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V 

Summary 

The acetyl-CoA carboxylase (ACCase) catalyzes the production of malonyl-CoA, the 

precursor in fatty acid biosynthesis. In almost all organisms, this is a fundamental process 

since fatty acids are the main components of membrane lipids and serve as precursor for 

energy supplying pathways. Especially in organisms like the soil bacterium Bacillus subtilis, 

that have to deal with different and quickly changing environmental conditions, the 

control of fatty acid homeostasis is important. Although many examples of ACCase 

regulation are found in other organisms, nothing is known about the regulation of the 

acetyl-CoA carboxylase in B. subtilis. The aim of this work was the characterization of the 

Asp23 protein YqhY. It could be shown that YqhY is able to interact with the AccAD 

subcomplex or the protease ClpCP. Moreover, cells lacking YqhY acquired suppressor 

mutations that were often located in the subunits of the acetyl-CoA carboxylase. Further 

investigations demonstrated that some mutations lead to decreased acetyl-CoA 

carboxylase activity. Therefore, it was assumed that YqhY regulates the activity of the 

ACCase by either acting as inhibitor or by promoting the degradation of the subunits. 

Despite these observations, an inhibitory effect of YqhY on the activity of the ACCase 

complex could not be proven and unchanged protein amounts of the subunits in the 

absence of ClpP indicated that they are not subject to proteolysis. However, localization 

experiments displayed the localization dependency of AccA on YqhY, providing the 

possibility of YqhY impacting the acetyl-CoA carboxylase activity by delocalization of parts 

of the complex. It is also conceivable that the absence of YqhY causes the accumulation 

of malonyl-CoA. This highly active compound could nonspecifically acylate many proteins 

of different pathways, leading to their inactivity and toxic effects for the cell. Although the 

precise role of YqhY remains elusive, the results of this work indicate a regulatory function 

in fatty acid synthesis. They provide possible ways how YqhY could be involved in this 

pathway and serve as a basis for future investigations. 
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1 Introduction 

1.1 YqhY, an Asp23 protein with a (non-)essential function 

The Gram-positive bacterium Bacillus subtilis is one of the best studied organisms. The 

completely sequenced genome and the comprehensive knowledge about cellular 

processes makes it a perfect model organism for ongoing studies. This and the ability to 

easily manipulate the genetic structure, are also reasons for the intensive application in 

industries. Nevertheless, not all essential functions and pathways are totally understood 

and are in need of further studies. A fundamental aspect in this approach is the 

determination of the minimal gene set and basic requirements for B. subtilis to survive, 

like it is done in the recent work of Reuß et al. (2016). The authors suggested a reduced 

genome of 523 protein encoding genes and 119 genes coding for RNAs that allows growth 

at 37°C in complex medium. Among these genes, 245 are currently regarded as essential 

in B. subtilis. 

The first essential gene set for B. subtilis was established in 2003 (Kobayashi et al.). In this 

study, only single genes were verified. But, the essentiality of a protein depends on certain 

environmental conditions and some functions can be executed by several proteins. The 

diadenylate cyclases CdaA, DisA and CdaS or the enoyl-ACP reductases FabI and FabL are 

examples for that (Mehne et al., 2013; Parsons and Rock, 2013). In other words, the 

function carried out by these proteins only became essential when all encoding genes are 

deleted in combination. Gene pairs executing essential functions were named isologous 

(Thomaides et al., 2007). In this first evaluation of such isologous pairs, the unknown 

genes yqhY and yloU were added to the list of essential genes, whereas they were 

previously regarded as nonessential after single knockouts (Kobayashi et al., 2003). The 

encoded proteins YqhY and YloU are paralogues, sharing an identity of 32%. They are both 

highly conserved and highly and constitutively expressed in Gram-positive bacteria (Fig. 

1a) (Nicolas et al., 2012). Despite these facts already indicating a vital function of these 

proteins, single knockouts of yqhY and yloU were possible. Moreover, a successful double 

deletion of both genes refuted the theory of being an isologous essential gene pair. 

However, the importance of at least YqhY still remained. This became apparent by the 

occurrence of suppressor mutations as a consequence of an yqhY deletion (Tödter, 2013). 
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Thus, the gene pair of yqhY and yloU is not essential, but it is crucial for growth under 

certain circumstances. 

 

 

Fig. 1. (A) Expression levels of yqhY and yloU under different growth conditions (Nicolas et al., 2012; 
SubtiWiki database). The transcription pattern shows constitutive and high expression of yqhY and yloU. 
Only under glucose starvation and after phosphate limitation the expression is reduced. (B) Genetic context 
of yloU, yqhY and asp23. Genes encoding Asp23 family members are shown in red. The representatives of 
this family in B. subtilis are YloU and YqhY. Their encoding genes a located in two distinct operons with yloV 
(putative dihydroxyacetone/ glyceraldehyde kinase) and accB (biotin carboxyl carrier protein) and accC 
(biotin carboxylase subunit), respectively. asp23 is cotranscribed with genes coding for the osmoprotectant 
transporter OpuD2, a small transmembrane protein belonging to the DUF2273 family and another 
transmembrane protein called AmaP (Müller et al., 2014). (C) Conservation accBC-yqhY operon throughout 
Firmicutes (according to STRING database). yqhY is highly conserved in Firmicutes and often clustered with 
accBC. Downstream of yqhY are genes located coding for subunits of exodeoxyribonuclease VII (yqiB, yqiC) 
and a geranyltransferase (yqiD). Gene names refer to B. subtilis 168 wild type genome (NC_000964). 

 

yqhY is located in an operon with accB and accC, both coding for subunits of the acetyl-

CoA carboxylase. This gene cluster is highly conserved throughout Bacillales and YqhY 

shares high identities with its homologues in several representatives, for example 

Staphylococcus aureus (49%), Listeria monocytogenes (54%), Desmospora sp. 8437 (34%) 

and Paenibacillus vortex (45%). Outside Bacillales yqhY is not embedded in an operon with 

accB and accC, but orthologues in Enterococcus faecalis (50%), Lactococcus lactis (40%) 

and Streptococcus pneumoniae (65%) represent other orders of Bacilli. Even in other 

classes of Firmicutes, like Clostridia (Clostridium difficile (52%)), homologues are present, 
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showing the broad conservation of yqhY in organisms with many different lifestyles. In 

almost all organisms containing yqhY, nusB is located downstream coding for a protein 

involved in transcription termination. Often, a conserved gene cluster follows with genes 

coding for subunits of exodeoxyribonuclease VII and a geranyltransferase (Fig. 1c). 

Strikingly, in nearly all Firmicutes the paralogue yloU forms an operon with yloV, a gene 

coding for a putative dihydroxyacetone/ glyceraldehyde kinase. This operon is even 

present in bacteria lacking yqhY. 

In B. subtilis, an interaction of YqhY and YloU could be shown and both proteins were 

found to be in the cytosolic fraction. YloU is spread equally in the cell, whereas YqhY is 

localized at the cell poles. This polar localization is dependent on DivIVA, as YqhY shows a 

dispersed localization in the absence of this membrane anchor (Tödter, 2013). YqhY and 

YloU belong to the Asp23 protein family. The name giving protein is the alkaline shock 

protein 23 (Asp23) from S. aureus and all members of this family contain a domain of 

unknown function (DUF322). In most staphylococci Asp23 is one of four DUF322 proteins 

together with YqhY, YloU and AmaP. It is highly expressed and one of the most abundant 

proteins in the cytosolic fraction of S. aureus (Maass et al., 2011). In contrast to yqhY and 

yloU, asp23 is co-transcribed with three other genes controlled by sigma factor σB (Gertz 

et al., 1999). They encode the osmoprotectant transporter OpuD2, a small 

transmembrane protein belonging to the DUF2273 family and another transmembrane 

protein called AmaP (Fig. 1b). AmaP is another representative of the Asp23 family and 

functions as a membrane anchor for Asp23. The deletion of amaP, resulting in a 

delocalized Asp23 or the absence of Asp23 itself, lead to an increased expression of cell 

wall stress genes. The transcription of most of these genes is also upregulated in the 

presence of vancomycin (Müller et al., 2014). This antibiotic disturbs cell wall synthesis in 

Gram-positive bacteria and is used as one of the last actions against life-threatening 

infections, often caused by multi-resistant S. aureus strains.  

Since S. aureus and B. subtilis are closely related, understanding the function of YqhY and 

YloU would help to decipher the function of Asp23 and in doing so, support the 

identification of new drug targets. In addition, the high conservation of proteins 

containing the DUF322 domain strongly points out the importance in cellular processes. 

Therefore, it is important to elucidate the physiological role of YqhY and YloU, in order to 

understand the fundamental mechanisms of the cell. 
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1.2 Fatty acid metabolism in prokaryotes 

Fatty acid metabolism is an essential pathway in most organisms, since the provision of 

fatty acids as membrane components and precursor for energy supplying pathways is 

crucial. Moreover, bacterial cells are often exposed to different environmental conditions. 

In order to adapt to abrupt changes in temperature, osmolarity, pH or salinity, an 

alteration of the membrane composition is necessary to adjust to those changes (Zhang 

and Rock, 2008). There are two types of fatty acid synthesis (FAS). Type I is found in 

eukaryotes and consists of only one protein carrying out all reactions of the pathway. In 

contrast, the FAS II in bacteria, plants and parasites is composed of several proteins of 

which each enzyme catalyzes a single reaction of the pathway (White et al., 2005). 

The initiation phase of the FAS II in B. subtilis (Fig. 2) is started by the conversion of acetyl-

CoA to malonyl-CoA performed by the acetyl-CoA carboxylase (ACCase). This enzyme 

complex is built up by four subunits, AccA, AccB, AccC and AccD (further description 

below) (Cronan and Waldrop, 2002). Afterwards, the malonate group is transferred to the 

acyl carrier protein (ACP) by the malonyl transacylase FabD (Zhang and Rock, 2008). The 

produced malonyl-ACP is then formed to β-ketoacyl-ACP by FabH (Parsons and Rock, 

2013). In Gram-negative bacteria FabH condenses acetyl-CoA with malonyl-ACP to 

produce straight-chain fatty acids. On the other hand, many Gram-positive bacteria like 

B. subtilis and S. aureus preferentially condense short-chain acyl-CoA with malonyl-ACP 

to create branched-chain fatty acids. B. subtilis possesses two FabH isozymes (FabHA and 

FabHB) that enable also the consumption of acetyl-CoA for the production of straight-

chain fatty acids (Choi et al., 2000). The differences in substrate specificity of FabH are 

determined by the hydrophobic binding pocket. Structural analyses revealed that in 

Escherichia coli FabH this pocket is only big enough to harbor acetyl-CoA or propionyl-

CoA, whereas in S. aureus FabH is able to bind acyl-CoAs with up to five carbon atoms (Qiu 

et al., 2005). 

After the initiating step of FabH, β-ketoacyl-ACP is reduced by FabG in a NADPH 

dependent manner in the first reaction of the elongation cycle. The resulting product β-

hydroxyacyl-ACP is then dehydrated to trans-2-enoyl-ACP by FabA and FabZ in E. coli. 

Although both enzymes catalyze the same reaction, only FabA is able to perform the cis-

trans isomerase reaction needed to synthesize unsaturated fatty acids. Gram-positive 
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bacteria only possess FabZ and therefore, they mainly produce saturated fatty acids. An 

exception is Streptococcus pneumoniae which is also capable of forming unsaturated fatty 

acids. This is facilitated by FabM, an enzyme carrying out the same reaction as FabA 

despite having no similarity to it (Parsons and Rock, 2013). The completing step of 

elongation is the reduction of trans-2-enoyl-ACP to acyl-ACP. This is fulfilled by the widely 

expressed enzyme FabI in the presence of NADH or NADPH (Heath and Rock, 1995). In B. 

subtilis the same reaction is executed by a second enoyl-ACP reductase (FabL) with a 

strong preference for NADPH (Heath et al., 2000).  

 

 

Fig. 2. Schematic overview of the fatty acid synthesis in B. subtilis (Klewing, 2015). Initiation cycle (red) is 
started by the production of malonyl-CoA by the acetyl-CoA carboxylase (ACC). The malonate group is 
transferred to the acyl carrier protein (ACP) by the malonyl transacylase FabD and subsequently the β-
ketoacyl-ACP synthase FabH condenses acyl-CoA with malonyl-ACP. The elongation cycle (blue) is a 
repeating process, in which FabG reduces β-ketoacyl-ACP in a first reaction. In the second step, the resulting 
β-hydroxyacyl-ACP is dehydrated to enoyl-ACP by FabZ. At the end, the enoyl-ACP reductases FabI or FabL 
complete the elongation. The resulting acyl-ACP is either condensed by FabF for a further round of 
elongation or it is used for phospholipid synthesis (green). PlsX and PlsY acylate glycerol-3-phosphate to 1-
acyl-glycerol-3-phosphate, to which another fatty acid is added to the 2-position by PlsC. 

 

There are two possibilities for the further utilization of the newly produced acyl-ACP. 

Either it is condensed by FabB or FabF for another elongation round or it has reached a 

sufficient chain length and is used for phospholipid formation. In the latter process, the 

peripheral membrane protein PlsX converts acyl-ACP to acyl-phosphate. This step is 
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essential since the following enzyme PlsY is not able to use acyl-ACP or acyl-CoA as 

substrates. The glycerol-phosphate acyltransferase PlsY connects a fatty acid to the 1-

position of glycerol-3-phosphate. In γ-proteobacteria this reaction can also be taken over 

by PlsB. At the end, the internal membrane protein PlsC acylates the 2-position of 1-acyl-

glycerol-3-phosphate (Lu et al., 2006). 

An important feature of fatty acids is their composition. Depending on different 

environmental conditions, like temperature changes, the structure of the membrane is 

altered by the incorporation of unsaturated fatty acids. At low temperatures an increased 

membrane fluidity is necessary and as a result the ratio of unsaturated fatty acids in 

phospholipids is higher. With rising temperatures the cell is in need of an increased 

membrane rigidity, which bacteria accomplish by decreasing the amount of unsaturated 

fatty acids. As described above, in Gram-positive bacteria FabH is able to bind long-chain 

acyl-CoA, derived from exogenous fatty acids. This enables the introduction of iso or 

anteiso methyl branches, depending on the precursor (Zhang and Rock, 2008). For 

example, the availability of isoleucine is decisive for the provision of the branched chain 

anteiso precursor for FabH (Singh et al., 2008). Another mechanism is used in E. coli. Here, 

FabA isomerizes trans-2-decenoyl-ACP to cis-3-decenoyl-ACP at the 10-carbon stage in the 

elongation module (Heath and Rock, 1996a). However, a following elongation of the FabA 

product can only be initiated by FabB, because FabF is not able to condense cis-3-

decenoyl-ACP (Zhang and Rock, 2008). Since most bacteria do not contain the fabA-fabB 

genes, this route is only common in γ-proteobacteria. Other organisms came up with 

distinct solutions. In B. subtilis the desaturase Des inserts cis double bounds in fatty acids. 

The expression of the des gene is induced at low temperatures (Weber et al., 2001) and 

controlled by the two-component regulator DesRK. The membrane fluidity determines 

the state of the membrane-associated kinase DesK, which activates the transcription of 

des through phosphorylation of DesR (Aguilar et al., 2001). 

Another way to control membrane homeostasis is transcriptional regulation. The 

transcription factor FadR is present in Gram-positive and Gram-negative bacteria. The 

homolog in E. coli is a member of the GntR family and a repressor of the fad regulon 

containing all genes required for transport, activation and degradation of fatty acids.  

(Dirusso et al., 1992). FadR binding to its operator depends on the presence of acyl-CoAs. 

The outer membrane protein FadL transports exogenous fatty acids into the cell 



Introduction 

7 

(Higashitani et al., 1993) and the acyl-CoA synthase FadD converts them into long-chain 

acyl-CoAs (Pech-Canul et al., 2011). These in turn bind to FadR which leads to a release of 

FadR from its DNA binding site and de-repression of the fad regulon genes (Dirusso et al., 

1992). In addition, FadR also acts as an transcription activator of fabA and fabB (Henry 

and Cronan, 1991). Its counterpart is FabR which represses fabA and fabB expression. 

Therefore, these two proteins control the properties of the membrane, since FabA and 

FabB are responsible for unsaturated fatty acid synthesis (Zhang et al., 2002). Although, 

the B. subtilis FadR also represses the genes of the β-oxidation, is does not accommodate 

any activator function. Furthermore, as a member of the TetR family, FadR in B. subtilis 

contains a distinct structure and the inhibiting long-chain acyl-CoAs are provided by the 

cytosolic synthetases LcfA and LcfB (Fujita et al., 2007; Parsons and Rock, 2013). 

In order to regulate fatty acid biosynthesis the transcription factor FapR controls a regulon 

containing acpA, fabD, fabF, fabG, fabHA, fabHB, fabI, fapR, plsC and plsX. This master 

regulator is highly conserved in Bacillus, Listeria and Staphylococcus, but not discovered 

in other species (Schujman et al., 2003). FapR is exclusively inhibited by malonyl-CoA. 

Upon binding of the ligand, the structural arrangement is changed and FapR is released 

from the DNA. Due to the ability of sensing the levels of malonyl-CoA, FapR is a perfect 

sensor for the status of fatty acid synthesis and capable to adjust the expression of the 

elongation cycle genes (Schujman et al., 2008). A disadvantage of this mechanism is the 

control only by the precursor of the synthesis. In E. coli another way of feedback inhibition 

is evolved by the end product acyl-ACP. One of three targets is the acetyl-CoA carboxylase, 

which is inhibited by long-chain acyl-ACP (Davis and Cronan, 2001). The other two are 

FabH and FabI (Heath and Rock, 1996). All three enzymes are responsible for decisive 

reactions in fatty acid biosynthesis, since they provide the precursor malonyl-CoA or 

initiate or complete the elongation cycle. All in all, bacteria developed several 

mechanisms to precisely regulate the production and the composition of fatty acids in 

order to adapt to different environmental conditions. 
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1.3 Acetyl-CoA carboxylase 

The first committed step in fatty acid synthesis is the formation of the precursor malonyl-

CoA, carried out by the acetyl-CoA carboxylase (Fig. 3) (Cronan and Waldrop, 2002). Its 

catalytic process is divided into two half-reactions. The first one is done by the biotin 

carboxylase (AccC) and the biotin carboxyl carrier protein (AccB). Both form a subcomplex 

consisting of two AccC homodimers bound to four AccB (Fig. 4a) (Broussard et al., 2013a). 

In an ATP dependent reaction, AccC transfers a carboxyl group from bicarbonate to biotin, 

which is covalently attached to a single lysine residue of AccB. In the second half-reaction, 

acetyl-CoA is carboxylated by the carboxyltransferase (AccAD) using the carboxyl group 

from caboxybiotin-AccB (Polyak et al., 2012). This second subcomplex is assembled by 

AccA and AccD to a α2β2 heterotetramer (Fig. 4b), which forms the multimeric acetyl-CoA 

carboxylase together with AccB and AccC (Broussard et al., 2013b). It was shown that AccC 

and the carboxyltransferase both maintain their catalytic functions when they are 

separated, but only if unbound biotin is used as substrate (Guchhait et al., 1974). In the 

case of biotin linked to AccB, reflecting the in vivo status, the subcomplexes have little to 

no activity, whereas only the whole ACCase complex exerts full activity (Broussard et al., 

2013b). 

 

 

Fig. 3. Formation of malonyl-CoA by the acety-CoA carboxylase. Biotin is covalently bound to the biotin 
carboxyl carrier protein (AccB) and carboxylated by the biotin carboxylase (AccC) in the presence of ATP and 
bicarbonate. Following, the carboxyl group is transferred to acetyl-CoA by the carboxyltransferase (AccAD) 
resulting the precursor for fatty acid biosynthesis, malonyl-CoA. PDB files used here are, 3G8C for AccB, 
4HR7 for AccBC and 2F9I for AccAD. 
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Fig. 4. Acetyl-CoA carboxylase subcomplexes. (A) The carboxyltransferase consists of two AccA (deep blue) 
and two AccD (light blue) subunits forming an α2β2 heterotetramer (Broussard et al., 2013b). (B) Complex 
of the biotin carboxyl carrier protein AccB (orange, gold) and the biotin carboxylase AccC (light green, 
green). Two AccC homodimers form a tetramer, which is bound to four AccB molecules (Broussard et al., 
2013a). PDB files used here are 2F9I for AccAD and 4HR7 for AccBC. 

