
D E V E L O P M E N T O F A D VA N C E D

A C Q U I S I T I O N A N D R E C O N S T R U C T I O N T E C H N I Q U E S

F O R R E A L - T I M E P E R F U S I O N M R I

Dissertation
for the award of the degree
“Doctor rerum naturalium”

of the Georg-August-Universität Göttingen

within the doctoral program
Physics of Biological and Complex Systems

of the Georg-August University School of Science (GAUSS)

submitted by
volkert brar roeloffs

from Wyk auf Föhr, Germany
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chungsroutinen bedanken, zum anderen aber auch für die Unterstützung bei der
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1
G E N E R A L I N T R O D U C T I O N

1.1 real-time mri and model-based reconstruction

Magnetic resonance imaging (MRI) is a non-invasive imaging technique that pro-
duces three-dimensional representations of the interior of a body without harm-
ful radiation. These images are used for clinical diagnoses and medical interven-
tions routinely all over the world. However, when compared to other imaging
modalities such as X-ray radiography or ultrasound, MRI is a slow technique. The
underlying physical principles reveal where the inherent speed bottleneck is lo-
cated: The raw data necessary to form an image is acquired in a multitude of
independent excite-and-sample experiments. These repetitive measurements have
been tremendously sped up in the past decades by technical innovations such as
fast sequences (e.g., fast low-angle shot (FLASH) [1, 2] or rapid acquisition with refo-
cused echoes (RARE) [3]), strong gradient-amplifier systems, and the use of multiple
receiver coils. Nowadays, physical and physiological constraints (relaxation times,
peripheral nerve stimulation, energy deposition, etc.) limit the speed of data ac-
quisition fundamentally. While speed is not the ultimate criterion in many applica-
tions, a fast and continuous stream of magnetic resonance (MR) images is required
when studying functional processes like speaking, swallowing, or the beating heart.
The timescale on which these processes take place directly dictate the frame rates
that are necessary to achieve. MRI techniques that deal with such high frame rates
are commonly referred to as real-time MRI, although this term has been used in the
literature inconsistently with respect to different temporal and spatial resolutions.

In the last ten years, our group developed real-time imaging methods that rely
on radially encoded gradient-echo sequences with minimal repetition time (TR) [4].
These so-called steady-state sequences produce a continuous stream of raw data,
a major prerequisite for real-time imaging. Image reconstruction algorithms that
make explicit use of parallel imaging, i.e., the use of multiple receiver coils for
signal readout, were successfully combined with the stream of radial readouts [5].
These advanced algorithms formulate the task of image reconstruction as a nonlin-
ear inverse problem, solve it iteratively and also allow to include prior knowledge
into the image formation process, for instance in form of redundancies inherent to
time series. By these means, the amount of raw data needed for reconstruction of a
single image out of a time series was further reduced, enabled imaging in real time
with 50 frames per second and beyond [6–8], and made a variety of physiological
studies possible [9–16].
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general introduction

The use of data redundancies can also be found in MRI applications not related
to image time series. Quantitative imaging methods aim for an absolute quantifica-
tion of specific parameters such as T1 or T2 relaxation times, temperature, macro-
molecular content, diffusivity, or magnetic susceptibility. In most cases, a certain
MR signal is produced that can be modeled as a function of a few unknowns,
among them the parameter of interest. In conventional parameter mapping meth-
ods a set of contrasts is prepared, independently reconstructed as a set of images,
and finally fitted by a signal model in a pixel-by-pixel fashion. While straightfor-
ward to perform, such 2-step quantification methods that separate image recon-
struction and quantification make only suboptimal use of the available raw data.
The fact that the reconstructed set of images can be fully characterized by a few pa-
rameter maps already indicates a high degree of redundancy. Model-based recon-
struction techniques make explicit use of this evidence by directly reconstructing
parameter maps from the measured raw data. Although this approach comes at
the cost of increased complexity and computational demands, it has been adapted
and successfully applied to different quantitative applications [17–23].

1.2 motivation of study

Quantitative assessment of tissue perfusion by means of contrast agent (CA) injec-
tion is called dynamic contrast-enhanced (DCE) MRI. In this technique, a bolus of
CA is rapidly injected into the blood stream and travels to the tissue of interest
where its first pass creates intensity changes in the tracked MR signal. Knowledge
about concentration distributions in the bolus together with its induced tissue re-
sponse can be transformed into quantitative maps of perfusion parameters such as
capillary blood flow, relative blood volume, and mean bolus transit time. The con-
nection of dynamically changing signal intensities together with the requirement
for a sufficient spatial resolution render the application of real-time imaging ideas
to first-pass perfusion experiments promising.

On the other hand, relaxation times play an import role in all DCE MRI methods
because changes in CA concentration can only be detected indirectly by altered
relaxation times leading to signal intensity changes. This dependence establishes
a strong link between DCE MRI and quantitative T1 mapping. The latter is often
realized by techniques that exhibit redundancies in their respective data acquisition
and seem therefore a good candidate for a model-based reconstruction approach.

Consequently, this thesis concentrates on methodological developments in both
acquisition and reconstruction techniques when applying concepts from real-time
imaging to the field of DCE MRI.
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1.3 structure and scope of thesis

1.3 structure and scope of thesis

In this thesis, four different aspects of quantitative MRI techniques are addressed
and presented in independent chapters.

Chapter 3 deals with image artifacts occurring in radially sampled FLASH im-
ages. Residual steady-state transverse magnetizations are identified as the source
for parasitic concentric rings and their dependencies on the employed sampling
pattern are investigated. Randomized radiofrequency (RF) phases are proposed to
effectively suppress these undesired coherences without the need for time-costly
spoiler gradients. The resulting spoiling performance is assessed in numerical sim-
ulations, phantom experiments and in vivo MRI studies of the human brain. The de-
veloped spoiling scheme is implemented on our clinical MRI scanner together with
k-space sampling schemes favorable for model-based reconstructions and hence
forms a major building block for all studies presented here. As the findings and
the proposed solution are of general interest and particularly relevant for high-
speed real-time MRI, I published this work in the peer-reviewed journal “Magnetic
Resonance in Medicine”. Consequently, chapter 3 is a reprint of the original article.

In chapter 4, a signal model is developed that describes the magnetization time
course in a multi-slice single-shot inversion-recovery FLASH experiment. For this
purpose, the entire relaxation process is partitioned into regimes in which the re-
spective dynamics are governed by mono-exponential relaxation. Interleaved ap-
plication of time evolution operators finally yields an analytical expression that
extends the expression for single-slice T1 mapping [24] towards multi-slice imag-
ing. The validity of this model has been verified in simulation and phantom exper-
iments. In [25], a co-authored publication of my colleague, this model was used
for multi-slice T1 mapping of human brain and abdominal sections. At this stage,
quantification of T1 was performed by pixelwise fitting of the derived signal model
to a time series of reconstructed images (2-step method).

The segregation of reconstruction and quantification was removed in the model-
based T1 mapping method presented in chapter 5. Here, a joint reconstruction
of the T1, spin-density, and flip-angle map directly from the raw data was for-
mulated as a nonlinear inverse problem and solved by the iteratively regularized
Gauss-Newton method (IRGNM). Prior knowledge was included into the recon-
struction routine by reparametrization of the original signal model and introduc-
tion of parameter-specific regularization terms. A sampling trajectory based on the
Golden Angle scheme [26] in combination with the novel RF spoiling scheme al-
lowed for fast data acquisition, and the outsourcing of parallelizable code modules
to the graphics processing unit (GPU) ensured fast reconstruction. Problems such as
scaling of unknowns, bound-constraint optimization, binning size determination,
and suppression of noise from outer k-space regions are addressed and effective
solutions presented. This comprehensive work forms a stand-alone method and

3



general introduction

was submitted to “NMR in Biomedicine” (in revision at time of thesis submission).
Chapter 5 is a reprint of the respective manuscript without modifications.

This novel technique for fast and accurate high-resolution T1 mapping finds its
direct application in first-pass perfusion experiments performed in vitro (chap-
ter 6). In these experiments, a commercial DCE MRI phantom was employed to
mimic perfusion similar to in vivo situations with full control over the involved
exchange rates. An in vitro flow cycle for monitoring MR signal changes due to
the presence of CA was set up and the individual parts involved are depicted and
described in function. This experimental setup offers a huge variety of possible
simulation scenarios and can for example be used to evaluate future acquisition
protocols and reconstruction algorithms in the context of quantitative DCE perfu-
sion. The specific combination of injection and reconstruction protocol presented
in chapter 6 is an exemplary choice and demonstrates general feasibility.

Individual findings, discussed in detail separately in each chapter, are summa-
rized in chapter 7. This also includes an outlook on future work.

1.4 authorships and individual contributions

Of course, research in a working environment as established at our institute im-
plies collaboration and joint projects. To clarify authorships and individual con-
tributions, each chapter contains a preface explicitly stating how co-authors and
collaborators contributed to the respective work.
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2
B A S I C S O F M A G N E T I C R E S O N A N C E I M A G I N G

2.1 signal , measurement, and relaxation processes

Atomic nuclei with an odd number of either or both protons and neutrons carry
an intrinsic angular momentum, the nuclear spin. This quantum mechanical entity
is connected to a nuclear magnetic moment that every nucleus with nonzero spin
posses. Similar to a macroscopic magnet, where the classical magnetic moment
determines the torque it experiences in an external magnetic field, the nuclear
magnetic moment interacts with an external magnetic field and leads to a system
whose energy depends on the orientation of the magnetic moment with respect to
the axis of the external field. The orientation parallel to the external field is ener-
getically preferred over an anti-parallel orientation, similar to a compass needle in
the earth’s magnetic field. The resulting energy difference is proportional to the
strength of the external magnetic field and explains to a large degree the relentless
pursuit for MR scanners with higher field strengths. However, even large ensemble
of spins - as present in tissue - only result in a small net magnetic moment due to
thermal fluctuations. For in vivo situations, these fluctuations are characterized by
the body temperature and hence constitute an unalterable condition in MRI. This
small net magnetic moment is the origin for the low sensitivity that all MR tech-
niques suffer from and that has to be compensated by long scan times, large voxel
sizes, and expensive equipment.

If a large ensemble of nuclear spins is suddenly exposed to a strong magnetic
field, a new thermal equilibrium will eventually build up that respects the ori-
entation-dependent energy differences of the nuclear magnetic moments in the
sample. This build up process does not take place instantaneously but was found
to show an exponential transition behaviour that could be quantified by an expo-
nential time constant T1, known as the longitudinal relaxation time (or historically
spin-lattice relaxation time). Theoretical considerations connect the heuristically
introduced T1 relaxation time to microscopic fluctuations caused by the tumbling
motion of molecules. These small motions lead to local magnetic field disturbances
that, in turn, induce transitions between energy states of the spin system. From this
viewpoint it is evident why T1 relaxation times not only depend on the nucleus but
also on temperature, viscosity, and microstructure of the sample.

The quantum nature of a nuclear magnetic moment - in contrast to a classic
compass needle - leads to another motion, namely the precession of the spin’s
polarization around the static magnetic field. A full quantum mechanical treatment
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Figure 2.1: The fundamental dynamics in MRI: excitation, precession, and relax-
ation. By application of a RF pulse the macroscopic magnetization can be tipped away
from its equilibrium state (left), the magnetization precesses then about the axis of the
static magnetic field (middle), and longitudinal and transverse relaxation processes
finally lead to a recovery toward the equilibrium state (right).

(as found in [27] or [28]) reveals that the polarization precesses with the Larmor-
frequency ω0, which is connected to the gyromagnetic moment γ of the nucleus
and the field strength B0 by

ω0 = −γB0.

For protons at B0 = 3 T the magnitude of the Larmor-frequency amounts to ap-
proximately 128 MHz. This precession is used in both nuclear MR spectroscopy and
imaging to measure the macroscopic magnetization. For this purpose, the magne-
tization initially aligned in direction of the external magnetic field is rotated into
the transverse plane by applying a RF pulse. The precession motion governing
the dynamics of each individual spin polarization also leads to a precessing trans-
verse net magnetization (see fig. 2.1), which induces a voltage in the readout coils:
the actual MRI signal. However, the excited transverse magnetization is not only
affected by longitudinal relaxation but also by a decay process called transverse
relaxation. Similar to the effects causing T1 relaxation, also small field fluctuations
on the microscopic scale make it impossible to keep perfect synchrony between the
precessing spins. This irreversible dephasing process causes a decay of the trans-
verse net magnetization and is characterized - in close analogy to T1 relaxation - by
the exponential time constant T2, called the transverse or spin-spin relaxation time
constant.

In a MR scanner, this dephasing process is even accelerated as technical imperfec-
tions on the one hand and magnetic susceptibility effects on the other hand lead
to inhomogeneities in the static magnetic field. To take these additional sources of
dephasing into account, an effective or observed transverse relaxation time is often
introduced and denoted by T∗2 .

2.2 spatial encoding and image reconstruction

Spatial encoding in a state-of-the-art MRI system is realized by two complementary
principles: Gradients applied before and during signal readout exploit the spatial
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Channel 1
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Figure 2.2: Spatial encoding in parallel imaging. In parallel imaging spatial en-
coding is realized through differences in coil sensitivity profiles. Simultaneous signal
acquisition with multiple readout channels provides a set of individual coil images.
Each coil image (right) reflects a weighted version of the underlying common object
(left) according to the individual coil sensitivity profile (middle).

dependency of the Larmor-frequency and the simultaneous signal detection with
multiple receive coils utilizes differences in the receive coil sensitivities for spatial
discrimination (see fig. 2.2). The former gradient encoding is established since the
foundation of MRI in the 1970s [29] whereas the latter technique of parallel imaging
was introduced in the late 1990s and is still subject of ongoing research on both
hardware and reconstruction side. Combining both spatial encoding principles re-
sults in MR experiments that can be described by a basic signal equation that relates
the magnetization distribution M⊥(~x) to the observed time signal sj(t) in the j-th
receive coil:

sj(t) =
∫

V
M⊥(~x) cj(~x)e−2π~k(t)~xd~x ,

where cj(~x) represents the (complex-valued) sensitivity profile of the j-th receive
coil, V the support of the object, and~k(t) = γ

2π

∫ t
0 γ~G(t′)dt′ the spatial frequencies

that are sampled according to the chosen gradient evolution ~G(t).
This equation states the measured MR signal is the Fourier transform of the

magnetization distribution weighted by the individual coil sensitivity profiles. The
Fourier transform domain in MRI is known as k-space and the path on which the
vector~k(t) traverses this space is called k-space trajectory or sampling pattern.

A fully sampled k-space that has been sampled on a Cartesian grid can be trans-
formed into an image by simply performing a fast Fourier transform (FFT) on the
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raw data matrix. This image reconstruction method was the standard technique
for more than 20 years due to its simplicity, speed, and effectiveness.

Since arbitrary sampling patterns are possible, also non-Cartesian trajectories
can easily be realized, each with their individual advantages and disadvantages.
From these non-Cartesian patterns, the most popular are radial and spiral trajecto-
ries. Image reconstruction of these type of data acquisitions typically include a step
called gridding or regridding describing the process of interpolating non-Cartesian
samples to a Cartesian grid so that the FFT algorithm can be applied again. How-
ever, when only undersampled data is available or when physical effects that not
fit into the Fourier framework have to be incorporated into the reconstruction, iter-
ative algorithms in connection with appropriate models can improve image quality
at the cost of increased computational demands. The need for iterative algorithms
arises here from the fact that the involved problems are typically too large to be
solved in one explicit step or that nonlinearities preclude explicit inversion of the
corresponding equations.

The simplest examples for such iterative methods are found in sensitivity encod-
ing (SENSE) algorithms that estimate the desired image iteratively from measured
raw data and known coil sensitivity profiles [30]. The inclusion of the coil profiles
into the vector of unknowns yields a bilinear parallel imaging problem that can be
solved iteratively [31] and explicit modelling of physical effects such as T1, T∗1 , and
T2 relaxation [18–21, 32, 33], field inhomogeneities [34], diffusion [22], flow [23],
and others opens the field of model-based reconstruction.

