thick trace represents the mean of trials for one condition {instructed precision grip, dataset Z120829). Thin gray traces represent 10random single rials.
Shaded ellipses (90% confidence) represent the state ofall selected single trials at the start of each epoch. B2, High-dimensional RT prediction methods in a two-dimensional illustration. Thick red
and green traces represents the mean of trials. Thin gray trace represents a single exemplar trial. oz denotes the component used to predict RT for the projection method (B}, Fudidean distance

method (), and velodity projection method (9.

Afshar et al. (2011) and are described in detail in Materials and
Methods. Although GPFA aids the visualization of single trials, in
the following section, these RT prediction methods are tested in
the high-dimensional state space of all recorded units.

Finding optimal reference points for trajectory-based
methods

As can be seen in Figure 3B-D, each of the three high-
dimensional state space methods relies on a reference time point,
or Ai, on the mean trajectory. To find the optimal reference
peint, the time domain from 500 ms before to 500 ms after the go
cue was tested. For purpose of determining optimal Af values,
this time window was further limited to =300 ms, because refer-
ence points become more unreliable between conditions and da-
tasets at large offsets. Each method was performed with this range
of At values, and the predictions correlated with RT, as seen in
Figure 4. The mean of all conditions is shown with a thick trace,
and the used offsets before and after the go cue are marked
with open circles (limited within + 300 ms). Inset histograms
show all individual correlation coefficients [datasets (6) X
conditions (2—-6) * cross-validation folds (2)] before squar-
ing and averaging and for each animal separately. The darker
bars indicate correlations that are statistically significant (p <
0.05, Pearson’s correlation). The results from animals B and Z
are very similar and use identical offsets, whereas the results of
animal § differed significantly.

As seen in Figure 44, the projection method using references
both before and after the go cue have correlation distributions
with nonzero median in F5: one distribution is shifted to the
negative and one to the positive. This finding is consistent with
our hypothesis, because trials that are farther along a mean tra-
jectory going forward in time should lead to shorter RTs and
therefore an overall negative correlation between our neural pre-
dictor and RT. In AIP the projection method also performed

significantly, although the resulting R* is much lower than in F5
(Fig. 4B). Based on this analysis, the best positive and negative At
values, which were then used in all subsequent analysis, were
—290 and 60 ms in F5 for animals Band Z and —170 and 260 ms
for animal S. In AIP, values of —210 and 200 ms were used for
animals B and Z, and values of —40 and 60 ms were used for
animal S.

The Euclidian distance method performed similarly to the
projection method but explained overall less variance in RT (Fig.
4C,D). In both F5 and AIP, reference points generally produced
correlation histograms that were shifted significantly from zero.
In most cases the pre-go distribution was shifted to the negative
direction and the post-go to the positive direction, again consis-
tent with the hypothesis that trials that are closer to the state of the
network after the go cue will have shorter RTs, with the notable
exception of animal B on the pre-go axis, a peint that is returned
to later. Additionally, when using a time offset of ¢ ms, identical
to the so-called optimal subspace method {Churchland et al.,
2006c), the correlation distribution tended to be only marginally
significantly shifted from zero in F5 and AIP. Despite this, the
optimal subspace method was not used in additional analyses,
because the Euclidean distance method outperformed it in every
case. Based on this analysis, the A# values that were used in addi-
tional analysis were —300 and 170 ms in F5 for animals B and Z
and —270and 270 ms for animal S. In AIP, values of —90 and 300
ms were used for animals B and Z and values of — 100 and 300 ms
for animal S.

The velocity projection method performed poorly overall, ac-
counting for <1% of the variance in RT (Fig. 4 E,F). Only rarely
do reference points in F5 or AIP have correlation distributions
significantly shifted from zero. Furthermore, accounting for the
effect of memory period length on RT using partial correlation
completely eliminates this effect (data not shown). Therefore, for
most of our additional analyses, the velocity projection method



2.1 - Reaction time prediction

11422 + ). Neurosdi., August 12, 2015 « 353 2::11415-11432

0.25¢

02
0.15

o
o
c &

variance explained (R Square)

Michaels et al. @ Reaction Time Prediction in the Neural State Space

Animal B
s Animal S
= Animal Z

0.25}
0.2}
0.15}
01}
0.05}

I - T S Y |

LS
5
a
=
2

~200

p=0000H004

= 0.0696E5

0.25¢}
02}
0.15}
= 01}
i
© 0.05
j =) Z
g 400 -200 Go 200 400
E g
E P =05 b= 0SS
0 15 i i
025t A
2 10
o2t .
0.15} !
0.1 I 1 95 ¢ 0B 1 1 08 0 056 1
0.05} f
400 -200 Go 200 400
Time relative to Go Cue (ms)
G
psnm & p-m p-1.m
. I . i 1] L:
: o1 "B
€ 3 } [
B2 A .
l,-l £45 9 0O 1 °-1 26 ©0 o6 1 °—1 095 494 0B 1
H
o p=182160-06 . p=152156-05 " P 1.6688-13
] l i L] i 10 i
4 | s 1 . |
E, | . | . |
§ } 3 } }
2 | 2 | 4 |
‘H 'k R
u-1 05 l‘z LI | l:'-1 05 ‘D 05 1 u-1 48 0 05 1
correlation {r-value) on } lation (v-value)

D

s p=0:116%0 p:nfnm “ P =230

0.25f 1 K .

0.2} f
0.15} Y %s o w5 i M wE o o 1 % 55 o o5 1

01}
0.05}

-400 -200 Go 200 400

F
025 | | Jo

o2 :
0.15} . '

0.1 | 4 08 0 oA 4 b5 ¢ 05 |
0.05} T

400 -200 Go 200 400
Time relative to Go Cue (ms)
P =045757 P =6B170-06 p=076333
a a L]
) 2 8
4
1 1 2

o - BN w2 @& ®

4 05 B 05 1
carrelation (r-valua)

1 06 0 D05 1

5, P=2UTOSe05
|
|
s |
|
4 |
|
3
2
1
]
4 &5 o 06 1
corrglation {r-vaki)

A B5 B 05 1

a
1 D8 0 05 1

correlation (r-value}

39



2.1 - Reaction time prediction

40

Michaels et al. » Reaction Time Prediction in the Neural State Space

was excluded. Tt should be noted that trials were segregated into
bins based on memory period length, as described in Materials
and Methods. However, when all trials are pooled together, the
resulting predictions of RT are still nonsignificant {data not
shown).

Population firing rate-based methods

In addition to our high-dimensional trajectory-based methods,
we also tested simpler methods based on averaging the activity of
all units around the go cue. Such methods still depend on simul -
taneously recorded units, because they require an estimation of
the population neural state for each trial. The first method we
tested is the AR at go, which is our implementation of the rise-
to-threshold hypothesis, as described by Afshar et al. (2011). The
correlation histograms obtained by the AR method are shown in
Figure 4, G for F5 and I for AIP. The median of the correlation
distribution is significantly shifted negatively in two of the three
animals in F5 (Wilcoxon's signed-rank test), suggesting that
higher firing rates around the go cue led to shorter RTs. However,
in AIP, the distribution was only shifted for one of the three
animals. However, in all cases in which a significant shift was
present, this shift was in the negative direction, suggesting that
higher firing rate tended to be related to shorter RTs.

The AR method relies on averaging. Therefore, if some units
in the population are correlated negatively with RT whereas oth-
ers are correlated positively, these effects could cancel out at the
population level. To deal with this issue, we first correlated the
firing rate at the go cue of each unit with RT on a set of training
trials. Then, as described in Materials and Methods, on a set of
testing trials we inverted the firing rates of units that had a posi-
tive correlation in the pretesting (twofold cross-validated).
Briefly, the process consists of multiplying the firing ofall units by
a sign-correction vector (see Materials and Methods). This new
method was termed the SCAR method. The correlation histo-
grams of the SCAR method are shown in Figure 4, Hand ], for F5
and AIP, respectively. In both areas the median of the correlation
distribution was shifted strongly into the negative domain (three
ofthree animals in both areas, Wilcoxon's signed-rank test ). Over
all datasets, the average number of units whose activity was in-
verted was 38% in F5 and 42% in AP, a large portion of the total
unit count. The number of units inverted was less for animal S, in
which the performance of the AR method was already consider-

ably high.

Pooling of multiunits and single units does not bias

RT prediction

To ensure that the previous results were not attributable to the
sole contribution of either multiunits or single units, we repeated
the analysis using only multiunits or single units. Results are
presented as a performance ratio of average fraction of RT vari-

—

Figure4. Determination of the optimal reference time (A2 relative to go cue on the mean
trajectory. 4, B, Results of the projection methodinareas F5 and AP, respectively. €, 8, Results
of the Euclidean distance method in areas F5 and AIP, respectively. £, F, Results of the velodty
projection method in areas F> and AIP, respectively. Thick traces are the mean ofall conditions
and datasets of each animal, thin traces are the SEM, and wihite drclesare the optimal Atused
in all subsequent analysis. Insets in A—F show histograms of correlation coefficients between
each neural predictor and RT over all conditions (2— 6), datasets {6), and cross-validation folds
{2). Black bars denote correlations with a p value <20.05. Arrows show the median together
with the pvalue of significant difference from zero (Wilcoxon's signed-rank test). @, H, Corre-
lation coefficienthistograms of the AR at go method and the SCAR method, respectively, in F5.
1,4, Same as & and A, but for neural data from AIP.
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ance explained using only single units or multiunits versus the
pool of all units (where 1 represents identical performance). In
F5, when including only single units, the pre-go and post-go
projection methods produced ratios of 0.81 and 0.84, respec-
tively. In AIP, the pre-go and post-go projection methods pro-
duced ratios of (.76 and (.91, respectively. The pre-go and
post-go Euclidean distance methods produced ratios of 0.65 and
0.95 for F5 and 0.72 and 0.81 for ATP single units.

When including only multiunits, in F5, the pre-go and
post-go projection methods produced ratios of 0.64 and 0.69 in
F5 and 0.77 and 0.69 in AIP. The Euclidean distance methods
produced ratios of 0.87 and 0.87 in F5 and 1.13 and 0.59 in AIP.

The same analysis was done for the population-based meth-
ods (AR and SCAR). The AR method had performance ratios of
0.74 and 0.79 when using single units only in F5 and ATP, respec-
tively, whereas multiunit only performance was 1.25 and 1.07.
The SCAR method had performance ratios of 0.76 and 0.87 when
using single units only in F5 and AIP, respectively, whereas mul-
tiunit only performance was 0.66 and 0.63.

In almost every case, including only multiunits or single units
inthe analysis reduced the overall performance. Using only single
units caused a performance reduction of 9-36%. Similarly, using
multiunits caused a reduction of 13-41%, with the exception of
the Euclidean distance method (before go cue) in AIP and the AR
method in both areas, which increased slightly. Overall, the pre-
diction of RT cannot be explained based solely on the contribu-
tion of either single units or multiunits. However, the AR method
seems to perform best using multiunits, suggesting that com-
pounding single-unit responses stabilizes the performance ofthis
method.

Nenral activity predicts trial-by-trial RT

Together, the results of all methods based on optimal Arselection
are shown in Figure 5. The mean R* isplotted for all 18 datasetsin
both F5 and AIP. Open bars mark methods that did not perform
above chance level, as described in Materials and Methods. The
average R over all methods is significantly higher in F5 than AIP
{(p << 0.001, Kruskal-Wallis ANOVA), suggesting that the popu-
lation activity in F5 better encodes the variability in grasping
plans. However, it is important to note that the current tasks
include a large reaching component, which is also represented
strongly in F5 and AIP (Lehmann and Scherberger, 2013), al-
though more so in AIP. Therefore, some similarities between the
behavioral and neural results of the current study and previous
reaching studies are expected.

Not all methods achieved the same level of performance over-
all (p <2 0.001, Kruskal-Wallis ANOVA). The best method on
average, SCAR, was able to explain 18% of the variance in RT' in
F5 and 6% in AIP. The SCAR method and the projection (before
go cue) method performed best in F5 for animals B and Z, ex-
plaining 18 and 16% of the variance in RT, respectively. In animal
S, this pattern differed in F5, because the best performing meth-
ods were SCAR and Euclidean distance (after go cue), explaining
17 and 13% of variance in RT, respectively. The mean RT predic-
tion for each animal is summarized in Figure 6A. There was no
effect of grip type (p = .69, Kruskal-Wallis ANOVA) in all
animals, suggesting that RT could be predicted equally well re-
gardless of grip. Additionally, there was no effect of cross-
validation fold (p = 0.93, Kruskal-Wallis ANOVA), confirming
that segregating the data into training and testing trials did not
introduce inconsistencies into the results.

As described previously, Task 2 contained different task types
(instructed, free choice, and delayed instructed). There was a



2.1 - Reaction time prediction

11424 + ). Neurosdi., August 12, 2015 - 353 2::11415-11432

Michaels et al. @ Reaction Time Prediction in the Neural State Space

0.4 Il Sign Corrected Average Rate
: Bl Average Rate at Go
- [TIProjection (Before Go Cue)
= __IProjection (After Go Cue)
20351 [ Euclidean Distance (Before Go Cue)
EE‘P Il Euclidean Distance (After Go Cue)
S 0.3H
£
© |
<
o 0.25(
®
S
=
=
c 0.2r _ _
=
[ L |
[any -
'S 0.15} -1
2 |
o |
g i I L L
= 04n
©
=) T _ |
©
g |
> 0.05n
) I
0 : - -
D D @ D D B D D @ D > & & & & & B
@6@ {&\'b\% -S‘(B@ {s\'ﬁ @Q}g @’3? \3\‘6@ \3\‘6@ -'9@@ @Fb@ @"2\? v&"p{o ‘L\{}e ‘&\@5’ ‘&\{,}5’ k\ég ‘&,\%ED &'BED
@fo‘b'@bgb%\”'cg\é\/(\q‘bbq’(\%”’é\@q@@&%\@
%Qf {0\’? Q\'P R q{\‘i‘ %@ ‘b@ c,@ b\@ Q{? \@ q}\‘1‘ q@ Q\QP 8 o~ oj@ \\":
F o F AT o PSS FF L g
N R I A A A A N U N I
Q)Q)Q)Q)Q)Q)‘a‘o%‘o%%'\/’\/’\/z\}’\/’\/
0.15F
0.1
0.05
6]
9]
\‘13343
=Y
& &
R
@ @

Figure 5.

Average fraction of RT variance explained for all methods and datasets (averaged across conditions and cross-validation folds). A, Average fraction explained by F5 data. B, Average

fiaction for AIP. Note the clear advantage ofarea F5 over AIP. Chance-level calaulation is based on shuffling neural data with respect to RTs repeatedly. The observed A7 values are then compared
aqainst the shuffled distributions to assess significance. Significant results are illustrated as solid bars, whereas the open bars show results that can be explained by chance (p = 0.01).

significant effect of task type on RT prediction (p << 0.001,
Kruskal-Wallis ANOVA) over all methods, although the effect
size was very small (effect size, n° = 0.018). The worst perform-
ing decision condition was the delayed-instructed condition, in
which a second cue was presented later in the memory period.
This small, but significant, effect on RT prediction islikely attrib-
utable to the disruptive effect of a second cue close to the end of
the memory period. Interestingly, there was no difference in RT
prediction between the instructed condition and the free-choice
condition { p = 0.80, Wilcoxon’s rank-sum test), suggesting that
the way in which a motor plan is selected does not affect the
relationship between preparatory activity and RT.

To summarize the number of individual correlations that
have significant p values ( p < 0.05; equivalent to the black barsin
the histograms of Fig. 4), the total fraction of significant correla-
tions is plotted in Figure 6C. In F5, between 21 and 96% of the
correlations were significant for each method, whereas this range
was between 4 and 67% in AIP, therefore confirming the overall
better predictability of RT in F5.

Given the success of the SCAR method, an interesting ques-
tion arises. Ifit is effective to predict RT by calculating a weighted
mean of all units, in which the weights are either exactly —1or 1,
would performance improve if weights were not restricted in any
way? This idea can be tested directly by using linear regression to
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fit a set of weights to all units (MATLAB function regress). The
results of this analysis, when cross-validated identically to the
main analysis (twofold), show that a linear regression over all
individual units can explain 3.9% of variance in RT in F5 and
2.2% in AIP, with a significant advantage of F5 over AIP (p <
0.001, Kruskal-Wallis ANOVA). However, this performance is
only one-quarter of the projection or SCAR methods overall.
Because the number of available units frequently outnumbers the
number of available trials, coefficients cannot be ideally identi-
fied. For this reason, the regression often excluded up to 15% of
the units in each dataset by assigning them a coefficient of zero.
To deal with the small number of trials available, it is also
possible to use stepwise linear regression to add or remove units
based on how their inclusion affects the model (MATLAR func-
tion stepwisefit). To produce an optimal solution, the model was
initialized with only a constant term and units were subsequently
added if they significantly improved the model (F statistic, p <<
0.05). The results of this analysis show that a stepwise linear re-
gression over all individual units can explain 12.1% ofvariance in
RTin F5 and 3.4% in AIP, with a significant advantage of F5 over
AIP { p << 0.001, Kruskal-Wallis ANOVA ). However, in thisanal -
ysis, between 77 and 97% of units were excluded from the model
to produce an optimal fit. Together, the linear regression results
are consistent with previous analyses showing an advantage of F5
over ATP and are similar to the results obtained by selecting units
by variance over trials (see Fig. 8). However, their usefulness is
limited, at least in datasets with a restricted number of trials.

Removing the effect of the memory period does not eliminate
RT prediction

The length of the memory period was strongly negatively corre-
lated with RT in all tasks and animals (Fig. 2). To ensure that a
straightforward encoding of the memory period in the firing rates
ofindividual units was not responsible for our findings, all meth -
ods were retested using partial correlation. As described in Ma-
terials and Methods, partial correlation allows for the correlation
of two variables while controlling for the linear effects of one or
more additional variables. Here we controlled for the effect of
memory period length on RT. Figure 68 shows the mean R” over
all datasets while controlling for the effect of memory period
length. Partial correlation reduces the performance of all meth-
ods, but almest all methods remain above chance level in F5. In
AIP, all methods are reduced to chance level in at least one ani-
mal, with the exception of the SCAR method. The largest reduc-
tion in performance caused by partial correlation was 66% over
all methods in animal B, suggesting a strong reliance on the mem-
ory period length and consistent with the unexpected direction of
the shift in the correlation coeflicient distribution of animal B in
Figure 4C. The smallest reduction in performance was 25% in
animal Z. In AIP, results of each animal were never reduced by
>38%. For compatison, the mean R? using the standard corre-
lation metric is shown in Figure 6A. Similarly, the number of
significant correlations was reduced when using partial correla-
tion as illustrated in Figure 6D.

Anterior AIP outperforms posterior AIP

A number of recent studies have highlighted that the anterior (aATP)
and posterior (pAIP) subdivisions of ATP differentially encode visual
task parameters (Baumann et al., 2009; Romero and Janssen, 2014)
and differ drastically in their effective connectivity (Premereur et al.,
2015). Because it is not well understood howthese two areas differin
their contribution to preparatory activity for grasping, we further
segregated our units into aATP and pATP corresponding to the ante-

Michaels et al. @ Reaction Time Prediction in the Neural State Space

rior and posterior implanted arrays, respectively, and repeated the
main analyses.

Unlike the comparison between F5 and AIP, the number of
units recorded on each array within AIP differed significantly for
all animals {p << 0.05, Wilcoxon’s signed-rank test). Therefore,
for each dataset, units were discarded randomly from the larger
set until an equal number of units were present from each subarea
{(stratification).

If the same RT prediction methods used in the main analysis
are applied to subdivisions of AIP, there is a small, but significant,
advantage of aAIP over pAIP (p = 0.021, Kruskal-Wallis
ANOVA). Most of this advantage comes from the projection
(pre-go) method, with an average R* of 0.031 in aAIP and 0,019
in pAIP (p < 0.01, Wilcozon’s signed-rank test). In agreement
with the main results, there was no significant difference in RT
prediction between grip conditions or cross-validation folds {p =
0.36 and p = 0.86, Kruskal-Wallis ANOVA). These findings are
in line with the emerging view that a gradient of visual to motor
processing exists between pAIP and aAlIP.

Multiple regression does not improve RT prediction

By combining multiple prediction methods in a multiple regres-
siom, it is possible to capitalize on the potential orthogonality
between different predictors. To test whether a multiple regres-
sion could increase overall prediction of RT, we first replicated
the regression described by Afsharet al. (2011), which consists of
a regression of the pre-go and post-go cue versions of the projec-
tion and the velocity projection methods. Because the velocity
projection method performed poorly in our analysis, it was not
expected for this regression to significantly improve RT predic-
tion. In fact, this four-factor multiple regression only out-
performed simpler unimodal and bimodal regressions consisting
of subsets of these factors in 16.7% of all datasetsin F5 and 11.1%
in AIP (F test). Furthermore, this regression never achieved a
lower BIC score than more parsimonious regressions in any da-
taset or brain area, suggesting that combining these four factors
ina regression is not justified in our dataset.

A number of other regressions were tested, but in no case were
>50% of datasets in F5 and 16.7% of datasets in AIP able to signifi-
cantly outperform simpler regressions (F test). Furthermore, none
of these multiple factor regressions achieved a lower BIC in =>11.1%
of datasets in F5 and in none of the datasets in ATP.

Because multiple regression performs best when individual
variables are independent, it would be unlikely to explain signif-
icantly more variance in RT if our predictors are highly corre-
lated. In fact, most methods are highly correlated with one
another in our dataset (minimum R? > 0.14), with the exception
of the velocity projection method (R? << 0.03), which performed
poorly in the main analysis.

No alternative reference point can outperform SCAR

The SCAR method relies on first correlating the firing rate ofeach
unit with RT and then inverting based on the resulting correla-
tion coefficient. Because this method relies on cross-validation, it
would be preferable to perform a method that does not rely on
previous information. To ensure that this alternative was not
possible, a control was performed. The mean firing rate at mul-
tiple time points (up to 2 s) before the go cue was subtracted from
the firing rate of each single trial, and the absolute value of the
resulting signal was taken. Subsequently, the firing rate on each
trial was averaged over units and correlated with RT. This
method has the effect of inverting the activity of each unit relative
to the mean firing rate at some previous time point. In no case
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Figure7.

Stability of the sign-correction vector determined at the go cue by the SCARmethod. RT prediction is calculated using sign-corrected neural activity around each time point. 4, B, SCAR

methodasa function of time for animals Band Zin areas F5 (Ayand AIP (B). €, 8, SCAR method as a function of time for animal S in areas F3 (Cyand AIP (). Dashed lines indicate the go cueand the
median movement onset (Move), Note the difference in peak RT prediction in F5 between animals B and Z and animal S.

was such a method able to explain more or equal variance in RT
than the SCAR method, suggesting that there exists no trivial
alternative to pretesting each individual unit with respect to mea-
sured RT. The same was true if grip cue-aligned activity was used
for reference.

Consistency of the sign-correction vector during movement
Because the SCAR method relies on previous information of the
relationship between firing rate and RT, we wondered whether
the learned sign-correction vector, which is used to invert the
activity of positively-correlated units, revealed a natural align-
ment of firing rates across time or whether it simply fit the data
well at the time of the go cue. To test this, we used the sign-
correction vectors determined in the main analysis to repeat the
SCAR method using neural activity not just from the go cue but
also at variable time points from 500 ms before to 800 msafter the
go cue. The results of this analysis are depicted in Figure 7. As can
be seen in Figure 7C for animal S in F5, maximal RT prediction is
achieved shortly before median movement onset (R? =056). I
neural activities of many units peak shortly before movement
onset, then the SCAR method should perform best at this time.
Such a result would suggest that trials on which activity drifted
toward the firing rate observed at movement onset were more
likely to be trials with a short RT, in line with the rise-to-threshold
hypothesis (ErThagen and Schéner, 2002).

However, as can be seen in Figure 7A, the results of animals B
and Z differed significantly in F5. In this case, the peak RT pre-
diction occurs precisely around the time of go cue. In contrast to
the results ofanimal S, a peak at the go cue suggeststhat, although
our sign correction was able to properly align the firing of each
unit at the go cue, it does not necessarily represent a consistent
pattern in the firing of the underlying units.

In AIP, peak RT prediction was achieved in all animals shortly
before median movement onset, i.e., a higher (sign-corrected)

firing rate on single trials tended to lead to shorter RT's. Maximal
RT prediction before movement onset can be explained by the
idea that activity either rises during the memory period to achieve
peak activity during the movement or that activity is decreased
during the memory period to reach a minimum during move-
ment. This result in AIP is consistent with a study showing sig-
nificant RT prediction from activity in AIP shortly before
movement onset (Verhoef et al., 2015).

Variance selection allows high performance with a subset

of units

Because all recorded units were included in the previous analysis,
we were curious whether a subset of units could be selected that
performed equally well or better than the entire population. To
test this, a variance selection of units was performed. Units were
discarded from the analysis in order of increasing variance in
spike count (at the go cue) across trials. This way, units with
higher variances were preferentially included. For the two best
performing methods, SCAR and projection (before go cue), the
variance selection performed significantly better than chance
{(p << 0.05, Bonferroni’s corrected) in F5 for all animals (Fig.
8A,C). In AIP, only variance selection using the SCAR method
outperformed chance {(Fig. 8B,D).

In all cases, selecting units by variance did not improve
maximal performance, as expected. In fact, when comparing per-
formance using all units to a smaller subset in F5, using a
variance-selected subset of only 32 or 18% of recorded units, for
the SCAR and projection (before go cue) methods, respectively,
suffered only a 5% decrease in performance. For the SCAR
method, it was only necessary to use a subset 0f23% of the avail-
able units in F5 to attain 95% of maximal performance. Together,
these results suggest that, when units are selected by variance at
the go cue, only relatively small subsets of the recorded units are
required to attain virtually maximal performance. More impor-
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tantly, including all units in the population does not appear to
add noise to these methods, because maximal performance is
achieved when including all units, suggesting that they properly
describe the relationship between preparatory activity and RT at
the population or network level.