 

The genes encoding the biotin carboxyl carrier protein and the biotin carboxylase are accB 

and accC. These two genes are often found in clusters is Gram-positive as well as in Gram-

negative bacteria. This allows coordinated expression which is important, since 

overexpression of the two subunits results either in disruption of biotin synthesis (Abdel-

Hamid and Cronan, 2007) or inhibition of fatty acid synthesis (Karow et al., 1992). The 

expression of this operon is dependent on the growth rate (Li and Cronan, 1993), which is 

also the case in B. subtilis (Marini et al., 2001). Here, accB and accC cluster as well, but 

they are additionally located in an operon with yqhY. This supports the idea, that YqhY is 

involved in the synthesis of fatty acids or its regulation in B. subtilis. 

The carboxyltransferase encoding genes are accA and accD, which are located in the same 

operon and upregulated by Spo0A in B. subtilis (Molle et al., 2003). During sporulation 

Spo0A binds to its binding box upstream of the -35 region and reactivates the malonyl-

CoA synthesis (Pedrido et al., 2013).  

In addition to the above mentioned inhibition by long-chain acyl-ACP (Davis and Cronan, 

2001), there is another way to control ACCase activity in E. coli. The PII-like protein GlnB 
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forms a complex with AccB and AccC and thereby decreases the ACCase activity about 

40%. This inhibition was reversed upon 2-oxoglutarate binding to GlnB and by GlnB 

uridylylation. The dependency on 2-oxoglutarate allows GlnB to measure the nutrient 

availability and to control the rate of malonyl-CoA production according to the need of 

fatty acids (Gerhardt et al., 2015). Such a regulatory mechanism by a PII-like protein is not 

known in B. subtilis. Like most Gram-positive bacteria, B. subtilis only possess one PII GlnK 

homolog. Although GlnK is closely related to GlnB and their functions partially overlap 

(Forchhammer, 2008), the ACCase activity is not influenced by GlnK (Gerhardt et al., 

2015).  

The high conservation and the essential role in initiation of fatty acid synthesis, make the 

acetyl-CoA carboxylase an interesting target of inhibition studies and drug therapy. 

Nevertheless, many aspects about its regulation, especially in B. subtilis, remain elusive 

and need further investigation. A yet unknown role in ACCase regulation in B. subtilis 

could be fulfilled by the unknown protein YqhY, since the knockout leads to mutations 

affecting the ACCase subunits and the encoding gene is located in an operon with the 

accBC cluster. 

 

1.4 Protein degradation in Bacillus subtilis 

The degradation of proteins plays a major role in protein homeostasis in all cells. The 

control of protein quality and removal of misfolded and aggregated proteins is especially 

important in cells exposed to threatening environments like heat, oxidative stress or salt 

stress. Moreover, proteolysis is also involved in signaling pathways by controlling the 

abundance of transcription factors and other regulators. In eukaryotes, ubiquitin is used 

to label proteins for degradation via the proteasome. Bacteria came up with other ways 

to get rid of ineffective proteins or control certain pathways by proteolysis (Battesti and 

Gottesman, 2013). The AAA+ (ATPase associated with diverse cellular functions) 

proteases are degradation complexes that utilize adaptor proteins or recognition 

sequences, called degrons, to dispose selected proteins. These complexes contain an 

ATPase subunit which is built up by Hsp100/Clp proteins. E. coli possesses the ATPases 

ClpA, ClpX and HslU, whereas B. subtilis has two additional ATPases in ClpC and ClpE, while 

lacking ClpA (Kirstein et al., 2009b). The ATPases form a hexameric ring, in which 
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substrates are unfolded and forwarded through a central axial pore to a chamber in the 

proteolytic unit (Sauer and Baker, 2011). In case of ClpP, this chamber, containing the 

active sites, is assembled by two heptameric rings (Wang et al., 1997) and only small 

peptides can pass the rings to reach the active center in the absence of an ATPase (Lee et 

al., 2010). In addition to ClpP, the proteolytic unit can also be build up by HslV (also known 

as ClpQ). An overview of the AAA+ proteases and their adaptor proteins in B. subtilis is 

shown in Fig. 5. 

 

Fig. 5. Composition and adaptor proteins of Hsp100/Clp proteins and AAA+ proteases in B. subtilis 
(adapted from Kirstein et al., 2009b). The proteolytic subunits ClpP and ClpQ are shown in red and the 
ATPases ClpC, ClpE, ClpX and ClpY are in green. The corresponding adaptor proteins are listed below. 

 

The transcription of ClpC, ClpE, ClpX and ClpP is repressed by CtsR and strongly 

upregulated during heat stress (see below). Nevertheless, ClpC is also present in non-

stressed cells (Molière and Turgay, 2013) and a recent study suggested a model in which 

ClpC is active independent of any co-factors. It was presumed that post-translationally 

arginine phosphorylation destabilizes the native structure of proteins and marks them as 

substrates for ClpCP degradation. Phosphorylated arginine residues are recognized by the 

N-terminal domain of ClpC which subsequently recruits the target proteins to the 

proteolytic unit (Trentini et al., 2015). This is in contrast to the previous assumption, that 
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ClpC activity depends on binding to its adaptor proteins MecA, YpbH and McsB (Kirstein 

et al., 2006; Kirstein et al., 2007). 

Like its paralogue YpbH, MecA tags misfolded and aggregated proteins for ClpCP 

degradation (Schlothauer et al., 2003). On the other hand, MecA also regulates 

competence development through binding of ComK. This master regulator activates the 

transcription of competence genes and protein levels are kept low by ClpCP degradation 

at exponential growth. During stationary growth, the anti-adaptor ComS is expressed as 

consequence of a quorum sensing pathway. Subsequently, ComS binds to MecA and 

replaces ComK. The released ComK induces transcription of its own gene and the genes 

necessary for competence (Turgay et al., 1998). According to another theory, the 

degradation of ComK benefits motility gene expression. The activation of the competence 

genes comFA by ComK leads to a read-through transcription of flgM. The encoded protein 

is an anti-sigma factor inhibiting the transcription of the flagellar proteins Hag and FliD. 

Thus, maintaining low ComK concentrations allows mobility gene expression (Molière and 

Turgay, 2013). 

The third known adaptor protein for ClpC is McsB, responsible for targeting the repressor 

CtsR (Kirstein et al., 2007). As mentioned before, CtsR prevents expression of the class III 

heat shock genes, including ctsR, clpC, clpE, clpP and mcsA and mcsB (Derré et al., 1999). 

The degradation of CtsR by ClpCP occurs after its phosphorylation by McsB, which also 

bears a kinase activity. The auxiliary protein McsA stimulates the autophosphorylation of 

arginine residues of McsB, which in turn phosphorylates CtsR (Kirstein et al., 2007; 

Fuhrmann et al., 2009). This mechanism is antagonized via dephosphorylation of McsB  by 

the arginine phosphatase YwlE (Kirstein et al., 2007). Additionally, ClpC binds to 

unphosphorylated McsB and this interaction also prevents kinase activity (Elsholz et al., 

2011a). Taken together, under normal growth conditions unphosphorylated McsB is 

connected with ClpC and CtsR represses the transcription of the heat shock genes. A shift 

to high temperatures provokes a conformational change of CtsR and the regulator is 

released from the DNA (Elsholz et al., 2010). At the same time, McsB is displaced from 

ClpC by MecA targeting unfolded proteins (Kirstein et al., 2007). The free McsB is 

subsequently phosphorylated and marks CtsR for degradation. This means that 

proteolysis is not needed for activation of heat shock gene transcription, but for removal 

of inactive CtsR (Molière and Turgay, 2013). 
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MscB is also involved in oxidative stress response. Exposed to disulfide stress, two 

conserved cysteine residues of McsA were oxidized, resulting in the separation of the 

McsAB complex (Elsholz et al., 2011b). Despite the absence of McsA, McsB is still able to 

bind CtsR and remove it from the operator (Kirstein et al., 2005). In Gram-positive bacteria 

lacking McsA and McsB, the ATPase ClpE was suggested to take over this function. During 

disulfide stress, the zinc finger domain of ClpE is oxidized, enabling an interaction between 

ClpE and CtsR. Again, this finally leads to CtsR inactivation and de-repression of the CtsR 

regulon (Elsholz et al., 2011b). Apart from that, the role of ClpE is poorly understood. It is 

hardly detectable under normal growth conditions, but the amount of ClpE is significantly 

increased for a short time after heat stress, until it is degraded by ClpCP (Gerth et al., 

2004). So far, no adaptor protein is known for ClpE (Kirstein et al., 2009b), but ClpEP is 

proposed to be part of protein quality control in response to high temperatures. In the 

early phase of heat stress, ClpEP removes inactive CtsR until ClpCP starts to degrade ClpE 

and finalizes the decay of the remaining CtsR. This points out a backup function for ClpE 

in heat shock response in B. subtilis (Miethke et al., 2006). Moreover, in Streptococcus 

mutans, the ClpEP protease degrades SsrA-tagged proteins (Tao and Biswas, 2015). The 

ssrA gene codes for a so called tmRNA that adds a signal peptide to unfinished proteins. 

The transcription of the ssrA gene is induced by heat stress and high ethanol 

concentrations (Muto et al., 2000). In case of an incomplete translation, the tmRNA 

occupies the A-site of a stalled ribosome and transfers alanine to the nascent polypeptide. 

At the same time, the original mRNA is released and translation is switched to the tmRNA 

ORF. Afterwards, the residual part of the SsrA-tag (AGKTNSFNQNVALAA) is added and 

translation terminates at a stop codon in the end. This reaction rather provides a way to 

release stalled ribosomes than tag specific proteins for degradation (Moore and Sauer, 

2007). 

In B. subtilis, ClpCP and ClpEP lack this ability whereas ClpXP is the only proteolytic unit 

that degrades SsrA-tagged proteins (Wiegert and Schumann, 2001). A more important 

role plays ClpXP in the adaptation to oxidative stress. With the help of the adaptor protein 

YjbH, ClpXP controls the protein levels of Spx (Garg et al., 2009). This transcriptional 

regulator induces genes involved in thiol homeostasis, cysteine biosynthesis, 

detoxification and NADPH production (Zuber, 2009). On the other hand, Spx sequesters 

the C-terminal domain of the α-subunit of the RNA polymerase and prevents the binding 
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of transcriptional activators like ResD and ComA (Nakano et al., 2003). During normal 

growth, Spx is constantly degraded by ClpXP (Molière and Turgay, 2013), but it is stabilized 

under oxidative stress. This is due to oxidation of a zinc-binding domain leading to 

inactivation of ClpX (Zhang and Zuber, 2007). Another stabilizing factor is YirB, an anti-

adaptor protein of YjbH, preventing the interaction of YjbH and Spx and therefore the 

destruction by ClpXP (Kommineni et al., 2011). 

A special Hsp100/Clp ATPase is ClpB in E. coli, that does not interact with ClpP (Kirstein et 

al., 2009b). Instead, ClpB refolds aggregated proteins together with small heat shock 

proteins and DnaK (Mogk et al., 2003). Homologs of this unfoldase are not present in B. 

subtilis, however, in vitro experiments demonstrated disaggregation activity for the ClpC-

MecA complex in the absence of ClpP (Schlothauer et al., 2003). These findings implicate 

that ClpC has a similar function to ClpB in dissolving of aggregated proteins (Molière and 

Turgay, 2013). LonA and LonB are further exceptions for proteases as both harbor their 

ATP hydrolysis and proteolysis functions within the same polypeptide chain (Duman and 

Löwe, 2010). They are thought to be part of sporulation regulation, since lonB is 

particularly transcribed under sporulation conditions and LonA very likely degrades the 

sigma factor σG. Furthermore, σH-mediated gene expression is possibly controlled by LonA 

and LonB at low pH (Molière and Turgay, 2013). 

The need of controlled and directed protein degradation is obvious. Bacteria not only face 

challenges during changing environments, they also have to adjust protein expression and 

regulate the concentrations of specific proteins at different stages of development. The 

Gram-negative α-proteobacterium Caulobacter crescentus uses an adaptor hierarchy to 

manage the degradation of key factors during the transition from a swarmer cell stage to 

a stalked cell stage. For this purpose, the proteolytic complex ClpXP is loaded with several 

different adaptor proteins depending on the substrates. The first adaptor CpdR promotes 

the destruction of one class of substrates. Moreover, the priming of ClpXP by CpdR is a 

prerequisite for binding of the adaptor RcdA that facilitates the degradation of a second 

class of substrates. The third class of substrates is tethered by PopA which in turn can only 

bind to RcdA. At the same time, PopA prevents the degradation of RcdA-dependent 

protease substrates. Thus, at a higher level of the hierarchy adaptors can serve as anti-

adaptors for substrates reliant only on the lower levels of the hierarchy (Joshi et al., 2015). 
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Last but not least, pivotal proteins participating in proteolysis are interesting targets for 

antibiotic treatment. For example, acyldepsipeptide (ADEP) binds to ClpP and prohibits 

the complex formation with Clp ATPases, which convey substrate specificity and are 

needed for the decomposition of large polypeptides. Simultaneously, ADEP binding leads 

to a conformational change enabling ClpP to nonspecifically degrade unfolded proteins 

and nascent polypeptides emitted by ribosomes (Kirstein et al., 2009a). The broad range 

of regulatory functions carried out by proteases as well as the involvement in almost all 

substantial cellular processes, points out the importance of Clp-mediated protein 

degradation. Nevertheless, in many of these processes the exact mode of action of the 

proteases remains unclear and the discovery of new targets and the possible concomitant 

need of novel adaptor proteins are challenging questions. 

 

1.5 Aim of this work 

The aim of this work was the characterization of one representative of the Asp23 protein 

family in Bacillus subtilis, YqhY. Despite all members of this family are both highly 

conserved and highly expressed in Gram-positive bacteria, almost nothing is known about 

the functions of Asp23 proteins. Previous studies already pointed out a vital function of 

YqhY, since the deletion of the encoding gene revealed an impaired phenotype and 

resulted in the rapid acquisition of suppressor mutations that affect the subunits of the 

acetyl-CoA carboxylase (Tödter, 2013). This protein complex catalyzes the first committed 

step in fatty acid biosynthesis, the conversion of acetyl-CoA to malonyl-CoA. The observed 

genetic link between YqhY and the acetyl-CoA carboxylase suggests an involvement of 

YqhY in fatty acid synthesis. Studies on the impact of the suppressor mutations were 

performed and a possible influence of YqhY on the acetyl-CoA carboxylase was 

investigated, in order to gain further insights for the role of YqhY and Asp23 proteins in 

general. 
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2 Materials and Methods 

Materials: Chemicals, utilities, equipment, commercial systems, proteins, antibodies, 

enzymes and oligonucleotides are listed in the appendix. 

 

2.1 Bacterial strains and plasmids 

See appendix of this work 

 

2.2 Growth media 

Buffers, solutions and media were prepared with deionized water and autoclaved (20 min 

at 121°C and 2 bar). Thermolabile substances were dissolved and sterilized by filtration. 

Solutions are related to water, other solvents are indicated. Basic media were 

supplemented with agar (1.5% w/v) for solidification. 

 

2.2.1 Bacterial growth media and optional additives 

IPTG    Stock solution: 0.5 M, 

final concentration: 0.5 mM in medium 

 

X-Gal     Stock solution: 40 mg/ml X-Gal in DMF, 

final concentration:  40 µg/ml in medium 

 

5 x C-Salts 20 g KH2PO4 

 80 g K2HPO4 x 3 H2O 

 16.5 g (NH4)2SO4 

 to 1 l deion. H2O 

 

III’ salts 0.232 g MnSO4 x 4 H2O 

 12.3 g MgSO4 x 7 H2O 

 to 1 l deion. H2O 
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1x C minimal medium 20 ml 5x C salts 

 1 ml Tryptophan (5 mg/ml) 

 1 ml Ferric ammonium citrate (2.2 mg/ml) 

 1 ml III`salts 

 to 100 ml deion. H2O 

 

1 x CSE medium 20 ml 5 x C-salts 

 1 ml Tryptophan (5 mg/ml) 

 1 ml Ferric ammonium citrate (2.2 mg/ml) 

 1 ml III`salts 

 2 ml Potassium glutamate (40%) 

 2 ml Sodium succinate (30%) 

 to 100 ml deion. H2O 

 

10x MN medium 136 g K2HPO4 x 3 H2O 

 60 g KH2PO4 

 10 g Sodium citrate x 2 H2O 

 to 1 l deion. H2O 

 

MNGE medium 877 µl 10 x MN medium 

 1 ml Glucose (20%) 

 50 µl Potassium glutamate (40%) 

 50 µl Ferric ammonium citrate (2.2 mg/ml) 

 100 µl Tryptophan (5 mg/ml) 

 30 µl MgSO4 x 7H2O (1 M) 

+/- 100 µl CAA (10%) 

 to 10 ml deion. H2O 
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LB-medium 10 g Trypton 

 5 g Yeast extract 

 10 g NaCl 

 to 1 l deion. H2O 

 

SP-Medium 8 g Nutrient Broth 

 0.25 g MgSO4 x 7 H2O 

 1 g KCl 

 to 1 l deion. H2O 

 autoclave, after cooling down addition of: 

 1 ml CaCl2 (0.5 M) 

 1 ml MnCl2 (10 mM) 

 2 ml Ferric ammonium citrate (2.2 mg/ml) 

 

2.2.2 Antibiotics 

Antibiotics were prepared as 1000-fold concentrated stock solutions. Ampicillin, 

spectinomycin, lincomycin and kanamycin were dissolved in deionized water, 

chloramphenicol, erythromycin and tetracycline in 70% ethanol. All solutions were sterile 

filtrated and stored at -20°C. Autoclaved medium was chilled down to approximately 50°C, 

and antibiotics were added to their final concentration. For light sensitive additives such 

as tetracycline, incubation occurred in the dark. 

 

Selection concentration for B. subtilis 

Chloramphenicol     5 µg/ml 

Erythromycin     2 µg/ml1 

Kanamycin     5 µg/ml 

Lincomycin   25 µg/ml1 

Spectinomycin 150 µg/ml 

Tetracycline   12.5 µg/ml 

1For selection on ermC a mixture of erythromycin and lincomycin was used in their 

respective concentrations, see above. 
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Selection concentration for E. coli 

Ampicillin 100 µg/ml 

Spectinomycin 100 µg/ml 

Kanamycin 50 µg/ml 

 

2.3 Methods 

2.3.1 General methods 

Some general methods used in this work that are described in the literature are listed in 

Tab. 1. 

 

Tab. 1. General methods 

Method Reference 

Absorption measurement Sambrook et al., 1989 

Ethidiumbromide staining Sambrook et al., 1989 

Precipitation of nucleic acids Sambrook et al., 1989 

Gel electrophoresis of DNA Sambrook et al., 1989 

Plasmid preparation from E. coli Sambrook et al., 1989 

Ligation of DNA fragments Sambrook et al., 1989 

Determination of protein amounts Bradford, 1976 

Gel electrophoresis of proteins (denaturating) Laemmli, 1970 

Sequencing according to the chain termination method  Sanger et al., 1977 

 

 

 



Materials and Methods 

20 

2.3.2 Cultivation of bacteria 

Unless otherwise stated, E. coli was grown in LB medium at 37°C and 200 rpm in tubes 

and flasks. B. subtilis was grown in LB medium, CSE-Glc and MNGE medium at 37°C or 

28°C in tubes and Erlenmeyer flasks. Fresh colonies from plates were used for inoculation. 