2.3 multi-slice acquisitions

Slice selection in MRI exploits the fact that the application of gradient fields lead
to spatially dependent Larmor-frequencies. As excitation by RF radiation requires
the corresponding RF frequency to match the Larmor-frequency, gradients imme-
diately provide a tool to select which region of the three-dimensional volume to
excite. In general, MR sequences always employ a combination of gradient fields
and spatially selective RF pulses. A finite support of the frequencies contained in
a transmitted pulse ensures - in combination with the gradient fields - spatial se-
lectivity. For two-dimensional imaging, the excitation of only a small slice of the
entire body is desired. For this purpose the bandwidth of the excitation pulses is
chosen narrow. The direct correspondence of frequency and spatial distance along
the gradient’s direction leads to the option of tuning the frequency of the RF pulse
in such a way that a slice at a certain position is excited. Multislice imaging exper-
iments cover a three-dimensional region by dividing it into a set of individually
acquired slices. However, this set of slices is typically not acquired by performing
a series of single-slice measurements but rather by exciting multiple slices within
each TR interval. For this purpose the same slice selection gradient is used several

8



2.4 contrast in mri

times in combination with different RF pulse frequencies according to the desired
positions of the slices. Due to the fact that imperfect RF pulses also partly excite
spins in the immediate neighbourhood of an excited slice, special care has to be
taken in covering a volume with two-dimensional slices. To avoid this undesired
“slice crosstalk” typically a certain gap is left between individual slices (resulting
in a non-contiguous volume coverage) or the slice excitation order is designed in
such a way that first only even-numbered and then only odd-numbered slices are
excited. The latter strategy gives the unintendedly excited magnetization enough
time to recover toward equilibrium before the particular slice itself is excited.

2.4 contrast in mri

In contrast to computed tomography (CT) images, in which each pixel reflects the
mean attenuation coefficient of the tissue (relative radiodensity), MR images usually
show signal intensities that are functions of multiple parameters. Some of these
parameters are intrinsic as they depend on the imaged tissue (relaxation times T1

and T2, proton density, diffusion times, flow rates, etc.), while others are related to
the parameters of the MR sequence (flip angle, bandwidth, etc.) and to the chosen
timings (repetition time, echo time, etc.). By choosing a specific combination of
sequence parameters it is possible to obtain images that are strongly depending on
particular intrinsic parameters while the influence of others is mainly eliminated.
For instance, by choosing both, a short echo time (TE) and a short TR in spin echo
imaging, the influence of the T2 relaxation time on the signal intensity can be
mainly suppressed and images are obtained that reflect pixel-wise differences in
the T1 relaxation time. The property of an image to depend on certain tissue specific
parameters more than others is called image contrast and by changing sequence
and timing parameters MR images with different contrasts can be obtained. As
pathologies do not affect all tissue parameters equally well, clinical MR routines
typically comprise several image acquisitions with different contrasts.

However, these resulting images still exhibit signal intensities that depend on
multiple parameters and do not quantify individual parameters. The intensity of
the spin echo signal, for example, is always proportional to the proton density
(water content) of each pixel independent of the chosen contrast.

2.5 steady-state sequences

Steady-state sequences are gradient echo sequences with short TR that satisfy the
relation TR � T2, T1. The time period between two successive excitation pulses is
so short that neither full T1 nor full T2 relaxation takes place. As a consequence,
neither the longitudinal nor the transverse magnetization components fully relax,
both magnetization types are affected by the next excitation pulse, and multiple
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spin echoes and stimulated echoes contribute to the measured signal intensities.
Under certain conditions, these contributions add up coherently, the obtained sig-
nal intensities stay constant from TR to TR, and a dynamic equilibrium, the so-called
steady-state is reached. The intensity of this steady-state in principle depends on
both, the relaxation time T1 and T2, where the latter determines the lifetime of
transverse components within the pulse train. These transverse components deter-
mine the obtained image contrast and can be manipulated according to the desired
contrast. To remove the steady-state’s sensitivity to the T2 relaxation time, it is nec-
essary to minimize the contributions of the transverse components to the signal.
This strategy is called “spoiling” and has commonly been implemented in two
ways: In so-called gradient spoiling techniques, strong gradients at the end of each
TR interval are used to dephase residual transverse components [35, 36]. However,
this spoiling strategy suffers from some limitations. First of all, the spatial depen-
dency of the gradients leads to pixel-dependent phase evolutions, which is adverse
as the spoiling will be spatially non-uniform. The second limitation lies in the fact
that magnetization cannot be destroyed on the time scales smaller than the relax-
ation time T2. The strong gradients only dephase the magnetization in the sense of
distributing the individual transverse magnetization components so that at the end
of one TR the net transverse magnetization averages to zero. However, subsequent
RF pulses may invert the phases of transverse magnetization components and the
gradient event - intended for dephasing - in this case will act as a full rephasing
gradient. To avoid these detrimental situations the strength of the spoiler gradients
is typically varied in a heuristic manner that includes all gradient axes.

An alternative technique that does not suffer from the limitations of gradient
spoiling techniques is based on the manipulation of the RF-transmitter phase and
has nowadays been adapted by all major MR vendors as the de facto spoiling stan-
dard. RF spoiling employs constant, non vanishing zero order gradient moments
from TR to TR and uses instead the phase of the RF-transmitter system to create
incoherent contributions from transverse components. It is superior to gradient
spoiling methods in theory and praxis due to its spatially invariant spoiling ef-
fectiveness and because an analytical derivation of the optimal phase variation
scheme could be found [37].

A perfectly spoiled steady-state signal only contains contributions from the lon-
gitudinal magnetization present prior to the excitation pulse and is hence not in-
fluenced by the relaxation time T2. This leads to purely T1-weighted images. An
opposing strategy is to guaranty a coherent contribution of all transverse com-
ponents to the steady-state signal. In this case the resulting images will benefit
from an increased signal intensity and will exhibit a mixed contrast which is com-
monly denoted as T2/T1 weighting. The prerequisites for the formation of such a
steady-state are vanishing zero order gradient moments in each TR interval. This
condition assures that the gradients have no effect on the steady state and the re-
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sulting magnetization dynamics of such a sequence is called balanced steady-state
free precession (bSSFP). With an alternating RF phase of the excitation pulses the
bSSFP-sequence results in the highest signal strength of all steady-state sequences,
but is rather sensitive to off-resonance effects that interfere strongly with the zero
phase condition.

2.6 quantitative mri and T1 mapping

Quantitative MRI provides quantitative information about tissue in contrast to con-
ventional MRI where images exhibit a certain contrast, i.e., are more sensitive to
specific tissue parameters than to others, but do not strictly quantify these param-
eters. Quantitative imaging methods typically yield parameter maps that quantify
a certain parameter pixel-wise. Generally, these methods have gained interest dur-
ing the past decades as quantitative parameter maps allow a comparison of results
across subjects and are independent of the MR hardware or sequences used. Con-
ventional parameter mapping techniques typically prepare a series of contrasts,
reconstruct the corresponding images, and obtain quantitative information in a
post-processing step in which a certain model is fitted pixel-wise to the images.
Parameters that are accessible in this fashion include the relaxation times T1, T2

and T ∗2 , the proton density, flow velocities, the apparent diffusion coefficient or dif-
fusion tensor information, tissue temperature, blood flow, magnetization transfer
ratios, metabolite concentration, and others.

The gold standard method for T1 mapping is based on NMR experiments per-
formed more than sixty years ago [38, 39]. The method is nowadays known as
inversion recovery (IR) T1 mapping and still relies on inversion of the longitudinal
magnetization and sampling the MR signal as the magnetization recovers toward
thermal equilibrium. The underlying sequence consists of two RF pulses separated
by the variable inversion time (TI). The initial magnetization is inverted by the first
pulse, recovers for the time period TI, and gets tipped into the transverse plane by
the second pulse. The speed bottleneck of this method lies in the fact that each in-
version requires a prior recovery of longitudinal magnetization, which can only be
achieved by a correspondingly long repetition time. This drawback is exacerbated
by the repetitive nature of each MR imaging process: In its generic version, each
TR interval of the IR sequence yields only one portion of raw data. As T1 mapping
requires a multitude of images acquired at different inversion times, the IR T1 map-
ping method is - though accurate and robust - too time-consuming for mapping in
clinically feasible times. Two alternative techniques are commonly employed that
do not suffer from long acquisition times. The so-called variable flip angle method
acquires two or more spoiled gradient-echo images that differ only in the nominal
flip angle used. Information about T1 is then extracted from the different steady-
state signal intensities. This method is capable of three-dimensional T1 mapping
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in clinical feasible times but requires exact knowledge about the actual flip angle
and assumes a perfectly spoiled steady state in a sense of complete absence of any
transversal coherences. Both prerequisites are hard to meet and lead to a variety of
sequence variants and extensions that try to mitigate resulting problems. The sec-
ond alternative method, the Look-Locker (LL) sequence is closely related to the IR

sequence. Here, the magnetization is also prepared with an initial inversion pulse,
but instead of acquiring a single sample of the recovery curve per TR, a train of
equally spaced, low flip angle pulses generates a large number of gradient echoes.
As the relaxation process is interleaved by repetitive excitation, the observed signal
does not reflect the pure T1 recovery but also exhibits a contribution from the low
flip excitations. To separate these two effects, knowledge about the actual flip angle
is required, however, in contrast to the variable flip angle method, the measured
steady state can be used to obtain this additional information. Also here perfect
spoiling is assumed when fitting the measured signal time courses.

2.7 adiabatic rf pulses

Excitation pulses in MRI sequences commonly consist of short events during which
the amplitude of the RF magnetic field is varied while keeping the transmit fre-
quency constant at the Larmor-frequency of the system. For this on-resonant ex-
citation, the time integral of the field amplitude is proportional to the realized
angle between the initial and final magnetization vector. This angle is commonly
referred to as the flip angle. The degree to which a homogeneous excitation over
the entire imaged object can be realized, depends primarily on the spatial homo-
geneity of the RF magnetic field. For certain coil geometries and especially static
field strengths of 3 T and beyond, strong spatial variations of the field are observed.
This non-uniform excitation leads to several problems including image shading, in-
complete fat suppression, and reduced signal-noise ratio (SNR). In the context of
T1 mapping, this non-uniform excitation is particularly mitigating the efficiency
of inversion pulses. Any deviation of the intended 180◦ translates into a reduced
magnetization after inversion. Depending on the model used, this lack of efficiency
can translate into severe underestimation of the true T1 values. To overcome this
problem, special RF pulses can be used that do not obey the direct relationship be-
tween amplitude and realized flip angle. When both, magnetic field amplitude and
frequency are varied during application of the pulse, modulation schemes can be
found that realize nominal flip angles precisely even if the actual field amplitudes
deviate from the nominal by a constant factor. The condition for this robustness
is solemly a sufficiently strong RF magnetic field. Such pulses are called adiabatic
pulses and are particularly hard to design in the presence of off-resonances. These
off-resonances, however, are naturally arising when considering adiabatic pulses
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for slice selection. Adiabatic inversion pulses in T1 mapping applications are there-
fore typically non-selective, i.e. they invert the magnetization in an entire volume.

2.8 perfusion and mri

Perfusion is the physiological process of a body to deliver blood to organs or parts
of organs. Perfusion ensures supply of the tissue with sufficient oxygen and nu-
trients as well as removal of metabolites and carbon dioxide. Quantification of
perfusion can be obtained by nuclear medicine methods such as positron emis-
sion tomography (PET) or single photon emission tomography (SPECT) but also
with imaging modalities such as CT and MRI. The two different methods in MRI

for quantitative perfusion measurements that have established so far are arterial
spin labeling (ASL) techniques and MRI techniques that rely on exogenous contrast
agents. The latter are further divided into dynamic contrast-enhanced (DCE) and
dynamic susceptibility contrast-enhanced (DSC) MRI techniques. ASL uses the arte-
rial blood itself as an endogenous CA by tagging it in a magnetization preparation
step whereas in both DCE and DSC MRI a CA is injected intravenously to change the
magnetic susceptibility of the blood and to generate a change in MR signal strength
depending on the concentration of CA. DSC MRI monitors the passage of a CA bolus
by a series of T2 or T∗2 weighted images and is mainly used in the brain to access
the cerebral blood volume whereas DCE MRI is based on the acquisition of a series
of T1-weighted images and is used in a variety of clinical perfusion imaging ap-
plications involving different organs. The use of an exogenous CA allows DSC and
DCE perfusion methods to achieve a substantially higher SNR when compared to
ASL techniques.

The physical principles behind DSC and DCE measurements are relatively simple:
A high concentration CA bolus is injected intravenously and travels with the blood
stream to the tissue of interest where it induces signal intensity changes. These
changes are continuously monitored and finally yield signal time courses that can
be converted into concentration time courses. Quantitative parameter maps are
then generated in a post-processing step that involves pharmacokinetic modelling
of the physiological exchange processes. A clinician can finally obtain spatial infor-
mation about potential perfusion deficits from these maps.

2.9 pharmacokinetic analyses

Given the measured concentration time courses, pharmacokinetic modeling in DCE

MRI provides information about how the CA is distributed in the perfused tissue.
Most models rely on the concept of a compartments, i.e., they describe exchange
processes by mathematical entities representing interacting components. The ad-
ministered CA is assumed to diffuse to and from these compartments where each
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compartment is fully characterized by its (homogeneous) CA concentration. Rate
equations are then exploited to derive a set of differential equations that govern the
exchange of CA. These theoretical models can finally be fitted to the measured data
to obtain quantitative parameters in terms of involved exchange rates and relative
compartment sizes.

2.10 contrast agents in mri

Contrast agents as used in clinical routine are typically gadolinium (Gd) based
complexes. The metal Gd belongs to the lanthanoid series of elements and forms
trivalent ions. Gadolinium(III) ions are toxic to humans and other mammals and
can only be administered in combination with chelates that form strong bonds with
the ions to ensure a safe excretion. With seven unpaired 4f suborbital electrons each
Gd ion carries a large spin electron moment that interacts with the nuclear mag-
netic moments of adjacent water protons through dipole-dipole interactions. This
effect shortens the T1 relaxation time constant of the water protons by a factor that
is proportional to the number of Gd ions around, which is given by the concentra-
tion of CA. However, magnetic field gradients in the vicinity of the paramagnetic
Gd chelates also lead to an increased dephasing of transverse coherences, which
results in shorting of the T2 (or T∗2 ) relaxation times of referring protons. These two
effects are commonly known as longitudinal and transverse relaxivity of the CA

and quantified in units of L/mmol/s.

Figure 2.3: Chemical structure of Gadobutrol. From: Wikimedia Commons, Any-
podetos, CC0 1.0

The paramagnetic properties of Gd based contrast agents are used to improve
the visibility of anatomical structures in the body and, in dynamic imaging, to
translate changes in CA concentration to changes in signal intensity as measured
in a series of T1 or T∗2 weighted images. Figure 2.3 shows the chemical structure of
Gadobutrol, a Gd-based CA that was used in this thesis for the perfusion studies.
Gadobutrol is a non-ionic complex consisting of the Gd(III) ion and a macrocyclic
ligand.
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spoiling without additional gradients

Abstract

Purpose: To develop a method for spoiling transverse magnetizations with-
out additional gradients in order to minimize repetition times for radial
FLASH MRI.
Methods: Residual steady-state transverse magnetizations and correspond-
ing image artifacts were analyzed for radial gradient-echo sequences with
constant and randomized RF phases in comparison to a sequence with refo-
cused frequency-encoding gradients, constant spoiler gradient, and conven-
tional RF spoiling (gold standard). The spoiling performance was assessed
for different radial trajectories using numerical simulations, phantom exper-
iments and in vivo MRI studies of the human brain.
Results: Simulations as well as phantom and in vivo measurements reveal a
highly efficient spoiling capacity for randomized RF phases and radial FLASH

sequences without the need for gradient rewinding and spoiler gradients.
The data also demonstrate a strong dependence of the spoiling performance
on the chosen radial trajectory, i.e., the azimuthal angular increment between
successive projections, with excellent results for an interleaved multi-turn
scheme.
Conclusion: Effective spoiling of transverse magnetizations in radial FLASH

MRI may be achieved by randomized RF phases without additional spoiler
gradients. The technique allows for short repetition times as required for
high-speed real-time MRI.
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3.1 introduction

Since its inception the development of MRI has largely been driven by the quest
for speed with the ultimate demand defined by recent advances in real-time MRI,
e.g., see [6, 8]. The underlying concept for serial imaging relies on steady state
gradient-echo sequences that either include or exclude transverse magnetizations
to yield T2/T1 or T1 contrast. Respective techniques are usually referred to as (fully
balanced) steady-state free precession (SSFP), refocused FLASH or spoiled FLASH.
Because the former two require extended gradient waveforms for spin rephasing in
each repetition interval TR to achieve a zero or constant net phase, respectively, the
minimum TR value is constrained by the extra gradient timing. As a consequence,
the shortest possible TR for high-speed real-time MRI may be obtained by using
T1 or spin-density contrast in conjunction with technical means that minimize the
time for eliminating transverse coherences.