Variability of RT axis from day to day and animal to animal

When considering each dataset separately, it became clear that
the day-to-day variability in RT prediction for each method is
relatively high (Fig. 5). To elucidate how neural trajectories,
which are presumably very similar over sessions, could explain
very different amounts of variance in RT, we visualized a few
individual sessions using PCA. This second dimensionality re-
duction method was introduced, in addition to the GPFA used in
Figure 2A, to visualize average trajectories as opposed to single
trials. In contrast to GPFA, which applies many different and
sometimes large smoothing kernels, PCA allows more direct con-
trol over the amount of smoothing over time. In Figure 9, the first
two principal components of individual conditions of individual
recording sessions are shown. The mean trajectory over all trials
is depicted along with the mean trajectory of trials binned into
slow, medium, and fast RT trials. In every subplot, a visualization
of the projection (after go cue) method is presented from the
data. In this visualization, the position of single trials along the
dashed projection axis would determine our measurement for

how far along the mean neural trajectory this trial is. The subse-
quent length of the projection of each single trial onto this axis
would then be used to predict RT. In Figure 9A, trajectories of a
power grip condition are shown from dataset B140509. It appears
that the fast and slow RT'trials are located distantly to each other
along the projection axis, suggesting that this axis would be valu-
able in explaining trial-to-trial RT variability. This was in fact the
case, because the projection (after go cue) method was able to
explain 27% of the variance in RT in the main analysis of this
dataset. However, note that the position of the fastest RT'trials is
less far along the mean trajectory than slow trials, directly con-
tradicting the predictions of our hypothesis. As we noted in Fig-
ure 6B, much of the RT prediction obtained in animal B was
eliminated by controlling for the effect of memory period length.
Based on the trajectory in Figure 94, it seems that trials with
longer memory periods tended to continue along the projection
axis instead of lingering near the mean trajectory. Because longer
memory periods led to slower RTs for the most extreme memory
period lengths (1300 ms), trials that have progressed farther
along the mean indicated slower RT trials.

Plotted in Figure 9B is the mean trajectory of the precision grip
on the very next dataset (B140515). The mean trajectory for this
condition is very similar to that of Figure 9A. However, the ori-
entation of the projection axis is approximately orthogonal to
that of an axis running through the slow and fast RT trials, sug-
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Low-dimensional representation (PCA) of neural state space illustrating day-to-day and animal-to-animal variability. Trajectoriesare plotted in the two principal components ofarea

F5 explaining the most variance, A, Trajectory of a power grip from dataset B140509 in which RT is mostvariable along the projection axis. B, Trajectory ofa precision grip from dataset B140515 in
which RT is mostvariable orthogonal to the projection axis. €, Trajectory ofa precision grip from dataset 120913 inwhich RT is most variable on the shared distance and projection axis. B, Trajectory

ofa power grip from dataset 2120921 in which RT is most variable along the projection axis.

gesting that this axis would explain only a small amount of vari-
ability in trial-to-trial RT. The projection {(after go cue) method
performed at chance level for this dataset, only explaining 3% of
the variance in RT. Therefore, it seems plausible that, even when
trajectories are similar, it is possible for R'T variance to be rotated
relative to the mean trajectory, suggesting that the mean trajec-
tory may not always be an ideal reference. In this case, the Euclid-
ean distance (after go cue) method performed significantly better
because trials with shorter R'T were located closer to the move-
ment onset state in the state space.

The trajectory in Figure 9C shows a precision grip from
dataset $1209013. It scems to differ substantially from the
other trajectories. In this case, there is no clear progression of
the preparatory trajectory near the go cue, and there is also no
abrupt change in the directionality of the trajectory after the
go cue. Therefore, it is not surprising that both projection
methods performed quite poorly on this dataset. Only by se-
lecting a Af for the projection (after go cue) method that was
quitelarge (210 ms) could improve RT prediction. In this case,
the projection (after go cue) and Euclidean distance (after go
cue) methods performed similarly, which is not surprising
because projection and distance become mathematically sim-
ilar for large Af values.

Figure 91 represents an ideal trajectory of a power grip
from dataset Z12092 1. In this case, trials that are farther along
the projection axis correspond to trials with shorter RTs, in
line with the predictions of the projection method.

Discussion

Using simultaneous neural recordings from three animals, we
have shown that preparatory activity in both premotor and
parietal cortices is correlated with trial-to-trial variability in
RT. However, the activity in F5 is far more predictive of RT
than in ATP. Although the length of the memory period facil-
itated RT predictability, our findings cannot be explained
purely based on this relationship. The use of a state space
framework, made possible by the parallel recording of many
units, represents a major step forward in understanding the
relationship between preparatory activity and behavioral
parameters.

Trial-to-trial RT prediction

Although response characteristics and tuning properties of AIP and
F5 neurons can be very similar (Baumann et al., 2009; Fluet et al,,
2010}, we have shown that their trial-to-trial relationship with RT
differsgreatly (Fig.5). The current result is not trivial, because F5 and
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AIP are densely and reciprocally connected {(Luppino et al, 1999;
Borra et al,, 2008). However, the level of RT predictability found in
the preparatory activity of ATP units is consistent with previous stud-
ies in nearby areas (Janssen and Shadlen, 2005; Snyder et al., 2006).

Together, the relative advantage of F5 over AIP is not altogether
surprising given the fact that F5, which has projections to the spinal
cord (Heetal., 1993; Borra et al., 2010) and a facilitation effect on M1
(Shimazu et al., 2004), must naturally be involved in the transition
between preparation and movement execution.

Comparing prediction methods

High performance ofthe projection method, matched only by the
SCAR method, is consistent with the “initial conditions™ hypoth-
esis formulated by Afshar et al. (2011) from activity in PMd. Even
after controlling for the effect of memory period length, the pro-
jection method still performs above chance level; however, the
SCAR method can outperform the projection method, especially
in Task 1. SCAR offers an alternative explanation for the relation-
ship between single-unit firing and RT. In this framework, most
individual units have a consistent relationship with RT, i.e,
higher or lower firing rates before the go cue are associated with
shorter RT. Controlling for the sign of this relationship was able
to increase RT prediction up to four times and follows well from
the observation that the preparatory activity in PMd is both pos-
itively and negatively correlated with RT (Riehle and Requin,
1993), as in F5.

Could subpopulations of these units explain prediction of RT*?
If this were the case, we would expect units that fire more during
the delay would continue to rise during the movement. In two of
three animals, the SCAR method peaked in RT prediction at the
go cue, suggesting that this sign correction was a local property
and not a consistent property of each unit (Fig. 74, C). Indeed,
activity is often higher in the delay period than during the move-
ment (Crammond and Kalaska, 2000}, suggesting that the rela-
tionship between firing during preparation and movement is
complex (Churchland and Shenoy, 2007b).

Interestingly, maximal performance is always achieved for the
projection and SCAR methods when including all recorded units
and not a variance-selected subset in F5 (Fig. 8), supporting the
conclusion that both methods accurately describe population-
level features and are not simply dominated by specific subpopu-
lations of umnits.

Previously, the best performing method was a multiple regres-
sion of projection and velocity projection compenents {Afshar et
al.,2011). We did not find significant performance of the velocity
projection method or any multiple regression. When examining
our neural trajectories, it seems that in many cases the speed of
change in neural signal remained high or even increased during
the memory period, especially in Task 1 (our unpublished data).
This may represent an interesting quality of F5 activity that differs
from activity in PMd. Such memory-related activity could mask
relationships between trial-to-trial neural velocity and R'T, espe-
cially after factoring in the length of the memory period.

Ditferences between PMv and PMd

To our knowledge, the preparatory activity recorded in F5 in our
study explains more trial-to-trial variance in RT than any other
published study. However, the results obtained in nearby PMd
are quantitatively comparable (Afshar et al,, 2011). A number of
studies have systematically contrasted PMv and PMd (for review,
see Hoshi and Tanji, 2007). Tt may be that F5 is more involved in
the specific timing and execution of reaching movements than
PMd, as evidenced by chemical inactivation (Kurata and Hoff-

Michaels et al. @ Reaction Time Prediction in the Neural State Space

man, 1994). Nevertheless, both PMv and PMd are essential for
grasping movements (Raos et al., 2004, 2006). Electrical micro-
stimulation in PMd during preparation {Churchland and She-
nov, 2007a), and potentially F5 (Gerits et al,, 2012}, delays
movement onset.

Although PMd and PMv are part of relatively distinct parieto-
frontal networks, they both have an important effect on behav-
ioral timing. Additionally, both PMd and PMv project to similar
locations within M1 and lack a clear hierarchy (Dum and Strick,
2005), suggesting that their roles are complementary and not
sequential.

Limitations

To rule out premature muscle contractions as an explanation for
RT prediction obtained during a delay, electromyographic re-
cording of relevant muscles has been used in the past (Church-
land et al., 2006¢; Afshar et al., 2011). Such recordings were not
undertaken in the current study; however, we do not believe that
premature muscle contractions are a likely cause of the RT pre-
diction observed here for three reasons. First, the hands of all
animals remained completely still on the hand rest buttons until
after the go cue had been given, as confirmed by infrared moni-
toring. Second, the RTsofall animals were well above 200 ms in at
least 97% of trials, suggesting that they appropriately awaited the
go cue. Third, animals successfully withheld movement during
the catch trials, suggesting that they were properly awaiting the go
signal.

Although the primary interest of the current study was grasp-
ing actions, all movements included a large reaching component
as well. It remains a possibility that the relative advantage of F5
over AIP could in part be attributable to a larger role of F5 in
reaching than AIP. However, previous studies dissociating reach-
ing and grasping have shown that PMy is greatly involved in the
representation of grasping without a reach component (Hepp-
Reymeond et al,, 1994) and is potentially even less involved in
reach encoding than AIP (Lehmann and Scherberger, 2013).
Therefore, finding higher RT prediction accuracy in F5 rather
suggests a larger influence of the grasping component in the neu-
ral signal.

Implications for models of motor preparation

It is clear that the most dominant factor in the neural trajectories
of animal B is the length of the memory period itself (Fig. 9A),
which seems to act counter to the notion of an optimal subspace,
because trials do not congregate within an area of low variability.
[t has been shown that variability is decreased by external stimuli,
which was observed in PMd (Churchland et al., 2006¢) and a
number of other cortical areas (Churchland et al., 2010). If F5
neurons were multiplexing many factors in addition to a motor
plan such as anticipation of the go cue, similar to hazard rate
{Janssen and Shadlen, 2005), or variability in attention over lon-
ger periods of time, trial-to-trial variability might be increased at
go cue. Furthermore, encoding of the length of the memory pe-
riod clearly increased RT predictability in F5 and AIP, as evi-
denced by the decrease in predictability when using partial
correlation. Additional work is needed to determine the extent to
which F5 and AIP encode cue anticipation or attention-related
factors.

Alternatively, it could be that the subspace required to suc-
cessfully complete the grasping movement is sufficiently large to
allow trajectories to lie in a relatively wide space. The absence ofa
static prepare-and-hold state is consistent with the augmented
view of the initial conditions hypothesis posited by Ames et al.
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(2014), who showed that the memory state is bypassed in PMd
when time to prepare an action is lacking. In this view, the sub-
space required to successfully complete an action, i.e., with no
penalty in movement generation, but a possible penalty in RT,
could be quite broad. However, it is clear that F5 firing rates do
not necessarily congregate in a specific part of the state space
given enough time, as would be predicted by an attractor model
of preparatory dynamics. The interesting question of determin-
ing whether such a prepare-and-hold state is necessary in F5 or
AIP, along with whether the observed preparatory processes set
the initial conditions of a dynamical system, as they do in PMd
and M1 (Churchland et al., 2012; for review, see Shenoy et al.,
2013), are left to future works.

Recently, the ability to record activity from many neurons
simultaneously has opened up new possibilities in the investiga-
tion of the motor and premotor cortices (for review, see Church-
land et al., 2007). The current study explores the relationship
between preparatory activity in large populations of neurons and
subsequent behavior, shedding light on the differential role of
parietal and frontal cortices in this process.
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. ‘motor preparation’ may be more accurately defined as the engagement of a
specific set of preparatory dynamics, rather than the achievement of a particular
neural state. The set of states that are produced by these dynamics serve as initial
conditions that are sufficient to generate a correct reach. ”
(Ames et al., 2014)

51



2.2 - Probing the continuum

52



2.2 - Probing the continuum

Abstract

Our actions lie on a continuum between acting immediately and waiting for the right
moment. Studying the interplay between planning and movement requires
systematically varying preparation time. Two macaque monkeys performed a
grasping task with a short instruction followed by variable time to go cue (0-1300 ms)
while we recorded from many neurons in parallel from the ventral premotor cortex
(F5) and the anterior intraparietal area (AIP), areas essential for grasp generation.
Initial population responses passed through a fixed neural space, unique to each grip
type, reflecting essential motor preparation. After this, AIP stabilized in a unique
memory state while activity in F5 continued to evolve, providing a decodable
signature of time. Intriguingly, in both areas activity during movement initiation
separated into two groups corresponding to movements ‘as fast as possible’ and
movements from memory, suggesting that withholding a movement causes a network-

wide shift whose trace lasts throughout movement initiation.
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Introduction

Some actions, such as quickly stopping to spill a cup of coffee, demand an immediate
response. Others, such as waiting before a traffic light, require withholding our
actions for the right moment. Most of our actions lie on the continuum between the
two, and although many actions are carefully planned before they are executed (Kutas
and Donchin, 1974; Ghez et al., 1997), we are often required to act with little or no
warning. Various studies have examined how movements are planned and held in
memory in the primate brain (Tanji and Evarts, 1976; for a review see Wise, 1985;
Riehle and Requin, 1989; Murata et al., 1996; Cisek and Kalaska, 2002), but only a
few have contrasted well planned movements with situations where little to no
preparation is possible (Wise and Kurata, 1989; Crammond and Kalaska, 2000; Ames
et al., 2014). None, to our knowledge, have systematically probed the transition
between immediate and planned grasping movements in the behaving primate.

Understanding how specific brain areas contribute to movement planning
requires being able to dissociate the neural preparation that occurs before a movement
and the movement activity itself. Delayed movement paradigms in which actions must
be withheld before they are executed have shown that preparatory activity in premotor
and parietal cortex can be used to decode object properties and hand shapes
(Townsend et al., 2011; Schaffelhofer et al., 2015), as well as arm and hand
kinematics during movement itself (Menz et al., 2015), implicating them in reach and
grasp generation. Furthermore, preparatory activity in the premotor cortex
(Churchland et al., 2006b; Afshar et al., 2011) and parietal cortex (Michaels et al.,
2015) is correlated with reach and grasp reaction time (RT), and perturbing this
preparation state in premotor cortex delays subsequent movement (Day et al., 1989;
Churchland and Shenoy, 2007; Gerits et al., 2012), a clear indication of a functional
contribution to action planning.

While relating the responses of single neurons to behavior has been vital in the
past, a neuron-by-neuron characterization cannot reveal the dynamics of whole brain
regions, or how they interact with one another (for a review see Yuste, 2015). More
and more studies show how task features are distributed over many neurons of a
network (Raposo et al., 2014), which have been made possible by the increasing
implementation of large-scale parallel recording and employing a state space
framework of population activity (for a review see Cunningham and Yu, 2014). Under

this framework, the firing of each neuron represents a dimension in a high-
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dimensional space of all neurons where the firing of all neurons at a particular time
represents a single point in the space of all potential network states. A recent study
revealed that when reaches are cued immediately, the neural population in dorsal
premotor cortex (PMd) does not need to achieve the specific state attained during
fully planned movements (Ames et al., 2014), suggesting that successful reach
preparation may be achieved through multiple neural trajectories. While contrasting
immediate and fully planned reaches reveals important population features, to address
the full continuum of preparation, as well as the complex interaction between
planning and movement, a large range of preparation times must be investigated.
Additionally, it is unclear how neural populations stabilize or maintain the plan of
movements that must be executed from memory when visual cue information is only
presented briefly. Crucially, to understand how the motor system encodes and
executes movements, multiple distributed brain regions must be investigated, thereby
providing a picture of how diverse areas differentially contribute to action.

To investigate how parts of the frontal and parietal lobes differentially encode
the continuum of grasp preparation, we recorded large neural populations from the
grasping circuit (Luppino et al., 1999) consisting of the hand area (F5) of the ventral
premotor cortex (PMv) in the frontal lobe and the anterior intraparietal area (AIP) in
the parietal lobe. While neural activity was recorded, two macaque monkeys
performed a delayed grasping task, with a memory component, in which the amount
of preparation time was systematically varied using 12 discrete delays (0-1300 ms).
We found that during short delays, population activity takes shortcuts to movement
onset, bypassing the states achieved during fully prepared grasps. However, initial
trajectory (first 300 ms) was the same regardless of delay, but specific to each grip
type, suggesting that this activity is required for successful movement. Furthermore,
the entire trajectory of the short delays (0-200 ms) was the same throughout the entire
trial, suggesting varying the presentation of the go cue within this range resulted in
the same grasp execution.

While single unit activity was similar between the areas, there was a
dramatic difference in population dynamics for fully planned grasps. Activity in AIP
stabilized after 600 ms for long delays, but activity in F5 was highly dynamic and
continued to evolve for the entire memory period. The signature of time could be
decoded from activity of either area, but time decoding was significantly better in F5

specifically during the memory period, suggesting that F5 and AIP play different roles
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during memory. Activity was broadly distributed in the state space at the time of go
cue, but rapidly converged in the 200 ms preceding movement onset with F5 leading
AIP by 60 ms. Interestingly, activity in both areas approached movement onset in two
distinct trajectory clusters composed of delays shorter or greater than 500-600 ms,
suggesting that a network-wide shift occurs when movements no longer occur

immediately, but instead must be withheld and executed from memory.
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Results

Task and behavior

We trained two macaque monkeys to perform a delayed grasping task, with a memory
component, in which the amount of preparation time was systematically varied
between non-delayed (0 ms) and a long delay (1300 ms) in 12 distinct increments.
Monkeys B and S fixated a central point, received a grip cue (300 ms) corresponding
to either precision or power grip, and were cued to perform this grip following a
variable delay when the central fixation point turned off (Figure 1a-b). The grip cue
appeared for 300 ms regardless of delay length, so for longer delays monkeys had to
remember which grasp had been cued at the beginning of the trial. The performance
of both monkeys was high, correctly completing trials after receiving grip information
95% and 98% of the time for monkeys B and S, respectively (Table 1). In addition to
the normal task, we also randomly inserted no-movement trials to ensure that the
monkeys always waited for the go cue before acting. In these trials monkeys were
given a grip cue as normal, but were required to continue fixating and withholding
movement for 2 seconds (8% of all trials), after which a reward was given for
withholding movement. Both monkeys completed these added trials successfully

(monkey B: 100%; monkey S: 97.7%).

Trial Correct Units Recorded Units Recorded
Count Performance inF5 in AIP
Bli 485 91% 65 29
B2 685 96% 88 35
B3 586 96% 43 25
B4 814 96% 64 28
B5 775 96% 46 19
B6 745 97% 72 33
Average: 682 95.3% 63.0 28.2
S1 502 98% 124 134
S2 514 97% 136 148
S3 571 97% 142 137
S4 658 99% 121 97
S5 590 99% 115 104
S6 546 98% 156 165
Average: 564 98.0% 132.3 130.8

Table 1. Table of trial counts, performance, and number of units recorded for all
data sets.
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In addition to number of correctly executed trials, examining the reaction
times (RTs) and movement times (MTs) of the monkeys can provide useful insight
into the difficulty of the task and how reliably monkeys could perform. RT decreased
steadily with increasing amounts of preparation (Rosenbaum, 1980), approaching a
minimum after approximately 400 ms of preparation (Figure 1¢)(Churchland et al.,
2006b). RT tended to increase slightly for the longest delay, which is expected since it
is hard to maintain focus for long periods of time. For monkey S, MT did not correlate
with length of the delay period (Figure 1d), suggesting that although RT was slower
for short delays, once movements were initiated, the movements were identical
regardless of delay. In monkey B there was a small positive correlation between delay
and MT (r = 0.18, Figure 1 — Figure Supplement 1), indicating that movements after
longer delays were slightly slower. The number of errors showed no clear relationship
to the length of the delay period (Figure 1 — Figure Supplement 2), and the number of
errors was extremely low, providing evidence that the monkeys could complete all

conditions equally well.



2.2 - Probing the continuum

Reward

Movement + Hold Time
700-1100ms

Cue + Memory
0-1300ms

~
,’Grip Cue - 300ms

Fixation
600ms

Power
Illumination
300ms

Fixation
400-700ms

Precision

@ i = Precision . g
2 700t : E 350
S s+ . = Power . ®
o 600 | N\ : : Raoo

ment
n nN
o O
o o
I8
N
B30 1O
L e

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
e Delay Length (ms) f Delay Length (ms)

Figure 1. Task design, implantation, and behavior. (a) Illustration of a monkey in
the experimental setup. The cues were presented on a masked monitor and reflected
by a mirror such that cues appeared super-imposed on the grasping handle. (b)
Delayed grasping task with two grip types (top: power grip, bottom: precision grip).
Trials were presented in pseudorandom order in darkness and with the handle in the
upright position. (¢ and d) Scatter plots of reaction time (¢) and movement time (d)
against delay length for monkey S. The solid line represents the mean for each delay
bin. (e and f) Array locations for monkey B (e) and S (f). Two arrays were placed in
F5 on the bank of the arcuate sulcus (AS) and two were placed in AIP toward the
lateral end of the intraparietal sulcus (IPS). In monkey B two more arrays were placed
on the bank of the Central sulcus (CS). The cross shows medial (M), lateral (L),
anterior (A), and posterior (P) directions. Note that monkey S was implanted in the
left hemisphere and monkey B the right hemisphere.

Neural responses
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During the six recording sessions of each monkey, single- and multi-unit activity was
recorded simultaneously in F5 and AIP using floating microelectrode arrays (Figure
le,f; Materials and Methods). The number of units recorded in each session is
summarized in Table 1. There were significantly more units recorded in area F5 of
monkey B than in AIP (Paired #-test, p < 0.001), while there was no significant
difference for monkey S (Paired #-test, p = 0.81). For all analyses we pooled single-
and multi-units together (mean recorded per session: 75 single and 102 multi). We
evaluated grip type tuning in both areas to ensure that the task successfully elicited
task-related tuning. The average percentage of units tuned for grip type during the 200
ms following cue onset was 29% in F5 and 29% in AIP, 28% and 26% in the 200 ms
before the go cue and 55% and 45% in the 200 ms following movement onset (#-test,
p <0.05), conservatively measured only for movements that could be fully planned
(i.e. 2500 ms delay). Amounts of grip tuning were very similar between monkeys and
to previous studies of both F5 and AIP (Lehmann and Scherberger, 2013; Michaels et
al., 2015; Schaffelhofer et al., 2015).
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Figure 1 — Figure Supplement 1. Behavior of monkey B.

If the brain areas we investigated were specifically coding task-related visual
features, we would expect similar responses to the grip cue regardless of whether
grasps were cued immediately or not. Conversely, if single units were related to
execution of the correct motor plan, we should observe similar neural responses

during movement regardless of when go cues were presented. Interestingly, a wide
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variety of mixed activity patterns were present in both areas, as shown by Figure 2,
which directly compares the 1300 ms delay and the 0 ms delay for a number of
example single-units. In many cases the initial cue response in the delayed condition
was suppressed when the go cue appeared concurrently with the grip information
(Figure 2a,e). In other cases, the initial cue response was present regardless of delay,
but the activity quickly converged to an equivalent movement trajectory (Figure
2b,d,f,h). Other interesting responses were observed, such as a peak in activity during
the memory period (Figure 2c), similar to hazard rate, i.e., the expectation of an event
given that no event has occurred until now (Janssen and Shadlen, 2005), and activity
during the movement period which differed between delayed and non-delayed grasps
(Figure 2g), an interesting result returned to later. Figure 2d shows an example of
strong grip type tuning after the cue and during movement, and Figure 2h shows an
additional example where the pre-movement activity varies between delayed and non-
delayed grasps. All of these diverse types of responses were present in both F5 and
AIP, although movement period activity tended to be higher in F5. The broad variety
of unit responses reveals a complex representation of non-delayed vs. delayed
movement, making further analyses based on individual units insufficient for

characterizing processing within these brain areas.
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Figure 1 — Figure Supplement 2. Error trial distribution over all data sets.

Visualizing the population response

An alternative approach to single unit tuning is to use a state space framework, in
which all units together are considered as a high-dimensional space in which the
firing of each unit represents one dimension. In order to visualize the complex
interactions between planning and movement, we normalized (soft-normalization,
Materials and Methods) and then projected population activity of all units of each
area, for all 12 delay lengths of one grip type, onto the first three principal
components (PCs; Materials and Methods). Video 1 shows the neural trajectory of
exemplar data sets in F5 (B5-Power) and AIP (S4-Power) from shortly before grip
cue onset to shortly after movement onset. The first three PCs were able to explain
between 62-75% of firing rate variance, suggesting that the first three components

capture most of the dominant features in the entire population of units.
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Figure 2. Example average firing rate curves of single-units for delayed (1300
ms) vs. non-delayed (0 ms) grasps. Data were aligned to two events, grip cue onset
and movement onset. (a-d) Examples from area F5 showing (a) a suppressed cue
response for the non-delayed condition in monkey B, (b) where the cue and
movement responses are merged, (¢) where the movement activity greatly differs
between delayed and non-delayed grasps, (d) and an interesting additional example
similar to the second example. All of these examples are from monkey B, but similar
examples exist for monkey S. (e-f) Similar types of example single-units from AIP in
monkeys B and S in the same order as the first section. Dotted red line represents
approximate time of cue onset for non-delayed grasps. The cue was always presented
for only 300 ms regardless of delay. Curves and shaded bands represent mean and
standard error of the mean, respectively.
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By following how the neural trajectories evolve in Video 1, we can generate a
number of interesting hypotheses: (1) the states achieved by longer delays are
completely bypassed for immediately cued grasps, in both areas, (2) the initial (first
300 ms) response to the cue is the same regardless of delay length or area, (3) the
memory period activity in F5 changes continuously, never reaching a stable state,
while the activity in AIP congregates in a stable state shortly after the cue, (4) activity
at the go cue is very broad, but rapidly decreases in variance and converges towards a
singular movement onset state, and (5) the activity during movement initiation is
clustered into two groups, corresponding to delays shorter or longer than 500-600 ms.
With this visualization as a guide, we now have a starting set of hypotheses to

investigate.

