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I. Summary/Zusammenfassung 

Biota involved in the carbon (C) cycle play a vital role in C sequestration and allocation 

in the soil food web. Though, the decomposition of soil organics strongly depends on the 

availability of soil organic matter (SOM) to microorganisms and enzymes. As rhizosphere 

and detritusphere are biospheres with very high availability of C, leading to high abun-

dance, species diversity and contrasting functions of microbial communities, they are 

worth to be called hot spots of microbial functioning.  

During the last decades, the interest on research on microbial activity in soil increased. 

However, there is a lack of comprehensive understanding of the indicators and drivers of 

microbial activity in rhizosphere and detritusphere. This is especially due to the objective 

necessity for more than a single measure to determine these factors. For that reason, this 

thesis aims to investigate microbial activity, its indicators and its drivers.  

An arable field experiment with different substrate input (corn rhizodeposits vs. corn lit-

ter) was conducted to determine microbial activity by various activity indicators, such as 

microbial respiration, microbial biomass and enzyme kinetics. To account for decreasing 

amount and quality of substrates in rhizosphere and detritusphere with soil depth, we ex-

hibited depth gradients of microbial activity indicators. Special attention was paid to sev-

eral indices of multiple enzymes and their activity (e.g. specific activity, catalytic effi-

ciency and ratios between C- and N-cycling enzymes) down the soil profile. Not only in 

the field, but also along a climatic gradient we investigated microbial activity. Therefore, 

the RNA:dsDNA ratio was determined in order to identify the metabolic status of mi-

crobes in contrasting soil types. Alongside with the major field and climatic gradient ex-

periment laboratory and greenhouse studies were performed. These addressed the drivers, 

such as root hairs and protozoan predation, which were identified by isotopic labelling 

approaches and several indicators of microbial activity. Isotope technologies facilitate the 

tracing of e.g. C- and N-fluxes to achieve their central purpose of understanding the link-

ages of biota in terrestrial soil food webs. Soil zymography was used to exhibit the spatial 

distribution of enzyme activity in the rhizosphere in situ. 

Substrates with contrasting availability changed functional properties of the soil micro-

bial community and induced a shift in enzymatic systems. In particular, the rooted surface 

layer showed increased microbial activity compared to litter-amended and bare fallow 
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soil.  Rhizodeposits are an important primary source of C and energy for soil microorgan-

isms, stimulating their growth and activity. Accounted by the availability of rhizodepos-

its, hot spots in the surface layer provided preferable habitats for microbes.  

Most microbial indicators were affected by the substrate input only in the topsoil. Micro-

bial indicators included the catalytic efficiency of enzymes, which decreased by 2- to 20-

fold from top- (< 40 cm) to subsoil (> 40 cm), irrespective of the substrate input. This 

suggests that the limited amount and quality of substrates at depth is an important con-

straint on microbial activity.  

The RNA:dsDNA ratios towards the indication of the metabolic status of soil microbial 

communities was subjected to biased RNA quantity due to high clay contents in Cherno-

zems, whereas at intermediate and low clay contents the RNA reflected reliable results.  

Protozoa are assumed to be key-players in the C flux from bacteria to higher trophic lev-

els, thereby affecting soil microbial activity.  A triple-labelling experiment was conducted 

to investigate the effects of grazing by Acanthamoeba on C and N fluxes and microbial 

activity indicators in the rhizosphere and detritusphere. C fluxes and enzyme activities 

were driven by substrate input and quality and further stimulated by faunal grazing. This 

revealed that Acanthamoeba grazing contributes to microbial stimulation, especially in 

the rhizosphere.  

To assess the influence of root hairs on microbial activity and rhizosphere priming, a 

continuous 13C labelling experiment was conducted in a greenhouse. Root hairs induced 

positive priming during tillering. Without root hairs SOM decomposition was suppressed. 

Chitinase and ß-xylosidase activities increased during positive priming, indicating de-

composition of stable SOM. This clearly showed the strong influence of root hairs on 

microbial activity during the early stages of plant growth, whereas at later stages the root 

hairs were a less important driver of microbial activity. 

In summary, this thesis extends the understanding of factors affecting microbial activity 

in soil. It demonstrates that microbial activity can be meaningfully characterized by a 

careful selection of indicators. The chosen set of indicator is applicable at the landscape 

scale as well as for process-based investigations at the root scale. 
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Zusammenfassung 

Biota des Kohlenstoffkreislaufs spielen bei der Speicherung und Verteilung des Kohlen-

stoffs im Bodennahrungsnetz eine herausragende Rolle. Wobei der Abbau organischer 

Bodensubstanz stark von deren Verfügbarkeit für Mikroorganismen und Enzyme ab-

hängt. Rhizosphäre und Detritusphäre verfügen über außerordentlich große Mengen an 

organischem Kohlenstoff. Dies macht diese Biosphären zu Hot-Spots mikrobieller Akti-

vität.  

Während der letzten Jahrzehnte stieg das Interesse an der Forschung zu mikrobieller Ak-

tivität im Boden. Dennoch herrscht noch immer kein umfassendes Verständinis von In-

dikatoren und Triebkräften mikrobieller Aktivität in der Rhizosphäre und Detritusphäre. 

Dies ist nicht zuletzt der Tatsache geschuldet, dass es mehr als einer einzigen Methode 

zur Bestimmung dieser Faktoren bedarf. Aus diesem Grund setzt sich diese Arbeit zum 

Ziel, die mikrobielle Aktivität, ihre Indikatoren und Treiber zu explorieren.  

Folglich wurden diverse Indikatoren mikrobieller Aktivität, wie mikrobielle Respiration, 

mikrobielle Biomasse und Enzymkinetik, an Proben aus einem Feldexperiment mit dif-

ferierendem Substrat-Eintrag (Mais-Rhizodeposite vs. Mais-Streu) ermittelt. Tiefengra-

dienten der Indikatoren mikrobieller Aktivität dienten der Beurteilung der Auswirkungen 

sinkender Substratqualität und -quantität in Rhizo- und Detritusphäre mit zunehmender 

Bodentiefe. Besonderer Fokus lag dabei auf den Indizes unterschiedlicher Enzyme und 

deren Aktivität (z. B. spezifische Aktivität, katalytische Effizienz und Verhältnisse zwi-

schen Enzymen des Kohlenstoff- und Stickstoff-Kreislaufs) im Tiefenprofil des Bodens. 

Neben dieser Feldstudie wurde das Verhältinis von RNA zu dsDNA als Indikator mikro-

bieller Aktivität entlang eines klimatischen Grandienten ermittelt, um den metabolischen 

Status innerhalb unterschiedlicher Bodentypen zu bestimmen. Die Feldstudien wurden 

um Experimente in Labor und Gewächshaus ergänzt, in denen mittels Isotopenmarkie-

rungsverfahren die Effekte von Wurzelhaaren und Protisten auf die mikrobielle Aktivität 

beleuchtet wurden. Diese Methode ermöglichte ein Nachvollziehen des C- und N-Flusses 

und trug damit zum Verständnis der Verflechtungen der Organismen im terrestrischen 

Boden-Nahrungsnetz bei. Die räumliche Verteilung der Enzymaktivität in der Rhi-

zosphäre wurde anhand der Boden-Zymographie in situ untersucht.  
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Durch unterschiedliche Substratverfügbarkeit wurde ein Wandel der funktionellen Eigen-

schaften der Mikroorganismengemeinschaften und des enzymatischen Systems induziert. 

Speziell der durchwurzelte Oberbodenhorizont zeigte einen Anstieg der mikrobiellen Ak-

tivität im Vergleich zum Boden mit Streueintrag und der Kontrolle. Rhizodeposite sind 

eine grundlegende Kohlenstoff- und Energiequelle für Bodenmikroorganismen und sti-

mulieren deren Wachstum und Aktivität. Die Präsenz von Rhizodepositen in Hot-Spots 

macht diese zu bevorzugten Habitaten für Mikroorganismen. Die Mehrzahl der Indikato-

ren für mikrobielle Aktivität wurde ausschließlich im Oberboden durch den Substratein-

trag beeinflusst. Darunter auch die katalytische Effizienz, die – ungeachtet des Sub-

strateintrags – von Oberboden (< 40 cm) zu Unterboden (> 40 cm) um das 2- bis 20-fache 

abnahm. Dies ließ auf die Relevanz der mit der Tiefe abnehmenden Menge und Qualität 

der Substrate im Boden als einflussnehmenden Faktor auf die mikrobielle Aktivität 

schließen. Das Verhältnis von RNA zu dsDNA spiegelte den metabolischen Status der 

mikrobiellen Organismengesellschaften in den meisten der beprobten Böden wider. Wo-

hingegen das RNA:dsDNA Verhältnis dieser Indikatoreigenschaft widersprach, lagen er-

höhte Tongehalte vor, die nach der Extraktion zu Ungenauigkeiten bei der Bestimmung 

der RNA-Quantität führten. 

Protozoen wird beim Vorgang des Kohlenstoffflusses von Bakterien zu Organismen hö-

herer Trophieebenen eine bedeutende Rolle zugesprochen, was ebenfalls ihren Einfluss 

auf die mikrobielle Aktivität im Boden unterstreicht. Um diesen Effekten, im Speziellen 

jenen der Acanthoamoebe auf den Kohlenstoff- und Stickstofffluss, sowie die Indikatoren 

mikrobieller Aktivität in der Rhizo- und Detritusphäre nachzugehen, wurde ein dreifaches 

Isotopenmarkierungs-Experiment durchgeführt. Es ergab, dass Kohlenstoffflüsse und En-

zymaktivitäten sowohl von Substrateintrag als auch Substratqualität in Rhizo- wie Detri-

tusphäre sowie deren faunistischer Besiedlung abhängen. Daraus erschloss sich, dass die 

Besiedlung mit Acanthamoeben als potenzielle Triebkraft mikrobieller Aktivität, beson-

ders innerhalb der Rhizosphäre, gedeutet werden kann. 

Um den Einfluss von Wurzelhaaren auf die mikrobielle Aktivität und den Priming Effekt 

in der Rhizosphäre einzuschätzen, wurde ein Experiment im Gewächshaus mit kontinu-

ierlicher Markierung von Boden mit Pflanzenbewuchs und einer Kontrolle ohne Bewuchs 

mit 13C-Isotopen durchgeführt. Wurzelhaare zeigten sich darin als Initiatoren eines posi-

tiven Rhizosphären-Priming Effektes während der Wachstumsphase, wohingegen der 
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Abbau organischer Bodensubstanz in den Kontrollen gehemmt war. Im Falle der positi-

ven Initialwirkung der Wurzelhaare stiegen zudem die Enzymaktivitäten von Chitinase 

und ß-Xylosidase an, was auf eine Zersetzung stabiler, organischer Bodensubstanz hin-

wies. Damit konnte ein deutlicher Effekt von Wurzelhaaren auf die mikrobielle Aktivität 

im Boden während der Phase des Pflanzenwachtums nachgewiesen werden.  

Somit vermittelt diese Arbeit ein weiterführendes Verständnis der auf mikrobielle Akti-

vität im Boden einwirkenden Faktoren und stellt eine Auswahl von Indikatoren zur Cha-

rakterisierung dieser Aktivität vor, die sowohl auf der Landschaftsebene als auch in der 

prozessorientierten Forschung im Wurzelraum Anwendung finden kann. 
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1. Introduction 

1.1 Organic carbon in below-ground systems 

Increasing concentrations of atmospheric CO2 have prompted a flood of studies on soil C 

cycling (e.g. Amundson, 2001), with a strong focus on C sequestration, storage, and sta-

bilization (Janzen, 2006; Lützow and Kögel‐Knabner, 2006). However, the fate of C in 

the belowground system, its exchange between plants (e.g. rhizodeposition) and micro-

organisms (e.g. C uptake and mineralization) and especially its flux through food webs 

and the general relationship between soil biodiversity and ecosystem functioning remains 

poorly known (Bradford and Wood, 2014). The large diversity of organisms and their 

close interactions, that are central to biogeochemical cycles (Scheu and Setälä, 2002), rely 

on the amount and availability of organic C and nutrients, which therefore form the basis 

of soil food webs. 

1.2 Soil hot spots: rhizosphere and detritusphere 

Rhizosphere and detritusphere are soil microsites with a very high resource availability 

for microorganisms. They affect their biomass, composition and functions, which make 

them worth to be called “hot spots” (Marschner et al., 2012; Kuzyakov and 

Blagodatskaya, 2015). These hot spots are relevant not only from the perspective of SOM 

availability and C limitation but also from the perspective of abiotic processes which limit 

microbial activity (Kuzyakov and Blagodatskaya, 2015). The C and nutrient transport in 

these hot spots is divided into two major energy channels 1) the bacterial energy channel 

and 2) the fungal energy channel. Bacteria and fungi are important bottom-up drivers 

(resource quantity and quality) for the structure of soil food webs due to their specific 

resource utilization during decomposition of SOM (Kramer, 2014). 

About 30% of root-derived C is metabolized in form of easily available substrates (low-

molecular weight) by the bacterial communities (Holtkamp and Wal, 2011). In the rhizo-

sphere, where the soil volume is influenced by living plant roots, the major source of 
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easily degradable C are rhizodeposits (Gregory, 2006). Rhizodeposition leads to a prolif-

eration of microorganisms and consequently to changes in the fluxes allocation patterns 

of C through the decomposer system (Kuzyakov and Cheng, 2001; Kuzyakov, 2002b). 

Roots release a broad range of compounds, such as sugars, amino and aromatic acids, 

proteins and enzymes to attract beneficial organisms in the rhizosphere (Badri et al., 

2009). Labile compounds released by living roots or by lysis of root cells stimulate mi-

crobial activity (Nannipieri et al., 2012) and microbial growth (Panikov, 1995; Oger et 

al., 2004; Blagodatskaya et al., 2009) in a similar way as exudates (Kuzyakov and 

Domanski, 2000; Marschner et al., 2004). On the one hand, labile soil C inputs can reg-

ulate decomposition of more recalcitrant soil C by controlling the activity and relative 

abundance of fungi and bacteria (de Graaff et al., 2010). On the other hand, microbial 

biomass, activity and composition are strongly affected by a diverse micro-, meso- and 

macro-fauna (Bonkowski et al., 2000; Scheu and Setälä, 2002; Ruess et al., 2016). 

The detritusphere is characterized by high concentrations of easily degradable C sources, 

particularly at the early stages of residue decomposition (Poll et al., 2008; Bastian et al., 

2009). Older substrate is mainly polymeric material of low availability for primary de-

composers. Litter input is decisive for shaping the fungal communities in soils (Moll et 

al., 2015). When litter is decomposed, C and nutrient pathways predominantly rely on the 

enzymatic capability of the major primary decomposers, able to degrade recalcitrant C 

sources (Dilly and Nannipieri, 2001). Especially, the soil-litter interface shows higher 

enzyme activities than the surrounding bulk soil (Kandeler et al., 1999). Synergistic ac-

tion of hydrolytic and oxidative enzymes is assumed when root litter is decomposed 

(Amin et al., 2014). 

1.3 Soil microbial activity indicators (Study 1–4) 

Soil microbial communities consist of a wide range of organisms in different physiolog-

ical states, such as active, viable, living, dormant, passive, dying, or dead (Johnsen et al., 

2001; Lennon and Jones, 2011; Blagodatskaya and Kuzyakov, 2013). Active microbes 

utilize the available susbtrate and therefore maintain biochemical transformations 
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(Blagodatskaya and Kuzyakov, 2013; Gunina et al., 2014). The fraction of active mi-

crobes in hot spots is 2–20 times higher than in the bulk soil (Kuzyakov and 

Blagodatskaya, 2015). The total microbial biomass consists of only about 0.1–2% of ac-

tive microorganisms without input of easily available substrates, whereas potentially ac-

tive microorganisms contribute up to 60% of the total microbial biomass (Blagodatskaya 

and Kuzyakov, 2013). However, the mechanisms controlling the percentage of microbes 

being active are poorly defined.  

The active state of soil microbes can be recognized by their ability to produce enzymes 

(Burns, 1982). Studies on enzyme activities have therefore strongly increased during the 

last decades (Sinsabaugh et al., 1991; Allison and Vitousek, 2005; Marx et al., 2005). 

The production of extracellular enzymes is regulated by nutrient availability and energy 

demand (Sinsabaugh et al., 2009). Thus, enzyme activities are reliable microbial activity 

indicators and are closely interrelated with soil quality (Bending et al., 2004; Paudel et 

al., 2011).  

Not only enzymes reflect microbial activity in soil, but also RNA:DNA ratio indicates the 

metabolic status of microorganisms. DNA is a biomolecule, which is associated with liv-

ing organisms and thus serve as a microbial biomass indicator. The positive linear corre-

lation between dsDNA content and total microbial biomass (Anderson and Martens, 

2013) as well as the amount of RNA per cell, which is proportional to metabolic activity 

of microorganisms (Molin and Givskov, 2001), relating the RNA:DNA ratio to microbial 

performance. 

Eco-physiological indices that reflect microbial C mineralization can be generated e.g. by 

relating physiological performances to the total microbial biomass per unit time 

(Anderson and Domsch, 1986; Anderson, 2003). For each of these approaches the total 

microbial biomass needs to be considered, as the capacity of a single species cannot be 

recognized individually (Anderson and Domsch, 1986). 

Since the substrate input and its quality strongly depend on the C-content and the recal-

citrance of the organic material, microbial activity and growth strongly differ between 

ecosystems. To test the effects of different substrate input (rhizodeposits vs. plant litter) 

on microbial activity, we conducted a manipulated field experiment with maize (Study 



1. Introduction 4 

 

4 
 
 
 
 

1−3). Moreover, microbial activity indicators (RNA:dsDNA) were determined in differ-

ent soil types with contrasting C contents (Study 4). 

1.4 Microbial loop – A driver of microbial activity? (Study 5) 

Rhizodeposits and plant residues supply soil microbial communities substrate (Wardle, 

1992), that potentially increase decomposition and nitrogen (N) release from SOM 

(Kuzyakov, 2002b; Chen et al., 2007). Similar to the priming effect, (later termed Chapter 

I.1.5) protists which are the base of the heterotrophic soil food webs (Darbyshire, 1994), 

increase the available N pool in soil through the ingestion and destruction of bacterial 

cells and excretion of ammonia (Stout, 1980). Since N is a limiting nutrient in the rhizo-

sphere (Kuzyakov and Xu, 2013), increased N availability in presence of protists stimu-

lates plant growth through the so-called ̀ microbial loop` network (Clarholm, 1985). Plant 

growth and root exudation may lead to higher microbial activity and higher SOM decom-

position as well as N release (Gerhardson and Clarholm, 1986; Kuikman et al., 1990). In 

particular, the rhizosphere provides up to 30-fold higher protist densities than the bulk 

soil (Zwart and Brussaard, 1991; Griffiths and Bardgett, 1997), and is therefore strongly 

top-down controlled (Bonkowski, 2004). Bacteria dominate the crucial hot spots for nu-

trient cycling and plant growth. Therefore, protozoan grazing affects not only microbial 

community composition, but overall ecosystem properties as well (Krome et al., 2009; 

Rosenberg et al., 2009). Despite the diverse feeding behavior of protists, they are mainly 

described as bacterial feeders in soil food webs (Ruiter et al., 1995). However, also om-

nivorous and mycophagous feeding behavior was recently reported (Geisen and 

Rosengarten, 2015; Geisen et al., 2016). There is still lack of knowledge on enzyme stys-

tems, which occur intra- and extra-cellular of the cells of the targeted organisms (Addi-

tional research). Especially, the benefits for plant and microorganisms by mechanisms of 

protozoan predation are of high interest (Bonkowski and Clarholm, 2012). For this rea-

son, we conducted a microcosm experiment to investigate the effects of protozoan grazing 

on C flux and enzyme activities in rhizosphere and detritusphere. 
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1.5 Effects of root hairs on microbial activity and rhizosphere 
priming (Study 6) 

Root exudates and root associated microbial communities affect SOM decomposition in 

soil, a process termed rhizosphere priming effect (Kuzyakov, 2002a; Blagodatskaya et 

al., 2007; Cheng, 2009). Consequently, root morphology and biomass affect rhizosphere 

priming (Kuzyakov, 2002a; Marschner et al., 2002; Björk and Majdi, 2007). Root hairs, 

as an important part of root architecture`, play a crucial role in the rhizosphere (Gahoonia 

et al., 1997; Gahoonia and Nielsen, 1998). For example, they increase water and nutrient 

uptake of the plant by the extension of the absorbing root surface (Jungk, 2001). Further-

more, root hairs are involved in multiple biogeochemical cycles (Gilroy and Jones, 2000). 

However, the effect of root hairs on microbial activity and rhizosphere priming has not 

been investigated. Therefore, a continuous labelling experiment was conducted in a 

greenhouse with additional light to determine the effect of root hairs on microbial activity 

and rhizosphere priming. 
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1.6 Objectives 

In summary, the objectives of the present work were 

1) to assess specific microbial growth rates and enzyme activities in the rhizosphere of 

maize (rhizodeposots vs. SOM) (Study 1). 

2) to identify microbial activity by different indicators, such as microbial respiration, mi-

crobial biomass and enzyme kinetics in rhizosphere and detritusphere (rhizodeposits vs. 

litter-amended soil) (Study 2). 

3) to evaluate depth gradients of microbial activity indicators, including CO2 and N2O, 

and to compare several enzyme indexes with depth in rhizosphere and detritusphere 

(Study 3). 

4) to elucidate the suitability of the RNA:dsDNA ratio as an indicator of the physiological 

state of microorganisms in different soil types (Study 4). 

5) to investigate the effects of Acanthamoeba grazing on C flux and enzyme activities in 

rhizosphere and detritusphere (Study 5). 

6) to assess the influence of root hairs on microbial activity and rhizosphere priming 

(Study 6). 

7) to examine growth rates during predator-prey interaction and to determine intra- and 

extra-cellular enzyme properties of protists (Additional research II.7.1). 

8) to estimate the fungal activity in model systems in order to calculate the C budget of 

microorganisms added as preys to the soil based on δ13C of microbial biomass, DOC, 

SOM and CO2 (Additional research II.7.2). 

9) to identify the C and N resources fueling microbial-protozoan interactions and plant 

uptake (N) by adding 13C/15N labelled Lolium perenne root litter to the system (Additional 

research II.7.3).  

10) to examine microbial activity and rhizosphere priming effect in top- and subsoils by 

continuous isotopic labelling approach (Additional research II.7.4). 
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11) to determine the effect of glucose addition on the distribution of leucine-aminopepti-

dase activity in the rhizosphere in situ by soil zymography (Additional research II.7.5). 

 

Figure I.1/1 Thematical overview of studies; indicators and drivers of microbial activity 
in  rhizosphere and detritusphere 
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2. Material and Methods 

2.1 Experimental sites and designs 

2.1.1 Agricultural field site (Study 1–3) 

In spring 2012, 12 experimental field plots (5 m x 5 m) were established on an arable 

loamy haplic Luvisol located on a terrace plain of the Leine River in central Germany 

(Holtensen) (Table I.2/1; Pausch, 2012; Kramer et al., 2013). The area features a temper-

ate climate with a long-term annual mean precipitation of 645 mm and an air temperature 

of 8.7 °C (Kramer et al., 2012). Three treatments – rooted, litter amended and fallow soil 

– were set up on the experimental plots, with 4 replicates each. We separated the plots 

from each other by buffer stripes of 2 m and 6 m in row and inter-row, respectively. Soil 

samples were taken in July, 2012 and 2013 down the soil profile (each 10 cm down to 50 

cm and 60−70 cm). 

 
Table I.2/1 Soil properties (±SEM) of the loamy haplic Luvisoil determined before the 
start of the experiment (Kramer et al., 2012; Pausch et al., 2012). Significant differences 
are indicated by letters (P < 0.05). 

Horizon 
Depth 

[m] 

Texture 
clay/silt/sand  

[% (w/w)] 
pH 

[CaCl2] SEM 

bulk 
density  
[g cm-3] SEM 

Corg [g 
kg-1] SEM 

Ntotal [g 
kg-1] SEM 

C/
N 

Ap1 0‒0.25 7.0/87.2/5.8 6.0 a 0.1 1.38 a 0.0 12.4 a 0.4 
1.3±0.

0 a 0.0 
9.8 
a 

Ap2 
0.25‒
0.37 7.1/87.8/5.0 6.2 a 0.1 1.61 b 0.0 6.9 b 1.2 

0.8±0.
1 b 0.1 

9.2 
a 

Btw1 
0.37‒
0.65 7.1/87.7/5.1 6.6 b 0.1 1.55 c 0.0 3.3 c 0.5 

0.4±0.
0 c 0.0 

8.9 
ab 

Btw2 >0.65 6.8/88.4/4.8 7.0 c 0.1 1.68 b 0.0 1.8 c 1.8 
0.3±0.

0 c 0.0 
6.9 
b 
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Figure I.2/2 Maize planted field plot. 

2.1.2 Soils along a climatic gradient (Study 4) 

The RNA:dsDNA ratios were determined in top 10 cm-layers of five soils located in eu-

ropean part of Russia: Gleyic Retisol, Luvisol, virgin and arable Chernozem and Haplic 

Calcisol (IUSS Working Group WRB, 2015). Retisol was sampled at the bottom (accu-

mulative) part of the slope in Tver Region, and the Luvisol at the top (autonomous) part 

of the slope at the right bank of the Oka River near the town Pushchino in Moscow region. 

Chernozem was sampled in Russian Federal Nature Preserve "Kamennaya Step" located 

in Talovsky District in Voronezh Region, in the watershed of rivers Bitug and Khoper. 

Calcisol was sampled in the Astrakhan region (Figure I.2/3). 
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Figure I.2/3 Map of Russia – Area of interest on a scale of 1:4,400,000 including 
climate data, sample sites and terrestrial biomes. Created with QGIS 2.8.1-Wien (WGS 
84, EPSG-Code: 4326) Icon “Thermometer” made by Yannick [http://yanlu.de] from 

http://www.flaticon.com; Icon “Rain” made by Yihsuan Lu 
[https://thenounproject.com/Yihsuanlu/] from http://thenounproject.com 

2.2 Isotope technologies 

2.2.1 Triple-labelling/Growth chamber (Study 5) 

The decomposition of plant derived, below-ground C sources results in two major path-

ways based on 1) root litter, and 2) rhizodeposits (especially exudates). The amount and 

quality of substrates entering, affect microbial processes in the rhizosphere and detri-

tusphere. Furthermore, soil fauna has important functions in regulating microbial activity 

and enzymatic substrate utilization. To identify specific drivers of microbial activity, such 

as increased exudation due to protozoan predation (additional N supply), we established 

a triple-labelling (13C, 14C and 15N) experiment. This allowed the identification of C re-

sources (rhizodeposited C by 14C and root litter by 13C) that fuel microbial-protozoan 

interactions in both soil hot spots: rhizosphere and detritusphere. Soil was taken from the 

same arable field presented above, autoclaved and re-inoculated with a microbial com-

munity previously extracted from this soil. The following treatments were established: 1) 

http://www.flaticon.com/


2. Material and Methods 11 

 

11 
 
 
 
 

no addition of plant C, 2) addition of sterilized 13C /15N-labelled root litter, representing 

detritusphere 3) growing maize plants, representing rhizosphere. Results on 14C are pre-

sented in study 5, those on 15N in the additional research. 

 

 

Figure I.2/4 14CO2 pulse labelling of maize with belowground soil microcosms 

2.2.2 Continuous labelling/Greenhouse (Study 6) 

To investigate the effects of root hairs on microbial activity and rhizosphere priming, a 
13C-labelling experiment was conducted (Figure I.2/5). Soil samples were taken from the 

upper 30 cm of a sandy loam (Mollisol) at an arable field site on the campus reserves of 

the University of California, Santa Cruz. The soil contained 1.18±0.01% organic C and 

0.13±0.001% N, had δ13C and δ15N values of -26.45±0.07‰ and 7.12±0.02‰, respec-

tively, and a pH value of 5.8. Two barley types, a wild type and a root-hairless mutant 

called bald root barley (Gahoonia et al., 2001), were grown in a greenhouse and were 

continuously labelled with 13C depleted CO2 (Cheng and Dijkstra, 2007). 
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Figure I.2/5 Two barley (Hordeum vulgare L.) types, a wild type (cv. optic; WT) and a 
root-hairless mutant grown in a greenhouse with continuous 13C labelling device 
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2.2 Microbial activity indicators 

Microbial activity indicators, used to address microbial activity in soil are described as 

follows: 

Table I.2/2 Short description of soil microbial activity indicators and enzyme indexes 
Microbial ac-

tivity indica-

tors 

Description References 

Basal respira-

tion 

The basal respiration (BR) of soils is defined as the respi-

ration without addition of organic substrate to soil at 

22°C, which originates from the turnover of SOM. It is 

taken as an indicator of microbial activity and C turnover 

in soil. The rate of basal respiration reflects both the 

amount and quality of substrate.  

Anderson and 

Domsch, 1978 

SIR Substrate-induced respiration (SIR) is the measurement 

of soil respiration in the presence of an added substrate. 

The initial maximal respiration rate induced by glucose is 

proportional to the size of the primal soil microbial bio-

mass. SIR is a black-box method, not differentiating be-

tween distinct groups of microorganisms (e.g. bacteria 

vs. fungi). An advantage is the lower detection limit com-

pared to CFE method, in case of scarce C sources. 

 

Anderson and 

Domsch, 1978; 

Kaiser et al., 1992; 

Lin and Brookes, 

1999 

BR:SIR ratio The ratio between BR and SIR was used as a relative 

measure of microbial respiration. The ratio indicates the 

distribution between r and K transition in the substrate-

responsive microbial biomass. 

 

Odum, 1985; 

Stenström, 2001 

SIGR Quantification of the fraction of actively growing bio-

mass, which is capable for immediate growth on added 

substrate. The model simulates the transition process of 

soil microorganisms from sustaining to the active state, 

i.e. lag phase and exponential phase of growth, due to 

the inclusion of the physiological state concept. 

 

Panikov, 1995; 

Blagodatsky et al., 

2000; Wutzler et 

al., 2012 

Metabolic 

quotient 

The metabolic quotient (CO2 release/soil microbial bio-

mass; qCO2) reflects the availability of C used by the mi-

croorganisms and is inversely related to microbial effi-

ciency. 

 

Anderson and 

Domsch, 1986, 

2010; Anderson, 

2003 

 
  



2. Material and Methods 14 

 

14 
 
 
 
 

Table I.2/2 Short description of soil microbial activity indicators and enzyme indexes 
Microbial ac-

tivity indica-

tors 

Description References 

 

N2O Fungal and bacterial denitrification is a heterotrophic 

processes coupling the reduction of NO3
-/NO2

- with the 

oxidation of an electron donor, often organic C. Through 

stepwise reductions, denitrification ends with N gases, 

i.e., N2O and/or N2, depending on microbial taxa and en-

vironmental conditions. 

 

Menyailo et al., 

2002; Henderson 

et al., 2010; Chen 

et al., 2015 

Microbial bio-

mass C 

The soil microbial biomass responds much more quickly 

than most other soil fractions to changing environmental 

conditions such as changes in substrate inputs and is a 

more sensitive indicator of changing soil conditions than, 

e.g., the total SOM content. 

 

Brookes et al., 

1985; Wu and 

Joergensen, 1990; 

Joergensen et al., 

2011 

Microbial bio-

mass N 

Nitrogen made available through protein depolymeriza-

tion and is rapidly taken up by microbes. The balance be-

tween protein depolymerization, N mineralization and 

nitrification reflects the degree of microbial N limitation. 

 

Brookes et al., 

1985; Kaiser et al., 

2011; Wild et al., 

2015 

β-glucosidase β-glucosidase is acting in the cleavage of cellobiose into 

glucose molecules. 

 

Deng and 

Tabatabai, 1994; 

Tabatabai, 1994 

β-xylosidase β-xylosidase is responsible for the breakdown of hemi-

celluloses. 

 

German et al., 

2011 

β-cellobio-

hydrolase 

β-cellobiohydrolas is responsible for consecutive stages 

of cellulose degradation. 

 

Marx et al., 2005; 

German et al., 

2011 

Chitinase Chitin is composed of linked amino sugar subunits and 

occurs associated to other structural polymers such as 

proteins or glucans, which often contribute more than 

50% of the mass in chitin-containing tissue. 

 

Gooday, 1990; 

Beier and 

Bertilsson, 2013 

Acid phospha-

tase 

Acid phosphatase mineralizes organic P into phosphate 

by hydrolyzing phosphoric (mono) ester bonds under 

acidic conditions. 

 

Eivazi and 

Tabatabai, 1977 

Leucine-ami-

nopeptidase 

Activities of leucine-and tyrosine-aminopeptidase are re-

sponsible for the hydrolysis of L-peptide bonds. 

Kourtev et al., 

2003; 

Štursoǀá and 
Baldrian, 2011 

Tyrosine-ami-

nopeptidase 
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Table I.2/2 Short description of soil microbial activity indicators and enzyme indexes 
 

Enzyme in-

dexes 

Description References 

Specific en-

zyme activity 

Ratio of potential activity to microbial biomass Trasar-Cepeda et 

al., 2008; Stone et 

al., 2014 

Catalytic effi-

ciency 

Catalytic properties of enzymes (Vmax/Km) Koshland, 2002; 

Moscatelli et al., 

2012; Loeppmann 

et al., 2016 

 

Vmax ratio of 

C- to N- and 

C- to P-cycling 

enzymes 

Relative activities of C vs. N and C vs. P acquiring en-

zymes 

Sinsabaugh et al., 

2008 

 

Proportions 

of C- to N- 

and C- to P-

cycling en-

zymes 

Proportional enzyme activities of C vs. N and C vs. P ac-

quiring enzymes 

Moorhead et al., 

2013; Hill et al., 

2014 

Vector length Relative C vs. nutrient acquisition Moorhead et al., 

2013, 2016 

Vector angle Relative P vs. N limitation Moorhead et al., 

2013, 2016 
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3. Main results  

The methodological novelty and outcome of studies 1−6 are presented in Table I.3/3. We 

elucidated microbial processes in two soil hot spots: rhizosphere and detritusphere, and 

determined various microbial activity indicators with soil depth (Table I.3/4). Moreover, 

we exhibited the RNA:dsDNA ratio in different soil types along a climatic gradient (Fig-

ure I.2/3). The drivers of microbial activity were investigated on smaller scales (growth 

chamber and greenhouse). 

 

Table I.3/3 Synthesis of methodological innovations and main innovative results of 
Studies 1–6 

Study  Aims 

Type of 

study Methodological innovations Main innovative results 

1 Determination of 

specific microbial 

growth rates and 

enzyme activities 

in rhizosphere 

and bare fallow 

soil 

Field Vmax:dsDNA ratio as an alterna-

tive to specific enzyme activi-

ties, constituted a convenient 

microbial activity indicator 

Similar specific micro-

bial growth rates and 

microbial biomass con-

tents were demon-

strated for rooted vs. 

root-free soil when we 

compared the two soil 

layer. Active microbial 

biomass increased by 

17-fold in the rhizo-

sphere at 10–20 cm 

depth compared to the 

upper 10 cm 

2 Identification of 

microbial activity 

by different indi-

cators, such as 

microbial respira-

tion, microbial bi-

omass and en-

zyme kinetics 

with contrasting 

substrate availa-

bility 

Field Metabolic respiratory re-

sponse methods in combina-

tion with enzyme kinetics 

were determined 

Substrates with con-

trasting availability (rhi-

zodeposits vs. plant res-

idues) changed func-

tional properties of the 

soil microbial commu-

nity and induced a shift 

in enzyme systems 
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Table I.3/3 Synthesis of methodological innovations and main innovative results of 
Studies 1–6 
 

Study  Aims 

Type of 

study Methodological innovations Main innovative results 

3 Assessment of 

depth gradients 

of microbial ac-

tivity indicators, 

including CO2 and 

N2O in rhizo-

sphere and detri-

tusphere. 

Field Enzyme indexes down the soil 

profile based on enzyme kinet-

ics and vector analyses 

The catalytic efficiency 

of enzymes decreased 

2- to 20-fold from top- 

(< 40 cm) to subsoil (> 

40 cm), irrespective of 

the substrate input. 

4 Testing the capa-

bility of 

RNA:dsDNA ratio 

as an indicator of 

microbial activity  

Soil 

types 

along a 

climatic 

gradi-

ent 

Broad range of soil types RNA:dsDNA ratios to-

wards the indication of 

the metabolic status of 

soil microbial communi-

ties adheres to biased 

RNA quantity due to 

high clay contents.  

5 Effects of Acan-

thamoeba graz-

ing on C flux and 

microbial activity 

indicators in rhi-

zosphere and de-

tritusphere 

Growth 

cham-

ber  

Sophisticated experimental 

setup under sterile conditions, 

triple labelling experiment 

C fluxes and enzyme ac-

tivities were driven by 

substrate input and 

quality in the rhizo-

sphere and detri-

tusphere and further 

stimulated by faunal 

grazing. 

6 Effect of root 

hairs on microbial 

activity and rhizo-

sphere priming  

 

 

Green-

house + 

additio-

nal 

light-

ning 

Continuous 13C-labelling of 

barley 

Root hairs induced posi-

tive priming during till-

ering. Without root 

hairs SOM decomposi-

tion was suppressed. In 

case of positive priming, 

the chitinase and ß-xy-

losidase activities in-

creased indicating de-

composition of stable 

SOM.  

 

Shifts in microbial growth strategy, upregulation of enzyme production and increased 

microbial respiration demonstrated strong root effects in maize planted soil (Study 1). In 

the rhizosphere the specific microbial growth rates decreased by 42% at 10–20 cm depth 

compared to the surface-layer. This suggests the dominance of highly active but slower 

growing microbes with depth, reflecting also their slower turnover. This shift in enzyme 
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systems with depth due to resource scarcity and lower substrate quality is decisive for 

microorganisms to benefit from their costs of energy investments (Allison et al., 2011; 

Stone et al., 2014). 

