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ABSTRACT  

Brain plasticity is important not only for normal brain functions like learning and memory, 

but is also crucial for recovery after injuries. It has been shown that the environment has a 

great influence on brain plasticity. Here, I investigate the impact of an enriched environment 

(EE) on ocular dominance (OD) plasticity of the mouse primary visual cortex (V1), using 

monocular deprivation (MD) as a model to trigger OD-plasticity and optical imaging of 

intrinsic signals to monitor it. Additionally, a variety of behavioural tests was used to measure 

the visual abilities of mice and their alteration after MD. OD-plasticity in V1 is an age-

depended phenomenon: it is maximal during the critical period (postnatal day (PD) 21-35), 

reduced but still present in young adult mice (2-3 months) and absent in fully mature animals 

(beyond PD110). This age dependence holds true for mice raised in standard cages (SC), 

however we showed that raising mice in a more complex environment could not only prolong 

the sensitive phase for OD-plasticity into adulthood but also reinduce OD-plasticity in mice 

transferred to EE after PD110. Interestingly, the observed OD-plasticity in old EE-mice was 

similar to that in SC-mice during the critical period, suggesting that EE-housing resulted in a 

more juvenile brain. Additionally, we found that EE-raising can enable even lifelong OD-

plasticity (up to PD900). Using behavioural tests we also showed that EE-raising did not 

affect the visual abilities of old mice and did not increase the interindividual variability. To 

test whether OD-plasticity in adult EE-mice is indeed juvenile-like, we tested different age 

groups of EE-mice after 4 days of MD. We found that 4 days of MD can induce an OD-shift 

in all the age groups of EE-mice tested, but the OD-shift in young and fully mature EE-mice 

was similar to adult OD-plasticity observed in around 3 month old SC-mice. 

EE-raising provides mice with increased social interactions, physical exercise and cognitive 

stimulation compared to SC rearing. We asked the question, whether all components are 

needed or just one of them is already sufficient to prolong OD-plasticity. We tested whether 

voluntary physical exercise alone prolongs OD-plasticity by raising mice in SCs equipped 

with a running wheel (RW). RW-raised mice continued to show an OD-plasticity into 

adulthood, while mice without a RW did not. Moreover, running only for 7 days was 

sufficient to restored OD-plasticity in adult SC-raised mice. In addition, the OD-shift of RW-

mice was mediated by a decrease in deprived eye responses, which was previously seen only 

in critical period SC-mice or in adult EE-mice. 

It was previously shown, that a small lesion in the primary somatosensory cortex (S1) 

prevented both cortical plasticity and improvement of visual abilities in the adult mouse visual 

system after MD. However, in adult EE-mice, OD-plasticity was preserved after stroke 

induction and the improvement of visual abilities was partially preserved. Here, we 

investigated, whether raising mice in a cage with a RW will preserve OD-plasticity in old 

animals after a cortical lesion in S1, as well as the therapeutic effect of running after stroke on 

OD-plasticity. Our data suggest that physical exercise not only preserved but also restored 

OD-plasticity after a localized cortical stroke. 
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Additionally, we tested how long the positive effect of EE on OD-plasticity lasts, when mice 

are transferred to a less stimulating environment. For this purpose mice raised in EE until 

PD130 were moved to normal SCs and after a short period MD was performed. We found that 

already after 1 week in a SC, mice did not show OD-plasticity. We tried a pharmacological 

approach to restore OD-plasticity in those mice by administrating fluoxetine (selective 

serotonin reuptake inhibitor). However, treatment with fluoxetine did not preserve OD-

plasticity. On the other hand, when mice were transferred from EE to a SC with RW, OD-

plasticity was preserved. 

Furthermore, we investigated the posibility of the effect of EE on OD-plasticity to be 

transferred to the next generation. To this end, after mating of EE-mice, pregnant dams were 

transferred to SCs few days before delivery. Offspring was raised exclusively in SCs up to at 

least PD120. We found, that offspring of EE-parents showed an OD-shift similar to EE-mice 

while age matched SC-mice did not. Additionally, we tested which parent is responsible for 

the transmitted effect of EE. For this purpose EE-females were mated with SC-males, or EE-

males with SC-females, respectively. Only offspring of EE-mother and SC-father showed an 

OD-shift after MD. To summarize, the adult offspring of enriched parents still displayed a 

juvenile OD-plasticity in V1, even if they did not experience any EE and most likely the 

responsible parent is the mother.  
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1. Introduction  

Neuronal plasticity is the ability of the brain to structurally and functionally reorganize in 

response to changes in sensory experience. Plasticity is fundamental for the proper 

development of the neuronal circuits of the brain, for enabling the brain to adapt to its 

environment, and also for recovery from pathological conditions and brain injuries e.g. stroke. 

During development, experience of environmental stimulation is continuously interacting 

with genetic information to shape neuronal circuits and the resulting behaviour.  

 

1.1. Visual system and OD-plasticity 

Most of our impressions of the world and our memories of it are based on sight. The human 

visual system shares a lot of similarities with the mouse visual system. The visual processing 

begins in the multilayered retina and the information is then transmitted as action potentials in 

the optic nerve that extends to a midline crossing point, the optic chiasm. Beyond the optic 

chiasm the nerve fibers from the medial (nasal) part of the retina cross to the other hemisphere 

of the brain, whereas nerve fibers from the lateral (temporal) part of the retina continue to the 

hemisphere of the same side. After that the axons from nasal and temporal parts carrying 

information bound for one hemisphere are forming the optic tract which projects to the lateral 

geniculate nucleus (LGN) of the thalamus. The thalamic neurons transmit the information 

through the optic radiation to the primary visual cortex (V1; Figure 1). 

The crossing of fibers in the optic chiasm leads nerve fibers from the left part of both eye 

retinae to project to the left hemisphere and from the right part of retinae to right hemisphere 

(Dräger and Olsen, 1980). The left part of the retinae is activated by visual stimuli in the right 

visual field and the right part of the retinae receives information from the left visual field. 

Thus the visual cortices will process information about the contralateral visual hemifield, with 

some degree of binocular overlap in the frontal visual field. The spatial arrangement of visual 

stimuli in the visual field and the resulting stimulation pattern of the retinae preserved 

throughout the visual pathway: adjacent stimuli in the visual field activate adjacent neurons in 

V1. The preservation of the spatial arrangement of inputs from retina is referred to as 

retinotopy and a neuronal map of the visual field as retinotopic map. 
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Figure 1: Representation of the mouse visual field in the visual pathway. Left and right visual fields and 

their respective representations in the visual pathway are illustrated with green and blue colors. The visual 

information originating from the nasal part of the retina crosses to the other hemisphere in the optic chiasm (light 

blue and light green for right and the left eye respectively). Whereas visual information from the temporal part of 

the retina continues within the same hemisphere (dark blue and dark green for the right and left eye 

respectively). From the retina visual information reaches the lateral geniculate nucleus (LGN) where it is relayed 

to V1. While the binocular part of V1 receives input from both eyes, the monocular part of V1 receives input 

from the contralateral eye only. Figure modified from Greifzu et al. (2012). 

 

V1 is divided into two parts: the monocular and the binocular. Neurons of the monocular part 

are exclusively activated by visual stimulation of the contralateral eye, whereas neurons in the 

binocular part can be activated by visual stimulation of both eyes (Dräger, 1975). The 

binocular zone is located at the lateral side of V1 and occupies about one third of it. The 

frontal part of the visual field is represented in the retina of both eyes and therefore in the 

binocular zone of V1 (Gordon and Stryker, 1996). The binocular visual cortex of mice shows 

stronger responses to stimulation of the contralateral eye and weaker responses to ipsilateral 

eye stimulation (Dräger, 1975; Mangini and Pearlman, 1980; Wagor et al., 1980; Metin et al., 

1988). The term contralateral dominance is used to describe this phenomenon. Depriving 

mice from vision of the contralateral eye causes a change in the dominance so that neurons 

get activated equally strong by stimulation of each eye (Dräger, 1975; Gordon and Stryker, 

1996). This is referred to as ocular dominance (OD) plasticity and is a widely used model for 

neuronal plasticity. 
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1.2. OD-plasticity as a model 

The study of Hubel and Wiesel (1962), more than 50 years ago laid the foundations for our 

understanding of brain plasticity. Initially, they discovered that response properties of cat 

cortical neurons in V1 differ based on their inputs. Neurons in V1 were responding maximal 

to a stimulus which had a specific orientation and position in the visual field. Moreover, some 

neurons showed only a response to stimulation of one of the eyes, whereas others responded 

to stimulation of both eyes. The term ocular dominance is used to describe the balance 

between the responses to stimulation of the respective eye. Furthermore, Hubel and Wiesel 

(1962) described that neighboring cells in V1 of cats with similar preferred orientations and 

similar OD properties were organized in radial columns extending through all the layers of the 

cortex. 

Wiesel and Hubel were the first to perform a more detailed investigation of a critical period at 

the neuronal level in the visual cortex (Wiesel and Hubel, 1963). Occluding one eye of vision 

(monocular deprivation, MD) in kittens during a brief period in early postnatal life resulted in 

a drastically changed OD in their V1. Electrophysiological recordings showed that deprived 

eye stimulation became less effective in driving cortical cells, whereas the open eye gained 

influence. Thus, early MD produced an OD-shift towards the open eye (Wiesel and Hubel, 

1963). These observations made OD-plasticity a well-established model for neuronal 

plasticity. Nowadays MD is widely used as an experimental paradigm to study experience-

dependent cortical plasticity. 

Although Hubel and Wiesel performed their studies in kittens (Hubel and Wiesel, 1962; 

Wiesel and Hubel, 1963) OD-plasticity has been studied widely also in other species because 

the changes are dramatic, reproducible, quantifiable and restricted to the cortex. Studies 

describing OD-plasticity are now available in species like monkeys (Horton and Hocking, 

1997), ferrets (Issa et al., 1999) and rodents (Dräger, 1978; Domenici et al., 1992; Maffei et 

al., 1992; Fagiolini et al., 1994; Gordon and Stryker, 1996; Bartoletti et al., 2002; Lehmann 

and Löwel, 2008) (for review see Espinosa and Stryker (2012) and Levelt and Hübener 

(2012)). 

Carnivores and primates have a refined visual system including a much larger cortical region 

for visual processing and orientation, OD, and spatial frequency columns (Issa et al., 2000; 

Ohki and Reid, 2007; Van Hooser, 2007). The organization of rodent’s V1 differs from cats 

and primates in its functional structural architecture (Ohki et al., 2005). Neurons of higher 

mammals are organized in radial columns by the neuron’s preference for the stimulus 

orientation (Hubel et al., 1976). In rodents, cells in the visual cortex are spatial distributed 

with little order (Ohki et al., 2005; Van Hooser, 2007), which is referred to as ‘salt-and-

pepper’ organization (for review see Espinosa and Stryker (2012)).  

Despite the differences in the cortical architecture compared to primates, mice are one of the 

most extensively used organisms in OD-plasticity studies for many reasons. Mouse cortical 

neurons can be classified into categories similar to those described in higher mammals. They 
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show selectivity for stimulus parameters such as orientation and spatial frequency similar to 

other species (Niell and Stryker, 2010). Additionally, mice show a much stronger contralateral 

dominance in V1 in comparison to higher mammals (Metin et al., 1988). The first plasticity 

experiments in mice showed with single cell recordings that depriving one eye from vision by 

MD induces OD-plasticity in V1 (Dräger, 1978). In addition, mice display an OD-plasticity 

which is age-dependent and a critical period for OD-plasticity (Hubel and Wiesel, 1970; 

LeVay et al., 1980; Gordon and Stryker, 1996; Lehmann and Löwel, 2008). Finally, a variety 

of genetic tools are available for mice, which can be used for revealing cellular and molecular 

mechanisms underlying neuronal plasticity. Therefore, the visual system of mice is a highly 

suitable model for neuronal plasticity studies. 

 

1.3. Critical period of OD-plasticity in mice 

Critical period of OD-plasticity is defined as a sensitive phase of development during which 

alterations in visual experience can induce cortical plasticity. In mice V1 before the critical 

period for OD-plasticity, the preferred orientations of the same binocular neuron for 

stimulation of either eye do not match (Wang et al., 2010). During the critical period stimulus 

preferences of binocular neurons are gradually refined to match the tuning characteristics of 

inputs stimulated through the two eyes. Monocular or binocular visual deprivation during the 

critical period prevented binocular matching, and neurons continued to have different 

orientation tuning when stimulated through the two eyes (Wang et al., 2010).  

Amblyopia, which is a disorder of sight, occurs when the vision in one of the eyes is reduced 

because the eye and the brain are not working together properly, is the most common 

impairment of visual function affecting one eye in adult humans (reviewed in Holmes and 

Clarke (2006)). In animal models, amblyopia can be artificially caused by long-term 

deprivation of inputs from one eye by MD. This causes a loss of visual acuity in the deprived 

eye and a pronounced OD-shift towards the open eye, which becomes permanent if left 

untreated (Singer et al., 1980; Prusky et al., 2006).  

 

1.3.1. Opening of the critical period of OD-plasticity  

The timing of the critical period of OD-plasticity strongly depends on the balance of 

inhibition and excitation of neuronal circuits in the brain. The development of inhibitory 

circuits in the cortex and the function of a particular set of inhibitory neurons are crucial for 

opening of the critical period (for review see Hensch (2005)). 

First, a minimal level of GABAergic inhibition is necessary for the onset of the critical period. 

At 1998 Hensch et al., showed that the critical period of OD-plasticity never opened in 

transgenic mice knock-out for the GABA-synthesizing enzyme GAD65 (glutamic acid 

decarboxylase 65). Enhancing inhibition by treating these mice with diazepam (positive 

allosteric GABAA receptor modulator) reinstated the critical period (Hensch et al., 1998). 

Likewise, in young wild-type mice (PD15), treatment with diazepam could initiate a 
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precocious critical period that was similar in duration to the normal critical period (Fagiolini 

and Hensch, 2000). This finding suggests that a transient increase in GABAergic transmission 

is sufficient to open the critical period. 

Second, GABAergic transmission via α1 subunit of GABAA receptors is crucial for the 

opening of the critical period. Diazepam treatment in knock-in mice with insensitive GABAA 

receptor subunits, revealed that mutant α2 or α3 GABAA receptor subunits, but not α1 

subunit, could still produce a precocious critical period, as in wild-type mice (Fagiolini et al., 

2004). The α1 subunit of GABAA receptor is enriched in inhibitory synapses formed by fast-

spiking parvalbumin (PV) positive interneurons (Klausberger et al., 2002). These findings 

suggest that inhibitory neurons like the PV basket cells play an important role in opening the 

critical period for OD-plasticity.  

Third, factors involved in the opening of the critical period can also regulate the maturation of 

inhibitory circuits. Transgenic mice overexpressing the brain-derived neurotropic factor 

(BDNF) during postnatal development had a precocious critical period and an earlier 

maturation of inhibitory neurons, suggesting that BDNF is controlling the maturation of 

GABAergic inhibition (Hanover et al., 1999; Huang et al., 1999). Other growth factors like 

IGF-1 (insulin-like growth factor) can also accelerate the maturation of circuitry and 

inhibitory innervations (Tropea et al., 2006; Ciucci et al., 2007). Polysialic acid neural cell 

adhesion molecule (PSA-NCAM) has also been implicated in the opening of the critical 

period (Di Cristo et al., 2007). 

The opening of the critical period also depends on visual experience. It has been shown that 

chronic dark rearing from birth, delays the onset of the critical period (Fagiolini et al., 1994). 

A possible explanation for this observation involves BDNF. Dark-rearing reduces the BDNF 

levels and delays the critical period (Zafra et al., 1990). Increasing cortical BDNF levels in 

dark-reared mice resulted in a normal critical period for OD-plasticity (Gianfranceschi et al., 

2003). Together these observations suggest that the effects of dark-rearing on plasticity also 

involve the maturation of the inhibitory circuit.  

 

1.3.2. Closing the critical period for OD-plasticity 

Closure of the critical period for OD-plasticity involves several cellular and molecular 

“brakes”. As the animal matures, new structures are formed to downsize the neurite 

outgrowth, which together with functional changes that regulate the balance between 

excitation and inhibition, are responsible for the closure of the critical period (for review see 

Bavelier et al. (2010), Espinosa and Stryker (2012)). 

The increase in GABAergic inhibition observed for opening of the critical period is also 

responsible for the closure of the critical period for OD-plasticity (Huang et al., 1999; 

Morales et al., 2002; Chattopadhyaya et al., 2004). Manipulations that locally reduced 

inhibition in adulthood have been found to restore visual plasticity (He et al., 2007; Sugiyama 

et al., 2008; Harauzov et al., 2010)). Additionally, depletion of the endogenous prototoxin 
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Lynx, which reduces cholinergic transmission, during adulthood also enhanced OD-plasticity 

in mice (Morishita et al., 2010). Furthermore, chronic treatment with the serotonin reuptake 

inhibitor fluoxetine restored OD-plasticity in adult rats by resetting excitation/inhibition 

balance (Maya-Vetencourt et al., 2008). 

In addition to neurochemical regulations, the closure of the critical period may in part be 

under the control of structural factors responsible for the remodeling of the extracellular 

matrix. A major component of the complex network of the extracellular matrix are the 

chrondroitin-sulfate proteoglycans (CSPGs), which form tight perineuronal nets (PNNs) 

around the basket-type GABAergic cells (Pizzorusso et al., 2006; Carulli et al., 2010) (for 

review see Galtrey and Fawcett (2007)). The maturation of PNNs in adulthood has been 

proposed to inhibit the remodeling of neuronal connections, which in turn prevents OD-

plasticity (Carulli et al., 2010). Degradation of CSPGs by the enzymatic activity of 

chondroitinase ABC reactivates OD-plasticity and recovery from long-term MD (Pizzorusso 

et al., 2002; Pizzorusso et al., 2006). In support of the involvement of PNNs in the closure of 

the critical period are studies, which showed that the formation of PNNs in the visual cortex 

correlates with the end of the critical period (Pizzorusso et al., 2002) (for reviews see Berardi 

et al. (2005), Hensch (2005)). In addition, mice lacking the cartilage link protein 1 (Crtl1), 

which triggers the neuronal production of PNNs, show diminished PNNs and retain juvenile 

levels of OD-plasticity during adulthood (Carulli et al., 2010). 

Another example of the importance of the extracellular matrix in the OD-plasticity has been 

pointed out by studies, which showed that disruption of the function of proteins taking part in 

degradation of the extracellular matrix resulted in impairments of OD-plasticity. In particular, 

studies from both juvenile and adult mice showed that inhibition of matrix metalloproteinases 

(MMPs), which are involved in the degradation of the extracellular matrix, reduced OD-

plasticity in juvenile rats (Spolidoro et al., 2012) and completely abolished it in adult mice 

(Pielecka-Fortuna et al., 2015a). Likewise, tissue plasminogen activator (tPA), which 

activates MMPs, was found to be increased during MD in mice and is essential for OD-

plasticity to occur (Mataga et al., 2002). Additionally, mutant mice lacking the extracellular 

matrix protein reelin, were found to maintain OD-plasticity into the late adulthood, regardless 

of highly disorganized cortical layers (Pielecka-Fortuna et al., 2014). 

Other more widely distributed structural factors can limit OD-plasticity, such as myelin 

related proteins. Myelination in the central nervous system increases as the critical period 

closes (McGee et al., 2005). Mutant mice for receptors of myelin-associated proteins like 

Nogo-66 receptor (NgR) and immunoglobulin-like receptor B (PirB) showed disrupted 

myelination and enhanced OD-plasticity in adulthood (McGee et al., 2005; Syken et al., 2006; 

Atwal et al., 2008). 

It was shown recently that the maturation of silent glutamatergic synapses onto principal 

neurons play an important role in the duration of the critical period for OD-plasticity of mice 

(Huang et al., 2015). Specifically, postsynaptic density protein-95 (PSD-95) is essential for 

the experience-dependent maturation of silent synapses, and its absence resulted in a 
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prolonged period of OD-plasticity. Furthermore, silent synapse-based OD-plasticity was 

found to be independent of the inhibitory tone, suggesting an alternative mechanism 

controlling the duration of critical period (Huang et al., 2015).  

 

1.4. OD-plasticity through age 

Although, numerous studies in various species described dramatic changes in MD-induced 

OD-plasticity during the critical period, OD-plasticity is not limited to this particular period. 

Studies in cats and rats showed that OD-plasticity decreases slowly after the critical period, 

however can persist during adolescence (Daw et al., 1992; Guire et al., 1999). Likewise, OD-

plasticity in mouse V1 is not lost by the end of the critical period, but instead declines 

progressively until the limit of 110 days of age, when measured with optical imaging of 

intrinsic signals (Lehmann and Löwel, 2008). It is important to mention that the 

characteristics of OD-plasticity are also changing with maturation, thus OD-plasticity during 

the critical period is distinctive from the adult type of OD-plasticity (Sato and Stryker, 2008). 

MD for a short period of time during the critical period causes a dramatic shift in OD towards 

the open eye (Gordon and Stryker, 1996) and occurs between PD21 and PD35 with a peak of 

sensitivity for MD at PD28. During that time OD-plasticity in V1 can be easily induced after 

only 4 days of MD (Frenkel and Bear; Gordon and Stryker, 1996; Hofer et al., 2006a; 

Lehmann and Löwel, 2008; Sato and Stryker, 2008). The critical period in mice is 

characterized by three consecutive stages which are mechanistically different (for review see 

Espinosa and Stryker (2012)). The first stage refers to the initial rapid reduction of responses 

to the deprived eye inputs taking place 2 to 3 days after MD (Sato and Stryker, 2008). The 

second stage is characterized by an increase in open eye responses after longer periods of MD 

(Kaneko et al., 2008; Sato and Stryker, 2008). During the third stage of critical period 

reopening of the deprived eye leads to the restoration of the normal visual responses (Kaneko 

et al., 2008). Additionally, MD during the critical period also produces a strong OD-shift in 

the ipsilateral hemisphere (Sato and Stryker, 2008; Figure 2A). 

In young-adult mice (PD60-90) OD-plasticity is quantitatively and qualitatively different 

from critical period OD-plasticity. After the critical period a longer deprivation period of 7 

days is required to induce an observable OD-shift (Sawtell et al., 2003; Lehmann and Löwel, 

2008; Sato and Stryker, 2008). Even after 7 days of MD the OD-shift is less than the one 

observed after 4 days MD in critical period mice. One of the characteristic features of OD-

plasticity in adult mice is that the OD-shift is predominantly mediated by elevation of open 

eye responses in V1 (Sawtell et al., 2003; Hofer et al., 2006a; Sato and Stryker, 2008) (Figure 

2B). Additionally, ipsilateral eye deprivation does not lead to OD-plasticity (Sato and Stryker, 

2008). Adult OD-plasticity appears to be less permanent than critical period OD-plasticity, 

with recovery after long-term MD and restoration of normal vision taking half longer (Prusky 

and Douglas, 2003). Beyond the age limit of 110 days OD-plasticity in mice is fully absent as 

measured by optical imaging of intrinsic signals (Lehmann and Löwel, 2008). 
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Figure 2: Comparison of the effects of monocular deprivation on OD-plasticity in juvenile and adult mice. 

A. During the critical period, just 4 days of MD caused a strong OD-shift towards the open eye in both 

hemispheres. The OD-shift is primarily mediated by decrease in closed eye responses in V1. B. In adult mice 7 

days of MD are required to induce an OD-shift in the hemisphere contralateral to the deprived eye, whereas there 

is only a small change in OD of the ipsilateral hemisphere. In this case the observed effect is mediated by 

increase in open eye responses in V1. C refers to contralateral and I to ipsilateral eye. Figure modified from Sato 

and Stryker (2008). 

 

1.5. Restoring OD-plasticity in adult mice 

Restoration of OD-plasticity in older ages is of a particular interest not only for keeping the 

brain in a more juvenile state and therefore more plastic, facilitating learning and memory , 

but also has great potential for therapeutic rehabilitation and recovery from injury in the adult 

brain. Several pharmacological and environmental manipulations have been proposed over the 

years to prolong or restore OD-plasticity in adult animals by reducing local inhibition (for 

review see Bavelier et al. (2010), Spolidoro et al. (2009)). Some of the more common 

manipulations that successfully promoted adult OD-plasticity are described below. 

 

Pharmacological approaches: 

As mentioned earlier, increased inhibition is necessary for both opening and closure of the 

critical period for OD-plasticity (Fagiolini and Hensch, 2000). It should be possible then, to 

restore OD-plasticity in the mature visual cortex by reducing the levels of inhibition. Indeed, 

reduction of intracortical inhibition in adult rats by infusion of either GABAA agonist 

picrotoxin (PTX) or GABA synthesis inhibitor 3-mercaptopropionic acid (3-MPA) into V1 

restored OD-plasticity in response to MD (Berardi et al., 2005).  

Another pharmacological approach to restore OD-plasticity involved chronic treatment with 

fluoxetine (Maya-Vetencourt et al., 2008). Fluoxetine is a selective serotonin reuptake 

inhibitor (SSRI) widely prescribed for treatment of depression. SSRIs are known to increase 

the extracellular serotonin and/or noradrenalin levels although the relationship between acute 

increases in these neurotransmitters and the clinical antidepressant effect, developing with a 

time delay, remains unclear (Nestler, 1998; Castren, 2005). Maya-Vetencourt et al. (2008) 
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showed that treatment with fluoxetine effectively restored OD-plasticity in adult rats’ visual 

system using two classical models of plasticity: the OD-shift after MD and the recovery from 

amblyopia. They observed a strong OD-shift in fluoxetine treated rats, mediated by a 

reduction of V1 activation elicited by stimulation of the deprived eye, as typically observed in 

the juvenile cortex. Moreover, fluoxetine-treated rats recovered fully from amblyopia after 

long-term MD (Maya-Vetencourt et al., 2008). The OD-shift induced by MD in fluoxetine-

treated rats was completely abolished when diazepam was applied, suggesting that the effect 

of fluoxetine on OD-plasticity is associated with a reduction of cortical inhibition (Maya-

Vetencourt et al., 2008). 

Epigenetic modifications have been recently implicated in the regulation of OD-plasticity in 

the adult visual cortex (for a review see Fagiolini et al. (2009)). During the critical period 

visual experience activates histone acetylation in the visual cortex but this capacity is 

downregulated in adult animals (Putignano et al., 2007). Pharmacological treatment during 

adulthood with a histone deacetylase inhibitor (trichostatin) enhanced OD-plasticity in adult 

mice (Putignano et al., 2007) and treatment with other histone deacetylases inhibitors 

(valproic acid, sodium butyrate) also promoted recovery of visual acuity in adult rats after 

long-term MD (Silingardi et al., 2010). 

 

Non-pharmacological approaches: 

Several manipulations to alter the animal’s stimulating environment have been tested for the 

possibility to restore OD-plasticity in the adult brain. One of these manipulations was a 

previous MD during the critical period. In mice, which underwent an MD during the critical 

period, then were allowed to recover to normal vision and received a second MD during 

adulthood for only 3 days, the second MD caused a significant OD-shift (Hofer et al., 2006b). 

Thus, previous experience of a particular stimulation – here the first MD during the critical 

period – can promote OD-plasticity in adult mice. 

OD-plasticity was also shown to be dependent on temporal coherence of visual stimuli. In a 

recent study, Matthies et al. (2013) showed that stimulation with moving square wave gratings 

for 6 hours per day during the MD period induced OD-plasticity in adult mice. Interestingly 

only 4 days of MD were sufficient to induce an OD-shift with the characteristics of juvenile 

plasticity: in particular reduction of deprived eye responses in V1 (Matthies et al., 2013). 

Furthermore, light deprivation resulted in OD-plasticity in old animals. Specifically, extended 

dark housing of adult rats could restore a juvenile OD-plasticity, which was induced by only 3 

days of MD and was driven by a decrease in response to the deprived input (He et al., 2006). 

In addition, short-term dark exposure in adult mice also restored OD-plasticity in both adult 

and aging mice (Stodieck et al., 2014). 

Another example and one of the most interesting non-pharmacological approaches used to 

restore OD-plasticity in the adult brain is the enrichment of the housing environment. 
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Exposing or raising animals in a more stimulating environment compared to the restricted 

standard cage (SC) housing promoted OD-plasticity in adulthood (Baroncelli et al., 2010b; 

Greifzu et al., 2014). The general effect of environmental enrichment on OD-plasticity and 

potential mechanism will be further discussed in the following section.  

In figure 3 a summary of the most successful approaches proposed to prolong OD-plasticity in 

animals after the critical period is presented. 

 

 

Figure 3: Restoring OD-plasticity in adult mice. Several manipulations have been proposed to 

prolong OD-plasticity in adult animals including pharmacological treatments like fluoxetine 

administration, and non-pharmacological approaches that alter animal’s stimulatory environment like 

perceptual learning, dark exposure and environmental enrichment. 

 

1.6. Enriched environment  

The enriched environment (EE) was first proposed as an experimental paradigm by Hebb 

(1947), when he reported that rats that he took home as pets showed behavioural 

improvements over those that had been left in laboratory cages. In the early 1960s, the work 

from Hubel and Wiesel (1963) showed the importance of experience in development of 

cortical circuits and soon after the studies from Rosenzweig et al. (1962) proposing the EE as 

a testable scientific concept, pointing out the influence of the environment on brain 

development. It is now clear that during development experience is continuously interacting 

with genetic information to shape neuronal circuits and behaviour, thus the final phenotype is 

the combination of the genetic information and the environmental experience. 

Enriched environment is classically defined as “a combination of complex inanimate and 

social stimulation” (Rosenzweig et al., 1962). Compared to the simple SC where the animals 

are housed in small groups (up to 4 animals) or even alone with only nesting material, food, 

and water, EE cages are larger with the mice housed in bigger groups (up to 16 animals) and 
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equipped with a variety of stimulating objects (e.g. running wheels, maze, tunnels, nesting 

material and stairs; Figure 4). Thus, EE cages provide animals with optimal conditions for 

social interactions, more physical exercise, enhanced exploration and cognitive stimulation as 

they are bigger with novel objects and/or regularly changed mazes (for review Sale et al. 

(2009)). 

 

Figure 4: Enriched environment cage. The larger EE cage provides more space for exploration to 

the mice. Mice are housed in bigger groups for more social interactions. Regularly changed mazes 

enhance cognitive stimulation and running wheels provide free access to physical exercise. 

 

1.6.1. General effects of EE in wild-type rodents 

Over the years, it has become clear that EE can exert powerful effects on the brain, ranging 

from anatomical and molecular to behavioural consequences (for review see van Praag et al. 

(2000)). First EE studies showed differences on an anatomical level: EE-housing increased 

the cortical thickness and weight (Diamond et al., 1964; Beaulieu and Colonnier, 1987). 

Subsequently, more studies showed that EE increased the size of the cell soma and nucleus, 

dendritic branching and length of cortical neurons (Holloway Jr, 1966; Greenough et al., 

1973; Kozorovitskiy et al., 2005) and also synaptic size and number (Diamond et al., 1964; 

Mollgaard et al., 1971; Turner and Greenough, 1985). Furthermore, EE increased 

hippocampal neurogenesis (Kempermann et al., 1997) as well as reduced apoptotic cell death 

(Young et al., 1999). 

Moreover, EE induces alterations at the molecular level, changing the expression of several 

genes involved in synaptic function and cellular plasticity (Rampon and Tsien, 2000) (Figure 

5). Elevated levels of neurotrophins have been found after EE, such as BDNF (Falkenberg et 
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al., 1992), nerve growth factor (NGF) (Mohammed et al., 1993; Pham et al., 1999), glial-cell-

derived neurotrophic factor (GDNF) (Young et al., 1999) and IGF (Carro et al., 2000). 

Several of these factors have been suggested to play role in learning and synaptic plasticity 

(Fischer et al., 1987; Kang and Schuman, 1995; Figurov et al., 1996). Enrichment also 

increased the expression of synaptic proteins, such as the presynaptic vesicle protein 

synaptophysin (Frick and Fernandez, 2003; Lambert et al., 2005) and postsynaptic density-95 

protein (PSD-95) (Nithianantharajah et al., 2004). Additionally, EE increased histone 

acetylation levels in the hippocampus and neocortex (Fischer et al., 2007). 

Enriched environment also affects several neurotransmitter systems in the brain. Increased 

levels of acetylcholinesterase activity after enrichment were reported, indicating an effect of 

EE on the cholinergic system (Rosenzweig and Bennett, 1996). The serotoninergic system is 

also affected by enrichment, as EE animals showed enhanced expression of the serotonin1A 

receptor gene (Rasmuson et al., 1998). Furthermore, the activity of opioid systems is 

enhanced after enrichment (Sforzo et al., 1986). All of these neurotransmitters are known to 

influence learning and synaptic plasticity in the adult brain (for review see Gu (2002)). 

Together with cellular and molecular changes EE is able to modify behaviour in various tasks 

involving complex cognitive functions (Renner and Rosenzweig, 1987). EE-mice performed 

better in the Morris-water-maze, the novel object recognition task and fear-conditioning task 

suggesting an enhanced learning and memory function after enrichment (for a review see 

Rampon and Tsien (2000)). Moreover, the typically cognitive decline observed in aging 

animals is reduced after EE (Bennett et al., 2006). 

 

Figure 5: EE induces plasticity changes in the brain by altering the expression of several 

molecular factors. Reduced levels of inhibition, elevated levels of neurotrophins like BDNF and IGF, 

and increased levels of the neurotransmitter serotonin have been reported after EE-housing, resulting 

in behavioural changes and brain plasticity. 

 

1.6.2. Enriched environment effects in visual system and on OD-plasticity 

The visual system has been used as a model to study the effects of environment, revealing 

previously unknown effects of EE on the development and plasticity of neural circuits. 
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Additionally, EE has been a helpful tool to identify molecular factors implicated in visual 

cortex plasticity. 

During development, EE has been shown to accelerate the visual system development (Prusky 

et al., 2000a; Cancedda et al., 2004; Sale et al., 2004) and advance the eye opening (Cancedda 

et al., 2004). There are several changes in molecular factors potentially responsible for this 

effect. Animals reared from birth in EE had higher levels of BDNF in their visual cortex 

(Cancedda et al., 2004; Sale et al., 2004), increased expression of the GABA biosynthetic 

enzymes GAD65 and GAD67 (Cancedda et al., 2004; Ciucci et al., 2007), increased levels of 

IGF-I (Ciucci et al., 2007; Maya-Vetencourt and Origlia, 2012) and accelerated CRE/CREB 

(cAMP response element-binding protein)-mediated gene expression (Cancedda et al., 2004). 

EE has already been tested as a non-invasive approach to reactivate OD-plasticity in rodents 

(for review see Sale et al. (2014)). In adult rats, 3 weeks of EE-housing promoted OD-

plasticity after 1 week of MD compared to SC-housed rats (Baroncelli et al., 2010b). Visually 

evoked potentials recordings revealed that OD-plasticity in EE rats was similar to critical 

period mechanism with decrease in responses through the deprived eye in V1 (Baroncelli et 

al., 2010b). Similar experiments performed in aging rats (22 to 24 months) showed that, 3 

weeks of EE-housing are sufficient to reactivate OD-plasticity (Scali et al., 2012). Moreover, 

adult amblyopic rats transferred to an EE for 3 weeks underwent full recovery of visual 

function in contrast to SC-mice (Sale et al., 2007; Baroncelli et al., 2010b). In these studies, 

recovery of plasticity was accompanied by increased expression of BDNF, decreased density 

of PNNs and a reduction in GABA levels (Sale et al., 2007; Baroncelli et al., 2010b; 

Baroncelli et al., 2012; Scali et al., 2012). The reduction of inhibition by EE is crucial to 

rescue OD-plasticity as demonstrated by complete lack of OD-plasticity after diazepam 

treatment (Sale et al., 2007; Baroncelli et al., 2010a). We recently showed that EE extended 

the sensitive phase for OD-plasticity into adulthood and restored OD-plasticity in old SC-

raised mice (Greifzu et al., 2014). Additionally, we found reduced local inhibition in V1 

suggesting that EE probably keeps the adult brain in a more juvenile state by preserving low 

levels of inhibition into adulthood (Greifzu et al., 2014). 