Furthermore, overnight liquid cultures were used. Growth was measured at a wavelength 

of 600 nm. For the calculation of the generation time the optical density of cultures in the 

logarithmic growth phase was used (Commichau et al., 2015). 

 

Storage of bacteria 

E. coli was kept on LB medium agar plates up to four weeks at 4°C. For long-term storage 

DMSO cultures were established. SP agar plates and tubes were used for the long-term 

storage of B. subtilis. For the storage of bacteria in DMSO cultures were prepared with 

900 µl of a fresh overnight culture mixed with 100 μl of DMSO (100%). Stocks were frozen 

and stored at -80°C (Commichau et al., 2015). 

 

2.3.3 Transformation of Escherichia coli 

Preparation of competent cells in SOB medium 

A single colony of E. coli DH5α or XL1 Blue was used to inoculate an overnight culture in 4 

ml LB medium. This culture was used to inoculate 50 ml of LB medium. The culture was 

incubated at 37°C and 200 rpm in baffled flasks for 8 h. 

6 ml of this culture were used for inoculation of 250 ml SOB-medium and incubated over 

night at 18°C. After reaching an OD600 of 0.5-0.9 the culture was cooled down by 

incubation for 10 min on ice. The cells were harvested by centrifugation (10 min; 4000 

rpm; 4°C) and resuspended in 80 ml of ice-cold TB-buffer. After centrifugation (10 min; 

4000 rpm; 4°C), the cells were resuspended in 20 ml of ice-cold TB buffer. DMSO (7% final 

concentration) was added and aliquots of 200 µl were frozen in liquid nitrogen and stored 

at -70°C (Commichau et al., 2015). 
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SOB medium 20 g Trypton 

 5 g Yeast extract 

 0.58 g NaCl 

 0.186 g KCl 

 to 1 l deion. H2O, autoclave 

 10 mM MgCl2 

 10 mM MgSO4 

    

TB buffer (pH 6.7) 3.46 g PIPES 

 18.64 g KCl 

 to 1 l deion. H2O, autoclave 

 2.2 g CaCl2 x H2O 

 18.64 g KCl 

 55 ml MnCl2 (1M) 

 

Preparation of competent cells with CaCl2 

A single colony of E. coli DH5α or XL1 Blue was used to inoculate an overnight culture in 4 

ml LB medium. The next day, 50 ml of LB medium were inoculated to an OD600 of 0.05 with 

the overnight culture and incubated at 37°C and 200 rpm. After reaching an OD600 of 0.3-

0.5, the cells were harvested by centrifugation (10 min; 5000 rpm; 4°C) and resuspended 

in 5 ml of ice-cold CaCl2. The cells were kept on ice for 30 min and afterwards centrifuged 

again (10 min; 4000 rpm; 4°C). The pellet was resuspended in ice-cold CaCl2 and 

subsequently used for transformation (Commichau et al., 2015). 

 

Transformation of competent Escherichia coli cells  

100 µl of the competent cells were mixed with DNA and kept on ice for 30 min. The heat 

shock was performed at 42°C for 60-90 s. Afterwards, the samples were incubated for 5 

min on ice. After addition of 400 µl LB medium, the samples were incubated for additional 

60 min at 37°C at 200 rpm. 100 µl and the concentrated rest were plated on LB selection 

plates (Commichau et al., 2015). 
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2.3.4 Transformation of Bacillus subtilis 

Preparation of competent cells 

10 ml of MNGE medium containing 1% CAA were inoculated with an overnight culture of 

B. subtilis to an OD600 of 0.1. This culture was grown at 37°C with agitation until an OD600 

of 1-1.3 was reached. Then, the culture was diluted with 10 ml MNGE medium without 

CAA and incubated again for one hour. After this incubation step, 400 µl of competent 

cells were incubated with DNA for 30 min at 37°C with shaking. Afterwards, 100 µl of 

expression mix were added and the samples were incubated at 37°C for one hour. 100 µl 

and the concentrated rest of the cell suspensions were spread onto SP containing the 

appropriate antibiotics for selection (Commichau et al., 2015).   

 

Expression mix 500 µl Yeast extract (5%) 

 250 µl CAA (10%) 

 250 µl deion. H2O 

 50 µl Tryptophan (5mg/ml) 

 

2.3.5 Preparation and detection of DNA 

Preparation of plasmid DNA from E. coli 

Plasmid DNA was prepared from E. coli carrying the desired plasmid. For high copy vectors 

an overnight culture of 4 ml with cells carrying the desired plasmid was harvested. For low 

copy vectors 20 ml of an overnight culture were harvested. The plasmid DNA was isolated 

using the NucleoSpin® Plasmid Kit (Macherey-Nagel) according to the manufacturer’s 

instructions. Deionized water was used for elution of the DNA from the columns. All steps 

were performed at room temperature (Commichau et al., 2015). 

 

Isolation of genomic DNA of B. subtilis 

B. subtilis cultures were grown overnight in 4 ml LB medium and harvested the next day. 

The genomic DNA was isolated using the peqGOLD Bacterial DNA Kit (PEQLAB) following 

the manufacturer’s instructions. Deionized water was used for elution of the DNA from 

the columns (Commichau et al., 2015). 

 

 



Materials and Methods 

23 

Purification of DNA  

After PCR, restriction and dephosphorylation DNA fragments were purified with the 

QIAquick PCR Purification Kit (Qiagen) following the manufacturer’s instructions. 

Deionionized water was used for elution of the DNA from the columns (Commichau et al., 

2015). 

 

Agarose gel electrophoresis 

For analytical and preparative separation of DNA fragments, agarose gels containing 

Midori Green stain and 1% (w/v) agarose in TAE buffer were prepared. The DNA samples 

were mixed with 5x DNA loading dye and loaded onto the gel. The gel was run at a voltage 

of 80–140 V until the separation of the DNA was sufficient. Afterwards, the DNA was 

detected and documented by Gel DocTM XR+ (Bio-Rad). For the estimation of the size of 

the DNA fragments λ-DNA marker was used (Commichau et al., 2015). 

 

50x TAE buffer (pH 8) 242 g Tris base 

 57.1 ml Acetic acid (100%) 

 100 ml 0.5 M EDTA 

 Add to 1 l deion. H2O 

    

5x DNA loading dye 5 ml Glycerol (100%) 

 4.5 ml deion. H2O 

 200 µl 50x TAE buffer 

 0.01 g Bromphenol blue 

 0.01 g Xylene cyanol 

 

DNA extraction from agarose gel 

For the isolation of DNA fragments from preparative gels, the bands were visualized at a 

wavelength of λ365. The bands were cut out and transferred into an Eppendorf tube. The 

purification of the DNA was performed with the peqGOLD Gel Extraction Kit (PEQLAB) 

according to the manufacturer’s instructions (Commichau et al., 2015). 
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Sequencing of DNA 

Sequencing was done based on the chain termination method (Sanger) with fluorescence 

labeled dideoxynucleotides. The sequencing reactions were conducted by SeqLab 

(Göttingen, Germany) and the Laboratorium für Genomanalyse (G2L) of the Georg-August-

University Göttingen. 

 

Restriction of DNA 

The restriction of DNA with endonucleases was performed with buffers recommended by 

the manufacturer. Reaction buffers, concentration of enzymes and DNA as well as 

incubation temperature and incubation time were chosen according to the 

manufacturer’s instructions. (Commichau et al., 2015). 

 

Dephosphorylation of DNA 

To avoid re-circularization of a previously digested DNA vector, the 5’ phosphate groups 

of the linearized vector were removed prior to the ligation reaction. The 

dephosphorylation of the 5`-prime end of DNA fragments was performed with the FastAP 

alkaline phosphatase (ThermoFisher) with buffers supplied by the manufacturer. 

Therfore, 1 µl FastAP (1U/µl) were added to the restriction mix and incubated at 37°C for 

10 min (Commichau et al., 2015). 

 

Ligation of DNA 

DNA fragments were ligated using T4-DNA ligase (ThermoFisher) with buffers supplied by 

the manufacturer. The ligation reaction contained 10 - 200 ng of vector DNA and an excess 

of the DNA fragment (insert to vector molar ratio of 3:1). The reaction was started after 

addition of 5 U T4-DNA ligase in a final volume of 20 µl. The ligation occurred for at least 

1 h at RT or overnight at 16°C (Commichau et al., 2015). 

 

Polymerase chain reaction (PCR) 

DNA was amplified by PCR with specific oligonucleotide primers. For each DNA fragment 

of interest, primers were designed. For cloning of DNA fragments into plasmid vectors, 

recognition sequences for specific restriction endonucleases were added via primers at 

both ends of the amplified DNA fragments. Oligonucleotides were purchased from Sigma-
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Aldrich (Munich, Germany). All oligonucleotides used in this work are listed in the 

appendix. 

The PCR reactions were performed in a total volume of 50 µl and for amplification 

PhusionTM polymerase was used. For check PCR the Taq polymerase (own purification) 

was used. 

 

Reaction conditions for Phusion polymerase (50μl): 

10 µl HF reaction buffer (5x) 

1 µl dNTPs (12.5 μmol/ml) 

1 µl template DNA (2-10 ng/ μl) 

1 µl DNA polymerase 

1 µl forward primer (5 µmol/ µl) 

1 µl reverse primer (5 µmol/ µl) 

35 µl deion. H2O 

 

The sample was mixed and placed in a thermocycler. After an initial DNA denaturation 

step, a cycle consisting of three steps including denaturation, primer annealing and primer 

elongation was performed for 30 times. The reaction was terminated after a final 

elongation step by cooling down to 15°C. Time and temperature for denaturation, time of 

annealing and elongation temperature remained constant for each reaction. The 

annealing temperature (Tm) was dependent on the length of the oligonucleotide and its 

G+C content. (Commichau et al., 2015). 

 

Standard program for the PhusionTM polymerase 

denaturation  95°C 5 min  

denaturation 95°C 20 s 30 x 

annealing Tm -5 [°C] 30 s 30 x 

elongation 72°C 30 s per 1 kb 30 x 

elongation 72°C 10 min  

break 15°C ∞  

 



Materials and Methods 

26 

Reaction conditions for Taq polymerase (25μl): 

2.5 µl Taq reaction buffer (10x) 

1 µl dNTPs (12.5 μmol/ml) 

1 µl template DNA (2-10 ng/ μl) 

1 µl DNA polymerase 

1 µl forward primer (5 µmol/ µl) 

1 µl reverse primer (5 µmol/ µl) 

12.5 µl deion. H2O 

 

Standard program for the Taq polymerase 

denaturation  95°C 5 min  

denaturation 95°C 30 s 30 x 

annealing Tm -5 [°C] 45 s 30 x 

elongation 72°C 60 s per 1 kb 30 x 

elongation 72°C 10 min  

break 15°C ∞  

 

Long flanking homology PCR (LFH-PCR) 

Deletion of a gene in B. subtilis was performed with the long flanking homology PCR (LFH-

PCR) technique. For this purpose, genes that mediate resistance against chloramphenicol, 

erythromycin, kanamycin and spectinomycin were amplified from the plasmids pDG646, 

pDG780, pDG1726 and pGEM-cat, respectively (Guérout-Fleury et al., 1995). DNA 

fragments of about 1 kb flanking the target gene at its 5' and 3' ends were amplified. The 

3' end of the upstream fragment as well as the 5' end of the downstream fragment 

extended into the target gene in a way that all expression signals of genes up- and 

downstream of the gene remained intact. The joining of the two fragments to the 

resistance cassette was performed in a second PCR. Joining was allowed by 

complementary sequences of 25 bp that were attached to the single fragments by the 

respective primers. Thus, the 3` end of the upstream fragment was linked with the 5` end 

of the resistance cassette and the 3`end of the resistance with the 5`end of the 

downstream fragment. For the LFH joining reaction, the up- and downstream fragments 
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and the resistance cassette were used in equal molar ratios. The fused fragment was 

amplified by PCR using the forward primer of the upstream fragment and the reverse 

primer of the downstream fragment. B. subtilis was transformed with the purified PCR 

products and transformants were selected on plates. Clones were examined by check PCR 

for the integrity of the resistance cassette. The DNA sequence of the flanking regions was 

verified by sequencing (Commichau et al., 2015). 

 

Reaction mix (50μl): 

10 µl HF reaction buffer (5x) 

2 µl dNTPs (12.5 μmol/ml) 

1 µl PhusionTM polymerase 

1 µl upstream fragment 

1 µl downstream fragment 

1 µl resistance cassette 

to 50 µl deion. H2O 

 

After a pre-incubation step, the primer were added to the mix 

5 μl    forward primer (5 µmol/ µl) 

5 μl    reverse primer (5 µmol/ µl) 

 

LFH standard program 

 denaturation  95°C 5 min  

 denaturation 95°C 30 s 10 x 

1st step annealing Tm -5 [°C] 30 s 10 x 

 elongation 72°C 30 s per 1 kb 10 x 

 break 15°C ∞  

Addition of primer 
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LFH standard program 

 denaturation 95°C 30 s 20 x 

 annealing Tm -5 [°C] 30 s 20 x 

2nd step elongation 72°C 30 s per 1 kb 20 x 

 elongation 72°C 10 min  

 break 15°C ∞  

 

2.3.6 Preparation and analysis of proteins 

Overexpression of proteins in E. coli 

An overnight culture of E. coli, carrying the relevant plasmid, was used to inoculate a new 

culture in LB medium to an OD600 of 0.1. This culture was grown at 37°C (200 rpm) until 

they had reached an OD600 of 0.6-0.8. At this point, the expression of recombinant 

proteins was induced by the addition of isopropyl-β-D-thio-galactopyranoside (IPTG, final 

concentration: 1 mM). After 3 h the culture was harvested by centrifugation (15 min; 8000 

rpm; 4°C). The pellet was resuspended in buffer W or in ZAP buffer and centrifuged again. 

After removing the supernatant the cells were stored at -20°C (Commichau et al., 2015).  

 

Cell disruption with the French® press 

The cell pellet was resuspended in buffer W or in ZAP buffer and filled in the precooled 

bomb. The disruption took place with a pressure of 18000 PSI and was performed at least 

three times (Commichau et al., 2015).   

 

Purification of His6-tagged proteins  

For protein purification, the frozen pellets were resuspended in cold ZAP buffer containing 

10 mM imidazole and subsequently disrupted by the French® pressure cell as described 

above. Cell debris and other insoluble material were removed by ultracentrifugation (1 h; 

35000 rpm; 4°C). The supernatant was loaded onto a 2 ml bed volume of Ni2+-NTA resin 

(Qiagen) in a Poly-Prep Chromatography Column (Biorad). The Ni2+-NTA resin was pre-

equilibrated with 20 ml ZAP buffer containing 10 mM imidazole. After washing with 10-

20 ml of ZAP buffer containing 10 mM imidazole the His6-tagged proteins were eluted. 

The elution was performed with ZAP buffer containing an increasing concentration of 
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imidazole (for example 50 mM, 100 mM, 200 mM, and 500 mM). To analyze the 

purification success, samples of each fraction were loaded onto a polyacrylamide gel and 

after electrophoresis stained with Coomassie brilliant blue. The relevant fractions were 

combined and dialyzed overnight. The protein concentration was determined using the 

Bradford assay (Commichau et al., 2015). 

 

ZAP buffer (pH 7.5) 50 mM Tris base 

 20 mM NaCl 

 1 mM EDTA 

 to 1 l deion. H2O 

 

Purification of Strep-tagged proteins 

For protein purification, the frozen pellets were resuspended in cold buffer W and 

subsequently disrupted by the French® pressure cell as described above. Cell debris and 

other insoluble material were removed by ultracentrifugation (1 h; 35000 rpm; 4°C). The 

supernatant was loaded onto 1 ml Strep-Tactin Sepharose (IBA) in a Poly-Prep 

Chromatography Column (Biorad). Pre-equilibration of the matrix was performed with 10-

20 ml of buffer W. After washing 4-6 times with 1.5 ml buffer W, the bound proteins were 

eluted with buffer E in 4 fractions (1x 500 µl, 3x 1 ml). The fractions were analyzed by SDS-

PAGE (Commichau et al., 2015).  

 

Buffer W (pH 8) 100 mM Tris base 

 150 mM NaCl 

 Add to 1 l deion. H2O 

  

Buffer E (pH 8) 100 mM Tris base 

 150 mM NaCl 

 2.5 mM D-desthiobiotin 

or 10 mM Biotin 

 Add to 1 l deion. H2O 
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Dialysis of proteins  

The elution fractions were dialyzed against the desired buffer, which was in excess of 

about 1000 fold, in a dialysis tube overnight. (Commichau et al., 2015). 

 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were analyzed by SDS-PAGE as described by Laemmli (1970). Protein samples 

were mixed with 5x SDS loading dye and denatured by boiling at 95°C for 30 min. The 

polyacrylamide concentration of the gels was chosen according to the expected proteins 

sizes varying from 8 to 15% (v/v). Samples were loaded onto the prepared gel. 

Electrophoresis was performed at 100-180 V until the bromphenol blue had reached the 

lower end of the gel. During electrophoresis, proteins were first focused in the stacking 

gel and subsequently separated by their molecular mass in the running gel. The self-

constructed protein marker Page King and the purchased protein marker PageRuler Plus 

(ThermoFisher) were used as size standards (Commichau et al., 2015).  

 
5x SDS loading dye 1.4 ml Tris-HCl pH 6.8 (1.5 M) 

 5 ml Glycerol (100 %) 

 0.5 g SDS 

 1.6 ml β-Mercaptoethanol 

 0.02 g Bromphenol blue 

  ml Bromphenol blue 

 to 10 ml deion. H2O 
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5% Stacking gel 1.3 ml Acrylamide-Bisacrylamide (30%) 

 1 ml Tris-HCl pH 6.8 (1.5 M) 

 5.5 ml deion. H2O 

 80 µl SDS (10%) 

 80 µl APS (10%) 

 8 µl TEMED 

    

8% Running gel 4 ml Acrylamide-Bisacrylamide (30%) 

 3.8 ml Tris-HCl pH 8.8 (1 M) 

 6.9 ml deion. H2O 

 150 µl SDS (10%) 

 150 µl APS (10%) 

 9 µl TEMED 

    

12% Running gel 6 ml Acrylamide-Bisacrylamide (30%) 

 3.8 ml Tris-HCl pH 8.8 (1 M) 

 4.9 ml deion. H2O 

 150 µl SDS (10%) 

 150 µl APS (10%) 

 6 µl TEMED 

    

15% Running gel 7.5 ml Acrylamide-Bisacrylamide (30%) 

 3.8 ml Tris-HCl pH 8.8 (1 M) 

 3.4 ml deion. H2O 

 150 µl SDS (10%) 

 150 µl APS (10%) 

 6 µl TEMED 

 

Coomassie staining of polyacrylamide gels 

Protein gels were stained with Coomassie Brilliant Blue. For this purpose, the gels were 

incubated in staining solution for 30 min while shaking. Afterwards, the gels were 

transferred in water and heated in the microwave to remove the staining. This process 
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was repeated until an optimal contrast between protein bands and background was 

reached (Commichau et al., 2015). 

 

Staining solution  0.5 % Coomassie Brillant Blue R250 

 10 % Acetic acid 

 45 % Methanol 

 44.5 % deion. H2O 

 

Silver staining of polyacrylamide gels 

The silver staining of the protein bands was performed as described by (Nesterenko et al., 

1994). For staining, the polyacrylamide gels were incubated with the following solutions 

with shaking (Commichau et al., 2015). 