The availability of C and nutrients in the soil affected the efficiency of enzymes mediating 

the catalytic reaction, especially in the presence of roots. Substrates of contrasting quality 

(e.g. root exudates, plant residues) changed functional properties of the soil microbial 

community and induced a shift in enzyme systems (Study 2). The microbial N demand 

increased in the rhizosphere (Study 1, 2, 3), which boosted proteolytic enzyme activities 

(e.g. leucine-aminopeptidase) and hampered microbial growth in rooted soil (Study 1).  

Accordingly, N2O dissimilation and dissolved N were reduced in the rhizosphere com-

pared to the detritusphere. This again reflects increased N uptake into microbial cells by 

direct substrate incorporation or after extracellular proteolytic degradation of the substrate 

(Study 3). In case additional N was available in the rhizosphere due to protozoan excre-

tion of ammonia (Study 5) or due to the amendment of mineral N, most enzyme activities 

increased (Additional research).  

Most microbial activity indicators were higher in the rhizosphere than in bare fallow soil 

(Table I.3/4). This increase in microbial activity was significant only in the topsoil, 

whereas in the subsoil, both rhizosphere and detritusphere were comparable to fallow soil 

(Study 3). In general, the RNA:dsDNA ratios showed soil-specific patterns. However, 

caution should be paid to the RNA extraction, as the RNA content was strongly affected 

by the clay content of the soil (Study 4).  

We investigated the potential drivers of microbial activity by isotopic labelling and vari-

ous activity indicators. Higher uptake of root-derived C into the microbial biomass with 

amoebaean predation than without amoeba, reflected preferred substrate utilization of 

freshly plant-derived C sources due to enhanced root exudation (Study 5). In the presence 

of amoeba the plant uptake of 15N was higher in the shoots relative to the roots (Additional 

research). The higher N investments to the shoots showed that the plant benefits by the 

additional N pool in the soil through protozoan excretions. Consequently, the plant in-

creases its growth and enhances root exdudation. Microbial activity indicators such as 
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enzyme systems, which are essential factors of microbial decomposition mechanisms in 

soil, implied differential susceptibility of microbes on Acanthamoeba grazing.  

Root hairs, as potential drivers of microbial activity affected enzyme activities at tillering 

stage (Study 6). The SOM-derived CO2 was higher for the barley wild type (with root 

hairs) than for the hairless barley mutant, while root-derived CO2 did not differ between 

the two types. This was in accordance to higher chitinase and ß-xylosidase activities re-

flecting enhanced microbial mineralization and extracellular enzyme degradation of re-

calcitrant C sources. 
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Table I.3/4 Microbial activity indicators on contrasting substrate amount and substrate 

quality 

          
Microbial 

activity in-

dicators 

Rhizosp-

here 

Detri-

tusphere 

Depth (rhizosphere and/or de-

tritusphere 

Study Site 

 

compared to bare 

fallow soil 

From 0−10 to 

10−20 cm 

From top- to 

subsoil   

Fluxes         

Basal respi-

ration 
↑ − ↓ ↓ 2 field 

SIR ↑ − ↓ ↓ 2, 3 field 

BR:SIR ratio − − − n.d. 2 field 

SIGR − n.d. ↓ n.d. 1 field 

Metabolic 

quotient 
− − − n.d. 2 field 

N2O ↓ − ↓ ↓ 3 field 

Pools         

Microbial 

biomass C 
↑ − ↓ ↓ 2, 3 field 

Microbial 

biomass N 
↑ − ↓ ↓ 2, 3 field 

Dissolved 

organic C 
− − ↓ − 2, 3 field 

Dissolved N ↑/↓* − ↓/−* ↓ 2, **3 field 

Enzyme ac-

tivities 
        

β-gluco-

sidase 
↑ − ↓ ↓ 2, 3, 5 

field, growth 

chamber 

β-xylosidase −/↑* −/↑* − ↓ 3, *5 
field, growth 

chamber 

β-cellobio-

hydrolase 
− ↑ ↓ ↓ 2, 3 field 

Chitinase ↑ ↑ n.d. n.d. 1, 5 
growth cham-

ber 

Acid phos-

phatase 
↓/↑* ↓/−* ↓ ↓ 

2,3,** 

5 

field, growth 

chamber 

Leucine-

aminopep-

tidase 

↑ − ↓ ↓ 1, 3, 5 
field, growth 

chamber 

Tyrosine-

aminopep-

tidase 

−/↑* −/↑* ↑ ↓ 
1, 3, 

*5 

field, growth 

chamber 

n.d.: not determined, respectively not shown in the studies; ↑: increase (P<0.05); ↓: de-

crease (P<0.05); −: not significant relatiǀe to falloǁ soil 
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Drivers of microbial activity were reflected by most of the indicators measured (Table 

I.3/5), for example, by the enhanced incorporation of root-C and the increased enzyme 

activities during protozoan predation (Study 5). Highest plant density confirmed with 

highest beta-cellobiosidase in top- and subsoil but this pattern was not consistent among 

all enzymes (Additional research). 

Table I.3/5 Soil microbial activity drivers and their sensitivity 

Drivers Microbial indicators 
Soil type 

and Study 

 Fluxes Pools Enzymes´properties  

 
Respira-

tion 
N2O 

CFE-de-

rived 

MBC 

dsDNA RNA EOC 
E

N 
Vmax Vmax/Km  

Decreasing 

depth 
↓ ↓ ↓ ↓ ↘ ↘ ↘ ↓ ↓ 

Luvisol 

Study 3 

           

Amoeban 

and Colem-

bolan pre-

dation 

↘ ↗ ↓ ↓ ↘ −/↓ − ↑ ↓ (Auto-

claved) 

Luvisol 

Study 5 + 

Add. re-

search 

         

Root hairs ↑ ↗ − ↑ ↑ − − ↓/↑ ↘ 
Mollisol 

Study 6 

           

           

Plant den-

sity 
↑ ↗ ↑ ↗ ↗ ↑ ↑ ↑ ↘ 

Mollisol + 

Add. re-

search 

           

Climatic 

gradient 
↘ ↗ ↓ ↓ - ↘ ↘ ↘ ↘ 

Cherno-

zem, Reti-

sol, Luvi-

sol, Cal-

cisol 

Study 4 

↓ = strong decrease; ↑ = strong increase; ↘ = ǁeak decrease; ↗ = ǁeak increase; orange arrows indi-

cated suggestions 
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4. Conclusions 

Available C sources such as root C and litter C stimulated not only microbial activity, but 

also turnover of MBC. Most of the tested microbial activity indicators indicate microbial 

C and nutrient demand in rhizosphere and detritusphere. For example, the proportions of 

multiple enzyme activities and catalytic efficiencies reflected both stoichiometric and C 

quality effects on decomposer communities. The combination of methods such as the 

quantification of RNA and DNA, microbial respiration, and enzymes allowed to draw a 

detailed picture of microbial activity in rhizosphere and detritusphere.  

In conclusion, the substrate availability and the stimulation of microbes by micro-fauna 

were identified as important drivers of microbial activity in the rhizosphere. Especially, 

root hairs appeared as crucial driver of microbial activity during the tillering, whereas at 

head-emergence stage this effect disappeared. Special emphasis should be placed on po-

tential mechanisms linking root morphology and microbial activity with rhizosphere 

priming effects. 

Overall this thesis contributes to disentangle complex and highly dynamic microbial food 

web interactions in soil. The presented results underline the role of microorganisms as 

critical links in the C and nutrient transfer in rhizosphere and detritusphere as well as in 

deeper soil layers. 
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5. Contributions to the included manuscripts 

The PhD. thesis comprises 5 published papers and 1 paper which is in preparation. The 

co-authors listed on the manuscripts contributed as follows: 

Study 1: Substrate quality affects microbial- and enzyme activities in rooted soil 

Status: Published in Journal of Plant Nutrition and Soil Science (2015). DOI: 

10.1002/jpln.201400518 (Focus Issue: Soil hot spots) 

S. Loeppmann: 60% (experimental design, accomplishment of experiment, labor-

atory analyses, data preparation and interpretation, manuscript 

preparation) 

M. Semenov:  15% (laboratory analysis, data preparation) 

E. Blagodatskaya: 15% (discussion of experimental design and results, comments to 

improve the manuscript) 

Y. Kuzyakov:   10% (comments to improve the manuscript) 

Study 2: Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in 

rhizosphere and detritusphere 

Status: Published in Soil Biology and Biochemistry (2016). 92: 111–118 

S. Loeppmann: 70% (accomplishment of experiment, field sampling, laboratory 

analyses, data preparation and interpretation, manuscript prepara-

tion) 

E. Blagodatskaya: 10% (discussion of results, comments to improve the manuscript) 

J. Pausch:  10% (comments to improve the manuscript) 

Y. Kuzyakov  10% (comments to improve the manuscript) 

  

http://dx.doi.org/10.1002/jpln.201400518


5. Contributions to the included manuscripts 24 

 

24 
 
 
 
 

Study 3: Enzyme properties throughout the soil depth – A matter of substrate qual-

ity in rhizosphere and detritusphere 

Status: Published in Soil Biology and Biochemistry (2016). 103: 274–283 

S. Loeppmann: 65% (accomplishment of experiment, sampling, laboratory anal-

yses, data preparation and interpretation, manuscript preparation) 

E. Blagodatskaya: 15% (discussion of results, comments to improve the manuscript) 

J. Pausch:  10% (sampling, comments to improve the manuscript) 

Y. Kuzyakov  10% (comments to improve the manuscript) 

Study 4: Towards to physiological status of soil microorganisms determined by 

RNA:dsDNA ratio 

Status: In preparation for submission to Ecological Indicators 

S. Loeppmann: 50% (laboratory analysis, data preparation and interpretation, man-

uscript preparation, comments to the manuscript) 

M. Semenov:  30% (accomplishment of experiment, sampling, laboratory analy-

sis, manuscript preparation) 

E. Blagodatskaya: 10% (discussion of results, comments to improve the manuscript) 

Y. Kuzyakov:  10% (comments to improve the manuscript) 

Study 5: Effects of Acanthamoeba grazing on carbon flux and enzyme activities in 

rhizosphere and detritusphere 

Status: In preparation for submission to Plant and Soil 

S. Loeppmann: 50% (accomplishment of experiment, sampling, laboratory 

analyses, data preparation and interpretation, manuscript 

preparation) 

F. Clissmann:   15% (accomplishment of experiment, sampling, comments 

to the manuscript) 
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A. Gunina:   10% (laboratory analysis, comments to the manuscript) 

J. Pausch:   10% (discussion of results, comments to the manuscript) 

R. Koller:   5% (comments to improve the manuscript) 

M. Bonkowski:  5% (comments to improve the manuscript) 

Y. Kuzyakov:   5% (comments to improve the manuscript) 

Study 6: Effect of root hairs on rhizosphere priming 

Status: Published in Soil Biology and Biochemistry (2016) 

J. Pausch:  45% (accomplishment of experiment, sampling, laboratory 

analyses, data preparation and interpretation, manuscript 

preparation) 

S. Loeppmann:  25% (sampling, laboratory analyses, data preparation, dis-

cussion of results, comments to improve the manuscript) 

A. Kühnel:   10% (sampling, laboratory analysis) 

J. Forbush:   10% (sampling, laboratory analysis) 

Y. Kuzyakov:   5% (comments to improve the manuscript) 

W. Cheng:   5% (comments to improve the manuscript) 
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Abstract  

The rhizosphere reflects a sphere of high substrate input by means of rhizodeposits. Ac-

tive microorganisms and extracellular enzymes are known to be responsible for substrate 

utilization in soil, especially in rooted soil. We tested for microbial- and enzyme activities 

in arable soil, in order to investigate the effects of continuous input of easily available 

organics (e.g. root-exudates) to the microbial community. In a field experiment with 

maize, rooted and root-free soil were analyzed and rhizosphere processes were linked to 

microbial activity indicators, such as specific microbial growth rates and kinetics of six 

hydrolytic extracellular enzymes: β-glucosidase, β-cellobiohydrolase, β-xylosidase, acid 

phosphatase, leucine- and tyrosine-aminopeptidase.  

Higher potential activities of leucine-aminopeptidase (2-fold) for rooted vs. root-free soil, 

suggested increased costs of enzyme production, which retarded the specific microbial 

growth rates. Total microbial biomass determined by the substrate-induced respiration 

technique and dsDNA extraction method was 23% and 42% higher in the rooted surface-

layer (0‒10 cm) compared to root-free soil, respectively. For rooted soil, potential enzyme 

activities of β-glucosidase were reduced by 23%, acid phosphatase by 25% and increased 

by 300% for β-cellobiohydrolase at 10‒20 cm depth compared to the surface-layer. The 

actively growing microbial biomass increased by 17.4-fold in rooted soil in the 10‒20 cm 

layer compared to the upper 10 cm. Despite the specific microbial growth rates showing 

no changes in the presence of roots, these rates decreased by 42% at 10‒20 cm depth 

compared to the surface-layer. This suggests the dominance in abundances of highly ac-

tive but slower growing microbes with depth, reflecting also their slower turnover. Shifts 

in microbial growth strategy, upregulation of enzyme production and increased microbial 

respiration indicated strong root effects in maize planted soil. 

 

Key words: Microbial activity, microbial biomass, specific enzyme activity, specific mi-

crobial growth rates, dsDNA  
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1.1 Introduction 

The rhizosphere is considered as one of the most important microbial hotspots, more pre-

cisely a hot sphere in soil as it is characterized by high microbial abundance and activity 

due to high amounts and diversity of easily available substrates (Hinsinger et al., 2005; 

Walker et al., 2003). There are three main sources of substrate input to the rhizosphere: 

1) root exudates released from intact cells, 2) lysates of sloughed-off cells and root tissue, 

and 3) mucilage (Gregory, 2006; Neumann and Römheld, 2007). These forms of root 

derived C is frequently termed rhizodeposition. Root exudates are readily available 

sources of C and energy for microbes (Haichar et al., 2008; Paterson, 2003; 2007).  

The release of labile compounds (including enzymes) by living roots or by lysis of root 

cells stimulates microbial activity (Nannipieri et al., 2012) and microbial growth (Blago-

datskaya et al., 2009; Oger et al., 2004; Panikov, 1995) in the similar ways as rhizode-

posits (Kuzyakov and Domanski, 2000; Marschner et al., 2004). The release of root exu-

dates and other rhizodeposits is ongoing, and is localized in soil (Pausch and Kuzyakov, 

2011). Consequently, localization of easily available C produces hotspots of microbial 

abundance and activities, frequently termed as the “rhizosphere effect” (Lynch, 1997; 

Sørensen, 1997). 

It is thought that the production of extracellular enzymes is regulated by nutrient availa-

bility and energy demand (Sinsabaugh et al., 2009). Therefore, extracellular enzyme ac-

tivities in the rhizosphere are generally higher compared to root-free soils, similarly to 

total microbial biomass and microbial activity measured as respiration or growth rates 

(Badalucco and Nannipieri, 2005). Roots and associated mycorrhizal community are 

known to be major producers of β-glucosidases and acid phosphatases (Conn and 

Dighton, 2000). Despite soil enzymes being partly of plant origin, the microorganisms 

are the main source of enzymes mediating the cycling of main nutrients (C, N, P and S) 

(Aon et al., 2001) and thus, enzyme activity is frequently proportional to microbial bio-

mass (Frankenberger and Dick, 1983). Hence, overall greater microbial biomass and 

higher enzyme activity can be predicted not solely in the rhizosphere but in a whole soil 
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layer with high root density, e.g. in rooted soil as compared with soil without plants, e.g. 

in bare fallow soil.  

The upper 30 cm contain 70–90% of the root biomass of maize (Amos and Walters, 2006), 

where available C sources induce activity of numerous microbial groups, which are usu-

ally limited by N. Nutrient limitation for roots and microorganisms in the rhizosphere is 

far greater than in root-free soil. This leads to strong competition between roots and mi-

croorganisms for nutrients (Kuzyakov and Xu, 2013; Paterson, 2003). Hence, the rhizo-

sphere is not only a hotspot of microbial activity, but also a hotspot of plant-microbial 

interactions including competition, resulting not only in acceleration but under specific 

conditions also in retardation of microbial growth (Blagodatskaya et al., 2014b).   

As microbial communities allocate resources to enzyme production in relation to sub-

strate availability and growth requirements to reduce costs and maximize their resource 

returns (Allison and Vitousek, 2005), we hypothesized that specific microbial growth rates 

increase in rooted soil compared to the fallow control. We suggest plant induced lower 

inorganic N contents in the soil compared to fallow control increase peptidases activities 

(Stursova et al., 2006). We further hypothesized that enzyme activity per unit microbial 

biomass (e.g. specific activity) would increase from 0‒10 to 10‒20 cm, reflecting greater 

microbial allocation to C-cycling enzyme production depending on decreased C availa-

bility (Allison et al., 2011). 

 These hypotheses were tested in a multi-factorial field manipulation experiment with soil 

sampled under maize (rooted soil) and bare fallow at two depths (0‒10 and 10‒20 cm). 

Potential enzyme activities and soil microbial biomass were measured. Microbial growth 

were determined by kinetic approach, due to substrate-induced respiratory response of 

microorganisms, enabling estimation of total and growing biomass of the glucose-con-

suming part of microbial community (Panikov, 1995; Panikov and Sizova, 1996). We 

used substrate-induced respiration (SIR) (Anderson and Domsch, 1978) and substrate-

induced growth respiration (SIGR) of microbial cells. By combining these methods we 

were able to investigate microbial activity in the rhizosphere in order to elucidate the 

effects of rhizodeposits on microbial activity. 
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1.2 Materials and Methods 

1.2.1 Study site 

The experimental agricultural field is located on the terrace plain of the river Leine in the 

north-west of Göttingen (Lower-Saxony), Germany (51°33´N, 9°53´E; 158m NN). The 

area has a temperate climate with a long-term annual mean precipitation of 645 mm and 

an air temperature of 8.7 °C. The dominant soil types are Luvisols. 

In spring 2012, 12 experimental field plots (5 x 5 m) were established and separated from 

each other by buffer stripes of 2 m and 6 m in row and inter-row, respectively. Two treat-

ments, rooted (P) and root-free (F) soil were set up on the experimental plots, with 4 

replicates each. For rooted soil, hybrid maize (Zea mays L, Codisco/TMTD 98% Satec) 

was sown in April 2013 on 4 plots at a density of twelve plants per square meter. In 

addition 4 plots remained unplanted as a bare fallow control. The fallow control plots 

were shaded with blinds (mechanical shading 50% and 80%; Accura NTV oHG, Hei-

denheim). To accomplish similar environmental conditions between the plots, the shading 

level represented a mean leaf area index of plants during the vegetation period.  

1.2.2 Sampling and preparation 

In July 2013, we sampled the soil at two depths (0‒10 cm, 10‒20 cm) for each plot. The 

field moist soil samples were frozen at ‒18°C until the analyses. Freezing is known to 

influence the enzyme activities of extracellular hydrolytic enzymes (Gianfreda and Rug-

giero, 2006; Lee et al., 2007). Following the study of German et al. (2011) we considered, 

however, that freezing would not affect the comparability of rooted versus root-free soil 

as all soil samples were frozen and treated similarly. 

Prior to the analyses, the soil samples were thawed in the refrigerator, sieved (< 2 mm) 

and fine roots and other plant debris were carefully removed with tweezers. The sieved 

field moist soil samples were pre-incubated for 72 h at 22°C. Soil sub-samples of each 

plot and depth were dried at 105 °C (24 h) to determine the soil carbon (Ct), nitrogen (Nt) 
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and moisture contents. The moisture contents of the soil samples ranged from 14% for 

rooted to 18% for fallow soil. Prior analyses the moisture content was adjusted to 60% of 

the water holding capacity (WHC). No significant differences were detected in pH, Ct, or 

Nt content of rooted and root-free sampled soil.  

The measurements of microbial respiration, such as SIR and SIGR were used to determine 

microbial biomass and active microbial biomass as well as microbial growth rates in 

rooted vs. root-free soil to exhibit the responses of microbes to root exudation. Addition-

ally, we determined the dsDNA-extracted microbial biomass C for validation. The poten-

tial hydrolytic extracellular enzyme activities were determined in order to elucidate en-

zyme production strategies of microorganisms due to substrate decomposition. 

1.2.3 dsDNA extraction and quantification procedure 

Total soil DNA was extracted by the FastDNA® SPIN kit for soil (MP Biomedicals, Ger-

many). Extraction procedure was carried out according to the manufacturer’s protocol 

with 0.5 g of pre-incubated soil. The method of DNA isolation involved bead beating 

procedure and binding of DNA to the silica matrix. Before extraction, soils were placed 

into a freezer overnight to ensure higher DNA yields. Thereafter, soils were added to 

lysing tubes, treated with lysis buffer, subjected to bead beating in the FastPrep® instru-

ment and processed by protein precipitation solution. DNA was bound to a silica matrix, 

washed, and eluted in DNase-free water. 

The quantity of dsDNA extract was determined by preparing a 150-fold dilution of the 

extract in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5). Aliquots of 0.1 ml were 

then transferred to 96-well microplates (Brand pureGrade, black). For labeling the 

dsDNA a 200-fold dilution of the dsDNA fluorescence stain PicoGreen® (Molecular 

Probes, Life Technologies, Germany) was prepared in plastic containers. The dye (0.1 

mL) was added to each well with diluted DNA extract (final 300-fold dilution) and left 

to react at room temperature protected from light for 2 min. Fluorescence intensity was 

measured with an automated fluorometric plate-reader (Wallac 1420, Perkin Elmer, 

Turku, Finland) of excitation 485 nm, emission 525 nm and measurement time 1.0 s. 

Afterwards, the dsDNA yield was determined immediately after extraction and expressed 
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as µg dsDNA g-1 dry weight of soil. The dsDNA of bacteriophage lambda (Molecular 

Probes, Life Technologies, Germany) was used as a standard. Samples for the standard 

curve were prepared in TE-buffer in the same way as the experimental samples (Blago-

datskaya et al., 2014a). Conversion factor from dsDNA into microbial-biomass C (FDNA) 

of 5.02 was used (Anderson and Martens, 2013). Microbial biomass was calculated as: 

Cmic (µg g-1 soil) = FDNA × dsDNA (µg g-1 soil)     (1) 

1.2.4 Enzyme assays 

By the use of 4-methylumbelliferone-β-D-cellobioside, 4-methylumbelliferone-β-D-glu-

coside, 4-methylumbelliferone-phosphate, 4-methylumbelliferone-7-β-D-xyloside, L-

leucine-7amino-4-methylcoumarin hydrochloride and L-tyrosine-7amino-4-methyl-

coumarin, the enzyme activities of β-cellobiohydrolase (exo-1,4-β-glucanase, EC 

3.2.1.91), β-glucosidase (EC 3.2.1.21), acid phosphatase (EC 3.1.3.2), β-xylosidase (EC 

3.2.2.27) and leucine-/tyrosine-aminopeptidase (EC 3.4.11.1) were determined, respec-

tively. Half a gram field moist soil was added to 50 ml sterile water in autoclaved jars. 

Aliquots of 50 µl were withdrawn and dispensed in 96-well microplates (Brand pure-

Grade, black) while stirring the suspension. Buffer (80 ml) was added (0.1 M MES buffer, 

pH 6.1 for carbohydrases and phosphatase, 0.05 M TRIZMA buffer, pH 7.8 for leucine-

/tyrosine-aminopeptidase) (Marx et al., 2005). Finally, 100 µl of series concentrations of 

substrate solutions (20, 40, 60, 80, 100, 200, 400 µmol substrate g soil-1) were added to 

the wells. Plates were kept at 21 °C, agitated and measured fluorometrically (excitation 

360 nm; emission 450 nm) after 1 h, 2 h, and 3 h incubation with an automated fluoro-

metric plate-reader (Wallac 1420, Perkin Elmer, Turku, Finland). Fluorescence was con-

verted into an amount of MUB (4-methylumbelliferone) or AMC (7-amino-4-methyl-

coumarin), according to specific standards, which had been prepared in sub-samples from 

the various soil suspensions. The kinetic parameter, Vmax, was estimated using non-linear 

regression techniques (Michaelis-Menten kinetics) (Marx et al., 2005). Each field repli-

cate was measured as an analytical triplicate. 
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1.2.5 Substrate-induced growth respiration and calculation of 
growth parameters 

The substrate induced growth respiration (SIGR) method was conducted in a climate 

chamber (16 °C). Therefore, 23 g of each pre-incubated and moistened (WHC 60%) soil 

sample was incubated in a microcosm after addition of the substrates and nutrients 

(Blagodatsky et al., 2000). The amended substrate mixture contained glucose (10 mg g-1) 

and mineral salts, e.g. 1.9 mg g-1 (NH4)SO4, 2.25 mg g-1 K2HPO4 and 3.8 mg g-1 MgSO4-

7H2O. Instead of talcum, a glucose solution was applied. Glucose was used, because it is 

one of the abundant components of root exudates (Whipps and Lynch, 1983; Derrien et 

al., 2004). Substrate concentrations, sufficient for unlimited exponential growth of mi-

croorganisms, were estimated in preliminary experiments in which different amounts of 

glucose and nutrients were added. The amount of mineral salts was selected so that the 

added substrate did not change the pH of soil (< 0.1). (Blagodatskaya et al., 2007). After 

addition of the substrate-nutrient mixture and stirring with a common, handheld kitchen 

blender, the soil samples were immediately placed into 24 flasks (394 cm3) (Anderson 

and Domsch, 1978). A gas chromatograph (GC 6000 VEGA series 2, Carlo Erba instru-

ments, UK) was modified for automatic sampling, measuring and calibration. The soil 

samples were kept in closed systems (microcosm) under quasi-stationary conditions and 

the evolved CO2 was measured every 120 minutes. 

According to Wutzler et al. (2012) equation (2) is effectively a three parameter equation 

when accepting the following assumptions. During unlimited growth, ʎ may be accepted 

as a basic stoiciometric constant of 0.9 (Panikov and Sizova, 1996). And second YCO2 

assumed to be constant 1.5 during the experiment (Blagodatsky et al., 2000). After Pani-

kov (1995), the growth associated respiration is allowed to change with changing activity 

of microbial biomass, where µmax is maximum specific growth rate, e.g. potential maxi-

mum of fully active cells, r0 is the initial physiological state (0 < r0 < 1), x0 is the initial 

microbial biomass. However, we used the dsDNA derived microbial biomass C contents 

to reduce the parameter of equation (2) and calculated the specific growth rates. 

 (2) 
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In the beginning the curve is often dominated by adapting the physiological state of the 

microbial cells (bacteria and fungi), called the lag-phase. During this phase often only a 

weak increase in microbial biomass (Wutzler et al., 2012) and a linear increase in micro-

bial respiration is observed (data not shown). The lag-phase (tlag) was elucidated as the 

time interval from substrate amendment to the moment when the increasing rate of 

growth-related respiration (B) became as high as the rate of respiration uncoupled from 

the growth of microorganisms (A). 

      (3) 

The following unlimited exponential growth phase is dominated by a growing, active 

microbial biomass. More complete theoretical background and details on equations deri-

vations were described elsewhere (Blagodatsky et al., 2000; Panikov, 1995; Wutzler et 

al., 2012). 

1.2.6 Substrate-induced respiration 

The substrate-induced microbial respiration (SIR) method provides a parameter for the 

potentially active microbial biomass without any growth of microbial cells based on res-

piration measurements following the addition of glucose and mineral salts as it is already 

explained for SIGR. The same amount of soil was incubated in flasks (1098 cm3) for 5 h 

after addition of the substrates. Gas samples (15 ml) were taken hourly and the C concen-

trations were analyzed by gas chromatography (GC 6000 VEGA series 2, Carlo Erba 

instruments, UK). We obtained the CO2 concentrations and calculated the CO2 flux rates. 

The data were corrected by the specific gas flux factor and multiplied with the headspace 

volume. Afterwards, the CO2 fluxes were related to the dry weight of the soil and time 

during the incubation experiment (Anderson and Domsch, 1978). 

Cmic was determined, using the initial rate of substrate-induced respiration (SIR) (Ander-

son and Domsch 1978; Anderson and Joergensen, 1997) and recalculated according to 

the conversion factor of Kaiser et al., (1992). 

Cmic (µg g-1 soil) = 30νCO2 (µL g-1 soil h-1)      (4) 
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1.2.7 Salt-extractable and total N  

Moist soil (7.5 g) was extracted with 30 ml of 0.05 M K2SO4 for 1 h (Bruulsema and 

Duxbury, 1996) by overhead shaking (40 rev min-1). The soil suspension was centrifuged 

for 10 min at approx. 2500 x g. Afterwards, the supernatant was filtered through Rotilabo-

rondfilters (type 15A, Carl Roth GmbH & Co.KG). The N-contents of the K2SO4 extracts 

were measured using a multi N/C analyzer (multi N/C analyzer 2100S, Analytik Jena). 

The total N-contents were measured using a elemental analyzer (NA1110, CE –instru-

ments, Rodana, Milano, Italy). 

1.2.8 Statistical analyses 

The means of four field replicates with standard errors are presented in tables and figures. 

A t-test was applied to characterize the effects of roots and soil depths. When significant 

effects were identified, a multiple post-hoc comparison using the Holm-Sidak method 

(P<0.05) was performed. 

Parameter optimization was restricted to the applied model Equation (2) as indicated by 

maximum values of statistic criteria: r2, the fraction of total variation explained by the 

model defined as ratio of model weighted sum of squares to total weighted sum of 

squares. Outliers were identified by the ROUT method, based on the False Discovery 

Rate (FDR), where Q got specified, which was the maximum desired FDR (Motulsky and 

Brown, 2006). The data of potential enzyme activities were treated in the same way. 
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1.3 Results 

1.3.1 The Rhizosphere effect 

Microbial biomass C (dsDNA derived) in the surface-layer was 42% higher in rooted 

versus root-free soil. This was confirmed by higher activities of β-glucosidase (4.7-fold) 

and leucine-aminopeptidase (2-fold) as well as by SIR (23%) in the rooted surface-layer 

compared to root-free soil. Higher specific enzyme activities (potential enzyme activity 

per DNA content) were observed for leucine-aminopeptidase and β-glucosidase in rooted 

compared to root-free soil (Table II.1/7). Microbial biomass C based on the DNA content 

(Eq. 1, Figure II.1/6) showed the same trends as that assessed by SIR for rooted and root-

free soil in the first 10 cm depth (Eq. 4, Figure II.1/7). No significant differences were 

detected for the maximum specific growth rates (µmax) and β-xylosidase between rooted 

and root-free soils. Total N- and salt-extractable N-contents reduced for rooted soil com-

pared the fallow control (Figure II.1/10). Especially the K2SO4-extractable N-contents 

decreased by 26% in the first 10 cm and 53% at 10‒20 cm depth for rooted vs. root-free 

soil. 

 

Figure II.1/6 Extractable dsDNA contents (DNA, ±SEM) in root-free (F) and rooted (P) 
soil at two depths (0‒10 and 10‒20 cm). The dsDNA-Cmic contents were calculated 

using a factor of 5.02 (Anderson and Martens, 2013). Significant root effects are 
indicated by different capital letters (P<0.05). 
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Extractable dsDNA contents (DNA, ±SEM) in root-free (F) and rooted (P) soil at two 

depths (0‒10 and 10‒20 cm). The dsDNA-Cmic contents were calculated using a factor 

of 5.02 (Anderson and Martens, 2013). Significant root effects are indicated by different 

capital letters (P<0.05). 

 

Figure II.1/7 Comparison of substrate-induced respiration (SIR)-Cmic contents and 
dsDNA-Cmic contents (Cmic, ±SEM) for root-free (F) and rooted (P) soil at two depths. 

Significant root effects comparing SIR-Cmic contents and DNA-Cmic contents are 
indicated by different capital letters (P<0.05). 

 

1.3.2 Effects on microbial indicators with soil depth 

The effect of depth on microbial parameters was more pronounced in rooted versus root-

free soil. Microbial biomass C decreased by 14% with depth in rooted soil (Table II.1/6; 

SIR derived). The β-glucosidase activity was reduced by 23% and acid phosphatase by 

25% for the rooted soil at 10‒20 cm depth compared to the surface-layer (Figure II.1/8). 

The β-cellobiohydrolase activities in rooted soil almost tripled for rooted soil at 10‒20 

cm compared to 0‒10 cm depth. No clear pattern with depth for C-cycling specific en-

zymes was determined (Table II.1/6). Despite the microbial specific growth rates were 
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independent on the root presence, these rates significantly slowed down for 42% in the 

lower layer compared to the first 10 cm depth (Figure II.1/9). 

 

Figure II.1/8 Potential hydrolytic exo-enzyme activities (Vmax; ± SEM, n = 12) for root-
free (F) and rooted (P) soil at two depths (0‒10 and 10‒20 cm) are presented. 

Significant root effects are indicated by different capital letters. Lower-case letters 
signed significant root effects with depth (P<0.05). 
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Table II.1/6 Respiration parameters, active growing microbial biomass and cell masses 
are given for rooted and root-free soil at 0‒10 and 10‒20 cm soil depth. Significant ef-
fects of roots are indicated by different capital letters (P<0.05). Lower-case letters 
signed significant root effects with depth (P<0.05). 

  SIR Active growing Cmic  Lag time Total cell mass 

Soil µg CO2-C g-1  h-1  µg C g-1  %  h µg g-1  

Rooted 0-10 cm 9.1±0.2 0.2±0.01a 0.1 27 619±10 

Root-free 0-10 cm 7.4±0.5 0.3±0.03 0.2 23 437±9 

Rooted 10-20 cm 8.0±0.2 3.5±0.3Ab 1.3 18 616±12 

Root-free 10-20 cm 7.8±0.3 0.6±0.07B 0.3 30 456±8 

 

The maximum specific microbial growth rates (µmax) varied between 0.11±0.015 and 

0.19±0.03 h-1 (Eq. 2) overall the soil samples (Figure II.1/9). The actively growing mi-

crobial biomass did not exceed 1.3% of total biomass and was highest in rooted soil at 

10‒20 cm depth. Active part doubled with depth for root-free and increased by 17.5 times 

for rooted soil with the depth. In rooted soil microorganisms started to grow 12 h earlier 

at 10‒20 cm depth compared with root-free soil (Table II.1/6). 
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Figure II.1/9 Maximal specific growth rates (µmax, ± SEM) are presented for rooted and 
root-free soil at 0‒10 and 10‒20 cm soil depth. Significant effects are assessed by 
Mann-Whitney test (P<0.05) and indicated by different capital letters. Lower-case 

letters signed significant root effects with depth (P<0.05). A confidence band (95%) 
was calculated for rooted and root-free soil to be aware of outlier. 

 
Table II.1/7 Specific enzyme activities (potential enzyme activity per dsDNA content) 
(± SEM) are calculated for rooted and root-free soil at 0‒10 and 10‒20 cm soil depth. 
Significant root effects are indicated by different capital letters (P<0.05). Lower-case 
letters signed significant root effects with depth (P<0.05). 

Potential enzyme activity to dsDNA ratios [nmol h-1 mg-1 dsDNA] 

Soil Tyrosine 
Acid phos-

phate 

β-xylo-

sidase 
Leucine 

β-cellobiohydro-

lase 

β-gluco-

sidase 

Root-free 0-10 

cm 

23.0 ± 

0.4a 
107.1 ± 1.2aA 7.7 ± 0.1 

64.8 ± 

1.6aA 
132.6 ± 2.5aA 

25.5 ± 

0.4aA 

Rooted 0-10 cm 
18.0 ± 

0.3a 
64.8 ± 0.9aB 5.4 ± 0.1 

86.4 ± 

1.9aB 
16.2 ± 0.1aB 

84.6 ± 

0.9aB 

Root-free 10-20 

cm 

31.8 ± 

0.5b 
85.6 ± 1.3bA 9.8 ± 0.1 

31.8 ± 

0.4bA 
58.7 ± 1.9bA 61.1 ± 1.5b 

Rooted 10-20 

cm 

29.0 ± 

0.3b 
48.9 ± 0.6bB 5.4 ± 0.1 

72.5 ± 

0.7bB 
48.9 ± 1.5bB 65.2 ± 1.8b 
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1.4 Discussion 

1.4.1 Microbial biomass, growth and activity in the rhizosphere 
and root-free soil 

The abundance of roots clearly enhanced microbial biomass by increased rhizodeposition. 

30‒60% of the photosynthetically fixed C can be translocated to the roots and up to 40% 

of the fixed C can be lost by rhizodeposition (Kuzyakov and Domanski, 2000; Neumann 

and Römheld, 2007). At our field site about 50% of the roots were allocated to the upper 

10 cm (Pausch et al., 2013). The decreasing root biomass with depth led to lower rhizo-

deposition (Pausch et al., 2013), which reflected a positive correlation (Van der Krift et 

al., 2001). As a consequence of lower root biomass and rhizodeposits, microbial turnover 

increased and specific growth rates retarded at 10‒20 cm depth compared to the surface-

layer (Blagodatskaya et al., 2014b).  
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Figure II.1/10 Total nitrogen and salt-extractable nitrogen (N, ± SEM) are presented for 
rooted (P) and root-free soil (F) at 0‒10 and 10‒20 cm soil depth. Significant root 

effects are indicated by different capital letters (P < 0.05). 
 