 

1.6.3. Transgenerational effect of EE 

During the first two weeks of life, rodents stay in the nest, totally depending on the mother, 

which is the most important source of sensory experience (Liu et al., 2000). EE during the 

first days of life was shown to affect the visual-system development of pups caused by 

changes of the maternal behaviour (Cancedda et al., 2004). Quantitative analysis of maternal 

care in EE showed that EE-pups receive higher levels of maternal care, continuous physical 

contact and higher levels of licking compared to SC-reared pups (Sale et al., 2004). It has 

been proposed that higher maternal care in EE-pups affects their brain development. In 

support of this hypothesis is the observation that variations in maternal care increase BDNF 

levels in the offspring (Liu et al., 2000). In a recent study Guzzetta et al. (2009) were able to 

reproduce the EE-dependent acceleration of visual development in rat pups born in SCs by 
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mimicking maternal behaviour. Specifically, during the first ten days of pup’s life, they 

applied a tactile stimulation (massage), a procedure previously shown to compensate for the 

negative effects of maternal deprivation (Schanberg and Field, 1987). Additionally they 

observed increased IGF-I levels in PD18 pups and when blocked, prevented the effects on 

visual system development (Guzzetta et al., 2009). Furthermore, the level of maternal care is 

also influencing the response to stress phenotype in adulthood (Meaney, 2001). 

Interestingly, the licking-grooming behaviour is heritable: the offspring of high and low 

frequent licking-grooming mothers become high and low frequent licking-grooming mothers 

respectively (for review see Arai and Feig (2011)). For example, high levels of maternal care 

resulted in elevated levels of serotonin in the pup’s hippocampus, leading to increased 

expression of the transcription factor GFI-A. This stimulates posttranslational modifications 

like DNA hypomethylation and histone acetylation, leading to increased expression of 

glucocorticoid receptor (GR), which is related to reduced stress levels. These epigenetic 

modifications were preserved into adulthood and determined the level of maternal care, thus 

the phenotype was preserved across generations (Weaver et al., 2004). 

Early studies showed that exposure of pregnant rats to an enriched environment enhanced not 

only their ability to find their way in a maze, but also the ability of their future offspring to do 

the same (Kiyono et al., 1985). Also, exposure of the mother to EE even before pregnancy 

resulted in an enhanced learning ability that was transmitted to her offspring (Dell and Rose, 

1987). Similar results were obtained when offspring of EE-mothers were raised from birth by 

non-EE foster mothers, suggesting that the effect of EE was transmitted to the offspring 

before birth, presumably in utero. 

Studies from Arai et al. (2009) showed that 4-week old offspring of EE-mice displayed 

enhanced synaptic plasticity in the hippocampus similar to their parents, even if they 

themselves never experienced EE. Using knock out mice with defective long-term 

potentiation (LTP) and fear conditioning, they showed that this phenotype was reversed in 

offspring of EE-mice. The effect was maintained even when the offspring were raised with 

non-EE foster mothers, suggesting that the effects of EE on synaptic plasticity to the next 

generation were transmitted during embryogenesis (Arai et al., 2009). 

 

1.6.4. Physical exercise and plasticity 

Enriched environment is a complex combination of social stimulation, learning and physical 

activity. Among the various EE components, physical activity seems to be one of the most 

crucial, with several studies exploring its capability to mimic a more complex EE and its 

benefits for the brain (for review see van Praag et al. (1999)). The different components of EE 

were already studied with respect to their role in recovery from amblyopia in rats (Baroncelli 

et al., 2012): physical exercise and visual enrichment promoted the recovery from amblyopia, 

whereas social interaction had no effect.  
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Physical exercise improves cognition and might delay age-related memory decline in humans 

(Cotman et al., 2007; Hillman et al., 2008). Physical exercise was also shown to protect 

against brain damage and to promote recovery from injuries (Griesbach et al., 2008). 

Increased cell proliferation, higher neuron survival and elevated levels of BDNF in the 

hippocampus have been reported for mice with access to a running wheel (Kobilo et al., 2011; 

Mustroph et al., 2012). Many molecular factors that changed after EE are also found to be 

changed after physical exercise for example increased levels of BDNF (Berchtold et al., 

2005), NGF (Neeper et al., 1996), and IGF (Carro et al., 2000) were found in the brain after 

running (for review see Vivar et al. (2013)). Moreover physical activity influences several 

neurotransmitter systems in the brain such as the glutamatergic (Kitamura et al., 2003; Farmer 

et al., 2004; Lou et al., 2008) and the GABAergic system (Molteni et al., 2002). 

Although many studies showed the positive effect of physical exercise in the brain, only 

recently the effect of running on visual cortex neuronal activity and plasticity has been 

addressed. Studies from Stryker’s group showed that locomotion increases pyramidal cell 

firing in V1 (Niell and Stryker, 2010) and that the enhancement of visual responses induced 

by locomotion is sufficient to promote recovery of visual function after long term MD 

(Kaneko and Stryker, 2014). Additionally, they showed that the activity of a specific class of 

V1 interneurons that express the vasoactive intestinal protein (VIP) is directly modulated by 

locomotion (Fu et al., 2014). Specifically, using two-photon calcium fluorescence imaging to 

monitor the activity of genetically labeled VIP neurons, they found a strong correlation 

between the calcium signals in VIP neurons and bouts of running. Direct activation using 

optogenetic tools of VIP cells was sufficient to increase visual responses of neighboring 

neurons, mimicking the effects of locomotion while ablation of VIP neurons blocked the 

effects of locomotion. They proposed a possible neural circuit underlying these effects, where 

the specific recruitment of VIP cells by locomotion directly modulates V1 activity through a 

disinhibitory mechanism. Since VIP neurons in V1 are known to provide a major source of 

inhibition to somatostatin (SST) expressing interneurons (Pfeffer et al., 2013), suppression of 

SST interneurons resulted in decreased inhibition onto pyramidal cells, which in turn 

generated an increase in V1 responsivity (Fu et al., 2014; Lee et al., 2014). 

 

1.6.5. EE and recovery from stroke  

Since EE has several positive effects on brain and behaviour, the benefits of EE have been 

investigated in animal models for diseases like Alzheimer, Parkinson and Down syndrome but 

also after brain injury, including stroke (for a review see Nithianantharajah and Hannan 

(2006)). Previous studies on stroke showed that stroke not only destroys the affected brain 

areas, but also disturbs the surrounding areas (Buchkremer-Ratzmann et al., 1996) (for review 

see Andrews (1991)). It is important to mention that recovery after stroke requires cortical 

plasticity, which results in the rewiring of the brain by modulating the strength of synaptic 

connections and neuronal properties (Seitz et al., 2004) (for review see Murphy and Corbett 

(2009)). However, an in vivo study provided evidence for diminished plasticity in neighboring 
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areas of a cortical lesion. After a focal photothrombotic stroke next to the barrel cortex, no 

experience-dependent rearrangement of neurons occurred (Jablonka et al., 2007). 

Additionally, studies from our laboratory showed that after a photothrombotic lesion in the 

primary somatosensory cortex (S1) or secondary motor cortex (M2) visual cortex OD-

plasticity and the increase of visual abilities usually occurring after MD were diminished in 

young mice, while anti-inflammatory treatment successfully restored increased visual abilities 

after MD but not OD-plasticity (Greifzu et al., 2011; Pielecka-Fortuna et al., 2015b). 

Enriched environment has been also proven beneficial for the recovery after stroke. 

Experiments in rodent models of stroke showed that EE promoted motor function recovery 

(Ohlsson and Johansson, 1995; Johansson, 1996; Biernaskie et al., 2004; Wurm et al., 2007) 

and reduced deficits in learning and memory (Dahlqvist et al., 2004; Rönnbäck et al., 2005; 

Wurm et al., 2007). Moreover the lost OD-plasticity in V1 after a lesion in S1 was preserved, 

when the mice were raised in EE (Greifzu et al., 2014). While the benefits of EE after stroke 

have been investigated, there is no study investigating the effects of physical exercise on OD-

plasticity lost after stroke. 

 

1.7. Enriched environment from animals to humans 

Learning in humans is a result of practice and can be achieved even in adulthood, but there is 

no doubt that children learn faster and more effectively. Reactivation of plasticity in adults 

would be a significant clinical advance for rehabilitation after cortical damage, but also for 

promoting learning and cognition. Non-pharmacological treatments to promote plasticity, like 

EE, seem to be a better choice for clinical applications because they minimize the side effects. 

EE has proven to be beneficial for animals in restoration of cortical plasticity but how to 

apply the animal EE paradigm to humans is still debated.  

One proposed way of enrichment in humans is the aerobic exercise. The positive effects of 

aerobic exercise are known in the field of aging: individuals, who normally exercise, perform 

better in various tasks as dual-task performance, executive attention or distractor rejection, 

compared to those who do not (for reviews see Hillman et al. (2008), Kramer and Erickson 

(2007)). Additionally, aerobic exercise leads to neuroanatomical and neurophysiological 

changes in older humans, including increased gray matter volume in the prefrontal and 

temporal areas and reduced brain tissue loss (Colcombe and Kramer, 2003). Whether aerobic 

exercise can enhance brain plasticity in healthy, young humans needs to be determined. 

Another approach of enrichment in humans is by playing videogames, which combines 

various EE components, such as visual attention and enhanced sensory stimulation (Green and 

Bavelier, 2012). Fast-paced, action-packed games have already been documented to have 

potent positive impact on an array of skills, including perception, visual-motor coordination, 

spatial cognition, attention and decision making (Dorval and Pepin, 1986; Li et al., 2009; 

Green and Bavelier, 2012). In a recent study, amblyopic adults were asked to play an off-the-

shelf action video-game with their fellow eye patched. This resulted in an improvement of a 
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wide range of fundamental visual functions, including visual acuity, positional acuity and 

visual attention (Li et al., 2011). Interestingly, improvement in amblyopic vision was also 

observed after playing non-action videogames such as SimCity which are not efficient in 

boosting normal vision (Li et al., 2009). These plastic modifications have been shown to be 

long lasting, with beneficial effects lasting from six months to two years (Li et al., 2009). Like 

in EE, the factors responsible for inducing brain plasticity within the action game experience 

remain to be determined. 

1.8. Scope of the thesis  

The positive effect of EE on adult plasticity has been the subject of studies for the past few 

years, but there are still open questions as for the mechanisms of how EE can promote 

plasticity. The aim of this study is to investigate more in detail the effects of EE on adult OD-

plasticity of mice with the ultimate goal to clarify the following questions: 

a) Can EE prolong the sensitive phase of OD-plasticity into adulthood and until when do 

the mice show OD-plasticity when raised in EE? 

b) Is the observed OD-shift in adult EE-mice similar to critical period SC-mice? 

c) Is running, as one component of EE, sufficient to enable OD-plasticity in adult mice? 

Can running also preserve OD-plasticity after stroke? 

d) How long do the mice show OD-plasticity if they do not experience an EE anymore? 

Can we preserve OD-plasticity in mice transferred from EE to SCs? 

e) Can the positive effect of EE on OD-plasticity be passed to the next generation of non-

EE-mice? Which parent is responsible for conducting the effect? 
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2. Materials and Methods 

2.1. Animals 

Male and female C57BL/6J mice were obtained from the mouse colony of the central animal 

facility of the University Medical Center, Göttingen, Germany, and housed in an animal room 

with a 12-h light/dark cycle with food and water available ad libitum. All experimental 

procedures were approved by the local government: Niedersächsisches Landesamt für 

Verbraucherschutz und Lebensmittelsicherheit. For every experiment the age range of the 

mice used is given as postnatal days (PD) on the day of optical imaging experiment. 

2.2. Design of the study 

2.2.1. OD-plasticity can be induced after 4 days of MD in EE-mice 

One of the questions, that I focus my thesis on, was the effect of 4 days of monocular 

deprivation (MD) on OD-plasticity in three different age groups of mice born and raised in 

enriched environment (EE). To address that question, in total 33 female mice of three 

different age groups born and raised in EE were used. The first group consisted of 10 mice in 

the critical period (EE_cp; PD27-33), the second group of 13 mice between PD80 and PD101 

(EE-young) and the third group of 10 mice older than PD110 days (EE_old; PD121-183). 

Detailed description of the groups is presented in Table 1. 

All animals were checked daily during MD period in the optomotor setup to measure spatial 

frequency and contrast sensitivity thresholds of the optomotor reflex. On the 4
th
 day, optical 

imaging of intrinsic signals was performed to assess the ocular dominance index (ODI; Figure 

6). As controls matching age mice without MD were also measured daily in optomotry and 

optical imaging was performed. 

Table 1: Description of EE mice of different ages used for this study. The group name, if the mice 

had MD, the age range and the total number of animals in each group are listed. 

Group name Monocular 

Deprivation (MD) 

Age 

(days) 

Number of 

mice 

EE_cp no MD 27-34 4 

EE_cp_MD MD 27-33 6 

EE_young no MD 82-101 7 

EE_young_MD MD 80-99 6 

EE_old no MD 127-183 5 

EE_old_MD MD 121-177 5 
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Figure 6: Experimental design to test the effect of 4 days MD in 3 different age groups of EE 

mice. All mice were born in EE cages and when they were at the proper age MD was performed. 

During the following 4 days mice were tested daily in the optomotor setup and at the end optical 

imaging was performed. 

 

2.2.2. The sensitive phase of OD-plasticity can be prolonged in mice with 

running wheels 

To investigate whether running alone has a beneficial effect on OD-plasticity of adult mice I 

used two different experimental conditions: mice housed from birth in standard cages (SCs) 

with a running wheel (RW) and mice exposed to RW for only 7 days during the MD period. 

As control group mice born and raised in SCs were used.  

For the first case (RW group) a total number of 25 male and female mice with age range 

PD138-242 were used (Table 2). The mice were born and raised in a group of 3 to 5 animals 

in SC equipped with a RW. When mice were at least 130 days old 8 of them received 7 days 

of MD and 7 mice were used for the no MD group. In both groups daily optometry was 

performed for a period of 7 days, to measure spatial frequency and contrast sensitivity 

thresholds of the optomotor reflex, followed by optical imaging of intrinsic signals to 

calculate the ODI (Figure 7A). As control group, mice born in exactly same size SC but 

without RW were used (n=10; PD137-200). Again these mice had MD/noMD (n=5/5) for 7 

days, optomotry measurements during MD and at the end optical imaging was performed. 

Part of the optomotry measurements and imaging analysis was performed with the help of 

Franziska Haack as a part of her bachelor thesis. 

For the second case (7 days running) the total number of 12 male and female mice with age 

range PD141-217 was used (Table 2). Here, all mice were born and raised in SCs until they 

were at least 130 days old and transferred in a SC with RW soon after 6 mice underwent MD 

(PD141-214) and 6 had no MD (PD143-217). All mice were tested in optomotry daily for 7 

days, and on the 7
th
 day optical imaging of intrinsic signals was performed (Figure 7B). 
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Table 2: Groups used for the RW study. The group name, the housing conditions, the MD, the age 

range of the animals in each group and the total number of animals in each group are listed. 

Group name Housing 

(RW/SC) 

Monocular 

Deprivation (MD) 

Age 

(days) 

Number of 

mice 

RW_MD RW MD 138-242 8 

RW RW no MD 140-240 7 

SC_MD SC MD 145-195 5 

SC SC no MD 137-200 5 

7dRW_MD From SC to RW MD 141-214 6 

7dRW From SC to RW no MD 143-217 6 

 

 

Figure 7: Experimental design to test the effect of running on OD-plasticity. A. Mice born in SCs 

with a RW received MD when above PD130. During 7 days of MD mice were tested daily in the 

optomotor setup. On the 7
th

 day optical imaging was performed. B. Mice born and raised in SCs until 

at least PD130, transferred to a cage with a RW after MD. After 7 days of daily optometry optical 

imaging was performed.  
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2.2.3. Voluntary running preserved OD-plasticity after an induction of a cortical 

lesion 

In order to test the effect of physical exercise on preserving OD-plasticity after stroke, mice 

were raised in a slightly bigger SC equipped with a RW. When mice where above 110 days 

old a localized cortical lesion was induced using photothrombosis (PT) (Watson et al., 1985). 

Few hours after PT surgery (2-3 h), some of the mice received MD and some did not. Mice 

were then transferred back in their home cages. Optomotry measurements were done daily for 

the next 7 days before optical imaging on the last day (Figure 8A). As control groups we used 

sham-operated mice with or without MD. A total number of 17 male and female mice 

between PD149 and PD222 were used for this study (Table 3). 

In addition, the therapeutic effect of a short exposure to RWs after PT was tested. In this study 

18 males and females mice born and raised in SCs were used (Age range: PD119-258; table 

3). PT or sham operation was performed after which mice were immediately transferred in a 

cage with a RW. After one week of recovery from stroke, MD was performed in some of the 

mice. All the mice were tested in the optomotor setup for 7 days before optical imaging 

(Figure 8B). As part for her bachelor thesis, Janika-Marrie Hüppe performed some of the 

optomotry measurements and imaging analysis. 

 

Table 3: Description of the groups used for RW stroke study. The group name, the treatment (PT 

or sham surgery), the MD, the age range and the total number of animals in each group are listed. 

Group name Treatment 

(PT/sham) 

Monocular 

Deprivation (MD) 

Age 

(days) 

Number of 

mice 

RW_PT_MD PT MD 149-204 5 

RW_PT PT no MD 174-222 5 

RW_sham_MD Sham MD 156-218 4 

RW_sham Sham no MD 180-215 3 

14dRW_PT_MD PT MD 119-213 7 

14dRW_PT PT no MD 124-258 5 

14dRW_sham_MD Sham MD 120-197 3 

14dRW_sham Sham no MD 119-162 3 
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Figure 8: Experimental design to test therapeutic potential of physical exercise on lost OD-

plasticity after stroke. A. A lesion was induced using PT in adult mice (>PD110) born in SCs with a 

RW. Shortly after, mice received an MD and were transferred back in their home cages. After 7 days 

with daily optomotry measurements, optical imaging was performed. B. Mice were born and raised in 

SCs until at least PD110 and transferred in a cage with a RW immediately after PT. After 7 days of 

recovery mice received an MD followed by 7 days of daily optomotry measurements. On the last day 

optical imaging was performed. 

 

2.2.4. How long OD-plasticity can last after transferring EE-mice to SCs 

While mice in EE showed life-long OD-plasticity, it is not clear whether changing their living 

environment by transferring them to SCs will result in loss of OD-plasticity. To clarify that, 8 

mice raised in EE where transferred alone to a SCs after PD110 (Table 4). After a short period 

in SC (from 1 day to 1 week) mice received MD for 7 days. During the MD period all mice 

were measured daily in the optomotor setup and optical imaging was performed on the 7
th

 day 

(Figure 9A). 

The OD-plasticity was absent in these mice already after 1 week in SC. To restore OD-

plasticity I treated the animals with fluoxetine, a selective serotonin reuptake inhibitor 

(Fluoxetine hydrochloride, Tocris bioscience), administrated through the drinking water. To 

this end, female mice raised in EE were transferred in SCs after PD110, in groups of 3 to 5 

animals per SC cage and fluoxetine was given to them through the drinking water for a period 

of 3 weeks. On the last week mice underwent MD, then were measured daily in the optomotor 

setup during the MD period and on the 7
th
 day optical imaging of intrinsic signals was 

performed (Figure 9B). In order to reach an average daily intake of 10 mg/kg fluoxetine per 

mouse, the concentration of the drug in the drinking water was calculated based on the 
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average daily drinking amount of mice (5ml, Bechmanov et al., 2002) and the average mouse 

weight (25g, JAX
®
 Mice, Clinical & Research Services). The concentration of fluoxetine in 

the drinking water was 0.05 mg/ml per day. The solution was prepared fresh every day and 

the average consumption was measured. Dripping-free bottles (Bioscape GmbH, Castrop-

Rauxel) were used for that propose. As control group EE-mice from the same litter transferred 

in SCs drinking only water (without fluoxetine) were used. A total number of 14 female mice 

born in EE were used in this study (Table 4). Part of the optomotry measurements were 

performed by Jonas Brettschneider as a part of his bachelor thesis.  

Furthermore, I tried to restore OD-plasticity in mice transferred from EE to SC using a RW. 

For this, 3 adult female mice (PD211-298) raised in EE were transferred in a SC with a RW 

for 3 weeks (Table 4). MD was performed after 2 weeks for 7 days. Optical imaging was 

performed after these 3 weeks. During the MD period mice were tested daily in optomotor 

setup (Figure 9C). 

 

Table 4: Description of groups used for this study. The group name, the treatment (no, fluoxetine or 

RW), whether MD was performed in that group, the age range of the animals as well as the total 

number of animals in each group are listed. 

Group name Treatment Monocular 

Deprivation (MD) 

Age 

(days) 

Number of 

mice 

EEtoSC_1day - MD 164-278 4 

EEtoSC_1week - MD 162-281 4 

EEtoSC_fluox_MD Fluoxetine MD 278-283 3 

EEtoSC_fluox Fluoxetine no MD 260-284 4 

EEtoSC_water_MD - MD 266-269 3 

EEtoSC_water - no MD 266-274 4 

EEtoRW_MD RW MD 211-298 3 



Materials and Methods  

 

26 

 

 

Figure 9: Experimental design to test whether OD-plasticity is lost after transferring EE mice to 

SCs and if it can be restored by fluoxetine or running. A. Mice born and raised until at least PD110 

in EE were transferred to SCs alone and after 1 or 12 days MD was performed. For the next 7 days 

mice were measured in optomotor setup daily and on the 7
th
 day optical imaging was performed. B. 

Mice born and raised in EE until PD110 were transferred to SCs and were treated with fluoxetine 

through the drinking water for 3 weeks. On the last week mice received an MD, followed by 7 days of 

daily optomotry and then optical imaging. C. Adult mice (>PD110) born and raised in EE were 

transferred to a SC with a RW for a period of 3 weeks. After 2 weeks MD was performed and 

afterwards (last week) mice were tested in optomotor setup daily for 7 days before optical imaging on 

the last day. 
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2.2.5. OD-plasticity can be passed on to the next generation 

To answer the question if the positive effect of EE on OD-plasticity can be transmitted from 

EE-parents to the next generation of non-enriched offspring, mating of EE-mice took place in 

EE cages and pregnant females were transferred to SCs 7-5 days before delivery. Pups were 

born and raised in SCs until at least PD110 and then OD-plasticity was examined. To this end, 

MD (n=7) or noMD (n=5) adult non-enriched animals from EE-parents were checked daily in 

optomotry for a period of 7 days with optical imaging taking place on the last day (Figure 

10A). 

Furthermore, to investigate from which parent the effect on OD-plasticity is passed on to the 

next generation, mating between EE-males and SC-females as well as between SC-males and 

EE-females were done. The mating happened always in the cage of the female mice and 

pregnant dams were transferred to SCs few days before delivery (7-5 days). All offspring 

were born and raised in SCs and same procedure was followed to measure OD: when they 

were above PD110 some of the mice received MD, daily optometry and finally optical 

imaging (Figure 10B and C). In total 31 male and female mice were used for this study. 

Detailed group description is presented in the table 5. 

 

Table 5: Description of the groups used to test whether OD-plasticity can be transmitted to the 

next generation of non-enriched mice. The group name, which parent was enriched, whether MD 

was performed in that group, the age range of the animals as well as the total number of animals in 

each group are listed. 

Group name EE 

Parent 

Monocular 

Deprivation (MD) 

Age 

(days) 

Number of 

mice 

EEparents_MD father & mother MD 130-261 7 

EEparents father & mother no MD 131-205 4 

EEfather_MD father MD 132-194 5 

EEfather father no MD 127-188 6 

EEmother_MD mother MD 143-177 4 

EEmother mother no MD 142-171 5 
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Figure 10: Experimental design to test if OD-plasticity can be transferred from EE-mice to the 

next generation of non-enriched pups. A. Mating of male and female enriched mice. Offspring were 

born and raised in SC. When offspring were above 110 days old, MD was performed. For the next 7 

days mice were checked daily in optomotry. On the 7
th
 day after MD optical imaging took place. B. 

Mating between EE-male and SC-female took place in SC. Pups were born in SC and tested for OD-

plasticity when they were above PD110. To this end, mice received an MD, followed by 7 days 

optomotry measurements and at the end optical imaging. C. Mating of SC-male and EE-female took 

place in EE cage. Pregnant females were transferred to SC before delivery, where offspring were born 

and raised. Adult offspring (>PD110) were tested in optomotor setup daily during MD and after 7 days 

optical imaging was performed. 
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2.3. Housing conditions 

2.3.1. Enriched environment cages 

For enriched environment experiments pregnant females were put into commercially available 

EE cages (Marlau, Viewpoint, Frances) one week before delivery (5–7 days). Pups were 

separated from their mothers and placed in separate female and male groups at PD30. 

The EE cages (56 × 37 × 32 cm [L×W×H]) are about nine times larger than standard cages 

(SC; 26 × 20 × 14 cm [L×W×H]), with two floors linked by a ladder for going up and a tube 

for sliding down. On the lower compartment is the “living area” with three running wheels for 

physical exercise, a red tunnel to protect the animals from light, and the “food area” where the 

mice can find food. In order to move from the “living area” to the “food area”, mice have to 

go to the upper compartment using the ladder, pass through the maze and slide down. They 

can return to the “living area” through a revolving door which opens only in one direction, 

thus they are forced to move through the maze again in order to get food. The maze was 

changed three times per week, and there were in total 12 different configurations. 

Additionally, mice in EE had more social interactions as they were housed in bigger groups 

with up to 16 mice per cage compare to 3 to 4 mice per SC (Figure 11).  

 

Figure 11: Enriched environment housing provides more social interaction, complexity, physical 

exercise and novelty. Compared to the restricted standard cage, on the left side (Figure from van 

Praag et al. (2000)), the EE cage on the right side (Marlau, Viewpoint, Frances) is bigger, with more 

compartments and more possibilities for voluntary physical exercise (running wheels), cognitive 

stimulation (regularly changed maze that the mice have to cross to get to the food compartment) and 

social interaction (larger number of mice housed together). 
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2.3.2. Running wheel cages 

For experiments with mice in cages equipped with a running wheel (RW) pregnant females 

were put into slightly larger than normal SCs (43 × 27 × 19 cm [L×W×H]; normal SCs: 26 × 

20 × 14 cm [L×W×H]) either with or without a RW 6-11 days before delivery. Offspring were 

separated into female and male groups at PD28 without changing the housing conditions. 

Male/female with/without RW-mice were housed as groups of 3 to 5 mice per cage. The 

number of RW-turns was counted daily using a counter bind on the wheel and the average 

RW-turns per animal/per day was calculated. 

 

2.4. Monocular Deprivation 

In order to induce OD-plasticity the right eye of the mice was deprived for 7 days according 

to published protocols (Gordon and Stryker, 1996; Greifzu et al., 2014). In detail, mice were 

initially box anesthetized with 2% isoflurane in O2:N2O (1:1), and placed on a heated pad to 

keep the body temperature stable at 37°C. Then the anesthesia was reduced to 1% isoflurane 

in O2:N2O (1:1), the eyelids were trimmed, an antibiotic gel (Gentamycin gel, active agent: 

gentamicin sulfat, 0.3%) was applied on the eye to prevent inflammation and the lids were 

closed with two sutures using 7-0 silk (Ethicon, Norderstedt). Finally, the analgesic Rimadyl 

(5μg/g mouse; active agent: carprofen) was injected intraperitoneally (i.p.) and the mice were 

returned to their home cages. Animals were checked daily to make sure that the eyes 

remained closed. In case of an open MD eye mice were excluded from further experiments. 

 

2.5. Behavioural tasks to measure visual abilities 

2.5.1. Optomotry 

In order to quantify the spatial vision of the mice both the spatial frequency threshold (“visual 

acuity”) and the contrast threshold (“contrast sensitivity”) of the optomotor reflex all mice 

were measured using the virtual reality optomotor system developed by Prusky et al. (2004). 

This method bases on mice’s optokinetic reflex, thus mice do not have to be trained. It had 

been previously described that the optomotor reflex is mediated by subcortical pathways 

(Giolli et al., 2006) and the visual capabilities measured by optomotry measurements mainly 

reflect the properties of the retinal ganglion cells that project to these subcortical structures 

(Douglas et al., 2005). After MD mice measured daily in the optomotor setup showed an 

enhancement of spatial vision through the open eye that is cortex-dependent (Prusky et al., 

2006). 

The optomotor testing apparatus consists of four computer monitors (each 33.5 x 26.5 cm 

[WxH]) arranged in a square with the screens facing each other, forming a box where the 

stimulus is presented. The mouse is placed in the middle of the box on a round elevated 

platform (13 cm high) with diameter of 5.3 cm and is able to move freely. Mirrors are placed 



Materials and Methods  

 

31 

 

at the bottom as well as the top of the box therefore the animal in the middle gets the 

impression of sitting in an endless cylinder. A camera (FireWire iSight; Apple Computer 

Corp., Mountain View, Canada) is mounted above the platform on the lid of the box and 

recordings are transmitted to an external monitor, so that the experimenter can observe the 

animal’s behaviour (Figure 12). 

 

Figure 12: Schematic representation of the optomotor testing apparatus. A. Side view. The mouse 

can freely move on a platform positioned in the middle of an arena created by four computer screens. 

Sine wave gratings on the screens are extended vertically with mirrors on ceiling and floor. A video 

camera is placed above to monitor the mouse responses. B. Top view. The mouse is surrounded by 

360° of gratings. Figure modified from Prusky et al., 2004. 

 

Using the computer program OptoMotry (Version 1.4.0; CerebralMechanics, Lethbride, 

Alberta, Canada) the virtual cylinder, composed of a vertical sine wave grating, is projected 

on the screens. The virtual cylinder can rotate clockwise or counterclockwise. The center of 

the rotating virtual cylinder was always positioned between the eyes of the mouse, to make 

sure, that the walls of the virtual cylinder had always the same distance to the eyes of the 

mouse (Figure 13). Parameters like spatial frequency, contrast and speed of the sine wave 

grating can be varied by the experimenter. In case the mouse can detect the stimulus, it is 

reflexively tracking the grating by moving the head in the rotation’s direction. Since only 

rotating gratings in the temporal-to-nasal direction provoke tracking (Douglas et al., 2005), it 

is possible to measure thresholds for both eyes separately.  
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Figure 13: Simulating a three-dimensional cylinder and reflexive response. A. Centered at the 

animal’s head, a 3-dimensional coordinate cylinder is projected on the screens. B. When a stimulus is 

presented which the mouse can detect, it is tracking it with reflexive head and neck movements. Figure 

from Prusky et al., 2004. 

 

Spatial frequency at full contrast and contrast at six different spatial frequencies [0.031, 0.064, 

0.092, 0.103, 0.192 and 0.272 cycles/degree (cyc/deg)] were varied by the experimenter until 

the threshold of tracking was determined. Contrast sensitivity measured was converted into 

Michelson contrasts according to the following equation: 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
100

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 [%]×0.997 
 . 

The factor 0.997 resulted from following equation: 0.997 =
𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑏𝑙𝑎𝑐𝑘−𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑤ℎ𝑖𝑡𝑒

𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑏𝑙𝑎𝑐𝑘+𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑤ℎ𝑖𝑡𝑒
 . 

 

2.5.2. Visual water task 

As a second method used to assess visual abilities in mice the visual water task, a visual 

discrimination task based on reinforcement learning (Prusky et al., 2000b; Prusky and 

Douglas, 2003) was used. For this study, both SC and EE mice were trained and tested in the 

visual water task (VWT). 

Animals are initially trained to distinguish a low spatial frequency grating (0.086 cyc/deg) 

from isoiluminant grey (Figure 14B) and then their ability to recognize higher spatial 

frequencies is tested. The apparatus consists of a trapezoidal shaped pool with two monitors 

placed side by side at one end (Figure 14A). A midline divider is extended from the wide end 

into the pool, creating a maze with a stem and two arms. An escape platform that is invisible 

to the animals is placed below the monitor, where the grating is projected. The position of the 

grating and the platform is alternated in a pseudorandom sequence over the training and test 

trials. When 90% accuracy is achieved 3 times (training phase), the discrimination threshold 

is determined by increasing the spatial frequency of the grating until performance falls below 
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70% accuracy (testing phase). The highest spatial frequency at which 70% accuracy is 

achieved is taken as the maximum visual acuity.  

 

Figure 14: Schematic representation of the visual water task. A. View from the top illustrating the 

important components of visual water task including the pool, the platform, the midline divider, and 

the two monitors. The pool is filled with water. From the release chute, animals learn to swim on the 

side of the pool on which the grating is projected to find the hidden platform to escape from the water. 

B. To measure visual acuity mice were trained to distinguish between isoilluminant grey and vertical 

gratings. C. To test the orientation discrimination a different conformation of stimuli was used. Here 

the mice were trained to distinguish between vertical and horizontal square gratings. The angle 

difference of the two stimuli is reduced gradually until the mice cannot discriminate. 

 

In addition, orientation discrimination was measured also by using the VWT. Here, different 

visual stimuli were used (Figure 14C). First, mice were trained to distinguish between 

horizontal and vertical square wave gratings of a low spatial frequency (0.086 cyc/deg, 

training phase) on each stimulus monitor respectively. Once 90% accuracy was achieved, the 

test phase was started. In order to test the orientation discrimination ability of each mouse the 

orientation difference of the two gratings was stepwise (in steps of 5°) reduced until the 

performance of the mice to decide for the correct side/monitor fell below 70% accuracy. The 

smallest orientation difference at which 70% accuracy was achieved was taken as the 

minimum discrimination threshold. 
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2.6. Photothrombosis 

Photothrombosis (PT) as a model to induce a cortical stroke developed by Watson et al. 

(1985) was used (as described in Greifzu et al. (2011)) to study the effect of a cortical lesion 

on OD-plasticity of adult mice with running wheels. All PT inductions were performed by Dr 

Justyna Pielecka-Fortuna. 

PT is known as a minimally invasive technique to induce a local cortical lesion and was 

induced in the left primary somatosensory cortex (S1). Mice received an intravenous tail vein 

injection of the photosensitive dye Rose Bengal (Sigma, Germany) and the brain region where 

the lesion should be localized was illuminated through the intact skull with a focused cold 

light source (Figure 15). The illumination causes a photochemical reaction in the blood 

vessels in the brain that leads to endothelial damage which induces platelet aggregation and 

leads to an ischemic infarct with cell death in the illuminated area (Watson et al., 1985). Due 

to specific determined stereotaxic coordinates the position of the lesion is quite precise and at 

every mouse easy to reproduce. Besides, the lesion can be restricted to the cortex so that 

subcortical brain regions are not affected (Domann et al., 1993).  

 

Figure 15: Lesion induction using the photothrombosis technique. A. Photothrombotic stroke 

induction by injecting Rose Bengal into the tail vein. Figure modified from Witte and Stoll (1997). B. 

The brain region (2mm lateral, 1mm posterior to the bregma) which was illuminated with a cold light 

source is marked with a red cycle. Scale bar: 1 mm. Figure modified from Cook (1965). 