The video can be viewed online at the following address:
http://www.jmichaels.me/docs/Videol.mp4

Video 1. Neural trajectory of all amounts of preparation in the first three
principal components of F5 and AIP. (Left) Example data set from F5 of monkey B
(B5-Power). (Right) Example data set from AIP of monkey S (S4-Power). Colors
represent mean trajectory for each delay condition ranging from 0 ms (red) to 1300
ms delay (blue). To generate trajectories, data from each trial was aligned to two
events, the grip cue presentation (magenta point) and movement onset (black point),
averaged over all trials of each delay condition, and then interpolated to form a
continuous trajectory. The grip cue always lasted for 300 ms regardless of delay.
Trajectories begin 100 ms before the grip cue and end 50 ms after movement onset.
The initial perspective is in the first two principal components and then rotates
through the first three.
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Figure 3. Point-to-curve distance between delayed and non-delayed trajectories.
(a) Minimum Euclidian distance between each time point on the delayed trajectory
(1000 ms, in steps of 50 ms) and the entire non-delayed (0 ms) trajectory over time
for 4 example data sets (F5: B5-Precision, S2-Power; AIP: B5-Power, S4-Precision)
from both areas and monkeys. The magenta line represents the point-to-curve distance
between the delayed and non-delayed trajectory, while the gray lines represent the
same analysis when trials are drawn only from the delayed trajectory, acting as a
chance level. Black bars along the top of plots denote times when the distance is
significantly greater than chance level (Bootstrapping procedure with 1000 resamples,
p < 0.05 Bonferroni-corrected for number of time points). Error bars represent the 5%
and 95% confidence intervals generated by the bootstrapping procedure. (b) Fraction
of significant distances (for the 1000 ms delay) over all data sets and conditions of
both monkeys (12 data sets x 2 grip types). (¢) Point-to-curve distance analysis
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repeated for all time points on each delay (0-1300 ms) to the entire non-delayed (0
ms) trajectory reported as fraction significant distance over all data sets, grip types,
and areas (12 data sets x 2 grip types x 2 area).

Required preparation and shortcuts to movement

When the monkey had no or only very little time to plan, the neural trajectory
seemed to take a “shortcut” to movement initiation. To quantify if, and when, delayed
and non-delayed trajectories diverged, we used a continuous distance analysis
(Materials and Methods). We measured the minimum Euclidean distance (known as
point-to-curve) between each time point on the delayed trajectory (1000 ms delay
condition in steps of 50 ms) and the entire non-delayed (0 ms) trajectory in the full
space of all units (i.e. without dimensionality reduction) to determine which points in
the state space were traversed by both conditions and which were unique to longer
delayed movements. This analysis was carried out separately for each grip type and
data set.

Figure 3a displays the results separately for both monkeys and brain areas.
After the cue, distance between the trajectories rose and stayed significantly above
chance level (marked in gray) until around movement onset (Bootstrapping procedure
with 1000 resamples, p < 0.05, Bonferroni-corrected for number of time points;
Materials and Methods), at which point it decreased rapidly, suggesting that the
trajectories during the movements were quite similar regardless of delay. Over all grip
types and data sets the trend remains clear (Figure 3b), showing that maximal distance
between the trajectories was maintained until near movement onset. These results
statistically reinforce our first hypothesis that the population activity achieved during
longer delays is unique to delayed grasps and is not achieved during non-delayed
grasp and therefore not necessary to successfully complete the movement. The
amount of divergence between the delayed and non-delayed trajectories was very
similar in F5 and AIP, suggesting that when grasps are cued without a delay the
neural population of both areas take shortcuts to movement, in agreement with our
first hypothesis. Furthermore, our findings were not an artifact of our smoothing
kernel, since a fixed spiking window of 100 ms yielded comparable results (data not
shown). Due to differences in number of recorded units, the magnitude of the effect

varied between monkeys (Figure 3 — Figure Supplement 1).
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Figure 3 — Figure Supplement 1. Minimum point-to-curve distance separately by
monkey.

Given that the delayed and non-delayed neural trajectories diverge, is there an
area in the neural space that is traversed regardless of delay? In no data set or grip did
the trajectories diverge before 300 ms after cue onset (Figure 3b), indicating that the
initial response to the cue is identical whether or not the monkeys were given time to
prepare. Therefore, it is likely that this time represents required processing, a point
supported by the leveling off of the RT curve with preparation times exceeding
around 300-400 ms (Figure 1c). Taken together, these results suggest that large
portions of the state space that are traversed after the first 300 ms do not seem to be
necessary for successfully executing grasping movements, in agreement with our
second hypothesis. If we repeat the same distance analysis comparing all delayed
trajectories with the non-delayed trajectory, we can gain a more detailed picture of
how trajectories differ over varying amounts of preparation (Figure 3c). Interestingly,
distance between delayed and non-delayed trajectories barely ever exceeded chance
level for the shortest delays (100 and 200 ms) at any point during the trial, suggesting
that neither the extra preparation time nor the difference in when the go cue was

presented changed the trajectory at all.

Static and dynamic memory

Given that the trajectories of non-delayed grasps only overlap with longer delays for
the first 300 ms of preparation, what is the function and dynamics of the memory
period activity in longer delays? A striking feature of the visualization in Video 1 was
that the F5 activity continually evolved throughout the course of the memory period,
while activity in AIP seemed to congregate in an area of low variability. To analyze if

the neuronal trajectory of the two areas stabilized during particular states, we
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systematically compared the Euclidean distance between all pairs of time points along
a trajectory for both the delayed (1300 ms) and no-movement trajectories (Figure 4,
averaged over all data sets since results were very similar across grip types, monkeys,
and sessions). For each time point, if the neural distance did not exceed a dynamic
significance threshold, values were set to zero (Materials and Methods). Therefore,
patches where the mean distance is zero (black) indicate that for no grip type or data
set was there a significant difference between these two time points, while all other
points contain at least one incidence of significance.

With the exception of the fixation epochs, all parts of the trial seemed to attain
unique states that significantly differed from one another. The movement epoch was
the most unique and dynamic epoch of the task, while the reward epoch and the time
of cue offset stood out most in the no-movement condition. Most remarkably, the
neuronal trajectory during the memory period in F5 is continuously and uniformly
changing even though no event or movement occurs in this time. On the contrary, in
AIP the neuronal trajectory stabilized about 300 ms after cue offset, representing a
unique state, which is maintained throughout the memory period even after 2 seconds
in the no-movement condition. These results suggest a considerably different code at
the population level in AIP and F5.

In the current task, the expectation of having to perform a movement did not
remain constant, since the probability of being in a no-movement trial increased with
time spent in the memory period. Therefore, could it be that the dynamic nature of the
memory period in F5 is due to this change in expectation? To rule out this possibility,
we repeated the current analysis on data of a similar experiment in which movement
expectation never changed during the memory period, due to the absence of a no-
movement condition (Michaels et al., 2015). We found that even when the certainty of
performing a movement remained constant, the same inter-area difference reported
here was robustly present (Figure 4 — Figure Supplement 1), lending support to the
observed dissociation between the two areas. These findings support our third
hypothesis that population activity in F5 continually evolved throughout memory,

while AIP activity became stable shortly after cue offset.
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Figure 4. Uniqueness of neural state over the course of the trial. Mean Euclidean
distance for delayed grasps (1300 ms) and no-movement trials between all pairs of
time points over all data sets in F5 and AIP. For each pair of time points over all
conditions (12 data sets x 2 grip types), distance results were tested for a significant
difference using a bootstrapping procedure (6000 resamples in steps of 60 ms, p =
0.01, Bonferroni-corrected for number of time pairs). If a pair of time points did not
significantly differ, their distance was set to zero. Therefore, all time points showing a
distance of 0 did not significantly differ for any condition, while any value above zero
showed significance for at least one condition. The abbreviations Fix, I//u, Mem, and
Rew, correspond to the fixation, illumination, memory, and reward epoch,
respectively. The median time reward onset was used for delayed movements.
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Figure 4 — Figure Supplement 1. Uniqueness of neural state over the course of
the trial for an additional experiment. As described in Michaels et al. (2015),
monkey Z performed a similar task to the current study (6 data sets x 2 grip types,
Instructed condition). The same grip types were cued and the memory period was also
variable; however, all trials resulted in movement, regardless of condition. Therefore,
if the dynamic nature of the memory period observed in the present experiment were
due only to the changing expectation of having to execute a movement over the
course of the trial or the deterioration of a motor plan, we should observe stable
activity. Yet, in this additional experiment the highly time dependent nature of the
memory period activity is maintained, specifically in F5, suggesting that this
variability is not due to the varying chance of subsequent movement, but represents an
essential feature of the examined areas.

Signature of time

Given the constantly evolving population trajectory in F5, it should be possible to
decode the exact time points of the task, while this should be more difficult in AIP,
assuming the quality of recording is comparable between areas. To this end, we
decoded the time course of the task, using a linear classifier (200 ms time bins, n-fold
cross-validated; Matlab function: fitcdiscr). To ensure similar recording quality
between areas, units were randomly discarded from each data set until there were an
equivalent number of units in both areas (stratification; Materials and Methods). The
average confusion matrix across data sets (decoded vs. real time bins) can be seen in
Figure 5a for the no-movement condition and for a delayed grasp in Figure 5 — Figure
Supplement 1a. as expected from Figure 4, the most decodable epochs were around
movement and reward, while the least discernible were the first fixation period and
the memory period. Figure 5b shows the average performance along the diagonal of
the confusion matrices, revealing a significant advantage of F5 over AIP which was

limited to the memory period (cluster-based permutation test across data sets, p <
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0.05; Materials and Methods), confirming that there is less information regarding the
passage of time in AIP. The fact that the reduction in decoding performance was
limited to the memory period indicates that the observed difference between F5 and
AIP represents a temporally localized difference in the dynamics at play while the
monkey is remembering and withholding a grasping movement.

It is also notable that even when decoding was incorrect, most decoded epochs
were assigned to those very close in time. Therefore, if we consider not just the
diagonal of the confusion matrix when evaluating performance, but included also
super- and sub-diagonal entries (i.e., entries just one step off the diagonal),
performance increased by an average of 25 percentage points over both areas and
delayed/no-movement trials (range: 23-26 percentage points). These results suggest
that AIP holds a specific memory state during delays, while F5 actively tracks the
temporal position within the delay, a novel finding in agreement with our third

hypothesis.

Converging on movement

The population state at the time of go cue varied greatly between delays, especially in
F5, but shortly before movement all activity converged towards a singular movement
onset point. Taking a closer look at a few single units over all delay lengths (Figure
6a), we can see a large variety of paths to movement. However, all the trajectories
converged at some point during the movement, with the exception of the first example
in AIP, a point that will be returned to later.

To quantify how widespread variability around movement was, we tested for
tuning to delay length independent of grip type (Figure 6b; sliding one-way ANOVA
in steps of 50 ms, p < 0.05, Bonferroni-corrected for number of time points). Thirty
percent of units showed delay length tuning and tuning in the population started to
decrease about 200 ms before movement onset, reaching chance levels about 200-300
ms after movement onset in both areas. The progression of delay tuning was similar
for both monkeys, although monkey B had more delay length tuning in F5 than
monkey S. One possible explanation for the increased delay length tuning could be
the slight, but significant, correlation between delay length and movement time only

present in monkey B (Figure 1d and Figure 1 — Figure Supplement 1b).
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% Mean Correctly Decoded

Figure 5. Time dependent decoding of task epochs of the no-movement condition
using a linear classifier. (a) Confusion matrix of average decoding accuracy in
identifying current epoch of each trial in non-overlapping 200 ms spike windows over
all data sets in F5 (top) and AIP (bottom). (b) Mean correct decoding performance for
each time epoch over all data sets in F5 and AIP. Black bar represents cluster of
significant difference between F5 and AIP (cluster-based permutation test, p < 0.05)
and the dashed line represents chance level. Units were discarded from each data set
until an equivalent number of units were present for each area (stratification), then the
decoding was repeated 100 times and the average performance taken. Abbreviations

are as in Figure 4.
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Figure S — Figure Supplement 1. Time dependent decoding of task epochs of
delayed grasps (1300 ms) using a linear classifier.
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Figure 6. Rapid decrease in trial-to-trial variability during movement initiation.
(a) Example average firing rates of single-units in F5 and AIP from both monkeys
showing large firing rate differences between the various delay conditions of a single
grip type. Only one grip type (precision or power) is plotted in each panel. (b) The
fraction of units encoding delay length independent of grip type (one-way sliding
ANOVA in steps of 50 ms, p < 0.05, Bonferroni-corrected for time points) in F5 and
AIP. Error bars represent standard error of the mean over trials in (a), and over data
sets in (b). (¢) (Top) Mean firing rate before (gray) and after (black) mean-matching.
(Bottom) Mean-matched Fano Factor over all units (pooled over data sets and
conditions), showing a minimum shortly after movement onset. Error bars represent
95% confidence interval from regression.
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At a specific time before movement onset, the high variability between delays
rapidly begins to decrease. To quantify this effect further, we calculated the Fano
factor over this same interval (Materials and Methods). The Fano factor provides a
normalized measure of trial-to-trial spiking variability and has already been used to
show that external stimuli decrease spiking variability in many cortical areas
(Churchland et al., 2010a). Since the firing rate increases during movement (Figure 6¢
upper panel, gray line), which could possibly affect variability due to saturation of
neurons at high firing rates, data were mean-matched (Figure 6¢ upper panel, black
line) before calculating the Fano factor. Variability based on Fano factor is rapidly
reduced 150-200 ms prior to movement onset (Figure 6¢ (bottom panel), reaching
levels almost equivalent to the spontaneous spiking patterns of single neurons
(neurons inherently do not spike in a completely predictable way, following a Poisson
process). This strong effect is significant in both monkeys and areas (p < 0.001,
confidence interval of regression; Materials and Methods) when comparing the Fano
factor 300 ms before and 100 ms after movement onset, although the effect is stronger
in F5. These results suggest that although the pre-movement activity for each grip is
initially quite variable, it becomes mostly eliminated around movement onset,
implicating an internal mechanism that brings all trajectories onto a similar path while
the movement is being initiated. Although the path to movement onset may be broad,
the state achieved when the monkey starts moving the hand seems to be in a very
small area of the state space in order to successfully execute the grasp, confirming our
fourth hypothesis and suggesting that activity must be very similar between trials in

order to correctly execute the movement.
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Figure 7. Movement initiation decoding in F5 and AIP. (a) Single trial distance to
support-vector machine decision boundary between pre- and post-movement initiation
generated from the population of units recorded simultaneously in F5 (top) and AIP
(bottom) from an example data set (S2-Precision), aligned to the go cue. (b)
Correlation of predicted time between go cue and movement onset (crossing of the
decision boundary) and measured RT. Each point represents a single trial. (¢)
Difference in movement onset between F5 and AIP measured by systematically
shifting the neural data relative to behavior and generating a new RT decoder for each
time point (in steps of 10 ms), reported as mean normalized R-Square over all
conditions (12 data sets x 2 grip types, normalized to max performance of each
condition). F5 significantly led AIP by 60 ms (Wilcoxon sign-rank test, p < 0.001).
Units were discarded from each data set until an equivalent number of units were
present for each area (stratification), then the decoding was repeated 5 times and the
average result taken.

Leading movement initiation

The decrease in variability preceding movement was not locked to the go cue itself,
but to the internal generation of overt movement. This raised two questions: how is
movement initiation represented in both F5 and AIP, and do both areas represent
movement initiation at the same time? We can shed light on this process by testing the
discriminability of movement initiation in each area and comparing the onset of this
activity to see if one is leading the other, an analysis that is only possible when
activity from many units in both areas is recorded in parallel. We implemented a
support vector machine (SVM) to separate the times before and after movement onset
by using activity in the 800 ms following the go cue (4-fold cross-validated; Matlab

function: fitcsvm). Figure 7a shows the distance of each individual trial to the
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discrimination boundary between pre- and post-movement onset of the SVM for an
exemplar data set. Each trial crosses the decoder boundary at a specific time that can
be used to make a prediction of RT. The time that each trial crossed the boundary
(excluding unrealistic RTs: < 100 ms) was used to predict RTs and was correlated
with the behavioral RT (Figure 7b), producing very high correlation coefficients. In
order to make useful comparisons between the areas, we first discarded units from our
recordings until the number of units in each brain area was the same (stratification),
and repeated the current analysis 5 times. The average r-value over all data sets was
0.86 (0.95 and 0.77 for monkeys S and B, respectively; significant difference:
Wilcoxon rank sum, p < 0.001) with no significant difference between areas or grip
types (Wilcoxon rank sum, p > 0.05), suggesting that movement initiation is robustly
encoded in both areas.

Since both areas were able to predict RT equally well, it is now possible to test
if there was a difference in neuronal movement onset between the areas. We
systematically shifted the neural data back in time relative to the behavior and tried to
predict future RT using a new decoder for each time step (steps of 10 ms, 800 ms
window; same SVM procedure as above). Figure 7c shows the mean performance of
the decoders by time shift (normalized to maximum r-value for each session),
showing that F5 significantly led AIP by approximately 60 ms in the representation of
movement initiation (Wilcoxon sign-rank test, p < 0.001, 12 out of 12 data sets
significant at the p < 0.05 level). Since our method relies on the decoding of RT on
single trials, this small but robust difference in internal movement onset between the
areas is only detectable when many unit are recorded in parallel, and suggests that the

signal triggering movement to occur is more likely transmitted to F5 before AIP.

Clustering of immediate and withheld movements from memory

Based on the visualization of the many different delay trajectories between go cue and
movement onset, the trajectories seemed to cluster into two groups dependent on the
delay length. This interesting effect is especially visible in the example unit in the top
right panel of Figure 6, where these two clusters remain present for over 600 ms after
movement onset, signaling a long lasting effect. But is this clustering robustly present
at the population level? To visualize the clustering for an example data set in F5, we
plotted the activity of all linearly spaced delays (0-1000 ms) of a single grip type

around movement onset in the largest principal component (Fig 8a, optimized to
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extract delay variability; Materials and Methods). Looking specifically at the 500 and
600 ms delays just before movement onset, one can see that although both are
following similar trajectories, the 500 ms delay is deflected downward and the 600 ms
upward towards separate groups. This effect is even more striking in AIP, where
delay lengths following the same trajectory diverge into two distinct groups (Figure 8
— Figure Supplement 1a).

To quantify this at the population level, we calculated the Euclidean distance
between all pairs of delay lengths for each grip type in the full neural space (Figure
8b) and looked for clusters in the distance matrices without forcing clustering
(Materials and Methods). Two clusters were identified for the example data set
(Figure 8c), showing a split around the 500-600 ms delay point that lasts until under
50 ms before movement onset, after which no significant clusters are found
(permutation test, p < 0.05, Bonferroni-corrected for number of time points; Materials
and Methods). This pattern was very similar over all data sets and grips (Figure 8d)
and was also present in AIP (Figure 8 — Figure Supplement 1), suggesting that the
switch that occurs 500-600 ms after the cue spans both the frontal and parietal lobes.

Is it possible that the observed clustering could be due to factors other than a
state switch? Clustering is not likely due to different movement kinematics, since the
movement times were nearly identical for all delay lengths (Figure 1d), especially for
monkey S. Additionally, since movement is initiated by the monkey, there could be a
built-in bias in the amount of time that has elapsed since the grip cue was presented.
However, differences in how long ago the grip cue was presented is unlikely to
explain the two clusters, since repeating the same clustering analysis on the mean
times between cue presentation and movement onset for all delays does not produce
significant clustering for either grip type (permutation test, Precision grip: p = 0.97,
Power grip: p = 0.97). These controls suggest that the separation of the neural
trajectories into two distinct clusters reflects a robust effect of delay length in F5 and

AIP, rather than some other trivial effect.
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Figure 8. Clustering of movement initiation activity in F5. (a) PCA projection
(optimized to distinguish delays) of population activity in F5 over all linearly spaced
delays (0-1000 ms) for an example data set (B2-Precision), aligned to movement
onset. (b) Euclidean distance between all pairs of delays in the full neural space for
two example time points of the example data set including identified clustering using
a clustering analysis that finds community structure. (¢) Clusters identified in the
distance matrices over time (in steps of 10 ms) for the example data set. Black
significance bar shows time points where the modularity statistic exceeded chance
level (permutation test, p < 0.05, Bonferroni-corrected for number of time points). (d)
Same analysis as (¢) averaged over all data sets and grip types of both monkeys (12
data sets x 2 grip types).
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Figure 8 — Figure Supplement 1. Clustering of movement initiation activity in
AIP. Same as Figure 8 for AIP (example data set in a-c: S3-Power).

Interestingly, as marked in the area of interest in Figure 8 — Figure Supplement
2, the delay at which the neural population transitions between the two clusters is not
the same in F5 and AIP (Chi-Square test over all data sets, grips, and delay lengths, p
< 0.05, Bonferroni-corrected for number of time points). For delays along the border
between clusters in AIP, the 500 ms delay was more likely to be classified in the
second cluster, suggesting that the state transition to the second cluster may occur
earlier in AIP. This interesting finding suggests that although F5 leads AIP in
movement initiation, AIP may lead F5 in the transition from immediate movements to

withheld movements from memory.
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Figure 8 — Figure Supplement 2. Differences in cluster assignment between F5
and AIP. Presented data is identical to Figure 8d and Figure 8 — Figure Supplement
1d. Black bar marks time points that significantly differed in cluster assignment over
all delays between F5 and AIP over all data sets and conditions (12 data sets x 2 grip
types; Chi-Square test, p < 0.05, Bonferroni-corrected for number of time points).
Note the difference in cluster assignment within the dashed area of interest.
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Discussion

To systematically probe the interplay between planning and movement in the grasping
network, we recorded large neural populations in premotor area F5 and parietal area
AIP while two macaque monkeys performed a delayed grasping task with 12 distinct
preparation times (0-1300 ms), from having to execute movements immediately to
movements executed from memory after a long delay. Figure 9 illustrates the most
significant findings using exemplar data sets. Firstly, the initial part of the neural
space traversed was the same for all trajectories, regardless of delay length, and was
grip specific, strongly suggesting that this activity was required to successfully
prepare the correct movement. Secondly, once preparation was completed, population
activity shifted into a separate state that is not achieved during short delays, revealing
a unique memory state. Furthermore, while this area was static in AIP, it was highly
dynamic in F5, tracking the evolution of time and suggesting a strong dissociation of
roles between the two areas. Lastly, immediate movements followed a similar
trajectory after the go cue, while withheld movements initiated from memory
followed a separate trajectory to movement onset, forming two distinct clusters and
suggesting a network-wide shift when movements are withheld.

Our results provide new insights for studies examining delayed reaching or
grasping activity in premotor cortex (Cisek et al., 2003; Lucchetti et al., 2005; Fluet et
al., 2010) or parietal cortex (Murata et al., 1996; Snyder et al., 2006; Baumann et al.,
2009). The present study has some similarities with previous work on reaching
movements (Ames et al., 2014). However, it provides several important advances.
Firstly, we investigated the grasping network of the macaque, spanning two areas in
multiple lobes of the brain, allowing comparison between the parietal and frontal
aspects of grasp planning. Secondly, our paradigm is a memory-guided task, since our
visual cue was phasic (300 ms) and was not presented either during the memory
period or during the movement. This allowed us to dissociate strong visual inputs
from internal planning and execution, unlike previous work that included a strong
visual cue for the entire trial. Thirdly and crucially, previous work only compared a
single delayed condition to a non-delayed condition, while we systematically varied
the amount of preparation in 12 discrete steps, allowing fine resolution of the
continuum between planning and movement.

Given that our task also involved a large reaching component, reach planning

is likely a significant part of the observed activity. Still, the presence of robust grip
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type tuning in our tasks, as well as previous research employing a grasp-only task
(Hepp-Reymond et al., 1994), and a grasp-reach dissociation task (Lehmann and
Scherberger, 2013) suggests that F5 encodes grasping quite independently of
reaching, although both areas contain information about reach position (more so in
AIP). Furthermore, reversibly inactivating F5 (Fogassi et al., 2001) or AIP (Gallese et
al., 1994) selectively impairs hand-shaping and not reaching, suggesting that our
results are an accurate representation of the grasping network.

The neural trajectory of short delays bypassed the states achieved by longer
delays in both areas, taking shortcuts to movements. Yet, the first 300 ms of activity
was identical regardless of delay, and grip specific (Figure 9), suggesting that this
preparation is necessary for completing the movement. After this initial preparation,
activity enters other states that are not necessary for preparation, but likely serve other
purposes, such as holding a motor plan or withholding movement, a point discussed
later. Furthermore, the trajectories of very short delays (0-200 ms) were almost
completely identical for the entire trial (Figure 3c), suggesting that the planning and
execution of movement does not differ within either F5 or AIP if the go cue comes
before initial preparation is complete.

In F5 the memory period activity did not congregate in a specific region of the
state space, a feature of the ventral premotor cortex never before observed to our
knowledge. This finding is at odds with the conclusions of Ames et al. (2014), who
postulated that delay period activity of the dorsal premotor cortex (PMd) may act as
an attractor state into which all trials would congregate given enough preparation
time. Nevertheless, since stability was not tested, it remains unclear if the attractor
state described in their study is fixed or a temporally evolving state. An alternative
explanation could be differences in task design. In Ames et al. (2014) the reaching
target was present for the entire delay, a salient visual cue, while we utilized a
memory period following a short presentation of the cue. Therefore, we predict that
PMd activity would be much more dynamic if a memory period were used, a point
supported by a study showing that PMd activity can encode prior knowledge of when
events are likely to occur (Mauritz and Wise, 1986), a feature which requires

continuously evolving population activity.
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Figure 9. Visualization of fronto-parietal grasp preparation system. Visualization
based on principal components of example data sets (F5: B4, AIP: B2). Each gray
trace represents the mean activity for one delay length of one grip type. Following the
grip cue activity in both areas follows a fixed preparation path, after which longer
delays congregate in a memory state in AIP or continue to dynamically evolve in F5.
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After the go cue, activity quickly branches off towards the appropriate grip onset
position while adhering to two distinct clusters.