The decreased input of easily decomposable substrates by rhizodeposition with depth may 

induce stronger competition for substrates between microorganisms, especially for N 

(Fontaine et al., 2003; Fischer et al., 2013; Paterson, 2003), which resulted in lower mi-

crobial biomass at 10‒20 cm depth (Badalucco and Nannipieri, 2005) or in slower growth 

(Merckx et al., 1987). Slower growth rates but greater fraction of active biomass and 

higher activity of cellulases at 10‒20 cm depth versus the first 10 cm depth indicated the 

shift in abundances to slow-growing oligotrophic microorganisms (Blagodatskaya et al., 

2014a, 2014c). This was related to the high abundance of cellulolytic enzymes, which 

was possibly associated with dead roots. The decrease of microbial specific growth rates 

with the depth could be a consequence of growth limitation by the depletion of N (Helal 

und Sauerbeck, 1986; Merckx et al., 1987). The competition for N between microbe-mi-

crobe or plant-microbe interactions in rooted soil (Badri et al., 2009; Bowen and Rovira, 
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1999; Paterson, 2003) may have shifted the microbial community structure from r-se-

lected to slow-growing (K-selected) microorganisms (Blagodatskaya et al., 2009; Fierer 

et al., 2007).  

The 23% greater microbial respiration response in rooted versus root-free soils indicated 

a high fraction of potentially active microorganisms (Blagodatskaya and Kuzyakov, 

2013). Microbial cells, which maintain a potentially activity status (Bodegom, 2007), are 

able to immediately utilize an occasional substrate input (De Nobili et al., 2001). This 

was confirmed by a shorter lag-period for rooted soil at 10‒20 cm depth, reflecting a high 

microbial affinity to the respective substrate input. 

1.4.2 Potential and specific enzyme activities in rooted soil 

The increased activities of leucine-aminopeptidase for rooted soil compared to the fallow 

control indicated the higher energy investments of microbes in producing proteolytic exo-

enzymes (e.g. leucine-aminopeptidase) in order to utilize N-bonded molecules. This sug-

gests that lower contents of inorganic N are available for microbes in rooted soil (Stursova 

et al., 2006).  Conformingly, the salt-extractable N- and total N-contents were reduced in 

the rooted sphere, especially at 10‒20 cm depth. Due to reduced accessibility to proteo-

lytic degradation immobilized enzymes often demonstrate higher stability compared with 

free extracellular enzymes (Allison, 2006). Plant roots as sinks for excess N enhanced 

continued mineralization driven by microbes, but shifted interaction of enzymatic sys-

tems (Pinton et al., 2007). 

As the increased costs for enzyme production reduce the fitness of microbes, because 

those resources cannot be invested for reproduction (Allison et al., 2011), the specific 

microbial growth rates were retarded in rooted vs. root-free soil (Blagodatskaya et al., 

2014b). 

The leucine-aminopeptidase and β-glucosidase activities decreased for rooted soil at the 

first 20 cm depth, which was in line with the studies of Steinweg et al., (2013) and Taylor 

et al., (2012).  However, the β-cellobiohydrolase activity increased and β-xylosidase ac-

tivity stayed constant in rooted soil at the first 20 cm depth. Enzymatic systems of β-
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cellobiohydrolases and β-glucosidases showed a contra-balanced behavior, especially in 

the surface-layer. For substrate utilization it is suggested that soil microorganisms use 

glucan (cellulose) as the preferred substrate irrespective of the type of residue (Amin et 

al., 2014, Leitner et al., 2012).  

In 10‒20 cm depth, the ratios of β-xylosidase and β-glucosidase to dsDNA contents raised 

for root-free soil indicated lower availability of C sources for enzymatic C utilization 

compared to the first 10 cm (Stone et al., 2014). This is in accordance to the specific 

activities of C-cycling enzymes, reported to increase with depth and reflecting greater 

microbial allocation to C-cycling enzyme production depending on decreased C availa-

bility (Allison et al., 2011).  
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1.5 Conclusions 

The applied combination of approaches: analysis of the double-stranded DNA contents, 

enzyme activities and respiration kinetics, gave quantitative insights in microbial traits in 

rooted vs. root-free soil. Strong rhizosphere effects were elucidated for most of the meas-

ured microbial activity indicators. Thus rooted soil had greater microbial biomass, poten-

tial enzyme activity rates and substrate-induced respiration compared to root-free soil. 

Similar specific microbial growth rates and dsDNA-derived microbial biomass contents 

were demonstrated for rooted vs. root-free soil when we compared the two soil layer. 

However, the active microbial biomass increased strongly in the rhizosphere at the 10‒

20 cm depth. 

The demand for N by microbes and maize plants clearly affected the potential and specific 

enzyme activities in the rooted sphere of an arable soil. Thus, the competition for that 

resource induced strong microbial- and plant-interactions, which boosted proteolytic en-

zyme activities (e.g. leucine-aminopeptidases) and hampered microbial growth in rooted 

soil. We conclude that the rhizosphere, namely rooted soil served as an area for microbes 

and extracellular enzymes, which strongly depended on the present substrates in the 

rooted zone of maize plants.  
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Research highlights 

 Living roots increased microbial biomass by 179% and microbial respiration by 

100% in rooted topsoil compared to fallow soil. 

 The catalytic efficiency (Vmax/Km) of acid phosphatase was higher in rhizo-

sphere and detritusphere compared to fallow. 

 The Km reduction of all enzymes in 10‒20 cm versus the upper 10 cm indicated 

increasing substrate affinity with depth. 

 The catalytic efficiency increased from 0‒10 to 10‒20 cm for β-glucosidase, acid 

phosphatase and β-xylosidase. 
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Abstract 

Microbial and enzyme functioning depends on the quality of substrates, which strongly 

differ in bare soil and in the hotspots of microbial activity such as the rhizosphere and 

detritusphere. We established a field experiment to determine the effects of contrasting 

substrate quality, namely, soil organic matter, maize shoot litter (detritusphere) and maize 

rhizodeposits (rhizosphere) on microorganisms and their extracellular enzymes in an ar-

able soil. Kinetic parameters (Vmax and Km) of four hydrolytic extracellular enzymes: β-

cellobiohydrolase, β-glucosidase, acid phosphate and β-xylosidase were analyzed in 0‒

10 and 10‒20 cm to elucidate the effects of substrate content on substrate affinity and 

catalytic efficiency (Vmax/Km). Living roots increased microbial biomass by 179% and 

microbial respiration by 100% compared to fallow soil. Lower enzyme affinities to sub-

strates (e.g. 93% for β-glucosidase) in rooted soil pointed to the domination of r-strate-

gists, which are favored in the decomposition of labile organics common in the rhizo-

sphere. No differences in catalytic properties of cellulolytic enzymes were detected be-

tween bulk and litter-treated soil, indicating the recalcitrance of organics in both treat-

ments. The rhizosphere and detritusphere effects on enzyme kinetics were negligible in 

10‒20 cm, except β-glucosidase. The reduction of Km of all enzymes in 10‒20 cm versus 

the upper 10 cm indicated increasing substrate affinity with depth. Nonetheless, the cata-

lytic efficiency increased from 0‒10 to 10‒20 cm (e.g. up to 420% for acid phosphatase), 

reflecting changes in properties and functioning of enzymatic systems. This pointed to a 

shift towards a more K-selected microbial community with higher affinity and more effi-

cient substrate utilization. It also indicated the microbial adaptation to decreasing sub-

strate contents with depth by altered enzyme functioning. Overall, the catalytic properties 

of cellulolytic enzymes were much more strongly affected by plants (substrate quality in 

the rhizosphere and detritusphere compared to bare fallow) than by depth (substrate con-

tent). 

 

Key words: Enzyme kinetics, enzyme affinity, performance constant, substrate-induced 

respiration, microbial biomass  
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2.1 Introduction  

Microbial community composition in soils is governed by substrate quantity, quality and 

input regularity. Microhabitats with high substrate input but contrasting quality such as 

rhizosphere and detritusphere differ in their dominating microbial species (Kandeler et 

al., 2001; Marschner et al., 2004, 2012; Kuzyakov and Blagodatskaya, 2015). As a result 

of the differences in microbial key players, the decomposition pathways of organic com-

pounds are significantly different in the rhizosphere and detritusphere.  

In the rhizosphere, low molecular weight organic substrates, such as root released exu-

dates, lysates and mucilage may accelerate microbial growth (Neumann and Römheld, 

2007). The microbes become more active and thereby, produce more intracellular and 

extracellular enzymes compared to bare fallow (Burns, 1978, 1982). Hence, rhizodeposi-

tion directly couples plant and microbial activities in the root channel. Besides the regular 

input of rhizodeposits, root-litter is abundant as a substrate source for microbial decom-

position. However, the small differences in C availability due to the root-litter do not 

affect the impact of root-exudation on soil organic matter decomposition (de Graaff et al., 

2014). 

The detritusphere is characterized by high concentrations of easily degradable C sources, 

particularly at the early stages of residue decomposition (Bastian et al., 2009; Poll et al., 

2010). As a result, the remaining substrates in the detritusphere are mainly polymeric 

plant residues of low degradability, for example cellulose and hemicelluloses (Nannipieri 

et al., 2012). Besides fast microbial uptake, the diffusion of soluble C and advective 

transport is frequently responsible for the depletion of the water-soluble C compounds 

(Gregorich et al., 2003; Poll et al., 2008). The recalcitrant plant-originated compounds 

require cascades of enzymes causing slower decomposition (Theuerl and Buscot, 2010). 

Their mineralization involves the action of several cellulases (e.g. β-cellobiohydrolase, 

β-glucosidase) to produce oligomeric cellobiose and to further degrade it to monomeric 

glucan (Nannipieri et al., 2012). The β-xylosidase is an exo-cellular enzyme involved in 



2.1 Introduction 66 

 

66 
 
 
 
 

the degradation of the major polymeric constituents of plant litter by degrading the hem-

icellulose xylan (linear polysaccharide β-1,4-xylan) into its readily available compounds 

xylose and other carbohydrates (Sinsabaugh and Moorhead, 1994).  

The quantity and quality of plant litter inputs to the soil (both above- and belowground) 

influences substrate availability for microbes. This may control microbial community 

structure, and alter enzyme systems (Paul and Clark, 1996; Horwath, 2007). It remains 

unclear which factor – substrate quantity or quality – is mainly responsible for the cata-

lytic properties of enzymes hydrolyzing plant organics.  

We compared the rooted and the litter-treated soil to a bare fallow soil, suggesting lower 

microbial biomass and microbial respiration due to lower C availability for the litter-

treated and the fallow soil. Easily available substrates, such as root exudates, are quickly 

consumed by microorganisms with enzymes of low substrate affinity (typical for fast-

growing r-strategists), reflecting higher Km values (Fierer et al., 2007; MacArthur and 

Wilson, 1967). The slow-growing K-strategists with enzymes of high substrate affinity 

(lower Km) are better adapted for growth on poorly degradable substrates (e.g. on the litter 

channel) (Blagodatskaya et al., 2009; Dorodnikov et al., 2009). Therefore, in hotspots 

with contrasting substrate quality, the shift in species domination may result in production 

of iso-enzymes, i.e. enzymes with the same function but different catalytic properties 

(Khalili et al., 2011) reflected in the enzyme kinetics (Marx et al., 2001). Furthermore, 

hydrolytic exo-enzymes in contrasting locations in the soil (i.e. immobilized vs. free) may 

change intrinsic enzyme properties, such as Km values (Paulson and Kurtz, 1970; Rao et 

al., 1996). 

There is a lack of studies comparing kinetic parameters of enzymes in hotspots of micro-

bial activity such as the rhizosphere and detritusphere. Therefore, we measured the sub-

strate affinity (Km) and catalytic efficiency (Vmax/Km) (Gianfreda et al., 1995; Moscatelli 

et al., 2012) of 4 extracellular enzymes (β-cellobiohydrolase, β-glucosidase, acid phos-

phatase, β-xylosidase) in the vicinity of living roots of maize (rhizosphere) and maize 

litter (detritusphere).  
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According to evolutionary-economic principles the microbial communities allocate re-

sources to enzyme production in relation to substrate availability and growth require-

ments to reduce costs and maximize their resource returns (Allison and Vitousek, 2005). 

The metabolic energy required for protein synthesis and excretion, as well as the C and 

nutrient content of the enzymes themselves are considered as costs of enzyme production 

in soils. The resource benefits of enzyme production can be invested in reproduction ef-

fort of microorganisms (Allison et al., 2011). Available forms of N and P are suggested 

to suppress the production of N- and P-acquiring enzymes and stimulate the microbial 

allocation to C-degrading enzymes (Allison et al. 2011; Sinsabaugh and Moorhead, 

1994). 

We hypothesized, that the kinetic parameters (Vmax, Km) of hydrolytic enzymes are dif-

ferent in microbial communities formed in soil hotspots as compared with bulk soil. To 

prove the effects of the substrate contents, the soil was sampled from 0‒10 and 10‒20 cm 

depths reflecting similar quality but lower input of substrate with depth. We further hy-

pothesized that decreasing substrate content with depth increases the substrate affinity 

and catalytic efficiency.  

To test these hypotheses we determined the parameters of microbial respiration (Ander-

son and Domsch, 1985; Anderson and Joergensen, 1997; Cheng and Coleman, 1989) and 

of enzyme kinetics (Nannipieri et al., 2012; Sinsabaugh, 2010), as indicators of organic 

C mineralization and substrate-specific utilization (Kourtev et al., 2002). This was done 

in the rhizosphere, detritusphere and soil from a bare fallow. This is the first study, com-

bining such general microbial activity indicators as respiration with specific indicators as 

the kinetics of extracellular hydrolytic enzymes. This enables elucidating the effect of 

two contrasting C sources ‒ rhizodeposits and plant litter ‒ on the functioning of microbial 

communities under field conditions.  
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2.2 Materials and methods 

2.2.1  Study site and sampling 

This study was conducted at an experimental agricultural site in the north-west of Göttin-

gen (Lower-Saxony), Germany (51°33´N, 9°53´E; 158m NN). The area has a temperate 

climate with a long-term annual mean precipitation of 645 mm and an air temperature of 

8.7°C. The dominant soil types are loamy haplic -Luvisols, partly with slight stagnic 

properties (Table I.2/1).  

In spring 2012, 12 experimental plots (5 x 5 m) were established in the field and separated 

from each other by buffer stripes of 2 m and 6 m in row and inter-row, respectively. Three 

treatments, – rooted, litter amended and fallow soil – were set up on the experimental 

plots, with 4 replicates each.  

All experimental plots were tilled with a chisel plough to a depth of 10 cm (tillage date: 

12th of April 2012). For the rooted treatment, hybrid maize (Zea mays L., Codisco/TMTD 

98% Satec) was sown on 4 plots at a density of 12 plants m-2 (sowing date: 16th of April 

2012) N fertilizers (ammonium nitrate urea solution: 110 kg N ha-1 and NP fertilizer (di-

ammonium phosphate: 110 kg N ha-1) were amended to all treatments, shortly before and 

after sowing the maize. For the litter treatment 4 plots received 0.8 kg m-2 dry maize 

residues with a C -content of about 44%. Litter application took place in 10 cm soil depth 

in early June at the start of the crop growth period to ensure the same conditions for the 

herbivore and detritivore community in the soil. In addition 4 plots remained unplanted 

as a fallow control. All treatments were kept free from vegetation by manually removing 

weeds. The obtained differences in the enzyme systems between 0‒10 cm and 10‒20 cm 

were thus established within a relatively short period. The shading level represented a 

mean leaf area index of plants during the vegetation period to accomplish comparable 

environmental conditions between the plots. 

In July, the soil was sampled at 0‒10 cm and 10‒20 cm on each plot. Soil sub-samples 

from each plot and depths were dried at 105°C (24 h) to determine the soil moisture con-

tent. The water contents of the sampled soil ranged from 28% for fallow to 25% for the 
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rooted soil, which was significantly lower than the fallow control (P < 0.001). All soil 

samples were frozen at ‒18°C until the analyses. Prior to the analysis the soil samples 

were thawed at 4°C. After thawing the soil samples were sieved (< 2 mm) and fine roots 

and other plant debris were carefully removed with tweezers and the soil was pre-condi-

tioned at 22°C for 72 h. Afterwards, the moisture contents of the soil samples were ad-

justed to 60% of water holding capacity (WHC) for analyses. No significant differences 

were detected in pH, Ct, or Nt contents of rooted, litter-treated and fallow soil. 

2.2.2 Analyses  

The experiments were conducted with the 4 plot replicates for each treatment. Enzyme 

activities, microbial biomass and CO2 data were expressed as means ± standard errors of 

means (±SEM). 

Soil microbial biomass 

Soil microbial biomass C (Cmic) was estimated using the chloroform fumigation extrac-

tion (CFE) method described by Brookes et al. (1985) and Vance et al. (1987). Non-

fumigated, moist soil (7.5 g) was extracted with 30 ml of 0.05 M K2SO4 for 1 h 

(Bruulsema and Duxbury, 1996) by overhead shaking (40 rev min-1). The same amount 

of soils was fumigated with ethanol-free chloroform (80 ml) first and then extracted in 

the same way. The fumigation was carried out in desiccators at room temperature for 24 

h. The soil suspension of the fumigated and the non-fumigated samples was centrifuged 

for 10 min at approx. 2500 x g. Afterwards, the supernatant was filtered through Rotilabo-

rondfilters (type 15A, Carl Roth GmbH & Co.KG). The organic C-content of the K2SO4 

extracts was measured using a multi N/C analyzer (multi N/C analyzer 2100S, Analytik 

Jena).  

Microbial biomass C and microbial biomass N were calculated by dividing the microbial 

C or N flush (EC; EN), i.e. the difference between extracted C or N from fumigated and 

non-fumigated soil samples, with a kEC or kEN factor of 0.45 (Joergensen, 1996; Wu et al., 

1990). 



2.2 Materials and methods 70 

 

70 
 
 
 
 

Basal and substrate-induced microbial respiration 

Microbial respiration was determined by substrate-induced respiration (SIR) based on 

CO2 efflux after adding glucose and mineral salts (Anderson and Domsch, 1985; Ander-

son and Joergensen, 1997). The SIR method was conducted in a climate chamber (22°C). 

Thereby, 23 g (dry weight) of each soil sample was incubated in flasks for 4 h after addi-

tion of the substrate. The amended substrate mixture contained glucose (10 mg g-1), tal-

cum (20 mg g-1) and mineral salts, i.e. 1.9 mg g-1 (NH4)SO4, 2.25 mg g-1 K2HPO4 and 3.8 

mg g-1 MgSO4-7H2O (Blagodatsky et al., 2000). Gas samples (15 ml) were taken hourly 

and the CO2 concentrations were analyzed by gas chromatography (GC 6000 VEGA se-

ries 2, Carlo Erba instruments, UK). The basal respiration (BR) was measured in the same 

way as the SIR without any substrate amendment and a sampling time interval of 2 h. 

To obtain CO2 flux rates, the slopes of hourly measured CO2 concentrations were cor-

rected by the specific gas flux and multiplied with the headspace volume (1098 cm3). We 

then related the CO2 fluxes to the soil carbon content and incubation duration. The meta-

bolic quotient (qCO2) indirectly reflects the microbial maintenance expenses, availability 

and efficiency of microbial substrate utilization and was determined by the ratio of BR to 

Cmic (Anderson and Domsch, 1990).  

Enzyme assays 

We used fluorogenic methylumbelliferone-based (MU) substrates to measure the enzyme 

activities of β-cellobiohydrolase, β-glucosidase, acid phosphates and β-xylosidase were 

measured (Marx et al., 2001). The following 4-Methylumbelliferone derivatives were 

used as substrates: EC 3.2.1.21, 4-MU-β-D-glucoside; EC 3.2.2.27, 4-MU-β-D-xylopy-

ranoside; EC 3.2.1.91, 4-MU-β-D-cellobioside; EC 3.2.1.30, 4-MU-phosphate. Half a 

gram of moist soil was added in 50 ml sterile water in autoclaved jars and was dispersed 

by an ultrasonic disaggregator (50 J s-1 for 120 s (De Cesare et al., 2000). Aliquots of 50 

µl were withdrawn and dispensed in 96-well microplates (Brand pureGrade, black) while 

stirring the suspension. In addition to four field replicates we used three analytical repli-

cates for each soil sample and each substrate. Fifty microliter of 0.1 M 2-(N-morpholino) 

ethanesulfonic acid (MES) (pH 6.1) was used as buffer (German et al., 2011). The sub-

strates were pre-solved in 300 µl Dimethyl-sulfoxide (DMSO) and were further diluted 

by MES to 1 mM a working solution. Finally, 100 µl of series concentrations of substrate 
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solutions (20, 40, 60, 80, 100, 200, 400 µmol substrate g soil-1) were added to the wells. 

Plates were kept at 21°C, agitated and measured fluorometrically (excitation 360 nm; 

emission 450 nm) after 1 h, 2 h, and 3 h incubation with an automated fluorometric plate-

reader (Wallac 1420, Perkin Elmer, Turku, Finland).  

The substrate-dependent rate of reaction (v) mediated by hydrolytic enzymes, followed 

Michaelis-Menten kinetics (Marx et al., 2001, 2005; Nannipieri et al., 2012; Sinsabaugh, 

2010).  

v = (Vmax x [S]) / (Km + [S])   (1) 

Plotting the initial velocity of reaction (v) against increasing concentrations of substrate 

([S]) yields a rectangular hyperbola. Based on experimental data, the calculation enables 

characterizing the specific enzyme-substrate reaction by 2 kinetic parameters: 1) Vmax, 

the maximal velocity of enzyme catalysis that theoretically is attained when the enzyme 

has been saturated by an infinite concentration of substrate, and 2) Km, the Michaelis 

constant, which is numerically equal to the concentration of substrate for the half-maxi-

mal velocity (Marx et al., 2005). Vmax is responsible for decomposition rates at saturating 

substrate concentrations; the Km reflects the enzyme affinity to the substrate. We calcu-

lated the catalytic efficiency factor (catalytic efficiency/specificity constant/performance 

constant), known as the ratio between Vmax and Km (Gianfreda et al., 1995; Koshland, 

2002; Moscatelli et al., 2012). The catalytic efficiency reflects the total enzyme catalytic 

process combining enzyme–substrate complex dissociation (Vmax) and the rate of en-

zyme–substrate complex formation (Km) (Cornish-Bowden, 1995; Koshland, 2002). 

Significant effects of soil treatments were assessed by ANOVA at P < 0.05. The param-

eters of the equation were fitted by minimizing the least-square sum using GraphPad Ver-

sion 6 software (Prism, USA). The three analytical replicates of enzyme activity curves 

were used for each of four replicated soil samples at two depths (0‒10 and 10‒20 cm). 

Parameter optimization was restricted to the applied model equation as indicated by max-

imum values of statistic criteria: r2, the fraction of total variation explained by the model 

defined as the ratio of model weighted sum of squares to total weighted sum of squares. 

Outliers were identified by the ROUT method, based on the False Discovery Rate (FDR), 
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where Q was specified, which was the maximum desired FDR (Motulsky and Brown, 

2006). 
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2.3 Results 

2.3.1 Microbial biomass C and N, extractable organic C and 
extractable N 

Living roots strongly increased microbial C and N (Figure II.2/11 a, b). Cmic and Nmic 

contents in the upper 10 cm of the rooted soil were 178% and 222% higher than the fallow 

treatment. The average microbial biomass C content in fallow soil was 128 (±46) µg Cmic 

g-1 soil, and the microbial biomass N was 20 (±5) µg Nmic g-1. The litter application did 

not affect Cmic and Nmic compared to the fallow. Living roots increased microbial biomass 

C and N only in the upper 10 cm, whereas below 10 cm the root effect was negligible. 

Furthermore, the salt-extractable organic C (EOC) and salt-extractable N (EN) contents 

doubled in the rooted soil compared with the litter-amended plots, indicating abundant 

easily available organics in the upper 10 cm (Figure II.2/11 c, d). The EOC and EN con-

tents increased through planting compared to litter-amended and fallow soil solely in the 

upper 10 cm. Rhizodeposition increased Cmic, Nmic, EOC and EN for rooted soil compared 

to litter-amended and fallow soil only in the first 10 cm. 
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Figure II.2/11 a) Microbial biomass C (Cmic), b) extractable organic carbon (EOC), c) 
microbial biomass N (Nmic) and d) extractable nitrogen (EN) (±SEM) for fallow, litter-

amended and rooted soil at two depths (0‒10 and 10‒20 cm). Significant treatment 
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effects are assessed by ANOVA (P<0.05) and indicated by different lower-case letters. 
Capital letters denote significant soil treatment effects with depth. 

2.3.2 Basal respiration and substrate-induced respiration 

The basal respiration (BR) (80±20 µg CO2-C g-1 Corg h-1) of rooted soil in the upper layer 

was twice as high relative to litter-amended and fallow soil (Figure II.2/12 a). In 10‒20 

cm, BR of the planted soil showed significantly (P<0.05) reduced rates compared to the 

upper 10 cm.  

The largest SIR values were measured for rooted soil in 0‒10 cm. A 2-fold greater CO2 

production rate (0.66±0.07 mg CO2-C mg-1 g-1 Corg h-1) was determined for rooted com-

pared to litter-amended and fallow soil (Figure II.2/12 b). The effect of planting disap-

peared in the 10‒20 cm layer and showed comparable BR and SIR values for the litter-

amended and fallow soil. For litter-amended soil the BR:SIR ratio was lower than for 

rooted soil, especially in 10‒20 cm (Figure II.2/12 c). The decomposition of easily avail-

able organics in the rhizosphere clearly increased microbial respiration (BR and SIR) rel-

ative to litter-treated and fallow soil in the surface layer. 
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Figure II.2/12 a) Basal respiration (BR), b) substrate-induced respiration (SIR), c) 
respiratory quotient (BR:SIR ratio) and d) metabolic quotient (qCO2) (±SEM) for fallow, 

litter-amended and rooted soils at two depths (0‒10 and 10‒20 cm). Significant 
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treatment effects are assessed by ANOVA (P<0.05) and indicated by different lower-
case letters. Capital letters denote significant soil treatment effects with depth. 

2.3.3 Enzyme kinetics 

Living plants strongly stimulated the β-glucosidase activity in the upper 10 cm resulting 

in the highest maximal reaction rate (Vmax) compared to litter-amended and fallow soil 

(Figure II.2/13 a; Table II.2/9). The Vmax of β-glucosidase and β-cellobiohydrolase in-

creased 2-fold for rooted soil in the upper layer at substrate saturation compared to fallow 

soil (Figure II.2/13 a, b). This indicates high production of glycolytic enzymes by the 

microbes. The rates of β-glucosidase, acid phosphatase and β-cellobiohydrolase reduced 

for rooted soil (P < 0.05) from 0‒10 to 10‒20 cm depth (Figure II.2/13 a, b, c).  

 

Table II.2/8 Kinetic parameters (Vmax and Km; ±SEM) of extracellular hydrolytic en-
zymes at 0‒10 cm and 10‒20 cm for fallow, litter-amended and rooted soils. Lower-
case letters indicate significant differences (P<0.05) of Vmax and Km by ANOVA with 
post-hoc Tukey multiple comparison of different treatments at same depth, whereas cap-
ital letters indicate the comparison with depth. 

Depth 

Treat-

ment β-cellobiohydrolase β-glucosidase 

  Vmax SEM Km SEM 

Vmax/

Km Vmax SEM Km SEM 

Vmax/K

m 

[cm]   [nmol g-1 h-1]   

[µmol 

g-1]     [nmol g-1 h-1]   [µmol g-1]     

Ϭ‒ϭϬ Fallow 1.6b 0.1 26.1b 4.9 0.06 8.1b 0.3 105.9b 9.0 0.08 

 Litter 2.1b 0.1 49.3b 8.2 0.04 8.3b 0.4 124.9bA 13.5 0.07 

  Rooted 3.4aA 0.4 97.3aA 22.8 0.03 15.0aA 0.8 204.5aA 21.5 0.07 

ϭϬ‒
20 Fallow 2.2 0.2 50.7 11.9 0.04 6.4b 0.3 57.3b 6.5 0.11 

 Litter 2.4 0.2 37.8 7.8 0.06 7.0b 0.4 68.5bB 9.9 0.10 

  Rooted 1.9B 0.1 44.7B 6.2 0.04 8.2aB 0.5 129.0aB 14.8 0.06 
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Table II.2/8 Kinetic parameters (Vmax and Km; ±SEM) of extracellular hydrolytic en-
zymes at 0‒10 cm and 10‒20 cm for fallow, litter-amended and rooted soils. Lower-
case letters indicate significant differences (P<0.05) of Vmax and Km by ANOVA 
with post-hoc Tukey multiple comparison of different treatments at same depth, 
whereas cap-ital letters indicate the comparison with depth. 

Depth  

Treat-

ment Acid phosphatase  β-xylosidase 

  Vmax SEM Km SEM 

Vmax/

Km Vmax SEM Km SEM 

Vmax/K

m 

[cm]   [nmol g-1 h-1]   

[µmol 

g-1]     [nmol g-1 h-1]   [µmol g-1]     

Ϭ‒ϭϬ Fallow 7.7aA 0.4 

164.2a

A 19.3 0.05 0.54A 0.03 92.6A 13.7 0.006 

 Litter 5.8bA 0.3 79.5bA 12.0 0.07 0.46 0.03 71.9 10.2 0.006 

  Rooted 7.2acA 0.4 98.5bA 13.8 0.07 0.45 0.04 81.5 15.5 0.006 

ϭϬ‒
20 Fallow 4.6B 0.2 22.5B 4.8 0.21 0.39B 0.01 35.4B 4.1 0.011 

 Litter 4.4B 0.2 15.8B 3.3 0.28 0.43 0.02 42.1 6.8 0.010 

  Rooted 4.8B 0.2 24.3B 4.7 0.20 0.54 0.02 50.6 5.7 0.011 

 

For the rooted soil we determined about 2- and 3-fold higher Km values for β-glucosidase 

and β-cellobiohydrolase, respectively, compared to that of the fallow control in 0‒10 cm. 

This reflects a lower affinity to the substrate. The Km decreased with depth for all ana-

lyzed enzymes except for β-cellobiohydrolase where Km increased in the deeper soil layer 

of the fallow soil (Table II.2/9). For acid phosphatase we recorded a 6-fold reduction of 

Km from 0‒10 cm to the 10‒20 cm depth (fallow soil, Table II.2/9). The consistent de-

crease of Km with depth indicated the reduction of substrates in deeper the soil layer. 
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Figure II.2/13 Enzyme kinetics (±SEM): a) β-glucosidase, b) β-cellobiohydrolase, c) 
acid phosphatase and d) β-xylosidase. The blue color indicates the fallow, litter-

amended and rooted soils. Statistics are given in Table II.2/9. 

 

The catalytic efficiency (Vmax/Km) of acid phosphatase was higher in rhizosphere and 

detritusphere compared to fallow soil in the upper 10 cm, with significantly higher en-

zyme affinity to the substrate (Table II.2/9). Furthermore the Vmax/Km ratio increased with 

depth for β-glucosidase, acid phosphatase and β-xylosidase, and was maximal for acid 

phosphatase. 

The two-way ANOVA for Vmax and Km with treatment (substrate quality) and depth (sub-

strate content) as main factors revealed that the effects of both roots and depth were en-

zyme-specific (Figure II.2/14). The strongest effect for substrate quality was revealed for 
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Vmax of β-glucosidase, β-cellobiohydrolase and acid phosphatase, explaining 44, 22 and 

11% of variation, respectively. The β-cellobiohydrolase and β-xylosidase were also 

strongly affected by substrate quality and depth interactions. For Km of β-glucosidase, 

48% of the variation could be explained by the substrate quality factor (Figure II.2/14). 

Overall, the cellulolytic enzymes were more strongly affected by substrate quality, 

whereas for phosphatase and xylanase the depth effect was most important. 

 

Figure II.2/14 Contribution of the two factors substrate quality and substrate content and 
their interactions (two depths: 0‒10 and 10‒20 cm) for variation of Vmax and Km. 

Results of two-way ANOVA. 

 

The enzyme activities for β-glucosidase and β-cellobiohydrolase were greater in rooted 

plots relative to litter-treated and fallow ones. Moreover, all measured enzyme affinities 

to the substrates increased strongly from 0‒10 cm to the 10‒20 cm depth, indicating a 

shift in enzymatic systems. 
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2.4 Discussion 

2.4.1 Effects of roots 

We determined that the strong effects of living plants in the upper 10 cm yielded 179, 

222, 100 and 100% higher values for Cmic, Nmic, BR, and SIR, respectively, compared to 

the fallow soil (Figure II.2/11, Figure II.2/12). This indicates that microbial proliferation 

was strongly related to the quantity and quality of substrates available for growth. Meta-

analysis of microbial biomass and respiration data from various studies showed 62% and 

80% higher values in rhizosphere soil compared to bulk soil, respectively (Finzi et al., 

2014). For rooted soil we found a 44% reduction of microbial biomass content from 0‒

10 to 10‒20 cm, reflecting the role of root exudates. Maize roots are concentrated in the 

upper soil layers (Amos and Walters, 2006). At our field site about 50% of the roots were 

allocated to the upper 10 cm (Pausch et al., 2013). Since rhizodeposition is positively 

correlated to root biomass (Van der Krift et al., 2001), the decreasing root biomass led to 

lower rhizodeposition with depth (Pausch et al., 2013). Accordingly, EOC, Nmic, EN con-

tents and microbial respiration were reduced from 0‒10 to 10‒20 cm for rooted soil by 

59, 57 and 63%, respectively. This reduction corresponded with the decrease in the rela-

tive amounts of water -soluble C with increasing distance to wheat roots (Merbach et al., 

1999; Hafner et al., 2014). Remarkably, EN was lowest for rooted soil compared with 

litter-amended soil and fallow soil in 10‒20 cm. We suggest that a reduced rhizodeposi-

tion in 10‒20 cm ‒ and thus less EOC and EN ‒ promotes substrate competition between 

microbes and plants (Blagodatskaya et al., 2014b; Fontaine et al., 2003; Kuzyakov and 

Xu, 2013). The Michaelis constant (Km) doubled for β-glucosidase and tripled for β-cel-

lobiohydrolase in the rhizosphere compared to fallow soil, indicating lower enzyme af-

finity to the substrate. Easily available substrates such as glucose (as a component of root 

exudates) stimulated fast -growing r-strategists in the upper 10 cm (Blagodatskaya et al., 

2009; Pianka, 1970). This agrees with the increased SIR (Figure II.2/12).  

The great reduction of Km for acid phosphatase, β-glucosidase and β-xylosidase with 

depth (Table II.2/9, Figure II.2/13) means high rates of reaction already present at very 
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low substrate concentrations (Davidson and Janssens, 2006; Davidson et al., 2006). Re-

markably, all tested enzymes reflected this strong effect of decreasing substrate content 

with depth. This confirms that the activities of extracellular enzymes are mainly a func-

tion of the amount of available substrate (Kandeler et al., 1999) and of the microbial bio-

mass present to potentially synthesize them (Geisseler and Horwath, 2009). Due to re-

duced rhizodeposition in the lower layer, the strong competition for easily degradable C 

sources favors the K-selected microbes, which are reported to be more competitive under 

resource limitation even in the rhizosphere (Blagodatskaya et al., 2014b). Accordingly, 

we determined that the catalytic efficiency of all measured hydrolytic enzymes (except 

β-cellobiohydrolase, fallow soil; β-glucosidase, rooted soil) increased from 0‒10 to 10‒

20 cm, again indicating a shift to K-selected microbes (Table 2, Figure3). Therefore, a 

shift in microbial strategy towards higher substrate affinities of enzyme systems sug-

gested a change in substrate content (Blagodatskaya et al., 2009). Such physiological ad-

aptations of microorganisms to substrate content and quality are more important for effi-

cient substrate utilization than the microbial community structure (Stone et al., 2014). 

Extracellular enzyme systems adapted to the altered substrate supply resulted in a change 

of catalytic efficiency and in a corresponding shift in the functional structure of the mi-

crobial community. Thus, a lower catalytic efficiency indicated the dominance of zy-

mogenous microbial communities (r-strategists) in 0‒10 cm depth as compared with 10‒

20 cm depth, where the K-strategists relatively dominated (Table 2) (Blagodatskaya et 

al., 2009; Panikov, 1995).  

High variations in the unexplained variance of the measured enzymes (Figure II.2/14), 

reflected highly enzyme-specific determining factors. Increased probability of explained 

variance for β-glucosidase and acid phosphatase pointed to strong impacts of quantity and 

quality of the substrate. 

2.4.2 Effects of litter 

Cmic, EN, EOC, BR and SIR values were similar for the litter-amended and fallow soil 

(Figure II.2/11, Figure II.2/12). This further confirmed that total Cmic does not change 
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after litter addition (Potthoff et al., 2008). Basal and substrate-induced respiration indi-

cated a more efficient C mineralization for the detritusphere than the rhizosphere, sug-

gesting a lower microbial turnover in the detritusphere. Empirical studies of N minerali-

zation have agreed upon a threshold of litter C:N ratio (e.g., 20‒40) below which micro-

bial growth will not be N limited. As such, microbes may shift the equilibrium production 

of enzymes to favor C-acquiring ones (Tian and Shi, 2014). The β-cellobiohydrolase ac-

tivity, however, was highest in the litter-amended soil in 10‒20 cm compared to rooted 

and fallow plots (Figure II.2/13). This can be due to the quality of the amended maize 

leaves, which mostly consist of nonlignified primary cell walls, thus making the cellulose 

and hemicellulose less resistant to enzymes. In contrast, the abundant root-litter in the 

maize planted treatment, which is rich in secondary cell walls (Amin et al., 2014). The 

litter C:N ratios frequently show a negative relation to cellulose and β-glucosidase activ-

ities (Leitner et al., 2012; Tian and Shi, 2014). This is in line with the comparatively low 

C:N ratio (21.5) of the used maize litter (Potthoff et al., 2005; 2008) and the increased 

response of β-cellobiohydrolase activity (Blagodatskaya et al., 2014a). Thus, litter C:N is 

a good indicator for the total amount, but not for the dynamics of soil enzyme activity 

(Tian and Shi, 2014). Nonetheless, the reduced substrate affinity (Table 2) for litter-

amended soil throughout all tested extracellular enzymes were in line with a lower 

BR:SIR ratio, especially in 10-20 cm. This points to a shift in substrate availability and 

thus to changes in the efficiency of C and N utilization.  