 

Step Reagent Duration 

Fixing Fixing solution 1 to 24 h 

Washing Ethanol 50 % 3 x 20 min 

Reduction Thiosulfate solution 1 min 

Washing  deion. H2O 3 x 20 s 

Staining Impregnating 15-25 min 

Washing deion. H2O 2 x 20 s 

Developing Developer until sufficiently stained 

Washing deion. H2O 2 x 20 s 

Stopping Stop solution 5 min 
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Fixing solution 50 ml Methanol (100%) 

 12 ml Acetic acid (100%) 

 100 µl Formaldehyde (37%) 

 to 100 ml deion. H2O 

    

Thiosulfate solution 20 mg Na2S2O3 x 5 H2O 

 to 100 ml deion. H2O 

    

Impregnator 0.2 g AgNO3 

 37 µl Formaldehyde (37%) 

 to 100 ml deion. H2O 

    

Developer 6 g NaCO3 

 2 ml Thiosulfate solution 

 50 µl Formaldehyde (37%) 

 to 100 ml deion. H2O 

  

Stop solution 1.86 g EDTA 

 to 100 ml deion. H2O 

 

Strep-protein interaction experiment (SPINE) for the analysis of protein-protein 

interactions 

The Strep-protein interaction experiment (SPINE) was performed according to Herzberg 

et al., 2007. This experiment was used to identify potential interaction partners of B. 

subtilis proteins in vivo. Therefore, the gene of interest was cloned into the expression 

vectors pGP380, pGP382, pGP1389 or pGP1460. A preculture of B. subtilis carrying the 

appropriate plasmid was grown for 8 h at 37°C in LB medium. This culture was used to 

inoculate 50 ml CSE medium containing 0.5% glucose and was grown overnight at 37°C. 

The next day, one liter of the same medium was then inoculated with the overnight 

culture to an OD600 of 0.1. When this culture had reached an OD600 of 1.0, 500 ml were 

supplemented with paraformaldehyde (4% in PBS) to a final concentration of 0.6%. This 

culture was and incubated for additional 15-20 min. Both types of culture were harvested 
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by centrifugation (15 min; 5,000 rpm; 4°C). The cells were washed in buffer W and 

centrifuged again. The pellets were stored at -20°C. For the preparation of the crude 

extract, the cell pellet was resuspended in buffer W and the cells were disrupted by the 

French® pressure cell as described above. Cell debris and other insoluble material were 

removed by ultracentrifugation (1 h; 35000 rpm; 4°C) and the supernatant was used for 

protein purification via Strep-Tactin Sepharose (IBA). The protein fractions were finally 

separated by SDS-PAGE (Commichau et al., 2015). 

 

10x PBS (pH 6.5) 80 g NaCl 

 2 g KCl 

 26.8 g Na2HPO4 × 7 H2O 

 2.4 g KH2PO4 

 to 1 l deion. H2O 

 

Western blot analysis 

The desired amount of cell free crude extract was previously separated by SDS PAGE. The 

transfer of the proteins on a PVDF membrane was performed using a semi dry blotting 

machine. Activation of the PVDF membrane occurred by short incubation (30 s) in 100% 

methanol. After blotting for 1-2 h with a current of 80 mA, the membrane was incubated 

in blotto for 1-3 h or overnight. Ensuing, the primary antibody (α-FLAG, 1:10000 in blotto) 

was added and incubation for 2-3 h or overnight followed. The membrane was then 

washed three times for 30 min with blotto, the secondary antibody (anti-rabbit, 1:100000 

in blotto) was added and after 30 min the membrane was washed again three times for 

20 min with blotto. At last the membrane was rinsed in deionized water and subsequently 

incubated in buffer III for 5 min. Detection of the proteins was enabled by the substrate 

CDP* (1:100 in buffer III). Chemiluminescence signals were detected by ChemoCam 

system (Intas). 
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Transfer buffer 15.1 g Tris 

 72.1 g Glycine 

 750 ml Methanol (100%) 

 to 5 l deion. H2O 

Blotto 100 ml TBS (10x) 

 25 g Skim milk powder 

 1 ml Tween 20 

 to 1 l deion. H2O 

Buffer III (pH 9.5) 0.1 M Tris 

 0.1 M NaCl 

 to 1 l deion. H2O 

TBS (pH 7.6) 60 g Tris 

 90 g NaCl 

 to 1 l deion. H2O 

 

Confirmation of AccB biotinylation 

The AccB protein was purified with Strep-Tactin Sepharose as described above. After 

that, in vitro biotinylation was carried out in a 10 ml reaction mix: 

 

1 mg AccB 

10 mg Crude extract of BirA expressing cells 

1 mM Biotin 

10 mM ATP 

1 Tablet cOmplete Mini EDTAfree protease inhibitor 

50 mM Tris 

100 mM KCl 

 

The reaction was incubated for 1 h at 37°C and afterwards at 4°C overnight with slightly 

agitation. The next day, AccB was purified again using the ÄKTAprime system and a 

heparin column. The successful biotinylation was confirmed by Western blot analysis 

using Streptavidin-horseradish peroxidase (HPR) (see above). Therefore, the protein 

fractions were separated by SDS PAGE and transferred on a PVDF membrane. After 
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blotting, the membrane was incubated in PBS containing 1% BSA for 1-2 h. Then, the 

Streptavidin-HPR (1:5000 in PBS containing 1% BSA and 0.1% Tween20) was added, 

followed by incubation for 1-2 h. The membrane was washed three times for 20 min with 

PBS and subsequently rinsed for 1 min in the developing solution (see below): 

 

2 ml 1M tris pH8.5 

100 µl 2.5 mM luminol in DMSO 

44 µl 90mM paracumaric acid in DMSO 

6.15 µl H2O2 

to 20 ml deion. H2O 

 

Detection of the proteins was performed by the ChemoCam system (Intas). 

 

2.3.7 Bacterial Adenylate Cyclase-based two-hybrid system (BACTH) 

The bacterial two-hybrid system takes advantage of the reconstitution of the catalytic 

domain of the Bordetella pertussis adenylate cyclase (Karimova et al., 1998). To test a 

potential interaction between two proteins, the T18 and T25 domains of the adenylate 

cyclase were fused to the N-terminal domain and to the C-terminal domain of the protein 

of interest respectively. For this purpose, each gene was cloned into two high copy vectors 

(pUT18, pUT18C) and two low copy vectors (p25-N, pKT25) using the E. coli strain XL1-

blue. The co-transformation was carried out in the E. coli strain BTH101 and as positive 

control the plasmids pKT25-Zip and pUT18C-Zip were used. In these two plasmids the T18 

and T25 domains are fused to a dimer forming leucine zipper. 30 µl of competent cells 

were mixed with 5 µg plasmid DNA (2.5 µg of the T18 domain and 2.5 µg of the T25 

domain) and incubated for 30 min on ice. After a heat shock for 90 sec at 42°C, 120 µl of 

LB medium were added to the cells and incubation for 2 h at 30°C followed. At last, 4 µl 

of the cells were dropped on LB agar plates containing ampicillin, kanamycin, X-Gal and 

IPTG. Association of the two-hybrid proteins resulted in functional complementation 

between T25 and T18 fragments and lead to cAMP synthesis. cAMP then triggered the 

transcriptional activation of the lactose operon. The resulting conversion of X-Gal by the 

β-galactosidase yielded in the occurrence of blue colonies. Pictures were taken after 24 h 

and 48 h (Commichau et al., 2015). 
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2.3.8 Acetyl-CoA carboxylase activity assay 

The activity of the acetyl-CoA carboxylase was determined by coupling the conversion of 

acetyl-CoA to malonyl-CoA to the reaction of the malonyl-CoA reductase (MCR) from 

Chloroflexus aurantiacus (Kroeger et al., 2011). This enzyme uses malonyl-CoA as 

substrate in a NADPH dependent reaction to produce 3-hydroxypropionate (Hügler et al., 

2002). The simultaneous oxidation of NADPH was monitored at 365 nm in a plate reader. 

The reaction was set up in a 96 well plate containing the ingredients listed below. 

 

0.1 M KCl 

20 mM MgCl2 

10 mM ATP 

0.5 mM DTT (Dithiothreitol) 

10 mM NaHCO3 

1 mM NADPH 

1.6 mM Acetyl-CoA 

5 µg MCR 

100 nM AccAD 

100 nM AccB 

100 nM AccC 

to 150 µl 50 mM Tris/ 100mM KCl buffer (pH 8.5) 

 

The reaction was initiated by the addition of the MCR and incubated at 25°C for 12 h. In 

case of the positive control without the addition of the ACCase and acetyl-CoA, the initial 

step was the addition of 0.3 mM malonyl-CoA. 
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3 Results 

 

3.1 Impact of YqhY on the ACCase 

 

3.1.1 ΔyqhY suppressor mutations are located in the acetyl-CoA subunits 

Previous experiments showed the non-essentiality of yqhY and yloU (Tödter, 2013). 

Nevertheless, the occurrence of suppressor mutants resulting from the knockout of yqhY 

still supports a vital role of YqhY for growth of B. subtilis, even if it is not essential. The 

mutations occurred after approximately five days of growth on SP agar plates. The 

genomic DNA of several clones was isolated and analyzed by sequencing. In many cases, 

the mutations were located in the subunits of the acetyl-CoA carboxylase (Fig. 6).  

 

Fig. 6. Mutations in the acetyl-CoA carboxylase subunits. As a result of the deletion of yqhY, suppressor 
mutations were found in the subunits of the acetyl-CoA carboxylase (AccA, AccB, AccC and AccD). All 
mutations were single substitutions obtained from distinct clones. Many of them were located in highly 
conserved regions (hatched boxes). 

 

Interestingly, every mutant contains a single substitution and all were found in all four 

subunits (AccA, AccB, AccC and AccD). Moreover, often highly conserved regions were 

affected, or the mutations are closely located next to these regions. For example, the 

substitutions E12A in AccC is close to Y82 and V295. These residues are necessary for 

biotin attachment in the active site of AccC (Chou et al., 2009). The second mutation F192L 

is nearby the key side chains K116, K159, E201, H236 and K288 of the ATP binding pocket 

(Waldrop et al., 2012). The last substitution V98A is not located in a binding region, but it 
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is also close to a conserved region and therefore maybe involved in complex stability or 

interaction with AccB. Regarding the substitutions in AccD, L176F and A229S are in close 

proximity to catalytic sites, which are surrounded by conserved residues. Since both 

affected residues are also highly conserved, they may be important for ACCase activity. 

Furthermore, AccD possesses a unique zinc-binding domain that is not only necessary for 

DNA binding but is probably also important for catalytic activity (Bilder et al., 2006). Thus, 

the mutation I38N could result in activity changes. Another possibility is an altered DNA 

binding ability that would also impact the catalytic reaction, because DNA binding inhibits 

the enzymatic activity of  the carboxyltransferase (Benson et al., 2008). 

All in all, the obtained substitutions indicate a change in ACCase activity. This could be due 

to altered substrate affinities, structure changes or decreased abilities to bind other 

subunits. 

 

3.1.2 The absence of YqhY results in an increased formation of lipophilic clusters 

The knockout of yqhY showed a severe growth defect resulting in the occurrence of 

suppressor mutations. Since the majority of these mutations was located in the acetyl-

CoA subunits, this indicated an altered fatty acid production. To test this hypothesis, the 

accumulation of lipophilic components was visualized using the stain FM4-64. The 

different strains were grown in LB medium and samples were taken at exponential and 

stationary growth phase. In a first approach, the strains Bs168, GP1765 (ΔyqhY), GP2322 

(ΔyqhY AccD A229S) and GP2323 (ΔyqhY AccD I38N) were compared (Fig. 7). Only cells 

taken at the exponential growth phase revealed a significant effect, whereas cells taken 

at the stationary growth phase showed no phenotypic alteration compared to the wild 

type. The absence of YqhY lead to lipophilic accumulations at the cell poles and the cell 

membrane. This hints at an increased fatty acid synthesis in these areas of the cell. On the 

other hand, the clustering is revoked after suppressor mutations occurred in AccD. 

Although, the effect of mutations in the other subunits were not investigated, these 

observations indicate that the increased cluster formation is abolished in the suppressor 

mutants. 

Moreover, the abundance of AccDA and YqhY was investigated. For this purpose, yqhY 

and the operon of accDA were cloned separately into pBQ200. This vector allows 
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overexpression of target genes in B. subtilis. Again, samples were taken at exponential 

and stationary growth phase and stained with FM4-64. In both growth phases, neither the 

overexpression of yqhY nor accDA resulted in a significant phenotype. The cells showed a 

lipophilic pattern similar to the wild type. 

 

 

Fig. 7. Staining of lipophilic regions in the absence of YqhY. Samples were taken at exponential growth 
phase and treated with FM4-64. After the knockout of yqhY, lipophilic clusters were visible at the cell poles 
and near to the cell membrane. This cluster formation was abolished after the appearance of mutations in 
AccD. 
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3.1.3 YqhY impacts the localization of AccA 

The suppressor mutations in the acetyl-CoA carboxylase subunits and the cell staining 

with FM4-64 suggest a possible role of YqhY in fatty acid synthesis. A possible function 

could be YqhY acting as a localization factor. Therefore, it is important to know the 

localization of YqhY and the subunits of the ACCase. To do this, accA, accB and accC were 

each cloned into the vector pBP43 to implement a C-terminal GFP-fusion to the encoding 

proteins. The expression was kept under the control of the respective natural promoter. 

A GFP-fusion to AccD using the same plasmid was not possible without deleting the 

essential downstream gene accA. But due to the strong complex formation of AccA and 

AccD, the localization of AccA also represents the localization of AccD. The cells were 

grown in LB medium and samples were taken at an OD600 of 1.5. 

 

 

Fig. 8. Localization of AccA, AccB and AccC. The proteins were fused to a monomeric GFP at the C-terminus 
and visualized via fluorescence microscopy. All subunits were equally distributed in spots over the cell. 

 

As shown in Fig. 8, all tested subunits where scattered equally in spots over the cell. This 

was in contrast to the cell pole localization of YqhY (Tödter, 2013). However, in the 

absence of YqhY the equal distribution of AccA changed towards a polar localization. The 

localization of the other subunits AccB and AccC was not affected in a ΔyqhY background. 
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In addition, the localization of AccA was analyzed in two suppressor mutant strains 

carrying mutations in AccD (GP1469) and AccA (GP1470). In both strains AccA again 

accumulates at the cell poles, which means that the occurrence of the suppressor 

mutations did not restore the phenotype to a wild type pattern (Fig. 9). 

 

 

Fig. 9. Localization of AccA in ΔyqhY background. AccA was fused to a monomeric GFP at the C-terminus 
and visualized via fluorescence microscopy. In the wild type AccA was equally distributed in spots over the 
cell. In contrast to this, in the absence of YqhY the localization pattern changed towards a cell pole 
localization. This effect also remained after the occurrence of suppressor mutations as it is shown here for 
a mutation in AccA. 

 

3.1.4 Investigation of an interaction of YqhY with the acetyl-CoA complex 

Having a look at the genetic background of yqhY already reveals a connection to acetyl-

CoA carboxylase. The gene forms an operon with accB and accC, which encode for the 

carboxyltransferase. Moreover, the impact on the localization of AccA and the increased 

formation of lipophilic clusters support the idea that YqhY directly interacts with at least 

one subunit of the ACCase complex. 
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3.1.4.1 YqhY interacts with AccC ex vivo 

At first, the possible interaction of YqhY and the subunits was evaluated in a bacterial two-

hybrid assay. In doing so, yqhY as well as accA, accB, accC and accD were cloned into the 

bacterial two-hybrid vectors and in this way, the proteins were fused to the T18 and T25 

domains. After two days, YqhY, AccA, AccB and AccC showed the already known self-

interactions. Besides, the complex formations of the carboxyltransferase (AccDA) and the 

AccBC complex were visible. Concerning YqhY, there was only an interaction with AccC 

(Fig. 10). 

 

Fig. 10. Bacterial two-hybrid analysis of interactions between YqhY and the ACCase subunits. The 
respective genes were fused to the domains of the adenylate cyclase and incubated for two days. 
Interactions, indicated by blue colonies, were observable among the subunits themselves and between 
YqhY and AccC.  

 

3.1.4.2 YqhY binds AccA and AccD only as a complex 

In order to confirm the interaction between YqhY and AccC and examine again the non-

interaction with the other subunits, a SPINE was performed. In this approach, YqhY 

functioned as a bait protein and was fused to a C-terminal Strep-tag. This was carried out 

by cloning the gene in the vector pGP1460, which integrates into the lacA locus and allows 
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constitutive expression of yqhY. The pray proteins, AccA, AccD and CshA, were fused to a 

C-terminal FLAG tag. accA and cshA were each cloned into pGP1331 to keep the 

expression under the control of the natural promoter. The same vector could not be used 

for a FLAG tag fusion to AccD, because accA would be deleted as a consequence. 

Therefore, accD was overexpressed in the vector pGP1370. After the transformation of 

Bs168 with the plasmids, three different strains were derived. Each of those carried a 

Strep-tag fusion to YqhY and FLAG tag fusion to AccA, AccD or CshA. These strains were 

grown in CSE medium containing 0.5% glucose and treated with paraformaldehyde during 

growth to crosslink adjacent proteins. After the SPINE the proteins were detected via 

Western blot. The results are shown in Fig. 11. 

 

 

Fig. 11. Proof of interaction between YqhY and the carboxyltransferase via SPINE. Strains expressing YqhY-
Strep were grown in CSE medium containing 0.5% glucose, adjacent proteins were crosslinked by the 
addition of paraformaldehyde (FA). The pray proteins (AccA, CshA and AccD) were fused to a FLAG tag and 
detected by Western blot analysis. YqhY was purified using a StrepTactin column and was co-eluted with 
AccA and AccD. CshA functioned as a negative control. 

 

AccA and AccD could be observed in the elution fractions, suggesting an interaction with 

YqhY. As both proteins form a strong complex, YqhY is expected to bind the AccDA 

complex instead of interacting with only one of these proteins. This assumption is 

reinforced by the non-interaction of YqhY and AccA and AccD in the bacterial two-hybrid 

screen, since only interactions of two proteins can be examined. Nevertheless, the co-

purification of AccD has to be evaluated carefully. The protein amount in the crude extract 

is significantly higher due to the overexpression of accD. But in the elution fraction only a 

little amount of AccD is detectable. In addition to this, a small amount of AccD-FLAG was 

also detectable in the absence of YqhY-Strep (data not shown), which means that AccD 
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can already be purified via the biotinylated AccB. Apart from this, AccA could not be 

purified in the absence of YqhY-Strep (data not shown), confirming that YqhY undoubtedly 

interacts with AccA.  

The same approach was carried out to test the in vivo interaction of YqhY and AccB and 

AccC. This time, the latter proteins were fused to a Strep-tag with the help of pGP1460. 

On the other hand, YqhY was fused to a FLAG tag using pGP1331. Against the expectations 

given by the bacterial two-hybrid results, there was neither an interaction of YqhY with 

AccB nor AccC (data not shown). 

  

3.1.5 Influence of YqhY on the acetyl-CoA carboxylase activity 

The foregoing experiments showed an interaction of YqhY and the subunits of the acetyl-

CoA carboxylase, demonstrating again a clear connection of YqhY to the fatty acid 

synthesis. In addition to this, an increased fatty acid synthesis was indicated by the 

lipophilic accumulation in the absence of YqhY. Giving these preconditions, there is the 

possibility of YqhY altering the activity the acetyl-CoA carboxylase by direct binding to the 

complex. To study this hypothesis, an in vitro assay was set up in which the reaction of 

the acetyl-CoA carboxylase was coupled with the reaction of the malonyl-CoA reductase. 

 

3.1.5.1 Purification of proteins used in the activity assay 

The first thing to do was the overexpression and purification of YqhY, the ACCase subunits 

and the malonyl-CoA reductase (MCR). For this purpose, YqhY was brought into the vector 

pETM-11, resulting in an N-terminal His-tag fusion. The remaining proteins were fused to 

a Strep tag. All components were overexpressed in E. coli, except AccA and AccD. The 

overexpression of AccA turned out to be toxic for E. coli, so accA was cloned into pGP382 

for overexpression in B. subtilis. AccD could be co-purified with Strep tagged AccA. In a 

first try, AccB was also expressed without a tag in B. subtilis, as it can be purified via Strep-

Tactin in its biotinylated form. But the protein amount was too low after the purification. 