 

For our experiments, the photothrombotic lesion was always positioned in the left S1, at least 

1 mm anterior to the anterior border of V1. For the surgical preparations, mice were initially 

box anesthetized with 2% isoflurane in a mixture of 1:1 N2O:O2.  During the surgery, 

anesthesia was maintained at 0.8-1% isoflurane through an inhalation mask and the mice were 

placed in a stereotaxic frame while the body temperature was kept at 37°C using a heating pad 

with a feedback mechanism (FHC, Bowdoinham, Maine, USA) and a rectal thermometer to 

monitor the temperature. To protect the animal’s eyes from light as well as the drying of the 

cornea during the procedure, they were covered with eye gel (Lac-Ophtal MP, Winzer Pharma 
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GmbH, Berlin) and aluminum foil. The skin above the skull was disinfected with 70% ethanol 

and local anesthetic (Xylocaine gel; AstraZeneca GmbH, Wedel) was applied on the skin 

before incised. An optic fiber bundle (aperture: 1.0 mm) mounted on a cold light source 

(Schott KL 1500) was positioned 2 mm lateral to the midline and 1 mm posterior to the 

bregma. Afterwards, 0.1 ml Rose Bengal (Sigma; 10 mg/ml in 0.9% NaCl) was injected 

intravenously. After 5 minutes of waiting, the illumination with 12000-14000 lux was started 

for 15 min. Then, the skin was sutured, antiseptic Braunovidon (B. Braun Melsungen AG, 

Melsungen) gel was applied, and the animals returned to their cages to recover. 

2.7. Optical imaging of intrinsic signals 

To visualize and calculate visual cortex activity and acquire the ocular dominance index 

(ODI) and therefore the OD-plasticity, the in vivo technique of optical imaging of intrinsic 

signals (Blasdel and Salama, 1986; Grinvald et al., 1986; Kalatsky and Stryker, 2003) was 

used. The main component of the intrinsic signal derives from the high difference in 

reflectance of active and inactive areas at an illumination of 610 nm wavelength. The 

metabolic activity of neurons changes in response to visual stimulation, especially the oxygen 

consumption in active neurons is much higher than in inactivate ones. At 610 nm, 

deoxyhemoglobin absorbs more light and therefore reflects less than oxyhemoglobin (Figure 

16). Thus, active brain areas accumulate a higher concentration of deoxyhemoglobin than 

surrounding areas and appear darker when illuminated with this red light. This change in 

reflection, which correlates with the neuronal activity, can be measured in the visual cortex.  

 

Figure 16: Absorption spectra of deoxy- and oxyhemoglobin. At the wavelength of 610 nm, which 

is used for optical imaging, deoxyhemoglobin (blue line) has a higher absorption and therefore lower 

reflectance than oxyhemoglobin (red line) which is almost zero. Figure modified from Hallum et al. 

(2006). 

 



Materials and Methods  

 

36 

 

2.7.1. Surgical procedure 

Surgical preparations for optical imaging were performed as published before (Kalatsky and 

Stryker, 2003; Greifzu et al., 2014). The mice were box-anesthetized with 2% halothane in a 

mixture of 1:1 O2:N2O and injected with atropine (0.3 mg/mouse; subcutaneously; Franz 

Köhler Chemie, Bensheim) to expand the pupils and inhibit saliva production, dexamethasone 

(0.2 mg/mouse; subcutaneously; Ratiopharm, Ulm) to reduce cerebral edema, and 

chlorprothixene (0.2 mg/mouse intramuscularly; Sigma-Aldrich, St. Louis, USA) to 

supplement the anesthesia. To prevent dehydration during the experiment 0.2 ml of 0.9% 

saline was injected subcutaneously. During surgery, anesthesia was maintained at 0.8% 

halothane in 1:1 N2O:O2 using an inhalation mask. The mice were placed in a stereotaxic 

frame and fixed with metal ear bars in each auditory canal providing horizontal stabilization, 

while a mouth holder provides vertical stabilization. The animals’ body temperature was 

maintained at 37°C using a rectal thermo probe with feedback mechanism to a heating pad 

(FHC, Bowdoinham, Maine, USA). Heart rate was monitored throughout the experiment. In 

case of MD, the stitches were removed and the eye was reopened. Throughout the surgical 

procedure the animals’ eyes were covered with silicon oil (Carl Roth, Germany) and 

aluminum foil to keep the cornea of the eyes moist and for dark adaptation. The skin above 

the visual cortex was disinfected with 70% ethanol and an anesthetic gel (Xylocaine, 

AstraZeneca GmbH, Wedel) was applied on the location where the skin was incised to expose 

the visual cortex. The exposed area was covered by agarose (2.5% in 0.9% NaCl) and a glass 

coverslip was placed on top to create a suitable optical surface and prevent the drying of the 

skull.  

 

2.7.2. Data acquisition 

Mouse visual cortical responses were recorded through the skull using the “Fourier”-imaging 

method developed by Kalatsky and Stryker (2003) and optimized for the assessment of OD-

plasticity (Cang et al., 2005b) (Figure 17). V1 was illuminated with green light (550±10 nm) 

to visualize the surface vascular pattern with a CCD-camera (coupled charged device: Dalsa 

1M30, Waterloo, Canada) using a 135 x 50 mm or 50 x 50 mm (for 1 or 2 hemisphere 

recordings respectively) tandem lens configuration (Nikon, Inc., Melville, NY). After 

acquisition of a surface image of blood vessels, the camera was focused 600 μm below the 

pial surface to make sure to record at least from cortical layer I-IV. The illumination light was 

then changed to red (610±10 nm) and an additional red filter was interposed between camera 

and objective to reduce the effect of light scatter. Frames were acquired at a rate of 30 Hz, 

temporally binned to 7.5 Hz, and stored as 512 x 512 pixel images after spatial binning of the 

camera image. 
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Figure 17: Experimental setup of optical imaging of intrinsic signals. The imaging system consists 

of a flat-screen monitor showing a moving bar as a stimulus generated by the stimulus computer, a 

CCD-camera, which acquires cortical responses after illumination of the visual cortex of 610 nm. The 

data send from the Data acquisition computer to the Analysis computer where they are extracted by 

Fourier analysis. Figure modified from Greifzu et al. (2012). 

 

2.7.3. Visual stimulation 

Visual stimuli were presented on a high refresh rate monitor (Hitachi, ACCUVUE, HM-4921-

D, 21”) positioned 25 cm in front of the mouse. Stimuli consisted of white drifting bars (2° 

wide) on black background generated by the program ContStim (CONTinousSTIMulation; 

VK Imaging, Houston, Texas), with a spatial frequency of 1 cyc/ 80°, at a temporal frequency 

of 0.125 Hz. The stimuli were presented in two opponent moving directions (e.g. 90°↑ and 

270°↓) to correct the hemodynamic delay which is due to the delay in the change in the 

absorption of the blood. For determining ODI, the monitor was placed in front of the mouse 

with the monitor’s center axis aligned with the mouse’s nose. Vertically moving bars 

(90°↑and 270°↓) were restricted to stimulate either only the binocular visual field of the left 

V1 (−5° to +15° azimuth; Figure 18A) or the binocular visual field of the right V1 (−15° to 

+5° azimuth), and animals were stimulated through either the left or right eye in alternation 
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for 5 minutes. Visual cortical maps were calculated from the acquired frames by Fourier 

analysis to extract the signal at the stimulation frequency using custom software (Kalatsky 

and Stryker, 2003). 

 

Figure 18: Visual stimuli. A. Visual stimuli for ODI measurements. To compare the cortical activity 

after the separate visual stimulation of the two eyes the vertical moving bar was restricted to 20° width 

so just the binocular zone of the visual cortex was stimulated. B. Visual stimuli to record maximum 

response and map quality of elevation maps C. Visual stimuli to record maximum response and map 

quality of azimuth maps.  

 

To calculate the map quality the monitor was placed in the right visual field of the animal at a 

distance of 25 cm to optimally stimulate the right eye (contralateral to the recorded 

hemisphere), while the left eye remained covered. In this case the drifting bars were shown 

across the full screen (78° azimuth and 59° elevation, respectively). Vertical (90°↑ and 270°↓; 

elevation orientation) or horizontal drifting (0°→and 180° ←; azimuth orientation) bars were 

presented to the mouse (Figure 18B and C).  

 

2.7.4. Data analysis 

Visual cortical maps were recorded from the acquired frames by Fourier analysis to extract 

the signal at the stimulation frequency using custom software (“iman” (IMageANalysis; VK 

Imaging, Houston, Texas), “mapans” (MAP ANalysis Single; VK Imaging, Houston, Texas)). 

The phase component of the signal is used to calculate the retinotopy. The phase map color-

codes the activated area in the visual cortex by referring to a position of the stimulus bar on 

the monitor at that moment (Figure 19A). The amplitude component of the optical signal 

represented the intensity of neuronal activation (expressed as fractional change in reflectance 

x10−4; Figure 19B) and was used to calculate ODI. The polar map combines the information 

of both retinotopy and activity maps (Figure 19C). 
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Figure 19: Examples of cortical maps acquired by optical imaging after right eye stimulation. A. 

Retinotopic phase map acquired by optical imaging is illustrated. The color code is based on the 

position of the bar on the screen. Neighbored colors in the color code of the bar position are also 

neighbored in the retinotopic phase map. B. Activity map of the same experiment. Darker areas 

correspond to stronger activation. C. Illustration of a polar map of the same mouse. The polar map 

combines the retinotopic map with the activity map. Higher activity is encoded by lighter areas. Scale 

bar: 1 mm. 

 

To calculate the ODI, the ipsilateral eye magnitude map was first smoothed to reduce pixel 

shot noise by low pass filtering using a uniform kernel of 5 x 5 pixels and then thresholded at 

30% of peak response amplitude to eliminate the background noise. The value of the pixel of 

the strongest response was then determined as the maximum response magnitude. Afterwards, 

the ratio of contralateral and ipsilateral responses in V1 was calculated. For every pixel in this 

region the ODI was computed as (C−I)/(C+I), with C and I representing the response 

magnitudes of each pixel to visual stimulation of the contralateral and ipsilateral eye, 

respectively. The ODI can reach values between -1 to +1, thereby -1 is representing a 

complete ipsilateral and +1 a complete contralateral dominated activation of V1. Additionally, 

the ODIs for every pixel in the map were color-coded in a 2-dimensional map of the OD 

scores (OD-map; Figure 20). Here, cold blue colors represent negative values (ipsilateral eye 

dominance) and warm red colors represent positive values (contralateral eye dominance). ODI 

values of every pixel are also plotted as a histogram (Figure 20). To compute an average ODI 

for each animal at least 3 maps per animal were averaged using an averaging program 

(MATLAB, Version: 7.12.0, The MathWorks, Natick, USA).  
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Figure 20: Example of cortical maps acquired with optical imaging and quantification of the 

ocular dominance index. The maximum response maps (grey scaled) of the left visual cortex after 

visual stimulation (with a 20° horizontal bar) of the contralateral and the ipsilateral eye, respectively 

with the activity value on the top right corner are illustrated. Additionally the color coded polar maps 

after each eye stimulation are presented. On the top right corner is the histogram of the OD-scores and 

their distribution in number of pixel. The calculated ODI for this example as an average of all single 

OD-scores is shown on the right top corner of the histogram. At last the OD-map with the calculation 

of OD-scores for every pixel is illustrated. The pixels of the OD-map are color-coded with warm 

colors to represent a contralateral dominance in the binocular part of V1. Scale bar: 1 mm.  

 

To determine monocular V1-activation and the quality of the retinotopic maps, we used the 

calculation introduced by Cang et al. (2005a). For quantification, the most responsive 20,000 

pixels in V1 for both azimuth and elevation maps were selected. For every pixel, the 

difference between its phase and the mean phase of its 24 surrounding pixels was calculated. 

The standard deviation of the position difference was used as an index of the quality of the 

retinotopic maps. Lower values indicate lower map scatter and thus higher map quality and 

vice versa (Figure 21). 
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Figure 21: Example of optically imaged maps used for calculation of map quality. A. Examples of 

retinotopic and activity maps after elevation stimulation (full length bar moving horizontally) from the 

left V1. B. Examples from the same animal of retinotopic and activity maps after azimuth stimulation 

(full length bar moving vertically). For the calculation of the standard deviation as indicator of map 

quality the 20,000 most responsive pixels from the activity map are selected and a phase difference 

based on the retinotopic map was calculated. Scale bar: 1 mm. 

 

2.8. Lesion analysis 

2.8.1. Perfusion and preparation of the tissue 

After optical imaging, mice with PT were deeply anesthetized with 30% chloral hydrate (0.2 

ml, intraperitoneal injection). The abdomen was opened and a cannula was put into the left 

ventricle and the right atrium was cut. Mice were perfused transcardially using a perfusion 

pump (MC-MS CA8/6, Ismatec; pump output of 25 ml/min) with 1% heparin in 0.9% NaCl 

for 2 minutes followed by 4% paraformaldehyde (PFA, pH 7.4) for 3 minutes. The brains 

were removed, postfixed in 4% PFA (pH 7.4) at 4°C overnight and then transferred to 

cryoprotectant solution (10% sucrose, 20% glycerol). The brains were frozen in methylbutane 

at -40°C and stored at -80°C. Before slicing, a lateral-ventral cut was positioned on the right 

side of the brain over the whole anterior to posterior extend of the brain in order to distinguish 

between right and left hemisphere after cutting and staining. Coronal brain sections were 

sliced using Leica SM 2010R sledge microtome at 40 μm. Sections were collected in 

antifreeze solution (30% ethylene glycol, 15% glucose in phosphate buffer (PB)) and stored at 

-20°C before further analysis.  
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2.8.2. Nissl staining 

To analyze the size and the position of the lesion in EE-mice, brain sections were mounted on 

microscope slides and Nissl-stained. First sections were dehydrated in an ascending ethanol 

series: 70%, 80%, 96% and 100% ethanol for 2 minutes each. Then they were rehydrated by 

shortly dipping them into bidest water and stained in cresyl violet (0.5% in ddH20) for 2 to 4 

minutes. Afterwards the sections were transferred in a series of ethanol: 70%, 80%, 96% and 

2 times 100% for 2 minutes in each for destaining and dehydration. Finally, sections were 

transferred to Roti-Histol (Roti®-Histol, Roth) and coverslip using Roti®-Histokitt (Roth).  

 

2.8.3. Immunostaining with GFAP 

In the study examining the therapeutic effect of the physical exercise after stroke a different 

method was performed to characterize the exact size and position of the cortical lesions. Here 

immunostaining with an antibody against Glial Fibrillary Acidic Protein (Rabbit polyclonal 

Antibody to GFAP; Immunological Sciences) was performed (Lai et al., 2014). Initially the 

sections were transferred to 0.1M PB solution and sorted from anterior to posterior direction. 

Then every third section was picked and transferred in a well plate (free floating) containing 2 

ml of 0.1M PB keeping the order of the sections. Sections were washed for 10 minutes with 

0.1M PB at room temperature and incubated for 10 minutes with 0.1M PB-Triton-X-100 

(0.3%), followed by 30 minutes blocking in 10% normal donkey serum in PB-Triton-X-100 

(0.3%) at room temperature. The sections were incubated with the primary polyclonal rabbit-

anti-GFAP antibody (Immunological Science) 1:1000 diluted in 0.1M PB-Triton-X-100 

(0.3%) over night at 4°C. The following day the sections were washed 3 times for 5 minutes 

with 0.1M PB at room temperature. Incubation with the secondary Cy3-goat-anti-rabbit 

antibody (Jackson ImmunoResearchInc.) was for 2 hours at room temperature in dark (1:1000 

diluted in PB-Triton-X-100 (0.3 %)) followed by 3 washes for 5 minutes with 0.1M PB in 

room temperature. Afterwards the sections were transferred on a microscope slide based on 

order and dried for 30 minutes. The dried sections were mounted with Fluoromount-G with 

4′6-diamidin-2-phenylindol (DAPI; Jackson ImmunoResearchInc.) and a glass cover slip was 

placed on top. After drying overnight at 4°C slides were stored in a light tight box at 20°C. 

 

2.8.4. Measurements of the lesions 

To determine the size and location of the cortical PT-lesions, every 3
rd

 of the stained either 

with Nissl (for the enriched environment study) or GFAP (for running wheel study) brain 

sections were analyzed under the microscope with 2.5x objective (Axioskop, Carl Zeiss). We 

focused on the areas of lesions and measured parameters such as depth and length using 

AxioVision (40 4.8.2.0.). 
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2.9. Immunohistochemistry with PV-WFA 

The number of perineuronal nets (PNNs) and of PV positive interneurons was counted in 

mice raised in SC or EE cages. PNNs were labeled cytochemically by N-acetylgalactosamine-

binding (in the glycosaminoglycan chains of the chondroitinsulfat-proteoglycanes) by 

Wisteria floribunda agglutinin (WFA; Lectin from Wisteria Floribunda, Sigma), an 

established marker for PNNs (Hartig et al., 1992). PV antibody (monoclonal anti 

Parvalbumin, Immunological Science) was used for the staining of the PV cells.  

Coronal brain sections of 40 µm thickness that included V1 (approximately 2.70 mm to 3.88 

mm posterior to bregma) were stained. Free floating sections were initially washed with 0.1 

M PB for 10 minutes and incubated for 30 minutes in a blocking solution (10% donkey 

serum, 0.3% Triton X-100 in 0.1M PB, pH 7.4) at room temperature. Afterwards, the brain 

sections were washed with 0.1M PB. Subsequently, sections were incubated overnight at 4 C 

with mouse anti-PV (Immunological Science, 1:500) and biotin-conjugated lectin WFA 

(Sigma, 1:1000) in 0.1M PB including 0.3% Triton X-100. After washing the sections again 

in 0.1M PB antibodies were revealed with Cy2-conjugeated donkey anti-mouse (Biotium, 

1:200) and Cy3-conjugated streptavidin (Jackson ImmunoResearch, 1:1000) in 0.1M PB with 

0.3% Triton X-100 (2 hours incubation at room temperature, light protected). Sections were 

washed again in 0.1M PB before they were transferred on a microscope slide and dried for 30 

minutes. Finally, the dried sections were mounted with Fluoromount-G with 4′.6-diamidin-2-

phenylindol (DAPI) and covered with a glass cover slip. After drying overnight at 4 C slides 

were stored in a light tight box at 4 C. The analysis of the stained sections and the counting of 

the cells were performed later by Dr. Franziska Greifzu. 

 

2.10. Statistical analysis 

Statistical analyses were done using Microsoft Excel 2010 and Graphs were prepared with 

GraphPad Prism (version 5.04). All intra- and intergroup comparisons were analyzed by a 

two-tailed Student t-test (with Bonferroni correction). The intergroup comparison of the 

enhancement of “visual acuity” and “contrast sensitivity” were analyzed by ANOVA with 

repeated measurements and Bonferroni correction. Correlation analysis was done using 

Pearson-correlation test. The levels of significance were set as *p<0.05; **p<0.01; 

***p<0.001. Data are represented as means±SEM. 
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2.11. Used chemicals, antibodies and solutions 

A list of the used chemicals, drugs and substances as well as the recipes for all the solutions 

used in this study can be found in this chapter. 

2.11.1. Chemicals, drugs, antibodies and substances 

Chemical Company Order number/PZN* 

0.9 % NaCl Braun PZN: 2946431 

2-Methylbutan Roth 3927.1 

Acetic Acid Roth 3738.1 

Agarose Biomol 1280 

Atropine Franz Köhler PZN: 1821288 

Biotin-conjugated lectin Wisteria 

Floribunda agglutinin (WFA) 

Sigma L1516 

Braunovidon gel Braun PZN: 2336939 

Chloral hydrate Sigma 15307 

Chlorprothixene Sigma C1671 

Corneregel Dr Gerhard Mann 

GmbH 

PZN:1224641 

Cresyl violet Merk 5235 

Cy2 Donkey Anti-Mouse Biotium CF 488A, 20014 

Cy3 Donkey Anti-Rabbit Jackson 

ImmunoResearch 

711-165-152 

Cy3-Streptavidin Jackson 

ImmunoResearch 

016-160-084 

Dexamethasone Ratiopharm PZN: 7720996 

Ethanol (99.8 %) Roth K928.1 

Ethylene glycol Fluka 03750 

Fluoromount+DAPI Southern Biotech 0100-20 

Fluoxetine hydrochloride Tocris Bioscience 0927 

Gentamycin gel Medphano PZN: 6877307 

Glucose Roth 6780.1 

Glycerol Roth 3783.1 

GFAP-Rabbit polyclonal Immunological Science AB-10682 
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antibody  

Halothane Sigma B4388 

Heparin Rotexmedica PZN: 3862340 

Isoflurane Abbott PZN: 4831850 

Na2HPO4 Roth P030.2 

Na2HPO4 x 2H2O Roth 4984.1 

NaCl Roth 3957.1 

NaH2PO4 x H2O Roth T879.2 

Normal Donkey Serum  Jackson 

ImmunoResearch 

017-000-121 

Parvalbumin anti mouse Immunological Science MAB-1-233 

PFA Roth 0335.3 

Rimadyl (Carprofen) Pfizer PZN: 0110208 

Rose bengal Sigma PZN: 0110208 

Roti®-Histol Roth 6640.0 

Roti®-Histokitt Roth 6638.1 

Sucrose Roth 4621.1 

Silicon oil Roth 4060.1 

Triton X-100 Sigma X100 

*PZN = pharmaceutical identification number 

 

2.11.2. Solutions 

Solution Recipe 

Agarose (2.5 %) 5 g Agarose 

in 200 ml 0.9 % NaCl 

Anti-Freeze solution  

(30 % ethylene glycol,  

15 % glucose in PB)  

300 ml Ethylenglycol  

500 ml 0.1 M Phosphate buffer (PB), pH 7.4 

150 g Glucose  

Fill up to 1000 ml with aqua bidest.  

Chloral hydrate (30 %) 30 g Chloral hydrate 

in 100 ml aqua bidest. 
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Chlorprothixene 4 mg Chlorprothixene 

in 1 ml aqua bidest. 

Cryoprotection (10 % sucrose, 

20 % glycerol & 0.02 % sodium 

azide)  

 

10 g D(+)-Saccharose 

20 ml Glycerol 

0.02 g Sodium azide 

Fill up to 100 ml with 0.1 M PB 

Heparin (1 % )  

  

53.33 ml Heparin (25.000 I.E.)  

9 g NaCl  

Fill up to 1000 ml with aqua bidest.  

PB (Phosphate buffer, 0.1 M)  3.75 g NaH2PO4 x 2H2O 

9.75 g Na2HPO4 

Fill up to 1000 ml with aqua bidest. 

PFA (4%, pH 7.4) 40 g Paraformaldehyde (PFA) 

300 ml aqua bidest. 

heat to ~ 60 °C until suspension is clear (if not, 

add six to eight drops of 10M NaOH) 

filter solution, adjust to pH 7.4 

Fill up to 1000 ml with aqua bidest. 

Rose bengal 100 mg Rose bengal  

10 ml 0.9 % NaCl 

Sucrose (30%) 

 

30 g Sucrose  

Fill up to 100 ml with 0.1 M PB  

Saline (NaCl, 0.9 %, pH 7.0) 0.9 g NaCl 

Fill up to 1000 ml with aqua bidest 
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3. Results 

3.1. EE extends ocular dominance plasticity into adulthood and protects 

from stroke-induced impairments of plasticity (Greifzu et al., 2014) 

Ocular dominance (OD) plasticity is an age depended phenomenon: it is maximal during the 

critical period, reduced but still present in young (3 months old) and absent in adult mice 

beyond postnatal day (PD) 110 when mice are raised in standard cages (SC; for review see 

Espinosa and Stryker (2012)). We described recently that raising mice in an enriched 

environment (EE) promotes mice OD-plasticity in older age (Greifzu et al., 2014). 

Specifically, we found that old EE-mice (>PD110) showed a strong OD-shift after monocular 

deprivation (MD) which was mediated by decreased deprived eye responses in V1, a type of 

OD-plasticity described previously only in juvenile SC-mice. Additionally, EE not only 

promoted plasticity in adult mice but also restored already lost OD-plasticity in adult SC-mice 

transferred to EE and preserved OD-plasticity after a localized cortical stroke. Furthermore, in 

collaboration with Dr. Schlüter’s laboratory, we described that local inhibition was 

significantly reduced in adult EE-mice V1 and the GABA/AMPA ratio was similar to juvenile 

SC-mice, using in vitro electrophysiology. These observations were confirmed by in vivo 

analyses showing that diazepam treatment significantly reduced the OD-shift of EE-mice after 

MD. We proposed that the effect of EE was mediated most likely by preserving low juvenile 

levels of inhibition into adulthood, which potentially promoted adaptive changes in cortical 

circuits. As part of this study I performed experiments to reveal any possible alterations in the 

number of parvalbumin (PV) positive cells as well as of perineuronal nets (PNNs) which were 

found to be reduced in EE-rats (Sale et al., 2007; Baroncelli et al., 2010b). Additionally, I 

performed histological staining to calculate the size and the position of the cortical lesion after 

a localized cortical stroke. In the paragraph below, I describe thoroughly my contribution to 

the Greifzu et al. (2014) study. 

 

3.1.1. Number of parvalbumin-positive interneurons and PNNs was similar in 

EE- and SC-mice 

Inhibitory PV-interneurons are thought to have an important role for OD-plasticity in the adult 

brain (for reviews see Bavelier et al., 2010; Baroncelli et al., 2011). Moreover, the 

degradation of PNNs was shown to play a role in the enhancement of adult OD-plasticity 

(Pizzorusso et al., 2002) and reduced PNNs density was reported after EE-housing (Sale et al., 

2007). To examine whether a change in the number of PV-interneurons or PNNs could 

contribute to the prolonged sensitive phase for OD-plasticity in EE-mice, I used 

immunofluorescence staining. Precisely, triple immunofluorescence staining was performed 

for PV (Cy2 labeling), PNNs (with WFA, Cy3 labeling) and DAPI (to visualize all cell nuclei 

and identify the cortical layers). The number of all labeled cells of layers II-VI in V1 was then 

counted and compared between SC- and EE-mice by Dr. Franziska Greifzu.  
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Initially, PV-labeled cells were found throughout the analyzed layers II-VI in V1 of SC- 

(PD235) and EE-mice (PD220). The overview of PV-positive cells in all layers as well as a 

higher magnification already suggests that the numbers of PV-positive cells were not different 

between SC- and EE-mice. Then the number of PNNs was calculated after WFA staining. The 

stained pictures already gave the impression of an unchanged number of WFA-positive PNNs 

after EE-raising. At a higher magnification the staining revealed lattice-like structures around 

the cells, often around PV-positive cells (Figure 22).  

Quantification of the number of PV-positive cells and WFA-positive PNNs, by Dr. Franziska 

Greifzu, confirmed that there are no differences between SC- and EE-mice. The number of 

PV-positive cells in SC-mice were 5683.39±562.95 cells/mm
3 

(n=4) and not significantly 

different from the EE-mice with 6396.47±277.76 cells/mm
3
 (n =4 mice; p>0.05, t-test). 

Similarly, for the number of WFA-positive PNNs were not different in SC-mice 

(6167.34±726.69 PNNs/mm
3
, n=4) and EE-mice (6408.04±130.80 PNNs/mm

3
, n=4; p>0.05, 

t-test). In conclusion, the number of PV-positive cells and WFA-positive PNNs was not 

altered in EE-mice compared to SC-mice. 

 

Figure 22: Number of PV-positive and WFA-positive PNNs in V1 was not different between 

mice raised in SC or EE. Pictures of the fluorescent triple staining of PV-positive cells (green), 

WFA-positive PNNs (red) and cell nuclei (blue) are presented. On top a representative example of a 

SC-mouse and a magnified picture of the region marked with a white square are illustrated. On the 
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bottom is a representative example of an EE-mouse also with a magnified region marked with a white 

square. Scale bars: 100 μm. 

 

3.1.2. Localization and size of the photothrombotic lesions  

To investigate whether EE could also prevent the loss of OD-plasticity in mice after stroke the 

photothrombotic (PT) method was used to induce a small cortical lesion in the left primary 

somatosensory cortex (S1). After imaging experiments the animals were perfused and brains 

were collected. I sliced the brain in 40 µm thick coronal sections and performed Nissl staining 

to describe the exact location and size of the PT-lesions. I found that the PT-lesions were 

localized in the left S1 at 0.6±0.19 mm anterior from the anterior border of V1, at 1.2±0.25 

mm lateral to the midline and 1.6±0.19 mm posterior to the Bregma. The average size of the 

lesions was 0.6±0.11 mm in the mediolateral and 0.8±0.09 mm in the anterioposterior 

directions (Figure 23).  

 

 

Figure 23: Localization of PT-lesion. A. Schematic representation of the lesion location in the left 

primary somatosensory cortex (S1). With yellow the S1 is illustrated, with grey the secondary visual 

cortex (V2) and blue the primary visual cortex (V1). A retinotopic map of the binocular zone in V1 is 

also displayed in the binocular part of V1. The positon of the lesion is marked with a red circle and the 

distance from midline and anterior border of V1 are illustrated. B. Representative example of a PT- 

lesion after Nissl staining of a section of an EE-mouse brain. The red line marks the lesion site. Scale 

bar: 100 µm. 
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3.2. Environmental enrichment preserved lifelong OD-plasticity, but did 

not improve visual abilities 

As we described previously for EE-mice the OD-plasticity was preserved in adulthood 

(Greifzu et al., 2014). The oldest mouse tested in this study was 196 days. We then 

investigated whether OD-plasticity can be prolonged into even older age (>PD400) and 

whether long-term EE modifies visual abilities of the old mice. We found that EE-raised mice 

display OD-plasticity until PD809, thus presumably lifelong. Furthermore, mice raised in SCs 

until PD110 and then transferred to EE displayed OD-plasticity until PD922 (oldest mouse 

tested). Moreover, the visual abilities of very old SC- and EE-mice were tested using two 

different behavioural tests: the optomotor setup (Prusky et al., 2004) and the visual water task 

(Prusky et al., 2000b). We found no differences between old SC- and EE-mice in: (i) the 

spatial frequency thresholds of the optomotor reflex, (ii) their experience-enabled increase 

after MD, (iii) the visual acuity and the orientation discrimination and (iv) the learning time 

for the visual water task. Taken together, EE-raising preserved a lifelong OD-plasticity but 

did not affect basic visual performance. This study is submitted for publication and I 

contributed equally by performing the behavioural tests which are thoroughly describe in the 

following paragraph. 

 

3.2.1. Basic visual abilities were similar in old SC- and EE-mice 

The visual acuity of both SC-mice (PD690) and EE-mice (PD687) was determined using two 

different behavioural vision tests: the virtual reality optomotor setup (Prusky et al., 2004) and 

the visual water task (VWT) (Prusky et al., 2000b). The optomotor system was used to 

measure the spatial frequency threshold (“visual acuity”) of the optomotor reflex, mediated by 

subcortical circuitry, while the VWT is a cortex-dependent paradigm of visual discrimination 

learning (Prusky et al., 2006). In both tests, visual performance of old mice of both groups 

(SC and EE) was statistically not significant. In addition the learning speed for the VWT was 

similar in both SC and EE old mice.  

In the optomotor setup the spatial frequency threshold that elicited an optomotor response was 

0.36±0.002 cyc/deg for SC-mice (n=5) and 0.36±0.004 cyc/deg for EE-mice (n=4) and was 

not significantly different (p=0.735, t-test; Figure 24A).  

Similarly, in the visual water task visual acuity for SC-old mice was 0.51±0.02 cyc/deg (n=4) 

and not significantly different from the EE-old mice (0.48±0.01 cyc/deg; n=4; p=0.325, t-test; 

Figure 24B). It is evident that the visual acuity values measured with the VWT were higher 

than those from the optomotor setup for both groups (SC/ EE: p=0.003/ 0.0004, t-test). This 

observation was in line with previously described measurements (Douglas et al., 2005). 

Summarizing, the EE housing had no effect on the spatial frequency threshold of old mice.  
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Figure 24: Visual abilities of old SC-and EE-mice. A. Mean spatial frequency threshold (“visual 

acuity”) of the optomotor reflex (in cycles/degree) of old SC- (grey) and EE-mice (purple) tested with 

the optomotor setup. The two tested groups showed similar “visual acuity” values. B. Mean visual 

acuity values for the same groups of mice measured in the visual water task. No differences were 

observed between the groups also for this behavioural test. 

 

3.2.2. Orientation discrimination and learning the visual water task were similar 

in EE- and SC-raised mice 

In order to test visual abilities of old SC (PD690) and EE-mice (PD687) in a more elaborate 

perceptual task the orientation discrimination of the mice was measured using the visual water 

task (Prusky et al., 2000b; Pielecka-Fortuna et al., 2014). Before the testing phase the mice 

had to learn the task by swimming towards the rewarded orientation grating, where the escape 

platform was located. All the mice learned how to perform the task independent from the 

housing conditions (SC or EE) and there was no difference in the learning curves of animals. 

Specifically, old SC-mice completed the training phase within 20±3 training blocks (n=5) 

corresponding to 9 days of training whereas old EE-mice within 15±1 training blocks, equal 

to 7 days of training (n=5; p=0.210, t-test; Figure 25). 
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Figure 25: Learning curve of the visual water task. The number of correct trials plotted against the 

blocks and the respective days of training is illustrated. SC (grey) and EE (purple) mice had on 

average no differences in their learning curve. In SC group, 2 mice needed more blocks to learn the 

task but at the end the differences between SC-and EE-mice were not significant. 

 

After the mice learned to perform the task we continued with the testing phase, where the 

orientation discrimination threshold of individual animals was identified by gradually 

decreasing the orientation difference of the rewarded with respect to a distractor grating. 

Again we did not find any significant difference between the two groups. The SC-mice could 

make the correct choice on at least 23.7±4.4° (n=5) of orientation difference, and the EE-mice 

at 17.9±2.5° (n=5) orientation difference (Figure 26). Comparing the values of the two groups 

no significant difference was found in orientation discrimination (p=0.286, t-test).  

 

 

Figure 26: Orientation discrimination of 

SC- and EE-mice. The average orientation 

difference in degree that the mice needed to 

make the correct choice is plotted for the SC 

(gray) and EE (purple) mice. The difference 

between the groups is not significant. 
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3.3. Four days of MD are enough to induce OD-plasticity in EE-mice 

OD-plasticity is age-dependent in mice raised in SCs: it is maximal during the critical period 

(PD25-40), reduced in young adults (PD90) and absent in mice older than PD110 (for review 

see Espinosa and Stryker (2012)). The mechanism mediating the OD-shift differs between the 

ages: during the critical period, 4 days of MD are sufficient to induce an OD-shift which is 

mediated by reductions of deprived eye responses in V1 (Sato and Stryker, 2008). In contrast, 

in 2-3-month-old mice, OD-shifts need 7 days of MD and are mediated by increases of the 

open eye responses in V1 (Levelt and Hübener, 2012). We described before that raising mice 

in EE prolonged the sensitive phase of OD-plasticity in mice older than PD110 (Greifzu et al., 

2014). The OD-shifts were mediated by reductions in deprived eye responses like in critical 

period SC-mice (juvenile-like OD-plasticity). If the OD-plasticity mechanism in adult EE-

mice is indeed like in juvenile SC-mice then 4 days of MD will be enough to induce an OD-

shift. Here, I investigated whether 4 days of MD are sufficient to induce an OD-shift in EE-

mice of 3 different age groups (critical period: PD27-34, young: PD80-101 and adult: PD121-

183). All groups used for this study are described in detail in material and method section 

(part 2.2.1). For this study all the mice were tested using the optomotor setup and the optical 

imaging of intrinsic signals. We observed that 4 days of MD can induce an OD-shift in all the 

age groups of EE-mice tested. Critical period mice showed an OD-shift mediated by reduced 

closed eye responses in V1 like in age-matched SC-mice. This was not the case for the other 

two age groups (young and old). In young and old EE-mice the OD-shift was mainly 

mediated by increased open eye responses in V1 resembling the adult type of OD-plasticity 

observed in around 3 months old SC-mice. 