When comparing the litter-treated with rooted soil, the microbial community develops 

according to substrate quality and regularity of the input. Therefore, slow-growing mi-

croorganisms with more efficient metabolism are usually developed on low available 

plant residues as compared with easily decomposable root exudates. Thus, the C-cycling 

hydrolytic exo-enzymes demonstrated slower decomposition rates in litter amended soil, 

but similar or higher catalytic efficiencies compared to rooted soil. This may reflect a 

lower waste metabolism of microorganisms in plant litter-treated soil. 
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2.5 Conclusions 

The β-glucosidase, β-cellobiohydrolase and acid phosphatase were strongly affected by 

substrate quality, which differed in the rhizosphere and detritusphere of maize. Thus, the 

contrasting substrate quality of living roots and shoot litter created hot spots for the mi-

croorganisms, which produced extracellular enzymes for their distinct needs. A pro-

nounced effect of roots was determined in the upper 10 cm caused by rhizodeposition, 

which maintained an increased microbial biomass C and N, EOC, EN, microbial respira-

tion as well as enzyme activities in the rhizosphere compared to the detritusphere and 

bare fallow. This effect disappeared in 10‒20 cm due to lower contents of easily available 

substrates, reflecting a lower root biomass. A clear increase of enzyme affinity in 10‒20 

cm compared to the first 10 cm, pointed a shift towards a more K-selected microbial 

community.  

We conclude that the availability of C and nutrients in the soil clearly affected the meta-

bolic respiratory response as well as the efficiency of enzymes mediating the catalytic 

reaction, especially in the presence of roots. Substrates with different availability (e.g. 

root exdudates, plant residues) changed functional properties of the soil microbial com-

munity and induced a shift in enzymatic systems. These changes are crucial for microor-

ganisms to benefit from the costs of energy investments, caused by a stronger competition 

for resources. 
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Research highlights 

 A field experiment with maize or maize litter amendment was conducted  

 Soil profiles were characterized by various microbial activity indicators  

 Rhizodeposition decreased relative Vmax and proportion of C- to N-cycling en-

zymes 

 Strong N limitation increased proteolytic enzyme activities in planted topsoil 

 The substrate effect (rhizodeposits vs. litter) was relevant only in the topsoil 
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Abstract 

The decomposition of soil organic matter depends strongly on its availability to microor-

ganisms and their enzymes. The rhizosphere and detritusphere are microbial hot spots due 

to additional substrate input, leading to high abundance, specific species diversity and 

functional diversity of microbial communities. However, rhizosphere and detritusphere 

differ in substrate quality, localization, and duration of input. We hypothesized that the 

contrasting substrate availability between rhizosphere and detritusphere affects the activ-

ity of microorganisms and associated enzymes. Organic carbon (C) from the rhizosphere 

and detritusphere decreases with soil depth and, consequently, microbial hot spots be-

come rarer and competition for C and nutrients increases. In deeper soil (> 40 cm depth) 

the amount and quality of substrates is expected to decrease and, therefore, the effect of 

contrasting substrate input to disappear. Plant N uptake is expected to induce lower N 

contents in the rhizosphere of maize compared to the detritusphere and bare fallow. These 

hypotheses were tested in a factorial field experiment with 1) maize-planted, 2) maize 

litter-amended, and 3) bare sites. Enzyme kinetic parameters (Vmax, Km, Ka), extracta-

ble organic C and microbial biomass C were compared in soil affected from rhizosphere 

and detritusphere throughout the profile to 70 cm depth, to assess microbial C and nutrient 

limitations. A decrease in enzyme activity with depth due to resource scarcity and lower 

substrate quality appeared in planted and litter-amended soil. N limitation in planted soil 

increased the activity and substrate affinity of proteolytic enzymes to provide for micro-

bial N demand through SOM decomposition. This was in line with lower Vmax ratios 

(Vmax for C-cycling enzymes divided by Vmax for N-cycling enzymes) in planted rela-

tive to litter-amended topsoil. The catalytic efficiency of enzymes decreased 2- to 20-fold 

from top- (< 40 cm) to subsoil (> 40 cm), irrespective of the substrate input. Substrate 

quality in the rhizosphere and detritusphere affected enzyme activities only in the topsoil, 

whereas a sharp decline of C input with depth led to similar activities in the subsoil. Most 

of the enzyme indexes reflected shifts in allocation of C and nutrients in the rhizosphere 

and detritusphere. The presented results underline the role of microorganisms as critical 

links in the C and nutrient transfers in the rhizosphere and detritusphere. 
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3.1 Introduction 

Enzymes in soil catalyze nearly all important transformations in the carbon (C), nitrogen 

(N), phosphorus (P) and sulfur (S) cycles (Aon et al., 2001; Wallenstein and Burns, 2011). 

Decomposition of organics is strongly dependent on microbes and enzymes, which are 

especially abundant in the rhizosphere and detritusphere – two main microbial hot spot 

environments in soil. The rhizosphere is characterized by high density and quality of sub-

strates for microorganisms (Garbeva et al., 2008; Marschner et al., 2012, 2001), and plants 

provide a variety of C and energy sources from their roots (Gregory, 2006; Paterson, 

2003; Paterson et al., 2007). The detritusphere contains large amounts of cellulose, hem-

icelluloses and lignin, as main components of plant residues (Kandeler, 1999; Marschner 

et al., 2012; Nannipieri et al., 2012).  

The microbial C:N:P ratios (ecological stoichiometry) are frequently used to indicate how 

allocation of C and nutrients by microorganisms influence microbial demands on soil 

pools (Cleveland and Liptzin, 2007; Heuck and Spohn, 2015; Sinsabaugh et al., 2015). 

Nowadays it is widely accepted that microbial C:N:P stoichiometry affects microbial 

mineralization of C sources (Mooshammer et al., 2012). Microbial respiration (CO2) and 

N2O production are well known indicators describing microbial activities in soil (Blago-

datskaya et al., 2014). In combination with the ratios of commonly measured enzyme 

activities (Table II.3/9), these indicators provide insights into the microbial community 

that is investing energy for microbial fitness (Sinsabaugh et al., 2012, 2008; Tapia-Torres 

et al., 2015). The production of extracellular enzymes is regulated by nutrient availability 

and energy demand (Sinsabaugh et al., 2009). Thus, enzyme activities are reliable micro-

bial activity indicators and are closely interrelated with soil quality (Bending et al., 2004; 

Paudel et al., 2011). 

Most enzyme studies are restricted to the topsoil, despite the fact that microbial substrate 

utilization takes place throughout the whole soil profile (Sinsabaugh et al., 1993; Sinsa-

baugh and Moorhead, 1994; Vranova et al., 2013). Furthermore, only the potential en-

zyme activity is considered in most studies, whereas rates of enzyme-substrate complex 

dissociation and enzyme-substrate complex formation are neglected (Koshland, 2002). 
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Therefore, it is of great interest to study how microbial functioning and enzyme systems 

vary throughout the soil profile.  

As interactions between substrate composition, microbial competition, and nutrient avail-

ability are complex, we established a factorial field manipulation experiment including 

maize-planted, maize litter-amended and bare fallow sites. These sites differed (1) in 

sources of different substrate quality (root-derived vs. litter-derived vs. none) and (2) in 

the distribution of substrates with depth. Both substrate quantity and quality strongly de-

crease with soil depth (Fierer et al., 2003a), because most roots are localized in the topsoil, 

so the rates of C input to subsoil are low (Fierer et al., 2003 b). Therefore, the subsoil 

microbial communities differ in composition and activity from the surface communities 

(Blume et al., 2002; Fierer et al., 2003a; Fritze et al., 2000).  

We combined substrate-induced emission of carbon dioxide (CO2) and nitrous oxide 

(N2O) with kinetics of the enzymes β-glucosidase (BG), β-cellobiohydrolase (CE), β-xy-

losidase (BX), acid phosphatase (AP), and leucine- (LE) and tyrosine- (TY) aminopepti-

dases to disentangle the effects of substrate quality and substrate amount on microbial 

activity along the depth gradient. Several approaches for integrating the various enzyme 

activities into unified indexes were compared (Table II.3/9) (Hill et al., 2014; Moorhead 

et al., 2016, 2013; Nannipieri et al., 2012; Sinsabaugh et al., 2008). These activity indexes 

of multiple enzymes were related to dissolved organic C (DOC) and extractable nitrogen 

(EN).  

We hypothesized that the contrasting substrate availability between planted soil and litter-

amended soil, reflecting the rhizosphere and detritusphere, respectively, would affect the 

activity of microorganisms and associated enzymes. The effect of the contrasting sub-

strate availabilities on microbial substrate utilization was predicted to decline with depth 

due to the lower amount and quality of substrates in the subsoil (> 40 cm depth) compared 

to the topsoil. Furthermore, we hypothesized that lower N contents in the maize-planted 

soil, due to plant N uptake, would lead to stronger competition between microbes com-

pared to the fallow control. This, in turn, would increase proteases, because of an in-

versely proportional relationship to low substrate availability (Olander and Vitousek, 

2000; Sims and Wander, 2002; Stursova et al., 2006). To our knowledge this is the first 
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study using a broad range of activity indicators to elucidate the tight interactions between 

microbial activity and contrasting substrate input down the soil profile. 

 

Table II.3/9 Enzyme indexes 

Enzyme indexes Description References 

1) Specific enzyme 

activity 

Potential activity to microbial 

biomass 

Trasar-Cepeda et al., 

2008; Stone et al., 2014 

2) Catalytic efficiency Catalytic properties of same 

enzyme (Vmax/Km) 

Moscatelli et al., 2012 

3) Vmax ratio of C- to N- 

and C- to P-cycling 

enzymes 

Relative activities of C- vs. N- and C- 

vs. P-acquiring enzymes 

Sinsabaugh et al., 2008 

4) Proportions of C- to N- 

and C- to P-cycling 

enzymes 

Proportional enzyme activities  of C- 

vs. N- and C- vs. P-acquiring 

enzymes 

Hill et al., 2014; 

Moorhead et al., 2013 

5) Vector length Relative C vs. nutrient aquisition Moorhead et al., 2013, 

Moorhead et al., 2016 

6) Vector angle Relative P vs. N limitation Moorhead et al., 2013, 

Moorhead et al., 2016 
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3.2 Material and Methods 

3.2.1 Study site 

The experimental arable field was located in the north-west of Göttingen, Lower-Saxony, 

Germany (51°33´N, 9°53´E; 158 m NN). The area has a temperate climate with a long-

term mean annual precipitation of 645 mm and mean air temperature of 8.7 °C. The dom-

inant soil types are Luvisols occasionally with stagnic properties (Table I.2/1; Kramer et 

al., 2012; Pausch et al., 2013).  

In April 2012 the field was tilled with a chisel plough to a depth of 12 cm and maize was 

sown at a density of 12 grains m-2. Nitrogen fertilizers (ammonium nitrate urea solution: 

110 kg N ha-1 and diammonium phosphate: 110 kg N ha-1) were applied to all treatments, 

shortly before and after sowing the maize. The corn was not irrigated during plant growth. 

In September 2012 corncobs were harvested and maize plants were cut at a height of 10 

cm above soil surface. The maize above-ground biomass was hackled to a particle size of 

1 cm2 and air-dried to gain litter. In April 2013 the herb layer developed during spring 

was removed by Glyphosate (4 l ha-1). Three weeks later the soil was tilled to a depth of 

12 cm, maize sown at a density of 9 grains m-2 and fertilized similarly to 2012. In Sep-

tember 2013 maize plants were harvested and removed from the experimental field site. 

3.2.2 Treatments 

In May 2012 a total of 12 experimental plots (size 5 x 5 m) were conducted and arranged 

in two adjacent rows separated by a 5 m buffer stripe within and 2 m buffer stripes be-

tween rows. Three treatments, each replicated four times, were established differing in 

resource quality: plant (maize as crop), litter (application of maize litter) and fallow. 

Maize was removed from the eight plots within the first three weeks after seeding to set 

up the litter and fallow treatments. For the litter-treated soil four plots received 0.8 kg m-

2 dry maize litter (equivalent to 0.35 kg C m-2, C-content = 44%) approximating the 

above-ground biomass of maize in June. Litter was grubbed into the first 10 cm of soil on 
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June the 6th 2013. This coincided with the start of the crop growth period to ensure the 

same conditions for the herbivore and detritivore communities. To accomplish compara-

ble environmental conditions between plots, the litter-amended and the fallow control 

plots were shaded with blinds (mechanical shading; AGROFLOR Kunststoff GmbH, 

Wolfurt, Austria). The shading level represented the mean leaf area index of plants during 

the vegetation period. In addition, plots were regularly weeded to prevent plant carbon 

input by herbs. 

3.2.3 Soil sampling and preparation 

We sampled in each plot soil from 0‒50 cm in 10 cm increments, and from 60‒70 cm 

depth, of each plot in July 2013.  Each plot was sampled in one position, using a Riverside 

auger (inner diameter 5 cm, Eijkelkamp, Giesbeek, The Netherlands). The soil samples 

were frozen at -18°C until analysis. Prior to analysis the soil samples were thawed at 4 

°C. After thawing the soil samples were sieved (< 2 mm) and fine roots and other plant 

debris were carefully removed with tweezers. The soil was then pre-incubated at 22 °C 

for 72 h. Soil sub-samples from each plot and depth were dried at 105 °C for 24 h to 

determine the moisture content. Moisture contents ranged from 14% for planted to 18% 

for fallow soil. Prior to incubation the moisture content was adjusted to 60% of the water 

holding capacity (WHC).  

3.2.4 Substrate-induced respiration  

The substrate-induced respiration (SIR) method is generally used to measure microbial 

biomass by amendment with easily available C. We determined the CO2 efflux following 

the addition of glucose and mineral salts (Anderson and Domsch, 1985; Anderson and 

Joergensen, 1997). Production of N2O was also measured as an indicator of N sources for 

nitrification and denitrification. In total, 25 g samples of soil were incubated in flasks for 

4 hours after addition of the substrate. The SIR substrate mixture contained glucose (10 

mg g-1) and mineral salts (1.9 mg g-1 (NH4)2SO4; 2.25 mg g-1 K2HPO4; and 3.8 mg g-1 

MgSO4.7H2O) (Blagodatsky et al., 2000). Glucose is an important components of root 
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exudates (Derrien et al., 2004; Whipps and Lynch, 1983). The amount of mineral salts 

was selected so that the added substrate did not change soil pH (change < 0.1) (Blagodat-

skaya et al., 2007). Gas samples (15 ml) were taken hourly and the CO2 as well as N2O 

concentrations were analysed by gas chromatography (GC 6000 VEGA series 2, Carlo 

Erba instruments, UK). The slopes of measured hourly CO2 and N2O concentrations were 

corrected by the specific gas flux (according to the gas constant, air pressure and temper-

ature) and multiplied by the headspace volume (1098 cm3) to obtain the individual flux 

rates for each soil sample. Microbial biomass C (Cmic) was determined using the individ-

ual flux rate (Anderson and Joergensen, 1997) and calculated according to the equation 

by Anderson and Domsch (1978, 2010): 

Cmic (µg g-1 soil) = (µl CO2 g-1 soil h-1) x 40.04     

  (1) 

3.2.5 Dissolved organic carbon and extractable nitrogen 

Moist soil (7.5 g) was extracted with 30 ml of 0.05 M K2SO4 for 1 h by overhead shaking 

(40 rpm) (Bruulsema and Duxbury, 1996). The soil suspension was centrifuged for 10 

min at 2500 x g. The supernatant was then filtered through Rotilabo-rondfilters (type 15A, 

Carl Roth GmbH & Co.KG). The organic C and N content of the K2SO4 extracts were 

measured using a multi N/C analyzer (multi N/C analyzer 2100S, Analytic Jena).  

3.2.6 Enzyme assays 

We used 4-methylumbelliferone-β-D-cellobioside, 4-methylumbelliferone-β-D-gluco-

side, 4-methylumbelliferone-phosphate, 4-methylumbelliferone-7-β-D-xyloside, L-leu-

cine-7amino-4-methylcoumarin hydrochloride and L-tyrosine-7amino-4-methylcouma-

rin to determine the enzyme activities of β-cellobiohydrolase (exo-1,4-β-glucanase, EC 

3.2.1.91), β-glucosidase (EC 3.2.1.21), acid phosphatase (EC 3.1.3.2), β-xylosidase (EC 

3.2.2.27) and leucine-/tyrosine-aminopeptidase (EC 3.4.11.1), respectively. β-gluco-

sidase (BG), β-cellobiohydrolase (CE) and β-xylosidase (BX) represented enzymes in the 
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C-cycle, whereas leucine- (LE) and tyrosine- (TY) aminopeptidases represented N-cy-

cling enzymes. Acid phosphatase (AP) is responsible for substrate utilization in the P-

cycle.  

Fluorogenic substrates enable direct quantitative comparison of the activity of enzymes 

responsible for various functions (Marx et al., 2002; Nannipieri et al., 2012). This is be-

cause the fluorogenic compounds (MUF or AMC) are enzymatically released in amounts 

equimolar to the number of bonds broken (corresponding to enzyme function). Enzyme 

activity is therefore expressed in the same units for various different enzymes, based on 

calibration by MUF or AMC. This standard analysis of enzyme kinetics is based on the 

assumption that the binding of substrate to one enzyme binding site does not affect the 

affinity or activity of an adjacent site. That is, neither substrate nor product acts as an 

allosteric modulator to alter the enzyme velocity.  

Half a gram of soil was added to 50 ml sterile water in autoclaved jars and dispersed by 

an ultrasonic disaggregator (50 J s-1 for 120 s; De Cesare et al., 2000). Aliquots of 50 µl 

were withdrawn while stirring the suspension and dispensed into 96-well microplates 

(Brand pureGrade, black). Fifty microliter of buffer was added (0.1 M MES buffer, pH 

6.1 for carbohydrases and phosphatase, 0.05 M TRIZMA buffer, pH 7.8 for leucine-/ty-

rosine-aminopeptidase) (Marx et al., 2005, 2001). Finally, 100 µl of substrate solution 

was added at a series of concentrations (20, 40, 60, 80, 100, 200, 400 µmol substrate g-1 

soil). Plates were kept at 22 °C, agitated and measured fluorometrically (excitation 360 

nm; emission 450 nm) after 1 h, 2 h, and 3 h incubation using an automated fluorometric 

plate reader (Wallac 1420, Perkin Elmer, Turku, Finland). Fluorescence was converted 

into an amount of MUB (4-methylumbelliferone) or AMC (7-amino-4-methylcoumarin) 

by reference to the fluorescence of standard solutions, which had been prepared in sub-

samples of the various soil suspensions. Each field replicate was measured as an analyti-

cal triplicate.  

The kinetic parameters Vmax and Km were estimated using a non-linear regression model 

(Michaelis-Menten kinetics) (Marx et al., 2001). Vmax is the decomposition rate at satu-

rating substrate concentrations; Km reflects the enzyme´s affinity for the substrate. The 

Km corresponds to the weighted sum of rate constants for the dissociation of the enzyme-

substrate complex divided by the rate constant for its formation (Koshland, 2002). 
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Vmax and Cmic were used to determine the specific enzyme activity (Table II.3/9; Index 1) 

(Nannipieri et al., 2012; Stone et al., 2014). Furthermore, we determined the catalytic 

efficiency (Table II.3/9; Index 2) for each treatment and enzyme (Gianfreda et al., 1995; 

Koshland, 2002; Moscatelli et al., 2012). It reflects the total enzyme catalytic process 

combining enzyme-substrate complex dissociation and the rate of enzyme-substrate com-

plex formation (Cornish-Bowden, 1995; Koshland, 2002). These parameters were se-

lected to compare the catalytic properties of each enzyme with different substrate input 

(litter, rhizodeposits) (Cervelli et al., 1973; Esti et al., 2011).  

We integrated the activities of enzymes involved in the same process as indicators of 

organic matter degradation and nutrient transformation. It is assumed that the sum of ma-

jor C-acquiring enzyme activities is a better indicator of total C-acquisition than BG alone 

(Bell et al., 2014; Nannipieri et al., 2012). Thus, enzyme activity ratios (Table II.3/9; 

Index 3 and Index 4) were used as a tool for examining relative allocation to energy versus 

nutrient acquisition (Stone et al., 2014).  

We translated the enzyme activity proportions (TAC/(TAC+TAP)) and 

(TAC/(TAC+TAN)) (Sinsabaugh, 2008) into vector lengths and directions (angles) that 

provide clear metrics of relative C limitation vs. nutrient limitation (Moorhead et al., 

2016, 2013). The angle quantifies the relative P vs. N limitation (Supplementary Figure 

1b; Moorhead et al., 2016). Enzyme activity toward P acquisition is reflected by the steep-

ness of the vector angle. With increasing enzyme production toward C acquisition relative 

to N and P, the vector length increases (Supplementary Figure II.3/20). The increasing 

vector length is interpreted as a relative increase in C limitation, and increasing vector 

angle as a relative increase in P vs. N limitation (Moorhead et al., 2013). 

Vector length was determined as the square root of the sum of the squared values of x and 

y. Relative C- vs. P-acquiring enzyme activities were represented by x and the relative C- 

vs. N-acquiring activities by y (Moorhead et al., 2016). 

Vector length = SQRT (x2+y2)    (2) 

The vector angle was calculated as the arctangent of the line extending from the plot 

origin to point (x, y) (Moorhead et al., 2016): 
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Angle = DEGREES (ATAN2 (x, y))   (3) 

3.2.7 Statistics 

The means of four field replicates with standard errors are presented in tables and figures. 

The Shapiro-Wilk test was applied to test for normality. We used Pearson correlation 

coefficients to interpret the degree of linear relationships. Multiple t-tests were applied to 

characterize the effects of contrasting substrate input (litter, rhizodeposits) and soil depths 

(each layer was tested separately). When significant effects were identified, a multiple 

post-hoc comparison using the Holm-Sidak test (P<0.05) was performed. The kinetic pa-

rameters were fitted by minimizing the least-square sum using GraphPad Version 6 soft-

ware (Prism, USA). The three analytical replicates of enzyme activity curves were used 

for each of the four replicated soil samples at each depth. Parameter optimization was 

restricted to the applied model equation as indicated by maximum values of r2. Outliers 

were identified by the ROUT method, based on the False Discovery Rate (FDR), where 

Q was specified as the maximum desired FDR (Motulsky and Brown, 2006). 
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3.3 Results 

3.3.1 Microbial biomass C and N2O production 

Microbial biomass C (Cmic), determined by the SIR method, declined sharply with depth 

(Figure II.3/15 a, b) and was higher in planted soil than in litter-treated (P<0.01) and 

fallow soils (P<0.05) in the upper 10 cm (Figure II.3/15 a, b). Cmic was strongly correlated 

to SOC content for litter-treated (r2=0.98, P<0.05) and fallow soil (r2=0.98, P<0.05), 

whereas Cmic was not significantly correlated to SOC content in planted soil (r2=0.31) 

(not shown). Total organic C and N content at each depth were similar between the treat-

ments (Figure 2). Furthermore, SIR-derived microbial biomass was closely correlated to 

N2O production, irrespective of substrate quality (planted, r2=0.96, P<0.001; litter, 

r2=0.92, P<0.01; fallow, r2=0.89, P<0.05) (not shown). However, when comparing the 

specific enzyme activities (Table II.3/9; Index 1) of leucine aminopeptidase (LE) and 

tyrosine aminopeptidase (TY) with N2O, the relationships between either LE or TY and 

N2O production shifted to a negative correlation (r between -0.21 and -0.62) with depth.  

The highest N2O production was measured in the top 10 cm with similar intensities for 

all treatments (Figure II.3/15 c). N2O emission in planted soil dropped by 67% from 0‒

10 to 10‒20 cm depth. N2O production at 10‒20 cm in planted soil was much lower (58%) 

than that of the litter-amended and fallow soil at corresponding depth.  
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Figure II.3/15 Microbial respiration CO2, b) microbial biomass, c) N2O d) dissolved 
organic C (DOC) and e) dissolved N contents (DN) with depth for bare fallow (Fallow), 

litter-amended (Litter) and rooted (Plant) soil. Significant differences between the 
treatments are indicated by lower case letters. Capital letters are used to show 

significant differences with depth (P<0.05). 

3.3.2 Dissolved organic carbon and extractable nitrogen 

Dissolved organic C (DOC) content was significantly (P<0.05) higher in the surface layer 

of planted compared to fallow soil, indicating the importance of labile C in the rhizo-

sphere (Figure II.3/15 c). Extractable nitrogen (EN) content was reduced in planted soil 

compared to litter-amended soil by 39, 61, and 45% at 0‒10, 10‒20, and 20‒30 cm depths, 
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respectively. EN content declined from 10‒20 to 20‒30 cm depth for litter-amended and 

fallow soil by 37 and 33%, respectively (Figure 1d). 

 

Figure II.3/16 Total carbon (Ctot) and nitrogen (Ntot) contents with depth for bare fallow 
(Fallow), litter-amended (Litter) and rooted (Plant) soil. 

3.3.3 Soil enzymes 

3.3.3.1 Enzyme indexes 

It is assumed that the sum of major C-acquiring enzyme activities is a better indicator of 

total C-acquisition than BG alone. Therefore, we compared proportional enzyme activi-

ties (Table II.3/9; Index 4) between the treatments and with depth. When we reduce the 

information on TAC by using only BG as C-acquiring enzyme 

(Vmax(BG)/[Vmax(BG)+Vmax (AP)]) and compare it with the proportions of all measured 

C-acquiring enzymes (TAC/(TAC+TAP)), lower values were obtained when only BG 

was used as a representative for C-cycling hydrolases in the surface layer of litter-

amended and bare fallow soil (Figure II.3/17 a, b). This was constant with specific en-

zyme activities of CE and BX, which were respectively 88 and 69% lower for planted 

than for litter-treated soil at 0‒10 cm depth, reflecting strong cellulolytic decomposition 

of plant litter (Supplementary Table II.3/10). In deeper soil layer this effect disappeared.  
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Figure II.3/17 Proportions of C- to P- cycling enzymes with depth for fallow (F), litter-
amended (L) and rooted soil (P). a) Proportions of β-glucosidase (BG) to acid 

phosphatase (AP); b) Proportions of β-glucosidase (BG), β-xylosidase (BX), β-
cellobiohydrolase (CE) to acid phosphatase (AP), and c) Proportions of BG, BX, AP to 
leucine- (LE) and tyrosine- (TY) aminopeptidase. Significant differences between the 

treatments are indicated by lower case letters (P<0.05). 
 

Potential (Vmax) and specific (Vs) enzyme activities of LE in the upper 10 cm were higher 

for planted than for litter-amended and fallow soil (Supplementary Table II.3/10), indi-

cating higher production of proteolytic enzymes. This was confirmed by the sum of N-

degrading enzyme activities in the upper 20 cm, which was 41 (0‒10 cm) and 43% (10‒

20 cm) higher in planted soil than in litter-amended soil (Figure II.3/18). The higher pro-

teolytic activity in planted soil was corroborated by lower proportional enzyme activities 

(TAC/(TAC+TAN)) and lower Vmax ratio of C- to N-cycling enzymes (TAC/TAN; Figure 

4). In the upper 20 cm, a higher activity ratio (P<0.05) of C- to N-cycling enzymes was 

determined for litter-treated than for planted soil (Figure II.3/18). Vector length (Equation 

2) and angle (Equation 3) did not show evidence for N limitation in planted soil, but rather 

C limitation (30‒40 cm) (Supplementary Figure II.3/20).  
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Figure II.3/18 Sum of potential activity rates (Vmax) of N-cycling enzymes (left); Vmax 
ratio between C-cycling (β-glucosidase (BG), β-xylosidase (BX), β-cellobiohydrolase 
(CE) and N-cycling enzymes (leucine- (LE) and tyrosine- (TY) aminopeptidase) with 

depth for bare fallow (Fallow), litter-amended (Litter) and rooted (Plant) soil. 
Significant differences between the treatments are indicated by lower case letters. 

Capital letters were used to show significant differences with depth (P<0.05). 

 

3.3.3.2 Catalytic efficiency 

At each depth, the sum of specific enzyme activities, the sum of catalytic efficiencies, and 

the proportional enzyme activities (TAC/(TAC+TAN)) were computed and tested for 

correlation to EN and DOC content (Supplementary Table II.3/12). The sum of catalytic 

efficiencies was better correlated to EN and DOC across all treatments and depths than 

the sum of specific enzyme activities. Furthermore, the sums of catalytic efficiencies were 

strongly correlated with the EN for all soils throughout the profile (Supplementary Table 

II.3/12), with the strongest relationship for planted soil (e.g. r2=0.97, P<0.01). The mean 

catalytic efficiency of enzymes decreased 2- to 20-fold from top- (< 40 cm) to subsoil (> 

40 cm), reflecting the lower substrate quality with increasing depth (Figure II.3/19). The 

catalytic efficiency of TY was higher in planted than in litter-amended topsoil. This indi-

cated highly efficient action of specific aminopeptidases with strong affinity to the sub-

strate in the upper 40 cm of planted soil. 
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Figure II.3./19 Mean catalytic efficiency (Ka) of C-, N- and P-cycling enzymes for top- 
(< 40 cm) and subsoil layer (> 40 cm) in bare fallow (Fallow), litter-amended (Litter), 

and rooted (Plant) soil. 
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3.4 Discussion 

The contrasting substrates (rhizodeposits vs. litter) affected soil microbial activity indi-

cators only in the upper 40 cm, reflecting strong dependence of microbial activities on C 

and N sources (Šnajdr et al., 2008).  

3.4.1 Enzyme indexes  

This research provides insights into distinct profiles of soil enzyme indexes as influenced 

by the rhizosphere and the detritusphere. We compared the applicability of several in-

dexes proposed as indicators of microbial nutrient limitation (Allison and Vitousek, 2005; 

Moorhead et al., 2016; Sinsabaugh and Follstad Shah, 2012). Proportional activities of 

C- versus N-cycling enzymes (Table II.3/9; Index 4) and the relative Vmax of these en-

zymes (Table II.3/9; Index 3) showed similar patterns with depth. Rhizodeposition may 

have decreased the relative Vmax and the proportional activity of C- to N-cycling en-

zymes compared to litter-amended and fallow topsoil, reflecting increased microbial N 

acquisition in planted soil, due to mining of additional N from SOM (Kuzyakov, 2002; 

Luo et al., 2006). This suggested that enzyme production was induced by resource limi-

tation.  

Specific enzyme activities (Vs) of acid phosphatase increased almost 3-fold from 0‒10 to 

10‒20 cm in planted and bare fallow soil. Higher phosphatase activities in soil enhance 

the mineralization of organic phosphates when P is limited (Olander and Vitousek, 2000).  

Vector length as a measure of C limitation, and vector angle as a measure of P vs. N 

limitation, did not show any pattern between the treatments in the upper 30 cm (Supple-

mentary Figure II.3/20). However, lower proportions calculated as 

Vmax(BG)/[Vmax(BG)+Vmax(AP)] relative to TAC/(TAC+TAP), demonstrated that the use 

of one single enzyme biased the assessment of substrate utilization. When three C-cycling 

enzymes were considered, the activities of BX and CE counterbalanced the low activities 

of BG in the detritusphere. Therefore, artificial enzyme indexes, which do not consider 
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the great redundancy and complex interactions in the suite of soil enzymes, fail to ade-

quately reflect the biological background and mechanisms. 

 Under natural conditions, enzymes interact with each other in order to utilize the complex 

substrate structures. The activities of cellulolytic, proteolytic and chitinolytic enzymes 

are usually assigned to the C- and N-cycles, respectively. A single enzyme, such as BG, 

for example, is responsible for terminal steps in the decomposition of both cellulose and 

bacterial/fungal peptidoglycan (Beier and Bertilsson, 2014; Humann and Lenz, 2009; 

Park and Uehara, 2007), and hence participates in both C and N elemental cycles. Thus, 

the interpretation of multiple enzyme indexes requires a certain degree of caution. 

3.4.2 Top- vs. subsoil 

The decrease of microbial biomass C down the soil profile is connected with decreasing 

availability and quality of organics (Blume et al., 2002; Fierer et al., 2003a, 2003b; 

Trumbore, 2000). Roots provide easily available C to the microbial community (Nguyen, 

2003), which mobilizes nutrients from sources unavailable to plants (Kuzyakov and Xu, 

2013). At the same field site more than 50% of the roots were distributed in the upper 10 

cm of the Ap horizon and the weighted average root biomass C declined with depth, from 

104 kg C ha-1 at the 0−10 cm depth to 15 kg C ha-1 at the 40−50 cm (Pausch et al., 2013). 

About 20% of the C assimilated by maize is transferred to below-ground pools at this 

arable field site (Pausch et al., 2015). The C transferred below-ground by the roots was 

immediately utilized by microbes in the upper 10 cm, as recently shown by increased 

specific growth rates (Loeppmann et al., 2015). The effect of diminishing substrate avail-

ability with depth on EN and N2O production was significant only in the upper 30 cm, 

which reflected that the arable topsoil under maize cultivation is a hot spot for microbial 

decomposition. Consequently, substrate quality plays an important role in controlling the 

vertical distribution of enzymes.  

In deeper soil layers, the amount and quality of substrate were reduced, which was re-

flected in the differences between top- (0‒40 cm) and subsoil (> 40 cm) for most of the 

measured indicators of microbial activity, especially in the presence of plants. For exam-

ple, all potential enzyme activities declined from top- to subsoil (Supplementary Table 
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II.3/10), as frequently shown before (Gelsomino and Azzellino, 2011; Snajdr et al., 2008; 

Steinweg et al., 2013). However, the catalytic efficiency down the soil profile was not 

considered in most of these studies. The catalytic efficiency of enzymes (Ka) describes 

the specific rate of catalytic reaction, considering the enzyme affinity to the substrate 

(Km). The Ka decreased by 2- to 20-fold from top- (< 40 cm) to subsoil, irrespective of 

the substrate input (Figure II.3/19). The variation of Km implied that enzyme-specific ef-

ficiencies of substrate utilization are strongly dependent on the affinity to the substrate. 

Nevertheless, the decrease of Ka from top- to subsoil indicated that the driving forces 

were substrate quantity and quality.   

3.4.3 Rhizosphere vs. detritusphere 

Microbial biomass C and N2O production in the upper 20 cm showed significant effects 

of substrate input (rhizodeposits in the rhizosphere and maize-litter in the detritusphere). 

Particularly, the decrease of N2O production in planted soil from 0−10 to 10−20 cm may 

be defined as greater N limitation, which reflected maize as a sink for N. This was in line 

with lower EN contents in planted soil compared to litter-amended and bare fallow soil 

(Figure II.3/15 d). Correspondingly, a weak relationship (r2=0.31) between Cmic and SOC 

was determined in planted soil, which may be explained by co-limitation of nutrients (e.g. 

N) in the rhizosphere. However, the strong correlations between Cmic and N2O produc-

tion, indicated that N sources for nitrification or denitrification were not the limiting fac-

tor for N2O production. Eventually, O2 limitation occurred during SIR, which was pro-

portional to the size of the microbial biomass, and mainly controlled the N2O efflux from 

the soil. Since N2O production is mediated by both biotic and abiotic processes and by 

oxygen availability, the link between soil organic matter degradation and N2O production 

is not always straight forward (Blagodatskaya et al., 2014). Moreover, the N2O reflected 

the total mineralized N, which strongly varies depending on the substrates used by mi-

croorganisms (Zhu et al., 2013). 

In the presence of plants, EN, N2O, Vmax ratio and proportional activity of C- to N-cycling 

enzymes were lower than in litter-amended soil at 0‒10 and 10‒20 cm depths. However, 
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the catalytic efficiency of tyrosine aminopeptidase strongly increased in planted com-

pared to litter-amended topsoil. This suggested strong effects of N limitation on the de-

composer community in the presence of plants (Vitousek and Howarth, 1991). N limita-

tion induced a shift in the catalytic properties of proteolytic enzymes (leucine- and tyro-

sine-aminopeptidases) which was in accordance with previous studies (German et al., 

2011; Rejsek et al. 2008; Sims and Wander, 2002). This reflected higher investment in 

N-releasing enzyme production in planted soil than in litter-amended and fallow soil 

(Phillips et al., 2011; Stursova et al., 2006). It also confirmed the production of proteolytic 

enzymes with high substrate affinity (revealed by low Km) by competitive microorgan-

isms (Supplementary Table II.3/11) and reutilization of microbial residues for mainte-

nance when nutrients are limited (Bradford, 2013).  

Cellulolytic specific enzyme activity was up to 10-fold higher in the litter-amended than 

in the planted surface layer (Supplementary Table II.3/11). Maize litter may stimulate the 

decomposition of lignocellulosic materials by fungal communities and their enzymes 

(Kramer et al., 2012; Moll et al., 2015).  

The C:N or the lignin:N ratio of plants is often used as a measure of litter quality and a 

predictor of decomposition rate, but the role of N in the regulation of litter decomposition 

is too complex to be characterized by measures of total N concentration (Sinsabaugh et 

al., 1993; Tian and Shi, 2014). Instead, we determined the activity ratio between C- and 

N-cycling enzymes (Figure II.3/18 b), which was lower for planted than for litter-treated 

soil throughout the soil profile. This can be explained by relatively greater access to read-

ily utilized labile root C sources, because N-limitation is defined with reference to relative 

N vs. C availability, suggesting better nutrient supply for microbes in the detritusphere 

(Šnajdr et al., 2011). Similarly, the idea of a "better" N supply for microbes in the detri-

tusphere is based on C:N enzyme ratios and remains a relative concept. The recalcitrant 

substrates (e.g. lignin and tannin) in the detritusphere may affect organic N mineralization 

(Valenzuela-Solano and Crohn, 2006).  
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3.5 Conclusions  

The availability of C and nutrients in soil and especially in the rhizosphere and detri-

tusphere strongly affected the microbial biomass and the catalytic efficiency (Ka) of hy-

drolytic enzymes with depth-dependent contrasting patterns. Dissolved N is decisive for 

enzyme activities, and decreases with depth. In particular, under root-induced N limita-

tion, proteolytic enzymes had increased activity and affinity to substrate, which reflected 

the energy investment of microorganisms for nutrient acquisition. Enzymes´ catalytic ef-

ficiency decreased 2- to 20-fold from top- (< 40 cm depth) to subsoil. The contrasting 

input and quality of substrates in rhizosphere and detritusphere influenced microbial de-

composition only in the topsoil (0‒40 cm), whereas in the subsoil (> 40 cm depth) the 

effects of contrasting substrate input disappeared. Proportions of multiple enzyme activ-

ities as well as catalytic efficiencies reflected both stoichiometric and C-quality effects 

on decomposer communities. 
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Supplementary 

Table II.3/10 Potential enzyme activities (Vmax±SEM) and specific enzyme activities 
with depth for fallow, litter-amended and rooted soil. 