It could be that the temporal dynamics of F5 activity are a result of an
internalized representation of the likelihood of task events occurring at specific times
throughout the memory period, similar to hazard rate observed in the lateral
intraparietal cortex (LIP) (Janssen and Shadlen, 2005) or the neural representation of
time as observed in LIP (Leon and Shadlen, 2003). Nevertheless, in the current study
we found significantly more time dependence in the memory period of F5 than AIP,
even though LIP is connected to AIP (Borra et al., 2008). However, time dependence
has also been identified in prefrontal areas (Genovesio et al., 2006), and in PMd
(Lucchetti et al., 2005), suggesting that the temporal complexity we observe in F5
could be present in these nearby areas.

A mechanistic explanation for the dynamics observed during the memory
period could be that recurrent networks of neurons in these areas generate temporal
dynamics similar to a time code. Under this perspective, the complex temporal
dynamics during memory would be a feature of a network optimized to produce the
patterns of activity required to generate movement (Sussillo et al., 2015) and maintain
the short-term memory of these motor plans in short time-scales. The observed
temporal dynamics are in line with increasing literature suggesting that time keeping
1s an intrinsic property of all neural networks (for a review see Goel and Buonomano,
2014), as well as a feature of some sub-cortical areas (Gouvéa et al., 2015).
Interestingly, a number of recent studies have shown that timing is a robust feature of
chaotic recurrent networks (Buonomano and Laje, 2010; Laje et al., 2013; Goudar and
Buonomano, 2014), and that neural networks can transition through internal states
with or without the presence of external triggers (Ponce-Alvarez et al., 2012;
Mazzucato et al., 2015), suggesting that F5 may be able to track the course of time
internally and use this information to predict when an action is likely to be required.

One of the most striking features in both areas, but especially F5, was that the
population activity of a single grip type was highly variable at the time of go cue, yet
converged rapidly leading up to movement onset, raising the question of how the
correct movement can be successfully initiated. Recently, alternative theories of
movement generation have arisen, suggesting that preparatory activity in motor cortex

may serve to set the initial conditions of a dynamical system (Churchland et al., 2012;
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for a review see Shenoy et al., 2013; or Churchland and Cunningham, 2014).
However, the large variability at go cue cannot be explained by a rotational dynamical
system (Churchland et al., 2010b; 2012), since, under this model, all trials of a
particular performed movement (e.g. power or precision grip) should have very
similar preparatory activity and the movement activity should follow predictably from
this state. This is especially interesting since F5 does indeed show strong rotational
patterns during movement initiation (J.A. Michaels, S. Schaffelhofer, and H.
Scherberger, unpublished data) that explain a similar amount of variance as in
PMd/M1 (20-40%). We propose that the broadly tuned nature of activity at the go cue
provides the motor system with a large flexibility in movement initiation. Similar to
the dynamics observed during the memory period, it could be that once movement is
triggered, recurrent networks of neurons within these areas rapidly reduce variability
within particular regions of the neural space in order to ensure correct muscle
activation during initiation. Under this framework, selecting between multiple
movement plans would only require the neural population to be within a general
region of activity. Once movement is initiated, activity would fall onto a common
trajectory unique to each action plan and rotational dynamics could proceed as
proposed previously (Churchland et al., 2012). Yet, the movement itself must be
triggered in order to engage this process. Interestingly, the internal initiation of
movement seems to appear first in F5, suggesting that the source of this trigger is
either frontal or subcortical, and only transferred to AIP after a delay (Figure 7).
Future work must tackle the question of to what degree local or extrinsic processes
can account for the rapid decrease in trial-to-trial variability taking place before
movement execution, bringing all trajectories onto a similar path.

Although variability is strongly suppressed leading up to movement onset, the
trajectories did not follow individual paths to movement onset. Instead, trajectories
seemed to cluster into two distinct groups, splitting around the 500-600 delay mark.
Given that the preparation itself likely takes ~300 ms, in the case of short delays the
arrival of the go cue appears before preparation has completed, thereby triggering a
movement ‘as fast as possible’. Conversely, in longer delays the monkey must first
wait for the go signal. We propose that shifting between immediate movements and
movements from memory causes a state shift in the fronto-parietal network that
produces the two clusters during movement initiation (Figure 8-9). Once the state has

been shifted, the trajectories continue to cluster for the entirety of movement
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initiation, and occasionally remain visible into the movement itself in AIP (Figure 8 —
Figure Supplement 1).

The clustering observed in both areas during movement initiation could be a
function of the transition from reactive to proactive control, i.e., the increased ability
to properly anticipate a go cue after long preparation times. This kind of neural state
transition is inherent in highly trained tasks, as is the case in supplementary motor
area (SMA)(Chen et al., 2010). Execution of timed behavior is reduced in humans
with SMA lesions (Halsband et al., 1993) and supports our findings, since F5 is
especially connected to the pre-SMA (Luppino et al., 1993). Yet, this explanation
does not explain the strength of the clustering in the activity of AIP, or the interesting
finding that AIP seemed to transition to the second state earlier than F5 (Figure 8 —
Figure Supplement 2).

More and more evidence proposes that beta-band activity, normally measured
in the local field potential (LFP) acts as a signal of maintenance and re-emerges
during delayed tasks where movements must be withheld (for reviews see Engel and
Fries, 2010; or Khanna and Carmena, 2015). A strong beta rebound occurs when
movements must suddenly be withheld (Zhang et al., 2008). Therefore, it is possible
that once movement planning is completed, beta could provide a network-wide signal
of maintenance during proactive control that spans both F5 and AIP, explaining the
presence of movement initiation clustering in both areas. Future studies should probe
the boundary between immediate and withheld movements by assessing whether beta
activity appears during some, but not all, amounts of preparation time, a finding that
would implicate a state shift once movements are fully planned and await a go signal.

In the current study we probed the continuum of grasp preparation by
systematically varying the amount of time monkeys had to prepare grasping
movements. We showed robust differences in population dynamics between areas F5
and AIP, revealing that F5S may play a larger role in tracking time or expectation
during memory. Interestingly, population activity in both areas converged on
movement initiation along two separate trajectories, comprised of movements ‘as fast
as possible’ and withheld movements executed from memory. The separation of
trajectories into two distinct clusters suggests that a widespread and long-lasting state

shift occurs during the transition from immediate to memory-guided movement.
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Materials and Methods
Basic procedures
Neural activity was recorded simultaneously from area F5 and area AIP in one male
and one female rhesus macaque monkey (Macaca mulatta, monkeys B and S; body
weight 11.2 and 9.7 kg, respectively). Animal care and experimental procedures were
conducted in accordance with German and European law and were in agreement with
the Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral
Research (National Research Council, 2003).

Basic experimental methods have been described previously (Michaels et al.,
2015). We trained monkeys to perform a delayed grasping task. They were seated in a
primate chair and trained to grasp a handle with the left (monkey B) or the right hand
(monkey S) (Fig. 1a). A handle was placed in front of the monkey at chest level at a
distance of ~26 cm and could be grasped either with a power grip (opposition of
fingers and palm) or precision grip (opposition of index finger and thumb; Fig. 1b
insets). Two clearly visible recessions on either side of the handle contained touch
sensors that detected thumb and forefinger contact during precision grips, whereas
power grips were detected using an infrared light barrier inside the handle aperture.
The monkey was instructed which grip type to make by means of two colored LED-
like light dots projected from a TFT screen (CTF846-A; Screen size: 8” digital;
Resolution 800x600; Refresh rate: 75Hz) onto the center of the handle via a half
mirror positioned between the monkey’s eyes and the target. A mask preventing a
direct view of the image was placed in front of the TFT screen and two spotlights
placed on either side could illuminate the handle. Apart from these light sources, the
experimental room was completely dark. In addition, one or two capacitive touch
sensors (Model EC3016NPAPL; Carlo Gavazzi) were placed at the level of the
monkey’s mid-torso and functioned as handrest buttons. The non-acting arm of
monkey B was placed in a long tube, preventing it from interacting with the handle.
Monkey S was trained to keep her non-acting hand on an additional handrest button.

Eye movements were measured using an infrared optical eye tracker (model
AA-ETL-200; ISCAN) via a heat mirror directly in front of the monkey’s head. To
adjust the gain and offset, red calibration dots were shown at different locations at the
beginning of each session for 25 trials that the monkey fixated for at least 2 seconds.

Eye tracking and the behavioral task were controlled by custom-written

software implemented in LabView Realtime (National Instruments) with a time
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resolution of 1 ms. An infrared camera was used to monitor behavior continuously

throughout the entire experiment.

Task Design

The trial course of the delayed grasping task is shown in Figure 1b. Trials started after
the monkey placed the acting hand on the resting position and fixated a red dot
(fixation period). The monkey was required to keep the acting hand, or both hands
(monkey S), completely still on the resting position until after the go cue. After a
variable period of 400 to 700 ms two flashlights illuminated the handle for 300 ms,
followed by 600 ms of additional fixation. In the cue period a second light dot was
then shown next to the red one to instruct the monkey about the grip type for this trial
(grip cue). Either a green or white dot appeared for 300 ms, indicating a power or a
precision grip, respectively. After that, the monkey had to either react immediately or
memorize the instruction for a variable memory period (also referred to as delay
length). This memory period lasted for 0 to 1300 ms (i.e. the go cue could appear
simultaneously with the grip cue, which was always presented for 300 ms regardless
of the length of the delay), in discrete memory period bins of 0, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1000, or 1300 ms. Switching off the fixation light then cued
the monkey to reach and grasp the target (movement period) in order to receive a
liquid reward. Monkeys were required to hold the appropriate grip for 300 ms.
Additionally, no-movement trials were randomly interleaved (8% of trials), in which a
go cue was never shown and the monkey only received a reward if it maintained
fixation and the hands on the hand rests for 2000 ms following the grip cue. All trials

were randomly interleaved and in total darkness.

Surgical procedures and imaging

Upon completion of behavioral training, each monkey received an MRI scan to locate
anatomical landmarks, for subsequent chronic implantation of microelectrode arrays.
Each monkey was sedated (e.g., 10 mg/kg ketamine and 0.5 mg/kg xylazine, i.m.) and
placed in the scanner (GE Healthcare 1.5T or Siemens Trio 3T) in a prone position.
T1-weighted volumetric images of the brain and skull were obtained as described

previously (Baumann et al., 2009). We measured the stereotaxic location and depth
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orientation of the arcuate and intra-parietal sulci to guide placement of the electrode
arrays.

An initial surgery was performed to implant a head post (titanium cylinder;
diameter, 18 mm). After recovery from this procedure and subsequent training of the
task in the head-fixed condition, each monkey was implanted with floating
microelectrode arrays (FMAs; MicroProbe for Life Science) in a separate procedure.
Monkey B was implanted with six electrode arrays in the right hemisphere, each with
32 electrodes (Fig. 1e). Two such arrays were implanted in area F5, two in area AIP,
and two in area M 1. Monkey S was implanted with four FMAs in the left hemisphere
and received two arrays in each area (Fig. 1f). The arcuate sulcus of monkey S did not
present a spur, but in the MRI a small indentation was visible in the posterior bank of
the arcuate sulcus, about 2 mm medial to the knee, which we treated as the spur. We
placed both anterior FMAs lateral to that mark. FMAs consisted of non-moveable
monopolar platinum-iridium electrodes with initial impedances ranging between 300
and 600 kQ at 1 kHz measured before implantation and verified in vivo. Lengths of
electrodes were between 1.5 and 7.1 mm.

All surgical procedures were performed under sterile conditions and general
anesthesia (e.g., induction with 10 mg/kg ketamine, i.m., and 0.05 mg/kg atropine,
s.c., followed by intubation, 1-2% isofluorane, and analgesia with 0.01 mg/kg
buprenorphene). Heart and respiration rate, electrocardiogram, oxygen saturation, and
body temperature were monitored continuously and systemic antibiotics and
analgesics were administered for several days after each surgery. To prevent brain
swelling while the dura was open, the monkey was mildly hyperventilated (end-tidal
CO», ~30 mmHg) and mannitol was kept at hand. Monkeys were allowed to recover

fully (~2 weeks) before behavioral training or recording experiments commenced.

Neural recordings and spike sorting

Signals from the implanted arrays were amplified and digitally stored using a 128
channel recording system (Cerebus, Blackrock Microsystems; sampling rate 30 kS/s;
0.6-7500Hz hardware filter). Data were first filtered using a median filter (window-
length: 3ms) and the result subtracted from the raw signal, corresponding to a
nonlinear high-pass filter. Afterwards, the signal was low-pass filtered with a non-
causal Butterworth filter (5000 Hz; 41 order). To eliminate movement noise (i.e.,

common component induced by reference and ground), PCA artifact cancellation was
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applied for all electrodes of each array (as described in Musial et al., 2002). In order
to ensure that no individual channels were eliminated, PCA dimensions with any
coefficient greater than 0.36 (with respect to normalized data) were retained. Spike
waveforms were extracted and semi-automatically sorted using a modified version of
the offline spike sorter Wave clus (Quiroga et al., 2004; Kraskov et al., 2009).

Units were classified as single- or non-single unit, based on five criteria: (1)
the absence of short (1-2 ms) intervals in the inter-spike interval histogram for single
units, (2) the homogeneity and SD of the detected spike waveforms, (3) the separation
of waveform clusters in the projection of the first 17 features (a combination for
optimal discriminability of principal components, single values of the wavelet
decomposition, and samples of spike waveforms) detected by Wave_clus, (4) the
presence of well known waveform shapes characteristics for single units, and (5) the
shape of the inter-spike interval distribution.

After the semiautomatic sorting process, redetection of the average waveforms
(templates) was done in order to detect overlaid waveforms (Gozani and Miller,
1994). Filtered signals were convolved with the templates starting with the biggest
waveform. Independently for each template, redetection and resorting was run
automatically using a linear classifier function (Matlab function: classify). After the
identification of the target template, the shift-corrected template (achieved by up and
down sampling) was subtracted from the filtered signal of the corresponding channel
to reduce artifacts for detection of the next template. This procedure allowed a
detection of templates up to an overlap of 0.2 ms. As a control, unit isolation was
evaluated again as described before to determine the final classification of all units
into single- or multi-units. Units were only classified as single if they unambiguously
met the five criteria. Stationarity of firing rate was checked for all units and in case
the firing rate was not stable over the entire recording period (more than 30% change
in firing rate between the first 10 min and the last 10 min of recording), the unit was

excluded from further analyses (<3% of all units).

Data preprocessing

Although units were classified as single- or multi-units, all recorded units were used
in our main analyses. A detailed list of data set information can be found in Table 1.
After spike sorting, spike events were binned in non-overlapping 1 ms windows and

smoothed with a Gaussian window (o = 50 ms) to produce a continuous firing rate
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signal (1 kHz). Data were aligned to two events, the presentation of the grip cue and
movement onset, i.e. the time when the monkey’s hand left the handrest. No go cue
alignment was necessary, since the length of the delay period was identical for all
trials of the same delay. For most analyses these two alignments were combined to
produce a continuous signal with as small an overlap as possible. In this case the two
signals were simply concatenated in time. Average firing rates were then calculated
by averaging over all trials of the same condition. All units received soft-
normalization before further population analysis, which is computed by dividing the
activity of each unit over time, f(t), by it’s overall firing rate range, f,, plus a
softening term, s, giving f'(t) = f(t)/(f; + s). For all analyses we used a
softening term of 10 Hz, meaning a unit that fires between 0 and 10 Hz would
correspond to a normalized range of 0 to 0.5. In contrast, a softening term of 0 would
correspond to normalization by range. Normalization was utilized in order scale the

impact of extremely high firing units while not over-emphasizing weak units.

Dimensionality reduction

Dimensionality reduction was carried out for the purpose of visualization only. All
statistical analyses relied on the full space of all units. Neural trajectories were
generated by performing standard principal component analysis (Matlab function:
princomp) on normalized firing rate curves. In general, data was prepared by creating
a matrix of size ct x n, where c is the number of conditions analyzed (e.g., delayed
and non-delayed grasps / precision and power grips), ¢ is the number of time points,
and # is the number of units recorded, then finding principal components as a linear
combination of the » units. The only exception to this procedure was the PCA
analysis in Figure 8a, where data were first averaged over all time points, ¢, in order to
find components that ideally separated the various delays, then the entire trajectory

was transformed into this space.

Distance analysis

In order to find the neural distance between two conditions over time, we calculated
the minimum Euclidean distance (point-to-curve distance) between the two
trajectories in the full space of all units. Two versions of this analysis were performed.

For the distance in Figure 3, we selected time points on specific delayed trajectories
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(in steps of 50 ms) and calculated the Euclidean point-to-curve distance of the delayed
(100-1300 ms) trajectory to the non-delayed (0 ms) trajectory, calculated as the
minimum of all distances between a specific point on the delayed trajectory to all
points on the non-delayed trajectory. Minimum distance, as a conservative measure,
was used in order to overcome the different time courses of the conditions being
compared. Small distances indicate that the two trajectories achieve the same point in
neural space at some point in time, while large distances indicate that the two
trajectories do not pass through the same point in the high dimensional space.

For the distance analysis in Figure 4, the Euclidean distance was calculated
between all pairs of time points on the same trajectory and used in conjunction with
the bootstrapping procedure (next section) to determine if two points significantly

differed.

Bootstrap procedure

In order to gain an estimate of underlying trial-to-trial variability, we performed a
bootstrap analysis. This procedure varied slightly for the different distance analyses
presented above, but the general principle was constant. We resampled trials from
each condition randomly, with replacement, of the same size as the number of
recorded trials in that condition. We then constructed normalized average firing rates
and carried out the appropriate distance analysis as described above (e.g., minimum
distance between delayed and non-delayed trajectory). This resampling was done
1000 times, producing a distribution of distances.

To obtain an estimate of how much distance is expected between trajectories
by chance, we carried out another resampling in which a trajectory was resampled
from itself to determine its underlying variability. Trajectories were resampled once
with the number of trials observed in that condition, and once using the number of
trials recorded in the other trajectory in the comparison, then the Euclidean distance
was calculated as described in the previous section. We could then calculate the
percentage of observations where the distance between delayed and non-delayed
trajectories was greater than the distance from a trajectory to itself (1000x1000
comparisons) and use this as a p-value. This analysis allowed us to determine when an
observed distance was significantly greater than the distance expected if two

trajectories were generated from the same underlying distribution.
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For chance analyses in Figure 4, resampling of trials was carried out 6000
times, with replacement, for each condition and data set, due to the large number of
comparisons being made. For each of the 6000 resampling steps the same trajectory
was resampled twice, termed p and p’. Then, for every pair of time points (t; and t,),
the resampled distance along the first trajectory d = d(p(ty), p(t;)) was compared to
the two inter-trajectory distances at time t; and t,: d; = d(p(tl), p’(tl)) and d, =
d(p(tz), p'(tZ)). We determined the fraction of resamples (across all 6000) for which
the along-trajectory distance d exceeded both inter-trajectory distances:

d > max(d,, d,). This fraction determined a specific p-value for each time pair
(t1,t3). The resampled distance, d, was then considered significant if p < 0.01/c,
given the Bonferroni correction ¢ = T2, where T is the number of time points on the
trajectory. In this way, the underlying threshold for significance was dependent on
which time points were compared along the trajectory, establishing a conservative

estimate of the underlying trial-to-trial variability.

Linear classifier

To evaluate the uniqueness of different time points in the trial, a linear classifier
(linear discriminant analysis) was used to discriminate non-overlapping 200 ms bins
of spikes distributed throughout the trial-course (Matlab function: fitcdiscr). In order
to make a meaningful comparison between F5 and AIP, units were first randomly
discarded from each recording session until both areas had an equivalent number of
units (stratification). For classification, decoding was n-fold cross-validated, where n
is the total number of trials. All trials of the delay length being investigated (either no-
movement or 1300 ms delay) were decoded together regardless of grip type.

To determine at which times during the trial F5 and AIP differed, decoding
performance was compared using a cluster-based permutation test (Maris and
Oostenveld, 2007). Briefly, this test evaluates the t-statistic (independent samples)
between two conditions over all time points and extracts clusters (consecutive time
segments) of activity whose t-statistic exceeds a predefined threshold (@ = 0.05), then
the absolute t-statistics within each cluster were summed to produce cluster-level
statistics. To generate a chance-level distribution from which the appropriate
threshold could be determined, trials were randomly partitioned between the two

conditions and the t-test and clustering redone (1000 partitions). From every partition
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the largest cluster-level statistic was used to generate a largest chance cluster
distribution. By comparing the real cluster-level statistic against the largest chance
cluster distribution, significant clusters could be determined if the observed cluster
value exceeded a set percentage of largest chance cluster values (p = 0.05). In this
way, sensitivity to short time-scale differences is greatly reduced, but the overall

false-alarm rate remains below the designated p-value.

Fano factor

In order to obtain a measure of how spike rate variability changes over time, we
employed the frequently used measure of Fano factor. The current analysis was
performed using a freely available toolbox
(http://churchlandlab.neuroscience.columbia.edu/code/) that was originally introduced
by Churchland et al. (2010a). Briefly, Fano factor is based on the ratio of spiking
variance (across trials) to spiking mean rate. The total data set consisted of all units
(pooled over recording sessions), and both grip types. Data for each unit and grip type
were initially treated separately. Spike counts were computed in a 100 ms sliding
window in steps of 50 ms from 400 ms before movement onset to 600 ms after.

For each time point, the variance across trials was plotted against the mean
spike count (one point per unit x grip type). The weighted regression was calculated
through these points. For the regression, values were weighted by the estimated
sampling error of the variance, which is the square of the mean divided by the number
of trials, and the resulting slope of the regression represented the raw Fano factor. A
value of one indicates purely Poisson spiking.

In order to control for increases in firing rate over time, which could bias spike
timing, data were first mean-matched. The mean-matching procedure consisted of
calculating the histogram of mean rates over all units and grip types for each time
point, then finding the largest common distribution over all time points, i.e., the height
of each bin in the common distribution was equal to the smallest height of that bin
over all time points. Afterwards, data points were randomly discarded from each bin
until the distribution at each time point matched the common distribution. This
procedure was carried out 50 times and the resulting Fano factors averaged to produce
the mean-matched Fano factor. During mean-matching, 21% of data points were

discarded in F5 and 15% in AIP. This procedure ensures that the overall mean does
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not increase over time, thereby eliminating any reduction in Fano factor that is purely
a result of an increase in the mean.

To evaluate if the reduction in Fano factor was significant, the sampling
distributions estimated from the 95% confidence intervals provided by the regression
were compared between 300 ms before movement onset and 100 ms after movement

onset to produce a p-value.

Clustering analysis

To evaluate whether or not delay trajectories leading up to movement onset clustered
in a distinct way, we calculated the Euclidean distance between all pairs of linearly
spaced delays (0-1000 ms, in steps of 10 ms) in the full neural space and looked for
community structure (i.e. distinct clusters of similar value) in the resulting distance
matrix. We employed a well-known modularity analysis that iteratively finds non-
overlapping groups of conditions that minimizes the within-group distance between
conditions and maximizes the between-group distance (Newman, 2004; Reichardt and
Bornholdt, 2006) with a gamma sensitivity of 0.8. Using this analysis, the number of
clusters obtained is purely data-driven and not specified by the experimenter. To
ensure that the found structure was not due to chance, we randomly permuted the
distance matrix (1000 permutations, while conserving matrix symmetry) and
compared the modularity statistic, Q, between the empirical and permuted data. The
percentage of instances where the empirical value exceeded the permuted distribution

was used to generate a p-value.
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“Even something as mundane as watching a movie on a TV screen is an
example of the importance of emergent properties: one cannot
comprehend the scene by looking at individual pixels but instead

needs to simultaneously view many pixels to decipher the image.
Although the neuron doctrine and single neuronal techniques have
focused on the exhaustive analysis of the individual ‘pixels’ of the
brain, it is possible that the function of neural circuits may not be
apparent unless one can visualize many, or most, ‘pixels’ in the
screen.”

(Yuste, 2015)
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Neural Population Dynamics during
Reaching Are Better Explained by a
Dynamical System than Representational
Tuning

Jonathan A. Michaels', Benjamin Dann', Hansjérg Scherberger’?*

1 German Primate Center, Gottingen, Germany, 2 Faculty of Biology, Georg-August-Universitat Géttingen,
Gaottingen, Germany

* hscherberger@dpz.eu

Abstract

Recent models of movement generation in motor cortex have sought to explain neural
activity not as a function of movement parameters, known as representational models, but
as a dynamical system acting at the level of the population. Despite evidence supporting
this framework, the evaluation of representational models and their integration with dynam-
ical systems is incomplete in the literature. Using a representational velocity-tuning based
simulation of center-out reaching, we show that incorporating variable latency offsets
between neural activity and kinematics is sufficient to generate rotational dynamics at the
level of neural populations, a phenomenon observed in motor cortex. However, we devel-
oped a covariance-matched permutation test (CMPT) that reassigns neural data between
task conditions independently for each neuron while maintaining overall neuron-to-neuron
relationships, revealing that rotations based on the representational model did not uniquely
depend on the underlying condition structure. In contrast, rotations based on either a
dynamical model or motor cortex data depend on this relationship, providing evidence that
the dynamical model more readily explains motor cortex activity. Importantly, implementing
a recurrent neural network we demonstrate that both representational tuning properties
and rotational dynamics emerge, providing evidence that a dynamical system can repro-
duce previous findings of representational tuning. Finally, using motor cortex data in combi-
nation with the CMPT, we show that results based on small numbers of neurons or
conditions should be interpreted cautiously, potentially informing future experimental
design. Together, our findings reinforce the view that representational models lack the
explanatory power to describe complex aspects of single neuron and population level
activity.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005175 November 4, 2016
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Author Summary

The question of how the brain generates movement has been extensively studied, yet mul-
tiple competing models exist. Representational approaches relate the activity of single neu-
rons to movement parameters such as velocity and position, approaches useful for the
decoding of movement intentions, while the dynamical systems approach predicts that
neural activity should evolve in a predictable way based on population activity. Existing
representational models cannot reproduce the recent finding in monkeys that predictable
rotational patterns underlie motor cortex activity during reach initiation, a finding pre-
dicted by a dynamical model in which muscle activity is a direct combination of neural
population rotations. However, previous simulations did not consider an essential aspect
of representational models: variable time offsets between neurons and kinematics.
Whereas these offsets reveal rotational patterns in the model, these rotations are statisti-
cally different from those observed in the brain and predicted by a dynamical model.
Importantly, a simple recurrent neural network model also showed rotational patterns sta-
tistically similar to those observed in the brain, supporting the idea that dynamical sys-
tems-based approaches may provide a powerful explanation of motor cortex function.