Early attempts to T1-weighted gradient-echo MRI entirely relied on gradient
spoilers which prolong the TR interval and for real-time MRI directly translate into
decreased frame rates. In principle, this problem may be overcome by RF spoil-
ing [37, 41] which varies the common phase for RF excitation and signal reception
from TR to TR. This strategy introduces a pathway-dependent phase for different
transverse partitions and thereby enables destructive interference in a steady-state
gradient-echo sequence. So far, however, conventional RF spoiling schemes implic-
itly require that all magnetization components at a particular position acquire a
constant phase in each TR. This can only be achieved by adding rewinding gra-
dients, i.e., similar to SSFP-like sequences, either for the phase-encoding gradient
in a Cartesian encoding scheme or for the variable frequency-encoding gradients
in case of radial encoding. Furthermore, even if these criteria are met, the ob-
tained signal intensities can vary from the ideally spoiled signal intensity. Lin and
Song [42] therefore proposed the use of randomized RF phases in combination
with strong randomized spoiler gradients to generate a steady state signal which
slightly oscillates around the ideally spoiled signal. They exploited the fact that –
in contrast to Cartesian sampling – radial sampling schemes effectively attenuate
artifacts by spreading them over the entire field of view (FoV). Especially for strong
T1-weighting, i.e., high flip angles and short TR values, the resulting signal is closer
to the ideal case than achievable by conventional RF spoiling.

The purpose of this work was to investigate to which extent random RF phases
may be exploited for radial MRI to obtain a pseudo steady state, i.e., a signal
that fluctuates around the theoretical steady state, without the need for any time-
consuming refocusing and spoiler gradients. It is further demonstrated that the
choice of a particular radial trajectory can have a major influence on the spoiling
efficiency.
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3.2 methods

3.2.1 Spoiled FLASH Sequences

The investigations of transverse coherences focused on three different implementa-
tions of a radial FLASH sequence. Sequence A, which serves as gold standard, used
constant spoiler gradients of strength G and duration tspoil in all spatial directions,
while fully rewinding both radial frequency-encoding gradients. The sequence re-
sulted in in-plane spoiling moments of m = 2πγ∆xGtspoil = π and spoiling mo-
ments in slice direction of m = π∆z/∆x, where ∆x is the pixel size, ∆z is the
slice thickness and γ is the gyromagnetic ratio. The resulting spoiling moment in
slice direction RF spoiling [37, 41] was implemented by using a quadratic variation
of RF and detector phase corresponding to a linear inter-pulse precession angle
increment of 117◦.

Sequence B neither employed rewinding nor additional spoiler gradients in con-
junction with a constant RF transmit and receive phase. It resulted in a varying net
gradient moment from TR to TR according to the gradient waveforms determined
by the radial k-space trajectory. The newly proposed sequence C is identical to B
except for a randomized RF and detector phase which was set corresponding to a
random precession angle increment drawn from a uniform distribution between
−180◦ and +180◦.

3.2.2 Radial Trajectories

All sequences employed radial k-space encoding [29, 43–45] with either a constant
azimuthal displacement from one projection to the next or a periodic set of inter-
leaved turns as described in [7]. The incremental azimuthal displacement φ could
be freely chosen by the user, so that, for example, a value of φ = 111.25◦ refers
to radial sampling according to the Golden Angle trajectory [26]. For demonstra-
tion purposes the image reconstruction was based on 233 projections to guarantee
a fully sampled k-space and – being the 13th number in the famous Fibonacci
sequence – to ensure a close-to-uniform distribution of the full set of projection
angles [26]. Special care must be taken when constructing a radial trajectory from
a constant angular displacement, since only values that lead to a full coverage of
k-space are suitable for image formation. Adding an offset of 180◦ to φ results in
identical sampling positions due to the 180◦ symmetry (assuming symmetric echo
acquisitions), while the sampling direction of every second projection is inverted.
Therefore, the present investigations included both Golden Angles, the most often
used value of 111.25◦ as well as its smaller opposite angle 180◦ - 111.25◦ = 68.75◦.

An azimuthal increment of 1/233 × 360◦ ≈ 1.55◦ leads to an equally spaced
radial trajectory with period 233, which renders it the smallest possible angle for
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the same set of projections. Beside its opposite angle of 181.55◦ also a value of
7/233× 360◦ ≈ 10.82◦ was considered. Because 233 is the 51st prime number, this
choice again yields a trajectory with identical projections but in a different order.
One can easily show that all angular increments of the form n/233× 360◦ lead to
the same sampling positions for all integer n smaller than 233 with projections in
pairwise different order.

Additional studies involved a trajectory consisting of 5 interleaved turns with 25
equally spaced projections each. The individual turns are constructed in such a way
that projections from a full set of 5 turns also cover k-space uniformly. In all cases,
FFT-based image reconstruction involved a gradient delay correction, compression
of the multi-channel data to 10 principle components, channel-wise gridding of the
raw data, density compensation, and root-sum-square combination of images.

3.2.3 Numerical Simulations

A framework to simulate magnetization dynamics in the presence of different ra-
dial encoding schemes was written in MATLAB (R2013a, The MathWorks, Inc.,
Natick, Massachusetts) using a MEX interface to a C-code implementation of a
Bloch equations simulator [46]. Different gradient switching schemes were simu-
lated by simplifying the actual gradient waveforms – as performed on the scanner
– to equivalent waveforms that result in the same net gradient moment per TR. This
simplification is justified by the fact that only the state of the magnetization imme-
diately before and after an RF pulse is of any relevance, because k-space sampling
and image formation was not part of the simulation. The remaining effect is the ac-
cumulation of different phase values when gradient amplitudes are changed from
TR to TR which allows residual transverse magnetization components to interfere
constructively or destructively depending on gradient waveforms and pixel posi-
tion relative to the magnet iso-center, i.e., a position with zero gradient strength.

Simulations were performed in a pixel-by-pixel fashion assuming hard pulses
and neglecting any slice profile effects. A constant proton density was assumed
throughout the entire FoV. A pseudo steady state was established by assuring an RF

pulse train length that exceeds five times the effective longitudinal relaxation time
[24], before averaging the magnitude of transverse magnetizations immediately af-
ter the RF pulse from several TR intervals to mimic image formation. Simulations
according to the Bloch equations were performed using the following parameters:
TR = 4 ms, RF pulse length 10 µs, flip angle 30◦, FoV = 256× 256 mm2, base reso-
lution 128× 128, T1 = 283 ms and T2 = 219 ms. Each pixel was divided into 5× 5
subpixel positions to simulate intra-voxel dephasing due to different spatial posi-
tions, each of which was populated with 100 isochromates equally spaced between
−100 Hz and +100 Hz off-resonance frequency. Gradient strength was calculated
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spoiling without additional gradients

according to the intended trajectory relating the angle increment φ to the ampli-
tude of the x- and y-gradient during the nth TR-interval via

~Gn =

(
Gx,n

Gy,n

)
= Gmax

(
cos (nφ)
sin (nφ)

)
. (3.1)

The phase θn at pixel position~r acquired during this interval is then given by

θn = (~r · ~G)γTR = cos (nφ− ϕ)rGmaxγTR (3.2)

with ϕ the angular coordinate of the pixel position with respect to the 0◦ projection.

3.2.4 MRI

All measurements were performed on a human MRI system operating at 3 T (Mag-
netom Prisma, Siemens Healthcare, Erlangen, Germany) using a 64 channel head
coil. Written informed consent, according to the recommendations of the local
ethics committee, was obtained from all subjects prior to MRI. Phantom studies
involved a plain water-filled phantom of the vendor doped with nickel(II) sulfate,
where reference values of T1 = (283± 4)ms and T2 = (219± 3)ms were obtained
by a Look-Locker-type IR-FLASH sequence and long-TR multi-echo spin-echo se-
quence, respectively. In vivo measurements of the human brain were carried out in
transverse orientation at the level of the lateral ventricles to include contributions
from cerebrospinal fluid with long T1 and T2 relaxation times. These studies used
the same protocol and parameter settings (TR = 4 ms, TE = 1.12 ms, bandwidth
= 1995 Hz/pixel, FoV = 256× 256 mm2, base resolution 128× 128, slice thickness
8 mm) as the phantom studies to allow for a direct comparison of residual arti-
facts.

3.3 results

Figure 3.1 depicts simulated gradient-echo images which are representative for
the pseudo steady state of an RF pulse train in the presence of radial encoding
gradients. The simulated trajectories are either based on a constant azimuthal dis-
placement of successive projections as indicated or correspond to a turn-based
pattern, where each of 5 turns consists of 25 equally spaced projections. Because
the ideal steady state, i.e., the perfectly spoiled solution, corresponds to a uniform
gray image, any visible structures for sequences B (column 1) and C (columns
2 and 3) represent residual transverse coherences due to imperfect spoiling. In
particular, for sequence B with constant RF phase all radial trajectories lead to con-
centric image artifacts around the simulated iso-center which exhibits a SSFP-like
signal intensity as zero gradients cannot introduce phase variations in this particu-
lar position. In more detail, the actual pattern formed by hypo- and hyper-intense
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Sequence B Sequence C

Golden 
Angle

111.25°

68.75°

1.55°

181.55°

5 × 25
Proj. 

10.82°

Figure 3.1: Numerical simulations of radial gradient-echo images during steady state
conditions for sequence B (no radial rewinding, no spoiler gradient, constant RF phase)
and sequence C (as B but with random RF phases) as a function of azimuthal increment
between successive projections. The bottom row corresponds to a trajectory compris-
ing 5 interleaved turns of 25 equally spaced projections. Images in the right column
are scaled by a factor of 10.
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rings at off-center positions depends on the employed trajectory defined by the
azimuthal angular increment. For example, for a value of 181.55◦ almost the entire
FoV becomes hyper-intense, while the size of the distinguished circular area around
the iso-center decreases with azimuthal angular increment.

When considering the proposed sequence C with randomized RF spoiling (col-
umn 2), the artifacts are very much reduced. The resulting pseudo steady state
solutions are much closer to the ideal spoiling scenario with residual artifacts form-
ing a low-intensity cloudy pattern with incoherent structure. Nevertheless, scaling
of the images by a factor of 10 (column 3) still reveals slightly different spoiling per-
formances for the trajectories studied. While the characteristic correlation length
in the patterns noticeably differs, the overall (unwanted) signal intensity shows
the highest artifact level for φ = 181.55◦ and the lowest level for the turn-based
trajectory previously applied for real-time MRI [6, 8].

Figure 3.2 shows experimental gradient-echo images from a spherical phantom
for sequences A (reference), B (no spoiling) and C (random RF). Sequence A with
refocused radial gradients, constant gradient spoiler and conventional RF spoiling
serves as a gold standard and clearly demonstrates the effective elimination of all
artifacts independent of the chosen trajectory. In these examples no efforts have
been made to compensate for coil sensitivity profiles. In close agreement with
the numerical simulations shown in fig. 3.1, the results obtained for sequences B
and C identify residual artifacts from incomplete spoiling – though at a markedly
different intensity. The proposed sequence C exhibits the lowest artifact level for
φ = 10.82◦, while the artifact level for φ = 181.55◦ is also lower than predicted by
simulation.

Corresponding in vivo results for the human brain are summarized in fig. 3.3.
The images represent 3-fold zoomed versions of a transverse section covering the
lateral ventricles containing cerebrospinal fluid. The subject was aligned in such a
way that the magnet iso-center was close to the ventricles to allow for an observa-
tion of the spoiling efficiency in the weakest spot. In comparison to the phantom
study, the artifacts are less pronounced for sequence B due to lower SNR. Neverthe-
less, the observation of hyper-intense ventricles for φ = 181.55◦ again indicates a
SSFP-like refocusing of unspoiled transverse coherences which most likely reflects
contributions from cerebrospinal fluid. In general, the difference images B-A and C-
A clearly demonstrate that the proposed sequence C with randomized RF spoiling
but no other precaution, i.e., without rewinders for radial gradients and without
additional spoiler gradients, is superior to sequence B in its ability to suppress
artifacts below noise level. This also includes removal of the signal intensity in the
iso-center (arrows in fig. 3.3) which is not achieved by sequence B. Other remaining
spots in the difference images C-A must be ascribed to signals from small arteries
which exhibit time-dependent in-flow intensities in respective acquisitions.
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3.4 discussion

Based on numerical simulations and confirmed by experimental validation this
work demonstrates the superior performance of a spoiling strategy for radially
encoded gradient-echo sequences which entirely relies on random RF and receiver
phases. The technique is time-efficient as it eliminates the need for gradient rewind-
ing and/or additional gradient spoilers. The analyses further show that the arti-
fact patterns due to incomplete removal of transverse coherences in steady state
gradient-echo images strongly depend on the radial trajectory – a finding which
is in general agreement with earlier work [47–49]. Without rewinding gradients
and for a constant RF phase, image artifacts consist of concentric rings around the
iso-center characterized by zero gradient strength. This symmetry has its origin in
the phase acquired per TR as given by eq. (3.2). For pixels at the same distance to
the iso-center the gradient-induced phase evolution is identical up to a shift given
by the angular coordinate ϕ. However, this latter influence is minimized by averag-
ing data from several TR intervals. For the same distance from iso-center but two
different angular coordinates ϕ, one can easily find a number of pulses that maps
the phase evolution in a pixel very closely to the phase evolution shifted in time by
these pulses: The larger the effective averaging window, i.e., the higher the num-
ber of projections per k-space, the less the influence of the angular coordinate ϕ.
Hence, the radial symmetry of the k-space trajectory is reflected in the symmetry
of artifacts in close analogy to the well-known off-center band structure for the case
of Cartesian FLASH images as originally described by Crawley, Wood, and Henkel-
man [41]. For a constant RF phase (sequence B) the radial trajectory which emerges
from an angular increment of 181.55◦ leads to a pronounced and generalized signal
increase. Because this increment is close to 180◦, it arises as an illustrative example
for a gradient echo induced by the trajectory. After two TR intervals with opposed
gradient polarity the net gradient moment is close to zero at the end of the second
TR interval. This refocused transverse magnetization gets mixed into the FID signal
after the next RF pulse in a manner similar to a SSFP sequence where the condition
of a zero net gradient moment per TR is perfectly met.

Extended Phase Graphs [49, 50] represent a different approach to describe the
effect of a pulse train on a spin system. Rather than simulating single isochromates,
the technique partitions the magnetization into dephased states and describes the
effect of RF pulses and gradients as transitions between them. Although poten-
tially fruitful, there are several reasons that render the approach impractical for
present purposes. First, due to varying net gradient moments the dephasing state
cannot be expressed by integer values and hence matrix multiplications have to be
replaced by integration methods. Secondly, the number of different states grows ex-
ponentially and leads to computationally expensive calculations when simulating
hundreds of RF pulses. And thirdly, difficulty arises from the fact that both spa-
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Golden 
Angle

111.25°

68.75°

1.55°

181.55°

5 × 25
Proj. 

10.82°

Seq. A Seq. B B-A Seq. C C-A

Figure 3.2: Gradient-echo images of a water-filled phantom for the reference sequence
A (radial rewinding, constant spoiler gradient, conventional RF spoiling), sequence
B (no radial rewinding, no spoiler gradient, constant RF phase), and sequence C (no
radial rewinding, no spoiler gradient, random RF spoiling) as a function of azimuthal
increment between successive projections as in fig. 3.1. Difference images B-A and C-A
are scaled by a factor of 10.
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Seq. A Seq. B B-A Seq. C C-A

Golden 
Angle

111.25°

68.75°

1.55°

181.55°

5 × 25
Proj. 

10.82°

Figure 3.3: Gradient-echo images of a transverse section through the human brain at
the level of the lateral ventricles for reference sequence A (radial rewinding, constant
spoiler gradient, conventional RF spoiling), sequence B (no radial rewinding, no spoiler
gradient, constant RF phase), and sequence C (no radial rewinding, no spoiler gradient,
random RF spoiling) as in fig. 3.2. Difference images B-A and C-A are scaled by a
factor of 2. Arrows indicate the central artifact from unspoiled transverse coherences
at the iso-center (i.e., zero gradient strength). Images in the bottom row are windowed
individually.
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tial dimensions have to be incorporated when simulating a radial trajectory which
extends the shift operator describing the gradient effects on different dephased
states.

In conclusion, spoiling of transverse magnetizations in radial FLASH MRI may
be achieved by randomized RF phases without the need for additional spoiler gra-
dients. The approach allows for short repetition times and may be particularly
attractive for high-speed real-time MRI.
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4
M U LT I - S L I C E T 1 M A P P I N G W I T H S I N G L E - S H O T
I N V E R S I O N - R E C O V E RY F L A S H

In this chapter, an analytical expression is derived that served as a signal model in
the peer-reviewed publication [25] authored by my colleague Xiaoqing Wang. We
jointly developed the reconstruction methods used in the following study.

4.1 introduction

Quantitative mapping of the longitudinal relaxation time T1 is of scientific and
clinical interest since it allows a comparison of MR images across subjects, MR

hardware, and sequences used. T1 maps allow tissue characterization and are of
diagnostic value in a variety of pathologies including multiple sclerosis, stroke,
myocardial infarction, and cancer (see [51] for a review of applications).