          

Depth Vmax 
Specific enzyme 

activity 
Vmax 

Specific enzyme 

activity 
Vmax 

Specific enzyme 

activity 

cm nmol h-1 g-1 
nmol h-1 µg-1 

MBC 
nmol h-1 g-1 

nmol h-1 µg-1 

MBC 
nmol h-1 g-1 

nmol h-1 µg-1 

MBC 

 Fallow SEM Fallow SEM Litter SEM Litter SEM 
Roote

d 
SEM Rooted SEM 

Beta-cellobiohydrolase          

Ϭ‒ϭϬ 5.13 0.44 0.0128 0.0018 5.94 1.05 0.0152 0.0031 0.88 0.04 0.0019 0.0001 

ϭϬ‒ϮϬ 2.37 0.38 0.0185 0.0034 0.79 0.07 0.0058 0.0005 2.69 0.45 0.0222 0.0038 

ϮϬ‒ϯϬ 0.52 0.03 0.0102 0.0027 0.83 0.09 0.0123 0.0028 0.63 0.04 0.0135 0.0033 

ϯϬ‒ϰϬ 0.34 0.03 0.0053 0.0006 0.27 0.04 0.0044 0.0009 0.17 0.02 0.0026 0.0005 

ϰϬ‒ϱϬ 0.05 0.00 0.0006 0.0002 0.08 0.00 0.0018 0.0006 0.05 0.00 0.0008 0.0001 

ϲϬ‒ϳϬ 0.07 0.01 0.0022 0.0003 0.14 0.02 0.0035 0.0009 0.04 0.00 0.0009 0.0002 

Beta-glucosidase          

Ϭ‒ϭϬ 1.45 0.12 0.0036 0.0005 1.73 0.22 0.0044 0.0007 3.71 0.21 0.0078 0.0006 

ϭϬ‒ϮϬ 2.97 0.56 0.0232 0.0048 5.20 0.47 0.0377 0.0038 3.48 0.74 0.0287 0.0063 

ϮϬ‒ϯϬ 2.72 0.12 0.0527 0.0135 3.38 0.31 0.0498 0.0111 2.98 0.19 0.0634 0.0155 

ϯϬ‒ϰϬ 1.28 0.11 0.0201 0.0023 0.83 0.07 0.0136 0.0019 1.07 0.10 0.0158 0.0030 

ϰϬ‒ϱϬ 0.51 0.04 0.0060 0.0016 0.56 0.04 0.0131 0.0046 0.43 0.02 0.0063 0.0010 

ϲϬ‒ϳϬ 0.07 0.01 0.0021 0.0002 0.08 0.01 0.0021 0.0004 0.13 0.01 0.0032 0.0006 

Leucine          

Ϭ‒ϭϬ 2.51 0.33 0.0063 0.0011 2.43 0.35 0.0062 0.0011 4.78 0.57 0.0100 0.0013 

ϭϬ‒ϮϬ 1.26 0.08 0.0098 0.0011 1.88 0.17 0.0136 0.0013 4.05 0.15 0.0335 0.0019 

ϮϬ‒ϯϬ 3.67 0.22 0.0711 0.0185 2.45 0.19 0.0362 0.0078 1.34 0.15 0.0285 0.0075 

ϯϬ‒ϰϬ 0.76 0.09 0.0120 0.0017 0.75 0.09 0.0123 0.0020 2.14 0.21 0.0316 0.0059 

ϰϬ‒ϱϬ 0.78 0.14 0.0093 0.0029 0.58 0.08 0.0136 0.0051 0.68 0.07 0.0099 0.0017 

ϲϬ‒ϳϬ 0.33 0.01 0.0102 0.0007 0.21 0.01 0.0051 0.0011 0.29 0.01 0.0068 0.0011 

Acid phosphatase          

Ϭ‒ϭϬ 3.84 0.26 0.0096 0.0013 5.95 0.65 0.0152 0.0022 4.15 0.43 0.0087 0.0010 

ϭϬ‒ϮϬ 3.41 0.41 0.0267 0.0039 3.63 0.37 0.0263 0.0029 2.77 0.21 0.0229 0.0020 

ϮϬ‒ϯϬ 1.90 0.14 0.0368 0.0097 1.74 0.10 0.0256 0.0054 1.64 0.14 0.0348 0.0087 

ϯϬ‒ϰϬ 1.47 0.14 0.0230 0.0028 1.13 0.15 0.0186 0.0033 0.77 0.06 0.0114 0.0021 

ϰϬ‒ϱϬ 1.28 0.09 0.0152 0.0041 1.29 0.08 0.0299 0.0105 1.42 0.09 0.0206 0.0033 

ϲϬ‒ϳϬ 0.74 0.09 0.0228 0.0030 0.70 0.09 0.0173 0.0041 0.89 0.13 0.0209 0.0046 

Tyrosine          

Ϭ‒ϭϬ 0.94 0.08 0.0024 0.0003 0.92 0.11 0.0024 0.0004 0.98 0.08 0.0021 0.0002 

ϭϬ‒ϮϬ 1.32 0.10 0.0103 0.0012 1.29 0.08 0.0093 0.0007 1.60 0.05 0.0132 0.0007 

ϮϬ‒ϯϬ 2.10 0.35 0.0406 0.0123 0.84 0.20 0.0124 0.0039 1.76 0.21 0.0375 0.0099 
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Table II.3/10 Potential enzyme activities (Vmax±SEM) and specific enzyme activities 
with depth for fallow, litter-amended and rooted soil. 

          

Depth Vmax 
Specific enzyme 

activity 
Vmax 

Specific enzyme 

activity 
Vmax 

Specific enzyme 

activity 

cm nmol h-1 g-1 
nmol h-1 µg-1 

MBC 
nmol h-1 g-1 

nmol h-1 µg-1 

MBC 
nmol h-1 g-1 

nmol h-1 µg-1 

MBC 

 Fallow SEM Fallow SEM Litter SEM Litter SEM 
Roote

d 
SEM Rooted SEM 

 

ϯϬ‒ϰϬ 1.09 0.07 0.0172 0.0017 0.80 0.04 0.0131 0.0016 0.75 0.04 0.0112 0.0019 

ϰϬ‒ϱϬ 0.41 0.03 0.0049 0.0013 0.62 0.06 0.0144 0.0052 0.50 0.03 0.0072 0.0011 

ϲϬ‒ϳϬ 0.23 0.01 0.0072 0.0006 0.19 0.01 0.0046 0.0010 0.24 0.01 0.0056 0.0009 

Beta-xylosidase          

Ϭ‒ϭϬ 0.32 0.03 0.0008 0.0001 0.89 0.09 0.0023 0.0003 0.31 0.02 0.0006 0.0001 

ϭϬ‒ϮϬ 0.38 0.03 0.0030 0.0003 0.31 0.02 0.0023 0.0002 0.34 0.02 0.0028 0.0002 

ϮϬ‒ϯϬ 0.11 0.00 0.0021 0.0005 0.11 0.01 0.0016 0.0003 0.23 0.02 0.0049 0.0012 

ϯϬ‒ϰϬ 0.12 0.01 0.0018 0.0002 0.10 0.01 0.0016 0.0002 0.08 0.00 0.0012 0.0002 

ϰϬ‒ϱϬ 0.05 0.00 0.0006 0.0002 0.08 0.00 0.0018 0.0006 0.05 0.00 0.0008 0.0001 

ϲϬ‒ϳϬ 0.07 0.01 0.0022 0.0003 0.14 0.02 0.0035 0.0009 0.04 0.00 0.0009 0.0002 

 

Table II.3/11 Half-saturation constant (Km±SEM) for fallow, litter-amended and rooted 
soil. 

Depth Km  Km  Km  

cm µmol µmol µmol 

  Fallow SEM Litter SEM Rooted SEM 

Beta-cellobiohydrolase     

Ϭ‒ϭϬ 70.2 13.9 114.9 38.0 15.1 3.2 

ϭϬ‒ϮϬ 40.7 18.6 15.3 5.7 38.2 18.7 

ϮϬ‒ϯϬ 25.6 6.1 46.7 11.0 28.5 6.7 

ϯϬ‒ϰϬ  27.4 9.1 27.2 15.4 16.9 9.5 

ϰϬ‒ϱϬ  48.2 17.2 46.4 14.2 35.6 10.6 

ϲϬ‒ϳϬ  47.2 16.6 54.8 16.3 78.7 28.4 

Beta-glucosidase     

Ϭ‒ϭϬ 48.9 10.6 31.0 13.1 43.2 6.2 

ϭϬ‒ϮϬ 45.0 23.4 65.1 13.6 67.3 33.3 

ϮϬ‒ϯϬ 55.4 6.3 48.4 12.0 49.6 8.4 

ϯϬ‒ϰϬ  31.8 8.0 42.0 8.1 37.6 11.8 

ϰϬ‒ϱϬ  24.8 8.1 37.7 8.7 31.7 5.5 

ϲϬ‒ϳϬ  67.3 14.6 129.3 21.8 182.0 27.2 

Leucine     

Ϭ‒ϭϬ 326.0 52.3 162.3 24.6 149.9 33.9 

ϭϬ‒ϮϬ 38.5 7.5 103.4 19.8 232.1 14.7 

ϮϬ‒ϯϬ 166.3 20.3 76.2 15.1 119.2 31.0 

ϯϬ‒ϰϬ  94.7 27.0 89.6 25.4 80.7 19.6 
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Table II.3/11 Half-saturation constant (Km±SEM) for fallow, 
litter-amended and rooted soil. 

  Km  Km  Km  

cm µmol g-1 µmol g-1 µmol g-1 

  Fallow SEM Litter SEM Rooted SEM 

Leucine 

ϰϬ‒ϱϬ  198.8 58.4 81.1 24.5 129.5 23.0 

ϲϬ‒ϳϬ  27.1 3.6 15.2 3.8 16.1 3.4 

Acid phosphatase       

Ϭ‒ϭϬ 61.9 13.8 54.9 10.3 48.2 7.6 

ϭϬ‒ϮϬ 40.8 6.6 38.4 8.5 68.2 12.5 

ϮϬ‒ϯϬ 28.6 7.1 26.4 5.4 26.9 8.2 

ϯϬ‒ϰϬ  30.3 9.5 33.7 14.3 27.6 7.9 

ϰϬ‒ϱϬ  40.7 9.5 68.1 11.4 95.4 15.3 

ϲϬ‒ϳϬ  36.3 13.4 39.9 15.1 39.9 17.9 

Tyrosine     

Ϭ‒ϭϬ 110.2 22.3 170.9 40.2 68.6 14.8 

ϭϬ‒ϮϬ 130.9 22.5 113.2 15.7 78.0 6.4 

ϮϬ‒ϯϬ 87.5 29.8 143.4 60.6 84.6 21.5 

ϯϬ‒ϰϬ  44.1 8.7 59.9 8.9 38.9 7.6 

ϰϬ‒ϱϬ  154.1 21.2 210.3 39.9 161.1 17.8 

ϲϬ‒ϳϬ  34.7 7.7 29.2 8.5 22.3 2.9 

Beta-xylosidase     

Ϭ‒ϭϬ 61.4 14.1 199.5 37.5 63.6 9.9 

ϭϬ‒ϮϬ 149.5 22.8 93.8 13.4 106.6 17.0 

ϮϬ‒ϯϬ 20.6 4.2 15.4 4.7 91.5 19.4 

ϯϬ‒ϰϬ  49.5 13.1 39.7 10.6 32.4 6.7 

ϰϬ‒ϱϬ  22.0 8.1 94.1 13.4 49.2 7.6 

ϲϬ‒ϳϬ  57.3 19.6 170.8 42.7 31.0 11.9 
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Table II.3/12 Pearson correlation coefficients between a) the sum of measured specific 
enzyme acitivities, b) the sum of measured catalytic efficiencies of enzymes and c) pro-
portions of C- to N-cycling enzymes (explained in the text); both to either dissolved or-
ganic nitrogen (DN) or dissolved organic carbon contents (DOC) for fallow, litter-
amended and rooted soil. Significant differences between treatments are indicated by as-
terisks (P<0.01). 

a) Specfic enzyme activities  DN DOC 

  Fallow Litter Rooted Fallow Litter Rooted 

Fallow 0.45   -0.02   

Litter   0.69    0.53  

Plant     0.56     0.22 

b) Catalytic efficiencies DN DOC 

  Fallow Litter Rooted Fallow Litter Rooted 

Fallow 0.94*   0.22   

Litter   0.94*    0.91  

Plant     0.97*     0.80 

c) Proportions C- to N-cycling enzymes DN DOC 

  Fallow Litter Rooted Fallow Litter Rooted 

Fallow 0.93    0.30   

Litter   0.95    0.84  

Plant     0.46     0.19 
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Figure II.3/20 Vector length and b) vector angle for fallow (F), litter-amended (L) and 
rooted soil (P) with depth. Calculations and interpretation for vector length and vector 

angle are described in the text. Significant differences between the treatments are 
indicated by lower case letters (P<0.05). 
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Abstract 

Despite soil microorganisms spend most of their lifetime at dormant or resting states, they 

are quickly activated by substrate input and easily switch to growth. As both the dsDNA- 

and RNA-contents increase during microbial growth, the RNA:dsDNA ratio should be a 

useful predictor, whether the response of a microbial community to environmental 

changes results from an increase in population (by dsDNA) or in activity (by RNA). This 

prediction of the RNA:dsDNA ratio can be accomplished by the comparison of microbial 

respiration approaches with and without addition of easily available substrates. We ex-

hibited the RNA:dsDNA ratios in four contrasting soil types during substrate-induced 

growth. After glucose addition, a strong increase of dsDNA and RNA contents were de-

termined in most of the soil types during 72 h of incubation. Furthermore, we identified 

distinct temporal soil-specific RNA:dsDNA patterns. The dsDNA- and RNA-contents 

yielded 26–174 and 0.3–30 µg g-1 soil, respectively. The soil texture was strongly asso-

ciated with the reduction of RNA recovery, by means of an exponential decrease of RNA-

content with increasing clay content. The lower RNA recovery in virgin and arable Cher-

nozem (>30%) compared to soil types with lower clay contents (<17% for Retisol, Luvi-

sol and Calcisol) suggests, that the underestimation of RNA yields in soils, exceeding 

30% clay content, biased the RNA:dsDNA ratio, and subsequently the physiological state 

of the microbial community is not adequately represented. 

Keywords: dsDNA yield, RNA yield, nucleic acids, RNase, particle size distribution, glu-

cose amendment, microbial growth 
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4.1 Introduction 

Bulk soil is regarded as an oligotrophic environment, as it is generally poor in labile or-

ganic compounds (Van Elsas and van Overbeek, 1993). This low amount of readily-avail-

able organic carbon (C) precludes slow bacterial growth and low activity. Many soil or-

ganisms, therefore, have very low rates of metabolic activity and frequently spend most 

of their lifetime in dormant or resting phases, especially in soils of low C and N contents 

(Sparling et al., 1981; Van Elsas and van Overbeek, 1993). The input of readily assimi-

lated C substrates (e.g. sugars) either shifts microbial population from dormancy to activ-

ity, thereby strongly accelerates microbial metabolism, and may induce microbial growth, 

which leads to increasing DNA- and RNA- contents. Growing microbial cells are actively 

dividing, whereas active cells are measurably metabolizing, but are not necessarily divid-

ing (Blazewicz et al. 2013; Jones and Lennon, 2010). 

DNA and RNA molecules perform the storage of genetic information and the translation 

of this genetic information for protein synthesis, correspondingly. The DNA extracted 

from soil in relatively large amounts represents organisms at any physiological state ‒ 

dead, dormant or active (Levy-Booth et al., 2007; Blagodatskaya and Kuzyakov, 2013). 

In contrast to DNA, the RNA content in dormant cells is extremely low, while it increases 

dramatically after microbial activation. Since the amount of RNA per cell is proportional 

to metabolic activity of microorganisms (Mills et al., 2004; Molin and Givskov, 1999; 

Penannen et al., 2004), the RNA-based approaches provide information on the metaboli-

cally active pools of microbial community. More than a hundred studies are available 

using rRNA to identify currently active microorganisms in batch studies but also in the 

marine and terrestrial environment (Blazewicz et al., 2013; Hunt et al., 2013; Jones and 

Lennon, 2010, Wu et al., 2011). The RNA:dsDNA ratio, therefore, is a promising indica-

tor of the metabolic status of bacterial (Dell'Anno et al., 1998; Kerkhof and Ward, 1993; 

Muttray and Mohn, 1999) and of microbial communities as a whole (Hahn et al., 1990; 

Tsai et al., 1991).  

Determination of DNA content in soil is well established (Marstorp and Witter, 1999; 

Blagodatskaya et al., 2003) and is possible by application of commercially available kits 
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(Fornasier et al., 2014). Quantitative extraction of microbial DNA from soil (Marstorp et 

al., 2000) can be used as a measure of total microbial biomass (Joergensen and Emmer-

ling, 2006; Renella et al., 2006). Most successful quantitative DNA extraction is based 

on cells destruction with FastPrep system accompanying by highly sensitive PicoGreen 

staining enabling strong dilution of DNA samples and therefore minimizing the biases 

due to humic acids (Blagodatskaya et al., 2003). Such extraction is more precise and dif-

fers from DNA determination by NanoDrop, which is more suitable for community struc-

ture studies. The positive linear correlation between dsDNA content and total microbial 

biomass was already confirmed by the number of studies (Blagodatskaya et al., 2003; 

Anderson and Martens, 2013).  

Relatively stable conversion factor from units dsDNA to units microbial C in a narrow 

range of 5.0 (Anderson and Martens, 2013), 5.4 (Blagodatskaya et al., 2003) and 5.6 

(Lloyd-Jones and Hunter, 2001) has been frequently revealed. A review of various studies 

also showed an averaged conversion factor from dsDNA into microbial biomass of 6, 

which indicates that approximately 13% of microbial C stems from DNA (Joergensen 

and Emmerling, 2006). 

Commonly, the RNA is more difficult to extract from soil than DNA and quantitative 

extraction of soil RNA comprises a number of challenges. The RNA pool of a microbial 

cell is mainly composed of rRNA (82–90%) (Neidhardt, 1987). The RNA recovery from 

soil still remains very low and rarely exceeds 10% (Duarte et al., 1998). The RNA yields 

extracted from soil range from tens of nanograms to several micrograms per gram of soil 

(Borneman et al., 1997; Bürgmann et al., 2003; Mettel et al., 2010; Moran et al., 1993; 

Sessitsch et al., 2002; Wang et al., 2008; 2009). Such a wide range of RNA yield may be 

caused by interaction of several factors, such as activity state of soil microorganisms, 

contamination of RNA sample by humic substances or the loss of RNA during purifica-

tion (Wang, 2012). Furthermore, the strong losses of RNA during isolation may be caused 

by an RNase activity and by adsorption to the soil clay fraction. The RNA:dsDNA ratio 

is not only affected by biotic factors, such as the substrate quality, but also strongly de-

crease with higher clay-contents, caused by immobilization mechanisms of nutrients and 

organo-mineral associations (Vogel et al., 2014). Although, both DNA and RNA could 

be adsorbed by soil particles (Goring and Bartholomew, 1952), the adsorption of single-
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strand RNA molecules can be especially strong in soils with clay and clay-loam texture 

(Tournier et al., 2015). The main restrictions of modern RNA isolation methods refer to 

soils with high clay content (Novinscak and Filion, 2011). Despite low recovery, the rel-

ative changes in RNA content within same soil type can shed light on shifts in physiolog-

ical state of soil microorganisms (Bakken and Frostegard, 2006; Blagodatskaya and 

Kuzyakov, 2013). Since not all active microorganisms are growing, but all the growing 

microorganisms are active (Blazewicz et al., 2013), a differentiation between microbial 

growth and activity in soils remains a great challenge in order to identify the underlying 

mechanisms of soil microbial communities functioning. 

We hypothesized that 1) the growth of microorganisms is strongly dependent on the C 

and N status of the respective soil type and 2) strong growth of microorganisms subse-

quently indicates high microbial activity. 

To test these hypotheses we determined the RNA:dsDNA ratio along a climatic gradient 

with five zonal soil types (Figure I.2./3) varying in pH, soil organic carbon content (Corg), 

soil nitrogen content (Ntot) and particle size distribution. Virgin and arable Chernozems 

were characterized by the highest Corg, Ntot, microbial biomass (Cmic) and soil C:N ratios. 

Retisol and Luvisol had almost similar soil properties, and Calcisol was lowest in Corg, 

Ntot and microbial biomass. Thus, these five soils represent the reduced enrichment gra-

dient of C and N from Chernozems over Retisol and Luvisol to Calcisol. Based on these 

data, we expected that the highest DNA- and RNA-contents occur in the C and N rich 

Chernozem, and the lowest in Calcisol. We also switched physiological state of soil mi-

croorganisms by addition of glucose in order to reveal shifts of the RNA:dsDNA ratio 

during microbial growth. These changes of the RNA:dsDNA ratio are linked to the shift 

in physiological state of microorganisms and we aimed to prove whether this ratio provide 

reliable prediction on microbial activity and growth in these contrasting soil types.  
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4.2 Material and Methods 

4.2.1 Soils and sampling sites 

The dynamics of RNA:dsDNA ratio were tested in top 10 cm-layers of five soils located 

in European part of Russia: Gleyic Retisol, Luvisol, virgin and arable Chernozem and 

Haplic Calcisol (IUSS Working Group WRB, 2015). Terrestrial Biomes, precipitation 

and temperature for these soils are displayed as map (Figure I.2/3). 

Retisol was sampled at the bottom (accumulative) part of the slope in Tver region (56°46' 

N, 36° 3' O). The territory of Tver region is characterized by the areal extent of the various 

formations of Valdai glaciation: lacustrine, alluvial, fluvioglacial and lacustrine-glacial 

deposits (Dorofeev, 1992). 

The Luvisol was sampled at the top (autonomous) part of the slope at the right bank of 

the Oka River near the town Pushchino in Moscow region (54°49' N, 37°35' O). The right 

bank of the river Oka belongs to Zaoksky physiogeographic province, which occupies the 

northern spurs of the Central Russian Upland, on the border of taiga forest and steppe 

natural zones (Annenskaya et al., 1997).  

Chernozem was sampled in Russian Federal Nature Preserve "Kamennaya Step" located 

in Talovsky District in Voronezh region, at the watershed of rivers Bitug and Khoper 

(51°02´ N, 40°72´ O). The territory of the "Kamennaya Step'" is a slightly rolling plain 

with sloping beams and unformed steppe depressions (Cheverdin, 2013).  

Calcisol was sampled in the Astrakhan region. Astrakhan region is located in the south-

east of the East European Plain within the Caspian lowland (47°93´ N, 46°11´ O). This 

region is characterized by a temperate semi-arid climate with large annual and diurnal 

amplitudes in summer air temperature, low precipitation and high potential evapotranspi-

ration (Pankova et al., 2014).  
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4.2.2 Soil dsDNA extraction procedure 

DNA extraction was performed according to the manufacturer’s protocol with 0.5 g of 

fresh moist soil treated by the FastDNA® SPIN kit for Soil (MP Biomedicals, Germany). 

Bead beating and a silica matrix were used to isolate DNA from soil. Before extraction, 

soil samples were placed into a freezer overnight to ensure higher DNA yields. Soils were 

added to lysing matrix tubes containing silica and glass spheres of different diameters, 

were treated with sodium phosphate buffer (Na2HPO4; pH 8.0, 0.12 M) and MT buffer 

(1% sodium dodecyl sulfate – SDS, 0.5% Teepol, and PVP40 with EDTA and Tris) were 

subjected to bead beating in the FastPrep® instrument and processed by protein precipi-

tation solution (150 µL of 3 M CH3COOK and 4% glacial acetic acid). DNA was bound 

to a DNA binding matrix (1 mL of glassmilk diluted 1:5 with 6 M guanidine isothiocya-

nate), washed by a salt ethanol wash solution (SEWS – ultra-pure 100% ethanol and 0.1 

M sodium acetate) and finally, eluted in DNase-free water (DES). After extraction, puri-

fied DNA samples were immediately measured according to the dsDNA quantification 

procedure (see below). 

4.2.3 Soil RNA extraction procedure 

RNA extraction was performed according to the manufacturer’s protocol with 0.5 g of 

fresh moist soil by the FastRNA® Pro Soil Direct kit (MP Biomedicals, Germany). Soil 

samples were placed to lysing matrix tubes containing silica and glass spheres of different 

diameters, treated with RNAprotm Soil Lysis Solution provided RNase inhibition, sub-

jected to bead beating in the FastPrep® instrument. Phenol:Chloroform (1:1) solution was 

added; the upper aqueous phase were taken and processed by Inhibitor Removal Solution 

and cold 100% isopropanol. After mixing, the solution was incubated for 30 minutes at ‒

20° C, centrifuged, and the pellet was washed by cold 70% ethanol (with DEPC-H2O). 

RNAMATRIX Binding Solution and RNAMATRIX Slurry were used to bind RNA mol-

ecules. The binding matrix with caught RNA was washed by RNAMATRIX Wash Solu-

tion and pure RNA extract was eluted by DEPC-H2O. Purified RNA samples were im-

mediately measured according to the RNA quantification procedure. 
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4.2.4 Soil dsDNA and RNA quantification 

The quantity of dsDNA obtained in the extract was determined by diluting the extract 

150-fold TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5). Aliquots of 0.1 ml were 

transferred to 96-well microplates (Brand pureGrade, black). For staining the dsDNA a 

200-fold dilution of the dsDNA fluorescence dye PicoGreen® (Molecular Probes, Life 

Technologies, Germany) was prepared in plastic containers. The dye (0.1 mL) was added 

to the wells with diluted DNA extract (final 300-fold dilution of the extracts) and left to 

react at 23 °C protected from light for 2 min. Fluorescence intensity was measured with 

an automated fluorometric plate-reader (Wallac 1420, Perkin Elmer, Turku, Finland) of 

excitation 485 nm, emission 525 nm and measurement time 1.0 s. The dsDNA of bacte-

riophage lambda was used as a standard; samples for the standard curve were prepared in 

TE-buffer in the same way as the experimental samples (Blagodatskaya et al., 2014). 

The quantity of RNA obtained in the extract was determined by making a 5-fold dilution 

of the extract in RNase-free TE buffer (with DEPC-treated water). Aliquots of 0.1 ml 

were then transferred to 96-well microplates. For staining the RNA a 200-fold dilution of 

the fluorescence dye RiboGreen® (Molecular Probes, Life Technologies, Germany) in 

RNase-free TE buffer was prepared in plastic containers. The dye (0.1 mL) was added to 

the wells with diluted RNA extract (final 10-fold dilution of the extracts) and left to react 

at 23 °C protected from light for 2 min. Fluorescence intensity was measured with an 

automated fluorometric plate-reader of excitation 485 nm, emission 525 nm and meas-

urement time 1.0 s. The ribosomal RNA (16S and 23S rRNA from E. coli) was used as a 

standard; samples for the standard curve were prepared in RNase-free TE-buffer in the 

same way as the experimental samples. 

4.2.5 Soil dsDNA and RNA extraction efficiency 

To verify DNA and RNA recovery we performed a pre-experiment adding certain amount 

of DNA and RNA standards to the variants with and without soils in probe. The DNA 

recovery ranged from 94% to almost 100% for all samples tested. An efficiency of RNA 

extraction was verified by adding 3 µg of rRNA standard: 1) directly to the soil sample, 
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2) to the control probe without soil, 3) to the untreated soil already as suspension with the 

RNAprotm Soil Lysis Solution (inhibitor of RNase) from the kit and, finally, 4) to the 

threefold autoclaved soil suspension with attached inhibitor solution. 

In contrast to DNA extraction, we encountered a problem with RNA stability which was 

reflected in low percentage of recovery. RNA standard added directly to the soil sample 

was completely decomposed, e.g. no change in RNA content was detected. This effect 

was expected when taking into account the activity of air and soil RNases. Transferred 

RNA standard to the control probe without any soil recovered in average 5.5%. The re-

covery of the RNA standards added to the untreated soil suspensions with RNase inhibitor 

varied in a small range between 4 and 6% and averaged at 5.5%. The highest yields (10% 

of added RNA standard) were revealed for those probes where RNA was added to the 

suspension of autoclaved soil with RNase inhibitor. Since our experiment was carried out 

with non-autoclaved samples, we used RNA recovery index of 5.5% for recalculation of 

total soil RNA yield. Despite low recovery is common for most of RNA studies, the re-

producibility of the RNA extraction was high and the data variability was low (5–10%). 

4.2.6 Estimation of microbial biomass and basic characteristics 
of soils 

Microbial biomass-C was analyzed by chloroform fumigation-extraction (CFE) (Brookes 

et al., 1985; Jenkinson and Powlson, 1976; Vance et al., 1987). We extracted the unfumi-

gated soil samples (5 g) with 20 ml of 0.05 M K2SO4 and agitated the samples for 1 h 

with an overhead shaker (40 rev min-1). The same amount of soils was fumigated with 

ethanol-free chloroform and then extracted in the same way. The fumigation was done in 

desiccators at 20°C for 24 h (Friedel and Scheller, 2002; Joergensen and Mueller, 1996). 

After 5 min centrifugation of the soil suspension at 2500 × g, the supernatant was filtered 

through Rotilabo-rondfilters (type 15A, Carl Roth GmbH & Co.KG). The centrifugation 

of soil suspension was applied to shorten the filtration time (Rousk and Jones, 2010). The 

organic C-content of the K2SO4 extracts was measured using a multi N/C analyzer (multi 

N/C analyzer 2100S, Analytik Jena, Germany). Microbial biomass C and microbial bio-

mass N were calculated by dividing the microbial C flush (EC), i.e. the difference between 
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extracted C from fumigated and non-fumigated soil samples, with a kEC factor of 0.45 

(Joergensen and Mueller, 1996; Wu et al., 1990). 

The soil moisture content was determined gravimetrically by drying the soil samples for 

24 h at 105 °C (Black, 1965). Corg was analyzed in sieved (1 mm) and dried samples 

which had been pounded with a mortar to a fine powder prior to removing inorganic car-

bon by HCl-treatment (Nelson and Sommers, 1982). Corg and Ntot contents were deter-

mined using a multi N/C analyzer (multi N/C analyzer 2100S, Analytik Jena, Germany). 

4.2.7 Particle size distribution analysis 

Particle size distribution analysis was performed with a Laser-Particle-Sizer «Analysette 

22 comfort» (FRITSCH, Germany), equipped with a low-power (2 mW) Helium-Neon 

laser with a wavelength of 632.8 nm as the light source. The device has active beam length 

of 2.4 mm, and it operates in the range 0.01 to 1250 μm, combining out of two measure-

ments with focal lengths of 9 and 474 mm in the same suspension. The suspension is 

pumped through a sample cell placed in the convergent laser beam and the forward scat-

tered light falls on the 31 photosensitive sensor rings. The sample obscuration was ad-

justed to an optimal value of 45%. The reference refractive index for standard deionized 

water was 1.33. Before determination, the samples were introduced into the ultrasonic 

bath. Particle size distribution was obtained by fitting full Mie scattering functions for 

spheres (Kerker, 1969). The Mie theory approach was selected instead of the Fraunhofer 

one, because it provides a better estimation of particle size in the clay fraction (deBoer et 

al., 1987). 

4.2.8 Statistics 

The means of three replicates with standard errors are presented in tables and figures. A 

Shapiro-Wilk test was applied to test for Gaussian distribution. We used the Pearson cor-

relation coefficients to interpret the degree of linear relationships. Significant differences 

in time between the soil types were assessed by repeated measurements ANOVA includ-
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ing a Holmes-Sidak post-hoc correction. A multiple t-test was performed to test for sig-

nificant (P<0.05) differences of basic parameter using GraphPad Version 6 software 

(Prism, USA).  
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4.3 Results 

4.3.1 Basic soil parameters, dsDNA, RNA contents and 
RNA:dsDNA ratio 

Similar decreasing pattern was determined for Corg, Ntot, and Cmic from virgin and arable 

Chernozems over Retisol and Luvisol to the Calcisol (Figure II.4/21). Corg, Ntot, Cmic and 

clay content varied significantly (P<0.05) between the soil types (except for Corg, Ntot in 

Retisol and Luvisol).  

 

Figure II.4/21 Basic parameter, such as total organic C (Corg), total nitrogen (Ntot) and 
microbial biomass content (Cmic) as well as the soil clay content for the four different 

soil types. Significant (P<0.05) differences between the soil types were given by lower-
case letters. 

 

For non-activated soil samples, the total dsDNA contents ranged from 26-107 µg g-1 soil 

(Figure II.4/22). By the addition of glucose, dsDNA content increased by 64, 94, 154, 
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147 and 149% for virgin and arable Chernozem, Retisol, Luvisol and Calcisol, respec-

tively during 72 h, reflecting the growth of microbial cells. During the first 24 hours after 

glucose addition, the dsDNA content increased (P<0.05) by 21, 67 and 51% for Luvisol, 

Retisol and Calcisol, respectively (Figure II.4/22). In case of Chernozems, the DNA con-

tents increased by 56-83% during the first 24 hours, and it leveled off thereafter. 

The dsDNA content of non-activated soils was characterized by strong positive linear 

correlation with Corg (R2=0.97, P<0.0001), Cmic (R2=0.85, P<0.0001) and Ntot (R2=0.84, 

P<0.0001) (not shown). The conversion factor from dsDNA content to Cmic was 4.87 (R2 

= 0.98). 

For non-activated soils, the total RNA contents ranged from 0.3 to 4.2 µg g-1 soil (Figure 

II.4/22). By the addition of glucose, the RNA contents increased by the factor of 2.8, 1.5, 

1.8, 1.2 and 90 fold for virgin and arable Chernozem, Retisol, Luvisol and Calcisol, re-

spectively, reflecting strongly active microbial cells. In contrast to dsDNA, the lowest 

RNA contents were determined in C-rich Chernozems for both non-activated and acti-

vated soils, despite dsDNA-derived Cmic and Corg were the highest. 

In all soils the dsDNA and the RNA increased stronger during 0-72 h compared to 0-24 

h or 24-72, except the RNA extracted from Luvisol, which was highest at the end of the 

experiment (Figure II.4/22). The lowest RNA:dsDNA ratios (P<0.05) were revealed in 

virgin and arable Chernozem soils compared to all other soil types and increased by 131 

and 28%, respectively during 72 h of incubation (Figure II.4/22). In Retisol the 

RNA:dsDNA ratio increased by 132% during the first 24 h and then decreased 52% to 

the end of incubation. The RNA:dsDNA ratio of Calcisol increased by 53-fold during the 

first 24 h and decreased by 31% to the end of incubation. In summary, we distinguished 

three distinct patterns of the RNA:dsDNA responses. 1) In Calcisol, the increase in RNA 

was much faster than dsDNA (0-72 h and 0-24 h). 2) In Luvisol, the RNA and dsDNA 

increased simultaneously (0-72 h and 24-72 h), and it was reflected by a comparatively 

constant RNA:dsDNA ratio, ranging from -19 to 10% during incubation. Finally, 3) in 

Retisol, the initial growth of RNA retarded after 24 hours, while the dsDNA content pro-

gressively increased during incubation.  
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Figure II.4/22 Dynamic of total soil dsDNA and RNA contents as well as RNA:dsDNA 
ratio in non-acivated soils (0 hours) and after glucose amendment (24 and 72 hours). 

Significant differences in time between the soil types were assessed by repeated 
measurements ANOVA including a Holmes-Sidak post-hoc correction. Capital letters 

indicate significant (P<0.05) differences in time of the same soil type. Significant 
(P<0.05) differences between the soil types were given by lower-case letters. 

 

 



4.3 Results 147 

 

147 
 
 
 
 

4.3.2 RNA content as affected by particle size distributions 

All soil types showed significantly (P<0.05) different particle size distributions. Highest 

clay contents were demonstrated by Chernozems, intermediate for Retisol and Luvisol 

and lowest for Calcisol (Figure II.4/21). The regression analysis between extractable 

RNA and soil clay contents exhibited an exponential decay relation (Figure II.2/23 a), 

which reflected low RNA yields with high clay contents. This negative exponential effect 

held also true for the RNA:dsDNA ratio at both sampling points (24 h and 72 h) (Figure 

II.4/23 b). 

Table II.4/13 Particle size distribution determined by the Laser-Particle-Sizer  

(Analysette 22 comfort). 