Due to this reason, the plasmid pGP1027 was used for Strep tagged AccB purification. The 

respective fractions are shown in Fig. 12. 

The purification of all desired proteins was successful. In case of AccB, the binding partner 

AccC was co-eluted as well as the biotin carboxylase from E. coli, which was able to bind 
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to the Strep-Tactin column with the help of the biotinylated AccBEc. These contaminations 

were checked later on to exclude the presence of factors that distort the outcomes of the 

activity assay. Finally, the elution fractions of the proteins were dialyzed against 50 mM 

Tris/ 100 mM KCl buffer containing 10% glycerol and frozen at 20°C until usage.  

 

 

Fig. 12. Purification of the acetyl-CoA subunits, YqhY and malonyl-CoA reductase. The desired proteins 
were all expressed in E. coli, except AccA and AccD (in B. subtilis). Afterwards, they were purified on a Strep-
Tactin column and Ni2+-NTA column (in case of YqhY), respectively. In the end, the different fractions were 
separated by SDS-PAGE and visualized by Coomassie staining. 

 

3.1.5.2 Validation of biotinylation of AccB 

A crucial condition for the activity of the acetyl-CoA carboxylase is the biotinylation of 

AccB. To guarantee that this precondition is given, the previously purified AccB was 

biotinylated in vitro and tested in a Western blot using the Streptavidin-horseradish 

peroxidase (HRP). The biotin adding enzyme of AccB is BirA. This ligase was overexpressed 

in E. coli and subsequently the crude extract of these cells was added to the reaction mix 

containing AccB, biotin, ATP and protease inhibitor. The following day, this reaction mix 

was purified with a Heparin column and the obtained elution fractions were separated by 

SDS-PAGE (Fig. 13a). 

The silver staining confirmed the presence of AccB in the elution fractions E1 to E5, 

together with the co-purified AccB from E. coli. To test whether AccB was bound to biotin, 

the same samples where used for Western blot analysis. In this purpose, biotinylated 
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proteins were bound to streptavidin coupled with the horseradish peroxidase. This 

enzyme catalyzes the oxidation of luminol resulting in enhanced light emission. As shown 

in Fig. 13b, in all fractions other than fraction E5, AccB was detectable, which means that 

in these samples AccB was biotinylated. Even the purified AccB that was not used for in 

vitro biotinylation was connected to its substrate, demonstrating that an extra 

biotinylation was unnecessary. Thus, for the following activity assay the pivotal state of 

AccB was given. 

 

 

Fig. 13. Confirmation of biotinylation of AccB. The previously purified AccB (P) was used for in vitro 
biotinylation and afterwards purified again on a heparin column. The presence of AccB in the elution 
fractions (E1-E5) was confirmed by silver staining (A). The same fractions were analyzed for AccB 
biotinylation by Western blot using streptavidin-HRP (B). 

 

3.1.5.3  YqhY does not directly influence the acetyl-CoA carboxylase activity 

In order to investigate if the direct interaction of YqhY with the carboxyltransferase 

implicates a change in ACCase activity, a coupled enzyme assay was set up. In this assay 

the malonyl-CoA production was followed by NADPH oxidation catalyzed by the malonyl-

CoA reductase (MCR). The activity was thereby measured in the presence and absence of 

YqhY in different amounts. As can be seen in Fig. 12, the addition of the AccB and AccC 

could also imply the addition of other enzymes that oxidize NADPH or consume the 

substrates of the ACCase or MCR. Furthermore, YqhY itself could consume one of the 

ingredients. To exclude both possibilities, the oxidation of NADPH was also monitored in 

the absence of AccDA on the one hand and only in the presence of YqhY on the other hand 

(Fig. 14). 
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Fig. 14. Impact of YqhY on the ACCase activity. The production of malonyl-CoA by the acetyl-CoA 
carboxylase (ACC) was coupled to the NADPH dependent reaction of the malonyl-CoA reductase (MCR). The 
oxidation of NADPH was monitored in a plate reader. Dots represent single measurements and bars indicate 
the mean value of all measurements. Taking outliners into account, there was no significant change in 
activity by the addition of YqhY. 

 

In all set ups the activity of the MCR was monitored by the oxidation of NADPH. For the 

positive control, malonyl-CoA was added and therefore the presence of the ACCase was 

not needed. Compared to this, the MCR activity was significantly lower in the coupled 

reaction, making obvious that the malonyl-CoA production by the ACCase in general was 

low. However, a reaction process of the ACCase was noticeable. In the absence of AccA 

and AccD also an activity was measurable, but since this reaction was always slower than 

the reaction of the whole complex, the participation of adulterating elements could be 

excluded. Using a composition without the ACCase and only with YqhY showed no activity 

at all. So, it was evident that YqhY shows no enzyme activity in producing malonyl-CoA or 

oxidizing NADPH. The original hypothesis, YqhY alters the activity of the ACCase, could not 

be confirmed. The addition of YqhY in neither lower nor higher amounts had no 

meaningful impact on the activity of the ACCase. In some cases the activity was increased, 

in other cases it turned out to be the opposite. On average, the reaction velocity of the 

acetyl-CoA carboxylase was equal with or without the YqhY. This made clear that YqhY has 
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no direct impact on the acetyl-CoA carboxylase activity, although a direct interaction was 

proven. 

 

3.1.5.4 Suppressor mutations in yqhY deletions strains decrease the activity of the 

acetyl-CoA carboxylase 

Despite the fact that YqhY seems to be no activity changing factor, the previous 

experiments still implied a change in fatty acid production in suppressor mutants. Hence, 

there was the question if the mutations resulted in a decreased ACCase activity. To further 

analyze the aftermath of the mutations, the coupled in vitro activity assay was used. In 

this approach, AccD was replaced by mutated versions (AccDI38N, AccDA229S). At first, the 

C-terminus of accA was amplified and brought into the vector pGP1389. The resulting 

plasmid pGP1849 was then used for transformation of GP2321 and GP2322, respectively. 

AccA were thereby fused to a Strep tag. Again, AccA and AccDmut were co-purified and the 

assay was performed as described above. 

The previous set up verified that YqhY has no direct impact on the activity. Contrary to 

this, the results shown in Fig. 15 demonstrate that some mutations in AccD lead to a lower 

activity of the ACCase. In case of the AccDI38N mutation, the activity of the acetyl-CoA 

carboxylase was equal to the wild type activity. On the other hand, the AccDA229S mutation 

caused a significant decrease in malonyl-CoA production. This example shows, that not all 

mutations but at least some of them are responsible for a change in activity of the ACCase. 

This lead to the conclusion that YqhY has no direct impact on the activity, but cells missing 

this protein have to reduce the activity of the acetyl-CoA carboxylase. This might happen 

by mutating the subunits to either change the localization or decreasing the activity of the 

complex. 
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Fig. 15. Effect of suppressor mutations in yqhY deletions strains on the ACCase activity. The production of 
malonyl-CoA by the acetyl-CoA carboxylase (ACC) was coupled to the NADPH dependent reaction of the 
malonyl-CoA reductase (MCR). The oxidation of NADPH was monitored in a plate reader. Dots represent 
single measurements and bars indicate the mean value of all measurements. Mutations in AccD lead to a 
reduced activity of the ACCase, shown by the mutation AccDA229S. On the other hand, not all mutations 
located in the subunits have direct influence on the activity as it is demonstrated by the mutation AccDI38N. 

 

3.2 The possible role of YqhY in Clp-mediated protein degradation 

 

3.2.1 ΔyqhY-suppressor mutants hint to involvement in Clp-mediated proteolysis 

Among the suppressor mutants derived after the knockout of yqhY, not all carried a 

mutation in one of the acetyl-CoA carboxylase subunits. Two of those were analyzed by 

whole genome sequencing revealing a deletion of ctsR in one strain and an insertion in 

yjbH in the other strain. Both observations indicated a connection to protein degradation 

by the Clp protease. YjbH is an adaptor protein for ClpX, promoting the degradation of the 

transcription regulator Spx via ClpXP. CtsR on the other hand is a transcription repressor 

of the CtsR regulon that contains genes encoding the proteolytic subunit ClpP, the 

ATPases ClpC, ClpE and ClpX, as well as the adaptor protein McsB. So, in an organism 

missing CtsR, these components of the Clp mediated protein degradation are upregulated 

leading to an increased degradation of substrates of ClpXP, ClpEP and ClpCP. 
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In order to confirm that the absence of CtsR or YjbH prevents the harming effect appearing 

after the knockout of yqhY, double deletion strains were constructed. In addition to the 

knockout of yqhY, a deletion of yjbH or ctsR was performed. As a negative control, a 

double deletion of yqhY and yszB was carried out. In this strain, yszB was replaced by the 

same resistance marker as ctsR and yjbH. The expected outgrowth of suppressor mutants 

could be observed for the yqhY single knockout strain and for the  

ΔyqhY ΔyszB control strain. In contrast to this, in a ΔctsR and in a ΔyjbH background the 

formation of suppressor mutants was almost not existing (Fig. 16). Therefore, the deletion 

of ctsR or yjbH enables the growth of B. subtilis in the absence of YqhY without any other 

adjustments. 

 

 

Fig. 16. Occurrence of ΔyqhY-suppressor mutants in a ΔctsR and ΔyjbH background. The deletion of yqhY 
lead to suppressor mutant formation. This effect is abolished in double knockout strains missing either yjbH 
or ctsR in addition to yqhY. The double knockout of yqhY and yszB functioned as a negative control showing 
the same result as the yqhY single deletion. 

 

3.2.2 Interaction of YqhY with Clp proteins 

As mentioned above, in the absence of YqhY the degradation of substrates of the Clp 

machinery is in some cases upregulated, or the fatty acid synthesis is decreased by 

affecting the acetyl-CoA carboxylase. This lead to the assumption that YqhY might 

function as an adaptor protein for AccA, AccB, AccC or AccD. In YqhY deletion strains, the 

production of fatty acids might reach a toxic level, since the amount of the ACCase 

subunits is too high due to the missing adaptor protein and the concomitant needed 

degradation. This could be compensated by mutations affecting the functionality of the 

ACCase or by mutations inducing the degradation of the ACCase complex. 
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3.2.2.1 YqhY binds Clp ATPases ex vivo 

To examine the hypothesis of YqhY being an adaptor protein, an interaction of YqhY and 

the Clp proteins had to be proven. In a first approach, the respective protein interactions 

were tested in a bacterial two-hybrid assay including YqhY, ClpC, ClpE, ClpP and ClpX. clpE 

was the only gene that has to be brought into the bacterial two-hybrid vectors, for all 

other genes the necessary constructs were already available. The screen was executed as 

described above. After two days, the known self-interactions of YqhY, ClpC, ClpE and ClpP 

were visible (Fig. 17).  

 

Fig. 17. Bacterial two-hybrid analysis of interactions between YqhY and Clp proteins. The respective genes 
were fused to the domains of the adenylate cyclase and incubated for two days. Interactions, indicated by 
blue colonies, were observable among the subunits themselves, between YqhY and ClpE, and YqhY and ClpC. 

 

Regarding ClpX, the missing self-interaction could be observed in repetitions. Moreover, 

complex formations of ClpC and ClpE were detectable and interactions of YqhY with ClpC 

and ClpE were shown. A striking missing part is the interaction of ClpP with the ATPases 

ClpC, ClpE and ClpX. However, interactions of YqhY and ClpC as well as YqhY and ClpE were 
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identified, supporting the possibility of YqhY acting as an adaptor protein for the Clp 

degradation complex. 

 

3.2.2.2 YqhY interacts with the ClpCP protease 

The obtained interactions of YqhY and ClpC and ClpE in the bacterial two-hybrid screen 

gave a hint on the involvement in Clp-dependent degradation, but were in need of further 

evaluation. To confirm these interactions in vivo, YqhY, ClpC and ClpP were subject to a 

SPINE. Again, YqhY was used as bait protein as pointed out in part 3.1.4.2. The strain 

containing YqhY-Strep was grown in CSE medium containing 0.5% glucose and was treated 

with paraformaldehyde during growth to crosslink adjacent proteins. This time, the bait 

proteins ClpC and ClpP were detected by their respective antibodies during Western Blot 

analysis.  

 

 

Fig. 18. Proof of interaction between YqhY and the ClpCP complex via SPINE. Strains expressing YqhY-Strep 
were grown in CSE medium containing 0.5% glucose, adjacent proteins were crosslinked by the addition of 
paraformaldehyde (FA). The pray proteins (ClpC, ClpP, CggR and GapA) were detected by its respective 
antibody in a Western blot analysis. YqhY was purified using a StrepTactin column and was co-eluted with 
ClpC and ClpP. CggR and GapA functioned as negative controls. 

 

The detected signals shown in Fig. 18 affirmed the interaction between YqhY and ClpC. 

Furthermore, an association of YqhY and ClpP was given, indicating a connection to Clp-

dependent protein degradation, since ClpP is the main proteolytic unit in this process. 

Regarding the signal strength of ClpC and ClpP in the elution fractions, only a week or brief 

interaction could be assumed. Nevertheless, this interactions are given, because 
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unspecific interactions between YqhY and the two ClpP proteins could be excluded. This 

became clear by considering the negative controls in which no signal of CggR and GapA 

was detectable. 

A similar approach in which the interaction of YqhY and ClpE should be verified was not 

successful (data not shown). After the purification of YqhY-Strep, ClpE-FLAG could not be 

detected in a Western Blot via FLAG tag antibody. On the one hand, this could be due to 

the fact that there is simply no interaction in vivo between these proteins. On the other 

hand, the expression of clpE is basically low and almost only upregulated under heat stress 

conditions. The short life time and quick degradation by ClpCP or ClpXP (Gerth et al., 2004) 

make it even more difficult to find the right conditions to detect ClpE. Therefore, an 

interaction of YqhY and ClpE seems unlikely, but cannot be excluded. 

 

3.2.3 Analyzing the interaction of YqhY with Clp adaptor proteins  

The substrate specificity in protein degradation is promoted by adaptor proteins. 

Normally, only one adaptor protein is necessary to target a certain substrate for 

decomposition. Recent studies have shown, that an adaptor hierarchy for ClpXP exists in  

Caulobacter crescentus, in which selective protein degradation depends on several 

adaptor proteins and their degree of assembly (Joshi et al., 2015). Assuming that YqhY is 

an adaptor protein, the ability of YqhY to bind other adaptor proteins and maybe build up 

a similar adaptor hierarchy in B. subtilis should be investigated. In order to get a first 

impression, the interactions of YqhY and several adaptor proteins from B. subtilis have 

been checked in a bacterial two hybrid assay (Fig. 19). All relevant genes were cloned into 

the BACTH vectors and the following screen was carried out as described above. 

All tested proteins showed self-interactions. Apart from that, no significant complex 

formations among the adaptor proteins was noticeable. Only an interaction between YjbH 

and MecA could be observed. Thus, there were no indications pointing to a network of 

several adaptor priming the protease complex to confer substrate specificity.  

Although, YqhY only interacted with YjbH, this result fits with suppressor mutation located 

in yjbH (s. 3.2.1). If YjbH is sometimes needed to be inactive in the absence of YqhY, a 

connection of these two proteins is reasonable and an interaction would definitely make 

sense. 
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Fig. 19. Bacterial two-hybrid analysis of interactions between YqhY and adaptor proteins. The respective 
genes were fused to the domains of the adenylate cyclase and incubated for two days. Interactions are 
indicated by blue colonies. Besides self-interactions of every tested protein, associations between YqhY and 
YjbH, and YqhY and McsB were observable. 

 

3.2.4 The ACCase subunits are no substrate of ClpCP protease 

The observations that YqhY showed interactions with the carboxyltransferase on the one 

hand and with the ClpCP protease on the other hand, raised the question whether YqhY 

fulfills the function of an adaptor protein to promote the degradation of AccA and/or 

AccD. If this assumption is true, the protein amounts of the ACCase subunits have to be 

decreased in the absence of YqhY or the Clp proteins. To test this hypothesis, the protein 

amount of AccA, AccB, AccC and AccD was analyzed by Western blot in strains missing 

YqhY, ClpX or ClpP. The cells were grown in CSE medium containing 0.5% glucose until 

they reached an OD600 of about 1.0 and the proteins were detected by their respective 

antibodies (Fig. 20). 
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Fig. 20. Protein amount of AccA, AccB, AccC and AccD in yqhY, clpX and clpP deletion strains. The cells 
were grown in CSE medium containing 0.5% glucose and afterwards, 3 µg and 6 µg of the crude extract were 
used for Western blot analysis. The target proteins were detected by their respective antibodies. The 
purified proteins (P) functioned as internal marker and the wild type (168) was used as a control. 

 

In comparison to the wild type, there was no significant change in the protein amount of 

any subunit in the deletion strains. Although, in case of AccB and AccC the amount seems 

to be lowered in the absence of ClpX and ClpP, these results could not be repeated. Taking 

all experimental repetitions into account, a change in expression or an increase in 

degradation of AccA, AccB, AccC and AccD was not recognizable. Apart from this, a lower 

amount of the target proteins is improbable since the supposed degrading complex is 

missing. 

Another problem was the unspecific band pattern of the AccA antibody. Therefore, a new 

approach was carried out to determine the dependency of AccA on ClpX and ClpP. This 

time, AccA was fused to a FLAG tag keeping the expression under control of the natural 

promoter. The cells were grown in LB medium and samples were taken at different growth 

phases. The final detection was again performed via Western Blot using the FLG tag 

antibody (Fig. 21). 
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Fig. 21. Protein amount of AccA-FLAG in yqhY, clpX and clpP deletion strains. The cells were grown in LB 
medium and afterwards, 5 µg and 10 µg of the crude extract were used for Western blot analysis. AccA was 
detected by the FLAG antibody and the wild type (168) was used as a control. Hpr functioned as a loading 
control and was detected by its antibody. 

 

The detection of Hpr ensured that for each sample the same amount of protein crude 

extract (5 µg and 10 µg) was used. However, the deletion of neither yqhY nor clpX or clpP 

showed any impact on the protein amount of AccA-FLAG independent of the growth 

phase. All in all, the theory of YqhY being an adaptor protein for the ACCase complex could 

not be validated. Moreover, the subunits of the acetyl-CoA carboxylase are not substrates 

of Clp dependent degradation, otherwise the deletion of clpP would have resulted in an 

increased protein amount. 
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4 Discussion 

4.1 The role of YqhY in regulation of acetyl-CoA carboxylase activity 

The synthesis of fatty acids is a fundamental process in all organisms. Its first committed 

step is the production of the precursor malonyl-CoA carried out by the acetyl-CoA 

carboxylase. This makes this enzyme complex a logical target for regulating the amount 

of fatty acids. A feedback inhibition by acyl-ACP like in E. coli seems reasonable, as the end 

product regulates the supply of the precursor (Davis and Cronan, 2001). Another 

possibility is the change of activity triggered by proteins interacting with the ACCase. The 

PII-like protein GlnB decreases the ACCase activity in E. coli through interacting with the 

biotinylated region of AccB and concomitantly perturbing the transport of biotin to 

AccAD. This inhibition is dependent on 2-oxoglutarate and nitrogen levels. Low nitrogen 

conditions facilitate the uridylylation of GlnB, whereas high 2-oxoglutarate amounts favor 

the interaction of 2-oxoglutarate and GlnB. Both 2-oxoglutarate binding and uridylylation 

alter the structure of the PII T-loop resulting in decreased binding abilities of GlnB 

(Gerhardt et al., 2015). It should be noted, that PII-like proteins are only able to inhibit 

malonyl-CoA production in case of an interaction with both AccB and AccC. This is 

exemplified by GlnK that only interacts with AccB and has no effect on ACCase activity. 

Since YqhY only interacted with AccC in a BACTH screen, a similar function to GlnB is 

unlikely for YqhY. In green algae and land plants, biotin attachment domain-containing 

(BADC) proteins also act as a negative effector of AccBC. According to a proposed model, 

AccC binding sites are occupied by BADCs preventing the interaction between AccC and 

AccB. As a result, the ACCase activity is decreased (Salie et al., 2016). 