Introduction

Throughout the history of neuroscience research, the question of how motor cortex generates
movements has been investigated deeply [1]. Yet, substantial and conflicting models have been
proposed [2-7]. According to the representational view, motor cortex neurons encode abstract
or high-level aspects of movements, such as kinematic parameters [8]. In contrast, in the
dynamical systems view the firing of each neuron is a function of a population optimized to
control muscles directly [9]. It remains a point of considerable debate which model better
explains existing neural data and provides a mechanistic explanation of how movements can
be generated.

The representational view of neuron tuning, or ‘neuron doctrine, is strongly rooted in the
history of neuroscience [10] and detailed models of single neuron tuning have been indispens-
able tools for a basic understanding of the brain’s computations [11-13]. However, recent
advances in electrophysiological recording technology [14,15] have made it possible to examine
network level hypotheses of movement generation that require large populations of neurons to
study [16-19].

Recently, it was suggested that motor cortex, operating as a dynamical system, might be suf-
ficient for generating required muscle activity [20-22]. Using simultaneous recordings in the
dorsal premotor cortex (PMd) and primary motor cortex (M1) of non-human primates,
Churchland et al. [22] proposed that preparatory activity may act to prepare a dynamical sys-
tem, which, like a spring box, could be released to act as an ‘engine of movement” and produce
muscle activity from a basis set of oscillators, which they termed the generator model or
dynamical model [9,23]. They supported their theory by developing a dimensionality reduction
method (jPCA), which revealed that predictable rotational dynamics underlie a large portion
of the variance observed in PMd/M1 during reach initiation, a direct prediction of the dynam-
ical model. Importantly, they showed that representational models of movement activity,
including those based on velocity tuning in single neurons [24] and complex kinematic models
[25], did not contain the robust rotational patterns they observed empirically, and therefore are
weak descriptive models [23].

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1005175 November 4, 2016 2/22

101



2.3 - Neural population dynamics

@' PLos COMPUTATIONAL
Nz ’ BIOLOGY Neural Population Dynamics during Reaching

However, it has been shown that when fitting neural activity to kinematic variables, decod-
ing of movement intention can be improved by including variable time lags between single
neuron activity and kinematics (neuron-kinematic latency, [24,26-28]) and these offsets are
highly variable (SD: 70 ms; re-digitized data, Moran & Schwartz [24], their Fig 13A). Yet, these
offsets were not included in the comparison to representational models made by Churchland
et al. [22]. Furthermore, given that representational models of single neuron tuning have been
widely implemented in both an experimental and clinical setting, such as in the development
of neural prosthetics, it is not clear how those results can be interpreted under the dynamical
systems framework.

To clarify this, we first investigated whether or not JPCA would reveal rotational dynamics
in a velocity-based model for center-out reaching in which neuron-kinematic latencies were
built into single neuron activity. We found that jPCA alone revealed rotational structure in
both the representational model and the dynamical model, but that implementing a novel
covariance-matched permutation test (CMPT) readily distinguished between these two, show-
ing that variable neuron-kinematic latency did not uniquely produce rotational structure due
to the condition structure. Secondly, we show that movement intention could be decoded from
a recurrent neural network (RNN) trained to complete the same task using representational
methods, such as the population vector, even though the preferred directions of single neurons
were highly unstable, suggesting that high levels of decoding performance using representa-
tional models do not necessarily inform the mechanistic operation of the underlying circuit.
Importantly, both simulated RNN data and real data collected in PMd/M1 of macaque mon-
keys show similar and significant rotations under the CMPT, providing further support for the
dynamical systems view. Furthermore, repeating the CMPT on subsets of the PMd/M1 data
showed clear minima in number of neurons and conditions required to draw statistical conclu-
sions, cautioning the use of such analysis methods on low numbers of conditions or neurons,
and thus informing the design of future experiments.

Results / Discussion

Incorporating variable neuron-kinematic latencies into the
representational model

Velocity-based models without variable neuron-kinematic latencies were shown to exhibit little
to no rotational structure [22]. To investigate how variable neuron-kinematic latencies may
affect rotational structure, we simulated 200 cosine-tuned motor cortex neurons in a standard
13-direction center-out reaching task with variable neuron-kinematic latencies (Fig 1 A; Meth-
ods) [13]. The simulation was based on the assumption of bell-shaped velocity profiles (Fig
1B). For activity with a movement duration of 300-400 ms and a latency distribution with a
standard deviation (SD) of 72 ms, we found that the first principal component (PC) of our pop-
ulation of simulated neurons resembled a condition-independent representation of the individ-
ual neuron profile, while the second PC resembled a condition-dependent representation (Fig
1C). Interestingly, all higher order PCs resembled a sequence of harmonic Fourier bases. In
general, it is well known that time-shifted versions of identical signals preferentially produce
PCs very similar to a Fourier series (S1A and S1B Fig) as a result of sinusoidal eigenvectors of
increasing frequency. This feature introduces a potential confound, since the higher-order PCs
show patterns of activity that are not present in any individual neurons. Furthermore, these
PCs produce rotational ‘horseshoe’ patterns when plotted in a plane (S1C Fig) [29], revealing
how rotations can emerge from signals that are not present in any individual neuron (for an
example of false interpretations made from application of PCA, see this well-known example
from genetics research [30,31]).
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Fig 1. Simulation of a velocity-tuning based model with variable neuron-kinematic latencies. (a) Task design
of a 13-direction center-out reaching task. The firing of a simulated neuron is plotted around the reach directions. (b)
Two example neurons with differing latencies. (¢) Principal components (PCs) for a simulated population of 200
neurons (latency SD: 72 ms, movement SD: 56 ms). (d) Exemplar jPCA plane for the first 6 PCs of the simulated
population from 0 ms before to 200 ms after neural movement onset (analysis was computed on entire movement).
Individual conditions are colored based on their activity at neural movement onset in the first jPC. (e) Proportion of
change in neural trajectory explained by rotational dynamics (in all jPCA planes) for various latency offsets and
movement durations. A value of 1 indicates that rotational dynamics completely explain the transformation between
each time point and its temporal derivative.

doi:10.1371/journal.pcbi.1005175.g001

In order to test the presence of rotational structure at the population level, we implemented
the same analysis developed by Churchland et al. [22], termed jPCA (Methods). jPCA is a
method for finding linear combinations of principal components that capture rotational struc-
ture in a population of neurons. In essence, jPCA finds low-dimensional planes in which neural
activity follows a predictable rotational trajectory from time point to time point (analogous to a
circular flow-field). We found that the introduction of the above-mentioned variable neuron-
kinematic latencies were sufficient to produce rotational dynamics (Fig 1D) when explored
with jPCA, unlike the representational model results of Churchland et al. [22], who found only
weak rotations. The level of rotational dynamics observed here is similar to empirically
recorded PMd/M1 data in terms of visualization of the jPCA planes, amount of variance
explained per plane (30% in the first two planes, 16% in the first plane), rotational goodness-
of-fit ratio (RGR) between R?MM and R}, (0.79 in the first three planes; Methods), which pro-
vides a measure of how much variance can be explained by purely rotational dynamics, and
how circular the rotation (0.72, where 1 is purely circular, computed as the average dot product
of angle between x and x, and 7/2; Methods).

To characterize more generally how rotational structure arises with the addition of variable
lags, we varied the duration of movement period activity (expressed as the SD of normally dis-
tributed movement activity; Methods) and the SD of the latency distribution systematically in
repeated simulations (Fig 1E). Interestingly, when the SD of the latency distribution exceeded
the SD of the movement activity, the level of underlying rotational structure increased rapidly.
Therefore, our results show that the application of jPCA alone on a population where neuron-
kinematic latency is more variable than the duration of movement leads to rotational
dynamics.

Disrupting the underlying condition structure—covariance-matched
permutation test

Based on the above results, it is clear that jPCA alone is not sufficient to distinguish between a
representational model with lags and the dynamical model proposed by Churchland et al. [22].
While Churchland et al. [22] performed extensive shuffling controls to test the possibility that
rotations emerge purely as a consequence of high-dimensional data, their controls do not dif-
ferentiate between the above cases. Therefore, we developed a covariance-matched permuta-
tion test (CMPT) to differentiate these models. The objective of our test was to determine if the
underlying condition structure, i.e., whether or not shuffling the neural data between different
task conditions independently for each neuron, uniquely determined the rotational structure as
is predicted by the dynamical model.

To provide intuition about the rationale of the test, consider the dynamical model proposed
by Churchland et al. [22]. They observed that muscle activity during reaching could be fit
extremely well (correlation coetficients > 0.97) by a summation of two sinusoidal oscillators,
each with fixed frequency, but whose phase, amplitude, and constant offset varied from
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condition to condition (Methods). They proposed that these oscillators underlie the neural
population activity during movement, providing a basis set from which the muscle activity can
be generated, while the preparatory activity sets the phase and amplitude of these rotations.
Since the phase and amplitude of these rotations are unique to each condition and defined
jointly across the entire neural population, disrupting the condition structure should eliminate
rotational structure. In Fig 2A we show one of two example oscillators (2.8 Hz), which con-
sisted of a pair of leading and lagging sinusoids. To simulate neurons in the model, we ran-
domly combined the oscillatory signals and offset, where each condition had a different phase,
amplitude, and offset (Fig 2B; Methods; see Churchland & Cunningham [23], their Fig 2, for
another illustration).

After applying jPCA, Fig 2C shows that strong rotations exist at the population level for
both the representational model (same as Fig 1D) and the dynamical model (28% variance
explained in first two planes, 14% in the first plane, 0.97 RGR, 0.98 circularity). In order to test
if the underlying condition structure was uniquely responsible for the observed rotations, the
CMPT consisted of reassigning task conditions within individual neurons while maintaining
the overall covariance matrix between all neurons to a reasonable threshold (95% similarity;
Methods). This method disrupts the underlying relationship between neurons and conditions,
but not other measures, such as average rate per neuron, relationship between neurons in the
population (covariance), and each neurons contribution to each PC, since the results of PCA
are dependent on covariance. If rotations are disrupted as a result of our control, the underly-
ing relationship between neurons and conditions is uniquely essential to the emergence of rota-
tions. On the other hand, intact rotations indicate that many possible condition assignments
produce similar rotational patterns, at odds with the findings of Churchland et al. [22] in PMd/
M1 data.

Initially randomly permuting conditions without covariance matching destroyed rotational
structure in both the representational and dynamical models (Fig 2D). However, after repeat-
ing the CMPT procedure (1000 repetitions) and comparing the RGRs between the observed
and permuted data sets to generate a p-value (Methods), we found that the rotational structure
found in Fig 2C was restored after covariance matching in the representational model (Fig 2E,
p =0.71), but not for the dynamical model (p < 0.001, I'ig 2E). As a further measure of statisti-
cal power, the effect size of rotations in the dynamical model was quite high (effect size: 3.2; Eq
4 in Methods).

In the representational model, permuting disrupts the condition structure, but not the lag
relationships, since no data is exchanged between neurons. Once the overall neuron-to-neuron
relationship is restored after covariance matching, the rotations are restored as well, even
though the condition structure is still disrupted, showing that rotational structure in the repre-
sentational model does not emerge because of a unique condition structure, as it does in the
dynamical model. Repeating the same analysis on additional simulations where neurons were
permitted to achieve both positive and negative firing rates (b, . = cos[8, - 8,] in Eq 1), or
when the magnitude of kinematic tuning per neuron varied randomly, did not alter this result
(p=0.92 and p = 0.22, respectively). Furthermore, the CMPT did not simply ‘unshuffle’ the
data, as there was no significant correlation between the RGR of a given permutation and how
similar the condition assignment in that permutation was to the original condition assignment
in the observed data (Methods; representational model: r = 0.03, p = 0.30; dynamical model:
r=0.03, p=0.49).

It remains an open question whether or not the CMPT can also distinguish rotations arising
in a dynamical model from those generated by a complex-kinematic model with varying neu-
ron-kinematic latencies, in which neurons are not only sensitive to velocity, but also to posi-
tion, acceleration, and occasionally jerk [25]. Therefore, we simulated a population of neurons
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Fig 2. Comparing rotational structure between the representational and the dynamical models. (a)
One of the two oscillatory modes (2.8 Hz) used to generate the simulated muscle activity of all conditions (2.8
Hz and 0.3 Hz). (b) Firing rate of an example neuron of the dynamical model for all 13 conditions. Each
neuron is generated from a random combination of the two underlying oscillatory modes and offset for each
condition. (¢) Rotational dynamics in the first jJPCA plane for the observed data. p-value shows results of
CMPT for the representational and dynamical models evaluated by the rotational goodness-of-fit ratio (RGR:
Ry, /Fi)- (d) Same as ¢, but for permuted data without covariance matching. (e) Same as ¢, but for
covariance-matched data. Data is plotted for 200 ms regardless of time period used to generate statistics.
Colors are based on the preparatory activity in the first jPC.

doi:10.1371/journal.pchi.1005175.g002

identically to the representational model (Methods; Fig 1D), but further implemented sensitiv-
ity to these additional kinematic parameters with the same weights as Churchland et al. [22]
(S2A Fig; assuming a reach radius of 20 cm). While complex-kinematic model simulations
with no varying neuron-kinematic latencies only produce weak rotations (see Churchland et al.
[22], their Fig 4), the inclusion of lags generated rotational structure (S2B Fig; RGR: 0.89, circu-
larity: 0.82). However, similar to the representational model, these rotations were not signifi-
cant under the CMPT (p = 0.09), further emphasizing the power of the CMPT in identifying
rotations that are uniquely dependent on the underlying condition structure.

Repeating the CMPT on the representational model for all parameter combinations in Fig
1E revealed that these data generally had no significant rotational structure (p-values above
0.05, 100 permutations). Occasionally, p-values below 0.05 occurred, but the magnitude of
these effects were extremely small and completely disappeared for stricter implementations of
the CMPT (similarity 99%), a modification that had no impact on the dynamical model. Taken
together, these findings suggest that a broad variety of simulated populations of classically
cosine-tuned neurons can exhibit reasonably strong rotational dynamics when explored using
jPCA, but that proper controls disrupting the underlying relationship between conditions
while conserving other features can distinguish these rotations from those proposed by the
dynamical model.

Hallmarks of representational tuning and rotational structure in a
recurrent neural network model

Given that representational tuning models have been used extensively to characterize motor
cortex activity, how can findings of robust single neuron tuning be reconciled with a dynamical
model of movement generation? To address this question, we implemented a simple recurrent
neural network (RNN), operating as a dynamical system, from which the velocity profiles
required to complete the previously described center-out reaching task can be read out (Fig 3A;
Methods). Recent studies have augmented the original findings of Churchland et al. (2012) by
generating biologically plausible RNNs that seek to produce complex activity patterns
[20,32,33] and using cortical circuit models to explain population activity [34].

In accordance with recent work [20,32], we constructed two time-varying inputs represent-
ing the location of the target in 2-D space, and one input representing a hold signal that is
released at the go cue. As in the representational model, we generated a network with 200 inter-
nal neurons (Methods). The outputs of the network were the x- and y-velocity profiles of the
reach. After training, the RNN was able to withhold movement for the entire delay period and
execute accurate velocity profiles with a normalized error of less than 0.1% (I'ig 3B). Integrating
the decoded velocity over time produced the desired kinematics for each reach direction (Fig
3C). A benefit of such a framework is that preparatory activity cancels out at the level of the
output signal (null-space), as output must be suppressed during planning to avoid premature
movement, a quality observed empirically between PMd/M1 and muscles [35].
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Fig 3. Schematic of recurrent neural network performing center-out reaching. (a) Schematic of RNN, with
input layer, hidden layer, and output layer. The three inputs were a condition-independent hold signal that was
released at the go cue and two inputs representing the target angle. The two outputs were a linear combination of
the internal neurons and read out velocity in the x and y direction. All weights were medified during training. The
network received no feedback from the output layer. (b) Output velocity profiles produced by the RNN compared
with target velocity used in training. The normalized error was less than 0.1%. (¢) Simulated kinematics produced
by integrating the velocity profiles over time, with corresponding targets for illustration.

doi:10.1371/journal.pchi.1005175.9003

Fig 4A shows the responses of three example neurons that showed very similar tuning pat-
terns during the delay and movement. Fig 4B shows examples in which the delay tuning was
unrelated to movement tuning, and Fig 4C shows examples where the tuning preference
flipped at various times during the movement. The overall diversity of tuning is similar to
motor cortex neurons presented in Churchland et al. [22] and Sussillo et al. [20].

Fig 4D shows the preferred reach direction (highest firing) of all 200 simulated neurons
over time. Preferred directions remained relatively stable during the late delay period, but
shortly after the go cue the preferred directions changed rapidly [36]. In this framework the
neurons themselves are not explicitly tuned for any given reach direction and are expected to
vacillate when the network is released, a property observed previously in a feed-forward net-
work with state feedback (Lillicrap & Scott [7], their Fig 2F).
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Fig 4. Tuning properties of RNN neurons. (a) Three example units for which the pattern of directional tuning remained highly correlated
between the delay period and movement. (b) Same as a, but for example units that have delay tuning that is not correlated with movement
activity. (c) Same as a, but for example units that invert their tuning between delay and movement. (d) Preferred reach direction (highest
firing) of all 200 units, sorted by preferred direction at go cue. If there was no firing rate difference (< 1e-4) between the preferred direction
and non-preferred direction, units were deemed un-tuned and are marked in white. Firing rates are displayed from 0 to the maximum firing

rate of each neuron.

d0i:10.1371/journal.pcbi.1005175.9004

One of the most iconic movement prediction techniques is the population vector, which has
been used extensively to decode intended movement direction and instantaneous velocity
using knowledge about the preferred direction of all neurons in a population [37,38]. Fig 5A
shows the preferred directions of our model neurons (Methods), which were distributed
throughout the Cartesian space. Fig 5B shows contribution vectors of all individual neurons
over the entire movement of each condition, revealing a remarkably good prediction of move-
ment direction (mirroring results of Georgopoulos et al. [38], their Fig 1). Lastly, Iig 5C shows
the result of integrating all population vectors over the course of movement, producing pre-
dicted trajectories that well match the desired trajectories (mirroring results of Georgopoulos
etal. [38], their Fig 5). In addition, tuning curves of individual RNN neurons visually resem-
bled those observed empirically (S3 Fig). Together, these results reveal that readouts based on
the assumption of “preferred direction” can accurately reproduce intended trajectories even
when consistent individual neuron tuning was neither included nor observed in the model, a
feature of the population vector that has been mathematically outlined by Sanger [39].

As we saw in Fig 4D, preferred direction seemed to fluctuate throughout movement. By cor-
relating the average firing of each neuron for each condition between neural movement onset
and later time points during the movement, we can track the stability of tuning over time. The
more time has elapsed since neural movement onset, the lower the correlation between delay
tuning and movement tuning (Fig 5D; mirroring results of Churchland et al. [40], their Fig 4),
both in the model and in example data from PMd/M1 (data from [22], Monkey N). Further-
more, the distribution of correlation coefficients across the population is not bimodal, a finding
that would be expected if one subpopulation of neurons was positively correlated over time
and one subpopulation inversely tuned during movement.
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Fig 5. Representational tuning in an RNN for center-out reaching. (a) Preferred movement direction in Cartesian space of all units,
corresponding to the magnitude of b;» and b; 3 in Eq 9. (b) Summary of contribution vectors of all individual neurons (one vector each)
over the entire movement, with black population vector showing the overall predicted movement direction. (c) Integrating the population
vectors in panel b over time traces out a predicted trajectory (solid) that largely matches the actual trajectory (translucent). (d) Mean
correlation between condition tuning order at neural movement onset compared to later time points during movement (in steps of 10 ms)
for the RNN model and an example PMd/M1 data set presented in Churchland et al. [22]. Insets show full correlation histograms for two
time points. (e) Adjusted R-Square obtained by regressing the activity of each neuron (from the go cue to the end of movement 300 ms
after go) on a representational cosine model of velocity tuning (Methods). (f) Movement activity of three example neurons and the
corresponding velocity based regression fits. The overall fit performance to these units is high (Adjusted R-Square above 0.8), but the
regression fails to capture the multiphasic and varied nature of the underlying signal. (g) Time lag between neural activity and velocity,
per neuron, obtained from the velocity tuning regression in panel e, showing a large range of values.

doi:10.1371/journal.pchi.1005175.g005

Based on the above finding that preferred directions are highly variable during movement,
how can it be that representational tuning models explain large amounts of variance in firing
rate in empirical studies [24]? Interestingly, regressing the movement activity of each neuron
on a full model of velocity tuning (Methods) produces fits very similar to empirical data (Fig
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5E, mean Adjusted R-Square: 0.63, mirroring results in Moran and Schwartz [24], their Fig
12A and 12B). However, the actual model fits do not well capture the dynamic properties of
the individual units (Fig 5I), such as the changes in preferred direction that occur over the
course of the movement or non-linear changes such as when neurons cease firing (0 Hz).
Importantly, the optimal neuron-kinematic offsets obtained in the regression cover a range of
values, very similar to those observed previously (Fig 5G, mirroring results in Moran and
Schwartz [24], their Fig 13A and 13B), providing a potential explanation of how variable neu-
ron-kinematic latencies can improve the performance of representational tuning models even
when fixed offsets between neurons is not a property of the underlying circuit.

Yet, it remains unclear if significant rotational structure underlies the activity of our RNN.
Therefore, we repeated the jPCA analysis and CMPT with both example data from PMd/M1
and our RNN model. As seen in Fig 6, the PMd/MI data contained robust rotational structure
explaining 56% of the variance in the first two planes (40% in the first plane), an RGR of 0.77
over all jPCA planes, a circularity of 0.63, and the rotational structure was highly significant
(p < 0.001, CMPT with 1000 repetitions). Importantly, the RNN model also produced robust
rotations, explaining 54% of the variance in the first two planes (26% in the first plane), an
RGR of 0.74 over all jPCA planes, a circularity of 0.73, and the rotational structure was highly
significant (p < 0.001, CMPT with 1000 repetitions). In both cases the effect size was also very
large, 4.1 and 3.7 for the PMd/M1 data and RNN model, respectively. In addition, similarly to
the representational and dynamical models, the CMPT did not simply ‘unshuffle’ the condition
assignment, as the correlations between the RGR of each permutation and the similarity in
condition assignment to the observed data was not significant for the PMd/M1 data (r = 0.06,
p =0.06) or the RNN model (r =-0.002, p = 0.94).

Although significant rotational structure was found in the PMd/M1 data, it is unclear how
many recorded neurons and conditions are necessary for jPCA to reveal this result. Therefore,
we repeated the CMPT on many subsets of the PMd/M1 data by randomly sampling condi-
tions and neurons to determine how many neurons or conditions might be required to produce
statistically significant rotations (Fig 7). This analysis revealed that our test was able to identify
clear minima in number of neurons and conditions that are necessary to achieve significance,
in general more than 30 neurons and more than 8 conditions, a finding that may guide the
design of future experiments and encourages skepticism of experiments with small numbers of
neurons or conditions.

It is important to note that the CMPT may not necessarily distinguish between all possible
models, as there exist cases of the dynamical model for which our test would find no significant
rotational structure. For example, if the required oscillator phases required to fit muscle activity
were identical between all conditions, while rotational structure would be found using jPCA,
our test would find these rotations to be non-significant. Therefore, we do not propose the
CMPT as a singular test of rotational structure to accompany jPCA, but rather as an additional
control.

We posit that future studies should seek to explain single neuron characteristics as a func-
tion of population or circuit activity rather than imbue single neurons with complex tuning
characteristics [9,10]. Furthermore, RNNs provide an ideal medium for more detailed study, as
the ground truth of synaptic connectivity, plasticity, noise, trial-to-trial variability, and
responses to unexpected perturbations are known and can be manipulated directly. However,
“exploring an artificial model universe comes with its own risk” [41] and proper models must
resist the temptation of explaining purely idiosyncratic properties, but rather those that are
able to explain large amounts of variance in electrophysiological data. Our results also empha-
size that explaining a large amount of variance in neural data in and of itself does not necessary
lead to mechanistic insight [42], as the observation of rotational structure arose under multiple
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Fig 6. Significant rotational structure in PMd/M1 data and RNN model. Comparison of rotational
dynamics for (a) observed, (b) permuted without covariance matching, and (c) covariance-matched data in
the first JPCA plane. p-values in a are from the CMPT for the rotational goodness-of-fit ratio (RGR: Rj,,w /Rsy)
in all jPCA planes. Conditions and neurons were randomly down-sampled in the PMd/M1 data to match the
RNN model. Data is plotted for 200 ms regardless of time period used to generate statistics. Colors are
based on the preparatory activity in the first jPC.

doi:10.1371/journal.pcbi.1005175.g006

models, and future work is needed to determine the biological circuit mechanism underlying
population level rotational structure.

Fundamentally, as representational [43,44] and dynamical [20,32,45] models become more
complex in their implementations, their ability to explain empirical data becomes more strik-
ing and convincing. Ultimately, what will signify the usefulness of either framework will be
their utility in generating testable hypotheses of how the brain executes complex behavior in
basic research contexts, and in developing new solutions in applied research contexts. In terms
of application, the representational view has been indispensable in developing neural prosthet-
ics for paralyzed patients [46-48], but this trend may be changing as prosthetic algorithms are
augmented by the inclusion of dynamical systems into their underlying framework [49,50].