From the variety of T1 mapping techniques available, Look-Locker (LL) type
sequences are among the fastest since the longitudinal relaxation process is effec-
tively interleaved with continuous image readout, e.g., by using the FLASH imaging
technique. For this purpose, an initial inversion pulse is followed by a train of RF

pulses with small flip angles and acquisition of the generated and spatially en-
coded gradient echoes. After inversion, the longitudinal magnetization changes
steadily due to relaxation on the one hand, and due to the continuous application
of the RF pulses on the other hand. In order to quantify the intrinsic T1 relaxation
constant one needs to find a signal model that describes how the two effects con-
tribute to the overall signal. With this understanding, the relaxation due to the
tissue-specific T1 value can be discriminated from effects due to imaging affected
by sequence parameters such as TR or flip angle.

Deichmann and Haase derived in [24] an analytical expression describing the
magnetization time course in a single slice subject to imaging. A similar formula
was derived by Kaptein, Dijkstra, and Tarr [52], who considered a related problem
in the context of MR spectroscopy. In both cases the magnetization time course
follows a mono-exponential recovery from full inversion towards the steady state
given by the FLASH steady-state signal equation. This recovery is characterized by
an effective relaxation time constant T ∗1 , which is shorter than the true T1 time. In
[24] also a correction factor is given which relates the measured T ∗1 to the desired
T1 time.
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multi-slice t1 mapping with single-shot inversion-recovery flash

When considering a multi-slice measurement in which an entire stack of slices
rather than a single slice is imaged, this signal model has to be extended depending
on the ordering of the RF pulses. Three basic ordering scenarios are possible:

1. Sequential slices
In this scenario, all slices are measured sequentially, meaning that all frames
in the first slice are acquired before switching to the second slice and so on.

2. Interleaved slices, sequential frames
Here, after the first frame in the first slice the first frame of the second slice
is acquired.

3. Interleaved slices, interleaved frames
Here, after the first projection of the first frame in the first slice is acquired,
the first projection of the first frame in the second slice is acquired.

Scenario 1 is identical to performing three single-slice LL experiments after each
other where the magnetization time course in each individual experiment follows
the derived model. Scenario 3 is also covered by the derived model because one
particular slice still experiences a train of RF pulses with constant spacing, which
is given by the product of the number of slices and the repetition time. The second
scenario, however, is not compatible with the derived model, since here the train of
RF pulses is interrupted whenever imaging outside the particular slice is performed.
Periods of free relaxation governed by pure T1 (when imaging is performed outside
the slice) is interleaved with periods governed by T∗1 (when the particular slice is
imaged). But the second scenario is favored when fast imaging is required, i.e.,
when imaging of the entire stack has to be completed within a certain time, and
when quantification of the T1 values is based on prior reconstruction of an image
series. In this case, it is advantageous to keep the temporal footprint of a single
frame as small as possible to maintain temporal fidelity. By choosing a sequential
rather than interleaved frame acquisition this criterion is met. However, in order to
perform a proper quantification of T1 in all slices, a proper analytical expression
for multi-slice inversion-recovery is needed. This expression is derived here and
its validity demonstrated in a phantom and an in vivo study.

4.2 theory

The analytical expression for single-slice inversion-recovery in [24] is based on
three assumptions: Initial inversion is assumed to be perfect, T2 relaxation is ne-
glected since very short echo times are considered, and perfect spoiling is assumed,
meaning that the magnetization vector has no transverse components immediately
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before each RF excitation. Following these assumptions, the time evolution of lon-
gitudinal magnetization Mz can be written as a mono-exponential relaxation curve

M(t) = MSS − (M0 + MSS)e−t/T∗1 (4.1)

with the effective relaxation time T∗1 = {1/T1 − (1/TR) ln cos α}−1 and the steady
state signal magnetization MSS, which is related to the equilibrium magnetization
M0 by

MSS = M0
1− e−TR/T1

1− e−TR/T∗1
. (4.2)

Since TR� T∗1 < T1 is given in very good approximation, eq. (4.2) can be approxi-
mated to

MSS = M0
T∗1
T1

. (4.3)

This finally allows to calculate T1 from the measured relaxation curve directly with-
out assumptions on the flip angle α, which is hard to adjust correctly in vivo due to
slice profile effects [53] and B1 inhomogeneities. After fitting the three unknowns
in eq. (4.1) to the measured relaxation curve, T1 can be obtained by the Deichmann
correction

T1 = T∗1
M0

MSS
. (4.4)

This result is now used to derive a similar expression for the case of multi-slice
inversion-recovery. The situation is different in the sense that the governing relax-
ation process depends on whether imaging is performed within the slice of interest
(regime A) or outside (regime B). Figure 4.1 illustrates this situation.

In order to derive an analytical expression, we introduce two time evolution
operators U(A) and U(B) which describe the evolution from time point t0 to t1 of
the magnetization vector in these two regimes:

M(t1) = U(A)
t1,t0

M(t0) = MSS +
(

M(t0)−MSS
)
e−(t1−t0)/T∗1 (4.5)

M(t1) = U(B)
t1,t0

M(t0) = M0 +
(

M(t0)−M0
)
e−(t1−t0)/T1 (4.6)

In both regimes the initial magnetization M(t0) decays mono-exponentially, but
relaxation time constants and steady states differ.

The magnetization at time tn can by described by applying the evolution opera-
tors in an interleaved manner:

Mtn = U(B)
tn,tn−1

U(A)
tn−1,tn−2

. . . U(B)
t2,t1

U(A)
t1,t0

M(t0) (4.7)
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Time

RegimeAA RegimeAB

Figure 4.1: Scheme of a three-slice inversion-recovery measurement. After a non-
selective adiabatic inversion pulse, imaging is performed by measuring interleaved
frames in a slice-by-slice fashion. Regime A is governed by T∗1 while in regime B pure
T1 relaxation takes place. Figure adapted from [25].

Let

τA := nprTR

τB := npr(nsl − 1)TR

λA := e−τA/T∗1

λB := e−τB/T1

µA := MSS (1− λA)

µB := M0 (1− λB)

(4.8)

with npr the number of projections per frame and nsl the total number of slices. The
constant τA is then the amount of time it takes to sample one frame in the slice,
and τB the time it takes to sample the frames in the remaining (nsl − 1) slices.

Using these definitions, the magnetization at the end of each regime can be
related to its respective initial value by

M(t + τA/B) = µA/B + λA/B M(t) (4.9)
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and the magnetization state after one cycle of ”in-slice/off-slice” imaging can be
stated as

M(t + τA + τB) = µB + λB
(
µA + λA M(t)

)
(4.10a)

= µB + λBµA + λBλA M(t) (4.10b)

= µC + λC M(t) , (4.10c)

where µC := µB + λBµA and λC := λBλA < 1 were introduced. The operator
expression in eq. (4.7) can be made explicit when timing according to eq. (4.8) is
assumed implicitly:

Mtn = U(B)U(A)U(B)U(A) . . . U(B)U(A)M(t0) (4.11a)

= µC + λC

(
U(B)U(A) . . . U(B)U(A)M(t0)

)
(4.11b)

= µC + λC

(
µC + λC M(t)

(
. . . U(B)U(A)M(t0)

))
(4.11c)

...

= µC

l−1

∑
i=0

λi
C + λl

C M(t0) (4.11d)

= µC
1− λl

C
1− λC

+ λl
C M(t0) (4.11e)

Here, the well-known formula for a geometric series was used from eq. (4.11d)
to eq. (4.11e) and tn was assumed to be the time point after l = b j

npr
c full “in-

slice/off-slice” cycles, where j is the total number of α-pulses applied within the
slice of interest. To extend the expression in eq. (4.11e) to arbitrary time points, we
additionally define k := j mod npr to be the number of pulses within the slice
of interest after l full cycles. We can then use eq. (4.11e) to firstly determine the
magnetization status at the beginning of the current imaging period and secondly
calculate the final magnetization value according to eq. (4.5). This finally yields the
analytical expression for the z-component of the magnetization vector at arbitrary
time points in a multi-slice LL inversion-recovery experiment:

Ml,k = MSS −
[

MSS −
(

µC
1− λl

C
1− λC

+ λl
C M(t0)

)]
e−kTR/T∗1 (4.12)

A structurally similar derivation can be found in [54] where an analytical expres-
sion of multi-slice spinlocking is derived, and in [Roeloffs2015a] where pulsed
spinlocking for the single-slice case is considered in a similar fashion.

In an actual imaging experiment, signal intensity changes from projection to pro-
jection as given by eq. (4.12) cannot be observed as it takes multiple projections to
form an image which allows spatial localization. Therefore it is appropriate to as-
sign an effective time point to each frame that corresponds to the time point when
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the center projection was acquired. This fixes k to k̂ := (npr + 1)/2 if an odd num-
ber of projections per frame is assumed. Then, a simple algebraic transformation
of eq. (4.12) reveals its mono-exponential nature:

Ml = MSS −
[

MSS −
(

µC
1− λl

C
1− λC

+ λl
C M(t0)

)]
e−k̂TR/T∗1︸ ︷︷ ︸

=:ξ

(4.13a)

= MSS −
[

MSSξ − µCξ

1− λC
+

µCλl
Cξ

1− λC
− λl

C M(t0)ξ

]
(4.13b)

= MSS(1− ξ)− µCξ

1− λC︸ ︷︷ ︸
=:β

+λl
C

(
ξM(t0)−

µCξ

1− λC

)
︸ ︷︷ ︸

=:−(γ+β)

(4.13c)

= β− (γ + β)e− ln(λ−1
C )l (4.13d)

This transformation clearly shows that the observable signal intensity evolution in
a multi-slice experiment

a) still follows a mono-exponential relation with a slice-dependent initial value
of −γ,

b) decays with a relaxation constant that depends on T1 and sequence parame-
ters, but is independent of the specific slice of interest, and

c) reaches the same steady state β for all slices.

Hence, the model function describing the signal evolution stays the same when
going from single-slice to multi-slice T1 quantification, only the correction function
yielding the desired T1 values has to be adapted and takes all additional param-
eters such as the number of projections per frame and the number of slices into
account.

4.3 methods

4.3.1 MRI

All experiments were performed at 3 T field strength using a clinical MR scanner
(Magnetom Prisma, Siemens Healthcare, Erlangen, Germany). Both, phantom and
brain studies employed the standard 64-channel head coil. Volunteers without
known illness were recruited and written informed consent was obtained prior
to MRI.
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Parameter Value

FoV 192× 192 mm2

Matrix size 256× 256
In-plane resolution 0.75 mm
Slice thickness 4 mm
Distance between sections 4 mm
TR 2.99 ms
TE 2.01 ms
Bandwidth 1085 Hz/pixel
Flip angle 4◦

Projections per frame 21
Frames per slice 150, 50, 30 and 21
Total acquisition time 9 s

Table 4.1: Sequence parameters used in the multi-slice T1 mapping experiment.
The same set of parameters was used in both, phantom and brain study. The number
of frames per slice has been adapted to match with the fixed total acquisition time
shared among all multi-slice experiments.

4.3.2 Acquisition Protocol and Phantom

Data acquisition for single-slice and multi-slice T1 mapping employed a Look-
Locker type IR sequence [24, 55] which consisted of an initial non-selective adia-
batic inversion pulse in combination with a spoiler gradient followed by a slice-
selective radial FLASH imaging sequence (single-slice or multi-slice, respectively).
Spoiling was achieved by the recently proposed method of random RF spoiling
for radial FLASH ([40], see chapter 3) that relies on randomized phases rather than
linear phase increments as used in conventional RF spoiling [37, 41]. This has the
advantage that no additional gradient events are necessary, in contrast to conven-
tional RF spoiling where a constant gradient moment per TR has to be assured. This
lack of additional gradient events allows minimal TR and, consequently, maximal
frame rates. Timing and sequence parameters are identical in phantom and brain
study and summarized in table 4.1.

Validation of the derived multi-slice model included studies with a commercial
T1 phantom (Diagnostic Sonar LTD., Scotland, UK). This phantom contains 6 com-
partments with distinct T1 values in a water environment. After image reconstruc-
tion and fitting, circular region of interests (ROIs) were drawn by hand covering
about 50 % of each compartment’s area to avoid possible biasing of the signal by
partial volume effects or ringing. For quantitative comparison, mean and standard
deviation in each ROI were calculated.
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4.3.3 Reconstruction

To reduce the demands in memory and computation time, a software channel com-
pression [56] was performed as an initial step after data acquisition. This method
compresses the raw data from the full number of channels (given by the physical
coils) down to a reduced number of virtual channels based on a principle compo-
nent analysis. Here, a fixed number of eight virtual channels was used. The chosen
image reconstruction algorithm nonlinear inversion (NLINV) [6, 31] operates on
a discrete Cartesian grid whereas the raw data has been acquired in the radial
domain as given by equidistant samples for multiple projections. Gridding as an
interpolation process has to be performed to bring the raw data samples into the
Cartesian domain. This process requires knowledge about the exact sampling tra-
jectory in k-space, which, in principle, can be obtained from the programmed gra-
dient waveforms. However, common imperfections in the gradient system caused
by eddy currents [57–59] or timing errors in the hardware lead to deviations of the
realized trajectory from the intended. In parts, these deviations can be corrected ret-
rospectively without additional measurements. The applied method of correction
is an extension of the previously introduced adaptive gradient-delay compensation
[60] in which sets of close to anti-parallel projections are used to calculate tempo-
ral delay constants. These constants are then used in the aforementioned gridding
process and take into account that the true sampling positions typically deviate
from the intended k-space trajectory.

Image reconstruction closely follows the procedure as described in [25] and is
performed in a two-step manner: First, the trailing 10 frames of the IR image se-
quence are reconstructed together with their corresponding sequence of coil pro-
files by a first run of NLINV. Second, the coil profiles of the 10th frame are provided
as an input to the second run of NLINV in which coil profiles are treated as con-
stant. This procedure is justified by the fact that during recovery of magnetization
the dielectric properties of the imaged object remain constant and therefore no
change in coil profile sensitivity is expected. Removing the coil profiles from the
set of unknowns in NLINV turns the initial nonlinear problem into a linear, which
is solved by means of iterative regularization and the conjugate gradients (CG) al-
gorithm. This 2-step method ensures that signal intensity changes are exclusively
reflected in the reconstructed image series, which is then subject to fitting of the
derived signal model. For quantification, the reconstructed image series was fitted
in a pixel-by-pixel fashion by mono-exponential curves. For simplicity, data fitting
was performed on the magnitude of the reconstructed images. The three obtained
parameters were than transformed into physically meaningful parameters T∗1 , MSS

and M0. This transformation was implemented by solving a least-squares prob-
lem which only used the forward model as derived in eq. (4.13a) and rendered
(a rather complex) inversion unnecessary. The desired T1 relaxation time was fi-
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nally derived from the parameter maps by application of the original Deichmann
correction T1 = T∗1

M0
MSS

.

4.4 results

Figure 4.2 shows a plot of the derived multi-slice model (eq. (4.12)) for the case
of a 3-slice experiment. T1 and system parameter have been chosen arbitrarily to
properly illustrate the observable effects in the multi-slice situation. Clearly, the
temporal order in which the slices are acquired has a major effect on the dynamics,
since magnetization is subject to T1 relaxation between inversion and acquisition
of the first frame. During imaging within the slice of interest both increasing and
decreasing signal intensity can be found depending on whether the signal inten-
sity has exceeded a threshold given by the single-slice steady state. A multi-slice
steady state can be introduced when considering an arbitrary but fixed projection
within each frame. This situation corresponds to the true imaging condition when
multiple projections form a frame which is assigned to the center time point of
its acquisition window. In this case, the multi-slice model can still be modeled
by a mono-exponential relaxation curve (fig. 4.2, black solid line) as predicted by
eq. (4.13a).

To validate the derived model and to assess its limitations, an in vitro study
was performed employing the commercial T1 phantom described in section 4.3.
Besides single-slice imaging, a 3-slice and a 5-slice measurement were performed
where slice positions have been chosen with respect to the 5-slice measurement.
The obtained ROI-averaged values for one slice are shown in fig. 4.3 as a function of
time after inversion for both single-slice and 3-slice imaging. In both cases the zero
crossings are ordered according to the corresponding T1 values of the respective
compartments. However, in the 3-slice experiment (fig. 4.3b), apart from the obvi-
ous threefold decreased sampling rate, smaller absolutes of the initial values can
be observed as well as shorter time intervals from inversion to zero-crossing. The
latter effect is most prominently noticeable for the compartment with the longest
T1 value. Residual coil profile effects prevent the individual curves in the 3-slice
experiment from converging towards a common steady state. Mean and standard
deviation per ROI for all obtained T1 maps (one single-slice map and 3+5 multi-slice
maps) are found in fig. 4.4. Quantitative values for the 3-slice measurement match
well with the single-slice case, but exhibit an increased standard deviation. The 5-
slice measurement shows on average an even further increased standard deviation
and the single-slice reference values can only be reproduced for T1 values above
500 ms. The last two slices of this measurement fail to reproduce the smallest T1

value of about 330 ms and show a trend for the next higher T1 value.
Figure 4.5 elucidates the effect of temporal order on precision of quantification.