However, the regulation of the ACCase in B. subtilis is poorly understood so far, since 

neither a feedback inhibition nor the presence of an activity controlling protein is known. 

The unknown protein YqhY was considered to be such a regulating factor, after in vivo 

experiments showed a direct interaction between YqhY and AccAD. In addition to this, the 

deletion of yqhY caused an accumulation of lipophilic clusters mainly at the cell poles, 

which was a further indication for a changed fatty acid production. In order to determine 

if these cluster were formed due to a missing regulatory effect by YqhY, the ACCase 

activity was measured in dependency of YqhY in vitro. The results revealed no significant 
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impact of YqhY on the ACCase activity, consequently YqhY cannot be regarded as a 

negative effector.  

On the other hand, the purification of a sufficient amount of AccA turned out to be 

difficult. The overexpression of this protein was toxic for E. coli and only a relatively low 

protein amount could be obtained through overexpression in B. subtilis. Since the ACCase 

complex is believed to dissociate at the low subunit concentrations, high amounts of the 

subunits are needed to reach a certain threshold for catalytic activity in vitro (Davis and 

Cronan, 2001). For this reason, the low overall activity of the acetyl-CoA carboxylase, 

measured in the coupled reaction assay, might be explained by an insufficient amount of 

the subunits added to the reaction mix. Thus, slight changes in activity caused by YqhY 

could appear to be negligible and are not recognized as regulatory effects. Nonetheless, 

YqhY has to be somehow involved in regulation of fatty acid production or the synthesis 

of one of the precursors. In some cases the lack of YqhY is overcome by suppressor 

mutations resulting in a decreased ACCase activity, which is indicated by the reduced 

activity of the ACCase caused by the suppressor mutation AccDA229S. The effect of 

repressing the occurrence of suppressor mutants was also given in a Δspo0A background. 

During growth on sporulation medium, the deletion of yqhY has no harmful effect and 

suppressor mutants were not formed in the absence of Spo0A (data not shown). This is in 

accordance with the fact that Spo0A activates accDA expression under sporulation 

conditions. Thus, the aftermath of a yqhY deletion can be overcome by downregulation 

of the ACCase, either by the lack of Spo0A or mutations in the subunits. 

Another possibility to influence ACCase activity is the correct localization of its subunits. 

In Mycobacterium smegmatis, a homolog of DivIVA, Wag31, interacts with AccA (Xu et al., 

2014). Based on this observation and the localization dependency of YqhY on DivIVA, a 

function as a linker protein between DivIVA and ACCase subunits seemed possible for 

YqhY. Fluorescence microscopy experiments revealed an equal cytoplasmic distribution 

of AccA, AccB and AccC in a wild type background, which was in accordance with the 

results of Meile et al., 2006, but in contrast to the polar localization of YqhY. Due to this 

contrary localization, YqhY could be considered as an antagonist, preventing the polar 

accumulation of the acetyl-CoA carboxylase. Indeed, AccA showed a polar localization 

pattern in the absence of YqhY. Since YqhY is mainly distributed in the whole cell in a 

ΔdivIVA background, a deletion of divIVA should also display a polar localization of AccA. 
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In order to examine this theory, the localization of AccA was monitored in a ΔyqhY ΔdivIVA 

double mutant strain. Against the expectations, AccA was still equally spread over the cell. 

Thus, an antagonistic role of YqhY against AccA could not be proven, but YqhY 

nevertheless influences the correct localization of AccA. 

A regulatory function for YqhY could not be shown, but the connection of YqhY with 

ACCase activity cannot be excluded. It is obvious that cells lacking YqhY have most likely 

an increased malonyl-CoA production possibly resulting in fatty acid overproduction. How 

this metabolic defect is triggered and why it has a toxic effect for the cell is in need of 

further investigation.  

 

4.2 Fatty acid uptake in Bacillus subtilis 

Fatty acid binding proteins (FABPs) are abundantly expressed proteins in eukaryotic cells. 

These lipid chaperones bind long-chain fatty acids and are involved in fatty acid import 

and export, as well as in lipid storage (Furuhashi and Hotamisligil, 2008). Since bacteria 

lack these proteins, they had to evolve other ways to transport and store fatty acids. Many 

microorganisms store lipids by producing polyhyroxyalkanoates (PHAs) in abundance of 

carbon sources while lacking other essential nutrients. The synthases of these 

biopolymers (PhaA, PhaB and PhaC) are expressed in many Bacillus species, but B. subtilis 

lacks genes related to PHA biosynthesis (Singh et al., 2009). The missing storage function 

could be fulfilled by YqhY. In this case, the accumulation of lipophilic clusters in cells 

lacking YqhY would be due to released fatty acids previously bound to YqhY, instead of an 

increased fatty acid synthesis. 

Another possibility is a role of YqhY in fatty acid uptake. For incorporation of exogenous 

fatty acids, Gram-positive bacteria need to phosphorylate them in a first step. The 

resulting acyl-phosphate is either be used by PlsY to initiate phospholipid synthesis or it is 

converted to acyl-ACP by PlsX. This in turn serves as substrate for PlsC or for fatty acid 

elongation (Yao and Rock, 2015). The activation of exogenous fatty acids is executed by 

two proteins, FakA and FakB. The latter one is a fatty acid binding protein and belongs to 

the DegV protein family, named after its homologue in B. subtilis. FakA is responsible for 

phosphorylation of fatty acids bound to FakB and is homologous to YloV from B. subtilis 
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(Parsons et al., 2014). Since yloV is located on an operon with yloU, the paralogue of yqhY, 

this is an additional hint for a connection of YqhY to fatty acid homeostasis.  

The determination of a role for YqhY in fatty acid uptake is difficult, because YloV and 

DegV are most likely responsible for fatty acid activation in B. subtilis. Although there is 

no evidence for a protein-mediated fatty acid transporter in bacteria (Parsons et al., 

2014), the existence of such a transporter is unlikely and unnecessary at the same time, 

since fatty acids cross the membrane by spontaneous flipping (Garlid et al., 1996). 

Broussard et al. (2016), identified five conserved residues in FakB2 from S. aureus that 

probably fulfill the same critical functions in all bacterial fatty acid-binding proteins. As 

YqhY does not contain these residues, a storage or chaperone function of YqhY can also 

be excluded. Nevertheless, a regulatory effect by binding of YqhY to YloV or DegV is 

conceivable. 

 

4.3 YqhY, a potential adaptor protein mediating Clp degradation? 

It could be shown that YqhY has no direct impact on ACCase activity, but the absence of 

this protein leads to stress effects, probably caused by excessive amounts of fatty acids. 

Expression of staphylococcal asp23 is upregulated upon alkaline stress and is dependent 

on σB. The same sigma factor controls the genes responsible for Clp-mediated protein 

degradation and their transcription repressor ctsR in B. subtilis. In this work, sequencing 

analysis of two ΔyqhY-suppressor mutants, in which the ACCase subunits were not 

affected, revealed the absence of CtsR or the adaptor protein YjbH. In addition, YqhY was 

shown to interact with AccAD and ClpCP. Thus, YqhY was considered to be part of stress 

response, possibly functioning as adaptor protein to facilitate the degradation of AccA, 

AccB, AccC or AccD by Clp proteases. This theory was also supported by the polar 

localization of YqhY, which was in accordance with the polar cluster formations of Clp and 

its ATPases. But, not only the Clp proteins co-localize at the cell poles, also the adaptor 

protein McsB and its substrate CtsR were found in these regions, determining them as 

important subcellular sites for protein degradation in B. subtilis (Kirstein et al., 2008). 

Based on the assumption of YqhY being an adaptor protein, the degradation of ACC 

subunits becomes more unspecific in the absence of YqhY, which leads to a higher amount 

of the target proteins. In order to compensate this excess and maintain a vital level of ACC 
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subunits, expression of clp genes is upregulated leading to an increased chance of 

unspecific degradation of ACC. The down-regulation of fatty acid synthesis by degradation 

of ACCase would restore the wild type situation and seems to be a plausible solution to 

overcome toxic amounts of fatty acids. To address this theory, the amounts of AccA, AccB, 

AccC and AccD were checked in the absence of YqhY, ClpX or ClpP through Western blot 

analysis. In all tested backgrounds the protein level was equal compared to the wild type. 

Therefore, the ACC subunits are pretty likely no target for Clp degradation, which 

becomes especially clear by the unchanged protein levels in cells lacking the proteolytic 

subunit ClpP. Nevertheless, it has to be considered that the experiments took place under 

normal growth conditions and that heat or oxidative stress induce other factors necessary 

for substrate targeting. Moreover, there is still the possibility of ClpYQ degrading one of 

the ACC subunits, since this complex was not part of the investigations and neither an 

adaptor protein nor any targets for ClpYQ are known. 

Taking the bacterial two-hybrid experiments with several Clp adaptor proteins into 

account, also an adapter hierarchy like in C. crescentus was not indicated. The interaction 

of YqhY and YjbH was relatively weak and besides, MecA and YjbH were the only adaptor 

proteins interacting with each other. Thus, a network of adaptor proteins activating each 

other cannot be expected to be present in B. subtilis. In order to get further evidence for 

YqhY being involved in protein degradation, proteomic analysis of a yqhY mutant needs 

to be performed. It is nonetheless possible that the amount of fatty acids is controlled by 

proteolytic processes. In a comprehensive study, AccA and AccB were proposed as 

potential targets of Clp-dependent proteolysis. Among the other potential candidates was 

also YloV (Gerth et al., 2008), previously implicated in fatty acid uptake. In the end, it is 

difficult to determine new target proteins, because of the immense number of potential 

substrates and their adaptor proteins. 

 

4.4 Connecting protein degradation and fatty acid synthesis 

This work indicates a connection of YqhY with both fatty acid synthesis and protein 

degradation, but how to combine these distinct processes? The function of YqhY is elusive, 

but there are possible explanations for how cells are affected by the lack of YqhY. The 

previous assumption was a downregulation of fatty acid production by mutations in the 
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ACCase subunits. In accordance to this, another mutant was deficient of CtsR, which 

results in a higher amount of ClpXP and increased Spx degradation. Since Spx induces birA 

expression (Gaballa et al., 2013) and BirA is essential for biotinylation of AccB, the absence 

of CtsR probably also results in reduced ACCase activity. In contrast to this, a further 

mutation resulting in truncated YjbH has the opposite effect, as the protein level of Spx is 

increased. Due to this conflicting effects, a different connection of fatty acid synthesis and 

protein degradation has to be found. 

Fatty acids are also components of other metabolites, for example surfactin. This 

lipopeptide contains β-hydroxy fatty acid (Kakinuma et al., 1969) and was shown to be 

involved in biofilm formation (Zeriouh et al., 2014). Furthermore, it exerts antibacterial 

activities through destabilization of lipid layers causing the release of aqueous vesicle 

contents (Carrillo et al., 2003). YqhY could be responsible for surfactin export and its 

absence leads to a toxic accumulation of surfactin. This can be explained by the key role 

of Spx that not only activates birA transcription but also represses the srf-operon encoding 

surfactin synthases (Zuber, 2004). The suppressor mutations identified in strains lacking 

YqhY imply three different scenarios to decrease surfactin production. In the first one, a 

decreased ACCase activity lowers the amount of fatty acids and therefore the availability 

of precursors for surfactin synthesis. The same effect is achieved in the absence of CtsR, 

due to a lower amount of BirA as mentioned above. In the last one, the lack of YjbH leads 

to an increased repression of the srf genes by Spx resulting in decreased overall surfactin 

production. Thus, either an upregulation or downregulation of Spx can have the same 

effect regarding surfactin production. 

Based on the precondition that YqhY is a surfactin exporter, this explains why suppressor 

mutations hit genes involved in fatty acid synthesis or protein degradation. On the other 

hand, Asp23 is highly conserved in Firmicutes whereas surfactin is only produced in 

Bacillus species. Therefore, this hypothesis can only be confirmed, if Asp23 proteins are 

in addition responsible for export of other surfactant-like molecules, for example phenol-

soluble modulin (PSM) in S. aureus (Periasamy et al., 2012). Moreover, the lack of CtsR 

leads to upregulation of all Clp proteins resulting in a global response, since proteolysis 

influences many important cellular processes. That means that a controlled 

downregulation of surfactin synthesis is not possibly without affecting other pathways. 
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4.5 Increased malonyl-CoA amounts may lead to unspecific protein 

acylation 

The control of the surfactin synthesis appears to be too complex and the high number of 

suppressor mutations hitting the acetyl-CoA carboxylase indicate a more obvious problem 

occurring in the absence of YqhY. The supposed higher ACCase activity increases the 

amount of malonyl-CoA. Since malonyl-CoA is only a substrate to FabD, this results in a 

bottleneck effect and accumulation of malonyl-CoA. Due to its similarity to acetyl-CoA 

(Fig. 22a), an acylation of lysine residues by unbound malonyl-CoA is possible. Lysine 

acetylation is conserved in organisms from bacteria to human (Kim and Yang, 2011) and 

was shown to regulate many eukaryotic processes like cell cycle, cell morphology, protein 

synthesis, mRNA splicing and central metabolism (Kuczyńska-Wiśnik et al., 2016). In 

prokaryotes little is known about protein acetylation, but it has been proposed to be 

related to energy metabolism, ribosomal functions and transcription (Zhang et al., 2008; 

Zhang et al., 2014). 

A recent study in E. coli demonstrated that acetylation promotes the formation of 

inclusion bodies and a lower activity of these acetylated proteins. It was further suggested 

that acetylation of misfolded proteins increases resistance to heat and oxidative stress 

(Kuczyńska-Wiśnik et al., 2016). 

Apart from this, there are several other lysine modifications known, for example lysine 

malonylation (Peng et al., 2011), succinylation (Zhang et al., 2011) and glutarylation (Tan 

et al., 2014). All three modifications were thought to have a different impacts on protein 

functions than acetylation, because they change the charge on lysine. This is concomitant 

with disruption of ionic interactions with other negatively charged molecules and 

alterations in protein structure and function (Hirschey and Zhao, 2015). So far, lysine 

malonylation has been mainly investigated in eukaryotic cells with over thousand proteins 

identified to be subject of this modification. The most lysine-malonylated substrates were 

found to be part of ribosomes, valine/ leucine/ isoleucine degradation, proteasome and 

fatty acid metabolism, including acetyl-CoA carboxylase. In addition, fatty acid oxidation 

activity was inhibited by lysine malonylation (Colak et al., 2015). The deacetylase SIRT5 is 

able to remove acyl residues from lysine, since it also possesses desuccinylation, 

demalonylation (Du et al., 2011) and deglutarylation (Tan et al., 2014) activity. For its 
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counterpart in B. subtilis, SrtN, only deacetylation activity is known, but it was proposed 

that this enzyme is capable of removing a broad range of acyl groups (Seidel et al., 2016). 

Nevertheless, substrate malonylation is poorly understood in prokaryotes. In order to get 

more insight into this field, a recent study investigated lysine malonylation in E. coli (Qian 

et al., 2016). The authors identified 1745 malonylation sites in 594 proteins, of which 

approximately one third is overlapping with acetylation and succinylation sites (Fig. 22b). 

As shown in previous studies in eukaryotes, lysine malonylation was highly enriched in 

protein synthesis and energy metabolism. 68 proteins were related to ribosomes (Fig. 22c) 

and 19 proteins were associated to citric acid cycle, suggesting that malonylation plays a 

major role in regulation of substantial processes in bacteria. Moreover, malonylation sites 

were detected in eleven proteins of fatty acid synthesis, among them FabI, the enzyme 

catalyzing the last step of fatty acid elongation and malonyl-CoA transacylase FabD which 

loads the acyl carrier protein with malonyl-CoA prior to fatty acid elongation. Strikingly, 

the acetyl-CoA carboxylase subunits AccA, AccC and AccD were also subject to 

malonylation. AccB was not malonylated which can be explained by a protected lysine 

residue through biotin binding. 

These results indicate a regulation of malonyl-CoA production and fatty acid synthesis by 

malonylation. Assuming that the lack of YqhY leads to higher malonyl-CoA levels, this 

could result in unspecific protein acylation. Since many important pathways, especially 

protein synthesis, are affected by malonylation, the cell would have to deal with 

increasing amounts of misfolded and inactive proteins. Thus, suppressor mutations 

related to protein degradation and stress response are part of a global response in order 

to remove protein debris. Suppressor mutations decreasing the ACCase activity would 

reduce malonyl-CoA concentrations and the overall effect of malonylation. It is also 

possible that the absence of YqhY leads to delocalization of important proteins, making 

them targets for unspecific malonylation. These hypotheses give still no answer on the 

actual function of YqhY, but investigations on protein malonylation could give further 

hints on its role in B. subtilis. 
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Fig. 22. Lysine malonylation in E. coli. (A) Comparison of lysine acetylation and malonylation. (B) Overlap 
of lysine acetylation (Kac), succinylation (Ksucc) and malonylation (Kmal) sites. (C) Interaction network of 
lysine malonylated proteins related to ribosome and acetyl-CoA carboxylase (Qian et al., 2016). 

 

4.6 Outlook 

A regulation of the acetyl-CoA carboxylase in B. subtilis is very likely and there are plenty 

of examples found in other organisms. The malonylation of ACC subunits is a plausible 

mechanism to down regulate the enzymatic activity by feedback inhibition through 

malonyl-CoA. Since malonylation is poorly investigated in prokaryotes and malonylated 

proteins have not been identified in B. subtilis so far, a definition of the malonylome by 

proteome analysis would give further insights into this mechanism. A changed 

malonylome in yqhY mutant strains would show, if YqhY has an impact on the 

malonylation of proteins.  

Proteomics could also give evidence for YqhY being involved in protein degradation. 

Without potential target proteins, it is difficult to define YqhY as an adaptor protein, thus, 

a global protein profile possibly highlights increased protein concentrations in the 
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absence of YqhY. It should be considered to test interactions with target proteins under 

heat or oxidative stress, as the proteolytic activity is increased under stress conditions. 

Regarding a role of YqhY in fatty acid homeostasis, mass spectrometry analysis can 

provide certainty on the ability to bind fatty acids. Moreover, interaction experiments 

with YqhY and YloV or DegV could reveal a possible impact on fatty acid uptake and a 

comparison of surfactin concentrations in wild type cells and yqhY mutant strains would 

either support or decline the hypothesis that YqhY is involved in surfactin export. 
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6 Appendix 

6.1 Materials 

6.1.1 Chemicals 

Acrylamide Roth, Karlsruhe 

Agar Roth, Karlsruhe 

Agarose Peqlab, Erlangen 

Ammonium iron (III) citrate Sigma, Munich 

Ammonium Peroxydisulfate Roth, Karlsruhe 

Antibiotics Sigma, Munich 

Bromphenol blue Serva, Heidelberg 

Casein Sigma, Munich 

CDP*   Roche Diagnostics, Mannheim 

Coomassie Brilliant Blue, G250 Roth, Karlsruhe 

Desthiobiotin IBA, Göttingen 

dNTPs Roche Diagnostics, Mannheim 

Ethidium bromide Roth, Karlsruhe 

D-Fructose-1,6-bisphosphate Sigma, Munich 

D-Glucose Merck, Darmstadt 

Glycerine Merck, Darmstadt 

Immidazole Sigma, Munich 

Isopropyl ß-D-1- thiogalactopyranoside Peqlap, Erlangen 

DL-Malate Applichem, Darmstadt 
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ß-Mercaptoethanol Roth, Karlsruhe 

Ni2+-nitrilotriacetic acid superflow Qiagen, Hilden 

Nutrient Broth Merck, Darmstadt 

Pefabloc Roth, Karlsruhe 

Skim milk powder   Oxoid, Heidelberg 

Sodium succinate Fluka, Buchs, Switzerland 

Sodium Dodecyl Sulfate Roth, Karlsruhe 

Strep-Tactin Sepharose IBA, Göttingen 

Tetramethylethylenediamine (TEMED) Roth, Karlsruhe 

Tris(hydroxymethyl)aminomethane Roth, Karlsruhe 

Trypton     Oxoid, Heidelberg 

Tween 20   Sigma, München 

X-Gal  Peqlab, Erlangen 

Yeast extract Oxoid, Hampshire, U.K. 