Methods
Representational model

Preparatory and movement activity were simulated for a population of 200 neurons in a
13-direction center-out reaching task. Neurons were cosine-tuned for velocity during both
preparation and movement with respect to their randomly assigned (uniform) preferred direc-
tion. The average firing rate, f,, , of a given simulated neuron, n, for a particular reach condi-
tion, ¢, at time ¢ is given by,

(t =7, — 1)
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Fig 7. Number of neurons and conditions required for statistically significant rotations. The CMPT was
carried out (500 repetitions) for many subsets of example PMd/M1 data including from 10—120 neurons and 2-20
conditions. (a) Map of p-values for the rotational goodness-of-fit ratio (RGR: Ay, /R},). (b) Map of effect size
(difference between observed RGR and mean of permuted distribution, divided by the SD of the permuted
distribution). For every permutation, random neurons and conditions were drawn from the example set. Contours
show the 0.05 and 0.01 significance levels.

doi:10.1371/journal.pcbi.1005175.9007
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where 7,, is the neural response latency (normally distributed) of each neuron, o is the duration
parameter of the movement activity, which never differed between neurons of the same simula-
tion, b,, . is the gain factor for each neuron and condition, 6. is the angle of the reach target in
condition ¢, 8,, is the preferred reach angle of neuron #, ¢ a constant which determines the
magnitude of preparatory activity, 1y a constant and given by p, = o/ —2Inp, and £ is random
noise drawn from a normal distribution.

For all analyses, ¢ was fixed at 0.2, i.e., preparatory activity was always one fifth of the maxi-
mum movement activity for that condition; however, our results do not depend on this factor.
The distribution of latency factors, 1,,, and the movement duration parameter, g, were varied
systematically to produce the results in Fig 1E. For visualization purposes we chose the noise
distribution, &, to have an SD of 0.01 for all analyses. However, this value did not greatly affect
the outcome. We found it necessary to increase the noise more than 300 times to eliminate all
structure.

Rotational dynamics

jPCA is a method for finding linear combinations of principal components that capture rota-
tional structure in data (Churchland et al., 2012). The method is based on finding a transfor-
mation between a neural system at each time point and its temporal derivative, using the
following steps. First, the average firing rate of many neurons is extracted and aligned to the
execution of a movement, starting whenever the neural activity begins rapidly changing pre-
ceding movement onset, termed neural movement onset (typically 100-200 ms before overt
movement). Next, each neuron is normalized and reduced, using standard principal compo-
nent analysis, to a set of principal components, X,..4, of size d x ct, in which the d largest com-
ponents are retained, and ¢ is the number of conditions and ¢ is the number of time points
selected. Then, via linear regression, the unconstrained matrix M and the skew-symmetric
matrix My, (where My, = —My,,") can be found to satisfy X, , = MX,

red and

X, =M,,X,,where X, is the difference in adjacent time points of X, (temporal deriva-
tive). The jPCA planes are then constructed from the eigenvectors of M,,,, with the added
constraint that the net rotation in each plane is anticlockwise.

In order to avoid finding spurious rotations, only the first 6 PCA dimensions explaining the
most variance were fed into the jPCA algorithm (sampled in steps of 10 ms). For the represen-
tational model, the data fed into jPCA began at neural movement onset, which was defined as
the time when the average signal exceeded 10% of the difference between preparatory activity
and maximum activity, and ended when the average activity fell below this level. Given the var-
iable lags between neurons, it was necessary to define the above procedure for determining
neural movement onset, which is similar to the one performed by Churchland et al. [22]. For
the dynamical model and RNN model, neural movement onset was simply defined as the time
of the go cue, and the entire movement (300 ms) was used. On the other hand, for the example
PMd/MI data (presented as Monkey N in Churchland et al. [22]) the analysis was replicated as
done in Churchland et al. [22], from -50 to 150 ms relative to neural movement onset, a time-
course specifically chosen to avoid sensory feedback not present in our simulation. jPCA was
performed using a freely available toolbox (http://churchlandlab.neuroscience.columbia.edu/
links.html).

Dynamical model

The dynamical model is based on the finding that muscle activity during reaching can be well
explained by a summation of the lagging components of two oscillatory modes, each with a
fixed frequency, but with varying phase, amplitude, and offset for each movement condition
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[22,23]. Following Churchland et al. [22], we simulated for each condition ¢ = I,. . .,13 an offset
0, and the two complex oscillations (k = 1,2)

F,k — a('k e:’(?ﬂj]‘ 1=, 1) (2)

c

for the two underlying frequency modes f; = 2.8 Hz and f, = 0.3 Hz (however, the specific fre-
quencies used did not alter the results). Phases, 8,4, amplitudes, a,, and offset, o, were ran-
domly drawn for each condition to match both the variance explained per plane and the
similarity between conditions in the representational model (phase drawn from uniform distri-
bution, range: 0 to 71/2; amplitude drawn from uniform distribution, range: -1.5 to -2.5; offset
drawn from uniform distribution, range: -4.5 to -5.5). For simplicity, we did not implement the
windowed gamma functions used in Churchland et al. [22], as these only increase the realism
of neural responses and do not contribute to the main result.

To generate simulated neurons in the dynamical model (N = 200), the activity r,, .(¢) of each
neuron # € {1,...,N} and condition ¢ was generated as a neuron-specific combination of the
condition-specific oscillations and offset (F,.;, F. 5, 0,)

r..(t) = Re(w,, F,(t) +w,, F,(t)) +s,0.+¢,.() (3)

ne

with the real and imaginary components of the complex coefficients, w,, ; and w,, 5, and the off-
set coefficient s,, drawn from a standard normal distribution (zero mean, unit variance). As
described above, each neuron had a unique set of 5 weights that were used for all conditions,
and the small amount of normally distributed noise £, (f) that was matched to the representa-
tional model. Preparatory activity (r,, (¢) for t<0) was generated by simply extending the first
data point, i.e., r,, /(0) including noise, for 100 ms back in time.

Covariance-matched permutation test for rotational dynamics

In order to test if the rotational dynamics found in neural population data depended on the
underlying condition structure, we developed a covariance-matched permutation test to dis-
rupt the condition-wise relationships while sparing other features of the data. In this iterative
procedure the entire time-course of each condition, for each neuron separately, was first ran-
domly reassigned to another condition. Then, individual pairs of conditions were randomly
exchanged (within, but not between random neurons) and the similarity of the covariance of
all neurons was compared to the observed data for the time period of interest (i.e. the time
period analyzed using jPCA). Covariance between neurons was calculated from the matrix n x
ct, where n is the number of neurons, ¢ the number of conditions, and t the time period of
interest. Covariance similarity was calculated as the sum of the squared difference between the
observed covariance matrix and the covariance matrix of the permuted data, divided by the
variance of the observed covariance matrix. If the similarity was increased by a given permuta-
tion, it was accepted, otherwise it was rejected and the process continued. When the covariance
similarity between the observed data and the permuted data exceeded 95%, the process was
complete (this process generally lasted many thousands of permutations). In this way, no data
values were altered. Correspondingly, the average firing rates, total firing rates of all neurons,
and the approximate covariance relationship between all neurons were conserved.

To test significance, the permutation procedure was repeated many times (100-1000 repeti-
tions) and the covariance-matched data was fed into jPCA in the same fashion as the observed
data. The rotational goodness-of-fit ratio (RGR: R}, /R},) over all three jPCA planes (span-
ning 6 principal components), which provides a measure of how much variance can be
explained by rotational dynamics, was evaluated for all permutations. Subsequently, the
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fraction of repetitions that the above statistic computed from the permuted data exceeded the
observed data determined the p-value, as is standard procedure for permutation tests.
To measure statistical power, effect size was computed as

RGR

RGR
permuted (4)

observed

effect size =

o
[ —

similar to Cohen’s d.

To test if the results of the CMPT procedure were simply due to ‘unshuffling’ the conditions
and restoring the original condition assignment, we checked what percentage of the assignment
matrix (¢ % #) retained its original condition assignment at the end of the CMPT and correlated
this measure with the RGR of the corresponding permutation repetition. Importantly, since
even ‘unshuffled’ data would not be guaranteed to be in the same order as in the original data,
before correlating we first sorted the rows of the above mentioned assignment matrix by the
most common condition in each row (condition 1 most common assigned to row 1, condition
2 most common assigned to row 2, etc.), to achieve the most conservative comparison possible.

Recurrent neural network

In order to examine a system in which velocity profiles of a 13-direction center-out reaching
task could be read out over time, we implemented the dynamical system, * = F(x. u), usinga
standard continuous RNN equation of the form

() = —x; + Z]i'krk‘(t) + ZB;W&({) (5)

where the network has N units and [ inputs, x are the activations and  the firing rates in the
network, which were related to the activations by the rectified hyperbolic tangent function,

0, x<0
such that r = . The units in the network interact using the synaptic weight
tanh(x), x > 0

matrix, /. The inputs are described by u and enter the system by input weights, B. The time
integration constant of the network is 7.

For all simulations N was fixed at 200. The three inputs were a condition-independent hold
signal that was released at the go cue, and two inputs representing the target position that cor-
responded to sin(0) and cos(6), where 6 is the angle of the target around the circle. The ele-
ments of B were initialized to have zero mean (normally distributed values with SD = 1/ V'N).
The elements of ] were initialized to have zero mean (normally distributed values with
SD = g/+/N), where the synaptic scaling factor, g, was set at 1.5 [51]. We used a fixed time
constant of 50 ms for 7, with Euler integration every 10 ms.

To produce the two desired velocity profile outputs, which were the x-velocity and the y-
velocity of the 13-direction center-out reaching task described previously (bell-shaped velocity
profiles lasting 300 ms), we defined a linear readout of the internal network

z(c.t) = Z W,ri(c.t) (6)

where z represents the two velocity readouts (i = 1,2) and is a linear combination of the internal
firing rates using weight matrix W, which was initialized to all zero values.

The input weights, B, internal connectivity, /, and output weights, W, were trained using Hes-
sian Free Optimization [52] using freely available code (https://github.com/sussillo/hfopt-matlab)
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also utilized in Sussillo et al. [20]. The error function used to optimize the network considered the
difference between the output of the linear readout and the desired velocity profiles, v,

E(c,t) = z(c,t) — v (c,t) (7)

at each time point, ¢, each output dimensions, 7, and each movement direction, ¢. We report nor-
malized error, which is the sum of the squared error from Eq 7 over all times, dimensions, and
conditions, divided by the total variance of the target signal. In addition to the above error signal,
we also implemented three regularizations designed to encourage the network to produce biologi-
cally-plausible activity (implemented as in Sussillo et al. [20]). The three penalties were a cost on
the mean firing rate, the squared-sum of the input and output weights, and a penalty encouraging
the network to avoid complex state trajectories (similar to local space contraction [53]). The
hyper-parameters used for these regularization were le-2, 2e-5, and 5e-5, respectively.

In order to discourage internally-timed responses, the network was trained to produce
movements after three varying delays of 600, 800, and 1000 ms. All results used came from the
800 ms delay set and the reaction time (time between go cue and movement onset) of the net-
work was fixed at 100 ms. We opted not to model any feedback, since the goal of the study was
to illustrate the main points parsimoniously and without relying on confronting the issue of
what kind of feedback is most biologically plausible in such a network.

Population vector

The population vector decoding technique was performed as described in Georgopoulos et al.
[38] and Schwartz et al. [37]. Specifically, the preferred direction of each neuron was deter-
mined via linear regression

Ri,(' = bl,l + br’;"gin 0(' + birlicos 0:’ (8)
where R is the average firing rate of neuron i over time from the go cue to the end of movement

(300 ms after go) for condition ¢, b are constants, and &, is the angle of the current target. The
preferred direction of each neuron was then defined as

c - F’?H (9)

where

(10)

To make predictions about direction and magnitude of movement [38], the population vec-
tor at time f during movement was computed using the instantaneous firing rate of all neurons
(R) and each neuron’s previously determined preferred direction (C), such that

N

P(t) = Y (R(t) = b,))C, (11)

i=1

where N is the number of neurons. The sum of P over all time points during the movement of a
given trial then determined the overall predicted direction of movement. Alternatively, P could
be integrated over time points to trace out a predicted trajectory, as in Fig 5C. Fitting procedure
was performed using the Matlab fit function using the least-squares method.
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Velocity regression

In order to investigate the presence of representational tuning in the RNN, we regressed the
movement period activity of each neuron (starting at the go cue until the end of movement 300
ms after go) on the following model of directional and speed tuning,

R(t 1) = a, + [V (1)]|(a, + aysin[0] + a,cos[0]) + a(aysin[0] +acosld])) (1)

where R is instantaneous neural activity, 7 is the time lag between neural activity and its expres-
sion as movement, a are constants, @ is the direction of the current target, which stays constant

during center-out reaches, and V is the velocity profile. Fitting procedure and resulting good-
ness-of-fit statistics were obtained using the Matlab fit function using the least-squares method.
The final term of the equation was appended in addition to the factors presented in Moran &
Schwartz (1999) in order to account for differences in preparatory activity between reach direc-
tions, an aspect not utilized in the original experiment when no delay period was present. Tun-
ing during the preparatory period was the same as during movement, scaled by a factor, as,
which also allowed for inverted tuning during movement.

Supporting Information

S1 Fig. Latency offsets produce derivative-like principal components. (a) Firing rates of six
simulated neurons (normal distributions with identical SD) over time with random time offsets
(drawn from normal distribution). (b) The first three principal components of the simulated
units. (¢) The plane formed by the first two principal components, showing a ‘horseshoe’ pat-
tern.

(EPS)

§2 Fig. Simulation of a complex-kinematic tuning based model with variable neuron-kine-
matic latencies. (a) Four example neurons with differing latencies. (b-d) Comparison of rota-
tional dynamics for (b) observed, (¢) permuted without covariance matching, and (d)
covariance-matched data in the first jPCA plane. p-value in b are from the CMPT for the rota-
tional goodness-of-fit ratio (RGR: Ry, /Rj,) inall JPCA planes. Data is plotted for 200 ms

regardless of time period used to generate statistics. Colors are based on the preparatory activ-
ity in the first jPC.
(EPS)

$3 Fig. Tuning curves of RNN neurons during movement. Mean firing rate during the move-
ment epoch of all movement directions for 16 randomly selected RNN neurons.
(EPS)

Acknowledgments

We would like to thank KV Shenoy for generous use of data and C Quigley for comments on
an earlier version of the manuscript.

Author Contributions

Conceptualization: JAM BD HS.

Funding acquisition: HS.

Investigation: JAM BD.

Writing - original draft: JAM.

PLOS Computational Biology | DOI:10.137 1/journal.pcbi.1005175 November 4, 2016 19/22

118



2.3 - Neural population dynamics

@ PLOS |50y

Neural Population Dynamics during Reaching

Writing - review & editing: JAM BD HS.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Scott SH. Inconvenient truths about neural processing in primary motor cortex. J Physiol (Lond). 2008;
586:1217-1224.

Scott SH, Gribble PL, Graham KM, Cabel DW. Dissociation between hand motion and population vec-
tors from neural activity in motor cortex. Nature. 2001; 413: 161-165. doi: 10.1038/35093102 PMID:
11557980

Kurtzer I, Herter TM. Contrasting interpretations of the nonuniform distribution of preferred directions
within primary motor cortex. J Neurophysiol. 2007; 97: 4390-author reply 4391-2.

Kurtzer I, Herter TM, Scott SH. Nonuniform distribution of reach-related and torque-related activity in
upper arm muscles and neurons of primary motor cortex. J Neurophysiol. 2006; 96: 3220-3230. doi:
10.1152/jn.00110.2006 PMID: 17005623

Naselaris T, Merchant H, Amirikian B, Georgopoulos AP. Large-scale organization of preferred direc-
tions in the motor cortex. 1. Motor cortical hyperacuity for forward reaching. J Neurophysiol. 2006; 96:
3231-3236. doi: 10.1152/jn.00487.2006 PMID: 16971681

Georgopoulos AP, Naselaris T, Merchant H, Amirikian B. Reply to Kurtzer and Herter. J Neurophysiol.
2007;97: 4391-4392.

Lillicrap TP, Scott SH. Preference distributions of primary motor cortex neurons reflect control solu-
tions optimized for limb biomechanics. Neuron. 2013; 77: 168—179. doi: 10.1016/j.neuron.2012.10.041
PMID: 23312524

Georgopoulos AP, Carpenter AF. Coding of movements in the motor cortex. Current Opinion in Neuro-
biology. 2015; 33: 34-39. doi: 10.1016/j.conb.2015.01.012 PMID: 25646932

Shenoy KV, Sahani M, Churchland MM. Cortical Control of Arm Movements: A Dynamical Systems
Perspective. Annu Rev Neurosci. 2013; 36: 337—-359. doi: 10.1146/annurev-neuro-062111-150509
PMID: 23725001

Yuste R. From the neuron doctrine to neural networks. Nat Rev Neurosci. 2015; 16: 487-497. doi: 10.
1038/nrn3962 PMID: 26152865

Taniji J, Evarts EV. Anticipatory activity of motor cortex neurons in relation to direction of an intended
movement. J Neurophysiol. 1976; 39: 1062-1068. PMID: 824409

Evaris EV. Pyramidal tract activity associated with a conditioned hand movement in the monkey. J
Neurophysiol. 1966; 29: 1011-1027. PMID: 4961643

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-
dimensional arm movements and cell discharge in primate motor cortex. J Neurosci. Society for Neuro-
science; 1982, 2: 1527-1537. PMID: 7143039

Gao P, Ganguli S. On simplicity and complexity in the brave new world of large-scale neuroscience.
Current Opinion in Neurobiology. 2015; 32: 148—155. doi: 10.1016/j.conb.2015.04.003 PMID:
25932978

Churchland MM, Yu BM, Sahani M, Shenoy KV. Techniques for extracting single-trial activity patterns
from large-scale neural recordings. Current Opinion in Neurobiology. 2007; 17: 609-618. doi: 10.1016/
j.conb.2007.11.001 PMID: 18093826

Afshar A, Santhanam G, Yu BM, Ryu SI, Sahani M, Shenoy KV. Single-trial neural correlates of arm
movement preparation. Neuron. 2011; 71: 555-564. doi: 10.1016/j.neuron.2011.05.047 PMID:
21835350

Michaels JA, Dann B, Intveld RW, Scherberger H. Predicting Reaction Time from the Neural State
Space of the Premotor and Parietal Grasping Network. J Neurosci. 2015; 35: 11415—-11432. doi: 10.
1523/UNEUROSCI.1714-15.2015 PMID: 26269647

Churchland MM, Shenoy KV. Delay of movement caused by disruption of cortical preparatory activity.
J Neurophysiol. 2007; 97: 348-359. doi: 10.1152/jn.00808.2006 PMID: 17005608

Ames KC, Ryu Sl, Shenoy KV. Neural Dynamics of Reaching following Incorrect or Absent Motor Prep-
aration. Neuron. 2014; 81: 438-451. doi: 10.1016/j.neuron.2013.11.003 PMID: 24462104

Sussillo D, Churchland MM, Kaufman MT, Shenoy KV. A neural network that finds a naturalistic solu-
tion for the production of muscle activity. Nat Neurosci. 2015; 18: 1025—-1033. doi: 10.1038/nn.4042
PMID: 26075643

Pandarinath C, Gilja V, Blabe CH, Nuyujukian P, Sarma AA, Sorice BL, et al. Neural population dynam-
ics in human motor cortex during movements in people with ALS. eLife. 2015; 4: e07436. doi: 10.7554/
eLife.07436 PMID: 26099302

PLOS Computational Biology | DOI:10.137 1/journal.pcbi.1005175 November 4, 2016 20/22

119



2.3 - Neural population dynamics

@ PLOS |50y

Neural Population Dynamics during Reaching

22. Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, et al. Neural popula-
tion dynamics during reaching. Nature. 2012; 487: 51-56. doi: 10.1038/nature11129 PMID: 22722855

23. Churchland MM, Cunningham JP. A Dynamical Basis Set for Generating Reaches. Cold Spring Harb
Symp Quant Biol. 2014; 79: 67-80. doi: 10.1101/sgb.2014.79.024703 PMID: 25851506

24. Moran DW, Schwartz AB. Motor cortical representation of speed and direction during reaching. J Neu-
rophysiol. 1999; 82: 2676—2692. PMID: 10561437

25. Todorov E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nat Neu-
rosci. 2000; 3: 391-398. doi: 10.1038/73964 PMID: 10725930

26. AsheJ, Georgopoulos AP. Movement parameters and neural activity in motor cortex and area 5. Cere-
bral Cortex. 1994; 4: 590-600. PMID: 7703686

27. Schwartz AB. Motor cortical activity during drawing movements: population representation during sinu-
soid tracing. J Neurophysiol. 1993; 70: 28-36. PMID: 8360717

28. Humphrey DR, Schmidt EM, Thompson WD. Predicting measures of motor performance from multiple
cortical spike trains. Science. 1970; 170: 758-762. PMID: 4991377

29. Podani J, Miklos I. Resemblance coefficients and the horseshoe effect in principal coordinates analy-
sis. Ecology. 2002; 83: 3331-3343.

30. Novembre J, Stephens M. Interpreting principal component analyses of spatial population genetic vari-
ation. Nat Genet. 2008; 40: 646—649. doi: 10.1038/ng.139 PMID: 18425127

31. Menozzi P, Piazza A, Cavalli-Sforza L. Synthetic maps of human gene frequencies in Europeans. Sci-
ence. 1978; 201: 786-792. PMID: 356262

32. Hennequin G, Vogels TP, Gerstner W. Optimal control of transient dynamics in balanced networks
supports generation of complex movements. Neuron. 2014; 82: 1394—1406. doi: 10.1016/j.neuron.
2014.04.045 PMID:; 24945778

33. Renart A. Bringing the dynamics of movement under control. Neuron. 2014; 82: 1193-1195. doi: 10.
1016/j.neuron.2014.06.002 PMID: 24945762

34. MurakamiM, Mainen ZF. Preparing and selecting actions with neural populations: toward cortical cir-
cuit mechanisms. Current Opinion in Neurobiology. 2015; 33C: 40—46.

35. Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. Cortical activity in the null space: permitting prepa-
ration without movement. Nat Neurosci. 2014; 17: 440-448. doi: 10.1038/nn.3643 PMID: 24487233

36. Churchland MM, Shenoy KV. Temporal complexity and heterogeneity of single-neuron activity in pre-
motor and motor cortex. J Neurophysiol. 2007; 97: 4235-4257. doi: 10.1152/jn.00095.2007 PMID:
17376854

37. Schwartz AB, Kettner RE, Georgopoulos AP. Primate motor cortex and free arm movements to visual
targets in three- dimensional space. |. Relations between single cell discharge and direction of move-
ment. Society for Neuroscience; 1988; 8: 2913-2927.

38. Georgopoulos AP, Kettner RE, Schwartz AB. Primate motor cortex and free arm movements to visual
targets in three-dimensional space. Il. Coding of the direction of movement by a neuronal population.
1988; 8: 2928-2937.

39. Sanger TD. Theoretical considerations for the analysis of population coding in motor cortex. Neural
Comput. 1994; 6: 29-37.

40. Churchland MM, Cunningham JP, Kaufman MT, Ryu Sl, Shenoy KV. Cortical preparatory activity:
representation of movement or first cog in a dynamical machine? Neuron. 2010; 68: 387—400. doi: 10.
1016/).neuron.2010.09.015 PMID: 21040842

41. O'Leary T, Sutton AC, Marder E. Computational models in the age of large datasets. Current Opinion
in Neurobiology. 2015; 32: 87-94. doi: 10.1016/].conb.2015.01.006 PMID: 25637959

42. Jonas E, Kording K. Could a neuroscientist understand a microprocessor? bioRxiv. 2016.

43, Agarwal R, Thakor NV, Sarma SV, Massaquoi SG. PMv Neuronal Firing May Be Driven by a Move-
ment Command Trajectory within Multidimensional Gaussian Fields. J Neurosci. 2015; 35: 9508—
9525. doi: 10.1523/JNEUROSCI.2643-14.2015 PMID: 26109672

44, Castellanos L, VuVQ, Perel S, Schwartz AB. A multivariate gaussian process factor model for hand
shape during reach-to-grasp movements. Statistica Sinica. 2015; 25.

45. Zibner S, Tekilve J, Schoner G. The neural dynamics of goal-directed arm movements: a develop-
mental perspective. 5th International Conference on Development and Learning and Epigenetic
Robotics. Providence, RI; 2015.

46. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance
neuroprosthetic control by an individual with tetraplegia. The Lancet. Elsevier; 2012.

PLOS Computational Biology | DOI:10.137 1/journal.pcbi.1005175 November 4, 2016 21/22

120



2.3 - Neural population dynamics

@ PLOS |50y

Neural Population Dynamics during Reaching

47. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by
people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485: 372-375. doi: 10.
1038/nature11076 PMID: 22596161

48. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for
self-feeding. Nature. 2008; 453: 1098-1101. doi: 10.1038/nature06996 PMID: 18509337

49. Kao JC, Nuyujukian P, Ryu SI, Churchland MM, Cunningham JP, Shenoy KV. Single-trial dynamics of
motor cortex and their applications to brain-machine interfaces. Nat Commun. 2015; 6: 7759. doi: 10.
1038/ncomms8759 PMID: 26220660

50. Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD, Ryu S, et al. A recurrent neural network for
closed-loop intracortical brain-machine interface decoders. J Neural Eng. 2012; 9: 026027. doi: 10.
1088/1741-2560/9/2/026027 PMID: 22427488

51. Sussillo D, Abbott LF. Generating coherent patterns of activity from chaotic neural networks. Neuron.
2009; 63: 544-557. doi: 10.1016/j.neuron.2009.07.018 PMID: 19709635

52. Martens J, Sutskever |. Learning recurrent neural networks with hessian-free optimization. Proceed-
ings of the 28th International Conference on Machine Learning. Bellevue, WA, USA; 2011.

53. Rifai S, Muller X, Glorot X, Mesnil G, Bengio Y. Learning invariant features through local space con-
traction. arXiv. 2011;1104.4153.