Magnitude images of the 5-slice experiment are shown according to their overall
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Figure 4.2: Plot of the derived analytical expression for a 3-slice inversion-
recovery experiment. The magnetization time evolution of all 3 slices (blue #1, red
#2, yellow #3) as given by eq. (4.12) is plotted as function of time after inversion. A
mono-exponential recovery curve (black line, here only shown for slice #2) can be
found for each slice when considering a fixed projection within each frame (here:
center projection, representing effective time point of each frame).
Simulation parameters: T1 = 1 s, TR = 2 ms, α = 8◦, npr = 51

temporal order. While all slices show a similar image contrast change from in-
version (bright) over zero-crossing (dark) to steady state (bright), zero-crossing in
compartment 1 (left arrow) happens before acquisition of the first frame in slice 4

and slice 5. This effect does not appear for longer T1 values, e.g. the long T1 of
about 3 s in the surrounding water leaves enough time to capture its dynamics in
5 to 6 frames in all slices before zero-crossing (right arrow).

The same multi-slice sequence was used for an in vivo measurement of a human
brain. The reconstructed T1 maps (fig. 4.6) show good agreement in corresponding
slices. However, similar to the phantom study, with increasing number of acquired
slices noise increases as well as the number of pixels where fitting failed.
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Figure 4.3: ROI-averaged signal time courses for all 6 compartments in the

single-slice (a) and 3-slice measurement (b). For better visualization only the real
part of the averaged signal intensity is shown. The slice of interest was identical in
both measurements. However, according to the chosen reorder scheme of the 3-slice
measurement, this slice was entered last after the initial inversion. This is the source
of the reduced dynamic range in (b).
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Figure 4.4: Quantitative comparison between single-slice and multi-slice T1
mapping. Shown are mean and standard deviation per ROI. Solid lines correspond
to the single-slice case. Multi-slice data are sorted in order of acquisition. All 3-slice
measurements and 5-slice measurements for T1 values above 0.5 s reproduce the single-
slice values with an increased standard deviation. The last two slices of the 5-slice mea-
surement fail to reproduce the smallest T1 value of about 330 ms and show a trend for
the next higher T1 value.
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Figure 4.5: Reconstructed image series of the 5-slice experiment. While all slices
show a similar image contrast change from inversion to steady state, zero-crossing
in compartment 1 (left arrow) happens before acquisition of the first frames in slices
#4 and #5 (298 ms after inversion). The long T1 value of water leaves enough time to
capture its dynamics in 5 to 6 frames in all slices before zero-crossing (right arrow).
Temporal order of acquisition is indicated by the dotted gray line.
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Figure 4.6: T1 maps of a human brain (transverse sections). Quantitative values
obtained by pixelwise fitting of the derived signal model (eq. (4.13a)) to a single-slice
(left), 3-slice (middle) and a 5-slice measurement (right). Slice positions of the single-
slice and 3-slice measurement were chosen according to the 5-slice measurement. Sim-
ilar to the phantom study, with increasing number of acquired slices noise increases
as well as the number of pixels where fitting failed.
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4.5 discussion

A novel model was developed that describes the magnetization time course in
a multi-slice single-shot inversion-recovery FLASH experiment. The derived ana-
lytical expression extends the well-known Deichmann correction [24] towards a
scenario in which multiple slices are acquired in an interleaved order. Under the
same assumptions as the original Deichmann correction (instantaneous RF pulses,
perfect spoiling, complete initial inversion, and TR � T∗1 ) an exact solution for
all slices and arbitrary starting values was presented. When considering one rep-
resentative time point per frame, the observed signals can be parametrized by
a 3-parameter mono-exponential recovery curve with steady state and relaxation
rate independent of slice number.

This model is particularly useful for T1 quantification based on real-time imag-
ing, since it allows a small temporal footprint per frame while retaining the overall
acquisition time of a single-slice experiment. In this study, image reconstruction
was performed with NLINV, however, the model is independent of the algorithm
chosen to reconstruct the image series.

In vitro studies using a commercial T1 phantom proved validity of the multi-slice
extension and further revealed general limitations of this method. While the simul-
taneous acquisition of 3 slices accurately reproduced the quantitative single-slice
results, a severe overestimation for T1 values shorter than 600 ms was found. This
effect is caused by the general sequence timing and does not constitute a signal
model violation. In practice, the maximal number of slices that can be simultane-
ously mapped is limited by several factors. Many of those are closely connected to
the image reconstruction algorithm, since the latter determines the minimal num-
ber of projections per frame necessary to obtain artifact-free images at a given
spatial resolution. Therefore, the maximal number of possible slices strongly de-
pends on the selected spatial resolution, which in turn determines TR, TE, band-
width and other parameters. However, even at minimal projections per frame, all
slices have to be entered after inversion within a certain time interval, which is
determined by the shortest T1 values of interest. When this time is exceeded - as
in measurements with a high number of slices - the relaxation process has already
advanced to such a degree, that the dynamics in the last slices is not captured ap-
propriately and, consequently, erroneous quantitative results are obtained. These
acquisition-order-dependent effects could be mitigated by means of a slice selec-
tive rather than a non-selective inversion. However, possible inversion efficiency
decrease, slice cross-talk and, most important, the necessity of a new signal model
prevent an immediate transfer.

In the performed in vivo study such effects were not observed, probably because
T1 values found in the human brain at 3 T field strength are typically larger than
700 ms (see [61] for a compilation of reference values). However, the increased
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volume coverage by multi-slice imaging comes at the cost of a decreased SNR in
the T1 maps.

41





5
M O D E L - B A S E D R E C O N S T R U C T I O N F O R T 1 M A P P I N G U S I N G
S I N G L E - S H O T I N V E R S I O N - R E C O V E RY R A D I A L F L A S H

The following is a reprint of the original manuscript

V. Roeloffs, X. Wang, T. J. Sumpf, M. Untenberger, D. Voit, and J. Frahm. “Model-
based reconstruction for T1 mapping using single-shot inversion-recovery radial
FLASH”

which was under revision at NMR in Biomedicine at time of thesis submission. A
peer-reviewed version of this article can be found at [62].

VR and TS developed the reconstruction algorithm. VR implemented the recon-
struction algorithm and analyzed the results. VR and XW performed the exper-
iments. VR and MU adapted the gradient delay correction method to Golden
Angle sampling patterns. DV implemented the sequence. VR and JF wrote the
manuscript.
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Abstract

Quantitative parameter mapping in MRI is typically performed as a 2-step
procedure where serial imaging is followed by pixelwise model fitting. In
contrast, model-based reconstructions directly reconstruct parameter maps
from raw data without intermediate image reconstruction. Here, we pro-
pose a method that determines T1 maps directly from multi-channel raw
data as obtained by a single-shot inversion-recovery radial FLASH acquisi-
tion with a Golden Angle view order. Joint reconstruction of a T1 , spin-
density, and flip-angle map is formulated as a nonlinear inverse problem
and solved by the iteratively regularized Gauss-Newton method. Coil sensi-
tivity profiles are determined from the same data in a preparatory step of
the reconstruction. Validations included numerical simulations, in vitro MRI

studies of an experimental T1 phantom, and in vivo studies of brain and
abdomen of healthy subjects at a field strength of 3 T. The results obtained
for a numerical and experimental phantom demonstrated excellent accuracy
and precision of model-based T1 mapping. In vivo studies allowed for high-
resolution T1 mapping of human brain (0.5 mm to 0.75 mm in-plane, 4 mm
section thickness) and liver (1.0 mm, 5 mm section) within 3.6 s to 5 seconds.
In conclusion, the proposed method for model-based T1 mapping may be-
come an alternative to 2-step techniques which rely on model fitting after
serial image reconstruction. More extensive clinical trials now require accel-
erated computation and online implementation of the algorithm.
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5.1 introduction

Quantitative mapping of longitudinal relaxation is of scientific and clinical interest
as T1 relaxation times are important biophysical and physiologic indicators for tis-
sue characterization and the assessment of perfusion, blood volume, and contrast
agent uptake. The challenges for T1 mapping are quantitative accuracy and preci-
sion as well as high spatial resolution and speed, i.e., short measurement times for
routine clinical use. So far, one of the most commonly applied methods is based
on a Look-Locker type acquisition sequence [52, 55], in which an initial inversion
pulse is followed by a continuous SSFP or FLASH readout. After serial image recon-
struction T1 maps can be obtained by pixel-wise fitting.

The separation between image reconstruction and T1 quantification in a 2-step
procedure may be overcome by a so-called model-based reconstruction technique
that explicitly takes into account that the measured signal follows a certain model.
A potential advantage of such strategies is the better use of inherent redundancy
in the data, which may be exploited by reconstructing parameter maps directly
from k-space data, e.g., see [63] for a general review. This concept has previously
been applied to different physical and physiological models including, for example,
Cartesian T1 and T2 mapping [18, 19, 32], radial T2 mapping [33], radial T∗1 and T1

mapping [20, 21], radial spin-echo DTI [22] and phase-contrast flow MRI [23].
In this work, reconstruction of T1 maps from a single IR radial FLASH measure-

ment is formulated as a nonlinear inverse problem and solved by the iteratively
regularized Gauss-Newton method (IRGNM). Prior knowledge about the unknown
parameter maps is taken into account by a parameterization of the signal model
that allows for the use of variable specific regularization terms. Thus, the initially
ill-posed problem can be turned into a well-posed one without inappropriately
biasing the quantitative reconstruction results. The algorithm comes at moderate
computational complexity due to the relatively simple Tikhonov regularization.

Validation of the proposed technique using numerical simulations, studies of
an experimental phantom, and in vivo measurements of healthy subjects render
this method an efficient technique for high-resolution T1 mapping within a few
seconds.

5.2 methods

5.2.1 Signal Model and Optimization

Following [24, 52] the evolution of the longitudinal magnetization M over time in
a Look-Locker sequence [55] is governed by

M(MSS, M0, R∗1 ; t) = MSS − (MSS + M0) e−R∗1 t , (5.1)
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where MSS is the steady-state magnetization, M0 the equilibrium magnetization
and R∗1 the effective relaxation rate. The latter can be written as

R∗1 = R1 + R′1 (5.2)

with the longitudinal relaxation rate R1 = 1/T1 and a “readout” relaxation rate
R′1 = − 1

TR ln cos α, where α is the effective flip angle across the slice profile and
TR the repetition time. The spatial distribution of this flip angle is expected to be
smooth [64, 65] because RF excitation was accomplished by the body coil. In order
to exploit this smoothness as prior knowledge in a model-based reconstruction, a
different but equivalent parameterization of eq. (5.1) is chosen which exploits the
relationship M0/MSS = R∗1/R1 for the case of short TR [24]:

M(MSS, R1, R′1; t) = MSS

[
1−

(
R′1
R1

+ 2
)

e−(R′1+R1)t
]

(5.3)

Here, M0 was eliminated and R∗1 split into its components R1 and R′1, which are
now explicit variables. This transformation allows for an independent regulariza-
tion of the two parameter maps R1 and R′1 that represent two completely different
sources of relaxation. For R′1 a similar smoothness as for α is expected and hence a
strong smoothing regularization is appropriate for this variable.

Assuming that the magnetization time course in the experiment follows the ideal
signal intensity (eq. (5.3)), the full MRI signal equation, which maps all three un-
known parameters (MSS, R1, R′1) to the data acquired by the N receive coils, can be
stated as

F : x 7→

P~kFPFoVC1M(MSS, R1, R′1; t)
...

P~kFPFoVCN M(MSS, R1, R′1; t)

 with x =

MSS

R1

R′1

 , (5.4)

where Cj are the predetermined coil sensitivity profiles, F is the Fourier transform,
P~k and PFoV are the orthogonal projections onto the measured k-space trajectory
and the FoV, respectively. T1 mapping can now be stated as a nonlinear inverse
problem of the form

F(x) = y , (5.5)

where y is the raw data from all channels and for all time points along the IR

process. Once the solution x is found, three meaningful parameter maps can be
calculated: The equilibrium magnetization (i.e., proton density), the flip angle dis-
tribution and the T1 map.

Equation (5.5) is solved by the IRGNM (see [66] for a general reference) which
considers the augmented objective function

f (x) =
∥∥∥F(x)− y

∥∥∥2

2
+ αm

∥∥∥L(x− xini)
∥∥∥2

2
, (5.6)
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where αm = 2−m is a regularization parameter halved in each iteration m, xini a
reasonable a priori estimate of x, and L the Tikhonov regularization matrix. As
x comprises three different parameter maps, the general regularization matrix L
combines three parameter-specific regularization terms. Corresponding details are
found in the Appendix (section 5.5).

5.2.2 Constraints

The chosen parameterization of the model (eq. (5.3)) describes the mono-exponen-
tial signal time course by two relaxation constants R1 and R′1, which are physically
restricted to positive real numbers. This renders the reconstruction of these param-
eter maps a bound-constraint problem. However, the IRGNM calculates iterates that
may violate these boundary conditions. Doicu, Schreier, and Hess ([67]) presented
two general modifications of the IRGNM that both integrate the bound-constraint
condition into the optimization, while maintaining its peculiarities such as the
descending sequence of regularization parameters. However, because these modi-
fications require additional costly calculations, a simpler, yet effective modification
was implemented: Each iterate of the IRGNM is checked for feasibility and no up-
date in R1 is performed in pixels where boundary constraints would be violated.
These pixels are then set to the boundary value of R1. Here, the lower bound of
R1 was set to 0.25 s−1 leading to T1 values ranging from 0 s to 4 s, hence covering
common in vivo values at 3 T field strength.

Reconstruction techniques such as model-based relaxometry methods [18, 20] or
MR fingerprinting [68] in general do not attempt to reconstruct images and hence
no binning of k-space data to frames is necessary. Although this inherent feature
allows for a perfect temporal fidelity, the computational complexity and memory
demands can be significantly reduced when a certain temporal discretization is
chosen. However, the largest reasonable bin size, i.e., the largest number of radial
projections combined to a frame, is given by the smallest time scale on which
changes are expected. For the case of T1 mapping, this time scale is determined by
the shortest effective relaxation time T∗1 = 1/R∗1 .

5.2.3 Scaling

Scaling of variables and operators has a major effect on the reconstruction results
because it can change the condition number of the problem and also determines
the balance between the data consistency and regularization terms. It is therefore
necessary to choose a proper scaling strategy that is able to deal with different
input scenarios like changes in base resolution or number of receive channels. A
proper normalization and scaling should keep the same balance between data con-
sistency and regularization terms, i.e., the chosen regularization constants should
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keep their meaning and neither depend on application nor be adapted to the ac-
tual dataset. In contrast to other model-based methods where the unknowns itself
are explicitly scaled [19, 23, 32], this work ensures a proper scaling by only nor-
malizing the raw data, the point spread function (PSF) operator, and the coil vector.
Details can be found in the Appendix (section 5.5). This normalization scheme
ensures that the energy ratios of the gradients stay approximately constant, inde-
pendent of the number of channels, the chosen base resolution, or the number of
data frames available (for example by choosing a different bin size).

5.2.4 MRI

All MRI studies were performed at 3 T using an MRI system with 80 mT/m gradients
(Magnetom Prisma, Siemens Healthcare, Erlangen, Germany). Brain studies were
performed with the standard 64-channel head coil, while abdominal applications
employed the 18-channel thorax coil in combination with suitable segments of the
32-channel spine coil. Volunteers without known illness were recruited from the
local university. Written informed consent, according to the recommendations of
the local ethics committee, was obtained from all subjects prior to MRI.

Experimental validations were performed with use of a commercial T1 phan-
tom (Diagnostic Sonar LTD., Scotland, UK) consisting of 6 compartments with
defined T1 values surrounded by water. An IR fast spin echo (FSE) sequence with
13 logarithmically spaced inversion times between 50 ms and 2300 ms served for T1

determination (TR = 7.2 s, measuring time = 50 min).
Data acquisition for T1 mapping employed a Look-Locker type IR sequence [24,

55]. An initial inversion module consisting of an adiabatic, non-selective inversion
pulse and a spoiler gradient is followed by a slice-selective radial FLASH readout.
Spoiling was achieved by utilizing a recently proposed method [40] that relies on
random phases of the RF pulses, whereas conventional RF spoiling in a radial sam-
pling scheme requires a time-costly incorporation of gradients to obtain a constant
gradient moment.

The view order of the continuously acquired radial projections is based on a
constant angular increment of about 68.75◦. This angle increment represents the
supplementary angle of the widely used Golden Angle of about 111.25◦ [26] and
achieves the same k-space coverage with reversed direction of rotation due to the
central symmetry of the resulting patterns. However, the smaller angle increment
was shown to result in a slightly superior spoiling efficiency when combined with
random RF pulse phases [40]. Experimental details for acquisitions of the human
brain and liver are summarized in table 5.1.