  

3.3.1. Basic visual abilities and enhanced optomotor reflex after MD did not 

change with age in EE-mice 

Initially the “visual acuity” and “contrast sensitivity” thresholds were determined in the three 

different age groups of EE-mice, using the optomotor setup. The baseline visual acuity 

threshold of EE-mice in critical period (EE_cp) was 0.38±0.01 cyc/deg (n=10; PD27-34), of 

young EE-mice (EE_young) was 0.38±0.001 cyc/deg (n=13; PD80-101) and of EE-mice 

>PD120 (EE_old) was 0.38±0.001 cyc/deg (n=10; PD121-183). No significant differences 

observed between the three tested groups (p>0.05, ANOVA; Figure 27). The baseline visual 

acuity values were similar to those previously published for SC raised C57BL/6J mice 

(Prusky et al., 2004; Lehmann and Löwel, 2008) and old EE-mice (Greifzu et al., 2014). 
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The baseline contrast sensitivity thresholds were also determined for the three mice groups at 

six different frequencies (0.031, 0.064, 0.092, 0.103, 1.192 and 0.272 cyc/deg; Table 6). 

There were no significant differences between the baseline values of all the groups tested 

(p>0.05 for every spatial frequency, ANOVA). The measured values were also comparable to 

those described before for EE-mice above PD120 days old (Greifzu et al., 2014). All together 

our observations suggest that baseline visual abilities are similar in all age groups of EE-mice. 

 

Table 6: Baseline contrast sensitivity values of the three different age groups of EE-mice. For the 

six different spatial frequencies tested the average contrast sensitivity for each group is listed as 

mean±SEM. 

Spatial frequency 

(cyc/deg) 

EE_cp 

(n=10) 

EE_young 

(n=13) 

EE_old 

(n=10) 

0.031 3.7±0.10 3.6±0.20 3.9±0.10 

0.064 13.4±0.30 11.5±0.20 11.8±0.10 

0.092 12.2±0.10 11.3±0.20 11.3±0.10 

0.103 11.0±1.70 11.0±0.30 10.6±0.30 

0.192 7.0±1.60 7.5±0.20 7.8±0.20 

0.272 4.1±1.02 3.6±0.01 3.8±0.001 

 

To measure the experience-induced improvements in spatial frequency and contrast 

sensitivity thresholds of the optomotor reflex mice underwent MD and were measured daily 

during the MD period in the optomotor setup. All three age groups of EE-mice showed a 

significant increase in spatial frequency and contrast sensitivity thresholds after 4 days of MD 

(Figure 28). Specifically, “visual acuity” increased by 11.2±0.3 % in EE_cp mice from 

0.38±0.001 cyc/deg without MD (n=4; Figure 28A, Figure 29A) to 0.40±0.007 cyc/deg after 

MD (n=6; p<0.001, Bonferroni-adjusted t-test; Figure 29B), by 8.6±0.01% in EE_young mice 

from 0.38±0.001 cyc/deg (n=7; Figure 29C) without MD to 0.40±0.006 cyc/deg with MD 

(n=5; p<0.001, Bonferroni-adjusted t-test; Figure 29D) and by 12.7±0.4 % in EE_old mice 

from 0.38±0.001 cyc/deg (n=4; Figure 29E) without MD to 0.41±0.008 cyc/deg with MD 

Figure 27: Baseline “visual acuity” in EE-

mice of three different age groups. The 

highest spatial frequency that elicited a 

response in the optomotor setup was similar 

between EE_cp (pink), EE_young (purple) 

and EE_old (violet) mice. 



Results  

 

55 

 

(n=5; p<0.001, Bonferroni-adjusted t-test; Figure 29F). The increase in “visual acuity” was 

indistinguishable between all tested groups (p>0.05, ANOVA; Figure 28). Mice without MD 

from all age groups did not show improvement in “visual acuity” over the 4 days (p>0.05, 

compared to day 0, Bonferroni-adjusted t-test). 

 

Figure 28: Improvement of “visual acuity” over 4 days of MD in EE-mice. A. Gain on baseline is 

plotted as percent over days of MD for all three age groups of EE-mice after MD. No significant 

differences were observed between the groups over MD days. B. “Visual acuity” values in cyc/deg are 

plotted against days, for mice without (boxes) and with MD (half-filled boxes) for all age groups. 

After 4 days of MD “visual acuity” improved significantly for all groups compared to mice without 

MD. Mice with MD did not show any differences over days. 
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Figure 29: Spatial frequency thresholds of individual EE-mice over the 4 days of noMD/MD 

period. The spatial frequency thresholds (in cycles/degree) are presented for every age group: A and B 

EE-mice in critical period, C and D young EE-mice and E and F old EE-mice. Each line represents 

one animal. The “visual acuity” of control (A, C and E) without MD remained stable over the 4 days. 

EE-mice from every age group showed a significant increase in visual acuity thresholds of the open 

eye after 4 days of MD (B, D and F). 

 

The contrast sensitivity thresholds of the optomotor reflex of the open eye were also increased 

significantly over the 4 days MD period in all MD groups (at 0.031, 0.064, 0.092, 0.103, 

0.192 and 0.272 cyc/deg: p>0.05, p<0.001, p<0.001, p<0.001, p<0.01 and p>0.05, compared 

to day 0 for all groups, ANOVA; Table 7, Figure 30, Figure 31B, D and F). As expected, all 

mice without MD did not change in contrast sensitivity threshold over days (Figure 30; Figure 

31A, C and E).The measured contrast sensitivity thresholds were not different between the 

groups on the 4
th

 day after MD (p>0.05 for every frequency, 2-way ANOVA). To conclude 

neither basic visual abilities nor the experience-enabled increase of “visual acuity” and 

contrast sensitivity thresholds after MD were changed during aging in EE-mice. 
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Table 7: Optomotry measured contrast sensitivity improvements on the 4
th

 day after MD for the 

three different age groups. Values of contrast sensitivity for every spatial frequency measured on 

day 4 after MD for all groups as mean±SEM. 

Spatial frequency 

(cyc/deg) 

EE_cp 

(n=6) 

EE_young 

(n=6) 

EE_old 

(n=5) 

0.031 4.3±0.001 4.0±0.001 4.7±0.1 

0.064 20.9±0.3 16.6±0.5 19.8±1.2 

0.092 18.0±0.4 15.2±0.7 17.9±1.0 

0.103 16.7±0.2 15.2±0.4 16.7±0.8 

0.192 9.8±0.1 9.9±0.4 11.3±0.7 

0.272 4.1±0.001 4.1±0.001 4.5±0.2 

 

 

Figure 30: Contrast sensitivity improvements on the 4
th

 day of MD. All mice groups after 4 days 

of MD (half-filled boxes) improved significantly in 4 out of 6 frequencies tested compared to mice 

without MD (filled boxes) on the 4
th
 day. 
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Figure 31: Mean contrast sensitivity thresholds of the optomotor reflex at the 6 spatial 

frequencies tested over 4 days. Baseline values of contrast sensitivity thresholds referred as day 0. A. 

In EE critical period mice without MD contrast sensitivity remained stable over 4 days. B. After 4 

days of MD in EE critical period mice the contrast sensitivity of the open eye increased significantly. 

C. Young EE-mice without MD did not improve over days while MD mice of the same age group did 

(D). E. Similarly, old EE-mice without MD had the same contrast sensitivity values over days. F. Old 

EE-mice with MD showed a significant improvement over days. 

 

3.3.2. An OD-shift observed after 4 days of MD in EE-mice 

The ODI was determined for each mouse of all three age groups of EE-mice using optical 

imaging of intrinsic signals, by measuring V1-activation after stimulation of each eye. All 

mice without MD showed a contralateral dominance irrespective of age. V1-activation in the 

binocular zone of V1 was stronger after contralateral eye stimulation compared to the one 

after ipsilateral eye stimulation, the calculated average ODIs were positive, and warm colors 
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prevailed the 2-dimensional OD-maps (Figure 32A, C and E). Contrary to the mice without 

MD, an OD-shift was observed after 4 days of MD in all the three age groups. In this case, the 

activity patch in V1 after contralateral eye stimulation was equally strong to the one after 

ipsilateral eye stimulation (in some cases V1-activation after ipsilateral eye stimulation was 

even stronger than the contralateral, example in Figure 32B), ODI values were closer to zero, 

colder colors predominated in the OD-map and the ODI-histogram was shifted to the left 

(Figure 32B, D and F).  

 

Figure 32: The OD changed after 4 days of MD in all age groups of EE-mice. Representative 

examples of optically recorded activity maps after contralateral and ipsilateral eye stimulation in the 

binocular region of mouse V1 are presented for critical period EE-mice (PD27-34 A and B), young 

EE-mice (PD80-101; C and D) and old EE-mice (PD121-183; E and F), without MD (A, C and E) 

and after 4 days of MD (B, D and F). Grayscale-coded response magnitude maps with the activity 

value on top right corner, polar maps, 2-dimensional OD-maps and the histogram of OD-scores 

including the average OD-index (ODI) are illustrated. Without MD, activity patches evoked by 

stimulation of the contralateral eye were darker than those of the ipsilateral eye, the average ODI was 

positive, and warm colors prevailed in the OD-maps, indicating a contralateral dominance (A, C and 
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E). Four days of MD, induced a strong OD-shift towards the open eye in all three age groups of EE-

mice (B, D and F): after MD, the contra- and ipsilateral eye activated V1 about equally strong, colder 

colors appeared in the OD-map, and the histogram of OD-scores shifted to the left (blue arrows). Scale 

bar: 1 mm. 

 

After quantification of V1-activation of all recorded maps and calculation of ODIs, all age 

groups showed a significant OD-shift after MD (Figure 33A). Specifically, EE-mice in critical 

period without MD (PD27-34) had an ODI of 0.19±0.03 (n=4), which decreased significantly 

to -0.06±0.03 after 4 days of MD (n=6, PD27-33, p=0.0005, Bonferroni-adjusted t-test). 

Young EE-mice showed also a significant decrease in the ODI from 0.26±0.01 in mice 

without MD (n=7, PD82-101) to 0.04±0.03 in mice after MD (n=6, PD80-99; p<0.0001, 

Bonferroni-adjusted t-test). Similarly, the old EE-mice without MD had an ODI of 0.29±0.03 

(n=5; PD127-183), while old EE-mice with MD had an ODI of 0.08±0.02 (n=5, PD121-177). 

The difference between these groups was also significant (p=0.004, Bonferroni-adjusted, t-

test).  

As expected, EE-mice during the critical period showed an OD-shift mediated by decreased 

V1-responses after deprived eye stimulation (contralateral) while the activities after open eye 

(ipsilateral) stimulation remained unchanged, as in age matched SC mice. In detail, V1-

activation after contralateral eye stimulation decreased from 1.62±0.26 without MD to 

1.06±0.09 after MD (p=0.041, t-test) whereas ipsilateral eye responses before MD were 

1.16±0.23 and after MD 1.27±0.13 and thus not significantly different (p=0.675, t-test). In 

contrast, 4 days of MD in the other two age groups resulted in an OD-shift that derived from 

an increase in open eye responses (ipsilateral) in the binocular part of V1. Specifically the V1-

activation after contralateral eye stimulation was 1.62±0.09 in EE-young before MD and did 

not change significantly after MD (1.53±0.15; p=0.589, t-test), while the ipsilateral eye 

responses in V1 increased from 0.95±0.08 without MD to 1.44±0.12 after MD (p=0.006, t-

test). Similarly for the old EE-mice, contralateral eye responses remained unchained 

(without/with MD: 1.60±0.05/1.57±0.16, p=0.841, t-test) but the V1-activation after 

stimulation of the ipsilateral eye was significantly elevated after MD (without/with MD: 

0.92±0.02/1.26±0.11; p=0.026, t-test; Figure 33B). Taken together our data suggest that 4 

days of MD are enough to induce an OD-shift in EE-mice but the observed OD-shift differs 

from what was previously described in EE-mice after 7 days of MD, as it is mediated by 

increased open eye responses in V1. 
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Figure 33: Quantification of V1-activation in different age groups of EE-mice. A. Optically 

imaged ODIs of mice without and with MD raised in EE during the critical period (EE_cp: PD27-34), 

young-adults (EE_young: PD80-101) and old-adults (EE_old: PD121-183). Symbols represent ODI-

values of individuals, filled boxes refer to mice without MD, half-filled boxes refer to mice with MD 

and means are marked by horizontal lines. All groups showed an OD-shift after 4 days of MD. B. V1-

activation elicited by stimulation of the contralateral (C) or ipsilateral (I) eye without and after MD 

(black filled circles indicate MD eye). The OD-shift was mediated by a reduction of deprived 

(contralateral: C) eye responses in V1 for the EE_cp group, whereas for the EE_young and EE_old the 

shift is mediated by an elevation of open eye responses (ipsilateral: I). 
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3.3.3. Two days of MD also induced an OD-shift in old EE-mice 

We observed that 4 days of MD can induce an OD-shift in old EE-mice which was mediated 

by increased open eye responses in V1. Trying to understand how V1 activity after 

stimulation of each eye changes immediately after MD, I performed chronic experiments after 

2 and 4 days of MD in old EE-mice (>PD110). In detail mice were imaged before MD (first 

session), then the right eye (contralateral to the imaged hemisphere) was deprived for 2 days, 

and imaged again (second session). Immediately after the second imaging session the 

previously deprived eye was again closed for 2 more days and then a third session of imaging 

took place (4 days after the first deprivation). I managed to get data for all three sessions from 

2 animals (PD143 and PD218).  

In the first imaging session, V1-activities after visual stimulation of the contra- and ipsilateral 

eye were determined, and then compared with those after the second and third imaging 

session. Activity maps recorded before MD (first session) were dominated by input from the 

contralateral eye, warm colors prevailed in the 2-dimensional OD-map and the average ODI 

was positive (Figure 34A and B). Already after 2 days of MD (second session), a change in 

V1-activation was observed: the activities after ipsilateral eye stimulation were slightly 

elevated which resulted in decreased ODI values, colder colors in the 2-dimensional OD-map 

and a shifted ODI-histogram to the left (Figure 34C and D). After 4 days of MD (third 

session), V1-activation via the contralateral eye was equally strong to the one via the 

ipsilateral eye, colder colors dominated the OD-map, ODI-values were even more reduced 

and the ODI-histogram was shifted to the left (Figure 34E and F). 
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Figure 34: Optical imaging acquired maps in chronically imaged old EE-mice (>PD110). 

Optically recorded activity maps of the contralateral and ipsilateral eye in the binocular region of 

mouse V1 are presented for the two mice tested over the three imaging sessions (mouse 1 : A, C and 

E; mouse 2: B, D and F). Grayscale-coded response magnitude maps with the activity value on the top 

right corner, polar maps, 2-dimensional OD-maps and the histogram of OD-scores including the 

average ODI are illustrated. Before MD (first session), activity patches evoked by stimulation of the 

contralateral eye were darker than those of the ipsilateral eye, the average ODI was positive, and warm 

colors prevailed in the OD-maps, indicating a contralateral dominance (A and B). After 2 days of MD 

(second session) an OD-shift was observed mediated by increased open eye responses in V1, colder 

colors appeared in the 2-dimensional OD-maps and the peak of the OD-histogram was shifted to the 

left (B and D). After 4 days of MD (third session) a stronger OD-shift was observed, the contra- and 

ipsilateral eye activated V1 equally strong, colder colors appeared in the OD-map, and the histogram 

of OD-scores shifted to the left (E and F). Blue arrows indicate the shift in the histograms to the left. 

Scale bar: 1 mm. 

Further quantitative analysis showed that the ODI decreased from 0.33 before MD to 0.12 

after 2 days of MD and to 0.03 after 4 days MD for the first mouse (mouse 1; PD143 on first 

imaging session; Figure 35A). Additionally, for the same mouse, the V1-activation after 
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contralateral eye stimulation was 1.63 before MD and remained unchanged after 2 days of 

MD to 1.69, whereas a small decreased was observed after 4 days of MD to 1.35 (Figure 

35B). Similarly the V1-activation after ipsilateral eye stimulation was 0.99 before MD, 1.45 

after 2 days of MD and slightly increased after 4 days of MD to 1.35 (Figure 35B). 

For the second mouse tested (mouse 2; PD187 on first imaging session) ODI decreased 

gradually from 0.23 before MD to 0.13 after 2 days of MD and to 0.03 after 4 days of MD 

(Figure 35C). Quantification of V1-activation after each eye stimulation for that mouse 

showed a small increase in V1-activation after contralateral eye stimulation after 2 days of 

MD but after 4 days of MD the V1-activation was more similar to the one before MD 

(contralateral V1-activation: before MD/2 days MD/4 days MD: 1.19/1.39/1.03; Figure 35D). 

V1-activation after ipsilateral eye stimulation was slightly increased after 4 days of MD 

(ipsilateral V1-activation: before MD/2 days MD/4 days MD: 0.82/1.15/1.00; Figure 35D). 

Taking together our data showed that ODI is gradually decreasing after MD, V1-activation 

after contralateral eye stimulation is initially unchanged after MD but then slowly decreasing 

and V1-activation after ipsilateral eye stimulation is increasing immediately after MD and 

later showed a small decrease. 

 

Figure 35: Chronically imaged old EE-mice. A and C. ODIs before (empty boxes) and after 2 and 4 

days of MD (half-filled boxes) for both mice tested (mouse 1: A; mouse 2: C). In both cases the ODI 

decreased gradually over the days of MD. B and D. V1-activation after contralateral (contra) and 

ipsilateral (ipsi) eye stimulation, before and after 2 or 4 days of MD for both mice tested (mouse 1: B; 
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mouse 2:D). Half-filled boxes indicate the deprived eye. V1-activation after contralateral eye 

stimulation was decreased after 4 days of MD, whereas a small increase after ipsilateral eye activation 

was observed after 4 days of MD. 

 

Interestingly, our data showed that a very short period of MD in old EE-mice resulted in OD-

plasticity. Combining these data of the two chronically imaged mice with chronic experiments 

of two more animals of which I could acquire data only before and after 2 days of MD, we 

found that 2 days of MD were sufficient to induce an OD-shift in old EE-mice (n=4; PD143-

281; Figure 36A). Specifically, the ODI significantly decreased from 0.27±0.02 before MD to 

0.14±0.007 after 2 days of MD (p=0.002, t-test). Quantification of the V1-activation did not 

reveal any significant changes after 2 days of MD (Figure 36B). V1-activation after 

contralateral eye was 1.46±0.09 before MD and remained unchanged after 2 days of MD 

(1.47±0.11; p=0.954, t-test). After ipsilateral eye stimulation V1-activation slightly increased 

after 2 days of MD: from 0.92±0.07 before MD to 1.23±0.13 after MD but the difference was 

not significant (p=0.072; t-test). 

 

Figure 36: ODIs and V1-activation of old EE-mice after 2 days of MD. A. Optically imaged ODIs 

of mice before (orange boxes) and after 2 days of MD (half-filled orange boxes). Symbols represent 

ODI-values of individuals; means are marked by horizontal lines. After 2 days of MD a significant 

OD-shift was observed. B. V1-activation elicited by stimulation of the contralateral (C) or ipsilateral 

(I) eye. Black circle indicates the deprived eye. Before MD a clear contralateral dominance was 

observed whereas after MD the V1-activation after ipsilateral eye stimulation was increased but not 

significantly (p=0.072, t-test). 
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3.4. Voluntary physical exercise promotes ocular dominance plasticity in 

adult mouse primary visual cortex (Kalogeraki et al., 2014) 

Enriched environment (EE) preserved a juvenile-like OD-plasticity in mice into late 

adulthood (Greifzu et al., 2014). EE housing provides the mice with more social interactions, 

voluntary physical exercise and cognitive stimulation compared to SC. The diversity of EE 

components raised the question whether all are needed or one of them is sufficient to prolong 

OD-plasticity. To test whether running alone has a positive effect on OD-plasticity of adult 

mice here I raised mice in SCs with or without a running wheel (RW). When mice were older 

than PD130 I performed MD to trigger plasticity and visualized V1-activation with optical 

imaging of intrinsic signals. Mice were additionally tested in the optomotor setup daily during 

the MD period. Detailed description of the experimental design and the groups of mice used 

for this study can be found in the materials and method section (part 2.2.2). In mice with a 

RW but not in mice without, OD-plasticity was preserved into adulthood. Furthermore, I 

tested whether a short period of physical exercise, during the 7 days MD period resulted in 

restored OD-plasticity in adult SC mice. Indeed 7 days of running were enough to restore OD-

plasticity in mouse V1. Interestingly, all the observed OD-shifts were mediated by reduced 

deprived eye responses in V1, a signature for juvenile OD-plasticity. Visual abilities and their 

increase after MD were not different between the different housing conditions. Together our 

data suggest that voluntary running alone can promote a juvenile-like OD-plasticity in adult 

mice. 

 

3.4.1. Basic visual abilities and enhanced optomotor reflex after MD were not 

different between mice with and without a RW 

Using the virtual reality optomotor setup (Prusky et al., 2004) the “visual acuity” and contrast 

sensitivity thresholds of the optomotor reflex were measured before and after MD in mice 

raised in SCs without (SC-mice) or with a RW (RW-mice). Before MD, the highest spatial 

frequency that elicited an optomotor reflex in mice with RW was 0.37±0.003 cyc/deg (n=15; 

PD138-242) and 0.37±0.002 cyc/deg in SC-mice used as controls (n=10; PD137-200). 

Similarly, for the mice with access to RW only for 7 days after the MD (7dRW group), the 

highest spatial frequency elicited a reflex of 0.38±0.005 cyc/deg (n=12; PD141-214). No 

significant differences were observed between the groups (p=0.901, ANOVA; Figure 37). 

Moreover, the values were similar to those previously published for SC C57BL/6J mice 

(Prusky et al., 2006; Lehmann and Löwel, 2008). 
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Additionally, using the optomotor setup the contrast sensitivity thresholds for RW- and SC-

mice were measured in six different frequencies (0.031, 0.064, 0.092, 0.103, 1.192 and 0.272 

cyc/deg) before and after MD. The baseline contrast sensitivity for RW-mice (n=15) was not 

significantly different from SC-mice (n=10; p>0.05 for every spatial frequency, ANOVA; 

Table 8). Thus, daily voluntary physical exercise did not change basic spatial vision. 

 

Table 8: Baseline contrast sensitivity values of the RW mice and SC mice. For the 6 different 

spatial frequencies tested the average contrast sensitivity for each group is listed as mean±SEM.  

Spatial frequency 

(cyc/deg) 

RW mice 

(n=10) 

SC mice 

(n=10) 

0.031 4±0.1 4±0.01 

0.064 14±0.2 14±0.1 

0.092 13±0.1 13±0.1 

0.103 12±0.1 12±0.1 

0.192 7±0.1 7±0.1 

0.272 4±0.1 4±0.01 

 

The “visual acuity” and contrast sensitivity thresholds of the optomotor reflex were also tested 

daily during the MD period. The increase of “visual acuity” and contrast sensitivity thresholds 

through the open eye was similar in RW, SC and 7dRW mice after MD (Figure 38). For 

“visual acuity” an increase on average by 29% was observed in RW mice: from 0.37±0.003 

cyc/deg before MD to 0.48±0.04cyc/deg after MD (n=8; p<0.001, Bonferroni-adjusted t-test). 

In SC-mice the increase in “visual acuity” was on average 34%: from 0.37±0.002 cyc/deg 

before MD to 0.50±0.03 cyc/deg after MD (n=5; p<0.001, Bonferroni-adjusted t-test). For the 

7dRW group “visual acuity” increased on average by 27% from 0.37±0.01 cyc/deg before 

MD to 0.47±0.02 cyc/deg after MD (n=6; p<0.001, Bonferroni-adjusted t-test). The increase 

in “visual acuity” was not different between all the groups (p>0.05, ANOVA). Mice without 

Figure 37: Baseline visual acuity in mice 

with or without a RW. The highest spatial 

frequency that elicited a response in 

optomotor setup was similar between SC 

(grey), RW (blue) and 7dRW (light blue) 

mice. 
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MD from all housing conditions did not show any change in “visual acuity” over days (Figure 

39B). 

 

Figure 38: Improvement of “visual acuity” after MD in RW and SC mice over days. A. Gain on 

baseline is plotted as percent over days of MD for all 3 groups tested (SC: grey, RW: blue and 7dRW: 

light blue). The gain on baseline was similar for all the groups. B. “Visual acuity” values in cyc/deg 

are plotted against days for all housing conditions. MD mice are illustrated with half-filled boxes 

whereas mice without MD with filled boxes. All the MD groups improved significantly over days 

compared to the no MD groups. There were no significant differences between the MD groups.  
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Figure 39: Spatial frequency thresholds measured in mice without or with RW over the 7 days 

noMD/MD period. Every line represents a single animal. A. Mice raised in SC without MD had 

similar visual acuity thresholds over the days. B. MD in SC-mice resulted in an increase of visual 

acuity thresholds over days. C. Mice raised in a cage with a RW without MD did not change over days 

while D. mice of the same group with MD showed a significant improvement over the days. E. NoMD 

mice raised in a SC and transferred to RW-cage for 7 days had same values over day. F. In 7dRW 

mice with MD spatial frequency thresholds of the open eye increased over days. 

 

Additionally, contrast sensitivity thresholds of the optomotor reflex of the open eye were also 

increased in RW mice with MD (at 0.031, 0.064, 0.092, 0.103, 0.192 and 0.272 cyc/deg: to 

6±0.04, 28±0.4, 29±0.5, 32±0.8, 22±0.7 and 9±0.4 on day 7; p>0.05, p<0.001, p<0.001, 

p<0.001, p<0.01, p>0.05, compared to values from day 0, ANOVA, Table 9). Similar increase 

was observed in SC mice with MD (at 0.031, 0.064, 0.092, 0.103, 0.192 and 0.272cyc/deg: to 

7±0.04, 30±0.34, 36±0.46, 37±0.52, 24±0.34 and 7±0.08 on day 7; p>0.05, p<0.001, p<0.001, 

p<0.001, p<0.01, p>0.05, compare to day 0, ANOVA; Table 9). The values on day 7 were not 

different between the two groups (p>0.05 for every frequency, ANOVA; Figure 40). Contrast 

sensitivity remained unchanged over the days in mice without MD for both housing 

conditions (RW or SC).The contrast sensitivity values over the days for mice without and 

with MD for both housing conditions are presented in figure 41. To summarize, neither basic 
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spatial vision nor the experience-enabled increase of thresholds after MD were modified by 

RW-experience during adolescence. 

 

Table 9: Optomotry measured contrast sensitivity improvements of the open eye after MD. 

Values of contrast sensitivity for every spatial frequency tested on day 0 (before MD) and on day 7 for 

RW_MD and SC_MD groups. 

 Day 0 Day 7 

Spatial frequency 

(cyc/deg) 

RW_MD 

(n=8) 

SC_MD 

(n=5) 

RW_MD 

(n=8) 

SC_MD 

(n=5) 

0.031 3.8±0.01 3.7±0.01 5.8±0.04 6.7±0.03 

0.064 14.4±0.21 14.2±0.13 28.1±0.36 30.2±0.34 

0.092 12.7±0.13 12.6±0.05 29.1±0.47 36.0±0.46 

0.103 11.9±0.11 11.8±0.05 32.2±0.76 37.1±0.52 

0.192 6.7±0.12 6.6±0.05 21.8±0.66 24.4±0.34 

0.272 3.7±0.02 3.7±0.01 9.1±0.36 7.4±0.08 

 

 

Figure 40: Contrast sensitivity improvements over MD days in RW and SC mice. Mice with a 

running wheel (blue half-filled boxes) improved significantly in 4 out of 6 frequencies after 7 days of 

MD. Similar improvement was observed for the SC mice after MD (grey half-filled boxes). 
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Figure 41: Mean contrast sensitivity thresholds in the 6 spatial frequencies tested for mice raised 

with or without a RW over days. Day 0 represents the baseline values before MD. A. In SC-mice 

without MD contrast sensitivity remained stable over days. B. After 7 days of MD in SC-mice the 

contrast sensitivity of the open eye increased significantly. C. Mice raised in a cage with RW without 

MD did not improve over days. D. RW-mice with MD showed a significant improvement over days in 

contrast sensitivity thresholds. 

 

3.4.2. Voluntary running prolonged the sensitive phase for OD-plasticity in V1 

into adulthood 

Using optical imaging of intrinsic signals V1-activation after stimulation of each eye was 

measured and an ODI was calculated for every mouse. In both RW and SC groups without 

MD, V1-activation in the binocular zone of V1 was dominated by contralateral eye responses. 

The activity patches after stimulation of the contralateral eye were always darker than those 

after ipsilateral eye stimulation, the calculated ODIs were positive, and warm colors prevailed 

in the 2-dimensional OD-maps (Figure 42A and C). Likewise, after 7 days of MD in SC mice 

activity patches after contralateral (deprived) eye stimulation in binocular V1 were stronger 

than those after ipsilateral eye stimulation and the average ODI was positive with warm colors 

dominating the OD-map (Figure 42B). In contrast, in RW-mice 7 days of MD caused an OD-

shift towards the open eye: the V1-activation was equally strong after contralateral (deprived) 

and ipsilateral (open) eye stimulation, colder colors predominated in the OD-map and the 

ODI-histogram was shifted to the left (Figure 42D). To test whether long-term running is 

required for prolonging OD-plasticity or a short period of running is sufficient to promote 
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plasticity in adult V1, mice raised in SCs until PD134 and then transferred to a cage with a 

RW only during the 7-day-MD/noMD-period. In this case, mice without MD showed a clear 

contralateral dominance in the binocular V1 with positive ODIs and warm colors prevailing 

the 2-dimensional OD-maps whereas in 7dRW mice after MD both eyes stimulation was 

activating V1 equally strong, the ODI values were closer to zero, the OD-map predominated 

by colder colors and the OD-histogram shifted to the left (Figure 42E and F). 

 

Figure 42: Running prolonged and restored the sensitive phase for OD-plasticity in mice in 

adulthood (>PD110). Optically recorded activity maps of the contralateral and ipsilateral eye in the 

binocular region of mouse primary visual cortex (V1) in mice raised in SCs without a running wheel 

(A and B), with a running wheel (C and D) and with 7 days of running wheel (E and F), before (A, C 

and E) and after MD (B, D and F). Grayscale-coded response magnitude maps, polar maps, 2-

dimensional OD-maps and the histogram of OD-scores including the average OD-index (ODI) are 

illustrated. Without MD, activity patches evoked by stimulation of the contralateral eye were darker 

than those of the ipsilateral eye, the average ODI was positive, and warm colors prevailed in the OD-

maps, indicating contralateral dominance (A, C and E). While 7 days of MD did not induce OD-

plasticity in mice without a RW (B), it induced a strong OD-shift towards the open eye in age-matched 

adult RW (D) and 7dRW mice (F): after MD, the contra- and ipsilateral eye activated V1 about 
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equally strong, colder colors appeared in the OD-map, and the histogram of OD-scores shifted to the 

left (blue arrows). Scale bar: 1 mm. 

 

Quantitative analyses of V1-activation for all recorded maps showed that the average ODI of 

RW mice older than PD130 decreased from 0.26±0.03 without MD (n=7, PD140-240) to 

0.06±0.03 (n=8, PD140-240) with MD (n=8, PD138-242; p=0.0003, Bonferroni-adjusted t-

test). In contrast, adult SC mice did not show an OD-shift after 7 days of MD: the average 

ODI was similar in mice without and with MD (noMD/MD: 0.32±0.02/0.25±0.03, n=5/5, 

PD137-200/145-195; p=0.1126, Bonferroni-adjusted t-test). The ODI values were also 

significantly different between the RW and SC group with MD (p=0.0009, Bonferroni-

adjusted t-test). Additionally, the average ODI for 7dRW mice without MD was 0.21±0.01 

(n=6, PD143-217), thus significantly different from the 7dRW mice with MD (0.06±0.01, 

n=6, PD141-214; p=0.0001, Bonferroni-adjusted t-test). The ODIs of 7dRW mice with MD 

were also significantly different from the SC mice with MD (p=0.0001, Bonferroni-adjusted t-

test) but not from the RW mice with MD (p>0.05, Bonferroni-adjusted t-test; Figure 43A). 

Further quantification of V1-responses after each eye stimulation revealed that the observed 

OD-shifts were mediated by a decrease of deprived eye (contralateral) responses in V1 

(Figure 43B). In the RW group V1-activity after stimulating the deprived eye was 1.59±0.10 

(n=7) whereas after MD it was 1.18±0.09 (n=8; p=0.008, t-test). In contrast, open (ipsilateral) 

eye responses remained unchanged between RW mice without and with MD (noMD/MD: 

0.95±0.06/1.13±0.09, n=7/8; p=0.143, t-test). V1-activation after stimulating the ipsi- and 

contralateral eye did not change after MD in SC mice and the binocular part of V1 remained 

dominated by the contralateral eye. After MD in SC mice the V1-activation after contralateral 

eye stimulation was 1.67±0.07 and after ipsilateral eye stimulation was 1.11±0.11 (n=5), 

while SC mice without MD had a V1-activation of 1.60±0.09 after stimulation of the 

contralateral eye and 0.88±0.09 after ipsilateral eye stimulation (n=5). Neither of these was 

significant different (contralateral/ipsilateral: p=0.525/0.134, t-test). For the short-term 

running (7dRW) the observed OD-shift was again mediated by decreased deprived eye 

responses in V1: V1-activation through the contralateral eye was reduced from 2.00±0.08 to 

1.34±0.22 after MD (n=6/6; p=0.037, t-test), whereas ipsilateral eye V1-responses did not 

change (noMD/MD: 1.40±0.10/1.35±0.13, n=6/6; p=0.77, t-test; Figure 43B). 
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Figure 43: Quantification of V1-activation in adult mice with or without a RW. A. Optically 

imaged ODIs of mice without and with MD raised in SCs (grey), RW-cages (blue) or with only 7days 

of RW (7dRW, light blue). Symbols represent ODI-values of individual mice, means are marked by 

horizontal lines. Only mice that had a RW showed an OD-shift after MD. B. V1-activation elicited by 

stimulation of the contralateral (C) or ipsilateral (I) eye without and after MD (black filled circles 

indicate MD eye). The OD-shift was mediated by a reduction of deprived (C) eye responses in V1. 
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Furthermore, to clarify the mechanism underlying the prolonged OD-plasticity in adult RW 

mice, chronic imaging experiments were performed. For that purpose, 2 mice born and raised 

in a cage with a RW were imaged before MD (first session), then the right eye (contralateral 

to the imaged hemisphere) was deprived (MD) for a period of 7 days, and imaged again on 

the 7
th

 day (second session). In the first imaging session, V1-activities after visual stimulation 

of the contra- and ipsilateral eye were determined, and then compared with those after the 

second imaging session. Activity maps recorded before MD (first session) were dominated by 

input from the contralateral eye, warm colors prevailed in the 2-dimensional OD-map and the 

average ODI was positive. After 7 days of MD (second session), V1-activation via the 

contralateral eye was visibly reduced, thus both eyes activated V1 about equally strong, colder 

colors dominated the OD-map, ODI-values were reduced and the ODI-histogram was shifted 

to the left (Figure 44A). 