 

 

 

 

 

 

 

 

 

  

Soil <2µm 2–63 µm 63–2000 µm 

Chernozem virgin 33.92 66.08 0.00 

Chernozem arable 37.10 62.90 0.00 

Luvisol 16.89 83.11 0.00 

Retisol 4.12 42.61 53.27 

Calcisol 6.48 26.93 66.60 
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Figure II.4/23 Negative effect of soil clay fraction on RNA yields recovery: a) The 
RNA contents (±SEM) and b) the RNA:dsDNA ratios (±SEM) after 24 and 72 hours 

incubation with glucose were considered. 
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4.4 Discussion 

4.4.1 RNA:dsDNA ratio 

As cellular DNA concentration does not vary strongly due to environmental changes 

(Muttray et al., 2001), and because of its considerably strong correlation to microbial 

biomass in the wide range of soil types (Anderson and Martens, 2013), we considered the 

quantitative evaluation of dsDNA as a stable indicator for microbial biomass. The dsDNA 

increased in all soils after glucose addition. Calcisol, with the lowest C- and N-contents, 

demonstrated a completely different pattern of metabolic activity and growth behavior of 

microorganisms compared to Retisol and Luvisol with intermediate C- and N-contents. 

The Calcisol demonstrated a strong increase in RNA content, reflecting strong microbial 

activity, whereas Retisol and Luvisol showed a slight increase in RNA during 72 h after 

activation. However, the microbial biomass doubled in the latter two soil types, reflecting 

strong microbial growth. In contrast, the microbial biomass was lowest in nutrient-poor 

sandy Calcisol, reflecting activation of microbial population rather than strong microbial 

growth. Remarkably, a decrease in the active microbial pool, which was often linked to 

decreasing rRNA contents in nutrient-limiting environments (Davis et al., 1986; Tolker-

Nielsen et al., 1997). Different factors affect the relationship between microbial activity 

and RNA in environmental samples, such as cell physiology (Licht et al., 1999), cell life 

history and cell life strategy (Lepp and Schmidt, 1998), enzymatic substrate utilization, 

rRNA synthesis and degradation rates (Gausing, 1977). For Synechococcus and Pro-

chlorococcus strains analyzed in pure culture studies a three-phase relationship between 

growth and rRNA concentration was suggested: (1) at low growth rates, rRNA concen-

tration remains constant, (2) at intermediate growth rates, rRNA concentration increases 

linearly with growth rate and (3) at higher growth rates, rRNA content decreases as 

growth rate increases (Blazewicz et al., 2013; Worden and Binder, 2003). The 16S rRNA 

of marine isolates elucidated different relationship to metabolic activity during non-

steady-state growth (Kerhof and Kemp, 1999). In the heterogeneous soil environment this 

three-phase model may not be such straight forward processes. Here, Retisol and Luvisol 
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showed “stable” RNA:dsDNA ratios (± 10%) during 72 h hours of incubation with inter-

mediate N contents. When microbial growth was low in Chernozems (5-6%) at the end 

of incubation, the microbial activity still increased up to 190%, indicating the domination 

of non-growth activity. However, in the beginning of the experiment (0-24), the increase 

of dsDNA was stronger than the increase of RNA, which contradicted our hypotheses on 

microbial activity. 

The RNA:dsDNA ratios were 10-times lower than the ratios obtained for pure cultures of 

various bacteria (Kerkhor and Ward, 1993). The discrepancy can be explained by the 

dominance of fungi (up to 90% for considered Luvisol) over bacteria in microbial bio-

mass for all studied soils (Ananyeva et al., 2006; Semenov et al., 2013), which have lower 

nutrient requirements and lower metabolic activity than bacteria, and contain much less 

RNA (Bardgett et al., 1996; Cross et al., 2005; van der Wal et al., 2006). The 

RNA:dsDNA ratio increased during incubation for most of the measured soil types, es-

pecially for Calcisol (36-fold). This indicated strong non-growth associated microbial ac-

tivity, reflected by a slow growing but large fraction of active microbial biomass 

(Loeppmann et al., 2016a). Only for Luvisol, the RNA:dsDNA ratio slightly decreased 

by 12% during 72 h of incubation. This is in consistence to batch culture studies, which 

reported a decrease of RNA:dsDNA ratio of activated microorganisms with time (Muttray 

et al. 2001).  

4.4.2 Effect of clay particles distribution on RNA recovery 

RNA yield in nutrient-poor sandy Calcisol exceeded for hundredfold the RNA yields in 

rich clayey Chernozems after glucose amendment. The numbers of both bacterial and 

archaeal active cells determined by RNA-FISH method in Chernozem were 10-times 

higher than in Calcisol (Semenov et al., 2016). From methodological perspective, RNA-

FISH provides direct intracellular detection of RNA and, therefore, avoiding its contact 

with RNases or soil environment. Indeed, external RNases may have declined total RNA 

recovery for all samples during RNA extraction procedure. Nevertheless, the RNA con-

tents, with about 4 µg g-1 soil (non-activated) extracted from Retisol and Luvisol, corre-

sponded fairly well to yields extracted from soil by Tournier and co-workers (2015).  By 
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contrast, the RNA contents extracted from the Chernozems were up to 30-times lower 

independently of soil activation, reflecting possible adhesion of RNA to clay particles, 

known to reduce RNA recovery in soils (Wang et al., 2012). Since the RNA content in 

the range of studied soils varied within the two orders of magnitude, this high difference 

in RNA yield could be the result of RNA underestimation in some of studied soils due to 

various interfering factors (Ehlers et al., 2010). The strong correlation between RNA and 

the clay content of virgin and arable Chernozem during 72 h of incubation clearly de-

picted the challenge for RNA extraction on clayey soils. The correlation between 

RNA:dsDNA ratios and clay contents corresponded well to the study of Tournier et al. 

(2015). 

Another consequence of such small quantities of isolated RNA is that we are still unable 

to properly apply molecular biological RNA-based approaches (transcripts sequencing or 

quantification by qPCR, etc.) on clayey soils, such as the studied Chernozems. Thus, de-

velopment of RNA extraction methodologies to provide sufficient RNA yields in high-

clay soils are still required. 
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4.5  Conclusions 

The procedure of isolation and quantification of total soil DNA and RNA yields and de-

termination of RNA:dsDNA ratios was demonstrated in order to elucidate the metabolic 

status of soil microbial communities in contrasting soil types. The identification of several 

microbial growth pattern in terms of RNA:dsDNA responses due to the addition of glu-

cose enabled insights into the physiological state of the soil microbial community. In 

general, soil RNA yields increased stronger than soil DNA yields after glucose addition. 

Consequently, the RNA:dsDNA ratio was mostly governed by the dynamics and the be-

havior of RNA. Especially, the RNA:dsDNA ratio extracted from nutrient-poor sandy 

Calcisol increased strongly by 36-fold after glucose amendment, indicating rather highly 

active microbes than fast microbial growth. For Retisol and Luvisol with intermediate C 

and N contents, the RNA:dsDNA ratio remained comparatively constant after soil acti-

vation. The RNA yield was strongly affected by the clay content (> 30% in Chernozems) 

of the soils, which was indicated by the lower RNA recovery in virgin and arable Cher-

nozem compared to soil types with lower clay contents. This suggests, that the underes-

timation of RNA yields in clayey soils biased the RNA:dsDNA ratio, and subsequently 

the physiological state of the microbial community is not adequately represented in soils 

with clay contents exceeding 30%.  
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Abstract 

Predation by soil fauna on microorganisms controls microbial activity and, hence, the 

decomposition of organics, a process sequence termed the `microbial loop`. These micro-

bial food webs are affected by the complexity and accessibility of carbon (C) in two major 

C inputs rhizodeposits and litter. Thus, the amount and quality of substrates entering the 

soil control microbial processes in the rhizosphere and detritusphere. We labelled root 

exudates (14C, rhizo-C) in corn (Zea mays)-planted microcosms and duplicated all treat-

ments with an added model protist (Acanthamoebae castellani). For further identification 

of C resources fueling microbial-protozoan interactions, Lolium perenne root litter was 

added to the system. To uncover the complexity of interactions between the C sources, 

microorganisms and Acanthamoeba grazing, we used enzyme kinetics (β-glucosidase, 

acid phosphatase, β-xylosidase, leucine-aminopeptidase and N-acetyl-β-glucosamini-

dase) as an indicator for microbial activity and determined the microbial community 

structure by PLFA analyses. 

Acanthamoeba grazing strongly increased microbial uptake of rhizo-C (14C) in planted 

soil with and without root litter addition, reflecting preferred utilization of easily available 

substrates. The presence of Acanthamoeba increased the activity of C-cycling enzymes, 

especially β-glucosidase raised by 9-fold. In conclusion, C fluxes and enzyme activities 

were driven by substrate input and quality in the rhizosphere and detritusphere and further 

stimulated by faunal grazing.  

Key words: Protists; Faunal predation; 14C; DNA; Substrate quality; Enzyme affinity 
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5.1 Introduction 

Living plants and plant residues provide carbon (C) to C-limited soil microbial commu-

nities (Wardle, 1992), potentially increasing decomposition and nitrogen (N) release from 

soil organic matter (SOM) (Kumar et al., 2006; Kuzyakov, 2002; Kuzyakov et al., 2007). 

Protists increase the available N pool in soil through the ingestion and destruction of bac-

terial cells and excretion of ammonia (Stout, 1980). Since N is a limiting nutrient in the 

rhizosphere (Kuzyakov and Xu, 2013), increased N availability in presence of protists 

stimulates plant growth through the so-called `microbial loop` network (Clarholm, 1985). 

Plant growth and root exudation may lead to higher microbial activity and higher SOM 

decomposition and N release (Gerhardson and Clarholm, 1986; Kuikman et al., 1990; 

Bonkowski et al., 2000a; Ekelund et al., 2009).  

There are several plant-stimulated hotspots of microbial growth and activity in soil, in-

cluding the rhizosphere and detritusphere (Bonkowski et al., 2000b; Bonkowski and Clar-

holm, 2012; Blagodatskaya and Kuzyakov, 2013). In the rhizosphere, the area affected 

by living plant roots, rhizodeposits are a primary source of C and energy for microbial 

biomass growth (Gregory, 2006; Neumann and Römheld, 2007; Haichar et al., 2008). 

Belowground C input by maize amounts to 29±13% of shoot biomass at a growth state of 

physiological maturity (Amos and Walters, 2006). Because of ongoing root exudation, 

supplying a large quantity and diversity of easily available substrates (Lynch and Whipps, 

1990; Walker et al., 2003; Hinsinger et al., 2005), the rhizosphere is characterized by high 

microbial abundance and activity (Alphei et al., 1996; Paterson, 2003; Paterson et al., 

2007; Haichar et al., 2008). 

The detritusphere, a more recalcitrant food source for microorganisms, is characterized 

by dead plant residues (e.g. root litter) that typically contain large amounts of cellulose, 

hemicelluloses and lignin (Kandeler, 1999; Marschner et al., 2012; Nannipieri et al., 

2012). Microorganisms decompose root debris by extracellular depolymerization, hydrol-

ysis and oxidation. Recent studies proposed the amount and quality of plant-derived sub-

strates entering the soil drive microbial substrate utilization in the rhizosphere and detri-

tusphere, which is largely mediated by extracellular enzymes (Wallenstein et al., 2011; 
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Loeppmann et al., 2016). For example, chitinase (N-acetyl-glucosaminidase) is involved 

in both C- and N- cycles in soils (Beier and Bertilsson, 2013). Moreover, chitin contains 

about 6% N (e.g. peptidoglycan, bacterial cell walls) and is a major source of organic N 

(Ekenler and Tabatabai, 2002; Kelly et al., 2011). 

Little is known about the tight biotic interactions between enzymatic substrate utilization 

and microbial activity (Blagodatskaya and Kuzyakov 2013). In particular, the feedback 

of Acanthamoeba-affected functions into the microbial loop remained unclear in rhizo-

sphere and detritusphere (Ekelund et al., 2009; Bonkowski and Clarholm, 2012).  

Increased root biomass and rhizodeposition frequently result in higher prey density 

(Bonkowski and Brandt, 2002; Phillips et al., 2007; Bonkowski, 2004). The numbers of 

bacterial-feeding protists increase up to 30-fold in the rhizosphere compared with bulk 

soil (Griffiths, 1990; Zwart and Brussaard, 1991), significantly enhancing microbial turn-

over (Coleman et al., 1984; Gerhardson and Clarholm, 1986; Alphei et al., 1996) and the 

proportion of active bacteria (Rosenberg et al., 2009). Consequently, soil respiration and 

specific respiration increase in the presence of micro-fauna (Kuikmann et al., 1990; Scheu 

et al., 1996). 

To investigate C flux and changes in enzyme production in the rhizosphere and detri-

tusphere during Acanthamoeba grazing, microcosms with living corn plants (Zea mays), 

or with Lolium perenne root litter, or with both were established and all treatments were 

duplicated with an added model protist (Acanthamoebae castellani). Maize plants were 

pulse labelled with 14CO2. 14C activity in soil, CO2, and extractable organic C were deter-

mined. The dsDNA and PLFA contents as well as enzyme activities were analysed. Our 

hypotheses were that 1) rhizo-C (maize-derived 14C) and enzyme activities increase with 

Acanthamoeba grazing in comparison to non-grazing, 2) enzyme activities show a 

stronger increase in the rhizosphere (available C) than in the detritusphere (more stabile 

C) and 3) simultaneous presence of available and recalcitrant plant C sources in soil leads 

to maximum enzyme activities. 
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5.2 Material and methods 

5.2.1 Soil sampling 

Soil was taken from the uppermost 20 cm of a loamy Luvisol with partly stagnic proper-

ties at an arable field site near Göttingen (Holtensen), Germany. The soil is carbonate-

free and has the following characteristics: pH (CaCl2) 6.0, Corg 11.7 mg g-1, Ntot 1.2 mg 

g-1, C:N 9.8, NO3 0.08 mg g-1 (Kramer et al., 2012). The soil was stored at 6 °C for 10 

days and then sieved for homogenization. Soil was autoclaved (3-times) to eliminate liv-

ing microorganisms as well as spores (Tuominen et al., 1994). All further preparation, 

transfer of soil into the microcosms and subsequent inoculation were performed under 

sterile conditions to avoid contamination by airborne cysts of protist and fungi.  

5.2.2 Experimental setup 

We implemented a full factorial design with the following treatments with autoclaved soil 

with a re-inoculated bacterial community: a control, soil (Bulk), a rhizosphere treatment 

with a corn seedling with sufficient root density to fill the microcosm (Rhizo), a detri-

tusphere treatment with ground Lolium perenne root litter homogenously mixed with the 

soil (Detritus), and a treatment which combined both the root litter and plant (Rhizo + 

Detritus). Finally, each treatment was duplicated with the addition of a model protist, 

Acanthamoeba castellani. The 8 treatments were replicated 6 times. However, from the 

rhizosphere treatment, only 4 replicates were selected for 14CO2 pulse labelling and fur-

ther analysis. 

Perennial ryegrass (Lolium perenne) root powder (1.7 g) was homogeneously mixed with 

550 g of dry weight of soil and transferred into each microcosm (Detritus, Rhizo + Detri-

tus), and the entire microcosms were again autoclaved. The microcosms consisted of 

transparent glass jars with a volume of 870 ml (height of 14.5 cm and diameter 9.5 cm) 

(Parisienne de Verreries, Orly, France) (Figure 1). The lid was perforated four times: one 

central hole for plant growth (16 mm diameter), two holes near the rim (6 mm diameter) 

for gas inflow and outflow, and a small hole (2 mm diameter) with syringe and filter for 
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watering. A detailed picture of the experimental set up is presented in Figure II.5/24. Air 

from the root compartment of the microcosms was pumped through a NaOH trap (5 ml, 

1 M) in a glass vial by multi-channel peristaltic pumps (40 rpm) (Watson-Marlow 205S, 

Watson-Marlow GmbH, Rommerskirchen, Germany). To achieve CO2 free air inflow 

into the root compartment, each microcosm was fitted with a syringe (5 ml, AMEFA 

GmbH, Limburg, Germany) filled with sterile cotton wool and soda lime. The micro-

cosms were then covered with aluminum foil to prevent growth of photosynthetic -

chemolithoautotrophic organisms in the soil. 

 

Figure II.5/24 Microcosm setup: (1) shoots of maize, (2) inflow of CO2-free air, (3) 
airtight lid of the microcosm, (4) roots of maize, (5) hypodermic needles, (6) soil mixed 

with root litter, autoclaved and re-inoculated with bacterial community, (7) lid 
perforated for plant growth and sealed airtight with silicone, (8) sterile hydrophobic 

cotton, (9) outflow of CO2-enriched air from soil respiration, (10) amoeba (A. 

castellanii) (modified after Koller et al., 2013) . 
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5.2.3 Inoculation  

To isolate a protozoa-free bacterial community, 5 g of fresh soil were suspended in 20 ml 

of Neff's modified Amoebae Saline (NMAS; Page, 1976) and moderately shaken (200 

rotations per minute) for 20 minutes. In order to filter out protists and fungi, the suspen-

sion was pressed through the 5 μm and then 1.2 μm Isopore filters (Millipore, Schwal-

bach, Germany; Bonkowski and Brandt, 2002). In order to check for fungal or protistic 

contaminants, a subsample of each filtrate was cultured for one week in sterile nutrient 

broth (NB; Merck, Darmstadt, Germany) with NMAS at 1:9 v/v (NB-NMAS; Page, 

1976). In the treatments without Acanthamoeba, the inoculum consisted of 5 ml of the 

soil extracted bacterial community was diluted in 45 ml water. In the treatments contain-

ing Acanthamoeba, the inoculum consisted of 5 ml bacteria extracted, 43.58 ml water and 

1.42 ml suspension of amoebae (Acanthamoeba castellanii) in NMAS (Rosenberg et al., 

2009). Treatments with amoebae therefore received 200 amoebae per gram soil. How-

ever, the density was anticipated to increase up to carrying capacity as the soil community 

had time to develop before establishment of the plants. The inoculum was dispensed with 

a 10 ml pipette onto the soil surface.  

5.2.4 Plant growth conditions and incubation procedure 

Surface-sterilized seeds of Zea mays were germinated in Petri dishes with NMAS agar 

(1%) at room temperature for 3 days. Germinated seedlings were grown at aseptically 

conditions for 14 days. The microcosms (with and without plants) were incubated in a 

climate chamber at 18:22 °C night:day temperature, 70% humidity, 16 h photoperiod and 

460±80 μmol m−2 s−1 light photon flux density. During the first five days, the NaOH in 

the traps was changed daily due to high C mineralisation from the soil. After the first five 

days when the C flux was more stable, the traps were changed every few days. 

Plants were subsequently transferred on top of the root compartment of the microcosms. 

The tubes with grown plants were then placed aseptically on top of the root compartment 

of the microcosms. Microcosms were randomized to locations and soil moisture was 

checked gravimetrically and kept at 20% moisture content by adding sterile distilled water 



5.2 Material and methods 169 

 

169 
 
 
 
 

through the syringe containing a sterile filter (pore size, 0.2 μm; Sartorius) into the root 

compartment. 

5.2.5 Plant 14C pulse labelling 

The 14C labelling of plants was done after 35 days of plant growth. All plants were placed 

in an acrylic glass chamber and labelled simultaneously in a 14CO2 atmosphere. The 

chamber and the labelling technique are described in detail elsewhere (Kuzyakov et al., 

1999; Kuzyakov and Siniakina, 2001; Werth and Kuzyakov, 2008). Briefly, the chamber 

was connected by tubing to a flask containing 10 ml of Na2
14CO3 solution with an activity 

of 4.5 MBq. By adding 5 ml of 5 M H2SO4 solution 14CO2 was released into the labelling 

chamber. During the labelling procedure the assimilation of 14CO2 by plants was meas-

ured by gas sampling. The remaining unassimilated 14CO2 was trapped by pumping the 

chamber air through 50 ml of 1 M NaOH solution for 3 h. 66% of the activity was net 

assimilated by the plants. After pulse labelling, the 14CO2 from the microcosms was 

trapped in 15 ml of 1M NaOH solution until harvest with the NaOH trap changed after 3, 

15, 42, and 66 h after pulse labelling. 

5.2.6 Sampling 

Harvest of the plants was done 3 days after 14C pulse labelling. Above-ground biomass 

was divided into shoot and crown roots. To collect the fine roots, soil was sieved (< 5 

mm) and fine roots and other plant debris were carefully removed with tweezers and 

washed. The washing water was kept for further analysis. As root density was high, all 

soil in the planted microcosms was taken to be rhizosphere soil. Soil was separated into 

4 portions: 1) a soil sample was dried at 105 °C (24 h) to determine the soil moisture 

contents, 2) a subsample was flash frozen by liquid N2 and stored at -20 °C for determi-

nation of enzyme and dsDNA analysis, 3) a part of fresh soil (stored at 5 °C) was used to 

analyse the abundance of Acanthamoeba 4) another soil sample was stored at -20 °C for 

the phospholipid fatty acid analysis.  
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5.2.7 Sample analyses 

No significant differences were detected in pH, Ct, or Nt contents of the soils. 

5.2.7.1 Carbon mineralization, microbial biomass, and analysis of soil, root 

and plant material 

The total CO2 trapped in NaOH was measured with a C analyser (Shimadzu).  

Soil microbial biomass C (MBC) was determined by the chloroform fumigation extrac-

tion (CFE) procedure described by Brookes et al. (1985) and Vance et al. (1987). Briefly, 

7.5 g of fresh soil was extracted with 30 ml 0.05 M K2SO4 solution (Bruulsema and 

Duxbury, 1996) by overhead shaking (40 rev min-1) for 30 min. Another 7.5 g of soil was 

first fumigated with ethanol-free chloroform for 24 h at room temperature and then ex-

tracted in the same way. The soil suspension of the fumigated and the non-fumigated 

samples was centrifuged for 10 min at 2500 g. Afterwards, the supernatant was filtered 

through Rotilabo-rondfilters (type 15A, Carl Roth GmbH & Co.KG).  

Activity of 14C in MBC, extractable organic C (EOC) and NaOH solutions was measured 

by liquid scintillation counting (LS 6500 Multi-Purpose Scintillation Counter, Beckman, 

USA) using scintillation cocktail Rotiszint Eco Plus (Carl Roth, Germany) which was 

mixed with a sample in a ratio of 1:2.5. The 14C counting efficiency was at least 70% and 

the measurement error did not exceed 4%. The 14C activity found in each compartment 

was determined as described in Werth and Kuzyakov (2008). Rhizo-C-derived MBC, 

EOC and CO2 was calculated based on 14C activity in the plant shoots according to Kuzya-

kov et al. (1999) and Werth and Kuzyakov (2008). The 14C activity of all solid samples 

(shoots, crown and fine roots and soil samples) was determined by liquid scintillation 

counting after dry combustion of samples at 800 °C for 4 min (Oxysolve C-400) and 

trapping CO2 into scintillation cocktail. 

5.2.7.2 dsDNA extraction and quantification procedure 

The extraction of total soil DNA was done by the FastDNA® SPIN kit for soil (MP Bio-

medicals, Germany). Briefly, 0.5 g soil was added to lysing tubes, treated with lysis 

buffer, subjected to bead beating in the FastPrep® instrument and treated with protein 
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precipitation solution. DNA was bound to a silica matrix, washed, and eluted in DNase-

free water. 

A 150-fold dilution of the extract was prepared in TE buffer (10 mM Tris-HCl, 1 mM 

EDTA, pH 7.5) for fluorometric dsDNA determination. Aliquots of 0.1 ml were trans-

ferred to 96-well microplates (Brand pureGrade, black). A 200-fold dilution of the 

dsDNA fluorescence stain PicoGreen® (Molecular Probes, Life Technologies, Germany) 

was prepared in sterile plastic tubes. This dye (0.1 ml) was added to each well (final 300-

fold dilution) and left to react at 22 °C for 2 min, protected from light. Fluorescence in-

tensity was measured (measurement time 1.0 s) with an automated fluorometric plate-

reader (Wallac 1420, Perkin Elmer, Turku, Finland) at excitation and emission wave-

lengths of 485 and 525 nm for excitation and emission, respectively. The dsDNA yield 

was determined using dsDNA of Bacteriophage lambda as a standard (Molecular Probes, 

Life Technologies, Germany). Samples for the standard curve were prepared in TE-buffer 

in the same way as the experimental samples (Blagodatskaya et al., 2014).  

Microbial biomass was calculated as (Anderson and Martens, 2013): 

Microbial biomass C (µg g-1 soil) = 5.02 × dsDNA (µg g-1 soil)  (1)  

5.2.7.3 Extraction of phospholipid fatty acids  

Total lipids were extracted  from the 6 g of moist soil with a one-phase mixture of chlo-

roform, methanol and 0.15 M citric acid (1:2:0.8 v/v/v) (Frostegard and Baath, 1996). 

19:0-phospholipid (100 µl, 1µg µl-1) was used as a first internal standard and was added 

into the soil samples before extraction. Purification of the phospholipid fraction was done 

on a silica column, with elution of neutral-, glyco- and phospholipids by chloroform, ac-

etone and methanol, respectively. Phospholipid fatty acids were saponified with 0.5 ml 

0.5 M NaOH in dry MeOH for 10 min at 100 °C. The free FAs were methylated with 0.75 

ml BF3 in methanol (10%, 1.3 M, Fluka) for 15 min at 80 °C. Fatty acid methyl esters 

(FAMEs) were extracted three times with 1 ml hexane by liquid-liquid extraction and 

combined hexane aliquots were dried under N2. For final analysis FAMEs were re-dis-

solved in 185 µl toluene with the addition of 15 µl of a second internal standard (IS2) 

(13:0 FAME at 1 mg ml-1). Final quantification of FAME content was performed by gas 
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chromatography with a Hewlett Packard 5890 gas chromatograph coupled to a mass-se-

lective detector 5971A. Chromatography parameters were as follows: 15 m HP-1 

methylpolysiloxane column coupled with a 30 m HP-5 (5% Phenyl)-methylpolysiloxane 

column both with an internal diameter of 0.25 mm and a film thickness of 0.25 µm; He 

flow rate of 2 ml min-1; injection volume of 1 µl; temperature programme: 80 ºC ramped 

to 164 ºC at 10 ºC min-1, then to 230 ºC at 0.7 ºC min-1, and finally to 300 ºC at 10 ºC 

min-1. Quantification of PLFAs was based on 29 external standards (Gunina et al., 2014).  

5.2.7.4 Enzyme kinetics 

We used 4-methylumbelliferyl-β-D-glucopyranoside, 4-methylumbelliferyl-phosphate, 

4-methylumbelliferyl-7-β-D-xylopyranoside, L-leucine-7-amino-4-methylcoumarin hy-

drochloride and 4-methylumbelliferyl N-acetyl-β-D-glucosaminide to determine the en-

zyme activities of β-glucosidase (EC 3.2.1.21), acid phosphatase (EC 3.1.3.2), β-xylo-

sidase (EC 3.2.2.27), leucine aminopeptidase (LAP) (EC 3.4.11.1) and N-acetyl-β-glu-

cosaminidase (chitinase) EC 3.2.1.52), respectively. Half a gram of wet soil was mixed 

with 50 ml of sterile water and dispersed by an ultrasonic disaggregator (50 J s-1 for 120 

s) (De Cesare et al., 2000). Aliquots of 50 µl were withdrawn and dispensed into 96-well 

microplates (Brand pureGrade, black) while stirring the suspension. The substrates were 

dissolved in 300 µl dimethyl sulfoxide (DMSO) and then diluted with 80 ml of 0.1 M, 

pH 6.1 MES (for carbohydrases and phosphatase) or by 0.05 M, pH 7.8 TRIZMA (for 

leucine-/tyrosine-aminopeptidase) to obtain 1 mM of working solution (Marx et al., 2001; 

2005). A concentration series of 20, 40, 60, 80, 100, 200, 400 µmol substrate g soil-1 was 

then prepared and 100 µl of the respective solutions was added to the wells.  

Fluorescence was measured (excitation 360 nm; emission 450 nm) after 1 h, 2 h, and 3 h 

incubation at 22 °C with an automated plate-reader (Wallac 1420, Perkin Elmer, Turku, 

Finland). Fluorescence was converted to an amount of MUB (4-methylumbelliferone) or 

AMC (7-amino-4-methylcoumarin), by comparison to standard solutions of MUB and 

AMC prepared in separate sub-samples of the various soil suspensions. The substrate-

dependent rate of reaction (v) mediated by hydrolytic enzymes, followed Michaelis-Men-

ten kinetics (Marx et al., 2001; 2005; Nannipieri et al., 2012).  

v = (Vmax x [S]) / (Km + [S])   (2) 
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Initial reaction rate (v) was plotted against substrate concentration (S). Using experi-

mental data, the calculation allows characterization of each enzyme-substrate reaction by 

2 kinetic parameters: 1) Vmax, the maximum rate of enzyme catalysis that theoretically is 

attained when the enzyme has been saturated by an infinite concentration of substrate, 

and 2) Km, the Michaelis constant, which is numerically equal to the concentration of 

substrate for the half-maximum rate (Cornish-Bowden, 1995; Koshland, 2002; Marx et 

al., 2005). Vmax represents decomposition rates at saturating substrate concentrations 

while Km reflects the enzyme affinity to the substrate Gianfreda et al., 1995; Koshland, 

2002; Moscatelli et al., 2012). The parameters of the equation were fitted by minimizing 

the least-square sum by using GraphPad Version 6 software (Prism, USA). The 3 analyt-

ical replicates of enzyme activity curves were used for each soil replicate. Parameter op-

timization was restricted to the applied model equation as indicated by maximum values 

of statistic criteria: r2, the fraction of total variation explained by the model defined as 

ratio of model weighted sum of squares to total weighted sum of squares. Outliers were 

identified by the ROUT method, based on the False Discovery Rate (FDR), where Q was 

specified to define the maximum desired FDR (Motulsky and Brown, 2006). 

5.2.7.5 Enumeration of protozoa 

Total numbers of amoebae were estimated as described in Koller et al. (2013). Briefly, 5 

g fresh weight of soil was suspended in 20 mL sterile NMAS (Page, 1976) and gently 

shaken on a vertical shaker for 20 min. A dilution series with nutrient broth (Merck) and 

NMAS at 1:9 v/v were prepared in 96-well microtiter plates (VWR, Darmstadt, Germany) 

with four replicates each. The microtiter plates were incubated at 15 °C in darkness, and 

the wells were inspected for the presence of amoebae using an inverted microscope at 

9100 and 9200 magnification (Nikon, Eclipse TE 2000-E, Tokyo, Japan) after 3, 6, 11, 

19 and 26 days. 

5.2.8 Statistics 

All data were expressed as means ± standard errors (SEM). A Shapiro-Wilk test was per-

formed to test for Gaussian distribution. Effects of soil treatments were assessed by two-

way ANOVA. Therefore the method described in detail by Glantz and Slinker (1990) was 
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applied. This method converts the ANOVA problem to a multiple regression problem and 

then displays the results as ANOVA (Fox, 2008). Since the data was unbalanced, analysis 

of unweighted means was applied (Fisher and van Belle, 1993). When significant effects 

were identified, a multiple post-hoc comparison using the Holm-Sidak test (P<0.05) was 

performed. 
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5.3 Results 

5.3.1 Protozoan abundances and dsDNA-derived microbial 
biomass 

At harvest, Acanthamoeba were detected in all microcosms to which they had been added. 

Treatments showed no differences (P<0.05) in protozoan numbers (Supplementary Fig-

ure II.5/25). Overall, the microbial biomass was strongly increased by additional substrate 

input, whereas Acanthamoeba grazing slightly reduced the abundance of bacteria in all 

treatments (Figure II.5/26). 

 

Figure II.5/25 Microbial biomass calculated from dsDNA content in absence (-Prot) or 
presence of Acanthamoeba (+Prot) for bulk soil, rhizosphere (Rhizo), detritusphere 
(Detritus) and combined-substrate input (Rhizo + Detritus). Significant differences 

(P<0.05) between the treatments are indicated by lower-case letters. 
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5.3.2 CO2 production and rhizo-C 

Grazing had no significant effect on CO2 production in all treatments (Figure II.5/26). 

CO2 production was lower (P<0.05) in root litter-treated than in rhizosphere soils, irre-

spective of grazing (Figure II.5/26).  

 

Figure II.5/26 Average CO2 production (±SEM) after 14C pulse labelling in the absence 
(-Prot) and the presence of Acanthamoeba (+Prot) for bulk soil, rhizosphere (Rhizo), 

detritusphere (Detritus) and combined-substrate input (Rhizo + Detritus). 

 

The recovered 14C input was partitioned to shoots (70.7%), roots (13.4%), crown roots 

(8.4%), CO2 (5.7%), soil (1.5%), microbial biomass (0.3%). Maize-derived 14C (rhizo-C) 

in CO2 decreased by 24% for both non-grazed and grazed combined substrates (Rhizo + 

Detritus) compared to rooted (Rhizo) soil, reflecting decreased mineralization of fresh C 

sources (Figure II.5/27 a). Grazing slightly increased mineralization of rhizo-C (14CO2 

release) by 28% and 32% for rooted soil and combined-substrate input relative to the 

absence of Acanthamoeba but was not significant.  
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Highest incorporation of rhizo-C into microbial biomass was exhibited in rooted (Rhizo) 

soil in the presence of Acanthamoeba. Grazing increased (P<0.05) the microbial uptake 

of maize-derived 14C in both rooted (by 143%) and combined substrate (by 215%), re-

flecting preferred incorporation of easily available substrates into microbial biomass (Fig-

ure II.5/27 b). Higher rhizo-C in EOC (by 34%; P<0.05) was determined for rooted 

(Rhizo) soil compared to combined-substrate input (Rhizo + Detritus) irrespective of 

Acanthamoeba grazing (Figure II.5/27 c).  

Acanthamoeba grazing raised microbial incorporation of rhizo-C (14C in MBC). Highest 

microbial uptake and mineralization of rhizo-C occurred in the rhizosphere (Rhizo) with 

Acanthamoeba grazing. 
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Figure II.5/27 Maize-derived 14C (rhizo-C) in a) CO2, b) microbial biomass, c) 
extractable organic carbon (EOC) (±SEM) in absence (-Prot) or presence of 

Acanthamoeba (+Prot). Significant differences (P<0.05) between absence and presence 
of Acanthamoeba are indicated by capital letters. Lower-case letters indicate significant 
differences (P<0.05) between rhizosphere (Rhizo) and combined-substrate input (Rhizo 

+ Detritus). 

5.3.3 Enzyme kinetics parameters 

The potential enzyme activities (Vmax) of chitinase and leucine-AP were affected (P<0.05) 

by rhizodeposition (Figure II.5/28 b, d). Both rates increased in the presence of living 

plants, whereas the enzyme activities for the root litter-amended soil were similar to bulk 
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soil. For β-glucosidase, the activity rates were higher for all treatments (P < 0.05) com-

pared to the bulk soil (Figure II.5/28 c), showing strong substrate effects. 

Acanthamoeba grazing increased (P<0.05) the potential enzyme activities of chitinase as 

well as β-glucosidase and decreased activity of leucine-AP for all treatments (except leu-

cine-AP for combined-substrate input) (Figure II.5/28 b, c, d), reflecting strong grazing 

effects.  

The Km of chitinase was unaffected by substrate input, whereas the presence of Acan-

thamoeba raised (P<0.05) the half saturation constant (Km) in all treatments (Figure 

II.5/28 5b). The strongest increase of Km of chitinase (by 144%) was determined for the 

combined-substrate input (Rhizo + Detritus) with grazing, indicating the lowest enzyme 

affinity to the substrate. Root litter-amended (Detritus) soils showed reduced Km for β-

glucosidase (Figure 5c), and therefore, higher affinity to the substrate. During Acan-

thamoeba grazing in rooted (Rhizo) soil, only the Km of β-glucosidase increased (by 

227%). 

Both, the substrate input and the Acanthamoeba grazing demonstrated strong effects on 

microorganisms and their associated extracellular enzymes. Furthermore, the C flux into 

the microbial community was affected by substrate quality and the presence of Acan-

thamoeba. 
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Figure II.5/28 Enzyme kinetics parameters of a) β-xylosidase b) chitinase, c) β-
glucosidase and d) leucine-aminopeptidase e) tyrosine-aminopeptidase f) acid 

phosphatase. Potential enzyme activity (Vmax) on the left axis and half saturation 
constant (Km) on the right axis (±SEM). Both are shown in the absence (-Prot) or 

presence of Acanthamoeba (+Prot) Lower-case letters indicated significant differences 
(P<0.05) between bulk soil, rhizosphere (Rhizo), detritusphere (Detritus) and combined-

substrate input (Rhizo+Detritus). 
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5.3.4 Phospholipid fatty acids 

Higher content of Gram- bacterial biomarkers was found in the presence of rhizodeposi-

tion compared to Gram+, irrespective of Acanthamoeba predation. However, Acan-

thamoeba grazing did not affect the microbial community structure. Higher PLFA 

contents were determined for planted (Rhizo; Rhizo + Detritus) compared to unplanted 

treatment (Detritus) irrespective of the presence of Acanthamoeba (Figure II.5/29). 

 

Figure II.5/29 Content of G+, G-, actinobacterial and 16:1w5 biomarkers (mg kg-1 soil) 
(±SEM) in absence or presence of protozoa in bulk soil, rhizosphere (Rhizo), 

detritusphere (Detritus) and combined-substrate treatment (Rhizo+Detritus). Stars 
reflect significant differences between planted (Rhizo; Rhizo + Detritus) and root litter-

amended soil (Detritus) (P<0.05). 
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5.4 Discussion 

5.4.1 Grazing effects 

Despite MBC was stable, microbes increased incorporation of rhizo-C (14C) in the pres-

ence of Acanthamoeba. Microbes enhanced their activity for the utilization of easily avail-

able substrates in the rhizosphere (Kuzyakov et al., 2002; Loeppmann et al., 2016a) and 

may have shifted from dormant to active state (Lennon and Jones, 2011; Blagodatskaya 

and Kuzyakov et al., 2013; Parry et al., 2014). The increased microbial activity with 

Acanthamoeba predation, as shown by increased potential enzyme activities, was in line 

with the higher incorporation of rhizo-C for all treatments.  