At this stage, model-based reconstructions were implemented on a single graph-
ics processing unit (GeForce GTX TITAN, NVIDIA, Santa Clara, CA) using the
MATLAB Parallel Computing Toolbox (R2015b, The MathWorks, Inc., Natick, Mas-

48



5.2 methods

Brain Abdomen

FoV / mm2 192× 192 192× 192 320× 320
Image matrix size 256× 256 384× 384 320× 320
In-plane resolution / mm2 0.75× 0.75 0.5× 0.5 1.0× 1.0
Section thickness / mm 4 4 5
TR / ms 2.99 3.35 2.40
Bandwidth / Hz pixel−1 1085 685 1420
Nominal flip angle / ◦ 4 4 4
Total number of projections 1491 1491 1491
Total acquisition time / s 4.5 5.0 3.6

Table 5.1: Acquisition parameters for model-based T1 mapping.

sachusetts), and performed offline after data acquisitions. Reconstruction times
ranged from minutes to hours, depending on whether data size allowed a compu-
tation entirely on the GPU device.

To allow for a critical analysis of image quality, all maps were obtained with-
out masking/thresholding of low-intensity pixels as well as without any spatial
filtering.

5.2.5 Numerical Simulation

A numerical phantom was designed to investigate the robustness of the reconstruc-
tion algorithm with respect to undersampling and noise. It consisted of 3 circular
tubes in a circular surrounding, where all compartments shared the same proton
density, but differed in T1 relaxation time from 0.4 to 0.8, 1 and 3 s (see fig. 5.2). This
simple geometry allowed for an analytic calculation of the Fourier transform func-
tion at arbitrary time points. Sampling in k-space was therefore mimicked by sim-
ply evaluating the Fourier transform function at points given by the radial k-space
trajectory; a simulation strategy that preserves truncation effects such as ringing.
The magnetization time course in each compartment was simulated to follow the
ideal signal as given by the model function. The simulated flip angle was set to
3.2◦ for the entire FoV. Image matrix size, TR and the total number of projections
were chosen identical to the brain protocol (table 5.1, first column). Complex white
Gaussian noise with a standard deviation corresponding to about 2 % of the entire
signal intensity in k-space was added to the raw data. The view-order scheme was
identical to the implementation on the scanner using a constant angular displace-
ment of 68.75◦ from projection to projection. To determine the maximal number
of projections that can be binned to one time point without mitigating quantita-
tive accuracy, the numbers for the projection per frames were chosen to follow
the Fibonacci series as these integers lead to a close-to-uniform distribution in the
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context of Golden Angle sampling [26]. Numerical simulations were performed
without parallel imaging simulating only one homogeneous receive coil.

5.2.6 Preprocessing

To correct for deviations from the intended k-space sampling trajectory due to im-
perfections in the gradient system, a gradient delay correction was applied prior
to gridding. This correction is an extension of the adaptive gradient-delay compen-
sation presented in [60]. It estimates and corrects for parallel shifts with respect to
the realized radial traversal of k-space.

The proposed reconstruction method uses information from multiple coil ele-
ments as present in coil arrays for parallel imaging. However, due to the iterative
approach in this method, a high number of coils leads to a tremendous increase
in memory and computation time. Therefore, the same software channel compres-
sion technique [56] was performed as already successfully applied in our real-time
applications [6, 9, 12]. It reduces the amount of raw data by introducing a smaller
number of virtual channels which are obtained by a principle component analysis.
In this study the number of virtual channels was fixed to 8.

5.2.7 Determination of Coil Sensitivity Profiles

The proposed model-based reconstruction requires knowledge of the coil sensitiv-
ity profiles because they are an explicit part of the signal model but not treated
as unknowns. Their determination is a relatively simple task, since they can be
assumed to be constant during the entire relaxation process and – in principle –
the full data set can be used for estimation. Coil profiles are determined by the
nonlinear inversion (NLINV) method [6] in the same fashion as already successfully
applied in the context of fast T1 mapping [25]. Of course, even with known coil sen-
sitivities the reconstruction problem remains highly nonlinear due to the inherent
nonlinearity of the IR signal model.

5.3 results

5.3.1 Validation

The effect of binning was investigated to determine the largest possible number of
projections per frame. The results for a numerical phantom are shown in fig. 5.1
depicting T1 as a function of the number of radial projections per frame (i.e., bin
size) together with the respective relative error for each compartment. Quantitative
evaluation was performed on T1 maps after 14 Gauss-Newton steps. Accuracy
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Figure 5.1: Model-based T1 mapping of simulated data. (a) Mean T1 and SD per ROI

as a function of number of projections per frame and (b) corresponding relative error
after 14 Gauss-Newton iterations. All reconstructions were performed using the same
raw data. Accuracy increases monotonically with decreasing bin size for all three T1
values and deviations are less than 1 % for all T1 values for bin sizes smaller or equal
to 34 projections per frame.
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increases monotonically with decreasing bin size for all three T1 values. It turned
out that deviations were less than 1 % for all T1 values for bin sizes smaller or equal
to 34 projections per frame. Therefore, a fixed bin size of 21 projections per frame
was chosen for all subsequent reconstructions, which represent temporal footprints
of 21 × TR (= 50, 63, and 70 ms, respectively) per frame.

Figure 5.2 addresses the general convergence of the model-based IRGNM. The
three iteratively estimated parameter maps are shown together with the corre-
sponding physical maps for each Gauss-Newton step. With increasing number
of iterations the regularization strength is decreased, while parameter maps be-
come sharper before finally noise starts to build up, most prominent in R1 and
T1 maps. Like in most other regularization-based methods, no attempt has been
made to determine the optimal strength of regularization automatically. Instead,
the corresponding number of Gauss-Newton steps was found heuristically.

Figure 5.3a shows the reconstructed physical maps of a T1 phantom after 11
Gauss-Newton steps. The flip angle map is a spatially smooth distribution with
average values markedly below the nominal angle of 4◦ due to the influence of
the slice profile. The quantitative evaluation in fig. 5.3b demonstrates that 11 itera-
tions lead to reliable values for all T1 values between 0.3 s to 1.5 s. Figure 5.3c con-
firms excellent accuracy and precision of the proposed reconstruction algorithm
by a comparison with a long-TR Cartesian IR-FSE sequence with multiple inversion
times.

5.3.2 In Vivo T1 Mapping

Figure 5.4a shows maps of T1, proton density and flip angle for a transverse section
of the brain of a normal subject. Corresponding maps of two abdominal sections
covering liver and kidney are depicted in fig. 5.4b. Figure 5.5 demonstrates the abil-
ity to obtain T1 maps of the brain at even higher spatial resolution of 0.5× 0.5 mm2

in plane and 4 mm section thickness. Table 5.2 summarizes quantitative T1 values
obtained for various tissues. The values are in general agreement with literature
data obtained at 3 T. However, for frontal gray matter the proposed method yields
about 300 ms longer T1 values than previous reports.
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Figure 5.2: (Left) Parameter maps and (right) derived physical quantities T1 ,
spin density M0 , and flip angle α during iterative estimation (top to bottom).
For improved visibility, the support of the circular object is marked (red circle). The
regularization strength is halved in every Gauss-Newton step. With increasing number
of iterations sharpness improves before noise amplifies (R1 and T1 maps).
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Figure 5.3: Model-based T1 mapping of a phantom with 6 compartments covering

T1 values from 0.3 s to 1.5 s. (a) Maps of physical parameters after 11 Gauss-Newton
steps, (b) the convergence behavior of the mean T1 per ROI, and (c) a comparison of
the T1 value for the preferred iteration vs a multi-IR FSE measurement (gold standard).
For improved visibility, the support of the circular object is marked (red circle).

Tissue T1
1 / ms Literature / ms

Frontal WM2 788± 45 699–985 [69–72]
Occipital WM 801± 44 758–940 [69, 72, 73]
Frontal GM3 1554± 119 1209–1322 [69, 73]
Occipital WM 1369± 112 1283± 37 [73]

Liver 804± 83 767–812 [74, 75]
Kidney Cortex 1394± 177 1142–1375 [75, 76]

Table 5.2: T1 relaxation times (single subject) in brain (0.75× 0.75× 4 mm3
reso-

lution), liver and kidney (1.0× 1.0× 4 mm3).
1Mean and SD per ROI, 2WM = white matter, 3GM = gray matter.
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Figure 5.4: Model-based T1 mapping of (a) a transverse section of the hu-
man brain (0.75× 0.75× 4 mm3, 11 iterations) and (b) two abdominal sections

(1.0× 1.0× 5 mm3, 11 iterations). Each reconstruction used 71 frames × 21 projec-
tions per frame = 1491 radial projections. For ROI analyses see table 5.2.
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Figure 5.5: Model-based T1 mapping of (upper left) a sagittal, (upper right)
coronal and (lower left) transversal section of the human brain at

0.5× 0.5× 4 mm3
resolution (12 iterations). A 3-fold magnified view of the

transversal section is shown in the lower right. Each reconstruction used 71 frames
× 21 projections per frame = 1491 radial projections.
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5.4 discussion

The proposed method describes the reconstruction of T1, spin-density, and flip-
angle maps from a radial IR-FLASH experiment as a nonlinear inverse problem. It is
demonstrated that the IRGNM is an appropriate solver for this problem as it not only
allows for the incorporation of prior knowledge in form of different regularization
terms, but also provides a solution at moderate computational cost as all occurring
operators can be parallelized to a large degree for the effective use of graphical
processing units.

The excellent temporal fidelity is an inherent advantage of a model-based recon-
struction. It is unnecessary to bin data measured at different time points to single
frames because no images are reconstructed directly. However, reconstruction can
considerably be accelerated when this paradigm is weakened, as long as the tem-
poral grid is fine enough to capture changes on the relevant time scales. Here, a
maximum temporal grid size of 70 ms was determined by simulation and allowed
a considerable speed-up in reconstruction time.

The presented method involves two crucial considerations. The first one is the
choice of a specific regularization for each parameter map. The low spatial fre-
quency assumption as a strong preconditioner only holds for the R′1 map. More-
over, the chosen regularization term for the R1 map favors – for high regularization
strengths – Laplacian solutions with smooth R1 distributions [77] and does not pe-
nalize large R1 values inappropriately as for the case of L2 penalization on the R1

map directly. The second point is the suppression of noise outside the radial sam-
pling disc, which is implemented with a penalty on respective spatial frequencies.
This effectively suppresses checkerboard-like artifacts that would otherwise spoil
the resulting T1 and spin-density maps.

Model-based reconstruction approaches are known to be sensitive to model mis-
matches, i.e., voxels with signal intensities that are in conflict with the underlying
model [20, 32]. Chemical shift effects, imperfect spoiling, motion, or in-flow phe-
nomena are not modeled by the Look-Locker signal and are a potential source of
error. Unlike conventional reconstruction of image series, model-based reconstruc-
tions are prone to single-pixel mismatches, because optimization becomes a non-
local problem. This kind of model violation was a prominent phenomenon in the
transverse brain section cutting through the ventricles. The continuous in-flow of
unsaturated cerebrospinal fluid into the slice cannot be characterized by a mono-
exponential recovery curve and hence arbitrary T1 values can be produced. The
restriction of the algorithm to a physical range of T1 values ensures that the mag-
nitude of the gradient values remains limited and the entire image is optimized
instead of single pixels only [32]. However, the restriction to boundary values may
temporarily lead to plateau-like regions in the parameter maps in which the con-
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vergence behavior of the IRGNM is altered. In practice, clearance of these artifacts
can be achieved by choosing a sufficiently large number of iterations.

The actual choice of a suitable number of iterations depends on various sequence-
related factors such as SNR, flip angle, spatial resolution etc. Also the range of T1

values and the chosen regularization for the R1 parameter map (determined by
the balancing parameter β in eq. (5.8)) play a role. In fig. 5.3b, for instance, a T1-
dependent convergence speed is noticeable, with slowest convergence rate for the
shortest T1 values (and corresponding highest R1) that are affected most by the
remaining L2 regularization in the convolution kernel K (eq. (5.8)). This empirical
determination of the number of Gauss-Newton steps is closely connected to non-
iterative regularization methods where the magnitude of respective regularization
parameters is often found empirically as no common techniques for automatic de-
termination have been established so far.

Tran-Gia et al. recently presented a model-based approach to T1 mapping [21]
that also relies on a radial IR-FLASH experiment. They proposed an iterative algo-
rithm that alternates between image space and k-space domain and tries to fill
missing k-space points by performing pixel-wise model fits or following a dictio-
nary matching approach similar to [18]. However, their achieved spatial resolution
of 1.6× 1.6× 4.0 mm3 as demonstrated in a human brain at a total acquisition time
of 6 s is relatively low compared to our 0.75× 0.75× 4.0 mm3 in 4.5 s. This has sev-
eral reasons. The first one may lie in the fact that the present work used a threefold
shorter TR of about 3 ms, which results in more projections per time and conse-
quently more spatial information. The second reason lies in the reduced degrees
of freedom of the underlying reconstruction problem, even when the same model
(i.e., three independent parameter maps) is employed. In the proposed method the
strong regularization of the R′1 map reduces the degrees of freedom for this par-
ticular map because it can be described by a few low-frequency components only.
The third reason is due to the incorporation of multi-coil information. Instead of
simply combining individual coil signals to a sign-dependent sum of squares sig-
nal, the present method takes full advantage of parallel imaging by modelling the
full signal formation which includes sensitivity maps from all individual channels.

The combination of a fast radial MRI sequence with a reconstruction algorithm,
which optimally exploits the redundancy of a known signal model, bears the poten-
tial of pushing the limits for spatial resolution even further. When a slightly lower
SNR is acceptable, the method achieves an in-plane resolution of up to 0.5 mm. In
addition, the efficient use of raw data renders the proposed method a promising
technique for dynamic T1 mapping, where the temporal resolution of sequential
maps is the limiting factor. However, further investigations are necessary to extend
the single IR-FLASH acquisition towards continuous mapping.

In this work, the determination of coil sensitivity profiles was performed in a
preparatory step by NLINV. However, as both the proposed model-based recon-
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struction and the NLINV reconstruction rely on the IRGNM, a fusion of the two
techniques is the next logical step. The joint estimation of parameter maps and
coil profiles might lead to improved reconstruction results because prior knowl-
edge in form of the model helps to determine the coil profiles more accurately
and makes most efficient use of the available data. Such a combination might also
reduce residual intensity inhomogeneities in the M0 maps (a well known artifact
in parallel imaging), which are best visible in abdominal scans due to the presence
of subcutaneous fat in close proximity to some receiver coil elements.

At this stage, the main limitation is the need for offline reconstruction and –
depending on the image matrix – the long computational time of up to two hours.
Because the latter problem mainly results from GPU-sided memory restrictions,
this could be overcome by a memory-efficient CUDA/C++ implementation of the
proposed algorithm in combination with a compression of the raw data in the
time domain. Initial studies using a compression by singular value decomposition
similar to [78] are promising. With the availability of online reconstructions the
method warrants extensive clinical trials.

5.5 appendix

5.5.1 Optimization

Splitting the general Tikhonov regularization matrix in eq. (5.6) into its parameter-
specific terms yields

f (x) =

∥∥∥∥∥∥∥∥∥∥
F(x)− y

√
αmL1(MSS −Mini

SS )√
αmL2(R1 − Rini

1 )
√

αmL3(R̂′1 −
ˆR′,ini
1 )

∥∥∥∥∥∥∥∥∥∥

2

2

, (5.7)

where Mini
SS = 0, Rini

1 =1 s−1, and L3
ˆR′,ini
1 = −1/TR ln cos 2◦ are the three a priori

estimates of the parameter maps. L1, L2 and L3 are regularization matrices repre-
senting parameter-specific regularization terms, while R̂′1 = L−1

3 R′1 represents the
transformed “readout” relaxation rate. Matrix L1 is chosen to be the identity ma-
trix (L1 = 1) and thus yields L2 regularization as conventionally used for noise
suppression in the context of inverse problems.

Matrix L2 is a “stacked” operator [79] consisting of the unity matrix and a dis-
crete approximation of the first-order spatial derivative operator. However, the ac-
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tual implementation only requires the operator representing LH
2 L2, which can be

computed efficiently by pixel-wise convolution with the 9-point-stencil

K(β) =
1
N

β

1 1 1
1 −8 1
1 1 1

+ (1− β)

0 0 0
0 −16 0
0 0 0

 . (5.8)

The normalization constant N ensures that the convolution preserves the rela-
tive magnitude of the map (∑ |Kij| = 1) and the parameter β allows balancing the
effect of L2 regularization and first-order derivate smoothing. The first addend rep-
resents a discrete version of the Laplace operator (as the derivate of the first-order
spatial derivative operator) and the second addend represents pure L2 regulariza-
tion. L2 regularization gives strong preference to solutions with smaller L2 norms,
which translate into parameter maps with smaller R1 values. This was a problem
particularly for pixels with short T1 (and corresponding high R1) which could be al-
leviated successfully by a suitable tradeoff between these two regularization terms.
All reconstructions in this work employed a value of β = 0.9.