Quantitative analysis showed that the ODI decreased from 0.21±0.02 before MD to 0.01±0.08 

after 7 days of MD (n=2; Figure 44B). Additionally the OD-shift was mediated by reductions 

in contralateral (deprived) eye responses in V1: from 1.68±0.16 before MD to 1.06±0.16 after 

7 days of MD (Figure 44C), while the V1-responses after ipsilateral (open) eye stimulation 

remained unchanged (before MD: 1.13±0.05, after MD: 1.10±0.04; Figure 44 D). The 

preserved OD-shift in the RW-mice was predominantly mediated by a reduction of deprived 

eye responses in V1, a typical characteristic of juvenile OD-plasticity observed in SC mice. 

Adult mice in EE showed also juvenile-like plasticity after 7 days of MD suggesting that the 

mechanism underlying the presence of OD-plasticity into adulthood is the same after enriched 

housing and housing in a cage with a running wheel. 
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Figure 44: Chronically imaged RW mice. A. Optically recorded activity and polar maps of the 

contralateral and ipsilateral eye in the binocular region of mouse primary visual cortex (V1) in a RW 

mouse before and after MD. Grayscale-coded response magnitude maps with the V1-activation value 

on top right corner, polar maps, 2-dimensional OD-maps and the histogram of OD-scores including 

the average ODI are illustrated. Before MD, activity patches evoked by stimulation of the contralateral 

eye were darker than those of the ipsilateral eye, the average ODI was positive, and warm colors 

prevailed in the OD-maps, indicating contralateral dominance. After 7 days of MD in the same mouse 

the contra- and ipsilateral eye activated V1 about equally strong, colder colors appeared in the OD-

map, and the histogram of OD-scores shifted to the left (blue arrow). Scale bar: 1 mm. B. ODIs before 

(empty boxes) and after MD (half-filled boxes). Every line represents one mouse. In both cases the 

ODI decreased after MD. C. V1-activation after contralateral (deprived) eye stimulation before (empty 

boxes) and after 7 days of MD (half-filled boxes). V1-activation was reduced after MD in both mice. 

D. V1-activation after ipsilateral (open) eye stimulation before (empty boxes) and after 7 days of MD 

(half-filled boxes) of the two mice tested. There were no changes observed in V1-activation after 

ipsilateral eye stimulation before and after MD.  

 

3.4.3. Retinotopic maps and V1-activation were similar in mice with or without 

RW 

Using full screen moving bars in elevation (horizontal) or azimuth (vertical) direction the 

strength of V1-activation and the quality of the retinotopic maps was calculated by optical 
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imaging of intrinsic signals for all three housing conditions (RW, SC and 7dRW). There were 

no detectable differences between the groups after elevation or azimuth stimulation in signal 

strength and retinotopic map quality (Figure 45). The magnitude of the V1-responses after 

elevation stimulation for mice in a cage with a RW was 2.78±0.33, for mice in a SC was: 

2.46±0.15 and for mice in a cage with RW for only 7 days was: 3.10±0.33 (n=7, 5 and 6 

respectively; p=0.17, ANOVA; Figure 46). Azimuth maps were also similar in strength of 

V1-activation: 2.27±0.22 for RW-mice, 2.18±0.15 for SC-mice and 2.70±0.24 for 7dRW-

mice (p=0.26, ANOVA). Additionally, the quality of the retinotopic maps after elevation 

stimulation was similar for all the groups: 1.5±0.4 for RW-mice, 1.8±0.5 for SC-mice and 

1.3±0.5 for 7dRW-mice (p=0.36, ANOVA). The same was true for the azimuth stimulation 

with: 4.8±2.0 for RW-mice, 2.8±1.0 for SC-mice and 2.6±0.7 for 7dRW-mice (p=0.43, 

ANOVA; Figure 46) 

 

Figure 45: Representative examples of retinotopic and activity maps after elevation and azimuth 

stimulation recorded from SC, RW and 7dRW mice. There were no differences in the acitivity and 

quality of the maps between the different housing conditions. Scale bar: 1 mm 
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Figure 46: Running had neither an effect on V1-activation nor on the quality of the retinotopic 

maps. Comparison of V1-activation and map quality after right eye stimulation between SC (grey) 

and RW (blue) mice. For both groups the acquired maps were identical without significant differences 

in signal strength or quality of retinotopy for both elevation and azimuth stimulation. 

 

3.4.4. Amount of running 

The cages with RW were equipped with a counter which records the turns of the wheel. The 

counter was checked daily and an average number of turns was calculated for every mouse 

dividing the counted numbers of turns by the number of mice living in each cage (3-5 mice 

per cage). The average amount of RW-turns for male RW-mice was 3,229±212 turns/day and 

3,991±445 turns/day for female RW-mice. The diameter of the running wheel (12.8 cm) was 

used to convert the turns into kilometers (km) finding that for male mice was 1.28±0.09 

km/day and for female mice was 1.60±0.18 km/day (Table 10). The difference in RW-turns 

between males and females was not significant (p>0.05, t-test). For 7dRW-mice, the average 



Results  

 

79 

 

amount of RW-turns/day was 3,452±626 corresponding to 1.38±0.25 km/day. Comparing 

with the other groups it was similar (p>0.05, ANOVA).  

 

Table 10: Amount of running. The mice were housed in group of 3-5 animals per cage. The average 

amount of turns of the wheel for mice that were born and raised in RW-cages is presented as: turns per 

day, turns per day per animal and corresponding km per animal per day. Additionally, the average 

amount of running per day per animal is presented for female and male mice. 

Number 

of 

animals 

per cage 

Average 

turns/day/ 

cage 

 

Average 

turns/day/ 

animal 

Km/day/ 

animal 

(R=6.4cm) 

 Average 

turns/day

/ 

Animal 

Km/day/ 

animal 

(R=6.4cm) 

3 females 11,868 3,956 1.58  

Female

s 

 

3,991 

 

1.6 5 females 20,065 4,013 1.61 

3 males 9,180 3,060 1.23  

Males 

 

3,229 

 

1.28 4 males 13,424 3,356 1.53 

 

3.4.5. Sex differences had no effect on ODIs, V1-activation and map quality 

In this study I used mice of both sexes (males and females). Previously we did not observe 

any differences between the two sexes in OD-plasticity or any of the parameters we tested. 

Here, I also checked for sex differences in RW-mice after MD on ODI, V1-activation and 

quality of the retinotopic maps to exclude this possibility. Average ODI after MD for male 

mice raised in RW-cage was 0.08±0.02 (n=3) and for females was 0.05±0.04 (n=5), thus not 

significant different (p=0.57, t-test; Figure 47A). Similarly, V1-activation after contralateral 

or ipsilateral eye stimulation was similar for both sexes (males/females: contralateral: 

1.02±0.11/1.47±0.26, ipsilateral: 0.93±0.13/1.25±0.10; p=0.18/0.13, t-test; Figure 47B). 

Moreover, retinotopic map quality after elevation or azimuth stimulation was not different 

between the sexes. After elevation stimulation map quality was 5.07±1.87 for male mice and 

5.06±2.83 for females (p=0.99, t-test; Figure 47C). After azimuth stimulation map quality was 

again similar between males (2.82±0.84) and females (2.61±0.48; p=0.84, t-test; Figure 47D). 
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Figure 47: No significant differences between RW males and females mice. Comparison of mice 

raised in RW-cages after MD. ODI values (A), V1-activation after contralateral (C) or ipsilateral (I) 

eye stimulation (B) and retinotopic map quality after either elevation stimulation (C) or azimuth 

stimulation (D) were similar for both sexes. Male mice are presented in blue color (n=3) while female 

mice in pink color (n=5).  

 

3.5. Lifelong running and 14dRW preserved and restored, respectively, 

OD-plasticity in adult mice after stroke in S1 

As it has been previously reported a small cortical lesion in the primary somatosensory cortex 

(S1) impairs visual plasticity (Greifzu et al., 2011) which can be restored in mice due to a 

stimulating environment (Greifzu et al., 2014). These findings point out that, active and 

challenged individuals are more likely to recover faster after brain injuries than non-active 

individuals. I already described (part 3.4.) that voluntary physical exercise alone has a 

beneficial effect on OD-plasticity since OD-plasticity was preserved in old animals 
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(Kalogeraki et al., 2014), yet the impact of physical exercise on mice OD-plasticity after 

stroke is not well understood. Do adult mice that experience physical exercise show preserved 

OD-plasticity after stroke injury? Is long-term running required for showing OD-plasticity 

after stroke or is it still possible to restore OD-plasticity after stroke in old mice by providing 

them access to RWs? To this end, I investigated whether raising mice in a cage with a RW 

will preserve OD-plasticity in old animals (>PD110) after a small cortical lesion in S1. 

Additionally, I tested whether OD-plasticity can be restored in adult mice after a small 

localized cortical lesion by transferring SC-mice in a cage with a RW directly after induction 

of a stroke. Detailed description of all the groups and the experimental timeline can be found 

in the material and methods section (part 2.2.3.). All the PT-injections for induction of the 

cortical stroke as well as some of the imaging experiments were performed by Dr. Justyna 

Pielecka-Fortuna. Our data, presented here, suggest that physical exercise not only can 

preserve but also restore OD-plasticity after a localized cortical stroke. We did not find any 

differences in visual abilities and their increase after MD measured with the optomotor setup 

between the different groups. 

 

3.5.1 Improvements in visual abilities after MD were not affected in RW or 

14dRW mice after induction of a cortical lesion  

Improvements in visual acuity and contrast sensitivity thresholds after MD can be used as an 

indicator for sensory learning as it was shown previously (Prusky et al., 2006). However, a 

stroke induction in SC raised mice abolished improvements after MD (Greifzu et al., 2011). 

After induction of a photothrombotic lesion in mice born and raised in a cage with a RW 

(RW_PT) or in mice raised in SC but transferred to a RW-cage after stroke for 14 days 

(14dRW_PT) the spatial frequency and contrast sensitivity thresholds were tested in the 

virtual reality optomotor setup developed by Prusky et al., (2004). Also, control sham mice 

were tested for both raising conditions (RW_sham and 14dRW_sham). Initially the baseline 

values of spatial frequency and contrast sensitivity threshold of the optomotor reflex were 

determined for all groups pooled. The highest spatial frequency that elicited an optomotor 

response in mice born and raised in a RW-cage was 0.38±0.001 cyc/deg for sham mice (n=7) 

and 0.38±0.001 cyc/deg for PT mice (n=10). There were no significant differences between 

the groups (p>0.05, ANOVA). Likewise, in 14dRW mice no differences were detected 

between sham and PT groups on day 0 (sham/PT: 0.38±0.003/0.39±0.001 cyc/deg, n=6/12; 

p>0.05, ANOVA; Figure 48). 
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Furthermore, contrast sensitivity thresholds of the optomotor reflex were determined at six 

different spatial frequencies (0.031, 0.064, 0.092, 0.103, 0.192 and 0.272 cyc/deg) for all the 

groups. On day 0 (before MD) all mice born and raised in a cage with RW had similar 

contrast sensitivity values in all frequencies tested (comparison between sham and PT groups: 

p>0.05; for every frequency, ANOVA). Similarly, all 14dRW mice on day 0 had no 

differences in contrast sensitivity thresholds (comparison between sham and PT groups: 

p>0.05 for every frequency, ANOVA; Table 11). The values did not differ between the 

different raising conditions (RW and 14RW) and also not from values described before for 

C57BL/6J mice (Prusky et al., 2006). 

Table 11: Baseline contrast sensitivity values of RW and 14dRW mice. The table includes the 

mean with SEM values of contrast sensitivity for all RW and 14dRW groups for the 6 different spatial 

frequencies tested (0.031, 0.064, 0.092, 0.103, 0.192, 0.272 cyc/deg). 

 

 Day 0 

Spatial 

frequency 

(cyc/deg) 

RW_sham 

(n=3) 

RW_sham_MD 

(n=4) 

RW_PT 

(n=5) 

RW_PT_MD 

(n=5) 

0.031 3.5±0.01 3.7±0.06 3.6±0.03 3.7±0.03 

0.064 13.0±0.89 12.8±0.18 12.3±0.31 12.4±0.28 

0.092 11.7±0.55 11.7±0.14 11.5±0.23 11.4±0.25 

0.103 11.3±0.29 11.3±0.16 10.9±0.28 10.8±0.23 

0.192 7.1±0.17 7.4±0.03 7.3±0.09 7.1±0.07 

0.272 3.6±0.05 3.6±0.05 3.6±0.03 3.6±0.03 

 Day 0 

Spatial 

frequency 

(cyc/deg) 

14dRW_sham 

(n=3) 

14dRW_sham_MD 

(n=3) 

14dRW_PT 

(n=5) 

14dRW_PT_MD 

(n=7) 

0.031 3.6±0.08 3.6±0.05 3.7±0.02 3.6±0.02 

Figure 48: Baseline “visual acuity” in 

RW and 14dRW mice PT or sham 

treated. The highest spatial frequency 

that elicited a response in the optomotor 

setup was indistinguishable among all 

mice groups: RW_sham (blue), RW_PT 

(red), 14dRW_sham (light blue) and 

14dRW_PT (light red) mice. 
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0.064 15.4±0.65 14.5±0.37 13.9±0.18 14.4±0.23 

0.092 14.6±0.72 13.3±0.25 13.2±0.17 13.7±0.28 

0.103 13.3±0.85 12.8±0.26 12.7±0.14 13.1±0.26 

0.192 7.5±0.15 7.6±0.21 7.7±0.11 7.5±0.14 

0.272 3.6±0.01 3.7±0.04 3.7±0.04 3.7±0.02 

 

After the induction of MD spatial frequency and contrast sensitivity thresholds of the 

optomotor reflex of the open eye were measured for all the mice groups for the next 7 days. 

Mice without MD from every group were also tested daily in the optomotor setup. Starting 

with the visual acuity thresholds of the optomotor reflex we observed a significant increase in 

mice with MD. In detail, after 7 days of MD “visual acuity” of the open eye increased in 

RW_sham mice from 0.38±0.001 cyc/deg to 0.45±0.002 cyc/deg (n=4) and in RW_PT mice 

from 0.38±0.001 cyc/deg to 0.45±0.002 cyc/deg (n=5; Figure 49; Figure 50). The increase in 

spatial frequency thresholds was similar for both groups (RW_sham and RW_PT) after MD 

and equal to 24%. The values on day 7 were significantly different from day 0 for both groups 

(p<0.01, ANOVA; Figure 49). Mice without MD did not show any changes in visual acuity 

threshold over the days (p>0.05, for both groups, ANOVA; Figure 49). Furthermore, neither 

PT and sham groups without MD nor PT and sham groups with MD showed any significant 

differences (p>0.05 for both comparisons; ANOVA). 

 

 

Figure 49: Improvements of visual acuity thresholds over days of MD in mice born in a RW-

cage. “Visual acuity” values in cyc/deg are plotted against days for all the groups without MD (boxes) 

and with MD (half-filled boxes). Mice raised in a cage with a RW showed a significant improvement 

after 7 days of MD regardless the induction of a lesion. PT groups are presented in red color and sham 

groups in blue. There was no significant difference between sham and PT mice after MD, or between 

sham and PT mice without MD. 
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Figure 50: Spatial frequency thresholds measured in RW mice sham or PT treated over the 7 

days noMD/MD period. Every line represents a single animal. A. RW_sham mice without MD had 

same visual acuity thresholds over the days. B. After 7 days of MD, RW_sham mice showed an 

increase of visual acuity thresholds. C. RW_PT mice without MD did not show any change over days. 

D. RW_PT mice with MD visual acuity thresholds of the open eye increased over days. 

 

Similar to RW mice, mice transferred to a RW-cage directly after the induction of a cortical 

lesion improved in visual acuity thresholds of the optomotor reflex over the MD period. 

Visual acuity thresholds of mice from the 14dRW_sham group improved from 0.38±0.003 

cyc/deg before MD to 0.48±0.010 cyc/deg after 7 days of MD (n=3; p<0.001, t-test; Figure 

51, Figure 52). The increase was equal to 27%. Likewise, RW_PT mice after MD increased 

on average by 28%: from 0.39±0.001 cyc/deg before MD to 0.49±0.005 cyc/deg (n=7; 

p<0.001, t-test; Figure 51, Figure 52). The increase of optomotor threshold of both was 

similar after the MD period (p>0.05, ANOVA; Figure 51). As expected, mice without MD 

from all groups did not show improvement of “visual acuity” over days (Figure 51). 
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Figure 51: Improvements of visual acuity thresholds over days of MD in 14dRW sham and PT 

mice. “Visual acuity” values in cyc/deg are plotted against days for all the groups without MD (boxes) 

and with MD (half-filled boxes). Mice were raised in a SC and then transferred in cage with a RW 

after the induction of lesion (14dRW_PT: light red) and the control sham (light blue) group improved 

significantly over days of MD. In mice without MD “visual acuity” did not change over days. 

 

 

Figure 52: Spatial frequency thresholds measured in 14dRW mice sham or PT treated over the 7 

days noMD/MD period. Every line represents a single animal. A. 14dRW_sham mice without MD 

had same visual acuity thresholds over the days. B. After 7 days of MD, 14dRW_sham mice showed 

an increase of visual acuity thresholds. C. 14dRW_PT mice without MD did not show any change 

over days. D. 14dRW_PT mice with MD visual acuity thresholds of the open eye increased over days. 

 

Together with spatial frequency thresholds the contrast sensitivity thresholds of the optomotor 

reflex for all groups were determined during the noMD/MD period. After 7 days of MD both 
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sham and PT groups of mice raised in RW-cages increased significantly in contrast to mice 

without MD (p<0.001, ANOVA; Figure 53). Specifically in RW_sham mice contrast 

sensitivity thresholds increased significantly in 3 out of 6 spatial frequencies measured after 

MD to 4.8±0.05 at 0.031 cycl/deg, 26.2±1.66 at 0.064 cyc/deg, 23.1±1.35 at 0.092 cyc/deg, 

21.2±1.19 at 0.103 cyc/deg, 12.6±0.47 at 0.192 cyc/deg and 4.8±0.06 at 0.272 cyc/deg on day 

7 (p>0.05, p<0.001, p<0.001, p<0.001, p>0.05, p>0.05, compared to values from day 0, 

ANOVA; Figure 53; Figure 54B; Table 12). Similar increase was observed in RW_PT mice 

after MD (at 0.031, 0.064, 0.092, 0.103, 0.192 and 0.272cyc/deg: to 5.0±0.17, 27.0±1.18, 

23.4±0.92, 21.3±0.54, 12.9±0.62 and 4.7±0.10 on day 7; p>0.05, p<0.001, p<0.001, p<0.001, 

p>0.05, p>0.05, compare to day 0, ANOVA; Figure 53; Figure 54D). There were no 

differences in any spatial frequency between the two groups on day 7 (p>0.05, ANONA, 

Figure 53). As expected, mice without MD from both groups did not show any change over 

the 7 days tested in optomotor setup (p>0.05, for every frequency, ANOVA; Figure 54A and 

C). 

 

Figure 53: Contrast sensitivity improvements of RW mice after 7 days of MD. Sham (red) and PT 

(blue) mice raised in a cage with a running wheel improved significantly in 3 out of 6 frequencies after 

7 days of MD. 
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Figure 54: Mean contrast sensitivity thresholds at the 6 spatial frequencies of RW mice sham or 

PT treated over days. Day 0 represents the baseline values before MD. A. In RW_sham mice without 

MD contrast sensitivity remained stable over days. B. After 7 days of MD in RW_sham the contrast 

sensitivity of the open eye increased significantly. C. PT mice raised in a cage with RW without MD 

did not improve over days. D. RW_PT mice with MD showed a significant improvement over days in 

contrast sensitivity thresholds. 

 

Furthermore, 14dRW_sham or PT with MD showed a significant improvement on the 7
th

 day 

compare to mice without MD of the same treatment (p<0.001 for spatial frequencies 0.064 

cyc/deg, 0.092cyc/deg and 0,103 cyc/deg, and p<0.05 for 0.192 cyc/deg; ANOVA; Figure 

55). After 7 days of MD both sham and PT groups of mice raised in SC and transferred in a 

cage with a RW after PT for 14 days improved significantly compared to the same groups of 

mice without MD (p<0.001, ANOVA; Figure 55). In detail, 14dRW_sham mice with MD 

improved significantly in contrast sensitivity thresholds of the open eye at 4 out of 6 spatial 

frequencies measured (at 0.031, 0.064, 0.092, 0.103, 0.192 and 0.272cyc/deg: to 5.2±0.18, 

30.1±1.78, 26.4±1.18, 24.3±1.82, 11.9±0.86 and 5.2±0.16 on day 7; p>0.05, p<0.001, 

p<0.001, p<0.001, p<0.01, p>0.05, compared to day 0, ANOVA; Figure 56B). The 

14dRW_PT group with MD also showed a significant improvement over the days in contrast 

sensitivity thresholds to 4.7±0.12 at 0.031 cyc/deg, 36.3±2.17 at 0.064 cyc/deg, 31.8±1.48 at 

0.092 cyc/deg, 27.8±1.43 at 0.103 cyc/deg, 15.6±0.72 at 0.192 cyc/deg and 5.3±0.20 at 0.272 

cyc/deg on day 7 (p>0.05, p<0.001, p<0.001, p<0.001, p<0.01, p>0.05, compared to values 

from day 0, ANOVA; Figure 56D). The increase after MD was not significantly different 

between the sham and PT treated mice at any spatial frequency (p>0.05, ANONA, Figure 55). 
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Again sham or PT mice without MD had no improvement over the 7 days testing period in the 

optomotor setup (p>0.05, for every frequency, ANOVA; Figure 56A and C).  

 

Figure 55: Contrast sensitivity improvements of 14RW mice after 7 days of MD. Sham (light red) 

and PT (light blue) mice transferred in a cage with RW for 14 days improved significantly in 4 out of 

6 frequencies comparing the values on day 0 and on day 7 after MD. 

 

Figure 56: Mean contrast sensitivity thresholds in the 6 spatial frequencies tested, of the 14dRW 

sham or PT treated mice over days. Day 0 represents the baseline values before MD. A. In 
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14dRW_sham mice without MD contrast sensitivity remained stable over days. B. After 7 days of MD 

in 14RW_sham mice the contrast sensitivity of the open eye increased significantly. C. 14dRW mice 

with PT without MD did not improve over days. D. 14dRW_PT mice with MD showed a significant 

improvement over days in contrast sensitivity thresholds. 

 

Comparing contrast sensitivity thresholds after 7 days of MD of RW with 14dRW mice, 

resulted in a significant difference in improvement of 3 of the spatial frequencies measured. 

The contrast sensitivity thresholds of 14dRW_PT_MD mice increased to 36.3±2.17 at 0.064 

cycl/deg, to 31.8±1.48 at 0.092 cycl/deg and to 27.8±1.43 at 0.103 cyc/deg whereas in 

RW_PT mice with MD the contrast sensitivity thresholds at the same frequencies were 

27.0±1.18, 23.4±0.92 and 21.3±0.54 (p<0.05, for every frequency, ANOVA; Table 12). 

Altogether life-long running (RW) or 14dRW groups showed improvements in visual 

capabilities over 7 days of MD in the optomotor system after the induction of a 

photothrombotic stroke in S1. 

 

Table 12: Contrast sensitivity values of all RW and 14dRW groups at day 7. The table includes 

the mean with SEM values of contrast sensitivity for all RW and 14dRW mice for the 6 different 

spatial frequencies tested (0.031, 0.064, 0.092, 0.103, 0.192, 0.272 cyc/deg). 

 Day 7 

Spatial 

frequency 

(cyc/deg) 

RW_sham 

(n=3) 

RW_sham_MD 

(n=4) 

RW_PT 

(n=5) 

RW_PT_MD 

(n=5) 

0.031 3.5±0.01 4.8±0.05 3.6±0.03 5.0±0.17 

0.064 13.0±0.89 26.2±1.66 12.3±0.30 27.0±1.18 

0.092 11.7±0.55 23.1±1.35 11.5±0.23 23.4±0.92 

0.103 11.3±0.29 21.2±1.19 10.9±0.28 21.3±0.54 

0.192 7.1±0.17 12.6±0.47 7.3±0.09 12.9±0.62 

0.272 3.6±0.05 4.8±0.06 3.6±0.03 4.7±0.10 

 Day 7 

Spatial 

frequency 

(cyc/deg) 

14dRW_sham 

(n=3) 

14dRW_sham_MD 

(n=3) 

14dRW_PT 

(n=5) 

14dRW_PT_MD 

(n=7) 

0.031 3.6±0.08 5.2±0.18 3.9±0.01 4.7±0.12 

0.064 15.4±0.63 30.1±1.78 13.9±0.18 36.3±2.17 

0.092 14.6±0.72 26.4±1.18 13.3±0.15 31.8±1.48 

0.103 13.3±0.75 24.3±1.82 12.7±0.14 27.8±1.43 

0.192 7.5±0.15 11.9±0.86 7.6±0.10 15.6±0.72 

0.272 3.6±0.02 5.2±0.16 3.7±0.04 5.3±0.20 
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3.5.2. Voluntary physical exercise preserved OD-plasticity in adult mice after 

stroke 

To visualize and calculate V1-activation and determine the ODI for every mouse the optical 

imaging of intrinsic signals was used. Using the 150x150 camera objective we were able to 

capture V1-activation from both hemispheres. Initially, to test whether life-long running or 

short-term running has an effect on mice OD-plasticity after a cortical lesion in the left S1 

ODIs of the left hemisphere of all groups were measured (all mice tested were >PD110). To 

stimulate the left binocular part of V1 20 degrees moving bar restricted on the -5 to +15 

degrees of visual field was projected in a monitor in front of the mouse. 

As expected, the sham mice raised in RW-cages without MD showed a contralateral 

dominance in the binocular part of V1. The activity patches induced by the stimulation of the 

contralateral eye were darker than those after stimulation of the ipsilateral eye, the ODI values 

were positive and warm color dominated the 2-dimensioned OD-map (Figure 57A). Induction 

of MD in RW_sham mice changed the contralateral dominance resulting in an OD-shift. In 

this group the binocular part of V1 was activated almost equally strong after stimulation of 

contra- or ipsilateral eye, ODI values were closer to zero, colder colors appeared in the 2-

dimensional OD-map and the histogram was shifted to the left (Figure 57B). After a cortical 

lesion RW mice without MD (RW_PT group) were also contralaterally dominated: the V1-

activation patch was darker after contralateral eye stimulation compared to the one after 

ipsilateral eye stimulation, the ODI was positive and warm colors prevailed the 2-dimensional 

OD-map, suggesting that PT alone does not affect the contralateral dominance and the 

activation of V1 (Figure 57C). Like in the sham treated mice, MD in RW mice that received 

PT resulted in an OD-shift: V1 was activated approximately with the same strength via 

stimulation of both eyes, resulting in lower ODI values, colder colors in the 2-dimensional 

OD-map and shift of the OD-histogram towards the left (Figure 57D). 

 



Results  

 

91 

 

 

Figure 57: Examples of optical imaging recorded maps from lifelong running groups of the left 

hemisphere. Activity and polar maps of the binocular part of V1 and ODI values of the left 

hemisphere measured with optical imaging of intrinsic signals in RW sham (A, B) or PT (C, D) 

treated animals. Mice without MD (A, C) showed a contralateral dominance with stronger activities 

after stimulation of the contralateral eye, positive ODI values and warm colors in the 2-dimensional 

OD-map. Seven days of MD in both groups (sham: B and PT: D) resulted in a strong OD-shift, both 

eyes activated V1 equally strong, the ODI values were lower, colder colors prevailed in the OD-maps 

and the histograms shifted to the left (blue arrows). Scale bar: 1 mm. 

 

Like the lifelong RW mice, 14dRW_sham mice without MD showed a contralateral 

dominance: activity patches induced after stimulation of the contralateral eye were darker 

than those after ipsilateral eye stimulation, the calculated ODI had positive values and the 2- 

dimensional OD-map was dominated by warm colors (Figure 58A). Whereas in the 

14dRW_sham group after MD V1-activation was equally strong after both eyes (contra-, or 

ipsilateral) stimulation, ODI values were reduced, the 2-dimensional OD-map was colored 

with colder colors and the histogram shifted to the left (Figure 58B). Furthermore, 

14dRW_PT mice without MD showed a contralateral dominance with stronger V1-activation 

after contralateral eye compare to the one after ipsilateral eye stimulation, positive ODI values 

and warm colors in the 2-dimensional OD-map (Figure 58C). However, after MD in the 

14dRW_PT mice the strength of V1-activation was approximately the same after stimulation 

of both eyes, ODI values were closer to zero, the OD-map was dominated by colder colors 

and the histogram shifted to the left (Figure 58D). 



Results  

 

92 

 

 

Figure 58: Optical imaged maps recorded from 14dRW groups of the left hemisphere. Data 

presented as in figure 57. Activity and polar maps of the binocular part of V1 and ODI values of the 

left hemisphere 2-dimensional OD-maps and ODI histograms for 14dRW sham (A, B) and PT (C, D), 

without (A, C) or with MD (B, D). Animals with MD showed a significant OD-shift in both groups: 

both eyes activated V1 about equally strong, the ODI values were lower, colder colors prevailed in the 

OD-maps and the histogram shifted to the left (blue arrows), regardless of the treatment (sham or PT). 

Scale bar: 1 mm. 

 

Quantitative analysis of the ODIs for every group showed that all MD mice displayed an OD-

shift independent of the presence of a cortical lesion. In RW_sham mice the ODI decreased 

significantly from 0.25±0.05 without MD (n=3, PD180-215) to 0.05±0.05 after 7 days of MD 

(n=4, PD156-218; p=0.04, t-test). Similarly, the RW_PT group showed an OD-shift: from 

0.21±0.01 without MD (n=5; PD174-222) decreased to 0.08±0.01 with MD (n=5, PD149-204; 

p<0.0001, t-test). The 14dRW_sham group without MD had an ODI of 0.28±0.09 (n=3, 

PD119-162) which was significantly reduced in 14RW_sham mice after MD (0.04±0.06; n=3, 

PD120-197; p=0.012, t-test). Likewise, in the 14dRW_PT group the ODI in mice without MD 

was 0.25±0.04 (n=5, PD124-258), while in MD mice was significantly lower (0.05±0.04; 

n=7, PD=119-213; p=0.006, t-test; Figure 59A). Differences between mice with MD in all 

conditions were not significant (p>0.05, ANOVA). Also, mice without MD from all groups 

had similar mean ODI values (p>0.05, ANOVA). 

Further, quantitative analyses of V1-activation showed neither significant reduction in the 

activation after contralateral eye stimulation or significant increase in the activation after 
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ipsilateral eye activation between mice without and with MD, in any of the tested groups. In 

detail for the life-long running groups the V1-activation after contralateral eye stimulation 

was 1.79±0.20 in sham mice without MD and 1.40±0.10 in sham mice with MD (p=0.116, t-

test), and for PT mice was 1.76±0.17 without MD and 1.3±0.16 with MD (p=0.076, t-test). 

After simulation of the ipsilateral eye the activation of V1 was 1.04±0.09 in sham mice 

without MD and 1.35±0.14 in sham mice with MD (p=0.139, t-test). Additionally for PT mice 

without MD the V1-activation after ipsilateral eye stimulation was 1.14±0.14 and not 

significant different from PT mice with MD (1.12±0.15; p=0.931, t-test). Similarly for the 14 

days running groups the V1-activation after contralateral eye stimulation was in sham groups 

without or with MD was not significant different (14dRW_sham/14dRW_sham_MD: 

2.14±0.15/ 1.81±0.23; p=0.305, t-test) and in the PT groups without or with MD also not 

significant different (14dRW_PT/14dRW_PT_MD: 2.27±0.21/ 1.85±0.14; p=0.119, t-test). 

Additionally, V1-activation after ipsilateral eye stimulation was 1.30±0.17 in sham mice 

without MD and 1.59±0.13 in and for PT mice (p=0.249, t-test). V1-activation remained also 

unchanged in 14dRW_PT mice without or with MD (without/with MD: 1.42±0.25/1.66±0.11; 

p=0.344, t-test).  

Although we did not find any significant differences comparing the V1-activation in mice 

without and with MD, the p-value after comparing the RW_PT mice without MD with 

RW_PT after MD was 0.076, indicating a trend towards a reduction of the contralateral eye 

activation (Figure 59B). 
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Figure 59: Quantification of ODIs and V1-activation RW and 14dRW groups after PT or sham 

treatment. A. Optically imaged ODIs without and with MD of sham treated (blue) and PT (red) mice 

raised in RW-cages, as well as sham (light blue) and PT (light red) treated mice with only 14 days in 

RW-cage. Symbols represent ODI-values of individuals; means are marked by horizontal lines. All 

MD mice showed an OD-shift regardless the treatment. B. V1-activation elicited by stimulation of the 

contralateral (C) or ipsilateral (I) eye without and with MD (black filled circle indicates MD eye). No 

statistical significant changes in V1-activation were detected. 

 

3.5.3. Optical imaging data of the right hemisphere in the RW and 14dRW mice 

Plasticity changes were also investigated in the non-lesioned (right) hemisphere. To stimulate 

the binocular part of V1 of right hemisphere a 20° moving bar restricted on the -15 to +5 

degrees of the left visual field was used. In this case the deprived eye is ipsilateral to the 

imaged V1, whereas the open eye is contralateral to the imaged hemisphere. All tested groups 

showed a clear contralateral dominance in the binocular part of V1 in the right hemisphere. 
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V1-activation after contralateral eye (open) stimulation was always higher that those after 

ipsilateral eye (deprived eye) stimulation. The ODI values of all groups were positive and 

warm color dominated the 2-dimensinal OD-map. After 7 days of MD, the activities of V1 

after ipsilateral (deprived) eye stimulation were reduced resulted in even stronger contralateral 

dominance, indicator of plasticity changes in the right hemisphere (Figure 60). 

 

Figure 60: Examples of optical imaged maps of 14dRW groups of the right hemisphere. Data 

presented as in figure 57. Activity and polar maps of the binocular part of V1 and ODI values of the 

right hemisphere 2-dimensional OD-maps and ODI histograms for 14dRW sham (A, B) and PT (C, 

D), without (A, C) or with MD (B, D). In all groups contralateral eye activities in V1 were stronger 

compared to the ipsilateral, the ODI values were positive and the 2D OD-maps were dominated by 

warm colors. Scale bar: 1 mm. 