Other chemicals were purchased from Merck, Serva, Sigma or Roth. 

 

6.1.2 Auxiliary materials 

96-Well-plates Sarstedt, Nürmbrecht 

Centrifuge cups Beckmann, Munich 

Cuvettes (microlitre, plastic) Greiner, Nürtingen 

Dialysis tube Serva, Heidelberg 

Eppendorf tubes Greiner, Nürtingen 
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Falcon tubes Sarstedt, Nürmbrecht 

Gene amp reaction tubes (PCR) Perkin Elmer, Weiterstadt 

Glas pipette Brand, Wertheim 

Microlitre pipettes  

(1 µl, 2 μl, 20 μl, 200 μl, 1000 μl, 5 ml) 

Eppendorf, Hamburg 

Petri dishes Greiner, Nürtingen 

Pipette tips Greiner, Nürtingen 

Poly-Prep Chromatography columns Bio-Rad, Munich 

Polyvinylidene difluoride (PVDF) membrane Bio-Rad, Munich 

 

6.1.3 Intruments 

ÄKTAprime GE Healthcare, Freiburg 

Autoclave Zirbus technology, Bad Grund 

Biofuge fresco Heraeus Christ, Osterode 

Chemiluminescence system ChemiSmart Peqlab, Erlangen 

Contamination meter Berthold, Bad Wildbad 

Fluorescence microscope Axioskop 40FL + 

Kamera (AxioCam MRm) 

Zeiss, Göttingen 

French pressure cell press SLM Aminco, Lorch 

French pressure cell press Spectonic Unicam, England 

Gel electrophoresis apparatus PeqLab, Erlangen 

Ice maschine Ziegra, Isernhagen 
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Image eraser Molecular Dynamics, USA 

Heating block Dri Block DB3 Waasetec, Göttingen 

Horizontal shaker 3006 GFL, Burgwedel 

Hydro tech vacuum pump  Bio-Rad, Munich 

LabCycler  SensorQuest, Göttingen 

Microplate reader Epoch2 BioTek, Bad Friedrichshall 

Microplate reader SynergyMx BioTek, Bad Friedrichshall 

Mini-Protean III System Bio-Rad, Munich 

Nanodrop ND-1000 Thermoscientific, Bonn 

Open air shaker Innova 2300 New Brunswick, Neu-Isenburg 

Phosphor imagerStorm 860 Molecular Dynamics, USA 

pH meter Calimatic Knick, Berlin 

Refrigerated centrifuge Kendro, Hanau 

Scale Sartorius, Göttingen 

Semi Dry Transfer Unit TE70 SemiPhor Amersham, Freiburg 

Special accuracy weighing machine Sartorius, Göttingen 

Spectral photometer Amersham, Freiburg 

Standard power pack Bio-Rad, Munich 

Thermocycler Biometra, Göttingen 

Ultra centrifuge, Sorvall Ultra Pro 80 Thermoscientific, Bonn 
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Ultrasonic device Dr. Hielscher, Teltow 

UV Transilluminator 2000 Bio-Rad, Munich 

Vortex Bender & Hobein, Bruchsal 

Water-bath incubation system GFL, Burgwedel 

Water desalination plant Millepore, Schwalbach 

     

6.1.4 Commercial systems 

peqGOLD Bacterial DNA Kit PEQLAB, Erlangen 

peqGOLD PCR Purification Kit PEQLAB, Erlangen 

NucleoSpin Plasmid-Kit Macherey-Nagel, Düren 

PageRuler™ Plus Prestained Protein Ladder ThermoFisher, Waltham, USA 

QIAquick PCR Purification Kit Qiagen, Hilden 

Midori Green Biozym, Hessisch Oldendorf 

 

 

6.1.5 Antibodies and enzymes 

Anti-FLAG®   Sigma-Aldrich, Munich 

Anti-Rabbit IgG-AP secondary antibody Promega, Mannheim 

FastAPTM ThermoFisher, Waltham, USA 

Lysozym Merck, Darmstadt 

PhusionTM DNA polymerase Biozym, Hessisch Oldendorf 

Restriction nucleases ThermoFisher, Waltham, USA 
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T4-DNA ligase ThermoFisher, Waltham, USA 

Taq-DNA polymerase Roche Diagnostics, Mannheim 

 

6.2 Oligonucleotides 

Oligonucleotides were purchased from Sigma Aldrich (Munich, Germany). Underlined are 
restriction sites. 
 
Name Sequenz (5‘-3’) Description 

cat-fwd (kan) 5’CGGCAATAGTTACCCTTATTATCAA

G 

Amplification of cat-cassette 

from pGem-cat for LFH-PCR 

cat-rev (kan) 5’CCAGCGTGGACCGGCGAGGCTAG

TTACCC 

Amplification of cat-cassette 

from pGem-cat for LFH-PCR 

FC146 5’CGATGCGTTCGCGATCCAGGC Sequencing of pUT18 

FC147 5’CCAGCCTGATGCGATTGCTGCAT Sequencing of p25-N 

FC148 5’GTCACCCGGATTGCGGCGG Sequencing of pUT18C,  

FC149 5’GCTGGCTTAACTATGCGGCATCAG

A 

Sequencing of pUT18C 

FC150 5’GATTCGGTGACCGATTACCTGGC Sequencing of pKT25 

FC151 5’CGCCAGGGTTTTCCCAGTCACG Sequencing of pKT25 

FM70 5’CCGGCTCGTATGTTGTGTGGAAT Sequencing of p25-N  

kan-fwd 5’CAGCGAACCATTTGAGGTGATAGG Amplification of apha3 from 

pDG780 for LFH-PCR 

kan-rev 5’CGATACAAATTCCTCGTAGGCGCT

CGG 

Amplification of apha3 from 

pDG780 for LFH-PCR 

KG64 5’TATCAGGGCCTCGACTACA Sequencing of pGP882 

derivatives, fwd 

KG65 5’CGCTGATTAAATACAGCATCGG Sequencing of pGP882 

derivatives, rev 

M13 pUC for 5`GTAAAACGACGGCCAGTG Sequencing of pBS-plasmides 

and pUC derivatives, fwd 
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M13 pUC rev 5`GGAAACAGCTATGACCATG Sequencing of pBS-plasmides 

and pUC derivatives, rev 

ML84 5‘CTAATGGGTGCTTTAGTTGAAGA Cat check up-fragment  

(sequencing of up-fragement)  

ML85 5‘CTCTATTCAGGAATTGTCAGATAG Cat check down-fragment 

(sequencing of down-fragment) 

ML107 5’GCTTCATAGAGTAATTCTGTAAAG

G 

kan check up-fragment  

(sequencing of up-fragement)  

ML108 5’GACATCTAATCTTTTCTGAAGTACA

TCC 

kan check down-fragment  

(sequencing of down-

fragement)  

ML109 5’GTCTAGTGTGTTAGACTTTATGAA

ATC 

mls check up-fragment  

(sequencing of up-fragement)  

ML110 5’CTTTAATAATTCATCAACATCTACA

CC 

mls check down-fragment 

(sequencing of down-

fragement) 

mls fwd (kan) 5’CAGCGAACCATTTGAGGTGATAGG

GATCCTTTAACTCTGGCAACCCTC 

LFH-PCR, amplification of ermC 

from pDG647, fwd 

mls rev (kan) 5’CGATACAAATTCCTCGTAGGCGCT

CGGGCCGACTGCGCAAAAGACATAA

TCG 

LFH-PCR, amplification of ermC 

from pDG647, rev 

mls-check fwd 5’CCTTAAAACATGCAGGAATTGACG LFH-PCR, sequencing of the 

down-fragment 

mls-check rev 5’GTTTTGGTCGTAGAGCACACGG LFH-PCR, sequencing of the up-

fragment 

pWH844 fwd 5’TATGAGAGGATCGCATCACCAT Sequencing of pWH844 

constructs 

T7-Prom. 5’TAATACGACTCACTATAGGG Sequencing primer, starts at 5` 

end of T7 promotor 

DT64 AAAGGATCCCCTAGTCCGCAATTTTG

GGATGCC 

Cloning of accA into pGP1331, 

pBP43, fwd (BamHI) 
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DT66 TTTGTCGACGTTTACCCCGATATATT

GATCTTCAACCG 

Cloning of accA into pGP1331, 

pGP382, pBP43, rev (SalI) 

DT73 AAAGGATCCCTCACTTATTTAAAGGA

GGAAACAATCATGTTAAATATCAAA

GAAATCCACGAGCTGATTAAAG 

 Cloning of accB into pGP1460, 

fwd (BamHI) 

DT74 TTTGTCGACCTCCGCTTTTACAAGAA

ATAGAGGTTG 

 Cloning of accB into pGP1460, 

rev (SalI) 

DT75 AAAGGATCCCTCACTTATTTAAAGGA

GGAAACAATCATGATTAAAAAGCTA

TTGATCGCCAACAGAG 

 Cloning of accC into pGP1460, 

fwd (BamHI) 

DT76 TTTGTCGACTGAGCCCATTACATCAT

ATGTTTCTAAAAATTTCG 

Cloning of accC into pBP43, 

pGP1460, pGP1331, rev (SalI) 

DT77 AAATCTAGAAATAATTTTGTTTAACT

TTAAGAAGGAGATATAATGAAAGAC

AACAGCTTGCTTAAAATGGATCAC 

Cloning of yqhY into pET-28a, 

fwd (XbaI) 

DT78 TTTGCGGCCGCCATTTCTTCGTCGAT

TTGGACTTCTTGG 

Cloning of yqhY into pET-28a, 

rev (NotI) 

DT79 AAAGGTACCGGAGAACTTGTACTTC

CAAGGAACATTGAATAAATCAATTTT

AGTTGCTCAAGAAGCG 

Cloning of divIVA C-term. into 

pGP172, fwd (KpnI) 

DT80 TTTGGATCCTTATTCCTTTTCCTCAAA

TACAGCGTCGAC 

Cloning of divIVA C-term. into 

pGP172, rev (BamHI) 

DT81 AAAGGATCCGAGAACTTGTACTTCC

AAGGAATGAAAGACAACAGCTTGCT

TAAAATGGATCAC 

Cloning of yqhY into pwh844, 

fwd (BamHI) 

DT82 TTTCTGCAGTTACATTTCTTCGTCGAT

TTGGACTTCTTGG 

Cloning of yqhY into pwh844, 

rev (PstI) 

DT83 AAAGGATCCCTCACTTATTTAAAGGA

GGAAACAATCGTGGCTCCAAGATTA

GAATTTGAAAAACCG 

Cloning of accA into pGP382, 

fwd (BamHI) 
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DT84 AAAGGATCCCTCACTTATTTAAAGGA

GGAAACAATCTTGTTAAAGGATATA

TTCACGAAAAAGAAAAAGTATGC 

Cloning of accD into pGP382, 

pGP1370, pBQ200, fwd (BamHI) 

DT85 TTTGTCGACATCTTGGAGCCACTCAA

TGTCACC 

Cloning of accD into pGP382, 

pGP1370, rev (SalI) 

DT86 CCTTGTCGTTTCAACACCTTATCTGAT

TTC 

Sequencing of accAD, fwd 

DT87 GCTGTTGTGACAGGCAAGGGC Sequencing of accAD, fwd 

DT88 CTCCATCCTCCCTATGAAACCTTAC Sequencing of accAD, rev 

DT89 AAATCTAGAGGTGGCTCCAAGATTA

GAATTTGAAAAACCG 

Cloning of accA into BACTH, fwd 

(XbaI) 

DT90 TTTGGTACCCGGTTTACCCCGATATA

TTGATCTTCAACCG 

Cloning of accA into BACTH, rev 

(KpnI) 

DT91 AAATCTAGAGATGTTAAATATCAAA

GAAATCCACGAGCTGATTAAAG 

Cloning of accB into BACTH, fwd 

(XbaI) 

DT92 TTTGGTACCCGCTCCGCTTTTACAAG

AAATAGAGGTTGTC 

Cloning of accB into BACTH, rev 

(KpnI) 

DT93 AAATCTAGAGATGATTAAAAAGCTA

TTGATCGCCAACAGAGG 

Cloning of accC into BACTH, fwd 

(XbaI) 

DT94 TTTGGTACCCGTGAGCCCATTACATC

ATATGTTTCTAAAAATTTCG 

Cloning of accC into BACTH, rev 

(KpnI) 

DT95 AAATCTAGAGTTGTTAAAGGATATAT

TCACGAAAAAGAAAAAGTATGC 

Cloning of accD into BACTH, fwd 

(XbaI) 

DT96 TTTGGTACCCGATCTTGGAGCCACTC

AATGTCACC 

Cloning of accD into BACTH, rev 

(KpnI) 

DT97 TTTGTCGACATCTTGGAGCCACTCAA

TGTCAACTCC 

Cloning of accD into pGP382, 

mutation in SD seq. of accA, rev 

(SalI) 

DT102 AAAGGATCCCTCACTTATTTAAAGGA

GGAAACAATCATGCCATTAACGCCA

AATGATATTCACAACAAG 

Cloning of divIVA into pGP1460, 

fwd (BamHI) 
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DT103 TTTCTGCAGTTCCTTTTCCTCAAATAC

AGCGTCGAC 

Cloning of divIVA into pGP1460, 

pGP1331, rev (PstI) 

DT104 AAAGGTACCCGGTTCAAGTCATGCA

GCAGGC 

Cloning of accB into pGP1080, 

pGP1087, fwd (KpnI) 

DT105 TTTGGTACCCTCCGCTTTTACAAGAA

ATAGAGGTTGTC 

Cloning of accB into pGP1080, 

pGP1087, rev (KpnI) 

DT106 AAAGGATCCGGAGCAAATGGGAGA

TGCAGCG 

Cloning of accC into pGP1331, 

pBP43, fwd (BamHI) 

DT107 GGAACTGACCTGATCAAGGAACAAA

TC 

LFH-PCR yqhY, yfp, cat, (fwd up-

fragment, sequencing) 

DT108 GATGTTGAATTTGAAGGCTGGGCC LFH-PCR yqhY, yfp, cat, (fwd up-

fragment) 

DT109 CATTTCTTCGTCGATTTGGACTTCTTG

G 

LFH-PCR yqhY, yfp, cat, (rev up-

fragment) 

DT110 CGAGCGCCTACGAGGAATTTGTATC

GATGGCTTAACACGAAACCAAGGGG 

LFH-PCR yqhY, yfp, cat, (fwd 

down-fragment) 

DT111 GATCATCTCCAATCAAAATAACCGCC

AG 

LFH-PCR yqhY, yfp, cat, (rev 

down-fragment) 

DT112 CTTGAAATTCATTCCCATTGTTTCTGC

CG 

LFH-PCR yqhY, yfp, cat, (fwd 

down-fragment, sequencing) 

DT113 CCTGGCGGATGACGGAATTACG LFH-PCR yqhY, yfp, cat, (fwd 

sequencing from yqhY) 

DT114 GTCCAAATCGACGAAGAAATGATGG

TGAGCAAGGGCGAGGAG 

Amplification of yfp, fwd 

DT115 CCTATCACCTCAAATGGTTCGCTGTT

ACTTGTACAGCTCGTCCATGCCG 

Amplification of yfp, rev 

DT116 GTCCAAATCGACGAAGAAATGATGG

TCAGCAAGGGAGAGGAAGATAATAT

G 

Amplification of mCherry, fwd 
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DT117 CCTATCACCTCAAATGGTTCGCTGCT

ATTTGTATAATTCGTCCATTCCACCTG

TAGAG 

Amplification of mCherry, rev 

DT118 AAACCATGGCGATGAAAGACAACAG

CTTGCTTAAAATGGATCAC 

Cloning of yqhY into pETM-11, 

fwd (NcoI) 

DT119 AAAGGATCCATGCCATTAACGCCAA

ATGATATTCACAACAAG 

Cloning of divIVA into pGP1331, 

fwd (BamHI) 

DT120 GCTGTCATATTAGAGTTGAATTCAAA

AGTCC 

Sequencing of accBC, fwd 

DT121 AAAGGATCCCCTTACTCTGTCGTGCT

TCTTGATGAG 

Cloning of clpC into pGP1331, 

fwd (BamHI) 

DT122 TTTCTGCAGATTCGTTTTAGCAGTCG

TTTTTACGACAAATTCG  

Cloning of clpC into pGP1331, 

rev (PstI) 

DT123 AAATCTAGAGATGTGGAAAGGACTT

ATCCATCAATATAAAGAATTTTTAC  

Cloning of thrC into pGP888, 

fwd (XbaI) 

DT124 TTTGGTACCTCATACACGGGCCGCTC

CTTTTAC  

Cloning of thrC into pGP888, rev 

(KpnI) 

DT125 AAAGGATCCATGAAAGAGGAGACAT

TTTATCTTGTCCGTG  

Cloning of thrR into pGP380, 

fwd (BamHI) 

DT126 TTTGTCGACTTATGCACCTGAACCTA

ATATTTCAACCTTTTC  

Cloning of thrR into pGP380, rev 

(SalI) 

DT127 AAATCTAGAGGTGGGACATAATATT

TCTGACATCATTGAAC 

Cloning of ctsR into BACTH, fwd 

(XbaI) 

DT128 TTTGGTACCCGTTTTAATTTTAAAGA

AGTCAGCATTGCCTTCATC 

Cloning of ctsR into BACTH, rev 

(KpnI) 

DT129 AAAGGATCCGATGGAAATTGAAAGA

ATTAACGAGCATACAGTAAAATT 

Cloning of mecA into BACTH, 

fwd (BamHI) 

DT130 TTTGGTACCCGTGATGCAAAGTGTTT

TTTTATCGTTTCTAGAGC 

Cloning of mecA into BACTH, rev 

(KpnI) 

DT131 AAATCTAGAGTTGACAAACTATCAG

CATGAGCTATACTTCG 

Cloning of yjbH into BACTH, fwd 

(XbaI) 
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DT132 TTTGGTACCCGTTTTTCACATGATTG

ATATTCATCAGAATAAGTGCTG 

Cloning of yjbH into BACTH, rev 

(KpnI) 

DT133 AAATCTAGAGATGCGGCTTGAGCGT

CTGAATTATAATAAG 

Cloning of ypbH into BACTH, 

fwd (XbaI) 

DT134 TTTGGTACCCGTGAAAAATGAGTTTG

TATCGTTTCTACGGCATTAC 

Cloning of ypbH into BACTH, rev 

(KpnI) 

DT135 AAATCTAGAGATGCGTTGTCAACATT

GTCATCAAAACGAG  

Cloning of cplE into BACTH, fwd 

(XbaI) 

DT136 TTTGGTACCCGTTTTGCTCGCACTTT

GATTTTATCATCTTCTAAAATC 

Cloning of cplE into BACTH, rev 

(KpnI) 

DT137 GCGCGACAACACTGAAAGAATATCG Sequencing of cplE 

DT138 TTTGTCGACTTAGTTTACCCCGATAT

ATTGATCTTCAACCG 

Cloning of accDA into pBQ200, 

rev (SalI) 

DT139 AAAGAGCTCGAGGAAGCTGGACAAT

TAACTGAGAAGGT 

Cloning of clpE into pGP1331, 

fwd (SacI)  

DT140 TTTGGATCCTTTTGCTCGCACTTTGAT

TTTATCATCTTCTAAAATCAC 

Cloning of clpE into pGP1331, 

rev (BamHI) 

 

6.3 Plasmids 

 