The preconditioning matrix L3 = FW is a product of a Fourier transform F and
a diagonal weighting matrix W which acts on the transformed variable R̂′1 causing
a Fourier weighting of the form (1 + 880|k|2)−32 and corresponds to the Sobolev
norm in the original space as presented in [31] to ensure a proper smoothness
of the flip angle map. The scaling constant of 880 and the exponent of −32 were
found heuristically and match the smoothness of the body coil used for excitation.

In each of the Gauss-Newton iterations the objective function in eq. (5.6) is lin-
earized by a first order Taylor series around the current estimate xm. The new
iterate is then given by xm+1 = xm + pm where the update pm is found by solving
the resulting linear subproblem

(DFHDF + αmLH L)pm = DFH(y− F(xm))− αmLH L(xm − xini) , (5.9)

where DF denotes the Fréchet derivate of the forward operator F and DFH its cor-
responding adjoint. Each of the subproblems in eq. (5.9) is of the form Ax = b and
solved by the conjugate gradient method with the stopping criterion
‖Axapprox − b‖/‖b‖ < 0.01. The IRGNM requires a starting point, which is chosen

to coincide with the a priori estimate xini = (Mini
SS , Rini

1 , ˆR′,ini
1 )T.

The numerical implementation of forward operator, Fréchet derivate and its ad-
joint follows Uecker and coworkers [31, 80]: Instead of performing a computation-
ally expensive explicit gridding operation, this operation is replaced by a convolu-
tion with a point-spread function [∗]PSF reflecting a particular sampling trajectory
[81]. This convolution is implemented without approximations by two fast Fourier
transform operations on a twofold oversampled grid

[∗]PSF = F−1T~k,2×FoVF , (5.10)
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where T~k,2×FoV is a diagonal point-spread function (PSF) operator given by simply
gridding “ones” on the sampled trajectory to a Cartesian grid. Hence, this oper-
ator can be computed in a preparatory step ahead of the actual reconstruction.
Although each frame needs a different operator T~k,2×FoV due to the unique reorder-
ing given by the Golden Angle scheme, all radial sampling patterns have in com-
mon that the edges of a Cartesian k-space (outside the radial sampling disc) are
never sampled. When iteratively solving the nonlinear problem, these regions off
the circular sampling disc may be dominated by strongly amplified noise, which
deteriorates the T1 map by checkerboard-like artifacts. A similar phenomenon has
been reported for non-Cartesian SENSE reconstructions, where a k-space filter is
introduced as a final step in image reconstruction [30] to suppress noisy data from
k-space regions where calculations are highly ill-conditioned. Here, this idea is
adapted by modifying the aforementioned operator T~k,2×FoV in such a way that
spatial frequencies off the radial sampling disc are penalized:

T̂~k,2×FoV = T~k,2×FoV + αW(|k|) , (5.11)

where W(|k|) = 1
2 −

1
π tan−1(β kc−|k|

kc
) is the inverse k-space filter with cut-off fre-

quency kc =
1
2 kmax and β = 100 as used in [30], and α the mean value of T~k,2×FoV.

This modification effectively suppresses the undesired artifacts and comes at no
additional cost in the reconstruction algorithm.

5.5.2 Scaling

In this implementation, the raw data vector y was normalized with respect to its
squared L2 norm summed over the available coils (∑j |yj|2 = 105) and the PSF

operator T̂~k,2×FoV was normalized with respect to its sum of squared magnitude
values in time domain (∑t |T̂t,k=0|2 = 1). Normalization of the vector comprising
all coil sensitivity profiles C = (C1, C2, . . . , CN)

T was performed similarly with
respect to the pixel of highest absolute sensitivity (∑j maxx,y |Cj(x, y)|2 = 10−3).
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6
D Y N A M I C T 1 M A P P I N G I N F I R S T- PA S S D C E - P E R F U S I O N
S T U D I E S

Design and setup of the experiment presented in this chapter was done in close col-
laboration with Jost Michael Kollmeier. Jost joined our group as a master student
and performed his master thesis under my supervision. His thesis is entitled “Per-
fusion Phantom Studies using Real-Time Magnetic Resonance Imaging” [82] and
deals with the application of existing real-time MR protocols to monitor contrast
agent induced signal changes.

6.1 introduction

In dynamic contrast-enhanced (DCE) MRI, a high-concentration contrast agent (CA)
is rapidly injected into the cardiovascular system. The resulting CA bolus serves
as a tracer and travels with the blood stream to the tissue of interest where it
induces changes in the MR signal intensity (first pass). These intensity changes
are spatially resolved by fast imaging techniques and - in a post-processing step
- converted into changes in contrast agent concentration. Knowledge about the
concentration time curve in the capillary bed, the so-called arterial input function
(AIF), and the application of kinetic analyses yield parametric maps reflecting not
only information about the anatomy but also function. Therefore, DCE MRI has
become a valuable tool in many clinical applications including evaluation of kidney,
heart, breast, prostate, and brain (for current reviews see [83–87]).

Despite the simplicity of the underlying principle, quantitative DCE imaging is
a technically challenging method in which both, the generation of data suitable
for quantitative measurements of CA kinetics and the extraction of quantitative pa-
rameters from fitting of pharmacokinetic models to this data, are prone to infringe
of requirements and are still subject of active research. A suitable data generation
relies on an acquisition protocol that addresses several (often conflicting) require-
ments, among them (i) sensitivity to CA and access to CA concentration, (ii) high
temporal resolution, and (iii) high spatial resolution.

One of the requirements that is most difficult to achieve is the access to CA

concentration. As long as a linear relationship between signal intensity and CA

concentration is assumed [88–90], an absolute determination of concentration is
not necessary. However, at higher CA concentration this assumption often breaks as
saturation introduces nonlinear effects. In this case, the measured signal intensities
have to be converted to CA concentrations, a transformation prone to errors. An
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alternative acquisition strategy is to acquire quantitative T1 maps at every time
point in the DCE experiment. Because the main drawback of this method is the
tremendous decrease in sampling speed when combined with conventional T1

mapping techniques, an echo planar imaging (EPI)-based readout [91] is normally
employed. This imaging technique allows for acquisition times below 3 s, but -
similar to many other EPI-based methods, a pronounced susceptibility to artifacts
such as ghosting, signal distortion, and loss in regions with short T∗2 .

Here, a new model-based T1 mapping technique is employed that relies on ra-
dial IR FLASH readout in combination with the advanced reconstruction algorithm
developed in chapter 5. Similar short acquisition times as for EPI-based methods
can be obtained due to the efficient use of raw data. As no gold standard technique
has established so far, a first step in evaluating potential application of this new
technique has to be done in vitro with availability of ground truth. The availability
of ground truth also implies that the mimicked perfusion processes should be as
simple as possible, i.e., complex multi-compartment situations should be avoided.

In this study, we demonstrate the general compliance of dynamic model-based
T1 mapping with first-pass perfusion experiments. In particular, a commercially
available two-compartment perfusion phantom is adapted and utilized to mimic
perfusion similar to in vivo situations. A gadolinium based CA is used as a tracer
and concentration time curves are obtained by sequential model-based reconstruc-
tion of T1 maps. The simple and most common parametric Tofts model (TM) [92] is
used for quantitative analysis.

6.2 methods

6.2.1 Perfusion Phantom and Experimental Setup

Simulation of in vitro blood flow and tracer kinetics is performed by a commer-
cially available multimodality DCE perfusion phantom (Shelly Industrial Automa-
tion Inc., Toronto, Canada) originally developed for the use with CT [93–95] but
meanwhile also used in the context of MRI [96]. This phantom is shipped together
with a peristaltic pump (Masterflex L/S with pump head model 77250-62, Cole-
Parmer, Illinois, USA), two turbine flow meters (FLR 1000, Omega Engineering,
Connecticut, USA), two needle valves, an injection port, and a diverter valve (see
fig. 6.1). For rapid injection of a contrast medium a programmable power injec-
tor with microprocessor control of flow rate, volume, and timing (Angiomat 6000,
Liebel-Flarsheim, Cincinnati, USA) was provided by the local university hospital.
The vendor-supplied plastic bed for the tubing was replaced by a water environ-
ment consisting of a customized water-filled PET bottle. The setup of these com-
ponents is outlined schematically in fig. 6.2. The entire circulation system is split
into two parts: Pump, flow meter, valves, and power injector contain ferromagnetic
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materials and must be operated from outside the RF chamber, while the perfusion
phantom together with the water bed is placed inside the scanner’s bore. For a
full DCE walk-through, demineralized water from the container is pumped into the
upstream connection of the injection port, gets mixed with the CA provided by the
power injector, and finally enters as a bolus of CA the RF chamber. To ensure a suffi-
cient polarization inside the static magnetic field, the bolus travels a loop of about
1 m tubing length inside the bore of the scanner before passing the imaging slice.
From here, the tubing leads to the phantom and back, with both phantom outputs
passing through the slice again. Flow meter and valves outside the RF chamber
allow to control the ratio of flow in the two phantom outputs. Finally, the position
of the diverter valve determines whether the system is run in open or closed cir-
cuit mode (open circuit mode is necessary as soon as CA has entered the system
to avoid recirculation effects). Power injector and pump start/stop are operated
manually at this stage.

The actual tissue response curves are generated inside the cylinder (fig. 6.1b,c):
CA enters the phantom via the distribution tube and distributes through its perfo-
rated surface into the cylinder compartment. This mimics blood supply and perfu-
sion of tissue with an arterial input (phantom input), venous output (distribution
tube output) and the tissue of interest (cylinder output).

6.2.2 Pharmacokinetic Model

When quantifying CA uptake in tissue, it is import to choose the correct pharma-
cokinetic model that accurately describes the underlying perfusion process. This is
normally achieved by modeling the CA diffusion processes in the tissue of interest
by compartmental models. Complex blood-tissue exchanges of CA are described
as a collection of interacting components, called compartments. Two assumptions
are therefore enough to completely define the CA kinetics [97]: All compartments
are assumed to be homogeneous (i.e., well mixed) and the CA fluxes between them
are related to their corresponding concentrations. Rate equations are stated by ex-
ploiting the law of tracer mass conservation and finally solved to yield the desired
kinetics.

Figure 6.3 shows a schematic illustration of CA transfer in vivo and in the
phantom. For the in vivo situation, CA is assumed to diffuse to and from the
extravascular extracellular space (EES) whereas the extravascular intracellular space
(EIS) does not participate in the exchange processes. Hence, in the respective two-
compartment model the tissue is modelled as one single compartment, while the
concentration in the intravascular space (IVS) is considered to be the input to the
system. The transfer rates involved in this model are commonly labeled Ktrans and
Ktrans/ve [98], where ve is the volume of EES per unit volume of tissue, i.e., the frac-
tional volume. For quantification, two concentrations are sampled over time: The
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Figure 6.1: Photographs of all parts in the first-pass perfusion experiment.
Setup and function are described in section 6.2.1. (a) exchange cylinder with volume
reduction modules, (b) exchange cylinder with stand, (c) spiraling, perforated distri-
bution tube, (d) tubing inside PET water bottle, (e) 18-channel body array coil, (f) torso
shell for CT measurements, (g) power head and keyboard console of Power Injector, (h)
injection port, (i) needle valves and turbine flow meters, (j) peristaltic pump, (k) 10 L
water and waste containers, (l) 3-way ball diverter.
Photos: Irene Böttcher-Gajewski, MPI-BPC 2016
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Figure 6.2: Schematic setup of the in vitro first-pass perfusion experiment. The
entire circulation system is split into two parts. Pump, flow meter, valves, and power
injector are operated from the control room, the perfusion phantom and the water
environment are placed in the bore of the MR scanner. See fig. 6.1 for details on com-
ponents. As soon as CA has entered the system, the diverter valve (l) must be flipped
from “water” to “waste” to avoid recirculation.
(Scheme created in collaboration with Jost Kollmeier)
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tracer concentration in the IVS or plasma compartment Cp and the concentration
in the perfused voxel of tissue Ct. The latter quantity is either interpreted as the
concentration in the EES (Ct = veCe) by neglecting the contribution of the IVS or
as the weighted concentration including the IVS (Ct = veCe + vpCp). The former
interpretation is known as TM [92] and valid for example in weakly vascularized
tissue, whereas the latter is commonly called extended Tofts model (ETM) [99] and
includes the fractional plasma volume vp. Following Khalifa et al. [97], these two
pharmacokinetic models are considered the best-established and most straightfor-
ward models for interpreting T1-weighted DCE-MR images.

The CA transfer process in the phantom differs. Here, no backflow into the dis-
tribution tube is possible. An additional outflow with rate Ktrans enables the CA

to leave the cylinder and provides the possibility to measure the corresponding
tracer concentration without contribution from the emulated plasma compartment.
Changes in the fractional volume of the EES can be simulated by scaling of the
obtained response curves accordingly and intravascular contributions can be sim-
ulated by mixing the measured signal Cp with the obtained response before fitting.
The setup is therefore flexible and allows simulation of transfer processes as de-
scribed by the TM or ETM with controllable pharmacokinetic parameters Ktrans, ve,
and vp.

Although the compartmental models for tissue and phantom differ in structure,
the same mathematical solution is found. For the TM, the tissue concentration is
given according to [98] by

Ct(t) = Ktrans

∫ t

0
Cp(t′)e−(Ktrans/ve)(t−t′) dt′ , (6.1)

which represents a convolution of the AIF with a tissue impulse response function.
For the phantom, ve can be set to 1 when Ct(t) is the tracer concentration in the
cylinder (compartment e) is measured and eq. (6.1) can then be written as

Ct(t) = KtransCp(t) ∗ e−Ktranst , (6.2)

where (∗) denotes temporal convolution. A temporal shift between Ct(t) and Cp(t)
- as automatically introduced when measuring at physically different positions -
can be accounted for by introducing a shift constant t0 in the convolution kernel:

Ct(t) = KtransCp(t) ∗ e−Ktrans(t−t0) (6.3)

6.2.3 Contrast Agent

Gadobutrol was used as a CA (“Gadovist” 1.0 mol mL−1, Schering AG, Germany)
and diluted to 0.01 mol mL−1 with purified water before injection. Longitudinal
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Figure 6.3: Schematic illustration of the assumed contrast agent transfer in

the tissue (top row) and in the phantom (bottom row). Tissue: The CA diffuses
from the intravascular space (IVS) to the extravascular extracellular space (EES) with
rate Ktrans and returns with kep. The extravascular intracellular space (EIS) is assumed
to be free of CA. Phantom: The backflow from compartment e to p is omitted and
replaced by an additional outflow rate equal to Ktrans. The rates I1, I2, and Ktrans can
be controlled by the overall flow rate and the outflow ratio.
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and transverse relaxivities were determined via a dilution series at 3 T (for details
see [82]) to r1 = (4.6± 0.1)L mmol−1 s−1 and r2 = (5.4± 0.1)L mmol−1 s−1. The
concentration dependence of R1 is assumed to be linear [100, 101] and concentra-
tion changes are related to time-variant relaxation rates by

R1(t) = R10 + r1C(t) , (6.4)

where R10 denotes the native relaxation rate as observed in absence of CA. This lin-
ear relationship implicitly assumes that the exchange of water molecules between
tissue compartments is infinitely fast [102].

6.2.4 Protocols and Reconstruction

Imaging was performed at 3 T field strength using an MRI system with 80 mTm−1

gradients (Magnetom Prisma, Siemens Healthcare, Erlangen, Germany) and the 18-
channel thorax coil in combination with suitable segments of the 32-channel spine
coil. To avoid any in-flow effects when quantifying T1, the first-pass perfusion
experiment was performed under pulsed flow. For this purpose the OFF-time of
the pump was fixed to 10 s and the ON-time to 10 s, or 5 s respectively, resulting in
duty cycle values of 50 %, or 33 %. T1 mapping was performed by a Locker-Locker
type acquisition employing an IR radial FLASH sequence in combination with a
newly developed model-based reconstruction technique (chapter 5). To enable T1

mapping synchronous to the pump cycle periods of 20 s (or 15 s, respectively),
the original sequence was modified to include an arbitrary dead-time before each
inversion pulse. This dead-time gives control over the data acquisition periods and
allows - if chosen sufficiently long - full recovery of magnetization prior to each
inversion pulse. After manually synchronizing start of pump and data acquisition,
CA was injected with completion of the first ON/OFF pump cycle. The outflow
ratio of the phantom was controlled via the flow meters and set to 1/2, resulting
in absolute flow values of 300 mL min−1 in the input tube and 150 mL min−1 in
both cylinder output and distribution tube output. Table 6.1 summarizes further
measurement and reconstruction parameters of the perfusion experiment.