 

The average ODI value of RW_sham mice without MD was 0.21±0.02 (n=3), whereas in the 

RW_sham mice with MD was 0.29±0.02 (n=3). Although the ODI is higher in mice after 7 

days of MD the difference was not significant (p=0.064, t-test). In the RW_PT group without 

MD the ODI value was 0.23±0.04 (n=5) and not significant different from the RW_PT group 

after MD (0.29±0.03, n=4; p=0.357, t-test). Additional to the lifelong running groups the 

14dRW_sham mice had an average ODI of 0.24±0.01 (n=3) which was significantly lower 

than the 14dRW_sham after MD (0.44±0.03, n=3; p=0.003, t-test). Similarly, the ODI of the 

14dRW_PT mice increased significantly from 0.25±0.03 (n=4) without MD to 0.4±0.03 after 

MD (n=7; p=0.031, t-test; Figure 61A). 
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Quantitative analysis of the V1-activation revealed that in most of the cases the deprived eye 

responses (ipsilateral) in binocular part of V1 were significantly reduced. In detail, for the 

RW_sham mice with MD V1-activation after ipsilateral eye stimulation was 1.06±0.08 and 

significantly lower than in mice without MD (1.75±0.01; p=0.009, t-test), whereas the V1-

activation after contralateral stimulation was unchanged (MD/noMD: 2.22±0.12/2.58±0.15, 

p=0.14, t-test). In RW_PT group the V1-activation after ipsilateral eye was lower after 7 days 

of MD than the one without MD but not significant (MD/noMD: 0.86±0.13/1.17±0.09, 

p=0.07, t-test). After contralateral eye stimulation in RW_PT group no significant difference 

was observed in V1-activation (MD/noMD: 1.58±0.19/1.83±0.02, p=0.18, t-test). V1-

activation after ipsilateral eye stimulation was significantly reduced in 14dRW_sham mice 

after MD (0.89±0.05) compared to 14dRW_sham mice without MD (1.67±0.08, p=0.001, t-

test), while no difference was detected after contralateral eye stimulation in V1 activation 

(MD/noMD: 2.41±0.37/2.37±0.10, p=0.92, t-test). After MD the 14dRW_PT group showed a 

V1-activation of 1.08±0.16 after ipsilateral eye stimulation and 2.65±0.30 after contralateral 

eye stimulation. There was no significant difference from the 14dRW_PT group without MD 

(ipsilateral: 1.43±0.37, contralateral: 2.54±0.63; p=0.33/p=0.85, compared to MD group, t-

test; Figure 62B). Together these data propose that OD-plasticity is not affected on the non-

lesioned hemisphere and these observations are comparable to previously published results 

(Greifzu et al., 2011).  
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Figure 62: ODIs and V1-activation of the right hemisphere in lifelong running (RW) and 

14dRW groups after PT or sham treatment. A. Optically imaged ODIs without and with MD of 

sham treated (blue) and PT (red) mice raised in RW-cages, as well as sham (light blue) and PT (light 

red) treated mice with only 14 days in RW-cage. Symbols represent ODI-values of individuals; means 

are marked by horizontal lines. All mice showed a contralateral dominance which in case of 14dRW 

mice after 7 days of MD was even stronger causing a significant increase in ODI values. B. V1-

activation elicited by stimulation of the contralateral (C) or ipsilateral (I) eye without and after MD 

(black filled circles indicate MD eye). The differences in ODIs in mice without or with MD were 

mediated by decreases in V1-responses after ipsilateral (deprived) eye stimulation in RW_sham and 

14dRW_sham mice. In RW_PT and 14dRW_PT mice V1-activities after contralateral eye stimulation 

were not changed while we observed a decrease in ipsilateral eye responses after MD, although not 

significant. 
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3.5.4. Analysis of cortical lesions 

In order to determine the exact position as well as the size of the lesions, after the experiments 

mice were perfused and brains were removed, then sectioned and stained for GFAP (Glia 

Fibrillary Acidic Protein). GFAP is a common marker used to reveal brain lesions (Lai, 2014), 

by staining the astrocytes that are accumulating on the lesion site (Figure 63). Lesions were 

visible in all mice that received a PT-stroke. Unfortunately, the quality of sections in 3 out of 

10 brains of RW_PT mice was poor due to brakes in the tissue during slicing, making 

calculations of exact size impossible. Therefore they were excluded from the calculations.  

 

Figure 63: Examples of representative PT-lesion sites after GFAP labelling in RW and 14dRW 

mice. The boarders of lesions are marked with a green dashed line. On the left is a lesion site section 

of a RW_PT mouse and on the right a section of a 14dRW_PT mouse.  

 

To characterize the position of the lesions, the distance from the center of each lesion to the 

midline and also to the anterior border of V1 was calculated. Then, an average position was 

calculated for each group. In RW_PT mice the lesion center was positioned 1.63±0.06 mm 

lateral to the midline and 0.98±0.19 mm anterior to the anterior border of V1 (Figure 64A). 

The location of the lesion was not different in 14dRW_PT mice: 1.82±0.07 mm lateral of the 

midline and 0.95±0.16 mm anterior of the anterior border of V1 (p>0.05, for each distance, t-

test; Figure 64B). 
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Figure 64: Schematic representation of the average position of the lesion center in lifelong 

running (RW) and 14dRW mice. Schemes show a top view of a mouse brain. The somatosensory 

cortex (S1) is colored in yellow, the secondary visual cortex (V2) is colored in grey, and the primary 

visual cortex (V1) in blue. A retinotopic map of the binocular zone in V1 is also displayed in the 

binocular part of V1. The positon of the lesion is marked with a red circle and the distance from 

midline and anterior border of V1 are displayed. In RW_PT mice (A) the center of the lesion was 1.63 

mm lateral from the midline and 0.98 mm anterior to the beginning of V1, while in 14dRW_PT mice 

(B) the lesion was located 1.82 mm lateral from the midline and 0.95 mm anterior to the beginning of 

V1. 

 

Furthermore the size of the lesions was determined by measuring the length (anterior-

posterior), the diameter (medial-lateral), the depth and the total volume for every lesioned 

brain. The average lesion length in RW_PT mice was 1.38±0.24 mm (n=7 and in 14dRW 

mice was 1.24±0.14 mm (n=12). There was no significant difference in length between the 

two groups (p=0.59, t-test; Figure 65A). The average lesion diameter (Figure 65B) was 

1.18±0.16 mm for the RW_PT mice and 0.79±0.07 mm for the 14dRW_PT mice. The 

diameter of the lesion in the 14dRW_PT mice was significantly smaller for the RW_PT mice 

(p=0.017, t-test). The average lesion depth (Figure 65C) of the RW_PT group was 0.47±0.11 

mm and did not differ from the 14dRW_PT group (0.57±0.06 mm; p=0.478, t-test). Although 

the average lesion diameter was smaller for the RW_PT mice the total volume of the lesion 

was not significantly different between the groups (RW_PT/14dRW_PT: 

2.75±0.93/2.04±0.41 mm
3
; p=0.401, t=test; Figure 65D). The observation that there is no 

difference in the lesion size between the two groups, suggests that the time does not have an 

influence on the size lesion: the lesion is not getting smaller with the time. 
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Figure 65: Measurements of lesions in RW_PT and 14dRW_PT mice. The graphs present on the 

y-axis the length (anterior-posterior) of the lesion in mm (A), the diameter (medial-lateral) of the 

lesion in mm (B), the depth of the lesion in mm (C) and the total volume of the lesion in mm
3
 (D) for 

RW_PT (red) and 14dRW_PT (light red) groups. Only the lesion diameter was significantly different 

between the two groups but the total volume of the lesion was not significantly different between the 

groups. 

 

3.5.5. Amount of running in 14dRW mice during the MD/noMD period 

To test whether a cortical lesion in S1 will affect the ability of the mice to run in a RW but 

also if the amount of running has an effect on OD-plasticity after PT, the turns of the RW 

were measured daily in 14dRW after PT or sham treatment. For this study, mice were housed 

alone (1 mouse per cage) after PT/sham treatment in a RW-cage for 14 days. The amount of 

turns of the RW was measured daily and an average amount of turns was calculated after the 

experiment. The sham groups (noMD and MD; n=6) ran on average 6.69±1.22 km per day 

which corresponds to 16665±3047 turns of the wheel per day, while the PT groups (noMD 

and MD; n=12) ran on average 4.92±0.99 km per day which is equal to 12235±2470 turns of 

the wheel per day (Figure 66A). The running amount did not differ significantly between the 

sham and PT groups (p=0.29, t-test), suggesting that a cortical lesion in S1 is not interfering 

with the ability of mice to run on a RW. Furthermore, there were not significant differences 

on the running amount between the sham and PT mice that received an MD (sham/PT: 

4.85±1.66/6.55±1.21 km, n=3/7; p=0.427, t-test; Figure 66B) suggesting that the running is 

not influencing OD-plasticity. 
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Figure 66: Amount of running in km per day for 14dRW mice. Every black circle represents a 

single mouse A. The running amount in km per day for every mouse was not different between sham 

(light blue) and PT mice (light red). B. No significant difference was detected comparing only the MD 

mice for sham (light blue) and PT (light red) treatment. 

 

Moreover, in order to reveal possible correlation between the amount of running and the ODI 

value, the ODIs for every mouse were plotted against the kilometers per day that the mouse 

run for all the mice that received a PT and MD (Figure 67). Analysis of the data showed that 

there is no correlation between the running amount and the ODI values (p=0.96, R
2
=0.00051, 

correlation test). 

 

 

3.6. Running but not fluoxetine treatment restored OD-plasticity in EE-

mice transferred in SC 

As we showed previously EE housing not only can extent the sensitive phase of OD-plasticity 

in mice V1 into late adulthood but also can restore OD-plasticity in adult mice transferred 

from SC to EE (Greifzu et al., 2014). The question that rises is how long OD-plasticity is 

lasting when mice are transferred to a less stimulating environment like a SC. To address this 

question, mice raised in EE from birth until PD130 which were then transferred to normal 

SCs. We observed that already after 1 week in SC mice did not show OD-plasticity any more, 

suggesting that plasticity is rapidly lost. There is a variety of molecules and mechanisms that 

Figure 67: Correlation of amount of 

running and ODI values for 14dRW_PT 

group after MD. Every box represents a 

single mouse. No correlation of the amount 

of running and the ODI was detected. 
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are known to be affected by EE-housing and involved in regulating OD-plasticity, as the 

brain-derived neurotrophic factor, perineuronal nets, insulin-like growth factor I, serotonin 

and histone acetylation (for review see Sale et al. (2014)). It has been shown that the selective 

serotonin reuptake inhibitor fluoxetine can restore OD-plasticity in adult rat’s visual system as 

EE (Maya-Vetencourt et al., 2008). We hypothetized that treatment with fluoxetine after 

tranferring the mice to SCs could preserve OD-plasticity. I could not find any changes in ODI 

of mice treated with fluoxetine compared to non treated animals after MD suggesting that 

fluoxetine treatment alone could not preserve OD-pasticity. On the other hand, when mice 

were tranferred from EE to a SC which was equiped with a RW OD-plasticity was preserved. 

Together these observations suggest that running but not fluoxetine treatment can preserve 

OD-plasticity in mouse V1 after transferring them from EE to a SC. 

 

3.6.1. OD-plasticity is lost in EE mice transferred to SCs already after 1 week 

Here I address the question whether transferring mice that were born and raised in EE to SCs 

resulted in an OD-plasticity loss and if yes after how many days in SC OD-plasticity is lost. 

The mice were housed alone in SCs for either 1 day or 1 week before MD was performed for 

7 days followed by optical imaging of intrinsic signals. During the MD period daily 

optometry was performed. The experimental design and details for the mice used for this 

study are described in the material and methods part (2.2.4). 

 

3.6.1.1. Basic visual abilities and improvements of the optomotor reflex in 

EEtoSC mice after MD were comparable to EE or SC mice 

All mice transferred from an EE to SC were measured in the optomotor setup to determine the 

visual acuity and contrast sensitivity threshold before and during the MD period. The baseline 

visual acuity threshold was 0.38±0.004 cyc/deg while the contrast sensitivity thresholds for 

the 6 spatial frequencies tested were: for 0.031 cyc/deg: 3.9±0.04, for 0.064 cyc/deg: 

13.7±0.26, for 0.092 cyc/deg: 12.9±0.24, for 0.103 cyc/deg: 11.8±0.19, for 0.192cyc/deg: 

8.4±0.34 and for 0.272 cyc/deg: 3.8±0.04 for all mice pooled. These values were similar with 

what was described before for SC and EE mice (Prusky et al., 2006; Greifzu et al., 2014).  

After MD the visual acuity was increased with the days with the lowest spatial frequency 

elicited a response on day 7 at 0.44±0.002 cyc/deg (p<0.001 compared to day 0, Bonferroni-

adjusted t-test). The increase was not significantly different from values of either SC or EE 

mice described before (Lehman and Löwel 2008, Greifzu et al., 2014; Figure 68).  



Results  

 

103 

 

 

Figure 68: Comparison of improvements of visual acuity during the MD period between EE and 

SC mice. Visual acuity values in cyc/deg are plotted against days. Mice transferred from EE to SC 

(EEtoSC) illustrated with half-filled white boxes, EE-mice with half-filled purple boxes and SC mice 

with half-filled grey boxes. All groups showed similar improvement in visual acuity over MD days. 

 

Likewise, contrast sensitivity thresholds were also increased after 7 days of MD. In detail on 

day 7 the values were: for 0.031 cyc/deg: 4.8±0.07, for 0.064 cyc/deg: 25.1±1.38, for 0.092 

cyc/deg: 21.4±0.67, for 0.103 cyc/deg: 19.5±1.42, for 0.192 cyc/deg: 11.9±0.75 and for 0.272 

cyc/deg: 4.5±0.11 (p>0.05, p<0.001, p<0.001, p<0.001, p<0.01, p>0.05, compared to baseline 

values on day 0, ANOVA). Again the increase was not significantly different from the 

previously observed increase in SC and EE mice after MD (Lehman and Löwel, 2008; 

Greifzu et al., 2014; Figure 69). 
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Figure 69: Contrast sensitivity improvements over 7 days of MD. Mice transferred from EE to SCs 

showed a significant improvement of contrast sensitivity over the MD days in all the tested spatial 

frequencies. 

 

3.6.1.2. OD-plasticity was abolished in mice transferred to SC from an EE 

After the mice have been transferred to SCs mice received an MD for 7 days either after 1 

week in SC or after 1 day in SC to induce OD-plasticity. After the end of the MD period the 

mice were optically imaged to determine V1-activation and calculate ODIs using the optical 

imaging of intrinsic signals. All mice tested here showed a contralateral dominance in the 

binocular part of V1. The activity patches induced by the stimulation of the contralateral eye 

were darker than those after stimulation of the ipsilateral eye, the ODI values were positive 

and warm color dominated the 2-dimensioned OD-map (Figure 70).  
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Figure 70: Examples of optically imaged maps from EEtoSC mice. Activity and polar maps of the 

binocular part of the left V1,ODI values, 2-dimensional OD-maps and ODI histograms for EEtoSC 

mice that received an MD 1 week (A) or 1 day (B) after the transfer from EE to SC. All mice showed a 

contralateral dominance: activity patches from the contralateral eye were darker than those from the 

ipsilateral eye, with positive ODI values and warm colors in the OD-map. Scale bar: 1 mm. 

 

After quantitative analysis of the ODIs for both groups of EE-mice transferred to SC either 1 

week before MD (EEtoSC_1week) or 1 day before MD (EEtoSC_1 day) we found that all 

mice did not display an OD-plasticity. Specifically, EEtoSC_1week mice had an average ODI 

of 0.23±0.01 (n=4, PD162-281), as well as EEtoSC_1day mice had an average ODI of 

0.23±0.03 (n=4, PD164-278). The difference between the two groups was not significant 

(p=0.759, t-test). Comparing the ODIs of EEtoSC mice with age matched EE-mice with MD 

(Greifzu et al., 2014) there was a significant difference (p<0.0001, for both groups, t-test). In 

contrast no significant difference was found between EEtoSC mice and SC-mice with MD 

(Lehmann and Löwel, 2008) of the same age (p=0.525 and p=0.426 for 1 week and 1 day 

EEtoSC mice respectively, t-test; Figure 71A).  

Further quantitative analyses of V1-activation showed a clear contralateral dominance in both 

EEtoSC groups. In EEtoSC_1week mice V1-activation after contralateral eye stimulation was 

1.54±0.24 while after ipsilateral eye stimulation was 1.08±1.18. Similarly in EEtoSC_1day 

mice V1-activation after contralateral eye stimulation was 1.92±0.07 and after ipsilateral eye 

stimulation was 1.28±0.08 (Figure 71B). Summarizing our data suggest that already after one 

week in SC OD-plasticity which was preserved in EE-mice is lost. 
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Figure 71: Quantification of ODIs and V1-activation of EEtoSC mice and comparison with EE 

and SC mice of the same age.in different age groups of EE-mice after MD. A. Optically imaged 

ODIs of EEtoSC mice (white), EE-mice (magenta; Greifzu et al., 2014) and SC-mice (grey; Lehman 

and Löwel, 2008). Symbols represent ODI-values of individuals; means are marked by horizontal 

lines. EEtoSC mice like SC-mice did not show an OD-shift and were significantly different from EE-

mice of the same age. B. V1-activation elicited by stimulation of the contralateral (C) or ipsilateral (I) 

eye after MD (black filled circle indicates MD eye). SCtoEE mice showed a clear contralateral 

dominance. 
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3.6.2. Running but not fluoxetine treatment preserved OD-plasticity in mice 

transferred from EE to SCs 

Transferring mice from a stimulating EE to more deprived environment (SC) resulted in loss 

of OD-plasticity already after 1 day of SC housing before MD. Among the factors that are 

descpribed to be changed in EE compared to SC is serotonin (for review see Sale et al. 

(2014)). Levels of serotonin were found elevated in EE-mice and administration of fluoxetine 

could mimic the effects of EE (Maya-Vetencourt et al., 2008), thus I attempted to restore OD-

plasticity in EE-mice older than PD130 transferred to SCs by keeping the serotonin levels 

elevated. To this end, the antidepressant drug fluoxetine was used as a selective serotonin 

reuptake inhibitor. Administration of fluoxetine was done via drinking water for 3 weeks 

period and aftwerwards optical imaging was performed. Additionally, mice were transferred 

from EE to SCs that were equipped with a running wheel to test wheather running is sufficient 

to restore OD-plasticity in those mice. Detailed description of the treatment, the experimental 

design and the mice groups used for this study can be found in the material and method part 

2.2.4.. In the following paragraph I will describe my findings that running but not fluoxetine 

treatment restored OD-plasticity in old EE-mice tranferred to SCs. 

 

3.6.2.1. Basic visual abilities and improvements of the optomotor reflex after 

MD were not affected by fluoxetine treatment or running 

Before and during the MD period all mice were tested in the optomotor setup (Prusky et al., 

2004) daily to access visual acuity and contrast sensitivity thresholds of the optomotor reflex. 

Baseline visual acuity values measured on day 0 were not different between treated and non-

treated animals. Specifically baseline visual acuity threshold for EEtoSC mice without 

fluoxetine treatment was 0.373±0.001 cyc/deg (n=7) and for EEtoSC mice that received 

fluoxetine treatment was 0.373±0.0002 cyc/deg, (n=9). Moreover the mice transferred from 

EE to SC with RW had a baseline visual acuity of 0.374±0.0005 cyc/deg (n=3). The 

differences among all the groups were not significant (p=0.884, ANOVA; Figure 72).  

 

Figure 72: Baseline visual acuity for 

mice transferred from EE to SCs with 

water, fluoxetine or RW. The highest 

spatial frequency elicited a response in 

optomotor setup on day 0 was similar 

between EEtoSC_water (light brown), 

EEtoSC_fluoxetine (dark brown) and 

EEtoRW (blue) mice. 
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Together with visual acuity, contrast sensitivity thresholds of the optomotor reflex were 

determined for all groups on day 0. All mice had similar baseline contrast sensitivity values in 

every one of the 6 spatial frequencies tested irrespective of the fluoxetine treatment or RW 

housing (p>0.05 for every frequency; ANOVA; Table 13).  

 

Table 13: Baseline contrast sensitivity values of the EEtoSC_water, EEtoSC_fluoxetine and 

EEtoRW mice. For the 6 different spatial frequencies the average contrast sensitivity for each group 

is listed as mean±SEM.  

Spatial 

frequency 

(cyc/deg) 

EEtoSC 

water 

(n=7) 

EEtoSC 

fluoxetine 

(n=9) 

EEtoRW 

 

(n=3) 

0.031 3.7±0.07 3.7±0.002 3.7±0.002 

0.064 13.2±0.14 13.3±0.07 13.3±0.19 

0.092 12.6±0.23 12.8±0.06 12.5±0.20 

0.103 12.1±0.09 12.4±0.02 12.0±0.11 

0.192 7.5±0.01 7.4±0.02 7.4±0.04 

0.272 3.7±0.005 3.7±0.01 3.7±0.005 

 

Visual acuity thresholds were also measured during the noMD/MD period for treated and 

non-treated animals transferred from EE to SC. As expected all mice without MD did not 

improve in visual acuity thresholds over days (EEtoSC_water/EEtoSC_fluoxetine on day 7: 

0.374±0.001/0.373±0.001 cyc/deg, n=4/4; p>0.05 for both groups compared to day 0, 

ANOVA; Figure 73B). Additionally, the visual acuity values on day 7 of treated and non-

treated with fluoxetine mice without MD was not significant (p>0.05, Bonferroni adjusted t-

test). In contrast there was a significant increase in visual acuity thresholds on day 7 for all the 

MD groups. Mice transferred from EE to SC with just water treatment and MD showed an 

increase of 21.8% which correspond to 0.455±0.002 cyc/deg on day 7 (n=3, p=0.0012, 

compared to day 0, ANOVA). Similarly, mice transferred from EE to SC with fluoxetine 

treatment and MD showed an increase of 21.5%, which is equal to 0.453±0.003 cyc/deg (n=3, 

p=0.0016, compared to day 0, ANOVA). The difference of visual acuity on day 7 between the 

MD groups (treated and non-treated was not significant (p>0.05, ANOVA; Figure 73). 

Moreover, EE-mice transferred to SC with RW increased significantly in visual acuity from 

0.373±0.005 on day 0 to 0.452±0.001 on day 7 after MD (n=3, p=0.0019, ANOVA). The 

increase was equal to 21.2%, thus not different from the other two groups 

(EEtoSC_water/EEtoSC_fluoxetine: p=0.973/0.856, ANOVA). Spatial frequency thresholds 

of the optomotor reflex over days for each mouse are presented in figure 74. 
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Figure 73: Improvement of visual acuity thresholds over days of MD in non-treated and treated 

with fluoxetine and EEtoRW mice. A. Gain on baseline is plotted as percent over days of MD for 

groups of EE-mice transferred to SC after MD. No significant difference observed between the groups 

over MD days. B. Visual acuity values in cyc/deg are plotted against days, for mice without (boxes) 

and with MD (half-filled boxes) for groups. After 7 days of MD, visual acuity improved significantly 

compared to mice without MD for the groups. MD mice did not show any differences over days. 
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Figure 74: Spatial frequency thresholds measured in EE-mice transferred to SC after treatment 

or not with fluoxetine mice as well as mice transferred to RW cage over the 7 days of noMD/MD 

period. Every line represents a single animal. A. EEtoSC mice with water without MD had the same 

visual acuity thresholds over the days. B. After 7 days of MD, EEtoSC_water mice showed an 

increase of visual acuity thresholds. C. Fluoxetine treated mice transferred from EE to SC mice 

without MD did not show any change over days. D. In EEtoSC_fluoxetine mice with MD visual acuity 

thresholds of the open eye increased over days. E. Mice transferred from EE to SC cage with a RW 

after MD showed a significant improvement in visual acuity thresholds over the MD period. 

 

Additionally, to the visual acuity thresholds, contrast sensitivity thresholds were determined 

over the 7 days of MD/noMD period at six different spatial frequencies for all groups. After 7 

days of MD both EEtoSC_water and EEtoSC_fluoxetine mice increased significantly in 

contrast to mice without MD (p<0.001 for both groups, ANOVA; Table 14, Figure 75). Also 

EEtoRW mice showed a significant improvement on the 7
th
 day compare to day 0 (p<0.001, 

ANOVA; Table 14; Figure 75). The differences among the MD groups were not significant 

(p>0.05, ANOVA; Figure 75). The contrast sensitivity values over the days for each condition 

are presented in figure 76. All MD mice showed similar improvements with previously 

described data from C57BL/6 mice (Prusky et al., 2006). All together visual capabilities of all 

mice were not affected by the treatment or the housing conditions. 
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Table 14: Contrast sensitivity values of the EEtoSC_water, EEtoSC_fluoxetine and EEtoRW 

mice on the 7
th

 day after the MD/noMD period. For the 6 different spatial frequencies tested the 

average contrast sensitivity for each group is listed as mean±SEM.  

Spatial 

frequency 

(cyc/deg) 

EEtoSC 

water 

(n=4) 

EEtoSC 

water_MD 

(n=3) 

EEtoSC 

fluoxetine 

(n=4) 

EEtoSC 

fluoxetine_MD 

(n=5) 

EEtoRW 

MD 

(n=3) 

0.031 3.7±0.008 5.2±0.13 3.7±0.004 5.0±0.06 35.0±0.13 

0.064 13.2±0.13 34.8±0.88 13.2±0.07 48.4±4.12 52.6±1.88 

0.092 12.6±0.19 32.2±0.66 12.8±0.04 42.8±3.47 45.6±1.77 

0.103 12.0±0.04 26.9±0.60 12.2±0.11 38.2±2.56 41.8±1.18 

0.192 7.4±0.03 14.0±0.52 7.5±0.03 14.6±0.77 14.5±0.35 

0.272 3.7±0.01 5.0±0.13 3.7±0.003 4.9±0.11 4.9±0.05 

 

 

Figure 75: Contrast sensitivity improvements on the 7
th

 day of EEtoSC_water, 

EEtoSC_fluoxetine and EEtoRW mice with or without MD. Mice with MD (half-filled boxes) of 

all groups improved significantly in all the tested frequencies compared to the noMD groups (filled 

boxes) on the same day. The improvement was similar in all of the MD groups. 
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Figure 76: Mean contrast sensitivity thresholds over days of mice transferred from EE to SC 

with or without fluoxetine treatment and mice transferred to RW cage. Day 0 represents the 

baseline values before MD. A. In EEtoSC_water mice without MD contrast sensitivity remained stable 

over days. B. After 7 days of MD in the same group of mice the contrast sensitivity of the open eye 

increased significantly. C. EEtoSC mice with fluoxetine treatment without MD did not improve over 

days. D. EEtoSC_fluoxetine mice with MD showed a significant improvement over days in contrast 

sensitivity thresholds. E. EE-mice transferred to RW cage with MD showed a significant improvement 

over the MD period. 

 

3.6.2.2. An OD-shift was observed in mice transferred to RW cage but not in 

fluoxetine-treated animals 

To investigate whether fluoxetine treatment or running restored OD-plasticity in mice 

transferred from EE to SC, optical imaging was performed after three weeks of treatment in 
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mice moved to SC. V1-activation after stimulation of each eye and ODIs were calculated for 

every mouse. Treated and non-treated with fluoxetine mice without MD showed a 

contralateral dominance in the binocular part of V1. V1-activity patches after stimulation of 

the contralateral eye were always darker than those after ipsilateral eye stimulation, the 

calculated average ODIs were positive, and warm colors prevailed in the 2-dimensional OD-

maps (Figure 77A and C). Likewise, MD in EE-mice transferred to SC without fluoxetine 

treatment did not change the ocular dominance: activity patches after contralateral (deprived) 

eye stimulation in binocular V1 were stronger than those after ipsilateral eye stimulation and 

the average ODI was positive with warm colors dominating the 2-dimensional OD-map 

(Figure 77B). Fluoxetine treatment also did not affect the OD in EEtoSC mice with MD. 

Again here, V1-activation after contralateral eye stimulation was stronger than after ipsilateral 

eye stimulation, ODI values were positive and the 2-dimensional OD-map was colored mainly 

with warm colors (Figure 77D). In contrast, MD in mice transferred from EE to a cage with a 

RW caused an OD-shift towards the open eye: V1-activation was equally strong after 

contralateral (deprived) and ipsilateral (open) eye stimulation, colder colors predominated in 

the OD-map and the ODI-histogram was shifted to the left (Figure 7 E).  
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Figure 77: Examples of maps acquired from EE-mice transferred to SCs without or with MD 

after treatment with water, fluoxetine or RW. Optically recorded activity maps after stimulation of 

the contralateral and ipsilateral eye in the binocular region of mouse primary visual cortex (V1), of 

EEtoSC mice with water (A and B), with fluoxetine (C and D) or with RW (E), before (A and C) and 

after MD (B, D and E) are illustrated. For every example grayscale-coded response magnitude maps, 

polar maps, 2-dimensional OD-maps and the histogram of OD-scores including the average OD-index 

(ODI) are illustrated. In all groups transferred to SC with fluoxetine treatment or water only, MD did 

not change the contralateral dominance: activity patches evoked by stimulation of the contralateral eye 

were darker than those of the ipsilateral eye, the average ODI was positive, and warm colors prevailed 

in the OD-maps, indicating contralateral dominance (A, B, C and D). In mice transferred from an EE 

to a SC with a RW, MD induced a strong OD-shift towards the open eye (E): the contra- and 

ipsilateral eye activated V1 about equally strong, colder colors appeared in the OD-map, and the 

histogram of OD-scores shifted to the left (blue arrow). Scale bar: 1 mm. 

 

The calculated ODIs after analyses of V1-activation for all recorded maps did not reveal any 

OD-shift in treated and non-treated with fluoxetine EE-mice transferred to SC after MD. The 

average ODI of EEtoSC_water mice without MD was 0.22±0.05 (n=4, PD266-274) and 

remained unchanged after MD: 0.22±0.01 (n=3, PD266-269; p=0.956, Bonferroni-adjusted t-

test). Additionally, EEtoSC mice treated with fluoxetine for 3 week displayed an average ODI 

of 0.24±0.04 without MD (n=4, PD260-284) and 0.26±0.01 after MD (n=3, PD278-283). 

There was not a significant difference in mice with and without MD (p=0.732, Bonferroni-

adjusted t-test). The ODI values were also not significantly different between treated and non-

treated with fluoxetine mice after MD (p=0.327, Bonferroni-adjusted t-test). However, the 

average ODI for EEtoRW mice with MD was closer to zero, thus significantly different to the 

other MD groups (0.21±0.01, n=3, PD211-298; p<0.01, for every group comparison, 

Bonferroni-adjusted t-test; Figure 78A). 

V1-responses after each eye stimulation were further analyzed for all the mice transferred 

from EE to SC or RW cage. As MD did not change the OD in fluoxetine treated or non-

treated mice transferred to SC the V1-activities were stronger after contralateral stimulation 

than after ipsilateral and remained unchanged after MD. In more detail, in EEtoSC_water 

group V1-activity after stimulating the contralateral eye was 1.57±0.08 whereas after MD was 

0.95±0.08. Similarly, ipsilateral eye responses remained mainly unchanged without and with 

MD (noMD/MD: 1.03±0.12/0.72±0.04). Although the V1-activation in EEtoSC_water group 

with MD where reduced for both eyes compare to noMD group, the difference was not 

significant and V1 was still dominated by contralateral responses (MD/noMD comparison: 

contra-/ipsilateral: p=0.173/0.443, t-test; contra-/ipsilateral comparison for the MD group: 

p=0.026, t-test). After MD in EEtoSC_fluoxetine mice the V1-activation after contralateral 

eye stimulation was 1.48±0.18 and after ipsilateral eye stimulation was 0.84±0.14, while 

without MD had a V1-activation of 1.40±0.09 after stimulation of the contralateral eye and 

0.95±0.14 after ipsilateral eye stimulation. Neither of these were significantly different 

(contralateral: p=0.707, t-test; ipsilateral: p=0.609, t-test). At last, mice transferred from EE to 

RW-cage after MD showed equally strong V1-activation after each eye stimulation: 

contralateral: 1.08±0.07, ispilateral: 1.17±0.66 (p=0.323, t-test; Figure 78B). Comparing the 
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V1-activation after contralateral eye stimulation of the EEtoRW mice with the contralateral 

activation of all the other groups, it was significantly lower (p<0.05, for all comparisons, t-

test) suggesting that the OD-shift in those mice is mediated by reduction in deprive eye 

responses in V1. In conclusion, 3 weeks of fluoxetine treatment did not restore OD-plasticity 

in EE-mice transferred to SCs, while running could restore OD-plasticity in those mice. 

 

Figure 78: ODIs and V1-activation of EE-mice transferred to SCs. A. Optically imaged ODIs 

without and with MD of non-treated (light brown), treated with fluoxetine (brown) and mice 

transferred to a cage with a RW (blue). Symbols represent ODI-values of individuals; means are 

marked by horizontal lines. Only EEtoRW mice showed an OD-shift after MD. B. V1-activation 

elicited by stimulation of the contralateral (C) or ipsilateral (I) eye without and after MD (black filled 

circle indicates MD eye). In EEtoSC treated and non-treated mice there is a clear contralateral 

dominance, whereas in EEtoRW mice V1-activation of both eye is equally strong. The OD-shift in 

EEtoRW mice is mediated by reduced contralateral eye responses in V1. 

 



Results  

 

116 

 

3.6.2.3. Fluoxetine treatment did not affect the formation and the strength of V1 

maps 

In order to study whether fluoxetine has an impact on the signaling circuits of V1, V1-

activation and map quality measurements were performed in EE-mice transferred to SC after 

water or fluoxetine treatment with optical imaging. Data were acquired, while stimulating the 

right eye with a full length moving bar in elevation (horizontal) or azimuth (vertical) 

direction. No differences were found concerning the signal strength or the quality of the 

retinotopic maps between non-treated or treated mice with fluoxetine (Figure 79). After 

elevation stimulation V1-responses of EEtoSC_water mice were on average 2.45±0.44 and 

not significantly different from V1-responses of EEtoSC_fluoxetine mice which was 

2.55±0.25 (p=0.833, t-test). Likewise after azimuth stimulation the V1-activities evoked by 

right eye stimulation were similar between the non-treated and fluoxetine-treated mice 

(water/fluoxetine: 2.13±0.22/2.12±0.24; p=0.97, t-test). Additionally, map quality 

measurements were performed, as an indicator for the quality of the retinotopic maps. After 

elevation stimulation the map quality for the EEtoSC_water group was 1.88±0.70, and for the 

EEtoSC_fluoxetine group was 3.09±1.15. The differences on map quality among the two 

groups were not significant (p=0.403, t-test). Also no differences were detected after azimuth 

stimulation between the two tested groups with map quality of 2.85±0.91 for EEtoSC_water 

mice and 4.71±1.09 for EEtoSC_fluoxetine mice (p=0.232, t-test; Figure 80). Altogether these 

data suggest that fluoxetine treatment did not affect V1-activation or quality of the retinotopic 

maps. 

 

Figure 79: Examples of retinotopic and activity maps after elevation and azimuth stimulation 

recorded from EEtoSC mice without or with fluoxetine treatment. There were no differences in 

the quality or activation strength of the maps between the treated and non-treated mice neither for 

elevation nor for azimuth stimulation. Scale bar: 1 mm. 
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Figure 80: Fluoxetine treatment had no effect either on V1-activation or on the quality of the 

retinotopic maps. Comparison of V1-activation (left side) and map quality (right side) after right eye 

stimulation non-treated (light brown) and fluoxetine-treated (brown) mice after transfer from EE to 

SC, for both elevation (top) and azimuth (bottom) stimulation. For both groups the acquired maps 

were identical without significant differences in signal strength or quality of retinotopy for both 

stimuli. 

 

3.6.2.4. Fluoxetine treatment did neither change the average water consumption 

nor the body weight of the mice 

The administration of fluoxetine to the mice was done through drinking water. For this study 

dripping free bottles were used, the amount of the water consumption (with or without 

fluoxetine) was measured daily during the 3 weeks of treatment and an average daily 

consumption was calculated. As mice were housed in groups of 3 to 5 animals per cage the 

amount of water consumed per cage was divided by the number of the mice housed in every 

cage to calculate an average consumption per mouse per day. Mice drinking just water 
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consumed on average 4.01±0.18 ml per day and mice drinking water with fluoxetine drunk on 

average 3.64±0.25 ml per day. Although fluoxetine-treated mice drunk less, the difference 

was not significant from the water group (p=0.237, t-test; Figure 81A). For this study the 

desired concertation of fluoxetine per mouse (10 mg/kg) was calculated based on the average 

mouse weight and assuming that the mice drink on average 5 ml of water per day. We 

observed that our mice drunk less than 5 ml per day (3.64±0.25 ml in case of fluoxetine) 

which is translated to 7.28 mg/kg fluoxetine per day. 