Name Relevant characteristics Primer/ 

Restriction 

sites 

Reference 

pBP43 fusion of the monomeric variant of GFP A206K to the 

C-terminus of a protein 

Cascante-Estepa 

et al., 2016 

pBP190 pUT18-mcsB  Stannek, 2015 

pBP191 pUT18C-mcsB  Stannek, 2015 

pBP192 pKT25-mcsB  Stannek, 2015 
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pBP193 p25-N-mcsB  Stannek, 2015 

pBP198 pUT18-clpP  Stannek, 2015 

pBP199 pUT18C-clpP  Stannek, 2015 

pBP200 pKT25-clpP  Stannek, 2015 

pBP201 p25-N-clpP  Stannek, 2015 

pBP202 pUT18-clpC  Stannek, 2015 

pBP203 pUT18C-clpC  Stannek, 2015 

pBP204 pKT25-clpC  Stannek, 2015 

pBP205 p25-N-clpC  Stannek, 2015 

pBP206 pUT18-clpX  Stannek, 2015 

pBP207 pUT18C-clpX  Stannek, 2015 

pBP208 pKT25-clpX  Stannek, 2015 

pBP209 p25-N-clpX  Stannek, 2015 

pBQ200 allows overexpression of proteins in B. subtilis Martin-

Verstraete et al., 

1994 

pDG646 amplification of ermC resistance cassette for LFH PCR 

ErmR 

Guérout-Fleury et 

al., 1995 

pDG780 amplification of apha3 resistance cassette for LFH PCR 

KmR 

Guérout-Fleury et 

al., 1995 

pDG1726 amplification of aad9 resistance cassette for LFH PCR 

SpecR 

Guérout-Fleury et 

al., 1995 

pGEM-cat amplification of cat resistance cassette for LFH CatR Guérout-Fleury et 

al., 1995 
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pGP172 allows expression of proteins carrying a Strep-tag at 

their N-terminus in E. coli 

Merzbacher et 

al., 2004 

pGP380 allows overexpression of N-terminal Strep-tag fusion 

proteins in B. subtilis 

Herzberg et al., 

2007 

pGP382 allows overexpression of C-terminal Strep-tag fusion 

proteins in B. subtilis 

Herzberg et al., 

2007 

pGP574 allows overexpression of proteins carrying a Strep-tag 

at their C-terminus in E. coli 

Schilling et al., 

2006 

 

pGP1027 pGP574 AK12-AK13/ 

NdeI+ BamHI 

Klewing, 2015 

pGP1325 pWH844-yqhY DT25-DT26/ 

BamHI + PstI 

 Tödter, 2013 

pGP1326 pGP1460-yqhY DT27-DT28/ 

BamHI + PstI 

 Tödter, 2013 

pGP1327 pGP1460-yloU DT29-DT30/ 

BamHI + PstI 

 Tödter, 2013 

pGP1328 pGP1331-yqhY DT31-DT32/ 

BamHI + PstI 

 Tödter, 2013 

pGP1329 pGP172-yqhY DT19-DT20/ 

BamHI + KpnI 

 Tödter, 2013 

pGP1331 allows fusion of 3x FLAG tag at the C-terminus of a 

protein, keeping the expression under control of the 

natural promotor 

Lehnik-Habrink et 

al., 2010 

pGP1333 3’ end of cshA with 3x FLAG tag at C-terminus Lehnik-Habrink et 

al., 2010 

pGP1370 allows fusion of 3x FLAG tag at the C-terminus of a 

protein 

Lehnik-Habrink et 

al., 2011 

pGP1389 allows expression of C-terminal Strep-tag fusion 

proteins in B. subtilis, keeping the expression under 

control of the natural promotor 

Lehnik-Habrink et 

al., 2011 
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pGP1460 constitutive expression of C-terminally Strep-tagged 

proteins in B. subtilis; integrates in lacA 

Mehne et al., 

2013 

pGP1470 pUT18-yqhY DT45-DT46/ 

XbaI + KpnI 

 Tödter, 2013 

pGP1471 pUT18C-yqhY DT45-DT46/ 

XbaI + KpnI 

 Tödter, 2013 

pGP1472 p25-N-yqhY DT45-DT46/ 

XbaI + KpnI 

 Tödter, 2013 

pGP1473 pKT25-yqhY DT45-DT46/ 

XbaI + KpnI 

 Tödter, 2013 

pGP1482 pBP43-yqhY DT31-DT32/ 

BamHI + PstI 

 Tödter, 2013 

pGP1484 pGP1460-accB DT73-DT74/ 

BamHI + SalI 

This study 

pGP1485 pGP1460-accC DT75-DT76/ 

BamHI + SalI 

This study 

pGP1496 pET28a+-yqhY DT77-DT78/ 

XbaI + NotI 

This study 

pGP1497 pGP172-C-terminus of divIVA+TEV-

site 

DT79-DT80/ 

KpnI + BamHI 

This study 

pGP1498 pWH844-yqhY+TEV-site DT81-DT82/ 

BamHI + PstI 

This study 

pGP1499 pGP1331-accA DT64-DT66/ 

BamHI + SalI 

This study 

pGP1723 pGP382-accA DT83-DT66/ 

BamHI + SalI 

This study 

pGP1724 pGP382-accD DT84-DT85/ 

BamHI + SalI 

This study 

pGP1725 pGP382-accD-G283V DT84-DT97/ 

BamHI + SalI 

This study 
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pGP1726 pGP1460-divIVA DT102-DT103/ 

BamHI + PstI 

This study 

pGP1727 pGP1331-accC DT106-DT76/ 

BamHI + SalI 

This study 

pGP1728 pGP1087-accB DT104-DT105/ 

KpnI 

This study 

pGP1729 pGP1871-yqhY DT25-DT28/ 

BamHI + PstI 

This study 

pGP1730 pBP43-accA DT64-DT66/ 

BamHI + SalI 

This study 

pGP1731 pBP43-accC DT106-DT76/ 

BamHI + SalI 

This study 

pGP1732 pGP1080-accB DT104-DT105/ 

KpnI 

This study 

pGP1733 pUT18-accA DT89-DT90/ 

XbaI + KpnI 

This study 

pGP1734 pUT18C-accA DT89-DT90/ 

XbaI + KpnI 

This study 

pGP1735 p25-N-accA DT89-DT90/ 

XbaI + KpnI 

This study 

pGP1736 pUT18-accB DT91-DT92/ 

XbaI + KpnI 

This study 

pGP1737 pUT18C-accB DT91-DT92/ 

XbaI + KpnI 

This study 

pGP1738 p25-N-accB DT91-DT92/ 

XbaI + KpnI 

This study 

pGP1739 pKT25-accB DT91-DT92/ 

XbaI + KpnI 

This study 

pGP1740 pUT18-accC DT93-DT94/ 

XbaI + KpnI 

This study 
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pGP1741 pUT18C-accC DT93-DT94/ 

XbaI + KpnI 

This study 

pGP1742 p25-N-accC DT93-DT94/ 

XbaI + KpnI 

This study 

pGP1743 pKT25-accC DT93-DT94/ 

XbaI + KpnI 

This study 

pGP1744 pUT18-accD DT95-DT96/ 

XbaI + KpnI 

This study 

pGP1745 pUT18C-accD DT95-DT96/ 

XbaI + KpnI 

This study 

pGP1746 p25-N-accD DT95-DT96/ 

XbaI + KpnI 

This study 

pGP1747 pGP1370-accD DT84-DT85/ 

BamHI + SalI 

This study 

pGP1748 pETM-11-yqhY DT118-DT20/ 

NcoI + BamHI 

This study 

pGP1749 pGP1331-divIVA DT119-DT103/ 

BamHI + PstI 

This study 

pGP1750 pGP1331-clpC DT121-DT122/ 

BamHI + PstI 

This study 

pGP1828 pGP888-thrC DT123-DT124/  

XbaI + KpnI 

This study 

pGP1829 pUT18-ctsR DT127-DT128/  

XbaI + KpnI 

This study 

pGP1830 pUT18C-ctsR DT127-DT128/  

XbaI + KpnI 

This study 

pGP1831 p25-N-ctsR DT127-DT128/  

XbaI + KpnI 

This study 

pGP1832 pKT25-ctsR DT127-DT128/  

XbaI + KpnI 

This study 
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pGP1833 pUT18-mecA DT129-DT130/  

BamHI + KpnI 

This study 

pGP1834 pUT18C-mecA DT129-DT130/  

BamHI + KpnI 

This study 

pGP1835 p25-N-mecA DT129-DT130/  

BamHI + KpnI 

This study 

pGP1836 pKT25-mecA DT129-DT130/  

BamHI + KpnI 

This study 

pGP1837 pUT18-yjbH DT131-DT132/  

XbaI + KpnI 

This study 

pGP1838 pUT18C-yjbH DT131-DT132/  

XbaI + KpnI 

This study 

pGP1839 p25-N-yjbH DT131-DT132/  

XbaI + KpnI 

This study 

pGP1840 pKT25-yjbH DT131-DT132/  

XbaI + KpnI 

This study 

pGP1841 pUT18-ypbH DT133-DT134/  

XbaI + KpnI 

This study 

pGP1842 pUT18C-ypbH DT133-DT134/  

XbaI + KpnI 

This study 

pGP1843 p25-N-ypbH DT133-DT134/  

XbaI + KpnI 

This study 

pGP1844 pKT25-ypbH DT133-DT134/  

XbaI + KpnI 

This study 

pGP1845 pGP172-accA-H105P AK01-AK02/  

KpnI + BamHI 

This study 

pGP1846 pGP172-accD-L176F AK07-AK08/  

KpnI + BamHI 

This study 

pGP1847 pGP172-accD-A229S AK07-AK08/  

KpnI + BamHI 

This study 
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pGP1848 pGP172-accD-I38N AK07-AK08/  

KpnI + BamHI 

This study 

pGP1849 pGP1389-accA DT64-DT66/ 

BamHI + SalI 

This study 

pGP1850 pBQ200-accDA DT84-DT138/ 

BamHI + SalI 

This study 

pGP1870 pUS19-gfp  Rothe et al., 2013 

pGP1871 pUS19-yfp  Rothe et al., 2013 

pGP2157 pUT18-clpE DT135-DT136/  

XbaI + KpnI 

This study 

pGP2158 pUT18C-clpE DT135-DT136/  

XbaI + KpnI 

This study 

pGP2159 p25-N-clpE DT135-DT136/  

XbaI + KpnI 

This study 

pGP2160 pKT25-clpE DT135-DT136/  

XbaI + KpnI 

This study 

pGP2161 pGP1331-clpE DT139-DT140/ 

SacI + BamHI 

This study 

pGP2162 pBQ200-yqhY DT27-DT26/ 

BamHI + PstI 

This study 

pGP2690 pWH844-birA JN335-JN336/ 

BamHI + SalI 

J. Gundlach, 

unpublished 

p25-N Plac-mcs-cyaA kan  Claessen et al., 

2008 

pKT25 Plac- cyaA-mcs kan  Karimova et al., 

1998 

pKT25::zip Plac- cyaA-zip kan  Karimova et al., 

1998 

pUT18 Plac-mcs-cyaA bla  Karimova et al., 

1998 
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pUT18C Plac -cyaA-mcs bla  Karimova et al., 

1998 

pUT18::zip Plac -cyaA-zip bla  Karimova et al., 

1998 

pWH844 allows expression of proteins 

carrying a His tag at their N-

terminus in E. coli 

 Schirmer et al., 

1997 

 

6.4 Strains 

 

Bacillus subtilis strains used in this study 

Strain Genotype Reference/ Construction 

168 trpC2 Laboratory collection 

4041 trpC2 ∆divIVA::tet Oliva et al., 2010 

BKE00830 trpC2 ∆ctsR::erm BGSC 

BKE11550 trpC2 ∆yjbH::erm BGSC 

BKE27910 trpC2 ∆yszB::erm BGSC 

BKG09 trpC2 ∆spo0A::aphA3 K. Gunka, UMG 

GP1468 trpC2 ∆yqhY::erm Tödter, 2013 

GP1469 trpC2 ∆yqhY::erm (AccD G283V) Tödter, 2013 

GP1470 trpC2 ∆yqhY::erm ∆yloU::cat (AccA H105P) Tödter, 2013 

GP1473 trpC2 yqhY-gfp spc, ∆divIVA::tet Tödter, 2013 

GP1474 trpC2 lacA::(yqhY-Strep aphA3) Tödter, 2013 

GP1477 trpC2 lacA::(accB-Strep aphA3) pGP1484 → 168 

GP1478 trpC2 lacA::(accC-Strep aphA3) pGP1485 → 168 

GP1479 trpC2 lacA::(accB-Strep aphA3) yqhY-3xFLAG 

spc 

pGP1328 → GP1477 

GP1480 trpC2 lacA::(accC-Strep aphA3) yqhY-3xFLAG 

spc 

pGP1328 → GP1478 

GP1481 trpC2 yqhY-3xFLAG spc pGP1328 → 168 
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GP1482 trpC2 lacA::(divIVA-Strep aphA3) pGP1726 → 168 

GP1483 trpC2 accC-3xFLAG spc pGP1727 → 168 

GP1484 trpC2 Pspac accB-3xFLAG erm pGP1728 → 168 

GP1485 trpC2 lacA::(divIVA-Strep aphA3) accA-3xFLAG 

spc 

GP1487 gDNA → GP1482 

GP1486 trpC2 lacA::(divIVA-Strep aphA3) accC-3xFLAG 

spc 

pGP1727 → GP1482 

GP1487 trpC2 accA-3xFLAG spc pGP1499 → 168 

GP1488 trpC2 ∆yqhY::mls (Suppressor: G283V) accA-

3xFLAG spc 

pGP1499 → GP1469 

GP1489 trpC2 ∆yqhY::erm ∆yloU::cat (Suppressor: 

H105P) accA-3xFLAG spc 

pGP1499 → GP1470 

GP1490 trpC2 accA-gfp spc pGP1730 → 168 

GP1491 trpC2 accC-gfp spc pGP1731 → 168 

GP1492 trpC2 yqhY-yfp cat LFH → 168 

GP1493 trpC2 Pspac accB-gfp erm pGP1732 → 168 

GP1494 trpC2 lacA::(yqhY-Strep aphA3) accA-3xFLAG 

spc 

GP1487 gDNA → GP1474 

GP1495 trpC2 lacA::(yqhY-Strep aphA3) accC-3xFLAG 

spc 

pGP1727 → GP1474 

GP1496 trpC2 lacA::(yqhY-Strep aphA3) cshA-3xFLAG 

spc 

pGP1333 → GP1474 

GP1498 trpC2 lacA::(divIVA-Strep aphA3) accD-3xFLAG 

erm 

pGP1747 → GP1482 

GP1499 trpC2 lacA::(divIVA-Strep aphA3) cshA-3xFLAG 

spc 

pGP1333 → GP1482 

GP1500 trpC2 lacA::(divIVA-Strep aphA3) yqhY-3xFLAG 

spc 

pGP1328 → GP1482 

GP1765 trpC2 ∆yqhY::cat LFH → 168 

GP1766 trpC2 accA-gfp spc ∆yqhY::erm GP1468 gDNA → GP1490 

GP1767 trpC2 Pspac accB-gfp erm ∆yqhY::cat GP1493 gDNA → GP1765 
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GP1768 trpC2 accC-gfp spc ∆yqhY::cat GP1491 gDNA → GP1765 

GP1769 trpC2 accA-gfp spc ∆divIVA::tet 4041 gDNA → GP1490 

GP1770 trpC2 Pspac accB-gfp erm ∆divIVA::tet 4041 gDNA → GP1493 

GP1771 trpC2 accC-gfp spc ∆divIVA::tet 4041 gDNA → GP1491 

GP1772 trpC2 accA-gfp spc ∆yqhY::erm (Suppressor: 

G283V) 

GP1490 gDNA → GP1469 

GP1773 trpC2 accA-gfp spc ∆yqhY::erm ∆yloU::cat  

(AccA H105P) 

GP1490 gDNA → GP1470 

GP1774 trpC2 accA-gfp spc ∆yqhY::cat ∆divIVA::tet GP1765 gDNA → GP1769 

GP1775 trpC2 accA-gfp spc ∆yqhY::erm ∆divIVA::tet GP1766 gDNA → 4041 

GP1776 trpC2 divIVA-3xFLAG spc pGP1749 → 168 

GP1777 trpC2 lacA::(yqhY-Strep aphA3) divIVA-3xFLAG 

spc 

pGP1749 → GP1474 

GP1778 trpC2 lacA::(yqhY-Strep aphA3) clpC-3xFLAG 

spc 

pGP1750 → GP1474 

GP1779 trpC2 ∆ctsR::erm ∆yqhY::cat BKE00830 gDNA → 

GP1765 

GP1780 trpC2 ∆yjbH::erm ∆yqhY::cat gDNA BKE11550 → 

GP1765 

GP1781 trpC2 ∆yszB::erm ∆yqhY::cat gDNA BKE27910 → 

GP1765 

GP1782 trpC2 ∆ctsR::erm accA-3xFLAG spc GP1487 gDNA → 

BKE00830 

GP1786 trpC2 ∆clpP::erm GPUG1 gDNA → 168 

GP1787 trpC2 ∆clpX::aphA3 GPUG2 gDNA → 168 

GP1788 trpC2 ∆spx::spc200 GPUG3 gDNA → 168 

GP1789 trpC2 ∆spx::spc200 ∆clpX::aphA3 GP1787 gDNA → GP1788 

GP1790 trpC2 ∆spx::spc200 ∆clpP::erm GP1786 gDNA → GP1788 

GP1791 trpC2 accA-3xFLAG spc ΔyqhY::cat GP1765 gDNA → GP1487 

GP1792 trpC2 accA-3xFLAG spc ΔclpX::aphA3 GP1787 gDNA → GP1487 

GP1793 trpC2 accA-3xFLAG spc ΔclpP::erm GP1786 gDNA → GP1487 
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GP1794 trpC2 accA-gfp spc ΔclpX::aphA3 GP1787 gDNA → GP1490 

GP1795 trpC2 accA-gfp spc ΔclpP::erm GP1786 gDNA → GP1490 

GP1796 trpC2 accA-Strep spc ΔyqhY::erm (Suppressor: 

AccD A229S) 

pGP1849 → GP2322 

GP1797 trpC2 accA-Strep spc ΔyqhY::erm (Suppressor: 

AccD I38N) 

pGP1849 → GP2323 

GP1798 trpC2 ∆yqhY::cat Δspo0A::aphA3 BKG09 gDNA → GP1765 

GP1799 trpC2 clpE-3xFLAG spc pGP2161 → 168 

GP1800 trpC2 lacA::(yqhY-Strep aphA3) clpE-3xFLAG spc pGP2161 → GP1474 

GP2321 trpC2 ΔyqhY::erm (Suppressor: AccD L176F) GP1468 gDNA → 168 

GP2322 trpC2 ΔyqhY::erm (Suppressor: AccD A229S) GP1468 gDNA → 168 

GP2323 trpC2 ΔyqhY::erm (Suppressor: AccD I38N) GP1468 gDNA → 168 

GPUG1 trpC2 ∆clpP::erm U. Gerth 

GPUG2 trpC2 ∆clpX::aphA3 U. Gerth 

GPUG3 trpC2 ∆spx::spc U. Gerth 

QB4913 trpC2 ∆clpP::spc U. Gerth 

 

Escherichia coli strains used in this study 

Strain Genotype Reference/ Construction 

BL21 (DE3) F- lon ompT rBmB hsdS gal (cIts857ind1 Sam7 

nin5 lacUV5- T7 gene1) 

Sambrook et al., 1989 

BTH101 F- cya-99 araD139 galE15 galK16 rpsL1 (StrR) 

hsdR2 mcrA1 mcrB1 

Karimova et al., 2005 

DH5α recA1 endA1 gyrA96 thi hsdR17rK- mK+relA1 

supE44 Φ80ΔlacZΔM15 Δ(lacZYAargF) U169 

Sambrook et al., 1989 

XL1-Blue endA1 gyrA96 (nalR) thi-1 recA1 relA1 lac 

glnV44 F'[ ::Tn10 proAB+ lacIq Δ(lacZ)M15] 

hsdR17 (rK- mK+) 

Karimova et al., 2005 
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