Total microbial respiration in presence of Acanthamoeba was comparable irrespective of 

the substrate quality. Pure culture studies revealed that the respiration increased in the 

presence of the same amoeba (Levrat et al., 1989, 1992) as used in our study (A. castel-

lanii). Many studies have demonstrated an increase in CO2 evolution in the presence of 

Acanthamoeba in soil (Singh, 1964; Coleman et al., 1977; Kuikman et al., 1990). This is 

generally regarded as an increase in C mineralization resulting from enhanced microbial 

activity.  

Under substrate limitation, microbes invest energy and nutrients (N and P) in enzyme 

production to ensure their supply of resources (Schimel and Weintraub, 2003; Kelly et 

al., 2011; Schimel and Schaeffer, 2012). There are life strategies of microorganisms 

(Fierer et al., 2007) which are more competitive in the rhizosphere through the consump-

tion of available substrate, such as r-selected microorganisms (Blagodatskaya et al. 2009; 

2014; Loeppmann et al., 2016b). These microorganisms may further benefit from a higher 

availability of nutrients (e.g. N and P) caused by Acanthamoeba grazing on the slow-

growing bacteria (Sherr et al., 1992). This is in line with the higher abundance of Gram- 

compared to Gram+ bacteria in the rhizosphere with protozoan predation as shown by 

PLFAs. It has been frequently proposed that proteobacteria (r-strategists e.g. bacteria 

from the Pseudomonadaceae or Burkholderiaceae family) are the dominant microbes in 
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the rhizosphere, with the ability to utilize a broad range of root-derived C (Phillipot et al., 

2013).  

Root exudate-consuming decomposers tend to mine for other N sources to support their 

fast growth because of the high C to N ratio of root exudates (Nguyen, 2003; Kelly et al., 

2011). This is supported by increased activities of chitinase during Acanthamoeba preda-

tion, suggesting higher microbial allocation to C-cycling enzyme production (Allison et 

al., 2011), since N is less limited. When Acanthamoeba were present, much lower affinity 

of chitinase to the substrate was revealed, irrespective of the treatment. That suggested 

changes in the relative dominance of organisms with different life strategies (Fierer et al., 

2007; Loeppmann et al., 2016b) which are differentiated by the substrate affinity of their 

enzyme systems (Killham and Prosser, 2015). Leucine-AP and tyrosine-AP clearly 

demonstrated decreased potential enzyme activities with Acanthamoeba grazing (except 

Detritus), because there was no need to increase proteolytic enzyme production, due to 

the higher N availability. Acanthamoeba excretion of ammonia provided an additional 

substrate pool for microbes and plants.  

Beside the C- and N-cycling enzymes, the acid phosphatases play a crucial role in soils, 

since they catalyze the hydrolysis of monophosphoesters (Nannipieri et al., 2012). Living 

plants are able to produce high amounts of extracellular acid phosphatase and compete 

with microbes for P acquisition. The transformation of organic phosphates into mineral P 

forms is strongly linked to higher acid phosphatase activities (Olander and Vitousek, 

2000; Gahoonia et al., 2001). Acanthamoeba predation induced higher P demand in pres-

ence of plants as shown by an increase in acid phosphatase activities, which might indi-

cate that amoebae are additional constitutive producers of phosphatases. This corresponds 

with the results of Gould et al. (1979) who concluded that solely bacteria and the combi-

nation of bacteria and amoeba stimulate phosphatase activity in the rhizosphere to support 

their nutrient demand.  
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5.4.2 Substrate effects 

The dsDNA contents increased with the addition of substrate. This reflected stronger mi-

crobial growth in rhizosphere and detrituspehre compared to the bulk soil, resulting in 

higher microbial biomass. 

Microorganisms´ uptake of rhizo-C (14C) in the rhizosphere (Rhizo) compared to the com-

bined-substrate input (Rhizo + Detritus), which indicated a high fraction of active (grow-

ing) microorganisms because only the active cells drive the biochemical cycles (Blago-

datskaya and Kuzyakov, 2013; Parry et al., 2013). Microbial cells that maintain a poten-

tially activity status (Bodegom, 2007), are ready for energy and nutrient uptake when 

labile substrates enter the soil through root exudation. This suggests that microbial activ-

ity is highly dependent on root activity.  

It can be concluded that root litter addition hampered microbial uptake and mineralization 

as well as allocation of maize-derived 14C to EOC, despite higher substrate amount com-

pared to rhizosphere (Rhizo). Roots are known to be major producers of both β-gluco-

sidase and phosphatase enzymes (Conn and Dighton, 2000). 

Especially leucine-AP was significantly higher in the presence of living plants, irrespec-

tive of root litter addition, suggesting higher N demand in the presence of plants. These 

regulatory processes ensure that enzymes are produced only when substrate is available 

and the end-products of the enzymatic reaction are scarce (Allison et al., 2010, Allison et 

al., 2011).  

All tested enzymes showed increased activities relative to the non-grazed bulk, except for 

the root litter-treated soil. This reflects that the decomposition of this recalcitrant sub-

strate, such as root litter, reduced the Vmax of enzymes. This is explained by highly recal-

citrant root litter, rich in secondary cell walls that contain lignin and covalent bridges 

between heteroxylans and lignin (Amin et al., 2014). The degradation processes and the 

microbial succession resulted in a similar substrate utilization pattern as for soil organic 

matter decomposition (e.g. as in bulk soil). Because all non-lignified polysaccharides in 

the litter were already consumed, the decomposition of the remaining material was tied 

to the oxidative breakdown of lignin and humic condensates by slow-growing decompos-

ers (Joseleau et al., 1994; Allison et al., 2007). Our results confirm a relatively larger 



5.4 Discussion 185 

 

185 
 
 
 
 

proportion of K- versus r-selected microorganisms on decaying litter (Blagodatskaya et 

al., 2007; Amin et al., 2014; Loeppmann et al., 2016b). For root litter-treated soil, higher 

enzyme affinity to substrate was found for β-glucosidase, leucine-aminopeptidase and 

acid phosphatase relative to the combined-substrate input (Rhizo + Detritus), implying 

more efficient substrate utilization. This was consistent with lower CO2 production in root 

litter-amended soil, indicating lower microbial turnover and lower sequestration of nutri-

ents in soil (Schimel and Schaeffer, 2012). 
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5.5 Conclusions 

Acanthamoeba grazing strongly affected C fluxes and enzyme activities depending on 

contrasting substrate quality. Microbial activity in planted soil increased with predation, 

as shown by the increased microbial incorporation of rhizo-C (14C) and activities of C-

cycling enzymes, suggesting higher microbial- and enzymatic turnover times under Acan-

thamoeba grazing in the rhizosphere. The additional N from protozoan excretions sup-

plied microbes and plants with nutrients and accelerated C-, N-, and P-cycling in the rhi-

zosphere. Thus, the proteolytic enzyme production decreased. Accordingly, Acan-

thamoeba grazing was accompanied by a shift in enzymatic systems towards higher chi-

tinase activities with lower binding affinities, implying an increased degradation of bac-

terial residues. Root litter hampered C mineralization by microbes in the rhizosphere ir-

respective of Acanthamoeba grazing, due to the utilization of highly recalcitrant sub-

strates. 

In conclusion, enzyme systems, which are essential factors in microbial decomposition 

mechanisms in soil, implied differential susceptibility of microbes on Acanthamoeba 

grazing. Consequently, substrate availability and the stimulation by micro-fauna is a cru-

cial driver for microbial decomposition in the rhizosphere and detritusphere.  
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Supplementary 

Table II.5/14 Potential enzyme activity (Vmax) and half-saturation constant (Km). 
            

  Chitinase Tyrosine-AP  

   Vmax SEM Km SEM 

Vmax/

Km Vmax SEM Km SEM 

Vmax/

Km 

 Bulk soil-Prot 1.5 0.1 65 11 0.02 5.8 0.3 286 24 0.02 

 Bulk soil+Prot 4.4 0.2 144 17 0.03 5.5 0.1 182 9 0.03 

 Rhizosphere-Prot 5.7 0.3 73 11 0.08 20.3 1.0 552 38 0.04 

 Rhizosphere+Prot 9.3 0.4 121 12 0.08 14.9 0.5 526 24 0.03 

 Detritusphere-Prot 2.0 0.1 56 8 0.04 4.6 0.3 583 48 0.01 

 Detritusphere+Prot 4.3 0.2 152 16 0.03 22.2 6.6 1883 642 0.01 

 

Rhizosphere+Detri-

tusphere-Prot 6.3 0.3 79 11 0.08 19.7 0.5 155 9 0.13 

 

Rhizosphere+Detri-

tusphere+Prot 13.7 1.1 193 29 0.07 19.3 0.7 178 12 0.11 

            

  Beta-glucosidase Beta-xylosidase  

   Vmax SEM Km SEM 

Vmax/

Km Vmax SEM Km SEM 

Vmax/

Km 

 Bulk soil-Prot 2.7 0.1 47 6 0.1 0.9 0.07 69 13 0.01 

 Bulk soil+Prot 2.9 0.1 33 5 0.1 0.7 0.03 38 6 0.02 

 Rhizosphere-Prot 7.5 0.3 42 6 0.2 1.5 0.08 30 6 0.05 

 Rhizosphere+Prot 12.0 0.9 137 21 0.1 1.5 0.10 62 11 0.02 

 Detritusphere-Prot 5.1 0.1 14 2 0.4 1.7 0.09 97 12 0.02 

 Detritusphere+Prot 9.1 0.3 14 3 0.7 1.7 0.07 78 8 0.02 

 

Rhizosphere+Detri-

tusphere-Prot 27.9 1.6 21 5 1.3 1.6 0.07 35 5 0.04 

 

Rhizosphere+Detri-

tusphere+Prot 40.4 0.9 24 2 1.7 1.4 0.07 9 4 0.14 

            

  Acid Phosphatase  Leucine-AP  

   Vmax SEM Km SEM 

Vmax/

Km Vmax SEM Km SEM 

Vmax/

Km 

 Bulk soil-Prot 11.9 0.5 72 8 0.16 29.7 2.1 285 29 0.10 

 Bulk soil+Prot 8.9 1.2 123 38 0.07 20.6 1.8 186 26 0.11 

 Rhizosphere-Prot 26.6 1.3 62 9 0.43 58.9 5.1 386 45 0.15 

 Rhizosphere+Prot 31.2 1.5 81 10 0.38 42.2 3.2 349 36 0.12 

 Detritusphere-Prot 10.3 1.6 267 73 0.04 31.7 3.5 187 33 0.17 

 Detritusphere+Prot 8.9 0.8 145 28 0.06 15.4 1.5 261 38 0.06 

 

Rhizosphere+Detri-

tusphere-Prot 27.9 1.6 21 5 1.33 45.4 3.5 566 54 0.08 

 

Rhizosphere+Detri-

tusphere+Prot 33.3 1.6 73 9 0.46 42.9 10.1 538 160 0.08 
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Figure II.5/30 Amoeba abundance (±SEM) in bulk soil, rhizosphere (Rhizo), 
detritusphere (Detritus) and combined-substrate treatment (Rhizo+Detritus). 
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Research highlights 

 Root hairs have strong effects on rhizosphere priming of SOM decomposition.  

 The presence of root hairs accelerated SOM decomposition by 70%. 

 Root hairless barley mutant suppressed SOM decomposition at tillering by 28%. 

 At head emergence, SOM decomposition was strongly accelerated by 209%. 

 Positive rhizosphere priming was accompanied with higher chitinase and ß-xylo-

sidase activities. 

 

Graphical abstract 
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Abstract 

The influence of plant roots and the associated rhizosphere activities on decomposition 

of soil organic matter (SOM), the rhizosphere priming effect, has emerged as a crucial 

mechanism regulating global carbon (C) and nitrogen (N) cycles. However, the role of 

root morphology in controlling the rhizosphere priming effect remains largely unknown. 

To investigate the link between root hairs, a critical part of the entire root morphology, 

and the rhizosphere priming effect, we grew a barley wild type and a barley mutant with-

out root hairs in a greenhouse and continuously labeled them with 13C depleted CO2. Soil 

CO2 efflux was measured during tillering and head emergence stages of plant growth. 

Based on its δ13C signature, total CO2 was partitioned for root-derived and SOM-derived 

CO2, and the SOM decomposition primed in the rhizosphere was calculated. Soil micro-

bial biomass C and N, and the activities of six extracellular enzymes (β-cellobiohydrolase, 

β-glucosidase, acid phosphatase, β-xylosidase, leucin-aminopeptidase, and N-acetyl-β-

glucosaminidase) were measured to test the effects of root hairs. 

During the early stage of development (tillering), when plants were sufficiently supplied 

with nutrients, the barley mutant without root hairs used photosynthates more efficiently 

for plant biomass production. In contrast, high C costs for root hair formation reduced the 

growth of the barley wild type. At this stage, the wild type with regular root hairs pro-

duced a positive rhizosphere priming effect (69% increase), but the mutant without root 

hairs produced a negative priming effect on SOM decomposition (28% decline). At the 

head emergence stage, when nutrients were scarce, the inefficiency of nutrient uptake 

without root hairs reduced the plant biomass production of the mutant. At this stage, both 

barley types produced positive rhizosphere priming effects (72% and 209% increase for 

the wild type and the mutant, respectively) and the microbial biomass was higher for both 

planted soils compared to the unplanted soil. Extracellular enzymes responsible for the 

decomposition of stable SOM had higher activities in cases of positive priming effects. 

Concluding, root hairs have strong effects on rhizosphere priming of SOM decomposi-

tion.  
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Key words: Rhizosphere priming; Soil CO2 efflux; Root morphology; Root hairless Bar-

ley mutant; Isotope labeling; Enzyme activities 
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6.1 Introduction 

Soil CO2 is one of the largest fluxes in the global C cycle, approximately ten-fold greater 

than CO2 emissions from fossil fuel combustion (Schlesinger and Andrews, 2000; 

Amundson, 2001). The majority of this flux results from the decomposition of soil or-

ganic matter (SOM) and litter by microbes (Kuzyakov, 2006). In recent years, there is an 

emerging view that, in addition to temperature and moisture, carbon substrate availability 

is a key factor controlling SOM turnover (Fontaine et al., 2007; Paterson and Sim, 2013). 

These changes in the rate of SOM turnover following the input of easily decomposable 

substrates for microorganisms are termed ˈpriming effectsˈ. 

While decaying leaf and root litter provides some labile substrate for soil microbes, the 

majority of the labile substrate in soils comes from roots. For example, some studies have 

reported that SOM decomposition may be 380% greater in soils with roots compared to 

unplanted soils (positive rhizosphere priming effects; RPE) (Cheng et al., 2014). Accord-

ingly, the magnitude of RPE may control C fluxes at the ecosystem level and influence 

ecosystem feedbacks to climate (Cheng et al., 2014; Finzi et al., 2015). 

The explanation for most of the reported positive RPE is microbial activation, i.e. the 

stimulation of growth and activity induced by root-derived substrates. Microbes utilize 

this energy subsidy to produce extracellular enzymes (exoenzymes) that enhance the re-

lease of nutrients from SOM (Blagodatskaya and Kuzyakov, 2008). While microbes ben-

efit from the nutrients released through enhanced decomposition, plants may benefit too 

- suggesting that RPE may be an evolutionary stable strategy (Cheng et al., 2014). 

Living roots release numerous available low molecular weight substrates such as sugars, 

carboxylic acids and amino acids throughout the soil profile and over the course of the 

growing season (Nguyen, 2003; Jones et al., 2009). These substrates are not homogene-

ously distributed along the root segments but are rather released in distinct areas, mainly 

at the root tips (McDougall and Rovira, 1970; Nguyen, 2003; Dennis et al., 2010; Pausch 

and Kuzyakov, 2011). For this reason, root morphology (e.g. lateral root formation, num-

ber of root tips, root hair formation) may largely impact exudation (Nguyen, 2003), and 

may, hence, be decisive for rhizosphere priming effects. The root morphology, in turn, is 
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mainly controlled by the nutrient availability in the soil since changes in root architecture 

can alter the capacity of plants to take up nutrients (López-Bucio et al., 2003). Several 

strategies have been developed by plants to increase the uptake of limited nutrients from 

the soil. An efficient strategy to acquire limited nutrients is the production of root hairs, 

which could differ in numbers, density and length between plant species depending on 

the kind of nutrients and nutrient availability in the soil (Jungk, 2001). The substantial 

contribution of root hairs to plant nutrition and accompanied therewith nutrient shortages 

in the rhizosphere and high energy supply to microbes through exudation, as well as direct 

and indirect enhancement of enzyme activities (Spohn and Kuzyakov, 2014) may be cru-

cial for rhizosphere priming effects. A barley mutant lacking root hairs completely was 

discovered by Gahoonia et al. (2001). This mutant enabled us to study the role of root 

hairs for rhizosphere priming effects. 

In the present experiment a barley wild type with root hairs and the root hairless mutant 

were grown under controlled conditions. Rhizosphere priming effects, i.e. changes in the 

rate of SOM decomposition, are indicated by an increase or decrease of SOM-derived 

CO2 production in planted compared to an unplanted soils. Continuous labeling of shoots 

with 13C depleted CO2 allowed to differentiate root-derived CO2 from SOM-derived CO2 

and finally to calculate RPE as the difference in SOM-derived CO2 between a planted and 

unplanted soils. To investigate the influence of plant age, the soil CO2 efflux was trapped 

at two growth stages of the plants (tillering and head emergence). Microbial parameters 

(microbial biomass C and nitrogen (N), enzyme activities) were analyzed to assess 

changes of microbial activities. 

We hypothesize that the rhizosphere priming effect depends on root morphology. More 

specifically, a better nutrient acquisition of the wild type with root hairs through a higher 

total root surface area will cause a larger plant biomass production, thus, leading to higher 

exudation and higher positive RPE. We also expect that the higher the positive priming 

is the more active are exoenzymes responsible for the decomposition of more stable sub-

strates (organic C and N). Plant age is known to play an important role for the intensity 

of priming (Fu and Cheng, 2002; Pausch et al., 2013). Due to different growth pattern and 

nutrient demands, we hypothesize that plant age influences rhizosphere priming on SOM 
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decomposition differently for the hairless barley mutant and the barley wild type with 

root hairs.  
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6.2 Material and Methods 

6.2.1 Experimental Setup 

Two barley (Hordeum vulgare L.) types, a wild type (cv. optic; WT) and a root-hairless 

mutant called bald root barley (brb, Gahoonia et al., 2001), were grown in a greenhouse 

and were continuously labeled with 13C depleted CO2 (Cheng and Dijkstra, 2007). The 

plants were exposed to the tracer from the emergence of the first leaf till the end of the 

experiment. Briefly, a constant CO2 concentration of 400±5 ppm and a constant δ13C 

value of about -18‰ was maintained inside the greenhouse by regulating the flow of pure 
13C depleted CO2 (99.9% CO2, δ13C of -38‰) from a tank and setting CO2-free air flow 

rate proportional to the leakage rate (300 L/min) of the greenhouse (Zhu and Cheng, 2012; 

Pausch et al., 2013). The CO2-free air was produced from compressed air passed through 

six soda lime columns (20 cm diameter, 200 cm length) filled with approximately 40 kg 

soda lime (pellets made of NaOH and Ca(OH)2 mixture) each. The CO2-free air flow was 

set at 120 L/min. The CO2 concentration inside the greenhouse was continuously moni-

tored by an infra-red gas analyzer (Model LI-820, Li-COR, Lincoln, NE, USA) and sta-

bilized at 400±5 ppm by computer controlled CO2 injection from the tank. A fan was used 

to ensure a uniform distribution of the CO2 inside the greenhouse. For the duration of the 

experiment, the δ13C value of the greenhouse air was measured every three days during 

the light period by pumping air through a glass airstone immersed in 50 mL of 0.5 M 

NaOH solution. The CO2 trapping efficiency was nearly 100% as checked by an infra-

red gas analyzer (Model LI-6262, Li-COR, Lincoln, NE, USA). An aliquot of the sample 

was precipitated with SrCl2 as SrCO3 using the method described by Harris et al. (1997) 

and analyzed for δ13C (relative to PDB standard) using a PDZ Europa ANCA-GSL ele-

mental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer 

(Sercon Ltd., Cheshire, UK). The mean δ13C value of the CO2 in the greenhouse air was 

-18.2±0.3‰. 

The two barley types were grown in PVC pots (15 cm diameter, 40 cm height, equipped 

with an inlet tube at the bottom for aeration and soil CO2 trapping). A nylon bag filled 

with ~1500 g sand was placed at the bottom of each PVC pot to improve air circulation. 
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Each pot was filled with about 7 kg sieved (<2mm) soil. The soil was taken from the 

plough horizon (top 30 cm) of a sandy loam (Mollisol) from a farm on the campus re-

serves of the University of California, Santa Cruz. The soil contained 1.18±0.01% organic 

C and 0.13±0.001% N, had δ13C and δ15N values of -26.45±0.07‰ and 7.12±0.02‰, 

respectively, and a pH value of 5.8. All filled pots were wetted to 20% gravimetric soil 

moisture content (equivalent of 80% of the water holding capacity) with deionized water.  

For each barley type, 10 pots were set up. In addition, 8 unplanted pots (unplanted soil; 

US) were prepared (in total 28 pots). The seeds were presoaked overnight and 6-8 barley 

seeds were planted per pot. The inlet tube at the bottom of each pot was connected to an 

aquarium pump to aerate the pots. This was done 2 times during the dark period to avoid 

contamination of the growth chamber δ13C signal with that of soil-derived CO2 during the 

assimilation period. 

The soil moisture content was measured gravimetrically and adjusted daily to 80% of the 

water holding capacity. To maintain homogeneous soil moisture and good soil structure, 

water was added through perforated tubes buried at the center of the pot (inner diameter 

0.32 cm, total length 20 cm, buried length 10 cm). The location of the pots in the green-

house was changed weekly by mixing them randomly to guarantee similar growing con-

ditions for the plants. The day time air temperature inside the greenhouse was maintained 

at 23°C by two air conditioning units. The night time temperature was kept above 17°C. 

Artificial lighting (1100W lights, P.L. Light Systems, Beamsville, ON) was used to en-

sure an adequate light intensity throughout the experiment. The light intensity was kept 

above 900 W m-2. The photoperiod was set from 4:30AM to 4:30PM. The relative air 

humidity was kept at 45% by a dehumidifier (Kenmore Elite 70 pint, Sears, Chicago, IL, 

USA). 

6.2.2 Measurements 

Soil CO2 efflux 

Soil CO2 efflux from each pot was measured at two growth stages of barley, 29-30 days 

after planting (DAP) at tillering (T1) and 64-65 DAP at head emergence (T2), by using a 

closed-circulation CO2 trapping system (Cheng et al., 2003; Pausch et al., 2013). Prior to 
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each CO2 trapping the pots were sealed with non-toxic silicone rubber (GI-1000, Sili-

cones Inc., NC, USA) added directly to the soil surface.  

Soil CO2 trapping was performed on 4 replicates each of the unplanted soil, and the barley 

with and without root hairs at T1. At T2, CO2 was trapped from 6 replicates of planted 

pots and 4 replicates of unplanted pots. Shortly before CO2 trapping, the CO2 inside the 

pots was removed by circulating the isolated air through a soda lime column (3 cm diam-

eter, 50 cm length) for 40 min. Then CO2 produced in the sealed pots was trapped for 24 

h in 400 ml of 0.5 M NaOH solution. Four blanks were included to correct the total inor-

ganic C content for possible contamination from carbonate in the NaOH stock solution 

and from sample handling (Cheng et al., 2003; Pausch et al., 2013). An aliquot of each 

NaOH solution was analyzed for total inorganic carbon using a Shimadzu TOC-5050A 

Total Organic Carbon Analyzer. Another aliquot was precipitated as SrCO3 (Harris et al., 

1997) and analyzed for δ13C by means of a continuous flow isotope ratio mass spectrom-

eter as described above. 

Shoot, root and soil analyses 

After each CO2 sampling the pots were destructively harvested. The shoots were cut at 

the base. The soil of each pot was pulled out and the roots were separated by hand-pick-

ing. Subsamples of about 1 kg soil were stored in a freezer (-18°C) until further analysis. 

Shoots, root, and soil samples were dried at 60°C for 3 days, weighed, grinded in a ball 

mill and measured for δ13C and δ15N using a Carlo Elba 1108 elemental analyzer inter-

faced to a Thermo-Finningan Delta Plus XP isotope ratio mass spectrometer at the Isotope 

Facility of University of California-Santa Cruz. 

Dissolved N (DN) which is extractable with K2SO4 was determined as described below 

(2.2.3). Extractable phosphorus (bioavailable inorganic ortho-phosphate) was determined 

on dried and grinded soil samples by the Bray-Method at the Analytical Laboratory, Uni-

versity of Davis (http://anlab.ucdavis.edu/). 

Microbial biomass C and N 

Soil microbial biomass C (MBC) and soil microbial biomass N (MBN) were determined 

on all soil samples by the chloroform fumigation extraction method described by Vance 
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et al. (1987) with the modification that fumigated and non-fumigated soil samples (7.5 g) 

were extracted for 1 hour with 30 mL of 0.05 M K2SO4 solution. The samples were fil-

tered and the extracts were analyzed for total organic C and N by means of a multi N/C 

analyzer (multi N/C analyzer 2100S, Analytik Jena). Total N content of the non-fumi-

gated extracts were used as a measure of available N. The difference between the extracts 

of fumigated and non-fumigated samples gave the amount of chloroform-labile C and N 

(hereafter referred to as MBC and MBN). We noted that these values did not correspond 

to total amount of MBC and MBN as the extraction efficiency was not taken into account. 

Reported conversion factors kec (or ken for N) ranged from less than 0.2 to 0.45 among 

different soils (Wu et al., 1990; Dictor et al., 1998; Bailey et al., 2002). Thus, for the 

purpose of comparing treatment effects and avoiding biases of conversion factors, the 

data presented in this study were not corrected by conversion factor. 

Enzyme assays 

To determine the activities of the enzymes β-cellobiohydrolase (exo-1,4-β-glucanase, EC 

3.2.1.91), β-glucosidase (EC 3.2.1.21), acid phosphatase (EC 3.1.3.2), β-xylosidase (EC 

3.2.2.27), leucin-aminopeptidase (LAP) (EC 3.4.11.1), and N-acetyl-β-glucosaminidase 

(chitinase, EC 3.2.1.52), we used 4-methylumbelliferyl-β-D-cellobioside, 4-

methylumbelliferyl-β-D-glucopyranoside, 4-methylumbelliferyl-phosphate, 4-

methylumbelliferyl-7-β-D-xylopyroniside, L-leucine-7amino-4-methylcoumarin hydro-

chloride and 4-methylumbelliferyl N-acetyl-β-D-glucosaminide, respectively. The soil 

suspension was dispersed by an ultrasonic disaggregator (50 J s-1 for 120 s) after addition 

of half a gram of soil to 50 ml sterile water in autoclaved jars (De Cesare et al., 2000). 

While stirring the soil suspension 50 µl aliquots were withdrawn and dispensed in 96-

well microplates (Brand pureGrade, black). Buffer (80 ml) was added (0.1 M MES buffer, 

pH 6.1 for carbohydrases and phosphatase, 0.05 M TRIZMA buffer, pH 7.8 for leucine-

aminopeptidase) (Marx et al., 2001; 2005; Loeppmann et al., 2016).  

We added 100 µl of series concentrations of substrate solutions (20, 40, 60, 80, 100, 200, 

400 µmol substrate g-1 soil) to the wells and kept the temperature at 21 °C. The micro-

plates were agitated and measured fluorometrically (excitation 360 nm; emission 450 nm) 

after 1 h, 2 h, and 3 h incubation with an automated fluorometric plate-reader (Wallac 

1420, Perkin Elmer, Turku, Finland). Fluorescence was converted into an amount of 
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MUB (4-methylumbelliferone) or AMC (7-amino-4-methylcoumarin), according to spe-

cific standards, which had been prepared in sub-samples from the various soil suspen-

sions.  

6.2.3 Calculations  

The contribution of CO2 derived from SOM decomposition (CSOM-DERIVED, mg C kg-1 soil 

day-1) to total soil respiration was calculated using a linear two-source isotopic mixing 

model: 

 

�ௌ�ெ−஽ாோ��ா஽ = �்�்�௅ ∙ �13஼೅�೅�ಽ−�13஼ೃ��೅−ವಶೃ��ಶವ�13஼ೄ�ಾ−ವಶೃ��ಶವ−�13஼ೃ��೅−ವಶೃ��ಶವ (1) 

 �ோ��்−஽ாோ��ா஽ = �்�்�௅ − �ௌ�ெ−஽ாோ��ா஽ (2) 

 

where CTOTAL is the total CO2 efflux of the planted soil (mg C kg-1 soil day-1) and  δ13CTO-

TAL the corresponding δ13C value (‰). δ13CSOM-DERIVED is the δ13C value of CO2 from 

SOM decomposition measured in the unplanted soils (‰). CROOT-DERIVED is the root-de-

rived CO2 in the planted soils (mg C kg-1 soil day-1) with  δ13CROOT-DERIVED as the corre-

sponding δ13C value (‰).  

To consider isotopic fractionation, we accounted for 13C differences between the isotopic 

composition of roots and that of root-derived CO2 (Pausch et al., 2013). The fractionation 

factor (f) was taken from Zhu and Cheng (2011) and was -0.87‰. This fractionation fac-

tor was measured for wheat (Triticum aestivum) and was chosen since barley and wheat 

are both belonging to the Poaceae family and are both monocotyledons with similar prop-

erties. 

δ13CROOT-DERIVED was calculated by correcting the δ13C value of the root (δ13CROOT) by a 

fractionation factor ( ): 
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�13�ோ��்−஽ாோ��ா஽ = �13�ோ��் + �  (3) 

 

Table II.6/15 End member values (±SEM) used in two-source isotopic mixing models in 

order to calculate the contribution of SOM-derived CO2 to total soil CO2 of the planted 

treatments. 

Sampling 

time 

Treat-

ment 

Root-derived CO2 

[‰] 

SOM-derived CO2 of the unplanted soil 

[‰] 

T1 

US  -24.20±0.51 (4) 

WT -38.65±0.28 (3)  

brb -39.65±0.36 (4)  

T1 

US  -24.90±0.22 (4) 

WT -38.57±0.22 (6)  

brb -39.29±0.21 (4)  

 

 

The RPE on SOM decomposition was calculated by subtracting the CO2 flux of the un-

planted soil (CSOM-DERIVED (US)) from the SOM-derived CO2 flux of the planted soil 

(CSOM-DERIVED (WT, brb)). 

 ܴ�� = �ௌ�ெ−஽ாோ��ா஽ሺ�ܶ, ���ሻ − �ௌ�ெ−஽ாோ��ா஽ሺܷܵሻ (4) 

 

The RPE was related to total root biomass (gDW) as well as expressed as percentage of 

basal respiration of the unplanted soil.  
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6.2.4 Statistics 

The values presented in the figures and tables are given as means ± standard errors. A 

one-way analysis of variance (ANOVA) was conducted to test for significant differences 

in all measured data between the unplanted soil, and barley with and without root hairs 

by calculating the ANOVA separately for each sampling date. The significance of differ-

ences between individual means was obtained by a post hoc unequal N HSD test. To test 

for significant differences within each treatment but between T1 and T2 (phenological 

effects) a dependent (paired) t-test was used. Moreover, rhizosphere priming values were 

tested for significant deviation from zero by a t-test. All statistical analyses were per-

formed with the statistical package STATISTICA for Windows (version 7.0; StatSoft 

Inc., OK, USA). 

For enzyme analyses, we used a non-linear regression (Michaelis-Menten kinetics) to es-

timate the kinetic parameter Vmax (Marx et al., 2001). Each soil sample was measured as 

an analytical triplicate. The kinetic parameters were fitted by minimizing the least-square 

sum using GraphPad Version 6 software (Prism, USA). Parameter optimization was re-

stricted to the applied model equation as indicated by maximum values of statistic criteria: 

r2. Outliers were identified by the ROUT method, based on the False Discovery Rate 

(FDR) (Motulsky and Brown, 2006). A multiple t-test was applied to test for differences 

in enzyme activities between the unplanted soil, and the barley with and without root hairs 

and between T1 and T2. Statistical significance was determined using the Holm-Sidak 

method (P≤0.05). 
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6.3 Results 

6.3.1 Plant biomass and δ13C and δ15N values  

The main difference between the two barley types was the production of plant biomass; 

shoots and roots. While the mutant (brb), completely lacking root hairs, produced higher 

shoot biomass during the tillering stage (T1), both root and shoot biomass was reduced at 

the head emergence stage (T2) compared to the barley wild type (WT) (Table II.6/17).   

At T1, C and N contents of shoots were on average 34.3±0.4% and 6.1±0.1%, respec-

tively. At T2 a higher C content of 38.2±0.4% was measured while the N content de-

creased to 1.7±0.1% compared to T1. This led to a much higher C/N ratio at T2 compared 

to T1 (Table II.6/18). Similarly, the C content of roots was higher at T2 (33.6±1.1%) 

compared to T1 (22.1±2.0%). The N content of roots, however, was similar between the 

two sampling times. The C/N ratio of roots increased from 13.9±0.6 at T1 to 25.3±1.4 at 

T2.  

The plants were successfully labeled with 13C depleted CO2 as shown by the δ13C values 

of shoots and roots (Table II.6/17). The δ13C value of shoots was -41.4±0.1‰ at T1 which 

was lower than at T2 (-39.3±0.3‰). The δ13C value of roots did not differ between T1 

and T2. Interestingly, the δ15N value of roots increased between T1 and T2 and was about 

2.6‰ higher at T2 (Table II.6/17).  
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Table II.6/16 Plant (shoot and root) biomass, C and N contents, C/N ratios, and δ13C 
and δ15N values (±SEM) 30 (T1) and 65 (T2) days after planting. Significant differences 
(P≤0.05) between the treatments are indicated by different lower-case letters. The aster-
isk indicates significant differences between T1 and T2. 

Sampling time T1 T2 

Treatment WT brb WT brb 

Shoot 

Biomass [gDW pot-1] 3.03±0.13b 3.70±0.07a 38.87±2.38* 30.70±2.54* 

C content [%] 34.08±0.74 34.51±0.31 38.67±0.21* 37.69±0.69* 

N content [%] 6.15±0.06 6.08±0.09 1.47±0.10* 1.87±0.16* 

C/N 5.54±0.08 5.67±0.05 26.72±2.09* 20.64±1.95* 

δ13C[‰] -41.45±0.05 -41.40±0.10 -38.75±0.10* -39.75±0.42* 

δ15N[‰] 5.23±0.28 5.07±0.21 6.13±0.40 5.67±0.50 

Root 

Biomass [gDW pot-1] 1.65±0.04 1.88±0.43 12.30±1.21a* 7.37±0.90b* 

C content [%] 21.13±2.69 23.04±3.18 32.14±0.96* 34.99±1.83* 

N content [%] 1.61±0.35 1.68±0.26 1.27±0.11 1.47±0.15 

C/N 13.89±1.29 13.88±0.46 25.94±1.75* 24.57±2.47* 

δ13C[‰] -37.84±0.21 -38.78±0.36 -37.70±0.27 -38.46±0.33 

δ15N[‰] 3.61±0.63 2.51±0.27 5.87±0.25* 5.53±0.33* 

Shoot/Root 1.91±0.11 2.21±0.35 3.37±0.63 4.25±0.31* 

 

6.3.2 Soil N and P contents, microbial biomass C and enzyme 
activities 

Nutrient uptake by plants led to lower dissolved N (DN) and plant available P in planted 

soils. The DN content was reduced by ~46% in planted soil compared to the unplanted 
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soil at tillering and further decreased to 14% at head emergence stage. A small reduction 

(from 66.79±1.2 to 59.92±1.70 mg P kg-1 soil) of available P with time only occurred for 

the brb.  

 

Table II.6/17 Dissolved nitrogen (DN), available phosphorus (Bray-P), and chloroform-
labile microbial biomass C and N, at tillering (T1) and head emergence stage (T2) for 
unplanted soil (US), the barley wild type (WT) and the root-hairless barley mutant 
(brb). 

Sampling time T1 T2 

Treatment US WT brb US WT brb 

K2SO4-extractable DN 

[mg N kg-1 soil] 

 

104.62

±4.68a 

57.13±

1.34b 

57.74±

3.18b 
nd 

15.00±

1.71* 

15.61±

1.59* 

Bray-P 

[mg P kg-1 soil] 

66.71±

1.87 

62.74±

0.69 

66.79±

1.20 

68.35±

1.58 

60.82±

2.52 

59.92±

1.70* 

Chloroform-labile MBC 

[mg C kg-1 soil] 

67.60±

5.41 

62.03±

2.72 

66.61±

6.26 

81.25±

7.55 

101.46

±14.42

* 

92.21±

7.16* 

Chloroform-labile MBN 

[mg N kg-1 soil] 

 

8.92±1.

77 

6.72±1.

81 

8.66±0.

39 

10.21±

1.93 

13.19±

1.33* 

14.49±

1.21* 

MBC/ MBN 
8.70±2.

18 

11.41±

2.71 

7.84±1.

13 

9.47±3.

05 

7.67±0.

56 

6.48±0.

63 

6.3.3 Microbial biomass C and N and enzyme activities  

MBC and MBN (chloroform-labile C and N) was similar between the unplanted soil, and 

the barley with and without root hairs (Table II.6/18). However, at the head emergence 
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stage of plant growth (T2) MBC and MBN increased for both barley types compared to 

the tillering stage (T1).  