Together with the amount of drinking water the weight of each mouse was measured daily 

during the 3 weeks treatment. Mice that drunk only water, had an average weight of 

19.81±0.50 g when transferred to SCs which increased to 23.7±0.21 g on the last day of 

treatment. Similarly, fluoxetine-treated mice had an average weight of 23.10±0.30 g when 

transferred to SC and reached 24.3±0.38 g on the last day of treatment. There was no 

significant change of weight observed in animals during the SC housing period (p=0.078, 

ANOVA) and both groups had comparable weight on the last day (p=0.146, t-test; Figure 

81B). Furthermore, the weight of the mice was similar to the weight of comparable age mice 

described in the literature (23.6±2.3 g, JAX
®
 Mice, Clinical & Research Services).  

 

Figure 81: No differences in drinking amount and body weight between water and fluoxetine 

treated mice. A. Average drinking amount per day per mouse in ml for water (light brown) and 

fluoxetine (brown) treated animals. No significant differences in drinking amount observed. B. 

Average weight of water (light brown) and fluoxetine (brown) treated mice over the 21 days of 

treatment. The weight of the mice was comparable and no weight gain or loss was observed. 

 

3.3.2.5. Social grouping did not affect OD-plasticity 

Initially when mice transferred from EE to SC to investigate for how long OD-plasticity 

persist (part 3.6.1.) mice were housed alone in a SC. Afterwards, non-treated mice transferred 

from EE to SC were housed in group of 3 to 5 animals per cage (part 3.6.2.) By comparing 

these two groups we can reveal any possible effect of social grouping in OD-plasticity. As 

there were no significant differences between the EEtoSC_1week and EEtoSC_1day groups, I 
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pooled the data for this comparison. Mice that were transferred from EE to SC alone had an 

average ODI of 0.23±0.01 and were not significantly different from the mean ODI of EE-

mice transferred in SCs in groups without treatment (EEtoSC_water group) which was 

0.22±0.05 after MD (p=0.564, t-test; Figure 82A). Analysis of the V1-activation after contra 

or ipsilateral eye stimulation for both groups also did not show any difference. V1-activation 

after contralateral eye stimulation was 1.73±0.13 for the EEtoSC group and similar to the 

EEtoSC_water group: 1.56±0.08 (p=0.447, t-test). Likewise V1-activation after ipsilateral eye 

stimulation was not different between the groups (EEtoSC/EEtoSC_water: 

1.18±1.10/1.03±0.12, p=0.393, t-test; Figure 82B). These data suggest that social grouping is 

not one of the major players regarding the presence of OD-plasticity. 

 

Figure 82: ODIs and V1-activation of EE-mice housed alone or in groups after being transferred 

to SCs A. Optically imaged ODIs of mice house alone (white) and mice house in groups (light 

brown). Symbols represent ODI-values of individuals; means are marked by horizontal lines. Social 

grouping had no effect on ODIs. B. V1-activation elicited by stimulation of the contralateral (C) or 

ipsilateral (I) eye. In both cases mice displayed a clear contralateral dominance. 

 

3.7. Adult mice born in SC from EE parents still showed OD-plasticity 

OD-plasticity in the mouse V1 declines with age in SC raised animals but can be preserved in 

mice raised in an EE (Greifzu et al., 2014). Motivated by a recent study showing that juvenile 

enrichment rescued a genetic defect in long-term potentiation also in the non-enriched 

offspring of the enriched mice (Arai et al., 2009), I was interested to investigate if the 

plasticity-promoting effect of EE could also be transferred from EE-parents to pups born and 

raised exclusively in SCs. To this point, pregnant EE-mothers were transferred to SCs a few 

days before delivery (6-10 days). Offspring were raised in SCs into adulthood (>PD120) and 

then OD-plasticity after MD was analyzed using intrinsic signal optical imaging. 

Additionally, I tested which parent is responsible for transmitting the positive effect of EE on 
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OD-plasticity to the next generation of non-enriched parents. For this purpose EE-females 

were mated with SC-males, or EE-males with SC-females. All the pups were born and raised 

in SCs at least until they were at least 120 days old before induction of MD and then imaging 

was performed. Details of the mice groups used for this study as well as the experimental 

design are described in Material and Method section (part 2.2.5.). Results from this 

investigation, which revealed that the positive effect of EE can be transferred to the next 

generation and most likely by the mothers are described below. 

 

3.7.1. Basis visual abilities and improvements of the optomotor reflex are not 

changed in mice born in SCs from EE-parents, EE-fathers or EE-mothers 

Initially using the virtual reality optomotor setup the baseline visual acuity and contrast 

sensitivity thresholds of the optomotor reflex were determined in adult mice (>PD120) born 

and raised in SCs from EE-parents, only EE-father and only EE-mother. The baseline visual 

acuity of EE-parents mice was 0.38±0.001 cyc/deg (n=11), of EE_father mice was 0.38±0.001 

cyc/deg (n=11) and for EE-mother mice was 0.39±0.001 cyc/deg (n=9). There were no 

significant differences observed between the groups (p=0.392, ANOVA; Figure 83). 

Moreover, the values were similar to those previously published for EE (Greifzu et al., 2014) 

or SC C57BL/6J mice (Prusky et al., 2006). 

 

Figure 83: Baseline visual acuity of mice born in SC from EE-parents, EE-father or EE-mother. 

The highest spatial frequency that elicited a response in the optomotor setup on day 0 was similar 

between EE-parents (yellow), EE-father (light green) and EE-mother (green) mice. 

 

The baseline contrast sensitivity thresholds of the optomotor reflex were also determined for 

the three mice groups of non-enriched offspring at six different frequencies (0.031, 0.064, 

0.092, 0.103, 1.192 and 0.272 cyc/deg; Table 15). The baseline contrast sensitivity values 

measured were similar for all the groups (p>0.05 for every spatial frequency and comparison, 

ANOVA). Our data were also comparable to those described before for EE (Greifzu et al., 
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2014). Taking together our observations so far there was no effect on baseline visual abilities 

of mice born in SCs from EE-parents, EE-father or EE-mother. 

 

Table 15: Baseline contrast sensitivity values of mice born in SC from EE-parents, EE-father or 

EE-mother. For the 6 different spatial frequencies tested the average contrast sensitivity for each 

group is listed as mean±SEM.  

Spatial 

frequency 

(cyc/deg) 

EE-parents 

(n=11) 

EE-father 

(n=11) 

EE-mother 

(n=9) 

0.031 3.7±0.06 3.7±0.04 3.6±0.03 

0.064 12.3±0.31 13.0±0.43 14.3±0.29 

0.092 11.6±0.28 12.1±0.30 13.7±0.27 

0.103 11.0±0.20 11.4±0.26 13.1±0.22 

0.192 7.7±0.14 7.5±0.10 7.7±0.07 

0.272 3.7±0.05 3.6±0.04 3.6±0.03 

 

Afterwards, MD was performed is some of the animals and the visual acuity and contrast 

sensitivity thresholds of the optomotor reflex were tested in the virtual reality optomotor setup 

daily for all mice groups (without and with MD). The highest spatial frequency elicited a 

response on the 7
th

 day was 0.45±0.003 cyc/deg for the EE-parents mice after MD (n=7; 

Figure 85B), while for the EE-parents mice without MD was 0.39±0.001 cyc/deg (n=5; Figure 

85A). The difference on day 7 between mice without and with MD was significant (p=0.0008, 

Bonferroni adjusted t-test; Figure 84). EE-father mice had a “visual acuity” of 0.46±0.002 

cyc/deg on day 7 after MD (n=5; Figure 85D), which was significantly higher of the EE-

father mice without MD (0.38±0.001 cyc/deg, n=6; Figure 85C; p=0.0007, Bonferroni 

adjusted t-test). Likewise, EE-mother mice with MD had a “visual acuity” of 0.44±0.003 

cyc/deg on day 7 (n=5; Figure 85E), while EE-mother mice without MD had a value of 

0.39±0.002 cyc/deg on the 7
th

 day (n=5; Figure 85E). The “visual acuity” values between EE-

mother without and with MD on day 7 were significant different (p=0.0084, Bonferroni 

adjusted t-test). All the MD groups increased significantly in visual acuity thresholds from 

day 0 to day 7 (p<0.001 for EE-parents and EE-father, p<0.01 for EE-mothers, ANOVA), but 

no significant difference was observed among the MD groups on day 7 (p>0.05, ANOVA). 

On the other hand all mice without MD did not show any improvement in visual acuity 

thresholds over the days (p>0.05, ANOVA; Figure 84; Figure 85). 
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Figure 84: Improvement of visual acuity thresholds over days of MD in mice born in SCs from 

EE-parents, EE-father and EE-mothers. A. Gain on baseline is plotted as percent over days of MD 

for groups of EE-parents, EE-fathers and EE-mothers mice. No significant difference observed 

between the groups over MD days. B. Visual acuity values in cyc/deg are plotted against days, for 

mice without (boxes) and with MD (half-filled boxes) for all groups. After 7 days of MD, visual acuity 

improved significantly compared to mice without MD for all the groups. Mice without MD did not 

show any differences over days. 
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Figure 85: Spatial frequency thresholds over days measured in mice born in SCs from EE-

parents, EE-fathers or EE-mothers. Every line represents a single animal. A. Offspring of EE-

parents born in SCs without MD had same visual acuity thresholds over the days. B. After 7 days of 

MD, non-EE mice of EE parents showed an increase of visual acuity thresholds. C. Mice born in SCs 

from EE fathers without MD did not show any change over days. D. In EE-fathers group after MD 

visual acuity thresholds of the open eye increased over days. E. Non-enriched offspring of EE-mothers 

without MD did not show any change over the days. F. Mice born in SCs from EE-mothers showed a 

significant improvement in visual acuity thresholds over the MD period. 

 

The contrast sensitivity thresholds of the optomotor reflex of the open eye were also increased 

significantly in offspring of EE-parents after MD compared to day 0 (p>0.05, p<0.001, 

p<0.001, p<0.001, p<0.01, p>0.01 for the six spatial frequencies tested, compared to values 

from day 0, ANOVA). Similar increase was observed in mice from EE-father after MD 

(p>0.05, p<0.001, p<0.001, p<0.001, p<0.01, p>0.05, compared to day 0, ANOVA; Table 16) 

and in mice from EE-mother (p>0.05, p<0.001, p<0.001, p<0.001, p<0.01, p>0.05, compared 

to day 0, ANOVA; Table 16). The values on day 7 were not different between the three 

groups (p>0.05 for every frequency and group comparison, ANOVA; Figure 86; Figure 87). 

In mice without MD from all groups contrast sensitivity thresholds remained unchanged over 

the days (p>0.05 for every frequency in each group, ANOVA).  
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Table 16: Contrast sensitivity values of mice born in SC from EE-parents, EE-father or EE-

mother on the 7
th

 day of MD/noMD period. For the 6 different spatial frequencies tested the average 

contrast sensitivity for each group is listed as mean±SEM.  

Spatial 

frequency 

(cyc/deg) 

EEparents 

 

(n=4) 

EEparents 

MD 

(n=7) 

EEfathers 

 

(n=6) 

EEfathers 

MD 

(n=5) 

EEmothers 

 

(n=5) 

EEmothers 

MD 

(n=4) 

0.031 3.8±0.35 4.8±0.18 3.7±0.08 4.9±0.12 3.6±0.04 4.3±0.06 

0.064 12.9±3.26 24.9±1.12 13.3±0.21 25.9±0.51 14.1±0.37 22.6±0.27 

0.092 11.9±2.64 22.5±0.89 12.3±0.20 22.0±0.44 13.7±0.38 21.5±0.34 

0.103 11.4±2.44 20.8±0.69 11.4±0.09 20.2±0.31 13.0±0.31 20.5±0.38 

0.192 8.2±1.31 12.4±0.26 7.7±0.12 11.7±0.28 7.7±0.15 11.4±0.25 

0.272 3.8±0.27 4.7±0.11 3.7±0.11 4.7±0.09 3.6±0.03 4.3±0.03 

 

 

Figure 86: Contrast sensitivity improvements after 7 days of MD in mice born in SCs from EE-

parents, EE-fathers and EE-mothers. Mice with MD (half-filled boxes) of all groups improved 

significantly in four out of six tested frequencies compared to the noMD groups (filled boxes) on the 

same day. The improvement was similar in all of the MD groups. 
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Figure 87: Mean contrast sensitivity thresholds over days in mice born in SCs from EE-parents, 

EE-fathers or EE-mothers. Day 0 represents the baseline values before MD. A. In mice born in SCs 

from EE-parents without MD contrast sensitivity remained stable over days. B. After 7 days of MD in 

the same group of mice (EEparents) the contrast sensitivity of the open eye increased significantly. C. 

Mice born in SCs from EE-fathers without MD did not improve over days. D. The EEfathers group 

after MD showed a significant improvement over days in contrast sensitivity thresholds. E. Offspring 

of EE-mothers born in SCs without MD did not show any change over the days. F. Same group of 

mice (EEmothers) after MD showed a significant improvement over the MD period. 
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3.7.2. OD-shift observed in mice born in SC from EE-parents and EE-mothers 

but not in mice from EE-fathers. 

Plasticity changes were investigated in mice born in SCs from EE-parents, EE-father, or EE-

mother using the method of optical imaging of intrinsic signal. Mice without MD for all 

groups showed a contralateral dominance: V1-activation in the binocular zone of V1 were 

always stronger than those after ipsilateral eye stimulation, the calculated average ODIs were 

positive, and warm colors prevailed in the 2-dimensional OD-maps (Figure 88A, C and E). 

Mice from EE-parents with MD showed an OD-shift: activity patches after contralateral 

(deprived) eye stimulation in binocular V1 were equally strong to the activity patches after 

ipsilateral eye stimulation in V1, the average ODI had values closer to zero, colder colors 

dominated the 2-dimensional OD-map and the histogram was shifted to the left (Figure 88B). 

In contrast, non-EE mice from EE-father and SC-mother after MD did not show any change 

after MD. Here, V1 was still dominated by contralateral eye activation whereas ipsilateral eye 

activation in V1 was significantly lower, the calculated ODIs were positive and warm colors 

dominated the 2-dimensional OD-map (Figure 88D). In case of non-EE mice born from EE-

mother and SC-fathers after MD each eye stimulation was activating V1 equally strong, the 

ODI values were closer to zero, the OD-map predominated by colder colors and the OD-

histogram shifted to the left, suggesting the presence of OD-plasticity (Figure 88F). 
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Figure 88: Examples of optical imaging recorded maps from mice born in SC from EE-parents, 

EE-father and EE-mothers with or without MD. Activity and polar maps of the binocular part of 

V1 and ODI values of the left hemisphere measured with optical imaging of intrinsic signals in mice 

born in SC from EE-parents (A, B), EE-fathers (C, D) and EE-mothers (E, F). Mice without MD (A, 

C and E) showed a contralateral dominance with stronger activities after stimulation of the 

contralateral eye, positive ODI values and warm colors in the 2-dimesional OD-map. After 7 days of 

MD mice born in SC from EE-parents or EE-mothers (B, F) an OD-shift was observed, both eyes 

activated V1 equally strong, lower ODI values, colder color in OD-maps and a shift of the histogram 

to the left (blue arrows) was observed, while in mice born from EE-fathers the V1 remained dominated 

by the contralateral eye (C) like in mice without MD. Scale bar: 1 mm. 

 

Further quantitative analysis of the ODIs for every group revealed that non-EE offspring of 

EE-parents displayed an OD-shift after MD implying that the positive effect of EE on OD-

plasticity can be transferred to the next generation. Non-EE mice from EE-fathers did not 

show an OD-shift after MD whereas non-EE mice from EE-mother did, suggesting that the 
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responsible parent is the mother for transmitting the OD-plasticity to the next generation. 

Specifically, non-EE mice from EE-parents had an ODI of 0.26±0.02 without MD (n=4, 

PD131-205) which decreased significantly to 0.13±0.01 after 7 days of MD (n=7, PD130-

261; p=0.0002, t-test). The non-EE offspring of EE-fathers displayed an ODI of 0.22±0.03 

without MD (n=6, PD127-188) which was not significantly changed after MD (0.16±0.02; 

n=5, PD132-194; p=0.177, t-test). Non-EE offspring of EE-mothers showed an OD-shift after 

MD: ODI reduced from 0.25±0.01 in mice without MD (n=5, PD142-171) to 0.12±0.03 in 

mice with MD (n=4, PD142-177; p=0.0024, t-test; Figure 89A). Differences between mice of 

all groups without MD were not significant (p>0.05, ANOVA). Additionally, the difference in 

ODIs between mice from EE-parents and EE-mother after MD was also not significant 

(p>0.05, t-test). 

V1-responses, after stimulation of each eye, were further quantified to investigate changes 

after the 7 days of MD. For non-enriched offspring of EE-parents V1 activation after 

contralateral eye stimulation was 2.02±0.13 in mice without MD, whereas after MD 

degreased significantly to 1.39±0.11 (p=0.0068, t-test). In contrast, open (ipsilateral) eye 

responses remained unchanged between MD and no MD mice of the same group (noMD/MD: 

1.20±0.09/1.21±0.10, p=0.897, t-test). In mice born in SC from EE-fathers and SC-mother the 

activation of V1 after contralateral eye stimulation did not change significantly in mice with 

or without MD (with/without MD: 1.36±0.28/1.67±0.17; p=0.358, t-test). Similarly V1-

activation after ipsilateral eye stimulation remained unchanged in the same group of mice 

with or without MD (with/without MD: 1.04±0.18/1.06±0.13; p=0.924, t-test). At last SC 

offspring of EE-mothers showed a V1-activation after contralateral eye stimulation of 

1.50±0.09 without MD and 1.69±0.16 with MD. The difference on V1-activation between 

MD and noMD mice was not significantly different (p=0.307, t-test). The V1-activation after 

ipsilateral eye stimulation of mice born in SCs from EE-mothers was 1.00±0.10 without MD 

and increased to 1.34±0.12 after MD but the increase was not significant (p=0.054, t-test; 

Figure 89B). Together our data suggest that the positive effect of EE on OD-plasticity of adult 

mice can be transmitted to the next generation of non-enriched mice, and the responsible 

parent is the mother. 
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Figure 

89: ODIs and V1-activation of mice born in SCs from EE-parents, EE-fathers or EE-mothers. A. 

Optically imaged ODIs without (filled boxes) and with MD (half-filled boxes). Symbols represent 

ODI-values of individuals; means are marked by horizontal lines. Offspring of EE-parents (yellow) 

and of EE-mothers (green) showed an OD-shift after MD, while offspring of EE-fathers (light green) 

did not. B. V1-activation elicited by stimulation of the contralateral (C) or ipsilateral (I) eye without 

and after MD (black filled circle indicates MD eye). In mice born in SCs from EE parents the observed 

OD-shift was mediated by decreased deprived eye (contralateral) responses in V1. There were no 

significant changes in the other groups in V1-responses. In EE-mothers group after MD an increase in 

open eye responses (ipsilateral) in V1 was observed but was not significant (p=0.054, t-test). 

 

Standard cage mice of this age (>PD110) did not show OD-plasticity (Lehmann and Löwel, 

2008) while EE-mice older that >PD110 display a strong OD-shift towards the open eye. The 

OD-shift in EE-mice is mainly mediated by reduced closed eye responses in V1 (juvenile-like 

shift; Greifzu et al., 2014). Comparison of the data from mice born and raised in SC from EE-



Results  

 

130 

 

parents, EE-fathers or EE-mothers with previously published data of adult mice born and 

raised in EE (Greifzu et al., 2014) or in SC (Lehmann and Löwel, 2008) revealed that the 

observed OD-shift in the EE-parents group is similar to the same age EE-mice (Figure 90). In 

both groups a change in the OD is observed after MD and quantification of the V1-responses 

showed that after MD, closed eye stimulation resulted in a weaker activation of V1. Thus, we 

can conclude that OD-plasticity observed in adult offspring of EEparents and EEmothers is 

similar to the one observed in EE mice of the same age, while SC mice of similar age do not 

show OD-plasticity any more. 

 

Figure 90: ODIs and V1-activation of mice born in SCs from EE-parents, EE-fathers or EE-

mothers. A. Optically imaged ODIs without (filled boxes) and with MD (half-filled boxes). Symbols 

represent ODI-values of individuals; means are marked by horizontal lines. Offspring of EE-parents 

(yellow) and of EE-mothers (green) showed an OD-shift after MD, while offspring of EE-fathers 

(light green) did not. Mice born and raised in EE (purple) showed a strong OD-shift after 7 days of 

MD (Greifzu et al., 2014). Same age SC-mice did not show any change in the OD (Lehmann and 

Löwel, 2008) B. V1-activation elicited by stimulation of the contralateral (C) or ipsilateral (I) eye 

without and after MD (black filled circle indicates MD eye). In mice born in SCs from EE parents the 

observed OD-shift was mediated by decreased deprived eye (contralateral) responses in V1 and is 

similar to the one observed in mice born and raised exclusively in EE.  

 



Discussion  

 

131 

 

4. Discussion 

4.1. Summary of the results 

Neuronal plasticity is crucial for proper development and function of the central nervous 

system. As the brain matures, its ability to change declines, together with that the ability to 

learn, memorize or recover from various brain injuries. One of the approaches shown to 

improve brain plasticity is enriched environment (EE). The work presented in my dissertation 

investigated the influence of EE on ocular dominance (OD) plasticity of mice. There are 

couple major differences between housing conditions of mice. In particular, EE-mice are 

housed in a bigger cage, in larger groups (up to 16 animals per cage) with a variety of 

stimulatory objects like running wheels, maze, ladder and tunnel. Thus, EE provides optimal 

environment for enhanced exploration, social interaction, cognitive stimulation and voluntary 

physical training (van Praag et al., 2000). In a recent study from our laboratory we showed 

that raising mice in EE prolonged OD-plasticity into adulthood up to PD196 (oldest mouse 

tested; Greifzu et al., 2014). Additionally, EE-housing could restore OD-plasticity in adult 

mice transferred from standard cages (SCs) to EE when they were older than PD110, whereas 

OD-plasticity was abolished at this age, when mice were housed in SC. The OD-plasticity in 

EE-mice was “juvenile-like”, as changes were mainly mediated by reduction of deprived eye 

responses in V1 (Greifzu et al., 2014). Moreover, we examined if EE could prolong OD-

plasticity further into older age (up to PD809) and if OD-plasticity continues to be “juvenile-

like”. We found that OD-plasticity was preserved for life in mice housed in EE. Interestingly, 

EE-mice above PD400 did not show “juvenile OD-plasticity”, but revealed adult like OD-

plasticity mediated by increased open eye responses in V1. Further, behavioural tests reviled 

that visual abilities were unaffected in EE raised old mice. 

Typical “juvenile OD-plasticity” of SC-mice is characterized by strong OD-shifts upon 3-4 

days of monocular deprivation (MD; Espinosa and Stryker, 2010). I showed, here, that 4 days 

of MD can induce such a strong OD-shift not only in EE mice during the critical period but 

also during adulthood (up to PD200). Critical period EE-mice similarly to SC-mice (Sato and 

Stryker, 2008) exhibited a strong OD-shift that was mainly mediated by a decrease in closed 

eye responses in V1. Interestingly, an OD-shift in older EE-mice in contrast to critical period 

EE-mice was a result of an increase in open eye responses in V1, normally only observed 

after 7 days of MD in adult SC-mice (Sato and Stryker, 2008). To understand this difference I 

performed extra experiments, which revealed that that old EE mice had a significant OD-shift 

already after 2 days of MD, and this shift is getting stronger if the MD persists. This finding 

suggests that EE-raised mice might have different mechanisms that allow the visual cortex 

plasticity to occur and understanding it seek further investigations.  

To better understand the effects of EE on visual cortex plasticity I investigated one of the 

main components of EE, which is the running wheel (RW). To test the effect of physical 

exercise on OD-plasticity mice were raised in a SC with a RW. We showed that RW-raised 

mice continued to display OD-plasticity into adulthood, unlike mice without a RW. 

Additionally, running for 7 days was already sufficient to restore OD-plasticity in adult SC-
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raised mice (up to PD242). The OD-shift of RW-mice was mediated by decreased deprived 

eye responses in V1 (Kalogeraki et al., 2014), similar to the critical period SC-mice after 4 

days of MD (Sato and Stryker, 2008). Moreover, we found that physical exercise preserved 

OD-plasticity in old mice after a cortical lesion in S1 with a therapeutic effect on mice OD-

plasticity after a localized cortical stroke. 

Although EE-raised mice displayed OD-plasticity into adulthood, it was unknown whether 

this effect of EE on OD-plasticity is reversible when mice are transferred to SCs. After 

transferring EE-raised mice in SCs, I found that OD-plasticity of EE-mice rapidly declines. 

Within 1 week of SC housing the OD-plasticity was already abolished. To start to elucidate 

the mechanism responsible for this fast loss of plasticity I performed pharmacological 

treatment with fluoxetine as well as tested the therapeutic effect of RW. Although, fluoxetine 

did not restore OD-plasticity in these mice, transferring the mice from EE to a SC with a RW 

preserved OD-plasticity. Striking influence of EE on adult mice plasticity prompted us to 

investigate the impact of EE housing on future non-EE offspring. In particular, I found that 

OD-plasticity can be passed on to the next generation of non-enriched mice. Only offspring of 

EE-mothers and SC-father showed an OD-shift after MD suggesting maternal involvement.  

My dissertation emphasizes the importance of the environment not only on healthy brain 

plasticity but also in the recovery of diseased brain after stroke. We could successfully 

indicate that minimal level of physical exercise keeps the brain “fitter”. Most importantly, old 

mice with no previous running experience benefit significantly from short running regime, 

similar to mice with life-long access to running. However, a continuous enrichment is 

necessary to keep the brain younger and more plastic. On the other hand, a more restricted 

environment leads to plasticity loss. Finally, we can suggest that the parent’s environment and 

the level of enrichment greatly impact the OD-plasticity of future generations.  

4.2. The positive effect of EE on OD-plasticity 

Conventionally, mice are raised in SCs with no access to stimulatory objects and possibilities 

of extensive social interactions (housed either alone or in a group up to 4 animals). As a 

result, visual cortical plasticity rapidly declines with age and is usually absent beyond PD110 

(Espinosa and Stryker, 2012; Levelt and Hübener, 2012). In contrast, mice housed in larger 

and more stimulating EE-cages, get the opportunity for more social interactions, physical 

exercise and cognitive stimulation. EE housing is known to promote plasticity mechanisms in 

rats (Sale et al., 2004; Sale et al., 2007; Baroncelli et al., 2010b). Studies in adult rats showed 

that 2 to 3 weeks of EE-housing promotes OD-plasticity in V1 after MD (Sale et al., 2007; 

Baroncelli et al., 2010b; Baroncelli et al., 2012; Scali et al., 2012). We showed for the first 

time that mice raised from birth in EE has a great influence on adult mice OD-plasticity 

(Greifzu et al., 2014). In our study, EE-raised mice above PD110 continued to show a strong 

OD-shift compared to SC-raised mice of a similar age when measured with optical imaging of 

intrinsic signals (Lehmann and Löwel, 2008). Interestingly, the OD-shift observed in adult 

EE-raised mice was juvenile-like: the OD-shift was mediated by reduced V1 responses after 

deprived eye stimulation as observed in juvenile SC-mice during the critical period (Hofer et 

al., 2006a; Heimel et al., 2007; Sato and Stryker, 2008). Our data suggest that EE can prolong 
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the sensitive phase for OD-plasticity into late adulthood, and that this OD-plasticity is similar 

to the one observed in critical period mice after 4 days of MD (“juvenile-like” OD-plasticity). 

In addition, we showed that EE-housing can also restore OD-plasticity in adult mice that were 

raised in a SC and then transferred to EE when they were above PD110. 

EE modifies brain circuitry and its molecular composition: increased levels of BDNF, 

serotonin and IGF as well as reduced extracellular GABA have been reported in EE housed 

rodents (Baroncelli et al., 2010b; Sale et al., 2014). In agreement with these findings our 

patch-clamp experiments revealed that GABAergic inhibition was significantly reduced in V1 

slices of adult EE mice and the GABA/AMPA ratio was like in 4-wk-old SC-raised animal. It 

has been previously shown that diazepam (a positive allosteric modulator of GABAA 

receptor) treatment prevented the restoration of OD-plasticity (Baroncelli et al., 2010b). 

Unlike in Baroncelli et al. (2010b) study, treatment of our EE- mice with diazepam only 

partially reduced OD-plasticity. This discrepancy might arise from the different species used 

(rats vs mice), different experimental design or conditions (in present study mice were raised 

from birth in EE whereas they housed their rats for 3 weeks in EE cages). To further elucidate 

the mechanisms responsible for EE-effect to preserve OD-plasticity, we quantified the 

parvalbumin (PV)-positive inhibitory interneurons in V1 using immunostaining. Specifically, 

we did not find a difference in number of PV-positive cells between SC- and EE-mice. PV-

positive interneurons are thought to play a crucial role in OD-plasticity (reviewed in Espinosa 

and Stryker (2012)) but they represent only 39% of GABAergic inhibitory interneurons in the 

mouse visual cortex (Gonchar et al., 2007). Thus, other GABAergic interneurons, like 

calretinin or somatostatin could also be responsible for changes in the GABAergic inhibition, 

which needs to be further investigated. Summarizing, our data suggest that a reduction in the 

inhibition is involved in the prolonged OD-plasticity, however, future study needs to be done 

to fully understand its mechanisms. 

Remodeling of the extracellular matrix and specifically the degradation of perineuronal nets 

(PNNs) has been shown to play a role in prolongation of OD-plasticity in adult rats 

(Pizzorusso et al., 2002; Harauzov et al., 2010). Reduced PNNs density in the visual cortex 

has been reported for EE housed rats (Sale et al., 2007; Scali et al., 2012). To this end, we 

measured the number of WFA-stained PNNs in EE-mice’s V1. We found the same number of 

WFA-stained PNNs in both SC and EE mice in contrast to what was described before (Sale et 

al., 2007; Scali et al., 2012). These opposite results can be explained if we take under 

consideration the differences in the experimental design. In the previous studies rats were 

housed in EE only for a short period of 2 to 3 weeks with the enrichment starting when the 

animals were already adult (Sale et al., 2007; Scali et al., 2012), whereas in our study we used 

mice born and raised in EE for at least 5 months before the experiment started (Greifzu et al., 

2014). It is possible that through the time the PNN density in our EE-mice might have 

developed normal levels (like in SC-mice), while in the other studies PNNs density was 

reduced in response to the short EE exposure. 

Our observation for the effect of EE-housing on OD-plasticity raised two key questions. 

Firstly, does OD-plasticity persist beyond the age of PD200 or disappears at some point 

during the mice lifespan. Secondly, if this OD-plasticity will still be juvenile-like. Given that 



Discussion  

 

134 

 

adult EE-mice after 7 days of MD showed OD-plasticity mediated by reduced deprived eye 

responses in V1 which is similar to the critical period SC-mice after 4 days of MD, it is 

important to understand whether the critical period in EE-mice persists longer or whether the 

critical period remains open for the whole life time of the mice. Using optical imaging of 

intrinsic signals, we showed that, EE-mice display a lifelong OD-plasticity (PD809 oldest 

mouse tested). Additionally, we found that mice transferred from SC- to EE-cages beyond 

PD110 regained OD-plasticity until PD922 (oldest animal tested). We conclude that, OD-

plasticity does not disappear during mouse’s lifespan if the animal has the chance to 

experience enriched housing conditions, even beyond PD110. 

OD-plasticity in SC-mice is age dependent and decreases gradually in mature animals 

(Lehmann and Löwel, 2008). There are striking differences between OD-plasticity observed 

in juvenile and adult mice (for review see Espinosa and Stryker (2012)). We observed before 

that mice raised in EE showed “juvenile-like” OD-plasticity during adulthood (up to PD200) 

after 7 days of MD, which is mainly mediated by reduction in closed eye responses in V1 

(Greifzu et al., 2014). This type of changes is typical for critical period SC raised mice after 4 

days of MD (PD28-PD40) (Frenkel and Bear; Hofer et al., 2006b; Sato and Stryker, 2008). In 

older EE-mice (>PD400) the observed OD-shift was mediated by increased open eye 

potentiation in V1, similar to the adult type of OD-plasticity that SC-mice display after 40 

days of age (Sato and Stryker, 2008). We hypothesize that a switch from juvenile to adult 

OD-plasticity must take place at some point between PD200 and PD400 in EE-mice, thus EE 

prolonged the sensitive phase for juvenile-like OD-plasticity by a factor of about 10 compared 

to SC-mice. Further studies are required to address this hypothesis.  

Although EE promotes visual cortex plasticity, it was unknown whether it affects the sensory 

performance. Previous studies in rodents revealed that EE accelerated the increase of visual 

acuity that occurs during early postnatal life (Prusky et al., 2000c; Cancedda et al., 2004; 

Landi et al., 2007). This early increase in visual acuity is possibly due to an accelerated retinal 

development and earlier eye opening of EE-mice (Cancedda et al., 2004; Sale et al., 2004; 

Landi et al., 2007; Sale et al., 2007). By using two different behavioural tests (optomotor 

system and visual water task) the visual performance of old EE-and SC-mice (PD690) were 

investigated. We did not observe significant differences in the visual acuity or in orientation 

discrimination measured with the cortex-dependent visual water task (VWT) (Prusky et al., 

2000b; Prusky and Douglas, 2003). Further, the spatial frequency thresholds of the optomotor 

reflex, measured in the virtual-reality optomotor setup were unaltered (Prusky et al., 2004). 

Although, our visual acuity values measured with the VWT and the spatial frequency 

thresholds values of the optomotor reflex were similar to previously published data of age-

matched SC-mice (Lehmann et al., 2012). Therefore, our results indicate that the visual acuity 

and other visual parameters are not higher in adult EE-mice compared to SC-mice. 

Furthermore, we found no significant differences between old SC- and EE-mice (~PD700) in 

orientation discrimination ability with the VWT. Importantly, our data resemble a previous 

study that measured the orientation discrimination in SC- mice using the same method 

(Pielecka-Fortuna et al., 2014). Additional studies in young SC-animals with other 

behavioural tests revealed orientation discrimination thresholds in a range similar to what we 
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measured (Reuter, 1987; Andermann et al., 2011). Summarizing, our data indicate that EE-

housing had no obvious effect on basic visual abilities of old mice. 

4.3. Four days of MD resulted in OD-plasticity in old EE mice 

Critical period is a sensitive phase during early life, where brief alterations in visual 

experience can induce cortical plasticity. Given that EE has such a powerful impact on OD-

plasticity of adult mice, it was important to test whether EE influences OD-plasticity during 

the critical period. We found that 4 days of MD can induce a dramatic OD-shift in critical 

period EE-mice mediated by reduction of closed eye responses in V1. The observed OD-

plasticity was similar to previously published data from SC-mice during the critical period 

(Frenkel and Bear; Gordon and Stryker, 1996; Hofer et al., 2006a). We indicated that OD-

plasticity during the critical period was not affected by the housing conditions as SC and EE-

raised mice share the same characteristic for OD-plasticity. Further, the OD-shift after 4 days 

of MD in EE-mice during the critical period was comparably strong to the older EE-mice after 

7 days of MD (Greifzu et al., 2014). In both cases, the OD-shift was due to reduced closed 

eye responses in V1 confirming the hypothesis that old EE-mice showed “juvenile-like” OD-

plasticity. 