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1005175 November 4, 2016 22/22

121



2.3 - Neural population dynamics

122

Supporting Information

a b c
Single Neurons Principal Components Principal Plane
f —Neuron 1 —PC1
——Neuron 2 —PC2
Neuron 3 PC3
—Neuron 4
Q —Neuron 5
© Neuron 6
14 o~
o [&]
=
= o
('
Time Time PC 1

S1 Fig. Latency offsets produce derivative-like principal components. (a) Firing
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Comparison of rotational dynamics for (b) observed, (¢) permuted without covariance
matching, and (d) covariance-matched data in the first JPCA plane. p-value in b are
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JPCA planes. Data is plotted for 200 ms regardless of time period used to generate
statistics. Colors are based on the preparatory activity in the first jPC.
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S3 Fig. Tuning curves of RNN neurons during movement. Mean firing rate during
the movement epoch of all movement directions for 16 randomly selected RNN
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“Performance of reaching movements appears to require control at multiple levels of
abstraction. For example, the neural mechanisms involved in deciding on the target
for a reach need not necessarily take into account all the details of muscular
contraction which must ultimately be controlled to accomplish the selected movement.
Conversely, mechanisms involved in overt muscular control need not be sensitive to
the criteria by which a particular action was selected. One therefore expects that
different neural populations represent a given movement in different ways,

emphasizing some cognitive, temporal, or spatial aspects while ignoring others.”
(Cisek et al., 2003)
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Abstract

Preparing and executing grasping movements demands the coordination of sensory
information across many scales. Factors such as the position of an object, the shape of
the hand required to grasp, and which of our hands to use must all be coordinated in
parallel. The network formed by macaque anterior intraparietal area (AIP) and hand
area (F5) of the ventral premotor cortex is essential in the generation of grasping
movements. However, the role of these areas in hand selection for grasping is unclear.
We recorded from 1342 single and multi units in areas AIP and F5 of macaque
monkeys (Macaca mulatta) during a delayed grasping task, in which monkeys were
instructed by a context cue (LED) to perform power or precision grips on a handle
that was presented in five different orientations, with either the left or right hand, as
instructed by an auditory tone. We found that orientation tuning was prevalent in AIP
throughout the trial, even in darkness. Units in AIP maintained identical orientation
preferences between cue and movement, and were not modulated by the hand used
before movement, suggesting that AIP encodes task information in a largely visuo-
spatial frame during preparation. In contrast, preparatory activity in F5 increasingly
represented the intended hand to be used, but orientation tuning was only present for
contralateral movements, revealing a selective transfer of orientation information
depending on hand use. Interestingly, preferred grip type was shared between hands,
suggesting that the underlying representation of grip information is identical
regardless of hand use. Together, our results indicate a more direct form of
sensorimotor integration in F5 than previously thought, and a surprising lack of hand
dependence in AIP, suggesting that the circuit formed by AIP and F5 is an essential

step in the visual to motor specific transformation.
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Introduction

Our everyday reaching and grasping movements demand the coordination of
information across multiple scales. While grasping a cup requires determination of the
physical position and orientation of the cup, one must also resolve the appropriate
shaping of the hand, which hand to use, and the muscle forces required. Given this,
and given the flexibility with which we switch between hands, it is expected that both
hand independent and muscle specific representations should be found at various
levels of abstraction throughout cortex.

Indeed, a number of studies have probed how neural circuits represent
laterality of reaching movements in macaque monkeys. Integration of arm specific
and arm independent information has been found in the parietal reach region (PRR)
(Chang et al., 2008), dorsal premotor cortex (PMd) (Hoshi and Tanji, 2000; Cisek et
al., 2003; Hoshi and Tanji, 2006; Kurata, 2010), and primary motor cortex (M1)
(Muakkassa and Strick, 1979; Tanji et al., 1988; Kermadi et al., 1998), although the
outputs from M1 have been identified as mostly contralateral (Penfield and
Rasmussen, 1950; Evarts, 1966).

Yet, little is known about the laterality of grasping movements. It has been
shown that when all inter-hemispheric connections of macaques has been severed, the
ipsilateral hemisphere can generate reaching movements towards food, but cannot
properly pre-shape the fingers of the hand (Brinkman and Kuypers, 1973), suggesting
that grasping is a highly lateralized process. The hand grasping circuit (Luppino et al.,
1999) consisting of the hand area (F5) of the ventral premotor cortex (PMv) and the
anterior intraparietal area (AIP) is an essential anatomical and function circuit in grasp
preparation and execution. Neural activity in these areas is strongly modulated by
visual object properties (Murata et al., 1997; 2000), extrinsic goals (Kakei et al.,
2001), performed grip types (Baumann et al., 2009; Fluet et al., 2010), and
preparatory activity in these areas can be used to decode the visual properties of
objects and complex hand shapes required to grasp a diverse range of objects
(Carpaneto et al., 2011; Townsend et al., 2011; Schaffelhofer et al., 2015), as well as
predict reaction times (Michaels et al., 2015). Although laterality has been studied in
PMy, these studied either employed no delay period (Rizzolatti et al., 1988), simple
movements (Tanji et al., 1988), or required only reaching movements (Hoshi and
Tanji, 2006; Kurata, 2007; 2010). Additionally, to our knowledge, no studies of

laterality have been undertaken in AIP.
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In the current study, laterality of grasping movements were investigated using
a delayed grasping task (for review see Janssen and Scherberger, 2015) while neural
activity was recorded in AIP and F5. Two monkeys visually fixated a central fixation
point throughout the trial. During a cue phase, monkeys received a visual cue
indicating which of two grip types to perform in one of five possible grasping handle
orientations as well as an auditory tone indicating the hand to use on that trial.
Following a memory period, a go cue instructed monkeys to grasp the handle in the
dark.

We found that activity in AIP and F5 during the movement itself robustly
reflected which hand was used, but preparatory activity representing the intended
hand was only found in F5, suggesting that AIP represents task information
independent of hand during preparation. Furthermore, the amount of grip tuning and
preferred grip type of each unit did not depend on hand used, indicating a shared
framework for grasp planning. However, although orientation tuning was abundant in
AIP, orientation tuning was only present in F5 for contra- and not ipsi-lateral
movements, revealing a functional differentiation between hemispheres. Finally, the
functional representation of task conditions in the neural population was significantly
more correlated between AIP and F5 during contra- rather than ipsi-lateral movement
preparation, but equal during execution, suggesting that preparatory coordination

between the areas may be limited to contralateral grasping movements.
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Results
Behavior

To investigate the laterality of grasp movement coding in premotor and
parietal cortex, two monkeys performed a delayed grasping task in which the hand the
monkey had to use, as well as the appropriate grip type and hand orientation, was
cued on each trial. Concurrently with behavior, single- and multi-unit activity was
recorded from premotor area F5 and parietal area AIP simultaneously (Figure 1). Both
monkeys successfully performed the task. After initiating trials to the point of
obtaining specific trial information, monkeys S and P successfully completed 85%
and 84% of trials, respectively. In detail, monkeys S and P correctly selected the
correct hand on 89% and 93% of trials, respectively, while grip type selection was
correct 99% and 98% of the time. As the motion of the hand during the memory
period was tracked with an infrared camera (Materials and Methods), monkeys were
required to keep the hands completely still on the hand rests. Trials were completed
successfully without premature movement 99% and 94% of the time, for monkeys S
and P, respectively. Median reaction time, i.e. the time between the go cue and the
hand leaving the handrest, was 230 and 265 ms for monkeys S and P, respectively,
while median movement time, i.e. the time between the hand leaving the handrest and

executing the appropriate grip on the handle was 305 and 325 ms.

Neural recordings

The analyzed data sets included a collection of 178 individual recording
sessions, 91 from monkey S and 87 from monkey P. In monkey S, 861 single- and
multi-units were successfully recorded (single: 459, multi: 402), of which 581 were
task-related (AIP: 189, F5: 392) and used in further analysis (Materials and Methods).
In monkey P, 481 units were recorded (single: 263, multi: 218), of which 390 were
task-related (AIP: 207, F5: 183). Units were classified as task-related if they were
tuned for any of the three task factors (hand, grip, or orientation) at any point during
the course of the trial as determined by a cluster-based permutation test (CBPT;
Materials and Methods), which finds contiguous segments of time tuned for one of the
three task factors, while keeping the overall false-positive rate below 1.7%. Only units

found to be task-related were used in further analysis.
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Figure 1. Task design and recordings. A, [llustration of a monkey in the
experimental setup. The cues were presented via LEDs above the handle. B, Delayed
grasping task with two grip types (top: power grip, bottom: precision grip), five
orientations of the grasping handle, and grasped with either the left or right hand.
Grips and orientation were cued using LEDs and handle illumination, while hand was
cued by two auditory tones. Trials were presented in pseudorandom order in darkness.
C-D, Recording locations for monkey P (C) and S (D) overlaid on a structural MRI.
The illuminated oval marks the outline of the recording chamber. Recordings were
made in F5 on the bank of the arcuate sulcus (AS) and in AIP toward the lateral end
of the intraparietal sulcus (IPS). The cross shows medial (M), lateral (L), anterior (A),
and posterior (P) directions. Note that monkey S was implanted in the left hemisphere
and monkey P in the right hemisphere.

To get an overview of what kind of task-related responses were present, we
averaged over all trials of each condition to produce average firing rate curves and
combined them with the significance testing described above (CBPT). Figure 2 shows
a number of example single units recorded from both areas and monkeys. One of the
most common responses in AIP was tuning for a specific orientation of the handle that

was sustained from cue onset to the end of movement, even though the handle was
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only illuminated during the cue (Fig. 2 - Top Left). Another common response in AIP
was units that did not respond to the cue at all, but showed strong grip and hand
tuning specifically during the movement (Fig. 2 — Middle Left). Interestingly, many
units in F5 were tuned for the hand used not only during the movement, but also from
the end of the cue period onwards, showing a preference for both ipsi- and contra-
lateral movements (Fig. 2 — Top Right). Additionally, units showing sustained tuning
for grip were widely present (Fig. 2 — Middle Right), and occasionally units that were
tuned for all three factors (Fig. 2 — Bottom Right), although these were relatively rare.
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Figure 2. Example average firing rate curves of single-units in AIP and FS5. (Top
Left) A unit tuned to a single orientation of the handle throughout the trial, even in
darkness. (Middle Left) A unit tuned only during movement both for the grip
performed and the hand used. (Top Right) A unit tuned for hand used through the
trial, showing a preference for ipsilateral movements. (Middle Right) A unit tuned for
performed grip throughout the trial, along with phasic hand tuning during movement.
(Bottom Right) A unit tuned for all task factors at different points in the trial. Data
were aligned to three events, cue onset, movement onset, and reward. Raster plots
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above curves show single spikes over all trials of each condition. Significance bars
represent tuning for each of the three factors, as determined by cluster-based
permutation test (p < 0.017). Examples were taken from both monkeys.

Population tuning

While examining the average responses of individual units is an essential step,
characterization of population function requires examination of a large set of units.
Before looking at the laterality of population responses, we examined population
tuning for grip type and orientation of the handle. Figure 3A shows the times of
significant grip and orientation tuning for all recorded units from both monkeys and
areas, aligned to time of first tuning. Data from both monkeys were pooled together
since the amounts of tuning were very similar for both grip and orientation. Tuning
increased for both factors typically during the cue epoch and around movement onset.
Interestingly, the amount of grip tuning in AIP was quite low, especially during the
memory period, while orientation tuning on AIP was extremely prevalent and often
sustained for the whole trial, as seen in the example unit in Figure 2. In contrast, grip
tuning in F5 ramped steadily during the cue and was often present during the memory
period, while orientation tuning was very rare. Also notable is that the preferred grip
type of each unit was frequently unstable over the course of the trial, showing a
switch in significant tuning at various time points, an interesting effect that will be
returned to later.

To see the difference in prevalence in tuning between contra- and ipsi-lateral
grasps we repeated the previous tuning analysis for trials of each hand separately and
summed over the population, producing plots of the total amount of tuning in Figure
3B. Interestingly, the amount of grip tuning did not differ between contra- and ipsi-
lateral trials, suggesting that the intended grip is equally prevalent in both
hemispheres during planning and execution. Intriguingly, while there was some
orientation tuning in F5 during contralateral grasps, there was virtually none during
ipsilateral grasps, implicating a differing function of the area depending on the hand

being used for grasping.
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Figure 3. Grip type and orientation tuning over all recordings. 4, Times of
significant tuning for all units from both areas and monkeys, aligned by onset of first
tuning, as determined by cluster-based permutation test (p < 0.017). Labeled
condition represents the one that elicited the higher firing rate. B, Percentage of units
tuned for each effect over time. Same analysis as A repeated for contra- and ipsi-
lateral trials separately and collapsed for each time point. Results were very similar
between monkeys and were therefore pooled. Data were aligned to three events, cue
onset, movement onset, and reward.

Another interesting question is whether or not the preferred grip type was
shared between contra- and ipsi-lateral grasps. To test this, we compared the preferred

grip type (highest firing) between trials of each hand for each unit that was
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significantly tuned (based on CBPT) during both movements. During cue and
memory, not a single unit in either area switched preference between contra- and ipsi-
lateral trials, indicating that grip tuning was preserved regardless of hand used. During
the movement period, less than 5% of units in either area switched their preference
between trials of each hand, implicating a shared representation regardless of hand

used.

Laterality encoding
Up to this point we have only considered tuning for classical features such as grip
type and handle orientation. Now, we consider tuning for the hand itself using the
same analysis as above, but plotted for each monkey separately (Figure 4). For
monkey S, hand tuning was virtually non-existent in AIP before movement onset,
suggesting that AIP encodes task-relevant features in a hand-independent manner
before the movement has started. In contrast, hand tuning in F5 seemed to ramp
continuously throughout the entire trial, reaching a maximum (50% of units tuned)
just before the hold period, showing that F5 is strongly dependent on hand used.
The results of monkey P with respect to hand tuning were significantly
different, showing phasic spikes in hand tuning in both areas immediately after the
cue. As described in the Materials and Methods, an infrared camera tracked the
position of the hands during the cue and memory periods to ensure that no premature
movements occurred. However, very small movements were likely still possible. To
test this possibility, the sum of a measure of hand movement (Materials and Methods)
that was recorded during the memory period of individual trials was used to decode
task conditions offline. Using a linear classifier (n-fold cross-validated, Matlab
function: fitcdiscr), it was possible to decode the hand used from the memory period
with 52% accuracy in monkey S, where 50% is chance level, suggesting that no
premature movements occurred. In contrast, the hand used could be decoded with
75% accuracy in monkey P, suggesting that small premature movements may have
occurred. Additionally, grip type could never be decoded from the infrared video
during the memory period (50% accuracy in both monkeys), indicating that any
premature movements never represented the grip type. Taken together, this result
suggests that monkey P made small premature movements during the memory that

caused phasic spikes in hand tuning, but left grip tuning unaffected. Therefore, we
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believe that the results of monkey S with respect to hand tuning during the cue and

memory periods conservatively reflects the function of these areas.
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Figure 4. Hand tuning over all recordings separated by monkey. 4, Times of
significant hand tuning for all units from both areas and monkeys, aligned by onset of
first tuning, as determined by cluster-based permutation test (p < 0.017). Labeled
condition represents the one that elicited the higher firing rate. B, Percentage of units
tuned for hand over time, obtained from 4. Results significantly differed between
monkeys and were therefore presented separately. Data were aligned to three events,
cue onset, movement onset, and reward.
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Now that we have seen that hand tuning exists in both areas, Figure 5 plots
the hand specificity index (HSI, Materials and Methods) of all units of monkey S to
identify how much firing rates differed between contra- and ipsi-lateral grasps. A
value of one indicates firing purely during contralateral movements, while a value of
negative one indicates firing purely during ipsilateral movements. As expected, during
the cue and memory period the HSI was not significantly shifted from zero in AIP
(Wilcoxon signed rank test, p > 0.05), while the HSI was significantly biased towards
contralateral during movement and the hold period (Wilcoxon signed rank test, p <
0.001). Furthermore, this shift did not differ when splitting units into single- and
multi-unit recordings. In F5, the HSI was significantly shifted in the positive direction
during all epochs (Wilcoxon signed rank test, p < 0.001), suggesting that producing
contralateral movements generally increased firing rates more than ipsilateral
movements. However, during memory it is clear that units were tuned to both contra-
and ipsi-lateral movements, as seen by the bimodal distribution of significantly tuned
units, suggesting that movements of either hand were likely to produce higher firing

rates during the memory period.
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Figure 5. Hand specificity index (HSI) for monkey S. HSI was calculated as the
sum of the spikes in a specific task epoch for contralateral trials, minus the same for
ipsilateral trials and then divided by the sum of both values. Therefore, a value of +1
indicated purely contralateral firing while a value of -1 indicated purely ipsilateral
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firing. Units were plotted separately for single- and multi-units to determine if a bias
was introduced by pooling activity into multi-units. This analysis was only carried out
on monkey S since hand tuning was significantly different between monkeys.

Tuning consistency

A large number of units were tuned during each epoch of the task. How often was this
tuning sustained between epochs, and was there significant preference for particular
conditions over time? Figure 6A shows a chart of which epochs all units in both areas
were tuned for either grip or hand. For grip tuning, most units were only tuned during
one epoch, although there was substantial overlap in many cases. Hand tuning was
least during the cue, most during movement, and showed substantial overlap between
memory and movement. However, most units were still only tuned during one epoch,
suggesting that most of the time tuning to either factor is phasic and not sustained

over all epochs.
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Figure 6. Consistency of grip and hand tuning in F5. 4, (Top) Distribution of when
units (from both monkeys) were tuned for grip in F5. (Bottom) Distribution of when
units (from monkey S only) were tuned for hand in F5. Although some units remained
tuned over the entire trial, many only showed a preference during specific epochs. B,
(Top) Onset of first tuning and switch tuning for units that switched their preferred
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grip type during the trial. (Bottom) Onset of first tuning and switch tuning for units
that switched their preferred hand during the trial. All tuning is based on the cluster-
based permutation test used in Figures 3-4.

To investigate the consistency of tuning over time, Figure 6B shows the
times when units first became tuned for grip or hand, and the time at which certain
units became significantly tuned for the other factor. Only units that switched tuning
are plotted. Interestingly, very few units changed grip preference during the cue or
memory period, yet many either changed their preference between cue and
movement, or throughout the movement itself. Overall, 23% of units switched their
tuning at some point during the trial, suggesting that preference varied throughout
time. A similar effect was seen for hand tuning, since 18% of units switched their
hand preference at some point during the trial, however almost exclusively during the

movement itself.

Coordinate frame

Both areas investigated in the current study are essential parts of the visuo-motor

transformation process, and therefore involved in transforming visual information into

a body-centered coordinate frame so that muscle movements can be executed to the
appropriate location in physical space. By examining the relationship between handle

orientation preference and hand used, it is possible to test the representation of

extrinsic (visual-centric) and intrinsic (body-centric) coordinate frames in all recorded

units. Figure 7A illustrates the two potential preferences of an example unit for the
two coordinate frames. If a unit were tuned purely in an extrinsic frame, orientation
preference should be shared regardless of hand used. In contrast, in an intrinsic frame
the orientation preference may shift between hands to match the correspondingly
mirrored wrist rotation (i.e., pronation or supination) required between each hand. To
test this, we correlated the average firing rate of each unit during all handle
orientations of one hand and the other over time (200 ms spiking windows in steps of
50 ms). If the correlation exceeded zero and was significant, that indicated an
extrinsic frame, as shown in Figure 7B, while units showing a significant correlation
below zero indicated an intrinsic frame (permutation test, p < 0.05). Figure 7C shows
the number of units fitting either frame over both monkeys for AIP and F5 separately.

The number of units fitting the extrinsic frame was highest at the end of the cue and
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decreased throughout the trial in both areas, increasing slightly in AIP during
movement. Interestingly, very few units showed an intrinsic frame, suggesting that
such a transformation is not represented in the units of these areas. However, the

general lack of orientation tuning in F5 makes conclusions difficult and is discussed

later.
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Figure 7. Extrinsic or intrinsic reference frame representation in individual
units. A, [llustration of preferred handle orientations for example units following an
extrinsic (visual) or an intrinsic (body-centered) frame. B, Average firing rates of
example units. Each dot represents the average firing rate for one of the five handle
orientations, with the line of best fit. A positive slope for the line of best fit
corresponded to an extrinsic frame and a negative slope an intrinsic frame. C, Number
of units fitting either model in AIP and F5 (200 ms spiking windows in steps of 50
ms).

Demixed principal component analysis

Both AIP and F5 are involved in the processing of a large multitude of task factors.
These factors must be processed in parallel, and are distributed over many units in the
population. To get a picture of how these factors are represented in the populations of
AIP and F5, we implement demixed principal component analysis (dPCA), a
dimensionality reduction methods for extracting low-dimensional linear combinations
of a population that represent specific task features (Kobak et al., 2014). Since there

was a significant difference in how hand was encoded between the two monkeys, we
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developed an additional procedure for extracting only dimensions that were present
independently in both monkeys (Materials and Methods). Figure 8 shows the results
of dPCA over all units of both monkeys in AIP and F5. The amount of variance
explained by dPCA was very similar to that extracted by classical PCA, suggesting
that the method is able to properly extract relevant task features.

Intriguingly, the components taking up the most variance overall are
condition independent signals. The first component in AIP is a large condition-
independent signal that begins shortly before movement onset, while the second
component is a large phasic response to the cue. In F5, the first component is the
same, while the second component seems to progress linearly with time, especially
during the memory period. The next largest component in both areas was related to
the hand used, although the hand used could only be decoded from this signal in AIP
during the movement period, as denoted by the black bars (Materials and Methods),
while hand used could be consistently decoded from this signal in F5 starting towards
the end of the cue and lasting throughout memory and movement. The same was true
of grip decoding, being present in F5 throughout the trial starting in early cue, but
only during movement in AIP. However, grip could be decoded at earlier time points
in component 10 in AIP, as shown by the black bars marking significant decoding.
Handle orientation was very well decodable from AIP throughout the trial, while
barely so in FS5.

Given that the task factors must be represented within each area in parallel,
we tested the orthogonality of each component by taking the dot product between the
coefficients of each component (i.e. the contributions of all units to each component).
Interestingly, most components were not significantly non-orthogonal, suggesting that

the task factors are independently represented.
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Figure 8. Demixed PCA on AIP and FS5 of both monkeys. (Right Panels) Demixed
principal components. Thick black lines show time intervals during which the
respective task parameters can be reliably extracted from single-trial activity. Note
that the vertical scale differs across subplots. (Left Top) Cumulative signal variance
explained by PCA (black) and dPCA (red). Demixed PCA explains almost the same
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amount of variance as standard PCA. (Left Middle) Variance of the individual
demixed principal components. Each bar shows the proportion of total variance, and
appears to be single-colored, which signifies nearly perfect demixing. Pie chart shows
how the total signal variance is split between parameters. (Left Bottom) Lower-right
triangle shows dot products between all pairs of demixed principal axes. Stars mark
the pairs that are significantly and robustly non-orthogonal. Upper-left triangle shows
correlations between all pairs of the components. Most of the correlations are very
low.

Task-space correlation

Communication between AIP and F5 is required to properly prepare and execute
grasping movements. Therefore, we wanted to test how functionally similar the
representation of our task was in both areas at different times during the trial. To
achieve this, we calculated the Euclidean distance between the average firing rates of
all pairs of conditions (for each hand separately) in the space of all recorded units
across both monkeys, producing distance matrices. Two example matrices are shown
in Figure 9A. The unique portions (upper triangle excluding the diagonal) of these
matrices were then correlated between AIP and F5 for trials of each hand separately.
The resulting correlations (Spearman) are shown in Figure 9B for five epochs, and
significant differences between contra- and ipsi-lateral trials are marked with a star
(permutation test, p < 0.05, false-discovery rate correction, Materials and Methods). A
high correlation would indicate that the relationship between task conditions in neural
space was very similar between areas, while a low correlation would indicate
differing representations of task conditions between areas. At the beginning of the
cue, the correlation was reasonable and not significantly different between contra- and
ipsi-lateral movements. However, by the end of the cue and during the memory period
the correlation between areas was significantly higher during contralateral
movements, suggesting that the representation of the task was highly similar in AIP
and F5 specifically for these movements. Finally, during the movement the task
representation was very similar between areas and did not differ between contra- and
ipsi-lateral movements. If data are separated by monkey, the same result is obtained
for monkey S, but not for monkey P, a relatively expected result given the differences
in memory period behavior between monkeys. Although not a direct measure of
causal communication, this analysis strongly suggests that communication between
AIP and F5 is more extensive during preparation of contra- vs. ipsi-lateral grasping

movements.
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Figure 9. Task space correlation between contra- and ipsi-lateral movements. A4,
Example distance matrices showing Euclidean distance between all pairs of
conditions for one hand (contralateral) in the neural space of all recorded units of both
monkeys in the early memory epoch. Distance matrices produced from the activity of
each area were correlated to each other to determine the similarity in functional
representation between areas. B, Spearman correlation of distance matrices for contra-
and ipsi-lateral trials separately. Stars mark epochs when the correlation was
significantly higher during contra-lateral trials (permutation test, p < 0.05, False-
discovery rate correction).
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Discussion

In the current study, by recording from many units in AIP and F5 of two macaque
monkeys during a delayed grasping task, we found that the laterality of hand use was
not robustly encoded in AIP before movement, while hand tuning steadily increased
in F5. Furthermore, while orientation tuning was prevalent in AIP, it was only found
in F5 during preparation of contralateral movements.

The amount of grip tuning obtained in AIP was significantly lower than found
in previous studies (Baumann et al., 2009) as was the amount of orientation tuning
found in F5 (Fluet et al., 2010). We believe these differences are due to selective
recording of task-related units in previous studies, while in the current study units
were not evaluated for tuning online, presumably giving a more unbiased estimate of
tuning percentage.

As mentioned earlier, severing all connections between hemispheres of
macaques has shown that the ipsilateral hemisphere can coordinate reaches, but not
properly pre-shape the fingers of the hand to grasp the food (Brinkman and Kuypers,
1973). Therefore, it’s interesting that in the current study grip preference and tuning
was identical regardless of hand use. It suggests that premotor cortex in either
hemisphere should be successful in hand shaping; yet this was not the case in this
classic study. Therefore, it is unlikely that involvement of F5 in ipsilateral movements
1s contributing directly to muscle activation. Supporting this, stimulation of ipsilateral
M1 produces no direct corticospinal activation of the muscles (Soteropoulos et al.,
2011). Therefore, F5 modulation during ipsilateral movements is likely coordinated
with the contralateral F5 through the corpus callosum and likely also plays a larger
role during bimanual rather than unimanual grasping movements, as is the case in M1
(Donchin et al., 1998).