At tillering stage, the presence of root hairs (WT) decreased the activities of β-gluco-

sidase, β-cellobiohydrolase, and acid phosphatase, while the activity of β-xylosidase and 

chitinase were higher compared to the unplanted soil (Figure II.6/31). In contrast, the 

activities of β-glucosidase, β-cellobiohydrolase, and LAP did not differ between brb and 

the unplanted soil, but a higher activity of β-xylosidase and acid phosphatase was meas-

ured. At head emergence stage, both barley types induced lower activity rates of β-gluco-

sidase and LAP, while the activities of β-xylosidase and chitinase increased through 

planting. β-cellobiohydrolase and acid phosphatase activities of the planted soils were 

similar to that of the unplanted soil at T2.  
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Figure II.6/31 Potential enzyme activities for a) β-glucosidase, b) β-cellobiohydrolase, 
c) β-xylosidase, d) chitinase, e) leucine-aminopeptidase (LAP), and f) acid phosphatase 

(±SEM) at tillering (T1) and head emergence stage (T2) for unplanted soil (US), the 
barley wild type (WT) and the root-hairless barley mutant (brb). Bars followed by 
different lower-case letters indicate significant differences (P≤0.05) between the 
treatments at one sampling date. Significant differences between T1 and T2 are 

indicated by an asterisk. 

6.3.4 CO2 efflux partitioning 

Total soil CO2 efflux was influenced by planting and by the presence of root hairs as well 

as by sampling time. At T2 all planted soils showed higher total soil CO2 efflux (sum of 

SOM- and root derived CO2) compared to the unplanted soils (Figure II.6/32).  
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SOM-derived CO2 was higher for WT (29.2±0.6 mg C kg-1 soil day-1) compared to brb 

(12.5±1.8 mg C kg-1 soil day-1) at T1 (Figure II.6/32, top). Moreover, at T2 both barley 

types had higher SOM-derived CO2 (24.3±3.0 mg C kg-1 soil day-1 for WT and 43.8±9.7 

mg C kg-1 soil day-1 for brb) compared to the unplanted soil (14.2±0.3 mg C kg-1 soil day-

1). However, this was only statistically significant (P>0.05) for the root-hairless mutant. 

While SOM-derived CO2 remained relatively constant for the unplanted soil and the WT 

between T1 and T2, the brb showed higher SOM-derived CO2 at T2.  

Root-derived CO2 consists of CO2 released from root respiration per se and of CO2 re-

leased through microbial decomposition of rhizodeposits. Root-derived CO2 positively 

correlates with root biomass (R²=0.99, data not shown) (Pausch et al., 2013). At tillering, 

root-derived CO2 did not differ between the barley wild type and the mutant. However, 

root-derived CO2 increased at head emergence for both barley types with increasing root 

biomass (Figure II.6/32 (bottom), Table 2). Moreover, the lower root biomass of the brb 

at T2 compared to WT is reflected in a slight, but not significant, lower root-derived CO2.  

On a root dry weight basis, root-derived CO2 was similar in the two barley types and 

between sampling dates (Figure II.6/32, inlet). However, there was a trend of less root-

derived CO2 at head emergence (Figure II.6/32, inlet). 
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Figure II.6/32 SOM-derived CO2 (top) and root-derived CO2 (bottom) at T1 (left) and 
T2 (right). Bars followed by different lowercase letters indicate significant differences 
(P≤0.05) between the treatments at one sampling date. Significant differences between 
T1 and T2 are indicated by an asterisk. The inlet shows the root-derived CO2 per g root 

for both barley types and sampling stages. 

6.3.5 Rhizosphere priming effect 

During the early stage of plant growth (T1), rhizosphere priming was largely controlled 

by the presence of root hairs. While SOM decomposition was increased for the wild type 

by 69% compared to the unplanted soil (P=0.002), it decreased for the root-hairless barley 

by 28% (P=0.051; Figure II.6/33, right y-axis). At the head emergence stage (T2), both 

barley types showed positive priming effects with even higher intensity under the mutant. 

Rhizosphere priming was enhanced for the wild type compared to the unplanted soil by 

72% (P=0.020). The highest positive priming effect was measured for the barley mutant 

lacking root hairs, amounting to 209% of the unplanted soil (P=0.055).  
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To account for root properties effects, a specific RPE was calculated by relating total 

primed C to root biomass (Fig. II.6/33, left y-axis). The specific RPE was highest for the 

wild type at the early stage of plant growth (47.9±1.1 mg C g-1 root day-1). A negative 

priming effect for the brb was measured at T1 with -22.2±8.5 mg C g-1 root day-1). At the 

head emergence stage (T2) the WT showed with 5.7±2.0 mg C g-1 root day-1, a lower 

specific RPE than during tillering (T1). In contrast, the barley mutant shifted from nega-

tive priming at T1 to a positive RPE at T2 (28.2±9.7 mg C g-1 root day-1).  

 

Figure II.6/33 Rhizosphere priming effects per root dry weight (±SEM) (left axis, bars) 
and as % of the unplanted soil (±SEM) (right axis, dots) at T1 and T2 in treatments with 

a barley wild type (WT) and a root hairless barley mutant (brb). Bars followed by 
different lower-case letters indicate significant differences (P≤0.05) between the 
treatments. Significant differences between T1 and T2 are indicated by asteriks. 

  



6.4 Discussion 220 

 

220 
 
 
 
 

6.4 Discussion 

During the tillering stage of plant growth, SOM decomposition was enhanced (positive 

priming) in soils with the barley wild type by 69% compared to the basal respiration of 

the unplanted soil. The data are within the range of priming results published for wheat, 

another monocotyledon plant from the Poaceae family. Wheat showed positive priming 

effects ranging from 42% of the unplanted soil (28 day old wheat) (Cheng and Johnson, 

1998; Cheng et al., 2014) to 75% for 30 days old wheat (Pausch et al., 2013). Positive 

priming effects could be explained by the 'microbial activation hypothesis' (Kuzyakov, 

2002; Cheng and Kuzyakov, 2005), which assumes that the activity and growth of micro-

organisms is enhanced through metabolizing labile substrates (e.g. root exudates), further 

leading to an accelerated SOM turnover. In the presence of labile plant C microbes start 

decomposing SOM to acquire N ('Microbial nitrogen mining' Crain et al., 2007). 

Interestingly, the barley mutant lacking root hairs showed a complete opposed effect on 

SOM turnover. SOM decomposition was reduced by 28% compared to the unplanted soil; 

hence, the brb induced negative priming at the tillering stage. As both barley types pro-

duced same amounts of roots at the tillering stage, our result point to root morphology 

(here the presence or absence of root hairs) as a main determinant for RPE. Negative 

priming effects were observed in short-term experiments (Cheng et al., 2014) and were 

explained either by 1) 'Preferential substrate utilization' (PSU), i.e., microorganisms, not 

limited in N, can switch from the decomposition of SOM to the decomposition of easily 

available rhizodeposits or by 2) 'Microbial competition hypotheses'. The latter suggests 

that microbes and plants compete for nutrients and thus, microbial growth decreases, 

thereby, depressing SOM decomposition (Kuzyakov, 2002; Cheng and Kuzyakov, 2005). 

At tillering, when mineral nutrients were still abundant, the activity of extracellular en-

zymes measured in soils with the root-hairless mutant did not differ or even increased (ß-

xylosidase, acid phosphatase) compared to the unplanted soil. This may point to PSU. 

The present study shows that already at the tillering stage, root morphology plays a major 

role for rhizosphere priming effects. The extension of the rhizosphere by root hairs accel-

erated SOM decomposition.  
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At the head emergence stage, both barely types induced positive rhizosphere priming ef-

fects. When referred to the unplanted soil, the wild type primed 72%, while the brb in-

creased SOM-decomposition by 209% compared to the unplanted soil. In a recent study 

Mwafulirwa et al. (2016) investigated barley genotypes and reported negative priming at 

day 19 after planting while all genotypes induced positive priming after 27 days of growth 

when nutrients are becoming scarce. Overall, a higher root biomass per pot (10 times 

higher for WT between T1 and T2, and 4 times higher for brb) at increasing N limitation 

(about 7 times lower at T2 compared to the US at T1) triggers the positive priming effects 

at T2 in the present study. Since the dissolved N is highly reduced at T2, microorganisms 

start mining for N to meet their N demand and thus, decompose SOM more intensively. 

This effect is clearly indicated by the δ15N values of the plants. δ15N values increase with 

SOM stabilization (Kramer et al., 2003), hence, more stabilized SOM pools are likely 

enriched in 15N. For both barley types the δ15N values of roots were higher at the head 

emergence stage indicating a higher N gain from more stabilized SOM sources and hence 

positive rhizosphere priming effects.  

Plant phenology plays a major role for the magnitude of rhizosphere priming effects. The 

specific rhizosphere priming (RPE per root dry weight) was reduced for the barley wild 

type when comparing between the tillering and head emergence growth stages. A reduc-

tion of RPE at later growth stages has also been reported for wheat after flowering (Cheng 

et al., 2003). Young plants translocate higher proportions of assimilated C belowground 

than older plants (reviewed by Nguyen, 2003). This is indicated by the lower (yet not 

significant) root-derived CO2 per root dry weight of the tillering stage compared to the 

head emergence stage. Root exudates are mainly derived from recent assimilates (Bertin 

et al., 2003; Pausch et al., 2011). Accordingly, the photosynthetic activity is intimately 

coupled with RPE, with time lags between assimilation of C and occurrence of priming 

effects as short as 48 h in the case of young annual crops (Cheng et al., 2014; Kuzyakov 

and Cheng 2001, 2004). At the head emergence stage, barley had a lower photosynthetic 

activity per leaf area than during tillering as indicated by higher δ13C value of the shoots 

at T2 than at T1. The higher δ13C of the shoots indicates a reduced intercellular partial 

pressure of CO2 as a result of either 1) lower stomatal conductance at a constant photo-

synthetic capacity or 2) increased photosynthetic capacity at a constant stomatal conduct-

ance (Farquhar et al., 1989; Scheidegger et al., 2000). Simultaneously, the C/N ratio of 
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roots was about twice as high at the head emergence stage compared to the tillering and 

C/N ratios of shoots were even 4 times higher when comparing the two sampling dates. 

Thus, the large N demand of the plant is likely to induce the positive priming effects 

measured at T2. 

At the head emergence stage, when nutrients are becoming scarce, the barley mutant with-

out root hairs suffered from the inefficiency in nutrient uptake as indicated by a lower 

shoot and root biomass compared to the wild type. However, in contrast to the specific 

RPE of the wild type, which was reduced between the sampling dates most likely because 

of reduced allocation of assimilates belowground (Nguyen, 2003), the root hairless mu-

tant showed the opposed effect. Specific RPE increased between the tillering and head 

emergence stages to positive values, and even exceeds the RPE of the wild type. The 

inefficiency of the hairless mutant in nutrient uptake may have increased rhizodeposition 

due to a faster decay of roots, induced by insufficient supply of nutrients.  

Root hairs may contribute 70−90% to total root surface area (Bucher, 2007) root hairs are 

crucial for nutrient uptake of the plant. Especially the uptake of phosphorus, which is 

highly immobile in soils, is promoted by root hairs. Phosphorus is quantitatively the sec-

ond most limiting nutrient for plant growth after N (Lambers et al., 2006). Gahoonia and 

Nielsen (2003) showed a much stronger P-depletion zone around the root hairs of a barley 

wild type than for the root hairless mutant. Under P limitation, higher phosphatase activity 

in the soil was shown to increase the transformation of organic phosphates into available 

forms (Gahoonia et al., 2001; Paterson 2003; Olander and Vitousek, 2000). In our study, 

the activity of acid phosphatase at tillering is lower for the wild type but higher for the 

mutant without root hairs compared to the unplanted soil. This pattern diminished at the 

head emergence stage where phosphatase activity did not differ between unplanted soil 

and barley with and without root hairs. These contradictory results are likely explained 

by the high P availability of our soil.  

The activity of the C-cycling associated enzymes β-glucosidase and β-cellobiohydrolase, 

responsible for the decomposition of relatively labile C molecules (simple sugars, starch, 

cellulose) was lower for the wild type compared to the unplanted soil and the root hairless 

mutant at T1. Moreover, β-glucosidase decreased at the head emergence stage for both 
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barley types indicating lower microbial investments in C-cycling enzymes (Allison et al., 

2011). 

Planting increased the activity of ß-xylosidase and chitinase at both growth stages. The 

chitinase (N-acetyl-glucosaminidase) degrades chitin (unbranched polymer of N-acetyl-

D-glucosamine), which is found in bacterial and fungal cells (Beier and Bertilsson, 2013). 

Chitin is an important source of organic N in soil, as it is one of the most abundant poly-

mers on earth and contains about 6% N in relatively recalcitrant form (Ekenler and Tabat-

abai, 2002; Duo-Chuan, 2006; Kelly et al., 2011). In N-poor microsites, i.e. at low con-

centrations of mineral N, the production of N-acquiring exoenzymes such as amino-pep-

tidases (e.g. LAP) and chitinases (e.g. N-acetyl-glucosaminidase) are stimulated to obtain 

more N from organic forms (Olander and Vitousek, 2000; Weintraub and Schimel, 2005; 

Kelly et al., 2011). When mineral N is becoming scarce, microbes decompose more labile 

forms of N-containing organic matter first because less energy is required (Kelly et al., 

2011). Thereafter, according to microbial life strategy, several microbial guilds may shift 

their enzyme production (Schimel and Schaeffer, 2012) from enzymes responsible for 

degradation of relatively labile substrate (e.g. LAP, cleaving of peptide bonds in proteins) 

to enzymes decomposing relatively recalcitrant substrates (e.g. chitinase, hydrolysis of 

chitooligosaccharides into N-acetylglucosamine) to meet the metabolic N demand (Kelly 

et al., 2011). In this experiment, the LAP activity was reduced for both barley types be-

tween T1 and T2 (statistically significant only for WT). In contrast, chitin is produced by 

microorganisms and chitinase activity was shown to be enhanced by the presence of the 

rhizosphere (Geisseler et al., 2010). Microbial biomass was higher at T2 than at T1 for 

the planted soils. Thus, a higher microbial turnover led to the release of chitin into the 

soil, which induced the high chitinase activities of both barley types at T2. The shift from 

enzymes degrading labile substrates to enzymes that decompose more recalcitrant forms 

of N is a strong indication for priming effects on SOM decomposition. 
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6.5 Conclusions 

In conclusion, rhizosphere priming effects are intimately linked to root morphology, e.g. 

root hairs. While the barley wild type with root hairs induced positive priming during 

tillering (69% above unplanted soil) the mutant without root hairs suppressed SOM de-

composition by 28%. At head emergence, microbial biomass increased for both planted 

soils compared to the unplanted soil and barley types with and without root hairs accel-

erated SOM decomposition through priming. The SOM decomposition rate under the 

hairless mutant barley even exceeds that of the wild type despite lower plant biomass 

(72% priming for the wild type, 209% priming for the mutant). In case of positive prim-

ing, the chitinase and ß-xylosidase activities increased indicating decomposition of stable 

SOM. Future research on the effects of root morphology on rhizosphere priming effects 

are needed, especially on the effect of root branching, the number of tips and the diameter 

(which are expected to largely impact rhizodeposition). Special emphasis should be 

placed on potential mechanisms linking root morphology and microbial activity with rhi-

zosphere priming effects. 

  



Acknowledgements 225 

 

225 
 
 
 
 

Acknowledgements 

This study was supported by grants from the German Research Foundation (PA 2377 1/1; 

FOR 918) and German Academic Exchange Service (DAAD) within a PPP program 

(57051794), and a grant from the US National Science Foundation (Grant No. 1354659). 

The seeds for the experiment were kindly supplied by Dr. Timothy George (Ecological 

Sciences, The James Hutton Institute, Dundee, Scotland UK). We would like to thank 

Jenna Merrilees, Susann Enzmann, and Karin Schmidt for their help during the setup and 

analyses of the experiment. 

  



References 226 

 

226 
 
 
 
 

References 

Allison, S.D., Weintraub, M.N., Gartner, T.B., Waldrop, M.P., 2011. Evolutionary-eco-

nomic principles as regulators of soil enzyme production and ecosystem function. In: 

Shukla, G.C., Varma, A. (Eds.), Soil Enzymology. Springer-Verlag, Berlin Heidelberg: 

229‒243. 

Amundson, R., 2001. The carbon budget in soils. Annual Review of Earth and Planetary 

Sciences 29: 535-562. 

Bailey, V.L., Peacock, A.D., Smith, J.L., Bolton Jr., H., 2002. Relationships between soil 

microbial biomass determined by chloroform fumigation-extraction, substrate-induced 

respiration, and phospholipid fatty acid analysis. Soil biology and Biochemistry 34: 1385-

1389. 

Beier, S., Bertilsson, S., 2013. Bacterial chitin degradation—mechanisms and ecophysi-

ological strategies. Frontiers in Microbiology 4 (149). 

Bertin, C., Yang, X., Weston, L.A., 2003. The role of root exudates and allelochemicals 

in the rhizosphere. Plant and Soil 256, 67-83.  

Blagodatskaya, E., Kuzyakov, Y., 2008. Mechanisms of real and apparent priming effects 

and their dependence on soil microbial biomass and community structure: critical review. 

Biology and Fertility of Soils 45, 115-131. 

Bucher, M., 2007. Functional biology of plant phosphate uptake at root and mycorrhizal 

interfaces. New Phytologist 173, 11-26. 

Cheng, W., Dijkstra, F.A., 2007. Theoretical proof and empirical confirmation of a con-

tinuous labeling method using naturally 13C-depleted carbon dioxide. Journal of Integra-

tive Plant Biology 49, 401-407. 

Cheng, W., Johnson, D.W., Fu, S., 2003. Rhizosphere effects on decomposition: Controls 

of plant species, phenology, and fertilization. Soil Science Society of America Journal 

67, 1418-1427. 



References 227 

 

227 
 
 
 
 

Cheng, W., Johnson, D.W., 1998. Elevated CO2, rhizosphere processes, and soil organic 

matter decomposition. Plant and Soil 202, 167−174. 

Cheng, W., Kuzyakov, Y., 2005. Root effects on soil organic matter decomposition, in: 

Zobel, R.W., Wright, S.F. (Eds.), Roots and Soil Management: Interactions between 

Roots and the Soil. ASA-SSSA, Madison, Wisconsin, pp. 119−143.  

Cheng, W.; Parton, W.J.; Gonzalez-Meler, M.A.; Phillips, R.; Asao, S.; McNickle, G.G.; 

Brzostek, E.; Jastrow, J.D., 2014. Synthesis and modeling perspectives of rhizosphere 

priming, New Phytologist 201, 31−44. 

Crain, J.M., Morrow, C., Fierer, N., 2007. Microbial nitrogen limitation increases decom-

position. Ecology 88, 2105−2113. 

De Cesare, F., Garzillo, A.M.V., Buonocore, V., Badalucco, L., 2000. Use of sonication 

for measuring acid phosphatase activity in soil. Soil Biology and Biochemistry 32, 825‒ 

832. 

Dennis, P.G., Miller, A.J., Hirsch, P.R., 2010. Are root exudates more important than 

other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS 

Microbial Ecology 72, 313−327. 

Dictor, M.-C., Tessier, L., Soulas, G., 1998. Reassessment of the KEC coefficient of the 

fumigation-extraction method in a soil profile. Soil Biology and Biochemistry 30, 

119−127. 

Duo-Chuan, L., 2006. Review of fungal chitinases. Mycopathologia 161, 345−360. 

Ekenler, M., Tabatabai, M.A., 2002. ß-Glucosaminidase activity of soils: effect of crop-

ping systems and its relationship to nitrogen mineralization. Biology and Fertility of Soils 

36, 367–376. 

Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and 

photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 

503−537. 



References 228 

 

228 
 
 
 
 

Finzi, A.C.; Abramoff, R.Z.; Spiller, K.S.; Brzostek, E.R.; Darby, B.A.; Kramer, M.A.; 

Phillips, R.P., 2015. Rhizosphere processes are quantitatively omportant components of 

terrestrial carbon and nutrient cycles. Global Change Biology doi:10.1111/geb.12816. 

Fontaine, S.; Barot, S.; Barre, P.; Bdioui, N.; Mary, B.; Rumpel, C., 2007. Stability of 

organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 

277−280. 

Fu, S., Cheng, W., 2002. Rhizosphere priming effects on the decomposition of soil or-

ganic matter in C4 and C3 grassland soils. Plant and Soil 238, 289-294. 

Gahoonia, T.S., Nielsen, N.E.; Joshi, P.A.; Jahoor, A., 2001. A root hairless barley mutant 

for elucidationg genetic of root hairs and phosphorus uptake. Plant and Soil 235, 

211−219. 

Gahoonia, T.S.; Nielsen, N.E., 2003. Phosphorus (P) uptake and growth of a root hairless 

barley mutant (bald root barley, brb) and wild type in low- and high-P soils. Plant, Cell 

and Environment 26, 1759−1766. 

Geisseler, D., Horwath, W.R., Joergensen, R.G., Ludwig, B., 2010. Pathways of nitrogen 

utilization by soil microorganisms – A review. Soil Biology and Biochemistry 42, 

2058−2067. 

Harris, D., Porter, L.K., Paul, E.A., 1997. Continuous flow isotope ratio mass spectrom-

etry of carbon dioxide trapped as strontium carbonate. Communications in Soil Science 

and Plant Analysis 28, 747−757. 

Jones, D.L., Nguyen, C., Finlay, R.D., 2009. Carbon flow in the rhizosphere: carbon trad-

ing at the soil-root interface. Plant and Soil 321, 5−33. 

Jungk, A., 2001. Root hairs and the acquisition of plant nutrients from soil. Journal of 

plant nutrition and soil science 164, 121−129. 

Kelly, A.M.; Fay, P.A.; Polley, H.W.; Gill, R.A.; Jackson, R.B., 2011. Atmospheric CO2 

and soil extracellular enzyme activity: a meta-analysis and CO2 gradient experiment. 

Ecosphere 2(8):art96 (DOI:10.1890/ES11-00117.1). 



References 229 

 

229 
 
 
 
 

Kramer, M.G., Sollins, P., Sletten, R., Swart, P.K., 2003. N isotope fractionation and 

measures of organic matter alteration during decomposition. Ecology 845, 2021−2025. 

Kuzyakov, Y., 2002. Review: Factors affecting rhizosphere priming effects. Journal of 

Plant Nutrition and Soil Science 165, 382−396. 

Kuzyakov , Y., 2006. Sources of CO2 efflux from soil and review of partitioning methods. 

Soil Biology and Biochemistry 38, 425−448. 

Kuzyakov, Y., Cheng, W., 2001. Photosynthesis controls of rhizosphere respiration and 

organic matter decomposition. Soil Biology and Biochemistry 33, 1951−1925. 

Kuzyakov, Y., Cheng, W., 2004. Photosynthesis controls of CO2 efflux from maize rhi-

zosphere. Plant and Soil 263, 85−99. 

Lambers, H., Shane, M.W., Cramer, M.D., Pearse, S.J., Veneklaas, E.J., 2006. Root struc-

ture and functioning for efficient acquisition of phosphorus: matching morphological and 

physiological traits. Annals of Botany 98, 693−713. 

Loeppmann, S., Blagodatskaya, E., Pausch, J., Kuzyakov, Y., 2016. Substrate quality af-

fects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. 

Soil Biology and Biochemistry 92, 111−118. 

López-Bucio, J., Cruz-Ramírez, A., Herrera-Estrella, L., 2003. The role of nutrient avail-

ability in regulating root architecture. Current Opinion in Plant Biology 6, 280−287. 

Marx, M., Wood, M., Jarvis, S., 2001. A fluorimetric assay for the study of enzyme di-

versity in soils. Soil Biology and Biochemistry 33, 1633–1640. 

Marx, M.-C., Kandeler, E., Wood, M., Wermbter, N., Jarvis, S.C., 2005. Exploring the 

enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size 

fractions. Soil Biology and Biochemistry 37, 35–48. 

McDougall, B.M., Rovira, A.D., 1970. Sites of exudation of 14C-labelled compounds 

from wheat roots. New Phytologist 69, 999−1003. 

http://wwwuser.gwdg.de/~kuzyakov/SBB_2016_Loeppmann_Enzymes-Rhizosphere-Detritusphere.pdf
http://wwwuser.gwdg.de/~kuzyakov/SBB_2016_Loeppmann_Enzymes-Rhizosphere-Detritusphere.pdf
http://wwwuser.gwdg.de/~kuzyakov/SBB_2016_Loeppmann_Enzymes-Rhizosphere-Detritusphere.pdf
http://wwwuser.gwdg.de/~kuzyakov/SBB_2016_Loeppmann_Enzymes-Rhizosphere-Detritusphere.pdf


References 230 

 

230 
 
 
 
 

Motulsky, H.M., Brown, R.E., 2006. Detecting outliers when fitting data with nonlinear 

regression – a new method based on robust nonlinear regression and the false discovery 

rate, BMC Bioinformatics 7, 123. 

Mwafulirwa, L., Baggs, E.M., Russell, J., George, T., Morley, N., Sim, A., de la Fuente 

Cantó, C., Paterson, E., 2016. Barley genotype influences stabilization of rhizodeposi-

tion-derived C and soil organic matter mineralization. Soil Biology and Biochemistry 95, 

60−69. 

Nguyen, C., 2003. Rhizodeposition of organic C by plant: mechanisms and controls. 

Agronomie 23, 375−396. 

Olander, L.P., Vitousek, P.M., 2000. Regulation of soil phosphatase and chitinase activity 

by N and P availability. Biogeochemistry 49, 175−190. 

Paterson, E., 2003. Importance of rhizodeposition in the coupling of plant and microbial 

productivity. European journal of Soil Science 54, 741−750. 

Paterson, E., Sim, A., 2013. Soil-specific response functions of organic matter minerali-

zation to the availability of labile carbon. Global Change Biology 19, 1562–1571. 

Pausch, J., Kuzyakov, Y., 2011. Photoassimilates allocation and dynamics of hotspots in 

roots visualized by 14C phosphor imaging. Journal of Plant Nutrition and Soil Science 

174, 12−19. 

Pausch, J., Zhu, B., Kuzyakov, Y., Cheng, W., 2013. Plant inter-species effects on rhizo-

sphere priming of soil organic matter decomposition. Soil Biology and Biochemistry 57, 

91−99. 

Schimel, J.P., Schaeffer, S.M., 2012. Microbial control over carbon cycling in soil. Fron-

tiers in Microbiology 3, 348. 

Schlesinger, W.H., Andrews, J.A., 2000. Soil respiration and the global carbon cycle. 

Biogeochemistry 48, 7−20. 

Schneidegger, Y., Saurer, M., Bahn, M., Siegwolf, R., 2000. Linking stable oxygen and 

carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual 

model. Oecologia 125, 350−357. 



References 231 

 

231 
 
 
 
 

Spohn, M., Kuzyakov, Y., 2014. Spatial and temporal dynamics of hotspots of enzyme 

activity as affected by living and dead roots – A soil zymography analysis. Plant and Soil 

79 (1-2), 67−77. 

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring 

soil microbial biomass C. Soil Biology and Biochemistry 19 (9) 703−707. 

Weintraub, M.N., Schimel, J.P., 2005. Seasonal protein dynamics in Alaskan arctic tun-

dra soils. Soil Biology and Biochemistry 37, 1469−1475. 

Wu, J., Jörgensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measure-

ment of soil microbial biomass-C by fumigation-extraction – an automated procedure. 

Soil Biology and Biochemistry 22, 1167−1169. 

Zhu, B., Cheng, W., 2011. 13C isotope fractionation during rhizosphere respiration of C3 

and C4 plants. Plant and Soil 342, 277–287.  

Zhu, B., Cheng, W., 2012. Nodulated soybean enhances rhizosphere priming effects on 

soil organic matter decomposition more than non-nodulated soybean. Soil Biology and 

Biochemistry 51, 56−65. 



7. Additional research 232 

 

232 
 
 
 
 

7. Additional research 

7.1 Food choice and chemical sensing experiment 

Protists regulate bacterial abundances in soils, whereas fungi are mainly consumed by 

arthropods and mycophagous nematodes. Nevertheless, some protist taxa have been 

found to consume fungi and despise bacteria. Since these protists are difficult to culture 

little is known about their (a) ecological impact, e.g. grazing selectivity, growth rates and 

preferred prey and (b) adaptation to fungal food sources, e.g. enzyme production and 

chemical sensing.  

 

Figure II.7/34 Illustration of a simplified hypothesised hunting cycle of L. terrestris. 
Addition of suitable food induces change from inactive resting stages to grazing. This 
recognition of prey is supposed to be the initial process of the cycle.The prey might be 
found due to chemotaxis. In contact with the prey a second process or prey recognition 
takes place while sensing. If the food source is recognized as suitable ingestion takes 
place. Excretion of enzyme and ammonia takes place (modified after Dumack et al., 

2016). 
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A food choice experiment, including the amoeba Lecythium terrestris and three offered 

eukaryotes as potential prey: 1) yeast species (Saccharomyces cerevisiae), 2) green alga 

(Chlorella vulgaris) and 3) diatom (Navicula sp.) was conducted.  

 

Figure II.7/35 a), b), c) Predator and prey individuals during 3 days and the 
quantification of actively grazing cells  

 

Despite the consumption of all offered food sources, the predator exhibited the highest 

growth rate when taking up the fungal food source (yeast) (Figure II.7/35). We demon-

stated that L. terrestris senses chemically fungal abundances and excreted enzymes that 

are able to degrade C and N sources (Figure II.7/36). 
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Figure II.2/36 Chitinase activity (left) of intact and destroyed amoeba cells; Catalytic 

properties of chitinase (right). 
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7.2 Binary links 

There is lack of knowledge on C transfer between microbial and faunal food web, espe-

cially on the identification of binary links for bacterial and fungal feeders. We focused on 

investigation of grazing of the micro- and mesofauna (shown for colembola) on the C 

transfer of their fungal prey in model systems. 

The objective of the study was the assessment of fungal activity in model systems in order 

to calculate the C budget of microorganisms added as prey to the soil based on δ13C of 

microbial biomass, DOC, SOM and CO2. Moreover, the evaluation of respiratory activi-

ties of prey depending on predators based on total and δ13C of CO2.  

First results showed fungi with highest MBC (Figure II.7/38) and lowest CO2 production 

(Figure II.7/37) among all treatments, indicating a highly efficient C use. However, when 

colembola and fungi were present in soil, the CO2, EOC, and MBC were highest (Figure 

II.7/37).  

 

Figure II.7/37 CO2 production during predator vs. prey interaction including controls. 
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Figure II.7/38 Microbial biomass and extractable organic C 
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7.3 Microbial loop 

The soil microbial food webs are affected by the complexity and accessibility of C in two 

major decomposition pathways: 1) rhizodeposits and 2) root litter. Thus, the amount and 

quality of substrates entering the soil mainly control microbial processes in the rhizo-

sphere and detritusphere. The predation of soil fauna on microorganisms is another factor 

controlling microbial decomposition of organics, since protozoan grazing is suggested to 

affect microbial activity.  

To investigate the contribution of protists to the priming effect we labelled root exudates 

(14C) in corn -planted (Zea mays) microcosms and duplicated all treatments and intro-

duced a model protist (Acanthamoebae castellani) to the resprective replicates. For fur-

ther identification of C resources fueling microbial-protozoan interactions, 13C/15N la-

belled Lolium perenne root litter was added to the system.  

Identical plant biomass patterns were exhibited in soil with combined substrate input (rhi-

zodeposits and detritus) in presence and absence of protists. However, the 15N (detritus-

N) root to shoot ratio was significantly higher (by 24%, P < 0.05) for the combined sub-

strate input in absence of protozoan grazing compared to grazed soil, indicating lower 

detritus-N translocation into shoots. All together, this clearly suggested an increased N 

uptake into the shoots in relation to the roots of corn during protozoan predation. The N 

uptake by plants was strongly connected to increased root exudation, which led to higher 

incorporation of maize-derived C into microbial biomass during amoebaean grazing. In 

conclusion, microfaunal grazing induced specific process chains between benefiting 

plants and microorganisms, caused by proliferation of N. Thus, protozoan grazing drives 

rhizophere processes and increases microbial activity. 

 



7.3 Microbial loop 238 

 

238 
 
 
 
 

 

Figure II.7/39 Root litter-derived 15N (left) in the shoots and the roots of corn. 15N root 
to shoot ratio in the presence of Acanthamoeba in rhizosphere (Rhizo) and detritusphere 
(Detri). Significant (P<0.05) differences between with and without protozoan predation 

were given by lower-case letters. 
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7.4 Microbial activity and rhizosphere priming in 
top- and subsoil 

Rhizodeposits increase microbial activity, biomass and growth rates compared to a bare 

fallow soil. We hyphothesied that RPEs strongly depend on the quantity of the primer. 

Furthermore, the increasing amounts of root exudates with higher root biomass will in-

crease the intensity of the RPE and microbial activity. Negative priming effects are more 

often pronounced in subsoil horizons compared to the topsoil, since less decomposable C 

is available therefore different enzyme systems are produced. To prove this assumption, 

treatments with topsoil and subsoil were established. Moreover, the influence of the quan-

tity of root exudates as primer was assessed by increasing the plant density in top- and 

subsoil treatments. The following planting densities of Trititcum spp. were established: 

unplanted soil (0 plants pot-1), super low plant density (2 plants pot-1), low plant density 

(5 plants pot-1), plant density common for agricultural systems (10 plants pot-1), and high 

plant density (20 plants pot-1) (Figure II.7/39). Besides, further pots with mineral N ferti-

lizer addition were prepared for the common plant density since RPE may be affected by 

the concentration of mineral N. Soil of two different horizons was used in this experiment: 

1) topsoil (0−20 cm, Ap horizon), 2) subsoil (70−90 cm, B horizon). The soil was taken 

from a farm on the campus reserves of the University of California, Santa Cruz. The soil 

texture was classified as a sandy loam (Mollisol). To minimize the influence of a high 
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CO2 efflux due to soil disturbance by sieving on our priming results, the soil was pre-

incubated in the greenhouse for 2 weeks (Figure II.7/39). 

Figure II.7/40 Soil pre-incubation and experimental design (planting intensities, 
greenhouse) 

 

Shoot and root biomass reflected the plant density pattern for top- and subsoil treatments 

(II.7/41). The root-derived CO2 in relation to root biomass increased stronger in the rhi-

zosphere of topsoils than in the rhizophere of subsoils (II.7/42). Furthermore, enzyme 

activities where higher in the rhizosphere of topsoils than those of subsoils (II.7/42). First 

results showed strong effects of planted top- and subsoils together with clear differences 

on plant densities.  
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Figure II.7/41 Shoot and root biomass with increasing plant density in top- and subsoil. 
Significant differences are given in lower-case letters (P<0.05). 
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Figure II.7/42 Root-derived CO2 in relation to root biomass for top- and subsoil 
treatments. 
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Figure II.7/43 Beta-cellobiodydrolase activity in top- (upper) and subsoil with 
increasing plant densities and ± nitrogen. 
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7.5 Soil zymography: Microbial activity in situ 

Despite hot spots occupy only a very small volume of soil, most element-cylcling pro-

cesses prevailed in these microsites (Spohn and Kuzyakov, 2014). The microbial and en-

zyme activities are suggested to increase in these habitats, such as rhizosphere and detri-

tusphere (Nannipieri et al., 2012; Blagodatskaya and Kuzyakov, 2013). However, the 

spatial organization of microbial activity in the rhizosphere is poorly understood. Soil 

zymography enables the visualization of the distribution of enzyme activities, thereby 

reflecting hot spots of microbial activity in situ (Spohn and Kuzyakov, 2013). 

We hypothesized that the protease activity increases when additional easily available sub-

strate is present in the rhizosphere, because microorganisms will start to mine for N to 

promote their growth. A rhizobox experiment with maize was conducted to study the 

leucine-aminopeptidase activity in the rhizosphere. For this purpose, we measured the 

leucine-aminopeptidase activity before and after the addition of glucose. This is the first 

study visualizing the relative changes of enzyme activity in time and space in the complex 

rhizosphere of maize. 

The experimental set-up for soil zymography is explained elsewhere (Spohn and 

Kuzyakov, 2014). After the incubation of the membrane (1 h) images where taken under 

UV-light. The camera setup, distance and angle of the camera were kept constant, while 

taking images of calibration and after incubation of the membrane. The images of enzyme 

activities before and after glucose addition as well as the RGB image were referenced by 

image to image registration (Figure II.7/44). Sole the blue channel of the original RGB-

image was analyzed and further converted into its grey- scale values. We calculated the 

difference image of the zymography images before and after glucose amendment to show 

the relative changes of enzyme activity due to the glucose addition (Figure II.7/47). More-

over, the root architecture was identified by segmenting the roots according to threshold-

ing analysis (Figure II.7/46). 

First results demonstrated higher leucine-aminopeptidase activity in the rhizosphere after 

glucose addition (Figure II.7/45). This suggests higher production of leucine-aminopep-
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tidases in the rhizosphere when increasing amount of easily available substrates is pre-

sent. In particular, main roots areas showed increased activities relative to control, indi-

cating strong spatial variation of proteases activities in the complex rhizosphere of corn 

in presence of additional substrate.  

 

 

 

 

Figure II.7/44 Zymography images before (left) and after (right) the addition of glucose. 
The upper images represent zoomed views of the control points; Images below show the 

whole rhizosphere. Image referencing was perfomed with MatLabs (The MathWorks, 
Germany). 

  



7.5 Soil zymography: Microbial activity in situ 246 

 

246 
 
 
 
 

 

 

Figure II.7/45 Leucine-aminopeptidase activity of the zymography image after glucoase 
addition. 
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Figure II.7/46 A) RGB image ot maiz roots; B) Root identification; C) Relative increase 
of leucine-aminopeptidase in the rhizosphere of maize during 24 h after the addition of 
glucose; red highest D) Relative decrease of leucine-aminopeptidase in the rhizosphere 

of maize during 24 h after the addition of glucose. 

 



7.5 Soil zymography: Microbial activity in situ 248 

 

248 
 
 
 
 

 

Figure II.7/47 Relative change of leucine-aminopeptidase activity after the addition of 
glucose. Green areas show increases, whereas red areas depict decreases of enzyme 

activity and black areas indicate no changes. 
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