OD-plasticity in SCs mice is gradually decreasing as the animal matures. Several 

manipulations have been proposed to extend the sensitive period for OD-plasticity in adults. 

Although EE housing has been proposed as an effective manipulation to promote plasticity in 

rats (Sale et al., 2004; Sale et al., 2007; Baroncelli et al., 2010b) and mice (Greifzu et al., 

2014) it is still unclear whether EE extends the critical period or simply increases the levels of 

adult OD-plasticity. Critical period plasticity is open for a limited duration of time and is 

quantitatively and qualitative different from adult OD-plasticity (for review see Espinosa and 

Stryker (2012)). One of the characteristic of juvenile plasticity is that 4 days of MD could 

result in an OD-shift. If the OD-plasticity of old EE-mice is indeed “juvenile-like” then 4 days 

of MD would be enough to induce a significant OD-shift in these mice. To this end, we 

performed MD for 4 days in young (PD80-101) and old (PD121-183) mice born and raised in 

EE. We found that 4 days MD caused an OD-shift in both young and old EE-mice. Although 

the OD-shift was present was not as strong as after 7 days of MD is same age groups, (Greifzu 

et al., 2014) suggesting that longer period of MD is shifting the OD even more. Our data are 

different from what was observed before for young SC-mice, where 7 days of MD are 

required to induce OD-plasticity (Sato and Stryker, 2008), while in SC-mice older than 

PD110 MD could not induce OD-plasticity (Lehmann and Löwel, 2008). Thus the 

surrounding environment has an influence on OD-plasticity and mice raised in EE are more 

prone to plasticity changes even when they are old. Interestingly, the observed OD-shift in 

both age groups of EE-mice after 4 days of MD is due to increases in open eye responses in 

V1. 

It is evident that 4 days MD resulted in an OD-shift in EE-mice after the critical period, 

however the mechanism might be different from previously described for similar age EE-mice 

after 7 days MD (Greifzu et al., 2014). We observed that after 4 days of MD the potentiation 

of the open eye was significantly increased and V1 was equally dominated by both eyes. 
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However, MD for a longer period (7 days) resulted in equal domination of V1 due to 

decreased deprived eye responses. Additional chronic experiments with old EE-mice 2 and 4 

days after MD showed that the OD-shift is present already after 2 days of MD. When the MD 

persisted (after 4 days) the ODI decreased even more due to increased open eye responses in 

V1.  

In a recent study, the initial responses of neurons in V1 after MD were investigated in mice 

(Kuhlman et al., 2013). Specifically, it was shown that the most immediate change in cortical 

responsiveness after MD is a binocular disinhibition of pyramidal neurons resulting from a 

rapid loss of excitatory input to PV cells. When this occurs, vision no longer drives strong 

inhibitory responses and the evoked firing rates of excitatory neurons increase back to normal 

levels, despite continued MD (Hengen et al., 2013; Kuhlman et al., 2013)(for review see 

Trachtenberg (2015)). Thus, it is possible that the initial increase in open eye potentiation that 

we observed in old EE-mice shortly after MD was driven by a reduction in firing rates of the 

inhibitory cells which resulted in a higher firing rate of excitatory neurons. However, a longer 

period of MD (7 days) might restore the inhibition levels and through a disinhibitory 

mechanism the activities of pyramidal binocular neurons might get back to normal. 

Nevertheless, additional experiments are needed to test this hypothesis. In particular, using in 

vivo 2-photon imaging the changes in activation of pyramidal neurons and inhibitory 

interneurons over the days of MD can be monitored. Analysis of relative changes in activity 

in pyramidal and in inhibitory interneurons after MD may help us to understand the 

underlying mechanism after MD in old EE-mice. 

4.4. Which component of EE is responsible for preservation of OD-

plasticity? 

EE exerts its effect on neuronal plasticity by providing the mice with a combination of motor, 

social and cognitive stimulating factors (Sale et al., 2014). The impact of each one of the 

diverse components of EE on cortical plasticity is of a particular interest. In a recent study the 

components of the EE were tested seperatly in rats regarding their effect on recovery from 

amplyopia (Baroncelli et al., 2012). They observed that both physical exercise and visual 

enrichment promoted the recovery from long-term amblyopia in rat V1, whereas social 

interaction had no effect (Baroncelli et al., 2012). The activation of the primary motor cortex 

due to physical activity might lead to the activation of cross-modal plasticity in V1. In support 

of this hypothesis, a recent study in awake mice running on a treadmill showed that the 

visually evoked firing rate of V1 neurons was two- to three-fold increased (Niell and Stryker, 

2010; Fu et al., 2014) and also enhanced visual performance (Bennett et al., 2013). 

Additionally, forced visual exposure to temporally coherent visual stimuli for 6 hours per day 

was also shown to increase OD-plasticity in 3-month-old SC-raised mice (Matthies et al., 

2013). Moreover, enhanced sensory and motor input in EE promoted physiological maturation 

and consolidation of visual cortical circuits in dark-reared rats and thus even without visual 

experience (Bartoletti et al., 2004). However, it was not yet investigated whether physical 

exercise alone can alter the timing of the sensitive phase for OD-plasticity.  
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We showed that raising mice in SCs equipped with a RW prolonged the sensitive phase for 

OD-plasticity into late adulthood (PD242 oldest mouse tested). In contrast, similar age mice 

raised in a SC without a RW did not show OD-plasticity. In addition, the preserved OD-shift 

in the RW-mice was mediated by a reduction of deprived eye responses in V1. Those 

reductions after deprived eye stimulation were previously only observed after 4 days of MD 

in 4-week-old mice (Hofer et al., 2006a; Heimel et al., 2007; Sato and Stryker, 2008) and after 

7 days of MD in adult mice raised in an EE (Greifzu et al., 2014). Thus, daily voluntary 

running in mice seems to preserve a juvenile brain and has similar effects on prolonging OD- 

plasticity as the complete EE. While voluntary physical exercise seems to mimic the effect of 

EE on OD-plasticity, the OD-shift observed in RW-mice was not as pronounced as in adult 

EE-mice (Greifzu et al., 2014). Together these results suggest that running alone can prolong 

OD-plasticity in mice, but the additional EE-components are necessary to increase the 

plasticity-promoting effect. 

Additionally, we showed that short-term running had the same effect on OD-plasticity as 

long-term running: 7 days of running during the MD period was sufficient to restore a 

juvenile-like OD-plasticity in SC-raised mice. However, short term running for 4 hours per 

day promoted recovery from long-term MD in mice only when was combined with visual 

stimulation (Kaneko and Stryker, 2014). This study differs from ours as in our case the mice 

had full access to a RW for 7 days and no particular visual stimulus was presented during 

running. We can conclude that a minimum amount of running is necessary to prolong OD-

plasticity in adulthood and if this is not possible a combined strategy might give the same 

result. 

Baseline visual abilities and their experience-dependent increase after MD were also tested in 

mice raised with or without RW. As expected, we did not find any significant differences 

between the two groups and the values were comparable to previously published data of SC-

raised C57Bl/6 mice (Prusky et al., 2006). Moreover, the V1 activation and the quality of the 

retinotopic maps were similar between mice with and without RW. Together these data 

indicate that physical exercise had no effect either on the spatial frequency and the contrast 

sensitivity thresholds of the optomotor reflex or the quality of the retinotopic maps and the 

strength of V1-activation. 

Physical exercise seems to be a powerful tool to maintain and restore plasticity into older age 

but the cellular mechanisms underlying this effect are not yet clear. It has been showed that 

locomotion activates vasoactive intestinal peptide (VIP)-positive interneurons and optogenetic 

activation of these interneurons mimics the effects of locomotion in stationary awake mice 

(Fu et al., 2014). Running has been proposed to act via disinhibitory circuits reducing 

inhibition on layer 2/3 pyramidal neurons (Fu et al., 2014; Fu et al., 2015) and decreased 

GABA release has been reported for rats after 3 weeks of running (Baroncelli et al., 2012). 

Thus, extended running experience may reduce the inhibitory drive onto pyramidal cells and 

thus promote cortical plasticity. However, it is likely that other molecules and mechanisms 

that are known to be affected by EE-housing and involved in regulating OD-plasticity are also 

involved in the effect of running, e.g. BDNF, PNNs, IGF, serotonin and histone acetylation 



Discussion  

 

138 

 

(for review see Sale et al. (2014)). Additional studies are needed to reveal the underlying 

mechanisms promoting cortical plasticity after running. 

4.5. Therapeutic effect of running after stroke  

It was previously shown that a small localized cortical lesion in neighboring S1 prevented 

OD-plasticity in V1 and also prevented the improvements of visual capabilities after MD in 3 

months old mice. Anti-inflammatory treatment with ibuprofen rescued the experience-enabled 

enhancement of visual abilities of the open eye but not the OD-plasticity (Greifzu et al., 

2011). Additionally, we showed previously that EE housing prevented the loss of OD-

plasticity in adult mice after a localized stroke in S1 (Greifzu et al., 2014). Here we tested 

whether physical exercise alone is already beneficial for the brain regarding OD-plasticity 

after a PT-induced localized cortical lesion. We tested the effect of running by the means of 

running wheel on OD-plasticity after stroke in two different experimental paradigms: in mice 

born and raised in RW-cages, thus experiencing running throughout their life to investigate 

whether running prevents the loss of OD-plasticity after stroke and in mice transferred to a 

RW-cage for 14 days soon after the induction of the lesion to investigate the therapeutic effect 

of physical exercise on OD-plasticity after stroke. We found that in both cases, OD-plasticity 

was present after a PT-lesion in S1, indicating that physical exercise preserved and restored 

OD-plasticity in adult mice. Moreover, we observed a trend towards decrease in deprived eye 

responses in V1 after MD for every group suggesting a “juvenile-like” OD-plasticity, but the 

differences were not significant. Notably, the restoration of OD-plasticity in 14dRW mice 

seems to be due to the running and not a result of the waiting period after PT and MD. In 

support of this conclusion are previously published data from SC raised mice where late MD 

was performed 1 week after the induction of PT-lesion and OD-plasticity was still absent 

(Greifzu et al., 2011). This indicates that the waiting period of one week before MD had no 

influence on OD-plasticity after stroke and the rescue of OD-plasticity is specific due to 

running. 

Imaging of the non-lesioned hemisphere in both lifelong running and 14dRW mice showed 

that OD-plasticity was not affected by stroke. This observation is in line with previous studies 

showing that the effect of stroke on OD-plasticity was restricted to the affected hemisphere 

rather than “whole-brain” (Greifzu et al., 2011; Pielecka-Fortuna et al., 2015b). Furthermore 

the basic visual abilities of the mice and their improvement after MD were tested using the 

optomotor setup. We found that, after a PT lesion in S1, mice showed significant 

enhancements in both spatial frequency and contrast sensitivity thresholds of the optomotor 

reflex after 7 days of MD. In contrast, a PT-lesion in SC raised mice resulted in impaired 

visual abilities improvements (Greifzu et al., 2011). While EE housing only partially restored 

the increase in both spatial frequency and contrast sensitivity thresholds after stroke (Greifzu 

et al., 2014) in our case physical exercise in both lifelong or 14dRW mice fully restored the 

increase in visual abilities after MD and the final values were similar to non-lesioned mice 

raised in SCs (Prusky et al., 2006) or in RW cages (Kalogeraki et al., 2014). It was shown that 

inflammation interferes with the experience-enabled visual abilities enhancements of the open 

eye as treatment with ibuprofen after the PT-lesion resulted in restoration of MD induced 
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improvement of visual abilities (Greifzu et al., 2011). Based on that we can speculate that 

physical exercise reduces the level of inflammation and acts as the anti-inflammatory 

treatment, but more extensive studies are needed to confirm this hypothesis.  

Analysis of the lesion position and size showed no significant difference in localization, 

length, depth and volume of lesion between lifelong and 14dRW mice and only the lesion 

diameter was significantly smaller in 14dRW mice. This could be explained by the different 

pattern of blood vessels among individuals. As the PT method of inducing a lesion depends 

on the position of the illumination the different pattern of vessels in the illuminated area could 

result in differences on the lesion size. We did not find a correlation between the lesion size 

and the OD-shift after MD which is in agreement with observations from Greifzu et al. (2011) 

study. Moreover, we have recently shown that even a smaller and more distant to V1 lesion, 

positioned anterior in secondary motor cortex (M2) area, can affect OD-plasticity in mice 

(Pielecka-Fortuna et al., 2015b). Thus, the smaller diameter of the lesion in 14dRW mice is 

most probably insignificant and the restoration of OD-plasticity in these mice is specific to 

physical exercise.  

Summarizing our data showed that physical exercise due to running wheels not only could 

preserve, but also restore OD-plasticity in adult mice after stroke. Additionally, physical 

exercise in PT mice restored the improvement of spatial frequency and contrast sensitivity 

thresholds after MD. These data indicate that physical exercise protects from stroke induced 

impairments, and has subsequently the same effect like EE (Greifzu et al., 2014).  

Previous studies pointed out the beneficial effect of physical exercise on stroke. Running 

wheel exercise increased the number of newborn hippocampal neurons after PT stroke in mice 

and improved spatiotemporal learning in Morris water maze (Geibig et al., 2012). Moreover 

mice with middle cerebral artery occlusion (MCAO) showed long-term functional and 

cognitive improvements after running (Gertz et al., 2006). Physical exercise has also a 

neuroprotective function: voluntary running 2 to 3 weeks before a MCAO-stroke, reduced 

cerebral infarct size and sensory-motor deficits in rodents (Wang et al., 2001; Endres et al., 

2003). However, how physical exercise contributes on preservation of OD-plasticity after a 

PT lesion is not yet clear. 

It has been shown that stroke affects the balance between excitation and inhibition in the 

affected neuronal network (Carmichael, 2006) which is responsible for the negative 

consequences such as impaired plasticity and absent functional recovery. High levels of the 

neurotransmitter glutamate after ischemic stroke lead to excitotoxicity and neuronal cell death 

(Lai et al., 2014). Additionally, a lesion induced in V1 led to reduced basal GABAergic 

transmission measured further away from the lesion border (Imbrosci et al., 2015). It seems 

that changes in glutamatergic and GABAergic transmission after stroke can lead to negative 

consequences and thus may interfere with plasticity. We showed that raising mice in an EE 

not only preserved a low GABAergic inhibition and juvenile OD-plasticity into adulthood, but 

also protected from stroke induced impairments in V1 after a S1-lesion (Greifzu et al., 2014) 

suggesting that decreased cortical inhibition is a permissive factor for preserved OD-plasticity 

in V1 after an S1-lesion. Physical exercise influences many neurotransmitter systems in the 

brain including glutamatergic (Farmer et al., 2004; Vasuta et al., 2007; Lou et al., 2008) and 
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GABAergic (Molteni et al., 2002). For example, genes related to the GABA system were 

downregulated after physical exercise (Molteni et al., 2002). Altogether, these studies 

implicate that a lower inhibitory tone after running protects V1 from OD-plasticity 

impairments after a lesion in S1.  

Another possible way with which physical exercise may influence the OD-plasticity after 

stroke is through remodeling of the extracellular matrix by MMPs activity. MMPs play a role 

in plasticity in the healthy as well as in the diseased brain (reviewed in Wright and Harding 

(2009)). It has been shown that MMPs activity is a crucial component of OD-plasticity in the 

healthy brain (Spolidoro et al., 2012). After cerebral ischemia the expression of many MMPs 

(especially MMP-2 and MMP-9) is increased (Gasche et al., 1999; Heo et al., 1999; Montaner 

et al., 2001; Rosell et al., 2006). Inhibition of MMPs with a broad-spectrum MMPs inhibitor 

immediately before a stroke in mice partially rescued experience-dependent barrel cortex 

plasticity (Cybulska-Klosowicz et al., 2011). Most recently, we reveled that optimal level of 

MMP-activity is crucial for adult visual cortex plasticity to occur in the healthy and in stroke-

affected brains. Specifically, in healthy mice, inhibition of MMPs activity with a broad 

spectrum inhibitor during 7 days of MD resulted in lost OD-plasticity whereas after stroke 

single, but not double application of MMPs inhibitor shortly after the induction of the lesion 

rescued OD-plasticity (Pielecka-Fortuna et al., 2015a). A recent study in rats reported 

elevated levels of MMP-9 but not MMP-2 after mild treadmill exercise (Nishijima et al., 

2015), thus running has an influence the MMPs activity. It would be interesting to test 

whether MMPs activity is changed after stroke in mice with access to physical exercise, as 

well as whether treatment with MMPs-inhibitors could change OD-plasticity after stroke in 

RW-mice. 

4.6. Changes of the housing environment affects OD-plasticity 

Although EE housing has proven to be beneficial for the brain (for recent review see Sale et 

al., 2014), it was not clear if continued enrichment is needed to promote a positive effect on 

OD-plasticity and whether the effect of EE is reversible when the animals are not 

experiencing enrichment any more. To this end we raised mice in EE, until they were above 

PD110 and then they were transferred to a normal SC where they receive MD for 7 days after 

a short period (1 to 12 days) and were then tested for OD-plasticity. We found that OD-

plasticity was rapidly lost in these mice: already after 1 week in SC. Thus, continued 

enrichment is needed to promote OD-plasticity in adult mice and a short period exposure to a 

more deprived environment is enough to reverse the effect of EE on OD-plasticity.  

At molecular level, studies based on gene chip analysis have revealed that a large number of 

genes related to neuronal structure, synaptic transmission and plasticity, neuronal excitability 

and neuroprotection change their expression levels in response to EE (Rampon and Tsien, 

2000). One group of molecules particular sensitive to experience that are also implicated in 

plasticity are the neurotransmitters: EE increases acetylcholinesterase activity (Rosenzweig et 

al., 1962), noradrenaline (Naka et al., 2002) and serotonin levels (Rasmuson et al., 1998). EE 

elicits a 2-fold enhancement of serotoninergic transmission in the visual cortex and infusion 

of serotonin synthesis inhibitor not only blocks plasticity in response to MD but also 
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completely counteracts the effects of EE on GABAergic inhibition and BDNF (Baroncelli et 

al., 2010b). The central role of serotonin in promoting adult visual cortex plasticity has been 

demonstrated in rats chronically treated with fluoxetine, a selective serotonin reuptake 

inhibitor (SSRI) widely used in treatment of depression and various psychiatric disorders. 

Fluoxetine delivered in the drinking water restored OD-plasticity after MD in adult rats and a 

complete recovery from amblyopia. Like in EE, fluoxetine treatment reduced intracortical 

inhibition and increased BDNF expression in visual cortex (Maya-Vetencourt et al., 2008).  

We tested whether OD-plasticity could be restored in mice transferred to SCs from EE using 

fluoxetine. Mice born and raised in EE were transferred to a SC for a period of 3 weeks 

during which fluoxetine was administrated through drinking water. Contrary to Maya-

Vetencourt et al. (2008) we did not observed a change in OD-plasticity after fluoxetine 

treatment. This difference could be explained based on the differences in animals used and on 

the experimental conditions. Maya-Vetencourt et al. (2008) used rats for their experiments 

with an optimal fluoxetine dosage of 0.2 mg/ml drinking water per day. In our experiments 

we used mice and calculated the dosage based on average body weight and the daily drinking 

amount reported for C57BL/6 mice. Based on previous reports an optimal dosage of 

fluoxetine to promote an effect on mice behaviour is 10 mg/kg per day (Branchi et al., 2013). 

After calculating the daily fluoxetine intake for our mice we found that it was 7.28 mg/kg, 

which is lower than we initially expected because the mice drunk less. It is possible that the 

dosage our mice achieved was not enough to promote an effect on OD-plasticity. Further 

experiments with a higher dosage may be essential to reveal an implication of serotonin in 

restoration of OD-plasticity. Moreover, there is a time delay of several weeks between the 

increase of neurotransmitters and the antidepressant effects (Nestler, 1998) implying that the 

timing of the treatment is also crucial. Possibly in our case the timing of the treatment was not 

long enough to promote an effect on cortical plasticity and a longer treatment is needed to 

have an effect. A recent study showed that antidepressant treatment with fluoxetine in a 

favorable environment would lead to the reduction of depression symptoms while in a 

stressful environment might lead to worst prognosis, suggesting that the effect of fluoxetine 

derives as a combination of the treatment and the environment (Branchi et al., 2013). 

Changing housing conditions by transferring mice from an EE to a SC might act as a stress 

factor thus fluoxetine treatment might not be able to act beneficial for promoting the OD-

plasticity.  

In contrast to fluoxetine treatment, transferring mice from EE to a cage with RW was enough 

to preserve OD-plasticity. The observed OD-shift was similar to our previous data from RW-

mice (Kalogeraki et al., 2014) and the OD-shift was mediated by reduced closed eye 

responses in V1: juvenile-like OD-shift. Thus, a minimum level of enrichment (only a running 

wheel) was sufficient to preserve OD-plasticity in adult mice. A study comparing the effects 

of running and fluoxetine treatment in the hippocampus revealed that new cell survival was 

enhanced by 200% after running only. Both running and fluoxetine also increased the 

percentage of new cells that became neurons (Marlatt et al., 2010). Furthermore, fluoxetine 

treated mice are reported to be less active in locomotion (Marlatt et al., 2010). Thus, the 

response of the brain to physical exercise is much stronger than to antidepressants. This 
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observation supports our finding were physical exercise was able to preserve OD-plasticity in 

V1 whereas fluoxetine treatment was not. 

Furthermore, enhanced social interaction by housing more rats in a SC, was not capable of 

recovering amblyopia (Baroncelli et al., 2012). Rosenzweig et al. (1978) already showed 

before that social grouping alone is insufficient to explain the cerebral effects of EE in rats. 

Another recent study showed that increased social interaction alone had no positive effect on 

motor coordination and learning abilities in mice (Madronal et al., 2010). In agreement with 

the previous studies, we also showed here that housing mice in groups after transferring them 

to SCs was not sufficient to promote plasticity changes. 

All together above data stress the importance of the housing conditions on experimental 

animals and the outcome of plasticity studies. Even a small change in the housing 

environment like the addition of a RW could result in plasticity changes. There is a debate on 

the field regarding the different enrichment protocols and whether all animals in an EE cages 

are getting the same level of enrichment (Frick and Benoit, 2010). We did not observe higher 

variability in our experimental paradigm between the EE-mice. It is clear that housing mice in 

a more restricted environment with less stimulations and no opportunities for physical 

exercise, as SC resulted in an earlier decline of OD-plasticity. 

4.7. The positive effect of EE can be passed to the next generation 

Genetic processes work in combination with an organism's environment and experiences to 

influence development and behaviour. It is evidence that, except the genes transferred to the 

next generations by germ lines, the experiences of the parents can markedly influence both 

structure and function in the nervous system of subsequent generations through epigenetic 

changes. Several studies have reported long lasting epigenetic modifications as DNA 

methylation and histone acetylation, induced by the environmental enrichment. The 

alterations in the posttranslational modification patterns caused by EE can be transferred to 

the next generation and influence the behaviour of the offspring (for review see Arai and Feig 

(2011)). In a study Arai et al. (2009) showed that even short-term enrichment of the parents 

enhances long term potentiation (LTP) not only in these enriched mice but also in their non-

enriched offspring, even if the offspring never experience an EE. Using a genetic modified 

mouse model for defective LTP and contextual fear conditioning memory it was shown that 

both LTP and fear conditioning memory were masked in the offspring of enriched mutant 

parents (Arai et al., 2009). Additionally Arai et al. (2009) proposed that transmission of this 

effect to the next generation occurs from the EE-mother to their offspring during 

embryogenesis (Arai et al., 2009). 

Inspired from the Arai et al. (2009) study, we wanted to test this hypothesis in our 

experimental paradigm. Our aim was to investigate whether OD-plasticity can be transferred 

from mice that were born and raised in EE to their offspring that were born and raised 

exclusively in SC. To this end mating of EE-mice took place in an EE cage and few days 

before delivery (7-10 days) pregnant dams were transferred to a SC. Pups were born and 

raised in SCs until they were at least110 days old and then tested for OD-plasticity after 
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induction of MD. We found that non-enriched offspring of EE-parents can maintain OD-

plasticity into late adulthood (PD261 oldest mouse tested). SC mice did not show OD-

plasticity after MD at this age (Lehmann and Löwel, 2008), whereas EE-mice showed a 

strong OD-shift at similar age (Greifzu et al., 2014) suggesting that OD-plasticity could be 

transmitted to the next generation. However the OD-shift observed in non-enriched offspring 

of EE parents was not as strong as in EE-mice, indicating that continues enrichment is 

required for stronger OD-shift. Analysis of the V1-activation after each eye stimulation 

revealed that the observed OD-shift in the offspring was mediated by decreased closed eye 

responses in V1, similar to what was observed before in EE mice (Greifzu et al., 2014). 

Together these data suggest that the positive effect of EE on OD-plasticity can be passed on to 

the next generation.  

As both parents were born and raised in EE it was not clear from which parent this effect on 

OD-plasticity was transmitted to the next generation. Mating between enriched and non-

enriched males and females helped us to clarify this point. We found that after mating EE-

male with SC-female the offspring did not show OD-plasticity whereas after mating SC-male 

with EE-female OD-plasticity was observed. The OD-shift found in non-enriched offspring of 

SC-father and EE-mother was equally strong as the one observed in offspring of EE-parents. 

Our data clearly demonstrate that mothers have a prominent role in transferring the OD-

plasticity to the offspring.  

It is plausible to argue that the ability for retaining plasticity into late adulthood is transferred 

from the mother, as mothers can have greater influence on the pre- and post-natal 

development of the offspring (Liu et al., 2000). Mothers provide the offspring with nutritional 

and behavioural support such as licking and grooming which may have long lasting beneficial 

effects for brain plasticity (Champagne et al., 2003). It is known that mothers raised in EE 

provide their pups with higher levels of maternal care compare to SC raised mothers, which 

may also explain the long-lasting plasticity observed in their offspring (Baroncelli et al., 

2010a). On the other hand studies from Arai et al. (2009) showed that 4-week old offspring of 

EE-mice also displayed enhanced synaptic plasticity in the hippocampus even if they never 

experience EE. In addition the mother’s but not the father’s environment contributed to the 

transgenerational transmission of the effect of EE. Enhanced synaptic plasticity was observed 

also when offspring of EE-mothers were raised from birth by a non-EE foster mother, 

suggesting that the effect of EE was transmitted to the offspring before birth (Arai et al., 

2009). Our data suggest that having only a mother with EE experience is enough to transmit 

the positive effect of EE on OD-plasticity. However, it is not yet clear whether the OD-

plasticity in the offspring is due to epigenetic modifications that is passed on to the next 

generation or due to maternal care of the EE-mother. Further studies are required to reveal if 

the observed phenotype is due to the behaviour of the mother after birth or occurs during 

embryogenesis. Experiments with pups from EE-mother but raised by a foster SC-mother 

could possibly segregate the behavioural and genetic components involved in the inheritance 

of ability for retaining plasticity. 
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4.8. Conclusions 

The data presented here provide clear evidence that raising mice in EE has a beneficial effect 

for brain plasticity and specifically OD-plasticity. Mice raised in EE not only showed a 

prolongation of the sensitive phase for OD-plasticity but retained a lifelong visual plasticity. 

The influence of the environment and the experiences of the mice have a great influence on 

OD-plasticity as a small change in the environment like the addition of a running wheel 

prolonged OD-plasticity into adulthood. It is important to mention that the effect of physical 

exercise on visual plasticity is not only present when the mice have access to running 

throughout their life, but even a short period of exposure to running wheel during adulthood 

has the same effect, suggesting that is never late to reinduce OD-plasticity. EE and physical 

exercise alone proved to be beneficial to promote OD-plasticity in mice after stroke and 

physical exercise after the stroke was able to rescue the negative effects of stroke on OD-

plasticity.  

Additionally, we found that continued enrichment is necessary to promote OD-plasticity in 

adulthood as mice transferred from EE to SC rapidly lost OD-plasticity. Addition of a RW in 

the SC cage could restore OD-plasticity in those mice whereas fluoxetine treatment had no 

effect. More interestingly we found that the positive effect of EE on OD-plasticity can be 

passed on the next generation from the mother even if the offspring never experience an EE. 

All together data described in my dissertation suggest that the surrounding environment has a 

great influence on neuronal plasticity. Several approaches have been proposed over the years 

to prolong neuronal plasticity not only in healthy brain but also after injuries or in 

neurodegenerative diseases. EE has been proposed as a non-invasive method to influence 

brain plasticity. Data presented here confirm the previous observations that EE can be used as 

a noninvasive technique to promote OD-plasticity in adulthood and underlying the potential 

of physical exercise on prolongation of OD-plasticity as well as its therapeutic role regarding 

recovery from stroke. Present data opens new avenues to study further the mechanisms 

underlying plasticity and the influence of the EE on promoting plasticity effects and recovery 

from brain injuries. 

In fact, some of the beneficial components of EE have been already tested for human therapy. 

In particular, a suitable enrichment, which has already been applied for elderly people, is 

dancing (Kattenstroth et al., 2013). Beneficial effects of dancing classes included better 

posture and reaction times, improved cognitive, tactile and motor performance (Kattenstroth 

et al., 2013). In addition, a clinical trial started to test the effects of EE on rehabilitation after 

stroke (Janssen et al., 2010). This approach includes different enrichment possibilities for the 

patient, such as computer, internet, reading, puzzles, board games, and music. Moreover, 

another paradigm of enrichment used for humans is virtual reality video gaming. Playing 

video games is an innovative therapy approach used for amblyopia and stroke rehabilitation 

(for review see Laver et al. (2012)). As suggested above EE is a highly promising tool that 

can be used as a therapy after a brain damage or neurological diseases, however future 

research is necessary to fully understand the mechanisms responsible for beneficial effects of 

EE.  
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Appendix Figure 1: The OD changed after 4 days of MD in all age groups of EE-mice. More 
examples of data presented in the results part 3.3.2. Optically recorded activity maps after contralateral 

and ipsilateral eye stimulation in the binocular region of mouse V1 are presented for critical period 

EE-mice (PD27-34 A and B), young EE-mice (PD80-101; C and D) and old EE-mice (PD121-183; E 

and F), without MD (A, C and E) and after 4 days of MD (B, D and F). Grayscale-coded response 

magnitude maps with the activity value on top right corner, polar maps, 2-dimensional OD-maps and 

the histogram of OD-scores including the average OD-index (ODI) are illustrated. Scale bar: 1 mm. 
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Appendix Figure 2: Running prolonged and restored the sensitive phase for OD-plasticity in 

mice in adulthood (>PD110). More examples of data presented in the results part 3.4.2. Optically 

recorded activity maps of the contralateral and ipsilateral eye in the binocular region of mouse primary 

visual cortex (V1) in mice raised in SCs without a running wheel (A and B), with a running wheel (C 

and D) and with 7 days of running wheel (E and F), before (A, C and E) and after MD (B, D and F). 

Grayscale-coded response magnitude maps, polar maps, 2-dimensional OD-maps and the histogram of 

OD-scores including the average OD-index (ODI) are illustrated. Scale bar: 1 mm. 
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Appendix Figure 3: OD-plasticity is preserved after a localized cortical stroke in S1 when the 

mice born in a cage with a running wheel. More examples of data presented in the results part 3.5.2. 

Examples of optical imaging recorded maps from lifelong running groups of the left hemisphere. 

Activity and polar maps of the binocular part of V1 and ODI values of the left hemisphere measured 

with optical imaging of intrinsic signals in RW sham (A, B) or PT (C, D) treated animals. Grayscale-

coded response magnitude maps, polar maps, 2-dimensional OD-maps and the histogram of OD-

scores including the average OD-index (ODI) are illustrated. Scale bar: 1 mm. 
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Appendix Figure 4: OD-plasticity is restored in mice with running wheels after the stroke 

induction. More examples of data presented in the results part 3.3.2. Optical imaged maps recorded 

from 14dRW groups of the left hemisphere. Activity and polar maps of the binocular part of V1 and 

ODI values of the left hemisphere 2-dimensional OD-maps and ODI histograms for 14dRW sham (A, 

B) and PT (C, D), without (A, C) or with MD (B, D). Grayscale-coded response magnitude maps, 

polar maps, 2-dimensional OD-maps and the histogram of OD-scores including the average OD-index 

(ODI) are illustrated. Scale bar: 1 mm. 
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Appendix Figure 5: Examples of optical imaged maps of 14dRW groups of the right hemisphere. 

More examples of data presented in the results part 3.5.3. Activity and polar maps of the binocular part 

of V1 and ODI values of the right hemisphere 2-dimensional OD-maps and ODI histograms for 

14dRW sham (A, B) and PT (C, D), without (A, C) or with MD (B, D). Grayscale-coded response 

magnitude maps, polar maps, 2-dimensional OD-maps and the histogram of OD-scores including the 

average OD-index (ODI) are illustrated. Scale bar: 1 mm. 
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Appendix Figure 6: OD-plasticity is rapidly lost in EE mice when transferred to SCs. More 

examples of data presented in the results part 3.6.1.2.Optically imaged maps from EEtoSC mice. 

Activity and polar maps of the binocular part of the left V1,ODI values, 2-dimensional OD-maps and 

ODI histograms for EEtoSC mice that received an MD 1 week (A) or 1 day (B) after the transfer from 

EE to SC. All mice showed a contralateral dominance: activity patches from the contralateral eye were 

darker than those from the ipsilateral eye, with positive ODI values and warm colors in the OD-map. 

Scale bar: 1 mm. 
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Appendix Figure 7: Running wheels but not fluoxetine treatment rescue OD-plasticity in mice 

transferred from EE to SC. More examples of data presented in the results part 3.6.2.2. Maps 

acquired from EE-mice transferred to SCs without or with MD after treatment with water, fluoxetine 

or RW. Optically recorded activity maps after stimulation of the contralateral and ipsilateral eye in the 

binocular region of mouse primary visual cortex (V1), of EEtoSC mice with water (A and B), with 

fluoxetine (C and D) or with RW (E), before (A and C) and after MD (B, D and E) are illustrated. For 

every example grayscale-coded response magnitude maps, polar maps, 2-dimensional OD-maps and 

the histogram of OD-scores including the average OD-index (ODI) are illustrated. Scale bar: 1 mm. 
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Appendix Figure 8: OD-plasticity can be passed on to the next generation of non-EE mice. More 

examples of data presented in the results part 3.7.2. Optical imaging recorded maps from mice born in 

SC from EE-parents, EE-father and EE-mothers with or without MD. Activity and polar maps of the 

binocular part of V1 and ODI values of the left hemisphere measured with optical imaging of intrinsic 

signals in mice born in SC from EE-parents (A, B), EE-fathers (C, D) and EE-mothers (E, F). Scale 

bar: 1 mm. 
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Abbreviation list 
  

BDNF brain-derived neurotropic factor 

CP critical period 

cyc/deg cycle per degree  

EE enriched environment 

GABA γ-aminobutyric acid 

IGF insulin-like growth factor 

LGN lateral geniculate nucleus 

MD monocular deprivation 

n number of animals 

N2O nitrous oxide 

mg milligram 

ml milliliter 

mm millimeter 

MMPs matrix metalloproteinases 

O2 oxygen 

OD ocular dominance 

ODI ocular dominance index 

PD postnatal day 

PNNs perineuronal nets  

PT photothrombosis 

PV parvalbumin 

RW running wheel 

S1 primary somatosensory cortex 

SC standard cage 

SST somatostatin 

V1 primary visual cortex 

VIP vasoactive intestinal protein 

VWT visual water task 
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