Interestingly, while grip preference did not change between hands, many units
changed their grip or hand preference between the preparatory periods and the
movement itself (Fig. 6), in line with studies showing that individual unit tuning tends
to be unstable, and that different dynamics govern preparation and movement
(Churchland et al., 2012; Ames et al., 2014).

The fact that AIP showed no preparatory response to hand use is unexpected,
especially since the nearby parietal reach region shows strong modulation (Chang et
al., 2008). Additionally, AIP is part of the network that responds to passive auditory

listening (Poremba et al., 2003), and since the current task employed an auditory cue,
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it would be expected that playing multiple tones would elicit a task dependent
response. It could be that the auditory stimuli in our task were not varied enough to
elicit a significant effect, or rather that since the task was active rather than passive,
AIP was likely dominated by visual processing demands.

During the movement itself, both areas strongly represented the hand used.
Along with F5 contributing to the initiation of movement, hand tuning during
movement could originate from projections from secondary sensory cortex to both F5
(Kurata, 1991; Gerbella et al., 2011) and AIP (Borra et al., 2008).

Monkeys were required to reach to the target as well as grasp. Therefore,
reach planning and execution is likely a significant part of the observed activity.
However, as we have argued previously (Michaels et al., 2015), previous research
employing a grasp-only task (Hepp-Reymond et al., 1994) and a grasp-reach
dissociation task (Lehmann and Scherberger, 2013) suggests that F5 encodes grasping
quite independently of reaching, although both areas contain information about reach
position. Furthermore, reversibly inactivating F5 (Fogassi et al., 2001) or AIP
(Gallese et al., 1994) selectively impairs hand-shaping and not reaching, suggesting
that our results are an accurate representation of the grasping network.

Although monkeys received grip cue information at the center of their visual
field, the effector cue was auditory, introducing a potential confound in lateralized
processing. However, it is unlikely that any lateralization effects found in the current
study are a result of asymmetric processing of auditory information since only
complex stimuli, such as vocalizations, evoke a lateralized response in macaque
monkeys (Poremba and Mishkin, 2007; Joly et al., 2012).

Based on our analysis of infrared motion tracking, it is very likely that monkey
P made small movements of the hand during the preparatory phases, biasing hand
tuning during that time. However, the same analysis showed that no such movements
occurred with monkey S, and grip and orientation tuning appeared unaffected.
Furthermore, we were able to extract the population level preparatory and movement
related signals that were shared in both monkeys (Fig. 8), revealing the commonality
in data sets. The relative orthogonality of these extracted dimensions is an indicator of
the coding mechanisms that may be employed by cortex in order to efficiently encode
information in parallel. A number of studies support the notion that low-dimensional

features of neural populations have a biological basis, including learning induced
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plasticity (Sadtler et al., 2014), gating of motor output (Kaufman et al., 2014), and
parallel encoding (Mante et al., 2013).

In our analysis of orientation tuning, the lack of intrinsic coordinate frame
tuning observed across both areas (Fig. 7) raises two possibilities. Either, wrist
orientation is not well encoded in either area, or an intrinsic frame in which wrist
orientation preference is mirrored in individual units between hands used is not a
sensible coordinate frame employed by these areas. Given the low amounts of
orientation tuning observed in F5, it is likely that wrist orientation is simply not
directly encoded in F5, and that properly testing an intrinsic frame requires
considering more complex reference frames that well explain wrist and finger
movements.

Given that the hand tuning observed in F5 does not likely originate from AIP,
the hand tuning in F5 likely comes indirectly through prefrontal cortex, from which a
number of areas project to F5 (Gerbella et al., 2011). This is also in line with the fact
that hand tuning in F5 appears only towards the end of the cue and builds slowly, as
observed previously (Hoshi and Tanji, 2006). An alternative explanation for large
amounts of hand-invariant tuning could be that many proximal muscles are required
for movements of either arm, given the large postural adjustments required in
extending the arm, and could therefore explain large amounts of hand invariant
tuning. However, experiments limiting movements to the distal muscles alone (Tanji
et al., 1988), or controlling for postural contributions to ipsilateral control (Ganguly et
al., 2009), have shown strongly bilateral representation of hand movement in
premotor cortex, suggesting that postural control cannot fully explain hand-
independence.

On the other hand, an extrinsic frame representation in PMv is not altogether
surprising, since PMv has been shown to be very sensitive to visuo-spatial
information as opposed to the dynamics of movement (Hoshi and Tanji, 2006; Xiao et
al., 2006), but likely shifts its control strategy during movement (Suminski et al.,
2015). A change in control strategy between preparation and movement is supported
by the fact that although there was an equal amount of orientation tuning in F5 during
movement as during cue, the number of units fitting an extrinsic frame dropped to
baseline levels, suggesting that the reference frame used during execution in F5 does
not match either tested frame. In contrast, almost all units in AIP tuned for orientation

during movement also showed a significant extrinsic frame, suggesting that AIP
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continues employing a largely visuo-spatial frame. Therefore, PMv is likely a site of
transformation between hand-invarient and hand-specific representations,
representing stimuli from both the contra- and ipsi-lateral visual hemi-field
(Boussaoud and Wise, 1993a; 1993b), leading to a strong visuo-spatial dependence,
while also accumulating hand-specific information before and during movement. Yet,
the dependence of orientation tuning in PMv on hand use reveals a more direct
representation of sensorimotor integration than posited previously (Hoshi and Tanji,
2007), and provides an interesting perspective on the function of the premotor and

parietal grasping circuit.



2.4 - Hand-invariant to hand-specific

Materials and Methods

Experimental Setup

Two female rhesus monkeys (Macaca mulatta) participated in this study (monkeys P
and S; weight 4.5 and 5.5 kg, respectively). They were pair-housed in a spacious and
enriched environment. All procedures and monkey care were conducted in accordance
with the regulations set by the Guidelines for the Care and Use of Mammals in
Neuroscience and Behavioral Research (National Research Council, 2003), and in
agreement with German and European laws governing monkey care.

Monkeys were habituated to comfortably sit upright in an individually
adjusted primate chair with the head rigidly fixed to the chair. A grasp target was
located at a distance of 24 cm in front of the monkey. The target consisted of a handle
that could be grasped with two different grip types, either with a precision grip (using
index finger and thumb in opposition) or a whole-hand power grip (Baumann et al.,
2009; Fluet et al., 2010). Inside the handle, two touch sensors were placed in small,
visible recessions to detect the contact of the monkey’s thumb and index finger during
precision grips. An infrared light barrier placed inside the opening of the handle
detected power grips. Grip type was instructed by two colored light emitting diodes
(LEDs) that were positioned immediately above the grasping handle. The handle was
rotatable and was presented in five different orientations (upright and 25° or 50°
clockwise and counter-clockwise) and two spotlights could illuminate it from the left
and right side in an otherwise dark experimental room. Two capacitive touch sensors
(model EC3016NPAPL; Carlo Gavazzi) were placed at the level of the monkey’s
waist as handrest buttons. A single speaker, which produced the audio tones for cuing
the appropriate arm, was positioned directly above and behind the monkey’s head.
The speaker was oriented such that the audio tone was equally directed into each ear.
Monkeys had to fixate on a red LED that was positioned between the two cue LEDs.
Eye movements were measured using an optical eye tracker (ET-49B; Thomas
Recording) and custom-written software implemented in LabView Realtime (National
Instruments) using a time resolution of 5 ms was used to control the behavioral task.

In additional to normal behavioral control, the stationarity of each monkey’s
hands on the hand rests was also tracked during the memory period of every trial with
an infrared camera positioned directly over the hands. Using a separate custom-
written LabView control program, the stationarity of both hands was simultaneously

monitored for several criteria: (a) the total luminance of the hand, (b) the center of the
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hand, i.e. the position of the weighted average of the most luminous pixels in both the
x and y direction separately, and (c) the standard deviation around the center of the
hand in both the x and y direction. If at any time during the memory period either
hand moved more than a pre-set threshold with respect to any of these factors, the trial
was aborted without reward. The thresholds beyond which a trial would be aborted
were fixed during all recordings of both monkeys at: (a) £2%, (b) +1%, and (c) *2%.
Additionally, during all recordings of monkey S and a small portion of the
recordings from monkey P, continuous infrared hand motion information was
digitally stored (500 Hz) for later offline analysis. For each hand the sum of these
variables was recorded, i.e. the sum of the total hand luminance, the center of the
hand in x-coordinates, and the center of the hand in y-coordinates, as these values

were most valuable in controlling motion behavior.

Behavioral paradigm

Monkeys were trained in a delayed grasping task in which they were required to grasp
a handle in five possible orientations with either a power grip or a precision grip using
the left or right arm. This led to 20 grasp conditions that were presented in a
pseudorandom order. To initiate a trial, monkeys sat in darkness and placed each hand
on a handrest button. The handle was then positioned in one of the five orientations
and subsequently a red fixation LED switched on. From then on, the monkey was
required to fixate while keeping both hands on the handrest buttons (fixation period
duration: 700—-1100 ms, mean: 900 ms), as illustrated in Figure 1A. In the following
cue period (cue period duration: 800 ms), the object was illuminated to reveal its
orientation. The color of an additional LED presented to the left or right of the
fixation LED indicated which grip type to perform, either a power grip (green light,
left) or a precision grip (yellow light, right). In addition, an audio tone (1000Hz or
2000Hz), representing the left and right arms, respectively, was presented
simultaneously with the grip cue and spotlights. The spotlights, audio tone, and the
grip cue LED were then switched off while the fixation light remained on for a
variable period (memory period duration: 700—1100 ms, mean: 900 ms) during which
the monkey had to remember the trial instructions. A brief blinking of the fixation
LED (130 ms) instructed the monkey to reach and grasp the object in the dark with

the correct arm while maintaining eye fixation and keeping the other arm on the
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handrest. After a hold period of 300 ms, each correct trial was rewarded with a fixed

amount of water.

Surgical procedures and MRI scans

Details of the surgical procedures and MRI scans have been described previously
(Lehmann and Scherberger, 2013). In short, a titanium head post was secured in a
dental acrylic head cap and a custom made oval-shaped recording chamber [material
PEEK (polyether ether ketone); outer dimensions, 40 Xgs25 mm?; inner dimensions,
35 X 20 mm?] was implanted over the right or left hemisphere to provide access to
parietal area AIP and premotor area F5.

Two structural magnetic resonance image (MRI) scans of the brain and skull
were obtained from each monkey, one before the surgical procedures, to help guide
the chamber placement, and one after chamber implantation to register the coordinates
of the chamber with the cortical structures (Fig. 1C,D). AIP was defined as the rostral
part of the lateral bank of parietal sulcus (Borra et al., 2008), whereas recordings in F5
were made primarily in F5ap, which is in the post-arcuate bank lateral to the tip of the

principal sulcus (Belmalih et al., 2009).

Neuronal recordings

Single-unit and multi-unit (spiking) activity was recorded using quartz-glass-coated
platinum/tungsten single electrodes (impedance 1-2 MQ at 1 kHz) or tetrodes
(impedance 500-800 kQ at 1 kHz) that were positioned simultaneously in AIP and F5
by two five-channel micromanipulators (Mini-Matrix, Thomas Recording). Neural
signals were amplified (400X), digitized with 16-bit resolution at 30kS/s using a
Cerebus Neural Signal processor (Blackrock Microsystems), and stored on a hard

drive together with the behavioral data.

Preprocessing

All data analysis was performed offline. Neural signals were band-pass filtered
(forward-backward) with cutoff frequencies between 300-5000 Hz. Waveforms were
extracted when the signal deflected beyond 5 standard deviations from baseline either
negatively or positively. The refractory period between spikes was set at 1.5 ms.

During tetrode recordings spikes that were detected on one of the electrode tips were
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extracted from all 4 and aligned to the peak or valley of the first channel to cross the
threshold. Units were isolated using principal component analysis techniques (Offline
Sorter v3.2.2, Plexon), and sorted into single and multi units. Using Matlab
(Mathworks) for further analysis, we included all units in our database that were
stably recorded for at least 5 trials per condition (100-260 trials in total). Average
firing rate curves were generated using a Gaussian window as a kernel (SD: 57 ms) in
three alignments (cue, movement, and reward). However, all statistical tests other

than the cluster-based permutation test were based on exact spike counts.

Data analysis

The preferred and non-preferred orientations were determined for each unit from the
mean activity in the time interval from cue onset to reward onset. Activity was
averaged across all trials of the same orientation. Of the five tested orientations, the
orientation with the higher (or lower) mean firing rate was defined as the preferred (or
non-preferred) orientation, as in Baumann et al. (2009). In order to determine the
degree to which each individual unit preferred, i.e. increased firing rate for,
movements with the contra- or ipsi-lateral hand, a hand specificity index (HSI) was

calculated for each unit,

Contra — Ipsi
HSI =

"~ Contra + Ipsi

where ‘Contra’ represents average spiking of a unit during a specific task epoch for all
trials where the contralateral hand was cued, and vice versa for ‘Ipsi’. Therefore, a
value of +1 would indicate activation purely for contralateral trials and -1 for purely
ipsilateral trials (Fig. 5).

To complement each firing rate curve, periods of significant tuning were
calculated using a cluster-based permutation test (CBPT) to generate the significance
bars in Figure 2 (Maris and Oostenveld, 2007). Briefly, this test evaluates the t-
statistic (independent samples) between two conditions over all time points and
extracts clusters (consecutive time segments) of activity whose t-statistic exceeds a
predefined threshold (@ = 0.01), then the absolute t-statistics within each cluster were
summed to produce cluster-level statistics. To generate a chance-level distribution

from which the appropriate threshold could be determined, trials were randomly
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partitioned between the two conditions and the t-test and clustering redone (1000
partitions). From every partition the largest cluster-level statistic was used to generate
a largest chance cluster distribution. By comparing the real cluster-level statistic
against the largest chance cluster distribution, significant clusters could be determined
if the observed cluster value exceeded a set percentage of largest chance cluster
values (p = 0.05). In this way, sensitivity to short time-scale differences is greatly
reduced, but the overall false-alarm rate remains below the designated p-value. This
test was carried out once for each of the three factors. Additionally, to see if grip and
orientation tuning differed between contra- and ipsi-lateral trials, the CBPT was
repeated for those trials separately.

To test which units were task-related, if a unit had a significant effect of any of
the three factors at any tested time point of the CBPT, it was considered task-related.
Crucially, all analyses only considered units that were determined to be task-related.
As a control, if a 3-way ANOVA is used in place of the CBPT, approximately the
same amount of significance is found overall, suggesting that the CBPT does not

over-estimate the level of tuning for each unit.

Coordinate frame analysis

In order to determine which units significantly exhibited the characteristics of an
extrinsic or intrinsic coordinate frame (Fig. 7) activity was first averaged over trials of
each of the five orientations in sliding bins (width: 200 ms, interval: 50 ms) and
correlated between contra- and ipsi-lateral trials (Fig. 9B). To test significance, trials
were randomly permuted with respect to orientation (while keeping grip type and
hand consistent), and the average and correlation were redone (1000 repetitions). If
the absolute value of the real correlation obtained from the unshuffled data exceeded
95% of the permuted correlation distribution (p = 0.05), this unit was deemed to be
significantly representing an extrinsic or intrinsic reference frame, corresponding to

an r-value > 0 or <0, respectively.

Dimensionality reduction

A common problem with large data sets is their inherent complexity. Principal
component analysis (PCA) is commonly employed to reduce the dimensionality of
such data sets by finding a low dimensional representation of the data by defining

independent linear combinations, or weighted averages, of units that explain most of
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the variance in firing rates. PCA finds a ‘decoder’, D, which represents a linear
mapping of the full data onto a compressed read out. Using an ‘encoder’, F, data can
then be approximately reconstructed by decompressing it.

To formalize this, given a matrix of data X, where each row contains he
average firing rates of one neuron for all task conditions, PCA finds an encoder, F,

and an equivalent decoder, D, which minimizes the loss function
L = ||X — FDX||?

under the constraint that the principal axes are normalized and orthogonal and
therefore D = FT (Hastie et al., 2009), and where the matrix norm is the Frobenius
norm, i.e. [|X]|? =X; ¥ iX 12] Unfortunately, data that is represented in this way

heavily mixes the effect of different task parameters between latent dimensions, since
no information regarding the actual task conditions is present in the loss function.

However, we would like to extract dimensions that dissociate our specific task
conditions. To achieve this demixed principal component analysis (dIPCA) was
performed (Kobak et al., 2014) using freely available code:
https://github.com/wielandbrendel/dPCA.

dPCA is similar to classical PCA in the sense that it seeks to find a rotation of
the full neural space that explains most of the variance in average firing rates in a
small number of latent dimensions. In contrast to PCA, dPCA seeks to explain
marginalized variance with respect to our specific task variables (hand, grip type,
orientation, and time), instead of merely explaining total variance. The differences
between traditional PCA and dPCA can be formalized by comparing the loss
functions that are minimized in each procedure. dPCA utilizes a separate encoder and

decoder
L= Ls= ) (X, — FoDoXII? + AlIDglI*)
? )

where X is the marginalization of the full data with respect to each of our task
parameters of interest and the A||Dg||% term is a regularization parameter, preventing

overfitting. Marginalizations of X can be obtained by averaging over all parameters
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which are not being investigated and subtracting all simpler marginalizations (then
replicating matrix entries so that Xy has the same dimensionality as X). In our case the
marginalizations of interest were Time, Hand x Time, Grip x Time, and Orientation x
Time (for more detail regarding marginalization and regularization see Brendel et al.,
2011; Kobak et al., 2014). The values of A determined via cross-validation for brain
areas AIP and F5 in the pooled data were 1.3¢107 and 5.8210°%, respectively.

In contrast to Kobak et al. (2014), We did not construct our time-courses in
order to extract certain effects during certain enforced task epochs. All extracted
dimensions were permitted to vary along the entire time axis in addition to their
respective dimension.

In addition to finding demixed latent dimensions, our goal was to find latent
dimensions in the pooled data of both monkeys that accurately represented aspects of
the task that were present of both monkeys. Crucially, we wanted to exclude
dimensions that could only explain variance in the units taken from a single monkey.
In order to achieve this dPCA was first carried out (with cross-validated regularization
parameters) on the data of each monkey separately. Next, for each brain area, all pairs
of dPCs between the two monkeys were correlated. If any pair of dimensions
produced an absolute correlation of at least 0.45 (20% variance explained), those
dimensions were considered to be robust in both monkeys, and all other dimensions
were discarded. Next, each set of shared dimensions was correlated with the
dimensions produced by executing dPCA on the pooled data from both monkeys.
Similar to the previous computation, dimensions in the pooled dPCA were extracted if
they were significantly (absolute r-value > 0.45) correlated with single dimensions in
both the set of dimensions from monkey S and monkey P. All other dimensions were
discarded, so that only these dimensions were plotted in Figure 8.

To determine whether the encoding axes, f; and f,, of two dPCA components
were orthogonal, the dot product, f; - f,, between the axes, was calculated. To
determine the chance level, we calculated the dot product between many pairs of
randomly (uniform) generated unit vectors in N dimensions, where N is the number
of units. For large N, the distribution of dot products is approximately Gaussian.
Therefore, if |f; - f,| > 3.3 * N™1/2, we classified them as significantly non-
orthogonal (p <0.001). Significantly non-orthogonal dimensions that also had a
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spearman correlation above 0.2 (and p < 0.001) are marked with a star in Figure 9 (for
more information see Kobak et al., 2014).

A decoding procedure was undertaken to determine if the dPCs provided
useful decoding axes for the task conditions. We used 100 iterations of stratified
Monte Carlo leave-group-out cross-validation, where on each iteration we held out
one random trial for each unit in each condition forming X;., (as the units were not
recorded simultaneously, we do not have recordings of all units in any actual trial).
Remaining trials were averaged to form a training set X;,-q;,. We then calculated
dPCA on X;,4in and used the resulting components as linear classifiers for the trials in
Xtest- We then used 100 shuffles to compute Monte Carlo distribution of
classification accuracies expected by chance. For each unit and iteration we shuffled
all available trials between conditions, respecting the number of trials per condition. If
the real classification accuracy exceed that expected by chance on all iterations and
for 10 consecutive time bins, classification was considered significant and are marked

as black bars in Figure 8 (Right Panels) (for more information see Kobak et al., 2014).

Task space correlation
The objective of the task space correlation was to determine how similar the
functional representation of our specific behavioral task was between areas AIP and
F5. Firstly, spike rates were averaged in 400 ms bins for five epochs (cue on, cue off,
early memory, late memory, and movement). For the results in Figure 9B, pairwise
Euclidean distance was calculated between all task conditions, separately for each
area and each hand, in the space of all task-related units across both monkeys. The
unique values resulting from the distance calculation, i.e., the upper triangle of the
distance matrix excluding the diagonal, were correlated (Spearman r) between areas.
In order to determine if correlations significantly differed between contra- and
ipsi-lateral trials, a permutation test was carried out. The contra- vs ipsi-lateral
assignment of trials was either flipped or remained unchanged, randomly, for each
unit individually, while keeping the other task conditions constant. This process was
repeated 1000 times and the real difference in r-value between contra- and ipsi-lateral
trials was compared to the distribution of all permutations. If the real r-value
difference was greater than the chance distribution (p < 0.05, false-discovery rate

correction), then the difference was considered to be significant.
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3 - GENERAL DISCUSSION
3.1 - Summary

In chapter 2.1 we saw how large-scale parallel recordings can be leveraged to make
behavioral predictions on single trials. The methods used to extract single-trial
predictions varied in their performance, but population-based methods provided the
most consistent and meaningful interpretation of the data. In addition, the success of
these behavioral predictions could be used to make inferences about how areas differ
in their contribution to preparation of grasping movements. It was found that while
reaction time could be predicted from the population activity of either area,
performance was significantly higher using the data from premotor cortex, suggesting
that population activity in premotor cortex may have a more direct effect on behavior.

In chapter 2.2 we saw how preparation and movement intermingle and interact
with one another on the continuum between immediate and withheld movement. Our
population-based analysis and dimensionality reduction enabled interpretation of the
data, even though single neuron tuning properties were highly temporally and
functionally complex. Activity in AIP stabilized during the memory period, while it
continued to evolve in F5, revealing a decodable signature of time. Furthermore,
activity during movement initiation clustered into two groups, movements initiated as
fast as possible and movements from memory, showing how a state shift likely occurs
on the border between these two types of actions.

In chapter 2.3 we saw that the question of how motor cortex controls
movement is an ongoing issue in the field. We addressed some details about recent
methodology used to extract rotational dynamics in motor cortex. We saw how a
simple simulation could explore the limits of mathematical methodology, and how
models of movement generation can be essential tools in adding perspective to
empirical results.

Finally, in chapter 2.4 we saw how the specificity of hand use could be used as
a tool to dissociate levels of abstraction in the visual to motor transformation in
parietal and premotor cortex. While preparatory activity was mostly hand-invariant in
parietal cortex, activity in premotor cortex dissociated the intended hand use well
before movement. Furthermore, we saw how appropriate dimensionality reduction
techniques could disentangle the effects of multiple task parameters and find latent

dimensions consistent between areas and animals.



3 - General Discussion

3.2 - Outlook

“... the vague question of ‘how the brain works’ can be meaningfully reduced to the
more precise, and proximally answerable question of how do the connectivity and
dynamics of distributed neural circuits give rise to specific behaviors and

computations”

(Gao and Ganguli, 2015)

Understanding the kinds of computations that can be carried out by a circuit does not
necessarily entail simulating such a network to the finest degree of detail, down to the
cell membranes and messenger proteins. As an analogy, when presented with an
algebraic formula to solve, mathematics informs us how to make inferences about the
kind of solutions that satisfy our equation of interest without explicitly solving for x.
The same process of analysis can be applied to neuroscience research. To formalize
this way of thinking, the circuit-motifs hypothesis has been proposed in recent years

(Figure 1) (Womelsdorf et al., 2014; Womelsdorf and Everling, 2015).

Structural Computation and
circuit motif P Canonical - function
-« >
Synaptic, cellular, transformation Gain control, gating,
connected motifs integration, coordination
Mechanism Implied
and timescale causal link
Neuronal
signatures

Phase and/or amplitude
synchronization, cross-
frequency modulation

Figure 1. Dynamic motifs represent a tight linkage of three components: the (1)
circuit motif describes the structural basis (synaptic, cellular, local connectivity)

that gives rise to (2) a characteristic neuronal activation signature, and (3) completion
of a dynamic motif requires a link to a canonical input-output transformation that
serves to implement a behavioral function. Modified from Womelsdorf et al. (2014).

Although this framework has been proposed largely to aid in the

understanding of rhythmicity and how the functional significance of oscillations in

161



3 - General Discussion

162

differing frequency ranges can be disentangled, it can be used as a general framework
of computation in the brain. Most motor neuroscience research in primates relies on
relating neural activation signatures, such as firing rate, spike frequency, or
synchronization, to behavior. However, the essence of this tripartite approach makes
explicit the linking of circuit motifs and computations to these neural activation
signatures. In this context, one must directly link synaptic properties, cellular identity,
and local connectivity to specific neural signatures, as well as linking those signatures
to specific computations and functions, such as selective integration or segregation.
Going even further, one must investigate what kinds of computations can be
undertaken using a specific neural circuit, or what kinds of circuits would be
necessary to compute a given function. Then, by isolating and identifying each of
these possible connections, these links can be manipulated through experiment.
Purely behavior-based neuroscience will always have a necessary place in the
field. After all, the world we inhabit is not to be confused with the model realities we

generate in experiments.

“Nothing in neuroscience makes sense except in the light of behavior”

(Shepherd, 1988)

We will always only have one piece of the picture. The incremental goal of
neuroscience should be not to solve the whole process, but rather find the key
ingredients and how they relate to one another.

Even Cajal, the first person to extensively observe and document individual
neurons, was able to deduce the dynamic nature of the brain (De Carlos and Borrell,
2007). In a system where cells cannot replicate, as is the case for neurons, he held that
the specific connections between neurons and their ability to change over time was
the fundamental power of the brain. That is to say, he recognized that the function of
neurons must not be delimited to the specific firing patterns we observe in a given

experiment, but rather by the dynamic circuits in which these neurons are embedded.
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