Expected T1 values of lower than 200 ms are challenging to reconstruct accurately
for two reasons: First, the corresponding high relaxation rates lead to fast signal
changes on a short time scale. This precludes to usage of large binning sizes and
consequently makes high demands on memory consumption. Second, a Tikhonov
type regularization on a parameter map containing these high rates most likely
leads to an underestimation of the rates, as higher rates are quadratically penalized.
To cope with these challenges the original reconstruction algorithm (chapter 5) was
modified. In this study, the number of projections per frame (binning size) was re-
duced to 13 which results in a temporal grid of 32.5 ms. The higher demands in
memory were compensated by reducing the number of principle components to 4
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Parameter Value

Flow and Injection
Pump flow rate 300 mL min−1

Pump duty cycle 50 %, 33 %
Outflow ratio Fcyl/Fpump 1/2

Injection concentration 10 mmol L−1

Injection bolus volume1 9.8 mL, 9.9 mL
Injection duration 10 s

Sequence
FoV 320× 320 mm2

Matrix size 320× 320
In-plane resolution 1.0 mm
Slice thickness 5 mm
TR 2.5 ms
TE 1.62 ms
Bandwidth 1420 Hz/pixel
Flip angle 4◦

Angular displacement 68.75◦ (small Golden Angle)
Acquisition time
per T1 map

4 s

Dead-time 16 s, 11 s
Total number of T1 maps 32, 64

Reconstruction
Virtual channels 4
Number of projections
used per T1 map

13× 92 = 1196

Binning size 13 projections
Gauss-Newton iterations 11

Table 6.1: Injection, sequence, and reconstruction protocols used in the per-
fusion experiment. When two values specified, the latter value refers to the second
experiment.
1Nominal injection bolus volume was set to 10 mL, actual volume deviates depending
on achieved flow.
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and restricting the total number of projections per T1 map to 13× 92 = 1196. The
regularization term of the R1 map within the reconstruction algorithm was modi-
fied by shifting the weight in the “stacked” operator away from pure L2 regulariza-
tion towards the part that represents the Laplacian operator. An adaptation of the
corresponding 9-point-stencil K(α) by heuristically choosing a value of α = 0.99.

All T1 maps were reconstructed individually using the same starting values as
in the original algorithm (see chapter 5). This waiver of temporal regularization ex-
plicitly precludes any “crosstalk” effects or temporal blurring between individual
T1 maps.

6.2.5 Quantitative Analysis

Quantitative analysis was performed by ROI averaging of the obtained R1 values,
baseline subtraction, and conversion to concentration time curves using eq. (6.4).
The AIF was obtained from concentration time curves as measured in either the
input tube or the distribution tube output and the cylinder output was treated as
the tissue response Ct. The quantities Ktrans and t0 were then determined by a two-
parameter nonlinear least-squares fit of eq. (6.3) to the measured data. Convolution
of the AIF with the tissue response function was formulated as a matrix equation in
which the convolution matrix elements were calculated according to [103, eq. 14].

The obtained quantity Ktrans is related to the absolute volume of the cylinder
compartment by

Vcyl =
Fcyl

Ktrans
=

FpumpR
Ktrans

, (6.5)

where Fcyl and Fpump are the flow rate in the cylinder compartment and the overall
flow rate given by the pump, and R = Fcyl/Fpump is the outflow ratio.

6.3 results

Figure 6.4 shows T1 maps for 5 exemplary time points out of 64 as obtained after
offline model-based reconstruction of the 5 s sampling experiment. Here and here-
after the denoted time refers to the elapsed time of the kinetic process, which is
stopped when the pump stops. The passage of CA through the input and output
tubes lead to shortening in T1 down to 160 ms. The corresponding tissue response
follows with a delay and recovers slowly to baseline. All maps are artifact-free,
in particular no streak artifacts as known from radial undersampling are visible.
ROI-wise averaging yields R1 as a function of time for all three compartments.

The corresponding time courses are depicted in fig. 6.5 for the 10 s (fig. 6.5a,c)
and 5 s sampling experiment (fig. 6.5b,d). Shaded bounds indicate standard devia-
tions as obtained after ROI averaging. The integrated amount of tracer is calculated
by trapezoidal numerical integration of the concentration time curves and multipli-
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Figure 6.4: T1 maps after model-based reconstruction exemplarily shown for 5
time points. Slice is oriented perpendicular to the tubing (top to bottom: phantom
input, distribution tube output, and cylinder output). Maps were acquired before in-
jection of CA (0 s), at peak in input tube (45 s), at peak in distribution tube (55 s), at
peak in cylinder output (90 s), and at end of wash-out (315 s). All maps are rotated
and cropped for visualization purposes.

cation by the corresponding flow rates. For quantitative analyzes of tracer kinetics
the AIF is either taken from tracer concentrations in the input tube (blue) or in the
distribution tube output (red) and the tissue response is taken from the concentra-
tions measured in the cylinder output (yellow). Fitting of the convolution kernel in
eq. (6.3) to this data yields the time shift constant t0 and the exchange rate Ktrans.
The fitted tissue responses (dashed black) are plotted on top of the measured tissue
responses (AIF from input tube). The 5 s sampling experiment yields larger maxi-
mum R1 rates in the phantom input and distribution tube output and similar tissue
responses when compared to the 10 s sampling experiment. The amount of tracer
integrated over the entire time course and summed over the two outputs matches
the input, however, the true amount of tracer as calculated from injection volume
and concentration is slightly smaller (0.98 mmol and 0.99 mmol, respectively).

Results of the two-parameter fit for both experiments can be found in table 6.2.
Values for the calculated cylinder volumes Vcyl are precise, but inaccurate as they
underestimate the true volume by about 13 % (10 s sampling interval) and 6 % (5 s
sampling interval). Significant differences between taking the AIF from phantom
input or cylinder output can only be found for the time shift constant t0, where the
cylinder output shows a smaller t0 due to smaller tubing length differences (see
setup in section 6.2.1).
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Figure 6.5: Longitudinal relaxation rates and calculated tracer concentra-
tions as a function of time. R1 maps were evaluated ROI-wise (blue: phantom
input, red: distribution tube output, yellow: cylinder output) for the 10 s sampling
experiment (a) and for the 5 s sampling experiment (b). After baseline subtraction,
tracer concentration can be calculated with known relaxivity according to eq. (6.4)
for both sampling rates (c,d). Dashed black lines represent the fitted tissue responses
when taking the AIF from the phantom input tube and assuming the exponential im-
pulse response function in eq. (6.3). Dotted lines indicate integrated amount of tracer
substance assuming constant and known flow.
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AIF t0 [s] Ktrans [min−1] calc. Vcyl [ml] true Vcyl [ml]

Sampling interval 10 s
phantom input 23.4± 0.7 1.05± 0.02 144± 3 165
distribution tube output 12.0± 0.6 1.05± 0.02 143± 3 165

Sampling interval 5 s
phantom input 27.5± 0.5 0.96± 0.01 156± 2 165
distribution tube output 16.9± 0.5 0.97± 0.01 155± 2 165

Table 6.2: Quantitative results of the perfusion experiment. AIF from either phan-
tom input or distribution tube output and tissue response from cylinder output was
fitted by eq. (6.3). Initial values were Kini

trans = 2 min−1, tini
0 = 0 if AIF taken from dis-

tribution tube output and tini
0 = 30 s else. The cylinder volume Vcyl was calculated

according to eq. (6.5).

6.4 discussion

The presented experimental setup allows to produce concentration time curves as
known from first-pass DCE experiments under controlled conditions. The circula-
tion system was integrated into our MR system and can be fully controlled from
outside the RF chamber. Operating the pump in pulsed mode allows to measure
without in-flow effects by virtually “freezing” the CA dynamics. As this option does
not exist for in vivo applications, it is a unique tool for investigating the influence
of flow and temporal resolution on the quantitative results.

Dynamic T1 mapping was used to measure concentration time curves without
taking the detour via conversion of signal intensities into CA concentrations. The
newly developed model-based reconstruction technique (see chapter 5) was able to
reconstruct artifact-free high resolution T1 maps from data acquired in 4 s includ-
ing T1 values as short as 160 ms. However, the necessary small binning size of 13
projections per time point had to be compensated by a decreased number of virtual
channels in comparison to the original work. This limitation may be overcome in
future by a memory efficient implementation of the algorithm in combination with
a smart compression of the raw data along the time direction.

The recovery periods between consecutive T1 maps of at least 11 s were synchro-
nized with the OFF-times of the pump. Of course, dynamic T1 mapping in vivo
requires a significant shortening of this period. An acceleration could be achieved
by replacing the initial inversion pulse with a saturation module similar to [104]
rendering the waiting period superfluous. However, further investigations are re-
quired to assess the reduced SNR and the changes necessary to apply a model-based
reconstruction to this modified preparation strategy.

Data evaluation employed parametric deconvolution of the measured tissue re-
sponse curves with an exponential kernel as given by the TM. The corresponding
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fits described the measured data accurately indicating that the exchange processes
in the hardware perfusion phantom can be described by the corresponding two-
compartment TM. The quantitative analyzes also revealed that the calculated total
amount of injected tracer substance at phantom input matches the output. How-
ever, the true amount – as given by bolus volume and concentration used – is
slightly overestimated. The reason might lie in the fact that an increase in CA con-
centration also leads to an increase in R2 (and consequently R∗2) as the CA also has
a transverse relaxivity. However, the presence of larger R2 values reduces the inver-
sion efficiency of the initial adiabatic pulse due to increased transverse relaxation
during the pulse [105, 106]. This imperfect inversion influences the calculated R1

values because the starting value of the recovery curve is assumed to be the nega-
tive equilibrium magnetization in the signal model. A corresponding underestima-
tion of its magnitude results in an overestimation of the calculated R1 values and
tracer concentrations, consequently.

The presented data further shows that a sampling interval of 10 s was too long
to correctly reflect the rapid concentration changes in the AIF (as produced by
the chosen protocol). However, a sampling interval of 5 s also leads to a slight
underestimation of the measured cylinder volume, which might be explained by
the fact, that the estimated value refers to a volume of a compartment that is
at any time well-mixed. Although the cylindrical shaped exchange compartment
and the spiral alignment of the distribution tube favors mixing, this assumption
might break, especially when rapid changes in CA concentration take place. As a
consequence, the effective compartment volume could be smaller.

The experimental setup offers a huge variety of simulation scenarios. The spe-
cific compilation of injection, MR sequence, and reconstruction protocol presented
here, is only an exemplary choice demonstrating general feasibility. The same setup
is for instance also used to investigate the abilities of already established real-time
MRI sequences in the context of quantitative DCE perfusion [82]. It might become
a valuable tool for further investigations of sequential T1 mapping techniques, T1

mapping approaches under in-flow conditions, and reconstruction approaches at-
tempting to directly model the obtained tissue responses. Full potential is probably
released with protocols as close as possible to a specific clinical application and sim-
ulated pharmacokinetic parameter matching physiological conditions as observed
in vivo.
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7
S U M M A RY

In this thesis, four different aspects of quantitative MRI techniques are addressed:
Data acquisition, data reconstruction, signal modeling, and experimental valida-
tion.

The first part focuses on a problem well known from gradient-echo MR sequences
with short TR: Spoiling strategies have to be employed that prevent the build up
of coherent transverse magnetizations. Commonly, these spoiling schemes are re-
alized by additional gradient events possibly in combination with modified RF

phases [37, 42, 107]. In real-time MRI, these additional events lead to prolonged TR,
reduced frame rates, and, inevitably, result in a loss of temporal resolution. In this
thesis, a spoiling method for radial FLASH sequences was developed that avoids
this loss by entirely relying on manipulation of the transmit and receive phases.
Furthermore, a characteristic connection between the employed sampling pattern
and the observed artifact pattern was demonstrated in numerical simulation and
in vitro measurements when no additional spoiling measures are taken. The spoil-
ing efficiency of the proposed method was demonstrated in in vivo measurements
of the human brain for different sampling schemes. This development effectively
removed undesired artifacts at no additional costs and thus paved the way to-
wards successful application of alternative trajectories as used in the presented
model-based T1 mapping method. Moreover, all real-time sequences in our group
now employ this spoiling scheme as a default. In future, based on the published
method, it might be possible to find a combination of a sampling scheme and a
particular RF phase value sequence that results in superior spoiling performance.
However, further investigations are needed together with a deeper understanding
about the complex interplay of acquired phase, spatial position, off-resonance, slice
profile, and voxel averaging effects.

Chapter 4 addresses the need for a signal model that describes the magnetization
time course in single-shot multi-slice IR FLASH experiments. The developed analytic
expression describes the signal time course correctly and expands the single-slice
Deichmann correction [24] on multi-slice T1 mapping scenarios. Simulations and in
vitro phantom studies confirmed its validity and in [25], a co-authored publication,
this model was successfully used for pixelwise fitting and T1 quantification in
human brain and abdomen based on nonlinear reconstruction of image time series.
The presented derivation might also help to develop a signal model for the case of
myocardial T1 mapping, where even for single-slice imaging, different relaxation
regimes exist due to strong through-plane movements of the myocardial muscle.
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In chapter 5, a model-based reconstruction technique was presented for T1 map-
ping from single-shot IR radial FLASH acquisitions. Here, a joint reconstruction of
the T1, spin-density, and flip-angle map is formulated as a nonlinear inverse prob-
lem and solved by the IRGNM. The increased computational demands could be
mitigated by outsourcing of highly parallelizable code modules to the GPU. Pre-
cision and accuracy of the method was evaluated in numerical simulations (with
ground truth available by design) and in vitro measurements (with comparison
to gold standard measurements). The proposed method makes efficient use of
raw data as (i) parameter maps are reconstructed directly without attempting to
calculate images and (ii) prior knowledge on each parameter map was included
by parameter-specific regularization terms. Two reconstruction-related problems,
namely the build up of checkerboard artifacts and the occurrence of model viola-
tion by negative T1 values, were successfully solved by simple yet effective means:
A k-space filter adapted from spiral imaging methods [30] was integrated into the
gridding operator and suppressed noise from regions outside the sampling disc
at no additional computational cost. A restriction to positive T1 values, which ren-
ders the reconstruction a bound-constraint problem, was realized by checking each
calculated iterate for feasibility and possibly falling back on predefined boundary
values. The optimal tradeoff between impaired temporal fidelity and increased re-
construction speed was found by simulation. For this purpose, the influence of
the number of projections assigned to the same time point (i.e., the binning size)
was investigated with respect to quantitative accuracy. For a proper quantifica-
tion of T1 values larger than 300 ms a maximal temporal grid size of 70 ms was
determined. T1 mapping abilities of the novel reconstruction method were demon-
strated in the human brain and in abdominal sections at in-plane resolutions of up
to 0.5× 0.5 mm2 with a total acquisition time of 3.6 s to 5 s. The obtained T1 values
are in agreement with literature data obtained at 3 T. This work was submitted as a
manuscript to “NMR in Biomedicine” (in revision at the time of thesis submission).

In the last chapter, both the developed spoiling scheme and the model-based
reconstruction technique are applied to the field of DCE MRI. An in vitro flow cycle
was set up to mimic tissue perfusion with a commercially available first-pass per-
fusion phantom. This experimental setup allows to simulate a variety of injection
and acquisition protocols as well as an evaluation of different reconstruction tech-
niques. In an exemplary study, the model-based reconstruction technique was used
to quantify the influence of the temporal resolution on the calculated exchange
rates. Operating the pump in a pulsed mode allowed to virtually “freeze” the CA

dynamics, which precluded any in-flow effects during data acquisition. The full
control over compartment volumes, injection and flow rates, and acquisition pro-
tocols renders this setup an excellent benchmark tool for the evaluation of future
MR methods in quantitative first-pass DCE MRI.
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summary

In summary, a new time-efficient spoiling strategy for real-time MRI acquisitions
was developed and evaluated, a novel signal model for multi-slice T1 mapping
was derived theoretically, a model-based reconstruction algorithm for single-shot
T1 mapping was designed and implemented, and a first-pass DCE phantom was set
up and used for quantitative perfusion analysis.
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A C R O N Y M S

aif arterial input function

asl arterial spin labeling

bssfp balanced steady-state free precession

ca contrast agent

cg conjugate gradients

ct computed tomography

cuda compute unified device architecture

dce dynamic contrast-enhanced

dsc dynamic susceptibility contrast-enhanced

dti diffusion tensor imaging

ees extravascular extracellular space

eis extravascular intracellular space

epi echo planar imaging

etm extended Tofts model

fft fast Fourier transform

fid free induction decay

flash fast low-angle shot

fse fast spin echo

fov field of view

gpu graphics processing unit

irgnm iteratively regularized Gauss-Newton method

ir inversion recovery

ivs intravascular space
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Acronyms

ll Look-Locker

mex MATLAB executable

mri magnetic resonance imaging

mr magnetic resonance

nlinv nonlinear inversion

pet positron emission tomography

psf point spread function

rare rapid acquisition with refocused echoes

rf radiofrequency

roi region of interest

sd standard deviation

sense sensitivity encoding

snr signal-noise ratio

ssfp steady-state free precession

spect single photon emission tomography

te echo time

ti inversion time

tm Tofts model

tr repetition time
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